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ZUSAMMENFASSUNG IN DEUTSCHER
SPRACHE

Die globale Vermessung des Gravitationsfeldes der Erde und dessen zeitliche Verén-
derung liefert eine einzigartige Messgrofe der Erdbeobachtung: Gravitation, und davon
abgeleitet Masseverteilung und Massetransport in der oberflichennahen Schicht der
Erdkruste. Die Zeitliche Anderung des Gravitationsfeldes liefert Daten, die mittlerweile
eine Grundlage fiir viele Geowissenschagften bilden und eien erheblichen Beitrag zum
Verstdndnis des dynamischen Erdsystems, dessen Wasserkreislauf und des Klimawan-
dels leisten. Die Messung der Gravitation und des Schwerefeldes wird allgemein als
Gravimetrie bezeichnet. Sie erméglicht die quantitative Messung von Massednderungen,
ob sichtbare oder unsichtbar, was durch keine andere Technik moglich ist.

Insbesondere die GRACE (Gravity Recovery And Climate Experiment) Satelliten-
mission hat seit 2002 zu den grofien Erfolgen der Satelliten-Gravimetrie beigetragen.
Obwohl der Start der GRACE Satelliten nun schon fast 19 Jahre her ist, und mittlerweile
die Nachfolgemission GRACE-FO mit dem selben Messprinzip die Vermessungszeitreihe
fortfithrt, wird die Datenauswertung immer noch kontinuierlich verbessert.

Im Rahmen dieser Arbeit wurde eine Software zur prazisen Orbit und Gravitations-
feld Bestimmung entwickelt. Dabei wird aus den beobachteten Messdaten entlang der
Satellitenbahn ein globales Modell des Erd-Gravitationsfeldes in Form von sphérisch-
Harmonischen abgeleitet. Dazu wurde in dieser Arbeit der klassische Ansatz der "Varia-
tional Equations' implementiert, welcher inzwischen als das Verfahren mit den genausten
FErgebnissen betrachtet wird.

Die Arbeit verfolgt zwei Hauptziele. Zuerst wird die GRACE Datenauswertung, also
die Bestimmung monatlicher Gravitationsfelder mittels des implementierten Verfahrens
untersucht. Ein Hauptaugenmerk ist dabei die Charakterisierung der Auswirkungen
verschiedener Parameter und Varianten des Verfahrens auf die Ergebnisse. Des weiteren
wird der Einfluss der verschiedenen Sensordaten und dessen Kalibrierung wahrend
des Verfahrens analysiert. Vor allem die Akzelerometerdaten, welche nicht-gravitative
Beschleunigungen auf die Satelliten messen, werden detailliert studiert. Die grofiten
Einfliisse auf die Ergebnisse haben die Gewichtung der verschiedenen Messdaten, sowie
die neben dem Gravitationsfeld bestimmten Parameter. Diese sind hauptséchlich durch
die Kalibrierung der Akzelerometer und die Unterteilung der monatlichen Datensétze
definiert.

Das zweite Ziel der Arbeit ist die komplette Simulation einer GRACE &hnlichen
Satellitenmission samt Datenauswertung. Dazu wurden die beiden Satelliten samt aller
relevanten Sensordaten und unter Beriicksichtigung von Umwelt- und Sensormodellen
simuliert. Mit der Simulation werden Effekte und Einfliisse jedes einzelnen Sensors
und dessen Charakteristik, sowie verschiedener Observationsdaten und verschiedener
Umwelteinfliisse auf die Ergebnisse untersucht. In der Simulation sind zu jeder Zeit das
wahre Gravitationsfeld und die theoretisch perfekten Sensordaten als Referenz bekannt.
Zudem bietet die Simulation den grofien Vorteil jedes Sensor- und Umweltmodell einzeln
ein- und auszuschalten.

Vii



Mit dem Vergleich der realen GRACE Datenauswertung und den Ergebnissen der
Simulation, werden Riickschliisse auf die GRACE Daten und die Gravitationsfeldbes-
timmung gezogen aber andersherum auch die Modellierung validiert.

viii
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INTRODUCTION

The scope of this thesis is the investigation of Gravity Field Recovery (GFR) from
GRACE (Gravity Recovery And Climate Experiment) satellite observation data. The
processing from GRACE instrument data to monthly gravitational field solutions is
implemented and analyzed with real GRACE data, as well as with data of a com-
pletely simulated GRACE-like mission, including all main observation and satellite
data. Through this, different influences and relations between satellite, sensor noise
characteristics, environment models and options in the processing chain will be analyzed
and revealed. With the simulation approach each effect and its influence on the overall
gravitational field solutions can be assessed. Furthermore, the GFR simulation is vali-
dated and compared against the real GRACE processing. The whole GFR simulation
loop is intended to serve as a testbed for the development of improved and entirely new
satellite gravimetry mission concepts in the future.

The idea and objectives of this thesis were developed within the scope of the Col-
laborative Research Center (CRC) geo-Q "Relativistic Geodesy and Gravimetry with
Quantum Sensors". The results, gained expertise and all developed software and tools
will be further utilized in the successor CRC TerraQ.

To introduce and motivate this thesis, first a general motivation on satellite gravimetry
and its most recent and impressive achievements, with special focus on the GRACE
satellite mission, is given in this chapter. It is followed by an introduction of the
basic concepts and a historical review of satellite gravimetry. In this context the four
most recent gravimetry missions and their measurement concepts are shortly depicted.
Subsequently, the research motivation and the resulting main goals and objectives of
this thesis are derived. The Introduction concludes with the presentation of the outline
of the thesis.

1.1 Motivation

Space-based Earth observation is a prerequisite to globally monitor the dynamic system
Earth and thereby improving our understanding of the underlying global processes and
interrelations. The measurement of Earth’s varying gravitational field, referred to as
gravimetry, introduces a completely different and independent measurement quantity:
Gravitation, and hence distribution of masses. Changes of Earth’s gravitational field are
primarily driven by mass redistribution in the near-surface layer of the Earth system,
thus the fields of continental hydrology, cryosphere, ocean, atmosphere, and solid Earth
are accessed. Water is exchanged between oceans, cryosphere, land and atmosphere
within periods from sub-daily to annual and beyond decadal and century scales. Changes
in the global water cycle are directly affecting sea level, ocean currents, freshwater
resources and weather. The trends may be considered as proxy for global warming
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and climate change, natural and or anthropogenic. Hence, in the long term, satellite
gravimetry also allows to detect and assess impacts of humankind on the system Earth.

Exceptional contributions have been made in the last two decades by four dedicated
satellite gravimetry missions, namely CHAMP (CHAllenging Minisatellite Payload),
launched in 2000 (Reigber et al., 2002), GOCE (Gravity field and steady-state Ocean
Circulation Explorer), launched in 2009 (Drinkwater et al., 2003) and GRACE (Gravity
Recovery And Climate Experiment), launched in 2002 (Tapley et al., 2004a) and not
to forget, the recent GRACE successor mission, GRACE-Follow-On (GRACE-FO)
(Landerer et al., 2020), launched in mid 2018 to continue the unprecedented successful
GRACE measurement time series.

These missions triggered new insights in the understanding of the dynamic Farth sys-
tem. Today, GRACE monthly gravity field solutions are an indispensable measurement
for various science disciplines and for instance essential for IPCC (Intergovernmental
Panel on Climate Change) reports.

The GRACE mission provided monthly solutions of Earth’s time varying gravitational
field for 15 years, which are continued by GRACE-FO with a gap of one year. The
annual water cycle results in enormous seasonal water mass redistribution around the
globe, measured in the monthly gravitational field solutions (eg. Sec. 7.6 and Fig. 7.46).
Furthermore, distinct trends of continental water storage over the mission time are
detected and quantified in several regions around the world. A recent summary of
detected global trends and their causes is given by Rodell et al. (2018).

Some prominent trends and numbers, detected by GRACE and GRACE-FO, are
depicted in the following. The Greenland ice sheet looses on average about 265 Gt
mass per year over the GRACE mission period (Forsberg et al., 2017; Tapley et al.,
2019). Variations in the year-to-year variability, as well as the annual mass balance
may be quite big but the trend is distinct. The biggest annual ice loss was detected
in 2019 of about 532 Gt (Sasgen et al., 2020). The situation in Antarctica is more
complex, where in western Antarctica and Peninsula the trend is negative, in the eastern
regions it is positive. Nevertheless, the overall balance is negative, and the Antarctic ice
sheet is losing on average about 100 Gt mass every year over the GRACE mission time
period (Forsberg et al., 2017; Shepherd et al., 2020; Tapley et al., 2019). Aside from the
redistribution of water, gravitational changes in the polar regions are also caused by
Glacier Isostatic Adjustment (GIA), a rebound of the Earth crust due to the decreasing
weight of ice sheets since the last glacial period (eg. Caron et al., 2018).

Further cryosphere related trends are detected in the Canadian archipelago, the gulf
of Alaska and in Patagonia due to the retreat of ice fields and glaciers. Besides the by
far biggest trends of the polar ice sheets, trends over the whole globe can be detected
and quantified by the gravitational measurement. For instance due to groundwater
depletion and droughts eg. in southern California, the Middle East or northern India
(Famiglietti et al., 2011; Voss et al., 2013). Rodell et al. (2018) quantifies the water
storage mass losses in terms of annual trends over the GRACE mission time to be
4.2, 32.1 (northern Middle East: eastern Turkey, Syria, Iraq and Iran) and 19.2 Gt/y,
respectively. Positive trends due to an increase of precipitation are sensed as well in
some regions. Nevertheless, the predominant negative trends of terrestrial water storage
result in an increased mass of the oceans, contributing to sea level rise. The average sea
level rise per year between 1993 and 2018 is about 3.2 mm (WCRP Global Sea Level
Budget Group, 2018), measured by satellite altimetry. It is the sum of mass gain and
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expansion due to temperature and salinity changes. The total amount of additional
water in the oceans can be distinguished by considering GRACE data of ocean mass
change. The mass proportion of the current sea level rise had been calculated to be
around two third (eg. Tapley et al., 2019; WCRP Global Sea Level Budget Group,
2018; Feng and Zhong, 2015). Novel, improved data processing by Uebbing et al. (2019)
suggests that it is considerably lower.

A recent recap of major advances from GRACE in the various geosciences disciplines
with regard to climate change is given by Tapley et al. (2019).

1.2 Satellite Gravimetry

Gravimetry is one of the three pillars of geodesy, with the other two pillars dealing with
the shape of the Earth and its orientation in space (eg. Torge and Miiller, 2012).

Thereby the term gravimetry is not restricted to satellite measurements, but also
ground-based, punctual measurements are enclosed. The enormous advantage of satellite
gravimetry is the global coverage with the same instrument in a rather short amount
of time, and resulting global gravitational field models. Indeed, these models have to
be understood as a mean gravitational model over the time period that was needed to
gather enough data for a global model. Due to the quadratic decrease of gravitation with
distance, the satellite measurement in an Earth orbit has to suffer a reduced resolution
and accuracy compared to ground-based, static instruments.

The general measurement principle of satellite gravimetry is that satellites follow
a gravitational trajectory and from its measurement a conclusion on the underlying
gravitational field can be drawn. Different concepts are based on the methodology how
the satellite’s trajectory or orbit is measured. The measurement of a satellite’s position
or velocity is not possible, directly. Usually just an one-dimensional quantity can be
measured. These might be ground-based range, range-rate or angle measurements,
furthermore also measurements between satellites, referred to as Satellite-to-Satellite
Tracking (SST) are possible. Nevertheless, all these measurements are related to the
satellite’s position or trajectory, which hence might be determined from it (cf. Ch. 4).
Different concepts of implementing and combining these measurement concepts are
feasible and conducted by the mentioned CHAMP, GRACE and GOCE satellite missions.

With the three dedicated major satellite gravimetry missions, the beginning of the
21th century was declared as the "Decade of Geopotential Research" (eg. Seeber, 2003).
Nevertheless, already with the launch of the first artificial satellite Sputnik in 1957,
its signals were used for geodetic measurements to determine the ellipsoidal shape of
the Earth. Since then, the satellites Sputnik 2, Explorer and Vanguard were used to
determine the flattening and the pear-shape of the Earth (King-Hele and Merson, 1958;
O’Keefe et al., 1959). Already before that, the flattening of the Earth was estimated by
Laplace from observations of the Moon’s nodal precession in 1802 (eg. Seeber, 2003, p.
5).

In the following centuries the number of artificial Earth satellites increased drastically,
as well as the tracking and measurement techniques. Furthermore several passive geodetic
satellites were launched that were tracked from ground stations, especially SLR (Satellite
Laser Ranging) satellites. The motivation was split between the development of more
accurate gravitational models of the Earth for more accurate obit propagation and
determination, and the geodetic science related to the shape of the Earth and the Geoid



4 INTRODUCTION

(cf. Sec. 2.3.2 for the definition of the Geoid). With the combination of observations
from different satellites more detailed Earth gravitational filed models were developed
and published over the centuries like the series of GEM (Goddard Earth Models) (Lerch
et al., 1985) and JGM (Joint Gravity Model) (Tapley et al., 1996) models.

The driver for further improvement was the satellite altimetry mission TOPEX/Po-
seidon, launched in 1992 (Tapley et al., 1994; Nerem et al., 1994). It was concluded,
that the largest contributor to the altimeter error budget was to be expected from
the orbit accuracy due to uncertainties in the gravitational field model of the Earth
(Lemoine et al., 2002). This resulted in the development of the popular EGM96 (Earth
Gravity Model) (Lemoine et al., 1998), which is additionally based on satellite altime-
try measurements and the first SST measurements between the TOPEX/Poseidon
satellite and the GPS (Global Positioning System) constellation. During that time the
first ideas for the current gravimetry missions were developed and proposed (Seeber,
2003, p. 469 ff.). For a detailed historic overview of satellite geodesy see eg. Dicati (2017).

The multiply mentioned gravimetry missions CHAMP, GRACE and GOCE have
drastically increased the resolution and accuracy of gravitational field models and the
realization of the Geoid. It enabled the application of satellite gravimetry to a broad
field of geosciences, as introduced in the beginning (Sec. 1.1). Each of the three missions
realizes a different main measurement concept of SST, which are especially sensitive to
different areas of the gravitational field, meaning the ability to resolve rougher or finer
structures. The idea of the different concepts is sketched in Figure 1.1.

Due to the quadratic decrease of the gravitational acceleration with distance, the
satellites are in a Low Earth Orbit (LEO), to be more sensitive to the fine structures of
Earth’s gravitational field. The SST principle can be realized between a LEO satellite
and GNSS (Global Navigation Satellite System) satellites like GPS, referred to as
high-low (hl)-SST measurement. This concept was first conducted by CHAMP (and is
also employed by GRACE and GOCE as additional measurement). The high number of
GNSS satellites allows for about seven to 16 measurements at the same time in various
directions and thereby the possibility of a kinematic and dynamic absolute position
determination of the satellites (cf. Sec. 4.1 for dynamic and kinematic orbits). With this
measurement the hl-SST method is especially sensitive to the rougher or large-scale
structures of the gravitational field.

The method employed by GRACE is the low-low (11)-SST between two LEO satellites,
separated by about 220 km. With an appropriate measurement device, using dual
one-way ranging (cf. Sec. 3.2.1) or even an optical interferometric measurement device
(as successfully utilized by GRACE-FO as technology demonstrator Abich et al. (2019)),
the relative measurement can be much more accurate than the hl-SST. Nevertheless,
the additional hl-SST measurement, which has an accuracy that is orders of magnitude
worse, is important to make full use of the accurate 11-SST measurement and to obtain
a good overall gravitational field solution. The 1I-SST method is most sensitive to the
medium to fine structures of the gravitational field. In this range most of the dynamic
processes close to the Earth surface take place, which were introduced in Section 1.1.

The GOCE mission used a variant of 1I-SST that is referred to as Satellite Gravity
Gradiometry (SGG). In one satellite the relative acceleration measurement between six
free flying test masses is used to determine the gravitational gradient. This is more or less
a 11-SST concept in three spatial directions, condensed in one satellite. The SGG concept
is the most sensitive to the fine structures of the gravitational field, but not to the
rougher and medium structures. Therefore gravitational fields from GOCE are usually
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Figure 1.1: Sketch of measurement concepts of satellite gravimetry: High-low Satellite-to-
Satellite Tracking (hl-SST) between high orbiting satellites (eg. GNSS) and satellites in LEO,
low-low (11)-SST between two LEO satellites, Satellite Gravity Gradiometry (SGG) measured
between six free flying test masses in one satellite, and Satellite Laser Ranging (SLR) to passive
MEO satellites or the LEO satellites.

combined with GRACE solutions in the respective resolutions. Dynamic processes on the
Earth affecting the finer structures are far below the detectable accuracy. Hence GOCE
is related to the static gravitational field of the Earth and provided an unprecedented
Geoid accuracy, established as global height reference system (eg. Brockmann et al.,
2014).

The most basic structure of the gravitational field, so to say the flattening of the
Earth, is still best determined by high orbiting SLR satellites (eg. LAGEOS), tracked
from several ground stations. GRACE and GOCE solutions are usually complemented
with results or data from SLR satellites for the very basic structure.

For all missions, especially with LEO satellites involved, non-gravitational forces,
acting on the satellites or test masses, have to be considered and measured to account
for orbit disturbances not based on the gravitational potential. These are mainly caused
by drag from the residual atmosphere and Solar and Earth radiation pressure. The
measurement of these forces by accelerometers on board the satellites is one limiting
factor of the performance of the current missions.

A good overview of satellite geodesy and gravimetry with the different approaches is
given eg. by Seeber (2003).

1.3 Research Objectives

The focus of this thesis is satellite gravimetry based on the GRACE 1I-SST principle
and the Gravity Field Recovery (GFR) from the satellite’s measurement data. Since
the launch of GRACE in 2002, continuous progress is made to improve the processing
of the GRACE data and hence the monthly gravity field solutions. This includes the
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officially published instrument data (Level 1B data, with current release number RLO06),
as well as the processed gravitational fields (Level 2 data). Up to now, the intended
pre-launch baseline accuracy of the monthly solutions (Kim, 2000) is still not achieved.

Besides the three official GRACE solutions, from the Center of Space Research at
the University of Texas, Austin (UT CSR) (Bettadpur, 2018), the German Research
Center for Geosciences Potsdam (GFZ) (Dahle et al., 2018) and the Jet Propulsion
Laboratory (JPL) (Yuan, 2018), at least ten more solutions from other groups and
institutes are released (for instance distributed by the International Centre for Global
Earth Models (ICGEM) Ince et al. (2019), http://icgem.gfz-potsdam.de/home), or by
the COST-G combination service (Jaggi et al., 2020). Every solution differs to the
other ones, even though the same instrument data from the GRACE satellites are
used. For the complex inversion from the satellite’s measurement data to the monthly
gravitational field solutions, different approaches, parameter choices and strategies exist.
The three official solutions are compared eg. by Klees et al. (2008); Sakumura et al.
(2014); Kvas et al. (2019).

Meanwhile, the classical, variational-equation approach (cf. Sec. 4.2) is considered to
be the most accurate and thus the state-of-the-art choice. Gradually the established
solutions are approaching each other with updated releases. Nevertheless, with im-
provements in the modeling and enhanced processing concepts, as well as a better
understanding of different error sources, the solutions are still further improved.

Even though no true solution to hold as reference exists, there are several methods to
assess the accuracy and quality of a solution for instance by the analysis of error patterns.
Especially over the oceans the expected signal in most regions is extremely small, thus
a temporal RMS shows mainly error patterns and thus allows to quantify a solution
quality. A good example is given in Kvas et al. (2019), comparing the recent ITSG
solution from the Institute of Geodesy at TU Graz, which actually can be considered
the best, to the three official GRACE solutions.

From these discrepancies, the not completely understood relations in the processing,
and the current efforts of designing an improved successor mission for GRACE-FO, the
goal of this thesis is derived: The determination and quantification of various
factors and influences on the overall quality of estimated gravitational field
solutions. These factors are mainly different instrument characteristics with respective
noise models, different environmental models and conditions, and furthermore options,
strategies and parameter choices in the GFR processing, which play a crucial role.

These goals shall be achieved by two parallel approaches, being the main subjects of
this thesis. First, the complete simulation of a GRACE-like satellite gravimetry
mission and the subsequent GFR processing of the simulated data. In the
"modeled world", the true gravitational field and all measurements are known and hold
as absolute reference. It is possible to switch on and off each instrument and environment
model, individually and use perfect observations for other instruments. Different models
for each instrument are taken from the literature and are developed for that purpose.
Thus, the sensitivity of the overall gravitational field solution with respect to a distinct
instrument or noise model can be determined. In the same way also the influence of
different options in the GFR processing can be validated, and correlations with respect
to instrument and its noise characteristics can be revealed. This is also motivated by the
fact, that in the real measurement data it is not possible to distinguish between signal
and noise contribution. The same holds for the estimated gravitational field solutions
and measurement post-fit residuals because they contain a sum of the noises from all
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sensors (inter-satellite ranging, accelerometers, star cameras and GNSS measurements)
additionally to modeling errors and errors of the estimation process and the processing
of the noisy measurement data. The distinction what relates to which source and how
much influence a certain error has is not completely possible.

In parallel, the second objective is the validation and comparison of the simu-
lated mission and measurement data, as well as the GFR processing against
real GRACE data and GRACE GFR processing. Therefore the developed GFR
tool is extended for real GRACE data processing. The obtained results from the GRACE
processing verify the developed GFR processing methodology and tools in general. Fur-
thermore, from comparisons between the real and simulated processing, the accuracy
and relevance of the simulation is validated. This makes the results and findings obtained
with the simulation approach transferable to the real GRACE processing.

For both goals the GFR tool plays a central role. For realistic comparisons and
estimates, a state-of-the-art processing needs to be realized. From most GFR processing
tools, used for the generation of monthly GRACE solutions, besides general information,
not much detail of the implementation and processing is known. The claim of this thesis
is that all details of the developed GFR tool are elaborated in depth and not just the
final results are shown, but also all kind of intermediate results, that are rarely depicted
and mentioned by renowned GRACE processing centers. From the goals of the thesis
this of cause includes demonstrating the effects of main GFR processing options on the
overall solutions and other parameters. Furthermore, it is intended, that the complete
software is published as an open source tool, which is partially already done in a very
basic version in Darbeheshti et al. (2018).

The main goals of the thesis may be briefly summarized by:

e Characterization of the influence of options, strategies and parameter choices
in the GFR processing on the overall gravitational field solutions and further
estimated parameters.

e Determination of the influence and correlations of different sensor characteristics,
noise models- and levels on the gravitational field solutions and further estimated
parameters.

e Establishing a state-of-the-art GFR software and simulation tool for various
investigations of real and simulated satellite data. The software should furthermore
serve as a testbed for the development of improved and entirely new gravimetry
mission concepts in the future.

e Extension of the GFR tool for real GRACE data processing to validate the
GFR-mission simulation loop.

The approach of a complete simulation of a gravimetry mission is not new. Due to the
possibility to compare all results with the perfect, initially set parameters and models,
this is also referred to as a closed loop GFR-(mission) simulation. For GRACE, the pre-
launch study by Kim (2000) investigates the most important relations of the instruments,
orbit choices, measurement quantities and data processing for the GRACE mission. A
more recent study from Flechtner et al. (2016) estimates outcomes of the GRACE-FO
mission and also quantifies to some extend the influence of the different instruments.
Nevertheless, the depth of modeling and the connection between different instruments
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eg. the effect of the GNSS and SST accuracy on the accelereometer calibration is
expandable.

Furthermore, studies and proposals for successor missions of GRACE-FO, commonly
referred to as Next-Generation-Gravity-Missions (NGGM) exist, which partly also
employ a full closed loop simulation (Panet et al., 2012; Gruber et al., 2014; Baldesarra
et al., 2014; Elsaka et al., 2014; Hauk and Pail, 2019; Hauk and Wiese, 2020). The aim
of these studies is more on the general mission performance, but not on the specific
coherence of different instruments and the processing. Proposed noise models of some
prominent studies eg. for the accelerometer are also used and validated here.

A big effort is taken for highly accurate non-gravitational force modeling and the devel-
opment of the satellites attitude control, which directly influences the non-gravitational
forces and furthermore the accelerometer measurement due to intrusions of the attitude
thruster firings in the accelerometer measurement. Besides being a benefit for NGGM
investigation, these developments and insights impact neighboring disciplines like Precise
Orbit Determination (POD) of various satellites, especially with high orbit precision
demands, like GNSS and altimetry, and the analysis of Thermospheric density and
wind determination. For the letter, satellite accelerometer measurements are reduced by
precisely modeled non-gravitational forces to obtain the atmospheric density (Doornbos
et al., 2005; Tapley et al., 2007; Doornbos et al., 2010; Doornbos, 2011; Visser et al.,
2019). The GRACE mission, with dense orbit and highly accurate accelerometer data,
allows a precise validation of the non-gravitational force modeling.

1.4 Qutline of the Thesis

In the next Chapter 2, at first the basic reference frames utilized in geodesy and satellite
dynamics are introduced. Subsequently, the governing equation of satellite motion
and rotation are introduced. In Section 2.3 the background and basic definitions of
gravitational theory, as used in geodesy, are given. Furthermore, the modeling of the
gravitational field, its relation to the Geoid, and its visualizations are discussed.

Chapter 3 describes the GRACE mission in more detail. Basic mission design, mea-
surement principle, instrumentation of the satellites and its basic functioning, as well as
the available sensor data and its pre-processing, is described.

In Chapter 4 the estimation theory of POD and GFR is introduced. After the dis-
tinction of dynamic and kinematic orbit determination, the dynamic classical approach,
also referred to as variational-equation approach, is derived. Today this is the state-of-
the-art method used in gravimetry. The general processing with parallel computation of
partitioned arcs, different observations, assessment of error and weighting, as well as
the automatic weighting by variance component estimation is described. The theory
is applied for the GRACE case, and the form and structure of the main matrices is
depicted in detail in Section 4.3.14. Finally the batch algorithm for GRACE GFR is
described step by step in Section 4.3.15.

This Chapter is quite detailed, with the intention to hold as mathematical reference
for the implemented GFR software tool.
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In Chapter 5 the essentials for satellite simulation and propagation are completed.
These are, besides the gravitational models (Sec. 2.3), the non-gravitational force mod-
eling and the numeric integration. First, the modeling approach for non-gravitational
forces is introduced. The applied and developed models for the different forces related
to residual atmosphere and radiation from Sun and Earth, as well as from the satellite
itself are described. In the second part a review of numerical integration is given and
promising methods in the field of orbital dynamics are evaluated. Therefore an arbitrary
precision arithmetic, exceeding the precision limitation of the usually used double data
type, is investigated and utilized as reference.

Chapter 6 deals with the simulation of the GRACE mission, the satellites, and its
instruments. At first, in Section 6.1, the developed non-gravitational force models are
applied to the GRACE satellites and extensively validated and compared against the
GRACE accelerometer data. Subsequently the implemented attitude control scheme,
including star camera, thruster and magnetic torquer models, is described. Results are
shown and compared with GRACE data (Sec. 6.2). The different implemented and
investigated sensor models or the models for the processed instrument data, are depicted
in Section 6.3 for inter-satellite ranging, accelerometer, GNSS based orbit solution,
attitude, magnetic torquer and thruster.

Chapter 7 presents the main results from GRACE GFR. The developed GFR tool
is investigated in detail, the effects of parameter choices and processing strategies are
demonstrated. The major influences are the weighting of the different observations, the
accelerometer calibration and the arc length. Furthermore, the pre-processing of the
GRACE data is indispensable. Also the sensitivity of the different environmental models
is assessed. An analysis of the formal error estimate and the residuals is conducted.
Monthly solutions with the most promising parametrization and options are exemplary
shown for the year 2006, revealing the annual hydrological signal. Finally, a solution with
modeled non-gravitational forces used instead of the accelerometer data is investigated.

In Chapter 8 the results of the closed loop GFR simulation are shown. First, the
investigation follows the structure from the previous chapter with the real GRACE data
processing. The parametrizaion of the GFR scheme is examined and the results are
compared to the real GRACE results. Subsequently, the effects of the different sensor
models, introduced in Section 6.3, on the solutions are examined. Thereby a special
focus is on the different implemented accelerometer noise models. The characteristics
of the different sensors in the gravity field solutions are compared to the real GRACE
solutions, as well.

Finally, Chapter 9 gives a summary of the thesis and emphasizes the main scientific
findings. It concludes with an outlook, discussing further extensions and applications
for the two main parts of the thesis, the GRACE processing and the closed loop GFR
simulation.
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The fundamental definitions of geodesy and its defining equations, essential for the
topic of this thesis, are introduced in this Chapter. This includes the basic reference
frames defining position and orientation of the Earth in space, as well as the definition
of Earth’s gravity and gravitational potential and its representations and visualizations.

The basic equations of motion for satellites are introduced, which in geodesy is
Newtonian or classical mechanics. It may be expanded by considering post Newtonian
relativistic corrections. All gravitational models used to describe Earth’s static and time
dependent gravitational potential are elucidated.

2.1 Reference Frames

A reference system is defined as a set of three mutually perpendicular unit vectors. All
systems used here are right hand systems. The notation of the unit vectors throughout
the thesis is €;, €, €., representing the x-, y- and z-axis, respectively.

In literature and theory a strict distinction between a reference system and a reference
frame is made. The system is the theoretical definition and a frame the practical
realization of it.

2.1.1 Earth-Centered Inertial (ECI)

The Earth-Centered Inertial (ECI) reference frame is an inertial, thus non-accelerated
and non-rotating, frame with its origin in the Center of Mass (CoM) of the Earth.

It is based on the International Celestial Reference Frame (ICRF), which is a realiza-
tion of a quasi inertial frame in the center of the Solar System barycenter. Its axes are
defined with respect to distant extragalactic radio objects. To coincide with previous
definitions of this system its x-z plane is approximately aligned with the mean equator
and the x-axis is pointing towards the vernal equinox at J2000.0. It is maintained by
the International Earth Rotation and Reference Systems Service (IERS). For more
information see (eg. Seeber, 2003; Torge and Miiller, 2012) or the exact definition of
the IERS Conventions (2010) (Petit and Luzum, 2010).

For orbit propagation this inertial frame is of high importance, being the basis for
the Newtonian mechanics. Hence all equations of motion are formulated in this frame.

2.1.2 Earth-Centered Earth-Fixed (ECEF)

The Earth-Centered Earth-Fixed (ECEF) frame is the other important frame for orbit
and celestial mechanics. It is identical with the International Terrestrial Reference Frame
(ITRF). Its origin is in the Earth’s CoM and it is co-rotating with the Earth. Hence
the axes are fixed to the solid Earth. The mean rotation axis of the Earth is defined as

11
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z-axis, while the x-axis is pointing towards the 0° meridian. Its realization is based on
different measurements from about 400 stations all over the Earth. It is defined in detail
in the IERS conventions (2010) including the considered models for plate tectonics,
solid Earth tides, ocean and atmospheric loading effects, polar tides and further regional
and local effects (Petit and Luzum, 2010).

All measurements conducted from and on the Earth are made in this frame. Further-
more models of the Earth are defined in an Earth-fixed frame, as well. Therefore the
exact determination of this frame or the transformation between the ECEF and the
ECT are of the highest importance for nearly all applied space sciences.

The computation of the actual transformation between the ECEF and the ECI is
also defined by the IERS conventions (2010) (Petit and Luzum, 2010). Throughout this
thesis the transformation matrix is referred to as Tj9.. The used models are based on
daily Earth Orientation Parameter (EOP), which are computed and published by the
IERS based on all available measurements.

2.1.3 Simple Earth Rotation

For the generation of the simulated GRACE data a simple transformation between
the ECI and ECEF frame is defined. This makes the computation faster and easy to
reproduce by others. The reason for that is, that the complete transformation may be
implemented slightly different and different sets of EOPs are published and used, as
well.

For the simplified transformation just a constant rotation around the z-axis is assumed.
Thus effects like precession, nutation and polar motion are neglected. The transformation
matrix is given by

cos(v) —sin(v) 0
sin(v) cos(v) O] - (2.1)
0 0 1

The argument v is defined with the time in Julian Date as:
vV = (tJD - t()) 86400 WE — 1. (2.2)

with g = 2453491.5 (2005-05-01), the angular rate of the Earth wg = 7.29211514670698
107° 1/s and vy = —2.46276246875459 rad. This definition has been introduced for the
GRACE Mock-Data challenge in geo-Q (Darbeheshti et al., 2017) and is inherited here.

2.1.4 Satellite Body Frame

A satellite body frame is a satellite fixed frame with its origin in the satellite’s CoM. Its
axes can be oriented arbitrarily, usually axes are aligned with symmetry axes of the
spacecraft.

If the attitude of a satellite is of interest, a body fixed frame is used as reference.
Forces which are dependent on attitude or the shape of the satellite, for instance non-
gravitational forces, are computed in this frame. Furthermore, it is the computation
frame for rotational dynamics of a satellite (cf. Sec. 2.2.2)

For the GRACE satellite’s the body frame is called Science Reference Frame (SRF)
(Bettadpur, 2012b), for details see the definition in Section 3.3.1.
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2.1.5 Orbital Frame

An orbital frame is defined with respect to the orbit of the satellite. Its z-axis is defined
to point towards the Earth, thus

7?
€, = —— 2.3
z |ﬂ I ( )
the y-axis is in the negative direction of the orbit normal
UXT
€y = ——, 2.4
y,A ’77 % T_‘1 ( )
and the x-axis completes the right hand system
€r = €y X €, (2.5)

where X denotes the cross product. For a circular orbit, the x-axis is in the direction of
the satellite’s velocity .

The definition of the orbital frame can vary slightly by different authors, sometimes also
the x-axis is defined in velocity direction, and the z-axis follows from the orthogonality.

2.1.6 Other Frames

Throughout this thesis some more reference frames are used. These are rather specific
and defined in the context when they are needed. For example to define a reference
attitude or pointing, like the Line of Sight (LoS) frame, or just the reference frame of a
special instrument like a star camera.

2.2 Equations of Motion

The computation of satellite motion is usually based on Newtonian or classical mechanics.
Also all major definitions in geodesy about rotation, shape and gravitational field of
the Earth are based on this concept. Nevertheless, usually post-Newtonian relativistic
corrections are considered in precise calculations in the classical framework in terms of
additional accelerations (cf. Sec. 2.3.6).

With the continuous development of more accurate measurement techniques and
devices, approaches for general relativistic definitions are becoming more popular (eg.
Philipp et al., 2017). Nevertheless, the realization of these concepts is far from the
precision of the ones used in classical geodesy, yet.

The same holds for satellite dynamics. Even easy models of the Earth (and other
Planets) give by far better results than possible with general relativistic descriptions,
today. Furthermore, the consideration of non-conservative forces in a general relativistic
description is troublesome. By the use of post-Newtonian approximations of General
Relativity in the Newtonian framework, the small differences cancel out nearly completely,
as we have shown for typical Earth-bound satellite orbits in Philipp et al. (2018). Even if
the much higher complexity and computational expanse is not considered, the Newtonian
approach outweighs the theoretically more correct theory of General Relativity. Hence,
there is barely any application of general relativistic satellite dynamics, yet.
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2.2.1 Translational Motion
From Newtons second law of motion the equation of motion of a satellite is given by

-1

g —1q n 7
Msat Ti,b = Mygat gi,b(ri,b’ t) + Fdist + ctrly (26)

which is valid in an inertial frame, with:

Misat Mass of the satellite.

F'Zb Acceleration of the satellite relative to the inertial frame,
expressed in the inertial frame.

g;;b Gravitational acceleration as a function of the satellite’s
position and time t.

F . Sum of all disturbance forces acting on the satellite.

Control forces.

Usually the subscripts are omitted for better readability. If all variables are in the
same frame, the superscripts may be omitted, as well.

The main acceleration determining a satellite’s orbit is the gravitational one g’ib. Its
aspects, modeling and visualization is discussed in detail in Section 2.3. Commonly the
disturbing forces are referred to as non-gravitational forces, meaning mainly drag forces
due to residual atmosphere and forces due to the radiation of the Sun and Earth (cf.
Ch. 5.1). Generally the term may also include magnetic forces caused by the interaction
of the satellite with Earth’s magnetic field.

2.2.2 Rotational Motion

The rotational motion of the satellite is expressed by the angular velocity of the satellite
body frame with respect to the inertial frame, 553 p» €xpressed in the satellite body frame.
The attitude itself is described by the Euler symmetric parameters (quaternions) ¢ or
Giop, Which represent a transformation from inertial frame to the satellite body fixed
frame (The use of quaternions to represent rotations is discussed in the Appendix A.1).

The satellite is assumed to be a rigid body. Then the differential equations for the
satellites attitude motion is given by Eulers rigid body dynamics:

: A .
2 b b b b b b
Wiy = (Ib) [ngt + Taist + Terry = i < (I wi,b)} : (2.7)
. 1
s Loy b
% =5 9 Wib (2.8)

with:
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Ly

Satellite
Zb

Figure 2.1: Sketch of geometrical conditions and vectors between an extended satellite and a
central gravitational body.

(Iz’f,b Angular velocity of the satellite body frame with respect to
the inertial frame, expressed in satellite body frame.

Vi Moment of Inertia (MoI) matrix of the satellite in body fixed
frame.

T'Cbtrl Control torques applied for attitude control expressed in
body fixed frame.

T:i’ist Disturbance torques acting on the satellite in body fixed
frame.

fgbgt Gravity gradient torque in satellite body fixed frame

The term ng is the quaternion representation of the angular velocity Qf’jb (cf. Appendix
A.1.4). The standard quaternion multiplication is applied (cf. Appendix A.1 or eg. Wertz
(1978)).

Gravity Gradient Torque

An arbitrarily extended object, eg. a satellite, experiences a gravitational torque in a
gravitational field, referred to as Gravity Gradient Torque (GGT). Due to the fact that
the gravitational potential is conservative (cf. Sec 2.3), the acceleration at each point of
the satellite is slightly different in magnitude and direction. Thus, this will result in a
torque around the CoM of the satellite. The GGT is usually the biggest torque acting
on Low Earth Orbit (LEO) satellites. The conditions are sketched in Figure 2.1.

Considering an arbitrary gravitational potential (cf. Sec. 2.3.1), the GGT T, yg can be
calculated by (Gottlieb, 1993, p. 19 ff.), (Hughes, 2004, p. 233 ff.)

—

T, = / 7' x Gy'dm, (2.9)

with G4 being the gravity gradient matrix in the satellite fixed body frame. The gravity
gradient matrix is usually defined in the inertial frame as the derivative (Jacobi matrix)
of the gravitational acceleration ¢ at the satellite’s position 7

b= 5 (2.10)
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Hence it needs to be transformed. With the transformation matrix 79, from inertial to
body frame it is

GY = Ty G Ty, (2.11)

The GGT is dependent on the attitude with respect to the inertial frame and on the
satellites extensions and its mass distribution. It can be shown, that the integral over
the satellite’s mass distribution results in the components of its Mol matrix I. With
the components g;; of the symmetric matrix Gg it is

923(Izz - [yy) - 913Ia:y + ngIa;z + (922 - 933)Iyz
ng = 913(Ia:ac - Izz) + 923Iacy - ngIyz + (933 - gll)Ixz . (212)
g12(Lyy — Izz) — G231 + 9131y + (911 — 922) Loy

Simplified Computation

An approximation of Equation (2.12) for a simple spherical gravitational potential (cf.
Sec. 2.3) and a circular satellite orbit is given by

o SGM (7 x 1), (2.13)
|7

with 7, being the satellite’s position vector in the satellite body frame and GM the
gravitational coefficient of the central body. In Section 6.2 this approximation is used
for the attitude controller to approximately assess the actual GGT. The computation
of the gravity gradient matrix G; from a realistic gravitational model (cf. Sec. 2.3.1)
is computationally demanding. This approximation gives a simple but quite accurate
approximation for orbits with low eccentricity.

2.3 Gravitational Potential

The main issue of gravimetry and the central topic of this thesis has been incidentally
introduced in Equation (2.6), g’ib(ﬁfb, t): The gravitational acceleration of the Earth
as a function of position and time. In the following its representation and modeling is
elaborated in more detail.

As introduced in Section 2.2, geodesy is based on classical, Newtonian mechanics.
Thus gravitation is governed by Newtons law of universal gravitation, stating that every
mass in the universe attracts each other with the force ﬁg?‘ava which is proportional to

their product and inversely proportional to the square of their distance d:

(2.14)

G is the universal gravitational constant and d the vectorial distance between the centers
of the masses m; and mg. From Equation (2.14) the gravitational acceleration g due to
a mass M at the point £ on an other mass m at the point ¥ can be calculated as

7= =z (2.15)
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Yi

Figure 2.2: Sketch of geometrical conditions for the gravitational acceleration on a small mass
m due to an extended mass M.

with d = 7 — 7. Assuming that mass M is a celestial body, eg. the Earth, which consists
out of infinitesimal mass elements dm with the positions Z, as sketched in Figure
2.2. For an arbitrary mass distribution dm can be written as a density distribution
dm = p(&) dV. The resulting acceleration g follows then by the integration over the
volume dV
r—Z
i=—G / L 2.16
g 7P (2.16)
The vectorial gravitational acceleration field g(7) (Eq. 2.16) can be expressed as the

gradient of a scalar potential field V() because it is invariant to rotations V x § = 0.
The scalar potential field is mathematically easier to handle (eg. Torge and Miiller,
2012)

G=vVV(#), (2.17)

vin=c [ L9

v ==&

dv. (2.18)

With Equation (2.18) the gravitational field of the Earth or an other celestial body is
defined. It can be shown (eg. Torge and Miiller, 2012, p. 57 ff.), that the gravitational
potential, defined by Equation (2.18), satisfies Laplace’s differential equation

V() =0 (2.19)

in the exterior of the gravitating body.

Unfortunately, the density distribution p(Z) in Equation (2.18) of the Earth is not
adequately known and hard to measure. Thus a sophisticated computation of the po-
tential from Newtons gravitational law is not expedient. This is an important equation
because it states a fundamental problem in geodesy. Even if the outer potential V ()
of a body is known, it is not possible to invert Equation (2.18) to obtain the mass or
density distribution p(Z): There are infinite mass distributions which result in the same
outer potential. More information needs to be known or assumed to restrict this equation.

In general, the English language distinctly distinguishes between gravitation and
gravity. The first is the potential, force or acceleration due to the attraction of masses
(in the Newtonian perspective). Gravity is the sum of gravitation and the centrifugal
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acceleration due to the rotation of a celestial body or the Earth. However, often the
terms are used interchangeably. Because satellites do not rotate with the Earth, they
do not experience a centrifugal acceleration. Thus gravity does not play a direct role for
satellites.

2.3.1 Spherical Harmonic Potential

The gravitational potential outside the Earth can be described as a convergent series
expansion, leading to the so called Spherical Harmonic (SH) potential. The SH potential
is a special solution of Laplace’s equation (Eq. 2.19). A detailed derivation is given by
eg. Torge and Miiller (2012), p. 69 ff.. Here the notation following Montenbruck and Gill
(2005), p. 56 ff., is used. For the spherical geocentric coordinates longitude A, latitude ¢
and radius r the SH potential is

n

GM &
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n=0m=0

<]:)n (Cpm cos(mA) + Sy sin(mA)) Py, (sin ¢),
(2.20)

with degree n and order m. For the lengthy definition of the associated Legendre
polynomials P,,, of degree n and order m, via Legendre’s differential equation and
their computations for n and m, the interested reader is referred to the mentioned
literature. The coefficients C,,, and Sy, are the parameters defining the potential. R
is a reference radius of the Earth and GM its gravitational coefficient. R and GM are
as well parameters of the model. Of cause, in practice the expansion is terminated at
a finite degree N. The maximal degree and order is usually abbreviated by d/o. The
determination of the C,,,, and Sy, coefficients is the essence of Gravity Field Recovery
(GFR). Together with GM and R they make up a static gravitational field model. The
number of the SH coefficients C,,,,, and Sy, is

+ 2N + 1, (2.21)
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where N,,;, is the lowest considered degree which is usually two for GFR, see the SH
interpretation in Section 2.3.1. The SH coefficients C,,,, and S,,;, are also referred to as
Stokes Coefficients. They are classified in three groups, zonal (m = 0), tesseral (m <
n) and sectorial (m = n). The zonal coefficients with m = 0 are not dependent on the
longitude (cf. Eq. 2.20) and define the flattening and pear-shape of the Earth.

Spherical Harmonics Interpretation

It is possible to interpret the first few coefficients, physically. For order m = 0 the
coefficients S, o always become zero, because sin(m\) = 0 in Equation (2.20), thus the
zonal coefficients are just the C), o coefficients. The degree n = 0 coefficient, Cp is
usually set to 1, hence the degree zero potential is V' = GM /r, what is the representation
of a perfect symmetrical sphere, equivalent to a point mass. All other degrees can then
be interpreted as disturbances from this ideal case. Therefore, in some notations the
first sum in Equation 2.20 is started from n = 1 and Cp = 1 is moved in front of the
sum.

It can be shown that the coefficients C1 9, C1,1 and S1; describe the deviation of
the center of mass from the coordinate system origin divided by R in z—, x— and
y—direction, respectively. In an Earth centered coordinate system they are zero by
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definition. Furthermore, if the the z-axis is a principle axis of inertia, the coefficients
Cy,1 and Sy 1 are zero, as well. Neglecting polar motion this is true, and Co; = S21 =0
may be applied. This is usually not done for monthly GRACE solutions.

The zonal coefficient Ca o describes the by far biggest deviation from the ideal spheri-
cal potential and the main flattening of the Earth due to its rotation. The often used
Jo coefficient is related by Jo = —C . Exact derivation of these interpretations can be
found in Torge and Miiller (2012), p. 74 - 76 and Montenbruck and Gill (2005), p. 59 - 61.

Usually the SH potential (Eq. 2.20) is given in a normalized notation, with the nor-
malized coeflicients C_’nm, gnm and normalized Legendre polynomials ﬁnm (Montenbruck
and Gill, 2005, p. 58), making the coefficients more uniform in size. They are barely used
in the non-normalized form, therefore the bar is often dropped. In this thesis always the

normalized coefficients are used, neglecting the bar, as well. The relations are given by
Com | _ \/ (n+m)! { G (2.22)
S (2—=dom)2n+1)(n—m)! | S,

s [@—dam)@nt )(n—m)
P = \/ (n+m)! P, (2.23)

with dg,, being the Kronecker delta.

The SH representation of the gravitational field with different degrees n can be
understood as superimposed waves. Therefore, often the term wavelength A or half
wavelength \/2 is used to describe features or structures of the gravitational field. At
the Earth surface the wavelength in degree is

360°

A= (2.24)

For the maximum degree N of a SH gravitational model, the shortest resolvable
wavelength can be determined. Commonly the spatial resolution is given as the half
wavelength D in km (Seeber, 2003, p. 470)

D 20000 k:m.

N (2.25)

2.3.2 The Geoid

The Geoid defines the shape of the Earth. It is the reference surface for height measure-
ments and is the scientific definition of the commonly used term "see level". It was first
described by C. F. Gauss in 1828 as the "equipotential surface of the Earth’s gravity
field coinciding with the mean sea level of the oceans" (Gauss, 1828, p. 49). The name
Geoid was given later in 1873 by J. B. Listing (Torge and Miiller, 2012, p. 76). To
fully characterize the Geoid, the gravity potential W (A, ¢,r) and the value Wy at the
mean sea level have to be determined. All gravity accelerations and plumb lines are
perpendicular to the equipotential surface of the Geoid. Nevertheless, the magnitude of
the gravity is not constant over this surface.

There are several difficulties with that definition due to the fact that the potential
is directly influenced by the Sun, Moon and other planets. This causes also indirect
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tidal effects, deforming the solid Earth, which in turn changes its gravitational field.
Furthermore, the mean sea level is not obvious, too, since it is also affected by tides,
but as well by currents, winds, local atmospheric pressure and a general changing water
level due to seasonal effects and sea level rise. Therefore a value W) is defined by
reducing temporal variations of the mean sea level by averaging and referring to an
epoch, conventional approaches and values are given in the IERS Conventions (Petit
and Luzum, 2010).

Mainly three different approaches to deal with direct and indirect tidal forces exist
for a definition of the Geoid:

e Mean Geoid: Includes direct third body accelerations, as well as indirect tidal
effects due to the deformation of the Earth. It would display an undisturbed mean
ocean surface and is hence used in oceanography.

e Tide-free Geoid: Excludes all tidal effects, and represents an Earth in an empty
universe, which is not periodically deformed by other bodies.

e Zero-tide Geoid: Excludes all effects due to time dependent tidal deformation,
but keeps permanent effects.

The same terminology needs to be considered for gravitational field models. In GFR
usually static models are determined. Tidal effects are added by respective time de-
pendent models. The different effects and its modeling is described in Section 2.3.5.
Gravitational field models are usually given in the tide-free or zero-tide system, differing
if the permanent contribution is considered by a tide model (tide-free) or is estimated
and included in the gravitational field model (zero-tide) (Petit and Luzum, 2010, p.
88 f.). The permanent tidal contribution is mainly affecting the Cy o coefficient and
modeled by a solid Earth tide model (cf. Sec. 2.3.5). For the estimated gravitational
fields in this thesis the zero-tide representation is used.

Geoid Height

The Geoid can be represented by a SH expansion, like gravitational fields. It is closely
connected to the gravitational potential from Equation (2.20) and is determined from
it. Hence gravitational fields are often visualized as Geoid, or more exactly as geoid
height. The geoid height N (), ¢) is the common visualization of the Geoid. It is defined
as the height difference between the Geoid and a reference ellipsoid, which is best
approximating the Geoid. The ellipsoidal gravity potential is defined by U(¢, ). From
the that fact that U(¢,r) is best approximating the Geoid W (\, ¢,r), it follows that
Wy = Uyp. For an exact derivation and discussion see eg. Barthelmes (2013). Considering
the gravity potential of the ellipsoid U(¢, r), called normal potential, and the disturbing
potential T'(\, ¢, r), the gravity potential of the Earth W (A, ¢,7) is

W ¢,r)=U(p,r) +T(\ &,7). (2.26)

While W and U contain a centrifugal potential, T is a completely gravitational potential.
W and U can be equivalently written as the sum of an gravitational (attractive) potential
plus the centrifugal potential ®

U(g,r) = Ua(¢, 1) + 2(¢, 7). (2.27)
The gradient of the normal potential on the ellipsoid

5 =vU (2.28)
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is referred to as normal gravity vector, and its magnitude
v =|VU] (2.29)

as normal gravity.

Let A be the height above the ellipsoid. Then, according to the popular formula of
Bruns (Barthelmes, 2013),(Torge and Miiller, 2012, p. 258), the geoid height N (), ¢)
can be approximated to first order (but relatively accurate) by

WA 6,r(h = 0)) = Ulg,r(h = 0)) _ T(\,r(h=0))

Y(p,r(h=0)) v(¢,r(h=0))
The centrifugal potentials ® of the Geoid and the ellipsoid are the same and thus vanish
in this equation.

For representations in this thesis the attractive ellipsoidal potential U, is approximated
by the constant first even zonal SH coefficients Co o, C2,0, C4,0, Cs,0, Cg,o of a reference
model. With the gravitational potential V' (Eq. 2.20), the disturbing potential T in
Equation (2.26) can be written as

T\ ¢,r) =V (N o,r)— Ui, r). (2.31)

With both potentials being a SH expansion, the equation (Eq. 2.30) can be written as a
SH expansion, as well, with the relative SH coefficients C/,, and S/,

L 3) Sy . |

nOmO

(2.30)

(Cy o cos(mA) + Sy, sin(mA)) Py (sing).  (2.32)

Just the first zonal coefficients of CJ,, and S}, are different from the Cy, and Sy,
coefficients of the gravitational potential V' in Equation (2.20).

In Figure 2.3 the geoid height is computed as described before from the GGMO05s
gravitational field model. The GGMO5 model (Ries et al., 2016) is a static SH model
computed from ten years of GRACE observations between 2003 and 2013. It is used as
a reference throughout this thesis.

A further, very popular simplification of the the geoid height computation exists, used
for the visualization of gravitational fields and the computation of degree amplitudes in
terms of geoid height (Sec. 2.3.3). It is especially used to compare residual gravitational
fields, meaning the difference of two fields. In SH representation (eg. Eq. 2.20), the
residual field is the SH expansion with the coefficients AC,,,, and AS,,,, being the
difference of the C),,, and S,,, coeflicients of the two models.

If the normal gravity of the ellipsoid ~q is approximated as the one of a sphere with the
reference radius R, and furthermore neglecting the much smaller centrifugal potential
(it vanishes anyway if a residual field is considered), it can be written as

GM
R2"
The relative error of this approximation is about 0.3% (Liu, 2008). Furthermore, the

field is evaluated at the reference radius » = R. Substituting this in Equation 2.32, the
geoid height can be expressed as

Yo & (2.33)

=R Z Z m €OS(MA) + Sy sin(mA)) Py (sin ). (2.34)

n=0m=0
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Figure 2.3: Geoid height computed from the GGMO05s gravitational field model up to d/o 180.

This is a very common approximation and often used, especially for residual fields.

Mass Change - Equivalent Water Height (EWH)

In the introduction of this section (Sec. 2.3) it has been already mentioned, that it is
not possible to obtain the mass distribution from the gravitational field or potential by
inversion.

Nevertheless, the actual measured changes of the gravitational field of the Earth are
mainly due to changes and the redistribution of water in the near surface layer of the
Earth. Therefore it can be assumed that the change of the gravitational potential AV
or the geoid height AN is caused by a thin water layer close to the surface with the
density p, = 1000 kg/m?>. Following the derivation by Wahr et al. (1998), the mass
change Ag is defined as

Ac(A, ) = / Ap(X, &, 7) dr, (2.35)

thin layer

with the dimension mass per area. The hydrological processes can be referred to the
layer between groundwater and the lower atmosphere, and thus is very small compared
to the Earth’s radius. The term Ao /p,, is the change in surface mass expressed as a
water column. This is referred to as Equivalent Water Height (EWH). Ao is expressed
as SH expansion

N n
Ao\ ¢) =Rpw Y. Y (Aénm cos(mA) + AS,m sin(mA)) Pum(sing).  (2.36)

n=0m=0

It can be shown (Wahr et al., 1998), that the correlation between the coefficients AC,y,,
AS,m and AChm, ASpm, is given as a good approximation by

Acnm pave(2n + 1) ACym
Crm | _ Pave(2n 1 1) 2.37
{ ASpm } 3pw(1+ kn) { ASpm } (230

with pave = 5517 kg/m? being the average Earth density. The term includes the direct
effect of the mass change and the indirect effect due to the deformation of the solid
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Figure 2.4: EWH with respect to GGMO05s from estimated gravitational field of May 2006
from GRACE data, Gaussian filter with 465 km radius applied.

Earth, modeled with the degree dependent load Love numbers k,, (eg. Torge and Miiller,
2012, p. 357 ff.).

Exemplary, an estimated gravitational field up to d/o 90 for May 2006 from GRACE
data is spatially visualized over the Earth in terms of EWH and AN in the Figures 2.4
and 2.5, respectively. In the first figure the relative mass change, expressed as EWH,
is shown for the difference of the estimated gravitational field for May 2006 and the
mean GGMO5s gravitational field model. Around the equator the strong signals mainly
relate to mass changes due to seasonal effects of rainy and dry periods compared to
the mean GGMO05s model. The other strong signals are at the poles where the ice
masses seasonally de- and increase. This effect is superimposed by a general mass loss
of the polar ice. Thus, even in the summer period in 2006 there is a positive value over
the North Pole compared to the ten year (2003 -2013) mean model. A further effect
especially in this region is the Glacial Isostatic Adjustment (GIA), but should not be
considered in more detail, here.

The same relative field is shown in Figure 2.5 in terms of residual geoid height AN.
The main signals are visible as well, but it is obvious, that the spatial visualization
of the two functionals Ao, or more exactly EWH, and AN over the Earth is slightly
different.

2.3.3 Degree Amplitudes

Besides the spatial visualization of the different functionals plotted over the Earth,
as shown in the previous sections, the gravitational field parameter Ch,p,, Sy or its
differences ACy,, ASy, are commonly shown and analyzed in a spectral plot over the
degree n. The degree amplitude or the spectrum is defined as

m=0
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Figure 2.5: Geoid height with respect to GGMO05s from estimated gravitational field of May
2006 from GRACE data, Gaussian filter with 465 km radius applied.

If a residual SH field, the error, the variance or the formal error is considered, the
spectral plot is referred to as square root of degree difference or square root of degree
variance

m=0 m=0

Ad, = J > (ACZ, +AS2,) or o, = \l > (0Fm + 0Fm)- (2.39)

The names of these representations are slightly different from author to author and
usually the term "square root" in the name is dropped.

From the comparison of Equation 2.20, defining the SH gravitational potential and
2.34, being the simplified representation of the geoid height (especially used for residual
fields), it is obvious that the coefficients just differ by the multiplication of the reference
radius R. Therefore degree differences and degree variances are often plotted in terms
of geoid height by the multiplication with R giving it the unit of height

Ad,(N) =R Ad, or on(N) =R oy,. (2.40)

The degree amplitude of an Earth gravitational field model can be approximately
described by the so called Kaula rule, stating that the normalized SH coefficients C,,;,
and Sy, follow approximately

107520 +1

dn - . (2.41)

n

in the degree amplitude plot. The name refers to Kaula (1966).

The degree amplitudes of the GGMO05s model and Kaula’s rule are plotted in Figure
2.6, together with the degree difference of the monthly solution of May 2006 up to d/o
90 with respect to the GGMO05s model (as already shown in the section and figures
before).

The differences of the mean GGMO05s model and the monthly gravity field solution
are quite small and their differences are just visible in the relative plot. The spectral
plot reveals different characteristics of the differences over the wavelengths of the field.
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Figure 2.6: Degree amplitudes of the GGMO05s model and Kaula’s rule plus degree difference
of May 2006 solution with respect to GGMO05s, all in terms of geoid height.

2.3.4 Filters

Monthly gravity field solutions from GRACE data contain distinct correlated errors
resulting in the typical north-south striping pattern in the spatial domain. This aliasing
effects are mainly due to the under sampling of tidal effects that are not modeled com-
pletely correct and the ground-track pattern of the satellites with the main measurement
direction of the inter-satellite ranging in along-track direction.

Many approaches have been developed to remove these errors by smoothing, filtering
and decorrelating of the errors see eg. Swenson and Wahr (2006); Kusche (2007). A very
popular approach is still the Gaussian filter (Jekeli, 1981). Mainly the higher degree
SH coefficients contain a high noise. Therefore a filter needs a gradually decreasing
kernel, which is acting as a spatial low-pass filter for the SH coefficients. A typical
bell-shaped Gaussian smoothing kernel is used, giving the filter its name. The filtered
solution is spatially averaged over the smoothing radius, which can be chosen freely for
the Gaussian filter (Sakumura, 2014), (Liu, 2008, p. 225 f.). In this thesis all GRACE
solutions are filtered with a Gaussian filter with a filter radius of 465 km.

In Figure 2.7 the estimated gravitational field from May 2006, as shown in the Figures
before (eg. Fig. 2.4), is presented in terms of EWH again, but with four different filter
radii of the Gaussian filter: (a) no filter is applied, (b) 260 km, (c) 465 km and (d) 720
km. The scale in each plot is different. With no filter (a), the quite strong, unphysical
striping is distinctly visible. With increasing filter radius the quality of the solution
increases up to a certain point where it is decreasing again. For radii above 700 km the
striping is getting more and more pronounced, again.

The optimal filter radius is dependent on the error characteristic of the solution,
but furthermore, strongly dependent on the d/o of the estimated field. As reference,
a solution with d/o 60 for the same month and apart from the d/o with the same
processing options, is shown for four different filter radii in Figure 2.8. The filtered
solutions with the same filter radius of r = 465 km are nearly equal. But the unfiltered
d/o 90 solution exhibits a striping with an about seven times higher amplitude than
the d/o 60 solution. The filter characteristics are also very different. For the lower d/o
solution, the filtered solutions are stable over a bigger range of the filter radius. Thus
the filter radius of r = 1000 km gives still a reasonable signal (c). This plot illustrates
distinctly the smoothing or blurring effect of the spatial filter. Compared to the 465
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Figure 2.7: EWH [m] with respect to GGMO05s from estimated gravitational field of May 2006,
d/o 90, filtered with Gaussian filter with different filter radii (a) no filter, (b) r = 260 km, (c) r
= 465 km, (d) r = 720 km.
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Figure 2.8: EWH [m] with respect to GGMO05s from estimated gravitational field of May 2006,
d/o 60, filtered with Gaussian filter with different filter radii (a) no filter, (b) r = 465 km, (c) r
= 1000 km, (d) r = 1200 km.
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km radius (b), the prominent signals are blurred and covering a wider area but with
a lower amplitude. This also demonstrates that the filter is an indispensable aid but
reduces the precision or resolution and future mission designs should aim to reduce the
striping by the measurement concept.

2.3.5 Tidal Forces and Effects

In Section 2.3.2 three different systems to define the Geoid and the gravitational field
of the Earth have been introduced. In GFR usually the tide-free system is used because
time dependent models of the mostly periodic tidal effects exist. Thus other gravitational
effects can be resolved with much better accuracy by a gravitational field model.

Tidal effects are mainly caused by the Moon, the Sun and the rotation of the Earth.
Direct and indirect tidal effects are distinguished. The direct effect is the gravitational
third body attraction. This attraction deforms the solid Earth and moves the fluid
masses, water and the atmosphere, of the Earth. This movement of masses causes the
indirect change of Earth’s gravitational field.

The change of the gravitational field or potential due to the indirect tides is modeled
by SH expansions, as well. Different time dependent SH coefficients are determined
considering the periodicity of the effects depending on the position of Sun and Moon.

Third Body Attraction

The gravitational attraction of other celestial bodies than the central one, is also referred
to as direct tides in the field of geodesy. For Earth-bound satellites these bodies are so far
away, that they are usually considered as point masses. The gravitational acceleration
of a point mass, eg. the Sun is described by Equation (2.15). Some care has to be taken,
because it refers to an inertial system, but with respect to to the Sun, the Earth is not
at rest, but subject to the acceleration

F=—GMgy, =2 (2.42)
Where 7g,,, is the vector pointing from Earth towards the Sun. Thus, the acceleration

of the Sun on the satellite rg4 in the ECI system is (eg. Montenbruck and Gill, 2005, p.
69)

A Fsat - FSun FSun
Tsat = —GMgun ( > .

‘Fsat - FSun |3 |77Sun|3

(2.43)

Solid Earth Tides

The third body accelerations are deforming the solid Earth, leading to mass redistri-
bution, changing its gravitational field. This is the biggest indirect tidal effect. The
time dependent SH model up to d/o 4, given in the IERS Conventions 2010 (Petit and
Luzum, 2010, p. 81 ff.), is used.

Ocean Tides

The movement of the ocean water masses causes a change of the gravitation, as well as
a loading of the solid Earth. Different models exist, here the EOT11a model (Savcenko
et al., 2012; Mayer-Giirr et al., 2012) is used, which considers both effects. It is available
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up to d/o 120. It is developed from the data of several altimetry satellite missions. It
considers several time dependent SH potentials for the different superimposed tidal
constituents.

Atmospheric Tides

As the for the ocean tides, the atmosphere is affected by the direct acceleration of Sun
and Moon, resulting in changes of the mass distribution and hence the gravitational
field. Compared to the ocean tides the models are much simpler. Here the N1 Biancale
& Bode model (S14-S2) Biancale and Bode (2006) up to d/o 8 is used. It is based on
surface pressure data.

Pole Tides

Polar motion is the movement of Earth’s rotational axis with respect to its solid body
or the ECEF system. This induces centrifugal forces which affect in turn the mass
distribution.

As described in Section 2.3.1 the difference of the principal axis of inertia with respect
to the z-axis is described by the coefficients Cs; and Ss;. Thus polar motion is modeled
by a time dependency of these coefficients. Here the model advertised in the IERS
Conventions 2010 (Petit and Luzum, 2010, p. 93 f.) is utilized.

Ocean Pole Tides

The centrifugal forces induced by polar motion also affect the water masses of the Earth.
The Desai2002 model (Desai, 2002), advertised in the IERS Conventions 2010 (Petit
and Luzum, 2010) estimates the relative gravitaional potential of these effects with a
SH model up to d/o 180.

2.3.6 Post-Newtonian Relativistic Corrections

Up to a certain accuracy, general relativistic effects can be represented as correction
accelerations in the classical Newtonian framework. These accelerations are referred to
as post-Newtonian (pN) corrections. For Earth bound satellites, mainly three terms are
considered, as described in the IERS Conventions (Petit and Luzum, 2010). The three
effects are a Schwarzschild term, representing a relativistic correction for a spherical
gravitating central mass, the Lense-Thirring term, representing a correction for the
rotation of that mass, and the de Sitter term, representing a correction for the geodetic
or de Sitter effect due to the Sun. For the comparably low gravitation of the Earth
and its slow rotation, as well as the velocities in that systems, which are much smaller
than the speed of light ¢, the Schwazschild and Lense-Thirring corrections are very
accurate approximations. The de Sitter correction term is already more than 15 orders
of magnitude smaller.

Comparisons of simple cases with complete solutions of the general relativistic equa-
tions, have shown that the differences with classical solutions considering pN corrections
are very small comparing to numerical errors and are just visible when using a data
type with a higher precision than the standard double data type, as we have analyzed
for typical Earth-bound satellite orbits in Philipp et al. (2018).
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Magnitude and direction of these correction accelerations are depicted for the GRACE
satellites in Section 6.1.3, and are compared to the non-gravitational accelerations acting
on the satellites. Furthermore, their influence on the orbit is evaluated and compared,
as well.

In the inertial ECI frame, the three pN correction accelerations are (eg. Petit and
Luzum, 2010, p. 155 f.)

. Me [/AGMr - - -

Aoy = & f[( GMp —F.F> F+4(F.F)F}, (2.44)
cer T
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Therein 7 and sy, are the satellite’s and Sun’s position in ECI, and 7, rgy, their
norm, respectively. GMg and GMg,,, are the gravitational coeflicients of Earth and
Sun, respectively. J is the angular momentum per unit mass of the Earth (|f| ~ 9.8%108
m?/s). The - operator denotes the scalar product and x the cross product.






THE GRACE MISSION

This thesis is dealing with Gravity Field Recovery (GFR) from a GRACE-like mission.
Even though, fundamentals, theory and models are generally usable for all kind of
satellite missions, measurement principles and observations, the application in this thesis
is focused on the GRACE mission. Therefore the GRACE mission, its measurement
principle and the satellite’s instrumentation is introduced in this chapter.

3.1 Mission Overview

GRACE (Gravity Recovery and Climate Experiment) was a joint satellite mission
between the National Aeronautics and Space Administration (NASA) and the German
Aerospace Center (DLR). Its primary science purpose was to measure the Earth’s
gravitational field and its time variability (Tapley et al., 2004a). It was launched in
March 2002 and collected science data until June 2017. The exceedingly successful
mission is continued by its successor GRACE Follow-On (GRACE-FO) (Landerer et al.,
2020) with nearly identical hardware.

The GRACE mission was proposed in 1996 by a scientific consortium of the Center
for Space Research at the University of Texas, Austin (UT CSR), the German Research
Center for Geosciences Potsdam (GFZ) and the Jet Propulsion Laboratory (JPL). It
was selected in 1997 as second mission in NASA’s Earth System Science Pathfinder
(ESSP) program.

The mission consists of two, basically identical, satellites which are following each
other on the same orbit with a slightly varying distance of about 220 km. The two
spacecrafts are referred to as GRACE A and B. The nearly polar orbit with an initial
altitude of about 500 km assures global coverage of the observations. With an initial
mass of about 487 kg at launch they are classified as small satellites. The trapezoid
shaped satellites (cf. Fig. 3.2) have the dimensions of about 3.1 x 1.9 x 0.7 m. Detailed
satellite information is available in the Product Specification Document (Bettadpur,
2012D).

The main and innovative measurement principle of the GRACE mission is the low-low
satellite-to-satellite tracking (1I-SST). The inhomogeneous mass distribution of the
Earth results in slightly changing gravitational attraction, which in turn results in the
change of the satellites distance. From this change, conclusions on the gravitational
field can be drawn (cf. Ch. 4). The inter-satellite distance can be measured much
more accurately than for example a ground based distance or the absolute position
via GNSS (Global Navigation Satellite System). With a microwave ranging system the
inter-satellite distance, and especially its change, is measured with an unprecedented
accuracy of about 0.1 um/s in a frequency range bigger 1 mHz (just exceeded by the
GRACE-FO laser interferometer, (Sheard et al., 2012; Abich et al., 2019).
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Figure 3.1: Solar radio flux (F10.7) and GRACE mean altitude over the whole mission time
period.

The orbit of the satellites is not just determined by gravitational forces, but also
influenced by non-gravitational forces (cf. Sec. 5.1), mainly residual atmospheric drag and
radiation from Sun and Earth. These forces are measured by electrostatic accelerometers
on each satellite to consider them in the analysis.

To refer the measured accelerations to a reference frame, the orientation i.e. the
attitude of the satellites needs to be known. Therefore both satellites are equipped with
two star cameras. Furthermore, the inter-satellite range is measured between the KBR
horns of both satellites but needs to be referred to the satellite’s Center of Mass (CoM),
therefore the attitude is needed, as well.

Besides the 11-SST, the satellites are equipped with GPS receivers for high-low (hl)
SST with the GPS constellation. The GPS measurements are by far less accurate than
the 1I-SST measurements. Usually, first absolute positions are derived from the GPS
observations by POD (sf. Sec. 4.1), which are subsequently also used for GFR. The
accuracy of the absolute position is in the range of about 1 - 5 ¢m (Kang et al., 2006;
Weinbach and Schon, 2013; Zehentner and Mayer-Giirr, 2016).

The orbit altitude over the mission period is shown in Figure 3.1. Due to atmospheric
drag, the altitude is constantly decaying. The main driver therefore is the density of the
Thermosphere, for which the Solar radio flux F10.7 is the main proxy. It is shown in the
figure, as well. In times with high F10.7, the altitude decay is stronger. Since mid 2011,
battery problems limited the data acquisition in times of the longest eclipse transitions.
The depletion of fuel and constantly worsen battery conditions resulted in the shut down
of the satellites in mid 2017 after tripling the originally planed mission life time. The
exponentially increasing density with lower altitude, resulted in the stronger attitude
decay at the end of the mission.

3.2 Setup and Instrumentation of the Satellites

A schematic construction of one GRACE satellite is shown in Figure 3.2. The main
instruments and components are marked.
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Figure 3.2: Schematic construction of one GRACE satellite with the main instruments, adapted
from NASA (2002).

3.2.1 K-Band Ranging System

The K-band microwave ranging system (KBR) is constructed as a dual one-way phase
measurement (eg. Kim, 2000). The system consists out of one K-band and one Ka-Band
transmitter and receiver, and an Ultra Stable Oscillator (USO) on each satellite. Both
satellites transmit and receive signals in the two bands (=24 and ~32 GHz). The
combination of the received and the reference signal, of the same wavelength, give the
phase measurement. The transmitted and the reference signal are generated by the
same oscillator. Thus, the measured phase at satellite B contains the same oscillator
noise as the reference at satellite A. If both measurements are combined, the oscillator
noise cancels out. For a separation of 220 km the signal time of travel is about 1 ms
and the measured and the reference signal have a small lack. Hence just noise below
about 1 kH z can be eliminated by the combination.

The measurement in two frequency bands allows to correct for ionospheric effects
on the speed of propagation of the signals. The electron content in the ionosphere
causes a decrease of the vacuum speed of light. This decrease is dependent on the
signal’s frequency. With the combination of both measurements using the "dual band
combination algorithm" it is possible to eliminate this effect.

With the speed of light, the phase measurement translates to a distance. Nevertheless,
the actual distance between the satellites is not determined by the phase measurement
because the total number of phases is unknown. Hence, the measured distance is a biased
distance and therefore usually its rate is used as observation. A detailed description of
the instrument and the processing can be found in Kim (2000).
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The KBR system requires the satellites to point at each other within a narrow band.
The Attitude Control System (ACS) is designed to keep this attitude, referred to as
"science mode" or "fine pointing mode". The ACS is described in detail in Section 6.2.

3.2.2 Accelerometer

The GRACE satellites are equipped with superSTAR accelerometers manufactured by
ONERA (Office National d’Etudes et de Recherches Aérospatiales) (Touboul et al., 1999,
2004). These are three-axes electrostatic servo-controlled accelerometers, capable of
measuring accelerations in all three directions, referred to as linear accelerations, as well
as rotational accelerations. The sensor consists of a test mass, which is electrostatically
suspended in its housing. By a controller it is kept motionless with respect to the
housing and the satellite. In contrast to the satellite, the test mass is protected from
non-gravitational forces, thus would follow a pure gravitational orbit. Hence the control
forces to maintain the constant distance between housing and test mass are proportional
to the non-gravitational forces acting on the housing or the satellite.

The accelerometers are mounted in the CoM of the satellites. This ensures that
no inertial forces are measured due to the rotation of the satellites. The GRACE
satellites contain movable trim masses to control the satellite’s CoM. Occasionally
in-orbit calibration maneuvers are conducted to ensure that the CoM of the satellite
and the CoM of the test mass coincide.

3.2.3 GPS Receivers

The satellites are equipped with GPS receivers to utilize the hl-SST principle, as well.
They are developed by JPL and capable to receive signals from 12 satellites in the L1 and
L2 band, simultaneously. This allows 24 distance measurements to 12 GPS satellites. The
accuracy of the GPS measurement is much worse than that of the KBR measurement
(for general information on GNSS and GPS see eg. Seeber (2003); Montenbruck and
Gill (2005)). Nevertheless, the amount of observations to the GPS formation allows an
absolute positioning by kinematic or dynamic orbit determination (cf. Sec. 4.1). Usually
the GPS observations are first processed and the resulting Kinematic Orbit Solution
(KOS) or the dynamic orbit solution (GNV) is subsequently further utilized for GFR.
Even though the accuracy of the absolute position is by far less accurate than the
relative KBR measurement, it is of high importance for the overall GFR solution (cf. Sec.
4.3.13, 7.1, 7.7). There are mainly two reasons: The lower d/o of the gravity field and
the accelerometer calibration are not very sensitive to the relative KBR measurement.
Its estimation is highly based on the KOS or GNV observations.

3.2.4 Star Cameras

The satellite’s attitude is mainly determined by two star cameras mounted on the side
panels of the satellites. The general functional principle is that images of the sky are
compared to a star catalog from which the actual attitude can be determined. Star
cameras are the most precise attitude sensors available.

Two star cameras are looking in different directions (cf. Fig. 3.2). On the one hand side,
with two star cameras the attitude determination precision is improved, furthermore it
happens that one camera is blinded by direct light of the Sun, Moon or Earth. Therefore,
the GRACE-FO satellites obtained a third star camera mounted on the to panel.
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For the real time attitude determination, needed for the ACS, just the raw data
of one star camera is used on the satellites (Herman et al., 2004). A post processed
solution of the Star Camera Assembly (SCA) is available for the scientific data analysis,
see also Section 6.3.4.

3.3 Available Data

The collected science data from all instruments on both GRACE satellites, as well
as most housekeeping data are publically available from JPL/NASA at the Physical
Oceanography Distributed Active Data Center (PODAAC) and from GFZ’s Information
System and Data Center (ISDC).

The data are processed in several steps, called levels. Level 0 data are the raw data
downloaded from the satellites. The available instrument and satellite data are referred
to as Level 1B (L1B) data. Data screening, some instrument calibrations, down-sampling,
filtering, transformation to the Science Reference Frame (SRF) and a uniformed time
tag are applied. The L1B processing for the different data is described in Wu et al.
(2006). Furthermore the GRACE Level 1B Data Product User Handbook (Case et al.,
2010) and the Product Specification Document (Bettadpur, 2012b) list and describe all
available data products. Different releases of the L1B data were introduced over the
time with ongoing development and improvement of the processing. In this thesis the
release RLO5 is used.

The main science L1B data for GFR and used in this thesis are:

e KBR: Biased-range, range-rate and range-acceleration between the CoM’s of the
satellites (computed with the SCA attitude data). The biased range is filtered
with a digital self-convolution filter (given in Wu et al. (2006)) producing the
down-sampled, low-pass filtered, biased range and its derivatives of the L1B data.
Just the range-rate is used here for GFR.

e ACC: Uncalibrated accelerometer data in SRF. In the LL1B processing, for the
smoothing and down-sampling, the same filter as for KBR data is used (with
different parameters, cf. Wu et al. (2006)). Just the linear accelerations of the
ACC L1B data are used in this thesis.

e GNV: Dynamic orbit solution, obtained by dynamic POD with the GPS ob-
servations and accelerometer data. It contains positions and velocities in ECEF
frame.

e SCA: Combined estimate of the attitude from the star camera data, given as
quaternions (transformation from ECI to SRF).

e KOS: Kinematic Orbit Solution. This is not published with the official GRACE
data. Here the freely available solution from TU Graz’s Institue of Geodesy
Zehentner and Mayer-Giirr (2016) is used, providing position data in ECEF by
kinematic POD.

KBR, GNV and SCA L1B data are available at a sampling of 1/5 Hz, ACC data
with 1 Hz and KOS data with 1/10 Hz. For the reference orbit integration in the
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Figure 3.3: Sketch of GRACE satellite with the body fixed Science Reference Frame (SRF)

GFR processing the ACC data are down-sampled to 1/5 Hz using a moving average to
avoid loss of information. The lower sampling of the KOS data just results in less KOS
observations, which is not a problem for the GFR processing.

3.3.1 Reference Frame

All L1B data are referred to the Science Reference Frame (SRF). It is a body fixed
frame with its origin in the satellite’s CoM. It is demonstrated in Figure 3.3.

The GRACE orbits are nearly circular, and in the usual "fine pointing" attitude mode,
the satellites are pointing onto each other with an accuracy of ~0.3°. With the satellite’s
separation, the pitch angle (rotation around the y-axis) is between 0.8° and 2°. Hence
the SRF is well aligned with the orbital reference frame (cf. Sec. 2.1.5). Therefore the
axes are often considered as along-track, cross-track and radial directions, being rather
terms of the orbital frame and not completely identical.

3.4 Data Pre-Processing for GFR

The available L1B data have some inconsistencies that need to be treated before GFR
processing. On the first view this are mainly data gaps in the different L1B data, listed
before. The length of gaps may vary from some seconds to a whole day and are generally
different for the different data products.

While gaps in the observation data (KBR, GNV or KOS) can be stored and missing
observations simply skipped in the processing, it is more complicated for the ACC and
SCA data. These are not used as observations, but as information to integrate the
reference orbit (cf. Sec. 4.3). Thus, these data gaps influence all successive time points
of the arc and hence of the whole estimation. Therefore a procedure needs to be defined
to fill these gaps or discard these times (complete arcs) where too big data gaps occur.

For the GRACE GFR processing the following criteria were elaborated and used for
the results presented in this thesis.

For the ACC data, where the GFR solution is quite sensitive to, gaps shorter than
300 s and smaller than 25 nm/s? are interpolated. Arcs for which these conditions are
exceeded, are completely discarded from the processing. Furthermore, the accelerometers
sense attitude thruster firings, manifesting in sharp peaks (cf. Sec. 6.1.6, 6.3.6). If these
peaks in the ACC L1B data are bigger than 300 nm/s? the arc is omitted, as well.
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For the SCA data the restrictions are not that strong, having a lower influence on
the GFR solutions and changing in general more slowly. Data gaps below 2000 s are
interpolated using quaternion interpolation.

A further conditions that is checked before GFR processing is unusually high pointing
inaccuracy between the two satellites. The pointing, or relative attitude, of the two
satellites is described in detail in Section 6.2. If the relative attitude © exceeds + 0.4°,
0.4°, 0.4° in roll-, pitch- and yaw-axis, respectively, the arc is discarded.

If in one arc more than 50% of the KBR observations are missing the arc is discarded,
too.

3.4.1 Pre-Processing by POD

Besides the obvious data gaps a further very important pre-processing needs to be
executed to obtain reasonable GFR results for most months. This concerns the KBR
data, which contain some rather rare artifacts, but having significant impact on the
solutions. The reasons could just be resolved partly during this investigation.

After a gap in the KBR data the instrument does not necessarily continue the time
series, but "recalibrates" and continues with a different phase. This results in discon-
tinuous range-rate measurements in the area of around 1 to 15 um/s (eg. Fig. 7.24).
Furthermore, after these jumps it might happen that the measurement accuracy is
worsen up to an order of magnitude for some time (up to one day). These small effects
are not directly visible in the KBR measurement data, which vary with a much higher
amplitude, in the range of some m/s, due to the slightly different orbits of both GRACE
satellites.

By a POD processing with both GRACE satellites simultaneously, using GNV or KOS
data additionally to KBR range-rate data as observations, these effects are visible in the
post-fit deviations or residuals. These effects are not visible in the post-fit deviations
or residuals of the GFR, because they are affecting and deteriorating the gravitational
field and hence the residuals too strong to detect these irregularities.

The POD pre-processing approach is used to detect these outliers and discard affected
times (or arcs) for the GFR processing. This problem and its effects on the GFR solution
are discussed in detail in Section 7.4 for the whole year 2006.

The presented criteria for discarding arcs from the GFR processing are partly detecting
the same times or epochs, and their sensitivity to the GFR solution might not always
be very big. Nevertheless, this is not general and especially different for different arcs,
epochs and months. However, the POD pre-processing is crucial for the majority of the
months and decisive to determine deteriorated measurement data and epochs (cf. Sec.
7.4).






ORBIT DETERMINATION AND GRAVITY
FIELD RECOVERY (GFR)

The field of orbit determination is closely related to Gravity Field Recovery (GFR).
The approach used and developed throughout this thesis, referred to as classical or
variational-equation approach is an extension of dynamic orbit determination. Besides
the same mathematical heritage of the estimation theory and the same used observations,
precise orbits of satellites can be considered as prerequisite for GFR.

In general, orbit determination deals with the estimation of positions or trajectories of
celestial bodies. In this context, celestial bodies may be stars, planets, moons, asteroids,
comets or artificial satellites. In the context of this thesis the focus is on satellites, but
for the theory, the terms are interchangeable.

Historically, the first attempts of "orbit determination" can be dated back to prehistoric
times with the discovery of some Solar System planets and attempts to find regularities
of their motion. Since Johannes Kepler discovered his three laws of planetary motion
and the description of Mars’ orbit, orbit determination was based on a mathematical
basis in terms of a heliocentric system. Later in the 17th century Isaac Newton laid the
theoretical foundation of Kepler’s observations, being a result of the two-body problem,
governed by his law of gravitation. Around 1800 the methods of orbit determination
were significantly enhanced by Carl Friedrich Gauss including the development of the
least squares method, which is the basis of most estimation processes, today.

In the middle of the 20th century the orbit determination problem, and estimation
theory in general, was linked to modern dynamical system theory. The methodology
that is used today dates back to the work of Swerling (1959) and especially Kalman
(1960).

Nowadays, often the term Precise Orbit Determination (POD) is used, which is
not really delimited from "normal" orbit determination. But generally POD refers to
methods based on the mentioned work by Kalman, as presented here in Section 4.3.
Typically much more complex orbit models than the Keplerian two-body problem are
used, where no analytical solution exists.

4.1 Kinematic and Dynamic Orbits

Two different kind of orbits are distinguished: Kinematic and dynamic orbits. A kinematic
orbit is given by positions at discrete time points. It is just based on geometry and
no physical model of motion is considered. No information about other time points or
velocity and acceleration can be derived from a kinematic orbit, directly. In contrast to
that, a dynamic orbit is given by a physical model of motion and initial conditions of
the satellite. In the simplest case the model might be a Kepler orbit. But it may also be
a more advanced model with no analytical solution, where the orbit is then defined by
the force models and an initial condition. Hence, a dynamic orbit is continuous and can
be evaluated at any time point, at least by numeric integration.

39
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From these two types of orbits the methods of determining the like are as well
distinguished in kinematic and dynamic orbit determination. It should be mentioned
here, that both approaches can also be combined in different ways, what is often referred
to as reduced-dynamic or reduced-kinematic orbit determination. With GFR being an
extension of the dynamic approach, it is the focus in this chapter.

4.1.1 Kinematic Orbit Determination

The idea of kinematic orbit determination is to estimate a solution, i.e. a satellite’s
position for each time point, independently. Therefore, at least as many observations
as parameters need to be available for each time point. The estimation then follows
by a "geometrical" best fit of all observations. In reality and applications each point
is not completely independent, because clock parameters of the GNSS satellites are
estimated over an amount of several time points, as well. Kinematic orbit determination
got established and important with the development of GNSS systems. Before that, it
was not practical to use it, because usually not enough measurement data were available
to determine a position at each measurement time, at least not over a longer time span
to make practical use out of it. A general overview of GNSS and related position or
orbit determination is eg. given in Hofmann-Wellenhof et al. (2007).

The basic method usually used for kinematic orbit determination of satellites is
referred to as Precise Point Positioning (PPP) (eg. Witchayangkoon, 2000). Recent
implementations are eg. given by Zehentner and Mayer-Giirr (2016).

The advantage of kinematic orbit determination is that no force models for the motion
of the satellites are utilized. Therefore the resulting orbits are independent from any
force models. When the determined orbit is further used as observations for GFR this
is favorable because no prior dependencies of the observations is introduced. Kinematic
orbit determination is not further discussed in this thesis and the interested reader is
referred to the mentioned literature.

4.1.2 Dynamic Orbit Determination

Dynamic orbit determination means to estimate a "best fitting" mathematical model
to a set of observations. "Best fitting" is usually defined in the sense of least squares
and will be defined later, exactly. The mathematical model is thereby adjusted by the
estimation of model parameters. For a simple Keplerian orbit model, parameters would
be the Keplerian orbit elements or equivalently the initial position and velocity. In more
realistic models, additional to the initial position and velocity, parameters can be force
model coefficients like the gravitational coefficient GM of the central body or a drag
coefficient to model residual atmospheric effects. As observation any measure that can
be physically related to the parameters, can be used. Depending on the estimation
parameters, some observations are more sensitive to a specific parameter than others.
Furthermore, every measurement has an error influencing the accuracy of the estimated
parameters and hence the determined orbit.

The classical approach for GFR directly evolves from the dynamic orbit determination.
In the previous paragraph the analogy was already mentioned indirectly: Force model
parameters include of cause gravitational parameters, as well. Thus the estimated
parameters may include all parameters of the gravitational model, like spherical harmonic
(SH) coefficients.
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4.2 Gravity Field Recovery

There are several methods for Gravity Field Recovery (GFR) from satellite data. Here
the gravitational field is represented by a SH potential. The aim of the approaches is to
determine global SH coefficients from the available satellite observations. Classically the
approaches are distinguished in timewise and spacewise methods (Rummel et al., 1998).

Spacewise methods relate the in-situ observations, made at certain spatial positions,
to the gravitational potential, or any of its functionals. Usually spacewise approaches
are utilized in two steps. First the observations are collected along the orbit at the
measurement positions and connected to the gravitational potential. In a second step
the systems is solved in terms of least squares to determine the SH coefficients. The
Acceleration approach (Weigelt, 2017) and the Energy Balance approach (Jekeli, 2017)
are the most popular representatives of spacewise approaches.

On the other hand, timewise methods tread the observations as time series with the
goal to represent them as best as possible by a dynamic model. From the differences
between the observations and the modeled observations, parameters of the dynamic
model can be estimated. Therefore variational equations for the motion of the satellite(s)
and the observation equation(s) are solved. Thus not only the gravitational field is
estimated but also the satellite’s trajectories. The solution usually consists of a numeric
integration of the equation of motion and the state transition matrix. Because the
highly nonlinear system is linearized to utilize least squares estimation theory, the whole
approach needs to be iterated.

Timewise approaches are referred to as classical or variational-equation approach.
Variants of this are the Celestial Mechanics Approach (CMA) developed by Beutler
et al. (2010); Jaggi (2006) and the Short Arc arc approach by Mayer-Giirr (2006).

All methods are based on Newtonian mechanics and in the perfect case should give
the same results. Due to the handling of different erroneous observation data, parameter
choices in the processing and the error propagation through the processing chains, in
reality the results differ for each approach and also for each implementation.

Throughout this thesis the classical, variational-equations approach is utilized. It is
rather complex and computationally the most demanding, but also the most fertile
and powerful. It has evolved to the state-of-the-art approach and is used by all major
GRACE processing centers, like JPL, GFZ, CSR or TU Graz.

In general, the classical theory is not only applicable for celestial applications, but as
well for all kind of parameter estimation problems, where parameter of a model (usually
given as a system of ordinary differential equation) should be adjusted with respect to
measurement data.

Here it should be mentioned, that a further representation of the gravitational field,
especially employed and developed more recently for the GRACE data processing by the
JPL, is investigated and used. It is referred to as mascons (from mass concentration).
Thereby the gravitational field is modeled as spatially distributed mass elements, serving
as gravitational sources. Recent developments for GRACE are given by eg. Watkins
et al. (2015); Wiese et al. (2016, 2018). This representation is not considered and further
discussed in this thesis.
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4.3 The Classical Approach for POD and GFR

The notation in the following sections is generally based on Tapley et al. (2004b),
McCullough (2017) and our description in Darbeheshti et al. (2018). A slightly different
notation of the same concept is often based on (Montenbruck and Gill, 2005, Ch. 7,8).

The methodology of the approach is based on a mathematical model of the satellites
motion. With the model, which is usually a set of differential equations, it is possible to
determine the state of the satellite X (t) at each time ¢. Applying general system theory,
the model is transformed to a system of first order Ordinary Differential Equations
(ODE) (cf. Sec. 5.2) and thus the state needs to contain at least the position 7 and the
velocity ¥, for translational motion. If attitude is of concern, it may also contain the
quaternion and angular rate for rotational motion (cf. Eq. 2.7). Generally the ODE
system can be expressed as

X(t) = F(X(1),1), (4.1)

where F' may be an arbitrary nonlinear function. The task in orbit determination is to
estimate the unknown n-dimensional state vector X (to). For a given ODE with given
initial state X(t =tp) = X, the state X(t) at every time ¢ > t; is determined, and can
be computed, at least by numerical integration of the ODE system. Thus just one initial
state vector needs to be estimated. In orbit determination and parameter estimation in
general, the state vector usually contains all parameters to be estimated, not only the
satellites’ state. It is therefore also called extended state vector.

The p-dimensional observations }7;-, at the times ¢;, with 4: 1, ... [, shall be used for the
estimation of X (to). It was mentioned before, that observations need to be related to
the parameters to be estimated. This means that the observations Y; can be expressed
with the state vector X (t) and a suitable function G

V= GX () t) +&, i1l (4.2)

where €; represents observation errors.

A short remark on the dimensions of the different instances: There are n parameters
that are to be estimated, for example the satellite’s initial state and model parameters.
Observations Y; are available at [ time points. The dimension p of a set of observations
Y; at one time (eg. ranges, angles or 3d-positions) is usually smaller than n (this is
an important difference to kinematic orbit determination, where this is not the case).
For reasonable results of the dynamic approach, the number of observations m = p * [
usually must be much bigger than n.

4.3.1 Linearization

For orbital mechanics the function F' from Equation (4.1) is highly nonlinear. For most
observations the same holds for the observation equation (Eq. 4.2) and the function
G. The nonlinear estimation problem is linearized to make use of the well established
theory and tools for linear system. The linearization of the problem makes it necessary
to determine a solution iteratively.

The equations of dynamics and observation models (Eq. 4.1 and 4.2) are linearized
via Taylor expansion. To do so, a reference point for the linearization needs to be set.
This is called nominal or reference trajectory and needs to be known or guessed up to a
certain accuracy to allow convergence over the iterations. The closer the initial guess for
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the parameters to be estimated and hence the reference trajectory, the fewer iterations
are needed. The absolute variables X (¢) and Y (¢) are replaced by the relative deviation
between true and reference values.

Z(t) = X(t) — X*(t) (4.3)

j(t) = Y (t) = Y*(t) (4.4)

Where the ()* denotes the reference values. Under the assumption that the reference

trajectory is within close proximity to the truth, the Taylor expansion of X (t) around
X*(t) is given by

X(t) = F(X,t) = F(X*,1) + [W

+O(X — X*)2
By defining the partial derivative matrix A

OF(X,t)
0X ¢ .

and using the state deviation Z(t) (Eq. 4.3) and omitting the higher order terms, this
results in the linearized dynamics equation

A(t) = l (4.6)

Z(t) = A()Z(t). (4.7)

Equivalently, the observation equation Y, (Eq. 4.2) is expanded

— — — Xl i — —
Y;:G(Xl,tz)—ng:G(Xz*,tl)—F [W] (XZ—XZ*)
X X,=X* (4.8)

+O0X;i— X)) +6.

The partial derivative matrix is defined by H and called mapping matrix

= [5G(Xi,ti) (4.9)

Ht;) = i ] .
ox |. .
X;=Xr

Using the observation deviation ¢(t) (Eq. 4.4) and again omitting higher order terms,
the linear observation equation is obtained

J(t:) = H(t;)T(t;) + & (4.10)

In this Equation, the error €;, which was introduced as observation errors (Eq. 4.2), now
also contains linearization errors.

With the Equations (4.7) and (4.10) the nonlinear estimation problem is transformed
to a linear one. Nevertheless, it is not possible to solve for the desired parameter
deviation #(to) with Equation (4.10), yet. The reason is, that the vector Z(¢;) contains
n unknown parameter at each time point i. As mentioned before, it is not necessary to
solve for a state vector at all times, just one is sufficient. The state at all other times
is then defined by the dynamic model. Thus, each row in Equation (4.10) needs to be
related to the state at 7y for one time tg. This can be done by the state transition
matrix.
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4.3.2 The State Transition Matrix

Equation (4.7) is the linearized dynamics model. The general solution to such linear
ODE system is given by

Z(t) = B(t, to)Z(to) (4.11)

where tg is some specified (initial) time and ® is called the state transition matrix. It
satisfies the following conditions

B(t,to) = AD)D(t, 1), D(to,to) = I. (4.12)

The state transition matrix maps deviations in the state vector from a time tg to t.
Hence, if ®(¢,to) is known at the time ¢, the state deviation Z(t) can be computed with
the initial state Zp.

With a given matrix A(t), the differential equation for ®(¢,ty) (Eq. 4.12) can be
solved, at least numerically, and ®(t,ty) can be computed for every time ¢;.

4.3.3 Relating Observations to One Time

With the state transition matrix at hand, it is possible to relate all observations in
Equation (4.10) to one time tg. Substituting the state transition matrix (Eq. 4.11) into
Equation (4.10) gives the expression

Jt:) = H(t;)®(ti,to)Z(to) + & (4.13)

Accumulating all time points 4 like demonstrated in the following gives the final linear
system.

1 H1®(t, to) €
J Ho®(ty, t é.
=1 (.2 N+ e (4.14)
Zjl ﬁ—lq)(tlat()) E‘l
The matrix H(t;) is defined as
H(t;) = H(t;)®(ti, to), (4.15)

and substituted into Equation (4.13). With that the linear system can be written as
y=HZ+E (4.16)

The subscripts and time dependencies are dropped here in the notation for convenience
and better readability in the following sections. This linear system can be used to
determine the desired parameter deviations ¥ in an optimal sense, for example using
the concept of least squares as demonstrated in Section 4.3.4. In estimation theory the
H matrix is usually referred to as design matrix.

The errors € in Equation 4.16 are not only measurement errors any more. Due to the
linearization and the combination of dynamical and observation model, it also contains
linearization errors, model errors and numerical integration errors, as well.
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4.3.4 Least Squares Adjustment

Usually the number of equations of the linear system (Eq. 4.16), or equivalently speaking,
the number of observations, is much bigger than the number of parameters in the &
vector. Systems with equal, or even less, numbers of equations are not of interest in
the field of orbit determination or GFR, where lots of data are necessary to determine
reasonable results. The basic linear model was derived in the section before (Eq. 4.16).
The Z vector contains n x 1 unknown parameters, the observation deviation ¢ is a m x 1
vector and the design matrix H or observation equation matrix is of size m x n. The
error vector € is as well of size m x 1. As mentioned before, it contains errors in the
measurement data, but as well errors of the analysis, like truncation errors from the
linearization, modeling errors or numerical integration errors.

To solve such overdetermined system, the method of least squares is utilized, which
was first proposed by Gauss in 1809. The idea is to minimize the sum of the squares
of the difference between the calculated (by the linear model) and observed quantities.
The difference or the error is obtained by rearranging Equation (4.16)

€=y— HZT (4.17)
The performance index of the squared differences is then defined by
J(z) =¢eTe (4.18)

Additionally, a weighting of each observation, or equivalently speaking of each equation
of the linear system (Eq. 4.16), can be considered. Thus, it is to find the minimum
of the weighted, squared differences. Therefore, in the performance index a weighting
matrix W can be added

J(&) = etwe. (4.19)

The weighting and the weighting matrix is further discussed in the next Section 4.3.5 in
more detail. In the case no weighting is considered, the weighting matrix is a m x m
identity matrix, and can be dropped. Minimizing the performance index is done by
taking its first derivative which should equal 0

2J(&@) 0 .
o7~ a7V

With the relation 9/0 (BT B) = 2(BT 8/0%(B)) and considering that W is symmetric,
thus W = W7, it follows

8.J (%)
o7

This yields the optimal estimate (in terms of least squares) for the parameters &

— HZ)TW(§— HZ) = 0. (4.20)

=0= 24— HZ)"WH = 2H"W(§ — HZ). (4.21)

Z=H"WH) 'H"Wy. (4.22)

Estimated quantities are denoted by a hat *. Equation (4.22) is often written as

8P

NZ =1, with N = HTWH, i=H'Wy (4.23)

and commonly referred to as normal equations with the normal matrix NV and the right
hand side vector 77. The equation can be slightly rewritten as

=Ly, with L= (H'WH)'HTW, (4.24)

ST
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showing explicitly the linearity of the system.
With the estimate &, the error estimate € from Eq. (4.17) can be determined

K

=y—H

ml)

: (4.25)

It is referred to as the residuals or post-fit residuals. Again, the * denotes an estimated
quantity, the real errors are still unknown.

In general, and especially in this thesis, there is a difference between residuals
and observation deviations. Residuals are generally speaking the difference between
the observations and the estimated observations computed with the model and the
estimated parameters #. Thus they are obtained with the linear system. The estimated

parameters X can be used as well with the original model to compute the observations

Y; = G(X,t;) (Eq. 4.2) eg. by numerical integration, the differences between those and
the observations are referred to as (observation) deviations. With sufficient iterations
residuals and deviations should become similar. Using the observation deviations instead
of residuals has the big advantage, that the design matrix H does not need to be saved,
which might be quite big and unnecessary (cf. Sec. 4.3.7).

4.3.5 Statistical Errors and Weighting

The derived least squares approach does not consider any statistical information of
the errors in the observations. A different approach to determine a performance index
or an estimator is the minimum variance estimate. Under some conditions, it will
yield the same result than the weighted least squares approach (Eq. 4.22), but with
a formal consideration of statistical errors. For a complete derivation and discussion,
the interested reader is for example referred to Tapley et al. (2004b) or Kusche and
Springer (2017), while here just the results are summarized.

The two assumptions of this approach are that 1. the errors € are random, and their
expectation F| ] is zero, meaning averaging an infinite number should yield zero

E[€]=0. (4.26)

The errors do not have to be distributed normally. And 2. the variance-covariance matrix

C.. of the observations is known up to the factor o2
2
o{ 012 O1m
2
T = 021 O3 o Oam
E| 6Te] =C.=0?Ce =0c? ] ) . (4.27)
2
Oml Om2 - Oy

With the conditions that the estimate should be the best linear, unbiased, minimum
variance estimate, also referred to as Best Linear Unbiased Estimate (BLUE), it can be
shown, that the solution for & is given by (e.g. Tapley et al., 2004b)

i=H"C*H)'HTC 'y (4.28)

Comparing the solutions of the least squares principle (Eq. 4.22) and the minimum
variance approach (Eq. 4.28), it is obvious, that for

- 1
W=0C.'= gc&l (4.29)
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both solutions agree. Using the inverse of the observation variance-covariance matrix
C’;l as weighting is a very popular strategy in least squares estimation.

Because the variance factor o2 often cancels out or is separately determined and just
CZ! is needed, it is substituted by W making succeeding equations a little easier to
read

w=C.L (4.30)

A full variance-covariance matrix means, that observation errors are time correlated.
Often the simplification is used, that errors are assumed to be not correlated. Thus
the variance-covariance matrix will be a diagonal matrix with the variances o2, of each
observation 7 on its diagonal. If all observations are of the same kind, the variance factor
is the same for all. Thus the variance matrix reduces to o2 and cancels out in the
normal equations (Eq. 4.28), completely.

4.3.6 Formal Error

From the residuals of an estimate, an information on the accuracy of the estimated
parameters i can be drawn. The variance factor o2 can be determined from the residuals
?, more exactly the square sum of the residuals, under the assumption that it is an
unbiased estimate, meaning F[ 62 ] = 0% (Kusche and Springer, 2017)

52— e"TWe_’: (g’—Hf)TW(g’—Hf). (4.31)
m—n m—n
With m and n being again the number of observations and number of estimated
parameters, respectively.
Using the slightly alternated form of the normal equation 7= Ly (Eq. 4.24), the
error covariance matrix of the estimated parameters can be computed by

Ci=LC. LT = H"WH)'H'W C.. W HHT"WTH)™. (4.32)
Using W = %C_';l = %V_V (Eq. 4.29), after some rearranging this transforms to

Cy = (H'WH) ' =c?(HTC'H)™ = o*(HTWH) ™. (4.33)
Substituting the normal matrix N (Eq. 4.23), this can be simply expressed by

Cy = o?N71. (4.34)

With the estimate of 62 from Eq. (4.31) an estimate for the parameter covariance
matrix can be computed

C; =62N"L. (4.35)

Thus the diagonal of C; is giving an estimate for the variances 2, or the standard
deviation &, of each estimated parameter in Z. In Geodesy or GFR these standard
deviation & are commonly referred to as formal errors. Among others, they can be used
to assess the quality of a solution. Nevertheless, the formal errors need to be interpreted
with caution. The estimate of C; and 62 is just as good as the error variance covariance
matrix C. of the data is known. Thus for a reliable estimate of C; the correlations of
the data errors need to be known or modeled precisely.
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4.3.7 Solving the Normal Equations

In the sections before it was shown that the least squares and the minimum variance
approach arrive at the linear system, referred to as the normal equations (Eq. 4.23).

In the case of POD and especially GFR, lots of parameters are estimated and thus
the normal matrix is quite big. To solve such system, it is preferable to avoided the
computation of the inverse of the normal matrix N !, which is computationally heavy
and might be inaccurate, too. Matrix decomposition methods like Cholesky-, QR-
, LU- or LUL-decomposition are often used (eg. Tapley et al., 2004b; McCullough,
2017). Also iterative methods, which generate approximate solutions of the system, like
Preconditioned Conjugate Gradient (PCG) methods, are used (eg. Mayer-Giirr, 2006).
PCG methods have the advantage to reduce matrix operations and especially avoiding
to build the normal matrix, explicitly. In case of high order gravity fields this might be
of interest to avoid storing big matrices.

To get an idea on the dimensions of the normal matrix, two examples are shortly
discussed: For a gravity field of d/o 60, 3717 SH coefficients need to be estimated (cf.
Eq. 2.21). Thus the normal matrix has 3717 x 3717 elements. Assuming double data
type, this matrix needs a memory of about 0.11 GB. A gravity field with d/o 250 has
62617 coeflicients and the normal matrix needs a memory of 31.37 GB. The latter case
justifies the use of the more complicated PCG methods.

In this thesis the issue of solving the linear system is not addressed in detail. Compared
to the computational effort for the assembly of the design matrix H, solving the normal
equations is negligible. The size of the normal matrix for the investigated gravity fields
can be handled easily by average clusters. In the implementation MATLAB’s linear
system solver is used, which uses different matrix-decomposition methods depending on
the conditions of the given matrix.

4.3.8 Arcs and Partitioned Normal Equations

Usually the orbit determination or GFR problem is separated into different arcs. This
has several reasons and advantages, which will be shortly discussed. By an arc, a part
of a satellite’s trajectory, or an arbitrary time span of observation data is meant. Arc
lengths may vary from 30 minutes over days to month and years, depending on the
problem, the used method and models. For low Earth orbits, arcs are normally not
longer than one day.

Splitting the available data into different arcs means that the model, with its param-
eters and initial condition, is estimated and valid just for a certain time span. This
allows to estimate more parameters over time, eg. for each arc. Using the technique of
partitioning, it is also possible to define and estimate certain parameters that are valid
over more arcs.

Due to the introduction of arcs, the influence of model inaccuracies and numerical
errors can be reduced. Furthermore, it allows the parallel computation of different arcs.
Also the sizes of the different matrices can be reduced, easing the requirements on the
computer hardware.

For the GFR case, the situation is a little bit more complicated. The amount of
parameters to estimate for a gravitational field model may require observation data
of weeks to a month (GRACE) or months to years (GOCE) to compute reasonable
results. Such arc length for low Earth orbits are not possible considering the dynamic
models, linearization and numeric integration. Fortunately, as already hinted, this is
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not necessary.

The normal equations, as derived in Equation (4.23), are given by
NZ=#, with N=H'WH, #=HWj. (4.36)

Under the condition that the weighting matrix W is block diagonal, mathematically it
is equivalent to split this into the following sum

a a
N =>"HlW;H, and 7= H] Wi (4.37)
k=1 k=1

With a being the number of arcs, which may be an arbitrary number smaller or equal
to m, the number of observations. A block diagonal weighting matrix is given by

Wi

W,
W= 2 . (4.38)

Wa

Practically, a block diagonal weighting matrix means that observation errors of different
arcs k are not correlated, and correlation stops at the arc borders. Especially for GFR
this is a necessary assumption to handle the amount of data. But considering that good
results are obtained even with diagonal weighting matrices, this is a feasible assumption.
Splitting the normal matrices into arcs allows a parallel accumulation of the Hy, matrices,
determining at least a set of initial conditions for each arc k.

The form of Equation (4.37) opens different strategies for the implementation, with
several advantages and disadvantages. It is possible to build the normal Matrix N;
after processing each time point ¢ and summing it up over all times. The other extreme
is accumulating the complete design matrix H with all times first and just building
N once. In the first case, for each time point, the n X n normal matrix needs to be
build. However, no memory is needed to store the H matrix. In the second case a huge
memory may be needed to store the m x n H matrix for all time points, but the normal
matrix is just build once. Depending on the dimensions of n and m and an assessment
towards computation time and memory consumption needs to be conducted to find an
appropriate way.

When defining arcs, the parameters are separated or partitioned into different groups,
or levels depending on their validity for all arcs or only one arc:

e Local: Parameters that are valid for only one arc, like initial position and velocity
e Global: Parameters that are valid across all arcs, like gravity field coefficients

The groups could be also arbitrarily expanded to parameters that are valid for several
arcs. In the following the method is demonstrated just for these two groups of parameters.

The parameter vector & is expanded to a generalized parameter vector Z, containing
local parameters & and global parameters ¢. Thus the design matrix H and generalized
state vector 2’ for one arc can be written as

|

(oY)

‘| s H, = [Hx Hc] (4'39)
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Building the normal equations based on this partitioning (substituting Eq. 4.39 in Eq.
4.36), the following linear system is made.

H'wH, H'WH.| |Z| [HI'Wy (4.40)
HIwWH, HTWH,.| |¢| |HTWj§ '
The sub-matrices and -vectors in there are defined as
M, = HI'WH, (4.41)

M. = H'WH,

M, = ML
M. = H'WH,
My = HI W
e = HI W7

Substituting these abbreviations, results in the partitioned normal equation for one arc

e 1)
MCZ' MCC mc

Multiplying out the above equations, results in

8P

)

Mo @ + Myo€ = 1y, (4.43)
My + Mool = 1. (4.44)

Solving for & in Equation (4.43)
T = M i, — M  M,.c, (4.45)

and inserting this result into Equation (4.44) gives an expression for the global parame-
ters ¢

g: (Mcc - McxMajlezc>_1 (mc - Mcng&lmx> (446)

With the solution for é’, Z can be computed with Equation (4.43) by back-substitution.
This can be understood as elimination of parameters as called by other authors Mayer-
Giirr (2006) or Wu (2017).

Nevertheless, the previous is just applied to a single arc, thus ¢ can not be considered
as a global parameter, yet. But it is not difficult to extend the idea to incorporate any
number of arcs, each with its own set of local parameters Z;. By expanding Equation
(4.39) for k arcs, Z and H, transforms to

7=1"", H,=| : (4.47)

o
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Again, the normal equations can be build based on this partitioning (substituting Eq.
(4.47) in Eq. (4.36)). This results in the linear system for the generalized partitioned
normal equations

The local parameters are independent of each other, explaining their contribution located
on the diagonal of the normal matrix. All local parameters contribute to the global
parameters, the last row and column of the matrix are fully populated.

This system can be arranged in a similar fashion as in the single arc case, with the
substitutions for the sub-matrices and -vectors from Equations (4.41). Multiplying out
the upper rows gives expressions for the local parameters #, for each arc

ﬂ%k = (Mxx)lzl(mx)k - (Mm);Zl(ch)ké (4-49)

From the last row of the system (Eq. 4.48), with substitution of the local parameters i’k
from the previous equation (Eq. 4.49), an expression for the global parameters follows

= (3 (Me)i — Z(zwcm;;fwm)k)_1 (S0 e)k — 32 (Moo M) ). (4.50)
k e A .

Again, with the solution for the global parameters é, the local parameters for each arc
Z}, can be computed with Equation (4.49) by back-substitution.

The residuals é’k for the partitioned case, can be computed using the definition (Eq.
4.25) and inserting the partitioning (Eq. 4.39)

& = — (Hp) iy — (Ho) e, (4.51)

4.3.9 Combination of Different Observations

Often different types of observations are available to be used for the estimation. To
combine different kind of observations it is reasonable to weight observations according
to their accuracy. Even if just one kind of observation is used, it might be reasonable
to introduce a weighting of different data arcs. The accuracy of satellite observations
in orbit determination is often dependent on environmental conditions and thus not
constant. This might be due to the orbit constellation, space weather, satellite and
instrument temperatures and so on. Observations of different satellites or in the case of
GFR also ground based measurements may be combined, as well.

Mathematically there is no difference weather different kind of observations or different
data arcs are weighted separately, thus it is not explicitly mentioned in the following.

It is assumed, that correlations of the observation errors are known or are neglected,
meaning the variance-covariance matrix C. is known or is the identity matrix I,
respectively. Furthermore, the accumulated design matrix H contains measurements
of different accuracies ag. The subscript v counts the different weighted observation
groups, which may also be different arcs.

(HTWH, ), 0 - 0 (HTWH,), ][] [ #HI'wi),
0 (HIWH,)y --- 0 (HITWH.), | |Z (HIW i),
(HIWH,), (HIWH,)y - (HIWH,), S (HIWH| [¢] |SpHIW§)]
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Under this conditions o2 does not cancel out in Equation (4.28). Nevertheless, re-
garding Equation (4.37), where the normal equations were summed over each arc k, it
is possible to arrange the normal equations in the same fashion, that all observations of
the same group v are lumped together. For each observation group, its variance o2 can

be extracted, and the whole normal equations can be written as
A . 1 = . 1 —
Ni=#  with N= EU: %HZ(W)UHU, il = Z ;%HS(W)U%. (4.52)

Compared to Equation (4.37), no more arc k appears explicitly. Each arc may be
weighted separately, but the sum over v may also include a sum over the arcs k
with observations of the same variance ¢2. This means that, additional to each arc,
observations of the same kind or group can be accumulated separately. This is important
for the concept of variance component estimation (VCE), as described in the following
section.

The definitions of the sub matrices M and 7 in Equation (4.41) includes the weighting
matrix W, when isolating the o2 terms, these substitutions are equivalently used with
W (W = o2W, Eq. 4.29, 4.30) in the next sections.

4.3.10 Variance Component Estimation (VCE)

The variance factors o2 of different observations or their evolution over time are usually
not known with high certainty. Nevertheless, the weighting factors have a crucial
influence on the solution.

In Section 4.3.6 it has been shown, that in case of only one kind of observation group,
the variance factor o2 can be estimated from the square sum of the residuals after
solving the normal equations. In case of more than one observation this is not possible
any more, because the solution of the normal equations is dependent on the weighting
factors o2 itself. Variance component estimation (VCE) is a technique to determine the
variance factors o2 of different observation groups during the solution of the normal
equations iteratively, based on the residuals and the formal errors from the normal
equations. VCE is used and described here in the way it was introduced by Koch and
Kusche (2001) and especially utilized for GFR by Mayer-Giirr (2006). In the following
it is shown without considering arcs and partitioning as described in Mayer-Giirr (2006).
In Section 4.3.11 it is generally expanded for the case of partitioned normal equations
with an arbitrary number of variance factors and arcs.

The form of the normal equations from Equation (4.52) can be summarized as

Lz (4.53)

M.
~9 v
UU

N 1
Ni=#  with N=» —N, =)
v GU v
In there, the variance is denoted with a * because it is to be estimated by the VCE
method. The variances are defined referring to the case with just one observation group
(Eq. 4.31), but now for v observation groups
o _ @ We, (o — Hod)"W(j, — HyoE)
G5 =" = , (4.54)

v Ty Ty

with

1
Ty = My — gtrace(NvN_l), (4.55)

v
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where ) 7, = m —n as in the single observation group case. For the computation of
the residuals ?, the solution ¥ must be know, for which 42 must be known. Thus, as
already mentioned, this problem can only be solved iteratively. Therefore an initial
guess for the variances 62 is needed. Fortunately, convergence is usually obtained quite
fast (after one to three iterations).

The computation of the residuals &, in Equation 4.54 requires the design matrices
H,. In many implementations the design matrices are not saved to reduce memory
demands. Nevertheless, with some matrix algebra the computation of the square sum of

the residuals in Equation (4.54) can be transformed to
&S We, = (§o — Hot)" W (i, — H,3)

- A _ (4.56)
= TN,z — 2277, + 5L Wi,

avoiding the use of the design matrix H, explicitly. For the use of PCG methods, this
can also be arranged without explicit use of the normal matrices N, like demonstrated
in eg. Mayer-Giirr (2006).

4.3.11 Partitioned VCE

The concept of VCE is derived in this section for the partitioned normal equations with
v observation groups and k arcs.

The starting point are the partitioned normal equations (Eq. 4.48), where for each
arc k, here additionally v observation groups are introduced. The derivation follows
the same way as before, but with the aim to separate the 1/62 terms and bring the
equation to the form of Equation (4.53) to apply the VCE concept. By multiplying out
the upper rows of the matrix Equation (4.48) and considering 62 observation groups,
the following expression for the local parameters is obtained

Bi= (X ), (X 0a), — (2 g Maehe), (X 50k 7

(4.57)

The last row of the system gives
1

Z[(ZG_Q(M@)U)]C@ +Z$(Z(Mcc)k)v8:Z%(Z(ﬁzc)k)v. (4.58)
L v “w v Uk voTU ok

In order to reach the desired form, the different sums need to be arranged in the same
order. For the first sum of the previous equation the summation can be switched, it
applies

; [(Z %(Mcx)v)k‘%k] =

v

1

52
JU

(Z(Mcz)lcu%k)v- (4.59)
k

Again, Equation (4.57) is substituted into Equation (4.58). According to Equation (4.59),
sums over the same index can be combined. Hence the equation can be transformed to

(Mee)e), (3 35 M) ]9),

1

=3 o (X [~ (M) (X 3 (Mahs) (3 5 070) ). (4:60)
v v k v v

1

> = (30 (Mo — (M (3
v k )

v

1

52
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52
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By substituting the matrix L, and the vector l:,, the system from the previous equation
(Eq. 4.60) can be reduced to

1 4 1-

] %LUE: zv: &T%l”’ (4.61)
which is the form needed for VCE (see Eq. 4.53). However, it is not possible to isolate
the variance factor 1/62 and the sum over v completely, L, and l_; still contain 62. Thus,
the concept of the "elimination of parameters" as described in eg. Mayer-Giirr (2006) or
Wu (2017) is mathematically not possible in the partitioned case.

Since the VCE procedure is an iterative process already, this is not a problem and
solved iteratively together. Nevertheless, the summed matrices over k are not constant
during the VCE iteration.

For the VCE iteration the square sum of the residuals for each observation group v
needs to be computed. The residuals € for the partitioned case are defined in Equation
(4.51). Thus it follows for one observation group v

&FWywey = (5] = & (HT )y = T (HD) ) (W)o (G = (Ha)oii — (Ho)oC).  (4.62)

By multiplying out the expression, using # T(HD), 5, = 77 (Hx)vs%' the symmetry of W
(W = W7T) and substituting the sub matrices as defined in Equation (4.41), Equation
(4.62) can be transformed to
X W)€y = T (Mg ) o + T (Mye)oC + 1 (Meg)oZ 4 €T (Mee)oC

— 287 (g )y — 267 (Mie)o + L (W)oBo.  (4.63)
Again it is possible to compute the square sum of the residuals without using the design
matrix H, explicitly. In here, the different arcs k£ are not considered, yet. Nevertheless,
for Equation (4.54) it is necessary to build the residual square sum over all arcs. Thus

Equation (4.63) needs to be set up and summed over all arcs k. With the summed
overall residuals (€s), being

(o =D (T ko = B HD w = & (HD 1), (4.64)

the total squared residuals can be build in the same way as before, and after some
transformation one obtains

(és)g(w)v(gs)v = Z (i‘]zﬂ( Tz kvxk) + Z ( Mg kvc>
k
+Z<8T( cx kvxk)'i_Z( cc k:'uc)
k

Each sum in there can be rearranged, like

> (Mo ) = &30 (4.66)

k



4.3 The Classical Approach for POD and GFR 55

Thus the sums over the arcs k of all sub matrices can be build once and used in all
VCE iterations.

For the VCE algorithm the inverse of the normal matrix N needs to be build (see
Eq. 4.55). Again there are methods that avoid the explicit inversion of the matrix
(eg. Mayer-Giirr, 2006). In our implementation we do not bother with that problem
because compared to the accumulation of the normal equations this is computationally
completely neglectable, as described for the solution of the normal equations (Sec.
4.3.7). The MATLAB standard library is used to compute the inverse by decomposition
methods, here as well.

4.3.12 Formal Error with Partitioning and Combined Observations

The formal error was defined in Section 4.3.6 for the simple case without partitioning
and just one observation group. The formal error is derived for the partitioned case with
more than one weighted observation group in the following in two steps. For practical
applications this is usually the case and especially, the determination of the covariance
matrix of the estimated global parameters C: is of interest to plot the degree variance
of a solution (cf. Sec. 2.3.3).

First, the formal error is defined for the partitioned case (cf. Sec. 4.3.8). C: is given
in Equation (4.35) with 62 defined in Equation (4.31). For the global parameters it is
given by

-1

k

Subsequently the formal error of the local parameters can be determined by back-
substitution for the local parameters of the arc k by

N -1

CAk =6° [(Mxx)lgl + (Mxx)lgl(Ma:c)k ( Z(Mcc)k:)
k

(Mea)k (M) . (4.68)

Secondly, the formal error is expanded for v different weighted observation groups.
The estimated variance 2 in Equations (4.67) and (4.68) needs to be defined as an

overall variance factor 6368, considering the variances 42 of all observation groups

T

O'ges = W (469)
This variance is not an absolute quantity anymore, because it is multiplied with the
weighting factors 1/02 of each observation group. Therefore it just can be compared
relatively. The covariance of the global parameters is then

1 1

éé = a-;es [Xv: ) ( zk:(Mcc)k‘>J B . (4'70)

Ty

The inverse of the summed normal matrix includes the weighting factors 1/02 as well,
making the covariance matrix an absolute quantity again. Building the square root of
the diagonal gives the standard deviation ooy, and ogyy, of each SH coefficient. This
can be used to plot the degree variance of a GFR solution (cf. Eq. 2.39).

The covariance of the local parameters follows from Equation (4.68) when adding the
sums over the observation groups v with their corresponding weighting 1/02 and using

the overall variance factor &365.
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4.3.13 Regularization

Regularization is not used for all results presented in this thesis. Nevertheless, the option
is implemented in the GFR software and the frequently addressed topic is just shortly
discussed for completeness in this subsection.

Regularization is a technique used in least squares analysis especially if a system
is ill-conditioned. An ill-conditioned system means that a small change of the input
(noisy observations) has a big effect on the results. In other words, the variance of
the estimated parameters is high. In the normal matrix this is reflected in the fact
that its rows are nearly linear combinations of each other. The cause of that is that a
measurement is not sensitive to the estimated parameters, or the noise level is too high.

Both has usually an implication for GFR. The gravitational signal is attenuated at the
height of the satellites (regarding Newtons gravitational potential by 1/r). Additionally,
in the spherical harmonic potential the factor (R/r)" (cf. Eq. 2.20) makes the effect
even wavelength (or degree) dependent. Thus the higher the degree of the spherical
harmonic coefficients, the lower is the signal to noise ratio. Furthermore, the KRB range
and range-rate measurement is not sensitive to the absolute position and velocity and
also not so much to accelerometer calibration parameters. The second point may be
compensated by adding additional GNSS observations.

By regularization additional information is added to the system, also called pseudo-
observations, making the whole system more stable. Therefore, regularization is also
referred to as stabilization.

In the normal equations (Eq. 4.22) a regularization matrix R is added

= (H"WH +oaR)“'HTW 7, (4.71)

with the regularization parameter «. This is also referred to as Tikhonov regularization.
With regard to Equation (4.37) and (4.53) it is obvious, that the regularization matrix
R is mathematically a normal matrix of a further observation and the regularization
parameter « is the weighting factor of that added information.

The matrix R needs to be known from prior information or experience. Often the iden-
tity matrix or a diagonal matrix is used and just « is determined. For the determination
of the regularization parameter « different methods and criteria exist, the interested
reader is refereed to eg. Save (2009) or Wu (2017), Ch. 2. It may be determined in an
optimal sense using VCE, as well.

In GFR Kaula regularization is very popular. It refers to Kaula (1966), who stated
that the degree amplitude spectrum of Earth’s SH gravity potential can be approximated
by a function 1075y/2 % n + 1/n?, where n is the SH degree (cf. Sec. 2.3.3 and Fig. 2.6).
With this information R can be build. For the precision of GRACE observations this
kind of regularization is not useful, at least for degrees below 100. In the developed GFR
software this kind of regularization is not used and therefore not further elaborated.
Regularization can be used to stabilize the estimation of the local parameters, especially
when only KBR range-rates are used as observations. This is not part of this thesis,
but results with just range-rate observations and this kind of regularization have been
published in (Darbeheshti et al., 2020).

With the partitioned normal equations (Sec. 4.3.8), and a diagonal regularization
matrix R it is easy to separate the regularization of local and global parameters. The R
matrix is partitioned in R,, and R.. as well and simply added to M,, and M., with
a, and «., respectively.
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4.3.14 Form and Components of the Matrices for the GRACE Case

In this section the main matrices of the estimation procedure A, ® and H shall be
presented in their matrix form in more detail. Their assembly and components are
demonstrated for the GRACE type mission. It demonstrates that the concept is easily
expandable and applicable to any other satellite mission and set of parameters.

The GRACE mission is especially characterized by the realization of the inter-satellite
ranging system (KBR) between the two satellites and the use of accelerometers to
measure non-gravitational forces acting on the satellites. Additionally a 3d-position
solution from the GPS receivers is available. Usually not the range between the satellites
is used as observation, but the range-rate (cf Sec. 3.2.1). Due to the KBR observation
equation, both satellites are coupled and hence the determination process needs to be
conducted for both satellites simultaneously. A combination of the normal matrices for
the gravity field coeflicients can not be realized, as it would be possible when having
two independent satellites.

Matrix A: State Partials

The extended state vector X contains the set of unknown parameters to be estimated,
as defined in Section 4.3 and Equation (4.1). For two satellites (A and B) X and its

derivative X are

A "z A
A ) T A
X=\rg|, X=|ig|=|rs (4.72)
B B B
L7 L7l Lo

In there 7, 7 and 7 are the satellites position, velocity and acceleration, respectively.
The vector p contains all additional model parameters that are to be estimated, as
well. The estimated parameters are constant over the time period they are estimated,
thus its derivatives are zero. Here, for GRACE, the parameter vector p’ contains the SH
coefficients of the gravitational model, referred to as I?nm and calibration parameters
for both accelerometers. Usually the three accelerometer axis are calibrated at least with

a constant bias b. Here additionally a linear drift d and a scale factor & are considered

. . . . R T
F=[5a da 51 bs ds 55 Kum| - (4.73)
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The A matrix is defined in Equation (4.6), for the assumed conditions it is

OFy  OFa  OFa  OFa  OFa
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where 71 is the number of the additional parameters (excluding the 12 initial conditions
n =n — 12) and evaluated on the reference trajectory X*. Many of the partials are zero
by definition. The expressions for the partial derivatives 8F/ OF = 033 or Or/ OF = 033
sometimes cause some confusion, stating that position and velocity are not dependent on
each other, whereas you can think of an example (eg. a free falling mass) where it is easily
possible to write down an equation F(F ) or vice versa. Therefore a general comment
on that: Position " and velocity 7 are mathematically two variables (or states) of the
differential system of equations, which both depend explicitly just on the independent
variable time t. For a unique solution, for position and velocity initial conditions are
required, where a mass can be at any position 7, completely independent of its velocity
'f"’, and vice versa. Of cause, when one solution of the differential system of equations is
determined, by rearranging of the equations, a function ¢(7) may be written down in
some special cases, and substituted into the equation for the velocity, giving #(t(7)).
Nevertheless, this notation already implies that 7 and 7 are not directly dependent on
each other, but just indirect via the time ¢. Thus their partial derivative is zero. Vividly
this can be understood, that if the velocity changes, the time changes, and due to that
change in time, the position changes, as well.

In the implementation the A matrix should not be saved completely because the
lower part contains always n X n zeros.

The accelerations that need to be considered for satellites are gravitational and
non-gravitational ones. The partials from different contributions can be split arbitrarily
like

677_}: 8fbgrav aan 87:’othe7“

or or or or
The computation of the partials can be done by numerical differentiation, but for
many accelerations, especially the gravitational ones, an analytical formulation exists.

A numerical differentiation can be realized by evaluating the models at slightly different
points (positions or velocities) and building the difference quotient in all three directions

(4.75)
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to determine the nine elements of the partial derivative matrix 97/97. There may
also be the case that no model for an acceleration exists, because measurements or
other time series are used, like the accelerator measurements used as non-gravitational
accelerations. In that case a numeric differentiation can be realized by using the data
on the reference trajectory for the actual and previous points and building a difference
quotient with non-equidistant bases.

In the following the partial derivatives of the acceleration with respect to the different
variables are discussed in detail.

Derivatives with respect to Position The gravitational part of the partial, 87'7"9?&1, /OT
known as the gravity gradient matrix, can be computed analytically. It consists of an
contribution from the SH models (which usually include a static gravitational field
and tidal models) and one from third body perturbations. The derivative of the SH
acceleration follows from its definition (Eq. 2.20 and 2.17) and is quite lengthy. The
interested reader is referred to eg. Montenbruck and Gill (2005), Ch. 7. The relativistic
corrections could be considered here as well, but are so small, that they are neglected
for the A matrix.

For realistic non-gravitational models no analytic form of the derivatives exists and
they need to be computed numerically. Building the partials for atmospheric drag (Sec.
5.1.6 and Eq. 5.20 requires the derivative of the density, which is usually also not possible
analytically.

Nevertheless, the contributions of the non-gravitational accelerations are orders of
magnitudes smaller than the gravitational ones. It was found, that neglecting these
terms in the A matrix does not have any influence on the results or the convergence of
the POD or GFR procedure.

Derivatives with respect to Velocity The only velocity dependent acceleration
for satellites is usually atmospheric drag. It can be computed analytically from Equation
(5.20). It is usually orders of magnitudes smaller than the gravitational accelerations,
as well. Also this partial can be neglected without any influence on the results.

Derivatives with respect to Accelerometer Calibration The calibration equation
for the accelerometers can be written as

Pacey = 5% ACC +b+d*t (4.76)

where ACC' is the measured acceleration vector in the SRF- or body-frame for one
satellite and time t. However, the desired partial derivatives need to be computed in
the inertial ECI frame. Thus Equation (4.76) needs to be transformed

Faced = Tyi(3% ACC + b+ d + ). (4.77)

From this equation the partials with respect to 5, d and § directly follow as

377% B OFacc o

al—; al—)» i2b)

or

oa = Lo t, (4.78)
@ = T;9 ACC.

05



60 ORBIT DETERMINATION AND GRAVITY FIELD RECOVERY (GFR)

Derivatives with respect to SH Coefficients ffnm The derivatives 8?/8I_('nm can
be computed from the definition of the SH gravitational field model (Eq. 2.20 and
2.17) analytically. Written down they may fill pages. Again, the interested reader is
referred to eg. Montenbruck and Gill (2005), Ch. 7. The actual computation, especially
for reasonable d/o, is one of the most time consuming steps of the GFR procedure.

Matrix ®: State Transition Matrix

The state transition matrix, as defined in Section 4.3.2 and Equation (4.12), for two
satellites A and B is

B(t,to) = | 20| -

[OFa(t)  OFa(t)  Ora(t)  OFa(t) OFa(t)] [ OFa(t)  OFa(t) 0 0 OFA(t)
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Ora(to) ora(te) 0rs(to) orp(te) Op(to) 3x3 33 5Fp(to)  arp(te) Op(to)
oFp(t)  Orp(t)  OFp(t)  OFp()  OFB(1) 0 0 OFp(t)  OFp(t)  OFE(t)
OFa(to) 87a(te) O97B(to) OFg(to) 9P(to) 3x3 33 9rp(to) dip(ty) Ob(to)

op(t) p(t) 9p(t) p(t) Ip(t)
L57a(t0)  Bra(t)) O7B(0) drp(te) b)) L Oax3  Oaxs  Oaxz  Oaxs  Jaxa |
(4.79)

It can not be formed analytically, in general. For the Keplerian two-body problem it is
possible to build it with some simplifications (Goodyear, 1965). For POD and GFR it
needs to be integrated numerically using the A matrix (Eq. 4.12). This is commonly
done together with the reference orbit.

Matrix H: Observation Partials

The H matrix is defined as the partial derivative of the observations with respect to
the state (Eq. 4.9). Written-out for 3d-position observations 74, 7'p for satellite A and
B, respectively and a scalar range-rate observation p it is

[0ry  OFa OFa OFa OF4 ] r 974
OFa  oF, OFs  org 0P Isxs O3x3z O3xs O3xs &
T |G| orp orp orp orp orp _ orp
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The partial derivatives 074 /0p and 07Fp/0p are components of the state transition
matrix (see Eq. 4.79) and are used from there. The 3d-position observation partials
04 /07y and 07 /0rp simply reduce to the identity matrix I.

For the partials of range-rate, first the range p and range-rate p are mathematically
defined in the following.

Relative position and velocity of satellite A and B are defined as

Pl (4.81)

TAB =TB — TA.

Range and range-rate are then given by

o= Faz Tz, (4.82)

. TAB - — h

PZT'TABZBAB'TA& (4.83)
where - is the vector dot product and €4p is the line of sight unit vector of the two
satellites. Accordingly, the partials of the leading satellite (A) can be computed for
range and range-rate measurements by derivation. Utilizing product and chain rule, this

gives

dp

— = —¢ 4.84
7 €AB, (4.84)
8p 1.

—— = ——(¥ap — p€ 4.85
7 p(TAB PEAB), (4.85)
o

P — e (4.86)
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For the trailing satellite (B) the partials are the same as for the leading one, but with
opposite sign. The partials with respect to the line of sight vector 74 are quite similar:

dp

. 4.87
Ofag AP (4.87)
ap 1.

— Z(Fapg — pe 4.88
B p(?“AB PEAB), (4.88)
iy
P~ s (4.89)
aTAB

For the partials with respect to the parameters dp/0p the range-rate partial needs
to be related to the partials of the positions of the two satellites 974 /0p and Org/0p,
which are known from the state transition matrix ® (eg. Eq. 4.79).

Therefore, the partial is build with respect to the relative position vector 74 . It follows
under consideration of the chain rule: 9/0z f(g(x)) = 0f/0g 0g/0x. For completeness,
first the range partial with p = p(7ap(p)) is given by

Op _ Op Orap
op  OFap Op

(4.90)

And the range-rate partial with p = p(Fap(p), Pa(p)) is

op 0p Oram dp OFagp
= =5 — + — —. 4.91
op Or'ap Op OFAB op ( )
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Using the relations from the previous Equations (4.88), (4.89) and multiplying out, it
transforms to

o _ (?B—?A)T[afB_afA o <8FA E)FB)] o OFp  _p OFa (4.92)

op o Lopop P Uay oy
as also given in eg. McCullough (2017) without derivation. All remaining partials in

this equation are components of the state transition matrix ®. Hence, for building the
observation partials H, the state transition matrix plays another important role.

€AB 0]5» —€AB aﬁ’

4.3.15 Implementation of the Batch Processor Algorithm

In the following the GFR batch algorithm is described step by step, considering important
points of the implementation and handling of data. It follows more or less the theoretical
descriptions in this chapter.

1. Pre-processing of satellite data

e In case real satellite data are used, usually a pre-processing is needed. For
GRACE L1B data the implemented pre-processing is described in detail in
Section 3.4. Times with missing observation data (KBR, GNV, KOS) are
saved as well as arcs with too bad and missing ACC or SCA data or too high
thruster firings.

e All GRACE L1B data except ACC data are sampled with 1/5 Hz. Because
five seconds are a good integration step size for LEO using the Adams-
Bashforth-Moulton (ABM) numerical integration method (cf. Sec. 5.2), it is
used as step size for the integration, as well. Therefore the ACC data are
down-sampled to 5 s. To avoid loss of information, a moving average is used.

2. Initialization

e The models to compute the reference orbit need to be defined. These are
mainly the background gravity models (tides and the higher d/o of the static
gravity field which are not estimated).

e Definition of the parametrization (arc length, instrument calibration parame-
ters)

e Definition of processing options. For example: Number of iterations, weighting
of observations, estimate Cy or use a given value, computation of residuals
or deviations for which iterations, save matrices for error analysis.

e The initial values for the parameters to be estimated need to be set to
integrate the reference orbits ()*. These are the local parameters like initial
position and velocity for all arcs of the satellites, ACC calibration parameters
and the global SH gravitational field coefficients up to the desired d/o.
Furthermore the initial value of the state transition matrix ®(¢g,to) = I is
set.

3. Loop over all observation times ¢ of one arc

e The reference orbit and the state transition matrix are integrated for the
current time point of the observations i. Thus the integrator needs to be
supplied with

. . . . T
A TA T T P| - (4.93)
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e Therefore, the accelerations 74 and 75 are calculated and A(t) needs to be
build do compute ®(¢,ty) (Eq. 4.12).

o All partials of A(t) are build on the reference orbit (see Sec. 4.3.14) not the
3d-position observations are used for that!

e The star camera quaternions from SCA data are used to build the transforma-
tion matrix Tj9p, which is subsequently used to generate the ACC calibration
partials (Eq. 4.77) and to compute the non-gravitational accelerations.

e With the integration results, the observation deviation ; is computed on the
reference orbit with the function G (Eq. 4.81 - 4.83)

Gi =Y — G(X; ty). (4.94)

e Finally, the p rows of the design matrix H; with the processed observations
of time point i are assembled by (cf. Eq. 4.14)

H; = H;®. (4.95)

e The design matrix is partitioned and saved for local and global parameters
(H;)y, and (H.),, for each observation group v.

e Time points ¢ with no observation data are simply skipped.

e After all time points ¢ of the arc are processed, the partitioned normal
matrices for each observation group v are build (Eq. 4.41): (Myz )y, (Mec)o,
(Mgye)w, (My)y and (me),. As discussed in Section 4.3.8 and 4.3.7, the trade-
off between computation time and memory consumption at which stage
the normal matrices are build is usually set to the end of the arc. This
works well for the used shorter arc length and gravity fields up to d/o 100.
An implementation where the matrices are build after a certain amount of
observations are processed can be utilized, as well.

e If the residuals (€); (Eq. 4.51) should be computed, the design matrices
(Hy)y and (H.), must be saved.

4. Solving for the parameters (), and &

e The previous step (3.) is done for all arcs (in parallel). Arcs that are discarded
from the pre-processing are simply skipped.

e The normal matrices form all arcs are combined to compute the global
solution. If a constant weighting is used, the global parameters ¢ follow from
either of the Equations (4.58) or (4.60).

e With & determined, the local parameters (3%’) & can be computed for each arc
k with Equation (4.57). As discussed in Section 4.3.7, the system is solved
using MATLAB’s solver.

e If VCE is used, the two previous steps are iterated, starting with the initial,
or last weighting. The standard deviation 62 of each group is determined
by Equation 4.54 and 4.55, where ég (W)va, is build according to Equation
(4.65) with the determined local and global parameters (), ¢ Usually two
VCE iterations are sufficient. However, the influence of the VCE iterations
on the overall computation time is marginal.
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e The residuals €, may be computed with the design matrices (H,), and (H.),
and estimated parameters (Z); and ¢ according to Equation (4.51).

e The observation deviations ¢ may be saved (see Sec. 4.3.4). They are computed
from the reference orbit, which was integrated with the parameters from the
previous iteration. For the actual deviations, the reference orbit would need
to be integrated again with the determined parameters. This is done in the
next iteration anyway, and thus the deviations are saved then and are always
"delayed" by one iteration.

5. Iteration: The steps (3.) and (4.) are iterated until convergence or an accepted
tolerance is achieved

e Remember, the estimated parameter (%’) , and ¢ from the previous step are
just the deviations between the true and the reference values (Eq. 4.3). The

estimated local parameter ()25‘ )k need to be computed by

(X3)k = (X + @), (4.96)

and the global gravity field coeflicients

op

> %
Knm = nm +

(4.97)

e The estimated parameters (Xg )i and I?;im are set as initial conditions and
model parameters for the next iteration to integrate the reference orbit.

6. End

e If the observation deviations should be computed, the reference orbit is

integrated one last time with the last estimated parameters ()Z'a‘ Vies I?;;m to
compute ¥ (the state transition matrix ® does not need to be integrated).

e If desired, the position overlap of consecutive arcs can be computed. Therefore
the last integration for the computation of the deviations is extended for one
more time step and thus overlapping with the next arc.

o All desired results are saved.



SIMULATION ENVIRONMENT
BACKGROUND

The accurate simulation of satellite orbits is fundamental for Precise Orbit Determination
(POD) and Gravity Field Recovery (GFR). Dynamic POD and GFR fits a model with
certain parameters to the measured observations. Therefore the overall quality of the
results is determined to a large extend by the model’s quality and its numeric propagation.
The computation of the reference orbit is the basis for the whole estimation process (cf.
Ch. 4).

In contrast to the modeling of gravitational accelerations, shown in detail in Chapter
2.3, the non-gravitational accelerations are much smaller, but crucial for resolving the
higher harmonics of the gravitational field and hence the hydrological signal measured
by GRACE observations. Thus in this chapter the approaches and models for non-
gravitational accelerations are presented. The models are validated in detail in Chapter
6.1 for the GRACE satellites.

No analytic solution for the the equations of motion exist when going beyond the
Keplerian two-body problem. Thus a numeric propagation is needed. With the increasing
accuracy of the measurement devices and sensors, the demands on the numerical precision
for POD and GFR increases, as well. Mainly two numerical integration methods were
adapted within the scope of this thesis. The validation concerning accuracy and efficiency
are conducted for the simple Keplerian case with an analytical solution as reference and
for more realistic cases with a spherical harmonic gravitational model. In both cases an
arbitrary precision arithmetic, exceeding the precision limitation of the usually used
double data type, is investigated and utilized as reference.

5.1 Non-Gravitational Force Models

The precise modeling and knowledge of non-gravitational forces acting on satellites is of
high interest for gravimetry and many other missions and scientific tasks.

Detailed knowledge or force models are a prerequisite for accurate orbit propagation
and orbit determination. Dynamic POD techniques to obtain the most accurate satellite
orbits rely on the quality of the utilized force models or measured forces. Therefore
the knowledge of the non-gravitational forces, and thus sophisticated models, are of
high importance for a variety of tasks related to accurate measurements from satellites.
Examples are GNSS, satellite altimetry, surveying and satellite gravimetry, where
accurate positions of satellites are required.

Dedicated gravimetry missions like GRACE carry accelerometers to measure the
non-gravitational accelerations acting on the satellite, thus the modeling is not of the
highest priority for these missions. Nevertheless, the accelerometer measurement is not
absolute. All accelerometer measurements need to be calibrated. Bias, drift and scale
factors have to be regularly estimated. Thus a modeled reference is of interest. With

65
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regard to GRACE-FO where the accelerometer on one satellite suffered a malfunction
this is even more true.

Nevertheless, the number of satellite missions equipped with accelerometers can be
counted on the fingers of one hand. Satellites equipped with GNSS receivers to deliver
valuable measurements for gravimetric science are numerous. With the right approach
to do deal with the non-gravitational forces this offers potential for much broader
gravimetric research eg. Weigelt et al. (2013).

For this thesis and the analysis of the influence of different sensors by full simulation
it is necessary to have sophisticated models for the non-gravitational forces to generate
realistic simulated accelerometer data.

Non-gravitational forces summarizes all forces acting on a satellite not related to
gravitation. For satellites and other objects in space mainly three kind of forces may be
considered: Radiative forces, drag forces due to residual atmosphere and magnetic forces
due to interaction of magnetic/electric devices with Earth’s magnetic field. Usually, for
satellites, the last category can be neglected.

In this thesis the following radiative forces are considered: Solar Radiation Pressure
(SRP), albedo radiation from the Earth (ALB), Infrared Radiation from the Earth (IR)
and Thermal Radiation Pressure (TRP) from the satellite itself. SRP is the force due to
the direct radiation from the Sun. ALB is the force due to radiation from the Sun, that
is reflected by the Earth. Furthermore the Earth surface and atmosphere is radiating
itself in the infrared spectrum, referred to as thermal radiation, being the origin of
the IR force. The effect of irradiation is twofold. The direct radiation (SRP, ALB and
IR) exerts direct forces and torques on a satellite. The secondary effect is a thermal
heating of the satellite surfaces due to the absorbed radiation. This results in a thermal
radiation from those surfaces, according to the Stefan-Boltzmann law. This force is
called TRP.

The atmosphere of the Earth is not vanishing at a certain altitude but its density is
slowly diluting while its composition is changing. Therefore also satellites in in an 1000
km orbit are decelerated by atmospheric drag. The lower the orbit is, the higher is the
density and hence the drag force. The composition and density of the Thermosphere is
highly variable and changing with the Sun radiation. The Sun activity has an immense
influence on the Thermosphere (see eg. Fig. 3.1 in Chapter 3).

The magnitude of all these forces is dependent on the satellite’s shape, surfaces, its
properties with respect to radiation of different wavelength and interaction with the
rarefied atmospheric particles and of cause on its position and attitude. Therefore the
non-gravitational forces are also called surface forces. In contrast to the gravitational
forces they are referred to as non-conservative forces, as well.

The models used in this thesis are based on the HPS simulation software, developed
at ZARM since 2002 (Theil, 2002; Bremer et al., 2013). Now it is a cooperation between
ZARM and the DLR Institute of Space Systems, Bremen. The sophisticated FEM
approach including a shadowing algorithm for SRP and TRP was developed in this
framework by Rievers and Lammerzahl (2011); Rievers et al. (2012); List et al. (2015);
Bremer (2018). In the course of this thesis and within the CRC geo-Q, the HPS software
was fundamentally revised under the Name XHPS (Woske et al., 2016, 2019). Models
for ALB and IR were developed in the same framework and the TRP modeling (Rievers
et al., 2016) was extended with all radiation sources and for conductive and transient
temperature calculation for the GRACE satellites (Woske et al., 2019).
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5.1.1 Modeling Approach: Finite Elements and Pre-Processing

A sophisticated model for non-gravitational forces needs to consider the geometry
of the satellite and orientation of each surface. Therefore state-of-the-art models uti-
lize a Finite Element Model (FEM) of a satellite to compute non-gravitational forces.
Shadowing of surfaces by others can make it necessary to use fine FE models of a satellite.

The general principle is that all forces are calculated for each element of the FEM and
are summed subsequently. Therefore for each element all necessary properties need to be
assigned and stored. These are orientation and position of each element. A satellite fixed
frame is used for that, referred to as the mechanical frame. That frame is usually used
to build the FEM, and does not necessarily coincide with the Center of Mass (CoM) of
the satellite. Furthermore the nodes of each element need to be stored to keep track
which elements adjoin each other. This is of importance for the shadowing computation.
For the radiative interaction optical properties of each element need to be assigned, as
well. The algorithm considers the well known effects of absorption, emission, specular
and diffuse reflection (eg. Knocke et al., 1988; Rievers et al., 2012).

Detailed FEMs may contain some thousand elements for accurate geometry and
shadowing conditions. In an integration loop, where the non-gravitational models are
called at least every integration step, this is computationally not acceptable. The
workaround is a pre-processing of normalized force and torque coefficient look-up
tables for a grid of specified incident perturbation directions. the normalized coefficient
contain all information on the satellite’s geometry, and material properties, which are
not dependent on the actual satellite’s position, attitude or incoming radiation. The
enormous potential of that is demonstrated in the next subsections in the equations of
the models. Perturbation directions may be the Sun for SRP, or a cell on the Earth for
ALB. When calling the force model with a given incident disturbance direction, e.g. the
Sun direction, the values are interpolated in the look-up tables. Once the look-up tables
are computed for one satellite, this approach allows fast computation of very complex
satellite and perturbation models independent of the level of detail of the satellite FEM.

The incident disturbance direction is described in polar coordinates in a satellite
body frame with polar angle 6 reaching from 0 to 7 and azimuth angle ¢ from 0 to 2.
This is demonstrated in Figure 5.1 for an exemplary GRACE satellite. The unit vector
of the incident direction in satellite body frame €, is given by

Eine = [sin(0) cos(¢), sin(#) sin(e), cos(0)] 7. (5.1)

In the pre-processing the incident direction €, is rotated around the satellite in
arbitrary, discrete steps of the angles # and ¢.

The optical properties of the surfaces, namely absorption coefficient «, specular
reflection coefficient s, diffuse reflection coefficient 4 and emissivity € are in general
dependent on the wavelength. Usually they are averaged over different ranges or assumed
to be constant over a range. Commonly material properties are given for visible light
and infrared (eg. for GRACE in Bettadpur, 2012b). Therefore the look-up tables for IR
radiation are in general different from the ones used for SRP and ALB.

Nevertheless, the following applies for coefficients of the same wavelength for a
non-transparent surface:

at+vs+vg=1 (5.2)
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€Sun

z

Figure 5.1: Definition of polar and azimuth angles 8, ¢ for an exemplary incident direction of
the Sun €g,, in a satellites fixed body frame.

and from Kirchhoff’s law of thermal radiation
a=c. (5.3)

For the second equation it is important to be aware of, that the absorption is usually at
a different wavelength than the emission and thus the coefficients are not equal.

5.1.2 Solar Radiation Pressure (SRP)

SRP is the force due to the impulse of the Sun’s light. The resulting force of the light
can be computed with the speed of light ¢ and the incoming radiation power or the flux.
Here the incoming radiation flux is referred to as ¢;,. In this context the term "flux" is
used as a flux density with the unit W/m? throughout this thesis.

For one element k& with the area Aj, and the optical properties o, sk, Ya,k, the force
is given by

= din o o o
Fsrpi = - fshadow,k Ak €inc - N | (04 + Yak)€ine

+2 {’Yg’k + Vs k €inc - 5N,k} gN,k} . (5.4)
The - denotes the vector dot product and €y, is the unit normal vector of the element
k expressed in the satellite body frame. The binary factor fspedow r indicates if an
element is shadowed by another one. A shadowed element is not further considered.
The shadowing conditions are computed by employing the ray-tracing method. This is
demonstrated in detail in Bremer et al. (2013); Bremer (2018).

In Equation (5.4) g /c is the only term that is not just dependent on satellite
properties and the satellite’s orientation (6, ¢). Therefore everything else can be evaluated
in a pre-processing. From Equation (5.4) the total force is obtained by the sum over all
elements k, disregarding the factor g;,/c we define

f(97 d)) = Z *fshadow,k Ay, Eine - €N7k |:(Oél + Vd,k)ginc
k

Vd,k o o .
+2 { 3 + Ys,k €inc eN,k} eN,k:| . (5.5)



5.1 Non-Gravitational Force Models 69

In the pre-processing [ is evaluated for all desired irradiation directions €. Usually a
resolution of some degrees for 6 and ¢ is sufficient. The results are then saved for each
body frame axis as two dimensional look-up table.

When the model is called for a given incident direction (6 and ¢), gi,/c is multiplied
after interpolation of [ from the look-up tables, resulting in the actual force

Fspp = q%n (0, 9). (5.6)

The terms summarized in the lookup tables (f(&, ¢)), are not unique for SRP, but
for general incoming radiation. Therefore, the same look-up tables can be used for ALB
radiation, as well. For IR the optical coefficients are different and the tables need to be
recomputed.

For SRP ¢;,, is the solar flux which is dependent on the satellite’s and Sun’s position.
The solar flux at the distance of one astronomical unit (AU) is referred to as the solar
constant g with a value of about 1367 W/m?2. The solar constant is not completely
constant but its fluctuation is less than 0.1%.

With the solar constant g at the desired time and the Sun position 7g,,, the incident
flux at the satellite’s position 7s,¢ can be computed by
1 AU )2

|Fsat - FSun |

Gin = 4o ( (5.7)

5.1.3 Albedo and Infrared Radiation Pressure (ALB, IR)

Albedo radiation is Sun light that is reflected by the Earth. Different Earth surfaces,
atmosphere conditions and clouds have a huge influence on the actual reflectivity.

Earth infrared radiation is based on the fact that each body with a temperature
above 0 K radiates (Stefan-Boltzmann law). Thus, temperature of the Earth surface
and the atmosphere are the driver of the IR force. As for ALB, IR is dependent on the
actual surface and atmosphere conditions and hence hugely time dependent.

These two radiation forces are recently also referred to as Earth Radiation Pressure
(ERP) (eg. Vielberg and Kusche, 2020).

To meet the high spatial differences and fast changing character of the ALB and IR
origin, the developed model is based on data from CERES (Clouds and the Earth’s
Radiant Energy System) (Wielicki et al., 1996; Loeb et al., 2018). The CERES project
deals with the Earth radiation budget. The various CERES data products are based
on measurements from several instruments on Earth observation satellites along with
many other data.

Here the SYN1deg data product (Doelling et al., 2016) is used, which among others,
provides Earth reflectivity or albedo and long wave flux radiation data for an epoch
starting in 2000 up to now. It has a spatial resolution of 1° x 1° in longitude and latitude
and a time resolution from hourly to monthly. All data are top of atmosphere (TOA)
values, meaning that absorption through the atmosphere is already included in the data.
For the most exact results the hourly data are used (cf. Sec. 6.1.4).

Exemplary for May 1st 2006 hourly CERES SYN1deg data for reflectivity and long
wave flux are shown in the Figures 5.2 and 5.3 for four times of that day. In the
reflectivity plots the eclipse is distinctly visible because no data are available if no
incoming light from the Sun is present. Clouds, snow and ice have the highest reflectivity,
while the reflectivity of the ocean and land surface is rather small. Thus cloud coverage
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Figure 5.2: CERES SYNldeg (TOA) hourly reflectivity or albedo data from May 1st 2006 for
four times a) 06:00-07:00 b) 08:00-09:00 c¢) 11:00-12:00 d) 14:00-15:00 (GMT).
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Figure 5.3: CERES SYNldeg (TOA) hourly long wave flux radiation data from May 1st 2006
for four times a) 06:00-07:00 b) 08:00-09:00 c) 11:00-12:00 d) 14:00-15:00 (GMT).
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can be well distinguished. The reflectivity of snow and ice is between 0.9 and 1. Due
to the fact that the shown data are TOA values, it is much lower. The loss due to
absorption in the atmosphere is about 35%.

In the long wave flux data the eclipse dependency is not that prominent. Nevertheless,
the hottest spot is moving with the Sun’s zenith from 06:00 to 15:00 GMT from India
over the Sahara region in the plots. Identified cloud formations from the refelctivity data
can be recognized here again by a lower flux due to the shielding effect of the clouds
and a low emission by the cold clouds itself. During the northern summer months, the
South Pole is not illuminated by the Sun an thus colder than the North Pole, resulting
in a lower radiation.

Unlike SRP, where the source of radiation can be assumed as a point because the
Sun is so far away and has a comparably homogeneous spatial radiation, for ALB and
IR radiation from all surface area of the Earth, that is in the field of view (FOV) of
the satellite, has to be considered as an own radiation source. Therefore the Earth is
gridded in cells with the indices ij. The resolution for that grid is inherited from the
available CERES data resolution. Based on the Lambertian cosine-law, for ALB and
IR a diffuse reflectance of an Earth cell into the hemisphere is assumed like in Knocke
et al. (1988). This is in general a good assumption. The only study modeling ERP using
different angle dependent models for several surfaces of the Earth is from Vielberg and
Kusche (2020). Nevertheless, the models introduced here show a better agreement with
GRACE accelerometer measurements for tests using the same methodology as in Woske
et al. (2019).

Each cell is assigned an area A;;, a reflectivity p;;, and an outgoing IR flux grr;;. The
forces and torques resulting from each cell in the satellites FOV are computed separately
and subsequently summed up. With the radiated power ¢;, ;; from cell ij reaching the
satellite, the force and torque due to the radiation from each cell can be computed as
for SRP with the pre-computed look-up tables because all physical processes are the
same as in Equation (5.4) just with a different ¢;,,. Thus the force can be written with
I' from Equation (5.6)

Farpir= . dinig (03, ¢ij)- (5.8)
ijeFov €

The angles 6;; and ¢;; in the satellite fixed frame (Fig. 5.1) follow from the incident
direction 7j; — Tsat-

The geometrical conditions and components for the models are sketched in Figure 5.4.
All measures of angles and distances are taken from the cell’s geometrical center. The
vectors 7y, and 75 describe the satellite’s and the ij cell’s position, in the Earth fixed
frame, respectively. @, ;; is the angle under which the cell ¢j sees the satellite from its
normal vector and ®;, ;; the angle under which the Sun light hits the cell. Both angles
can be determined with the definition of the vector dot product:

Do — arceos <W> 7 (5.9)

1735l 1735 = Tsat

i, ij = arccos T TSun ) (5.10)
17 |75un]
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Figure 5.4: Sketch of geometrical conditions for ALB and IR model

Defining the outgoing power radiated from the cell ij by P;;. Then the incoming flux at
the satellite’s position g;y ;; from cell ij can be calculated by

B .

- —— 08 Doyt i (5.11)
T |Tij — Tsat|

Qinyij =

The factor 1/7 originates from the integration of the Lambertian cosine-law over the
hemisphere (eg. Rievers et al., 2012), the flux decreases with the inverse square of the
distance as in Equation (5.7). For ALB the power emitted by a cell P;; depends on
the reflectivity p;; and the angle ®;,;; under which the Sun light hits the cell. It is
calculated as

Pij ALB = QSun,ij Aij c0s (Pinij) pijs (5.12)

where ggyn,i; is the solar flux at the position of the cell ij, or simply at the position of
the Earth. It is obtained from Equation (5.7) with 7yt = 7Eqren. The reflectivity p;; is
used from the CERES data.

For IR, the radiation power P;; rg is directly taken from the CERES data and therefore
just has to be multiplied by the cell area:

Pij1r = Aij QCERES; ;- (5.13)

As mentioned before, the satellites optical material properties are dependent on the
wavelength, thus I'(0, ¢) is usually different for ALB and IR.

5.1.4 Thermal Radiation Pressure (TRP)

TRP is the force from the satellite’s radiation due to its surface temperature, according
to the Stefan-Boltzmann law. Thus, for the computation of TRP the temperature of
the satellite surfaces needs to be known. For the TRP model again diffuse radiation
from satellite surfaces according to the Lambertian cosine law is assumed. The force is
calculated for each FEM element k. With the temperature T}, of the surface element &
and the emissivity e, the force due to one element is

=3 2Ak5k0

ok = 3 Ty ex - (5.14)

C

The constant ¢ is the Stefan-Boltzmann number. The factor 2/3 results from the
integration of the cosine law over the hemisphere when considering just orthogonal
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Figure 5.5: Sketch of conditions and assumptions for the three implemented temperature
models: a) static, b) transient, ¢) transient plus heat conduction, with internal and external
temperatures T;,, and T,

components (all other directions balance out, eg. Rievers et al. (2012)). The total TRP
force follows again by the summation over all elements k.

To evaluate Equation (5.14) the surface temperature T}, has to be calculated. For a
temperature analysis all incoming and outgoing power needs to be determined. Incoming
radiation sources are the same as for the non-gravitational forces: Sun light, albedo
and Earth infrared radiation. The absorbed flux of each satellite element g, depends
on the angle of the element with respect to the incident radiation direction and the
absorptivity oy of the element. The absorbed flux due to one source can be computed
from the incident radiation flux ¢;, and its direction €j,. as follows:

Qabs,k = O fshadow,k €inc - é»N,k Gin = Mg - Gin. (515)

As for SRP, all factors but ¢;, are just satellite properties and geometry. Thus the
same method with pre-computed look-up tables is applied here, again. The satellite’s
properties are summarized in the look-up table A(k, 0, ¢):

Qabs,k = A(k‘, 97 ¢) *Gin- (516)

Here the look-up table A is three dimensional. In contrast to the normalized force
coefficients f(@, ®), a value for each element is needed, and not a summed value as for
the force.

The absorbed flux ggs 1 needs to be computed for each radiation source and then
summed up. For albedo and Earth infrared, radiation sources are again all surface cells
on Earth in the FOV of the satellite, therefore the computation is much more intensive
than for Sun light.

Additionally to the absorbed flux, an internal heat production gjtern,x may be
considered for the elements k, as well. This may be of interest if considerable heat is
produced and especially if it is not equally distributed over the satellite surfaces and
thus the resulting forces do not balance out.

Three different methods (or assumptions) to compute the surface temperatures T}, are
implemented: a) static, b) transient, c¢) transient plus heat conduction. The conditions
and assumptions for the three different models are sketched in Figure 5.5 and described
in the following paragraphs. In all cases no conduction between elements is assumed.
Each model is a simplification of a complete temperature analysis. A full transient
and conductive FE analysis every simulation time step would be very slow and is not
realistic for orbit propagation.

a) Static temperature model (stat)

The most straightforward way to compute the surface temperature is to assume instan-
taneous heating/ cooling and no heat conduction between and through elements. Then
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the absorbed incoming radiation flux g is equal to the thermally radiated flux g,qq x
and the temperature T}, can be directly calculated using Stefan-Boltzmann’s law

1
T, = (q“‘”“> ' (5.17)

EL O

with the Stefan—Boltzmann constant o.

This case can also be directly considered in the computation of the SRP, ALB and
IR forces (Eq. 5.4) and included in the look-up tables. This is possible, because every
incoming radiation directly results in a re-radiation depending only on the absorptiveity
oy, and emissivity €. This is for example commonly done by Montenbruck et al. (2015).

b) Transient temperature model (¢trans)

A more realistic model, especially for low Earth orbits with fast changing illumination
conditions and eclipses, is to consider transient heating and cooling of surface walls.
When again omitting heat conduction, the governing equation for the temperature is:

0Ty,

Cp.k Pk D B = dabsk ~ eroTy, (5.18)

with heat capacity ¢, density pg, and a thermal thickness hj, of the satellite element
k and the time t. Thus it is assumed that a thin surface is heated equally over its
thickness. This ordinary differential equation is solved numerically for every FE during
the satellite orbit propagation.

¢) Transient plus heat conduction (pde)

An even more sophisticated model is to additionally consider a heat conduction through
the satellite walls and a resulting temperature distribution over the surface thickness xy.
As in the two other models no conduction between elements is assumed. This approach
leads to the following Partial Differential Equation (PDE)

2

Cp,k Pk a;;k = )\kaa;rzk (5.19)
Here, the radiated and absorbed fluxes at the outer surface ggps 1 — EkUTlf,x:O have to
be implemented as additional boundary condition of the PDE. On the other (inner)
side of the surfaces, an internal heat production gntern i can be considered as boundary
condition, as well. For example dissipated energy from the satellite which is usually
radiated through radiator surfaces by the thermal management system of a satellite.
Solving this equation inside an orbit propagation is more difficult, but may be shifted
to a post processing step, especially when evaluating sampled satellite data. This is
usually the case when this small differences of non-gravitational forces are of interest
like for POD, GFR or density recovery applications.

5.1.5 Eclipse Model

For the radiative non-gravitational force models, an eclipse model is important. The
central body, eg. the Earth, is able to shadow an orbiting satellite from the Sun. These
phases are referred to as eclipses. During the eclipse, the satellite does not experience
solar radiation. The different possible shadow forms are shown in Figure 5.6.
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Figure 5.6: Sketch of different eclipse conditions, after Bremer (2018)

The implemented model, after Wertz (1978), p. 71 ff., considers the four different
shadow forms and the transition between them. The result of the model is a scale factor
between 1 and 0 scaling the incoming solar radiation g;, or ¢z based on the eclipse
condition.

In this model Earth and Sun are considered as perfect spheres. Slightly more realistic
models consider the oblateness of the Earth and furthermore absorption, scattering and
refraction of the Sunlight in the atmosphere (Robertson, 2015). This slightly changes
the values in the very short transition times between full sunlit, penumbra and umbra.

5.1.6 Atmospheric Drag

The force due to the rarefied residual atmosphere is usually the non-gravitational
force affecting LEO satellites’ orbits the most. The higher the orbit, the smaller the
drag force, and hence SRP gets the dominating non-gravitational force. Nevertheless,
compared to the radiative forces, atmospheric drag is mainly acting always in the same
direction (along-track) and hence orbit changes are more sensitive to it. The interaction
of the rarefied gas with very high energy in the Troposphere can not be described with
continuous fluid dynamics as for instance airplanes.

Nevertheless, the general approach is quite similar to the one known from aerodynam-
ics. The drag force is commonly modeled with a dimensionless force coefficient C'p and
a quadratic dependency of the relative velocity Un.. The drag force ﬁD in the direction
opposite to the incident particle flow can be written as

o 1 . .
Fp = —§P A C1D |Uinc| Vinc (520)

where A is the reference area of the satellite and p the local air density. The atmospheric
drag model used throughout this thesis is a basic one. No lift component and cross-
component orthogonal to the relative particle velocity are considered. For the GRACE
satellite geometry and an attitude with an angle of attack of less than 2° this assumption
is not too bad.

For the drag coefficient Cp a constant value is used. During the analysis it was
determined eg. with the GRACE accelerometer data in Woske et al. (2019) for different
epochs of the GRACE mission. The resulting values between 2.1 and 2.4 are typical
values used for convex-shaped LEO satellites (Montenbruck and Gill, 2005).

Nevertheless a much more complete approach is to model the drag and lift coefficients
with physical models of the particle interaction, like it is especially done by Sentman
(1961); Doornbos (2011); Doornbos et al. (2010) or Kato et al. (2016).
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As reference area A, the projected area of the satellite FE model with respect to the
incident velocity is used. This area is pre-computed and saved in a look-up table, as well.
The relative velocity can be either computed with the assumption of an atmosphere
that is rotating with the Earth, or by utilizing a thermospheric wind model. For the
first case the velocity is

Uinc = Vgat — WE X 'Fsata (521)

with the angular velocity of the Earth wg. Tests with the horizontal wind model HWM93
did not show very big differences of the force compared to the more simple approach.
Thermospheric wind modeling is a complex topic on its own with many dependencies
and of actual interest, also with respect to non-gravitational force modeling (eg. Visser
et al., 2019; Vielberg and Kusche, 2020).

The atmospheric density is computed utilizing the JB2008 atmosphere model (Bowman
et al., 2008).

5.2 Numerical Integration

Most numerical integration methods are designed to solve a system of first order Ordinary
Differential Equations (ODE) of the form

% = 7= f(t,7). (5.22)
The vector Z, containing all variables of the system, is commonly referred to as the state
vector. The state vector may be of arbitrary dimension. The vector-valued function
f_; the so called right-hand-side (RHS) function, may be an arbitrary function of the
state variables but not of its derivatives. The order [ of an ODE is defined by its
highest derivative. An ODE of order | can always be reduced to a system of [ first
order differential equations by defining additional state variables. To obtain an explicit
solution, an initial condition Xy at a specific time ¢y has to be known.

Numerical integration of ODE systems is a field of research with long history. The
common Runge-Kutta (RK) method dates back to the beginning of the 20" century.
Thus, classical methods benefit from extensive research. For orbit propagation in space
flight mechanics three classic methods are commonly used: 1. Runge-Kutta, 2. Multistep,
and 3. Extrapolation methods. More recent developments also suggest symplectic
(Aristoff and Poore, 2012) and implicit (Jones and Anderson, 2012) integration methods.
Symplectic integration methods conserve the Hamiltonian, therefore work well with
conservative forces. Although it is possible to incorporate non-conservative forces,
(Mikkola, 1998) symplectic integration is not recommended when dealing with complex
force models in LEOs (Jones and Anderson, 2012).

For the scope of complex time dependent force models for LEOs with coupled trans-
lational and rotational dynamics and the integration of the state transition matrix, the
Adams-Bashforth-Moulton (ABM) multistep integrator (Shampine and Gordon, 1975)
and two RK methods are implemented and investigated concerning their accuracy and
efficiency.
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5.2.1 Runge-Kutta Methods

Explicit RK methods are probably the most commonly used methods because of their
simplicity and flexibility for a wide range of applications. State-of-the-art RK integrators
utilize a local error control to adjust the step size automatically. Nevertheless, RK
methods need much more function elevations, compared to multistep methods, which
makes them less efficient if the evaluation of the force model (i.e. the RHS function) is
computationally expensive.

RK schemes are explicit single-step methods. This means that the solution #,,41 at
the time t,,11 can be successively determined from a previous condition &, at time t,,.
With the step size h defined as h = t,,+1 — t,,. A s-stage RK scheme with s subsequent
stages can be written as

Fi= fltn+hey &t hY aghky),  (i=1.9) (5:23)
=1
Bt =Tn+h Y bk (5.24)
j=1

The coefficients ¢;, b; and a;; finally define a RK scheme. The coefficients are determined
to minimize function evaluations s for a given order p. It is proven that for orders
higher than four s > p, more precisely: p =5,6, s >p+1,p=7,s>p+ 2, p =38,
s > p+ 3 (often called Butcher barrier) Montenbruck and Gill (2005). The coefficients
are typically expressed in a Butcher table

C | Asxs
b"

Fehlberg (1968) established the so called embedded RK or Runge-Kutta-Fehlberg
(RKF) methods, which use solutions of two different orders to determine a local trunca-
tion error between these two orders. A step size for the next step is determined regarding
this error and a tolerance value. In the appropriate Butcher table an additional vector b
is added for the calculation of the additional solution with a different order. Details are
given in Kato and Waske (2017).

Implemented Methods

Two different RK schemes are implemented and validated here. First, the popular
Dormand-Prince8(7) scheme (Dormand and Prince, 1980; Prince and Dormand, 1981)
(DoPri87), an 8th order scheme which needs 13 function evaluations of the RHS function
and second, the Cash-Carp5(4) scheme (CK54)of 5th order with six function evaluations
per step. Both methods are embedded schemes capable to compute a high order and a
lower order solution for a local error estimation and subsequent step size control (the
lower order is given in the brackets).

5.2.2 Multistep Methods

Multistep methods are known to be the most efficient integrators when the evaluation of
the RHS function is computationally expensive, but reveal a lack of stability properties
for high orders in combination with large step sizes and abruptly changes in the RHS
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function. The most common and suggested methods are Adams-Bashforth-Moulton
(ABM) (Shampine and Gordon, 1975) methods and the improved Stérmer-Cowell (SC)
method, the Gauss-Jackson (GJ) (Berry, 2004) method. SC or GJ methods directly
integrate the second order differential equation of motion (cf. Eq. 2.6). The GJ integrator
is often recommended as most effective multistep integration method when using fixed
step sizes and non-velocity dependent forces (Montenbruck and Gill, 2005). Nevertheless,
for the purpose of POD or GFR and coupled satellite translation and rotation, GJ
methods lose their superiority because the corresponding ODE system is not completely
of second order. Therefore the ABM multistep method is used.

The general idea of multistep methods is to gain a solution for a time point t,41,
which is not only based on the last known time point ¢,,, but on a series of previous time
points, called backpoints. This comes along with one disadvantage of these methods. To
initiate this procedure, a number of previous points must be known. Thus, not only an
initial condition is required, but several backpoints, depending on the methods order.
This leads to the need of an initialization procedure, which is able to compute sufficient
backpoints. These are usually generated by a single-step method like RK.

The principle of a multistep integrator is to interpolate the backpoints, which are
the evaluations of the RHS function of previous time points, with a polynomial p. The
polynomial is evaluated at the desired time ¢,,+; and integrated analytically. Following
Montenbruck and Gill (2005), p. 132 ff., integrating the ODE system (Eq. 5.22) from
the last known time ¢,, to the new time t,41 yields

tni1 tnth
T(tnt1) = F(tn) + [t 2@)dt ~ Z(tn) + p(t) dt, (5.25)

tn tn

where f (t,Z(t)) is approximated by the polynomial p(¢), which can be integrated
analytically. Using Newtons formula to determine an 1nterpolat10n polynomial p’ of
order m — 1 with m known function values f(tn—m+1), ..., f(tn) leads to the so called
Adams-Bashforth (AB) method of order m. Integrating the polynomial 7 to the desired
next time t,1, the approximation of f (tn+1) is not expected to be very good because
the time is outside of the known function values the polynomial has been determined
with. To counteract this problem the Adams-Moulton (AM) method suggests, that the
new value f (tn+1) is considered for the interpolation polynomial, as well. Since the
polynomial depends on the desired, unknown function value f (tn+1), there is no explicit
solution. This problem is circumvented by coupling the AB and AM method, resulting
in the popular ABM approach.

The AB method provides an initial solution for f (tn+1) which is subsequently used in
the AM scheme improving the a priori predicted value. Therefore ABM methods are also
called predictor corrector methods. Various implementations are feasible. The corrector
step may be repeated more often than one time, until the solution iteratively converges
below a certain error threshold. This comes along with the cost of a recurrent evaluation
of the RHS function for every iteration step. However, it is recommended to use just one
corrector step (Montenbruck and Gill, 2005). Moreover, the order of the corrector step
could be implemented to be equal to the predictor step or one order higher. With a local
error estimate between predictor and corrector step, methods with adjustable step size
are possible as for the RKF methods, eg. in the popular DEABM code (Shampine and
Gordon, 1975), also used in MATLAB/Simulink as odel13. However, the realization is
more complex due to the fact, that high order ABM methods tend to become unstable
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with large step sizes. Therefore an efficient step size control needs to adjust the order
and the step size simultaneously.

Implemented Method

The implemented ABM integrator resigns to use a step size control. The ABM method
is implemented with one corrector step and an even order of predictor and corrector step.
Thus it needs in total two evaluations of the RHS function each step. It is initialized
with the DoPri87 RK method, computing the solution of the first m — 1 steps, thus
enough backpoints are available for the ABM method.

5.2.3 \Validation

The beforehand introduced methods are investigated in terms of total accuracy and effi-
ciency. By reducing the step size, even the simplest numerical integration may be quite
accurate. For applications, efficiency, defined as time needed for a certain accuracy, is
very important. It is here measured as total CPU time needed to integrate the test cases.

Besides the integration method, the accuracy of a solution is always limited by the
used data type. The standard double data type is able to represent about 16 digits.
Typical spatial dimensions for LEO satellites are about 107 to 10® m. Thus the total
precision is definitely below 10~® m. Using numerical integration, round-off and trunca-
tion errors sum up and the total precision can not be reached. This is demonstrated in
this validation. Therefore the integrator is supplementary implemented with a multi-
precision arithmetic, offering the possibility to use arbitrary digits for a variable. The
GNU-MPFR library for C/C++ is used for that purpose (Fousse et al., 2007).

Three validation cases are defined:

e Keperian Case: The two body problem (cf. Eq. 2.15) is applied for a circular
LEO orbit with an altitude of 400 km. It is propagated for about two orbits. The
advantage of this scenario is that it can be solved analytically serving as true
reference.

e Realistic Case 1: A static SH gravitational field model with d/o 120 is applied. A
GRACE orbit with initial conditions from 2008-12-01 is propagated for about one
day.

e Realistic Case 2: The previous case is extended by third body attraction of all
Solar System planets and the Moon.

The advantage of the RK methods with a comparably high number of RHS function
evaluations is a high step size. For a fair comparison, the resulting orbits are compared
just every 100 seconds, in between the step size is automatically determined by the step
size control. The mean step size is then used for comparisons.

To compare different integration methods and setups, it is helpful to define a scalar
error between two solutions. Here a summed mean error E,, of the positions is defined
as

1 N "
En, = H N > | P — | ‘, (5.26)
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with the position vectors 77 ;, 72 ; of two different solutions at the sampling point ¢ and
a total number of sampling points NNV.

The compared CPU times are always the total required simulation time and for
ABM includes the initialization by the DoPri87 method. To avoid inconsistencies in
the initial conditions for different ABM options, the local error tolerance of DoPri87
is set to high values for double and mpreal, respectively. The drawback of this is, that
the initialization of the ABM method may have significant influence on the simulation
CPU time, particularly for bigger step sizes.

All shown CPU times are based on computations with the same desktop PC, in
particular with an Intel Core i5-4440 3,1 GH z processor.

5.2.4 Validation Against Analytic Keplerian Case

Using the analytic solution, the total error of each numerical integration can be compared
using the mean error F,,.

Order of ABM Scheme

First the order of the ABM scheme is analyzed for the mpreal data type with 32 digits.
The CPU time is plotted with the corresponding step size h over the summed mean
error E,, for different orders (2, 4, 8, 12, 16, 18) in Figure 5.7. Different accuracies are
obtained by varying the step size from 100 s to 0.5 s. Thus, each marker in the figure
refers to one simulation.

With increasing order of the scheme, the solution reaches higher accuracies in shorter
time. Pushing the order too high, while keeping the step size constant, makes the method
unstable and it deviates completely. This can be observed for order 16 for step sizes
h > 5 s, and for order 18 already for step sizes h > 1 s (both orders shown with dashed
lines). At about E,, = 10723 m the maximal accuracy for all schemes is reached due to
the restriction of the data type with 32 digits precision. Further reduction of the step
sizes does not result in an increase of the accuracy. If using more digits, the accuracy
limit is shifted to lower mean error values. In terms of efficiency and stability order 16
and 18 schemes are not superior to the order 12 scheme, using 32 digits precision for
the Keplerian case.

The solutions with the biggest step sizes need more CPU time than the next one
with a smaller step size (the curves for CPU time bend up mildly towards the right).
This is due to the already mentioned initialization with the DoPri87 method, which is
more time consuming for bigger step sizes of the ABM integrator.

The computational overhead using higher orders is very low. If the dynamic model is
more complicated than for the simple Keplerian case it is completely nonrelevant. For
step sizes beneath 100 s, there is no reason using lower orders than 8. Higher orders
than 12 lack of stability properties, which even further increase with more complicated
dynamic models. Therefore, in the following just the 8 and 12 order ABM schemes are
considered.

ABM vs. RK Methods

The promising 8 and 12 order ABM schemes (ABM 8, ABM 12) are compared to the
two RK schemes CK54 and DoPri87 for step sizes from 100 s to 0.1 s. In Figure 5.8 the



5.2 Numerical Integration 81

101:' T T T
= L RN T T T T T R L
E
2 100k E
© - Order of ABM scheme 1

—o—2 4 —6—38 —><—12—3716—+718|\®/@'

10*1....| PR N S S N S T S S S R S S

102 |
)
= 10"k
° 3
N
‘0
Q,

8 109 |

[9p)]
10—1....|....|....|...|....|....|
1072 10720 1071 10710 1075 10° 109

Mean error E,, [m]

Figure 5.7: CPU time and step size h over the mean error E,, for different orders of the ABM
method for the Keplerian test case, using mpreal data type with 32 digits. The dashed lines
show that the ABM integrator is not stable with high orders with too big step sizes.

results are shown in the same way as before, again for 32 digit precision. The three high
order methods can not reach a higher accuracy than about E,, = 10723 m, as already
seen before. A further decrease of the step size slightly worsens the result, again. The
ABM 12 method obviously outperforms the other methods in terms of efficiency for
high accuracy.

ABM 8 is still slightly more efficient than the DoPri87 RK method. The low order
CK54 RK method is not suitable for high accuracies. It is notable that for h < 50 ABM
12 gains higher accuracies with the same step size compared to DoPri87, taking into
account that ABM schemes just use two RHS function evaluations per step compared
to 13 for DoPri87. The accuracy limit is reached by ABM 12 with a step size of about
h = 2 s and DoPri87 requires a step size of h = 1 s. ABM 8 requires a step size of about
h = 0.2 s to reach the same accuracy, but is still faster than DoPri87.

For this simulation case, one has to note, that the advantage of the variable step size
methods is not exhausted by the considered circular orbit. For highly elliptic orbits
the DoPri87 method is well competitive, at least if RHS function evaluation is not too
costly, (eg. Jones, 2012).

The same analysis is conducted for double data type with results shown in Figure
5.9. All four integrators reach relatively fast a precision limit which is roughly located
around E,, = 10~7 m for all integration methods. The required step size to reach this
limit again strongly depends on the employed method and lies between 50 s for DoPri87
and 2 s for CK54. A further decrease of the step size, leads to an increase of the error
FE,, again. This is due to summation of numerical errors which increase by computing
more steps. This is valid for all methods but tendentially stronger for the RK methods
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which need more RHS function evaluations per step. In the case of mpreal data type
the summation of numerical rounding errors happens at smaller digit level, thus higher
global accuracies are realizable (cf. Fig. 5.8).

5.2.5 Validation with Readlistic Gravitational Model

For the realistic test cases with SH gravitational field, no exact solution exists as
reference. Therefore all obtained results are compared against the solution obtained with
the best integrator ABM 12, using mpreal with 32 digits and the smallest investigated
step size of h = 0.25 s. From the findings above and the knowledge that the ABM
method is much more efficient if RHS function evaluation is computationally expensive,
it is reasonable to define this solution as the most accurate reference. For the further
investigation just the ABM 12 and DoPri87 integrators are considered.

ABM vs. RK Methods

The results for the second test case are shown in Figure 5.11 for ABM 12 and DoPri87
with double and mpreal data type with 32 digits. As for the Keplerian case, the accuracy
is limited by the used data type. With both methods using double data type, it is not
possible to exceed a summed mean error below E,, = 2-10~% m. Compared to the
simple Keplerian case from Figure 5.9, this limit is slightly higher. For ABM 12 the
maximal accuracy is reached with a step size of about h = 5 s. The limit for DoPri87 is
reached with a smaller step size of h =1 s and a larger CPU time. Further decrease of
the step size leads to a drastic decrease of the accuracy for DoPri87.

For the mpreal data type the DoPri87 method is computationally to intensive, to
produce comparable results in a reasonable time. With the ABM 12 method, the error
can be further reduced, demonstrating that with enhanced data type it is possible to
increase the accuracy also for realistic simulations.

In Figure 5.11 the results from the third test case, additionally including third body
attraction from Solar System bodies, are shown. The basic findings from the case before
stay the same. A slight decrease of the accuracy limit for both integrators using double
can be observed. Besides more computational effort for the extended force model, and
thus more potential to sum up numerical errors, this may also be a result of subtracting
numbers that differ strongly in size for calculating gravitational disturbances due to
Sun, Moon and planets.

As for the previous case, the accuracy limit for double is reached with a step size of
about h =5 s for ABM 12. The DoPri87 integrator needs a step size between h = 1..3
s. Further decrease of the step size leads to oscillations, increasing the error, again, as
for the Keplerian test case.

5.2.6 Conclusion

The computation with the mpreal data type is very slow, compared to the standard
double data type the orbit integration is about 80 times slower. This reduces the ap-
plication of such approaches mainly to general performance evaluations. For example
we used it for the evaluation of general relativistic effects and comparisons with its
linearized post-Newtonian description in LEOs (Philipp et al., 2018). For GFR and real
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data processing this is barely an option.

All three test cases showed the superiority of the ABM integrator compared to the
RK methods in terms of accuracy and efficiency, at least for the anticipated step sizes
below 100 s. The not investigated effect of abrupt changes in the RHS function may
be the only real drawback of the ABM integrator. For the GRACE satellites, abrupt
changes may only result from residual attitude thruster effects or radiation effects during
eclipse transitions, and thus are comparably small. For general AOCS simulations with
thruster firings the effect might be considerable.

If the RHS function is relatively smooth, the order of the ABM scheme should not be
set below 8. The computational overhead of higher orders is completely negligible, but
the increase of accuracy is high. Orders higher than 12 tend to get unstable quite fast
(h > 2..5 s) and thus are not useful. Considering the step sizes, it has been demonstrated,
that too low step sizes are not just inefficient, but also decrease the accuracy. The
realistic test cases showed, that for the ABM scheme the maximal accuracy is already
reached with h = 5 s for double data type. Thus, again, orders above 12 have no
advantage for computations with double data type. Especially for the RK integrators,
choosing the step size too small may significantly increase the error of the integration.

5.2.7 Integrator used for all Simulations, GFR and POD

From the analysis in this section, the ABM 8 integrator was chosen as main integrator
for all simulations and the propagation in POD and GFR. The step size of h =5 s
seems to be close to an optimum for the investigated LEOs, and is therefore used for
nearly all simulations. It also coincides with the main sampling rate of the GRACE
data, making it a good choice for GFR. Even though, one has to keep in mind, that the
optimal step size depends on the rate of change of the RHS function.

The ABM integrator is always initialized by the DoPri87 RK method. For the dense,
equidistant output of 5 s, a varying step size is not useful in terms of efficiency and
especially accuracy. Therefore it is shut off for for the initialization of the multistep
method.






GRACE SIMULATION

In this chapter the simulation of the GRACE mission is presented. This includes the
application and validation of the developed non-gravitational force models (Sec. 5.1), by
comparison with and the calibration of the GRACE accelerometer data. Subsequently,
an attitude control scheme and simulation, including star camera, thruster and magnetic
torquer models, is developed, producing similar attitude and actuator characteristics as
the GRACE satellites. Furthermore, different models for the main instruments of the
satellites are presented and developed, which influence on the Gravity Field Recovery
(GFR) results is investigated in Chapter 8.

6.1 Non-Gravitational Force Modeling

The non-gravitational force models, introduced in Chapter 5, are utilized for the GRACE
satellites. With the GRACE accelerometer data (ACC) it is possible to evaluate the
models and also, at least to some extend, the ACC data itself.

Therefore, in this section, the non-gravitational force models are evaluated with the
GRACE L1B data. That means that position and attitude is take from GNV and SCA
data, respectively as time series for the evaluation of the models. This enables the most
realistic comparison of modeled non-gravitational accelerations and measured ACC
data.

After a general evaluation of the modeled forces in Section 6.1.2, in Section 6.1.6
results of the models are compared to GRACE accelerometer data. Most of this work is
already published in a condensed form in Woske et al. (2019).

The position of Sun and Earth, needed for the computation, is evaluated with the
JPL DE430 ephemeris model (Folkner et al., 2014).

6.1.1 Finite Element Model (FEM)

For the computation of the non-gravitational forces according to the models introduced
in Chapter 5.1, a FEM of the GRACE satellites needs to be created.

Two different models are build, tested and validated. One simple model with just six
elements and one model with a slightly more accurate geometry with 3881 elements.
The models are based on the dimensions given in the GRACE PSD (Bettadpur, 2012b)
and on publicly available pictures of the satellites. The two implemented FEMs are
shown in Figure 6.1. The GRACE satellites have a quite simple geometry. Due to their
compact shape, shadowing of elements by others does not play a major role. Thus,
already with the simple six face model very good results can be obtained. The large
amount of elements from the detailed model is motivated by the aim to resolve the few
shadowing conditions decently. For one incident direction of radiation, the illumination
conditions on the satellite are shown in Figure 6.1, as well. In there, yellow indicates

87
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Figure 6.1: (Left, middle) Simple six face and detailed FEM. (Right) Illumination conditions
of the FEM for one incident radiation direction, yellow: illuminated, blue: not illuminated, red:

shadowed.
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Figure 6.2: Modeled non-gravitational accelerations for GRACE A in the SRF body frame
from 2003-03-05 for high solar activity and a 3’ angle of 37.2°.

directly illuminated areas, blue not illuminated ones and red areas that are shadowed
by other elements.

All optical surface properties, needed for the models «, 75, 74 and € (cf. Sec. 5.1), for
visible and infrared radiation, are also given in the GRACE PSD (Bettadpur, 2012b).

6.1.2 Modeled Non-Gravitational Forces for GRACE

The pattern of the non-gravitational forces is mainly dependent on the satellites attitude
and the orientation of the orbit with respect to the Sun. A measure for the latter is the
B3’ angle, which is defined as the smaller angle between the orbital plane and the vector
pointing from Earth towards Sun.

For the GRACE satellites with a nearly constant attitude, with respect to the orbital
frame, the pattern of the non-gravitational accelerations acting on the satellites is mainly
determined by the 3’ angle. The precession of the polar GRACE orbit causes a change
of the 8" angle with a period of about 322 days and between about +85°.

In the next two figures the different individual non-gravitational forces are compared
for two epochs of the GRACE mission with similar 3’ angle. In Figure 6.2 each of the
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Figure 6.3: Modeled non-gravitational accelerations for GRACE A in the SRF body frame
from 2009-02-26 for low solar activity and a ' angle of -35.8°.

modeled non-gravitational accelerations for the GRACE A satellite are shown for each
axis in the body fixed SRF. At the date of this plot in 2003 a high solar activity is
present (cf. Fig. 3.1). In Figure 6.3 the same forces are shown for a low solar activity in
2009, but for a similar 3’ angle (the sign is changed because a switch of the leading and
following GRACE satellite was conducted meanwhile).

Particularly eye-catching is the difference of the magnitude of the drag acceleration.
Even though the altitude in Figure 6.2 is slightly higher (cf. Fig. 3.1), the drag is about
an order of magnitude higher. The other forces are very similar for the same 3’ angle.
ALB and IR show a slightly different structure due to different radiation conditions over
the Earth for the different epochs. For the same illumination conditions, the basically
Sun related forces SRP and TRP are about the same.

Because of the close alignment of the SRF axes to the along-track, cross-track and
radial directions (cf. Sec. 3.3.1), the different accelerations are mainly acting in certain
directions in the SRF. The drag force, which is acting in along-track direction is basically
restricted to the x-axis and the Earth related ALB and IR forces are mainly acting in
radial direction, thus in satellite z-axis.

The effect of each non-gravitational acceleration on the satellite’s orbit is shown in
Figure 6.4. Therefore simulations with initial conditions and attitude from GRACE
A from 2009-02-26, as in Figure 6.3, are conducted (low solar activity). The shown
norm of the position difference is computed between a reference simulation without
employing any non-gravitational force model and subsequent simulations using the
respective models. Because of the big differences of the different effects, the plot is in a
logarithmic scale.

The drag force has by far the biggest influence on the orbit. For the chosen epoch
its magnitude is not much bigger than SRP, but it is always acting in the same
direction, as well as in flight direction (along-track), which has the biggest sensitivity
to orbit changes, causing the orbit to spiral down, thus the plotted position difference
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Figure 6.4: Norm of position difference between a simulation without any non-gravitational
force model and with the respective force model, with initial conditions and attitude from
GRACE A from 2009-02-26.
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Figure 6.5: Effects on the GRACE orbit (2009-02-26, simulated for 5 h) for additional constant
accelerations in the three directions of the orbital frame (nearly identical with GRACE’s SRF
body frame), respectively. The black reference is the orbit without additional accelerations. The
applied constant accelerations are extremely huge compared to disturbing accelerations in Earth
orbits, to demonstrate the effects.
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is constantly increasing. In contrast to that, the effect of the SRP acceleration is very
periodic. This is mainly caused by the periodic acceleration in along-track direction,
rising and lowering the orbit.

The satellite’s position or orbit is least sensitive to accelerations in cross-track direction.
The always positive SRP component in this direction causes a constant bending of
the orbit from the center of the Earth (see next plot). These effects are very tiny
and also resulting in a periodic effect on the position difference. The overall positive
acceleration in radial direction is affecting the satellite’s orbit slightly stronger, resulting
it an additional constant eccentricity, and thus having a periodic and constant effect on
the position difference. ALB and IR are also mainly acting in the radial direction, but
with a lower magnitude than SRP. IR is not affected so much by solar eclipses and thus
showing a more constant effect on the orbit. Nevertheless, the effects are rather small.
TRP is not completely isotropic and besides a superimposed periodicity with the Sun
angle, it has a non zero mean acceleration (see Fig. 6.3). From the magnitude it has a
similar effect as ALB.

To demonstrate the described effects of the different acceleration directions in the
orbital frame more vivid, in Figure 6.5 the results from simulations with constant
accelerations in each direction of the orbital frame are shown three-dimensional. The
accelerations are heavily enlarged compared to anything possibly disturbing satellites in
Earth orbits, to make the effects visible, qualitatively. The simulations are conducted
for the same date (2009-02-26) as before and as well for 5 h. The black reference orbit
is the nearly circular, polar GRACE orbit. The orbits show the change due to the
applied constant accelerations, given in the plot. It demonstrates what has been basically
described before.

An accelerations in along-track direction (the applied acceleration in Fig. 6.5 is one
magnitude lower than for the other directions) is much stronger influencing the orbit
than an acceleration in cross-track and radial direction. Furthermore, it is changing the
energy of the orbit, being parallel to the orbital velocity, and hence changing its shape
permanently, whereas this is not the case for the other directions, where the applied
accelerations do not change the orbital energy. Thus, if the accelerations are shut-off,
the orbit again changes drastically.

The constant accelerations in radial direction reduces or increase constantly the main
gravitational acceleration, being mainly in that direction, too. Thus, resulting in a kind
of more elliptic orbit. Described by Keplerian orbit elements, this can be expressed as a
periodically increasing and decreasing eccentricity.

The acceleration in cross-track direction bends the orbit away from the Earth’s center
of mass. In terms of Keplerian orbit elements, this would be expressed by a periodically,
phase shifted change of the ascending node and the inclination.

6.1.3 Post-Newtonian Relativistic Corrections for GRACE

The discussion of the post-Newtonian (pN) corrections for the GRACE satellites, as
introduced in Section 2.3.6, is briefly inserted here for direct comparison to the non-
gravitational accelerations.

For the same time as investigated for the non-gravitational accelerations in the Figures
6.3 and 6.4, the two pN accelerations Schwarzschild and Lense-Thirring are depicted in
Figure 6.6 for the three satellite’s SRF body axes. The third correction term de Sitter
is tiny for GRACE’s low Earth orbit, in the range of 1073° m/s?, and thus not shown
in the plot.
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Figure 6.6: Post Newtonian correction accelerations for GRACE A in the SRF body frame
from 2009-02-26.

For the circular GRACE orbit the Schwarzschild pN acceleration has a magnitude
comparable to the IR acceleration. It is mainly acting constantly in the radial direction.
In the other directions it is rather zero and the small deviations are mainly due to the
jittering of the satellite’s attitude. The magnitude of the Lense-Thirring pN acceleration
is smaller and shows a distinct oscillation with the orbit frequency around zero in
cross-track direction.

The influence of the two correction terms on the satellite’s orbit is shown in Figure
6.7, in the same way as it has been shown for the non-gravitational accelerations in
Figure 6.4. The two comparable non-gravitational accelerations IR and TRP, in terms
of magnitude, are plotted again as reference. The Schwarzschild pN acceleration has a
very similar effect on the orbit as the IR acceleration. This is not surprising because
both are acting mainly in the same direction and having similar magnitudes. The small
periodic Lense-Thirring pN acceleration has a minor effect on the orbit, which is as well
oscillating.

The periodically, with orbit frequency, oscillating acceleration in cross-track direction
results in a constant drift of the ascending node and the inclination, when described by
Keplerian orbit elements.

For the standard GRACE POD and GFR analysis the Schwarzschild pN term has to
be considered theoretically because of its magnitude. Nevertheless, the nearly constant
effect is quite well absorbed by the bias estimation in the accelerometer calibration, if
not considered as pN correction (cf. Sec. 7.8). The effect of the very small Lense-Thirring
pN acceleration is very similar to the gravitation due to the flattening of the Earth, but
on a much lower scale. The flattening is governed by the low zonal C coefficients, mainly
Cs,0 and Cy . The accuracy of the orbit solution (GNV or KOS) is not high enough
to separate the tiny Lense-Thirring effect from the classical gravitational effects. With
GRACE GFR it is not possible to estimate the low zonal coefficients with a sufficient
accuracy. The relative KBR measurement is much more accurate, but not very sensitive
for differences on orbit frequency scale (cf. KBR range error in Fig. 6.27). Thus, the
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Figure 6.7: Norm of position difference between a simulation without any additional force
models and with the respective post Newtonian correction acceleration and non-gravitational
force model, with initial conditions and attitude from GRACE A from 2009-02-26.

effect can not be seen in the KBR measurement, as well as the KBR measurement does
not contribute much to the estimation of the low degree coefficients.

Because the effect is at the edge to be detectable and having an influence, it is usually
considered to not couple into the estimated gravitational fields and sensor errors.

6.1.4 ALBandIR

The main component of the ALB and IR forces is in the radial z-direction. For both
accelerations the z-component is shown in Figure 6.8 (b) in the SRF for GRACE A for
a six hour arc in May 1st 2006. In the same figure (a) the ground track of the satellite
is shown over the 3 hourly CERES long wave flux data. The position of the satellite is
marked every 15 minutes in both plots for comparison.

The most prominent structure in (b) is the eclipse cycle of the ALB acceleration.
The acceleration drops to zero when the satellite is in the eclipse because no Sun light
is reflected. For IR this is not the case because the driver of this acceleration is the
temperature of the Earth surface and atmosphere, which is directly connected to the
shown long wave flux in (a), which is not so much Sun dependent.

The ALB accelerations reaches its maxima usually over the pole because the ice and
snow has a high reflectivity. Other maxima are reached when the satellite flies over large
cloud systems, which have a similar reflectivity than sow and ice.

For IR the effect of clouds is the other way around. Clouds shield the long wave
radiation from the surface and have a low temperature itself, thus result in low IR
accelerations. The main periodic cycle of the IR acceleration are the different temperature
zones on the Earth surface. Over the South Pole, which is much colder in the northern
summer months, the IR acceleration reaches its lowest values. Around the equator the
highest values are reached. Over the North Pole the local minima are much smaller
than over the South Pole. This general characteristic is overlaid by local clouds and
temperature variations and the time of passing with maxima when the Sun is in zenith
(cf. also Fig. 5.3).
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Figure 6.8: (a) CERES SYNldeg 3 hourly long wave flux radiation data from 2006-05-01 with
the ground track of GRACE A for six hours (the position at every 15 minutes is marked). (b)
Modeled ALB and IR accelerations (just SRF z-axis) for the same time (again, every 15 minutes
are marked).



6.1 Non-Gravitational Force Modeling 95

\‘ 7~
~
g \
£
N
_10 b : ‘ i
E 0 24h] |
3h \ J
1h \/
15t \ .
0 0.5 1 1.5 2 2.5 3

Time [h]

Figure 6.9: Modeled ALB acceleration (just SRF z-axis) for GRACE A from 2005-05-01 based
on daily, 3-hourly and hourly CERES data.
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Figure 6.10: Modeled IR acceleration (just SRF z-axis) for GRACE A from 2005-05-01 based
on daily, 3-hourly and hourly CERES data.

1-Hourly, 3-Hourly and Daily CERES Data

ALB and IR are modeled based on CERES SYN1deg data. The data are available in
different temporal resolutions. In the following two Figures 6.9 and 6.10 the ALB and
IR accelerations are computed based on CERES data with daily, 3-hourly and hourly
resolution for GRACE A on May 1st 2006. Again just the body z-axis is shown, being
the axis in which the forces mainly act.

The general trend, described in the section before is met with all three resolutions.
Nevertheless, the finer the temporal resolution, the more details are resolved. This effect
is slightly stronger for ALB than for IR.

Computationally a higher resolution does not play a role, just the amount of data is
increased. This drawback is accepted to obtain the best possible results. Therefore all
following modeled ALB and IR forces are based on the hourly data sets.

6.1.5 TRP

The basis for the TRP calculation is the determination of the satellites surface tempera-
tures. Three different models were presented for that purpose in Chapter 5.1.4. For each
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Table 6.1: Properties of the different layers for the temperature PDE
cp [J/kgK] p [kg/m’] h[mm] X [W/mK]
left, right (FY), top (—Z)

Solar panel 540 2000 2.5 1.85
Insulation 1000 30 70 0.023
Honeycomb 900 45 30 0.08
front, rear (+£X)

Kapton 1095 1400 0.1 0.2

Insulation 1000 33 75 0.018
Honeycomb 900 45 30 0.08
bottom (+Z)

Teflon-foil 1095 2000 0.1 0.2

model the incoming radiation flux is essential. Furthermore, each model needs some
specific material parameters.

The second model (b) trans (Sec. 5.1.4) is not considered here in detail. The analysis
has shown, that the third model (c) pde (Sec. 5.1.4) is more accurate and especially
to obtain reasonable results with the trans model, the factor ¢, ph was tuned that
results fitted well with the GRACE accelerometer data. This approach may be valid if
accelerometer data are available, but a stand alone simulation approach using reasonable
material properties is more general and satisfying. Nevertheless, with the tuned factor
the trans models gives good results, as well, as shown in Woske et al. (2019).

For the pde model (cf. Sec. 5.1.4) the Partial Differential Equation (PDE) (Eq. 5.19),
with the independent variables time ¢ and direction x, needs to be solved for each
element k. For reasonable computation times the simple six face GRACE model is used
for that purpose. For the solution of the spatial direction, a grid for x perpendicular to
the surface (cf. Fig. 5.5) is defined with about 30 elements. The time step is chosen to be
five seconds, as L1B data sampling. As popular in satellite manufacturing, the GRACE
satellites are mainly build out of honeycomb structure plates, which are isolated towards
space with an layer of insulation material and covered again with a thin surface, like a
MLI-foil (Multi Layer Insulation) or solar panels.

Here three different wall types are modeled for the GRACE satellites. Each type is
modeled consisting of different layers with different material properties c,, p, h, and A.
The types are:

1. The three solar panel walls: top (-Z), right (+Y), left (-Y), consisting out of three
layers: Solar panel, insulation and honeycomb.

2. The rear (-X) and front (+X) walls, as: Kapton layer, insulation and honeycomb.
3. The nadir bottom wall (4+Z) is the heat radiation surface, modeled as a teflon foil.

For the definition of the different panels see Figure 3.3. The properties for the six satellite
walls and layers and their thickness are given in Table 6.1. Most of these properties
are not publicly available and are educated guesses from available manufacturing and
satellite integration pictures.
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Figure 6.11: Modeled absorbed flux qups of the six GRACE surfaces from Sun radiation,
GRACE A from 2009-09-10, 8’ = 29.4°.

rear (-X)
front (+X) |
left (-Y)
top (-Z)
right (+Y)
bottom (+Z) \/

I

12 13 14 15 16
Time [h] from 2009-09-10

Figure 6.12: Modeled absorbed flux ¢qps of the six GRACE surfaces from Earth albedo
radiation, GRACE A from 2009-09-10, 8’ = 29.4°.

For the PDE the following boundary conditions are defined, see as well the sketch
in Figure 5.5. Towards the outside is no heat flux, but an absorbed and radiated flux:
Qabs,k — €k0T, ,f. For the inner side it is assumed that all satellite payloads and systems
produce a total power, which is transferred to the faces. Because the bottom face is
the heat radiator, we assume, that 90% of the power is going through this face, the
remaining 10% are distributed to the other faces. As internal power production Pjern
= 250 W is assumed because the true value is not known. It was found that this value
has just a minor effect on the resulting forces. The estimated temperatures from the
previous day are used as initial condition for the temperatures, with some arbitrary
initial guess for the very first day.

The modeled absorbed fluxes gqps 1, for the three different sources Sun, Earth albedo
and IR radiation are shown in the Figures 6.11, 6.12 and 6.13 for the six surfaces of the
simple GRACE FEM. The fluxes are computed as described in Equations (5.15), (5.16).
The date is chosen to be September 10th 2009 because of the low solar activity (cf Fig.
3.1) and thus smaller disturbing drag errors in the non-gravitational accelerations and
for a medium S’ angle.
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Figure 6.13: Modeled absorbed flux g5 of the six GRACE surfaces from Earth IR radiation,
GRACE A from 2009-09-10, 8’ = 29.4°.

The absorbed flux by the Sun is by far the biggest. As for albedo, it consists of
the distinct drops when the satellite enters the eclipse. The bottom panel rarely is
illuminated by the Sun, and if so, just under a low incident angle. The absorbed flux
from albedo and IR is in a pretty similar level, but for the bottom panel. Due to the
fact that this panel is used as heat radiator, it has a high emissivity and thus also a
high absorptivity in that wavelength band (Eq. 5.3). Therefore the absorbed flux of IR
radiation for this panel is quite high.

With the shown absorbed fluxes gups% the temperatures of the surfaces can be
calculated. The results for the stat (a) and pde (c) models are shown in Figure 6.14 for
the same time period and the six panels.

For the static temperature calculation, the temperature drops directly to zero when
no incoming flux is present in the eclipses. The spiky fluxes from albedo and IR directly
convert to the temperatures. The much more realistic pde model considering heat
capacity, and thus the ability of storing energy, results in a smooth decay and growth
of the temperature. Just the very thin Teflon-foil of the bottom panel is not capable of
storing much energy, making its temperature evolution much more rough.

The resulting TRP accelerations are shown in Figure 6.15 for both temperature models
and the three SRF axes. The biggest TRP acceleration is in the radial z-direction. This
is because the top and bottom panel experience the highest temperature differences
and hence the resulting forces are not canceling out. During eclipse the IR radiation
results in an acceleration in the negative z-direction. For the times in Sunlight, the
upper surface temperatures (top and right) outweigh the IR radiation on the bottom
face, resulting in an acceleration in positive z-direction. Both other directions cancel
out more or less for the given illumination condition or 5" angle.

The TRP acceleration from the pde model is in general a little bit smaller and shifted
compared to the stat model. This is reasonable because the temperature builds up more
slowly due to conduction and the heating of a thick surface. As for the temperature,
the TRP curve of the pde model is more smooth.

That the pde model produces the more realistic and better results is shown in the
next Section 6.1.6, where the resulting accelerations are compared to the GRACE
accelerometer measurements.
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Figure 6.14: Modeled surface temperatures for the two different temperature models stat (a)
and pde (c) of the six surfaces of the simple FEM. GRACE A from 2009-09-10 for a medium /3’
angle of 29.4° and low solar activity.

— 15 F A L R B A A A B
§ TSRF
= 10 |k YSRF |+
- ZSRF
3
% 5 .
[a W)
o L
8’ |~
< -5t 1 I I I I N
= 15F - -~ r - T1r T T T 1T r r 7 r T T T [ ‘*t T T T
w
g
e 10 F .
L
T
5 |
PR S ! A i
s T o s
<
-5 PR S (RS S R S S E S S RS
10 11 12 13 14 15 16

Time [h] 2006-09-10

Figure 6.15: Modeled TRP acceleration with stat (a) and pde (c) temperature models, for
GRACE A from 2009-09-10 for a medium 3’ angle of 29.4° and low solar activity.
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Table 6.2: Summary of used non-gravitational force models and their main parameters and
data

Models Parameters
SRP GRACE FEM-detailed® Solar flux at 1 AU go = 1366 W/m?
ALB GRACE FEM-detailed® CERES SYNldeg-1H (TOA) albedo®, q¢
IR GRACE FEM-detailed® CERES SYNldeg-1H (TOA) Longwave flux®
TRP GRACE FEM-6-face® stat®, pde?, Cps Py Ny A, Pipern = 250 W
Drag Cp, JB08f, HWMO93,

GRACE FEM-detailed® Cp =225
Ephemeris JPL DE430¢ Sun and Earth position for all models
Satellite position and attitude GNV, SCA L1B RL05"

@ Sec. 6.1.1 and Fig. 6.1, ® Doelling et al. (2016), ¢ Sec. 5.1.4, ¢ Sec. 5.1.4,
¢ Sec. 6.1.5 and Tab. 6.1,  Bowman et al. (2008), 9 Folkner et al. (2014),
h Case et al. (2010)

6.1.6 Comparison and Validation with GRACE Accelerometer Data

In the previous sections results of the non-gravitational force models were shown and
analyzed. Nevertheless, without a reference it is not easy to evaluate the accuracy of the
models quantitatively. The GRACE accelerometer data enable the direct comparison of
the models with actual measurements. Besides the good GRACE accelerometer data
quality, GRACE is especially suitable because of several reasons. First, additionally to
the accelerometer data, high quality attitude and orbit data are available with a high
sampling. Furthermore, data are available nearly continuously for 15 years. Also the
geometry and optical surface properties are known and published (Bettadpur, 2012b).
Last but not least, the attitude and geometry of the satellites partly allows to distinguish
several non-gravitational forces through the directions they are mainly acting (cf. Sec.
3.3.1).

Anyhow, the comparison is not that simple. The accelerometer data need to be
calibrated. The measured data contain a scale factor and a continuously changing bias
for each axis. Accelerometer calibration is a hot topic and is of highest importance
for different tasks, including POD and GFR. Different methods and approaches exist
based on POD, GFR, modeling and combined methods. Nevertheless, different authors,
groups and processing centers estimate different calibration parameters. Furthermore,
the calibration also differs from the application of the data (Vielberg et al., 2018; Woske
et al., 2019; Calabia et al., 2015; Van Helleputte et al., 2009; Bezdék, 2010; Bettadpur,
2009; Klinger and Mayer-Giirr, 2016). This fact makes the comparison a little less
quantitatively. Furthermore, the accelerometers sense all attitude thruster firings of
the satellites. Du to imperfections in timing and thruster orientation, they produce a
residual force additionally to the desired torque. These residual forces are visible as
sharp spikes in all axes of the accelerometer data (cf. Fig. 6.16). For comparisons these
random spikes have to be removed.

Here, for the comparison, the accelerometer data are calibrated with the modeled
accelerations as reference. A bias vector b is estimated daily in terms of least squares. As
scale factors s, the constant values from the GRACE technical note TN-02 (Bettadpur,
2009) Srn are used, as shown in Table 7.2. The calibration equation is given as

ACCopr = 5 ACC1B + b, (6.1)
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With the corrected accelerometer measurement ACC,,,, and the L1B accelerometer
data ACC1B. The estimation of just a daily bias vector does not change the original
data too much, i.e. they are not fitted towards the simulated reference and thus the
comparison of modeled and measured data is still meaningful.

With Equation (6.1) the standard least squares equation can be set up for each axis
i as

min|| [ filt(ACC1B;) Iy | i — ACCuim, : (6.2)

with a; = [s4, bi]T being the vector of parameters to estimate and I3x1 a vector of ones.
For the case of constant scale factors, s; is replaced by the factors sy ;.

The function filt implies, that the raw ACC L1B data are first filtered, to get rid
of all spikes, caused by the attitude thruster firings (cf. Sec. 6.3.6 for a more complete
discussion of the residual attitude thruster accelerations). For that purpose a moving
median filter is used with order 30, 80, 45 for x-, y- and z-axis, respectively. The standard
solution is obtained by

a; = (X X)) 7' X ACCyim,, (6.3)

using the abbreviation X; for the matrix { filt(ACC1B;) [3X1]. A residual for each
data point can be determined as

7= ACClorr — ACCisim. (6.4)

From these residuals, a root mean square (rms) residual 7., ; for each axis i is computed
as a scalar measure for one day:

Trms,i = rms(7;). (6.5)

The calibration is analyzed and validated in more detail in Woske et al. (2019), with
results over the whole GRACE mission.

All utilized non-gravitational force models, for the results shown in this Section and
the whole thesis are summarized in Table 6.2, with its main parameters. If not differently
stated the pde TRP model is used.

An example of modeled and calibrated accelerometer data is shown in Figure 6.16 for
one day. The modeled data show a very good agreement with the GRACE data, espe-
cially for cross-track (y) and radial (z) directions, what is visible by direct comparison,
but also from the residuals with values of 7,54 = 1.15 nm/s2 and 7, = 1.17 nm/sQ.
The along-track (x) direction is obviously worse with 77.,s , = 10.20 nm/ s2. The reason
is the deficiency of atmospheric drag modeling or, especially, the atmospheric density
modeling. Because of the dedicated satellites attitude and its shape, the drag force is
closely aligned in this direction. The sources and environmental variations for the radi-
ation forces are better understood and measured and thus can be modeled more precisely.

In the following, the results of the two different GRACE FEMs and the stat and pde
TRP models are exemplary compared in more detail to the GRACE accelerometer data.
In Figure 6.17, the modeled cross-track accelerations for the simple 6-face and detailed
FEM (both shown in Fig. 6.1) are compared against calibrated ACC data. For both
cases the bias is separately determined. All other used non-gravitational force models
(cf. Tab. 6.2) are the same. The time for that comparison was chosen to see the influence
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Figure 6.16: Calibrated ACC L1B data ACC,,,, with modeled non-gravitational accelerations
ACCg;, in SRF, from GRACE A. Bias b is estimated for one day with const. scale factors from
TN-02, the estimated bias values are given in the plot. All spikes in ACC L1B data refer to
attitude thruster firings.
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Figure 6.17: Y-component (in SRF) of modeled non-gravitational accelerations for the detailed
and 6-face FEMs, both corrected with their estimated bias, respectively. All other models are
kept the same. Compared to ACC L1B data for GRACE A, 8/ = -70.2°.

of self shadowing. Thus a #’ angle not too close to 0° or +90° is chosen (' = -70.2°).
To compare the results in one figure, the scaled ACC data spny ACC1B are plotted,
which should equal the modeled accelerations minus their respective bias b (cf. Eq.
6.1). From the graph, it is clear that the detailed FEM shows better accordance with
the ACC1B data than the simple six face FEM. This is also obvious when comparing
the residuals 7,5y, which are 1.21 nm/ s2 and 2.56 nm/ s2 for the detailed and the
6-faces FEM, respectively. The detailed model is used for all further results in this thesis.

The static and the transient TRP models show the smallest differences for ' angles
of £90° because then no eclipses are present and the satellites are sunlit the whole time.
Thus effects of heating and cooling are minimal and the differences of the stat and the
pde model are very small.

In Figure 6.18 both models are compared against calibrated ACC data for a 8’ angle
of -29.4°, hence dedicated eclipse phases are present and therefore heating and cooling
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Figure 6.18: Y- and z-component (in SRF) of modeled non-gravitational accelerations with
surface temperatures computed with static (stat) and PDE (pde) approach, both corrected with
their estimated bias, respectively. All other models are kept the same. Compared to ACC L1B
data for GRACE A, 3/ = -29.4°.

effects are prominent. The results are plotted as in the previous figure. The improvement
of the transient TRP calculation is obvious from the comparison of the curves and again
also visible in the residuals, 7y, = 1.42 nm/s* and 2.89 nm/s?, and Trms,z = 1.79
nm/s? and 5.11 nm/s? for pde and stat solution, respectively.

The computed surface temperatures, responsible for the differences, were already
shown in Figure 6.14 for the stat and pde temperature models, explaining the differences.

Both figures (Fig. 6.17 and 6.18) demonstrate again the very good agreement of
the precisely modeled non-gravitational accelerations with the GRACE accelerometer
measurements. Even though if the bias is fitted towards the modeled accelerations, the
form and trend of the curves fit pretty well.

6.2 Aftitude Control

The main measurements of a GRACE-like 11-SST mission are dependent on the attitude
of the satellites. The inter-satellite ranging needs an accurate pointing and the non-
gravitational forces acting on the satellites are dependent on the attitude. Furthermore,
accelerometer measurements are just relevant if the actual orientation is known. Thus
for the modeling of a GRACE-like gravimetry mission a modeling of the attitude is
important.

For the simulation of a GRACE-like mission and generation of of simulated data, here
the attitude control is realized as a closed feedback control loop with models for attitude
sensors and actuators. The attitude control system (ACS) for the GRACE satellites
is a little more complicated than for "usual" satellites because of vibration restrictions
on the satellites. Therefore, the main attitude actuators are magnetic torquers (MTQ),
which work without any rotating or movable components (for details cf. Sec. 6.3.5). The
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Figure 6.19: Schematic of attitude control loop.

drawback of these devices is that the generatable torque is dependent on the Earth’s
magnetic field, the generated torque is always perpendicular to the local magnetic field
B. Without a component in that direction, usually a desired torque can not be exactly
generated by magnetic torquers. Therefore the attitude control is supplemented by cold
gas thrusters which are activated when the actual attitude leaves predefined maximum
error bands. The general control logic of the GRACE satellites is described in Herman
et al. (2004). The real control algorithm is confidential and property of the satellite
manufacturer and thus not publicly available.

The shown attitude controller here is the basic implementation of an investigation
of different control designs and optimization strategies for a GRACE-like mission that
was conducted. This controller behaves very similar to the real GRACE ones in terms
of attitude evolution and errors, as well as thruster firing locations. The investigation
of more optimized controllers with smaller errors and less firings (eg. for GRACE-FO
or the investigation of NGGMs) would go beyond the scope here, but is published in
Mashtakov et al. (2020).

The general schematic of the feedback control loop and its dependencies is shown in
Figure 6.19. The control logic is explained with reference to this scheme in the following.

The satellite dynamics or the satellite states are dependent on the forces and torques
acting on the satellite (cf. Sec. 2.2). In the schematic illustration the satellite states
are distinguished in orbit and attitude. Here orbit is the representative for position 7
and velocity ¥ and attitude comprises quaternion ¢ and angular velocity . The main
disturbing torque for LEO satellites is usually the Gravity Gradient Torque (GGT) (cf.
Sec. 2.2.2), followed by all non-gravitational torques. As described in the sketch, forces
and torques are dependent on orbit and attitude again.

The true attitude is not known. The GRACE satellites measure their attitude mainly
with two star cameras, additionally gyros for the direct measurement of the angular
velocity were installed, as well, but broke early in the mission. Again, the complete
on-board processing of the available attitude measurements for the ACS is not known.
For the simulation different approaches for the generation of an attitude solution are
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investigated in terms of attitude accuracy and its influence on GFR. The different
methods are described in Section 6.3.4.

From the measured attitude, the actual error to the reference attitude needs to be
computed (Sec. 6.2.2). The GRACE satellites do not exchange any information directly,
thus they do not know about the actual other satellite’s position and attitude. Therefore
the GRACE orbits are precomputed at the operation center and uploaded daily to the
satellites. Hence at each time the theoretical line-of-sight direction is known on the
satellites. This is used as reference attitude (Sec. 6.2.1).

From the attitude error the controller computes a control torque to reduce the error
(Sec. 6.2.3 and 6.2.4). For simple feedback loop control schemes the attitude error is the
only input. Usually this is complemented with additional information for example of
known disturbances which then can be directly counteracted. In control theory this is
referred to as feed forward control. For the implemented controller the GGT is computed
with the simple model, introduced in Section 2.2.2. Additionally drag or SRP torques
could be feed forward as well, but then a simple model (different to the ones used for
the integration) should be be implemented. Nevertheless, drag and SRP models are
much more complicated than the simple GGT model and enough real time computing
resources would be needed on board the satellite (for the GRACE satellites all that is
unknown). The GRACE satellites carry a magnetometer to measure the magnetic field
B. This is used by the controller to determine the optimally generatable torque with
the actual Earths magnetic field.

The commanded control torque is then executed by the actuator. Usually the actuator
has a maximum amplitude and response time or other restrictions like for the magnetic
torquers. These are modeled by the actuator models. The implemented torquer and
thruster models in the simulation are described in Section 6.3.5 and 6.3.6.

Subsequently the actually generated torque is feed to the dynamics calculation.

General remark to the following sections: The attitude can be represented by quater-
nions, rotation matrices or Euler angles. All representations have their advantages and
disadvantages but are in general equivalent and interchangeable. For numeric calcula-
tions and big amount of data, usually quaternions are preferred, while Euler angles are
the most descriptive and often used for visualization. Transformations can be computed
by the same syntax with quaternions or matrices, as well. The quaternion algebra and
its relation to rotations, as well as the conversions between the attitude representations
are shown in the Appendix A.1.

6.2.1 Reference Affitude

The simulation is conducted in two steps. First the orbits of both satellites are computed
together with perfect pointing, without attitude control. The resulting orbits are utilized
as the "daily precomputed" orbits and used as the reference pointing for the second
step, the complete simulation with attitude control for both satellites. The final orbits
are slightly different to the precomputed ones because of the slightly different attitude
and hence slightly different non-gravitational forces. This is like in reality where the
precomputed orbits differ from the truth, as well. If the mission scenario and force
models do not change, the precomputed orbit does not need to be computed for every
simulation, but a saved one can be used.

The reference attitude or pointing is defined by the line of sight frame (LoS) for each
satellite. It is a satellite fixed frame with its origin in the center of mass (CoM) of the
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satellite. The x-axis of that frame is pointing towards the other satellite. With 74 and
g being the position vectors of satellite A and B, respectively, it is given by

g — A

TS o 6-6
|TB — T4l (6.6)

€x,A =

For an unambiguous reference pointing one more axis needs to be defined. Here the
y-axis is defined to be perpendicular to €, 4 and the position vector 74

— gx A X ’FA
€y, A = _,77_’ 6.7
Y |€z.4 X T4l (6.7)
The third axis is perpendicular to the two other ones:
gsz = é'%A X €y7A' (6.8)

For the other satellite B, the definition is equivalently used with 5. Assuming that the
vectors 74 and 7p are given in inertial frame (ECI), the transformation matrix from
inertial to LoS frame Trcr2r0s can be build by
€A
Tgcraros,A = Trepa = Eg:A . (6.9)
ey

With this the reference attitude is known. The control algorithm computes a control
torque based on the difference between the actual attitude and the reference attitude
and additionally of the difference between actual and desired angular velocity. Therefore
the reference angular velocity W,y needs to be determined, as well.

The angular velocity of a reference frame (ref) with respect to an inertial frame (7),
in complete notation (D’:‘;J; 501 simply &y, satisfies Poisson’s differential equation (eg.
Kabamba and Girard, 2014)

Crinef = _[Cvref]x EQT@f? (610)

with [{Jyer], being the skew symmetric matrix of the cross product

0 —w, wy
Gle=|w, 0 —wyl- (6.11)
—Wwy Wy 0

Rearranging equation (6.10) gives the desired reference angular velocity
[Cvref]a: = 'iQTefj—‘igref‘ (612)

For the computation of the derivative of the transformation matrix Tizre ¢ the derivatives
of the unit vectors (Eq. 6.9) need to be determined. Therefore the definition of the
LoS frame from Equations (6.6) to (6.8) is rearranged, making it easier to determine
the derivatives. The definition of the first axis €, s stays the same. The z-axis €, 4 is
defined by

(6.13)
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where - denotes the scalar product. €, 4(€y 4 - 74) is the orthogonal projection of 4 on
the direction of €, 4. The second axis is then given by

€y, A = €2 A X €z A. (6.14)

This definition is completely equivalent to the one before.
The derivative of a vector divided by its norm 9/0t(7/|7]) can be computed with the
definition of the norm |#]> = (7 ') and the quotient rule.

o F - 1/\7:12(7?-7%‘).

i 6.15
ot |7 7 (6.15)
With this the derivatives of the unit vectors are
g = 27 0A 7 EaalEna (U — Ua] (6.16)
7B — 74l
. h—2¢& 1(6. 4-h
€2 A= 75 iZ’A(iZ’A _,) , with
|7 — €x,4(Ex,a - Ta) (6.17)
h =04 — € a(€za-Ta) — €4[(Er,4 - Ua) + (€x,4 - Ta)]
é;;,A = é‘z,A X gx,A + gz,A X é’:c,A‘ (618)
The derivative of the reference transformation matrix is then given by
T
. . €$7A
Tecraros,a = Trepa = |€) 4| - (6.19)
o7
€z,A

With Equation (6.12) and the matrices Tycf 4 and T.. 7,4 the reference angular velocity
follows as the elements of the resulting matrix

Wg ref,A = _(Tref,A ,Tigref)l?n
Wyref,a = (Tre,a Tinres) 1, (6.20)

Weref,A = _(Tref,A Tigref)lﬂ‘

6.2.2 Relative Aftitude

With the reference attitude at hand, the attitude error, the difference between reference
and actual attitude, can be computed. It is also referred to as relative attitude and
relative angular velocity, respectively. The actual attitude of the satellite body frame is
given as Tjop or as quaternion ¢;op and the angular velocity in the satellite body frame
with respect to the inertial frame by (D’f}b or simply &.

The relative attitude T} or as quaternion ¢,¢; is the transformation from reference
to satellite body frame. With the previous definitions it is given by

Tret,n = Trean,a = Tioo.a Tinpesa- (6.21)

The definition could be switched as well (from body to reference frame), being just a
preference.
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Figure 6.20: Relative attitude 6, of GRACE B on 2005-05-01 in Euler angle representation,
computed from SCA, GNV and VKB data.

The relative angular velocity ¢ is the difference of the angular velocities in the
body frame:

- b - -
Wrel,A = Wp rel,A = W — Trebe,A Wref- (6.22)

The relative attitude may be plotted best in Euler angle representation érel with the
three angles ¢ (roll), 6 (pitch) and ¢ (yaw). With the usual definition that roll is a
rotation around the x-axis, pitch around the y-axis and yaw around the z-axis. The 12
possible rotation sequences for the computation of Euler angles are often not stated,
here always x-y-z is used (for details and conversion of the attitude representations
see Appendix A.1.3). Nevertheless, for the very small deviations of the attitude in the
GRACE fine pointing mode, the result for all sequences is about the same.

For an arbitrary day, the relative attitude of GRACE B is shown in Figure 6.20,
computed from the SCA L1B quaternion data ¢ and the GNV L1B data for the
reference pointing. Furthermore, the VKB data were considered, compensating for a
misalignment of the K-band antenna frame from the satellite body frame, which is not
of interest here and not further discussed.

The trend of the relative attitude changes slightly from day to day and over the year
in terms of frequency. The allowed attitude limits of each axis are distinctly visible in
the plot. Also the thruster firings are visible, creating the abrupt changes in attitude.

The attitude error of the pitch axis is the lowest and usually does not exceed the
limit. This is because of the orientation of the magnetic field with respect to the pitch
axis, which is always about rectangular for the polar GRACE orbit. This means that
the axis is always controllable by the MTQs. For roll and yaw axis this is not the case.
During the orbit both axis have times when they are about parallel to the magnetic
field lines, and thus not controllable by the MTQs (for roll around the equator and for
yaw over the poles).

The attitude thruster firings for the same day as in the figure before are depicted in
Figure 6.21 as angular momentum. An angular momentum is calculated by the firing
duration times thrust times the respective lever arm. Comparing both figures shows
that the abrupt changes in attitude are always created by a firing. More exactly, usually
a series of firings is conducted, visible when zooming in the plot.

The positions of each thruster firing over the Earth is shown in Figure 6.22 for each
axis for the time span of five days. Here the previously mentioned shortcomings of the
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Figure 6.21: Thruster firing angular momentum (firing duration times thrust times lever arm)
of GRACE B on 2005-05-01, computed from THR L1B data.
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Figure 6.23: Schematic of magnetic torquer attitude control loop.

MTQ control is distinctly visible for roll and yaw axes around the equator and poles,
respectively. Pitch firings are relatively rare and randomly distributed. It is also visible
that a firing usually consist of a short series of firings.

6.2.3 Modeled Magnetic Torquer Attitude Controller

The magnetic torquer (MTQ) continuous controller builds the main control loop for the
satellites. The thrusters are not used continuously, but just if the actual attitude leaves
the predefined limits. For GRACE the limits are given as the maximal FEuler angles of
the relative attitude (cf. Sec. 6.2.2). The maximal Euler angles émaw are = 0.17°, 0.23°,
0.28°, for roll (¢), pitch (0) and yaw axis (1)), respectively.

As noted before, the implemented controller is a kind of a proportional-derivative
(PD) controller. Meaning it uses the error of the control variable itself and its derivative
to compute a correction. Here, the relative attitude in Euler angle representation érel
and the relative angular velocity ¢ are used. The angular velocity is not directly the
derivative of the Euler angles, but closely connected to it. The FEuler angles are just
a different representation of the relative attitude in matrix or quaternion form and
directly follow from T;.¢ 4 (Eq. 6.21), see the conversions in the Appendix A.1.

The error of each axis is controlled separately, ignoring the coupling of the axes from
the rotational dynamics (cf. Eq. 2.7). For the very small angle errors and the nearly
diagonal moment of inertia matrix I this works well (in Mashtakov et al. (2020) we
considered this as well for the control torque computations).

The MTQ control scheme is depicted in Figure 6.23. The desired control torque
fctTl,des is composed of three parts. The proportional, derivative and the feed forward
disturbance mitigation torque.

fctrl,des = _kw(fvrel - kG(—)rel — Tist- (623)

with the control gains Ew and E@. For all simulations just the simple computation of the
GGT (Eq. 2.13) is used as known feed forward disturbance Ty;s;. With the inter-satellite
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Table 6.3: Attitude related parameters of the simulation

Axis
Parameter Symbol x (roll ) y (pitch 0) z (yaw 1)
max. Euler angles émam + 0.17° 0.23° 0.28°
max. MTQ dipole Mynqz 30 m?2A 30 m?2A 30 m2A
MTQ diff. gain Kk, 3.08 Nms/° 10.25 Nms/°  9.52 Nms/°
MTQ prop. gain ke 0.0015 Nm/° 0.004 Nm/° 0.0034 Nm/°
nominal thrust Fine 10 mN 10 mN 10 mN
lever arm lo 0.3m 1.45m 1.45m
THR. hold time Athod 100 s 100 s 100 s
averaging time Atgo 200 s 1000 s 60 s
THR diff. gain kqo 2000 s2/° 8800 s2/° 3000 s2/°
THR prop. gain ke 185 s/° 68 5/° 16 5/°
Mol diagonal I 104.3 kgm? 408 kgm? 4734 kgm?

difference of about 200 km the satellites have a flight path angle of about one degree,
making the GGT by far the biggest disturbance.

Usually the desired torque T’Ctrhdes can not be generated by the MTQs. The generatable
torque is limited by Earth’s magnetic field B. With being the magnetic dipole
generated by the MTQs, the resulting torque in the magnetic field is given by

Tyvrg = m x B. (6.24)

With a perpendicular, or at least not parallel, composition of three MTQs each i can
be generated, just limited by the properties of the MTQs and available electric power/
current. For the GRACE satellites, the three MTQs are aligned with the main SRF
axes.

Therefore, a generatable torque, that is closest to the desired torque needs to be
determined. From Equation (6.24) follows that a torque can just be generated which
is perpendicular to B. The optimal way is to determine the torque which is projected
onto the plane perpendicular to B. Thus the optimal dipole moment without producing
unnecessary dipole moment 173, i8

) 1 = -
Metrl = —=——=-B ¥ Tctrl,des~ (625)

(B - B)

The maximal generatable dipole moment 17 for GRACE is 30 m2A for all three MTQ
axes. In the simulation this is set as an upper limit. However, in the usual attitude
mode this limit is by far not exhausted.

All relevant attitude parameters for the simulation are summarized in Table 6.3.

In the simulation the measurement of the magnetic field is assumed to have a Gaussian
noise of 5% 10~ T'. This is a very simple magnetometer model, but the influence of the
magnetometer accuracy is not significant for the resulting attitude.

The magnetic field and the true generated control torque are computed with the
IGRF 11 (International Geomagnetic Reference Field) model (Finlay et al., 2010).
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6.2.4 Modeled Thruster Attitude Controller

The thruster attitude controller is just activated if the actual measured attitude leaves
the predefined limits (cf. Tab. 6.3). It is implemented in a way that it behaves similar to
the actual GRACE thruster firings (see below). Even though the control algorithm is not
known, the epoch of each firing and the duration of the firings are available. Furthermore,
each firing is visible in the attitude (SCA) data (cf. Fig. 6.20). The GRACE satellites
have six pairs of thrusters, to generate positive and negative torques around each body
axis (actually each satellite has 12 thrusters for redundancy). The thrusters have a
nominal thrust of Fip,. = 10 mN and the generated torque is controlled by the firing
duration. The position of each thruster, and thus the perpendicular lever arm lg for
each axis, is known (Bettadpur, 2012b) and given in Table 6.3, as well.

The main characteristics of the GRACE attitude thruster controller are listed in the
following;:

e Thrusters of one pair always fire for the same time. Thus in the perfect case with
no mounting and timing errors no force on the satellite is applied.

o After a thruster firing the thrusters are on hold for a certain time Atp,q to observe
the reaction of the satellite before further thruster activation.

e Just one axis is controlled at one time. If the error in more axis is out of the limit,
the biggest error is counteracted first.

In the simulation these characteristics are implemented and described in the following.
The control variable is the thruster pair activation time Aty,.. For the GRACE satellites,
the thruster activation times are between 10 ms to maximal 400 ms. For the simulation
with an integration step size of 1 to 5 s this means that the applied thruster torque
needs to be distributed over one step size. With the control variable Atyy,., the applied
torque over one step size h, exemplary for the roll-axis, is

2 Fthr lcp Atthr

3 (6.26)

T;fhr,ar =
For the comparably small external and control torques acting on the satellite, and the
slow rotational motion, the blurring of the impulse over a slightly longer time in that
high frequency region does not make a difference (see also 6.3.6).

The generated torque, or activation time is controlled by a PD-controller using the
error of the attitude g,.; in Euler angle representation G_)'Tel, and for the derivative part
the mean of the numerical derivative of ©,,; from the previous Atge seconds is used.
Because the controller is not continuous, the mean value is more appropriate. Hence
the thruster activation time is given by

t .

Atpr = —kao ! / Oret dt — keO,e. (6.27)
Atge Ji-Atqe

The gains and parameters for the thruster control are tuned by trial and error with the

main goal to achieve a similar characteristic as for GRACE. We show a more effective

way of determining the thruster control gains for an improved thruster controller in

Mashtakov et al. (2020). All gains and parameters are given in Table 6.3, as well.
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Figure 6.24: Relative attitude éml of one simulated satellite in Euler angle representation.
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of one simulated satellite.

6.2.5 Attitude Simulation Results

The relative attitude @ml for a simulation with the implemented controller is shown
in Figure 6.24 for one day. The corresponding thruster firings represented as angular
momentum are shown in Figure 6.25 for the three axes. For the simulation the attitude
sensor model with the Kalman filter (3.) was used, as described in Section 6.3.4.

Firings for the pitch axis 6 are rare because the axis is usually controllable by the
MQTs and not exceeding the limits. For roll and yaw axes this is different and regular
firings are required to keep the attitude in the desired limits. Compared to the exemplary
day of GRACE attitude data, shown in Figures 6.20 and 6.21, the number of firings is
slightly lower. On the GRACE satellites usually more firings are successively conducted
in a row, rather than using one stronger impulse. This is also distinct when comparing
the positions of the firings over the Earth surface in Figures 6.26 and 6.22 for the
simulated and GRACE data, respectively. Nevertheless, the positions of the firings show
in general the same pattern. Also the trend of the resulting attitude data is similar
enough for the purpose of generating simulated GRACE-like data for GFR.
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Figure 6.26: Position of firings for the three axes roll (blue), pitch (red) and yaw (yellow) for
10 days of one simulated satellite.

6.3 Instrument (Noise) Models

For the analysis in Chapter 8 simulated measurement data are generated for all major
instruments of a satellite gravimetry mission. Different noise models for these instruments
are investigated. The approach here is to add specific noise to the "true" values obtained
from the simulations. The real noise behavior of the different instruments is usually not
exactly known, but their general characteristics are. In the following the used models
for the major instruments and its parameters and variations are introduced and some
results are displayed.

Usually noise characteristics of instruments or sensors are described and given in
terms of Amplitude Spectral Densities (ASD) or Power Spectral Densities (PSD). This
representation is frequently used throughout this thesis, also for the analysis of GFR
results. Therefore the ASD and PSD are briefly introduced and discussed in the Appendix
A.2, as well as its computation used for all plots in this thesis.

6.3.1 Inter Satellite Ranging (KBR)

The principle measurement quantity of the KBR system is the range. Range-rate and
range-acceleration follow from the range by differentiation. The theoretical noise sources
of the KBR inter-satellite ranging device are investigated in detail by Kim (2000).

The main sources are the oscillator noise and the system noise. The GRACE satellites
use ultra stable oscillators (USO) which were already flight tested with a classified noise
behavior from another missions. Its characteristic is a slope proportional to 1/f? for
low frequencies in the ASD.

The system noise arises from the receiver subsystem and is dependent on the separation
of the satellites. It can be modeled as white noise with about 1 um/v/Hz in the ASD
for a separation of about 220 km.

Additionally, a minor noise source exists, which is a relation between the satellites
pointing accuracy and KBR accuracy. This is not considered and analyzed in this thesis.



6.3 Instrument (Noise) Models 115

T i LA | i LR ERRL i LA |
generated noise
model

100

p [m/ V]

107° -

106 107°

P | P | " PR " PR A
104 1073 102 107!
Frequency [H 7]

Figure 6.27: ASD of the KBR noise model and of the generated noise time series.
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Figure 6.28: Time series of the generated KBR range noise.

The combined noise model is given as ASD function with the unit [m/vHz| as

0.0018H 2\ *
z) . (6.28)

f

The model is shown in Figure 6.27 in terms of ASD together with generated noise for
30 days. The high frequency noise level of this model is varied for the sensitivity studies
in Chapter 8.4. Therefore the pre-factor 107¢ in Equation (6.28) is varied, shifting the
whole model upwards. The pre-factor, referred to as oy f kpr, is investigated in the
range of le-5 to 5e-7 m. The value of 01,5 kpr = 1e-6 m is used as default.

For the generation of noise time series from ASD models, the LISA Technology
Package Data Analysis (LTPDA) toolbox (https://www.elisascience.org/ltpda/) for
MATLAB is used. The function noisegen1D uses Franklin’s random noise generator
method (Franklin, 1965) for noise generation with a given spectral density. The noise is
generated with a sampling frequency of 0.2 Hz and a minimal frequency of 3.8 x 10~7
Hz (30 days).

The generated noise time series from the ASD model is depicted in Figure 6.28. The
low frequency variation is distinctly visible, just the zoom-in reveals the high frequency
noise content.

For GFR usually the range-rate is used, which is obtained by derivation. Mathemat-
ically this means a multiplication by 27 f in the frequency domain. The noise time
series is obtained by numerical derivation of the range, as it is done in the real GRACE
processing. The resulting range-rate noise model and the derivated noise are shown as
ASD in Figure 6.29 and the noise time series in Figure 6.30.

dKBR(f) = 10_6\J 1+ <
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Figure 6.29: ASD of the KBR range-rate noise model and of the derivated noise time series.
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Figure 6.30: Time series of the derivated KBR range-rate noise.

On the left hand side of the spectrum, the low frequency noise is attenuated by the
derivation, the high bias and drift are vanishing in the time series, which is one reason
that rather range-rate is used for GFR instead of the range. On the right hand side, the
high frequency noise is amplified.

6.3.2 Accelerometer (ACC)

Besides the inter-satellite ranging, the accelerometers are the other crucial instrument
of a 1I-SST gravimetry mission. It allows to distinguish a change of range or range-rate
due to a gravitational or a non-gravitational disturbing source. Hence, the noise of the
instrument has a major influence on the achievable gravity field accuracy.

The real noise of the GRACE on-board accelerometers is unknown. From the ACC
data it is not completely possible to distinguish signal and noise effects. The same
holds for the residuals and deviations from POD and GFR estimations: The noise of all
sensors (KBR, ACC, SCA, GNV) and errors of the estimation process are combined and
the distinction what relates to which source is not completely possible, as well. From the
general physical function of the device an assumption of the noise level and its spectrum
can be drawn. Nevertheless, the CHAMP, GRACE and GOCE missions showed, that
the real devices on the satellites did not fully agree with the predictions and some
not completely understood effects occurred. Furthermore, the space environment and
interactions of the device with the satellite are hard to predict and also not totally
measured on the actual satellites. Thus different models for the noise of the GRACE
accelerometers exist.
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Figure 6.31: ASD of the different ACC noise models

In this thesis some prominent models are used to determine their influence on the
resulting gravity field solutions and especially the influence of the main parameters of
these models. Subsequently, the results are compared to the ones of real GRACE data
(cf. Ch. 8.5).

From the literature the following models are used: The model from Kim (2000), which
is frequently used for NGGM studies and for instance by Darbeheshti et al. (2017).
It technically consists of two models, because for the accelerometer y-axis a different
model is used than for x- and z-axis. Here the model is referred to as Kim y and Kim
X,Z.

A more recent, frequently used model is based on the e2motion NGGM project
(Gruber et al., 2014). It is used here in two variations, referred to as e2motion and
e2motion var. It is also used by eg. Li et al. (2017) with another slight variation, here
referred to as Li. Furthermore, this is also used by eg. Daras and Pail (2017) and Hauk
and Pail (2019) with clipped amplitudes in the very low frequencies, probably reasonable
for already calibrated ACC data (not shown and used here).

Based on models from the literature and GRACE ACC data analysis, a further
model is developed for which the high frequency noise level is varied. It is referred to as
Const__If. Furthermore, a model with simply white noise, with variance o, is used in
the evaluation for comparison.

The literature models are shown in terms of their ASD in Figure 6.31 and the Const__1f
model in Figure 6.32 for different values of the parameter o, which determines the
high frequency noise level.

The Kim model shows a small slope of the low frequencies, starting earlier than for
the other models. The amplitude of the low frequency noise is much to low compared
to the real GRACE data. The later models have a steeper slope and have higher low
frequency noise. The Kim model shows a very big difference between y- and x-,z-axis.
In the real GRACE data this is definitely not that prominent.

The e2motion model has an increase of the noise at the very right end of the spectrum.
The e2motion var. model is just shifted slightly down. The Li model agrees with the
e2motion var. model besides the rise of the high frequency noise.

For the Const_ If model just the high frequency noise level is varied, but the low
frequency part stays the same, hence the name. The slope of the low frequency starts
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Figure 6.32: ASD of the Const_If ACC noise model for different values of the o parameter.

slightly later than for the other models. The high frequency noise of the GRACE L1B
data (which are filtered) is below 1le-10 m/s%/v/Hz. Even though the raw ACC data
may have another high frequency characteristic, the down-sampled and filtered (cf. Sec.
3.3) L1B data should be the basis for models, because these data are used for POD and
GFR processing.

The equations for all models are given in the following as ASD functions with the

unit [m/s%/vVHz].

/ 005H
Kim x,z: daco(f) =10710 /1 + OOOfE’Z (6.29)
0.1H
Kim y: dace(f) = 1079, /1 + ; & (6.30)

e2motion: dacc(f) = 4 * 10—1% 1+ <000;Hz>4 + <0.1J312>4 (6.31)
e2motion var.: dacco(f) = 1011$ 1+ (O'OOJ}HZY + <0‘1sz>4 (6.32)
Li: dacco(f) = 10—11J 1+ (MO;HZ>4 + (OO{HZ)4 (6.33)
Const If: dacc(f) = onpy| 1+ ("})4 (6.34)

For the Const_ If model the frequency fi where the slope starts is chosen according to
opy to result in the same low frequency noise characteristic.
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Figure 6.34: Time series of generated noise from the Const_If model with o,y = 1e-10 for the
three accelerometer axis for one satellite.

Again, noise time series are generated with the LTPDA toolbox for 30 days. For each
accelerometer axis and each satellite different realizations of the same noise model are
generated. In Figure 6.33 the ASDs of generated noise and of the model are exemplary
shown for the Const_1f model with o,y = 1e-10. The time series of that noise is plotted
in Figure 6.34 for a time span of 12 days and for all three accelerometer axis. The low
frequency noise is obviously visible. The high frequency noise is depicted in the zoom-in.

6.3.3 Orbit Solution (GNV and KOS)

An orbit solution of the satellites, so mainly 3d-position data, may be obtained by
dynamic (GNV) or kinematic (KOS) orbit determination (cf. Sec. 3.2.3 and 4.1). The
results of both techniques are very similar and for the simulation of GRACE-like
observation data no difference is made between them, here.

In the literature the noise characteristic of the orbit data is usually modeled as white
noise for all three axes (eg. Darbeheshti et al., 2017). In reality this is not necessarily the
case. Even though, at least the kinematic solution should not contain correlated noise,
usually some small periodic errors are still contained in the solutions (eg. Weinbach and



120 GRACE SIMULATION

Table 6.4: Star camera model parameters in each star camera frame

Axis
Parameter Unit  boresight ¢ (roll) 6 (pitch) ¢ (yaw)
White noise o arcsec 40 5 5
optional misalignment SC1 arcsec 37 -15 84
optional misalignment SC2 arcsec -71 58 -18

Schon, 2013; Zehentner and Mayer-Giirr, 2016). This is also visible in the GRACE GFR
position residuals and deviations from GNV and KOS data (eg. Fig. 7.35 and 7.43).

Nevertheless, as in other studies, here white noise is used. As an estimate for the
error of GRACE orbit solutions a standard deviation of ¢ = 2 ¢m is realistic. At some
times it might be even smaller. This is used here as basis. In Section 8.6 the influence
of lower and higher noise levels is investigated.

The dynamic GNV solution provides velocity data in addition. For GRACE GFR
processing these are just needed as initial condition for each arc. They are not indepen-
dent measurements with respect to the position and thus not used as observations for
GFR. Since the initial conditions are estimated in the GFR, process, their error is of
very minor importance. A white noise with standard deviation of ¢ = 0.08 mm/s is
applied here for all cases.

6.3.4 Star Cameras and Attitude Solution (SCA)

The star cameras are an important sensor on board the GRACE satellites and in general
for satellite gravimetry missions. The satellite’s attitude is determined mainly from
the star cameras. It is crucial to relate the accelerometer measurements to a reference
frame. Thus, the star camera measurement is directly influencing the quality of the
accelerometer data for POD and GFR.

Star cameras are the most precise attitude sensor available. The accuracy is mainly
determined by two factors. First, the resolution of the camera and hence the accuracy
with which the position of a star can be determined, and second, by the digital processing.
In a first step the positions of stars in pictures are determined by image processing
techniques and subsequently feed to an attitude determination algorithm.

Besides the technical limitation of each device, all star cameras have in common, that
rotations around the cameras boresight have a much worse accuracy because the stars
do not move so much in the camera frame compared to rotations around the other axes.

For the GRACE star cameras, errors are given in Kim (2000) as withe Gaussian
noise with o, for the boresight direction of 240 prad and oy and oy for the other two
axes of 30 prad. Harvey (2016) concludes that the boresight error is about one order of
magnitude bigger than in the other directions.

Futhermore, the measurement is biased because of mounting errors and exhibits a drift
mainly due to temperature variations (Harvey, 2016). These errors can be eliminated or
at least reduced by calibration of the star cameras and by producing an optimal attitude
solution, which is partly done in the L1B data processing. Therefore these effects may
not be considered in a realistic star camera model for L1B data. Nevertheless, the
influence of a constant misalignment is investigated here.

The used star camera noise model is o, = 40 arcsec ~ 194 prad and g = oy, = 5
arcsec = 24 urad for each star camera in its respective star camera frame. An algorithm



6.3 Instrument (Noise) Models 121

(yaw)
(pitch)
(roll)

0.05

¥
0
©

Attitude error [°]

-0.05

Time [h]

Figure 6.35: Attitude sensing error of the simulation using just one star camera (condition 1.)

for the combination of multiple star camera measurements is given in the GRACE L1B
data processing document (Wu et al., 2006). It is a weighted combination, considering
the sensitivity of the different axes. This algorithm is used to combine the measurement
of both star cameras to a final attitude solution, giving a quaternion from inertial to the
satellite’s body frame g¢;op. The mounting of the star cameras in the satellite body frame
is assumed to be known and inherited from the GRACE satellites. For the investigation
of a star camera misalignment the star camera frames of each camera are rotated by [37
-15 84] arcsec and [-71 58 -18] arcsec from the assumed orientation, respectively.

For an optimal attitude and angular velocity determination from the star camera
measurements, a Kalman filter is designed. As known attitude disturbances the applied
control torques and the simple model of the GGT are considered for the Kalman
filter. As observations the two star camera measurements are used. Optionally a rate
measurement from a gyro could be added as observation for the Kalman filter, as
well. The output is the estimated attitude quaternion o and the angular velocity @p.
Furthermore, the standard deviation of the noise of each star camera axis is assumed to
be known. The complete implementation of the Kalman filter is described in detail in
Mashtakov et al. (2020) and not performed here. The star camera model parameters
are summarized in Table 6.4.

In Section 8.7 different combination of star camera errors are investigated with respect
on the resulting gravity fields. Also the influence of the advanced attitude processing
using the Kalman filter is considered.

In the following, the attitude error with the described star camera models is shown
for different processing methods. Attitude error is defined as the processed star camera

—

measurement minus the true attitude (not to confuse with the relative attitude 0,.;).
The following four conditions are investigated:

1. Just one star camera measurement is used.

2. Both star cameras are used and the measurements are combined with the mentioned
algorithm.

3. Both star camera measurements are used as input to the Kalman filter.

4. Both star cameras contain a misalignment, their measurements are combined.

When using just one star camera (Fig. 6.35), the error of the different satellite axes
is dependent on the mounting of the camera. For the GRACE camera mounting, a
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Figure 6.36: Attitude sensing error of the simulation using two star cameras with combination
algorithm (condition 2.)
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Figure 6.37: Attitude sensing error of the simulation using two star cameras with Kalman
filter (condition 3.)

rotation around the cameras boresight is a combination of a pitch and yaw rotation of
the satellite. Thus pith and yaw axes show bigger errors. The satellite’s roll rotation is
parallel to a sensitive camera axis, hence the roll error is smaller.

With an additional star camera (condition 2.), that is mounted differently, both
measurements can be combined, considering the sensitivity of each axis. The result is
depicted in Figure 6.36. It shows a nearly equal error level for all three axes, which is
below the error level of one single sensitive camera axis. The roll axis is still a little bit
more precise, being a sensitive axis in both camera frames.

Additionally considering the attitude dynamics with the Kalman filter (condition
3.), increases the precision again by a factor of about five (Fig. 6.37). This is a huge
improvement and maybe a possibility to increase the accuracy of the GRACE SCA L1B
solution. This would require the knowledge of the attitude control torques which are
theoretically known and recorded, but I can not assess its accuracy.

If the star cameras are misaligned (Fig. 6.38), the error shows a constant offset.
The random noise in each axis is reduced, nearly as much as for condition 2. with the
combination of two star cameras.

The influence of these different star camera data processing approaches, and hence
the star camera error, on the GFR results is investigated in Chapter 8.7.
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Figure 6.38: Attitude sensing error of the simulation using two misaligned star cameras with
combination algorithm (condition 4.)

6.3.5 Magnetic Torquer

The main magnetic torquer (MTQ) model is that a torque only can be produced
perpendicular to Earth’s magnetic field B. It is determined by the already mentioned
equation with m being the magnetic dipole moment generated by the MTQs

fMTQ =1m X E (6.35)

The magnetic field is computed with the IGRF 11 (International Geomagnetic Reference
Field) model (Finlay et al., 2010).

Furthermore, just the maximal generatable dipole moment is limited. No other models
like delays are used. The magnetic dipole m of the torquers builds up pretty fast after
switching on the current. Thus modeling a delay effect would require a much smaller
simulation step size and has no significant influence, especially not on the GFR.

6.3.6 Attitude Thrusters

For the thrusters no real model is used. Du to the fact that the thruster activation time
is far below the integration step size, a detailed modeling of effects like response delay
and building up the nominal thrust is not necessary. Errors of misaligned thrusters and
slightly different firing times of thrusters of one pair are not influencing the attitude
dynamics much for realistic error assumptions.

Much more interesting is the response of the accelerometers to these effects and how
these errors affect the GFR. Thus for the closed loop GFR simulation the "thruster
model" is actually and additional accelerometer model.

In the GRACE L1B ACC data each thruster firing is distinctly visible by spikes in
the signal (eg. Fig. 6.16), proving that the thrusters do not work perfectly. A thruster
firing to produce a torque around a certain axis results in a disturbance of all three
accelerometer axes. Meyer et al. (2012) investigated this effects in a stochastic manner,
giving mean values and standard deviations of the disturbances of the firing around one
axis onto the three accelerometer axes. In the same way the disturbance of a thruster
firing on the accelerometer is modeled here. The vlalues from Meyer et al. (2012) are
completed and adjusted to achieve comparable effects as in real GRACE ACC data.

With Ktthr being the vector of the firing time in each direction ¢, 6, ¥ (only one
direction at a time) and the coupling matrix Cy and the standard deviation of the
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coupling Cy r, the acceleration on the three body axes due to the firing ACCy, is
modeled by

ACCthr = (Cf&tthr + (Oa7f-ﬁn) A_’tthr)Fthr/"nsat' (6'36)

fip, is a normally distributed random number and (.) meaning the element-wise multipli-
cation of each matrix row with the concerning element of the vector. Thus (Cy, ¢.7i,)
is a matrix of white noise with the dedicated standard deviation. In the simulation
for satellite A and B the coupling factors C'y 4 and Cy g and their standard deviations
Co, 5.4 and C, ¢ p are assumed to be

[0.0945  0.1085 0.0945
Cra=10.042 0.0805 0.14
10.4025 0.1925 0.455

[—0.119  0.063 —0.1505
Crp=10.0035 —0.1855 —0.133
10.2625 —0.4725 —0.455

[0.015 0.04 0.03]
Co 4= 1001 0.045 0.03
0.005 0.025 0.015)

[0.01 0025 0.03]
Cor,B=|0.01 0.035 0.025
10.005 0.01 0.015]

The disturbing accelerations ACCyy,, are added as accelerations in the satellite dynamics
integration, acting for the length of one integration step size. Thus the modeling approach
is dependent on the integration step size because it is modeled as acceleration and not
as an finite impulse. Nevertheless, the used integration step size is always 5 seconds and
thus the effects is constant.

Additionally, an error in the sensing of the thruster induced peaks by the accelerometer
can be modeled. Therefore, a normal distributed error is added onto the thruster peaks
in all axes. The previous equation is extended by the error factor ogec inr:

ACCthr = (Cf&tthr + (Ca,f~ﬁn) A_‘tthr)Ftlu“/"nscuf(1 + T_in Uacc,thr)- (6~37)

The vector 77, consists again of normally distributed random numbers. This additional
error is just added to the modeled ACC data, but not feed to the dynamics integration.

The influence of this error is investigated for standard deviations of oyecnr = 0.005,
0,01 and 0.02 in Chapter 8.8. If a sensing error of very short and sharp impulses is
realistic for the GRACE accelerometers is hard to assess. First, the general influence
of such an error is investigated and subsequently it may be related to the real data
processing.

The modeled accelerometer signal with the added thruster disturbances is shown
in Figure 6.39. The disturbing accelerations are added to the non-gravitational forces
at the times of the firings for the length of one integration step size (5 s), giving the
sharp spikes. This is looking different than the GRACE ACC L1B data because during
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Figure 6.39: Modeled accelerometer signal with disturbances due to imperfect thruster firings.
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Figure 6.40: Filtered modeled accelerometer signal with disturbances due to imperfect thruster
firings (the same filter as for GRACE L1B data processing is used).

the processing of the raw accelerometer data to the published, and usually used L1B
data, the measurements are filtered and down sampled. A digital CRN filter (N-th
order self-Convolution of Rectangular time-domain window function) is applied for that
purpose, described in Wu et al. (2006). Due to this filter, the sharp pulses in the ACC
data are decreased and broadened. The filtered modeled accelerometer signal, using
the same filter, is shown in Figure 6.40, for the same time as shown before in Figure
6.39. The filtered peaks are blurred into positive and negative time direction and show
a typical "overshooting" at both ends.

For comparison real GRACE ACC L1B data (bias corrected) are shown in Figure 6.41
for an arbitrary epoch. The disturbances due to the thruster firings look very similar to
the filtered modeled signal from the previous figure. It exhibits the same "overshooting"
characteristic and width of the peaks.

The influence of the filter compared to the true, measured ACC data is negligible
for the GFR, as analyzed in Chapter 8.8. The total impulses are kept the same by the
filtering, it is just blurred over a slightly longer time. On these time scales this has no
influence on the GFR.
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Figure 6.41: GRACE ACC L1B data (bias corrected) showing thruster disturbances.



GRAVITY FIELD RECOVERY RESULTS FROM
GRACE

In this chapter the Gravity Field Recovery (GFR) from real GRACE data is analyzed.
The GFR tool, as described in detail in Chapter 4 is validated with respect to all main
parameter choices, options and sensitivities, extensively. GRACE results are shown here
from the year 2006, exemplarily. The environmental conditions for that year are not
especially smooth, but also not too rough (eg. Fig. 3.1). The data quality has settled
compared to the first years and is more or less average.

For testing and evaluating the influence of different estimation parameters, like
weighting, arc length or accelerometer calibration, different months are investigated in
the following. Because the data quality and environmental conditions are not constant,
the quality of the gravity field solutions differs from month to month. The influence
of different options in the GFR processing differs over the months, as well. Therefore,
usually results for different months are investigated and shown.

The results and plots shown in this chapter are also used for the comparison with the
simulation studies in the next Chapter 8. Through this, the GFR simulation loop is
validated but also different influences and relations between sensor noise characteristics
and options in the processing of the real GRACE data will be revealed.

In this thesis usually a gravitational field with degree and order (d/o) 60 is estimated.
In this region Earth’s hydrological signal is detectable by GRACE. Some processing
centers also estimate gravity fields up to d/o 96, but the additional information is small
compared to the computational effort. Due to restrictions on the used computation
cluster, d/o 60 is used as default here. Usually the shown GFR solution consider data
from one month, especially when comparing results to monthly solutions from other
processing centers, like CSR and TU Graz. In some cases, for parameter analysis, a
gravity field is just computed for 12 days to reduce computation time. Of cause this has
an effect on the quality of the solution, and the results are not directly comparable to
the monthly solutions with data of about 30 days.

Gravity field solutions can be compared and assessed in different ways. The two most
important ones used here are: First, the degree amplitude, degree difference or degree
variance plots (cf. Sec. 2.3.3). They give a condensed insight of the estimated parameters
and the sensitivity over the degree. To assess small differences between solutions or
the hydrological signal, the difference with respect to a reference gravitational field is
usually plotted. A static, mean gravitational field is used for that purpose. In this thesis
the GGMO05s model (Ries et al., 2016) is always utilized for that (cf. Sec. 2.3.2). Also
the formal error (Sec. 4.3.12) can be plotted as degree variance to asses the accuracy of
the solution over the degrees.

Second, the solution can be assessed in the spatial domain. The equivalent water
height (EWH) or the geoid height are commonly plotted quantities (cf. Sec. 2.3.2 and
2.3.2). Again a reference or a mean field is useful to assess small differences and the
time varying gravitational signal. Unphysical signals can be detected quite well in
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Figure 7.1: Degree difference with respect to ITSG2018 May 2006 solution from estimated
May solution, the official solutions from GFZ, CSR and JPL and the mean GGMO05s model. For
the estimated solution the weighting of o, = 0.02, 0}, = 1e-8 and bias plus drift parametrization
with 3h arc length is used.

spatial difference plots. Especially over the oceans the expected signal in most regions is
extremely small, hence a smooth signal over the oceans and a low striping are general
indices of a good solution. For all spatial plots shown in the following a 465 km Gaussian
smoothing filter is applied, as discussed in Section 2.3.4.

Compared to the results from the simulations studies in the next Chapter 8, here
no true solution exists to asses errors and to compare the results to. Nevertheless, the
renown mean GGMO05s model is generally used as reference, here. Being a mean model
based on about 10 years of data it is well suited to assess differences between various
solutions. To evaluate the differences of the monthly solutions and the mean GGMO05s
model, they are compared in terms of degree difference in Figure 7.1. As reference the
monthly ITSG2018 solution from TU Graz (Kvas et al., 2019), which are renowned for
its quality, is used. Shown are an estimated monthly solution of May 2006 up to d/o 90,
and the three respective official solutions from GFZ, CSR and JPL and the GGMO05s
model. The big difference of the EIGEN solution from GFZ in the very first degree is
due to a different used reference radius R and the used tide-free system, while all other
models are given in the zero-tide system (cf. Sec. 2.3.2). All three monthly solutions
show some differences over the whole spectrum. Compared to the mean GGMO05s model
it is distinct, that bigger differences are in the lower degrees up to about d/o 20. This is
where the most hydrological signals are detectable with GRACE data, and thus the
monthly solutions show the biggest differences to the mean gravitational model. For the
higher degrees, where the noise in the coefficients is increasing, the monthly solutions
are much closer to the mean model. For d/o higher 30, the monthly ITSG solution is
closer to the mean GGMO05s model than all other monthly solutions. Thus, especially
for the higher degrees the differences are small, and the mean model might be used as a
reasonable general reference.

All additional models, referred to as background models, used for the GFR. processing
are listed in Table 7.1. The different modeled effects were mainly introduced in Chapter
2. The listed effects are usually considered by all processing centers for GRACE GFR
solutions. However, the explicitly employed models for the different effects may differ.
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Table 7.1: Used Background models for GFR

Perturbation Model Remark
Earth static gravity field GGMO05c® d/o 180
Third body JPL DE430 ephemeris’ Sun, Moon, Jupiter
Dealiasing AOD1B RLO05¢ d/o 180
Atmospheric tides N1 Biancale & Bode? d/o 8 (S1 and S2)
Solid Earth tides IERS 2010° d/o 4

Ocean tides EOT11a/ d/o 120

Pole tides IERS 2010¢ C21, S21
Ocean pole tides IERS 2010¢, Desai20029 d/o 180
Relativistic corrections IERS 2010° -

Earth rotation IERS 2010¢ IERS EOP 14C04_2000A

Non-gravitational forces ~ACCL1B RL05" -

@ Ries et al. (2016), ® Folkner et al. (2014), ¢ Dobslaw et al. (2013),

4 Biancale and Bode (2006), ¢ Petit and Luzum (2010), / Savcenko et al. (2012),
9 Desai (2002), " Case et al. (2010)

In the following the influence on the solution of different parameters and options
in the GFR processing is investigated. To analyze the influence of one parameter, all
other parameters are kept constant. In all following sections and plots, all not explicitly
given parameters are constant for that investigation, making results shown in one plot
consistent.

/.1 Weighting

The weighting of observations is one of the most important parameters in GFR pro-
cessing. This is particularly the case for GRACE, where two very different observations
are used. The influence of different weighting combinations of the 3d-position (GNV or
KOS) and range-rate (KBR) observations is investigated. The standard deviations of
GNV and KBR data are referred to as o4 and oy, respectively. As weighting the inverse
of the variances 1/02 are used, as discussed in Section 4.3.5. The automatic weighting
via VCE is discussed in the next Section 7.1.1.

In Figure 7.2 six different weighting combinations are depicted for a monthly solution
of May 2006. The weighting of the range-rate observations is varied while the weighting
of the position observations is kept constant. In general just the relative difference of
the weighting factors is decisive (cf. 4.3.5). The plot shows the degree differences with
respect to the GGMO05s mean model in terms of geoid height. Additionally the solution
from CSR (CSR_05_96, Bettadpur (2012a)) is plotted for comparison.

With increasing weighting of the KBR observations (meaning lower oy, values) the
solutions get better and for o3 = le-8 the result is the best. Nevertheless, the results for
ok between le-7 and 5e-9 are not much worse. Further increasing the KBR weighting
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Figure 7.2: Degree difference of May 2006 solution with respect to GGMO05s for different
weighting combinations of GNV and KBR observations with standard deviations o, and oy,
respectively.

results in a slightly worse quality (o = 5e-9).The result for o}, = 1le-9 is already three
orders of magnitudes worse and does not fit in the plot.

Until around d/o 12 the solution is not changing much for the different weighting
combinations. The first d/o are not that sensitive to the range-rate observations and
rely heavily on the GNV observations, thus the KBR weighting is not that decisive for
the solution in this area. The higher d/o which rely much more on KBR observations
are getting worse with a decreasing ratio of o4/0y.

The results look surprisingly different for different months. The same investigation
is shown for April 2006, which is a month with smooth KBR data, like May (cf. Fig.
7.25) and for November 2006, with lots of outliers in the KBR data. In the Figures 7.3
and 7.4 the degree differences of the estimated gravity fields are shown for different
weighting combinations, again.

It is obvious, that the quality of the results differs for the different months. The
influence of the weighting is different for different months, as well. While for May
2006 the result is in very good agreement with the CSR solution and the weighting
combinations with o = le-7 to o, = 5e-9 give nearly similar results, the conditions
are quite different for the other two months. The overall sensitivity is lower in both
cases than for May. The differences to the CSR solution are much bigger. Furthermore,
for April and November some of the weighting combinations show big oscillations of
the gravity field coefficients and make the solutions unacceptable. Nevertheless, the
solutions with o3 =1e-8 are clearly better and may be used for hydrology analysis. The
reason why the May solution is better is not completely understood, yet.

The higher number of outliers in the KBR data in November and thus the amount of
discarded data seems not to have a big influence when comparing it to the April solution.

The solutions for May and April 2006 are shown in the spatial domain in terms of
EWH in the Figures 7.5 and 7.6. For comparison the CSR and I'TSG solutions are
shown for both months in the plots, as well. Again, all plots are with respect to the
GGMO05s mean model.
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Figure 7.3: Degree difference of April 2006 solution with respect to GGMO5s for different
weighting combinations of GNV and KBR observations with standard deviations o, and oy,
respectively.
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Figure 7.4: Degree difference of November 2006 solution with respect to GGMO5s for different
weighting combinations of GNV and KBR observations with standard deviations o, and oy,
respectively.
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Figure 7.5: Spatial plot of EWH for May 2006 solution with respect to GGMO05s, for (a) 3h
bias plus drift solution (as used in all previous deg. diff. plots), (b) 2h bias plus drift solution,
(¢) CSR solution (RL05), (d) TU Graz solution (ITSG2018). Gaussian filter with 465 km radius
applied.

In both Figures the first two plots (a) and (b) are obtained with a different parametriza-
tion and are used a little in advance here since Section 7.2 deals with the influence of
the parametrization, explicitly.

The solution for May (Fig. 7.5) shows a very low striping, and the signal over the
oceans is smooth. It is in good comparison with the solutions from CSR (c) and TU Graz
(d). The annual hydrological signal over the continents and the signals in Greenland
and Antarctica are clearly visible and good comparison marks with the other solutions.
It is also visible, that the two reference solutions from CSR and TU Graz show slight
differences among each other.

In contrast to May, the solution for April 2006 (Fig. 7.6) has a more distinct striping for
both parametrizations (a) and (b). Also the hydrological signal shows bigger differences
to the CSR and the TU Graz solutions. The bigger differences were already visible in
the degree difference plots (Fig. 7.2 and 7.3).

When for May the parametrization in (a) give slightly better results, for April the
results of the parametrization shown in (b) are better. This is a typical finding that
for the smoother months slightly bigger arc length give better results. This topic is
elaborated in more detail in Section 7.2.

7.1.1 Variance Component Estimation (VCE)

The solution with VCE does not work well for the GRACE processing. The weighting of
the the GNV observations is estimated too good in comparison to the KBR observations
by the VCE algorithm. In Figure 7.7 the degree difference using VCE is shown for the
12 days solution from the first half of May 2006. The estimated standard deviations
from VCE are about o, = 2.59¢-3 and o), = 7.46e-7. For comparison the solution with
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Figure 7.6: Spatial plot of EWH for April 2006 solution with respect to GGMO05s, for (a) 3h
bias plus drift solution (as used in all previous deg. diff. plots), (b) 2h bias plus drift solution,
(¢) CSR solution (RL05), (d) TU Graz solution (ITSG2018). Gaussian filter with 465 km radius
applied.

constant weighting of o, = 0.02, 0}, = 1e-8, which is giving the best results, is plotted as
well. Another solution with constant weighting, but using the finally estimated standard
deviations from the VCE approach is shown. It performs like the VCE solution, verifying
the algorithm in general.

After about d/o 12 the sensitivity of the VCE solutions gets quite bad. This was seen
before eg. in Figure 7.2, when the ratio of o4/0y, is small.

The problem that the GNV observations are weighted too high is also encountered
in the official solution from CSR. Their, not further specified, automatic weighting
approach is capped to a minimal standard deviation of the GNV observations o, = 0.02
m to avoid a too high ratio of o,/0y, as described in (McCullough, 2017, Ch. 4).

7.2 Parametrization

Besides the weighting, the parametrization has the biggest influence on the GFR
processing. Parametrization is referred to the definition of all estimation parameters .
Besides the SH coefficients up to the desired d/o and the initial satellite states position
and velocity of each arc, especially all additional parameters p’ (Eq. 4.73) are of interest.
Common parameters for GRACE were already introduced in Section 4.3.14. These were
mainly calibration parameters of the accelerometers.

Each group or processing center (and even their different releases) estimate different
sets of parameters. The parameter vector can include much more parameters, like KBR
calibration, antenna offsets, pointing or attitude parameters. This is one reason why
the results from different groups are slightly different, as well.
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Figure 7.7: Degree difference from first half of May 2006, 12 days solution with respect to
GGMO5s for different weighting approaches.

Table 7.2: Constant scale factors §rn from GRACE TN-02 (Bettadpur, 2009)
GRACE A GRACEB

X 0.9595 0.9465
0.9797 0.9842
zZ 0.9485 0.9303

Here only the local accelerometer calibration parameters and the arc length are
regarded, which are the most important parameters. The arc length is indirectly a
parameter as well, because the amount of local parameters and the initial states %k that
are estimated depend on the arc length.

As introduced in Section 4.3.14 for each accelerometer a constant bias I_;, a linear drift
d and a scale factor 3 for each accelerometer axis are investigated here. The calibration
equation was given in Equation (4.76) as

Facep = 5% ACC + b+ d * t. (7.1)

Tests with a quadratic or cubic drift were not promising and are not shown here.

The estimation of the scale factor is troublesome and could not be achieved satis-
factorily. The scale factor s and the bias b are strongly coupled. Considering that the
integration is, up to some extend, averaging the acceleration, the same calibration can
be achieved by either one of the parameters. The convergence of the scale factor s is
very slow compared to bias or drift and even does not seem to really converge at all, at
least not in a reasonable amount of iterations (<15 to 20). Thus the constant values
for the scale factors 57y were used, advertised in the GRACE technical note TN-02
(Bettadpur, 2009) and are shown in Table 7.2. Probably an estimation in two steps,
first just bias and subsequently scale could be more expedient. Nevertheless, the scale
factor has a major influence and should be selected with care (cf. Sec. 7.8).

The accelerometer calibration parameters and the arc length are dependent on each
other (the time t directly appears in the calibration equation Eq. 7.1) and thus are
investigated together. All results shown in this section are obtained with the weighting
combination of o, = 0.02, 0}, = 1e-8, unless otherwise explicitly stated.
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Figure 7.8: Degree difference from first half of May 2006, 12 days solution with respect to
GGMO5s for different arc lengths with bias b estimated for each accelerometer.
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Figure 7.9: Degree difference from first half of May 2006, 12 days solution with respect to
GGMO5s for different arc lengths with bias b and drift d estimated for each accelerometer.

In the following plots the degree differences with respect to GGMO05s for different
combinations of the arc length and the estimated accelerometer calibration parameters is
shown. The arc length was varied between 1h and 24h. Each accelerometer is calibrated
using just a bias parameter or bias plus drift together.

In the Figures 7.8 and 7.9 the results for a 12 day solution of May are shown for the
case of bias and bias plus drift, respectively. Arc lengths longer than 6h for bias or 12h
for bias plus drift are so poor that they are not included in the figures. For arc lengths
lower than 2h the same holds, as well. With a decreasing arc length the results are
getting better until about an arc length of 3h. The 2h solution is again a bit worse for
both cases. Including a drift parameter allows to use a little longer arc lengths. For both
cases, the best results are obtained with a 3h arc length and are of the same quality.
Thus just from this case it is hard to judge if the additional drift parameter is beneficial.

But again, the results for other months are different. The month May is rather an
exception with a comparably smooth solution. For November 2006 the results are shown



136 GRAVITY FIELD RECOVERY RESULTS FROM GRACE

Py T T T T T

= 3h bias

&0 10-3 L 2h bias

s 1.5h bias

E 1h bias

g

=]

5

=

o

[}

&

&0

= —4

A 10 C 1 1 1 1 1 7
0 10 20 30 40 50 60

Spherical harmonic degree [-]

Figure 7.10: Degree difference of November 2006 solution with respect to GGMO5s for different
arc lengths with bias b estimated for each accelerometer.
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Figure 7.11: Degree difference of November 2006 solutions with respect to GGMO05s for different
arc lengths with bias b and drift d estimated for each accelerometer.

in Figure 7.10 for bias and in Figure 7.11 for bias plus drift for different arc lengths,
respectively.

Compared to May, the arc length needs to be smaller to obtain acceptable results for
both cases. For November, solutions with arc lengths bigger than 3h for bias and 6h for
bias plus drift are quite bad and not shown. As for May, the solution with an additional
drift parameter tolerates slightly longer arcs. The border towards the other directions is
shifted downwards, as well. The solutions with 1.5h arcs are among the best, where for
May it was not worth to plot. The quality of the 1h solution is distinctly worse for both
cases.

The solutions for bias with 1.5h arc length and bias plus drift with 1.5h and 2h arc
length are very close and in the degree difference plots it is not possible to judge which
gives the best result. Therefore, the most promising results are plotted in the spatial
domain in terms of EWH in Figure 7.12, with respect to the GGMO05s model.

This plot reveals the differences of the solutions more clearly. The 2h bias solution
(a) shows the most distinct striping, and is not competitive. The striping in the other
solutions is much lower, and may be best for the 2h bias plus drift solution (c¢). The
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Figure 7.12: Spatial plot of EWH for November 2006 solution with respect to GGMO05s for
different parametetrizations (a) 2h bias (b) 1.5h bias (c) 2h bias drift (d) 1.5h bias drift. Gaussian
filter with 465 km radius applied.

hydrological signal for the bias solutions is slightly higher than for the bias plus drift
solutions. The main patterns (Amazon, central Africa and south east Asia) are slightly
different for all solutions. Comparisons with the solutions from CSR and TU Graz show
the best accordance with the 2h bias plus drift solution (c).

Because the results for May and November are contradictory to nail down the best
parametrization, the results for another month are shown. While May is the month
with the highest quality and November about average, the results for February, with
the lowest quality are shown in Figure 7.13 as degree difference. The estimation of
the additional drift parameter is definitely advantageous, thus just the bias plus drift
solutions is depicted. The situation is very similar to the November solutions. The 1.5h
and 2h solutions are very close and the 3h solution slightly worse. The 1h solution is
distinctly worse, as well. The four solutions are plotted in the spatial domain in Figure
7.14 as EWH with respect to GGMO05s.

As already seen in the degree difference plot, the 1h (a) and 3h (b) solutions are not
good and show a very strong striping. The shorter arc length in (¢) and (d) reduce
the striping, but compared to the other months it is still much more pronounced. The
striping for the 1.5h (d) solution may be slightly better, but the hydrology signal of the
2h solution may be closer to the references from CSR and TU Graz, even though it is
hard to assess with the distinct striping and the used filter.

Concluding the investigation, also considering results not shown here for other months,
the 2h bias plus drift parametrization gives the best results in total. For months with
higher data quality (like May), the slightly longer arc length of 3h is a little advantageous.
For the whole year 2006 the monthly results in terms of EWH with respect to GGMO05s
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Figure 7.13: Degree difference of February 2006 solutions with respect to GGMO5s for different
arc lengths with bias b and drift d estimated for each accelerometer.
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Figure 7.14: Spatial plot of EWH for February 2006 solution with respect to GGMO05s for
different parametetrizations (a) 1h bias drift (b) 3h bias drift (c¢) 2h bias drift (d) 1.5h bias drift.
Gaussian filter with 465 km radius applied.
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Figure 7.15: Degree variance of May 2006 solution and degree difference (deg. diff.) with
respect to GGMO5s.

are shown in Section 7.6 for 3h bias drift parametrization in Figure 7.45 and 2h bias
drift parametrization in Figure 7.46.

7.3 Formal Error

The formal error (cf. Sec. 4.3.6, 4.3.12) can be plotted as degree variance to assess
the accuracy of the solution over the degrees, as well (Sec. 2.3.3). The significance or
the reliability of the formal error estimates for the GRACE results seems to be low.
The reason is most probably the lack of a detailed modeling of the variance-covariance
matrix Ce of the observation data (Sec. 4.3.6). This is investigated in the following.

7.3.1 Formal Error of Global Gravity Field Parameters

In the following formal error estimates of the monthly solutions of May and November
are presented exemplarily. The formal errors are computed according to Section 4.3.12.

From the sections before it is clear that the quality of the May solution is the best,
and November around average. In Figure 7.15 the formal error is shown as degree
variance for the May 2006 solution. For comparison the degree difference of the solution
with respect to GGMO5s is plotted, as well.

The general error level is about one order of magnitude below the degree difference
with respect to GGMO5s, which seems too optimistic. The trend for increasing formal
error with increasing degree is reasonable and as expected. For the very first degrees the
formal error is increasing as well, what is in agreement with the general consideration,
that for these degrees the GRACE data may be supplemented by data of higher flying
satellites (eg. LAGEOS).

In Figure 7.16 the results of the November 2006 solution are depicted for the solutions
using GNV and KOS data. Both solutions are very similar, the degree differences are
nearly the same. Nevertheless, the formal error of the KOS solution is higher. The
general trend looks the same as for May. But relatively, the error level of the May
solution (Fig. 7.15) is slightly lower than the error level of the November solution,
which is reasonable from the results presented in this chapter. This is also visible in the
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Figure 7.16: Degree variance (formal errors) of November 2006 solution using GNV or KOS
observation data and degree difference (deg. diff.) with respect to GGMO5s for both solutions.

overall variances 64cs (Eq. 4.69), which are G4es vay,any = 7.24 and Gges Nov,aNV =
8.30, Gges,Nov, k05 = 10.36.

It can be concluded, that the general trend seems to be reasonable and in accordance
with the in the previous sections, but the overall error level is too optimistic. This may
be reasoned in the lack of a covariance modeling of the observation data.

7.3.2 Formal Error Weighting

The impact of different weighting options, as discussed in Section 7.1, on the formal
error is discussed in the following. Results are shown for 12 day solutions from the first
half of May 2006 for different weighting factors of the KBR range-rate measurement
ok, while the GNV weight is constant 0,=0.02 for all cases (as discussed in Sec. 7.1
and shown in Fig. 7.2). A 3h arc length and bias plus drift calibration is utilized. The
formal errors are shown as degree variances in Figure 7.17 together with the respective
degree differences with respect to the GGMO05s model.

The weighting is affecting the formal error differently over the degree of the SH
coefficients. The overall standard deviations G4.s for the three cases are: Gges 1e—8 =
8.50, Gges,1e—7 = 0.95 and Gges5.—7 = 0.32. Thus the overall standard deviations are
completely contradictory to the results and conclusions obtained before (eg. Fig. 7.2).

A higher KBR weighting reduces the formal error of the higher degrees. But this is
just true up to a certain limit. The formal error of the or=1e-8 solution is the same
as for the op=1e-7 solution for degrees higher 30. For the lower degrees the solutions
with a relatively higher GNV weighting (op=5e-7 and or=1e-7) give smaller formal
errors and reduce the oscillation. Theoretically this is reasonable because the KBR
measurement is more sensitive to the higher degrees and the absolute position to the
lower degrees. Nevertheless, the obtained results show that the KBR weighting with
or=1e-8 definitely gives the best overall gravity field results.

7.3.3 Formal Error Parametrization

The formal error estimates of the monthly solutions from November 2006 for different
arc length are presented here, as already investigated in Section 7.2 and Figure 7.11. In
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Figure 7.17: Degree variance (formal errors) of 12 day solutions from May 2006 for different
weighting factors of the KBR range-rate measurement o, GNV weighting 0,=0.02 for all cases.
And degree difference (deg. diff.) with respect to GGMO05s for each solution (3h arc length with
bias plus drift parametrization).

Figure 7.18 the formal errors for three solutions with bias plus drift parametrizartion
and arc lengths of 6h, 3h and 2h are shown. Additionally the degree difference of each
solution with respect to GGMO0b5s is plotted.

For the longest arc length (6h), the formal error is the lowest, and continuously
increasing with shorter arc length. This is completely contrary to the results from the
previous sections, where the 2h solution was definitely performing best.

The overall standard deviations 645 show this trend as well, which are: Gges6n =
8.76, Gges,3n = 8.50 and Gyes2n, = 6.99.

Summarizing, it can be said that for the parametrization and arc length the formal
error is not a reasonable indicator and may be misleading.

7.3.4 Formal Error of Local Parameters

The formal error of the local parameters can be computed, as well (cf. Sec. 4.3.12). The
formal errors of the single local parameters are computed for each arc and shown in the
following for GRACE A. For the computation of the overall standard deviation & e
the GNV residuals of both satellites are considered. Because the estimation of the local
parameters is coupled by the KBR observations, where the residuals are used for both
satellites, this is reasonable. The overall standard deviation is shown for each arc in
Figure 7.19.

The trend agrees closely with the converged Root Mean Square (RMS) KBR deviation
shown in Figure 7.32. After convergence (cf. Sec. 7.5) residuals and deviation are
interchangeable. Hence this is reasonable because, compared to the GNV observations,
the KBR observations are much higher weighted in the computation of 64¢s and thus
dominating.

In Figure 7.20 the formal error of the initial position is shown for the three inertial
axes for each arc. It shows a distinct oscillation in each axis with a period of about
six arcs or 18 hours. The general estimated error level in the range of 0.2 to 0.4 mm
seems not too far from reality. The error level of the radial zgcy axis is obviously a little
higher than the others, which is also known from POD (eg. Weinbach and Schon, 2013).
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Figure 7.18: Degree variance (formal errors) of November 2006 solution for different arc lengths
using bias plus drift parametrization and degree difference (deg. diff.) with respect to GGMO05s
for each solution.
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Figure 7.19: Overall standard deviation 64, for each arc of November 2006 solution.
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Figure 7.20: Formal errors of November 2006 solution for the local parameters initial position

for each arc and GRACE A.
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Figure 7.21: Formal errors of November 2006 solution for the local parameters initial velocity
for each arc and GRACE A.
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Figure 7.22: Formal errors of November 2006 solution for the local bias parameter b from the
accelerometer calibration for each arc and GRACE A.

The initial velocity is shown in Figure 7.21. It is very similar to the initial position in
terms of trend and oscillation. The formal errors for GRACE B are very similar to the
GRACE A results and thus not shown here.

The formal errors of the local accelerometer calibration parameters are presented
here for the monthly solution of November 2006, as well. The solution with 3h bias plus
drift parametrization is depicted, as in Section 7.7.2 where the estimated calibration
parameters are analyzed, (eg. Fig. 7.52).

In Figure 7.22 the formal error of the bias parameter is plotted for each arc and
S RF-axis. The next Figure 7.23 shows the formal error of the drift parameter.

First, compared to the analysis in Section 7.7.2, the error level of both is at least
about the factor 10 too low. Nevertheless, relatively the error levels for the different
axes are reasonable. Also the variability over the arcs, which is much stronger for y-
and z-axis, is in agreement with the analysis in Section 7.7.2. This holds as well for the
higher error level of the drift compared to the bias.
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Figure 7.23: Formal errors of November 2006 solution for the local drift parameter d from the
accelerometer calibration for each arc and GRACE A.

7.4 Discarding KBR Data from POD Pre-Processing

The L1B KBR data contain data gaps, as all the other L1B data. The length of the
gaps varies from some seconds to a whole day. For the GFR processing times where
no measurement data are available, are simply ignored when accumulating the normal
equations in the batch algorithm.

Unfortunately, this may not be sufficient to determine reasonable gravitational field
solutions. After a gap in the KBR data the instrument does not necessarily continue
the time series, but "recalibrates" and continues with a different phase (see also Sec.
3.4.1). This very small effect in the range-rate, in the area of around 1 to 15 um/s, has
a strong effect on the GFR solution. Furthermore, after these jumps it might happen
that the measurement accuracy is worsen up to an order of magnitude for some time.

These small effects are not directly visible in the KBR measurement data, which vary
with a much higher amplitude, in the range of some m/s, due to the slightly different
orbits of both GRACE satellites. The effects are also not visible in the post-fit deviations
or residuals of the GFR, because they are affecting and deteriorating the gravitational
field and hence the residuals too strong to detect these irregularities. Nevertheless, it
is visible in the POD deviations or residuals, if POD is executed for both satellites
simultaneously including KBR ranging as observation.

To demonstrate this phenomenon Figure 7.24 shows the KBR deviation from POD
for June 15, 2006 for two arcs (113 and 114). The arc length is three hours and POD is
conducted with VCE. The first arc is normal, it has no missing data and the post-fit
deviation is in the range of 1 um/s. The second arc has several data gaps and especially
after the first gap, the time series is not continued and shows a jump.

In Figure 7.25 the KBR deviation is evaluated over the complete year 2006. Therefore
for each arc the RMS value of the deviation is plotted. The situation for the month
June is depicted in the zoom-in in more detail. The plot of the estimated standard
deviation oy, from the VCE estimation gives nearly the exact same curve.

For June it is visible that there are two peaks over several arcs with unusually high
deviations. After the jump in arc 114 from June 15 (Fig. 7.24) for about ten more arcs
the deviation stays high even though just in arc 118 another jump occurs.
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Figure 7.24: KBR post-fit range-rate deviation of POD from June 15, 2006 for two arcs (3h
arc length, POD with VCE).
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Figure 7.25: Arc wise RMS of KBR range-rate deviation of POD from the whole year 2006
and zoom-in for the month June (3h arc length, POD with VCE).
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Figure 7.26: Degree difference of June 2006 solution with respect to GGMOb5s for different
criteria of discarding arcs.

Over the year 2006 further very prominent peaks in the deviation occur in January,
August, September, October and December, and some smaller ones in nearly all months.
Its effects on the gravity field solutions are investigated in the following.

7.4.1 Influence of POD-Outlier Elimination Strategies on GFR

The effects of the different influences are investigated by discarding respective arcs in
the GFR processing. For different months the results are again quite different. In Figure
7.26 results are shown in terms of degree differences for the monthly solutions of June
2006 considering different discarding criteria. The first curve (blue) shows the solution
without considering KBR anomalies or KBR range-rate deviations (dev.) by POD. It is
quite bad with low sensitivity and big oscillations and definitely no hydrology signal
may be resolved with it. By discarding (disc.) all arcs where jumps occur in the KBR
data after data gaps, the solution increases a little bit (green curve), but is still bad.
Discarding arcs where the RMS value of the range-rate deviations from POD is higher
than 2.65 pm/s the quality of the solution increases dramatically (red curve). This
criterion does not necessarily cover all jumps in the KBR data, but in most times it does.
Nevertheless, two small jumps are not detected with this criterion in June. Discarding
these as well (purple curve) again increases the solution slightly. After discarding arcs
with high POD range-rate deviations, the GFR KBR deviations are quite smooth over
the arcs. In a few cases this is not true for the GNV deviations, which may have a few
peaks. Discarding these arcs as well and repeating the GFR, results in the even better
yellow curve in Figure 7.26. The smoother curve between degree 30 to 40 has a distinct
positive effect on the striping pattern in the spatial domain.
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Figure 7.28: Degree difference of September 2006 solution with respect to GGMO5s for different
criteria of discarding arcs.

The GNV deviation for June 2006 from GFR is shown in Figure 7.27, demonstrating
the unusual peaks. These deviations are not visible in the POD, but happen much less
than the KBR anomalies and have less influence on the resulting gravity field.

The effect on the GFR solution from discarding arcs by the POD RMS range-rate
deviation is not the same for each month. Figure 7.28 depicts the results for September
2006. The solution without considering the POD pre-processing is even worse than it
is for June. For months with more smooth KBR deviations like eg. May 2006 (cf. Fig.
7.25) the effects on the GFR solutions are nearly not visible. The degree differences for
the May 2006 solutions are shown in Figure 7.29 for different discarding criteria. Just
two arcs are discarded in May due to high KBR deviations which is a comparably small
amount. Nevertheless, just the amount is not a criterion, one arc with bad KBR data
may destroy the solution of the whole month.

The value 2.65 um/s for discarding arcs by the POD RMS range-rate deviations is
chosen more or less arbitrarily to catch the prominent peaks. Figure 7.29 illustrates
that choosing smaller values, to catch smaller peaks, as well, has barely an effect on the
GFR solution.
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Figure 7.29: Degree difference of May 2006 solution with respect to GGMO05s for different
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Figure 7.30: Degree difference of October 2006 solution with respect to GGMO05s for different
criteria of discarding arcs.

As mentioned above, the effect of discarding arcs from GNV residuals in GFR is not
that big, but as well not the same for different months. In some months like January or
July it has no influence on the solution, for June and September (Fig. 7.26 and 7.28) a
small improvement is obvious. Nevertheless, the peaks in the GNV deviations for all
months look similar. For October the improvement is quite big and shown in Figure
7.30. Even though just arcs with bad GNV observations are discarded, the gravity field
solution improves over the whole spectrum, also in the higher degrees.

The results shown here conclude that an arc dependent weighting, for example using
VCE, of KBR and GNV observations in the GFR process would be definitely reasonable.

7.5 Residuals and Deviations

The post-fit residuals or deviations (cf. Sec. 4.3.4 and Eq. 4.51) of the GFR processing
are a further way to assess the quality and characteristics of the solutions. Furthermore,
it gives information about the data quality and how it evolves over the time. Here the
deviations are shown being the true difference of the model and the measured quantities,
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Figure 7.31: Arc wise RMS of GNV position deviations from GFR for different iterations for
a monthly solution of November 2006 (3h arc length, discarded arcs from POD). The zoom-in
shows the final iterations in detail.

whereas the residuals are the difference of the linearized model and the measurement.
The computation of the residuals make it necessary to save all design matrices H (cf. Sec.
4.3.4), which might be a problem depending on the available hardware. The drawback of
this is that the deviations need much more iterations to converge, as shown in this section.
Nevertheless, with a sufficient amount of iterations residuals and deviations become
similar (cf. the comparison in Sec. 8.1, Fig. 8.5 and 8.6). Hence, the residuals can be
used for analysis instead of the deviations, which usually converge nearly instantaneously.

Figure 7.31 shows the evolution of the arc wise Root Mean Square (RMS) of the
GNYV position deviation from a monthly solution from November 2006. For each 3h arc
an RMS value of the deviation over all three axes is plotted. The solution was iterated
18 times. After about seven iterations the GNV deviations do not change any more. In
the deviations is an oscillation or trend over the month: At the beginning of the month
the deviations are smaller, then increase and decrease again. This trend does not vanish
with further iterations and the converged deviations show the same trend as the initial
ones, just on a lower level. This means that the data itself is of different quality over
the month.

For the KBR deviation the situation is a little different. The deviations are shown in
Figure 7.32 in the same way and for the same time epoch as before. The KBR deviations
need about 15 iterations to converge, hence much longer than the GNV deviations.
After the first iterations they also show a trend, which vanishes after convergence. This
is the usual case for all months after eliminating explicit KBR data errors. Du to the
highly nonlinear dependency and the very accurate range-rate measurement, it takes
more iterations until the linearized model has converged.

In the Figures 7.33 and 7.34 the same plots are shown for the month May, which
is the month with the best quality of the gravitational field solution (cf. eg. Fig. 7.5
and 7.6). Compared to November, the RMS GNV deviations do not show a trend after
convergence and are constantly between 1 and 2 ¢m over the month. As for November,
the deviations are converged after about seven iterations. Most other months, where
the gravitational field solutions are slightly worse than for May, show a trend in the
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Figure 7.32: Arc wise RMS of KBR range-rate deviations from GRACE A for different
iterations of monthly GFR solution of November 2006 (3h arc length, discarded arcs from POD).
The zoom-in shows the final iterations in detail.

GNV deviations for the 3h arc lengths solutions. With the shorter arc length this trend
vanishes a little, as also observed for the accelerometer calibration (cf. Fig. 7.53).

The KBR deviations are converged after 13 iterations, thus a little faster than for
November, but initially start at a more equal level. After convergence, the deviations
are surprisingly slightly higher than for November. This may highlight the importance
of good position data (GNV) for the overall GFR solution.

For one exemplary arc (70) the deviation is plotted over time in Figure 7.35 for all
three axes, for GRACE A. The GNV deviations show barely any high frequency noise
(cf. also the ASD, Fig. 7.37), but a longer wavelength signal is distinctly visible. This
is the case for all arcs. The signal is an error or an unmodeled effect acting on the
satellites. It is not an error or difference in the processing of the GNV data by dynamic
POD, because the same trend is visible in the deviations of the kinematic orbit data
(KOS), as well, cf. Figure 7.43 and Section 7.5.1.

The zoom-in reveals a periodic relict in the GNV data with a frequency of 1/30 Hz.
It is just affecting the zgrr and ysrr axes. Most probably it arises from a model or
parameter that is updated every 30 seconds in the processing of the GNV data from
the GNSS observations in the L1B processing.

In the Figures 7.36 and 7.37 the Amplitude Spectral Density (ASD) of the GNV
position deviation from arc 70 is shown for the first and 18th iteration, respectively
(the ASD and its computation, that is used throughout the thesis, is briefly discussed
in the Appendix A.2). The high frequency part after the first and last iteration looks
the same. The periodic relict with 1/30 Hz and multiples of that are clearly visible as
spikes. The zgrp axis has a notable lower high frequency noise level, which also tends
do decrease with higher frequencies. The low frequency part shows higher amplitudes,
for the first iterations, which successively decrease, as expected.

In Figure 7.38 the ASD from the KBR range-rate deviations is shown for the first
and 18th iterations for the same arc. The low frequency amplitudes drop over several
magnitudes over the iterations, because the main gravity signal is decoded in that
spectrum of the data. The high frequency part (> 0.01 Hz) contains mainly noise and
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Figure 7.33: Arc wise RMS of GNV position deviations from GRACE A for different iterations
of monthly GFR solution of May 2006 (3h arc length, discarded arcs from POD). The zoom-in
shows the final iterations in detail.
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Figure 7.34: Arc wise RMS of KBR range-rate deviations from GRACE A for different
iterations of monthly GFR solution of May 2006 (3h arc length, discarded arcs from POD). The
zoom-in shows the final iterations in detail.
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Figure 7.35: GNV position deviation of GFR after 18th iteration from November 2006 for

each axis, arc 70, GRACE A.
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Figure 7.36: ASD from GNV position deviation of GFR after first iteration from November
2006 for each axis, arc 70, GRACE A.
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Figure 7.37: ASD from GNV position deviation of GFR after 18 iterations from November
2006 for each axis, arc 70, GRACE A.
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Figure 7.38: ASD from KBR range-rate deviation of GFR after the first and 18th iteration
from November 2006, arc 70, GRACE A.
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Figure 7.39: KBR range-rate deviation of GFR from November 2006 after 18th iteration, arc
70, GRACE A.

does not change over the iterations. It shows the typical linear increase caused by the
derivation of the range when deriving range-rate observations in the L1B processing.

The range-rate deviations for that arc are shown in Figure 7.39 as time series from
the 18th iteration. As seen before in the ASD, also in the time domain a colored noise
characteristic of the KBR instrument is visible.

In contrast to the analysis of GNV and KBR deviations, the resulting gravity field
converges much faster. After about four iterations the solution does not change much,
anymore. For selected iterations the degree difference of the November solution with
respect to GGMO5s is shown in Figure 7.40.

7.5.1 Using Kinematic Orbits

Solutions computed using kinematic orbit data (Kinematic Orbit Solution, KOS) instead
of the dynamic GNV data (cf. Sec. 3.3) do not differ much from each other in all aspects.

In Figure 7.41 the degree difference for the monthly solutions using GNV and KOS
data (additional to KBR range-rate data) for November and May 2006 are compared.
All other parameters are the same. It is obvious, that the quality is very similar over



154 GRAVITY FIELD RECOVERY RESULTS FROM GRACE

[
<
w

[
2
N

Degree difference ([m] of geoid)

10 20 30 40 50 60
Spherical harmonic degree [-]

Figure 7.40: Degree difference of different iterations with respect to the initial gravity field
from monthly solution of November 2006 (3h arc length).
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Figure 7.41: Degree difference of November and May solution using GNV and KOS data
(additional to KBR data) with respect to GGMO05s.

the whole range of the spectrum and for both months. This is also the case for all other
investigated epochs.

The RMS deviation over one month (November) is shown in Figure 7.42 for selected
iterations. The same plot has been shown before for the GNV data (Fig. 7.31). As
before, the deviations are converged after about seven iterations. The general level of
the deviations is slightly higher, here. Nevertheless, the same trend over the month
is visible in the KOS deviations. This is reasonable because GNV and KOS data are
determined with the same GNSS observations. The trend is also the same for GRACE
A and B, thus one can conclude that the quality of the GNSS measurement changes
over the months and year.

The deviation of the KOS data for one arc is shown in Figure 7.43 (cf. Fig. 7.35
for the GNV deviation). While the general trend (the arc wise RMS) is more or less
the same, for KOS and GNV position data, the actual deviation is a little different.
The KOS deviation has a much stronger high frequency noise, which is due to the
kinematic generation of KOS data from the raw GNSS observations. Nevertheless, the
already observed longer wavelength trend is very similar for most of the time, as already
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Figure 7.42: Arc wise RMS of KOS position deviations from GRACE A for different iterations
of monthly GFR solution of November 2006 (3h arc length, discarded arcs from POD). The
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Figure 7.43: KOS position deviation of GFR from November 2006 for each axis, arc 70,
GRACE A.

mentioned before. That means that the uncaptured or unmodeled signal in the GNV
deviations can not be pinned on the generation of the GNV data by a POD technique
with different and unknown models.

The ASD of the KOS deviation for this arc is shown in Figure 7.44. The high frequency
noise is about white with a standard deviation of ~1 ¢m. In general the KOS data show
some spikes and irregularities due to their heritage from the raw GNSS data.

The solution using KOS data is more "physical" or "clean", because compared to the
GNYV data, no additional gravitational (and other) models are used in its processing.
Nevertheless, KOS data are not directly published from the GRACE mission but need
to be computed from the raw data or used from different sources like eg. from TU Graz
(cf. Sec. 3.3). Because it is based on kinematic orbit determination, KOS data exhibit
gaps just like KBR, ACC and SCA data and thus more than GNV data. Furthermore,
its sampling rate is 1/10 Hz compared to the 1/5 Hz of the other data. Hence more
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Figure 7.44: ASD from KOS position deviation of GFR from November 2006 for each axis,
arc 70, GRACE A.

pre-processing is needed to use KOS data instead of GNV data. Because the results are
very similar, as default the GNV data are used in this thesis, nevertheless.

7.6 Estimated Annual Gravitational Fields from the Year 2006

From the analysis conducted in the previous sections, the optimal parameter choices
and options for the GFR from GRACE data have been determined. Even though the
optimal choices are slightly dependent on the the epoch, settings that work quite well
in general have been identified.

The advertised pre-processing of the L1B data, especially the POD pre-processing for
KBR data (Sec. 7.4 and 3.4) has proven to be indispensable for most months.

For the GFR processing the weighting (Sec. 7.1) of the GNV 3d-position and KBR
range-rate observations and the parametrization (Sec. 7.2) are of highest importance
to obtain reasonable results. The weighting combination of oy = 0.02 and o}, = 1e-8,
has proven to be the best. The results for parametrizartion are more unambiguous.
Nevertheless, the bias plus drift accelerometer calibration with an arc length of 2h to
3h performed best.

In the following two Figures 7.45 and 7.46 the twelve monthly solutions for the year
2006 are shown spatially for the bias plus drift calibration for 3h and 2h arc length,
respectively, in terms of EWH with respect to the mean GGMO5s gravitational field
model. In Figure 7.47 the difference between both is shown in the same way.

For the majority of the months the shorter arc length of 2h is definitely superior and
reduces the prominent striping error pattern. For some months, like May and October,
the 3h solution gives slightly better results.

In general the typical north-south striping is still visible in most solutions. The striping
and the overall quality of the solutions is very different for nearly each month. Especially
the February solution exhibits a very prominent striping. Due to a higher filter radius
of the applied Gaussian filter (cf. Sec. 2.3.4) this might be reduced, but of cause also
smoothing or blurring the signal content. The best solution is obtained in May, where
the results are comparable with the official solution (cf. Fig. 7.5). Nevertheless, in all
solutions the typical annual hydrological cycle and the prominent trends at the poles, as
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Figure 7.45: Monthly solutions of 2006, EWH with respect to GGMO05s. For 3h arc length,
bias plus drift ACC calibration. Gaussian filter with 465 km radius applied.
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Figure 7.46: Monthly solutions of 2006, EWH with respect to GGMO05s. For 2h arc length,
bias plus drift ACC calibration. Gaussian filter with 465 km radius applied.
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EWH, bias plus drift ACC calibration. Gaussian filter with 465 km radius applied.
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described in detail in the Introduction (Ch. 1.1) and Section 2.3.2, are directly visible
in the plots.

The differences between the 3h and 2h solutions are explicitly shown in Figure 7.47. In
the differences just the prominent striping pattern is visible. A typical hydrology signal
or pattern is not recognisable between the different arc lengths solutions. Nevertheless,
the differences are rather big, so that small differences in the signal are not detectable in
these plots. Especially for the first and last months of the year the striping amplitude is
high, which is also directly visible by comparing the two solutions plotted with respect
to the mean GGMO05s model in the Figures 7.45 7.46. It has to be concluded, that the
3h arc length is not optimal for most of the months.

7.7 Accelerometer Calibration

It has been demonstrated (eg. Sec. 7.2) that the accelerometer calibration is a crucial
point for GFR. In this section the estimated accelerometer calibration, defined by the

parameters bias b and drift d is shown and investigated for the different GFR processing
options and epochs.

7.7.1 Influence of Weighting on Accelerometer Calibration

The weighting of GNV position measurements and KBR range-rate measurements
has a big influence on the GFR solutions, as demonstrated in Section 7.1. For the
different weighting combinations the estimated accelerometer calibration parameters
differ considerably.

For different weighting combinations from GFR of May 2006 with 3h arc length and
bias plus drift parametrization (cf. Fig. 7.2), the estimated accelerometer calibration
parameters are shown in Figure 7.48, for GRACE A. The results for GRACE B are
similar in trend and structure and thus not shown here. The parameters, estimated for
each arc, are plotted over the time for the whole month. For better presentation in one
plot, the calibration for each of the three SRF-axes is shifted by the values given in the
figure. The mean value over the month is indicated by the dotted lines. As in Section
7.1, the weighting factor for the GNV position observations o, is 0.02 for all cases and
oy is varied: (a) ox=1e-6 (b) op=1e-7 (¢) or=1e-8 (d) ox=>5e-9.

The calibration exhibits a distinct variation around the mean. For all four weighting
combinations, the general structure is the same. The x-axis has the lowest variation,
and the z-axis the biggest. The difference of the variation around the mean is high.
Its minimal value is around 3 nm/s? in x-axis, but reaches up to 300 nm/s? in z-axis.
This high variation with big jumps between arcs and steep drifts of the calibration
is definitely not a physically description of the accelerometer processes, and the real
non-gravitational accelerations acting on the satellites, at least on short time scales (cf.
Sec. 6.1.6). In contrast to that, the mean values are rather constant over time and for
the four different cases with differences of maximal 10 nm/s%.

The magnitude of the variation is distinctly increasing with lower KBR weighting oy.
Nevertheless, the GFR solutions for the lower o}, weighting factors (a), (b) are distinctly
worse than the higher ones (c), as shown in Section 7.1 or the Figures 7.2 and 7.4. Thus
the nonphysical calibration results in a better overall solution.
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Figure 7.48: Estimated accelerometer calibration from GFR solutions of May 2006 with 3h
arc length and bias plus drift parametrization, for GRACE A for different weighting factors of
the KBR range-rate measurement oy: (a) op=1e-6 (b) op=1e-7 (¢) or=1e-8 (d) op=5e-9. GNV
data are always weighted with 0,=0.02. The calibration of all three SRF" axes (x: blue, y: red,
z: yellow) is shifted for better visibility in one figure by the values given in each plot in nm/s?.
The mean values are depicted as black dotted line.

The variation of the calibration is illustrated qualitatively in Figure 7.49, where the
standard deviation of the calibration is plotted over six different weighting factors for
k.

7.7.2 Influence of Parametrization on Accelerometer Calibration

Besides the weighting, the calibration of the accelerometer data has a major influence
on the resulting gravitational field solutions, as shown before in Section 7.2. Hence
it is worse to have a closer look on the estimated calibration parameters for different
parametrizations.

Results are shown for monthly solutions from November 2006 for different arc length
and just bias or bias plus drift parametrization, as investigated in Section 7.2 and
Figures 7.10 and 7.11 (with the standard weighting of 0,=0.02, o, =1e-8).

For just bias parametrization the estimated accelerometer calibration parameters are
shown in Figure 7.50, for GRACE A, in the same way as in the previous subsection.
The results are obtained for arc length of: (a) 3h (b) 2h (c) 1.5h (d) 1h.

The data quality over the month November varies stronger as for May, thus, in the
plots (a) and (b) a variability over the month is visible. It follows the same trend as
the post-fit GNV deviations, shown in Section 7.5 and Figure 7.35. With decreasing
arc length this trend is neutralized (c), (d) and the variability is reduced. For the
shortest arc length of 1h, it is again increasing slightly. Even though, for the best overall
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Figure 7.49: Standard deviation of estimated ACC calibration plotted over the different
weighting factors of the KBR range-rate measurement oy, showing the variability of the ACC
calibration parameters. From GFR of May 2006 solutions with 3h arc length and bias plus drift
parametrization, for GRACE A.
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Figure 7.50: Estimated accelerometer calibration from GFR solutions of November 2006 with
just bias parametrization, for GRACE A for different arc lengths: (a) 3h (b) 2h (c¢) 1.5h (d) 1h.
The calibration of all three SRF axes (x: blue, y: red, z: yellow) is shifted for better visibility in
one figure by the values given in each plot in nm/s?. The mean values are depicted as black
dotted line.
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Figure 7.51: Standard deviation of estimated ACC calibration plotted over different arc
lengths, showing the variability of the ACC calibration parameters. From GFR of November
2006 solutions with just bias parametrization, for GRACE A.

gravitational field solution with 1.5h arc length (c) the short term variation around the
mean of the calibration up to 100 nm/s? is still non-physical.

The mean of the calibration changes for different arc length especially for y- and
z-axis, where a definite trend is visible (both increasing with shorter arc length).

The standard deviation of these calibrations is depicted in Figure 7.51. It shows the
increasing variability with bigger arc length qualitatively for each SRF-axis.

For the parametrization with bias plus drift, which is giving the best overall gravity
field solution (cf. Sec. 7.2), the estimated calibration is shown in Figure 7.52 for the
same arc lengths as before: (a) 3h (b) 2h (c) 1.5h (d) 1h.

When for the 3h arc length a trend is observable, for the 2h solution it is already
vanished. Compared to the just bias parametrization 7.50 this is accomplished with a
slightly longer arc length. Compared to the just bias parametrization the mean values
of y- and z-axis show the same trend but with lower difference.

Again, the standard deviation over the arc length is plotted in Figure 7.53. The
variation around the mean is higher than for the just bias parametrization case for
all arc length. But still the even more non-physical calibration gives the better overall
gravity field results.

7.7.3 Estimated Accelerometer Calibration Comparison

For the whole year 2006 the accelerometer calibration for the GFR solutions with 3h arc
length and bias plus drift parametrization is shown in Figure 7.54 for each SRF-axis
for GRACE A and in Figure 7.55 for GRACE B. In both figures a median filtered time
series of the calibration is plotted, as well. The filter order is set to 50 hours. Notice the
different scales for the three axes, the x-axis calibration is still much smoother than
Z-axis.

It is obvious that the high variation of the estimated calibration, as also seen before
for November in Figure 7.52, persists over the whole year, for all months. Especially
the estimated drift parameters make the results very unrealistic. The median filtered
calibration exhibits some trends and gives a good mean value to compare it to the
non-gravitational force model based calibration (Sec. 6.1.6 and Woske et al. (2019)) and
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Figure 7.52: Estimated accelerometer calibration from GFR solutions of November 2006 with
bias plus drift parametrization, for GRACE A for different arc lengths: (a) 3h (b) 2h (c) 1.5h
(d) 1h. The calibration of all three SRF-axes (x: blue, y: red, z: yellow) is shifted for better
visibility in one figure by the values given in each plot in nm/s?. The mean values are depicted
as black dotted line.
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Figure 7.53: Standard deviation of estimated ACC calibration plotted over different arc
lengths, showing the variability of the ACC calibration parameters. From GFR of November
2006 solutions with bias plus drift parametrization, for GRACE A.
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Figure 7.54: Estimated accelerometer calibration for the year 2006 for the three ACC SRF-
axes, for GRACE A. Shown are the results from GFR with 3h arc length and bias plus drift
parametrization, and the median filtered time series with a filter order of 50 hours.

the calibration from POD, as used for the data pre-preocessing (Sec. 7.4).

The dynamic POD for the GRACE data pre-processing is conducted with the same
parametrization as used for GFR. The only difference is the used VCE weighting, which
works very good for POD, but has in general not that big influence like for GFR. This
is because the orbit and the accelerometer calibration are much more sensitive to the
3d-position observation than to the relative range-rate observation. Thus, the relatively
lower weighting of the KBR observations from VCE is not significant for the results.
The POD is conducted for both satellites simultaneously, being connected by the KBR
observation.

In Figure 7.56 the accelerometer calibration from the POD for GRACE A for 2006
is shown. It is plotted in the same way as before for the GFR calibration, including a
median filtered calibration with the same order of 50 hours.

The variation of the calibration is distinctly lower for all three axes. It is biggest for
z-axis and lowest for x-axis, as for GFR. Nevertheless, the trend of POD and GFR
calibration is noticeable different. It is depicted in the next two Figures 7.57 and 7.58 for
GRACE A and B, respectively. Additionally, the non-gravitational force model based
calibration is plotted.

The trends of the POD and GFR based calibration are distinctly different for all three
axes and for both satellites. The model based calibration is not very reliable for the
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Figure 7.55: Estimated accelerometer calibration for the year 2006 for the three ACC SRF-
axes, for GRACE B. Shown are the results from GFR with 3h arc length and bias plus drift
parametrization, and the median filtered time series with a filter order of 50 hours.
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Figure 7.56: Estimated accelerometer calibration for the year 2006 for the three ACC SRF-
axes, for GRACE A. Shown are the results from POD with 3h arc length and bias plus drift
parametrization, and the median filtered time series with a filter order of 50 hours.
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Figure 7.57: Estimated accelerometer calibration for the year 2006 for the three ACC S RF-axes,
for GRACE A. For filtered GFR calibration, filtered POD calibration and the non-gravitational
force model based calibration (Sec. 6.1.6). With 3h arc length and bias plus drift parametrization,
median filter with 50 hour order.
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Figure 7.58: Estimated accelerometer calibration for the year 2006 for the three ACC S RF'-axes,
for GRACE B. For filtered GFR calibration, filtered POD calibration and the non-gravitational
force model based calibration (Sec. 6.1.6). With 3h arc length and bias plus drift parametrization,

median filter with 50 hour order.
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x-axis, as the atmospheric drag model is quite uncertain (cf. Sec. 5.1.6). Nevertheless,
the general trend agrees. For the y-axis it coincides very well with the POD calibration.
In the z-axis an offset is prominent. That offset has been observed before in Woske et al.
(2019) for the comparison with an other POD and GFR based calibration, and is still
not resolved. The GFR calibration may follow the general trend, as well, but with big
oscillations and variations.

It can be concluded, that considerably big variations of the non-gravitational accelera-
tions at the time scales of some hours are not really affecting the GFR process when the
mean acceleration over a little longer time scale is not too far from the truth. Otherwise
the very reasonable GFR results can not be explained with these definitely unphysical
accelerometer calibration. This is further investigated in the simulation study with
different applied accelerometer noise models in Section 8.5.

7.8 Influence of Models on GFR Results

The influence of some further processing options and background models is shown in
the following. All solutions are obtained for the first half of May 2006 with data of 12
days. Furthermore, the standard weighting of o, = 0.02 and o}, = 1e-8 is used with bias
plus drift parametrization with 3h arc length. The different used background models
are listed in detail in Table 7.1.

The influence of the following options is investigated, where subsequently the options
from all previous tests are engaged, as well.

1. No static gravity background model (just d/o 60 as estimated), Low d/o tide
models: Solid Earth tides d/o 4, ocean tides d/o 12, pole tides d/o 12, constant

accelerometer scale factors set to one (§= 1), 12 days solution.
2. Static gravity (GGMO05¢) d/o 120

3. High d/o background models: Static gravity (GGMO05c) d/o 180, ocean tides d/o
120, pole tides d/o 180

4. AOD dealiasing d/o 180

5. The constant accelerometer scale factor is set to the values advertised in TN-02,
as shown in Table 7.2

6. Atmospheric tide model (ATM) d/o 8 included

7. Monthly solution with 31 days of data

The results are shown as degree difference in Figure 7.59 with respect to GGMO5s.
With the estimation up to d/o 60 and no higher static background gravity field (1.), the
result is surprisingly bad. With the high weighting of the accurate KBR measurement,
the static gravity field needs to be modeled much more precisely. Using a background
gravity field up to d/o 120 (2.) drastically increases the quality of the solution.

Increasing the d/o of the static gravity field further, as well as the d/o of the ocean
and pole tide models (3.) has just a minor effect. Nevertheless, a small increase of the
quality can be seen.

Adding the AOD dealiasing model has a slightly bigger positive effect on the solution

(4.).
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Figure 7.59: Degree difference of solutions from May 2006 from 12 days (but the last) with
respect to GGMO5s, for different options of the used background models. All options apply to
the next case, subsequently. The options of the seven cases are enumerated in detail in this
Section 7.8.

A bigger influence can be observed by changing the constant scale factor (5.). Even
though, the change from § = I to § = §7y is maximal less than 0.07 for one axis, it has
a remarkable positive effect on the solution. A good estimate of the scale factor, or a
stable estimation approach within the GFR processing would maybe further increase
the solutions.

The atmospheric tide model has a very slight influence on the solution (6.). It may
smoothen the solution a little. But for this small differences a significant statement of
the effect would need to consider more than one investigated month.

Considering more data for the solution (7.) has of cause a positive effect. The monthly
solution from 31 days is definitely more sensitive than the 12 days solution.

Additionally, the effect of considering or neglecting the relativistic post-Newtonian
(pN) corrections, in terms of additional accelerations in the background models, on
the resulting gravitational fields is depicted. As pN corrections the Schwazschild and
Lense-Thirring terms are considered, as discussed in the Sections 2.3.6 and 6.1.3.

The following cases are regarded and results are shown in a further plot in Figure
7.60, again with respect to the GGMO05s model. The last solution (7.) from the previous
figure is also plotted as reference.

8. All options like (6.) but no relativistic post-Newtonian corrections

9. All options like (6.) with relativistic post-Newtonian corrections

The pN corrections have just a small, but positive, effect on the overall result. A more
pronounced effect is visible when comparing the estimated accelerometer calibrations of
both cases. Their difference is shown in Figure 7.61 for GRACE B over the 12 days for
the three accelerometer axes. The mean values of the difference for each axis are given
in the plot, as well. It is obvious, that the lack of the relativistic correction is mainly
compensated by the z-component of the accelerometer calibration. The mean value of
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Figure 7.60: Degree difference of solutions from May 2006 from 12 days (but the first) with
respect to GGMO05s, showing the effect of post-Newtonian relativistic corrections on the GFR
processing.
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Figure 7.61: Difference of accelerometer calibration between 12 day GFR estimations from
May 2006 with and without relativistic post Newtonian corrections as background model, bias
plus drift, 3h arc length. The mean difference is given in the plot for each axis.

the difference between both calibrations is distinctly shifted (13.97 and 10.80 nm/s? for
GRACE B and A, respectively). The mean difference in the other axes is much smaller.
For the nearly circular orbit of the GRACE satellites, the Schwarzschild pN correction
is nearly constant and mainly acting in the radial or nadir direction (cf. Fig. 6.6), and
thus can be absorbed relatively well by the accelerometer calibration.

7.9 GFR with Modeled Non-Gravitational Accelerations

The modeled non-gravitational accelerations from Chapter 6.1 are used instead of the
accelerometer data to produce a monthly solution. All other GRACE data processing
stays the same. For this approach an a-priori known error is the missing of the attitude
thruster impulses in the accelerometer data. Even though the time and duration of the
firings is known, the residual force on the satellite is not completely systematic but a lot
influenced by random errors, as described in Section 6.3.6 and investigated by (Meyer
et al., 2012). With a lot of effort, these effects could be extracted and re-modeled to
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Figure 7.62: Degree difference of monthly solutions with modeled non-gravitational accelera-
tions instead of accelerometer data from May and April 2006 with different parametrizations,
with respect to GGMO05s.

some extent from the known thruster data, which is not done here. Nevertheless, for
the processing of the broken accelerometer on one of the GRACE-FO satellites this is
done to overcome the problems (eg. Bandikova et al., 2019).

In Figure 7.62 monthly solutions with modeled non-gravitational accelerations for
May and April 2006 are shown in terms of degree differences with respect to GGMO05s.
Different parametrizations are investigated. Using no accelerometer calibration gives
the worst result (blue). The used 2h and 3h bias plus drift calibration increases the
quality of the solution distinctly. The arc length does not have a major influence. The
solutions for May and April are generally of the same quality. Speaking about quality,
compared to the results with the original GRACE accelerometer data, this solutions
are about an order of magnitude worse, see eg. Figures 7.2 and 7.3.

From the evaluation of the non-gravitational models in Section 6.1.6 it is clear that
the atmospheric drag exhibits the biggest differences to the accelerometer measurements.
Therefore this study is conducted again but including the estimation of the drag
coefficient ¢p in the drag model as additional parameter in the GFR scheme for both
satellites.

In the A matrix (cf. Sec. 4.3.14) the partial of the acceleration with respect to the
drag coefficient 97/0Cp follows from the definition of the atmospheric drag (Eq. 5.20)

oF 1
=—-pA Hinc Hinc- 2
acy = of A [Tinel U (7.2)

The atmospheric density p needs to be drawn from a model. When using sampled drag
data dgqy computed with a nominal drag coefficient cp j,0m, the partial is simply

oF 1
= Qdrag,i-
6CD C1D,nom

(7.3)

The index ¢ indicates the inertial frame. For the estimation Cp is added as local
parameter for both satellites and estimated for each arc.

The results of this strategy for the monthly gravity field solution of May 2006 is shown
in Figure 7.63. It is conducted with and without additional bias plus drift calibration.
For comparison the according two results from the previous figure are shown as reference.
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Figure 7.63: Degree difference of monthly solutions with modeled non-gravitational acceler-
ations instead of accelerometer data from May 2006 with additional estimation of the drag
coefficient Cp, with respect to GGMO05s. As reference the two results from the previous figure
are shown again.

For the case with no additional accelerometer calibration the result is slightly improved
with the additional estimation of the drag coefficient (yellow). If bias and drift are
estimated, as well, the additional drag coefficient does not improve the result further
(green). The estimated values for the drag coefficient are not physically interpretative
values. They vary between minus and plus four, and are pretty much the same for both
satellites.

The investigation with modeled thruster firings and its coupling into the accelerometer
data in Chapter 8.8 shows a big sensitivity of the GFR solution to errors of the attitude
thruster firings in the accelerometer data. Thus, this might be a major error limiting the
quality of the shown solutions here, where in the modeled non-gravitational accelerations
this is not considered. Furthermore, the modeled drag acceleration (eg. Fig. 6.16) shows
distinct differences in the very sensitive short timescales to the ACC data. The analysis
in Section 8.5.2 also shows a high sensitivity of this kind of accelerometer errors especially
for the x-axis and a little less also for the z-axis. Thus both errors may accumulate to
the obtained sensitivity of the GFR solutions.



GRAVITY FIELD RECOVERY RESULTS FROM
SIMULATION

Gravity Field Recovery (GFR) with simulated data offers the possibility to study
the effect of each sensor characteristic and noise level, environment models and the
processing itself. Compared to the real data processing, each effect can be switched
on or off and the sensor models and noise levels are known and can be set arbitrarily.
Furthermore, the true gravity field and all observations are known and thus the absolute
error of each solution can be determined and compared.

The conducted simulations and subsequent GFR solutions are based on the GRACE
mission setup in this thesis. The sensor models are based on the GRACE instruments.
Its noise characteristics are varied around the assumed GRACE precision, as described
in Chapter 6 and especially Section 6.3. As mentioned in the previous chapters, the
simulation approach allows exceptional investigations of the mission design and GFR
methodology on its own, but furthermore, the comparison with the GRACE data also
gives insights to the real data.

Therefore, the results in this Chapter are investigated independently and subsequently
compared to the results obtained with the real GRACE data from the previous Chapter 7.

The general scheme of the closed loop simulation of a GFR mission is shown in Figure
8.1. It comnsists of four main steps.The first step is the mission or scenario definition,
where all force models, the dynamics and relevant models of the satellite system like
attitude control, shape and initial conditions of the satellites are set. This is followed by
the simulation, meaning the numeric integration of the dynamic models to generate the
true satellite states and the true observations, eg. inter satellite range or range-rate in
the GRACE case. From the true observations real observations are simulated with noise
models of the instruments and sensors. This might happen either subsequent to the
simulation if no further model is depending on this observation, or during the simulation
if another model is dependent on that observation, like for example the attitude control,
which is dependent on the star camera attitude sensor. These simulated observation
data are then equivalently used as real data from a satellite mission in the third step,
the processing. The processing is conducted with specified options and parameters. The
final step is the analysis and comparison of the results with the initial i.e. true input
parameters and observations. From this analysis conclusions on the initially imposed
scenario definition, processing options and employed models can be drawn.

The whole loop does not always need to be executed completely, a simulated mission
may be processed with different options, thus the generated observation data do not
change and hence do not need to be computed again, or a change in several sensor noise
models does not necessarily require to simulate the true satellite states again, but just
adding different noise models to the true data.

In this chapter first the general characteristics of the solutions are investigated (Sec.
8.1). Subsequently, as for real GRACE data, the influence of weighting (Sec. 8.2) and

175
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Figure 8.1: Scheme of the closed loop GFR simulation. With the main steps of mission or
scenario definition, generation of simulated satellite and observation data and the subsequent
GFR processing. The final step is the comparison of the results with the initial i.e. true input
parameters and observations.

parametrization (Sec. 8.3) is investigated. The influence of the major measurement
devices KBR (Sec. 8.4), ACC (Sec. 8.5), GNV (Sec. 8.6) and SCA (Sec. 8.7) with
characteristic noise models and parameters is investigated in the following sections.
Finally, the influence of the attitude thruster firings is depicted in Section 8.8.

For the simulation initial conditions of the GRACE satellites from May 1st 2005 are
used. And all shown results are based on data from 12 days.

For the investigation of the before mentioned aspects, usually a default model setup
is used. Based on the introduction of all different instrument models in Section 6.3,
the 2 em GNV noise model, the KBR model with oy, gk pr=1e-6 m and the Const_ If
ACC model with o4r=1e-10 m/s* is used. The SCA solution with two combined star
cameras is utilized, but having a very small influence. The other SCA and thruster
models are just used for their respective investigation, usually having a minor influence.
Furthermore, the bias plus drift parametrization is used with 2h and 6h arc length as
default. For the analysis of the sensor models, generally just one model is varied and
the default setup is used for the other sensors. Different setups are explicitly stated.

8.1 General Characteristics of the Solutions

In this Section the general characteristics, like residuals and deviations of the measure-
ments in time and frequency domain, convergence over the iterations and the formal
error are investigated. For the results in this section the bias plus drift parametrization
with an arc length of 3h or 6h is utilized.
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Figure 8.2: Degree difference of 12 days solution for different iterations with respect to the
true gravity field.

8.1.1 Convergence

First the convergence of the gravity field solution is investigated. In Figure 8.2 the
degree difference with respect to the true gravity field (GGMO5s) for different iterations
is shown.

As for the GRACE data processing, the initial guess is very close to the truth and
the convergence is achieved after the third iteration. This is very similar to the GRACE
case (cf. Fig. 7.40).

A short remark on the initial conditions: The influence of the initial conditions of all
parameters (local and global) is the same: Bad initial conditions just slow down the
convergence. With a sufficient amount of iterations the result is the same (assuming the
approach does not diverge with too bad initial conditions). Thus the initial conditions
do not have an effect on the final solution. Mathematically this is clear and nice to see
that this turns out to be the case for the implemented GFR processing, as well.

8.1.2 Error Pattern in the Spatial Domain

One of the big problems of the GRACE type mission is the striping of the monthly
solutions, especially visible in relative plots of the gravitational fields in the spatial
domain, for instance in terms of EWH. As demonstrated in Section 2.3.4 and eg. Figure
2.8 or Figure 7.46 for the GRACE data from one year.

In the simulation approach one of the drivers for the striping is eliminated. No error
in the tidal models used for the GFR is implemented in the simulation loop. Thus the
aliasing due to a slight mismodeling of the fast changing tidal effects, mainly in the
ocean tide model, is not present. Therefore, the remaining striping is caused by the main
measurement direction of the GRACE concept, which is only in north-south direction.

In Figure 8.3 the EWH with respect to the true gravity field GGMO05s for an unfiltered
and filtered solution is shown, with bias plus drift parametrization and 3h arc length
with VCE weighting. The unfiltered solution has an error amplitude of about £20 c¢m
and the filtered one in the mm range. Compared to the results for the GRACE solution
of May 2006 in Figure 2.8, with an unfiltered amplitude of £1.5 m, this is considerably
lower. Nevertheless, a direct comparison of the plots is not reasonable. It has to be
considered, that for the GRACE solution not an error is plotted, but the difference with
respect to a mean field. Thus for the GRACE solution mainly the hydrological signal is
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Figure 8.3: Spatial plot of EWH with respect to the true gravitational field GGMO05s from
estimated gravitational field for (a) no filter and (b) Gaussian filter with r = 465 km. Bias plus
drift parametrization, 3h arc length and VCE weighting.
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Figure 8.4: Spatial plot of EWH with respect to the true gravitational field GGMO05s for a
Bender concept with two GRACE-like pairs, one polar and one with 63° inclination, from 6 days
of data, for (a) no filter and (b) Gaussian filter with r = 465 km. Bias plus drift parametrization,
3h arc length.

visible, additionally to an unknown error.

The striping errors can be distinctly reduced by an advanced measurement concept
or geometry. For example the prominent Bender constellation, which is one favored
candidate for a GRACE-FO successor mission. It utilizes two GRACE-like satellite pairs,
one in polar orbit and one in an inclined orbit. The results of that concept, simulated
with the same instrument models, amount of observation data (hence 6 days) and in
general the same processing, is shown in Figure 8.4, in comparison to Figure 8.3 for the
GRACE-like mission.

The errors are not just reduced in magnitude but much more important, the north-
south striping is heavily reduced. Thus, the benefit of adding another range-rate
measurement in a further direction does not just improve the result by adding more
observation data but by more isotropic observations, which is also reflected in the result.
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Figure 8.5: Arc wise RMS of GNV position deviations from GFR for different iterations for 12
days solution (6h arc length). The zoom-in shows the final iterations in detail.

8.1.3 Residuals and Deviations

In Figure 8.5 the evolution of the arc wise RMS of the GNV deviations over the iterations
is depicted. After about six iterations the deviation does not change anymore and the big
initial differences between the arcs are vanished. The convergence is very similar to the
GRACE data processing (cf. Fig. 7.31). The white noise with the standard deviation o
= 2 c¢m, applied as GNV model, is nearly recovered exactly in the converged deviations.
Just a very small variation over the arcs exists. The GNV deviations of the GRACE
data change over the course of the month and year. At times it is in the same area of
about 2 ¢m, but also reaches values of about 5 em (eg. for November, Fig. 7.31). For
the very good month May (Fig. 7.33) the converged deviations vary around 1 to 2 cm.

The results for the arc wise RMS of the KBR range-rate deviations are shown in Figure
8.6 in the same way. The convergence takes longer than for the GNV deviations. This is
the same as for the GRACE data (cf. Fig. 7.32 and 7.34). The resulting arc wise RMS
values are in the same range and also show a variance over the arcs due to the applied
KBR noise model. Nevertheless, for the real GRACE data again a superimposed accu-
racy variation over the month and year is visible. A slightly more realistic model could
include a very low frequency time dependency of the simulated GNV and KBR accuracy.

Compared to the deviations, the residuals converge much faster. The arc wise RMS
of the KBR range-rate residuals are shown in Figure 8.7 for different iterations. More or
less after the first iteration the residuals do not change anymore and look the same as the
deviations after the 10th iteration (cf. Fig. 8.6). If the residuals or deviations should be
computed and analyzed, one should keep in mind the big difference in convergence speed.

The GNV position deviation of one arc is shown in Figure 8.8. It demonstrates that
the deviations are close to white noise and show just a very low longer wavelength
content, as visible in the Amplitude Spectral Density (ASD) of the deviations for that
arc in Figure 8.9 (the ASD and its computation, used throughout the thesis, is briefly
discussed in the Appendix A.2).
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Figure 8.6: Arc wise RMS of KBR range-rate deviations from GFR for different iterations for
12 days solution (6h arc length). The zoom-in shows the final iterations in detail.
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Figure 8.8: GNV position deviation of GFR after 10th iteration for each axis, arc 26, GRACE
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Figure 8.9: ASD from GNV position deviation of GFR for each axis after 10th iteration, arc
26, GRACE A.

Compared to the results from GRACE for GNV deviations (Fig. 7.35) and KOS
deviations (Fig. 7.43), which showed a distinct long wavelength signal, this is different.
Unfortunately it is not possible to pin the error in the real GRACE position deviations
to a clear source. Most probably it is a not modeled or miss-modeled gravitational effect.
In the modeled data this is not visible because the time dependent gravitational models
are the same in the simulation and the GFR.

The KBR deviations are shown for the same arc in Figure 8.10. A clear time depen-
dency of the deviations is visible, which is due to the colored KBR and ACC noise
models (Sec. 6.3.1 and 6.3.2). The ASD of the deviation is shown in Figure 8.11. The
curve in the ASD is a result of the utilized KBR noise model and the ACC noise model.
The high frequencies are determined by the KBR noise and the lower ones by the ACC
noise. Hence the ASD does not directly show the curve of the introduced KBR noise
(Fig. 6.29). The exact influence of KBR and ACC noise models on the gravity field
solution and the deviations is investigated in detail in the next two sections.

Compared to the results from GRACE in Figure 7.39, the general trend looks the
same, but the noise level is a little lower here. The analysis for different KBR noise
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Figure 8.10: KBR range-rate deviation of GFR after 10th iteration, arc 26.
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Figure 8.11: ASD from KBR range-rate deviation of GFR for different iterations, arc 26.

levels in Section 8.4 also suggests that the KBR noise model with o, xpr = 1e-6 is a
little too optimistic.

8.1.4 Formal Error

In the previous chapter (Sec. 7.3) the formal error has been investigated for the real
GRACE data. Without knowledge of the true error, just an approximate assessment
could be done. Nevertheless, in general the formal error was found to be too optimistic.
In the simulation case, the formal error can be compared directly with the true error,
and an estimation on its significance can be made.

For two different ACC noise models (Const_If with oy = 1e-10 and oy = 3.2e-9
m/s?) the formal errors of the simulation results are shown in Figure 8.12 and 8.13 for
6h and 2h arc lengths, respectively. The concerning overall standard deviations & ges
(Eq 469) are: &ges,le—10,6h = 10004, &ges,le—10,2h = 100127 &ges,3.2e—9,6h = 1.0004 and
6g88,3.26—9,2h = 1.0012.

The overall standard deviations G4.s are about the same for all four cases and nearly
exactly the same for the different noise models and arc length, respectively. This is
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Figure 8.12: Degree variance (formal errors) of solutions with Const_1f ACC noise model with
ony = le-10 m/s? for different arc lengths (6h and 2h) and degree difference (deg. diff.) with
respect to the true gravity field for each solutions.
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Figure 8.13: Degree variance (formal errors) of solutions with Const_If ACC noise model with
onf = 3.2e-9 m/s? for different arc lengths (6h and 2h) and degree difference (deg. diff.) with
respect to the true gravity field for each solutions.

because the GNV part is dominant here and the same for all cases and the difference of
KBR residuals is small, too.

For both 6h solutions, the formal error is about an order of magnitude lower than
the true error, for the lower ACC noise model (04,5 = le-10) it is a little bit less. This
confirms the supposed results from the real GRACE data where the formal error seemed
to be too small. As for the GRACE data (Fig. 7.18), the arc length has a big influence
on the formal errors. But here, the trend for the two ACC models is completely different.
For the lower noise (05 = le-10) the formal error slightly increases with smaller arc
length, while it strongly decreases for the higher noise model (op,y = 3.2e-9) and is far
off the true error. The trend for the first case is the same as observed for real GRACE
data. Nevertheless this does not correspond to the true error, which decreases with
smaller arc length.

Even though, for the more realistic noise model with o = le-10 m/s* and the best
arc length of 2h, the formal error and true error are very close, the contrary trends for
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Figure 8.14: Degree difference with respect to the true gravity field for different weighting
combinations of GNV and KBR observations with standard deviation o4 and oy, respectively.

different arc length and noise model make the formal error analysis not significant and
informative.

8.2 Weighting

As for the real GRACE data, the weighting of the different observations has a big
influence on the solutions. It is investigated for different weighting combinations of GNV
and KBR observations in the following. The standard deviations of GNV and KBR
data are o, and oy, respectively. As weighting the inverse of the variances 1/ o2 are
used, as discussed in Section 4.3.5 and 4.3.9.

In Figure 8.14 the results from solutions with six different weighting combinations are
depicted for a 12 days solution. They are shown as degree differences with respect to the
true gravity field. As for the real GRACE data processing (Sec. 7.1), oy, is varied, while
o4 = 0.02 is kept constant. Additionally the result from the VCE solution is plotted. For
all cases the the KBR noise model with oy, xpr = 1le-6 m and the ACC noise model
Const_If with o, = 1e-10 m/s? is used (cf. Sec. 6.3.2).

For the higher degrees (d/o > 20) with an increasing weighting of the KBR observations
(meaning lower oy values) the solutions get better until around o} = le-7. Higher
weighting of the KBR observations does not further increase the accuracy, but does no
worsen it either. For the lower degrees a high KBR weighting has a distinct negative
effect on the accuracy.

Comparing this to the GRACE data processing (Fig. 7.2 to 7.4) it is slightly different.
First, from the degree difference plots the sensitivity in the low degrees looks much
better, here. But it has to be regarded, that here the results are compared against
the true solution and in the GRACE case to a mean GFR solution (cf. introduction
of Chapter 7 and Fig. 7.1). Nevertheless, the sensitivity in the very low degrees is
slightly better, the curve is not increasing again for the first degrees (eg. Fig. 7.1). This
is most probably related to not considered background model errors from ocean and
atmospheric tides.

For the comparison to the GRACE results it has to be distinguished for the very
smooth months like May and the more average or rougher months like November. The
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Figure 8.15: Degree difference with respect to the true gravity field for different arc length
with bias b estimated for each accelerometer.

simulation solution is more similar to the May solution. The very low and very high
KBR weighting does not result in oscillations and such low accuracies as for the GRACE
November solution (Fig. 7.4). This is an indicator, that the varying GNV data quality
over the month in November (Sec. 7.5), which is not the case for May and the simulation,
might be the reason for the worse solution of November compared to May. The negative
effect of the high KBR weighting for the lower degrees seems not to have that big effect
on the solutions, but can not be assessed in that detail for the GRACE solutions, having
no true reference.

For the case of the simulated data, the VCE approach works exceptionally well. The
automatically determined weighting of KBR and GNV observations from VCE results
in a good solution over all degrees. The standard deviation of the Gaussian white noise
of the GNV data is estimated with at least 3 digits accuracy. The solutions with VCE
weighting usually gives the best result. This is verified in more or less all investigated
cases and will be again emphasized at appropriate places.

8.3 Parametrization

Besides the weighting, the parametrization, meaning arc length and additionally esti-
mated parameters, plays an important role for the GFR results. As for the real GRACE
data, just for the accelerometer calibration additional parameters are estimated. Again
just bias and bias plus drift calibration is investigated with different arc length between
24h and 1h, respectively.

As in the previous section, in this investigation the KBR noise model with o} f xR
= le-6 m and the ACC noise model Const_If with o7 = 1e-10 m/s? is used (cf. Sec.
6.3.2).

The GFR results are shown in terms of degree differences with respect to the true
gravity field in Figure 8.15 for bias parametrization and in Figure 8.16 for bias plus
drift parametrization.

The results are pretty similar to the ones for the real GRACE data in Section 7.2.
The bias plus drift parametrization works with longer arc lengths and gives in general
better results. With shorter arc length the quality of the solutions increases. For 2h and
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Figure 8.16: Degree difference with respect to the true gravity field for different arc length
with bias b and drift d estimated for each accelerometer.

3h arc lengths the best solutions are obtained, the 1.5h solution is already a bit worse
again. The results with just bias parametrization show a distinct separation up to 3h
arc length and smaller ones. Up to 3h the results are comparably bad, with lower arc
lengths they are increasing, and the best solution is obtained with 1h. However, the
oscillation between the degrees is big and the results are worse than for bias plus drift
parametrization with respectively small arc lengths.

The four best or most promising parametrizations of different arc lengths with bias
and bias plus drift are also shown in spatial domain in Figure 8.17 in terms of EWH
with respect to the true gravitational model. The smoother curves of the bias plus drift
parametrizations in the degree difference plots is distinctly visible in the spatial plots,
as well. The bias plus drift solutions (c) and (d) show a distinctly lower striping. The
bias parametrization with 1h arc length (b) turns out to be slightly better than the
1,5h arc length (b). The 2h and 3h arc lengths for bias plus drift parametrization are
closer together, but the 3h (c) solution shows a slightly lower striping.

Thus for all following investigations the bias plus drift parametrization is used, as
also for the GRACE data processing.

The small differences of the 2h and 3h arc lengths solutions were also found for the
GRACE GFR processing. There, for the months with better data quality, like May, the
3h arc lengths is slightly advantageous, as here. And hence is in good accordance. In
general, the accordance of the parametrization results with the GRACE data processing
is an indicator that the used ACC noise model, especially in the lower frequencies, is
not too far from the real one.

The ASD of the KBR range-rate deviation with bias plus drift parametrization is
shown in Figure 8.18 for all arc lengths for an arbitrary arc, number 10. The high
frequency part is determined by the KRB range-rate noise (cf. Sec. 6.3.1, Fig. 6.29). The
lower frequencies are dependent on the accelerometer noise, hence the parametrization
and arc length. The best solution in terms of the gravity field with 3h arc length (eg.
Fig. 8.16, 8.17) also results in the lowest deviation amplitudes. The long arc lengths
solutions have a high deviation in the low and mid frequencies because less parameters
are estimated and hence the deviations can not be adjusted as good as for the smaller arc
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Figure 8.18: ASD of KBR range-rate deviation for different arc length with bias plus drift
parametrization. With Const_1f ACC noise model oy acc = 1e-10 m/ s2, arc 10 and 26.
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Figure 8.19: Degree difference for different KBR noise levels o,y with respect to the true
gravity field. For 6h arc length and Const_If ACC model with oy 4cc = 1e-10 m/s?. The
estimated KBR weighting factors and variances o v cg for each solution are given in the plot.

lengths. Too small arc lengths show again higher deviations in the very low frequencies.
This is because of a worse accelerometer calibration for smaller arc length due to fewer
data. Nevertheless, the higher deviation in this frequency band seems not to affect
the GFR solutions too much, the 2h and 1.5h solutions are still better than the 6h
solution with a much lower deviation in this band. This is further demonstrated for the
accelerometer noise investigation in Section 8.5.

8.4 KBR Noise

The inter-satellite ranging is the key feature of a GRACE-like 1I-SST mission. The
impact of the measurement accuracy on the resulting gravitational field solutions is
investigated in the following.

The high frequency noise level oy, ¢ kpr from the KBR range noise model (cf. Sec.
6.3.1) is varied between le-5 to 5e-7 m. The used range-rate observable follows by
derivation of the range and thus the higher frequencies are amplified while the low
frequency signals are attenuated.

The influence on the estimated gravity field solutions is shown in Figure 8.19 in terms
of degree difference with respect to the true gravitational field. The Const_If ACC
model with oxf acc = 1e-10 m/ 52 is used with 6h arc length. The estimated weighting
factors i.e. variances from the VCE algorithm are given in the plot, as well.

The solutions with KBR noise levels with o}y smaller than le-5 are more or less of
the same quality. With o5,y > 5e-6 the solutions are not limited by the KBR noise level,
but the ACC noise. Thus a further reduction of the noise does not increase the overall
GFR solution. The solution with the lowest noise level (5e-7) is a little worse in in the
low degrees, but slightly smoother in the higher degrees. This is a result of the estimated
KBR weighting factors o ycp. With lower KBR noise level the KBR observations are
weighted stronger and the quality of the low degree is worsen slightly. The decrease of
the estimated variances oy vcp with lower noise level oy, is obviously visible.

From the results of the previous section, it is clear, that the results with 6h arc length
are not giving the best solution (eg. Fig. 8.16). Therefore the KBR noise variation is
conducted again with an arc length of 2h, shown in Figure 8.20. The result is com-
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Figure 8.20: Degree difference for different KBR noise levels o,y with respect to the true
gravity field. For 2h arc length and Const_1f ACC model with o,f acc = le-10 m/s?. The
estimated KBR weighting factors and variances oy v cg for each solution are given in the plot.

pletely different, each decrease of the KBR noise level is giving a better gravity field
solution. Just for the lowest noise level, the improvement is getting smaller and the
ACC noise is starting to limit the solution. The statement from the 6h case, that the
solutions are limited by the ACC noise, has to be modified slightly, in the sense that
the combination of accelerometer noise and the applied accelerometer calibration was
limiting the solutions.

For the five cases the ASD of the KBR deviations is shown in Figure 8.21 for the
6h arc length solutions and in Figure 8.22 for the 2h arc length solutions, for one
specific arc, respectively. The typical linear slope of the high frequencies is distinct
for both solutions. For the 2h case, the bend in the ASD occurs at lower frequencies,
corresponding better with the modeled KBR noise (cf. Fig. 6.29). For the 6h arc length
this is superimposed by the residual ACC noise of the calibration, which is worse for
the 6h arc length. As expected, with increasing oy, xpr the high frequency part of
the deviation is shifted upwards. The high frequency noise level oy f kpr has just a
small effect on the lower frequencies of the deviation. For the shorter arc length of
2h it is slightly higher because of the characteristics of the calibration (cf. Sec. 8.3).
Furthermore, with the lower KBR noise level oy,¢ kpr and hence a stronger weighting
of the range-rate observation, the low frequencies of the deviations are attenuated due
to a worse accelerometer calibration in that frequency spectrum.

8.5 ACC Noise

The accelerometer noise is the other important factor mainly determining the quality of
the gravity field solutions. The different noise models and its characteristic parameters,
introduced in Chapter 6.3.2 and the Figures 6.31 and 6.32, are investigated in the follow-
ing regarding their effect on the gravitational field solutions and range-rate deviations.
The names of the different ACC noise models are used, as they were introduced in
Chapter 6.3.2.
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Figure 8.21: ASD of range-rate deviation for different KBR noise levels oy,¢. For 6h arc length,
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Figure 8.22: ASD of range-rate deviation for different KBR noise levels o, ¢. For 2h arc length,
with ACC noise level oy, acc = 1le-10 m/s?, arc 84.
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Figure 8.23: Degree difference for Const_1f ACC noise model for different o5 with respect to
the true gravity field for 6h arc length. KBR noise level o5 kpr = 1e-6 m. The estimated KBR
weighting factors and standard deviations oy, ¢ for each solution are given in the plot. The
dotted lines show results without using VCE but the constant weighting factors for two cases.

For all following results presented in this section the KBR noise level of 0,7 xpr =
le-6 m is used. Furthermore, bias plus drift parametrization and the VCE weighting is
utilized. An interesting influence of the arc length for different ACC models was found,
thus results with 6h and 2h arc length are shown here, as well.

8.5.1 Const_If Noise Model

We begin the analysis with the Const_ If ACC noise model, for which the high frequency
noise oy is varied, as for the KBR noise in the section before. This ACC model utilizes
the the same ASD noise characteristic for all three accelerometer axes.

Results in terms of degree differences are shown in Figure 8.25 with respect to the
true gravitational field for 6h arc length. Again, the estimated weighting factors i.e.
variances from the VCE algorithm are given in the plot, as well. Additionally, the dotted
lines show the solutions for two cases without using the VCE approach, but with the
given constant weighting.

The high frequency ACC noise level oy, has nearly a constant influence over all d/o.
With decreasing o, the solutions are improving until about oy, = 1le-10. A further
reduction does not have an influence anymore. The solutions are limited by the other
noise sources.

A very interesting fact can be seen in the estimated weighting factors or standard
deviations. Even though the KBR noise level is constant for all cases, the estimated
standard deviation oy, ycg of the KBR observations are decreasing with decreasing ACC
noise level oy,¢. The high frequency ACC noise also influences the standard deviation of
the KBR range-rate measurement. This is because the accelerometer measurement is
not treated as an observable in the GFR approach, but the noise or the error in the
used non-gravitational accelerations strongly influences the inter-satellite range and its
derivatives on these scales. Therefore, the KBR weighting and its standard deviation oy,
is a combined measure of the ACC and KBR noise level.
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Figure 8.24: Degree difference for Const_1If ACC noise model for different o, with respect
to the true gravity field for 2h arc length. KBR noise level o}, k. pr = 1e-6 m. The estimated
KBR weighting factors and standard deviations oy, v ¢ for each solution are given in the plot.

Using a high weighting of the KBR observations o with higher ACC noise levels
results in a worse solution, shown for the two highest noise levels by the dotted lines.
It is important to mention that the solutions using the automatic VCE weighting give
the best results. Solutions are not better because of the higher weighting of the KBR
observations. This will be taken up again and demonstrated in some of the following
figures.

The results for of the same investigation with 2h arc length are shown in Figure 8.24
with the same ACC models. Compared to the 6h arc length results from Figure 8.23,
each solution is distinctly improved. This result is not particularly unexpected as the
parametrization analysis in Section 8.3 and Figure 8.16 revealed that the solutions with
2h and 3h arc length are giving the best solutions. The improvement is slightly bigger
for the higher degrees and the lower ACC noise levels 0j,. Nevertheless, as for the
solutions with 6h arc length, for lower noise levels than oy, = 1le-10, the quality of the
solutions is not increasing anymore.

In the following the effect of the low frequency noise in the accelerometer signal and
the estimation of the accelerometer calibration via bias and drift to counteract it, is
investigated. In Figure 8.25 the degree difference for three cases with no ACC noise are
shown. As reference, the result for oy = le-11 m/ s? from the previous figure is shown
as well (green), all with 6h arc length.

In the first test case (blue) no ACC noise is considered and no accelerometer calibration
is estimated, thus the perfect non-gravitational accelerations are used. The result is
about one order of magnitude better than the reference solution (green). Lets remember,
that the reference solution with o5y = le-11 m/s? could not be enhanced by further
decreasing of the high frequency noise oy, ¢. This result shows, that not the KBR noise
is the limiting factor for the reference solution, but the low frequency ACC noise.

Very surprising is the result of the next test case (red), with again no ACC noise but
the estimation of bias and drift parameters. It has about the same accuracy than the
solution without calibration, and tendentially even better. Considering that the bias plus
drift calibration is far from the truth (see Fig. 8.26), this means that not the error of
the bias and drift calibration is the reason for the order of magnitude difference between
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Figure 8.25: Degree difference with respect to the true gravity field for different ACC noise
levels and accelerometer calibrations for 6h arc length. KBR noise level oy, k pr = 1e-6 m. The
estimated KBR weighting factors and standard deviations o v cg for each solution are given in
the plot.
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Figure 8.26: Estimated accelerometer calibration for GRACE A with 6h arc length and bias
plus drift parametrization. No accelerometer noise and KBR noise level o4 ¢ kpr = le-6 m.

the results with and without ACC noise. The estimated accelerometer calibration for
this case (red) is shown in Figure 8.26 for one satellite. Because no ACC noise is used,
the estimated calibration would be perfectly always zero for all axes. It is obvious that
this is not the case. The estimated calibration is just "oscillating" around zero. The
variance of the oscillation is just slightly lower than for the case with using the Const_ If
ACC noise model, see Figure 8.40 (b).

This allows the following two conclusions: 1. The rather big error of the calibration
is in a frequency band that is not affecting the gravity field solution. This has been
observed before, for the processing of GRACE data, where better solutions were obtained
with very unrealistic estimated accelerometer calibration parameters (eg. Fig. 7.49).
And consequentially, 2. The difference of the two solutions (red and green) must result
from the mid frequency accelerometer noise.

The case not yet discussed in Figure 8.25 (yellow), is obtained without ACC noise,
but bias plus drift calibration, as for the second case (red), but with a manual weighting
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Figure 8.27: Degree difference with respect to the true gravity field for solutions with a
completely white ACC noise model with o, and the solution without ACC noise model from
before as reference. KBR noise level 045 kpr = 1e-6 m. The estimated KBR weighting factors
and standard deviations o v cp for each solution are given in the plot.

of 04 = 0.02 and o0, = 4.65e-7. This difference in the weighting results in an order of
magnitude worse solution. It is a further example, that the automatic VCE weighting
works quite well and the optimal weighting of the KRB range-rate observations is
distinctly dependent on the ACC noise, too.

The fact that fact that the mid frequency noise seems to have a rather strong influence
is further investigated with the use of an ACC noise model employing just white noise
with o, = le — 11. The results are shown in Figure 8.27 in terms of degree differences
for the arc lengths of 2h and 6h, as used before. Additionally, the solution without any
ACC noise from Figure 8.25 is plotted as reference (red). Especially with the 6h arc
length the solution is as good as the reference with no ACC noise. Thus the conclusions
from before, that the mid frequency ACC noise is limiting the solutions is confirmed.
The effect that the result for the shorter arc length of 2h is slightly worse is revisited in
the following paragraph.

The surprising results without ACC noise are further investigated for different arc
lengths in Figure 8.28. The figure shows the degree difference of solutions with no ACC
noise but bias plus drift estimation for arc lengths between 12h and 1.5h.

It is obvious, that the shorter arc lengths, below 6h, have a negative effect on the
results. Especially the lower degrees are affected more strongly. The 12h and 6h solutions
still agree with the solution without calibration (Fig. 8.25), for shorter arc length the
results are degrading. The weighting for all solutions is about the same, o1 yvcrp =
4.89e-8. As observed before, the error of the accelerometer calibration is increasing with
shorter arc length. The estimated calibration for the 2h arc length solution is shown in
Figure 8.29. Because no ACC noise is applied, the calibration is directly the error, as
well. Compared to the 6h calibration from Figure 8.26, the amplitude is increased and
of cause the frequency, too due to the shorter arc length. Thus, without and with very
low ACC noise, a longer arc length is beneficial. The statement from before that the
error of the calibration is not affecting the solution needs to be regarded with respect to
the arc length, as well. Too short arc length are slightly affecting the solution negatively,
especially the lower degrees up to about d/o 40. It is not completely unambiguous
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Figure 8.28: Degree difference with respect to the true gravity field with no ACC noise model
for different arc length. KBR noise level oy, kpr = le-6 m.
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Figure 8.29: Estimated accelerometer calibration for GRACE A with 2h arc length and bias
plus drift parametrization. No ACC noise and KBR noise level 045, xpr = 1e-6 m.

if either the higher frequency of the calibration error or the increasing amplitude is
decisive, because both condition each other.

As for the investigation of the KBR noise, the ASD of the KBR deviations for one
arc are shown in Figure 8.30 for the results with different high frequency noise levels
ons (from Fig. 8.23) and the results with no ACC noise in Figure 8.31 (from Fig. 8.25
and 8.28) for 6h and 2h arc length.

The high frequency part of the deviations is not affected by the high frequency noise
opy of the accelerometer. It is governed by the slope of the KBR range-rate noise. The
other side of the spectrum, the low frequencies, are affected by the high frequency ACC
noise oy, . With decreasing o,y the negative slope for the low frequencies is shifted
parallelly downwards. As seen before in the degree difference plot, from o,y = 1le-10
m/s? further reduction does not have an influence anymore, here as well.

Just omitting the ACC noise completely (Fig. 8.31), gives a further reduction of the
low frequency content of the range-rate deviations if no calibration is estimated or the
arc length is higher (6h). In that case the ASD of the deviations is close to the ASD of
the initially generated KBR noise (cf. Fig. 6.29). The result with the short arc length
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Figure 8.30: ASD of range-rate deviation for Const_1f ACC noise model for different o}, with
6h arc length. With KBR noise level o5 kpr = 1e-6 m, arc 26.

Tlo_s T T T R LU |
E oy = le-11, 6h
no ACC noise, no calib. 1
E 6 no ACC noise, bias+drift calib. 6h |
g 1077 ¢ no ACC noise, bias+drift calib. 2h 3
g
= o107
= 1077
"8 ([ 1
m W‘ H.m
2 100 i
b
A [
%)
<‘:10—9 P | L FE R R A | L |

104 1073 102 107!
Frequency [H z]
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accelerometer calibrations and as reference the result for o5,y = le-11 from the previous figure.
KBR noise level o, kpr = le-6 m, arc 26.
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Figure 8.32: Degree difference with respect to the true gravity field for different ACC noise
models of the three accelerometer axis. KBR noise level o4 ¢ x pr = 1le-6 m. The estimated KBR
weighting factors and standard deviations oy, vcg for each solution are given in the plot. The
dashed lines show solutions with a constant weighting of o), = 5e-8

of 2h shows much higher amplitudes in the low frequency domain. This has also been
observed for the parametrization analysis in the ASD in Figure 8.18. For the ACC noise
model with oj,; = 1e-10 m/s? and 2h arc length the curves (light blue) look about the
same. Hence, the observed bigger deviations in the low frequency range originate from
the error of the fast changing parametrization for the short arc length. Thus, the high
frequency ACC noise has more or less no effect in this frequency range because it is
then governed by the error of the calibration.

8.5.2 Sensitivity of Different Axes

Based on the Kim ACC noise model (Fig. 6.31), which utilizes a different noise model
for the accelerometer y-axis, the influence of the three axes is investigated. Therefore
the model for the accelerometer y-axis with a higher noise is applied to the different
axes subsequently.

The results of this experiment are shown in Figure 8.32. The first result (blue) is
obtained using the lower noise model Kim x,y for all three axes (Kim xyz). For the other
three results, the higher noise model is applied to each axis, respectively. The VCE
weighting of each solution is given in the plot. It confirms the already seen trend that a
lower ACC noise increases the KBR range-rate weighting. The dashed lines in that plot
show the results for constant KBR, weighting o = 5e-8 as reference, demonstrating
that the automatic VCE weighting works well and the results are not a weighting issue.

The solution with the the lower ACC noise on all three axis (blue) is about the
same as for the original Kim model with a less sensitive y-axis (red). The sensitivity of
the cross-track axis, which for the GRACE formation is pretty much aligned with the
accelerometer y-axis, is not as important than along-track and radial axes. This is the
reason why the accelerometer is mounted in the satellite that way.

With the higher noise model applied to the z-axis (yellow), the solution decreases
about one order of magnitude for the higher degrees and a bit less for the lower degrees.
The result for a lower sensitivity of the x-axis (green) is about the same and tendentially
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Table 8.1: Set constant scale factors § (the true values are 1)
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Figure 8.33: Degree difference with respect to the true gravity field for the Kim xyz ACC noise
model with slightly wrong ACC scale 5. KBR noise level 04,7, kpr = le-6 m. The estimated
KBR weighting factors and standard deviations oy, v cg for each solution are given in the plot.

even more worse. Thus along-track and radial directions are decisive for the resulting
GFR solution.

8.5.3 Sensitivity of Scale Factor

The scale factor of the accelerometer calibration § has a strong influence for the real
GRACE data processing. Small differences have a remarkable effect on the resulting
gravitational fields (eg. Sec. 7.8 and Fig. 7.59). Here this is again investigated in the
simulation. Therefore a constant scale is added to the accelerometer model in each axis.
The defined constant scale factors for both satellites deviate just slightly from the true
values of one. The set values for the three axes are given in Table 8.1. Their deviation
is a little smaller than for the GRACE data (see eg. Tab. 7.2).

The experiment is conducted with the Kim xyz ACC noise model. The result is
shown in Figure 8.33 in terms of degree differences for the solution with scale error and
the reference solution with no scale error. The difference of the resulting solution is
surprisingly big, especially for the higher degrees (nearly one order of magnitude). This
is much more than expected from GRACE data processing (cf. Fig. 7.59).

The influence on the ASD of the range-rate deviations is shown later together with
the other ACC models in Figure 8.36.

8.5.4 Further Accelerometer Models

In Section 6.3.2 further accelerometer models from the literature are introduced. Their
intrinsic noise models are given in Figure 6.31. The GFR results with these models in
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Figure 8.34: Degree difference with respect to the true gravity field for 6h arc length for
different literature ACC noise models (see eg. Fig. 6.31). KBR noise level oyt kpr = le-6 m.
The estimated KBR weighting factors and standard deviations oy v cg for each solution are
given in the plot.

terms of degree difference with respect to the true gravity field are shown in Figure
8.34 for bias plus drift parametrization with 6h arc length. Again, the VCE standard
deviations oy, vcg are given in the plot. The previous result from the Const_If model
with o5 = 1le-10 is shown again as reference.

Compared to the Const_ If model, the obtained results with all other models are worse.
Even though, besides the Kim model, they have a lower high frequency noise. Here
again it turns out that the mid and low ACC noise frequencies limit the GFR, accuracy.
For the Const_If, e2motion and e2motion var. models, the negative slope of the mid to
low frequencies in the ASD model is just slightly shifted, but results in a difference of
about an order of magnitude in the gravitational field accuracy, respectively.

The difference between the Li model and the e2motion var. model is just the increasing
amplitude of the high frequencies in the Li model. For the GFR solution this has no
influence, the results are pretty much the same. Considering the previous analysis, this
can be explained by the much higher influence of the lower ACC frequency noise level
and the accelerometer calibration, which is the limiting factor, here. For example the
variation of the high frequency noise in Figure 8.23 with eg. o,y = 1e-9 m/ 52 results in
a better result than the Li model.

The same ACC models are processed with the arc length of 2h. The results look
surprisingly different. They are shown in Figure 8.35 as degree difference. Especially the
solutions utilizing the ACC models with higher low and mid frequency noise (e2motion,
e2motion var. and Li) drastically improve with the shorter arc length. The e2motion
and Li solutions reach the same accuracy than the Const_If model with o, = 1e-10.
The accelerometer calibration error of the e2motion var. solution is about the same as
for the Const_If model (shown in Fig. 8.29).

This shows the importance of an appropriate parametrization, adjusted with respect
to the noise characteristics of the involved data. Considering the previous results with
the const_ 1f ACC model with different high frequency noise levels and no ACC noise
model, it can be concluded, that the solutions are either limited by the increasing
error of the accelerometer calibration with small arc lengths or by the mid frequency
noise in the accelerometer data. A stable estimation of a higher order acclerometer
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Figure 8.35: Degree difference with respect to the true gravity field for 2h arc length for
different literature ACC noise models (see eg. Fig. 6.31). KBR noise level o,f xpr = 1le-6 m.
The estimated KBR weighting factors and standard deviations oy, yvcg for each solution are
given in the plot.

calibration with longer arc lengths would be desirable to exploit the full accuracy of the
inter-satellite ranging.

The ASD of the resulting KBR range-rate deviations is shown for one arc in Figure
8.36 for the results of the 6h arc length parametrization and in Figure 8.37 for the 2h
arc lengths investigation. The deviation in the high frequency domain is completely
determined by the range-rate noise, as seen before.

For the 6h arc length case, the rather bad solutions with the e2motion var. and
e2motion ACC noise models and also the solution with the scale error, a distinct jump
at about 1072 Hz occurs. The investigation before showed that the high frequency noise
results in a shift of the negative slope to higher frequencies (cf. Fig. 8.30 and 8.31), the
effect of the high mid frequency ACC errors is rather a jump, rising that slope upwards.

For the more optimal arc length of 2h (Fig. 8.37), the results are much smoother
and show a distinctly lower deviation in the mid frequencies. Compared to the results
in terms of degree differences, the curves are a little closer together, but the better
solutions show also slightly lower range-rate deviations in the mid frequencies.

In general, the mid frequency noise has a much stronger effect on the gravity field
solution than the high frequency noise. This is reasonable, because the very high
frequency noise may average out and is attenuated by the integration of the acceleration.
The very low frequency noise does not affect the higher degrees of the gravitational
field so much and is counteracted by the accelerometer calibration. The mid frequency
noise can not be counteracted so easily by calibration. A high order calibration function
would need to be determined, which may not be accurate, considering the problems of
an appropriate bias plus drift determination and the unacceptable results already for a
second order calibration function.

The error of the accelerometer scale has a similar effect than the inappropriate
calibration of the mid frequency ACC noise (6h arc length). This is because it is a
permanent error that is affecting the complete frequency band.
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Figure 8.36: ASD of range-rate deviation from GFR with the different literature ACC noise
models for 6h arc length. KBR noise level oy, kpr = le-6 m, arc 26.
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Figure 8.38: Comparison of ASD of range-rate deviations from GFR with the different ACC
and KBR noise models and arc lengths and real GRACE results.

8.5.5 Comparison to GRACE Results

The results from the previous two subsections can be compared to the processing of the
real GRACE data. The ASD of the GRACE range-rate deviations has been shown eg.
in Figure 7.38 for one arc in November 2006. In Figure 8.38 this (black) is compared to
the previously shown results in terms of the ASD of the KBR range-rate deviations.

For this comparison it has to be mentioned, that for the real GRACE data processing
some more effects are influencing the resulting gravity field and range-rate ASD, which
are not considered in the simulation. These are mainly not completely correct background
gravity models and a minor effect from averaging the time dependent gravitational field
over a certain period, like one month. Furthermore the simulation results in this chapter
are based on the analysis of just 12 days of data, compared to around 30 days used for
the monthly GRACE solutions.

In the comparison (Fig. 8.38) the high frequency noise in the deviations with the
used default KBR range-rate model with o7 kpr = le-6 m seems to be a little to low
(red). With o4 s kR = 2.5e-6 m (yellow) the simulations agrees quite well with the real
data in the high frequency range.

The arc length does not have such big importance for the GRACE results in terms of
the range-rate deviations (the black and gray curves for 2h and 6h arc length are very
close). For the lower frequencies the differences are bigger. Theoretically, the differences
could be dissolved for example by using the Const_1f ACC noise model with o5 =
3.2e-9 m/s? (cf. Fig. 8.30). But such a high high-frequency noise level is definitely
not realistic. It also could be dissolved using the e2motion var. ACC model with the
non-optimal arc length of 6h (Fig. 8.36), which exhibits a higher mid frequency noise.
The higher mid frequency ACC noise has the same effect on the ASD of the range-rate
deviations. However, for the GRACE processing the arc length and parametrization
had been optimized (cf. Sec. 7.2), thus this is not likely the explanation. Therefore,
the difference might be rather explained by the mentioned background model errors.
Hence some gravitational signal content is still present in the residuals in this frequency
band of the real data. Furthermore, a slightly wrong scale factor has the same effect on
the ASD, as well (cf. Fig. 8.36), which definitely can not be ruled out for the GRACE
processing. The higher low frequency amplitudes may be most probably a combination
of these factors.
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Figure 8.39: Degree difference for different GNV noise levels with respect to the true gravity
field. For 6h arc length, ACC and KBR noise level o, acc = 1e-10 m/s? and Onhf,KBR = le-6
m, respectively.

8.6 GNV Noise

The influence of the GNV or KOS noise (for the simulation there is no difference between
both) is investigated for noise levels with standard deviations of o = 5, 2, 1, and 0.1 c¢m.
The GNV noise is modeled as white Gaussian noise (cf. Sec. 6.3.3). The default ACC
and KBR noise levels with o, acc = 1e-10 m/s2 and opp xkBr = le-6 m are utilized.
Agian, the VCE weighting approach is used. The determination of the GNV weighting
factors, and hence the variances of the noise o4, works exact to about three digits for
the perfect white Gaussian noise. The weighting of the KBR data is pretty constant for
all cases (0} = 4.8e-8).

The results are shown in Figure 8.39 in terms of degree difference with respect to
the true gravity field. Especially the lower degrees are comparably sensitive to the
absolute GNV position observation. Thus, as expected, the lower degrees, up to about
20, show an improvement with decreasing GNV noise level. Furthermore, at least for
the lowest GNV noise level, the higher degrees slightly improve as well. This is not
only a direct effect of the lower GNV noise level, but also of a better accelerometer
calibration. The accelerometer calibration is much more sensitive to the absolute position
observation, than the relative range-rate and is primarily determined by this observation.
Therefore, the lower GNV noise level allows for a better accelerometer calibration, which
in turn increases the quality of the higher degrees of the gravitational field slightly. This
statement is not in contrast to the previous Section 8.5 where the low frequency errors of
the accelerometer calibration were not found to be the primarily limiting factor, because
the improvement of the higher degree is not that big here. Furthermore, considering
the noise level of 0.1 ¢m is at least one order of magnitude better than for the best
investigated and estimated orbit solutions for GRACE.

The acclerometer calibration is depicted in Figure 8.40 for the GNV noise levels
of 2 em and 0.1 em. In (a) and (c) the true noise and the negative of the estimated
calibration for each axis is shown. In (b) and (d) the differences between the true and
estimated calibration is shown, respectively. The RMS of the differences for each axis
are given in the plots, as well.
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Figure 8.40: Accelerometer calibration for GNV noise levels with standard deviation o = 2 ¢m
(a) and 0.1 e¢m (c). Shown is the true noise and the negative of the estimated (- est.) calibration for
each axis. (b) and (d) show the differences between truth and estimated calibration, respectively.
The RMS for each axis is given in the plots, as well. For 6h arc length, ACC and KBR noise
level o5 acc = 1e-10 m/s* and opf,xkpr = le-6 m, respectively.

In general it shows the known pattern, that the x-axis is the most sensitive and the
calibration is distinctly better than y- and z-axes. The differences, and their RMS,
show this more qualitatively. But here, an obvious improvement of nearly one order of
magnitude is visible for the lower GNV noise level. This is also a reason for the slightly
improved higher degrees in Figure 8.39 with a lower GNV noise level.

8.7 SCA Noise

The star camera attitude solution (SCA) model has been elaborated in Chapter 6.3.4.
Different processing strategies to compute a SCA solution from the two camera measure-
ments have been investigated and the resulting attitude errors were shown. The different
setups are in short: 1. Using just one star camera, 2. Two star camera combination and
3. A Kalman filter attitude solution. In an additional case a misalignment of the star
cameras was added.

The influence on the recovered gravitational field is investigated in the following. For
all solutions the KBR noise level oy,¢ xkpr = 1e-6 m is utilized with 6h arc length. No
accelerometer noise is added and no calibration is estimated. Hence the results show
just the sensitivity to the SCA data.

In Figure 8.41 the degree difference with respect to the true gravity field is shown for
different SCA setups.

The reference solution with no SCA noise is the best possible solution and limited by
the applied KBR and GNV noise. For the analysis one has to keep in mind, that an
attitude error is indirect a further accelerometer error (the attitude is just needed to
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Figure 8.41: Degree difference for different SCA setups with respect to the true gravity field.
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Figure 8.42: Accelerometer error due to SCA model for using just one star camera in inertial
frame.

transform the measured ACC data from the actual satellite body frame to the inertial
ECI frame).

The gravitational field results with the two combined star camera measurements and
the Kalman filter attitude solution are about the same as the reference solution. The
attitude error is too small and vanishes in the other noise sources. The result when
using just one star camera distinctly deviates from that. Introducing the star camera
misalignment drastically decreases the GFR solution quality. Even though the random
attitude noise is not much higher than for the one star camera solution (cf. Fig. 6.35
and 6.38), the constant offset has a big influence on the gravitational field. The solution
using two misaligned star cameras is even worse.

It is interesting to have a look at the acceleration error due to the attitude error. In
Figure 8.42 the ACC error when using just one star camera is shown for one exemplary
day. The oscillation is resulting from the time dependent non-gravitational accelerations,
which have this frequency (eg. Fig. 6.16). Comparing this error to the results from the
high frequency ACC noise model (Fig. 8.23), the error is in a range starting to affect
the GFR solutions.
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Figure 8.43: Accelerometer error due to SCA model for two combined star cameras with
misalignment in inertial frame.

For the attitude solution based on two misaligned star cameras, the ACC error is
depicted in Figure 8.43. Surprisingly the magnitude is lower than for the case with just
one star camera without misalignment. But due to the constant attitude offset the ACC
error does not have a zero mean. This has obviously a big influence on the resulting
gravitational field.

Concluding it can be said, that a star camera misalignment should definitely be
avoided by calibration in the processing of the attitude solution. Furthermore it could be
worth estimating attitude parameters in a GFR and or POD solution for real GRACE
data, which is already done in the latest TU Graz GRACE solutions (Ellmer, 2018).

The random star camera error of two combined instruments is so small that it has no
influence on the GFR solutions with the used KBR and GNV models. If also considering
the investigated accelerometer models, the SCA noise and its effects on the solutions
are negligible, even more.

8.8 Thruster

The thruster model is mainly an additional accelerometer model. The firings of the
imperfect thusters exert a small force on the satellites, usually in all directions. These
are measured by the accelerometers and produce sharp peaks in the accelerometer
data. Furthermore, in the L1B processing the accelerometer data are filtered and
down-sampled, widening these peaks. For details see Chapter 6.3.6.

In the following the effect of the thruster peaks in the accelerometer data in general,
the filtering of the ACC data and an assumed error in sensing the peaks by the
accelerometer is investigated for the GFR.

As for the investigation of the SCA noise, no other ACC noise model is applied, thus
the influence of the thruster spikes can be observed, separately. The KBR noise level
onf,kBR = le-6 m is utilized with 6h arc length and no calibration is estimated.

GFR results for the different thruster effects are shown in Figure 8.44 in terms of
degree difference with respect to the true gravitational field. The reference solution
with no ACC noise and thruster disturbances demonstrates the best possible solution,
limited by the applied KBR and GNV noise.

Adding the peak shaped disturbances in the accelerometer data (blue) already worsen
the solution. Even though there is no difference in the forward integration of the simulated
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Figure 8.44: Degree difference for different thruster disturbances in the ACC data with respect
to the true gravitational field. No further ACC noise model and no calibration is considered,
KBR noise level o, kpr = 1e-6 m, 6h arc length.

measurement data and the GFR integration, the peaks influence the performance of
the estimation process.

The applied CRN-filter in the L1B processing, widening the peaks (cf. Fig. 6.39 and
6.40), has more or less no influence on the solution (red). The blurring of the acceleration
on this short time scale, by preserving the magnitude of the total impulse, does not
influence the GFR solution. The situation is completely different when an error for
sensing the peaks is assumed. For an error of around 0.5% (0gccnr = 0.005) a distinct
decrease of the solution is visible (yellow). For 1% and 2% it is even stronger (purple and
green). From this results it seems not realistic that the GRACE accelerometers exhibit
an error in the dimension of 2% in sensing the thruster impulses. The electrostatic
accelerometer test mass controller is fast and may be strong enough to sense these
impulses without a significant loss of accuracy. Nevertheless, it is hard to assess this
from the available L1B data.






CONCLUSIONS

This work dealt with the topic of satellite gravimetry, with the focus on the GRACE
concept of low-low Satellite-to-Satellite Tracking (1I-SST). The foundations and the
theory of Gravity Field Recovery (GFR) and Precise Orbit Determination (POD), as
well as the full satellite simulation and orbit propagation, were elaborated in detail.

In the main part, the data processing in general and the correlations of the different
instruments, measurement data and processing choices were investigated and discussed.
First this was conducted for the GRACE data processing. Subsequently the investigation
was extended to the processing of simulated data of a GRACE-like 1I-SST mission. This
closed loop simulation approach allowed the investigation of the influence of each single
sensor, measurement data, noise model and processing choice, separately, with the truth
always as reference. Both results were compared. Furthermore, the GRACE results were
compared to solutions from other processing centers.

The work demonstrated the possibilities of a simulation approach to assess and
quantify how various effects and instrument characteristics influence the overall mission
goal and collected data. A dedicated modeling is a mighty tool to understand correlations
in dynamics, processing and data evaluation. The assessment of interactions is often not
directly possible when just dealing with real data, especially for a complicated mission
with many coupled effects influencing the mission goal like in satellite gravimetry.

Hereafter, this thesis is summarized and the main scientific findings and prominent
results are emphasized, mainly following the structure of the thesis. Finally future
expansions and applications of the work will be discussed in the Outlook 9.2.

2.1 Summary

In the first four chapters of this thesis the topic of satellite gravimetry was moti-
vated, introduced and the mathematical process from satellite observations to monthly
gravitational field solutions was derived and discussed in detail.

After the introduction (Ch. 1), giving a through background of satellite gravimetry
and the achievements of the most recent and current missions, the fundamentals of
spaceflight mechanics and especially of the gravitational theory, as applied in geodesy,
were presented in Chapter 2. The different representations of the gravitational and
gravity field were derived and exemplary presented. Being the main focus of this
thesis, the GRACE mission, its measurement principles and its instrumentation were
elaborated in Chapter 3. The available science data from GRACE were introduced and
some inconsistencies highlighted, which need to be considered in the GFR processing.

The theory of dynamic POD and GFR in terms of the classical, variational-equation
approach was described and derived in detail in Chapter 4. The parallelization and
combination of different observations with different accuracies was emphasized, as both
are indispensable for GRACE GFR processing. Also the automatic weighting scheme
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by Variance Component Estimation (VCE) was elaborated in this sense. The intention
of this rather comprehensive chapter is also to serve as a theoretical reference for the
implemented GFR and POD software.

In Chapter 5, dealing with the simulation background, first the implemented numerical
integration, substantial for GFR and POD and of cause for the satellite simulation,
was evaluated. Different explicit integration methods and options were compared with
the use of an arbitrary precision arithmetic implementation of the code. On the one
hand side this allowed to assess the general limitations of the usually used double data
type for orbit propagation, as well as to assess the accuracy of the solutions and the
efficiency of the numerical integrators. The ABM multistep integrator performed best
in terms of overall achievable precision and by far in terms of efficiency.

Subsequently the developed non-gravitational force modeling was described in detail.
As for Chapter 4, the thorough description of the models aims to serve as a reference
for the generic implementation of the models in the software, which is applicable to all
kind of satellites and missions.

The simulation of a GRACE-like gravimetry mission was described in Chapter 6. At
first, the focus was on the validation of the utilized non-gravitational force models for the
GRACE mission. These are indispensable for the generation of simulated accelerometer
data, but furthermore, were used for the validation of the GRACE accelerometer
data and its calibration. The comparison of modeled and measured non-gravitational
accelerations showed a very good accordance for the cross-track and radial directions,
which are barely affected by atmospheric drag. The along-track direction exhibit bigger
differences, mainly due to deficiencies in the thermosperic density modeling.

Secondly, an attitude control scheme for the simulated GRACE satellites was imple-
mented considering magnetic torquer and attitude thruster actuator models. Comparable
characteristics to the GRACE data were obtained. An optimized attitude control scheme
for GRACE-FO or future Next-Generation-Gravity-Missions (NGGM) was developed
as well, but not explicitly used in this thesis.

For the generation of simulated measurement data, equivalent to GRACE L1B data,
models of the instruments were introduced in the third part of the chapter. Different
models for the KBR and ACC sensors were introduced to investigate the sensitivity of
different noise characteristics on the GFR processing and solutions. The influence of the
thruster firings on the accelerometers were modeled with the data from the simulated
attitude control. Furthermore, different methods of generating the satellite’s attitude
solution (SCA) from the erroneous star camera observations were analyzed.

In Chapter 7, finally the GRACE GFR processing was investigated. The investigation
revealed a high sensitivity of the solutions towards the weighting and parametrization,
especially to the arc length and accelerometer calibration parameters. The partly
contradictory parameter choices are also dependent on the epoch and the results differ
for different months. Especially for the months with worse data quality, a relatively high
weighting of the KBR inter-satellite range-rate observations was mandatory to obtain
reasonable results. The automatic VCE weighting approach did not work well for the
real data processing because the orbit solution, in terms of GNV or KOS 3d-positions,
was relatively weighted too strong. This problem had be encountered before by other
processing centers, for instance at CSR. Nevertheless, the relative weighting of o4 = 0.02
m and o = le-8 m/s for GNV and KBR observations, respectively turned out to
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be optimal for nearly all investigated epochs. The analysis of the post-fit deviations
and residuals showed that the changing data quality over time would benefit from an
additional arc-wise weighting of the observation data.

The aforementioned and utilized optimal weighting resulted in the best overall
gravitational field solutions. Nevertheless, the detailed analysis of the accelerometer
calibration revealed that the co-estimated accelerometer calibration is far from being best
for this weighting and parametrization. Anyway, the physically completely unrealistic
calibration resulted in the best overall gravitational field solutions, leading to the second
crucial processing choice, the parametrization. For all cases a bias plus drift calibration
was found to be advantageous compared to just bias calibration. Together with the rather
short arc lengths between 2 to 3 hours, the best results in terms of gravitational field
were obtained. The resulting high errors of the calibrated non-gravitational accelerations
were found not to influence the resulting gravitational field much, especially not the
higher degrees, as long as the mean error was small and the frequency, hence the arc
length, was not too small.

These effects could be verified with the closed loop GFR simulation approach, where
the true values for all data are always known as reference. Together with the analysis of
the range-rate deviations, it was shown that the solutions are especially sensitive to
higher non-gravitational acceleration errors in a mid frequency range between around
1073 to 107° Hz. The lower frequency errors or noise is mainly affecting the lower
degrees of the gravitational field solutions.

The estimated calibration was compared for the whole year 2006 with the calibra-
tion based on the precise non-gravitational force modeling and the calibration from
POD, as used for the data pre-processing. Besides the high variations between the
different arcs, the median filtered long term trend of the GFR calibration showed a
distinct deviation from the other two calibrations, which are much closer together. The
POD calibration accords very well with the references investigated in Woske et al. (2019).

The processing of the GRACE data over one year revealed that the KBR and
GNYV deviations or residuals exhibited some longer time scale trends, which lead to
the conclusion that the data quality of the observations is varying. The May 2006
solution, with the best quality, showed especially smooth GNV deviations, while for the
slightly worse months, clearly a trend in the GNV deviations was visible. This might
be an indication for the reason of different solution qualities for the different months.
Furthermore it demonstrated that an automatic, arc dependent weighting might be
advantageous.

No significant difference could be detected in the solutions when using the dynamic
orbit solution (GNV), given with the L1B data, or a kinematic orbit solution (KOS),
where the available TU Graz solution was utilized.

It was found that a crucial step to obtain reasonable results for most of the months is
a pre-processing of the KBR data. After gaps in the data, the instrument might exhibit a
phase shift and the measurement time series is not continuous. Furthermore, after these
jumps the data quality may be drastically worsen for up to one day. These jumps are not
detectable in the data itself because the overall variation is orders of magnitude bigger.
Also in the post-fit deviations or residuals of the GFR it is not detectable, because the
estimated gravitational field and parameters are estimated towards the erroneous data.
With the POD for both satellites simultaneously, including the KBR measurement as
observation, reveals these jumps and the high errors in the KBR residuals. This detection
and the subsequent rejection of the affected arcs was a crucial requirement to obtain
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reasonable results for most months and hence the annual hydrological gravitational
signal. This problem demonstrates the benefit of an arc dependent weighting approach,
as well.

The precise non-gravitational force modeling was also utilized for GRACE GFR
processing instead of using the measured accelerometer data to validate its capabilities.
The results were about one order of magnitude worse than the reference solutions with
the accelerometer measurements. The reasons were identified to be the drag modeling,
where the thermospheric density is uncertain and the applied drag model is not detailed
enough. Furthermore, the sensed disturbances due to the attitude thruster firings, which
are detected by the accelerometer, but not included in the modeled non-gravitational
accelerations were identified to be crucial. The simulation analysis illuminated the
immense effect of erroneous thruster peaks for the GFR processing.

The analysis of the closed loop GFR simulation was presented in Chapter 8. First,
the general GFR processing options, mainly weighting and parametrization, as done for
the GRACE data processing, were analyzed. Subsequently the sensitivity of the GFR
solutions to the different sensors, observations and noise models was investigated.

In contrast to the GRACE data, the automatic VCE weighting approach turned out
to work perfectly. Actually the VCE solution was always among the best, independent
of all processing choices and sensor models. This raised the question why it did not
work for the GRACE processing. It was concluded that most probably the changing
data quality over time and outliers in the KBR data are crucial and would need to be
considered. Furthermore, the effect of the non white noise of the GNV data is estimated
too small and its weighting would need to be decreased manually.

The analysis demonstrated that the weighting of the KBR range-rate is a combined
measure of the KBR and ACC data accuracy, as both measurements couple in the
range-rate residuals. Therefore the optimal weighting is dependent on both measurement
accuracies and hence also on the ACC calibration. Thus the applied accelerometer noise
models influence the optimal weighting, as well.

Accelerometer noise models with different noise characteristics in the lower frequency
band and high frequency noise were investigated. Therefore, models from the literature
and adapted models were considered. With the comparisons of investigations without
accelerometer noise and different calibrations, it was found, that the high frequency noise
is not that much the limiting factor for the GFR solutions as the mid frequency noise.
While the very low noise frequencies are not that decisive for the higher gravitational
field degrees, and the low frequency noise may be compensated by an appropriate
calibration strategy, it is hard to cancel out the mid frequency noise by calibration. This
frequency band contains main parts of the significant gravitational signal and thus is
limiting the obtainable precision, decisively.

The known sensitivity of the GFR solutions towards the three accelerometer axes
could be confirmed by the simulation. The GFR solution is much more sensitive to the
along-track and radial axes than to the cross-track axis, where a much higher noise
level could be tolerated. Furthermore, errors in the accelerometer scale factor were
found to strongly affect the GFR solutions, as well. This confirms the findings from the
GRACE processing, where predefined constant values were used. Thus, this encourages
the development of a stable estimation approach of accelerometer scale factors.
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The lower degrees of the gravitational field and the accelerometer calibration are highly
dependent on the precision of the orbit solution in form of GNV or KOS observation
data. The analysis with different GNV noise levels revealed a distinctly improved
accelerometer calibration with decreased GNV noise, but which did not have a strong
influence on the higher degrees of the estimated gravitational field, as also mentioned
before. The very low degree coefficients profit from an increased GNV measurement
accuracy.

The attitude solution (SCA), mainly based on the star cameras, is needed to relate
the accelerometer measurement to the inertial frame. Different methods to obtain the
SCA solution based on a model of the star camera noise characteristic were investigated.
It was found, that GFR solutions using SCA data based on the combination of the two
star cameras were barely affected by the characteristic star camera error. However, the
use of the data from just one star camera had a negative effect on the GFR solution.
The introduction of a small star camera misalignment completely changed that picture
and the GFR solution was significantly worsened by about an order of magnitude. Thus
a proper calibration in the L1B SCA processing is crucial.

9.2 QOutlook

As the aim of the the presented work was twofold, split into the GRACE GFR processing
and the closed loop GFR simulation, its applications and future expansions are so, as
well.

Beginning with the GRACE processing, the analysis has shown that the data quality
of GNV and KBR data varies over the time, causing some problems in the current
processing and may be limiting the overall precision for some months. Therefore an
additional arc wise weighting, using the VCE approach, could be additionally imple-
mented. Furthermore, the local estimation of accelerometer calibration parameters could
be enhanced by a condition that the beginning and end points of adjacent arcs need
to coincide. This would require that the accelerometer calibration is partly a global
estimation parameter, but which would not be a general problem in the implemented
framework. The consideration of the KBR range-rate noise characteristic could be
considered in the processing in terms of an observation covariance analysis, resulting in
a complete weighting matrix.

The results concerning the GFR sensitivity with respect to different senors and
processing choices may be used for the improvement of the existing GFR processing
strategies, but furthermore for the development of new concepts. Leading to the most
prominent application of the GFR simulation: Studies for future gravimetry missions,
referred to NGGM, which we already began (eg. Punke, 2019; Woske and Rievers, 2021).
After the GRACE-FO mission no definite plan exists how to continue the gravimetric
time series of Earth observation, yet. The closed loop simulation offers the possibility
to assess new ideas and measurement concepts to mitigate the problems of the GRACE
concept, which were also demonstrated in this thesis. These studies do not necessarily
need to aim for a short term implementation, as the main research focus is on right now,
but may also guide the path for future developments. With the upcoming development
of quantum technologies and the ongoing progress in laser technology and instrument
development, like already flight proven instruments on GRACE-FO (Abich et al., 2019)
and LISA Pathfinder (Armano et al., 2018), improved instruments for gravimetry are
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feasible. To exploit their full potential, optimized mission scenarios with respect to
these sensor characteristics, as well as processing and modeling strategies need to be
investigated. Furthermore, in regard of recent developments in the satellite sector, this
may also include applications with swarms of much smaller satellites or the combination
and joint use of data from commercial satellites, which may also carry some additional
sensors for gravimetry. This is partly anticipated in the new Collaborative Research
Center (CRC) "TerraQ - Relativistic and Quantum-Based Geodesy" where the developed
software and tools, as well as the gained expertise of this work will be applied.

Although the simulation approach is already quite realistic, some aspects could be
included in the future. First, this would be a model of the non-tidal time varying
gravitational signals due to hydrology, ice, and solid Earth (usually referred to as HIS).
Furthermore, an error in the applied background models could be implemented in the
GFR processing to model the effect that the applied models are not perfect. Especially
the ocean tide model is a source of dealiasing errors in the GRACE processing.

The analysis of the GRACE GFR showed that the post-fit GNV and KOS deviations
were not exactly white noise, but contained some periodic signal. This might be incor-
porated in a more realistic noise model of an orbit solution. Maybe these improvements
could more clearly verify why the VCE approach did not work as good for the real
GRACE processing.

Finally, two applications of the high precision non-gravitational force modeling shall be
given. By the subtraction of modeled non-gravitational accelerations from accelerometer
data, except atmospheric drag, conclusions on the roughly known thermosperic density
can be drawn to enhance respective models. This idea is nearly as old as the GRACE
mission and improved since then. It will benefit from the more exact non-gravitational
force modeling and insights into the accelerometer calibration in this thesis.

A further utilization is with respect to GRACE-FO. The accelerometer on one
satellite was damaged and the crucial ACC data are currently estimated by a transplant
from the other satellite’s accelerometer. With a model based approach, including the
working accelerometer to calibrate the drag model and maybe a few other parameters,
the artificial ACC data might be improved. As discussed before, the consideration of
thruster spikes is crucial for such an approach, but this holds for the current transplant
method, too.
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