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Summary

During my time as a PhD student I was fortunate to have the opportunity to contribute to different
topics in statistics. This is reflected in this thesis, which contains applications of (non-)parametric
statistical methods (and the development of such techniques) with applications to three distinct
topics:

• Chapter 2 contains a contribution to computational statistics. Its main topic is the (efficient
and exact) calculation of the joint distribution of order statistics. Since ranks are fundamental
to many statistical methods, these have many applications, some of which are detailed in
Section 2.6.

• Chapter 3 contains a contribution to mathematical finance. It expands on the topic of my mas-
ter thesis and contains results related to the topic of "reverse stress testing" which, roughly
speaking, has the goal of performing a data-driven selection of likely scenarios for which
a given portfolio exceeds a specified loss. Two notable contributions are the development
of non-parametric confidence regions in elliptical models and a characterisation of the sub-
space which, in skew-elliptical models, contains the sought scenario.

• Chapter 4 contains contributions to mathematical statistics and some statistical insights into
the analysis of biomedical images. It, among other things, contains results on statistical
tests based on correlation coefficients when one of the random variables is a binary random
variable. The derived results are utilised to elucidate some statistical properties of matrix-
assisted laser desorption/ionization (MALDI) mass spectroscopy data.

In my work on all of these topics, my focus was on developing and applying statistical methods
that are based only on the absolutely necessary assumptions. This is, of course, an aspirational
goal. I am, however hopeful that I was able to make my own small contribution to the science of
mathematical statistics.

Verden, 10.10.2021

J. von Schroeder
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Zusammenfassung

Während meiner Zeit als PhD-Student hatte ich die Möglichkeit, mich mit verschiedenen statisti-
schen Themen zu beschäftigen. Dies spiegelt sich in dieser Thesis wieder, welche die Entwick-
lung und Anwendung (nicht-)parametrischer statistischer Methoden in drei verschiedenen Anwen-
dungsgebieten darstellt:

• Kapitel 2 enthält numerische Methoden zur effizienten und exakten Berechnung der ge-
meinsamen Verteilung von Ordnungsstatistiken. Da Ränge fundamental für eine Vielzahl
statistischer Verfahren sind, haben diese Methoden viele Anwendungen, von denen einige
in Abschnitt 2.6 dargestellt werden.

• Kapitel 3 enthält einen Betrag im Bereich Finanzmathematik. Es handelt sich dabei um eine
Weiterentwicklung eines Themas aus meiner Masterarbeit zum Thema ’Reverse Stress Te-
sting’. Dabei geht es um die datenbasierte Auswahl von wahrscheinlichen Szenarien, unter
denen ein vorgegebenes Portfolio hohe Verluste erleidet. Zwei relevante Kontributionen sind
die Entwicklung von nicht-parametrischen Konfidenzregionen in elliptischen Modellen sowie
die Charakterisierung des Unterraums, in dem sich das Szenario in Schief-Elliptischen Mo-
dellen befindet.

• Kapitel 4 enthält Beiträge zur mathematischen Statistik und einige statistische Erkennt-
nisse im Bereich der Analyse biomedizinischer Bilder. Dieses Kapitel enthält, unter ande-
rem, Resultate über statistische Tests die auf Korrelationskoeffizienten basieren, wenn ei-
ne der Zufallsvariablen binär ist. Diese werden dazu verwendet, die statistischen Eigen-
schaften von Massenspektroskopie-Daten (die mit dem Verfahren ’Matrix-unterstützte Laser-
Desorption/Ionisation (MALDI)’ gemessen wurden) zu untersuchen.

Bei meiner Arbeit an all diesen Themen lag mein Fokus auf der Entwicklung und Anwendung
statistischer Methoden, die nur auf den unbedingt notwendigen Annahmen beruhen. Ich bin hoff-
nungsvoll, dass ich meinen eigenen kleinen Beitrag zur Wissenschaft der mathematischen Statistik
leisten konnte.

Verden, 10.10.2021

J. von Schroeder
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1
Introduction

All models are approximations.
Assumptions, whether implied or clearly stated, are never exactly true.

All models are wrong, but some models are useful.

George Box

The properties of methods for statistical inference depend on the statistical model for the popu-
lation. Sometimes prior knowledge can be utilized to justify restrictive assumptions that simplify
inference. If, however, not many assumptions are justifiable, then the models’ parameter space
can be infinite-dimensional. In this setting, the usual, likelihood-based inference breaks down,
and so called non-parametric methods are often a preferable alternative. This chapter starts with
an instructive example and then describes the topology of measure spaces to explain, why like-
lihood based inference can break down and why the non-parametric methods used/presented in
the following chapters are relevant.

1
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2 1. Introduction

Given, for example, an observation y ∈ Rn (of a random variable Y) statistical inference can only
be made if some model is, either explicitly or implicitly, assumed. The choice of model determines
which procedures are valid, how their results can be interpreted and, finally, if a given procedure
is even relevant for answering the question at hand. To illustrate this point consider, for example,
the question which of two groups has, generally, the larger responses. Formally, denote by PY
the law of a random variable Y and assume that Y1, . . . ,Yn0 are an independent and identically
distributed (i.i.d.) sample from PY1 and that Yn0+1, . . . ,Yn is an i.i.d. sample from PYn0+1 . Two popular
procedures for statistical inference in this setting are the two-sample t-test (cf. [FP10, section 5.2]
with Zi = 0 if i ≤ n0 and Zi = 1 otherwise) and the Wilcoxon-Mann-Whitney U-test1. However, even
the (seemingly simple) question ’Are the group means equal?’ is quite hard, even if PY1 and PYn0+1

are assumed to be Gaussian:

Example 1 (Behrens-Fisher Problem). Denote by

PBehrens-Fisher := {Pµ0,µ1,σ =N(µ,diag(σ)) : (µ0,µ1,σ) ∈ FBehrens-Fisher}

the set of Gaussian probability distributions (on Rn) with diagonal covariance matrices and equal
within-group means and variances, and where the parameter space is given by

FBehrens-Fisher :=
{︂
(µ0,µ1,σ) : σ0,σ1 ∈ Rn

>0 ∧ µ0,µ1 ∈ R∧ µ ∈
(︂
{µ0}n0 × {µ1}n−n0

)︂
,σ ∈

(︂
{σ0}n0 × {σ1}n−n0

)︂}︂
.

Then for PY ∈ PBehrens-Fisher the Behrens-Fisher problem is to test

H0 : PY ∈
{︂
Pµ0,µ1,σ ∈ PBehrens-Fisher : µ0 = µ1

}︂
vs H1 : PY ∈

{︂
Pµ0,µ1,σ ∈ PBehrens-Fisher : µ0 ≠ µ1

}︂

based on a sample (Y1, · · · ,Yn) ∼ P. Neither the t-test nor the Wilcoxon-Mann-Whitney U-test are
valid for this inference problem (cf. [FP10, Table 1, Perspective 14]).

If one restricts the model to σ1 = · · · = σn, then the t-test is known to be the uniformly most powerful
unbiased test (cf. [LR05, Problem 5.5]). Furthermore for σ1 = · · · = σn0 , σn0+1 = · · · = σn it has long
been known that an exact test is possible (cf. [Kab66]).

Since the Wilcoxon-Mann-Whitney U-test is not based on a quantity related to the means, the
model PBehrens-Fisher is not necessarily appropriate. In fact the test statistic is a plug-in estimate of
the quantity

ϕ
(︂
PY1 ,PYn0+1

)︂
:= P

(︁
Y1 > Yn0+1

)︁
+

1
2
P
(︁
Y1 = Yn0+1

)︁

if Y1, . . . ,Yn0 and Yn0+1, . . . ,Yn are i.i.d. samples. The test is, if Y1, . . . ,Yn0 and Yn0+1, . . . ,Yn are
i.i.d. samples from continuous distributions, a valid test for the null-hypothesis H0 : PY1 = PYn0+1

against the alternative H1 : ϕ
(︂
PY1 ,PYn0+1

)︂
≠ 1

2 ; cf. [FP10, Table 1, Perspective 3]. Unfortunately this

model is hard to justify in practice since it does include distributions for which ϕ
(︂
PY1 ,PYn0+1

)︂
= 1

2 and
PY1 ≠ PYn0+1 . A more helpful (even though sometimes too restrictive) view of the test is as one for
stochastic ordering; cf. [FP10, Perspective 2]. For both of these models the t-test is not valid (cf.
[FP10], see this source for more details on other relevant models).

As a side note, even though the one-sample t-test is not usually described as a non-parametric pro-
cedure, it is actually asymptotically maximin (in non-parametric models and for testing the mean)
as long as the model is for i.i.d. observations (i.e. the probability measures are of the form

⨂︁n
i=1P)

and contains the family (N(θ,1))θ∈R≥0 ; cf. [LR05, Section 13.6.1]. Therefore the relevance of a given
procedure should always be judged with a specific model in mind. While "there is not unanimity

1For the case when no ties are present see Section 4.2.1 with Xi = 0 if i ≤ n0 and Xi = 1 otherwise. For the exact test in
case of ties see [Wil45].
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among statisticians in their use of the terms nonparametric and distribution-free" (cf. [Spr07]), I
advocate for using the term "non-parametric" to describe statistical procedures that are success-
fully applied to infinite dimensional models (e.g. the space of all probability measures on R with
continuous distributions).

All of this demonstrates that the model plays a crucial role in determining the validity of a statistical
procedure. Unfortunately the models for which desired properties of a given statistical proce-
dure are mathematically guaranteed, are not necessarily models that agree with our preconceived
knowledge of the data we wish to analyse. Thus model simplicity is a desirable criterion since
it helps avoid nonintuitive or overly restrictive assumptions. Indeed, according to [Box76] "to de-
vise simple but evocative models is the signature of the great scientist" and "overelaboration and
overparameterization is often the mark of mediocrity."

But how can one avoid "overelaboration and overparameterization" when spaces of measures,
that are not finitely supported, are notoriously difficult to handle mathematically? Over the years
statisticians have developed many methods that are called "non-parametric" or "distribution-free".
I consider these to be powerful tools to strive for this goal and have explored their applications in
this thesis. Examples of this include the empirical likelihood method (cf. Section 3.4.1), the Mann-
Whitney U test (cf. Section 4.2.1) and methods based on order statistics (a topic to which Chapter
2 is devoted).

The remainder of this chapter is devoted to describing the topology of measure spaces to elucidate
some of their properties and the problems this causes in the design of inference methods.

Let (Ω,A) be a measurable space, that is Ω is a set and A ⊂ P(Ω) is a σ−algebra; cf. cf. [Bog07,
Def. 1.2.2. and Def. 1.2.3.]. A countably additive (real valued) measure is a mapping µ : A→ R
such that

µ

⎛⎜⎜⎜⎜⎜⎜⎝
∞⋃︂

i=1

Ai

⎞⎟⎟⎟⎟⎟⎟⎠ =
∞∑︂

i=1

µ(Ai)

for any (Ai)i∈N ⊆ A (cf. [Bog07, Def. 1.3.2.]). Every set A ∈ A is called A-measurable. In the
following I will, for notational convenience, suppress the A in my notation and, for example, just
write measurable. I will however always assume that Ω is equipped with a σ−algebra A.

Furthermore the usual notions of absolute continuity and mutual singularity (of measures), written
as µ2 ≪ µ2 and µ1 ⊥ µ2 respectively, as well as atoms and atomicity will be adopted; cf. e.g.
[Bog07, Def. 3.2.1.], [Bog07, p. 55].

Denote by M(Ω) the space of all measures on (Ω,A). Every measure µ ∈ M(Ω) has a (unique)
Jordan decomposition µ = µ+ − µ− where µ+ and µ− are positive measures, and a measure µ̃ is
called positive iff µ̃(A) ≥ 0 for all A ∈ A. The total variation of µ ∈ M(Ω) is, in terms of the Jordan
decomposition, given by

∥µ∥TV := µ+(Ω)+ µ−(Ω)

and (M(Ω),∥.∥) is a Banach space; cf. [Bog07, p. 176] and [Bog07, Thm. 4.6.1]. The real vector
spaceM(Ω) contains the convex cone (cf. [Zal02, p. 1])

M+(Ω) := {µ ∈M(Ω) : µ is a positive measure}
of positive measures. M+(Ω) is a cone because R+ ·M+(Ω) ⊆M+(Ω), but it is not a vector space
since R ·M+(Ω) ⊈ M+(Ω).

The following lemma characterizes inner points of M+(Ω).
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4 1. Introduction

Lemma 1. A measure µ ∈M+(Ω) is not in the topological interior int (M+(Ω)) ofM+(Ω) iff for every
ε > 0 there exists Aε ∈ A such that µ(Aε) ≤ ε and Aε ≠ ∅.

Proof. Assume that such a measurable set exists for every ε and select for each some (arbitrary
but fixed) ωε ∈ Aε. Then for every fixed ε > 0 the measure µ̃ :A→ R, given by µ̃(A) := µ

(︂
A \ A ε

2

)︂
−

ε
2 · χ

(︂
ω ε

2
∈ A

)︂
, is not an element ofM+(Ω) since µ̃

(︂
A ε

2

)︂
= − ε2 < 0. But

∥µ− µ̃∥TV = µ
(︂
A ε

2

)︂
+
ε

2
≤ ε

and thus it is within the ε-neighbourhood of µ. However, since ε > 0 was arbitrary, this implies that
µ is not an interior point ofM+(Ω).

Conversely assume that there exists ε > 0 such that, for every non-empty set A ∈ A, it holds that
µ(A) > ε. Then for every measure µ̃ ∉A there exists a non-empty Ã ∈ A such that µ̃

(︂
Ã
)︂
< 0. But

therefore it follows that
∥µ− µ̃∥TV ≥ µ

(︂
Ã
)︂
+ µ̃

(︂
Ã
)︂
≥ µ

(︂
Ã
)︂
> ε

and thus µ̃ is not an element of the ε-neighbourhood of µ. But since ε > 0 was arbitrary, µ must be
an inner point ofM+(Ω). □

It remains to characterize exactly when the conditions in Lemma 1 can be fulfilled:

• If A is finite (which is always the case when Ω is finite), then µ ∈ int (M+(Ω)) iff µ(A) > 0 for
all measurable A ≠ ∅ and clearly such measures exist.

• IfA is not finite, then this condition is always fulfilled: It can be easily shown, by contradiction,
that an infinite σ−algebra contains a pairwise disjoint sequence (An)n∈N ⊆ A of non-empty
sets. But since every µ ∈M(Ω) is finite, it holds that

µ

⎛⎜⎜⎜⎜⎜⎜⎝
⋃︂

i∈N
Ai

⎞⎟⎟⎟⎟⎟⎟⎠ =
∑︂

i∈N
µ (Ai) ≤ µ(Ω) <∞

and a necessary condition for the convergence of
∑︁

i∈Nµ(Ai) is that limi→∞µ(Ai) = 0. Thus
for every ε > 0 there exists an i ∈ N such that µ(Ai) ≤ ε.

Thus, for 1 ≤ p < ∞, int (M+(Ω)) ≠ ∅ if either Ω is finite or A is finite and thus a very coarse
σ−algebra. This is problematic since even the Gateaux derivative is only defined on open sets,
but M+(Ω) is not open in the topology of (M(Ω),∥.∥TV ) unless int (M+(Ω)) ≠ ∅. Furthermore,
considering only the spaceM+(Ω) (equipped with some other topology) is not an option since it is
only a cone and not a vector space. But derivatives (of some kind) are fundamental to asymptotic
results for likelihood-based inference since these results typically rely on a (local) first-order Taylor
expansion; cf. [GN16, p. 551 ff.]. All of this is not to say that likelihood inference in this setting
is impossible, but rather that it does not have the usual, desirable properties for many practically
relevant cases.

For a measure µ0 ∈M+(Ω) denote by

M(Ω,µ0) :=
{︄

A ↦→
∫︂

A
ϕ dµ0 : ϕ ∈ L1(Ω,µ0)

}︄

the space of measures absolutely continuous wrt. µ0 and where Lp(Ω,µ0) is the space of functions
such that f ∈ Lp(Ω,µ0) iff | f |p is µ0-integrable (or more precisely the factor-space wrt. the equiv-
alence relation of functions being equal µ0-a.e., cf. [Bog07, p. 249 ff.]). That M(Ω,µ0) ⊂ M(Ω)
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is indeed the space of all µ0-dominated measures in M(Ω) is an immediate consequence of the
Radon-Nikodym theorem (cf. [Bog07, Thm. 3.2.2.]). For 1 ≤ p ≤ ∞ the spaces Lp(Ω,µ0) are
Banach spaces (cf. [Bog07, Thm. 4.1.3.]) when equipped with the usual norms and

ican :M(Ω,µ)→ L1(Ω,µ)

µ1 ↦→ dµ1

dµ
,

which maps a measure µ1 to its Radon-Nikodym density, is an isometry of Banach spaces; cf.
[Ay+17, p. 140]. By the Hölder-inequality Lq(Ω,µ0) ⊆ Lp(Ω,µ0) if 1 ≤ p ≤ q ≤∞.

Denote by Lp
+(Ω,µ0) :=

{︂
f ∈ Lp(Ω,µ0) : A ↦→

∫︁
A f d µ0 is a positive measure

}︂
the convex cone of µ0-

a.e. positive densities in LP(Ω,µ0). To understand when the interior of Lp
+(Ω,µ0) is empty, it is

helpful to consider the main difference to M(Ω): For µ ∈ Lp
+(Ω,µ0) the measure µ̃ used in the

proof need not be an element of Lp(Ω,µ0). For 1 ≤ p < ∞, this is exactly the case when µ̃ is not
absolutely continuous wrt. µ0 which happens only if Aε is a µ0 null set. Thus the question arises
when it is impossible to pick Aε with µ0(Aε) > 0. It turns out that this is exactly the case when µ0 is
a purely atomic measure with only finitely many distinct atoms:

Definition 1 (cf. [Bog07, Definition 1.12.7.]). A ∈ A is called an atom of µ if µ(A) > 0 and for every
B ∈ A with B ⊂ A it holds that µ(B) ∈ {0,µ(A)}. Two atoms A1,A2 are called distinct if µ(A1 △ A2) > 0
where A△B := (A∪B) \ (A∩B) denotes the symmetric difference. If {An} is the (at most countable)
set of distinct atoms, then µ is called purely atomic if µ

(︂
Ω \⋃︁∞n=1 An

)︂
= 0. If µ has not atoms, then

it is called atomless.

The distinct atoms of a measure µ can be chosen to be pairwise disjoint:

Proof. Let {An} be the (at most countable) set of distinct atoms of µ and let Ãi := Ai \
(︂⋃︁n−1

i=1 Ai
)︂
. The

Ãi are measurable since Ãi = Ai
⋂︁(︂
Ω \

(︂⋃︁n−1
i=1 Ai

)︂)︂
and obviously

⋃︁∞
n=1 Ãn =

⋃︁∞
n=1 An. It remains to

show that all of these are still atoms, that is µ(Ãi) > 0 for all i ∈ N, or equivalently that µ
(︂
Ai \ Ãi

)︂
= 0.

To this end notice that

µ
(︂
Ai \ Ãi

)︂
= µ

⎛⎜⎜⎜⎜⎜⎜⎜⎝Ai ∩
⎛⎜⎜⎜⎜⎜⎜⎜⎝

i−1⋃︂

j=1

A j

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ≤
i−1∑︂

j=1

µ
(︂
Ai ∩ A j

)︂
= 0

which yields the desired result. □

Using this characterization of atoms it is easy to establish the following result:

Lemma 2. Let µ ∈M(Ω). Then the following are equivalent:

• There exists ε > 0 such that no A ∈ A satisfies 0 < µ(A) ≤ ε
• µ is purely atomic with finitely many distinct atoms.

Proof. By [Joh70, Thm. 2.1] there exist measures µ1,µ2 ∈M(Ω) such that µ1 is purely atomic and
µ2 is atomless. If µ2 is not the zero measure, then µ is not purely atomic and by [Bog07, Cor.
1.12.10.] there exists, for every ε > 0, A ∈ A with µ(A) =min{µ(Ω), ε} > 0. If µ2 is the zero measure
it remains to show that the such an ε can only exist if µ = µ1 has only finitely many distinct atoms:

• If µ has only finitely many distinct atoms A1, . . . ,Ak then, by definition, ε := 1
2 min

i
µ(Ai) is such

that all measurable sets either have a measure bigger than ε or are null sets.
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• If µ has infinitely many distinct (and pairwise disjoint) atoms (Ai)i∈N then, since µ is finite,
it follows that

∑︁
i∈Nµ(Ai) = µ(Ω) < ∞ and thus limi→∞µ(Ai) = 0. Thus for every ε > 0 there

exists an i ∈ N such that µ(Ai) ≤ ε. But Ai is an atom and thus µ(Ai) > 0 which concludes the
proof.

□

Thus, the interior of Lp
+(Ω,µ0) is non-empty iff µ0 takes only finitely many distinct values; cf. [Ay+17,

p. 143, Footnote 4].

Remark 1. For L∞(Ω,µ0) the situation is very different: It can contain open subsets of positive
densities (cf. [GN16, Proposition 7.2.4]) enabling the definition of a differentiable likelihood and, for
example, over a Sobolev ball the asymptotic normality of a non-parametric maximum-likelihood es-
timator can be established (cf. [GN16, Lemma 7.2.13]). This approach is, however, only mentioned
for the sake of completeness as it cannot (in general) be extended to all of L1(Ω).

For statistical purposes, usually the space of probability measures P(Ω) :=
{︁
µ ∈M+(Ω) : ∥µ∥TV = 1

}︁

on (Ω,A) is considered, but since P(Ω) ⊆M+(Ω) the previous discussion applies to P(Ω) as well.
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Efficient Calculation of the Joint

Distribution of Order Statistics

Jonathan von Schroeder, Thorsten Dickhaus

Science is what we understand well enough to explain to a computer.
Art is everything else we do.

Donald E. Knuth

The problem of computing the joint distribution of order statistics of stochastically independent ran-
dom variables in one- and two-group models is considered. While recursive formulae for evaluating
the joint cumulative distribution function of such order statistics exist, their numerical implementa-
tion remains a challenging task. This task is tackled by presenting novel generalizations of known
recursions. They are utilized to obtain exact results (calculated in rational arithmetic) as well as
faithfully rounded results. Finally, some applications in goodness-of-fit testing, step-wise multiple
hypothesis testing, and sample size calculation for studies with multiple endpoints are discussed.

This chapter has been published in Computational Statistics & Data Analysi [vT20].
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2.1. Introduction

T he joint distribution of order statistics X1:n, . . . ,Xn:n of stochastically independent random vari-
ables X1, . . . ,Xn plays a pivotal role in the theory of empirical processes and in nonparametric

statistics; see, e. g., [SW09] and [Dic18]. For instance, the exact finite-sample null distributions
of classical goodness-of-fit tests like the Kolmogorov-Smirnov and the Cramér-von Mises test as
well as those of modern "higher criticism" goodness-of-fit tests rely on such joint distributions; cf.
[GLF15], [GLF16], and [FG18] for recent developments and further references. In simultaneous
statistical inference, the joint distribution of ordered p-values is needed to analyze the type I and
type II error behaviour of stepwise rejective multiple test procedures; cf. Chapter 5 of [Dic14].

One important application area is sample size calculation for (clinical) studies with multiple end-
points. Regulatory agencies have recognized that the type II error can be inflated if the planned
sample size is not adjusted for multiplicity (see e.g. the guideline on Points to Consider on Multiplic-
ity Issues in Clinical Trials by the CPMP (Committee for Proprietary Medicinal Products); [Med02]).
This has led to the development of statistical methods to tackle this issue (see e.g. [SB07],
[Ham+13], [VTS17]). Particularly challenging cases occur when the false discovery rate (FDR)
is chosen as the type I error criterion and stepwise rejective multiple test procedures (operating on
ordered test statistics or p-values, respectively) are utilized (see e.g. [Jun05], [FZ06], [Glu+08a]
and [Izm18]). The mentioned results in the literature are either asymptotic (in the number of null
hypotheses to be tested simultaneously) or limited to a small number of null hypotheses. Inexact
power calculations can however lead to either too large samples (and therefore unnecessarily high
costs) or underpowered (and therefore potentially futile) studies. Both can also be problematic
from the ethical perspective. It is therefore desirable to have exact power calculations beyond the
number of hypotheses feasible using the approach of [Glu+08a].

In the case that X1, . . . ,Xn are identically distributed (we refer to this case as a one-group model),
classical recursive methods like Bolshev’s recursion, Noe’s recursion, and Steck’s recursion allow
for computing the joint cumulative distribution function (cdf) of X1:n, . . . ,Xn:n exactly; cf. Section 9.3
of [SW09]. A generalization of Steck’s recursion to two-group models has been introduced by
[Bla+14]. The other aforementioned recursions can be generalized in an analogous manner, as
we will demonstrate in Section 2.3 of the present work.

While conceptually appealing, numerical properties of the aforementioned recursions are not well
understood yet, and existing implementations into computer software often refer to rule-of-thumb-
type upper bounds on n such that the respective implementation is trustworthy. For example, Art B.
Owen reports in his implementation of the two-sided version of Noe’s recursion in C (see https:
//www.stat.washington.edu/jaw/RESEARCH/SOFTWARE/BERKJONES/BJ-RBJ-C-Code/

https://www.stat.washington.edu/jaw/RESEARCH/SOFTWARE/BERKJONES/BJ-RBJ-C-Code/noe.c
https://www.stat.washington.edu/jaw/RESEARCH/SOFTWARE/BERKJONES/BJ-RBJ-C-Code/noe.c
https://www.stat.washington.edu/jaw/RESEARCH/SOFTWARE/BERKJONES/BJ-RBJ-C-Code/noe.c
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noe.c) that the recursion works well for n ≤ 1000 but "For larger n (eg 1800 or more) [...] unex-
plained odd behavior." Similarly, in the R Package mutoss (cf. [Bla+10]) the following comment is
made on the implementation of Bolshev’s recursion: "Because of numerical issues n should not
be greater than 100." Recently, [MN17] introduced a computational method for one-group models.
However, they do not consider the numerical accuracy of their approach rigorously.

In this work, we contribute to the analysis of the numerical accuracy and the computational com-
plexity of existing approaches for computing the joint distribution of X1:n, . . . ,Xn:n in a mathematically
rigorous manner. Furthermore, we provide novel computational techniques for one- and two-group
models which are guaranteed to provide accurate results for arbitrary sample size n. The rest of
the material is structured as follows. In Section 3.2, we introduce the relevant quantities. The (gen-
eralized) recursions for one- and two-group models are provided in Section 2.3, together with a
rigorous analysis of their computational complexities and their numerical properties. Our proposed
exact computational methods rely on rational arithmetic (Section 2.4) and on faithful rounding (Sec-
tion 2.5), respectively. Applications in power analysis, multiple hypothesis testing, and sample size
planning are given in Section 2.6. We conclude with a discussion in Section 2.7. Lengthy proofs
as well as pseudo code for the considered algorithms are deferred to the appendix.

2.2. Order Statistics

T hroughout the following sections, we let [n] := {1,2, . . . ,n} for a natural number n ∈ N. Consider
stochastically independent, real-valued random variables X1, . . . ,Xn, which are all driven by the

same probability measure P. Let I1 := [n], and recursively define

i j :=min
{︂
i ∈ I j

⃓⃓
⃓∀k ∈ I j : Xi ≤ Xk

}︂

I j := I j−1 \
{︂
i j−1

}︂

for j ∈ [n]. Then we call Xi1 , . . . ,Xin the order statistics of X1, . . . ,Xn, which we will denote by
X1:n, . . . ,Xn:n in the remainder. The random variable Xi:n will be called the i-th order statistic of the
random vector (X1, . . . ,Xn)⊤. Let Fi denote the marginal cdf of Xi for i ∈ [n]. This paper will present
methods for the quick and numerically stable calculation of

Ψ
G1,G2
n1,n2 (b) := P (X1:n ≤ b1, . . . ,Xn:n ≤ bn) , b = (b1, . . . ,bn)⊤ ∈ Rn,

assuming that ∀i ∈ [n] : Fi ∈ {G1,G2} where G1,G2 are two continuous distribution functions on R
and with ni =

⃓⃓
⃓⃓{︂ j ∈ [n] : F j =Gi

}︂⃓⃓⃓⃓ denoting the number of X j’s distributed according to Gi, i = 1,2.
Since it holds that

G1(Xi) ∼
⎧⎪⎪⎨⎪⎪⎩

Uni[0,1], Fi =G1,

G2 ◦G−1
1 , Fi =G2,

it follows that ΨG1,G2
n1,n2 = Ψ

Uni[0,1],F
n1,n2 ◦G1, where F := G2 ◦G−1

1 and Uni[0,1] denotes the uniform
distribution on the interval [0,1]. Therefore, it is sufficient to consider the calculation ofΨUni[0,1],F

n1,n2 (b)
for an arbitrary continuous distribution function F : [0,1]→ [0,1] and argument b ∈ [0,1]n. In the
sequel, we suppress the dependence on F and b notationally, and write Ψ(n1,n2) := ΨUni[0,1],F

n1,n2 (b)
for notational convenience.

As outlined in the introduction, for n2 = 0 there exist many well known recursions (see, e. g., Section
9.3 of [SW09]) for computing Ψ(n1,n2). There are also newer approaches based on numerical
integration (see [MNS16]) or based on the Poisson process (see [MN17]). Unfortunately, the former

https://www.stat.washington.edu/jaw/RESEARCH/SOFTWARE/BERKJONES/BJ-RBJ-C-Code/noe.c
https://www.stat.washington.edu/jaw/RESEARCH/SOFTWARE/BERKJONES/BJ-RBJ-C-Code/noe.c
https://www.stat.washington.edu/jaw/RESEARCH/SOFTWARE/BERKJONES/BJ-RBJ-C-Code/noe.c
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cannot be easily generalized to the case 0 < n2 < n: For the one group case the density of the order
statistics of i.i.d. uniform random variables is given by

f (x1, · · · , xn) =

⎧⎪⎪⎨⎪⎪⎩
n! if 0 ≤ x1 ≤ . . . ≤ xn ≤ 1
0 otherwise.

Hence, it is piece-wise constant and comparatively simple to numerically integrate. Unfortunately
for the multi-group case the density is not so simple anymore (cf. [BB89, Equation (1)]) since
it involves the calculation of matrix-permanents. Thus one can probably do no better than the
algorithm proposed by [Glu+08b] which has exponential O(nn) complexity (cf. [Glu+08b, Theorem
4.2]), resulting in a very high computational effort for even moderate values of n. However, the
method of [Glu+08b] can be used to compute k-variate marginal distributions for k≪ n, because in
such cases the complexity of their approach reduces to O(nk). The approach based on the Poisson
process is very fast due to the usage of the Fourier transform, but numerically unstable for small
values of the bi’s. This can for instance be demonstrated using the thresholds of the well-known
linear step-up test (cf. [BH95]) for control of the FDR; see Figure 2.1.

Since we are mostly concerned with the full joint distribution, we extend the approach suggested
by [Bla+14] and provide generalizations of Bolshev’s and Noe’s recursions. We compare them
to the generalization of Steck’s recursion proposed by [Bla+14] and demonstrate that Bolshev’s
and Steck’s recursion are suitable for exact computations in rational arithmetic, whereas Noe’s
recursion is numerically stable when computed in standard (IEEE 754) floating point arithmetic.

All our numerical calculations were performed on a Windows 10 machine with an AMD RyzenTM

5 2600 CPU (6 cores) with 16 gigabytes of RAM. Parallelization was implemented using In-
tel®Threading Building Blocks (TBB).

0

50

100

150

0 50 100 150 200
n

M
ag

ni
tu

de
of

th
e

re
la

tiv
e

er
ro

r

Algorithm
Poisson O(n2)

Numerical Integration

Poisson O(n2 log(n))

Figure 2.1: Relative error (on the log10 scale) of the methods presented by [MNS16] and [MN17], respectively, when
calculating Ψ(n,0) for the thresholds bi ≡ b(n)

i := 0.05× i/n. A value of −16 implies at least 15 accurate non-zero digits in
base 10. For n ≤ 77 the relative error of the three methods is visually barely distinguishable. For n ≥ 77 the dotted line
below zero corresponds to the "Numerical Integration".

https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
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2.3. The Generalized Recursions
Let n := n1 + n2, n1,n2 ∈ N. Furthermore, let X1, . . . ,Xn1 ∼ Uni[0,1] and Xn1+1, . . . ,Xn1+n2 ∼ F be
jointly stochastically independent, where F is continuous and supported on [0,1]. Let

Ψ(n1,n2) := P (X1:n ≤ b1, . . . ,Xn:n ≤ bn) , (2.1)

where (bi)i∈[n] is an increasing sequence with values in [0,1]. The following subsections provide
formulas for efficiently calculating Ψ(n1,n2), and we discuss their computational and numerical
properties.

2.3.1. Generalization of Bolshev’s Recursion

Lemma 3 (Generalization of Bolshev’s Recursion). The function Ψ from (2.1) satisfies the recur-
sion

Ψ(m1,m2) = 1−
∑︂

0≤k1≤m1
0≤k2≤m2

k1+k2<m1+m2

M(m1,m2)
k1,k2

·Ψ(k1,k2),

where

M(m1,m2)
k1,k2

:=
(︄
m1

k1

)︄(︄
m2

k2

)︄
(1− bk1+k2+1)m1−k1 · (1− F(bk1+k2+1))m2−k2 . (2.2)

Moreover, we have the following recursive relationships for M.

M(m1+1,m2)
k1,k2

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 k2 = m2 ∧ k1 = m1 + 1
M(m1,m2)

m1,k2+1 · k2+1
m2−k2

· (1− F(bm1+(k2+1)+1)) k2 < m2 ∧ k1 = m1 + 1

M(m1,m2)
k1,k2

· (m1+1)
m1+1−k1

· (1− bk1+k2+1) otherwise,

M(m1,m2+1)
k1,k2

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 k1 = m1 ∧ k2 = m2 + 1
M(m1,m2)

k1+1,m2
· k1+1

m1−k1
· (1− bk1+m2+2) k1 < m1 ∧ k2 = m2 + 1

M(m1,m2)
k1,k2

· (m2+1)
m2+1−k2

· (1− F(bk1+k2+1)) otherwise.

For n1 = 0 or n2 = 0 this is simply the well-known Bolshev recursion.

2.3.2. Generalization of Steck’s Recursion

Lemma 4 (Generalization of Steck’s Recursion). Let b0 := 0. Then Ψ from (2.1) satisfies the
recursion

Ψ(m1,m2) = (bm1+m2)m1 F(bm1+m2)m2 −
∑︂

0≤k1≤m1
0≤k2≤m2

k1+k2≤m1+m2−2

M(m1,m2)
k1,k2

·Ψ(k1,k2), (2.3)

where

M(m1,m2)
k1,k2

:=
(︄
m1

k1

)︄(︄
m2

k2

)︄ (︁
bm1+m2 − bk1+k2+1

)︁m1−k1
(︁
F(bm1+m2)− F(bk1+k2+1)

)︁m2−k2 .

Letting

a(k, j) :=
(︄
k
j

)︄
and a(k, j) =

⎧⎪⎪⎨⎪⎪⎩
1 k = j
j+1
k− j × a(k, j+ 1) j < k,

(2.4)

we can write

M(m1,m2)
0, j = a(m2, j) ·

(︂
bm1+m2 − b j+1

)︂m1
(︂
F(bm1+m2)− F(b j+1)

)︂m2− j
, (2.5)
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M(m1,m2)
j,m2

= a(m1, j) ·
(︂
bm1+m2 − b j+m2+1

)︂m1− j
. (2.6)

Furthermore, we have the following recursion for M.

M(m1,m2)
k1+1,k2−1 = M(m1,m2)

k1,k2
× F(bm1+m2)− F(bk1+k2+1)

bm1+m2 − bk1+k2+1
× m1 − k1

k1 + 1
× m2 − k2 + 1

k2

for 0 ≤ m1 ≤ n1 and 0 ≤ m2 ≤ n2.

Proof. See [Bla+14, Proposition 1] □

2.3.3. Generalization of Noe’s Recursion

Lemma 5 (Generalization of Noe’s Recursion). Let b0 := 0, Q0,0(0) := 1, Qi1,i2(1) := bi1
1 ·F(b1)i2 and

for m > 1

Qi1,i2(m) :=
∑︂

0≤k1≤i1
0≤k2≤i2

m−1≤k1+k2

Mi1,i2
k1,k2

(m) ·Qk1,k2(m− 1),

Mi1,i2
k1,k2

(m) :=
(︄
i1
k1

)︄(︄
i2
k2

)︄
× (bm − bm−1)i1−k1 × (F(bm)− F(bm−1))i2−k2

for 0 ≤ i1 ≤ n1,0 ≤ i2 ≤ n2,m ≤ i1 + i2 ≤ n.

Then the function Ψ from (2.1) satisfies

Ψ(i1, i2) = Qi1,i2(i1 + i2)

for i1 ≤ n1 and i2 ≤ n2.

Letting
a(m),1( j) := (bm − bm−1) j and a(m),2( j) := (F(bm)− F(bm−1)) j ,

we can write

Mi1,i2
k1,k2

(m) =
(︄
i1
k1

)︄(︄
i2
k2

)︄
× a(m),1(i1 − k1)× a(m),2(i2 − k2). (2.7)

2.3.4. Computational Complexity and Numerical Properties

The computational complexity (defined to be the number of elementary arithmetic operations on
floating point numbers) of each of the aforementioned recursions is given by the following lemma.

Lemma 6. The proposed recursions can be implemented using

Bolshev O(n2
1n2

2)

Steck O
(︂
n2

1n2
2 log2(n1n2)

)︂

Noe O
(︂
n2

1n2
2(n1 + n2)

)︂

elementary arithmetic operations (addition, subtraction, multiplication, division). Furthermore O(n1n2)
memory is needed (assuming fixed-precision storage of all results).
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The results of Lemma 6 suggest that Noe’s recursion might not be the best choice. However,
for small values of the bi’s, Bolshev’s recursion and Steck’s recursion are inherently numerically
unstable. Consider for example n1 = 11,n2 = 0 and

bi :=

⎧⎪⎪⎨⎪⎪⎩
2−10 if i ≤ 10,
2−1 if i = 11.

Then both recursions, when implemented in double precision floating point arithmetic, result in
negative values and huge relative errors (cf. Table 2.1), which can be explained by inaccurate
rounding and/or catastrophic cancellation, respectively.

Table 2.1: Calculation of the probability that n = 11 uniform order statistics are (component-wise) bounded from above
by b ∈ [0,1]11, where bi = 2−10 if i ≤ 10 and b11 = 2−1. The rows give the intermediate steps of the recursions. The
first column reports the first few non-zero digits of the exact probabilities (computed in rational arithmetic), the second
column reports the steps of Steck’s recursion (calculated in double precision floating point arithmetic) and the fourth
column reports the steps of Bolshev’s recursion (also calculated in double precision floating point arithmetic). In the
third and the fifth column the relative error of the intermediate value is reported.

Exact Probability Steck Rel. Err. (Steck) Bolshev Rel. Err. (Bolshev)
9.76562E-04 9.76562E-04 0.00000E+00 9.76562E-04 0.00000E+00
9.53674E-07 9.53674E-07 0.00000E+00 9.53674E-07 0.00000E+00
9.31323E-10 9.31323E-10 0.00000E+00 9.31323E-10 0.00000E+00
9.09495E-13 9.09495E-13 0.00000E+00 9.09495E-13 0.00000E+00
8.88178E-16 8.88178E-16 0.00000E+00 8.88178E-16 0.00000E+00
8.67362E-19 8.67362E-19 0.00000E+00 1.73472E-18 1.00000E+00
8.47033E-22 8.47033E-22 0.00000E+00 1.10114E-20 1.20000E+01
8.27181E-25 8.27181E-25 0.00000E+00 6.85071E-21 8.28100E+03
8.07794E-28 8.07794E-28 0.00000E+00 -2.70517E-20 3.34884E+07
7.88861E-31 7.88861E-31 0.00000E+00 -1.12683E-16 1.42842E+14
4.33103E-30 -1.75898E-20 4.06134E+09 2.83880E-16 6.55456E+13

For the example depicted in Table 2.1 Noe’s recursion implemented in double precision arithmetic
does not result in numerical errors, and we have therefore omitted this column. In general Noe’s
recursion, if implemented in a reasonable manner, never results in negative values. Furthermore by
[JR18, Equation (3)] the relative error is bounded (if the coefficients are computed with a bounded
relative error) since all summands are non-negative.

Remark 2. Noe’s recursion can be easily parallelized since the Qi1,i2(m)’s appearing in Lemma 5
can be, for any fixed m, computed in parallel.

By examining Algorithm 1 we can get a sense of the constants involved in the computational
complexity of Bolshev’s recursion for the case where n2 = 0, and hence n1 = n: Even though
Bolshev’s recursion involves binomial coefficients our proposed Algorithm 1 (cf. the appendix) for
the one-group case evaluates it using only

#Operations = n+ (n+ 1)+
n∑︂

k=2

⎡⎢⎢⎢⎢⎢⎢⎢⎣2+
k−1∑︂

j=1

6

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = 3n2 + n− 1

elementary arithmetic operations (addition, subtraction, multiplication, division).

For the general case n1,n2 > 0 our proposed Algorithm 2 (cf. the appendix) implements the two-
group case in O(n2

1n2
2) elementary arithmetic operations. Consequently, for equal sample sizes

n1 = n2 = ℓ the number of operations is of O(ℓ4). Notice that this is a marked improvement over the
exponential complexity ℓℓ reported by [Glu+08b, Theorem 4.2]. Figure 2.2 illustrates the observed
execution time for calculating f (ℓ) := Ψ(ℓ,ℓ) and bi ≡ b(n)

i := 0.05× i/n, where n = n1 + n2 = 2ℓ.
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For not necessarily equal sample sizes n1 ≥ 1 and n2 ≥ 1, our implementation of Algorithm 2
(Bolshev’s generalized recursion) needs

f (n1,n2) := 1.5 · n2
1 · n2

2 + 4.5 · (n2
1 · n2 + n1 · n2

2)+ 3 · (n1 + n2
1 + n2 + n2

2)+ 7.5 · n1 · n2 + 2

arithmetic operations.

Our implementation of the generalization of Steck’s recursion needs

f (n1,n2) := 0.5 · (n3
1 · (n2 + 1)+ n3

2 · (n1 + 1))+ 3 · n2
1 · n2

2 + 9.5 · (n2
1 · n2 + n2

2 · n1)

+ 6.5 · (n2
1 + n2

2)− 5 · (n1 · n2 + n1 + n2)+ 2

arithmetic operations. To be able to give an exact formula we did not utilize exponentiation by
squaring (cf. [Knu98, p. 462, Algorithm A]) and therefore this is a useful upper bound for the
optimal complexity.

Lastly our implementation of the generalization of Noe’s recursion needs

f (n1,n2) := (1+ 1.25 · n2 + 0.25 · n2
2) · n3

1 + (1.5+ 4.25 · n2 + 3 · n2
2 + 0.25 · n3

2) · n2
1

+ (1.5+ 1.5 · n2 + 4.25 · n2
2 + 1.25 · n3

2) · n1 + n3
2 + 1.5 · n2

2 + 0.5 · n2 (2.8)

arithmetic operations.

2.4. Exact Evaluation of Bolshev’s and Steck’s Recursion

E valuation of the recursions in floating point arithmetic can, as demonstrated in the previous
section, lead to the accumulation of numerical errors. This can be improved by utilizing a

higher precision floating point type, but it is not clear what precision of intermediate results is
necessary to achieve the desired precision and the answer to this question will depend on the bi’s.
It is therefore desirable to have a method for obtaining exact results (either as a benchmark for
numerical approximations or when the exact result is needed directly to, for example, investigate
exact equalities).

If only elementary arithmetic operations are utilized it is possible to exactly evaluate expressions
using rational arithmetic (our code uses the GNU Multiple Precision Arithmetic Library). This is the
case for the (generalized) recursions described in the previous section. Since it has clearly the
highest computational complexity we do not recommended exact calculations using Noe’s recur-
sion. Even though one might expect Bolshev’s recursion to result in shorter run times than Steck’s
recursion (due to the theoretical computational complexity) it turns out that Steck’s recursion can
be faster in a practical implementation (see Figure 2.2). Since we observed an even larger relative
advantage (in computation time) when utilizing floating point arithmetic, we suspect that this has to
do with the fact that our implementation of the generalized Steck recursion does not need to keep
track of full matrices of coefficients (as is done in our implementation of the generalized Bolshev’s
recursion) and is therefore likely to be more cache (and register) friendly.

Unfortunately the cdf F of many interesting distributions is not available in a closed form and thus
the thresholds (F(bi))i∈[n] might either not be exactly calculable or simply not exactly representable
as rational numbers. Lemma 7 analyzes the error propagation when F and / or b are inexact.

Lemma 7. Let

xi :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 if i = 1
bi − bi−1 if 1 < i ≤ n
F(b1) if i = n+ 1
F(bi)− F(bi−1) if n+ 1 < i ≤ 2n

(2.9)

https://gmplib.org/
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and denote by (x̃i)i∈[n] approximations thereof, which are obtained by replacing (bi)i∈[n] and F by
approximations (b̃i)i∈[n] and F̃. If for ε ∈ (0,1) it holds that ∀i ∈ [2n] : xi ∈ (1−ε,1+ε), then it follows
that for all (i1, i2) ∈ [n1]× [n2]

Ψ̃(i1, i2) ∈ Ψ(i1, i2) ·
(︂
(1− ε)i1+i2 , (1+ ε)i1+i2

)︂
,

where Ψ̃ denotes the approximation of Ψ obtained by using F̃ and b̃i instead of F and bi, i ∈ [n].

We conclude this section by giving a short description of rational arithmetic and the practical as-
pects of evaluating the recursions using rational arithmetic. In rational arithmetic (rational) numbers
are stored as a tuple of numerator and denominator. Numerator and denominator are usually rep-
resented as infinite precision integers. By this term we denote integer data types that use as much
storage as necessary to represent all digits without any loss of precision. These are for example
implemented in the GNU Multiple Precision Arithmetic Library. After arithmetic operations the nu-
merator and denominator are normalized (where the normalized rational is defined as the unique
representation such that numerator and denominator have no (non-trivial) common factors) by uti-
lizing the extended Euclidean algorithm. The relevant algorithms can be, for example, found in
[Knu98, Chapter 4]. Due to the (potentially dynamically adjusted) storage of the infinite precision
integers as well as the use of the Euclidean algorithm the basic arithmetic operations like addition
and multiplication cannot (in general) be considered to be constant time anymore. Instead the
computational complexity can depend on the actual numbers the operation is performed on.

2.5. Faithfully Rounded Evaluation of Noe’s Recursion

U nless the exact value ofΨ(n1,n2) has less than 16 (base 10) non-zero digits an exact evaluation
in double precision floating point arithmetic is not possible. The best one can hope for is a

faithfully rounded result. That is, the result is either exact (if the exact value is a double precision
floating point number) or it is one of the two closest floating point numbers. This is the best one
can achieve because the double precision floating point numbers are in essence a discrete space
that contains only some real numbers.

[LR17] describe algorithms that can perform multiple arithmetic operations such that the result is
faithfully rounded. We have implemented these algorithms as a portable single-header C++11
library.1 Utilizing this library we implemented the generalization of Noe’s recursion presented in
Section 2.3.3 obtaining faithfully rounded results if no underflow occurs. In our experience this is
usually the case if the values of Ψ are not too close to the smallest (in absolute value) normal dou-
ble, which equals 2−1022 ≈ 2.225 · 10−308 on most computer architectures. In case of an underflow
the results are smaller than the true values of Ψ, but never less than zero. Figure 2.2 compares the
runtime of our implementation of our generalization of Noe’s recursion to that of the algorithm from
the previous section. It becomes apparent that Noe’s recursion with faithful rounding is much faster
than Bolshev’s and Steck’s recursion implemented in rational arithmetic. It furthermore incurs only
a constant overhead (approximately five times when compared to evaluation in double precision
floating point arithmetic) whereas the use of rational arithmetic can increase the computational
complexity of an algorithm. For practical applications, we therefore recommend Noe’s recursion
with faithful rounding, at least if a fixed numerical precision is sufficient.

The reason why we can apply the technique of [LR17] to the evaluation of Noe’s recursion, but
not to that of the other recursions is, that the guarantee of faithful rounding only holds if the im-
plemented algorithm satisfies the NIC principle (No Inaccurate Cancellation, cf. [LR17, Definition
2.2]):

1Available at https://github.com/jvschroeder/PairArithmetic/.

https://gmplib.org/
https://github.com/jvschroeder/PairArithmetic/


2

16 2. Efficient Calculation of the Joint Distribution of Order Statistics

An algorithm satisfies the NIC principle if there are no sums where at least one sum-
mand is not an input to the algorithm and the summands have opposite signs.

This is satisfied by Noe’s recursion, but not by the other recursions we presented. Furthermore
a close examination of our implementation yields that, by [LR17, Theorem 4.2], the result will
be faithfully rounded (assuming that no over- or underflow occurs) if n1,n2 ≤ 8184. This can be
improved significantly by changing a detail of the implementation, but at a big computational cost.
For the details see A.1.

2.6. Applications

2.6.1. Power of Goodness-Of-Fit Tests Against Contamination Alternatives

W e begin our examples by considering one of the most basic statistical test problems, name-ly,
testing for goodness-of-fit: Given an independent sample Y1, . . . ,Yn, where Yi is distributed

according to Fi, it is given by the pair of hypotheses

H0 : Fi =G0 for all i ∈ [n] vs H1 : Fi ≠G0 for at least one i ∈ [n],

where G0 is a known and continuous distribution function. The null hypothesis H0 is a homogeneity
hypothesis in the sense of [Dic18, p. 51]. It is interesting to consider the power of a test of
H0 against a specific, one-point, alternative. One such model is the contamination alternative
{F1, . . . ,Fn} = {G0,G1} where the random variables belong to one of two groups. Denote by k =
{i ∈ [n] : Fi = G0} the number of random variables that belong to the first group. Then under H0 it
holds that k = n and under the alternative k < n. If the goodness-of-fit test is based on the order
statistics Y1:n, . . . ,Yn:n, we can use the previously discussed results to calculate the power against
a specific alternative given by a continuous cdf G1 and an integer k ∈ [n]. Consider, for example,
the goodness-of-fit test with equal local levels proposed by [GLF16]. Then Figure 2.3 depicts the
power of the test (for n = 100 and at level α = 0.025) for G0 =N(0,1),G1 =N(−1.1,1) as a function
of k. Figure 2.4 considers G1 = N(µ1,1) and depicts the power of the test (for k = 65 fixed) as a
function of µ1.

2.6.2. Stepwise Multiple Hypothesis Testing

F ollowing [Bla+14] we consider m ≥ 2 null hypotheses H1, . . . ,Hm which are simultaneously un-
der consideration under one and the same statistical model. We assume that associated p-

values p1, . . . , pm are available on which the multiple test operates. Furthermore, we assume that
p1, . . . , pm (regarded as random variables) are jointly distributed according to one of the following
models

FM(m,m0,F) The pi’s are stochastically independent with marginal distributions

pi ∼
⎧⎪⎪⎨⎪⎪⎩

Uni[0,1] if 1 ≤ i ≤ m0,

F if m0 + 1 ≤ i ≤ m,

where m0 denotes the number of true null hypotheses among H1, . . . ,Hm and F is a given
continuous cdf on [0,1].

RM(m,π0,F) Let M0 denote a binomially distributed random variable,
M0 ∼ B(m,π0). Conditionally on M0 = m0, the pi’s are jointly distributed according to FM(m,m0,F).
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Figure 2.2: Comparison of the runtimes of Bolshev’s and Steck’s recursion (where n1 = n2 = ℓ) implemented in rational
arithmetic with Noe’s recursion implemented in faithfully rounded floating point arithmetic. To determine the time per
arithmetic operation we simply divided by the theoretical number of arithmetic operations (cf. Section 2.3.4).

As discussed by [RV11], the joint distribution of the number of rejections R and the number of false
rejections V under these models can be calculated exactly for step-up tests if one can calculate Ψ
(for a summary of the relevant details see A.2).

The random variables V and R play an important role when analyzing the type I and type II error
behavior of such multiple tests. One important observation is that the previously discussed recur-
sions for calculating Ψ(m,m) also calculate all Ψ(i1, i2) (for 0 ≤ i1, i2 ≤ m) as intermediate results.
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Figure 2.3: Power of the goodness-of-fit test with equal local levels (at significance level α = 0.025) proposed by [GLF16]
against the contamination alternative that only k random variables are distributed according to G0 = N(0,1) and the
remaining n− k random variables are distributed according to G1 =N(−1.1,1) where n = 100.
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Figure 2.4: Power of the goodness-of-fit test with equal local levels (at significance level α = 0.025) proposed by [GLF16]
against the contamination alternative that only k random variables are distributed according to G0 = N(0,1) and the
remaining n− k random variables are distributed according to G1 =N(µ1,1) where n = 100 and k = 65.

In order to provide some numerical illustrations, we first consider the average power (cf. (A.1))
under FM(m,m0,F), where

F(t) := 1+Φ
(︃
Φ
−1

(︃ t
2

)︃
−
√

N
)︃
−Φ

(︃
Φ
−1

(︃
1− t

2

)︃
−
√

N
)︃

(2.10)

for t ∈ [0,1] and N = 5. This is the setting considered in [Glu+08a, Table 2] where the average power
for m ≤ 5 was calculated for the Benjamini-Hochberg procedure (controlling the FDR at α = 0.05) for
m independent two-sided one sample z-tests. In our notation, the Benjamini-Hochberg (linear step-
up test) procedure equals SUt with ti = i×α/m for i ∈ [m]. Table 2.2 illustrates the results obtained
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Figure 2.5: Time needed to calculate the average power of the Benjamini-Hochberg procedure for m hypotheses. To
determine the time per arithmetic operation we simply divided by the theoretical number of operations given by (2.8).
No adjustment was made for the small additional computational effort required for deriving the average power from the
distribution of the order statistics.

for m,m0 ≤ 50. Due to space constraints only the first six columns (corresponding to m0 ≤ 5) and
some rows are presented. The calculation of the full table (not presented here) took less than a
second for an m one magnitude larger (50 instead of 5) than the one considered by [Glu+08a].
Figure 2.5 illustrates the time needed to calculate one row of such a table corresponding to some
m ∈ N when utilizing our proposed algorithms.

Table 2.2: Average power of the Benjamini-Hochberg procedure (controlling the FDR at α = 0.05) for m independent
two-sided one sample z-tests (sample size N = 5, common variance σ2 = 1, µ0 = 0,µ1 = 1, cf. (2.10)) when exactly m0
null hypotheses are true. The bold values are exactly those in [Glu+08a, Table 2].

m m0 = 0 m0 = 1 m0 = 2 m0 = 3 m0 = 4 m0 = 5
2 0.56539 0.50342
3 0.54576 0.49842 0.44439
4 0.53446 0.49583 0.45256 0.40451
5 0.52712 0.49440 0.45819 0.41837 0.37494
6 0.52201 0.49357 0.46241 0.42840 0.39148 0.35175
7 0.51827 0.49310 0.46574 0.43606 0.40399 0.36955
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

45 0.49975 0.49513 0.49041 0.48559 0.48068 0.47565
46 0.49969 0.49516 0.49055 0.48584 0.48103 0.47612
47 0.49963 0.49520 0.49068 0.48607 0.48137 0.47657
48 0.49957 0.49523 0.49081 0.48629 0.48169 0.47700
49 0.49951 0.49526 0.49093 0.48651 0.48201 0.47741
50 0.49946 0.49529 0.49104 0.48672 0.48230 0.47781

As a second example, we consider the computation of the λ−power Powλ(SUt) from (A.2). Again,
we choose t as in the Benjamini-Hochberg case. The simulations in [Izm18, Table 3] consider a
two-group model for the test statistics such that they are stochastically independent and follow a
central t-distribution with ν degrees of freedom under the null hypothesis. Under the alternative,
they follow a non-central t-distribution with ν degrees of freedom and non-centrality parameter
µ. We denote by Fν,µ the (non-central) t-distribution with ν degrees of the freedom and non-
centrality parameter µ. Thus (in our notation), the p-values are uniform under the null hypothesis
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Table 2.3: Faithfully rounded calculation of the λ90−power of the Benjamini Hochberg procedure (controlling the FDR
at α = 0.15) when applied to m = 200 test-statistics (and where we reject for large absolute values of the test-statistics
which corresponds to two-sided tests) which follow a central t-distribution Fν,0 under the null hypothesis and a non-
central t-distribution Fν,µ under the alternative, where ν = 2n − 2 and µ =

√
n/2θ. The results are obtained under the

RM-model where π0 = E(Mm)/m. For comparison the fourth column contains the Monte Carlo estimates (sample size
1000) given in [Izm18, Table 3]. The following column gives the faithfully rounded power calculated using our method and
the last column states the absolute difference between the previous two columns divided by the standard deviation of
the Monte Carlo estimation (which was estimated using 300 replicates). As expected most Monte Carlo approximations
are within one or two standard deviations of the faithfully rounded result. For the twelfth row no value is given since the
estimated standard deviation was zero. This is not unexpected since the faithfully rounded result is approximately equal
to 4.58 · 10−7 which is two orders of magnitude smaller than (300 · 1000)−1.

Eff Sz. θ E(Mm) n est. λ90-pwr λ90-pwr Diff in std
0.60000 5 70 0.24900 0.26691 1.23987
0.60000 5 80 0.39600 0.39977 0.24081
0.60000 5 90 0.53800 0.53479 0.18527
0.60000 5 100 0.65700 0.65626 0.05057
0.60000 20 50 0.02800 0.02538 0.48379
0.60000 20 60 0.15700 0.13890 1.69096
0.60000 20 70 0.37800 0.36864 0.61103
0.60000 20 80 0.59900 0.62231 1.50514
0.60000 60 40 0.00200 0.00143 0.43439
0.60000 60 50 0.09900 0.08584 1.49443
0.60000 60 60 0.49200 0.49307 0.06522
0.60000 100 30 0.00000 0.00000 Inf
0.60000 100 40 0.00600 0.00658 0.22041
0.60000 100 50 0.27000 0.30726 2.80406
0.80000 5 40 0.25200 0.26037 0.59552
0.80000 5 50 0.50200 0.49870 0.19588
0.80000 5 60 0.70400 0.70951 0.39928
0.80000 20 30 0.03600 0.03969 0.60858
0.80000 20 40 0.35700 0.36732 0.64187
0.80000 60 20 0.00000 0.00004 0.18826
0.80000 60 30 0.14700 0.15775 0.88238
0.80000 100 20 0.00300 0.00013 8.59402
0.80000 100 30 0.50600 0.48563 1.42549
1.00000 5 30 0.39200 0.39421 0.14658
1.00000 20 20 0.04500 0.04534 0.05420
1.00000 20 30 0.61400 0.63660 1.40588
1.00000 60 20 0.22500 0.19941 2.00156
1.00000 100 20 0.58600 0.57569 0.64138

and distributed according to

F(t) := F̄ν,µ

(︃
F̄−1
ν,0

(︃ t
2

)︃)︃
− Fν,µ

(︃
−F̄−1

ν,0

(︃ t
2

)︃)︃
, t ∈ [0,1], (2.11)

under the alternative, where F̄ν,µ = 1−Fν,µ denotes the upper-tail cdf. [Izm18] provides asymptotic
approximations of the λ−power. Our results can be used to calculate Powλ(SUt) with high numer-
ical precision. Table 2.3 gives the faithfully rounded values for the 0.9-power for the parameters
considered in [Izm18, Table 3].

We conclude by giving an example for the exact distribution of the FDP which shows why the
FDR is not always an appropriate summary statistic. Consider again the multiple two-sided z-test
described in [Glu+08a], meaning that F is given by (2.10), for N = m = 50 and m0 = 5. It is clear
that in Figure 2.6 the distribution of the FDP is neither symmetric about its mean (the FDR, which
is depicted as dotted vertical line) nor concentrated below the FDR. A similar argumentation has
been used by, among others, [Bla+14] and [DR15] in order to motivate the computation of the full
distribution of the FDP and to control its quantiles. The latter task is inherently computationally
demanding. Figure 2.7 demonstrates that there is a loss in accuracy when utilizing simple floating
point arithmetic for Noe’s recursion.



2.6. Applications

2

21

0.0

0.1

0.2

0.3

0.4

0.00 0.05 0.10 0.15 0.20
x

P
(F

D
P
≤

x)

α = 0.15

0.0

0.1

0.2

0.3

0.4

0.00 0.05 0.10 0.15 0.20
x

P
(F

D
P
≤

x)

α = 0.2

0.0

0.1

0.2

0.3

0.00 0.05 0.10 0.15 0.20
x

P
(F

D
P
≤

x)

α = 0.3

0.0

0.1

0.2

0.3

0.00 0.05 0.10 0.15 0.20
x

P
(F

D
P
≤

x)

α = 0.4

Figure 2.6: Distribution of the FDP for the Benjamini-Hochberg procedure (controlling the FDR at α) for m = 50 indepen-
dent two-sided one sample z-tests (sample size N = 50, common variance σ2 = 1, µ0 = 0,µ1 = 1, cf. (2.10)). The dotted
vertical line is the actual FDR of the test.

2.6.3. Sample Size Calculation for Studies with Multiple Endpoints

G enetic association studies often (cf. [Dic14, Section 9.2]) consist of two stages: A screening
and a validation stage. Both operate on independent samples. In the following we demon-

strate how one can, based on the screening study, perform a sample size calculation for the vali-
dation study.

As an example we consider the study of [Not+01] which collected n = 18 paired colon/adeno-car-
cinoma samples.2 They analyzed only the 4000 genes and ESTs with an average expression
intensity of at least 10. Of these, m = 126 genes and ESTs had an at least four-fold higher/lower
average expression in cancerous tissue than in normal tissue. If one considers this to be a screen-
ing study and wishes to follow up with a validation stage, testing only these m = 126 genes and
ESTs, a sample size calculation is desirable:

What sample size would be necessary for a follow-up study to (likely) find most differen-
tially expressed subscripts among the m = 126 hypotheses when applying a statistical
criterion?

2The data-set is available at http://genomics-pubs.princeton.edu/oncology/.

http://genomics-pubs.princeton.edu/oncology/
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Figure 2.7: Number of correct digits (in base 2) when the FDP distributions in Figure 2.6 are calculated with Steck’s
recursion (using double precision floating point numbers). The correct result (as a double precision floating point num-
ber) was obtained using the faithfully rounded approach based on Noe’s recursion. The presence of 53 correct digits in
base 2 implies that there is no difference to the faithfully rounded result (due to the use of double precision floating point
numbers). It is clear that in some cases only a few digits are correct.

As the statistical (type I error) criterion, we choose here control of the FDR at level α, a standard
criterion for large m. The p-values are obtained from a paired t-test. If we assume that they are
stochastically independent and that the number of true hypotheses m0 is fixed (but unknown),
then they are distributed according to FM(m,m0,F) where F = Fν,µ is given by (2.11), where
ν = n − 1 = 17 and where the effect size µ is unknown. It follows that the following steps are
necessary for sample size planning:

• Find plausible values for µ. This can, for example, be done by considering the realizations of
the test statistics (in the study of [Not+01] the quartiles are 2.81 and 6.71).

• Find a plausible upper bound on the number of true hypotheses m0. Remark 3 describes
one possible approach.

• Choose an FDR-controlling procedure and an appropriate notion of power, e.g., the Benjamini-
Hochberg procedure and the average power (cf. (A.1)).

The following remark demonstrates that, in this setting, we can recast finding a suitable upper
bound for m0 as a numerical optimization problem:



2.6. Applications

2

23

Remark 3. Suppose we have a realization p̃ of p-values from FM(m,m0,F), where m and F are
known, but m0 is not. For an arbitrary ˜︂m0 ∈ [m] let

f (γ,˜︂m0) := PFM(m,˜︂m0,F)
(︁˜︂m0 ≤ m− γR(SUt,p)

)︁

which is the probability that, under FM(m,˜︂m0,F), the random quantity m− γR(SUt,p) is an upper
bound for ˜︂m0. Then we can (since we can calculate the distribution of R as discussed in A.2) obtain
an 1− κ upper bound on the unknown m0:

m̂0(κ) := m−R(SUt, p̃)× min
˜︂m0∈[m]

max
{︁
γ ∈ [0,1] : f (γ,˜︂m0) ≥ 1− κ}︁

Figure 2.8 depicts the sample size needed to achieve a power of at least 0.8 for an assumed
minimal effect size of µ ≥ 2.81 and an FDR level of α = 0.05.
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Figure 2.8: The (with probability 1 − κ = 0.95) needed sample size to achieve an average power of at least 0.8 when
utilizing the Benjamini-Hochberg step-up procedure to control the FDR at level α = 0.05 for m = 126 as a function of
the effect size µ. The sample sizes have been calculated from the p-value realization p̃ provided by the [Not+01] data
set and under the assumptions that the p-values are stochastically independent, the number of true null hypotheses is
fixed but unknown and that the effect size µ is at least 2.81 (the lower quartile of the observed test statistics). These
assumptions were made for the sake of this computational example even though gene expressions are, in general, not
independent.



2

24 2. Efficient Calculation of the Joint Distribution of Order Statistics

2.7. Discussion

W e have presented computationally efficient and numerically stable methods for calculating the
joint distribution of order statistics. Such joint distributions have a multitude of important ap-

plications that require their repeated evaluation (to numerically solve optimization problems). Apart
from the applications that we have presented in Section 2.6, they include, among others, the cali-
bration goodness-of-fit tests with equal local levels (see Section 1.4 of [GLF16]) and the adjustment
of the asymptotically optimal rejection curve as proposed by [FGD12], see Equation (19) in their pa-
per, and [FDR09, Equation (6.1)] with the goal of obtaining valid critical values for a step-up-down
procedure (guaranteeing strict FDR control). The latter applications have not been considered ex-
plicitly in the present work, because they merely refer to the one-group case. For this case, the
methods of [MNS16] are already sufficiently accurate and fast. For most other applications Noe’s
recursion using standard (double precision) floating point arithmetic is likely most suitable. It is
available in the preliminary version of our package (see below) as OrdStat::pordstat2 when
passing the argument quick=TRUE.

Future extensions to our methods could include a normalization (in Noe’s recursion) to avoid un-
derflows and the exploration of potential efficiency gains in the exact computation of Bolshev’s
recursion by a trade-off between the memory consumption and the frequency of normalizations of
the intermediate rational numbers.

A preliminary version of our planned package (which utilizes RCPP, cf. [Edd13]) for the R lan-
guage ([R C20]) is available at https://github.com/jvschroeder/OrdStat/ and can
be installed using the devtools package:

install.packages("devtools")
devtools::install_github("jvschroeder/OrdStat")

The code used to generate the graphics and numerical examples is available at https://github.
com/jvschroeder/OrdStatExamples/. The graphics were created using ggplot2 (cf. [Wic16])
and tikzDevice (cf. [SB18]).
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Reverse Stress Testing in Skew-Elliptical

Models

Jonathan von Schroeder, Taras Bodnar and Thorsten Dickhaus

Show me the incentive and I will show you the outcome.

Charlie Munger

Stylized facts about financial data comprise skewed (log-)returns. Therefore, we extend previous
results on reverse stress testing under elliptical models to the broader class of skew-elliptical mod-
els. In particular, under the assumption of a linear Profit and Loss function, we are concerned
with finding the most likely scenarios given that the loss exceeds a given threshold. In the elliptical
case, an explicit formula for the solution is provided. In the skew-elliptical case, we characterize the
solution in terms of an easy-to-implement numerical optimization problem. As specific examples,
we investigate the classes of skew-normal and skew-t models in detail. Since the solutions de-
pend on population parameters, which are often unknown in practice, we also tackle the statistical
task of estimating these parameters and provide confidence regions for the most likely scenarios.
Finally, we present an application to real currency exchange data.

A previous version of this chapter was published as a research report; cf. https://kurser.math.su.se/
pluginfile.php/19448/mod_folder/content/0/2019/2019_4_report.pdf?forcedownload=1
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3.1. Introduction

R ecently the Basel Committee on Banking Supervision has recognized the importance of in-
cluding extreme scenarios as part of an overall stress testing programme:

A stress testing programme should also determine what scenarios could challenge the
viability of the bank (for example by reverse stress testing) and thereby uncover hidden
risks and interactions among risks. [Ban09, p. 18 ff.]

Thus one of the methods relevant to stress testing is the scenario analysis. The utilized
‘[s]cenarios usually involve some kind of coherent, logical narrative or ‘story’ as to why certain

events and circumstances can occur and in which combination and order’ [Gov12, p. 9]. Stress
scenarios should reflect an ‘organization’s unique vulnerabilities to factors that affect its exposures,
activities, and risks’ [Gov12, p. 9]. This however means that an analyst has to select plausible
scenarios based on knowledge about the organization which will invariably introduce a bias. Fur-
thermore plausibility is a constraint that, based on historical data, can exclude certain ‘break the
bank’ scenarios that can occur during extreme events like the financial crisis of 2008. One of the
main goals of reverse stress testing is to overcome this limitation by ‘assum[ing] a known adverse
outcome ... and then deduc[ing] the types of events that could lead to such an outcome’ [Gov12,
p. 9]. To that end the question of what happens to a given collection of assets (the portfolio under
investigation), if a market factor changes in a certain way, is reversed by asking instead what could
cause a certain portfolio event (e.g. a loss exceeding a certain threshold, cf. [Kop+15]). Reverse
stress testing is usually based on the density of the Profit and Loss (P&L) distribution, which has to
be estimated for real-world portfolios. Addressing the arising confounding issue requires ‘that the
distribution that serves as the foundation for reverse stress tests is consistent with stylized facts of
actual tail behavior’ [Kop+15]. These stylized facts, as described by [Con01], include heavy tails
which are also present in high frequency data (cf. [BDE03]) and which imply that normality can
certainly not be assumed. Furthermore many empirical loss distributions are highly skewed and
thus even the family of elliptical distributions is often not rich enough; cf. [MFE05, p. 44].

Non-normality of (log-)returns can also be deduced from standard financial models. For example,
one may consider the popular stochastic volatility model by [Hes93]. This model may be regarded
as a generalization of the Black-Scholes model, where the latter implies log-normal prices. As, for
instance, shown by [Zha+16], this generalization leads to skewness. The stationary density of the
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Figure 3.1: Comparison between a chosen stationary Heston (solid line) and approximations to it. The approximations
where obtained by drawing a sample of size 200 and performing a maximum-likelihood fit for normal (dot-dash line) and
skew-t distribution (dashed line).

returns under the Heston model has been derived by [DY02]. Its complicated mathematical form
makes it intractable for statistical inference purposes. However, this distribution can be closely
approximated by a skew-t distribution; see Figure 3.1.

In conclusion, the normality assumption of [Kop+15] as well as the more general assumption of
ellipticity of [GKK15] are not always appropriate in the reverse stress testing context. Furthermore
the approach of [Tra+19] to utilize the Mahalanobis distance to judge the likelihood of a scenario
is only appropriate, when the distribution is rotationally symmetric, i.e. does not present skew-
ness. In this work, we therefore explore some aspects of the representation of the solution given
in Proposition 1 of [GKK15] and give conditions for global optimality. We then extend our results to
the more general class of skew-elliptical distributions and skew-t distributions. This choice is moti-
vated by its practical relevance and its mathematical tractability. Heavy tails are often observed in
financial data. Although the skew-normal distributions can capture some heavy-tailed behaviour,
more sophisticated models are needed, especially to properly model financial markets during tur-
bulent periods. Skew-elliptical models are a natural extension of the skew-normal distribution which
appear to be very useful for this goal. This family of distributions includes also mean-variance mix-
tures of normal distributions as special cases (see, e.g., [Azz13], [BMP19]). Both skew-normal and
skew-elliptical distributions have already been used in financial literature. For instance, [CGT03],
[BG15], [SNT17] use the skew-normal distribution as a model of the asset returns, while the ap-
plications of skew-t distribution in portfolio theory, risk management, and actuarial sciences are
discussed by [Adc10], [Adc14], and [AEL15]. Furthermore several results for the general class of
skew-elliptical distributions from the perspective of financial applications are discussed by [Shu17]
and [AA20].
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The rest of the material is structured as follows. In Section 3.2, we introduce basic notation and
assumptions. Section 3.3 contains our main results. The specific cases of skew-normal and skew-t
models are investigated in Section 3.3.2. Section 3.4 contains results regarding confidence regions
for the most likely scenarios. We conclude with a discussion in Section 3.5. Mathematical details
leading to our main results and proofs are deferred to the appendix.

3.2. Problem Setting

3.2.1. Reverse Stress Testing

To formalize the notion of identifying the most likely scenario or scenarios ‘that result in losses
exceeding a given magnitude for a particular portfolio or firm’ (cf. [GKK15]) we need a formal
definition of losses. To this end consider an Rd-valued random variable X = (X1, . . . ,Xd)T , where Xi
is the change in value of the i-th portfolio asset over the holding period. Following [MFE05, p. 4]
we define the profit and loss (P&L) function v of the portfolio under consideration by

v(X) = cT X =
d∑︂

i=1

ciXi (3.1)

for a fixed (non-stochastic) vector c ∈ Rd of portfolio weights. This definition includes that of
[GKK15] by an obvious choice of the vector c. Specifically singling out the case of a linear portfolio
has the advantage that it is not necessary to assume that (X,v(X)) is jointly in the same distribution
class as X which is for example not the case for the class of skew-normal distributions which is
not closed under convolution (cf. [Azz13, p. 27]). There are classes of skew-elliptical distribu-
tions which are closed under convolution, notably the closed skew-normal distribution introduced
by [GDG04] and the closed-skew t distribution introduced by [Ive10]. We are, however, not aware
of any general development of skew-elliptical distributions closed under convolution. In the present
work, we only have to model the joint distribution of the portfolio factors due to the linearity as-
sumption in (3.1). If a nonlinear relationship between portfolio factors and loss has to be assumed,
our proposed methods can still be applied if we assume that the joint distribution of portfolio factors
and loss is in the class of (skew-)elliptical distributions. [GKK15] assumed the latter for the elliptical
case.

The assumption of linear portfolios is in line with modern portfolio theory as suggested by [Mar52],
where the portfolio return is equal to a linear combination of asset returns (see also [Bod09],
[Bra10], [Elt+14], and [Bod+19]). Moreover, for analytical and / or numerical tractability a restriction
to the linear or quadratic case is often necessary; see e.g. [Stu97].

For a given loss threshold ℓ the goal of a reverse stress test is to, following [GKK15], find the most
likely loss scenarios x∗(ℓ) given that the loss exceeds ℓ. If f is the density of X and large positive
values of v(X) represent large losses this can be mathematically formalized as1

x∗(ℓ) ∈ argmax
x∈Rd

f
(︂
x
⃓⃓
⃓cT X ≥ ℓ

)︂
,

i. e., x∗(ℓ) maximizes the likelihood conditional on having observed a loss of at least ℓ. This is
equivalent to (cf. Appendix B.1)

maximize
x

f (x)

subject to cT x ≥ ℓ.
(3.2)

1For details regarding the conditional density f (·|cT X ≥ ℓ) see Appendix B.1.
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The first result about (3.2) when f is an elliptical density was presented by [GKK15]. It states that
there is a connection to the conditional expectation (which can be estimated using the empirical
likelihood method):

Theorem 1 ([GKK15, Proposition 1]). Assuming appropriate tail behaviour of the distribution of X
there exists a sequence {κℓ}ℓ (which depends on the tail behaviour) such that κℓ→ κ ∈ R as ℓ→∞
and

x∗(ℓ) = κℓ ·E
[︂
X|cT X ≥ ℓ

]︂
. (3.3)

3.2.2. The Family of (Skew-)Elliptical Distributions

This section aims to give a short introduction to the family of skew-elliptical distributions as well as
relevant special properties. The exhibition closely follows [Azz13, Chapter 6].

Definition 2 (Elliptical Distribution). Let µ ∈ Rd be a given vector and Σ ∈ Rd×d a positive definite
symmetric matrix. Any density f on Rd fulfilling

f (x;µ,Σ) ∝ g
(︂
(x− µ)T

Σ
−1(x− µ)

)︂

for some function g : R≥0→ R≥0, is called the density of an elliptical distribution on Rd. The function
g is then called the density generator of f , µ is called the location parameter, and Σ is called the
dispersion matrix.

Simultaneous statistical inference theory under elliptical models has been developed by [BD17].
It is interesting to remark that Σ is (in general) not the covariance matrix. However, we have the
following corollary to [GVB13, Theorem 2.11 (b)]:

Corollary 1. If X is elliptically distributed according to the preceding definition and possesses
second moments, then the covariance matrix of X is a real multiple of Σ, i.e. there exists a real
constant κ > 0 such that Cov(X) = κΣ.

An approach for estimating the covariance matrix in elliptical models when the number of samples
is small is discussed in [Zho+14].

Remark 4. The generators for common elliptical probability distributions are (see e.g. [LV03, p. 62
ff.]) as follows.

• Normal distribution: g(u) := exp
(︂
−u

2

)︂

• Student-t distribution: g(u) :=
(︃
1+ u

cp

)︃−p
for cp ∈ R, p > 1

2

• Logistic Distribution: g(u) := e−u

(1+e−u)2

• Exponential distribution: g(u) := exp(−rus) for r, s > 0

Since it is of great importance for the results of this paper we note that the following holds:

Lemma 8. For the normal, Student-t, logistic, and exponential distributions the generator is strictly
decreasing on R+.

The family of elliptical distributions can be extended to allow for skewness by multiplying elliptical
densities with a scaling function; cf. [Azz13, Equation (6.11)].
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Definition 3 (Skew-elliptical distribution). Let f̃ be the density of an elliptical distribution with den-
sity generator g̃ (cf. Definition 2) and let F be the cumulative distribution function of a univariate
elliptical distribution. Then

f (x;µ,Σ,λ) := 2 · f̃ (x;µ,Σ) · F
(︂
λT (x− µ)

)︂
(3.4)

is the density of a skew-elliptical distribution. The parameter µ is called the location parameter, Σ
is called the dispersion matrix and λ is called the skewness parameter.

3.3. Theory of Reverse Stress Testing in (Skew-)Elliptical Models

3.3.1. Reverse Stress Testing in Elliptical Models

S ince the conditional expectation in (3.3) depends on the tail behaviour (and so does κℓ), the
solution given by (3.3) could depend on the tail behaviour of the distribution of X. Furthermore

only observations for which the loss exceeds ℓ can be utilized when estimating the conditional
expectation using the empirical likelihood method. In this section we derive an explicit equation for
x∗(ℓ) (in terms of the population parameters) which proves that x∗(ℓ) does not depend on the tail
behaviour of the distribution of X. In particular, we are therefore able to present empirical likelihood
estimates and confidence regions that utilize all observations (instead of just those corresponding
to losses larger than ℓ, cf. [GKK15, Section 3]) in Section 3.4.1.

The following theorem asserts that the reverse stress testing problem has, under elliptical models,
a global optimum and gives an explicit expression in terms of the parameters of the density:

Theorem 2. If f is an elliptical density with a decreasing generator g (cf. Definition 2), then the
unique solution of (3.2) is given by

x∗(ℓ) :=

⎧⎪⎪⎨⎪⎪⎩
µ if ℓ ≤ cTµ,

µ+ (ℓ− cTµ) Σc
cTΣc otherwise.

(3.5)

By Lemma 8 the generators of the normal, Student-t, logistic, and exponential distribution are
strictly decreasing. In practice the generator, and therefore its properties, might be unknown. In
this situation we suggest to empirically check that the distribution is unimodal (see e.g. [BP09]),
since, by a result of [BB14, Proposition 2], the generator of an elliptical distribution is decreasing if
and only if the elliptical distribution is unimodal.

Equation (3.5) shows that, for fixed ℓ, the solution does not depend on (the tail behaviour of the
generator) g, but only on the parameters µ and Σ of the (elliptical) distribution of X. As a result, the
derived expression of the most likely loss scenario is a applicable to the whole family of elliptical
distributions without the need to specify the density generator g explicitly. The location parameter µ
and the dispersion matrix Σ are unknown quantities in practically relevant applications which have
to be estimated by using historical data (see Section 4 for further discussion). In order to simplify
the estimation procedure, the following remark is insightful.

Remark 5. The solution

x∗(ℓ,Σ) := µ+
(︄
ℓ− cTµ

cTΣc

)︄
Σc (3.6)

does not depend on the scaling of Σ, i.e. for α ∈ R>0 it holds that x∗(ℓ,αΣ) = x∗(ℓ,Σ). Therefore,
assuming existence of second moments of X and by Corollary 1, the dispersion matrix Σ can be
replaced by the covariance matrix of X. The latter matrix can be estimated from data by standard
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techniques, e.g. the method of moments. The location parameter µ is usually estimated by the
arithmetic mean of the data. Once estimators µ̂ and Σ̂ are available, we propose for practical
purposes to evaluate the right-hand side of (3.5) with µ replaced by µ̂ and Σ replaced by Σ̂.

3.3.2. Reverse Stress Testing in Skew-Elliptical Models

T o derive the solution of (3.2) in the case of a skew-elliptical model we, in the following, as-
sume that λ ≠ 0, since otherwise the results of Theorem 2 can be applied. Furthermore let

λ =
(︂
λ1,λ

T
2

)︂T
with λ1 ≠ 0 which can be assumed without loss of generality, since otherwise the

components of the vector x− µ can be rearranged.

The following result, which is a direct consequence of Corollary 4, characterizes the most likely
scenario in skew-elliptical models.

Theorem 3. Let f be the density of a skew-elliptical distribution with strictly decreasing generator
g̃ (cf. Definition 3). Then, there exist real numbers k1 and k2 such that

x∗(ℓ) = µ+ k1 ·Σλ+ k2 ·Σc (3.7)

is a solution of (3.2).

This result settles the question of the existence of a solution, but does not guarantee uniqueness.
If f is a skew-normal density, i.e. f̃ is a normal density and F is the cumulative distribution function
of the univariate normal distribution in Definition 3, then we obtain the following stronger result by
making use of Corollary 7.

Theorem 4. Under the conditions of Theorem 3 and if f is a skew-normal density, the solution of
(3.2) is unique. The numbers k1,k2 in (3.7) can in this case be found by solving a one-dimensional
optimization problem (cf. (B.9)).

It is possible to define a skew-t distribution by choosing f̃ in Definition 3 as a multivariate Student’s
t-density. We, however, derive a result similar to that of Theorem 4 for the more popular formulation
of a skew-t distribution given in (B.10). Namely, Theorem 5 is a simplified restatement of Theorem
10.

Theorem 5. If f is a skew-t density (in the sense of (B.10)), the solution of (3.2) is unique. Fur-
thermore the solution is of the form (3.7) and the numbers k1 and k2 can be found by solving a
one-dimensional optimization problem (cf. (B.13)).

3.3.3. Numerical Illustration

I t is now possible to illustrate how the selected scenario in the skew-normal model and skew-t
model differs from the one obtained when misspecifying the skewness as zero. As an example

consider the points

λφ =

(︄
cosφ
sinφ

)︄

for φ ∈ (0,2π) \ {π/2} which lie on the unit circle in R2. Denote by xφ the scenario for λ = λφ
and c = λπ/2. Furthermore denote by yφ the scenario obtained by setting λ = 0 (i.e. when λ is
misspecified as zero, that is the scenario obtained by using Equation (3.6) and the population
mean and variance according to Lemma 18). Thus we consider here only the effect of model-
misspecification, and we quantify this effect by plotting φ against the L1-norm of the difference
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vector xφ − yφ. The confidence regions resulting from estimation uncertainty are discussed in
Section 3.4.

Figure 3.2 considers four different cases for the covariance structure:

(1) Negative correlation and equal variances Σ =
(︄

1 −0.5
−0.5 1

)︄

(2) Positive correlation and equal variances Σ =
(︄

1 0.5
0.5 1

)︄

(3) Uncorrelated and equal variances Σ =
(︄
1 0
0 1

)︄

(4) Uncorrelated and unequal variances Σ =
(︄
1 0
0 2

)︄

As can be seen in Figure 3.2 the covariance structure does not significantly alter the qualitative
behaviour, meaning that in both columns all four graphs look qualitatively similar: If λφ points ap-
proximately in the direction of c, then the difference is comparatively small. The further observed
local minima depend on the inner product induced by Σ as well as the other parameters of the
distribution. They can therefore not be characterized simply in terms of λφ and c. The location
of comparatively large differences depends on Σ, since the latter can cause a rotation of the dis-
tribution. From the practical point of view, the results indicate that skewness only matters when
its direction differs markedly from the direction of the portfolio vector. We have observed similar
phenomena (not shown here) also in higher dimensions d ≥ 3.

The impact of the skewness is relatively small under the skew-normal model: Up to 5-8% of the
scenario are allocated incorrectly when the most likely scenario is calculated according to the
elliptical model. Under the skew-t model the misallocation can reach up to 20-30%. In both cases
the misallocation can therefore be of the same order of magnitude as the prescribed loss level
ℓ = 1.

Additionally, Figure 3.3 compares the run times and the accuracy of our proposed methods with
those of the all-purpose constrained optimization routine constrOptim in R (cf. [R C20]). The fig-
ure demonstrates that the advantages (runtime and accuracy) of our proposed numerical method
increase with growing dimension d.

3.4. Confidence Regions for the Most Likely Scenario
Point estimation of the most likely stress scenario is, due to the results of the previous section,
straightforward once the population parameters have been estimated. For the elliptical case these
can be estimated using e.g. the method of moments and for the skew-normal and skew-t models
maximum likelihood estimation (cf. [Azz19]) can be used. This section builds on this to describe
approaches to obtain confidence regions for the most likely stress scenario.

3.4.1. Elliptical Models

T he goal of this section is to apply the empirical likelihood (EL) method (cf. [Owe01]), which pro-
vides likelihood-based inference methods without assuming a parametric model for the data,

to construct a confidence region for the scenario obtained under the setting of Theorem 2. It is
provided by the following corollary to Corollary 8:
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(a) Negative correlation and equal variances (skew normal)
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(b) Negative correlation and equal variances (skew-t)
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(c) Positive correlation and equal variances (skew normal)
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(d) Positive correlation and equal variances (skew-t)
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(e) Equal variances and uncorrelated (skew normal)
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(f) Equal variances and uncorrelated (skew-t)
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(g) Unequal variances and uncorrelated (skew normal)
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(h) Unequal variances and uncorrelated (skew-t)

Figure 3.2: Relative distance between the selected scenario in the skewed and non-skewed model in R2 as a function
of φ, where norm(v) := ||v||1 denotes the L1-norm of a vector v. The number φ ∈ [0,2π] represents the angle between
the skewness vector λφ and the vector c of the portfolio weights. The dashed vertical lines mark the ’direction’ (as well
as its opposite) in which c points. For further details see Section 3.3.3.
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Figure 3.3: Comparison of the run time and achieved objective value when the dimensionality d of the optimization
problem increases. We compared our solution to a naive implementation using R’s constrOptim method. In the right
sub-figures, we calculated the difference of the value of the objective function obtained with our method minus the
corresponding value obtained by constrOptim. The positive values displayed in the right column are in favour of our
method.
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Corollary 2. Let Y1, · · · ,Yn be stochastically independent and identically distributed according to
an elliptical density with parameters µ and Σ. Furthermore let

X1 :=
(︄

Y1
(cT Y1) ·Y1

)︄
, · · · ,Xn :=

(︄
Yn

(cT Yn) ·Yn

)︄

and

h(m) = h
(︂
µ,µ(1)

)︂
= µ+

ℓ− cTµ

cT
(︂
µ(1) − cTµ · µ

)︂ ×
(︂
µ(1) − cTµ · µ

)︂
,

where µ(1) is the expectation of (cT Y1) · Y1. Then the Jacobian of h (which is given by (B.14)) has
rank q = d − 1 and an asymptotic (1−α) confidence region for x∗(ℓ) is given by

⎧⎪⎪⎨⎪⎪⎩h (m̂)+
n∑︂

i=1

wi

(︄
∂h
∂m

(m̂)Xi

)︄ ⃓⃓⃓⃓
⃓⃓
⃓

n∏︂

i=1

nwi ≥ exp
(︃
−cα

2

)︃
,wi ≥ 0,

n∑︂

i=1

wi = 1

⎫⎪⎪⎬⎪⎪⎭ ,

where m̂ = n−1 ∑︁n
i=1 Xi and cα is the (1−α) quantile of the χ2-distribution with q degrees of freedom.

In comparison to the confidence region proposed in [GKK15, Theorem 1] the confidence region
from Corollary 2 does not depend on a nuisance parameter describing the tail behaviour and
can utilize all observations (instead of just those for which the loss exceeds ℓ). It is, however,
based on the EL confidence region for twice as many parameters. Furthermore the only available
marginal confidence intervals from Corollary 2 are projections onto the coordinate axes, which
have asymptotic joint coverage probability of 1−α. In contrast to this it is possible to directly derive
marginal 1 − α confidence regions from [GKK15, Theorem 1] that are (in general) distinct from
the ones obtained by projections onto the coordinate axes. Both approaches are applied to an
example in Section 3.4.3.

3.4.2. Skew-Normal and Skew-T Models

F or the skew-normal and skew-t models the estimating equations for the maximum likelihood es-
timator are quite complex and the solution to the reverse stress testing problem is only available

implicitly. Therefore the empirical likelihood approach is intractable. Fortunately the (parametric)
bootstrap approach (cf. [Hor19, Section 2.2]) is a suitable alternative: Maximum likelihood esti-
mation for the (multivariate) skew-normal and the skew-t distribution is readily available in the R
language (cf. [Azz19]). This can be utilized to estimate the relevant parameters from a data set.
The point estimate of the most likely scenario for which the loss exceeds a (fixed) threshold can
then be obtained by solving the corresponding one-dimensional optimization problem. The para-
metric bootstrap approach can be utilized to obtain pseudo samples of x∗(ℓ) from which marginal
confidence regions can be obtained using e.g. the method described by [HY13]. This approach is
demonstrated in Section 3.4.3.

The discussed approach, which involves the estimation of all population parameters, might not be
desirable (or even not feasible) for high-dimensional data. We therefore dedicate the remainder of
this section to considering the method of moment estimation of the population parameters, relevant
for the task at hand, in skew-normal and skew-t models. As detailed in Appendix B.3 the method
of moments estimators of all relevant parameters are not guaranteed to exist. We, however, have
the following useful result (which follows directly from the results in Appendix B.3):

Theorem 6. Let X be an Rd-valued random variable that is distributed according to an elliptical, a
skew-normal or a skew-t distribution with location parameter ξ, dispersion matrix Ω and skewness
parameter α. Then it holds that

x∗(ℓ) ∈ {ξ + a1 ·Ωc+ a2 ·Ωα |a1,a2 ∈ R } . (3.8)
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If X is skew-normal or skew-t distributed but x∗(ℓ) is incorrectly calculated according to (3.6) (with
µ = E [X] and Σ = Cov(X), see Lemma 18), then (3.8) still holds. Furthermore if ξ̂ is a consistent
estimator of the location parameter (whose components can be estimated marginally), then (B.15)
and (B.16) yield consistent plugin estimators of the affine two-dimensional subspace in (3.8).

If a confidence region is obtained using the assumption of an elliptical distribution and the method
described in Section 3.4.1, then this result can be utilized to identify a one-dimensional subset of
the confidence region (from which multiple scenarios can be easily selected) by its intersection
with {︂

x ∈ Rd
⃓⃓
⃓cT x = ℓ

}︂
∩

{︃
ξ̂ + a1 ·Ωcˆ︁+ a2 ·Ωαˆ︁ |a1,a2 ∈ R

}︃
.

In practice this seems to work well as demonstrated in the application in the following section.

3.4.3. Application to a Currency Portfolio

In this section we consider the application of the developed theory to "[...] a basket of currencies,
half held in British pounds (GBP), the rest divided evenly among the Australian dollar (AUD), the
euro (EUR), the Japanese yen (JPY) and the Swiss franc (CHF)" (cf. [GKK15, Section 5.2]). The
portfolio is valued in US dollars and the monthly returns are analyzed. These are defined as
Ri := (Vi − Vi−1)/Vi−1, where Vi is the average value (in US dollars) of one unit of the currency
under consideration in month i, 1 ≤ i ≤ n.

Since currencies are traded around the world there is no canonical data set. For our analysis we
choose the monthly data that can be freely obtained from the Federal Reserve System2 for the
period from January 2000 to December 2019 which, in the period from January 2000 to December
2011, is very similar to the data set analyzed by [GKK15].

To apply the method of [GKK15] we performed a maximum likelihood fit of the data to a multivariate
t-distribution (using QRM::fit.mst, cf. [PM20]) which yielded ν̂ = 4.765659 as an estimate for
the degrees of freedom. Choosing ℓ = 2.8776% (which is the upper 5% quantile of the observed
losses) yields the estimate (according to [GKK15, Proposition 1])

(AUD,EUR,JPY,CHF,GBP) (3.9)

= (−3.7197%,−3.2303%,0.2639%,−2.9468%,−4.0723%) (3.10)

of the most likely scenario exceeding this loss. The plug-in estimate of (3.5) (using the empirical
mean and covariance) is, on the other hand, given by

(AUD,EUR,JPY,CHF,GBP) (3.11)

= (−3.0412%,−3.0973%,−1.3745%,−2.7961%,−3.1780%) (3.12)

which differs from the former estimate in two ways:

• The most likely loss in Japanese yen is negative and not positive. The marginal 99% confi-
dence regions are [−1.5478%,2.7895%] and [−2.5564%,0.8401%], respectively. Hence, we
do not have confidence in the sign of the component of x∗ referring to JPY.

• The most likely losses are smaller. This can be easily explained by noticing that the loss of
the scenario (3.10) is approximately 3.2403% which is larger than ℓ whereas the scenario

2https://www.federalreserve.gov/datadownload/Download.aspx?rel=H10&series=
8bbd346e2878c9b2137ff7a1c9e95be9&lastobs=&from=01/01/2000&to=12/31/2019&filetype=
csv&label=include&layout=seriescolumn

https://www.federalreserve.gov/datadownload/Download.aspx?rel=H10&series=8bbd346e2878c9b2137ff7a1c9e95be9&lastobs=&from=01/01/2000&to=12/31/2019&filetype=csv&label=include&layout=seriescolumn
https://www.federalreserve.gov/datadownload/Download.aspx?rel=H10&series=8bbd346e2878c9b2137ff7a1c9e95be9&lastobs=&from=01/01/2000&to=12/31/2019&filetype=csv&label=include&layout=seriescolumn
https://www.federalreserve.gov/datadownload/Download.aspx?rel=H10&series=8bbd346e2878c9b2137ff7a1c9e95be9&lastobs=&from=01/01/2000&to=12/31/2019&filetype=csv&label=include&layout=seriescolumn
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(3.12) has, by design, a loss exactly equal to ℓ. The latter estimate is based on the as-
sumption that ℓ is bigger than the expected loss, which seems reasonable since ℓ has been
chosen as a quantile far from the median.

Figures 3.4 and 3.5 each contain two of the ten bivariate marginals and the confidence regions
obtained using both methods mentioned before. We rasterized the boundaries of the confidence
regions using the method described in [CH13, Section 4] using 200 points.

The confidence regions obtained by [GKK15] "for the most likely loss reflect the skewness in the
joint distribution of the EUR/USD and CHF/USD returns". It is therefore natural to consider mod-
elling this skewness using a skew-t distribution. Before proceeding we test the null hypothesis
H0 : λ = 0 versus the alternative H1 : λ ≠ 0. We test this (global) hypothesis in terms of the
individual hypotheses

HI
0 : λI = 0 versus HI

1 : λI ≠ 0 (3.13)

for every subset I of {1, . . . ,5}. In (3.13), λI denotes the skewness parameter of the corresponding
marginal distribution. We test each HI

0 using the corresponding likelihood-ratio statistic which,
under HI

0, asymptotically follows a chi-squared distribution with |I| degrees of freedom (cf. [Wil38]).
After applying the Bonferroni correction (cf. [Dic14, p. 30]) we obtain the minimal adjusted p-value
0.002741076 which provides clear evidence for the presence of skewness. Furthermore, Table
3.1 provides (unadjusted) bootstrap-based 95% confidence intervals for the components of the
skewness parameter vector. Only one of them covers zero. Hence, we work with the full model
including the skewness parameter.

A maximum likelihood fit using the R function sn::mst.mple (i.e. without penalty, cf. [Azz19])
yields a slightly larger value of ν̂ = 4.940044 for the degrees of freedom. For selected bivariate
marginals, Figures 3.6 and 3.7 depict confidence regions for the most likely scenario originating
from elliptical and skew-t models, respectively. The latter were estimated from 104 (parametric)
bootstrap samples. It is interesting to note that all 104 realizations of x∗(ℓ) obtained using the
parametric bootstrap had only strictly negative components which is more in line with (3.12) than
with (3.10).

Finally, we also utilized the method described at the end of Section 3.4.2 which is a practical way
to select interesting scenarios while avoiding the estimation of all parameters of the skew-elliptical
distribution. From the resulting one-dimensional subset of the confidence region, we selected 21
scenarios for illustrative purposes. Figure 3.8 depicts the L1-distances of these 21 scenarios to
the most likely scenario estimated under the full skew-t model. Among these 21 scenarios, there
is the scenario estimated under the elliptical model (indicated by a cross in Figure 3.8). The figure
demonstrates that some of the scenarios selected with the method proposed at the end of Section
3.4.2 yield an improvement.

Table 3.1: Unadjusted bootstrap-based 95% confidence intervals, based on 1000 bootstrap samples, for the components
of the skewness parameter vector.

Parameter 95% CI
λ1 (−1.9064,−0.0010)
λ2 (−1.7539,−0.0027)
λ3 (−0.0177,1.2450)
λ4 (0.0022,1.8977)
λ5 (0.0026,3.2029)
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Figure 3.4: Comparison of our proposed methodology with the one by [GKK15] (bivariate marginals JPY / GBP as
well as EUR / GBP): Illustration of the point estimates of the most likely scenario (the square and the diamond), the
confidence regions (the solid and the dashed lines), the losses (small grey points) and the 5% most extreme losses
(crosses).
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Figure 3.5: Comparison of our proposed methodology with the one by [GKK15] (bivariate marginals JPY / AUD as
well as CHF / AUD): Illustration of the point estimates of the most likely scenario (the square and the diamond), the
confidence regions (the solid and the dashed lines), the losses (small grey points) and the 5% most extreme losses
(crosses).
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Figure 3.6: Comparison between models with and without skewness (bivariate marginals AUD / JPY as well as EUR /
JPY): Illustration of the point estimates of the most likely scenario (the square and the diamond), the confidence regions
(the solid and the dashed lines) as well the losses (small grey points) and the 5% most extreme losses (crosses).



3.4. Confidence Regions for the Most Likely Scenario

3

41

Return based on monthly value in Dollar

CHF

JP
Y

-0
.0

5
-0

.0
4

-0
.0

3
-0

.0
2

-0
.0

1
0

0.
01

-0.05 -0.04 -0.03 -0.02 -0.01

Extreme losses
Most likely scenario (skewt-t)
Most likely scenario (elliptical)
95% conf region (skew-t)
95% conf region (elliptical)

+

+

+
+

Return based on monthly value in Dollar

EUR

C
H

F

-0
.0

5
-0

.0
4

-0
.0

3
-0

.0
2

-0
.0

1
0

0.
01

-0.05 -0.04 -0.03 -0.02 -0.01

Extreme losses
Most likely scenario (skewt-t)
Most likely scenario (elliptical)
95% conf region (skew-t)
95% conf region (elliptical)

+

+

+
+

+

++

+

Figure 3.7: Comparison between models with and without skewness (bivariate marginals CHF / JPY as well as EUR /
CHF): Illustration of the point estimates of the most likely scenario (the square and the diamond), the confidence regions
(the solid and the dashed lines) as well the losses (small grey points) and the 5% most extreme losses (crosses).
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Figure 3.8: Illustration of the L1-distance between the scenario estimated from a skew-t model and the scenarios
selected from the subspace estimated using the method of moments. The scenario estimated under the elliptical model
is indicated by a cross.

3.5. Conclusion

R everse stress testing is a highly relevant task in the context of bank regulation. Therefore, it is
essential that reliable and numerically stable methods are available. With the present work, we

have contributed (i) an explicit solution for the most likely scenario x∗(ℓ) given that the loss exceeds
ℓ under the scope of elliptical models, and (ii) a characterization of x∗(ℓ) in terms of a numerically
stable and easy-to-implement optimization problem under the broader scope of skew-elliptical and
skew-t models by showing that the solution is an element of a two-dimensional affine subspace.
We have furthermore tackled the statistical task of estimating the relevant population parameters
and quantifying the uncertainty which propagates from the latter estimation to the obtained value
of x∗(ℓ) by providing methods to construct confidence regions and select scenarios from these
confidence regions.

Potential extensions of our work would be to consider more general (non-linear) P & L functions
as well as different distributional models, for instance by utilizing copula theory. It might also be
interesting to explore, whether an approach similar to ours could be utilized to extend the work of
[FK15] on the selection of multiple, well-distributed, stress scenarios in elliptical models to skew-
elliptical models.

Computer programs, with which all results of the present paper can be reproduced, are available
from the first author upon request.
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4
Statistical MethodsWith Applications to

MALDI MSI Data

負けるが勝ち

Japanese Proverb

Perfection is the enemy of progress.

Winston Churchill

This chapter1 aims to give some insights into the statistical properties of matrix-assisted laser
desorption/ionization mass spectrometry imaging (MALDI MSI) data. Specifically I propose a novel
(multiplicative) trend normalisation for MALDI MSI data and demonstrate its utility by applying it
successfully to a real data set. Its effect on the stability of feature selection is investigated using
an approach inspired by the work of [MB10], by comparing the change in stability of different
correlation coefficients. For the setting relevant to this chapter (binary classification) the finite
sample distribution of the correlation coefficient recently proposed by [Cha20] is derived and the
computational and theoretical properties of other correlation coefficients are discussed in detail.
Finally a marginal model for the (high-dimensional) MALDI MSI observations is proposed.

1Parts of this chapter were published as a preprint; cf. [Sch20].
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4.1. Introduction
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a method
suitable for high throughput imaging that shows potential for tissue typing, especially tumor sub-
typing (cf. [Bos+17]). It is an "an established tool for the investigation of formalin-fixed paraffin-
embedded (FFPE) tissue samples", but "the applicability of this method [...] is often hampered by
inevitable technical variation and limited reproducibility."; cf. [Bos+21]. Thus it is of great interest
to gain insights into different types of (technical) variation and how to either avoid or correct them.
Towards this end many different methods have been proposed. These include:

• Total ion count (TIC) normalization, which rescales spectra such that their L1 norm (sum of
intensities) equals 1. Alternatives to this include the root mean square normalisation and the
z-score normalisation; cf. e.g. [Wol+05].

• Intensity profile normalization (IPN), which "transform[s] spectral intensities such that their
statistical distributions become more similar"; cf. [Bos+21].

• Variance stabilization, which is based on the idea that, for certain classes of distributions, it
is possible to find a deterministic transformation such that the transformed random variable
has approximately constant variance; cf. [Yu09]. An example of this is the square-root
transformation for the Poisson distribution (cf. [Bar36]). The square-root and the logarithm
transformation have been successfully applied to MALDI data (cf. [Wol+05], [Dei+11]).

When reanalysing (the annotated regions of) the data set presented in [Kri+16] I noticed a clear
difference in the trend of the variance between the 8 different tissue micro arrays (TMAs) that were
imaged to obtain the data set; see Figure 4.1. Notably the trend differences do not differ much by
class, which indicates that they are not due to biological variability. To the best of my knowledge
this type of variation has not yet been documented in literature. Furthermore it does not look
like IPN or the variance stabilization can efficiently eliminate the observed variation. Therefore I
propose to simply estimate and normalise this observed trend.

This proposed normalisation is very simple: Borrowing the idea from time series analysis2, that
the trend of a time series can be estimated by smoothing the time series I propose the following
simple implementation (given in R and assuming that the spectra are the rows of the matrix data):

� ⊵
1 normalize_ <- function(data,run) {
2 x <- apply(data,2,mean)
3 adj <- 1/runmed(x,run)
4 t(apply(data,1,function(x){
5 v <- x*adj
6 }))
7 }
8 normalize <- function(data,groups,run=301) {
9 for(g in unique(groups)) {
10 idx <- groups == g
11 data[idx,] <- normalize_(data[idx,],run)
12 }
13 data
14 }� �

The argument groups should contain categorical values indicating either the TMA or (which I
have used in the following) the individual from whose tissue sample the spectrum was obtained.

2This is sensible because a spectrum obtained using time of flight mass spectroscopy is a time series since each m/z
value corresponds to an arrival time of ions of a specific mass to charge ratio.
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In my opinion the latter is preferable since it works just as well and does not assume that many
tissue cores are measured at the same time as part of a TMA. This proposed approach seems
to have favourable effects on classification performance and the stability of feature selection, as
demonstrated in the following sections.

4.2. Feature Selection Using Univariate Tests for Homogeneity
Feature selection is an important task in statistics and machine learning, as it allows for dimen-
sionality reduction and selection of features that merit further (potentially very expensive/laborious)
investigation. This section describes the connection between univariate tests for homogeneity and
feature selection for binary classification. Specifically it considers the AUC (whose stability when
utilized for feature selection for the analysis of MALDI MSI data was recently discussed in [Wil+19])
and a recently by [Cha20] proposed correlation coefficient. Since the Chatterjee coefficient was
found to have lower power than alternatives (cf. [SDH20]) I compare it with a resampled version
(which can be seen to be an incomplete U-statistic using the coefficient as kernel function). Fur-
thermore Section 4.2.4 gives some insights into the computational and theoretical properties of Ho-
effding’s D (cf. [Hoe48]), Blum-Kiefer-Rosenblatt’s R (cf. [BKR61]), Bergsma-Dassio-Yanagimoto’s
τ∗ (cf. [BD14]) as well as U-statistics based on Chaterjee’s ξ.

Denote by [n] := {1, · · · ,n} the first n ∈ N natural numbers, let [n]0 := [n]∪{0} and let, in the following,
(X1,Y1), . . . , (Xn,Yn) be a sample of bivariate, jointly independent random variables where (for all
i ∈ [n]) Xi ∈ {0,1} and Yi is real valued with absolutely continuous distribution function. One way to
test the suitability of Yi for predicting Xi is to test the homogeneity hypothesis (c.f. [Dic18, p. 51])

H0 : PY1 = PY2 = · · · = PYn . (4.1)

To this end let N0 := |{i ∈ [n] : Xi = 0}|, N1 := n − N0 = |{i ∈ [n] : Xi = 1}| and let π = π(Y1, · · · ,Yn) :
[n]→ [n] be the (almost surely unique) random permutation such that Yπ(1) ≤ · · · ≤ Yπ(n). It holds
that (Xπ(1), . . . ,Xπ(n))|N0 = n0 is, under H0, distributed uniformly on

Bn0,n1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x ∈ {0,1}n

⃓⃓
⃓⃓
⃓⃓
⃓⃓
∑︂

i∈[n]

xi = n1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.2)

which is the set of all binary sequences of length n with exactly n0 zeros and n1 := n − n0 ones,
since, under H0, π sampled uniformly at random from the set of all permutations of [n]. Thus this
will be the setting for which the following sections will discuss the distribution of the Mann-Whitney
U statistic and that of Chatterjee’s ξn.

4.2.1. The Mann-Whitney U Test

The Mann-Whitney U test is a nonparametric test for the homogeneity hypothesis (4.1). It is based
on the test statistic

Un0,n1 = Un0,n1((X1,Y1), . . . , (Xn,Yn)) := −n0(n0 + 1)
2

+
∑︂

i∈I0

π−1(i) (4.3)

where I0 := {i ∈ [n] : Xi = 0} and π−1 denotes the inverse permutation of π (i.e. π−1(i) is the rank of
Yi).

Exact and approximate p-values under H0 can be e.g. obtained in R using the wilcox.test
command. The expectation and variance of Un0,n1 are given by E

[︁
Un0,n1

]︁
=

n0n1
2 and Var(Un0,n1) =

n0n1(n+1)
12 (c.f. [LD75, p. 14]). Furthermore Un0,n1 takes values in [0,n0n1] (c.f. [LD75, p. 9]).
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In many applications Un0,n1 is replaced by AUCn0,n1 :=
Un0 ,n1
n0n1

and then called the area under the

ROC curve. It takes values in [0,1] and has variance n0n1(n+1)
12n2

0n2
1

.

4.2.2. Chatterjee’s Rank Correlation ξ

Recently a new coefficient of correlation was proposed in [Cha20]. This section discusses its
properties and gives the finite sample distribution of this coefficient for the setting relevant to this
paper. The coefficient is defined as

ξn(Y,X) := 1− n
∑︁n−1

i=1 |ri+1 − ri|
2
∑︁n

i=1 li × (n− li)
(4.4)

where ri :=
⃓⃓
⃓⃓{︂ j ∈ [n] : Xπ( j) ≤ Xπ(i)

}︂⃓⃓⃓⃓ = π−1(i), li :=
⃓⃓
⃓⃓{︂ j ∈ [n] : Xπ( j) ≥ Xπ(i)

}︂⃓⃓⃓⃓. It is obviously symmetric,
simple to compute and has the property that ξ(Y,X) := limn→∞ ξn(Y,X) = 0 iff Y ⊥⊥ X and ξ(Y,X) = 1
iff there exists a measurable f such that X = f (Y) almost surely (assuming X is not a.s. constant,
cf. [Cha20, Theorem 1.1.]).

Since X is a binary random variable it is immediate that

ri = N0 + χ
(︂
Xπ(i) = 1

)︂
×N1

li = χ
(︂
Xπ(i) = 0

)︂
×N0 +N1

and furthermore it follows that

N∑︂

i=1

li × (n− li) =
N1∑︂

i=1

N0N1 = N0N2
1

and

n−1∑︂

i=1

|ri+1 − ri| =
n−1∑︂

i=1

N1χ (ri+1 ≠ ri)

= N1 ×
⃓⃓
⃓⃓{︂i ∈ [n− 1] : Xπ(i+1) ≠ Xπ(i)

}︂⃓⃓⃓⃓ .

Thus it follows that (4.4) can be written as

ξn(Y,X) := 1−
nN1 ×

⃓⃓
⃓⃓{︂i ∈ [n− 1] : Xπ(i+1) ≠ Xπ(i)

}︂⃓⃓⃓⃓

2N0N2
1

= 1− n
2N0N1

×
⃓⃓
⃓⃓{︂i ∈ [n− 1] : Xπ(i+1) ≠ Xπ(i)

}︂⃓⃓⃓⃓ .

Since this is only well-defined if N0,N1 > 0 one needs to choose a value for the (uninformative)
cases N0 = 0 or N1 = 0. Since in this case there is neither evidence against nor for independence
of X and Y it is reasonable to choose ξn(Y,X) = 0 if N0 = 0∨N1 = 0. This choice does not affect the
properties of the limit ξ unless X is almost surely constant.

To derive the finite sample distribution of ξn when X and Y are independent and conditional on
N0 = n0,N1 = n1, denote by

τn(x) = |{i ∈ [n− 1] |xi ≠ xi+1 }|
the number of ’jumps’ in the binary sequence x ∈ Bn0,n1 . If X is sampled uniformly at random from
Bn0,n1 , then the distribution of τn(X) is given by the following corollary to the results of [Tha01]:
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Corollary 3. If X is sampled uniformly at random from Bn0,n1 , then the distribution of τ(X) is given
by

P(τ(X) = x) =

⎧⎪⎪⎨⎪⎪⎩
(x+ 1)2 ×Gn0,n1(x+ 1) if x is odd

(nx− x2)×Gn0,n1(x) if x is even
(4.5)

where n := n0 + n1, x ∈ [︁
2× (n0 ∧ n1)− χ(n0 = n1)

]︁
and where

Gn0,n1(x) :=
[︄
2n0n1 ×

(︄
n
n0

)︄]︄−1

×
(︄
n0
x
2

)︄(︄
n1
x
2

)︄
.

The proof is deferred to Appendix C.1.

The following lemma summarizes some properties of this distribution:

Lemma 9. The expectation of the probability distribution defined by (4.5) is given by

E[τ(X)] =
2n0n1

n

For n0 = n1 = m it holds that P(τ(X) = m + a) = P(τ(X) = m − a) for all a ∈ N. Furthermore, if
n0 = n1 = m, the variance of the probability distribution defined by (4.5) is given by

Var(τ(X)) = m
2m2 − 1
2m− 1

−m2 =
m(m− 1)
2m− 1

.

The proof is deferred to Appendix C.1.

For n0 ∈ [n − 1] it holds that if X and Y are independent 1 − n
2n0(n−n0)τ(Zn0) ≡ ξn(Y,X)|N0 = n0

since π is then just a permutation sampled uniformly at random from the set of all permutations
of [n] and where Zn0 is sampled uniformly at random from Bn0,n−n0 . It follows immediately that
E
[︁
ξn(Y,X)|N0 = n0

]︁
= 0.

4.2.3. Bootstraping Chatterjee’s Rank Correlation ξ

A popular technique to reduce the variance of an estimator of a parameter is the (subsampling)
bootstrap. It is simple to demonstrate that the ordinary bootstrap (i.e. resampling with replace-
ment instead of subsampling) is inappropriate for ξn: If (X∗1,Y

∗
1 ), · · · , (X∗n,Y∗n ) is a bootstrap sample

(sampled with replacement), then

EP∗
[︃⃓⃓
⃓⃓{︂i ∈ [n− 1] : X∗π(i+1) ≠ X∗π(i)

}︂⃓⃓⃓⃓
]︃
= n− 1−E

[︃⃓⃓
⃓⃓{︂i ∈ [n− 1] : X∗π(i+1) = X∗π(i)

}︂⃓⃓⃓⃓
]︃

≤ (n− 1)×
(︂
1−

(︂
1− n−1

)︂n)︂

since the expected fraction of non-unique points in the bootstrap sample is
(︂
1− n−1

)︂n
. Conse-

quently

EP∗[ξn(X∗,Y∗)] ≥ 1− n
2n1n2

× (n− 1)×
(︂
1−

(︂
1− n−1

)︂n)︂

and thus for O
(︂
n−1n1

)︂
= O

(︂
n−1n2

)︂
= O(1) it follows that limn→∞EP∗[ξn(X∗,Y∗)] ≥ e−1. But it follows

from [Cha20, Theorem 1.1] that limn→∞E[ξn(X,Y)] = 0 if X and Y are independent and therefore
the bootstrap fails to be asymptotically unbiased in this case. Sampling without replacement does
not cause artificial ties and therefore does not suffer from this issue.
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If all subsamples of a fixed size m are evaluated and the resampled statistic is symmetric, then the
average over all such subsamples is an U-statistic, which is a type of unbiased and asymptotically
normal test statistic that was introduced by [Hoe48]. Since both of the previously discussed test
statistics are symmetric functions of the sample one can use them as the kernel of a U statistic
(c.f. [BC18, Definition 1.1]) and define3

T AUC
(m,n) :=

(︄
n0 + n1

m

)︄−1 ∑︂

1≤i1<···<im≤n

AUCñ0,ñ1

(︁
(Xi1 ,Yi1), . . . , (Xim ,Yim)

)︁

T ξ
(m,n) :=

(︄
n0 + n1

m

)︄−1 ∑︂

1≤i1<···<im≤n

ξñ0,ñ1

(︁
(Xi1 ,Yi1), . . . , (Xim ,Yim)

)︁

where ñ1 = ñ1(i1, · · · , im) :=
∑︁m

j=1 Xi j and ñ0 = ñ0(i1, · · · , im) := m − ñ1. In practice
(︂
n0+n1

m

)︂−1
will be

so large for many applications, that an exact evaluation of T AUC
(m,n) and T ξ

(m,n) is computationally
hard for large m. It is however possible to replace these test statistics by Monte Carlo approxi-
mations. To this end denote by I(1), · · · , I(ℓ) a sample of size ℓ drawn uniformly at random from
{(i1, · · · , im) ∈ [n]m : 1 ≤ i1 < · · · < im ≤ n}. Then

T̃ AUC,ℓ
(m,n) := ℓ−1

ℓ∑︂

j=1

AUCñ0,ñ1

(︂(︂
X( j)

I1
,Y ( j)

I1

)︂
, . . . ,

(︂
X( j)

Im
,Y ( j)

Im

)︂)︂
(4.6)

T̃ ξ,ℓ
(m,n) := ℓ−1

ℓ∑︂

j=1

ξñ0,ñ1

(︂(︂
X( j)

I1
,Y ( j)

I1

)︂
, . . . ,

(︂
X( j)

Im
,Y ( j)

Im

)︂)︂
(4.7)

are randomized approximations of the previously defined quantities that converge almost surely as
ℓ → ∞ due to the strong law of large numbers. P-values for these test statistics can be approxi-
mated, according to the methodology described in [PS10] (which is implemented in the R-package
statmod).

Remark 6. In [Sch20] I stated that the calculation of T ξ
(m,n) was infeasible for many practical ap-

plications. Since then I have, however, discovered that it can be, once the ranks Y are known,
calculated in O

(︂
m3 · n

)︂
using O

(︂
m3

)︂
storage. An implementation in the Julia programming lan-

guage (cf. [Bez+17]) can be found in Appendix C.2.

4.2.4. Computation and Asymptotics of U-statistics for Feature Selection

Let X ∈ {0,1}n and Y ∈ Rn be observations. Denote by I the indicator function which equals 1 iff its
argument is true and 0 otherwise. Furthermore let Vi, for any vector V, be the subvector given by
Vi := (Vi1 ,Vi2 , . . . ,Vik ). Then an estimator of Hoeffding’s D is given by (cf. [SDH20, Eq. (6)])

Dn(X,Y) :=
1

n(n− 1) · · · (n− 4)

∑︂

i=(i1,...,i5)⊂[n]5

i1≠···≠i5

1
4

fD(Xi) · fD(Yi) (4.8)

where fD(X) := [I(X1 ≤ X5)− I(X2 ≤ X5) ≤ X] [I(X3 ≤ X5)− I(X4 ≤ X5)].

Similarly Blum-Kiefer-Rosenblatt’s R can be estimated by (cf. [SDH20, Eq. (7)])

Rn(X,Y) :=
1

n(n− 1) · · · (n− 5)

∑︂

i=(i1,...,i6)⊂[n]6

i1≠···≠i6

1
4

fR
(︂
X(i1,i2,i3,i4,i5)

)︂
· fR

(︂
Y(i1,i2,i3,i4,i6)

)︂
(4.9)

3This is, of course, not particularly useful for the AUC as it already is an U-statistic. Thus this done here merely to
check that lack of improvement in the asymptotic properties does, indeed, imply that the finite sample properties do
not improve either. The empirical results in the application section confirm this.
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where fR = fD.

Lastly an estimator of Bergsma-Dassios-Yanagimoto’s τ∗ is given by (cf. [SDH20, Eq. (8)])

τ∗n(X,Y) :=
1

n(n− 1) · · · (n− 3)

∑︂

i=(i1,...,i4)⊂[n]4

i1≠···≠i4

fτ∗(Xi) · fτ∗(Yi) (4.10)

where

fτ∗(X) := I (max{X1,X3} < min{X2,X4})+ I (max{X2,X4} < min{X1,X3})
− I (max{X1,X4} < min{X2,X3})− I (max{X2,X3} < min{X1,X4}) .

If the ranks of the elements of Y are unique, then the following lemma can be verified e.g. by
complete enumeration of the values (for τ∗n see also [WDL15]):

Lemma 10. Let

kD(X) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

16 if X ∈ {(0,0,0,1,1), (1,1,0,0,0)}
−8 if X ∈ {(1,0,0,1,0), (0,1,0,1,0), (1,0,0,0,1), (0,1,0,0,1)}
0 otherwise

kR(X) :=
∑︂

i=(i1,...,i5)∈[6]5

i1<i2<···<i5

kD(xi)

kτ∗(X) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

16 if X ∈ {(0,0,1,1), (1,1,0,0)}
−8 if X ∈ {(1,0,0,1), (0,1,1,0), (1,0,1,0), (0,1,0,1)}
0 otherwise

If X ∈ {0,1}n and the ranks π of the elements of Y are unique, then it holds that

Dn(X,Y) =
1

n(n− 1) · · · (n− 4)

∑︂

1≤i1<···<i5≤n

1
4

kD
(︂
X(π(i1),...,π(i5))

)︂

Rn(X,Y) =
1

n(n− 1) · · · (n− 5)

∑︂

1≤i1<···<i6≤n

1
4

kR
(︂
X(π(i1),...,π(i6))

)︂

τ∗n(X,Y) =
1

n(n− 1) · · · (n− 3)

∑︂

1≤i1<···<i4≤n

kτ∗
(︂
X(π(i1),...,π(i4))

)︂

and furthermore Dn(X,Y) = Rn(X,Y) if n ≥ 6.

Thus, like ξn, these coefficients can be calculated by sorting X according to the ranks of Y and
then simply counting the number of times the patterns given in the definition of the kernels occur
as subsequences of the sorted X.

The U-statistics in Lemma 10 posses first order degeneracy (cf. [Lee90, p. 78]) and therefore their
asymptotic distributions are not normal. They can instead be found using [Lee90, Corollary 1 on
p. 83] as demonstrated for Hoeffding’s D in the following lemma:

Lemma 11. Let X1, . . . ,Xn be i.i.d and Y1, . . . ,Yn be i.i.d., and assume further that the Xi and Yi are
independent.
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Then, for p := P(X1 = 1), it holds that

nDn(X,Y)→ 2p(1− p)2

3

∞∑︂

ν=1

λν
(︂
Z2
ν − 1

)︂

in distribution, where the Zν are i.i.d. standard normal and the λν are the eigenvalues of

φ ↦→
∫︂ 1

0
k̃(y1,y2)φ(y2) dy2

where k̃(y1,y2) = 3
(︂
y2

1 + y2
2

)︂
− 6max{y1,y2}+ 2.

The proof is deferred to Appendix C.1.

The main difficulty in utilising Lemma 11 is finding the eigenvalues of k̃ since it is a non-smooth
kernel. It is however piecewise smooth and therefore by [KR12, Theorem 3.1]) the classical Nys-
tröm approximation can be used to obtain numerical approximations that converge quickly. It is
very simply to implement this method in e.g. Julia to approximate the first n eigenvalues:

� ⊵
1 function k(x,y)
2 3*(xˆ2+yˆ2)-6*max(x,y)+2
3 end
4
5 function nyström_midpoint_mat(k,n)
6 i = 1:(n+1);
7 h = 1/n;
8 s = (i .- 0.5)*h;
9 m = zeros(n,n);
10 w = ones(n) * h;
11 for i=1:n
12 for j=1:n
13 m[i,j] = w[j] * k(s[i],s[j])
14 end
15 end
16 m
17 end
18
19 import LinearAlgebra
20 n = 1000;
21 m = LinearAlgebra.Symmetric(nyström_midpoint_mat(k,n));
22 eigvals = LinearAlgebra.eigvals(m);� �

These can be used with any of the approximations discussed in [BA15] or the method of [LPB00]
which are all implemented in the R package [Bod16]. They are all based on the first few cumulants
(cf. [BA15, Eq. (4)]) which are, for

∑︁∞
ν=1λνZ

2
ν , given by4

κr = 2r−1(r− 1)!
∞∑︂

ν=1

λr
ν.

These are cumbersome to calculate by hand, but can be easily obtained using a computer algebra
system like Wolfram Mathematica since

∑︁∞
ν=1λ

r
ν is simply the trace of the r-th power of the linear

operator induced by the kernel k̃; see Code 1.

In practice I would advise the reader to obtain an approximation to the finite sample distribution
using the Monte Carlo method: Samples under H0 for any p ∈ (0,1) are quickly obtainable (cf.
Section C.3) and all of the U-statistics in Lemma 10 can be quickly calculated (cf. C.4).

4The translation and scaling due to the nuisance parameter p can easily be incorporated after the approximation of the
distribution.
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K[x_, y_] := 3 * (x^2 + y^2) - 6 * Max[x, y] + 2

Kt[x_, y_] :=

4 / 5 - 3 / 2 * (x^4 + y^4) + 3 * (x^3 + y^3) - 6 * (x^2 + y^2) +

9 * (x + y - x * y) * x * y + 3 * Abs[x - y]^3

F[n_] := With [{m = Floor [(n - 2) / 2]},

With [{m1 = If[OddQ [n], m + 1, m]},

Inactive [Integrate ][(4 / 10 + 9 / 2 s[1]^2 × s[m1 + 1]^2) *

Product [Kt[s[i], s[i + 1]], {i, 1, m}] *

If[OddQ [n], K[s[m1], s[m1 + 1]], 1], ##] & @@

Table [{s[k], 0, 1}, {k, 1, m1 + 1}]]]

Integrate [K[x, x], {x, 0, 1}]

1

Integrate [K[x, y] * K[y, x], {x, 0, 1}, {y, 0, 1}]

2

5

Activate [F[3]]

8

35

Activate [F[4]]

24

175

Activate [F[5]]

32

385

Activate [F[6]]

44 224

875 875

Activate [F[7]]

768

25 025

Activate [F[8]]

1 388 928

74 449 375

Code 1: Calculation of the trace of powers of the linear operator induced by the kernel k̃ in Lemma 11 in Wolfram
Mathematica. For n > 8 this becomes quite slow.
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4.2.5. Feature Selection Using False Discovery Rate Control

When performing feature selection based on some ranking of the features (e.g. in terms of the
observed AUC) it is challenging to decide how many features to select: Selecting only very few
features might drop very important features (e.g. degrading classification performance) whereas
selecting too many might not reduce the dimensionality of the problem sufficiently and/or keep
many irrelevant features. If marginal p-values can be obtained (which is the case for the AUC and
ξn as well as their resampled counterparts) this trade-off can be tackled by using a procedure to
control the false discovery rate (FDR) when performing multiple comparisons. This section gives
a short introduction to FDR control and discusses how to evaluate the stability of the proposed
feature selection method, which, given a sample Y ∈ Rn×p and X ∈ {0,1}n, consists of two steps:

1. Calculate marginal test statistics and p-values, that is the j-th p-value (for j = 1, · · · , p) is
calculated from the sample (Y·, j,X) consisting of the j-th column of Y and the random vector
X.

2. Select features (that is a I ⊂ [p]) according to the Benjamin-Yekutieli procedure, controlling
the FDR at the desired level α.

When simultaneously testing multiple hypotheses a type-I error can be made for each hypothesis.
Therefore it is, in general, not sufficient to control the type-I error at the nominal significance level
for each of the tests. Instead V, the (random) number of incorrectly rejected null hypotheses,
needs to be controlled. Controlling the probability P(V ≥ 1) is called family-wise error rate (FWER)
control. For large scale problems, methods controlling the FWER are usually too strict. A good
alternative is controlling the FDR, which is the expected value of the ratio V/R (where the random
variable R is the total number of rejected null hypotheses). In [BY01] a procedure, that is usually
called the Benjamini-Yekutieli (BY) procedure, is proposed which controls the FDR under arbitrary
dependencies between the hypotheses under consideration. Since the dependency structure is
unknown for the application considered in this paper, this is the procedure that will be utilized. Of
course the proposed approach works with other methods for FDR control as well, when these are
appropriate.

When calculating the test statistics and p-values in step 1 it is necessary to decide how I(1), · · · , I(l)

are drawn. If, for each a marginal, an independent sample is drawn the procedure is called
independent-component bootstrap. It has been argued by [HM09] that this can be reasonable
even if the component vectors are not independent and this approach was successfully applied by
[NBD21] to estimate the proportion of true null hypotheses under dependency. Nonetheless using
the same sample for all marginals seems more appropriate for the goal of this paper:

• It turns out that, when calculating (4.6) or (4.7) for large data sets, much of the computational
effort is spent on generating pseudo-random numbers. Thus it is desirable to use as few
pseudo-random numbers as possible.

• From a theoretical point of view, using different samples could lead to different values of the
test statistic and the estimated p−values for very similar marginal samples. This is obviously
undesirable and therefore it is preferable to use the same approximation T̃ AUC,ℓ

(m,n) (or T̃ ξ,ℓ
(m,n))

for all of the simultaneous tests.

Furthermore it is necessary choose an appropriate m. The heuristic proposed in [BS08] suggested,
for the examples discussed in the following section, that choosing m very small is inappropriate,
which is unsurprising since the number of values the resampled test statistic can take is very
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small if m is very small. Since, by the results of the previous sections, the variance of the AUC
and ξ goes to zero if n0,n1 → ∞ it might as first seem like it would be a good idea to choose
an m on the same order of magnitude as the sample size n. However, as ℓ → ∞ the variance
of e.g. T̃ ξ,ℓ

(m,n) depends only on the covariance between Z1 := ξñ0,ñ1

(︂(︂
X(1)

I1
,Y (1)

I1

)︂
, . . . ,

(︂
X(1)

Im
,Y (1)

Im

)︂)︂
and

Z2 := ξñ0,ñ1

(︂(︂
X(1)

I1
,Y (2)

I1

)︂
, . . . ,

(︂
X(1)

Im
,Y (2)

Im

)︂)︂
since

Var
(︂
T̃ ξ,ℓ

(m,n)

)︂
= ℓ−1Var(V1)+

ℓ− 1
ℓ

Cov(V1,V2).

This covariance is, however, increasing in m (as has been checked numerically for the examples
in the next section) and therefore a small, but not extremely small choice of m seems to be best.

To allow for a parallelized implementation of the proposed approach that yields, for a given seed
(and up to numerical accuracy), reproducible results, the random number generator proposed
[LEc99] and implemented in C++ as described in [LEc+02] is utilized.

Inspired by the work of [MB10] the stability of the proposed feature selection method will be eval-
uated in terms of the (estimated) number of features that have a very hight selection probability
(cf. [MB10, Definition 1]). This is done by considering a partition of the sample into k disjoint
subsamples [n] =

⋃︁k
i=1 Bi (as would be done for k-fold cross validation) and the number

S (Ms) :=

⃓⃓
⃓⃓
⃓⃓
⃓

k⋂︂

i=1

Ms(Bi)

⃓⃓
⃓⃓
⃓⃓
⃓

where Ms(Bi) are the indices of the s top ranked features (based on either on the AUC or ξ), i.e.
|Ms(Bi)| = s. That is S (Ms) ∈ [s] counts the number of features that are selected in each of the
cross validation folds.

4.3. Application to MALDI MSI Data
This section demonstrates the proposed methodology by reanalysing the data-set presented in
[Kri+16] for which 5 biomarkers (that is biologically meaningful m/z values) have been identified
(cf. [Kri+16, Supplementary Table 1]). This data-set was subsequently analyzed by [Bos+17],
[Beh+18] and [Leu+19]. For a detailed description of the data set as well the pre-processing
see either of these papers. To make a comparison between the results presented in this paper
and those of [Beh+18] and [Leu+19] simple the same 4-fold (respectively 8-fold) cross-validation
strategy was employed. The pre-processing was performed as described in these papers with the
following changes:

• In both cases the novel multiplicative-trend normalization (which was performed on a per
core basis and using a running median filter with fixed window size 301) was performed
before the usual total ion count (TIC) normalization.

• For the task considered in [Beh+18] the spectra were preprocessed using "Peptide Mass
Resampling" (cf. [Bos+21]) resulting in 3046 m/z channels. This was done to achieve a
number of features similar to that on which the analysis in [Leu+19] was based.

Table 4.1 demonstrates that the proposed method is, when combined with a randomForest
classifier (cf. [LW02]) with standard settings, competitive with the state of the art for the reanalysed
data-set. For the first task ℓ was chosen very small on purpose because otherwise (as was the
case for the non-resampled ξ) all of the features would have been chosen (when controlling the
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Table 4.1: Average balanced accuracy achieved over the 8 (Task [Leu+19]) / 4 (Task ADSQ (Spot)) cross validation folds.
The method IsotopeNet is that of [Beh+18] and Flog_int is one of the methods described in [Leu+19]. The other methods
are those described in this paper. Resampling was performed with subsample size m = 50 and ℓ = 100 (ℓ = 1000) for
the first (second) task. All p-values used for the FDR control in the feature selection procedures were estimated using
105 Monte Carlo samples.

Task

Method [Leu+19] ADSQ (Spot) [Beh+18]

IsotopeNet 0.845
Flog_int 0.904
AUC and Random Forest 0.927 0.870
AUC (resampled) and Random Forest 0.927 0.867
ξ and Random Forest 0.926 0.848
ξ (resampled) and Random Forest 0.930 0.866

FDR at α = 0.15). This suggests that the hyperparameter ℓ affects the ability of the test to reject
the null-hypothesis. Indeed this effect can be seen in Figure 4.4.

In Figure 4.2 it can be seen that the resampling improves the selection stability of ξ while leaving
that of the AUC mostly unchanged. Without the proposed trend normalisation the stability of feature
selection based on the resampled ξ and the AUC is approximately the same. The stability of both
methods is improved by the proposed trend normalisation. The improvement is, however, bigger
for the AUC based feature selection. The test based on ξ is suitable against all alternatives,
whereas the AUC is most suitable for testing for stochastic ordering of the two populations. Thus
this empirical result indicates, that the proposed normalisation improves the stochastic ordering.
This is very desirable since biomarkers in MALDI IMS data should generally result in pronounced
differences in the intensities at specific m/z-values. Furthermore the empirical results in Figure 4.3
suggest that it would be worthwhile to switch from using the AUC to either τ∗ or D.

4.4. Statistical Modelling of MALDI MSI Data
Since the 1990’s finite mixture models have been recognized as a powerful tool for statistical mod-
elling, which is seeing ever more widespread use; [MP00], [MLR19]. They are a convenient and
flexible way to model unknown distributional shapes. Besides this they have a natural interpretation
when there is group structure in the data, or the goal is explore data for such structure:

Let G be a discrete random variable taking values in {1, . . . ,k} and let X be the random variable of
interest. Furthermore let (X,G) have a joint density fX,G. This joint density can be written as

fX,G(x,g) = fX (x|G = g) ·PG (G = g)

and by the law of total probability the marginal density fX is given by

fX(x) =
k∑︂

g=1

fX,G(x,g) =
k∑︂

g=1

fX (x|G = g) ·PG (G = g) . (4.11)

By letting πi := PG (G = i), fi(x) := fX (x|G = i) (i = 1, . . . ,k) (where πi are called the mixture weights)
one obtains the usual form of a finite mixture distribution:

fX(x) =
k∑︂

i=1

πi · fi(x) (4.12)

Since PG is a probability measure the πi satisfy πi ∈ [0,1] for all i = 1, . . . ,k and
∑︁k

i=1πi = 1.
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Equation (4.11) suggests, that sampling X can be described in terms of sampling G and X j ∼ f j:
First obtain a realization j of G and then a realization x j of X j ∼ f j. Then x j will be a realization of
X. This suggests, that one may assume that each observation x of X has an associated realization
gx of G. The probability that gx = j can be calculated according to Bayes’ Rule

fX (x|G = j) =
PG (G = j|X = x) · fX(x)

PG (G = j)

which can be rewritten as

PG (G = j|X = x) =
fX (x|G = j) ·PG (G = j)

fX(x)
=

f j (x) · π j
∑︁k

i=1πi · fi(x)
. (4.13)

The gx (even if they are not observable) play an important role in estimating the mixture weight
since they can be used to greatly simplify the Maximum-Likelihood (ML) estimation as detailed
in the following section. Afterwards the Expectation-Maximization algorithm, which is a general
method to deal with unobservable random variables that would be helpful to simplify the ML esti-
mation, is introduced and its application to modelling MALDI spectra is discussed.

Remark 7. Identifiability can be an issue with mixtures even if the component densities are iden-
tifiable [MP00, section 2.5]. The issue that components can be switched, if the densities are from
the same parametric family, can usually be overcome by imposing the restriction ([MP00, p. 27])

π1 ≤ π2 ≤ · · · ≤ πk

The Expectation-Maximization algorithm can be applied without taking account of this restriction.

4.4.1. Likelihood of theWeights of a Finite Mixture

Let X1 = x1, . . . ,Xn = xn be an i.i.d. sample of X distributed according to the mixture (4.12), then
the likelihood function is given by

L((π1, . . . ,πk); (x1, . . . , xn)) =
n∏︂

i=1

fX(xi;πi)

Maximizing the log-likelihood

lnL((π1, . . . ,πk); (x1, . . . , xn)) =
n∑︂

i=1

ln

⎛⎜⎜⎜⎜⎜⎜⎜⎝
k∑︂

j=1

π j · f j(xi)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

with respect to (π1, . . . ,πk) is difficult because it involves the logarithm of a sum which depends on
the πi. However, if the associated group labels gi of Gi (where Gi is, as in the previous section, the
r.v. that gives the mixture component to which Xi belongs) had been observed the realizations of
the auxiliary r.v.’s ( j = 1, . . . ,k, i = 1, . . . ,n)

Zi, j (Gi) :=

⎧⎪⎪⎨⎪⎪⎩
1 if Gi = j
0 otherwise

would yield a complete data log-likelihood (cf. [MP00, Eq. (2.26)])

lnLc ((π1, . . . ,πk); (x1, . . . , xn,g1, . . . ,gk))
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= ln
n∏︂

i=1

k∑︂

j=1

zi, j · π j · f j(xi)

= ln
n∏︂

i=1

πgi · fgi(xi) (4.14)

= ln
n∏︂

i=1

k∏︂

j=1

(︂
π j · f j(xi)

)︂zi, j (4.15)

=

n∑︂

i=1

k∑︂

j=1

zi, j ·
(︂
lnπ j + ln f j(xi)

)︂
(4.16)

that is easy to maximize with respect to (π1, . . . ,πk) (cf. Section 4.4.3) and where

• (4.14) holds since zi, j · π j · f j(xi) = 0 · π j · f j(xi) = 0 if j ≠ gi and zi, j · π j · f j(xi) = 1 · π j · f j(xi) =
π j · f j(xi) if j = gi

• and (4.15) holds since
(︂
π j · f j(xi)

)︂zi, j
=

(︂
π j · f j(xi)

)︂0
= 1 if j ≠ gi and

(︂
π j · f j(xi)

)︂zi, j
=

(︂
π j · f j(xi)

)︂1
=

π j · f j(xi) if j = gi.

If gi is not available, then the Expectation-Maximization algorithm, which is a type of coordinate
ascent, can be used. It is detailed in the following section.

4.4.2. The Expectation Maximization (EM) Algorithm

Following [JB01] the Expectation-Maximization algorithm can be derived as follows: Let X be the
observable random variable of interest and Z be the unobserved auxiliary random variable. Fur-
thermore let X,Z have a joint density fX,Z(·;θ0).

By Jensen’s inequality it follows that, for any density q(z) over the sample space EZ of Z, the
log-likelihood of an observation X = x satisfies

ln L(θ; x) = ln
∫︂

EZ

fX,Z(x,z;θ) dz

= ln
∫︂

EZ

q(z) · fX,Z(x,z;θ)
q(z)

dz

≥
∫︂

EZ

q(z) · ln fX,Z(x,z;θ)
q(z)

dz

=:l(q(z), θ, x).

One can now propose to maximize ln L(θ; x) by maximizing the lower bound l(q(z; x), θ). A suitable
procedure is coordinate ascent in q and θ:

(1) q(n+1) := argmax
q

l(q, θ(n))

(2) θ(n+1) := argmax
θ

l(q(n+1), θ)

Step (1) is solved by q(n+1)(z; x, θ(n)) = fZ(z;θ(n)|X = x) since

l( fZ(z;θ(n)|X = x), θ(n)) =
∫︂

EZ

fZ(z;θ(n)|X = x) · ln fX,Z(x,z;θ(n))
fZ(z;θ(n)|X = x)

dz
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=

∫︂

EZ

fZ(z;θ(n)|X = x) · ln fX,Z(x,z;θ(n))
fX,Z(x,z;θ(n))

fX(x;θ(n))

dz

=

∫︂

EZ

fZ(z;θ(n)|X = x) · ln fX(x;θ(n)) dz

= ln fX(x;θ(n)) ·
∫︂

EZ

fZ(z;θ(n)|X = x) dz

= ln fX(x;θ(n))

= ln L(θ(n); x)

and ln L(θ(n); x) is an upper bound for l(·, θ(n)) which has thus been maximized.

Noticing that

l(q(z), θ, x) =
∫︂

EZ

q(z) · ln fX,Z(x,z;θ)
q(z)

dz

=Eq

[︄
ln

fX,Z(x,z;θ)
q(z)

]︄

=Eq
[︁
ln fX,Z(x,z;θ)

]︁− Eq
[︁
lnq(z)

]︁

it follows that, since the second term does not depend on θ, step (2) can equivalently maximize
Eq

[︁
ln fX,Z(x,z;θ)

]︁
.

In summary an extremum of L(θ) can be found by repeating:

E step Calculate Eq
[︁
ln fX,Z(x,z;θ)

]︁
where q = fZ(z;θ(n)|X = x)

M step Find θ(n+1) = argmaxθ Eq
[︁
ln fX,Z(x,z;θ)

]︁

The function

ln Lc(θ; x,z) := ln fX,Z(x,z;θ)

is usually called the complete data log-Likelihood.

4.4.3. Estimation of MixtureWeights Using the EM algorithm

Let θ := (π1, . . . ,πk), θ(m) :=
(︂
π(m)

1 , . . . ,π(m)
k

)︂
and (cf. [MP00, Eq. (2.29)])

⟨︂
z(m)

i, j

⟩︂
:=Eθ(m)

[︂
Zi, j|Xi = xi

]︂

=1 ·Pθ(m)

(︂
Zi, j = 1|Xi = xi

)︂
+ 0 ·Pθ(m)

(︂
Zi, j = 0|Xi = xi

)︂

=Pθ(m)

(︂
Zi, j = 1|Xi = xi

)︂
= Pθ(m) (Gi = j|Xi = xi)

(4.13)
=

f j (xi) · π(m)
j

∑︁k
l=1π

(m)
l · fl(xi)

. (4.17)

Then the (m+ 1)-th E step is given by

Q
(︂
θ;θ(m)

)︂
=Eθ(m)

[︁
lnLc (θ; (x1, . . . , xn,g1, . . . ,gk)) |X1 = x1, . . . ,Xn = xn

]︁
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=

n∑︂

i=1

k∑︂

j=1

Eθ(m)

[︂
zi, j|X1 = x1, . . . ,Xn = xn

]︂
·
(︂
lnπ j + ln f j(xi)

)︂

=

n∑︂

i=1

k∑︂

j=1

⟨︂
z(m)

i, j

⟩︂
·
(︂
lnπ j + ln f j(xi)

)︂

The M step is a solution θ(m+1) of

θ(m+1) ∈ arg max
θ∈[0,1]k

Q
(︂
θ;θ(m)

)︂
(4.18)

subject to the constraint
∑︁k

j=1π
(m+1)
j = 1.

The local extrema of Q can be found by considering the Lagrangian

Λ (θ,λ) :=
n∑︂

i=1

k∑︂

j=1

⟨︂
z(m)

i, j

⟩︂
·
(︂
lnπ j + ln f j(xi)

)︂
+ λ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝
k∑︂

j=1

π j − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Solutions of

∇π1,...,πkΛ (θ,λ) = 0,
k∑︂

j=1

π j = 1

yield necessary conditions for a local extremum of the constrained optimization problem (4.18).
The gradient of Λ is given by ( j = 1, . . . ,k)

∂Λ (θ,λ)
∂π j

=

n∑︂

i=1

⟨︂
z(m)

i, j

⟩︂

π j
+ λ

This is zero (for any j = 1, . . . ,k) if and only if

π j =

∑︁n
i=1

⟨︂
z(m)

i, j

⟩︂

−λ (4.19)

Inserting this into the constraint
∑︁k

j=1π j = 1 results in

1 =
k∑︂

j=1

∑︁n
i=1

⟨︂
z(m)

i, j

⟩︂

−λ

which is solved by

λ =−
k∑︂

j=1

n∑︂

i=1

⟨︂
z(m)

i, j

⟩︂

Substituting this into (4.19) yields

π(m+1)
j :=π j =

∑︁n
i=1

⟨︂
z(m)

i, j

⟩︂

∑︁n
i=1

∑︁k
j=1

⟨︂
z(m)

i, j

⟩︂ =
∑︁n

i=1

⟨︂
z(m)

i, j

⟩︂

n
(4.20)

Since all
⟨︂
z(m)

i, j

⟩︂
are positive (4.20) is positive and less than one. Thus, if (4.20) is a local maximum

of (4.18) (which needs to be checked), the M step is given by the update rule (4.20); cf. [MP00,
Eq. (2.32)].
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4.4.4. Proposed Mixture Model and Initial Estimation

To gain some more insights into the statistical properties of MALDI MSI I propose a marginal
model in this section. It is based on the idea that the observations are rescaled ion counts which
are sampled according to an (unknown) probability, which is related to the amount of analyte.
This seems sensible in light of the results by [Bae+12, Table 1], which demonstrate that the total
number of ions stays approximately constant while ions from the analyte increase when the analyte
concentration is increased.

Since the observations can be from different types of (cancerous) tissue and there may also be
technical variation I propose to use a mixture of binomials that is scaled with some (unknown)
factor α since only a signal (roughly) proportional to the number of ions is measured. Specifically
for n MALDI MSI spectra X ∈ Rn×m

+ it is assumed that ai := αni =
⃦⃦
⃦Xi,·

⃦⃦
⃦

1 =
∑︁m

j=1 Xi, j and that
Xi, j
α ∼ Bin (ni, p) with α, ni and p unknown. As the following will only deal with single marginal model

I will, for notational convenience, fix an (arbitrary) j ∈ [m] and write Xi instead of Xi, j. Thus the
observations will be (X1,a1), . . . , (Xn,an) and they are assumed to be independent. The goal is to
estimate the parameters (π1, p1), . . . , (πK , pK) from these observations, the relationship ai = αni and
the mixture model

X̃i :=
Xi

α
∼

K∑︂

k=1

πk · fBin(x;ni, pk) (4.21)

Parameter estimation under this model is difficult because the observations are not identically
distributed.

To get good initial parameter estimates, the method of moments estimator proposed by [Bli64] is a
good starting point. It is based on solving a system of equations involving the first 2K−1 population
factorial moments (cf. [Bli64, Eq. (3)])

Fk :=
1
m

m∑︂

i=1

X̃i(X̃i − 1) · · · (X̃i − k+ 1)
ni(ni − 1) · · · (ni − k+ 1)

,

which can, however, unfortunately not be calculated using only (Xi,ai). But, since ni and X̃i can
be assumed to be large in comparison to the number of mixture components K and thus the first
2K − 1 factorial moments can be approximated by

Fk ≈ F̃k :=
1
m

m∑︂

i=1

(︄
X̃i

ni

)︄k

=
1
m

m∑︂

i=1

(︄
Xi

ai

)︄k

(4.22)

which can be calculated directly from the observations. Using a polynomial root finder (cf. [SG12])
the methodology described in [Bli64] is easy to implement when using the approximation (4.22);
cf. Code 2.

4.4.5. Improvement of the Initial Estimates Using EM Steps

The binomial densities in (4.21) can be approximated by fBin(·;ni, pk) ≈ ϕ (· |ai · pk,ai ·αpk (1− pk) ).
Letting µk := pk and σ2

k := αpk(1 − pk) this allows for overdispersion and the EM-steps are, apart
from the presence of the ai’s, very close to the steps for a standard gaussian mixture:

E step Calculate

γk(Xi) =
πk · ϕ

(︂
Xi

⃓⃓
⃓ai · µk,ai ·σ2

k

)︂

∑︁K
k=1πk · ϕ

(︂
Xi

⃓⃓
⃓ai · µk,ai ·σ2

k

)︂
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� ⊵
1 import PolynomialRoots
2
3 function bin_mix_mom_approx(x,a,K)
4 r = K;
5
6 F = map(k -> begin
7 sum((x ./ a) .ˆ k)/size(x,1)
8 end,1:(2*r-1))
9
10 phi = -1 .* F[r:2*r-1];
11
12 D = Array{Float64,2}(undef,(r,r));
13 D[1,1] = 1;
14 D[1,2:end] = F[1:r-1];
15 for i=2:r
16 D[i,1:r] = F[i-1:r+i-2]
17 end
18
19 beta = D\phi;
20
21 p = (sort(abs.(PolynomialRoots.roots([beta; 1]))));
22
23 alpha = map(i -> begin
24 idx = setdiff(1:r,i);
25 s = 0;
26 for k=0:r-1
27 f = 1
28 if k<r-1
29 f = F[r-1-k];
30 end
31 s += (-1)ˆk * f * sum(map(idx -> begin
32 prod(p[idx])
33 end,Combinatorics.combinations(idx,k)));
34 end
35 s/prod(p[i] .- p[idx])
36 end,1:r)
37
38 alpha[alpha .< 0] .= 0.0;
39 alpha ./= sum(alpha);
40
41 return (alpha,p)
42 end� �

Code 2: Binomial mixture estimation using the method of moments proposed by [Bli64] and the approximation (4.22).
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M step Update the parameters according to

µk =

∑︁n
i=1 γk(Xi) · Xi∑︁n
i=1 γk(Xi) · ai

(σk)2 =

∑︁n
i=1

γk(Xi)
ai
· (Xi − aiµk)2

∑︁n
i=1 γk(Xi)

πk =

∑︁n
i=1 γk(Xi)

n

Since the likelihood for gaussian mixture model is not bounded (cf. [RI02]) it is necessary to
penalise the variance. This can be easily incorporated into the M-step by changing the update rule
for the variance (cf. [RI02, Eqns. (9), (21)]):

(σk)2 =
2α+

∑︁n
i=1

γk(Xi)
ai
· (Xi − aiµk)2

2β+
∑︁n

i=1 γk(Xi)

Initial estimates for µk = pk and πk can be obtained using the method described in the previous
section. The variances should then be chosen small enough that the components of the mixture
do not overlap a lot.

Figure 4.5 compares the proposed modelling to the kernel density estimator (with and without
L1 (TIC) normalization) by considering the difference between the densities for the two different
classes for the known biomarker "Keratin type II cytoskeletal 7" (that is a biologically meaningful
m/z value, cf. [Kri+16, Supplementary Table 1]) and for an m/z value "Actin" which is known not
to be a biomarker. The result is, that the difference at the biomarker stays similar whereas the
difference at the non-biomarker location is smaller.

4.5. Conclusion
This chapter introduced a trend normalization for MALDI MSI data and an approach to feature
selection that is based on the subsampling bootstrap and FDR control. It furthermore presented
the finite sample distribution of the correlation coefficient ξn recently proposed by [Cha20] under the
setting relevant for this chapter. Then an application to MALDI mass spectroscopy data of different
correlation coefficients and the proposed normalization was presented. For the properties of the
resampled ξn the results of this application suggest, that the number of subsamples ℓ plays the
role of a hyper-parameter that controls the ability of the test to reject the null-hypothesis. It would
therefore be interesting to, in future research, investigate how this is related to the effect size for
specific alternatives and if there is a principled way to calibrate ℓ such that the test becomes less
sensitive towards effect sizes smaller than some minimal effect. The empirical results also suggest
that using τ∗n or Dn instead of the often used AUC to perform feature selection for MALDI MSI data
could lead to better classification procedures.

Furthermore it could be interesting to consider methods to control the resampling risk introduced
by Monte Carlo approximation of the p-values, that is the risk that for some hypothesis the test
decision is different from the one based on the theoretical p-value. Towards this end [Gan09] pro-
posed a sequential implementation of Monte Carlo tests with uniformly bounded resampling risk,
which could be applied to estimate the p−values required by the method proposed in this paper.
However, convergence has been observed to be extremely slow and therefore the application is
unfortunately not straightforward.

Finally some results regarding a marginal statistical model for MALDI observations were presented.
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Figure 4.1: The running median (window size of 301 m/z values) of the marginal variance. Each line corresponds to one
TMA of the data set of [Kri+16] and one of the classes adenocarcinoma (AD, pictures in the left column) or squamos
cell carcinoma (SQ, pictures in the right column). The data set was preprocessed using the "Peptide Mass Resampling"
method (cf. [Bos+21]). IPN, Square root and Logarithm indicate, that these transformations were applied additionally.
Raw means that no other transformation was applied.
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Figure 4.2: The number of stably selected features (as a function of the number of selected features s) for the ADSQ
(Spot) task of [Beh+18]. Resampling was performed with subsample size m = 50 and ℓ = 1000 subsamples.
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Figure 4.3: The number of stably selected features (as a function of the number of selected features s) for the ADSQ
(Spot) task of [Beh+18]. All coefficients’ selection stability is positively affected by the proposed normalisation. D and
τ∗ perform essentially equivalently well and slightly better than the AUC.
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(using the BY procedure) as function of the number of subsamples ℓ and for the cross validation folds of the ADSQ
(Spot) task of [Beh+18].
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Figure 4.5: Comparison of the proposed marginal model with the usual kernel density estimator at a known biomarker
location "Keratin type II cytoskeletal 7" (that is a biologically meaningful m/z value, cf. [Kri+16, Supplementary Table
1]) and for an m/z value "Actin" which is known not to be a biomarker for either of the cancer types. Depicted is the
difference between the density estimated within each of the two classes (cancer types) present in the data set.



5
Conclusion

And ye shall know the truth and the truth shall make you free.

John VIII-XXXII

This thesis demonstrates the multitude of applications that non-parametric statistical methods have
for practically relevant and challenging tasks.

Chapter 3 describes how non-parametric methods can be utilised to improve the analysis of portfo-
lio risk by solving the estimation problem implicit in "Reverse stress testing". This is practically very
important as manual scenario selection needs to be at least supplanted with data-driven methods
to avoid falling prey to human bias. I am hopeful that, in the future, it will be possible to develop
fully non-parametric methods that are applicable to skew-elliptical models. Until then it will be help-
ful for practitioners to keep in mind that assuming an elliptical model is oftentimes not compatible
with known facts about financial data. Thus it would prudent to also sample scenarios from (a
neighbourhood of) the subspace identified in Theorem 6 to guard against the effects skewness.

Performing a stable selection of good features is important because, in many applications (includ-
ing MALDI MSI), further investigation of features is quite expensive and time-consuming. Thus
any improvement that can be obtained by better statistical methods, better preprocessing but also
better understanding the limits of the methods utilised is of great value. Indeed the literature on
feature selection is still developing quite dynamically and I believe that, apart from the methods
described in this thesis, there is still a lot of potential to fruitfully apply new feature selection meth-
ods to MALDI IMS data to further the progress towards digital pathology. Specifically, since during
MALDI imaging molecules break apart, a method that selects features according to conditional
independence (cf. e.g. [AC21]) seems promising.

Understanding the performance and limitations of statistical methods is quite challenging, and
therefore tools like the methods described in Chapter 2 that aid e.g. in the analysis of the power
statistical tests are quite helpful. While writing the paper that is reproduced in Chapter 2 I noticed
how important the actual performance of the implementation of statistical methods can be, since it
may otherwise be infeasible to apply them to real world problems. Thus for all methods described
in this thesis I tried to provide insights into the practical and computational aspects.
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[DY02] Adrian A. Drǎgulescu and Victor M. Yakovenko. “Probability Distribution of Returns
in the Heston Model with Stochastic Volatility”. In: Quantitative Finance 2.6 (2002),
pp. 443–453. doi: 10.1080/14697688.2002.0000011.

[Edd13] Dirk Eddelbuettel. Seamless R and C++ Integration with Rcpp. Vol. 64. Use R! Springer,
2013. isbn: 978-1-4614-6868-4. doi: 10.1007/978-1-4614-6868-4.

[Elt+14] Edwin J. Elton et al. Modern Portfolio Theory and Investment Analysis. 9th ed. John
Wiley & Sons, 2014.

[FDR09] Helmut Finner, Thorsten Dickhaus, and Markus Roters. “On the False Discovery Rate
and an Asymptotically Optimal Rejection Curve”. In: Annals of Statistics 37.2 (2009),
pp. 596–618. doi: 10.1214/07-AOS569.

[FG18] Helmut Finner and Veronika Gontscharuk. “Two-Sample Kolmogorov-Smirnov-Type
Tests Revisited: Old and New Tests in Terms of Local Levels”. In: Annals of Statistics
46.6A (2018), pp. 3014–3037. doi: 10.1214/17-AOS1647.

[FGD12] H. Finner, V. Gontscharuk, and T. Dickhaus. “False Discovery Rate Control of Step-Up-
Down Tests with Special Emphasis on the Asymptotically Optimal Rejection Curve”.
In: Scandinavian Journal of Statistics 39.2 (2012), pp. 382–397. doi: 10.1111/j.
1467-9469.2012.00791.x.

[FK15] Mark D. Flood and George G. Korenko. “Systematic Scenario Selection: Stress Testing
and the Nature of Uncertainty”. In: Quantitative Finance 15.1 (2015), pp. 43–59. doi:
10.1080/14697688.2014.926018.

[FP10] Michael P. Fay and Michael A. Proschan. “Wilcoxon-Mann-Whitney or t-test? On as-
sumptions for hypothesis tests and multiple interpretations of decision rules”. In: Statis-
tics Surveys 4.0 (2010), pp. 1–39. doi: 10.1214/09-ss051.

[FZ06] José A. Ferreira and Aeilko Zwinderman. “Approximate Sample Size Calculations with
Microarray Data: An Illustration”. In: Statistical Applications in Genetics and Molecular
Biology 5.1 (2006). doi: 10.2202/1544-6115.1227.

https://doi.org/10.1080/01621459.2020.1758115
https://doi.org/10.1080/713665670
https://arxiv.org/abs/1608.04295
https://doi.org/10.1007/s00216-011-4929-z
https://doi.org/10.1007/978-1-4614-8145-4
https://doi.org/10.1007/978-3-642-45182-9
https://doi.org/10.1007/978-3-642-45182-9
https://doi.org/10.1007/978-3-319-76315-6
https://doi.org/10.1214/14-AOS1302
https://doi.org/10.1080/14697688.2002.0000011
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1214/07-AOS569
https://doi.org/10.1214/17-AOS1647
https://doi.org/10.1111/j.1467-9469.2012.00791.x
https://doi.org/10.1111/j.1467-9469.2012.00791.x
https://doi.org/10.1080/14697688.2014.926018
https://doi.org/10.1214/09-ss051
https://doi.org/10.2202/1544-6115.1227


Bibliography 73

[Gan09] Axel Gandy. “Sequential Implementation of Monte Carlo Tests With Uniformly Bounded
Resampling Risk”. In: Journal of the American Statistical Association 104.488 (2009),
pp. 1504–1511. doi: 10.1198/jasa.2009.tm08368.

[GDG04] Graciela González-Farías, J. Armando Domínguez-Molina, and Arjun K. Gupta. “The
Closed Skew-Normal Distribution”. In: Skew-Elliptical Distributions and their Applica-
tions: A Journey Beyond Normality. Ed. by Marc G. Genton. Chapman and Hall/CRC,
2004, pp. 25–42. doi: 10.1201/9780203492000.

[GKK15] Paul Glasserman, Chulmin Kang, and Wanmo Kang. “Stress Scenario Selection by
Empirical Likelihood”. In: Quantitative Finance 15.1 (2015), pp. 25–41. doi: 10.1080/
14697688.2014.926019.

[GLF15] Veronika Gontscharuk, Sandra Landwehr, and Helmut Finner. “The Intermediates
Take It All: Asymptotics of Higher Criticism Statistics and a Powerful Alternative Based
on Equal Local Levels”. In: Biometrical Journal 57.1 (2015), pp. 159–180. doi: 10.
1002/bimj.201300255.

[GLF16] Veronika Gontscharuk, Sandra Landwehr, and Helmut Finner. “Goodness of Fit Tests
in Terms of Local Levels with Special Emphasis on Higher Criticism Tests”. In: Bernoulli
22.3 (2016), pp. 1331–1363. doi: 10.3150/14-BEJ694.

[Glu+08a] Deborah Glueck et al. “Exact calculations of average power for the Benjamini-Hochberg
procedure”. In: The International Journal of Biostatistics 4.1 (2008). doi: 10.2202/
1557-4679.1103.

[Glu+08b] Deborah H. Glueck et al. “Fast Computation by Block Permanents of Cumulative Dis-
tribution Functions of Order Statistics from Several Populations”. In: Communications
in Statistics–Theory and Methods 37.18 (2008), pp. 2815–2824. doi: 10 . 1080 /
03610920802001896.

[GN16] Evarist Giné and Richard Nickl. Mathematical Foundations of Infinite-Dimensional Sta-
tistical Models. Cambridge series in statistical and probabilistic mathematics. Cam-
bridge University Press, 2016. isbn: 978-1-107-04316-9. doi: 10.1017/cbo9781107337862.

[Gov12] Board of Governors of the Federal Reserve System. SR 12-7: Supervisory Guid-
ance on Stress Testing for Banking Organizations with More Than $10 Billion in To-
tal Consolidated Assets. Last Accessed: 2019-04-04. 2012. url: https://www.
federalreserve.gov/supervisionreg/srletters/sr1207.htm.

[Gry21] Karol Gryszka. “From Biased Coin to Any Discrete Distribution”. In: Periodica Mathe-
matica Hungarica 83 (2021), pp. 71–80. doi: 10.1007/s10998-020-00363-w.

[GVB13] Arjun K. Gupta, Tamas Varga, and Taras Bodnar. Elliptically Contoured Models in
Statistics and Portfolio Theory. 2nd ed. Springer, 2013. isbn: 978-1-4614-8153-9. doi:
10.1007/978-1-4614-8154-6.

[Ham+13] Toshimitsu Hamasaki et al. “Sample Size Determination for Clinical Trials with Co-
Primary Outcomes: Exponential Event Times”. In: Pharmaceutical Statistics 12.1 (2013),
pp. 28–34. doi: 10.1002/pst.1545.

[Hes93] Steven L. Heston. “A Closed-Form Solution for Options with Stochastic Volatility with
Applications to Bond and Currency Options”. In: The Review of Financial Studies 6.2
(1993), pp. 327–343. doi: 10.1093/rfs/6.2.327.

[HM09] Peter Hall and Hugh Miller. “Using the Bootstrap to Quantify the Authority of an Em-
pirical Ranking”. In: The Annals of Statistics 37.6B (2009), pp. 3929–3959. doi: 10.
1214/09-aos699.

https://doi.org/10.1198/jasa.2009.tm08368
https://doi.org/10.1201/9780203492000
https://doi.org/10.1080/14697688.2014.926019
https://doi.org/10.1080/14697688.2014.926019
https://doi.org/10.1002/bimj.201300255
https://doi.org/10.1002/bimj.201300255
https://doi.org/10.3150/14-BEJ694
https://doi.org/10.2202/1557-4679.1103
https://doi.org/10.2202/1557-4679.1103
https://doi.org/10.1080/03610920802001896
https://doi.org/10.1080/03610920802001896
https://doi.org/10.1017/cbo9781107337862
https://www.federalreserve.gov/supervisionreg/srletters/sr1207.htm
https://www.federalreserve.gov/supervisionreg/srletters/sr1207.htm
https://doi.org/10.1007/s10998-020-00363-w
https://doi.org/10.1007/978-1-4614-8154-6
https://doi.org/10.1002/pst.1545
https://doi.org/10.1093/rfs/6.2.327
https://doi.org/10.1214/09-aos699
https://doi.org/10.1214/09-aos699


74 Bibliography

[Hoe48] Wassily Hoeffding. “A Non-Parametric Test of Independence”. In: The Annals of Math-
ematical Statistics 19.4 (1948), pp. 546–557. doi: 10.1214/aoms/1177730150.

[Hor19] Joel L. Horowitz. “Bootstrap Methods in Econometrics”. In: Annual Review of Eco-
nomics 11.1 (2019), pp. 193–224. doi: 10.1146/annurev-economics-080218-
025651.

[HY13] Zhiqiu Hu and Rong-Cai Yang. “A New Distribution-Free Approach to Constructing the
Confidence Region for Multiple Parameters”. In: PLOS ONE 8.12 (2013), pp. 1–13.
doi: 10.1371/journal.pone.0081179.

[Ive10] Daniel H. Iversen. “Closed-Skew Distributions: Simulation, Inversion and Parameter
Estimation”. MA thesis. Norwegian University of Science and Technology, 2010. url:
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/
258728/351897_FULLTEXT01.pdf.

[Izm18] Grant Izmirlian. Average Power and λ-power in Multiple Testing Scenarios when the
Benjamini-Hochberg False Discovery Rate Procedure is used. 2018. arXiv: 1801.
03989.

[JB01] Michael I. Jordan and Christoper M. Bishop. “Chapter 10 - The EM algorithm”. In:
Introduction to Graphical Models. 2001. url: http://people.csail.mit.edu/
yks/documents/classes/mlbook/pdf/chapter10.pdf.

[Joh70] Roy A. Johnson. “Atomic and nonatomic measures”. In: Proceedings of the American
Mathematical Society 25.3 (1970), pp. 650–650. doi: 10.1090/s0002- 9939-
1970-0279266-8.

[JR18] Claude-Pierre Jeannerod and Siegfried M. Rump. “On Relative Errors of Floating-
point Operations: Optimal Bounds and Applications”. In: Mathematics of Computation
87.310 (2018), pp. 803–819. doi: 10.1090/mcom/3234.

[Jun05] Sin-Ho Jung. “Sample Size for FDR-control in Microarray Data Analysis”. In: Bioinfor-
matics 21.14 (2005), pp. 3097–3104. doi: 10.1093/bioinformatics/bti456.

[Kab66] D. G. Kabe. “On the exact distribution of the Fisher-Behren’-Welch statistic”. In: Metrika
10.1 (Dec. 1966), pp. 13–15. doi: 10.1007/bf02613414.

[Kar67] Stepan Karamardian. “Strictly Quasi-Convex (Concave) Functions and Duality in Math-
ematical Programming”. In: Journal of Mathematical Analysis and Applications 20.2
(1967), pp. 344–358. doi: https://doi.org/10.1016/0022- 247X(67)
90095-9.

[Kea] R. Baker Kearfott. “Interval Computations: Introduction, Uses, and Resources”. url:
https://interval.louisiana.edu/preprints/survey.pdf.

[Knu98] Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. 3rd ed. Addison-Wesley, 1998. isbn: 0201896842.

[Kop+15] Yaacov Kopeliovich et al. “Robust Risk Estimation and Hedging: A Reverse Stress
Testing Approach”. In: The Journal of Derivatives 22.4 (2015), pp. 10–25. doi: 10.
3905/jod.2015.22.4.010.

[KR12] Rekha P. Kulkarni and Akshay S. Rane. “Asymptotic Expansions for Approximate
Eigenvalues of Integral Operators with Nonsmooth Kernels”. In: Numerical Functional
Analysis and Optimization 33.4 (2012), pp. 415–440. doi: 10.1080/01630563.
2011.650811.

https://doi.org/10.1214/aoms/1177730150
https://doi.org/10.1146/annurev-economics-080218-025651
https://doi.org/10.1146/annurev-economics-080218-025651
https://doi.org/10.1371/journal.pone.0081179
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/258728/351897_FULLTEXT01.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/258728/351897_FULLTEXT01.pdf
https://arxiv.org/abs/1801.03989
https://arxiv.org/abs/1801.03989
http://people.csail.mit.edu/yks/documents/classes/mlbook/pdf/chapter10.pdf
http://people.csail.mit.edu/yks/documents/classes/mlbook/pdf/chapter10.pdf
https://doi.org/10.1090/s0002-9939-1970-0279266-8
https://doi.org/10.1090/s0002-9939-1970-0279266-8
https://doi.org/10.1090/mcom/3234
https://doi.org/10.1093/bioinformatics/bti456
https://doi.org/10.1007/bf02613414
https://doi.org/https://doi.org/10.1016/0022-247X(67)90095-9
https://doi.org/https://doi.org/10.1016/0022-247X(67)90095-9
https://interval.louisiana.edu/preprints/survey.pdf
https://doi.org/10.3905/jod.2015.22.4.010
https://doi.org/10.3905/jod.2015.22.4.010
https://doi.org/10.1080/01630563.2011.650811
https://doi.org/10.1080/01630563.2011.650811


Bibliography 75

[Kri+16] Mark Kriegsmann et al. “Reliable Entity Subtyping in Non-small Cell Lung Cancer by
Matrix-assisted Laser Desorption/Ionization Imaging Mass Spectrometry on Formalin-
fixed Paraffin-embedded Tissue Specimens”. In: Molecular & Cellular Proteomics 15.10
(2016), pp. 3081–3089. doi: 10.1074/mcp.m115.057513.

[LD75] Erich L. Lehmann and Howard J. D’Abrera. Nonparametrics: Statistical Methods Based
on Ranks. Holden-Day Series in Probability and Statistics. Holden-Day, 1975. isbn: 0-
8162-4996-6.

[LEc+02] Pierre L’Ecuyer et al. “An Object-Oriented Random-Number Package with Many Long
Streams and Substreams”. In: Operations Research 50.6 (2002), pp. 1073–1075. doi:
10.1287/opre.50.6.1073.358.

[LEc99] Pierre L’Ecuyer. “Good Parameters and Implementations for Combined Multiple Re-
cursive Random Number Generators”. In: Operations Research 47.1 (1999), pp. 159–
164. doi: 10.1287/opre.47.1.159.

[Lee90] A. J. Lee. U-statistics: Theory and Practice. Statistics: Textbooks and Monographs
110. Boca Raton: CRC Press, 1990. isbn: 9780824782535.

[Leu+19] Johannes Leuschner et al. “Supervised non-negative matrix factorization methods for
MALDI imaging applications”. In: Bioinformatics 35.11 (2019), pp. 1940–1947. doi:
10.1093/bioinformatics/bty909.

[LPB00] Bruce G. Lindsay, Ramani S. Pilla, and Prasanta Basak. “Moment-Based Approxi-
mations of Distributions Using Mixtures: Theory and Applications”. In: Annals of the
Institute of Statistical Mathematics 52.2 (2000), pp. 215–230. doi: 10.1023/a:
1004105603806.

[LR05] E. L. Lehmann and J. P. Romano. Testing Statistical Hypotheses. Springer New York,
2005. doi: 10.1007/0-387-27605-x.

[LR17] Marko Lange and Siegfried Rump. “Faithfully Rounded Floating-point Computations”.
Preprint, available at www.ti3.tuhh.de/paper/rump/LaRu2017b.pdf. 2017.

[LV03] Zinoviy M. Landsman and Emiliano A. Valdez. “Tail Conditional Expectations for El-
liptical Distributions”. In: North American Actuarial Journal 7.4 (2003), pp. 55–71. doi:
10.1080/10920277.2003.10596118.

[LW02] Andy Liaw and Matthew Wiener. “Classification and Regression by randomForest”. In:
R News 2.3 (2002), pp. 18–22. url: https://CRAN.R-project.org/doc/
Rnews/.

[Mar52] Harry Markowitz. “Portfolio Selection”. In: The Journal of Finance 7.1 (1952), pp. 77–
91. doi: 10.2307/2975974.

[MB10] Nicolai Meinshausen and Peter Bühlmann. “Stability Selection”. In: Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 72.4 (2010), pp. 417–473.
doi: 10.1111/j.1467-9868.2010.00740.x.

[Med02] European Medicines Agency / Committee for Medicinal Products for Human Use.
“Points to Consider on Multiplicity Issues in Clinical Trials”. available at https://
www.ema.europa.eu/en/documents/scientific-guideline/points-
consider-multiplicity-issues-clinical-trials_en.pdf. 2002.

[MFE05] Alexander J. McNeil, Rüdiger Frey, and Paul Embrechts. Quantitative Risk Manage-
ment. Princeton Series in Finance. Princeton University Press, 2005. isbn: 9780691122557.

[MLR19] Geoffrey J. McLachlan, Sharon X. Lee, and Suren I. Rathnayake. “Finite Mixture Mod-
els”. In: Annual Review of Statistics and Its Application 6.1 (2019), pp. 355–378. doi:
10.1146/annurev-statistics-031017-100325.

https://doi.org/10.1074/mcp.m115.057513
https://doi.org/10.1287/opre.50.6.1073.358
https://doi.org/10.1287/opre.47.1.159
https://doi.org/10.1093/bioinformatics/bty909
https://doi.org/10.1023/a:1004105603806
https://doi.org/10.1023/a:1004105603806
https://doi.org/10.1007/0-387-27605-x
www.ti3.tuhh.de/paper/rump/LaRu2017b.pdf
https://doi.org/10.1080/10920277.2003.10596118
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.2307/2975974
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-multiplicity-issues-clinical-trials_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-multiplicity-issues-clinical-trials_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-multiplicity-issues-clinical-trials_en.pdf
https://doi.org/10.1146/annurev-statistics-031017-100325


76 Bibliography

[MN17] Amit Moscovich and Boaz Nadler. “Fast Calculation of Boundary Crossing Probabili-
ties for Poisson Processes”. In: Statistics & Probability Letters 123 (2017), pp. 177–
182. doi: 10.1016/j.spl.2016.11.027.

[MNS16] Amit Moscovich, Boaz Nadler, and Clifford Spiegelman. “On the Exact Berk-Jones
Statistics and their $p$-value Calculation”. In: Electronic Journal of Statistics 10.2
(2016), pp. 2329–2354. doi: 10.1214/16-EJS1172.

[MP00] G. J. McLachlan and D. Peel. Finite Mixture Models. 2000.

[NBD21] André Neumann, Taras Bodnar, and Thorsten Dickhaus. “Estimating the Proportion of
True Null Hypotheses Under Dependency: A Marginal Bootstrap Approach”. In: Jour-
nal of Statistical Planning and Inference 210 (2021), pp. 76–86. doi: 10.1016/j.
jspi.2020.04.011.

[Not+01] Daniel A. Notterman et al. “Transcriptional Gene Expression Profiles of Colorectal Ade-
noma, Adenocarcinoma, and Normal Tissue Examined by Oligonucleotide Arrays”. In:
Cancer Research 61.7 (2001), pp. 3124–3130. url: https://pubmed.ncbi.nlm.
nih.gov/11306497/.

[Owe01] Art B. Owen. Empirical Likelihood. 1st. Monographs on Statistics and Applied Proba-
bility. Chapman and Hall/CRC, 2001. doi: 10.1201/9781420036152.

[PM20] Bernhard Pfaff and Alexander McNeil. QRM: Provides R-Language Code to Exam-
ine Quantitative Risk Management Concepts. R package version 0.4-20. 2020. url:
https://CRAN.R-project.org/package=QRM.

[PS10] Belinda Phipson and Gordon K. Smyth. “Permutation P-values Should Never Be Zero:
Calculating Exact P-values When Permutations Are Randomly Drawn”. In: Statistical
Applications in Genetics and Molecular Biology 9.1 (2010). doi: 10.2202/1544-
6115.1585.

[R C20] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. Vienna, Austria, 2020. url: https://www.R-
project.org/.

[RI02] Andrea Ridolfi and Jérôme Idier. Penalized Maximum Likelihood Estimator for Normal
Mixtures. Tech. rep. École Polytechnique Fédérale de Lausanne, 2002. url: https:
//pagesperso.ls2n.fr/~idier-j/pub/ridolfi02.pdf.

[RV11] Etienne Roquain and Fanny Villers. “Exact Calculations for False Discovery Proportion
with Application to Least Favorable Configurations”. In: The Annals of Statistics 39.1
(2011), pp. 584–612. doi: 10.1214/10-AOS847.

[SB07] Stephen Senn and Frank Bretz. “Power and Sample Size when Multiple Endpoints are
Considered”. In: The Journal of Applied Statistics in the Pharmaceutical Industry 6.3
(2007), pp. 161–170. doi: 10.1002/pst.301.

[SB18] Charlie Sharpsteen and Cameron Bracken. tikzDevice: R Graphics Output in LaTeX
Format. R package version 0.12. 2018. url: https://CRAN.R-project.org/
package=tikzDevice.

[Sch+19] Erik Schnetter et al. eschnett/SIMD.jl: Explicit SIMD vectorization in Julia. 2019. doi:
10.5281/ZENODO.3355421.

[Sch20] Jonathan von Schroeder. Stable Feature Selection with Applications to MALDI Imag-
ing Mass Spectrometry Data. 2020. arXiv: 2006.15077.

[SDH20] Hongjian Shi, Mathias Drton, and Fang Han. “On the Power of Chatterjee Rank Cor-
relation”. In: (2020). arXiv: 2008.11619.

https://doi.org/10.1016/j.spl.2016.11.027
https://doi.org/10.1214/16-EJS1172
https://doi.org/10.1016/j.jspi.2020.04.011
https://doi.org/10.1016/j.jspi.2020.04.011
https://pubmed.ncbi.nlm.nih.gov/11306497/
https://pubmed.ncbi.nlm.nih.gov/11306497/
https://doi.org/10.1201/9781420036152
https://CRAN.R-project.org/package=QRM
https://doi.org/10.2202/1544-6115.1585
https://doi.org/10.2202/1544-6115.1585
https://www.R-project.org/
https://www.R-project.org/
https://pagesperso.ls2n.fr/~idier-j/pub/ridolfi02.pdf
https://pagesperso.ls2n.fr/~idier-j/pub/ridolfi02.pdf
https://doi.org/10.1214/10-AOS847
https://doi.org/10.1002/pst.301
https://CRAN.R-project.org/package=tikzDevice
https://CRAN.R-project.org/package=tikzDevice
https://doi.org/10.5281/ZENODO.3355421
https://arxiv.org/abs/2006.15077
https://arxiv.org/abs/2008.11619


Bibliography 77

[SG12] J. Skowron and A. Gould. General Complex Polynomial Root Solver and Its Further
Optimization for Binary Microlenses. 2012. arXiv: 1203.1034.

[Shu17] Tomer Shushi. “Skew-Elliptical Distributions with Applications in Risk Theory”. In: Eu-
ropean Actuarial Journal 7.1 (2017), pp. 277–296. doi: 10.1007/s13385-016-
0144-9.

[SNT17] Khamis K. Said, Wei Ning, and Yubin Tian. “Likelihood Procedure for Testing Changes
in Skew Normal Model with Applications to Stock Returns”. In: Communications in
Statistics-Simulation and Computation 46.9 (2017), pp. 6790–6802. doi: 10.1080/
03610918.2016.1212067.

[Spr07] Peter Sprent. Applied nonparametric statistical methods. Boca Raton: Chapman &
Hall/CRC, 2007. isbn: 978-1-4398-9401-9.

[Stu97] Gerold Studer. “Maximum Loss for Measurement of Market Risk”. Last Accessed:
2019-04-04. PhD thesis. ETH Zurich, 1997. url: http://www2.risklab.ch/
ftp/papers/ThesisGeroldStuder.pdf.

[SW09] Galen R. Shorack and Jon A. Wellner. Empirical Processes with Applications to Statis-
tics. Vol. 59. Classics In Applied Mathematics. Society for Industrial and Applied Math-
ematics, 2009. isbn: 978-0-89871-684-9. doi: 10.1137/1.9780898719017.

[Tha01] J. Tharrats. Structure of Binary Sequences. 2001. arXiv: math/0109182.

[TP19] Phontita Thiuthad and Nabendu Pal. “Point Estimation of the Location Parameter of a
Skew-Normal Distribution: Some Fixed Sample and Asymptotic Results”. In: Journal of
Statistical Theory and Practice 13.2 (2019). doi: 10.1007/s42519-018-0033-4.

[Tra+19] Pascal Traccucci et al. A Triptych Approach for Reverse Stress Testing of Complex
Portfolios. 2019. arXiv: 1906.11186.

[vT20] Jonathan von Schroeder and Dickhaus. Thorsten. “Efficient Calculation of the Joint
Distribution of Order Statistics”. In: Computational Statistics & Data Analysis 144 (2020).
doi: 10.1016/j.csda.2019.106899.

[VTS17] Zsófia Varga, Yu C. Tsang, and Júlia Singer. “A Simple Procedure to Estimate the
Optimal Sample Size in Case of Conjunctive Coprimary Endpoints”. In: Biometrical
Journal 59.4 (2017), pp. 626–635. doi: 10.1002/bimj.201500231.

[WDL15] Luca Weihs, Mathias Drton, and Dennis Leung. Efficient Computation of the Bergsma-
Dassios Sign Covariance. 2015. arXiv: 1504.00964.

[Wic16] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Use R! Springer-
Verlag New York, 2016. isbn: 978-3-319-24277-4. url: http://ggplot2.org.

[Wil+19] Agata Wilk et al. “On Stability of Feature Selection Based on MALDI Mass Spectrom-
etry Imaging Data and Simulated Biopsy”. In: Advances in Intelligent Systems and
Computing. Ed. by Józef Korbicz. Springer International Publishing, 2019, pp. 82–93.
doi: 10.1007/978-3-030-29885-2_8.

[Wil38] Samuel S. Wilks. “The Large-Sample Distribution of the Likelihood Ratio for Testing
Composite Hypotheses”. In: The Annals of Mathematical Statistics 9.1 (1938), pp. 60–
62. doi: 10.1214/aoms/1177732360.

[Wil45] Frank Wilcoxon. “Individual Comparisons by Ranking Methods”. In: Biometrics Bulletin
1.6 (Dec. 1945), p. 80. doi: 10.2307/3001968.

[Wol+05] Witold E Wolski et al. “Transformation and other factors of the peptide mass spectrom-
etry pairwise peak-list comparison process”. In: BMC Bioinformatics 6.1 (Nov. 2005).
doi: 10.1186/1471-2105-6-285.

https://arxiv.org/abs/1203.1034
https://doi.org/10.1007/s13385-016-0144-9
https://doi.org/10.1007/s13385-016-0144-9
https://doi.org/10.1080/03610918.2016.1212067
https://doi.org/10.1080/03610918.2016.1212067
http://www2.risklab.ch/ftp/papers/ThesisGeroldStuder.pdf
http://www2.risklab.ch/ftp/papers/ThesisGeroldStuder.pdf
https://doi.org/10.1137/1.9780898719017
https://arxiv.org/abs/math/0109182
https://doi.org/10.1007/s42519-018-0033-4
https://arxiv.org/abs/1906.11186
https://doi.org/10.1016/j.csda.2019.106899
https://doi.org/10.1002/bimj.201500231
https://arxiv.org/abs/1504.00964
http://ggplot2.org
https://doi.org/10.1007/978-3-030-29885-2_8
https://doi.org/10.1214/aoms/1177732360
https://doi.org/10.2307/3001968
https://doi.org/10.1186/1471-2105-6-285


78 Bibliography

[Yu09] Guan Yu. “Variance stabilizing transformations of Poisson, binomial and negative bi-
nomial distributions”. In: Statistics & Probability Letters 79.14 (2009), pp. 1621–1629.
issn: 0167-7152. doi: 10.1016/j.spl.2009.04.010.

[Zal02] C. Zalinescu. Convex Analysis in General Vector Spaces. World Scientific, 2002. doi:
10.1142/5021.

[Zha+16] Jin E. Zhang et al. “The Skewness Implied in the Heston Model and Its Application”. In:
Journal of Futures Markets 37.3 (2016), pp. 211–237. doi: 10.1002/fut.21801.

[Zho+14] Xiaoping Zhou et al. “Smooth Monotone Covariance for Elliptical Distributions and
Applications in Finance”. In: Quantitative Finance 14.9 (2014), pp. 1555–1571. doi:
10.1080/14697688.2014.911949.

https://doi.org/10.1016/j.spl.2009.04.010
https://doi.org/10.1142/5021
https://doi.org/10.1002/fut.21801
https://doi.org/10.1080/14697688.2014.911949


A
Appendix for Chapter 2

A.1. When is the Result Faithfully Rounded?
By [LR17, Theorem 4.2] we can, by calculating k = k(n1,n2) according to Equation (11), figure out
for which values of n1 and n2 faithful rounding is guaranteed. This can be done by examining the
evaluation tree (cf. [LR17, Definition 2.2]) of our concrete implementation. The result will be faith-
fully rounded if no under- or overflow occurs, and k ≤ 226−2 (when utilising double precision floating
point numbers). For our concrete implementation we obtained k(n1,n2) = n1 ·n2+8·(n1+n2)−7, pro-
vided that n1 + n2 ≥ 2. Thus (assuming that no over- or underflow occurs) the result is guaranteed
to be faithfully rounded if n1,n2 ≤ 8184. Our implementation could be, in terms of k, significantly
improved by using binary summation. By this we mean arranging the n numbers that are to be
summed in a binary tree (which has depth O(log(n))) and performing the summation by succes-
sively replacing the nodes (whose children are leafs) by the sum of their children until the root of the
tree contains the result. Obviously this tree does not actually have to be built, see e.g. the function
binary_sum in https://github.com/jvschroeder/PairArithmetic/blob/master/
PairArithmetic.hpp. For example, for n1 = n2 = 400 we obtain k(400,400) = 166,398, while
the corresponding number of k in the case of binary summation would equal 17,421. The latter im-
provement however comes at an additional computational cost, and may be considered mostly of
theoretical interest since the calculation for n1 = n2 = 400 already takes approximately ten minutes.
For n1 = n2 = 800 the calculation already takes more than four hours.
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A.2. Multiple Hypothesis Testing
This section gives a short overview of the definitions and results from multiple testing necessary
for Section 2.6. The basic definition is that of a multiple test. It operates on a vector p-values p =
(p1, . . . , pm)⊤ and is a measurable mapping φ : [0,1]m→P([m]), where hypothesis Hi is rejected iff
i ∈ φ(p). Under FM(m,m0,F) denote by M0 ≡ m0 a constant random variable. Then the (random)
number of rejections of the multiple test φ is given by R(φ,p) := |φ(p)|, and V(φ,p) := |φ(p)∩ [M0]|
is the (random) number of false rejections (type I errors).

In the following we will consider step-up procedures φ = SUt with critical values t = (t1, . . . , tm)⊤ ∈
(0,1)m such that t1 ≤ . . . ≤ tm. The corresponding decision rule can be written as

SUt(p) :=
[︁
max({0} ∪ {i ∈ [m] : pi:m ≤ ti})]︁ , where [0] := ∅.

Summarizing results of [RV11], the joint distribution of R and V for any step-up procedure SUt has
the following properties.

Lemma 12. Let 0 ≤ j ≤ k ≤ m.

(i) Under the unconditional model RM(m,π0,F) it holds that

Pm,π0,F (V(SUt,p) = j,R(SUt,p) = k)

=

(︄
m
k

)︄(︄
k
j

)︄
π̃

j
0(1− π̃0)k− jG(tk)k

Ψ
Uni[0,1],F
m−k,0 (1−G(tm), . . . ,1−G(tk+1))

where π̃0 := π0tk/G(tk) and G(t) := π0t+ (1− π0)F(t).

(ii) Under the conditional model FM(m,m0,F) it holds that

Pm,m0,F (V(SUt,p) = j,R(SUt,p) = k)

=

(︄
m0

j

)︄(︄
m−m0

k− j

)︄
t j
k (F(tk))k− j

Ψ
Uni[0,1],F̄
m−k−(m0− j),

m0− j

(1− tm, . . . ,1− tk+1),

where 0 ≤ j ≤ m0 and F̄(t) := 1− F(t).

Combining Lemma 12 with the previously discussed efficient evaluation of Ψ it is possible to cal-
culate various summary statistics pertaining to the joint distribution of (V,R,M0) under the above
models:

Definition 4.

(a) The FDR of SUt(p) is given by the expectation of the false discovery proportion (FDP) of
SUt(p), which is given by

FDP(SUt,p) :=
V(SUt,p)

R(SUt,p)∨ 1
.

(b) Considering the number of correct rejections R(SUt,p) − V(SUt,p) the average power of
SUt(p) is given by

Powavg(SUt) := E
[︄
R(SUt,p)−V(SUt,p)

m−M0

]︄
, (A.1)

where the convention 0
0 = 0 is utilized and where E = Em,π0,F (under RM(m,π0,F)) or E =

Em,m0,F (under FM(m,m0,F)), respectively.
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(c) The λ−power is the probability of rejecting at least λ · (m−M0) of the false hypotheses:

Powλ(SUt) := P
(︄
R(SUt,p)−V(SUt,p)

m−M0
≥ λ

)︄
(A.2)

where, again, the convention 0
0 = 0 is utilised and where P = Pm,π0,F (under RM(m,π0,F)) or

P = Pm,m0,F (under FM(m,m0,F)), respectively.
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A.3. Further Proofs and Algorithms
Proof of Lemma 3. Let cX(t) := |{Ui ≤ t|i ∈ X}|, m1 ∈ [n1], m2 ∈ [n2] and m := m1 + m2. Then,
mimicking the approach of [SW09, p. 367 ff.] and [Bla+14, Proposition 1], it holds that

1−Ψ(m1,m2) := 1−P (U1:m ≤ b1, · · · ,Um:m ≤ bm)

=1−P
⎛⎜⎜⎜⎜⎜⎜⎝

m⋂︂

k=1

c[m](bk) ≥ k

⎞⎟⎟⎟⎟⎟⎟⎠

=P
(︁∃k ∈ [m] : c[m](bk) = k− 1

)︁

=

m∑︂

k=1

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
[︁
c[m](bk) = k− 1

]︁∩
⎡⎢⎢⎢⎢⎢⎢⎢⎣

k−1⋂︂

j=1

c[m](b j) ≥ j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

m−1∑︂

k=0

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
[︁
c[m](bk+1) = k

]︁∩
⎡⎢⎢⎢⎢⎢⎢⎢⎣

k⋂︂

j=1

c[m](b j) ≥ j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

m−1∑︂

k=0

∑︂

X⊂[m]
|X|=k

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⋂︂

i∈[m]\X
Ui > bk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦∩
⎡⎢⎢⎢⎢⎢⎢⎢⎣

k⋂︂

j=1

cX(b j) ≥ j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
∑︂

0≤k1≤m1
0≤k2≤m2
k1+k2<m

∑︂

X⊂[m]
|X|=k1+k2
|X∩[m1]|=k1

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⋂︂

i∈[m]\X
Ui > bk1+k2+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ·P
⎛⎜⎜⎜⎜⎜⎜⎜⎝

k1+k2⋂︂

j=1

cX(b j) ≥ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
∑︂

0≤k1≤m1
0≤k2≤m2
k1+k2<m

(︄
m1

k1

)︄(︄
m2

k2

)︄
(1− bk1+k2+1)m1−k1 · (1− F(bk1+k2+1))m2−k2

×P
(︂
U1:(k1+k2) ≤ b1, · · · ,U(k1+k2):(k1+k2) ≤ bk1+k2

)︂

Since this holds for any m1 ∈ [n1], m2 ∈ [n2] it follows that

Ψ(m1,m2) = 1−
∑︂

0≤k1≤m1
0≤k2≤m2
k1+k2<m

M(m1,m2)
k1,k2

·Ψ(k1,k2)

where M is given by (2.2).

The recursions for M follow from the definition of the binomial coefficient and routine calculations.
□

Proof of Lemma 5. Let X1, . . . ,Xn1 ∼ Uni[0,1] and Xn1+1, . . . ,Xn1+n2 ∼ F be jointly stochastically
independent. Let for 0 ≤ i1 ≤ n1 and 0 ≤ i2 ≤ n2

Ψ(i1, i2) := P
(︁
X1:M ≤ b1, . . . ,Xi:M ≤ bi1+i2

)︁
,

where M := [i1]
⋃︁ {n1 + j | j ∈ [i2] }, [0] := ∅ and Xi:M denotes the i-th order statistic of (X j) j∈M, and

(bi)i∈[n] is an increasing sequence with values in [0,1]. To simplify the notation let b0 := 0.

To mimic the proof-technique of [SW09, p. 362 ff.]

Qi1,i2(m) := P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
i1+i2⋂︂

j=1

[︂
X j:(i1+i2) ≤ b j

⋂︂
X j:(i1+i2) ≤ bm

]︂
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (A.3)
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Denote by M̄ = M̄(i) := [i] \M the complement of M = M(i). Furthermore let i := i(i1, i2) = i1 + i2.
As in [SW09, p. 364 ff.] we begin by partitioning the probability space based on how many of the
order statistics fall into the interval (bm−1,bm]:

Qi1,i2(m) =
i∑︂

k=0

∑︂

M⊂[i]
|M|=k

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
k⋂︂

j=1

[︂
X j:M ≤ b j

⋂︂
X j:M ≤ bm−1

]︂

∩
i−k⋂︂

j=1

[︂
X j:M̄ ≤ bk+ j

⋂︂
bm−1 < X j:M̄ ≤ bm

]︂
⎞⎟⎟⎟⎟⎟⎟⎟⎠

We then continue (as in [Bla+14, Proposition 1]) by letting k := k1 + k2 and conditioning on the
number of random variables distributed according to Uni[0,1] and F, respectively:

. . . =

i1∑︂

k1=0

i2∑︂

k2=0

∑︂

M⊂[i]
|M|=k1+k2
|M∩[i1]|=k1

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
k⋂︂

j=1

[︂
X j:M ≤ b j

⋂︂
X j:M ≤ bm−1

]︂
⎞⎟⎟⎟⎟⎟⎟⎟⎠

×P
⎛⎜⎜⎜⎜⎜⎜⎜⎝

i−k⋂︂

j=1

[︂
X j:M̄ ≤ bk+ j

⋂︂
bm−1 < X j:M̄ ≤ bm

]︂
⎞⎟⎟⎟⎟⎟⎟⎟⎠

Using (A.3) we can further simplify this:

. . . =

i1∑︂

k1=0

i2∑︂

k2=0

∑︂

M⊂[i]
|M|=k1+k2
|M∩[i1]|=k1

Qk1,k2(m− 1)

×P
⎛⎜⎜⎜⎜⎜⎜⎜⎝

i−k⋂︂

j=1

[︂
X j:M̄ ≤ bk+ j

⋂︂
bm−1 < X j:M̄ ≤ bm

]︂
⎞⎟⎟⎟⎟⎟⎟⎟⎠

If m− 1 ≥ k+ 1 the intersection event
{︂
X1:M̄ ≤ bk+1

⋂︂
bm−1 < X1:M̄ ≤ bm

}︂

is empty because the bi are an increasing sequence. If m−1 ≥ k+1 it is equal to
{︁
bm−1 < X1:M̄ ≤ bm

}︁

otherwise. Therefore we can further simplify:

. . . =
∑︂

0≤k1≤i1
0≤k2≤i2

m−1≤k1+k2

∑︂

M⊂[i]
|M|=k1+k2
|M∩[i1]|=k1

Qk1,k2(m− 1)×P
⎛⎜⎜⎜⎜⎜⎜⎜⎝

i−k⋂︂

j=1

bm−1 < X j:M̄ ≤ bm

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
∑︂

0≤k1≤i1
0≤k2≤i2

m−1≤k1+k2

(︄
i1
k1

)︄(︄
i2
k2

)︄
Qk1,k2(m− 1)× (bm − bm−1)i1−k1

× (F(bm)− F(bm−1))i2−k2 (A.4)
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From the definition it follows immediately that Q0,0(0) = 1 and Qi1,i2(1) = bi1
1 · F(b1)i2 and thus for

m > 1 the quantity Q can be calculated by (A.4) . Furthermore for all i1 ∈ [n1], i2 ∈ [n2] it holds that

Ψ(i1, i2) = P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
i⋂︂

j=1

[︂
X j:i ≤ b j

⋂︂
X j:i ≤ bi

]︂
⎞⎟⎟⎟⎟⎟⎟⎟⎠ = Qi1,i2(i1 + i2)

which completes the proof. Consequently one needs to calculate Qi1,i2(m) for ∀(i1, i2) ∈ [n1]× [n2]
and m ≤ i1 + i2 ≤ n. □

Proof of Lemma 6. Counting the number of operations in the loops of Algorithm 2 it follows that

#Operations <
n1∑︂

m1=0

⎡⎢⎢⎢⎢⎢⎢⎢⎣7+
n2∑︂

m2=0

m1∑︂

k1=0

⎡⎢⎢⎢⎢⎢⎢⎢⎣6+
m2∑︂

k2=0

10

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = · · ·

=
5n2

1n2
2 + 21n2

1n2 + 15n1n2
2 + 63n1n2

2
+ 8n2

1 + 5n2
2 + 31n1 + 21n2 + 23

holds. For the space complexity simply note that, to use the recursions for M(m1,m2)
k1,k2

, we need to

keep track of at most M(m1,m2−1)
k1,k2

and M(m1−1,m2)
k1,k2

(which is pessimistic - cf. algorithm 2).

For Steck’s recursion first notice that, using exponentiation by squaring, one can calculate an in
O(log2(n)) multiplications (where n ∈ N, cf. [Knu98, p. 462, Algorithm A]). Thus the first row and
last column of M(m1,m2) (cf. equations (2.5) (2.6)) can be calculated in

O

⎛⎜⎜⎜⎜⎜⎜⎜⎝
m2−1∑︂

j=1

[︁
log2(m1)+ log2(m2 − j)

]︁
+

m1−1∑︂

j=1

log2(m1 − j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= O

⎛⎜⎜⎜⎜⎜⎜⎜⎝m2 log2(m1)+
m2∑︂

j=1

log2( j)+
m1∑︂

j=1

log2( j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⊂ O(m2 log2(m1)+m1 log2(m1)+m2 log2(m2))

Thus to calculate all the coefficient matrices we need at most

O

⎛⎜⎜⎜⎜⎜⎜⎝
n1∑︂

m1=1

n2∑︂

m2=1

[︁
m1m2 +m2 log2(m1)+m1 log2(m1)+m2 log2(m2)

]︁
⎞⎟⎟⎟⎟⎟⎟⎠

⊂ O(n2
1n2

2 + n2
1n2 log2(n1)+ n1n2

2 log2(n2))

arithmetic operations (since we can calculate a(m1, j1),a(m2, j2) for j1 ∈ [m1], j2 ∈ [m2] in O(m1+m2)
using (2.4)). It remains to notice that (2.3) needs at most O(m1m2) arithmetic operations. For the
space complexity simply note that we do not need to keep track of the previous coefficient matrices.

For Noe’s recursion first note that, for every m ∈ N, we can calculate a(m),1( j1),a(m),2( j2) for j1 ∈
[i1], j2 ∈ [i2] in O( j1 + j2). Furthermore, using (2.4), the binomial coefficients in (2.7) can be
calculated in O(i1 + i2). Thus Mi1,i2 can be calculated in O(i1i2). Thus Qi1,i2(m) (assuming the
necessary Q·,·(m−1) have already been calculated) is O(i1i2). Therefore the overall computational
complexity is at most

O

⎛⎜⎜⎜⎜⎜⎜⎝(n1 + n2) ·
n1∑︂

i1=1

n2∑︂

i2=1

i1i2

⎞⎟⎟⎟⎟⎟⎟⎠ = O(n2
1n2

2(n1 + n2))

For the space complexity simply note, again, that we do not need to keep track of the previous
coefficient matrices. □
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Proof of Lemma 7. By Noe’s recursion (cf. lemma 5) the probability Ψ(i1, i2) can be obtained by
evaluating a polynomial of degree i1 + i2 with only positive coefficients at x ∈ R2n (where x is given
by (2.9)). It is therefore sufficient to show that the statement is true for such polynomials when
applied to non-negative arguments. To provide a concise proof we utilise interval arithmetic (cf.
[Kea]). Due to linearity (since all coefficients and inputs are non-negative) it is sufficient to show
the claim for monomials p(x1, · · · , x2n) :=

∏︁2n
i=1 xai

i with ai ∈ N,
∑︁2n

i=1 ai ≤ i1 + i2. Since 0 < 1− ε < 1
and 1+ ε > 1 it follows that

x̃ai
i ∈ xai

i ·
(︁
(1− 2ε)ai , (1+ 2ε)ai

)︁

which implies
p(x̃1, · · · , x̃2n) ∈ p(x1, · · · , x2n) ·

(︂
(1− 2ε)i1+i2 , (1+ 2ε)i1+i2

)︂

due to [Kea, Equation (4)]. □

Proof of Lemma 12. By [RV11, Theorem 3.1] under the unconditional model RM(m,π0,F) and for
a step-up procedure SUt:

P (V(SUt, p) = j,R(SUt,p) = k)

= P (V(SUt,p) = j |R(SUt,p) = k ) ·P (R(SUt,p) = k)

=

(︄
m
k

)︄(︄
k
j

)︄
π̃

j
0(1− π̃0)k− jG(tk)k

Ψ̃m−k(tm, · · · , tk+1)

where

Ψ̃m−k(tm, · · · , tk+1) := ΨUni[0,1],F
m−k,0 (1−G(tm), · · · ,1−G(tk+1))

π̃0 :=
π0tk
G(tk)

G(t) := π0t+ (1− π0)F(t)

and P denotes Pm,π0,F .

Furthermore under the conditional model FM(m,m0,F) and for a step-up procedure SUt it holds
(by [RV11, Section 5.3]) that (where F̄(t) := 1− F(1− t)):

P (V(SUt,p) = j,R(SUt,p) = k)

=

(︄
m0

j

)︄(︄
m−m0

k− j

)︄
t j
k (F(tk))k− j

Ψ
Uni[0,1],F̄
m−k−(m0− j),

m0− j

(1− tm, · · · ,1− tk+1)

where P denotes Pm,m0,F . □
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Algorithm 1 Bolshev Recursion
1: procedure Bolshev(b)
2: b← 1− b
3: s ∈ Rn

4: s1← 0
5: for k = 2, · · · ,n do
6: v← 1
7: for j = 1, · · · ,k− 1 do
8: v← v− s j

9: s j← s j·b j·k
k−( j−1)

10: end for
11: sk← k · v · bk
12: end for
13: return 1−∑︁n

i=1 si
14: end procedure

Algorithm 2 Efficient Generalized Bolshev Recursion

1: procedure GeneralizedBolshev(n1 ∈ N,n2 ∈ N, v(1) ∈ (0,1)n1+n2 ,v(2) ∈ (0,1)n1+n2)
2: r ∈ R(n1+1)×(n2+1)

3: ∀i ∈ [n1 + 1], j ∈ [n2 + 1] : ri, j← 1
4: M← r
5: M(0) ∈ Rn1+1

6: ∀i ∈ [n1 + 1] : M(0)
i ← 1

7: for m1 = 0, · · · ,n1 do
8: for m2 = 0, · · · ,n2 do
9: for k1 = 0, · · · ,m1 do

10: for k2 = 0, · · · ,m2 do
11: if k1 < m1 ∨ k2 < m2 then
12: rm1+1,m2+1← rm1+1,m2+1 −Mk1+1,k2+1 · rk1+1,k2+1
13: end if
14: if m2 < n2 then
15: Mk1+1,k2+1← Mk1+1,k2+1 · m2+1

m2+1−k2
·
(︂
1− v(2)

k1+k2+1

)︂

16: end if
17: end for
18: if m2 < n2 ∧ k1 < m1 then
19: Mk1+1,m2+2← Mk1+2,m2+1 · k1+1

m1−k1
·
(︂
1− v(1)

k1+m2+2

)︂

20: end if
21: end for
22: end for
23: if m1 < n1 then
24: for k1 = 0, · · · ,m1 do
25: M(0)

k1+1← M(0)
k1+1 · m1+1

m1+1−k1
·
(︂
1− v(1)

k1+1

)︂

26: Mk1+1,1← M(0)
k1+1

27: end for
28: end if
29: end for
30: return rn1+1,n2+1
31: end procedure
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B.1. Conditional Density

Let X be a Rd valued random variable with (Lebesgue-) density f . Then for any (Lebesgue-)
measurable A ⊂ Rd it holds, by definition, that

∫︂

A
f
(︂
x
⃓⃓
⃓cT X ≥ ℓ

)︂
dx = P

(︂
X ∈ A

⃓⃓
⃓cT X ≥ ℓ

)︂

=
P
(︂
X ∈ A∩ cT X ≥ ℓ

)︂

P
(︁
cT X ≥ ℓ)︁

=
1

P
(︁
cT X ≥ ℓ)︁ ·

∫︂

A∩B
f (x)dx,

where B :=
{︂
x ∈ Rd

⃓⃓
⃓cT x ≥ ℓ

}︂
. Hence, it follows that

f
(︂
x
⃓⃓
⃓cT X ≥ ℓ

)︂
=

1
P
(︁
cT X ≥ ℓ)︁

⎧⎪⎪⎨⎪⎪⎩
0 if cT x < ℓ,
f (x) otherwise,

i.e. the conditional density is zero on the complement of B and proportional to f on B. Thus finding
the maximizer of the conditional density is equivalent to finding a maximizer of the unconditional
density over B.

B.2. Proofs

Proof of Lemma 8. For the normal distribution it holds that g(u) := exp
(︂
−u

2

)︂
and since

g′(u) = −1
2

exp
(︃
−u

2

)︃
< 0

the generator is strictly decreasing.

For the Student-t distribution it holds that g(u) :=
(︃
1+ u

cp

)︃−p
for cp ∈ R, p > 1

2 . Since it holds that

g′(u) = −
p
(︃
1+ u

cp

)︃−1−p

cp

87
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and, noting that the integrability condition of definition 2 is only fulfilled for cp > 0, it is immediate
thate the generator is strictly decreasing since g′ < 0.

For the Logistic distribution it holds that g(u) := e−u

(1+e−u)2 . By the quotient rule

g′(u) =
−e−u (︁

1+ e−u)︁2
+ 2e−u (︁

1+ e−u)︁

(1+ e−u)4

=
e−u (︁

1+ e−u)︁ · (︁−1− e−u + 2
)︁

(1+ e−u)4

=
e−u (︁

1+ e−u)︁ · (︁1− e−u)︁

(1+ e−u)4

Since 1 < e−u for u > 0 it follows that g′(u) < 0 on R+ and therefore g is strictly decreasing on R+.

For the Exponential distribution it holds that g(u) := exp(−rus) for r, s > 0. Furthermore

g′(u) = −exp
(︁−rus)︁rsus−1

and thus for u > 0 it holds that g′(u) < 0 and consequently g is strictly decreasing on R+. □

B.2.1. Reverse Stress Testing in Elliptical Models

Proof of Theorem 2. Define a = x− µ. Then (3.2) can be written by

arg max
a

g
(︂
aT
Σ
−1a

)︂

subject to cT a ≥ ℓ− cTµ
(B.1)

Let
Ωv = {a : cT a = v} for v ∈ [ℓ− cTµ,∞).

Since g is a decreasing function, the solution of (B.1) is obtained by the following optimization
problem:

min
v≥ℓ−cTµ

min
a∈Ωv

aT
Σ
−1a

If ℓ ≤ cTµ, then v = 0 is admissible which implies 0 = a ∈ Ω0 is admissible and therefore the
minimum of aTΣ−1a is attained at a = 0 independently of v and consequently x∗(ℓ) = µ is the only
solution of (3.2). Otherwise, using that finding the minimum of aTΣ−1a over Ωv is a quadratic
optimization problem under a single linear equality constraint we straightforwardly get its solution
as

av = v
Σc

cTΣc
or

x∗(ℓ) = µ+ v
Σc

cTΣc
(B.2)

and therefore

min
a∈Ωv

aT
Σ
−1a =

v2

cTΣc
.

Hence,

min
v≥ℓ−cTµ

min
a∈Ωv

aT
Σ
−1a = min

v≥ℓ−cTµ

v2

cTΣc
=

(ℓ− cTµ)2

cTΣc

for v = ℓ− cTµ which together with (B.2) leads to the statement of the theorem. □
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B.2.2. Reverse Stress Testing in Skew-Elliptical Models

Lemma 13. Let f be the density of a skew-elliptical distribution in the sense of (3.4) and in Rd for
d ≥ 2. Furthermore let M be a non-singular matrix. If X is a random vector with density f, then the
density of Y := M(X − µ) is given by

f (y;µ,Σ,λ) = 2 · f̃
(︂
y;0,MΣMT

)︂
· F

(︂
λT M−1y

)︂
,

that is Y, is also skew-elliptically distributed with parameters 0, MΣMT , and (M−1)Tλ.

Proof. The statement of the lemma follows directly from the application of the change-of-variables
formula which is applied first to the density f (x;µ,Σ,λ) and then to f̃ (x;µ,Σ). □

Lemma 14. Write X =
(︂
X1,XT

2

)︂T
, where X1 takes values in R. Write analogously x =

(︂
x1, xT

2

)︂T
for

a realization of X. Assume that the density of X is given by

f (x;0,Ω,λ) = 2 · f̃ (x;0,Ω) · F(x1)

where f̃ is the density of an elliptical distribution with density generator g̃ and F is a cumulative dis-
tribution function of a univariate distribution. Then, conditionally on X1, X2 is elliptically contoured
distributed with location parameter ω−1

11 · x1 ·Ω21, dispersion matrix Ω22 −ω−1
11 ·Ω21Ω12, and density

generator given by

ğ(·|x1) ∝ g̃(ω−1
11 x2

1 + ·),

where ğ(·|x1) is a decreasing function as soon as g̃ is decreasing.

Proof of Lemma 14. Let Ω and B =Ω−1 be partitioned as

Ω =

(︄
ω11 Ω12
Ω21 Ω22

)︄
and B =

(︄
b11 B12
B21 B22

)︄
, (B.3)

where B12 = BT
21 and b11 > 0. Moreover, using the formula for the inverse of the partitioned matrix

we get

B22 =

(︄
Ω22 − Ω21Ω12

ω11

)︄−1

, B−1
22 B21 = −Ω21

ω11
, b11 − B12B−1

22 B21 = ω
−1
11 .

Then, the application of

xT
Ω
−1x = xT Bx = b11x2

1 + 2BT
21x2x1 + xT

2 B22x2

= (x2 + B−1
22 B21x1)T B22(x2 + B−1

22 B21x1)+ (b11 − B12B−1
22 B21)x2

1

= ω−1
11 x2

1 + (x2 −ω−1
11Ω21x1)T

(︄
Ω22 − Ω21Ω12

ω11

)︄−1

(x2 −ω−1
11Ω21x1)

leads to

f̃ (x1, x2;0,Ω,λ) ∝ F(x1)× g̃

⎛⎜⎜⎜⎜⎜⎝ω−1
11 x2

1 + (x2 −ω−1
11Ω21x1)T

(︄
Ω22 − Ω21Ω12

ω11

)︄−1

(x2 −ω−1
11Ω21x1)

⎞⎟⎟⎟⎟⎟⎠

from which the conditional distribution of X2 given X1 follows as provided in the statement of the
lemma. □
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In the following we assume that λ ≠ 0, since otherwise the results of Theorem 2 can be applied.

Let λ =
(︂
λ1,λ

T
2

)︂T
with λ1 ≠ 0 which can be assumed without loss of generality, since otherwise the

components of the vector x− µ can be rearranged. We define

M =
(︄

λ1 λT
2

0d−1,1 Id−1

)︄
(B.4)

and applying [Dhr13, Proposition 2.31, p.45] to M yields

M−1 =

(︄
λ−1

1 −λ−1
1 · λT

2
0d−1,1 Id−1

)︄

from which it follows that, for c =
(︂
c1,cT

2

)︂T
,

(m1,mT
2 )T = (MT )−1c =

c1

λ1
·
(︄

1
−λ2

)︄
+

(︄
0
c2

)︄
,

i.e. m1 = c1/λ1 and m2 = −c1/λ1 · λ2 + c2. Define Ω = MΣMT and consider the representation

Σ =

(︄
σ11 Σ12
Σ21 Σ22

)︄

of the dispersion matrix. Furthermore, let

Σ1 =

(︄
σ11
Σ21

)︄
and Σ2 =

(︄
Σ12
Σ22

)︄
.

For symmetric Σ, it follows that

Ω =

(︄
ω11 Ω12
Ω21 Ω22

)︄
,

where ω11 = λ
TΣλ, Ω22 = Σ22 and ΩT

21 = Ω12 = λ
TΣ2. In preparation of the proof of Theorem 7 we

let

k = m1 +ω
−1
11 mT

2Ω21 =
c1

λ1
·
⎡⎢⎢⎢⎢⎢⎣1−

λT
2 Σ

T
2 λ

λTΣλ

⎤⎥⎥⎥⎥⎥⎦+
cT

2 Σ
T
2 λ

λTΣλ
=

cTΣTλ

λTΣλ

A =Ω22 −ω−1
11Ω21Ω12.

Theorem 7. Let f be the density of a skew-elliptical distribution (in Rd for d ≥ 2) in the sense
of Definition 3, with decreasing density generator g̃. Let ω11,Ω21,k,M,m2 and A be defined as
previously.

Then, a global maximum of the constrained optimization problem

maximize
x

f (x;µ,Σ,λ)

subject to cT x ≥ ℓ
(B.5)

is given by

x∗(ℓ) = µ+M−1
(︄

z1;max(ℓ)
z2;max(ℓ)

)︄
,

where

z1;max(ℓ) ∈
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

arg max
kz1≥ℓ−cTµ

F(z1) · g̃
(︂
ω−1

11 z2
1

)︂
if c = ηλ,

argmax
z1

F(z1) · g̃
(︂
ω−1

11 z2
1 + k1 · (max

{︂
0, ℓ− cTµ− kz1

}︂
)2
)︂

otherwise,
(B.6)
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z2;max(ℓ) = ω−1
11Ω21z1;max(ℓ)+ k1 ·max{0, ℓ− cTµ− kz1;max(ℓ)} · Am2,

and k1 =

⎧⎪⎪⎨⎪⎪⎩
0 if c = ηλ,
(mT

2 Am2)−1 otherwise.

Proof. We consider the following transformation given by

z = M(x− µ),

where M is given in (B.4). Then, from Lemma 13, the density of z = (z1,zT
2 )T is given by

f (z;0,Ω,λ) = 2 · f̃ (z;0,Ω) · F (z1)

∝ F(z1)× g̃
(︂
ω−1

11 z2
1 + (z2 −ω−1

11Ω21z1)T A−1(z2 −ω−1
11Ω21z1)

)︂
,

where Ω is partitioned as in (B.3).

Furthermore, the condition cT x ≥ ℓ is equivalent to ((MT )−1c)T z ≥ ℓ− cTµ or mT
2 z2 ≥ ℓ− cTµ−m1z1.

It follows that

max
x:cT x≥ℓ

f (x;µ,Σ,λ)

is equivalent to

max
z1

max
z2:mT

2 z2≥ℓ−cTµ−m1z1

F(z1) · g̃
(︂
ω−1

11 z2
1 + (z2 −ω−1

11Ω21z1)T A−1(z2 −ω−1
11Ω21z1)

)︂
,

and by Lemma 14 the objective function is, for every fixed z1, the density of an elliptical distribution
with location parameter µ̃ = ω−1

11Ω21z1 and dispersion matrix Σ̃ = Ω22 −ω−1
11Ω21Ω12. If c = ηλ then

m2 = 0 and the optimizer is z2 = ω
−1
11Ω21z1. Otherwise let c̃ = mT

2 and ℓ̃ = ℓ − cTµ−m1z1. Then, by
Theorem 2, it follows that, for v = z2 −ω−1

11Ω21z1,

z1;max = argmax
z1

max
z2:mT

2 z2≥ℓ̃
F(z1) · g̃

(︂
ω−1

11 z2
1 + vT A−1v

)︂

= argmax
z1

F(z1) · g̃
⎛⎜⎜⎜⎜⎜⎜⎝ω
−1
11 z2

1 +
(max

{︂
0, ℓ− cTµ− kz1

}︂
)2

mT
2 Am2

⎞⎟⎟⎟⎟⎟⎟⎠

where k = m1 +ω
−1
11 mT

2Ω21 which is attained at

z2;max = ω
−1
11Ω21z1;max +max{0, ℓ− cTµ− kz1;max} · Am2

mT
2 Am2

.

Finally, using the inverse transformation we get xmax as stated in the theorem. □

To derive a more explicit representation of x∗(ℓ) one can verify the following three identities:

M−1
(︄

1
ω−1

11Ω21

)︄
=
Σλ

λTΣλ

M−1
(︄

0
Am2

)︄
= Σc− λ

TΣc
λTΣλ

Σλ

mT
2 Am2 = cT

(︄
Σc− λ

TΣc
λTΣλ

Σλ

)︄

These imply the following corollary.
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Corollary 4. Under the assumptions of Theorem 7 it holds that

x∗(ℓ) = µ+

⎧⎪⎪⎨⎪⎪⎩
η−1 · z1;max(ℓ) · Σc

cTΣc if c = ηλ,
z1;max(ℓ) · Σλ

λTΣλ
+max

{︂
0, ℓ− cTµ− k · z1;max(ℓ)

}︂
v

cT v otherwise,

where v = Σc− (λTΣc)/(λTΣλ) ·Σλ and k = (λTΣc)/(λTΣλ).

B.2.3. Reverse Stress Testing in Skew-Normal Models

In light of Theorem 7 it is interesting to consider, in which models a unique solution z1;max(ℓ) of (B.6)
is guaranteed to exist. In this section, we will show this to be true for the skew-normal distribution,
i.e. for the case where f is a normal density and F is the cumulative distribution function of the
univariate normal distribution, which we will denote by Φ.

The following lemma is the first step.

Lemma 15. Consider the optimization problem

arg max
q

g
(︂
η1q2 + η2q+ η3

)︂
·Φ (q) ,

where η1,η2,η3 ∈ R with η1 > 0 and where g(u) = exp(−u/2). The objective function is uni-
modal and therefore the optimization problem always has a unique solution q∗ which satisfies
ϕ (−η2/(2η1))/Φ (−η2/(2η1)) ≥ q∗ + η2/(2η1) ≥ 0.

Proof. First note that the objective function φ(q) := g
(︂
η1q2 + η2q+ η3

)︂
·Φ (q) looks very similar to the

density of a univariate skew-normal distribution; cf. [Azz13, Equation (2.1)]. It is indeed possible
to generalize [Azz13, Proposition 2.6] to functions like φ: Showing that the second derivative of
logφ(q) is still strictly negative will imply log-concavity which in turn will imply that φ has a unique
mode which is the desired result; cf. [Azz13, Proposition 2.6]. Let ζ1, ζ2 be given as in [Azz13,
Equation (2.20)]. Then it holds that

∂2

∂q2 logφ(q) =
∂2

∂q2

[︄
−1

2

(︂
η1q2 + η2q+ η3

)︂
+ log(Φ (q))

]︄

=
∂

∂q

[︃
−η1q− η2

2

]︃
+ ζ2(q)

= −η1 − ζ1(q)
[︁
q+ ζ1(q)

]︁

The first summand is negative by the assumption η1 > 0 and by [Azz13, Equation (2.21)] the second
summand is negative, too. Thus ∂2

∂q2 logφ(q) < 0. Furthermore from the first order conditions it
follows that

0 =
∂

∂q
logφ(q∗) = −η1q∗ − η2

2
+
ϕ(q∗)
Φ(q∗)

≥ −η1q∗ − η2

2
from which the lower bound follows directly. Furthermore this implies (since x ↦→ ϕ(x)/Φ(x) is
strictly decreasing)

0 = −η1q∗ − η2

2
+
ϕ(q∗)
Φ(q∗)

≤ −η1q∗ − η2

2
+
ϕ
(︂
− η2

2η1

)︂

Φ
(︂
− η2

2η1

)︂

which implies q∗ ≤ − η2
2η1
+

ϕ
(︃
− η2

2η1

)︃

Φ

(︃
− η2

2η1

)︃ . □
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An immediate consequence of the preceding lemma is the following corollary:

Corollary 5. In the skew-normal case there are at most two solutions to (B.5).

The next step is to characterize the solution for large losses ℓ.

Corollary 6. Let f be a skew-normal density. Then there exists L such that, for all ℓ ≥ L and c,λ
not collinear, the solution z1;max(ℓ) of (B.6) is unique.

Proof. Since g̃ is monotonically decreasing and k1 > 0 it is sufficient to show that there exists L ∈ R
such that, for all ℓ ≥ L, the solution q∗ of

q∗(ℓ) = argmax
q

F(z1) · g̃
(︂
ω−1

11 q2 + k1 · (ℓ− cTµ− kq)2
)︂

= argmax
q

F(z1) · g̃
(︂
(ω−1

11 + k1k2)q2 − 2k1k(ℓ− cTµ)q+ (ℓ− cTµ)2
)︂

(which is unique by Lemma 15) satisfies ℓ − cTµ − kq∗(ℓ) ≥ 0. Consider the case k > 0 (the case
k < 0 is analogous). Then we need to show that q∗(ℓ) ≤ (ℓ − cTµ)/k which is implied (cf. Lemma
15) by ϕ

(︂
− η2

2η1

)︂
/Φ

(︂
− η2

2η1

)︂
− η2

2η1
≤ (ℓ− cTµ)/k where − η2

2η1
=

k1k(ℓ−cTµ)
ω−1

1,1+k1k2 →
ℓ→∞

∞. Since ϕ(x)/Φ(x) →
x→∞ 0

it is sufficient to show that k1k
ω−1

1,1+k1k2 <
1
k . But this follows immediately from the fact that ω11 > 0 and

k1 > 0:
k1k

ω−1
1,1 + k1k2

=
1
k
· k1k2

ω−1
1,1 + k1k2

<
1
k
· k1k2

k1k2 =
1
k

□

Theorem 8 ([Cap12, Proposition 7]). Let f be the density of a skew-normal distribution. Then the
unique mode M0 of f is given by M0 := µ+ (k∗/

√
λTΣλ) ·Σλ where k∗ is the unique solution of

0 = z ·Φ
(︃ √︁

λTΣλ · z
)︃
−

√︁
λTΣλ · ϕ

(︃ √︁
λTΣλ · z

)︃
. (B.7)

Due to Theorem 8 the previous results can be strengthened if one notices that, if,

x∗(ℓ) = µ+ b1Σc+ b2Σλ

we can eliminate the constraint cT x∗(ℓ) = ℓ by letting b1 := (ℓ− cTµ− b2 · cTΣλ)/(cTΣc). Therefore,
by taking the derivative of the objective (as a function of b2), the following corollary to the previous
results can be easily proven:

Corollary 7. Let f be the density of a skew-normal distribution. Then, the global maximum of the
constrained optimization problem

maximize
x

f (x;µ,Σ,λ)

subject to cT x ≥ ℓ
(B.8)

is given by

x∗(ℓ) = µ+ k1 ·Σλ+ k2 ·Σc,

where k1,k2 ∈ R depend on the population parameters. If the mode of f is feasible then k1 =

k∗/
√
λTΣλ (where k∗ is the unique solution of (B.7)) and k2 = 0. If it is infeasible and λTΣc = 0 then
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k1 = 0 and k2 = (ℓ − cTµ)/(cTΣc). Otherwise k1 = b∗ and k2 = (ℓ − cTµ − b∗ · cTΣλ)/(cTΣc) where
b∗ = 0 if there exists η ∈ R such that c = ηλ. Otherwise b∗ is the unique solution of

0 =
ϕ(a1 · b+ a3)
Φ(a1 · b+ a3)

− b, (B.9)

where a1 = λ
TΣλ − (cTΣλ)2/(cTΣc) and a3 = (ℓ − cTµ) · (λTΣc)/(cTΣc). The solution b∗ of (B.9)

satisfies b∗ ∈ [︁
0,ϕ(a3)/Φ(a3)

]︁
.

The derivative of q ↦→ ϕ(q)/Φ(q) is given in [Azz13, Equation (2.20)]; see the quantity ζ2 there. This
can be e.g. utilized to apply Newton’s method to (B.9).

B.2.4. Reverse Stress Testing in Skew-t Models

It is possible to define a skew-t distribution by choosing f̃ in Definition 3 as a multivariate Student’s
t-density. However, through conditioning, one obtains the more popular formulation (cf. [Azz13,
Section 6])

f (z;µ,Σ, ν,λ) := 2 · td (z− µ;Σ, ν) ·T1

⎛⎜⎜⎜⎜⎜⎜⎝λ
T (z− µ)

√︄
ν+ d

ν+Q(z− µ;Σ)
;ν+ d

⎞⎟⎟⎟⎟⎟⎟⎠ (B.10)

of a d-dimensional skew-t distribution with ν degrees of freedom and where td denotes a d-
dimensional Student’s t density, T1 is the distribution function of the univariate Student’s t dis-
tribution and Q(z;Σ) := zTΣ−1z. For notational convenience we have chosen to absorb the scale
vector into the dispersion matrix Σ and the skewness parameter λ (cf. [Azz13, Equation (6.23)]).
Since (B.10) is not (in the sense of Definition 3) a skew-elliptical density it is not possible to ap-
ply Theorem 7. We therefore give a separate proof of a similar result which is based on specific
properties of the skew-t distribution. For the proof of the result we will need the following lemma:

Lemma 16. For ν > 1 it holds that

0 < h(z) := ν ·T1(z;ν)+ z · t1(z;ν)

for all z ∈ R and h is a strictly increasing function.

Proof of Lemma 16. The derivative

h′(z) = ν · t1(z;ν)+ t1(z;ν)+ z · t′1(z;ν)

= (ν+ 1) · t1(z;ν)+ z · t′1(z;ν)

is greater than zero if and only if

ν+ 1 > −z
t′1(z;ν)

t1(z;ν)
= (ν+ 1) · z2

ν+ z2

which holds since z2

ν+z2 < 1 and therefore h is strictly increasing.

For z > 0 it is obvious that h(z) > 0. For z ≤ 0 notice that limz→−∞T1(z;ν) = 0 and by applying
L’Hospital’s rule it follows that

lim
z→−∞z · t1(z;ν) = lim

z→−∞z
(︄
1+

z2

ν

)︄− ν+1
2

= 0

since ν+1
2 > 1. Thus limz→−∞ h(z) = 0 and because h(0) = ν

2 > 0 and we have proven that h is strictly
increasing it follows that h(z) > 0. □
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Since the unique mode is the solution of the reverse stress testing problem if it is feasible, we will
also make use of the following result of [Cap12]:

Theorem 9 ([Cap12, Proposition 8]). Let f be the density of a skew-t distribution in the sense of
Equation (B.10). Then the unique mode M0 of f is given by M0 := µ+ (k∗/

√
λTΣλ) ·Σλ, where k∗ is

the unique root of of

k ↦→ k (ν+ d)
1
2 T1(w(k);ν+ d)− t1(w(k);ν+ d)ν

√︁
λTΣλ

(︂
ν+ k2

)︂− 1
2 (B.11)

and w(k) =
√
λTΣλ · k ·

(︂
(ν+ d)/(ν+ k2)

)︂ 1
2 .

Theorem 10. Let f be the density of a skew-t distribution (in Rd for d ≥ 2) in the sense of Equation
(B.10).

Then, the global maximum of the constrained optimization problem

maximize
x

f (x;µ,Σ, ν,λ)

subject to cT x ≥ ℓ
(B.12)

is given by

x∗(ℓ) = µ+ k1 ·Σλ+ k2 ·Σc,

where k1,k2 ∈ R are constants that depend on the population parameters. If the mode of f is
feasible then k1 = k∗/

√
λTΣλ (where k∗ is the unique solution of (B.11)) and k2 = 0. If it is infeasible

and λTΣc = 0, then k1 = 0 and k2 = (ℓ − cTµ)/(cTΣc). Otherwise k1 = b∗ and k2 = (ℓ − cTµ − b∗ ·
cTΣλ)/(cTΣc), where b∗ = 0 if there exists η ∈ R such that c = ηλ. Otherwise b∗ is the unique
solution of

b ·
√
ν+ d ·T1 (w1(b);ν+ d) =

a2 + ν− a3b
(︂
ν+ a1 · b2 + a2

)︂1/2 · t1 (w1(b);ν+ d) , (B.13)

where a1 = λ
TΣλ − (cTΣλ)2/(cTΣc), a2 = (ℓ − cTµ)2/(cTΣc), a3 = (ℓ − cTµ) · (λTΣc)/(cTΣc), and

w1(b) = (a1 · b+ a3) ·
(︂
(ν+ d)/(ν+ a1 · b2 + a2)

)︂1/2
. The solution b∗ of (B.13) satisfies

b∗ ∈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[︂
0, a2+ν

a3

]︂
if a3 > 0,⎡⎢⎢⎢⎢⎢⎣0, 1

2 ·
√︃

a2
3

a1
+ a2 + ν ·

√︂
1+ 1

(ν+d)2 + 2 · (ν+ d)

⎤⎥⎥⎥⎥⎥⎦ otherwise.

Proof of Theorem 10. By [Cap12, Proposition 8] there exists a unique mode M0 of f . If cT M0 ≥ ℓ,
i.e. M0 is feasible, then by definition x∗(ℓ) = M0. If M0 is not feasible, then for any feasible point
x ∈ Rd the function g(t) := f (M0 + (x − M0) · t;µ,Σ, ν,λ) is a strictly decreasing function on [0,1]
because the level sets of f are convex (cf. [Azz13, p. 190]). Furthermore x and M0 are on
different sides of the hyperplane H :=

{︂
x ∈ Rd |cT x = ℓ

}︂
and therefore there exists t0 ∈ (0,1] such

that x0 := M0 + (x −M0) · t0 ∈ H. Thus f (x0;µ,Σ, ν,λ) ≥ f (x;µ,Σ, ν,λ) (with equality only if x0 ∈ H)
and we can conclude that a solution to (B.12) must be an element of H if M0 is infeasible.

To simplify the remaining proof we utilize the canonical form (cf. [Cap12, Section 2]). To this end
let CT C = Σ and P =

(︂
P1 P2

)︂
an orthogonal Matrix with P1 =

Cλ√
λΣλ

. Applying the transformation

x ↦→
(︂
C−1P

)︂T
(x− µ) transforms the density into one that is proportional to

f̃ (z;ν,α) =
[︄
1+

Q̃(z)
ν

]︄ −(ν+d)
2

×T1

⎛⎜⎜⎜⎜⎜⎝α · z1 ·
(︄
ν+ d

ν+ Q̃(z)

)︄1/2

;ν+ d

⎞⎟⎟⎟⎟⎟⎠
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where Q̃(z) = zT z and α =
√
λTΣλ > 0. The condition is transformed into cT

(︂
µ+CT P

)︂
z = ℓ which is

equivalent to c̃T z = ℓ̃ where c̃ := PT Cc and ℓ̃ = ℓ− cTµ.

If c̃1 = 0 then for z feasible the vector
(︂
−z1 z2

)︂
is feasible, too. Thus the maximizer will have z1 ≥ 0

and since, for any fixed z1 ≥ 0, z2 ↦→ f̃
(︂(︂

z1 z2
)︂
;ν,α

)︂
is proportional to an elliptical density with

strictly decreasing generator, location parameter 0 and dispersion matrix Id = diag(1, · · · ,1) we can
apply Theorem 2 to obtain x∗(ℓ) = µ+CT P ℓ̃

c̃T c̃ c̃ = µ+ ℓ−cTµ
cTΣc Σc.

It remains to analyze the more interesting case c̃1 ≠ 0. In this case we can eliminate the constraint

by setting z1(z2) := ℓ̃−c̃T
2 z2

c̃1
. Thus we now need to, uncoditionally, maximize

g(y;ν,α) =
[︄
1+

Q̃(y)
ν

]︄ −(ν+d)
2

×T1

⎛⎜⎜⎜⎜⎜⎝α · z1(y) ·
(︄
ν+ d

ν+ Q̃(y)

)︄1/2

;ν+ d

⎞⎟⎟⎟⎟⎟⎠

over y ∈ Rd−1 and where we have redefined Q̃(y) := yT y + z1(y)2. The partial derivatives of g are
given by

∂g
∂yi
=
−(ν+ d)

2ν
× ∂Q̃(y)

∂yi
×

[︄
1+

Q̃(y)
ν

]︄ −(ν+d)
2 −1

×T1 (αz1(y) ·w(y);ν+ d)

+

[︄
1+

Q̃(y)
ν

]︄ −(ν+d)
2

× t1 (αz1(y) ·w(y);ν+ d)×
[︄
α
∂z1(y)
∂yi

w(y)−αz1(y)
∂Q̃(y)
∂yi

w(y)
2(ν+ Q̃(y))

]︄

where w(y) :=
(︃

ν+d
ν+Q̃(y)

)︃1/2
, ∂Q̃(y)

∂yi
= 2yi − 2z1(y)c̃i+1

c̃1
and ∂z1(y)

∂yi
= − c̃i+1

c̃1
. The derivatives are zero iff

0 = −∂Q̃(y)
∂yi

h(αz1(y) ·w(y);ν+ d)+ 2g(y)
∂z1(y)
∂yi

[︁
ν+Q(y)

]︁

which is equivalent to

yi · h(αz1(y) ·w(y);ν+ d) =
c̃i+1

c̃1
×

[︂
z1(y)× h(αz1(y) ·w(y);ν+ d)− g(y)

[︂
ν+ Q̃(y)

]︂]︂

where h is as in Lemma 16 and

g(y) := α ·w(y) · t1 (αz1(y) ·w(y);ν+ d)

does not depend on i. Thus the necessary condition for optimality of y∗ implies, since h > 0 by
Lemma 16, that there exists k∗ ∈ R such that y∗ = k∗ · c2̃ where we partition c̃ as c̃ =

(︂
c̃1 c̃2

)︂
with

c̃1 ∈ R. We conclude that there exists k∗ ∈ R such that

x∗(ℓ) = µ+CT P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k∗ · c̃+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℓ−cTµ−k∗·(cTΣc−c̃2
1)

c̃1
− k∗ · c̃1

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= µ+ k∗ ·Σc+Σλ ·
[︄
v1(k∗)− k∗ · λTΣc

α2

]︄

where v1(k) :=
ℓ−cTµ−k·

(︂
cTΣc−α−2(λTΣc)2)︂

λTΣc and we utilized the identities c̃1 = α
−1λTΣc and c2̃ = cTΣc−

(c̃1)2. Equivalently there exist b1,b2 ∈ R such that

x∗(ℓ) = µ+ b1Σc+ b2Σλ
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and we can eliminate the constraint by letting b1 := ℓ−cTµ−b2·cTΣλ
cTΣc which implies that x∗(ℓ) is of the

form x∗(ℓ,b) = µ + ℓ−cTµ
cTΣc Σc + b ·

(︂
Σλ− cTΣλ

cTΣcΣc
)︂
. Plugging x∗(ℓ,b) into the original problem it follows

that b is a maximizer of

g̃(b) =
[︄
1+

a1 · b2 + a2

ν

]︄ −(ν+d)
2

×T1

⎛⎜⎜⎜⎜⎜⎝(a1 · b+ a3) ·
(︄

ν+ d
ν+ a1 · b2 + a2

)︄1/2

;ν+ d

⎞⎟⎟⎟⎟⎟⎠

where a1 = λ
TΣλ− (cTΣλ)2

cTΣc , a2 =
(ℓ−cTµ)2

cTΣc and a3 = (ℓ− cTµ) · λTΣc
cTΣc . Since the skew-t density is strictly

quasi-concave (cf. [AR12, p. 874]) it follows from standard results from quasi-convex programming
(cf. [Kar67, Theorem 2.6]) that any local maximum on the convex set H∩{µ+aΣc+bΣλ |a,b ∈ R } is
a global maximum. It remains to show the existence of local maximum. From the Cauchy-Schwarz
inequality it follows that a1 ≥ 0 since Σ is positive definite and therefore x ↦→ xTΣx is an inner
product. A quick calculation verifies that the derivative of g̃ is zero if and only if

b ·
√
ν+ d ·T1 (w1(b);ν+ d) =

a2 + ν− a3b
(︂
ν+ a1 · b2 + a2

)︂1/2 · t1 (w1(b);ν+ d)

where w1(b) = (a1 · b + a3) ·
(︂

ν+d
ν+a1·b2+a2

)︂1/2
. This equation has at least one solution: For b = 0

the left hand side is equal to zero whereas the right hand side is strictly bigger than zero. Fur-
thermore the left hand side is unbounded as b → ∞ whereas the right hand side converges to
− a3√

a1
· t1

(︂√
a1 · (ν+ d);ν+ d

)︂
. Since both sides are continuous functions they must intersect at least

once by the intermediate value theorem. For a3 ≥ 0 and a1 > 0 it furthermore follows that the
solution must be an element of

[︂
0, a2+ν

a3

]︂
. For a3 ≤ 0 it follows from

max
b≥0

a2 + ν− a3b
(︂
ν+ a1 · b2 + a2

)︂1/2 =

√︄
a2

3

a1
+ a2 + ν

and Lemma 17 that the solution must be an element of
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0,

1
2
·

√︃
a2

3
a1
+ a2 + ν

√
ν+ d

·
√︃
ν+ d +

1
ν+ d

+ 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣0,
1
2
·
√︄

a2
3

a1
+ a2 + ν ·

√︄
1+

1
(ν+ d)2 + 2 · (ν+ d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

For a1 = 0 we can simply choose b = 0. □

To justify the upper bound in the previous theorem we need the following Lemma:

Lemma 17. For ν > 0 denote by T1(·;ν) and t1(·;ν) the cumulative distribution function and the
probability density function of a univariate Student’s t-distribution with ν degrees of freedom. Then

for all x ∈ R it holds that t1(x;ν)
T1(x;ν) ≤ 1

2

√︂
ν+ 1

ν + 2.

Proof. The first order optimality condition is

0 =
∂

∂x
t1(x;ν)
T1(x;ν)

=

(︂
T1(x;ν) · ∂∂x t1(x;ν)

)︂
− (t1(x;ν))2

(T1(x;ν))2

which is equivalent to

t1(x;ν)
T1(x;ν)

=

∂
∂x t1(x;ν)
t1(x;ν)

= − x · (1+ ν)
ν+ x2
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and the claim follows from

max
x
− x · (1+ ν)

ν+ x2 =
1
2

√︃
ν+

1
ν
+ 2.

□

B.2.5. Confidence Region for Elliptical Models

To derive an empirical likelihood confidence region (cf. [Owe01]) for the scenario obtained under
the setting of Theorem 2, which is given by

x∗(ℓ) = µ+
ℓ− cTµ

cTΣc
Σc,

we need to estimate the 2d population parameters in µ and Σc. To apply the "smooth function
of means" approach (cf. [Owe01, Section 3.2]) we need to write these as smooth functions of
expectations of suitable random variables. Denote by X a random variable distributed according
to an elliptical density with parameters µ,Σ and let m :=

(︂
µT , (µ(1))T

)︂
where µ(1) := E

[︂
(cT X) · X

]︂
and

µ(2) := E
[︂
cT X

]︂
= cTµ. Then it holds that

x∗(ℓ) = x∗(ℓ,m) = µ+
ℓ− cTµ

cT
(︂
µ(1) − µ(2) · µ

)︂ ×
(︂
µ(1) − µ(2) · µ

)︂
,

and it follows that the gradients of x∗ with respect to the components of m are given by

∂x∗(ℓ,m)

∂µ(1)
i

=
ℓ− cTµ

cT
(︂
µ(1) − µ(2) · µ

)︂ ×
⎡⎢⎢⎢⎢⎢⎢⎣ei −

ci ·
(︂
µ(1) − µ(2) · µ

)︂

cT
(︂
µ(1) − µ(2) · µ

)︂
⎤⎥⎥⎥⎥⎥⎥⎦

∂x∗(ℓ,m)
∂µi

=

⎛⎜⎜⎜⎜⎜⎜⎝
cT

(︂
µ(1) − µ(2) · µ

)︂

ℓ− cTµ
− µ(2)

⎞⎟⎟⎟⎟⎟⎟⎠ ·
∂x∗(ℓ,m)

∂µ(1)
i

.

This implies that the Jacobian of x∗ wrt. m is given by

∂x∗(ℓ,m)
∂m

=

(︃
ℓ−cTµ

cT v ×M
(︃
1− cTµ · ℓ−cTµ

cT v

)︃
×M

)︃
, (B.14)

where M := Id − (cT v)−1vcT and v := µ(1) − cTµ · µ. The latter Jacobian has the same rank as M
which has either rank d or rank d − 1. Since

Mv = v− (cT v)−1vcT v = v− v = 0

and v ≠ 0 (since v = Σc and Σ has (as a covariance matrix of a non-degenerate distribution) full rank)
it follows that the Jacobian has rank d− 1. Due to the following corollary to [Owe01, Theorem 3.3],
which follows directly from a strong law of large numbers and the continuous mapping theorem,
we can construct an asymptotic 1−α confidence region for x∗(ℓ,µ):

Corollary 8. Let n ∈ N denote the (fixed) sample size and let Xi ∈ Rp (i = 1, · · · ,n) be independent
with common distribution function F0, mean µ0, full-rank variance Matrix V0 and let h : Rp → Rd

(with 1 ≤ d ≤ p) be a mapping that is differentiable with Jacobian ∂h/∂µ of rank q > 0.

If additionally h is continuously differentiable in θ0 := h(µ0), then the plug-in estimate of the con-
fidence interval C(3)

r,n from [Owe01, Theorem 3.3] is an asymptotic 1 − α confidence interval for θ0
and it is given by

⎧⎪⎪⎨⎪⎪⎩h(µ̂)+
n∑︂

i=1

wi

(︄
∂h
∂µ

(µ̂)Xi

)︄ ⃓⃓⃓⃓
⃓⃓
⃓

n∏︂

i=1

nwi ≥ r,wi ≥ 0,
n∑︂

i=1

wi = 1

⎫⎪⎪⎬⎪⎪⎭ ,
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where µ̂ := 1
n
∑︁n

i=1 Xi and r = exp
(︂
− cα

2

)︂
where cα is the (1− α) quantile of the χ2-distribution with q

degrees of freedom.

B.3. Results on Method of Moment Estimation for the Skew-normal and Skew-t
Distribution

Method of moment estimation for some of the parameters of the skew-normal and skew-t distribu-
tion can be based on the following result:

Lemma 18. If X follows a skew-normal distribution with location parameter ξ, skewness parameter
α and dispersion matrix Ω or a skew-t distribution with the additional parameter ν > 2, then

µ = E[X] = ξ + b · δ,
Σ = Var(X) = a ·Ω− b2 · δδT ,

δ =
(︂
1+αT

Ωα
)︂− 1

2 ·Ωα,

where a = 1, b =
√︂

2
π for the skew-normal case and a = ν

ν−2 , b =
√︂

ν
π ·
Γ
(︂
ν−1

2

)︂

Γ( ν2 ) for the skew-t case.

Proof. For the skew-normal case see [Cap12, Eq. (2)]. For the skew-t case see [Azz13, Eqns.
(6.25), (6.26)]. □

For this paper we are mainly interested in estimators of ξ, Ωc and Ωα. These are linearly many (in
the dimension of X) parameters and on could hope that these can be estimated with linear effort.
This is, however, unfortunately not the case and the method of moment estimator can even fail to
exist. Furthermore we are not aware of method of moments estimator for the location parameter ξ.
It can, however, be obtained by performing e.g. maximum likelihood estimation for each marginal
(using e.g. the sn package (cf. [Azz19] and so can a for the skew-t distribution), details of the
estimation of the location parameter in the univariate skew-normal family are discussed by [TP19]).
Denote such estimators by ξ̂ and â. Then, by Lemma 18, we have for the other parameters of
interest the plug-in estimates

Ωcˆ︁ := â−1 ·
(︃
Σcˆ︁+ (µ̂− ξ̂)(µ̂− ξ̂)T c

)︃
, (B.15)

γ ·Ωαˆ︁ := b−1 · (µ̂− ξ̂), (B.16)

where µ̂ := n−1 ∑︁n
i=1 Xi and Σcˆ︁ = [︂

n−1 ∑︁n
i=1(cT Xi) · Xi

]︂
−

[︂
n−1 ∑︁n

i=1 cT Xi
]︂
·
[︂
n−1 ∑︁n

i=1 Xi
]︂

are estimators
from an i.i.d. sample X1, · · · ,Xn of X and where γ := αTΩα. Furthermore we have that

α = (1+ γ)
1
2 ·

(︂
Σ+ b2 · δδT

)︂−1 ·
(︃
µ− ξ

b

)︃

and letting β :=
(︂
Σ+ b2 · δδT

)︂−1 ·
(︂
µ−ξ

b

)︂
it holds that sign(αi) = sign(βi) for all 1 ≤ i ≤ d. If βi ≠ 0 then it

is simple to verify that the above equation implies that αi
βi
· β = α from which it follows that

αi =
(︂
β2

i +α
2
i β

T
Ωβ

)︂ 1
2 .
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Replacing β by its plug-in estimator β̂ (where Σ is replaced by the empirical covariance matrix) it
follows that there exists a solution α if and only if β̂T

Ω̂β̂ < 1 and in this case it holds that

α ≈ α̂ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if β̂ = 0
β̂√︂

1−β̂T
Ω̂β̂

if β̂T
Ω̂β̂ < 1

undefined otherwise.

Hence, the plug-in estimator is not always well defined and necessitates the calculation of a matrix
inverse. However, as detailed above, we can estimate Ωc and Ωα up to a multiplicative constant by
estimating 3d (i.e. linear in the dimension) parameters. The multiplicative constant γ can, however,
only be found by estimating O

(︂
d2

)︂
population parameters and the method of moments estimator

is not guaranteed to exist. By Theorem 4 and Theorem 5 we know that the optimizer (under a
skew-normal or skew-t model) is an element of the two-dimensional affine subspace

{ξ + a1 ·Ωc+ a2 ·Ωα |a1,a2 ∈ R } (B.17)

and therefore marginal estimation of the location parameters together with (B.15) and (B.16) can
be utilized to estimate this subspace from which interesting stress scenarios can be selected.
Furthermore for the scenario according to (3.6) it holds that

x∗(ℓ,Σ) := µ+
(︄
ℓ− cTµ

cTΣc

)︄
Σc

= ξ + b · δ+
(︄
ℓ− cTµ

cTΣc

)︄ [︂
a ·Ωc− b2 · (δT c) · δ

]︂

= ξ +

[︄
b− b2 ·

(︄
ℓ− cTµ

cTΣc

)︄
· (δT c)

]︄
· δ+ a ·

(︄
ℓ− cTµ

cTΣc

)︄
·Ωc

= ξ +
(︂
1+αT

Ωα
)︂− 1

2 ·
[︄
b− b2 ·

(︄
ℓ− cTµ

cTΣc

)︄
· (δT c)

]︄
·Ωα+ a ·

(︄
ℓ− cTµ

cTΣc

)︄
·Ωc

which implies that, if the skewness is misspecified as α = 0, the plug-in estimate of the scenario
will lie in the affine subspace (B.17), but will in general have a much smaller likelihood than the
true reverse stress testing scenario.
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C.1. Proofs
Proof of Corollary 3. Simply note that τ in [Tha01] and τ in this publication are equal if x1 = xn and
the τ in this publication is one smaller otherwise. Thus one only needs to distinguish these cases.
This is fortunately simple since the latter kind of sequences correspond to the loops (where on
also needs to consider those loops that start with a block of ones). There are (in the notation of
Tharrats (2001)) exactly 2

(︂
m−1
h−1

)︂(︂
n−1
h−1

)︂
such loops which yields the desired formula. Thus it follows

that

P(τ(X) = x) =
(︄

n
n1

)︄−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2×
⎛⎜⎜⎜⎜⎜⎝

n1 − 1
x+1

2 − 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

n2 − 1
x+1

2 − 1

⎞⎟⎟⎟⎟⎟⎠ if x is odd

(︄
2n
x
− 2

)︄
×

⎛⎜⎜⎜⎜⎜⎝
n1 − 1
x
2 − 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
n2 − 1
x
2 − 1

⎞⎟⎟⎟⎟⎟⎠ if x is even

=

(︄
n
n1

)︄−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x+ 1)2

2n1n2
×

⎛⎜⎜⎜⎜⎜⎝
n1
x+1

2

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

n2
x+1

2

⎞⎟⎟⎟⎟⎟⎠ if x is odd

nx− x2

2n1n2
×

⎛⎜⎜⎜⎜⎜⎝
n1
x
2

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
n2
x
2

⎞⎟⎟⎟⎟⎟⎠ if x is even

which yields the desired result. □

Proof of Lemma 9. To show the symmetry write

x = m± a =

⎧⎪⎪⎨⎪⎪⎩
m+ a if x ≥ a
m− a if x < 0

for x ∈ [2m− 1] and a > 0. Then

P(τ̃n,n1,n2 = x) =

⎧⎪⎪⎨⎪⎪⎩
(m± a+ 1)2 ×Gm,m(m± a+ 1) if x is odd

(m2 − a2)×Gm,m(m± a) if x is even

Thus, for m ∈ N,a ∈ N and m ± a odd it suffices to show that (m + a + 1)2 ×Gm,m(m + a + 1) =
(m− a+ 1)2 ×Gm,m(m− a+ 1). To verify this claim one only needs to check the identity

(m+ a+ 1)×
(︄

m
m+a+1

2

)︄
= (m− a+ 1)×

(︄
m

m−a+1
2

)︄
.
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To this end it is helpful to distinguish two cases:

• If m is odd (and thus a is even), then it is sufficient to verify that

(m+ a+ 1)×
(︄

2m+ 1
m+ a+ 1

)︄
= (m− a+ 1)×

(︄
2m+ 1

m− a+ 1

)︄

for arbitrary m,a ∈ N.

• If m is even (and thus a is odd), then it is sufficient to verify that

(m+ a+ 1)×
(︄

2m
m+ a+ 1

)︄
= (m− a)×

(︄
2m

m− a

)︄

for arbitrary m,a ∈ N.

Furthermore for m± a even it holds, that Gm,m(m+ a) =Gm,m(m− a) and thus the density of τ(X) is
symmetric about m and therefore E[τ(X)] = m.

E[τ(X)] = 2n0n1
n holds for n0 ≠ n1 since it holds that

E[τ(X)] =
2(n0∧n1)∑︂

x=1

xP(τ(X) = x)

=

n0∧n1∑︂

x=1

2xP(τ(X) = 2x)+ (2x− 1)P(τ(X) = 2x− 1)

=

n0∧n1∑︂

x=1

Gn0,n1(2x)×
[︂
2x

(︂
2nx− (2x)2

)︂
+ (2x− 1) · (2x− 1+ 1)2

]︂

= 4(n− 1)×
n0∧n1∑︂

x=1

x2Gn0,n1(2x) =
(n− 1)

n0n1
(︂

n
n0

)︂ ×
n0∧n1∑︂

x=1

x2
(︄
n0

x

)︄(︄
n1

x

)︄

=
2n0n1

n

where the last equality follows from the relation

m∧n∑︂

h=1

h2
(︄
m
h

)︄(︄
n
h

)︄
=

m2n2

(m+ n)(m+ n− 1)

(︄
m+ n

m

)︄

proved in Tharrats (2001) on p. 8.

For n0 = n1 = m it holds that

E[τ(X)2] =
2m−1∑︂

x=1

x2P(τ(X) = x)

=

m∑︂

x=1

Gm,m(2x)×
[︂
(2x)2 ×

(︂
2x · (2m)− (2x)2

)︂
+ (2x− 1)2 × (2x)2

]︂

=
2

m2
(︂
2m
m

)︂ ×
⎡⎢⎢⎢⎢⎢⎢⎣

m∑︂

x=1

(︂
x2 + 4(m− 1)x3

)︂ (︄m
x

)︄2
⎤⎥⎥⎥⎥⎥⎥⎦

=
2

m2 ×
[︄

m3

2(2m− 1)
+ 4(m− 1)

m3

4(2m− 1)
(1+m)

]︄



C.1. Proofs

C

103

=
m

2m− 1
+

2(m− 1)m(m+ 1)
2m− 1

=
m(2m2 − 1)

2m− 1

where the exact relations (13,2) and (13,3) of Tharrats (2001) where used. Thus the formula for
the variance follows from Var(τ(X)) = E[τ(X)2]−m2. □

Proof of Lemma 11. All that is necessary to apply [Lee90, Corollary 1 on p. 83] is to calculate the
conditional expectation ψ2((x1,y1), (x2,y2)) = E

[︁
Dn ((x1, x2,X3,X4,X5), (y1,y2,Y3,Y4,Y5))

]︁
and refor-

mulate the eigenvalue problem:

Since Dn only depends on the ranks of the Yi it can be, w.l.o.g., assumed that y1,y2 ∈ [0,1] and
that Y3,Y4,Y5 are i.i.d. uniform on [0,1].

The probability of Ay1,y2 := Ranky1,y2,Y3,Y4,Y5(y1,y2) ∈ {(1,4), (1,5), (2,4), (2,5)} where

RankM(y1,y2) := (|{y ∈ M : y ≤min{y1,y2}}| , |{y ∈ M : y ≤max{y1,y2}}|)

is given by

P(Ay1,y2) = 3(Fmax − Fmin)2 · (1− Fmax)+ (Fmax − Fmin)3

+ 6Fmin · (Fmax − Fmin) · (1− Fmax)+ 3Fmin · (Fmax − Fmin)2

where Fmin =min {y1,y2} and Fmax =max {y1,y2}. This can be simplified to

P
(︂
Ay1,y2

)︂
= (−3+ 2Fmin) · (Fmin)2 + (3− 2Fmax) · (Fmax)2 .

Furthermore for By1,y2 := Ranky1,y2,Y3,Y4,Y5(y1,y2) ∈ {(1,2), (4,5)} it holds that

P
(︂
By1,y2

)︂
= (Fmin)3 + (1− Fmax)3

and some algebraic manipulations yield

16 ·P
(︂
By1,y2

)︂
− 8 ·P

(︂
Ay1,y2

)︂
= 8 ·

(︂
3
(︂
(Fmin)2 + (Fmax)2

)︂
− 6Fmax + 2

)︂

Thus, in summary

ψ2 ((x1,y1), (x2,y2)) = p2−(x1+x2) · (1− p)1+x1+x2 · (−1)x1+x2 · 8 ·
(︂
3
(︂
(Fmin)2 + (Fmax)2

)︂
− 6Fmax + 2

)︂

and it follows that

E(x2,y2)
[︁
ψ2 ((x1,y1), (x2,y2)) · f (x2,y2)

]︁

=

1∑︂

x2=0

[︄
(1− p)1−x2 · px2 ·

∫︂ 1

0
ψ2 ((x1,y1), (x2,y2)) · f (x2,y2) dy2

]︄

=

1∑︂

x2=0

[︄
p2−x1 · (1− p)2+x1 · (−1)x1+x2 · 8 ·

∫︂ 1

0
k(y1,y2) · f (x2,y2) dy2

]︄

= 8 · p2−x1 · (1− p)2+x1 · (−1)x1 ·
1∑︂

x2=0

[︄
(−1)x2 ·

∫︂ 1

0
k(y1,y2) · f (x2,y2) dy2

]︄

= c(x1) ·
∫︂ 1

0
k(y1,y2) · ( f (0,y2)− f (1,y2)) dy2
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for any f ∈ L2 and where k(y1,y2) := 3
(︂
(Fmin)2 + (Fmax)2

)︂
− 6Fmax + 2 and c(x1) := 8 · p2−x1 ·

(1− p)2+x1 · (−1)x1 . Since c(0) = p
p−1 · c(1) it follows that if f is an eigenfunction with eigenvalue

λ f ≠ 0, then
λ f

c(1)
f (1,y1) =

λ f

c(1)
p− 1

p
f (0,y1)

which implies f (1,y1) = p−1
p f (0,y1) and thus the eigenproblem can be reduced to solving

λ f f (x1,y1) = c(x1) ·
(︄

p− 1
p
− 1

)︄∫︂ 1

0
k(y1,y2) · f (1,y2) dy2 = −c(x1)

p

∫︂ 1

0
k(y1,y2) · f (1,y2) dy2

for either x1 = 0 or x1 = 1. For x1 = 1 this yields

λ f f (1,y1) =
c(1)
p− 1

∫︂ 1

0
k(y1,y2) · f (1,y2) dy2 = 8 · p · (1− p)2 ·

∫︂ 1

0
k(y1,y2) · f (1,y2) dy2

and thus for any eigenvalue λ of φ ↦→
∫︁ 1

0 k(y1,y2)φ(y2) dy2 the value 8 · p · (1− p)2 ·λ is an eigenvalue
of the operator of interest. □

C.2. Calculation of U-statistics based on Chatterjee’s Rank Correlation ξ
Code demonstrating how to calculate U-statistics based on Chatterjee’s ξ efficiently. It is based
on the idea that one can simply update an array of counts of all relevant subsequences. The first
argument of calc_xi should be the vector

(︂
Xπ(1), . . . ,Xπ(n)

)︂
.

� ⊵
1 function calc_xi_add0!(l::Array{Float64,4},m::Int64)
2 for j=reverse(2:m)
3 for k=1:m
4 l[1,k+1,j,1] += l[1,k,j-1,1]
5 for i=2:m
6 l[i,k+1,j,1] += l[i,k,j-1,1] + l[i-1,k,j-1,2]
7 end
8 end
9 end
10 l[1,2,1,1] += 1
11 end
12
13 function calc_xi_add1!(l::Array{Float64,4},m::Int64)
14 for j=reverse(2:m)
15 for k=1:(m+1)
16 l[1,k,j,2] += l[1,k,j-1,2]
17 for i=2:m
18 l[i,k,j,2] += l[i,k,j-1,2] + l[i-1,k,j-1,1]
19 end
20 end
21 end
22 l[1,1,1,2] += 1
23 end
24
25 function calc_xi_mat(s,m)
26 #jumps+1 x n_0+1 x length x last_bit
27 l = zeros(m,m+1,m,2)
28 for v in s
29 if v==0
30 calc_xi_add0!(l,m)
31 else
32 calc_xi_add1!(l,m)
33 end
34 end
35 # jumps+1 x n_0+1
36 dropdims(sum(l[:,:,m,:],dims=3),dims=3)



C.3. Generating Random Bits with Non-Uniform Probability

C

105

37 end
38
39 function calc_xi(s,m)
40 jumps = 1:(m-1)
41 n0 = (1:(m-1))'
42 n0n1 = n0 .* (m .- n0)
43 sum(calc_xi_mat(s,m)[2:end,2:(end-1)] .* jumps ./ n0n1) /
44 binomial(BigInt(length(s)),m)
45 end� �

C.3. Generating Random Bits with Non-Uniform Probability
Most programming languages offer the ability to uniformly sample unsigned integers and therefore
blocks of uniformly distributed bits (i.e. block of i.i.d. Bernoulli random variables with probability
p = 0.5). There is usually also some way to sample bits with arbitrary p ∈ (0,1), but in e.g. the Julia
programming language

� ⊵
1 import StatsBase
2 x=falses(2ˆ20*8);
3 StatsBase.direct_sample!([true,false],StatsBase.AnalyticWeights([0.25,0.75]),x);� �

it is general purpose ([true,false] could be replaced by any subtype of AbstractArray)
and therefore not as fast as a specialized version. For example on my AMD Ryzen 5 2600 it
generates about 8 MiB/s of randomness which is a lot less than the approximately 7000 MiB/s of
randomness the default Mersenne Twister pseudo random number generator (PRNG) produces.
Indeed it is possible to generate bits with non-uniform probability (biased bits) more efficiently: As
described in e.g. [Gry21, Proposition 3.1], if p ∈ (0,1) has the expansion (bi)i∈Z in base 2 where
bi ∈ {0,1} and p =

∑︁∞
i=1

bi
2i , then the following algorithm produces a biased bit which takes the value

1 with probability p and the value 0 with probability 1 − p: Let
(︂
b̃1

)︂
i∈N be a sequence of bits that

are i.i.d. Bernoulli with p̃ = 0.5. Denote by n := min{i ∈ N : b̃i = 1} the first index such that b̃n = 1
and emit bn. It can be easily seen that this is correct since the probability of looking at bi is exactly
2−i. This is also quite efficient since the expected number of bits used to output one bit is two
(cf. [Gry21]). For a practical implementation there are, however, relevant details not discussed in
[Gry21]

1. How does one gain access to the binary expansion of p? If it is stored as a floating point
number, then the precision is already limited to finitely many non-zero binary digits bi. Thus
I advocate for only using b1, . . . ,b64 (for p represented as an IEEE 754-2008 binary64 point
number, see Code 3 for an example). This decision has two main consequences: Firstly
sampling with probabilities less than 2−64 < 5.5 · 10−20 is not possible, but this is unlikely to
matter for most practical purposes. Secondly the absolute error in the probability with which
the sampling is performed will be less than 5.5 · 10−20.

2. What is the best strategy (in terms of performance) to manage the source PRNG? While it
may, at first, seem like it would be best to use only as many bits as needed it turns out that
there is a performance benefit to always using exactly 64 bits of randomness.1

1The first design choice implies that one can assume that all bi for i > 64 are zero. Thus the output of the algorithm will
always be 0 if n > 64 and it would therefore be pointless to use more bits from the source PRNG.
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� ⊵
1 function getBinaryDigits(x::Float64)::Tuple{UInt64,UInt8}
2 @assert 0 < x && x < 1
3 mantissa::UInt64 = reinterpret(Unsigned,x) & Base.significand_mask(Float64)
4 | 1 << Base.significand_bits(Float64)
5 adj = -exponent(x) - 1;
6 digits::UInt8 = Base.significand_bits(Float64)
7 + 1 - trailing_zeros(mantissa) + adj;
8 (mantissa << (Base.exponent_bits(Float64)-adj), digits)
9 end� �

Code 3: Code demonstrating how to extract the first 64 bits in the base 2 expansion 0.b1b2 . . .b64 from binary64 floating
point number in the Julia programming language.

Since PRNGs usually have quite a large state it is often not advisable to generate random numbers
in an otherwise tight loop (i.e. a loop whose body is CPU cache and register friendly) since this
can lead to a performance penalty. This can be avoided by filling a buffer with the needed random
numbers before performing the actual calculations (in this case generation of the biased bits).
To achieve optimal cache utilization the buffer size needs to be chosen carefully. The observed
performance suggests that it is best to chose a buffer size that is approximately as large as the L1
cache available to each CPU core.

The following two subsections detail the relevant implementation details.

C.3.1. Simple Implementation Using 64 Bits of Randomness

This subsection presents different variants of generating biased random bits. The variants can
be obtained by either changing the constant at the beginning or eliminating the @static if’s
that don’t match the desired variant and keeping only the bodies of those that do. The choice is
between two methods of looking at the value of bi:

1. update_method=mask Left shift followed by masking

2. update_method=lookup Using a lookup table.

Furthermore three variants of buffer management are considered:

1. alloc_method=full Immediately obtain all random numbers

2. alloc_method=small_chunks Obtain 64 · 64 = 4096 bits at a time

3. alloc_method=chunksObtain approximately buf_size*64 bits (defaults to 16384 bits).

A few remarks on the details implementation are in order:

1. The @static if’s are evaluated at compile-time. They therefore do not influence the
benchmarks.

2. The (pseudo) random bit generation is performed in 64 bit chunks. Each chunk starts with
all bits set to zero (line 49/80) and thus the update can be done branch free (cf. e.g. line
90). This is possible because it is known beforehand that the bit starts off with the value zero
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Table C.1: Comparison of the measured performance (cf. [CR16]) of the different approaches discussed in this section
when generating random bits with p = 0.25. The AMD machine had an AMD Ryzen 5 2600 cpu and the Intel machine
had an Intel Core i7-4765T. Since these cpus are very different in terms of generation and tdp this is not meant to be a
comparison of the performance on the different cpus. Instead the goal is to demonstrate, that the findings regarding the
relative performance of the different approaches are not platform specific.

CPU type Buffer allocation Digit lookup Peak MiB/s Average MiB/s

AMD

chunks lookup table 74.813 74.344
chunks mask 44.986 43.744
full lookup table 36.557 33.056
small_chunks lookup table 36.320 34.161
full mask 28.499 25.916
small_chunks mask 27.611 27.336

Intel

chunks lookup table 50.296 47.923
chunks mask 44.011 42.298
full lookup table 31.574 30.125
full mask 29.015 28.020
small_chunks lookup table 26.296 23.898
small_chunks mask 24.394 22.928

which cannot be changed by the logical or. Thus the branch present in the implementation
of core Julia2 is not necessary.

3. It may not seem optimal to write e.g. chunks[i+1] since this suggests an additional add
instruction may be emitted by the compiler. This is however not the case since Julia uses
1-based indices. Unless the compiler has an opportunity for some kind of optimization it is
actually chunks[i] that leads to an additional add instruction, cf. Code 4. Thus iterating
with 0-based indices is preferable.

4. leading_zeros will usually compile to a single instruction (e.g. lzcnt on x86 platforms).

According to the observed performance (cf. Table C.1) it is best to use a lookup table and it is
important to choose the buffer size correctly. In practice using approximately the size of the L1
cache of a single core seems to work best, yielding approximately 75 MiB/s on my AMD Ryzen 5
2600 cpu.

� ⊵
1 import Random
2
3 const update_method = "lookup"
4 const alloc_method = "chunks"
5
6 function getDigitsArray(x::Float64)::Array{UInt64,1}
7 b = BitVector(undef, 64);
8 b.chunks[1] = getBinaryDigits(x)[1];
9 if b.chunks[1] == UInt64(0)
10 @warn "No non-zero digits"
11 end
12 vcat(map(x -> ifelse(x,0x8000000000000000,UInt64(0)),
13 reverse(collect(b))), 0x0)
14 end
15
16 function bitrand_test(n,p::Float64,buf_size::Int64=-1)
17 @static if update_method == "lookup"
18 ba = getDigitsArray(p);
19 end
20 @static if update_method == "mask"
21 (mantissa::UInt64, digits::UInt8) = getBinaryDigits(p);

2https://github.com/JuliaLang/julia/blob/ae8452a9e0b973991c30f27beb2201db1b0ea0d3/
base/bitarray.jl#L689

https://github.com/JuliaLang/julia/blob/ae8452a9e0b973991c30f27beb2201db1b0ea0d3/base/bitarray.jl#L689
https://github.com/JuliaLang/julia/blob/ae8452a9e0b973991c30f27beb2201db1b0ea0d3/base/bitarray.jl#L689
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22 end
23
24 mx = UInt32(ceil(n/64));
25
26 @static if alloc_method == "full"
27 buf_size = 64*(64*mx);
28 buf = Random.bitrand(buf_size);
29 chunks = buf.chunks;
30 k = 0;
31 end
32 @static if alloc_method == "small_chunks"
33 buf = BitArray(undef, 64*64)
34 chunks = buf.chunks;
35 end
36 @static if alloc_method == "chunks"
37 if buf_size < 0
38 buf_size = 1 << 14;
39 end
40
41 buf_size = min(buf_size, n);
42 buf_size = UInt32(ceil(buf_size/64)) * 64;
43
44 buf_chunks = Array{UInt64,1}(undef, buf_size)
45 end
46
47 ret::BitArray{1} = BitArray(undef, mx * 64);
48 ret_chunks = ret.chunks;
49
50 @static if alloc_method == "full" || alloc_method == "small_chunks"
51 for j::UInt64=1:mx
52 chunk::UInt64 = 0
53 @static if alloc_method == "small_chunks" Random.rand!(chunks) end
54 for i::UInt8=0:63
55 @static if alloc_method == "full"
56 @inbounds b::UInt64 = chunks[k+=1];
57 end
58 @static if alloc_method == "small_chunks"
59 @inbounds b::UInt64 = chunks[i+1];
60 end
61 @static if alloc_method == "chunks"
62 @inbounds b::UInt64 = buf_chunks[buf_i += 1];
63 end
64 cnt::UInt8 = leading_zeros(b);
65 @static if update_method == "lookup"
66 @inbounds chunk |= (ba[cnt+1] >> i);
67 end
68 @static if update_method == "mask"
69 mantissa_bit::UInt64 = mantissa << cnt;
70 condition::UInt64 = mantissa_bit & 0x8000000000000000;
71 chunk |= (condition >> i);
72 end
73 end
74 @inbounds ret_chunks[j] = chunk;
75 end
76 end
77 @static if alloc_method == "chunks"
78 j::UInt64 = 0;
79 while j < mx
80 Random.rand!(buf_chunks)
81 buf_i = 0
82 while buf_i < buf_size
83 chunk::UInt64 = 0
84 for i::UInt8=0:63
85 @inbounds b::UInt64 = buf_chunks[buf_i += 1];
86 cnt::UInt8 = leading_zeros(b);
87 @static if update_method == "lookup"
88 @inbounds chunk |= (ba[cnt+1] >> i);
89 end
90 @static if update_method == "mask"
91 mantissa_bit::UInt64 = mantissa << cnt;
92 condition::UInt64 = mantissa_bit & 0x8000000000000000;
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93 chunk |= (condition >> i);
94 end
95 end
96 @inbounds ret_chunks[j += 1] = chunk
97 end
98 end
99 end
100 return ret;
101 end� �
� ⊵

julia> test(b::Array{Float64,1},i::Int64) = @inbounds b[i]
test (generic function with 1 method)

julia> test1(b::Array{Float64,1},i::Int64) = @inbounds b[i+1]
test1 (generic function with 1 method)

julia> @code_llvm test(zeros(100),10)

; @ REPL[2]:1 within `test'
; Function Attrs: uwtable
define double @julia_test_765(%jl_value_t* nonnull align 16 dereferenceable(40),

i64) #0 {
top:
; @ array.jl:809 within `getindex'

%2 = add i64 %1, -1
%3 = bitcast %jl_value_t* %0 to double**
%4 = load double*, double** %3, align 8
%5 = getelementptr inbounds double, double* %4, i64 %2
%6 = load double, double* %5, align 8

;
ret double %6

}

julia> @code_llvm test1(zeros(100),10)

; @ REPL[3]:1 within `test1'
; Function Attrs: uwtable
define double @julia_test1_772(%jl_value_t* nonnull align 16 dereferenceable(40)

, i64) #0 {
top:
; @ array.jl:809 within `getindex'

%2 = bitcast %jl_value_t* %0 to double**
%3 = load double*, double** %2, align 8
%4 = getelementptr inbounds double, double* %3, i64 %1
%5 = load double, double* %4, align 8

;
ret double %5

}� �
Code 4: A small example demonstrating that taking the (i+1)-th element of an array does not cause an extra instruction
to be emitted by the Julia compiler.

C.3.2. More Efficient Utilisation of the Source Random Number Generator

The expected number of bits obtained from 64 bits of source randomness using the algorithm
of [Gry21, Proposition 3.1] is 32 bits. Thus it is quite wasteful to instead always use 64 bits of
source randomness to generate only a single bit. Indeed, repeatedly applying this algorithm to
the remaining bits will succeed most of the time and this is the idea behind the implementation
presented in Code 5. Since this yields approximately 95 MiB/s of randomness on my AMD Ryzen
5 2600, this is the implementation I recommend.
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Some further remarks on the implementation Code 5:

• The & 63 in e.g. line 34 can be thought of as a hint to the compiler that the sign does
not matter (in Julia shifting by a negative number has the semantic of instead shifting in the
opposite direction) and that no wrap-around happens (since the shift will always be less than
64).

• If shift> 63, then the code in line 40 will not work as expected. But, since the buffer is
anyways refilled due to remaining≤ 0, this is not a correctness issue.

� ⊵
1 function bitrand(n,p::Float64,buf_size::Int64=-1)
2 # (mantissa::UInt64, digits::UInt8) = getBinaryDigits(p);
3
4 ba = getDigitsArray(p);
5
6 mx = UInt32(ceil(n/64));
7
8 if buf_size < 0
9 buf_size = 1 << 14;
10 end
11
12 buf_size = min(buf_size, n);
13 buf_size = max(128, buf_size)
14 buf_size = UInt32(ceil(buf_size/64)) * 64;
15
16 buf_chunks = Array{UInt64,1}(undef, buf_size)
17
18 r::UInt64 = Random.rand(UInt64);
19 remaining::Int8 = 64;
20
21 ret = BitArray(undef, n);
22 ret_chunks = ret.chunks;
23
24 j::UInt64 = 0;
25 while j < mx
26 Random.rand!(buf_chunks)
27 buf_i = 0
28 while buf_i+128 <= buf_size && j < mx
29 chunk::UInt64 = 0
30 for i::UInt8=0:63
31 if r == 0 || remaining <= 0
32 @inbounds r = buf_chunks[buf_i += 1];
33 if remaining > 0
34 r >>= remaining & 63;
35 end
36 remaining = 64;
37 end
38 cnt::Int8 = leading_zeros(r);
39 shift::Int8 = cnt+1;
40 r <<= shift & 63;
41 remaining -= shift;
42 @inbounds chunk |= (ba[cnt+1] >> (i & 63));
43 end
44 @inbounds ret_chunks[j += 1] = chunk
45 end
46 end
47
48 return ret;
49 end� �

Code 5: The suggested implementation of a variant of the algorithm of [Gry21, Proposition 3.1].
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C.4. Efficient Calculation of Dn and τ∗n

Similarly to the calculation of the U-statistic based on ξn, the calculation of Dn and τ∗n boils down to
counting how often certain patterns appear as subsequences of X̃ =

(︂
Xπ(1), . . . ,Xπ(n)

)︂
. This can be

done in time linear in n by using a simple principle which I will explain using an example: To count
e.g. the number of times the pattern (0,1,0,1) appears as a subsequence of X̃ one can simply
store the counts of all prefixes in an array and update them using a recursive relationship. For
the example pattern the prefixes are (0), (0,1), (0,1,0), (0,1,0,1) and their counts can be stored in
v ∈ Z4. The initial value of v is v = (0,0,0,0) and it gets updated according to the following rules (for
i = 1, . . . ,n):

• If X̃i = 0 then v1 := v1 + 1 and v3 := v3 + v2

• If X̃i = 1 then v2 := v2 + v1 and v4 := v4 + v3

Code 6 demonstrates how to implement this idea to calculate τ∗n using Single Instruction Multiple
Data (SIMD) parallelism by using the shufflevector intrinsic to arrange the vectors in a way
optimal for the updates. Interestingly this manual vectorization is not necessary: Simply unrolling
the inner loop as demonstrated in Code 7 allows Julia’s LLVM backend3 to automatically vectorize
the code, yielding similar performance (albeit slightly different assembly instructions) to the manual
vectorization. The code for calculating Dn can be found in Code 8.

� ⊵
1 import SIMD
2 function calc_tau_star_SIMD_(s::Main.BitArray)
3 cnt0 = 0.0
4 cnt1 = 0.0
5 m0 = (Main.SIMD).Vec{8, Main.Float64}(0.0)
6 m1 = (Main.SIMD).Vec{8, Main.Float64}(0.0)
7 idx0 = (Main.SIMD).Val((:undef, :undef, 8, 1, 9, 12, 2, 10))
8 idx1 = (Main.SIMD).Val((:undef, :undef, 1, 0, 9, 11, 3, 4))
9 @inbounds for val = s
10 if !val
11 v0 = (Main.SIMD).shufflevector(m0, m1, idx0)
12 v0 = (Main.Base).setindex(v0, cnt0, 1)
13 v0 = (Main.Base).setindex(v0, cnt1, 2)
14 m0 += v0
15 cnt0 += 1
16 else
17 v1 = (Main.SIMD).shufflevector(m0, m1, idx1)
18 v1 = (Main.Base).setindex(v1, cnt1, 1)
19 v1 = (Main.Base).setindex(v1, cnt0, 2)
20 m1 += v1
21 cnt1 += 1
22 end
23 end
24 return [m1[7], m1[6], m0[6], m0[7], m0[8], m1[8]]
25 end
26
27 function calc_tau_star(s::Main.BitArray)
28 sum(calc_tau_star_SIMD_(s) .* [-8, 16, -8, 16, -8, -8]) /
29 (n * (n-1) * (n-2) * (n-3))
30 end� �

Code 6: Single Instruction Multiple Data (SIMD) Julia code (cf. [Sch+19]) demonstrating how to calculate τ∗n.

3Specifically the SLP Vectorizer; cf. https://llvm.org/docs/Vectorizers.html#the-slp-vectorizer.

https://llvm.org/docs/Vectorizers.html#the-slp-vectorizer


C

112 C. Appendix for Chapter 4

� ⊵
1 function calc_tau_star_(s::Main.BitArray)
2 cnt0 = 0.0
3 cnt1 = 0.0
4 m = Main.zeros(16)
5 @inbounds for val = s
6 if !val
7 m[8] += m[11]
8 m[7] += m[3]
9 m[6] += m[13]
10 m[5] += m[10]
11 m[4] += m[2]
12 m[3] += m[9]
13 m[2] += cnt1
14 m[1] += cnt0
15 cnt0 += 1
16 else
17 m[16] += m[5]
18 m[15] += m[4]
19 m[14] += m[12]
20 m[13] += m[10]
21 m[12] += m[1]
22 m[11] += m[2]
23 m[10] += cnt0
24 m[9] += cnt1
25 cnt1 += 1
26 end
27 end
28 @inbounds return [m[15], m[14], m[6], m[7], m[8], m[16]]
29 end
30
31 function calc_tau_star(s::Main.BitArray)
32 sum(calc_tau_star_(s) .* [-8, 16, -8, 16, -8, -8]) /
33 (n * (n-1) * (n-2) * (n-3))
34 end� �

Code 7: Example code demonstrating how to calculate τ∗n in Julia.
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� ⊵
1 import SIMD
2 function calc_D_SIMD_(s::Main.BitArray)
3 cnt0 = 0.0
4 cnt1 = 0.0
5 m0 = (Main.SIMD).Vec{8, Main.Float64}(0.0)
6 m1 = (Main.SIMD).Vec{8, Main.Float64}(0.0)
7 extra = (Main.SIMD).Vec{4, Main.Float64}(0.0)
8 idx0 = (Main.SIMD).Val((:undef, :undef, 8, 0, 9, 1, 11, 12))
9 idx1 = (Main.SIMD).Val((:undef, :undef, 10, 12, 13, 2, 15, :undef))
10 idx_extra = (Main.SIMD).Val((13, 4, 14, 3))
11 @inbounds for val = s
12 if !val
13 extra += (Main.SIMD).shufflevector(m1, m0, idx_extra)
14 v0 = (Main.SIMD).shufflevector(m1, m0, idx0)
15 v0 = (Main.Base).setindex(v0, cnt0, 1)
16 v0 = (Main.Base).setindex(v0, cnt1, 2)
17 m0 += v0
18 cnt0 += 1
19 else
20 v1 = (Main.SIMD).shufflevector(m1, m0, idx1)
21 v1 = (Main.Base).setindex(v1, cnt1, 1)
22 v1 = (Main.Base).setindex(v1, cnt0, 2)
23 v1 = (Main.Base).setindex(v1, extra[1], 8)
24 m1 += v1
25 cnt1 += 1
26 end
27 end
28 return [m1[6], extra[4], extra[2], m1[7], extra[3], m1[8]]
29 end
30
31 function calc_D(s::Main.BitArray)
32 sum(calc_D_SIMD_(s) .* [16, -8, -8, -8, 16, -8]) /
33 (4 * n * (n-1) * (n-2) * (n-3) * (n-4))
34 end� �

Code 8: Single Instruction Multiple Data (SIMD) Julia code (cf. [Sch+19]) demonstrating how to calculate Dn.
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