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1 Summary

The polar firn structure is investigated in terms of layering using high resolution den-

sity measurements of 19 firn cores and X-ray-microfocus-computer-tomography image

analysis of 6 surface firn cores. The impact of local climate conditions such as annual

mean temperature and accumulation rate on the generation, structure and evolution of

the layering is studied. We find at all sites a high variability in density and microstruc-

ture due to the layered character of the firn. The standard deviation of the measured

physical properties is used as a proxy to parameterize the layering and to compare the

degree of layering at different sites. Main results are:

1. The different sites can be distinguished by the degree of layering, i.e. variability in

density and microstructure. The variability in grain size increases with decreas-

ing annual mean temperature, accumulation rate and maximum temperature gra-

dient. Sites with lower accumulation rate and annual mean temperature show

higher variability and thus a higher degree in layering in the upper firn column

than sites with higher accumulation rate and annual mean temperature. This

means, that a site from the high East Antarctic Plateau can be expected to show

higher layering compared to sites from coastal regions of Antarctica.

2. The layers seem to be created randomly at the surface. In this study a seasonal

variability with constant frequency in density could not be detected within the

presented data. Possible reasons can be a high variation in accumulation rate,

that can superpose a seasonality in deposition, or large horizontal discontinuity,

which means, that a punctual firn core site would not capture all layers. However,
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with the data investigated in this study it can be hypothesized, that surface firn

stratigraphy does not show a seasonal layering.

3. The density variability is not continuously decreasing with depth, but shows a

rather rapid drop in the upper 10-20 meter depth, which is followed by a second

maximum in density variability. This leads to increased density variability at the

depth interval of the firn-ice-transition.

4. The frequency and amplitude of the density variability is changing with depth.

Even though there is no seasonal signature within the near-surface variability, in

the depth interval of the second density variability maximum, the density fluctua-

tions show a seasonal frequency at medium to high accumulation rate sites.

5. The density variability develops a correlation with the concentration of the calcium

ion with depth. At the surface no correlation is evident. At the depth-interval of

the second density variability maximum the calcium concentration and the density

variability show a remarkably high correlation. Together with the shift in frequency

of the density variability, this indicates an impact of (seasonal varying) impurities

on the densification of the firn.

6. The summary of the results 2-5 indicates, that the seasonal stratigraphy in ice

core records, which is assumed to be formed by a continuous deposition at the

surface and yields the basis of paleo-climate studies, is not necessarily formed

at the surface by depositional mechanisms, but by densification and snow meta-

morphism deeper down in the firn column, influenced by impurities.

7. The layering is displayed in the microstructure, but shows a very complex pattern

as the result of the combined effect of initial layering, sintering and short-term

changes in local climate conditions:

a) The layering is created randomly at the surface, initiating a certain combi-

nation of density and microstructure. Within each depth interval the layering



shows a linear correlation in density and grain size, so that the grain size

could be parameterized via density. The trend of this correlation however,

differs for the different sites and changes with depth.

b) The firn layers all undergo the rather gradual process of sintering - the in-

crease in density and grain size, which is determined by the accumulation

rate and annual mean temperature of a site. A long term trend in density

and grain size is observed, describing the densification and grain growth of

the firn with depth.

c) Short-term changes in local climate conditions, such as variations in ac-

cumulation rate or temperature gradient at the surface superpose the ini-

tial layering and the gradual sintering, by changes in the metamorphism of

the snow. Increased or decreased exposure to near surface temperature

gradients or wind-ventilation causes more or less coarsening or more or

less pronounced anisotropy within the structure. The coarsening leads to a

short-term increase in pore size or air permeability with depth until a maxi-

mum at 2-4 meter depths. This is observed especially at the firn cores from

low accumulation rate sites in Antarctica and at the firn core from the Green-

land site. Accordingly, the most coarsened structures in terms of pore size

can be expected at sites with low accumulation rate. These findings imply,

that ventilation of the uppermost firn layers can be expected to be largest at

low accumulation rate sites.

8. The combination of initial layering, sintering and coarsening at the surface in-

duces an overall diverse evolution of microstructure variability. The relations be-

tween density, microstructure and air transport properties are influenced by each

of these conditions very differently. Whereas the firn layer show a negative, lin-

ear trend in the density-grain-size relationship, the sintering shows a linear trend

as well. But the sintering shows a trend with opposite sign, and the coarsen-

ing shows a non-linear pattern, which is changing with depth. This leads to a



complex pattern of density-microstructure relationship. Therefore a simple pa-

rameterization of microstructural characteristics, such as specific surface area

and grain size, or air permeability, with density is not straight forward in polar firn.

9. Nevertheless the microstructure from these very different sites and very diverse

metamorphic states shows some surprisingly well defined relationships: the spe-

cific surface area of the firn samples, which can be determined by several meth-

ods, can be described bijective from the measured chord length (average inter-

section of the ice phase with a line). This strengthens the assumption, that optical

properties of snow and firn can be described by an effective radius of spheres,

showing the same specific surface area as the measured sample. For any appli-

cations where the effective ice-air-interface of the firn is important, (air-exchange,

chemical interactions, interactions with optical properties, microwaves), the easy-

to-measure-specific surface area is sufficient to obtain the effective radius of the

firn structure. This radius can easily be included into grain growth models or grain

size modeling from remote sensing surface observations such as the Moderate

resolution Imaging Spectroradiometer (MODIS).

Furthermore, a structure model index is calculated, which describes the relation

of curvature and surface of the firn. This index seems to be a well defined func-

tion of porosity for all investigated firn samples of this study. This indicates, that

despite the diverse pattern in original layered microstructure created at the sur-

face, sintering and coarsening, topological similar structures develop during the

whole firn metamorphism process.



2 Zusammenfassung

Die Struktur des polaren Firns als poröses geschichtetes Medium wird mit den Metho-

den der Gamma Absorption an 19 Firnkernen und bildgebenden Verfahren der Röntgen-

Computer-Tomography an 6 Firnkernen untersucht. Dabei wird insbesondere der Ein-

fluss der lokalen klimatischen Randbedingungen, wie Akkumulationsrate oder mittlere

Jahrestemperatur auf die Entstehung, Struktur und Entwicklung von Schichtung erkun-

det. Die Standardabweichung der gemessenen Dichte und Korngröße wird genutzt, um

die Schichtung zu parameterisieren und die Intensität der Schichtung an verschiedenen

Lokationen zu vergleichen. Hauptergebnisse dieser Studie sind:

1. Die verschiedenen Lokationen unterscheiden sich deutlich in der Schichtungs-

Ausprägung. Die Korngrößenvariabilität nimmt mit abnehmender Akkumulations-

rate und mittlerer Jahrestemperatur zu. Lokationen mit geringer Akkumulations-

rate und Jahresmitteltemperatur zeigen eine stärkere Schichtung in Dichte und

Korngröße als Lokationen mit höherer Akkumulationsrate und Jahresmitteltem-

peratur. Demnach kann man erwarten, dass Firnkerne vom Ost-Antarktischen

Plateau eine stärkere Schichtung aufzeigen, als Firnkerne von den Küsten-nahen

Gebieten.

2. Die Schichtung scheint ohne Systematik aus dem Zusammenspiel von Wind,

Temperatur, Sonneneinstrahlung und Schneefall an der Oberfläche zu entste-

hen. In den Daten der hier vorliegenden Studie konnte keine saisonale Fre-

quenz in der Dichtevariabilität detektiert werden. Mögliche Ursache dafür könnte

eine starke Variabilität in der Akkumulationsrate sein, die das Frequenzsignal ver-
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wischt. Weiterhin könnte die Tatsache, dass die Schichten eine große horizontale

Variabilität aufweisen, dazu führen, dass nicht alle lokal deponierten Schichten

mit einem Firnkern erfasst werden. Die hier vorliegenden Daten deuten aber da-

rauf hin, dass im Oberflächen-Firn einfach keine Saisonalität vorhanden ist und

die Schichten irregular deponiert werden.

3. Die Variabilität in der Dichte nimmt nicht einfach kontinuierlich mit der Tiefe ab.

Alle hier untersuchten Firnkerne zeigen vielmehr einen schnellen Abfall in der

Dichtevariabilität bis zu einer Tiefe von 10-20 Metern. Darunter nimmt die Vari-

abilität wieder zu und zeigt somit auch in Tiefen-Intervallen des Firn-Eis-Übergangs

deutlich erhöhte Amplituden.

4. Die Amplitude und Frequenz der Dichtevariabilität ändert sich mit der Tiefe. Ob-

wohl an der Oberfläche kein saisonales Signal detektiert wurde, zeigen Kerne

mit einer mittleren bis hohen Akkumulationsrate ein deutliches Signal in der Fre-

quenz der jeweiligen Akkumulationsrate in dem Tiefen-Intervall des zweiten Maxi-

mums der Dichtevariabilität.

5. Die Dichtevariabilität entwickelt eine Korrelation mit der Konzentration des Calcium-

Ions mit der Tiefe. An der Oberfläche gibt es keine detektierbare Korrelation.

In der Tiefe des zweiten Variabilitäts-Maximums ist eine signifikante Korrelation

zwischen der Dichte und der Calcium Konzentration zu finden. Zusammen mit

dem Herausbilden der Frequenz der Akkumulationsrate einer jeweiligen Lokation

deutet das darauf hin, dass die Verdichtung von Firn von Verunreinigungen, die

an der Oberfläche saisonal eingetragen werden, beeinflusst wird.

6. Zusammenfassend sind die Ergebnisse 2 -5 ein Hinweis darauf, dass die Saison-

alität in der Schichtung in Eis-Bohrkernen, nicht wie angenommen durch einen

kontinuierlichen Ablagerung von Material an der Oberfläche generiert wird. Vielmehr

lassen die Ergebnisse erkennen, dass die Saisonalität in der Schichtung durch

die Verdichtung und Metamorphose unter Einfluss von Verunreinigungen erst mit



der Tiefe ausgebildet wird.

7. Die Schichtung findet sich auch in der Mikrostruktur wieder, zeigt aber ein kom-

plexes Verhalten. Der Grund ist eine Überlagerung von ursprünglicher, an der

Oberfläche generierter Schichtung, Sinterung und kurzzeitigen Änderungen in

den lokalen klimatischen Randbedingungen:

a) Die Schichtung wird zufällig an der Oberfläche generiert, wodurch eine bes-

timmte Kombination von Dichte und Mikrostruktur festgelegt wird. Innerhalb

eines Tiefen-Intervalls zeigt die Variabilität der Schichtung eine lineare Ko-

rrelation zwischen Dichte und Korngröße, so dass die Korngröße über die

Dichte parameterisiert werden kann. Der Trend dieser Korrelation unter-

scheidet sich für die verschiedenen Lokationen und ändert sich mit der

Tiefe.

b) Alle Firnschichten unterliegen dem graduellen Sintern - das Ansteigen der

Dichte und der Korngröße mit der Tiefe, was durch lokale Akkumulations-

rate und Temperatur vorgegeben wird. Demnach kann ein langfristiger

Trend in Dichte und Korngröße beobachtet werden, der diese Verdichtung

und das Kornwachstum mit der Tiefe beschreibt. Dieser Trend, zeigt ein

positives Vorzeichen (zunehmende Dichte korrespondiert mit zunehmender

Korngröße), wohingegen der Trend innerhalb einzelner Tiefen-Intervalle ein

negatives Vorzeichen hat (hohe Dichte korrespondiert mit kleiner Korngröße

und umgekehrt).

c) Kurzfristige Änderungen der lokalen klimatischen Randbedingungen, wie

zum Beispiel Variationen der Akkumulationsrate, können die Schichtung

und das Sintern durch eine veränderte Metamorphose überprägen. Durch

erhöhte oder erniedrigte Exposition der Schichten in oberflächennahen Temperatur-

Gradienten (durch Änderungen der Akkumulationsrate), kann die Struktur

verstärkte oder abgeschwächte Vergröberung erfahren oder eine mehr oder

weniger stark ausgeprägte Anisotropie. Diese Veränderungen beeinflussen



immer mehrere Schichten gleichzeitig und verändern deren Struktur. Die

Vergröberung führt zu einem kurzfristigem Anstieg der Porengröße und Per-

meabilität mit der Tiefe zu Maxima in bis zu 2-4 Metern Tiefe. Das wurde vor

allem für die Lokation mit niedriger Akkumulationsrate in der Antarktis und

an dem einen Kern aus Grönland beobachtet. Die gröbsten und somit ver-

mutlich am höchsten permeablen Strukturen in den oberen Firnschichten

sind in den Niedrig-Akkumulationsgebieten der Antarktis und in Grönland

zu erwarten.

8. Die Kombination von anfänglicher Schichtung, Sinterung und verstärkter Meta-

morphose an der Oberfläche induziert eine vielfältige Entwicklung der Variabil-

ität der Mikrostruktur. Die Schichtung zeigt einen linearen Trend in Dichte und

Korngröße. Auch die Sinterung zeigt einen linearen Trend, mit umgekehrten

Vorzeichen. Änderungen in der oberflächennahen Metamorphose und somit in

dem Grad der Vergröberung sind nicht linear. Diese drei Prozesse führen zu

einem komplexen Verhältnis zwischen Dichte und Mikrostruktur. Aus diesem

Grund kann es im polaren Firn keine einfache, direkte Parametrisierung von

mikro-strukturellen Parametern wie spezifische Oberfläche, Korngröße oder Per-

meabilität geben.

9. Die Mikrostruktur der Firnkerne zeigt trotz der sehr unterschiedlichen Randbe-

dingungen einige überraschend eindeutige Beziehungen: Die spezifische Ober-

fläche, welche mit den unterschiedlichsten Methoden im Firn ermittelt werden

kann, kann ein-eindeutig anhand der mit dem Röntgen-Computer-Tomographen

gemessenen Chord-Länge beschrieben werden. Die Chord-Länge ist ein Maß

für die mittlere Ausdehnung der Eis-oder Porenphase in einer Richtung innerhalb

einer Probe. Dieses Ergebnis unterstützt die Annahme, dass optische Eigen-

schaften von Schnee und Firn mit einem effektiven Radius als Korngrößen-Parameter

beschrieben werden können. Der effektive Radius entspricht dem Radius von

gleichgroßen Kugeln in einer Matrix, die die selbe spezifische Oberfläche haben



wie die Firnprobe. Für alle Anwendungen, in denen die effektive Eis-Luft-Fläche

im Firn eine Rolle spielt (Luftaustausch, chemische Interaktion von Atmosphäre

und Schnee, optische Interaktionen, Mikrowellen), ist die recht einfach zu bes-

timmende spezifische Oberfläche ausreichend, um einen effektiven Radius als

Korngrößen-Parameter zu bestimmen. Dieser Radius kann wiederum in Kornwachstums-

Modellen oder Anwendungen zur Bestimmung der Korngröße aus der Fernerkun-

dung verwendet werden.

Weiterhin konnte ein Größen-invarianter Struktur-Parameter (Struktur-Modell-Index

SMI) berechnet werden, der die Beziehung zwischen Krümmung und Oberfläche

der Struktur beschreibt. Alle hier untersuchten Firnproben zeigen eine fast ein-

deutige Beziehung von Porosität und dem Struktur Model Index. Obgleich der

enormen Vielfalt der an der Oberfläche generierten Schichtung, der Sinterung

und dem Vergröbern, werden durch die Firn-Metamorphose überall topologisch

ähnliche Strukturen ausgebildet.
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4 Introduction and Objectives

4.1 Topic

This study deals with the internal structure and layering of polar firn. Snow, accumulat-

ing on top of the polar ice sheets, gradually compacts and sinters under its own weight

to form first firn and then ice. The polar firn composes the upper 60-120 meter of the

polar ice caps and is porous and permeable to the air (Figure 4.2). The firn column

shows an alternation of very different layers characterized by a large variety of physical

properties. These stratigraphic sequences are created at the surface by discontinuous

snow accumulation, wind, seasonal, diurnal or faster changes in weather conditions.

This results in layers of different particle composition with different grain size, shape,

density or air permeability, which can be visually distinguished (Figure 4.1, left hand

side). The stratigraphy of the firn is kept during the compaction and sintering and vis-

ible even within the ice core record (Figure 4.1 right hand side). The stratigraphy of a

site is supposed to reflect the local climate conditions of this site and it has been often

used as a dating tool in firn and ice core analysis.

In firn studies the processes of sintering, densification, coarsening and metamorphism

are often discussed with different meaning. In the following we use sintering as a de-

scription of a material process, where grain size and density increase (Kang 2005)

with depth of the firn column and time, as a function of the overload pressure due to

the layers permanently accumulated on top. Densification is used as the term for the

overall increase in density with depth from surface densities of snow of approximately
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Figure 4.1: Left: Snow pit at Summit Station, Greenland. The three meter deep snow

wall is illuminated by sun light through a second pit behind, so that the sin-

gle snow layers are visible, picture by Z. Courville, June 2008. Right: Line-

Scan of an ice core segment with transmitted light from 2700 m depth from

the Greenland ice core NGRIP, unpublished data, picture by S. Kipfstuhl



300-500 kg/m3 to the density of ice of 917 kg/m3. The densification rate differs with

accumulation rate and annual mean temperature at the different sites. Snow metamor-

phism is the umbrella term for the change of the snow structure after its deposition

on the ground. The snow grains immediately change their structure and form bonds.

A distinction is drawn between temperature gradient metamorphism, where enhanced

mass flow along the temperature gradient distinctively changes the snow structure, and

isothermal metamorphism, were the changes in the snow structure are driven by local

water vapor gradients due to differences in curvature. Coarsening indicates a sinter-

ing process under temperature gradients with a simultaneous increase in grain size

and pore size. The complete structure shifts from complex, small-scale structures to

smooth, large-scale structures. This is observed to happen in the upper few meters of

polar firn, due to temperature gradients altering the snow metamorphism.

4.2 Background

In many topics of polar research, the densification of the polar firn plays an important

role. The densification is closely linked to the layering of the firn, since the layering

induces a variability in density (Cuffey 2008). Research questions linked to density and

layering are the convection of the surface firn and the air permeability, the densification

of the firn at different sites and the entrapment of air bubbles into the ice as well as,

regarding remote sensing techniques, the interaction of electromagnetic waves with

the snow and firnpack.

The paleo-archive of polar ice sheets is unique as it directly records the atmospheric

composition in the air bubbles of the ice (Blunier & Schwander 2000). But the firn forms

a highly porous medium, where air convection and diffusion enable a distinct exchange

with the atmosphere down to depths of several 10s of meter. This leads to an age dif-

ference between the air bubbles entrapped and the surrounding ice (delta age). In the

uppermost part of the firn, the so called convection zone (Figure 4.2), the air is perma-

nently exchanging with the atmosphere by convection and has therefore atmospheric



concentrations in aerosols (Figure 4.2). Below the convection zone, in the firn column

with static air, gases mainly exchange by molecular diffusion and gravitational settling.

Here the air experiences fractionation (Figure 4.2). Taking two gas components with a

constant relationship in the atmosphere over time, any change in this relationship due

to fractionation in the firn column can be used to calculate the height of the static-air

firn column (Blunier & Schwander 2000) and thus estimate the close-off depth and the

age of the enclosed air. The extend of the diffusive zone determines the main part

of the age difference between ice and air bubbles. With fractionation models this age

difference can be modeled, if the extend of the diffusive zone and the depth of close-off

is known. The close-off depth is given as the sum of heights of the convection zone

and the static-air firn column. An unknown extend of the convection zone induces an

uncertainty in the close-off depth and therefore also in the calculation of the age differ-

ence of enclosed air and surrounding ice. Therefore measured data of the depth, until

air ventilation of the snow and firn is possible, are very important for estimation of the

delta age between ice and air bubbles in polar records.

The convection of the surface firn is possible due to the high air permeability of the

snow structure. Air permeability of firn has been measured at several sites (Albert et al.

2000, 2004, Rick & Albert 2004, Courville et al. 2007) and an increase with depth, until

a maximum at depths of 2-4 meter was found. Layering introduces a variability in the

permeability profile, and single impermeable layers can decrease the air exchange of

the whole underlying column, due to their specific microstructure. For example, wind-

or sun crusts can reduce the air permeability in the firn column, as well as wind packed

snow from storm events (Albert & Perron 2000). Thus the layering has a direct impact

on the firn ventilation and the extension of the convection zone in the surface firn.

During the densification process the air of the pore space disintegrates into single air

bubbles and encloses into the ice (Figure 4.2). The close-off depth is defined as the

depth, where a critical density is reached (Landais et al. 2006) and the air gets en-

closed (Figure 4.2), depending on the annual mean temperature of the site (Martinerie

et al. 1992). Firn models systematically fail in predicting the close-off in glacial times,



Figure 4.2: A scheme of a column from an ice sheet with the different depth intervals

of snow ( 0.1m), firn, bubbly ice and pure ice (left hand side and a scheme

of the upper approximately 100 meter of the ice sheet, representing the firn

column. The different stages of air transport processes and enclosure are

indicated.

because of the unknown extension of the convective zone and the poor estimation of

the depth, where first high-density layers interrupt upwards exchange with the atmo-

sphere - i.e. define the upper level of the so called lock-in zone, where the air enclosure

is started. Early sealing of gases by horizontal impermeable layers (Severinghaus &

Battle 2006), i.e. high density layers, can enhance fractionation, which alters the firn

gas measurements. At sites with a very high variability in density the high-density

layer close-off rather early, while other layers keep connected pores down to great



depths. Accordingly, a profound understanding of the layering and its evolution with

depth down to the firn-ice-transition is crucial when understanding the process of air

enclosure (Landais et al. 2006).

The densification of firn is usually described as a more or less continuous increase

in density in dependence of the annual mean temperature and accumulation rate of a

site (Herron & Langway 1980, Maeno & Ebinuma 1983, Arnaud et al. 2000, Goujon

et al. 2003). Often mean density values are obtained from the field and the physical

process of densification is connected to critical mean density and related microstructure

changes. However, the layering of the firn induces a tremendous variability into the high

resolution density profiles, and thus, defining a critical density and depth is actually not

straight forward. Single layers reach these critical densities at different depths and the

shift from one densification regime to another could be thought of a more or less gradual

transition or even a layer-specific process.

The layering in density is not only important for the understanding of the density evo-

lution with depth but also for the observation of the ice sheets with remote sensing

techniques. The estimation of ice-sheet volume variations is one of the goals of satel-

lite radar altimetry. The launch of the new satellite CryoSat2 in April 2010 has gained

much attention, since its orbit is designed such, that it will scan the polar regions with a

high time resolution, so that changes in ice sheet elevation can be detected seasonably

(www.cryosat.de). However, a major obstacle to the correct interpretation of the data

lies in the complex interaction with the reflecting snowpack (Legresy & Remy 1998,

Cuffey 2008). The signal is reflected at the layer interfaces and scattered at the ice

grains and matrix. Depending on the applied wavelengths the volume of interaction can

be several centimeters down to several 10s of meters deep. Layering and grain size

are supposed to play the most important roles in the backscatter behavior of electro-

magnetic waves (Rott et al. 1993, Surdyk & Fily 1993, Kärkäs et al. 2002). Analysis of

the data obtained from remote sensing often contains the correction of the measured

surface elevation by a density model of the upper firn column. The layering of the firn

is included in these models, since the surface density seems to vary through the year



and seasonal variations in the density profile need to be considered, when calculating

the elevation change.

For many applications the consideration of mean values, such as the one-meter mean

density, might be sufficient. Nevertheless, the problems of air transport properties, air

enclosure, densification and interpretation of remote sensing data cannot be solved

without considering the stratigraphic layering of the firn. The ongoing improvement in

measurement techniques and resolution enables a faster and more detailed observa-

tion of the polar firn structure (Marshall et al. 2007, Pielmeier & Schneebeli 2003). The

integration of the variability into models is still a challenge. Parameterizing the variabil-

ity in physical properties of the firn will improve the understanding and description of the

firn structure and thus increase the scientific gain in both - the monitoring of the actual

changes of the ice sheets as well as the interpretation of results from ice core records.

4.3 Main questions

Many detailed snow pit studies of layering are available from locally restricted areas.

However, due to different methods applied and individual description and definition of

layers or grain size, a comparative analysis is difficult to access. A systematic study is

missing as well as a comparable objective measure of layering. Some of the main open

questions are:

A What is layering? How to parameterize it?

B How is layering generated?

C How is layering evolving with depth and transferred to the firn-ice-transition?

D How is layering displayed in the microstructure and air permeability? Is there an

explicit link between density and microstructure?

E Does variability differ for different sites? What is the impact of local climate on the



microstructure? Is there a regional variability, which is detectable with remote

sensing, i.e. what creates the observed regions of similar backscatter behavior?

This study aims to start answering these questions and to give a contribution to the

overall picture of polar firn structure and densification.

4.4 State of the art

In many snow pit studies the different layers are described by their visual appearance,

which is mainly determined by grain size and density. Sequences of layers with a char-

acteristic alternation of physical properties are often considered as annual deposition

(Gow 1965, Palais J. M. 1982, Davis et al. 1996, Zwally & Jun 2002). High density lay-

ers are usually associated with winter deposition, whereas low density layers are often

correlated to summer deposition (Gow 1965, Benson 1971, Alley 1988, Landais et al.

2006, Severinghaus & Battle 2006). The seasonal variability is linked to seasonally

varying values in ion concentration or isotopic properties of the firn layers (Kreutz et al.

1999).

Alternating high and low density layers are created at the surface, reduce in ampli-

tude with depth (Jun & Zwally 2002, Zwally & Jun 2002) and can still be distinguished

at the depth of the firn ice transition. Higher-density winter layers become imperme-

able before lower-density summer layers (Martinerie et al. 1992, Landais et al. 2006,

Severinghaus & Battle 2006). The layering is not only displayed in density but also in

microstructure and air permeability. Quite often large grained firn layers are observed

as low density and high permeability layers and vice versa. So with alternating density,

these parameters also alternate in the firn column (Nakaya & Kuroiwa 1970). It is a

common assumption, that these relationships, developed at the very surface of the ice

sheet, are kept and transferred down to the firn-ice-transition. Any change in surface

pattern due to accumulation rate changes, weather conditions or temperature will be

directly transferred to the firn-ice-transition and stored in the ice, presuming they are



displayed in the layering of the firn.

Different local climate conditions will result in a different firn structure and layering. It

is hypothesized that sites with high accumulation rate show a high variability in density,

thus a more pronounced layering, since every single layer is buried rather fast under

new snow accumulation. Moreover these sites are supposed to show no convection

zone but a rather extended zone at the firn-ice-transition, were single layers are imper-

meable, while others are still open (Landais et al. 2006). Sites with low accumulation

show no variability in density, because of vanished layering, a convective zone and het-

erogenous firn-ice-transition (Kawamura et al. 2006). The common idea is, that at low

accumulation sites, the originally created stratigraphy will vanish. Due to the long expo-

sure time at the surface, any difference in the layers will disappear and the firn shows a

more or less homogenous structure. This in turn will result in less variability in density

at the firn-ice-transition.

These different structures in layering and microstructure result in very different backscat-

ter behavior of the firn column (Rott et al. 1993, Surdyk & Fily 1993). Satellite remote

sensing can be used to study the firn structure on a much larger scale than ground

based measurements would allow. Regions of similar backscatter were summarized to

snow classes, which are supposed to show a similar structure (Rotschky et al. 2006,

Tran et al. 2008). These snow class regions, display very well the known accumulation

rate and temperature distributions as well as elevation and wind pattern. Accordingly,

the firn structure is influenced by these local climate conditions differently at the various

sites.

The summarized state of the art concerning the above stated questions (paragraph 4.3)

is:

A Layering is displayed in the different physical properties of the firn, such as den-

sity and microstructure (Gow 1965, Benson 1971, Rundle 1971, Alley 1988), but

published data are either restricted to a single site or lack objective and repro-

ducible parameter for comparison. A comparative data base is missing and thus



a parameterization of the layering, with assimilable proxies, is still lacking.

B The layering is thought to be created at the surface due to seasonal varying snow

deposition. At some sites winter deposition is reported to show high density and

small grains, whereas summer deposition shows low density and large grains. At

other sites this relation has been observed the other way around. All together

the common assumption prevails, that a seasonal sequence of layers is created

every year, which can be used to date the firn core (Martinerie et al. 1992, Jun

& Zwally 2002, Li & Zwally 2004, Severinghaus & Battle 2006). However, reports

of seasonality in snow pits from different sites are inconsistent and some stud-

ies on correlation of visible stratigraphy, seasonal varying ion chemistry, isotope

measurements (Stenberg et al. 1999, Karlöf et al. 2006) question the image of a

generalized annually resolved deposition history displayed in the stratigraphy of

the firn.

C This structure of layering is kept during densification down to the firn-ice-transition.

The amplitude of density variability is assumed to slowly decrease, until the den-

sity of ice is reached (Jun & Zwally 2002, Zwally & Jun 2002, Li & Zwally 2004,

Landais et al. 2006). Nonetheless, first measurements with high resolution den-

sity data show a more complicated picture, either with increasing density vari-

ability (Gerland et al. 1999, Freitag et al. 2004) or with a change in correlation of

density and backscatter behavior (Hawley & Morris 2006). Again a scarce data

base is given to verify, whether these findings are the result of singular char-

acteristics of the specific sites or if they indicate a more global behavior of firn

densification.

D Layering is displayed in both - density and microstructure. At a single site grain

size is linked to density. And as the density changes trough the seasons, the

grain size does as well. This relation is kept and stored into the ice. Not many

comparable data are available until now. From first measurements of grain size



and density of near surface samples and samples near the firn-ice-transition, a

change in the relationship of grain size and density has been reported (Freitag

et al. 2004, Fujita et al. 2009).

E High accumulation sites are expected to show high degrees of layering with large

variability in density and low accumulation sites are expected to show low to zero

degree in layering and only small variability in density or microstructure (Kawa-

mura et al. 2006, Landais et al. 2006). However, no data are available to prove

this, neither the variability of different sites at the surface nor at depths of the

firn-ice-transition, where this difference in layering is supposed to influence the

air enclosure, have been systematically investigated so far.

Not only the scarce data but also the contradictory observations as well as unexpected

findings from sporadic high resolution data motivate this study. The aim is to generate

a comparative data set, where the layering from surface down to the firn-ice-transition

at different sites can be investigated.





5 Methods

5.1 Literature survey

Publications from the last 50 years were collected in order to summarize available ob-

servations of firn stratigraphy on the Antarctic ice sheet. The sites were collected in a

data base and information about the occurrence of layering, hiatus or depth hoar were

noted. Sometimes no layering was detected, sometimes seasonal sequences of layers

were recorded. The results of this survey were plotted on a map, using ArcGis, in order

to identify specific regions, probably in dependence on elevation, accumulation rate,

wind field or annual mean temperature (Figure 6.8).

5.2 Firn cores

The studied firn cores cover a broad range in annual mean temperature and accumu-

lation rate (Figure 5.1).

Firn cores from the Greenland ice sheet are all situated on the plateau, but differ dis-

tinctively in accumulation rate and temperature. The Antarctic firn cores originate not

only from different sites of the plateau but also from coastal regions, such as B25 from

Berkner Island or the PreIPICS cores B38, B39, DML95 and DML97 from near coastal

Dronning Maud Land. With this collection of firn cores a very broad representation of

firn structure and properties should be accessible. The two extreme sites are the B38

firn core with highest annual mean temperature of -18.1 °C and unusually high accumu-

lation rate of 1.25 meter w.e. per year. The lower end in accumulation rate and annual
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Figure 5.1: The annual mean temperature and accumulation rate of the studied firn

core sites. Crosses mark positions, were temperature and accumulation rate

was determined from measurements. Closed diamonds mark sites, were

either the temperature or the accumulation rate was estimated from either

nearby sites (DP7, B33) or from MODIS data (HD). At all firn cores high

resolution density measurements were conducted, red circles mark firn core

sites were additionally CT measurements were conducted.

mean temperature is represented by the Dome C area with -53 °C and 0.025 meter

w.e. per year respectively. A detailed list of firn cores is shown in Table 1 of publication

1 and 2 for density measurements and Table 1 of publication 3 for CT-measurements,

respectively.

5.3 High resolution gamma absorption method

High resolution density profiles, with a vertical resolution from 1 to 5 mm, were ana-

lyzed. Most firn core profiles of density raw data were available from previous mea-

surement campaigns. To extend the range of local climate conditions, 8 firn cores were

measured within this project. These are the EDC2 core and the FireTrack (FT) firn

core from the Antarctic Dome C site, 4 firn cores from coastal Dronning Maud Land,



Antarctica (PreIPICS), the B36 firn core as the upwards extension of a previously mea-

sured firn core B37 near Kohnen Station in Dronning Maud Land, Antarctica, and the

approximately 15 meter long firn core from site Depot700, provided by the Norwegian-

American Troll-South-Pole traverse in 2007-2008.

Figure 5.2: Measurement of high resolution density using gamma absorption method.

Density is measured by a non-destructive gamma-absorption method. The measured

intensity of the attenuated gamma-beam trough the ice (Figure 5.2) is transferred into

a density signal using Beer’s law and the known mass absorption coefficient of ice, the

intensity of the beam in air and the diameter of the firn core (Wilhelms 1996, 2000). The

data are corrected for breaks and core catcher marks by linearly removing the outlier

and interpolating over the gap.

5.3.1 Missing layers

The high resolution density measurement method enables a detailed study of the lay-

ered structure of the firn. However, in order to include all densities, occurring at a site,

into the statistical analysis, all layers need to be captured in the measured firn core. But

often firn cores break during the drilling procedure and also later, during the handling

of the firn core pieces. Even more in many cases the upper 5-6 meter of firn core sites



are not sampled, due to the fragile texture of near surface firn. It is especially the low

density layers, which consist of very loose snow and show a weak strength. During the

processing of the density raw data, depth intervals, which show breaks or somehow

disturbed data, are removed and interpolated. Therefore, low density layers might be

underrepresented within the density analysis.

5.4 Permeability measurements

Permeability measurements were conducted using the device designed by the Cold

Regions Research and Engineering Laboratory (Albert et al. 2000), based on Shimizu

(1970). A flexible rubber membrane is inflated around the core sample to create an

air-tight seal. Pressure and flow rates are measured through the sample. Ten mea-

surements at incremental flow rates are conducted and it is ensured, that the pressure

versus flow rate follows Darcy’s law and is linear (Albert et al. 2000, Courville et al.

2007). Permeability was measured at two firn cores, the Hercules Dome firn core and

the Depot 700 firn core, in cooperation with Dr. Zoe Courville, from the Cold Region

Research and Engineering Laboratory, USA.

5.5 X-ray-microfocus-computer-tomography (CT)

The microstructure of firn samples was measured at -25°C using a SkyScan 1074 X-

ray-microfocus-computer-tomography-Scanner with a polychromatic X-ray beam with

40 kV and 1000 μA (Figure 5.3). The complete upper 1-2 m of each firn core, if avail-

able, were sampled. Otherwise approximately 40 cm were sampled every meter. From

each depth interval firn core pieces are cut into 2.5 cm thick slices. From each slice a

cylindric sample with a diameter of 2 cm is drilled with a bore hole saw. The sample is

placed on a moveable turntable between X-ray-source and detector. During the scan-

ning procedure the table rotates at intervals of 0.9°. A set of 400 shadow images is

captured while the rotation completes a circle. With a digital convolution algorithm the



shadow images are transformed into a series of horizontal cross-section images which

represent the 3-D structure of the firn sample, based on the locally different absorption

of X-rays.

Figure 5.3: The Computer-Tomograph is operated in the cold room. Snow samples are

placed on a table inside the tomograph. At every rotation step a shadow

image is taken.

The resolution of the reconstructed images is 40 μm for the firn cores B26, B36, DP7,

FT and HD and 15.7 μm for the firn core B38.

The X-ray-microfocus-computer-tomography-measurements deliver a coarser resolu-

tion than the density measurements. Values are averaged over a volume (vertical

depth) of 1.6 cm side length. Further more discontinuous samples are taken, which

restrict the amount of layers considered in each depth-interval.

5.6 Microstructural analysis using MAVI

The 3D analysis software MAVI was developed by the Fraunhofer Institute for the image

analysis of 3D computer-tomography images. The grey value image stack is loaded

into the software. For image analysis the samples are cropped to a cube of 1.6 x 1.6



x 1.6 cm side length (400 x 400 x 400 voxels). After applying a 3 x 3 x 3 median

filter, the image is separated in voxels representing solid ice or air-filled voids. For

this segmentation a global threshold value is determined from the bimodal grey-value

histograms. Air and ice have a large difference in X-ray absorption and the mean grey

levels of ice and air differ by as much as 100 units. Therefore a clear separation of the

pore and ice phase is given, even though the global threshold offers a rather simple

method of segmentation (Figure 5.4). On the resulting binarized 3-D image an object

filter is applied, removing all voxels adding less than 1 % to the volume fraction of each

phase.

Figure 5.4: Image processing procedure: the cylindric sample is cropped to a cube (a)

and binarized (b). The final image represents the complete 3D structure of

the firn sample (c), 3-D image from Hercules Dome as an example, white:

air space, voids: ice grains

More than 1400 binarized volume images were analyzed in the frame of this study for

microstructural properties. Here the term microstructure is restricted to the following

properties:

SSA The (optical) specific surface area is a measure of the size of the ice-air-interface

in relation to the sample mass. It can also be obtained by other methods and

therefore compared to observations in literature. Within this study it could be

proved, that a bijective relationship between the size of the ice phase in terms of

chord length and the surface area exists (Publication 3).



Re f f In order to assure a comparative measure of firn structure the optical specific

surface area was calculated, which represents the ice-air interface accessible to

gases per unit mass. From that the effective radius Re f f can be determined. It

represents the radius of equal sized spheres with a similar specific surface area

as the firn structure. With the firn samples from this study it is shown, that the

representation of the firn structure by spheres is sufficient enough to describe

the air-ice-interface accessible to gases or interaction with microwaves (Publica-

tion 3). This effective radius is taken as a measure of grain size, which can be

obtained from several methods in the field and in the lab and thus can easily be

compared to other measurements or used within grain size models (Publication

3). In the following the term grain size is always related to the effective radius.

lpore The pore chord length lpore (as well as grain chord length) is a measure of the

average intersection lengths of a line with the air (or ice) phase. It can be de-

termined for different directions. The chord length could be used as a grain size

parameter, but in this study the grain chord length is explicitly not used as grain

size parameter, but the above described effective radius.

anisotropy The anisotropy is calculated by the ratio of the fraction of surface normal vectors

pointing into the horizontal direction and the fraction of surface normal vectors

pointing into the vertical direction. If the ratio has values lower than one, more

surface normal vectors point into the vertical section, i.e. the structure is horizon-

tally elongated. A value of one indicates isotropic structures and values larger

than one vertically elongated structures, i.e. vertical anisotropy (Publication 4).

SMI A size independent structure model index SMI has been developed in previous

studies in order to compare structures, that are sufficiently similar like the ice

phase from different depths in the firn column. It has been used in experiments

with temperature gradient and equi-temperature metamorphism setups (Schnee-

beli & Sokratov 2004, Kaempfer & Schneebeli 2007). The index is determined by



the curvature of the ice phase and the surface area in relation to the volume of the

firn. It enables a size independent comparison of structures and their curvatures

(Ohser et al. 2009). Positive values indicate convex surfaces such as single ice

grains. Values around 4 are obtained by spherical structures, values of 3 indicate

cylindrical structures and values around zero represent flat surfaces (Ohser et al.

2009, Schneebeli & Sokratov 2004). Negative values indicate concave surfaces,

the numbers equal in their meaning concerning the shape (i.e. -4, spherical en-

closure, -3 cylindrical enclosure), but the sign of curvature is reversed.



6 Results and Discussion

6.1 Parameter of layering

The different layers of the firn column induce a variability in density. This is visualized by

a light table image and the corresponding high resolution density profile (Figure 6.1).

The light source is below the firn core piece. Layers with high density absorb more

light and appear dark, layers with low density absorb less light and appear bright. The

scattering of light is larger at layers with large grains and smaller at layers with fine-

grained firn. The different appearance in brightness corresponds to different densities

and grain sizes (Figure 6.1).

In order to parameterize this layering induced variability in the density profile, the mean

density is subtracted from the measured density (Figure 6.2 a). From the residual signal

the running mean of a sliding window of 1 meter length and the standard deviation of the

mean (Figure 6.2 b) are calculated. This standard deviation is taken as the measure

of variability in density due to the layering of the firn. In the following this standard

deviation is used to study how the variability, and thus the layering, behaves with depth

(Publication 1 and 2) and how it varies at different sites (Publication 1 and 3).

The layered induced variability is not only displayed in density but also in the microstruc-

ture. The CT measurements are conducted with a coarser resolution, nevertheless the

variability is captured well (Figure 6.3 a and b, example from FT firn core). The den-

sity obtained from CT-measurements follows the fluctuation in density obtained with the

gamma absorption method. This variability is displayed in the microstructure, such as is
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Figure 6.1: A 55 cm long firn core piece of the EDC firn core from 6.6 meter depth on

a light table together with the high resolution density profile. Dark areas

represent fine grained firn with high density values, bright areas coarse

grained firn with low density values. The layering induces a variability in

density.

the grain size, as well. In order to parameterize the variability in the microstructure, the

mean and standard deviation of every depth interval was calculated (Figure 6.3 c). This

means, that every set of samples from a one meter firn core piece (in most cases 16

samples) is considered as one depth interval. From this set the mean and the standard

deviation are calculated (Figure 6.3 c). This standard deviation is taken as a parameter

for the layering induced variability of the microstructure (Figure 6.3 d). It can be taken

to compare the variability at different sites.



Figure 6.2: Detail from high resolution density profile (a) and the residual density af-

ter removing mean (b). The mean is subtracted from the measured profile.

From the residual density the mean and the standard deviation are calcu-

lated with a sliding window.



Figure 6.3: FT: High resolution density from gamma absorption method (a, grey line)

together with the density values obtained by micro-CT (a, black crosse).

The CT -measurements display the variability in density and microstruc-

ture due to the layering. Grain size shows large variability (b). The mean

and the standard deviation sd of each depth interval is calculated (c) and

can be used to compare variability at different sites (d).

The variability in microstructure within the different layers is visible in all parameters

obtained by 3D analysis. Each layer shows a distinct combination of microstructural pa-

rameters, and each depth interval is characterized by different range in the microstruc-



ture properties. Especially grain size (here the effective radius) or specific surface area

display the layering in their variability in the same manner as density. Sites showing a

high density variability also show a high variability in grain size and vice versa. Parame-

ters like pore chord length or anisotropy (Figure 6.4) display not only the variability due

to layering but also the variability as the result of coarsening and densification.

Figure 6.4: The standard deviation sd of density, effective radius, pore chord length,

specific surface area ssa, density and anisotropy of the depth intervals at

the B 26 site in Greenland obtained by CT-analysis.

Contribution Topic A: The different snow layers created at a site by single deposition

events compose an inhomogeneous firn structure. The polar firn consists of single lay-

ers, each characterized by specific density and microstructure. As reported in literature

density and grain size are the most clear and pronounced parameters, in which the

layers differ significantly and which can be used to quantify the variability. This layer-

ing can be parameterized by the standard deviation of physical parameters of the firn

layers, such as density or grain size (Publication 1 and 3).



6.2 Generation of layering

In order to test the common assumption, that the layering at the surface displays the

alternating deposition of annual accumulation, the apparent frequencies in the density

variability were investigated. For that the meter depth scale was transferred to meter

water-equivalent depth. This removes the effect of thinning and enables a comparison

of layers from different depth and sites. It also means, that if there is a seasonal fre-

quency in the density variability, the frequency analysis should reveal a distinct peak in

the frequency of the accumulation rate, because of the repetition of sequences of layers

every year. For all 17 firn cores with high resolution density measurements reaching

the depth-interval of the firn-ice-transition, this investigation in the frequency domain

was conducted (Publication 2). In most cases we do not find a clear signature in ac-

cumulation rate frequency in the surface density variability, but a rather broad range in

apparent frequencies. It seems, that with the high resolution density data a seasonal

alternation of layers can not be detected. The layers seem to be created randomly at

the surface.

Contribution Topic B: The common assumption in literature is, that the firn layers are

the result of seasonally varying firn deposition and that density accordingly varies with

a seasonal frequency. In this study, the analysis of high resolution density profiles did

not reveal a seasonal frequency in layering in the surface firn. The layering of the firn

seems to be created randomly at the surface (Publication 2).

6.3 Evolution of layering with depth

At all investigated sites the variability in density decreases with depth and then in-

creases again (Publication 1). The minimum is obtained in a depth interval of 10 to 20

meter water equivalent (Figure 6.5). The following increase is smallest for the low ac-

cumulation sites such as EDC2 and B36/ B37 (Figure 6.5). The peak is highest for the



Figure 6.5: The standard deviation sd of density with meter water equivalent for the

17 firn core sites. Firn cores from Greenland are shown in yellow-brown

colors, Antarctic sites in blue colors.

coastal sites B38 and B39. The depth of the maximum second peak and the decrease

towards the density of ice differs for the different sites (Publication 1). Taking other

observations into account, for example the finding of a flip in the density-backscatter-

intensity relationship (Hawley & Morris 2006) or a flip in density-electrical conductivity

relationship (Gerland et al. 1999) at a similar depth interval (Fujita et al. 2009), it oc-

curs, that the original low density layers densify faster than the original high density

layers. The former low density layers overcome the high density layers. This would

explain the minimum in density variability (at the cross-over) and the following increase

in variability. It furthermore would explain the flip in the above mentioned relationship.

Because optical properties are linked to grain size, an originally large grained layer

with low density has developed to a large grained layer with high density below the

cross-over (Publication 1). However from comparison studies of high resolution density

measurements to high resolution grain size measurements (unpublished data by Sepp

Kipfstuhl) it seems, that this shift is not a continuous process, but that there are depth

intervals, where the flip in grain-size and density can be observed, just next to depth-



intervals, where this is not the case. The increase in density variability seems to be the

result of a more complex process in densification.

Looking at the evolution of the frequency of the density variability, a change in the

intensities of the frequency domain with depth is detected. At the surface a broad signal

is observed for most sites, at the depth of the variability minimum no distinct signal in

the frequency domain can be detected. Below we find, that at mainly medium to high

accumulation rate sites, the second peak in density variability shows the frequency of

the accumulation rate (Publication 2).

The seasonality in density variability, which was not detectable at the surface, develops

with depth. In this study Calcium concentration, as one ion species deposited within the

snow and measured by continuous flow analysis, from 5 firn cores was investigated and

linked to the density profile. A correlation analysis of density and Calcium concentration

was conducted, which supports the above stated observation of a changing frequency

in the density variability with depth. At the surface no correlation between Calcium con-

centration and density can be detected, but it increases to significant values and shows

highest correlation in the depth interval of the second density variability maximum. The

hypothesis is, that seasonally incorporated impurities into the snow layers at the sur-

face, alter the densification of the single layers and thus reshape the layering of the firn

down to depths of the firn-ice transition (Publication 2).

Contribution Topic C: In most publications and firn models using density variability a

gradual decrease of variability with depth is assumed. The variability in density from the

surface, such as high density winter layers and low density summer layers, is assumed

to be kept during densification and still pronounced at depth of the firn-ice-transition. In

this study it is found, that the layering induced variability is not linearly decreasing with

depth, but rapidly decreases and then increases again (Publication 1). The variability

further more changes the frequency and amplitude with depth. From a randomly cre-

ated signal at the surface a variability with a seasonal frequency develops with depth



(Publication 2). It seems, that the layers are altered non-linearly by impurities or any

other parameter, which are incorporated into the snow at the surface with a seasonal

variability. Accordingly any composition of density and microstructure, created at the

surface is changing non-linearly with depth, which would explain the change in the re-

lationship of density and physical properties, as reported in literature.

6.4 Layering in microstructure and air permeability

Measured grain size profiles show a large layer-induced variability. In order to see the

correlation to density, the trend of grain size in density was investigated (Figure 6.6).

Within a single depth interval, the structural layering shows a linear negative correla-

tion with density - the larger the grains the lower the density (grey lines in Figure 6.6).

Such a linear trend in microstructure and density was found for all sites, even though

the slope of the trend is increasing with increasing age (at a single site) and decreas-

ing accumulation rate and temperature (comparing different sites). The warmest site

B38 even shows a positive trend in grain size and microstructure as do the very sur-

face samples at the B36 site. This indicates, that the relationship between density and

grain size for fresh snow or firn from relatively warm sites, is a different one than the

relationship of older, metamorphosed and colder firn. The overall trend of densification

and sintering shows the opposite correlation (in sign) - an increase in grain size with

increasing density (blue line in Figure 6.6). This relationship is sufficient to parameter-

ize the long term behavior of average density and grain size at different local climate

conditions, even though the relation within the single depth-intervals is very different.

Finally a third process can be observed, shaping the microstructure of the firn and su-

perposing both - the initial layering and the sintering process. Short term changes in

local weather conditions leave their imprint on the microstructure and superpose the

long term trend of sintering. In the near-surface region down to 4-5 meter depth snow

metamorphism and vertical mass transfer can be enhanced by temperature gradient ef-

fects. If the accumulation rate changes on a short-term time scale, certain layers spend



Figure 6.6: The grain size (a) and specific surface area (b) of the FT firn core with den-

sity. Grey lines indicate the single depth intervals, with increasing depth

and age moving from light to dark grey. Orange points mark the mean

value of each depth interval and the blue line the overall trend with in-

creasing density.

longer time within this depth interval than others, experiencing enhanced temperature

gradient metamorphism. This can be displayed in increased coarsening, anisotropy or

air permeability, which is visible in both, low and high density layers (Publication 4).

The coarsening is displayed in a temporary pore size increase with depth (Figure 6.7

a), which in turn favors increased permeability values (Figure 6.7 c and d). Larger pore

channels and a coarse firn structure can provide an enhanced ventilation of the snow

pack, even below a depth of some centimeters. Coarsening seems to occur down to a

depth of 2-4 meter, until the weight of the overlying firn layers overcomes coarsening

and densification takes over. The peak is displayed in a maximum in air permeability

and in anisotropy in 2-4 meter depth.

To summarize, there are three different processes, determining the variability in mi-



Figure 6.7: The evolution of pore chord length (a) and anisotropy (b) with depth at the

different sites. The measured air permeability of the Hercules Dome site

(c) and the Depot700 site (d, unpublished Data by Zoe Courville) with a

maximum in 2.5 and 3 meter depth, respectively - note the different scale

due to the large difference in permeability values.

crostructure and its relation to density variability: 1. The layering is randomly cre-

ated at the surface, setting up a certain correlation in grain size and density. 2. The

overall gradual sintering and densification increases grain size and density in equal

rates. 3. Short term changes in exposure times (i.e. accumulation rate) of layer

sequences lead to a coarsening of the structure, completely superposing the initial

density-microstructure correlation and the linear increase with depth. A parametrization



of e.g. specific surface area in order to easily determine effective optical parameters

from density measurements is not straight forward, because of the different impact of

these three processes on the density-microstructure correlation in polar firn.

Contribution Topic D: In previous publications a systematic study of the link between

density, density variability in terms of layering and microstructure has rarely been con-

ducted. The common idea is, that correlations in density and microstructure are created

at the surface and linearly transferred to ice. This would enable a parameterization of

microstructure properties, such as grain size, from density, since a linear correlation is

assumed. With the data obtained in this study, it appears, that microstructure displays

variability in a manyfold way. First, the layering induces a correlation with density, so that

grain size reflects the layering as it is expressed in density - low density corresponds

to large grains and vice versa, except for the surface snow of B 36 and the firn core B

38. Second, the overall densification and grain growth result in a gradual increase in

grain size with density, which can be parameterized and modeled for the different sites

(Publication 3). And third, short term changes in accumulation rate can alter the time,

certain layers are exposed to strong temperature gradients at the surface. This leads

to increased coarsening of the structure and results in increased air permeability and

anisotropy (Publication 4 and Publication 5). The effect is largest at the Greenland site

B 26 and at the cold and low accumulation rate sites in Antarctica.

6.5 Layering at different sites

The literature survey did not yield a systematic picture of the occurrence of certain

stratigraphic features in relation to local climate conditions. The individual description

and different measurement methods are often very detailed and informative but do not

always permit a comparative analysis (Figure 6.8). Even though some features might be

detectable from the distribution of certain characteristics (Figure 6.8), an interpretation



is not possible: if the occurrence of for example signs for a hiatus in accumulation are

not reported for a site, it does not mean, that there is no hiatus at this sites. It just

indicates, that the authors did not notice, since the focus of the study and the observers

was set to other topics.

The high resolution density measurements allow a comparison of the layering not only

at the surface of the different sites, but also at the depth-interval of the firn-ice-transition.

In this study the standard deviation is taken as a measure for the layering of a site

and by that a comparison between different sites is possible in an objective and repro-

ducible way. As proxy of the local climate conditions, the annual mean temperature,

the accumulation rate, the maximum temperature gradients (end of summer) within 10

cm depth-intervals, as obtained from surface temperature observations, and the time,

a layer spends within a 10 cm depth interval (determined from accumulation rate) are

taken.

The surface density variability is decreasing with increasing annual mean temperature

and accumulation rate (Publication 1), whereas the density variability at the firn-ice tran-

sition is increasing with increasing annual mean temperature and accumulation rate.

The diverse behavior of the standard deviation with depth indicates the different pro-

cesses influencing the microstructure. Mainly the grain size is displaying the variability

due to the layering similar than does the density. The surface trend in grain size vari-

ability is similar to the trend in density variability (Figure 6.9). Low accumulation (low

temperature) sites show a higher variability in grain size, than high accumulation (tem-

perature) sites (Figure 6.9). The increase in pores size (Figure 6.7 a) and pore size

variability (Figure 6.10 a) with depth towards a maximum between 2 -4 meter depth, in-

dicating the coarsening, can be observed at almost all firn core sites. Only the B38 core

does not show any maximum in absolute values or an increase in variability. The pore

chord length and anisotropy variability, as an example, are highest for the Greenland

B26 site at the surface, followed by the cold Antarctic sites. However, to determine the

layering and the resulting variability not all microstructure parameter seem to be useful.

Grain size is suggested as a parameter, displaying the layering, as it is generated at the



Figure 6.8: Example of the literature survey. Dark blue points represent sites described

in literature in terms of stratigraphy, and sites, where the below stated ob-

servation was reported, are highlighted in light blue. Not that no regional

differentiation is possible from these observations.



Figure 6.9: The standard deviation of Re f f of the upper depth-intervals with annual

mean temperature (a), accumulation rate (b), temperature gradient at the

surface in late summer (c) and duration time within 10 cm (d)

surface and which is correlated to density. Pore size, anisotropy and air permeability

do not only vary because of the initial layering but change their variability as a result of

coarsening and sintering.

The variability of the different microstructure properties can behave dynamically with

depth at a single site. The degree in variability at the surface and the evolution with

depth differ significantly for the different sites. This very different implementation and

evolution of variability at the different sites can help to understand the observed differ-

ence in backscatter behavior of different firn types. Not only the degree in layering but

also the variability in grain size within a certain depth-interval will alter the backscatter



Figure 6.10: The standard deviation of pore chord length (a) and anisotropy (b) with

depth for the different sites.

of microwaves. The quantification of variability obtained in this study can be used to

identify the firn characteristics generating certain backscatter behavior in future investi-

gations.

Contribution Topic E: The most common idea in literature is, that high accumulation

rate sites show a higher degree in layering and thus a higher variability in density than

low accumulation rate sites. The data presented here show, that the variability is higher

at low accumulation and low temperature sites. This is well displayed in the microstruc-



ture variability (Publication 3) and density variability (Publication 1). High temperature

and high accumulation sites show less variability in both density and microstructure.

Grain size and density variability can be taken in the future to better understand the

backscatter behavior of the firn in different regions of Antarctica.





7 Conclusions

With high resolution density data and microstructure information from X-ray-microfocus-

computer-tomography the layering can be described and quantified by using the stan-

dard deviation as parameter. It is shown, that low accumulation and annual mean tem-

perature sites are characterized by a larger degree of layering than high accumulation

and annual mean temperature sites. But they also show an increased coarsening in the

upper firn meters, inducing an increase in pore size and permeability down to 2-4 meter

depths. Despite the increased layering and thus variability in density and microstruc-

ture, the air permeability can be larger and the convection zone more extended, than

at sites with higher accumulation rate and less layering. Low accumulation sites show

largest surface variability, whereas high accumulation sites show largest variability at

the depth interval of the second density variability maximum and the firn-ice-transition.

The results of this study point out, that the stratigraphy, i.e. the amplitude and the fre-

quency of the density variability, is not a constant property of firn, which is continuously

buried in the firn column with depth and time. The original surface density and its vari-

ability, the original surface grain size and its variability and incorporated impurities as

well as the interaction of the frequencies of the density variability and impurity concen-

tration variability configure the dynamic evolution of the layering of the firn with depth.

The expression of layering in the microstructure properties is changing with depth and

time. The initial microstructure variability, created at the surface by deposition is super-

posed by the interaction of sintering or densification and coarsening. This interplay is

governed by the local climate conditions and induces differences in the correlation of

density and microstructure, such as grain size or specific surface area. The findings
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of this study imply, that the layering has no static memory. The layering is not kept

constantly with depth and sequences of layers from the surface do not correspond to

similar sequences of layers at the firn-ice-transition. The primary surface information

such as starting density, microstructure and impurity content determine the subsequent

evolution of the layering with depth. But there is no linear transformation of surface

properties to greater depths. Any link of surface properties in terms of layering to local

climate conditions cannot be directly extrapolated to the properties at the depth of the

firn-ice transition and vice versa.

The layering of polar firn shows a random generation at the surface and a very dynamic

evolution with depth, which is influenced not only by the microstructure and the local

climate conditions but also by impurities incorporated into the firn at the surface.



8 Problems and Open Topics

8.1 Methodical limitations

The limitations of the measurements of high resolution density and microstructure from

X-ray-microfocus-computer-tomography analysis are shortly discussed here.

Hoar layers, as often observed in the field to form below the surface or thin ice crusts are

difficult or impossible to detect with the gamma absorption method. Hoar layers form

loose and very fragile firn layers layers and get destroyed during the drilling, transport

and measurement procedure. Ice crusts are very thin, often in a range of one mm and

are therefore not detectable with the resolution and measurement set up used in this

study. This gives a definite limitation of the method.

The problem of missing low density layers due to the drilling and measurement proce-

dure could have an effect on the calculated variability value, i.e. decreased variabilities

due to lacking extreme values in the lower range, or on the frequency analysis, since

missing peaks could change the observed frequency. It can be assumed, that due to

the very high number of firn cores included in this study, and the very broad range in

local climate conditions, these firn cores represent, any irregularities can be neglected.

However, only measurements of complete firn core sections in original condition can

prove these findings. Therefore a drilling device, which is able to capture fragile low

density layers, especially from low accumulation areas, is needed, in order to get more

complete firn core pieces for density analysis.

The X-ray-microfocus-computer-tomography measurements allow a more careful han-
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dling of fragile firn samples, but the limitation in sample resolution and discontinuity

leads to a different calculation of standard deviation of the microstructure. In order

to compare the variability of density and microstructure, high resolution continuous

measurements of microstructure properties are necessary. The newly installed ice

core X-ray-microfocus-computer-tomography-scanner at the Alfred-Wegener-Institute

(J. Freitag) enables a continuous high resolution measurement of both, density and mi-

crostructure and therefor provide a much more detailed image of the link and evolution

of these properties.

Next to density and grain size impurities seem to play an important role in the whole

process of sintering and densification of polar firn. In order to understand the inter-

action of impurities, density and microstructure the data set of high resolution density

and microstructure needs to be completed with high resolution ion measurements from

Continuous Flow Analysis . From the result of this study, the merge of these three data

sets seems to be the most challenging and most essential step in the near future.

8.2 "Global" microstructure

The microstructure data of the X-ray-microfocus-computer-tomography measurements

allow an intense study of polar firn metamorphism, due to the large range in local cli-

mate conditions represented in this data set, and the large age distribution they cover.

The basic idea is to find a global description of the metamorphism process, which en-

ables a direct comparison of the microstructure of different sites. Therefore the degree

or stage of metamorphism, i.e. a metamorphose factor, needs to be derived, includ-

ing not only local climate conditions, but also the local temperature gradients at different

depths, the time a certain firn layer spends within these different temperature gradients,

and age. First tests were done, but no sufficient description for the metamorphose fac-

tor was obtained yet. This needs to be continued in future studies.

However, the data show a surprisingly definite behavior in terms of shape. In order

to compare the shape of the ice grains or structure of the different firn samples, the



structure model index is calculated (Figure 8.1). With decreasing porosity the index

decreases from values around 2 to values of approximately -3. The most striking feature

is, that despite their very different grain sizes and local climate conditions, almost all

samples of all firn core sites follow a defined line. Only at high porosities the DP7

samples scatter around 1. And at low porosities B 38 samples scatter at values above

zero, even though all other samples show negative values at similar porosities (Figure

8.1). It seems that there is a clear link between porosity, which is an indicator for density

and thus depth and time, and the structure of the ice phase of the firn.

For high porosity firn, the ice phase shows either single grains or bonded grains, with

sintered necks and an overall convex structure. Very fresh surface snow with dendritic

shapes or cup shaped hoar crystals would show even higher values such as the snow

from DP7. As older the snow, the ice phase becomes smoother. Towards decreased

porosity the ice phase becomes a solid matric with pores included. Thus the surface of

the ice can be expected to turn to concave values for the index, since it is then enclosing

the pores. The B 38 firn is buried so fast due to its outstanding high accumulation rate,

that the structure has no time to evolve much even though porosity is decreasing rapidly.

Accordingly the shape of single grained matrix is kept even at very low porosities.

Nevertheless, all other firn core sites show a remarkably unique pattern in this structure

model index and porosity. Despite their extremely different local climate conditions,

density profiles and microstructure evolution, a globally similar behavior in shape can

be extracted from the data. This shape could be an indicator of the degree of sintering

at a certain porosity of polar firn.

This finding is a first hint for a similar topological evolution of polar firn structure under

snow metamorphism, even though the local conditions differ significantly. Future stud-

ies could concentrate on the determining factors, that control the structure evolution of

the firn, especially under consideration of the metamorphose factor.



Figure 8.1: The structure model index with porosity of all sites and samples. Note the

high values at low porosities of the B 38 firn core and the scattered values

at high porosities of the DP7 site.

8.3 Convection of the upper firn

The ventilation of the upper snow and firn pack is difficult to access, since it includes a

horizontal component, which can not be addressed with firn core studies. Horizontally

permeable firn layers can lead to a intense ventilation of the firn, even when they are

buried under less permeable layers. Often firn layers show a rather discontinuous extent

and undulations, which enable the convection within the firn under horizontal pressure

gradients. This problem is even more emphasized by the reported observation of nets

of cracks in the upper snow and firn layers at extremely low accumulation rate sites.

These cracks form deep vertical channels in the firn and introduce a much more com-

plex and larger scale phenomenon of air ventilation than can be analyzed with single

point firn core measurements. However, considering less extreme conditions, linking



measurements of microstructure and direct measurements of air permeability can de-

liver a coarse understanding of the magnitude of the ability to ventilate air in connection

to snow metamorphism at the different sites. The direct measurement of air perme-

ability of polar snow and firn is rather time-consuming and time extensive. Therefore

former studies tried to link microstructure characteristics to air permeability, in order to

parameterize air flow with easy-to-measure microstructure properties.

With 3-D X-ray-microfocus-computer-tomography information not only of the pore size

but also of the tortuosity and connectivity of the pores can be obtained. First tests yield,

that simple empirical relationships can fairly well predict low to medium permeability val-

ues and the variability of permeability due to the layering to a certain degree. But high

permeable layers are always underestimated, since simple microstructure properties

do not display the existence of large air pathways within the sample. With the available

data set of two directly measured permeability profiles together with 3-D microstruc-

ture analysis, a comprehensive study can be conducted and even extended on more

firn core sites, where only microstructure data are available. This is part of a future

project together with Dr. Zoe Courville from Cold Region Research and Engineering

Laboratory, USA. Pore size distributions in comparison to tortuosity measurements and

direct permeability measurements can improve the understanding of the connection of

air permeability and microstructure and the overall picture of firn convection.

The overall goal could be to deviate a rough estimation of the extent of the convection

zone by knowing the depth, at which maxima in air permeability are obtained at the dif-

ferent sites. If it is possible to model the air permeability with the available microstruc-

ture data, than the set of firn cores investigated in this study allows a comparison of

the snow metamorphism in connection to the coarsening, the development of the air

permeability maximum with depth and the local climate conditions. This in turn would

help to understand the formation and extension of a convection zone at the different

locations with different climate conditions, even extended to glacial times.
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Abstract. High-resolution density profiles of 16 firn cores from Green-2

land and Antarctica are investigated in order to improve our understanding3

of the densification of layered polar firn. A vertical resolution of 1 to 5 mm4

enables us to study the detailed densification processes, and the evolution5

of the layering and the resulting variability in density with increasing depth.6

The densification of layered firn is important for the process of air enclosure7

in ice and is connected with the observed formation of a non-diffusive zone.8

We find that (1) mean density profiles, obtained from high-resolution mea-9

surements, only partly show clear transitions in densification rate at densi-10

ties of 550, 730 or 820-840 kg/m3, as they are commonly used in literature.11

(2) The density variability, induced by the layering, shows a similar pattern12

at all sites: high variabilities at the surface, a rapid drop to a relative min-13

imum in variability at mean density of 600 - 650 kg/m3, followed by a sec-14

ond relative maximum. (3) This leads to increased variability at densities of15

the firn-ice transition for most of the sites. (4) The variability at the surface16

decreases with increasing mean annual temperature and accumulation rate,17

whereas the variability at the firn-ice transition increases. We can exclude18

a change in local climate conditions as an explanation for the density vari-19

ability since the firn cores in this study cover a broad range in mean annual20

temperature, accumulation rate and age. Overall, high-resolution density pro-21

files deliver a more complex picture of compaction of polar firn as a layered22

granular medium than has been obtained from mean density profiles in the23

past.24
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1. Introduction

Density, as a physical property of polar firn, is important not only as a material charac-25

teristic, but for many topics of polar research. This includes the monitoring and modeling26

of ice sheet mass balance, by means of ground-penetrating radar or satellite laser altimetry27

[Li and Zwally , 2002, 2004; Rott et al., 1993; Rotschky et al., 2006], and the enclosure of28

air bubbles in the ice during the transformation from snow to ice [Martinerie et al., 1992;29

Schwander et al., 1997].30

Different densification processes, acting at certain depth intervals of the firn column,31

have been investigated and discussed by others [Anderson and Benson, 1962; Alley et al.,32

1982;Maeno and Ebinuma, 1983; Alley , 1987; Ebinuma and Maeno, 1987; Paterson, 1994;33

Arnaud et al., 1998; Salamantin et al., 2009]. Mean ”critical” density values of 550, 73034

and 820 - 840 kg/m3 are often denoted for changes in the predominance of micro-scale35

processes. Examples are particle rearrangement [Gow , 1974; Herron and Langway , 1980;36

Ebinuma and Maeno, 1987; Paterson, 1994; Salamantin et al., 2009], grain boundary37

sliding, recrystallization, creep [Maeno and Ebinuma, 1983; Ebinuma and Maeno, 1987]38

and air bubble shrinking [Gow , 1974; Martinerie et al., 1992]. Yet there are hints that39

these critical densities vary considerably for different snow and firn types [Alley et al.,40

1982; Johnson, 1998; Freitag et al., 2004]. Deformation and grain boundary sliding seem41

to occur concurrently from the very beginning of compaction [Arnaud et al., 2000], and42

grain boundaries in microstructure images show signatures of dynamic recrystallization in43

shape, orientation and number rather than structures resulting from normal grain growth44

[Kipfstuhl et al., 2009]. Models of firn densification usually consider a mean density profile45
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[Herron and Langway , 1980; Barnola et al., 1991; Arnaud et al., 1998, 2000; Goujon et al.,46

2003]. The evolution of density with depth is often linked to mean annual air temperature,47

accumulation rate and surface density [Herron and Langway , 1980; Maeno and Ebinuma,48

1983; Martinerie et al., 1992], overburden pressure [Kameda et al., 1994] or surface winds49

[Craven and Allison, 1998].50

Polar firn is a highly layered medium and thus exhibits heterogenous material properties51

[Gow , 1974; Hansen and Brown, 1986]. Stratigraphy is created by seasonal changes of52

the local climatic conditions. At high accumulation sites the stratigraphy is made by53

layers from single snow fall or drift events, while at low accumulation sites most likely54

only summer and winter precipitation create stratigraphy. Layers can be distinguished55

not only by their bulk density but also by grain size and shape, hardness, viscosity and56

coordination number. Accordingly, variability in such different properties will lead to57

different response to pressure loads [Palais et al., 1982; Hansen and Brown, 1986; Johnson,58

1998; Alley et al., 1982].59

Furthermore, the increase in density seems to vary not only within the firn layers but60

also with time. Zwally and Li (2002) observe seasonal variations in ice-sheet elevation and61

link these to variable densification rates through the year. The variability in densification62

is caused by seasonally changing temperatures and accumulation rates. Their models show63

that the amplitude of density variability increases with the accumulation rate, whereas64

the frequency decreases with increasing accumulation rate. This variability vanishes with65

depth [Li and Zwally , 2004].66

The layering and the related variability in density is an important factor when discussing67

the age difference between air enclosed in bubbles and the surrounding ice. As long as68
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the pores are connected with the surface, an exchange with the atmosphere by diffusion is69

possible. The depth, and thus age, when pore close-off is expected, is often derived using70

mean density critical values [Martinerie et al., 1992; Schwander et al., 1997]. However,71

considering layering, and thus density variability, consequently leads to depth intervals72

where some layers have already reached the pore close-off density. Other layers still show73

connected pores. This depth interval is often referred to a non-diffusive zone, where air can74

escape upwards but no downward air exchange is possible. It is common to interpret the75

high-density layers, which approach the pore close-off density first, as the initially high-76

density layers originating at the surface (often referred to winter precipitation) [Martinerie77

et al., 1992; Severinghaus and Battle, 2006].78

Recently, the degree of layering has been considered as a parameter influencing the79

extent of the non-diffusive zone. Landais et al. (2006) suggest that strong layering, as is80

expected for high accumulation sites, results in the existence of a non-diffusive zone. At81

low accumulation sites, the layering vanishes at the surface and a non-diffusive zone is not82

expected. Also Kawamura et al. (2006) suggest that the thickness of the non-diffusive83

zone generally depends on the amplitude of density variability due to the layering at the84

surface and the horizontal extent of single layers, typically generated by seasonal variations85

of deposited snow density.86

Density variability generated by layering can be investigated by using high-resolution87

density measurements. We use the term high-resolution to refer to a vertical resolution88

of 1 to 5 mm with depth, which is much higher than the typical 1 m averages. This89

resolution is small compared to the thickness of single layers, which is usually found to90

be in the range of several cm. High-resolution density measurements of polar firn were91
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published by Gerland et al. (1999) for the B25 core from Berkner Island, Antarctica, and92

by Freitag et al. (2004) from site B26, Greenland. Both observed that the variability93

decreases rapidly in the upper 20 - 30 m. Below, the variability increases again, yielding a94

second relative maximum. Gerland et al (1999) also found a negative correlation between95

density and electrical conductivity measurements (ECM) in the upper firn column, which96

changed at 30 m depth to a positive correlation. Hawley and Morris (2006) published97

high resolution profiles of borehole density logging techniques and optical stratigraphy at98

Summit, Greenland. They find a positive correlation between optical brightness reflections99

and density, which decreases with depth and turns to a negative correlation between 20100

and 25 m depth.101

Gerland et al. (1999) and Freitag et al. (2004) explained the second relative maxi-102

mum in density variability by the more efficient densification of coarse grained, initially103

low-density firn, compared to fine grained, initially high-density firn. This would lead104

to a crossover in the density profiles. The depth at which the densities of coarse and105

fine grained firn are approximately equal is associated with the minimum in density vari-106

ability. This observation indicates that below the variability minimum, the initially low107

density firn layers show higher densities than the initially high density firn layers, which108

would explain the switch in the ECM - density correlation. Other authors considered this109

second maximum in density variability as a singular abnormal finding, possibly due to in-110

terannual changes in weather conditions [Li and Zwally , 2002]. Hawley and Morris (2006)111

explain the change from positive to negative correlation between density and brightness112

by the transition from grain boundary sliding to pressure sintering as the dominant firn113

densification mechanism. Recently, discontinuous high-resolution profiles of density and114
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crystal orientation of a firn core from Dome Fuji were published [Fujita et al., 2009] show-115

ing a switch from positive to negative correlation between density maxima and structural116

anisotropy at 30 m depth, supporting the ideas of Gerland et al.(1999) and Freitag et117

al.(2004).118

These publications presented the results of firn cores from single sites. In this study we119

extend the work by Gerland et al.(1999) and Freitag et al.(2004) with 14 more firn cores120

from Greenland and Antarctica, covering a broad range of local climate conditions. High-121

resolution density measurements are obtained with the gamma-attenuation method. We122

shortly discuss the possible impact of microstructure and impurities on the density and123

densification. At this point we can not prove the role of microstructure (on a grain-scale)124

in this study since no microstructure data are available with this resolution. However, the125

available data allow a profound examination of macro-structural properties of the firn and126

the densification. Our high-resolution density measurements reveal the following results:127

1. Mean density profiles obtained from high-resolution measurements do only partly128

display a transition in densification rate at 550, 730 and 820-840 kg/m3.129

2. All firn cores presented here show a second maximum of density variability, as first130

reported by Gerland et al. (1999). Accordingly an effect of changes in local climate131

or weather, as suggested by Li and Zwally (2002), can be excluded. The minimum in132

variability is reached at mean densities around 600 - 650 kg/m3, while the mean density133

and amplitude of the second maximum in variability varies from site to site.134

3. A more efficient compaction of initially less dense layers leading to a crossover, as135

suggested by Gerland et al. (1999) and Freitag et al.(2004), can explain the observed136

density variability and the switch in correlation of density to ECM and brightness. This137
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process of differential compaction also means that the initially dense layers from the138

surface exhibit lower densities at the firn-ice-transition. The high-density layers which139

create a sealing effect at the firn-ice transition might originate as low-density layers at the140

surface.141

4. The variability at the firn-ice transition increases with increasing mean annual tem-142

perature and accumulation rate, whereas the variability at the surface decreases. Low143

accumulation sites also show relatively high near-surface density variability. This obser-144

vation gives reason to question a direct link between the degree of surface layering and145

the extent of a non-diffusive zone.146

2. Methods

2.1. Material and Instrument

The high-resolution density profiles of 16 different sites from Greenland and Antarctica147

are investigated. The firn cores were drilled and measured in a time interval over almost148

20 years. The firn cores are from areas which cover a broad range in mean annual surface149

temperature, accumulation rate and elevation and origin from Greenland and Antarctic150

Plateau regions but also from Antarctic coastal regions. For further details see Table 1151

and Table 2.152

The density was measured using a non-destructive logging system including a Löffel153

densimeter [Wilhelms , 1996]. The measured intensity I of the attenuated gamma-ray154

beam through the ice core is converted into a density signal. Using Beer’s law, the155

intensity of the beam in air I0, the mass absorption coefficient μice =0.085645 m
2kg−1 ±156

0.1 % [Wilhelms , 1996, 2000] and the diameter d of the ice core, the density ρ can be157

calculated by:158

D R A F T October 7, 2010, 8:07pm D R A F T

81
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ρ =
−1
d · μ · ln(

I

I0
) (1)

Details and background of the method are given in Wilhelms (1996; 2000). Gerland et159

al. (1999) and Freitag et al.(2004) discussed density data obtained by this method and160

compared it to density profiles obtained with computer-tomography [Freitag et al., 2004].161

Usually two one meter long core pieces are put in a cradle for a measurement run. The162

diameter is measured every 10 cm manually with a calliper and then interpolated over the163

length of the core piece. Scratches from core catchers and breaks are documented. All164

measurements were conducted between temperatures of -10 ◦C and - 35 ◦C either in the165

cold laboratory of the Alfred Wegener Institute (AWI), Bremerhaven, Germany or in the166

field, using a comparable measurement set up.167

2.2. Data Processing

After the measured diameter is interpolated and used to calculate the density according168

to equation (1), the raw data are corrected for core breaks and scratches, by manually169

removing single outliers and linearly interpolating over the resulting data gaps.170

Two different processing strategies are used. First, the density versus depth profile is171

investigated and average values are compared to field data and to the Herron-Langway172

model [Herron and Langway , 1980]. The measured raw high resolution density is shown173

in Figure 1A (light grey). A running mean using a sliding window of one meter length174

is calculated (Figure 1A, dark grey line). Comparison with field data of one meter long175

ice core sections yields good agreement (Figure 1A, brown line). The mean density deter-176
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mined from high-resolution measurements, noted as mean density in sections 3.1 and 4.1,177

is compared to density values calculated from the Herron-Langway model.178

Secondly, the density profile is converted to water equivalent depth (m w.e.). Again179

average values are calculated as well as a standard deviation as a measure of density180

variability. The conversion leads to unequal distances between data points (i.e. low181

density snow at the surface corresponds to smaller increments in m w.e. depth than high-182

density firn at greater depths). Therefore each density profile is re-sampled to equidistant183

points as noted in Table 2 (column point-distance), depending on the sampling rate of184

the measurements (Figure 1B, light grey line).185

The conversion from actual depth to water equivalent depth enables a comparison of the186

layers from the near-surface area with layers from greater depths, since the effect of the187

thinning of layers due to compaction is taken into account. Furthermore the water equiv-188

alent depth scale provides a measure of the overburden pressure and enables a comparison189

of the cores at similar overburden pressures. In order to remove fluctuations or noise on190

smaller length scales than the layering, the data are smoothed using a moving average191

window (Figure 1B, dark grey line covering the raw data; window size in Table 2 (last192

column)). To study the density variability the data are detrended, using an exponential193

fit (Figure 1B, blue line):194

ρ = y0 + A1 · exp(−τ1z) + A2 · exp(−τ2z) (2)

After detrending, the standard deviation σρ, with a sliding window of size N = 1000 and195

a step size of 500 data points (Figure 1B, brown line) is:196
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σρ =

√√√√√
N∑
i
(ρi − ρ̄)2

N
(3)

where ρi is the density at point i and ρ̄ the mean density of window N . In order to197

compare the different cores and their standard deviation we have several possibilities to198

define N : we either calculate the standard deviation over a fixed water equivalent depth199

interval or over a fixed time interval. The former results in the comparison of different200

time-intervals, the latter in the comparison of different depth-intervals. We calculated201

the standard deviation by taking a fixed number of data points (N = 1000), over which202

the standard deviation is calculated. For a sufficiently large N , the calculated standard203

deviation is independent of the window size.204

For the same window size, a mean density of the depth-density profile in water equivalent205

depth is calculated (Figure 1B, yellow line). This value is the mean density at a certain206

depth (m w.e.) corresponding to the standard deviation at this depth (m w.e.). In the207

following we refer to this value as mean density of the density-depth profile in water208

equivalent depths in sections 3.2, 4.2, 4.3 and 4.4..209

Martinerie et al. (1992) introduced an empirical linear relationship of measured air210

volume in ice cores to annual mean surface temperature and the critical density ρcrit at211

which the air isolation occurs. We use this relation to calculate the mean close-off density212

ρcrit at our firn sites:213

ρcrit = (
1

ρice

+ 7.6× 10−4 × T − 0.057)−1 (4)
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with ρice = 917 kg/m
3 the density of pure ice and T the annual mean surface temperature214

in Kelvin. Knowing the close-off density, the measured variability σρ at that density is215

then determined from the measurements.216

To test the assumption of a relationship between the layering at the surface and the217

extent of the non-diffusive zone, we compare the density variability at the surface with218

the density variability at the firn-ice transition. The latter is defined by the mean density219

obtained from equation (4) and the related standard deviation. To determine surface220

variability we first define intervals for which the standard deviation is calculated. We221

chose to show more than one interval to illustrate the extremely different accumulation222

rates at the sites. Therefore from each site, one-meter depth intervals starting from the223

surface (interval 1, figure 9) to 6 m depth (interval 6, figure 9) are converted to water224

equivalent depth and the standard deviation is calculated following equation (3). This225

time, N is the number of points within each of the one meter long intervals.226

To estimate the relative error of the density measurements, the errors in each term of227

equation (1) have to be considered. The relative error in density has been estimated as228

4.24% at the top 2 m and 1.47% at 100 m depth for the cores B16, B18, B31, B32, B33229

[Wilhelms , 2000]. The resulting absolute errors are 10 - 15 kg/m3 in the upper meters230

and 8 - 12 kg/m3 in greater depths. For cores B17, B19 and B21, B38, B39, DML95,231

DML97, B36/B37 and EDC2 the relative error is reduced to 1.65% in the upper 2 m,232

decreasing to 0.66% at 100 m depth [Wilhelms , 1996, 2000]. The error reduces because233

of the use of either a stronger gamma-ray source or a higher resolution measurement234

[Wilhelms , 1996, 2000]. This leads to absolute values around 5 - 6 kg/m3 for all depths.235

The standard deviation is calculated over 1000 data points and thus averages over the236
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random error associated with each single measurement point. We therefore assume that237

the standard deviation obtained by the processing described above gives a good measure238

of the variability in density due to the different strata in the firn. The standard deviation239

as a term of density variability has been used by Gerland et al. 1999, Freitag et al. 2004240

and Fujita et al. 2009. For more detailed discussion of error estimation of the gamma-241

attenuation method see [Wilhelms , 1996, 2000] and [Breton et al., 2009].242

3. Results

3.1. Mean Density

The mean density profiles obtained from high-resolution data are shown and discussed243

with respect to changes in densification rate at different critical densities and with respect244

to predicted profiles using the Herron-Langway model.245

First, the measured high-resolution density profiles of the B25 core [Gerland et al., 1999]246

and the B26 core [Freitag et al., 2004] are displayed, together with the 1 m averages (Fig-247

ure 2). The previously published data were included in this study to show that applying248

the above described procedures yields similar results as shown in earlier publications. All249

mean density profiles are shown and the commonly assumed mean critical densities, at250

which a change in densification rate is expected, are indicated with dashed lines (Fig-251

ure 3). For some sites the Herron-Langway model was used to predict density and the252

results are compared to the mean density profiles obtained from high-resolution density253

measurements (Figure 4).254

Assuming a change in densification rate at the critical densities of 550, 730 or 820-840255

kg/m3, the slope of the density-depth profiles should show a distinct change at these256

densities. This is expressed in the Herron-Langway model, where the density increases257
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with different rates as a function of depth below and above a density of 550 kg/m3 [Herron258

and Langway , 1980]. Hence, even though we do not consider the increase in density as259

a function of time, we can study the density-depth profiles in terms of an abrupt change260

in the slope, when a critical density is reached (Figures 3 and 4). We observe a weak261

transition in the slope of the density-depth profiles at densities between 550 and 580262

kg/m3 for high accumulation sites such as DML95 (Figure 3), whereas the cores B26 and263

B29 show this transition at much lower densities below 500 kg/m3; the same holds for264

B36/B37 (Figure 4). The B25 core shows a distinct change in the slope at approximately265

550 kg/m3 but the EDC2 core shows no abrupt change at all (Figure 4). A change of266

densification rate at 730 kg/m3 is not observed in any of our density-depth profiles. Also a267

distinct change at 820-840 kg/m3 is not apparent, however a slow-down in density-increase268

is present for densities higher than 840 kg/m3.269

Some examples of the mean density profile and the predicted profiles using the Herron-270

Langway model are plotted in Figure 4. The profiles of B25, B29 and B26 with moderate271

temperatures of -27 ◦C and approximately -30 ◦C and accumulation rates of 0.14-0.18 m272

w.e. per year are predicted fairly well (B25, B26, and B29), but for the EDC2 site, the273

Herron-Langway model overestimates the measured density. This leads to a 5-6 meter274

offset in the depth at which the density of 840 kg/m3 is reached. The firn is older when275

reaching this density than the model predicts. On the other hand, the Herron-Langway276

model underestimates the densification at B38. The model run ends at a mean density of277

approximately 794 kg/m3 at 83 m depth. This density is obtained in the mean measured278

profile at a depth of approximately 59 m. The firn approaching a certain density is much279

younger than predicted by the model (Figure 4).280
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3.2. Density Variability

The layering of polar firn induces a variability observed in high-resolution density pro-281

files. The variability changes with increasing depth and mean density (Figure 5). The282

standard deviation, σρ, as a measure of this layering is shown as water equivalent depth283

(Figure 6A) and with mean density of the density-depth profile in m w.e. (Figure 6B).284

The behavior of σρ at different local climate conditions is displayed in Figure 7.285

The evolution of a typical high-resolution density profile, here B26, is shown in detail286

(Figure 5). B26 represents a typical firn-core site from the Greenland plateau, with a287

moderate mean annual temperature of - 30.6 ◦C and accumulation rate of 0.18 m w.e. per288

year. Visually, the density variability changes its shape, amplitude and frequency with289

increasing density and depth. Large fluctuations are observed at lower mean densities290

(Figure 5, 5 and 8 m depth interval). At higher mean densities around 600 kg/m3 (20 m)291

the amplitude decreases, but for even higher densities around 700 kg/m3 the amplitudes292

increase again (25 and 40 m depth). The variability vanishes at densities above 800 kg/m3
293

(Figure 5, 75 m depth).294

The variability, σρ, with depth and increasing mean density (of the density-depth profile295

in water equivalent depth) is displayed for all firn cores (Figure 6). The amplitude reaches296

a minimum at a depth of approximately 10 m w.e. and then increases again. This yields a297

second relative maximum before it finally falls towards zero (Figure 6A). The minimum in298

density variability occurs at mean densities between 600 - 650 kg/m3 (Figure 6B), whereas299

the mean density of the following second maximum in variability seems to vary slightly.300

At mean densities of the firn-ice transition some cores show high amplitudes in σρ (B38,301

B39 for example) while for other cores the amplitude is decreasing (EDC2 and B36/B37).302
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In order to get a better overview of the influence of local climate conditions, the pro-303

files have been sorted into five groups, A - E, of similar annual mean temperature and304

accumulation rate (Figure 7). In all five groups the structure of rapid decrease of σρ to305

a minimum at 600 - 650 kg/m3 and a second maximum below is found. B25 is plotted306

in two groups. The density variability decrease of B25 in the upper core is similar to307

the Antarctic cores, while the second maximum is more consistent with the Greenland308

cores, as are the climate conditions. Finally we calculated the average for each group to309

determine typical behavior (Figure 7f). For comparison the averages of each group A - E310

can be seen in Figure 7F. Except for group C, the drop to the minimum is similar, but311

the patterns clearly diverge in extent and amplitude of the second maximum. Whereas312

groups A, B, C, and D differ in amplitude of the second maxima, but not that much in313

position, group E shows the second maximum at distinctively larger mean densities.314

In summary, all firn cores, covering a broad range of climate conditions, show a similar315

rapid decrease followed by a second maximum of density variability. The cores show a316

similar structure of σρ above the minimum. The mean density of the minimum variability317

seems to be always at approximately 600-650 kg/m3, whereas the magnitude and the318

position of the second maximum seem to vary according to the environmental climatic319

conditions of a site.320

4. Discussion

4.1. Mean Density

According to the literature, depth-density profiles should show changes in the slope at321

densities of 550, 730 and 820 - 840 kg/m3. We expected the mean density-depth profiles322

from high resolution density measurements to clearly show these transitions. The first323
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transition in densification rate is suggested at a mean density of 550 kg/m3 [Herron and324

Langway , 1980] as a result of particle rearrangement gaining maximum packing density325

[Arnaud et al., 2000]. In our results the density at which this change occurs varies from326

densities below 500 kg/m3 at B36/B37 or B29 up to densities close to 600 kg/m3 at B38327

(Figure 4). It seems that the critical density, at which the densification rate changes, varies328

at the different sites. Different snow and firn types may exhibit a different density at which329

the compaction mechanism changes. At a single site with strong layering each layer will330

react differently to the applied load [Freitag et al., 2004; Alley et al., 1982]. Transitions at331

the other densities of 730 and 820 - 840 kg/m3 are not clearly detectable. It is reasonable332

to assume that different microstructural processes and deformation patterns take place at333

all depths and the dominance of each of these processes will shift rather smoothly from334

one to another within the firn column [Kipfstuhl et al., 2009]. Different processes can also335

occur concurrently [Arnaud et al., 1998; Salamantin et al., 2009] and critical densities,336

marking a transition of the dominance of microstructural processes, can vary over a large337

density range [Johnson, 1998].338

The firn cores representing climate conditions considered in the set-up of the Herron-339

Langway model are very well reproduced by the model (Figure 4). For a density-depth340

relationship at medium climate conditions this rather simple, phenomenological model is341

still applicable, even if a sharp transition at a mean density of 550 kg/m3 is not apparent342

in most of the profiles presented here. Arnaud et al. (2000) showed that the maximum343

packing density (theoretically 550 kg/m3) is temperature dependent. It decreases with344

decreasing annual mean temperature of a site. This would explain the range of densities345

at which a change in the slope in the density-depth profile can be observed in our data.346
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Decreasing or increasing this critical density would probably reveal a better fit of the347

Herron-Langway model with the EDC2 or B38 firn core data. Salamatin et al. (2008;348

2009) find the critical density at generally higher densities, corresponding to the cessation349

of particle rearrangement at the closest packing density. They explain the lower critical350

density of 550 kg/m3 to be only an intermediate stage in which particle rearrangement351

and plasticity work together, as has been proposed by Ebinuma and Maeno (1987). No352

such sharp transitions at densities between 640 and 680 kg/m3, as were found with the353

model by Ebinuma and Maeno (1987), are identified in our measured profiles.354

The Herron-Langway model included firn cores from a broad range of local climate355

conditions, including South Pole and Vostok at the lower end of accumulation rate and356

surface temperature range [Herron and Langway , 1980]. Nevertheless, the model is not357

applicable to the conditions at Dome C and to those at the PreIPICS core sites (i.e.358

B38). One possible explanation for the distinct deviation of the Dome C firn core is359

the different deposition and local climate pattern. So called diamond dust accompplishes360

much of the accumulation at Vostok or Dome Fuji, whereas the mass input at Dome361

C is dominated by precipitation from synoptic-scale weather systems. The problem of362

extending empirical models to a broader range of climate conditions has been discussed363

earlier [Arnaud et al., 2000; Martinerie et al., 1992]. Our data emphasize the need for364

a physical model [Arnaud et al., 2000; Salamatin and Lipenkov , 2008; Salamantin et al.,365

2009], but the high-resolution measurements need to be considered in the overall concept366

of critical densities.367
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4.2. Density Variability

Whenever a granular medium compacts, the mean density increases. What happens368

to the density variability is not known. To our knowledge no work is published that369

investigates the densification of a granular medium until pore closure. If we assume370

homogenous compaction with similar densification rates for different layers in a granular371

stratified medium, we would expect a steady decrease in variability. The densities of372

low-density and high-density layers originating at the surface increase steadily. Thus,373

their density values converge with a corresponding reduction in variability and obtain a374

common value at the density of ice (Figure 8A, dashed line).375

We applied two densification models to look at the model behavior in terms of density376

variability. The Herron-Langway model [Herron and Langway , 1980] is parameterized377

with mean annual temperature and accumulation rate. We can use different surface378

densities to simulate variability. By starting with two layers of different density at the379

surface, we obtain three stages in the evolution of σρ (Figure 8A, diamonds). In the first380

stage, the linear increase in density of the two layers is similar, giving no change in σρ, in381

the second stage, the layer with the initially higher density has already passed the density382

of 550 kg/m3 and continues to densify at an exponential rate, while the other layer still383

experiences linear growth. This leads to a rapid drop in σρ in the second stage. At the384

third stage, the second layer has entered the exponential growth regime, and σρ decreases385

almost linearly with depth.386

The model introduced by Barnola and Pimienta [Barnola et al., 1991] includes an em-387

pirical function that considers structural variations during densification [Arnaud et al.,388

2000]. It starts at a density of 550 kg/m3. We used measured values for σρ at mean389
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density of 550 kg/m3 to start the model. The model produces an exponential drop of σρ390

(Figure 8A, circles). Neither of the two employed models can reproduce or explain the391

measured evolution of density variability (Figure 8A, crosses).392

The driving force for the densification in the upper part of the firn column is the393

overburden pressure due to ongoing accumulation of new snow on top of each layer. The394

overload pressure is determined by the density and thickness of the layers on top. Thus395

the water equivalent depth gives a measure of the overburden pressure and enables a396

comparison of the driving force at the different sites. Until the minimum variability397

at approximately 600 - 650 kg/m3 or approximately 10 m w.e. depth is reached, the398

variability profiles for all sites are similar (Figure 6A), but below, this depth, density399

variability diverges.400

If we assume that the overburden pressure determines the densification rate down to the401

variability minimum, the explanation for the observed densification behavior is the manner402

in which fine and coarse firn structures respond to load [Alley et al., 1982]. Whereas coarse403

crystals are joined by relatively wide necks to few neighbors, crystals in fine firn tend to404

be more spherical and are joined by narrow necks to many neighbors. Thus the former405

structure is far from closest packing and will undergo significant particle rearrangement406

under an applied load, whereas the latter is more stable [Alley et al., 1982]. Gow (1974)407

observed firn layers with low density, corresponding to coarse-grained layers, to show less408

strength to overload pressure than high-density firn, corresponding to fine grains. The409

surface layers with different densities compact at different rates, the low-density layers410

faster than the high-density layers, leading to a fast decrease of σρ until a minimum in411

density variability is reached. At this minimum in variability the layers have the same412
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density. Continuous densification with different rates leads to equal densities of the layers413

at a certain depth (crossover), after which the initially low-density layers become denser414

at a faster rate and exhibit higher densities than the original high-density layers.415

By applying a simple exponential fit to the minimum and maximum densities of the416

high-resolution profile with a crossover at a mean density of approximately 600-650 kg/m3,417

we can highlight the different compaction rates and the resulting variability (Figure 8B).418

We do not consider to what extent the low and high-density layers contribute to the mean419

density. A better approach could be obtained by using equation (2), where the depth -420

density relation is represented by two coefficients and amplitudes, which would have the421

physical meaning of the different densification rates.422

Currently, few detailed microstructural data are available. Freitag et al. (2004) showed423

that the negative grain-size - density correlation observed in the near-surface firn switches424

to a positive correlation below the minimum at the B26 core. Below the crossover, high-425

density layers contain large grains [Freitag et al., 2004], whereas in the near-surface layers,426

low-density layers are usually characterized by large grain sizes. This implies that high-427

density layers at the firn-ice transition do not necessarily result from high-density layers428

at the surface and vice versa. Fujita et al. (2009) also find a switch in density and429

structural anisotropy obtained from microstructure analysis. The switch in the correlation430

of density and backscattered light, as observed by Hawley and Morris (2006) at depths of431

approximately 20 meters could also be explained by such a crossover of coarse-grained and432

fine-grained firn layers in their densities. Of course firn consists of more than these two433

example layers and not all will show such a relationship in grain size and density-increase.434
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Nevertheless, it can be hypothesized that the two examples (lowest and highest density)435

determine the boundary values in which the density variability is created.436

Below the minimum, the profiles of σρ diverge considerably. It is apparent that the437

overload pressure is no longer the determining factor below this depth. The amplitudes438

in variability clearly increase again, but not as a function of overload pressure. Other439

factors, independent from the load, seem to modulate the density variability at this point.440

The firn cores cover different time intervals - from less than 60 years (B38) to more than441

2900 years (EDC2). Accordingly, the behavior of the density variability is not a local442

climate signal, because we study different time series intervals, but a structural property443

of layered firn compaction.444

A crossover in density of initially coarse-grained, low-density layers and fine-grained,445

high-density layers, as discussed above, could be one possible explanation. High-resolution446

grain size data are needed to examine the impact of grain size on the densification of the447

different layers. Another possibility could be the inclusion of impurities or chemistry448

into the firn. The interaction of impurities with the firn is rarely investigated. From449

ice core data the coherence of high dust concentrations with very small grains in the ice450

matrix is known, which indicates an impact of impurities on physical properties of the ice451

[Svensson et al., 2005]. Also microstructural parameters apparent in single layers, such452

as grain shape or textural anisotropy might come to play a role, after a certain density or453

grain-geometry is obtained. Salamatin et al. (2009) showed the importance of grain size454

and coordination number in the densification process and thus in the determination of the455

close-off density and depth. Both impurities and microstructure can alter the densification456
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rate of the firn. The analysis of this impact is beyond the scope of this paper, but a topic457

of future research.458

4.3. Variability at the firn ice transition

In order to test the assumption of a direct link of surface layering to the variability at the459

firn-ice transition, related to an extension of a non-diffusive zone [Landais et al., 2006], we460

compare the density variability at the firn-ice transition with the density variability at the461

surface and link it to the mean annual temperature and accumulation rate. We calculate462

the mean densities for air enclosure, using equation (4) and determine the corresponding463

value in σρ (Table 3). We find an increase in variability at the firn-ice transition with464

increasing mean annual temperature (correlation coefficient of the fit r = 0.822) and465

increasing accumulation rate (Figure 9A, r = 0.634 and 9B, r = 0.73, orange line). This466

observation supports the assumption of a dependency of density variability at the firn-467

ice transition on mean annual temperature and on accumulation rate, as suggested by468

Landais et al.(2006) and Kawamura et al. (2006).469

For the surface variability we find a clear negative trend with temperature (r = -0.35470

in the uppermost layers and r = -0.92 at 6 m depth) and accumulation rate (r = -0.617 /471

-0.44 in the uppermost layers and -0.73 / -0.86 at 6 m depth). The higher the temperature472

or accumulation rate at a site, the lower the density variability, which is the opposite of the473

trend of the variability at the firn-ice transition. We first calculate the trend for the whole474

range of accumulation rates (Figure 9A1). In order to make sure that the extremely high475

accumulation rates of the PreIPICS cores do not influence the trend, we then exclude the476

PreIPICS data and re-calculate the trend over the residual range of accumulation rates477

(Figure 9A2). The result is the same in both cases - the density variability at the surface478
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decreases with mean annual temperature and accumulation rate. This decrease indicates479

a decrease in the number of layers apparent at a certain depth interval with increasing480

mean annual temperature and accumulation rate. Accordingly low-accumulation sites481

seem to have more pronounced layering than high-accumulation sites. This finding is in482

contradiction to the common assumption that low-accumulation sites show only weak or a483

lack of layering compared to high-accumulation sites [Landais et al., 2006] because of the484

long exposure to temperature gradients and insulation. Because of the opposite trends485

of density variability at the surface and at the firn-ice transition with increasing mean486

annual temperature and accumulation rate (Figure 9) we can not confirm a direct link of487

layering at the surface to the extent of a non-diffusive zone near the firn-ice transition. It488

seems that the surface stratigraphy of polar firn does not directly imply the variability at489

the firn-ice transition or the thickness of a non-diffusive zone.490

Equation (4) estimates the mean density of close-off [Martinerie et al., 1992]. It is491

assumed that high-density layers approaching close-off density at shallower depths seal492

off low-density layers from the free atmosphere and thus increase the air volume enclosed493

in low-density firn. The depth at which this density is approached is crucial for the494

estimation of the age difference of ice and air. However, the problem of density variability495

makes the definition of this close-off depth very varied and it is used very differently in496

the literature [Arnaud et al., 1998, 2000; Landais et al., 2006; Kawamura et al., 2006;497

Loulergue et al., 2007]. In Table 3 we list the mean density and mean depth at which the498

air isolation is obtained from equation (4), together with some data from literature. Even499

though no physical meaning can be extracted from these values, we also show the depth500

values at which these densities occur for the first and the last time in the high-resolution501
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density profile. Examination of these depths highlights the variability and randomness502

of the occurrence of critical densities and depth intervals with respect to mean annual503

temperature, accumulation rate, location or measured density variability.504

The question is whether the degree of vertical density variability is the key parameter505

for the air close-off depth. The horizontal extent of high-density layers at the firn-ice506

transition (initially low-density layers at the surface) and thus the horizontal variability507

or the roughness of layers [Martinerie et al., 1992], might play an important role in508

defining the depth at which firn air is finally sealed off from the pore space above [Freitag509

et al., 2001]. In that case the parameters to examine more carefully are the conditions510

at which layers are formed and how layers are extended horizontally in plane. This511

includes not only the precipitation itself, but the wind and redistribution by wind, which512

shape the surface, create surface roughness and generate single snow layers with a certain513

thickness and horizontal continuity. It might be necessary to consider the wind duration,514

speed and redistribution of snow particles. It might also be important to link the surface515

variability with the amplitude of temperature variation at a site: a broader temperature516

range occurring over the year generates a larger difference in the density between single517

layers. With increasing accumulation rate this impact will cease, thus the degree of518

variability will decrease, as is suggested by Li and Zwally (2004).519

4.4. Conclusion

We investigated mean density profiles and density variability obtained from high reso-520

lution firn core measurements. Our results emphasize the need for a physical model for521

predicting mean density profiles, in order to be able to apply it to a broad range of climate522

conditions. Furthermore the study of high-resolution density gives detailed insight into523
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the physical process of compaction of stratified firn. In the density profiles investigated524

we find few or no distinct transitions in the density-increase with depth at mean densities525

of 550, 730 and 820-840 kg/m3, as found elsewhere in the literature.526

Density variability as a measure of the layering of polar firn shows a distinct pattern527

at all sites, excluding local climate conditions as an explanation, and questioning the528

common idea of homogenous polar firn densification. The more efficient and fast den-529

sification of initially low-density layers, overcoming the density of initially high-density530

layers (crossover), explains the observations of the variability pattern and a switch in531

correlation of density and electrical conductivity [Gerland et al., 1999] and density and532

intensity of back-scattered light [Hawley and Morris , 2006]. It also implies, that the high-533

density layers at the firn-ice transition do not originate from high-density layers at the534

surface. In order to understand the evolution of the density variability and to verify the535

crossover in density profile of different layers or the impact of impurities and microstruc-536

ture, the densification process needs to be investigated on a micro-scale. Therefore a firn537

core study including high resolution profiles of chemistry, microstructure and density is538

strongly needed. Traditional methods to obtain such profiles are very time consuming.539

But new methods are progressing, enabling a fast and accurate analysis of microstructure540

[Kipfstuhl et al., 2009]. These techniques will provide more detailed information in the541

future. In order to link firn layers in their extent, thickness and initial density to the air542

enclosure process, the lateral extension and continuity of theses layers needs to be con-543

sidered as well. Therefore knowledge about wind intensity, duration of wind deposition544

events and the subsequent creation of wind-packed layers on one hand, the extent and545

distribution of low density layers at the surface, on the other hand, is crucial.546
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HÖRHOLD ET AL.: DENSITY VARIABILITY X - 27

Acknowledgments. We thank the field team of the North-Greenland traverse 1993547

- 1995; Daniel Steinhage and the team of the PreIPICS traverse 2006/2007 and Hans548

Oerter and the team of the DML-pre-site survey 1997/1998. We are very grateful to549

Dr. Zoe Courville for careful reading of the manuscript. We also thank the two anony-550

mous reviewers for their helpful comments. This work is partly funded by the Deutsche551

Forschungsgemeinschaft (DFG) grant FR2527/1-1.552

References

Alley, R. B., Firn densification by grain-boundary sliding: a first model, in VIIth Sympo-553

sium on the Physics and Chemistry of Ice, Journal de Physique, vol. 48, pp. 249–254,554

1987.555

Alley, R. B., J. F. Bolzan, and I. M. Whillans, Polar firn densification and grain growth,556

Annals of Glaciology, 3, 7–11, 1982.557

Anderson, D. L., and C. S. Benson, The densification and diagenesis of snow, in Ice and558

Snow - properties, processes and applciations, 1962.559

Arnaud, L., V. Lipenkov, J.-M. Barnola, M. Gay, and P. Duval, Modelling of the densifi-560

cation of polar firn: characterization of the snow-firn transition, Annals of Glaciology,561

26, 39–44, 1998.562

Arnaud, L., J.-M. Barnola, and P. Duval, Physical modelling of the densification of563

snow/firn and ice in the upper part of polar ice sheets, Physics of Ice Core Records,564

285–305, 2000.565

Barnola, J.-M., P. Pimienta, D. Raynaud, and Y. S. Korotkevich, Co2-climate relationship566

as deduced from the Vostok ice core: a re-examination based on new measurements and567

D R A F T October 7, 2010, 8:07pm D R A F T

100
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X - 30 HÖRHOLD ET AL.: DENSITY VARIABILITY

of Geophysical Research, 114, 2009.614

Landais, A., et al., Firn δ15n in modern polar sites and glacial-interglacial ice: a model-615

data mismatch during glacial period in Antarctica?, Quaternary Science Reviews, 25,616

49–62, 2006.617

Li, J., and H. J. Zwally, Modeled seasonal variations of firn density induced by steady-state618

surface air-temperature cycle, Annals of Glaciology, 34, 299–302, 2002.619

Li, J., and H. J. Zwally, Modeling the density variation in the shallow firn layer, Annals620

of Glaciology, 38, 309–313, 2004.621

Loulergue, L., F. Parrenin, T. Blunier, J.-M. Barnola, R. Spahni, A. Schilt, G. Raisbeck,622

and J. Chappellaz, New constrains on the gas age-ice age difference along the epica ice623

cores, 0-50 kyr, Climate of the Past, 3, 527–540, 2007.624

Maeno, N., and T. Ebinuma, Pressure sintering of ice and its implication to the densifi-625

cation of snow at polar glaciers and ice sheets, The Journal of Physical Chemistry, 87,626

4103– 4110, 1983.627

Martinerie, P., D. Raynaud, D. M. Etheridge, J.-M. Barnola, and D. Mazaudier, Physical628

and climatic parameters which influence the air content in polar ice, Earth and Planetary629

Science Letters, 112, 1–13, 1992.630
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Table 1. The 16 firn core sites with position, mean annual temperature, T, and accumulation

rate, b. References for the data are: (1) Schwager [2000], (2) Wilhelms [1996, 2000], (3) Freitag

et al. [2004], (4) Gerland et al. [1999], (5) Sommer et al. [2000], (6) Oerter et al. [2000], (7)

EPICA [2006], (8) Schwander, Oerter, pers. comm, (9) EPICA [2004].

Campaign/ Name lat lon h T b. Year Reference
region a. s.l. of

◦ ◦ m ◦C m w.e. drilling
Greenland
NGT B 16 75.9402 -37.6299 3040 -27 0.142 1993-1995 (1), (2)
NGT B 17 75.2504 -37.6248 2820 1993-1995 (1), (2)
NGT B 18 76.6170 -36.4033 2508 -30 0.104 1993-1995 (1), (2)
NGT B 21 80.000 -41.1374 2185 -30 0.108 1993-1995 (1), (2)
NGT B 26 77.2533 -49.2167 2598 -30.6 0.18 1993-1995 (1), (3)
NGT B 29 76.0039 -43.4920 2874 -31.6 0.153 1993-1995 (1), (2)

Antarctica
Berkner Is. B25 -79.6142 -45.7243 886 -27 0.14 1995 (4)
DML B 31 -75.5815 -3.4303 2669 -42 0.063 1997 (5), (6)
DML B 32 -75.0023 0.0070 2882 -42 0.061 1997 (5), (6)
DML B 33 -75.1670 6.4985 3160 0.044 1998 (5), (6)
DML B 36/37 -75.0025 0.0684 2891 -44.6 0.067 2005/2006 (7)

PreIPICS B 38 -71.1621 -6.6989 690 -18.1 1.25 2006/2007 (8)
PreIPICS B 39 -71.4083 -9.9167 654 -17.9 0.77 2006/2007 (8)
PreIPICS DML 95 -71.5680 -6.6670 540 -19.2 0.55 2006/2007 (8)
PreIPICS DML 97 -72.0640 -9.5583 760 -20.4 0.49 2006/2007 (8)
Dome C EDC2 -75.1000 123.35000 3233 -53 0.025 1999 (9)

D R A F T October 7, 2010, 8:07pm D R A F T

106
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Table 2. The measurement setups and the data processing parameters for the 16 firn cores.

More details are given in [Wilhelms , 1996, 2000].

Campaign/ Name Year of Activity source Sampling Point Averaging
region measurement (1990) rate distance window

G Bq mm mm w.e. points
Greenland
NGT B 16 1995/1996 25.96 3 3 5
NGT B 17 1995/1996 111 1 0.9 16
NGT B 18 1995/1996 111 3 3 5
NGT B 21 1995/1996 111 3 3 5
NGT B 26 1995/1996 25.96 1 0.9 16
NGT B 29 1995/1996 25.96 1 0.9 16

Antarctica
Berkner Is. B 25 1995 25.96 3 3 5
DML B 31 1997/1998 25.96 5 4.4 3
DML B 32 199/1998 25.96 5 4.4 3
DML B 33 1998 25.96 5 4.4 3
DML B 36/37 2007/ 2006 111 1 0.9 11

PreIPICS B 38 2007 111 1 0.9 16
PreIPICS B 39 2007 111 1 0.9 16
PreIPICS DML 95 2007 111 1 0.9 16
PreIPICS DML 97 2007 111 1 0.9 16
Dome C EDC2 2008 111 1 0.9 11
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Table 3. The air isolation density ρcrit, calculated using equation (4) [Martinerie et al., 1992],

the corresponding density variability σρ, close-off depth (mean depth) and the depth at which

the air isolation density is reached the first (top depth) and the last time (bottom depth) within

the high resolution density profile. In the last column measured/ modeled mean close-off depths

are added from the following references: (1) [Schwander et al., 1997] for NGRIP and GISP2

as closest points to B 16 , (2) [Kaspers et al., 2004], (3) [Landais et al., 2006] after Models by

Arnaud et al. (2000) and Pimienta et al. (1991); with NGRIP as the closest point to B29.

Campaign/ Name ρcrit σρ(ρcrit) mean depth top depth bottom depth Literature
region (ρcrit) (ρcrit) (ρcrit) depth

kg/m3 kg/m3 m m m m
Greenland
NGT B 16 819.273 12.2627 63 56 69 71 /72 (1)
NGT B 17
NGT B 18 820.806 12.8078 59 54 66
NGT B 21 820.806 12.9072 62 51 72
NGT B 26 820.848 13.225 69 59 78
NGT B 29 821.319 10.5 68 53 77 66 /67 (3)

Antarctica
Berkner Is. B 25 819.156 14.5719 56 50 67 60 /59 (3)
DML B 31 826.997 10.2713 82 75 86
DML B 32 826.997 11.2794 86 77 93
DML B 33
DML B 36/ 37 827.495 8.1154 88 77 98 74 (2)

PreIPICS B 38 815.003 16.586 68 56 83
PreIPICS B 39 814.91 17.108 58 48 77
PreIPICS DML95 815.514 13.4153
PreIPICS DML97 816.072 10.0261
Dome C EDC2 832.019 4.5932 99 93 104 98.6 (2)/ 100 (3)
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Figure 1. The measured high-resolution (grey line) density raw data with depth (A) together

with the one meter average (running mean) from high-resolution density measurements (dark

line) and the one meter bag values measured in the field (brown line) for comparison. The

high-resolution density raw data with depth in meter water equivalent (B) after re-sampling to

equidistant points (light grey line), together with the smoothed data after applying a running

mean average window of size as denoted in Table 2 (dark grey line). The exponential fit for

detrending is displayed (blue line) as well as the mean values of a sliding window of 1000 data

points (yellow), corresponding to the standard deviation of the sliding window of 1000 data points

after detrending (brown).
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Figure 2. High-resolution density profiles (grey line) of B25 (after Gerland et al. 1999)

and B26 (after Freitag et al. 2004), together with the 1 meter average (black line). The large

variability in the density becomes visible, even at greater depths.
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Figure 3. Mean density profiles (1 m running mean average). Low accumulation sites are

plotted in blue, medium accumulation sites in green and high accumulation sites in brown.

Commonly considered ”critical density” values of 550 kg/m3, 730 kg/m3 and 820 - 840 kg/m3

are indicated by dashed lines. For most of the cores a transition at 550 kg/m3 is not obviously

detectable. A transition at density around 730 kg/m3 is not visible in any profile. For most

of the cores a change in densification rate occurs at densities above 840 kg/m3, but a distinct

transition is not apparent.
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Figure 4. Selected mean density profiles in comparison to modeled density profiles using the

Herron-Langway model (black line). The Herron-Langway model reproduces the profiles of the

B25, B26 and B29 cores - with moderate mean annual temperatures and accumulation rates (C

- E)well. But the model fails for the EDC2 core with low accumulation rate and temperature

and the B38 core with high accumulation rate and temperature (A and F).
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Figure 5. Details of the high-resolution density of B26 core. This core represents a typical firn

core from the Greenland plateau, with moderate mean annual temperature and accumulation

rate. From left to right the mean density and depth increase. Each profile covers 1.8 m depth

w.e., which equals approximately 10 years at this site. In the upper part (5 and 8 m depth)

the density variations are characterized by large amplitudes and random frequencies. Towards

greater depths (20 m depth) the amplitudes decrease. Below the amplitudes increase again and

more regular frequencies seem to appear (25 - 53 m depth). Below 53 m depth the variability

decreases until it vanishes at depths of 75 m.
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Figure 6. Measured density variability σρ of all cores as a function of depth in m w.e. (A) and

mean density (B). All profiles show a rapid drop in σρ with a minimum at approximately 10 m

(A) / 3 ( )
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Figure 7. Measured σρ of the firn cores grouped by temperature and accumulation rate

intervals. The lowest temperature and accumulation rate in A (EDC2), second lowest in B

(DML). The low accumulation sites from Greenland are shown in C, note that the minimum is

not well developed, the moderate Greenland cores are shown in D. The B25 core is plotted with B

and D, since the drop seems to better fit with the DML cores, whereas the second maximum fairly

well fits to the Greenland cores. Finally E shows the PreIPICS cores with highest temperatures

and accumulation rates. In F the averaged profiles of each of the groups are plotted. The mean

density of the minimum is restricted to 660 - 650 kg/m3 (grey shaded area).
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Figure 8. Measured (crosses) and modeled σρ of B26. Assuming a linear drop of σρ with

increasing ρ (dashed line), modeled σρ using the Herron-Langway model with two different start-

ing densities (diamonds) and σρ when applying the Pimienta model, starting at a density of 550

kg/m3 (circles). Three different stages of the latter occur due to the set up of the Herron-Langway

model (see text). In B the high-resolution density profile of B26 is shown with the resulting σρ

(grey). In addition, two exponential fits are indicated - one starting at lower densities (orange

line) and the other starting at higher densities (blue line). Due to different rates in densification,

the modeled density profiles cross each other and deviate from each other once more below the

crossover depth. Towards the density of ice both fits converge. The resulting σρ is plotted with

brown dots.
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Figure 9. Relationship between σρ at the surface and at close-off densities. Density variability

σρ at pore close-off densities (brown line), calculated after equation (4) and σρ at the surface

(dashed lines) for depth intervals from 0 (bright grey) to 6 m (dark grey) depth are shown against

increasing accumulation rate (A1 and A2) and temperature B. In A1 the whole accumulation rate

range of all firn cores is plotted. In A2 the extremely high accumulation rates of the PreIPICS

cores are excluded and the new fits are calculated. For increasing accumulation rate and mean

annual temperature σρ at the surface is decreasing, whereas σρ at the pore close-off is increasing.
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1 Introduction

Ice cores provide highly resolved records of atmospheric parameters for the last 1,000,000 years

(EPICA, 2004). Aerosols and dust particles are deposited and incorporated into the ice and allow

together with isotopes climate and temperature reconstruction of the past. Together with the enclo-

sure of air into bubbles within the ice during the densification, which provide a direct measurement5

of former atmospheric composition, these proxies make ice cores a unique climate archive.

At adequate accumulation rates the chemical components, ion concentrations or dust impurities

are detected within firn and ice cores with seasonal variability (Fischer et al., 1998; Göktas et al.,

2002; Kreutz et al., 1999; Sommer et al., 2000). These seasonal variations are often used to date the

cores (Rasmussen et al., 2006).10

An improved understanding of the fundamental factors that control the chemistry of a snow or ice

sample, the transfer from a surface signal to an ice core record and the densification process with

the related air enclosure will allow an even more detailed and accurate interpretation of records,

reconstructing past climate conditions. The densification and the evolution of density variability of

polar firn is a crucial process which is still not fully understood. Just recently the importance of15

the exact knowledge of firn densification for analyzing elevation maps over time for mass balance

estimates (Li and Zwally, 2002) via remote sensing has been emphasized (Cuffey, 2008; Helsen

et al., 2008). To improve the analysis of both, data obtained by remote sensing methods as well

as the records measured in ice cores, it is necessary to determine the processes and interactions of

chemistry, impurities and physical properties of the firn.20

In many applications the density profile is described by continuously increasing 1 meter bulk
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densities or approximated by empirical density-depth relationships (Alley et al., 1982; Arnaud et al.,

1998, 2000; Arthern and Wingham, 1998; Freitag et al., 2004; Herron and Langway, 1980; Li and

Zwally, 2004; Wilhelms, 2000; Zwally and Li, 2002; Salamantin et al., 2009). But the firn column

is composed of alternating layers distinguishable in microstructure and density. Snow pit studies25

deliver detailed observations of the different snow layers, presumably created by seasonal variations

in local climate conditions (Alley, 1988; Benson, 1971; Cameron, 1971; Gow, 1965; Koerner, 1971;

Kreutz et al., 1999; Palais et al., 1982; Rundle, 1971; Shiraiwa et al., 1996). The density profile in

snow pits is supposed to be the most reliable indicator of seasonal variations in the firn (Taylor, 1971;

Hori et al., 1999). Accordingly, these seasonal cycles of snow and firn layer density are considered30

in many applications such as the modeling of firn densification for the validation of air borne mass

balance studies (Li and Zwally, 2002; Zwally and Li, 2002; Helsen et al., 2008). In these models it

is common to assume an asymptotically decrease of density variability with depth (2002).

However, detailed knowledge about the transfer of surface density variability down the firn column

is lacking. It is a common idea that the seasonal variability in polar firn density created at the surface35

is preserved in the firn and ice column (Kawamura et al., 2006; Landais et al., 2006; Li and Zwally,

2002; Martinerie et al., 1992; Severinghaus and Battle, 2006; Zwally and Li, 2002). The implicit

assumption is that the density variation at the surface survives the densification process over the

entire firn column and causes measured density variability also at the close-off depth. In return these

density fluctuations could impact the bubble enclosure process during close-off (Martinerie et al.,40

1992; Kawamura et al., 2006; Landais et al., 2006; Severinghaus and Battle, 2006).

The snow deposition is determined by combined effects of the annual cycle in atmospheric pro-

cesses, irregular surface deposition and erosion and re-distribution disrupting the interpretation of

annual layering and diagenetic processes occurring after burial (Palais et al., 1982; Jones, 1983;

Fisher et al., 1985). Therefore the interpretation of stratigraphic observations is not straight forward.45

Because of strongly varying or even missing accumulation, erosion and re-deposition, layers are

created, which can obliterate or combine several years of accumulation (Rundle, 1971; Petit et al.,

1982). The seasonal variation in the atmosphere is not necessarily displayed in the snow (Wolff et al.,

1998; Udisti et al., 2004) and a clear correlation between density variability and isotope signature

could not be found yet (Stenberg et al., 1999).50

The link between any signal incorporated into the snow and the actual signal that remains in ice

cores is unclear (Fisher et al., 1985; Karlöf et al., 2006; Birnbaum et al., 2010). The assumption of a

persistent density seasonality throughout the firn column does not necessarily hold. With this study

we aim to improve the understanding of densification and the role of impurities in the densification

process.55

We analyze the evolution of density variability with depth of firn cores from Greenland and

Antarctica, obtained from of high-resolution density measurements. We find no seasonal variability

in density at the surface but a distinct seasonality in greater depths in high accumulation rate sites.
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We hypothesize, that impurities in the snow and firn of polar ice sheets alter the densification and

thus the variability of firn density, introducing a seasonal signature with depth. Unfortunately multi-60

specific ion records do not exist for most of the firn cores in high resolution. Accordingly we con-

centrate here on seasonal resolution Ca records measured by continuous flow analysis (Röthlisberger

et al., 2000; Kaufmann et al., 2008), which are available for an extended set of firn cores. For these

cores we study the co-evolution of density and Ca concentration.

2 Method65

High resolution density measurements are conducted at 17 firn cores from Greenland and Antarctica

(Wilhelms, 1996, 2000; Freitag et al., 2004; Hörhold et al., accepted). The vertical resolution varies

between 1-5 mm. The firn cores cover a broad range in annual mean temperature and accumulation

rate. Position of the cores can be found in table one. The density is measured using a non-destructive

logging system including a Löffel densimeter. Details are given in Wilhelms (1996; 2000).70

We further more use high resolution ion measurements from continuous flow analysis (CFA)

(Röthlisberger et al., 2000; Sommer et al., 2000; Kaufmann et al., 2008). The measurements of the

firn cores B31, B32, and B33 from Dronning Maud Land, Antarctica were carried out at Neumeyer

Station (Sommer et al., 2000; Göktas et al., 2002). Further more two unpublished data sets from firn

cores from Greenland are analyzed. The CFA measurements were conducted at the cold laboratory75

at the Alfred-Wegener-Institute, Bremerhaven, Germany and at the University of Bern, Switzerland.

For analysis we restrict ourself to the Ca ion which is usually deposited with a seasonal amplitude

(Ruth et al., 2004).

Core breaks and core cuts are manually removed from the density datasets. A small number of

outliers (<1%) are removed from the Ca datasets by visually investigating the histogram. Ca con-80

centrations are analyzed on a logarithmic scale, as the concentration values follow a log-normal

distribution. The density and chemistry data are transferred to the water equivalent (w.e.) depth

scale and averaged to 5 mm w.e. mean values. Low frequency variations in the density records are

removed using a finite response highpass filter (cutoff frequency for B38 and B39 0.2 m w.e., 0.5 m

w.e. for all other cores). The depth dependence of the density variability and that of the Ca-density85

relationship are analyzed on a 5 m w.e. sliding window. For this analysis, the statistics standard

deviation as a measure of variability and Pearson correlation as a measure for the Ca-density rela-

tionship are used. As the density and Ca analysis were performed on different measurement devices,

a slight depth uncertainty between both measurements cannot be excluded. This is accounted for by

calculating the maximum cross correlation in a 50mm w.e. window instead of a single correlation90

estimate. The statistical significance of the running correlation, including the depth uncertainty, is

determined by a Monte Carlo experiment. Therefore, the chemistry data was replaced by surrogate

data with the same autocovariance structure, and the correlation analysis is repeated 10000 times.
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To analyze the depth dependent behavior of density and chemistry in the frequency domain, we es-

timate the wavelet sample spectrum using the Morley wavelet (sowas package (Maraun and Kurths,95

2004; Maraun et al., 2007)). Wavelet analysis is a common tool for analyzing localized variations of

power within a data series (Torrence and Compo, 1998), even if the dominant modes of variability

are non-stationary. It is therefore perfectly suited for our application in which we seek to identify

annual cycles and their dependence on firn depth. Pointwise significant areas against a white noise

background spectrum are estimated using Monte Carlo experiments (Maraun et al., 2007). However,100

one must note that pointwise significance testing will result in a large of spurious significant patches,

as a wavelet transform contains multiple testing, and adjacent areas in the wavelet sample spectrum

are not independent (Maraun et al., 2007), (also see Supplement Figure 1). The results are not sen-

sitive on the choice of the interpolation resolution (1-10 mm), the lowpass filtering method (Finite

response filter, or spline fit) and the cutoff frequency. To investigate potential artifacts caused by the105

calculation process (transfer to water equivalent scale, interpolation, filtering and statistical analy-

sis on a moving window), we additionally perform the complete calculation process on a surrogate

dataset. This consists of the B19 ice core data with density values replaced by a random timeseries

with the same autocovariance structure as the B19 density. The results (Supplement Figure 1) show

that our statistical procedure does not produce any artifacts.110

3 Results

3.1 Density Variability

To investigate the densification process we analyze the evolution of the density variations with depth.

The variability is first analyzed on the firn core B29 from Central Greenland, that exhibits a 0.15 m

w.e./a accumulation rate (Figure 1).115

The strength of the density variability, calculated as standard deviation in a 5 m w.e. sliding

window, is decreasing with depth to roughly 40 % of its initial standard deviation (Figure 1, top

panel). This variability minimum is found at a mean density of 600-650 kg/m3 corresponding to 12

m w.e. depth. Below this depth the variability increases again, obtaining a second peak around 30 m

w.e. depth. At depths and densities of the firn-ice transition (820-840 kg/m3) the variability is still120

high, until it vanishes at the mean density of ice.

This rapid drop of variability from the top of the core down to a variability minimum and the

following increase to second maximum presumably results from the fast densification of initially low

density layers (Gerland et al., 1999; Freitag et al., 2004; Fujita et al., 2009; Hörhold et al., accepted).

This behavior was found for all firn cores investigated in this study (Hörhold et al., accepted).125

To analyze the evolution of the density in the frequency domain and to investigate if the annual

cycle can be detected, a wavelet analysis is applied to the B29 core (Figure 1, lower panel). At the

surface, the signal covers a broad range in the frequency domain. With increasing depth the vari-
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Fig. 1. Depth dependence of the density variability (upper panel) and wavelet spectrum of the density (lower

panel) of the B29 firn core from Greenland. The minimum and secondary maximum of the density variability

are marked with vertical lines. In the wavelet spectrum, the scale corresponding to the accumulation rate

(horizontal line) and pointwise significant areas (black contours) are marked. At the surface, the density exhibits

strong variability spread over a large range of frequencies. Below a density minimum at around 12m w.e. a

secondary variability maximum is detected at around 30 m w.e. depth. At this depth, the main density variations

are concentrated at the frequency of the accumulation rate.

ability decreases at all frequencies. The area of minimum variability and therefore low amplitudes

in the frequency spectrum, represents the depth interval, where the difference in density between130

the different layers is minimal. Below, at approximately 15 m w.e. depth, a distinct signal at the

frequency of the accumulation rate of the firn core is found. This signal shows the maximum ampli-

tude at around 30 m w.e. depth which is simultaneous with the overall second maximum in density

variability (Figure 1, top panel).

This maximum in seasonal density variations at 30 m w.e. depth is particulary remarkable, as no135

seasonal density signal was detected at the surface. Thus, the development of the seasonality in the

firn density takes place below the column that is influenced by the seasonal cycle of temperature and

related climate variables.

The behavior of the firn density variability is not limited to the firn core B29 but is found in most
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of the cores investigated in this study. Therefore the same wavelet analysis is applied to all 17 firn140

cores (Figure 3, 4 and Supplement Figure 2). In the following wavelet spectra, the depths, at which

the minimum and the second maximum in density variability occur, are indicated with a vertical

dashed line, the variability itself is not shown.

In almost all cores, the density variability at the surface is distributed over a broad range of fre-

quencies. Only at firn core B26 a distinct peak in intensity at the accumulation rate is observed at the145

surface. The B20, B25 and B29 firn cores show a broad frequency signal at the surface, including

the frequency of the accumulation rate.

In all cores, the surface signal is followed by a zone with a minimum in density variability. In

many cases this zone is followed by an interval, where a distinct signal in the frequency of the

accumulation rate appears (B16, B17, B26, B29, B38 and B39 towards the end of the record, Figure150

3, 4 and Supplement Figure 2). Other cores show patches and islands with pointwise significantly

increased intensities around the frequency of the accumulation rate (B18, B20, B21, B25, B32 and

B36). The EDC2, B31 and B33 firn cores do not show a significant intensity at any frequency, apart

from the surface signal (Supplement Figure 2). The maximum in intensity occurs at the depth of the

second maximum density variability.155

It appears that the occurrence of significant intensity of the frequency of the accumulation rate at

the depth of the second maximum in density variability is linked with the amount of accumulation.

Firn cores with a relatively high accumulation rate, such as the B38 and B39 firn cores from Antarc-

tica and the B16, B17, B26, B29 firn cores from Greenland (all with accumulation rates larger than

0.142 m w.e./a) show a significant intensity of the frequency of the accumulation rate at the second160

maximum in density variability. Firn cores with relatively low accumulation rates such as the EDC,

B31-B33 and B36 cores from Antarctica (all with accumulation rates smaller than 0.067 m w.e./a)

do not show any increased intensity at the depth of second maximum variability in density. The

Greenland cores with relatively moderate accumulation rates around 0.1 m w.e./a as well as the B25

core from Antarctica with a relatively high accumulation rates of 0.14 m w.e./a show no clear peak165

in intensity of the frequency of accumulation rate but patches with increased intensities at several

frequencies at the depth of the second maximum in density variability.

Our finding, that in many cores seasonal variations in density develop with depth, question the

the origin of the annual cycle in density. Since it can be excluded, that a new property is introduced

into the firn at the depth where the seasonality is developing, we must consider a parameter, which is170

deposited at the surface, preserved in the firn column and altering the densification of the firn. Impu-

rities could be a candidate as they are often deposited with the snow and exhibit a seasonal varying

concentration. To test this hypothesis we analyze the high-resolution Ca concentration profiles of 5

firn cores. Our choice of Ca is simply due to the fact that Ca is the impurity parameter for which the

largest amount of measurements were available.175

6

124



3.2 Link between density- and Ca concentration variability

To visualize the Ca concentration and density profiles in detail, short intervals from three stages of

the core B29 are shown (Figure 2). The correlation coefficient between density and Ca concentration

is displayed for comparison. The first interval from the surface is characterized by high variability in

density and no relationship between density and chemistry variability is observed (Figure 2, upper180

panel). The density shows chaotic fluctuations and no correlation to the Ca concentration record can

be detected (panel A). The second interval from the approximately 12 m w.e. depth is characterized

by minimum density variability (Figure 2, upper panel) and a significant correlation with Ca con-

centration variability is visible (Figure 2, panel B). At the third interval from approximately 30 m

w.e. depth, both, the variability as well as the Ca concentration-density relationship reach a maxi-185

mum (Figure 2, upper panel and panel C). At the B29 firn core the correlation between density and

Ca concentration increases with depth and reaches a maximum at the second maximum of density

variability.

We further analyze the Ca concentration-density relationship for the firn cores B20, B31, B32 and

B33 and (Figure 3 and 4). All five firn cores show an increase in density-Ca concentration correlation190

with depth, and a significant correlation at the depth of the second maximum in density variability

(Figure 3 and 4, upper panel).

For the Greenland cores, with relatively high (B29 with 0.15 m w.e./a) and medium accumulation

rate (B20 with 0.1 m w.e./a) the correlation between density and Ca concentration is distinct (Figure

3, upper panel). In firn core B29 the accumulation rate frequency is clearly detected in the chem-195

istry profile for all depths (Figure 3, lowermost panel). In the density profile the accumulation rate

frequency develops with depth and appears at the variability maximum (Figure 3, mid panel). B20

does not show the accumulation rate frequency in the chemistry or density variability profile (Figure

3, lowermost panel), but nevertheless a significant Ca concentration-density correlation is developed

(Figure 3, upper panel).200

For the Antarctic firn cores B31 - B33 with accumulation rates of 0.044 - 0.063 m w.e./a the

Ca concentration-density relationship is not as high but still significant (Figure 4, upper panel). A

significant signature of accumulation rate frequency can not be detected in the density variability

wavelet (Figure 4, mid panels). The Ca concentration variability wavelet does show significant

intensity close to the frequency of the accumulation rate, but not clear (Figure 4, lowermost panels).205

4 Discussion

The wavelet analysis can help to study the evolution of the density variability with depth and to

detect an annual cycle in the variations. The presented results questions the seasonality of snow

layers at the surface as they are often reported from snow pit studies. Most of the firn cores do not

show a distinct signal of accumulation rate frequency in the density variability at the surface. This210
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Fig. 2. Density-Ca relationship of the B29 firn core. The density variability (black line) and the correlation

between density and Ca concentration (red line) are shown in the upper panel. Horizontal lines mark the

95% (dashed) and 99% (dotted) confidence intervals of the correlation. The lower panels A-C show detailed

profiles of the density and Ca evolution in the depth intervals marked in the upper panel (vertical grey lines).

The correlation values of the shown depth intervals are given in the panels. At the surface (A), high density

variability and no correlation are detected. At the minimum of density variability (B) a positive correlation

between density and Ca concentration is found that increases at the secondary maximum of density variability

(C).
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Fig. 3. Density-Ca relationship (upper panel) and wavelets spectra of density (middle panel) and Ca concen-

tration (lower panel) of the B20 and B29 firn cores. The minimum and secondary maximum of the density

variability are marked with vertical lines. In the wavelet spectra, the scale corresponding to the accumulation

rate (horizontal line) and pointwise significant areas (black contours) are marked. In both cores, the density

variability evolves from random variations at the top, to a variance minimum at around 12 m w.e. and to a

secondary maximum in density variations concentrated around the accumulation rate in greater depths. The

spectrum of the Calcium concentration is less depth dependent and shows variability at the accumulation rate

in all depths. The correlation between density and Ca changes from no correlation at the surface to strong

correlation values between 10-50 m w.e.depth.
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Fig. 4. As Fig.3 but for Antarctic cores B31, B32 and B33. In all cores, a significant correlation between

density and Calcium is detected in depths deeper than the density variability minimum, although the density-Ca

relationships are weaker than in the Greenland cores (Fig 3). The density and Ca variability are not confined to

the frequency of the accumulation rate. This might be caused by a strong interannual variability in accumulation.

indicates, that in the near surface snow no seasonal variability in the density is apparent. This is in

line with the observation by Stenberg et al (1999), who did not find a relation between seasonally

varying isotope measurements and density profiles in snow pit analysis. Also at Dome Fuji the

density variability did not reflect seasonal variations (Hori et al., 1999). This might be the result

of discontinuous precipitation through the year as well as redistribution and erosion of deposited215

surface snow by wind. The interaction between wind and unbounded particles at the snow surface

controls the initial density of the snow. The meteorological data show no clear seasonal signal in

wind speed at almost all locations (Birnbaum et al., 2010). Furthermore the rough surface introduces

a high spatial variability of patches with different density. Therefore it can be assumed that at most

sites the initial density has no annual cycle. The post depositional snow metamorphism is driven by220

temperature and temperature gradients with an inherent clear annual cycle. However, this seasonality

seems to be not imposed on the density variations because of their strong dependence on initial

density.

The wavelet analysis also delivers surprising results about the evolution of the variability with

depth. For all firn cores we find rapid drop in density variability until a minimum, displayed by the225

blank zone within the power spectra at approximate 10 - 12 m depth w.e. (Figure 1 and Supplement
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Figure 2). Below, the amplitude in variability increases again, but with different frequencies. We

observe, that at some firn cores, the increased density variability in greater depths, shows the fre-

quency of the accumulation rate, and thus a seasonal variability. This is in contrast to Li and Zwally

(2002, 2004), who state that the seasonal variability in density, created at the surface is kept all the230

way down, while the amplitude is reduced with depth. Our results imply, that the seasonality is

developing with depth at these sites, even though no seasonal frequency is apparent at the surface.

This could be a hint, that the density records partly loose their memory of density fluctuations from

the surface. With our results the assumption of a seasonal varying density which is preserved in the

firn and ice column, cannot be confirmed.235

We also observe, that mainly sites with moderate to high accumulation rates show this develop-

ment of a seasonal frequency with depth (Supplement Figure 2). This indicates, that the appearance

of the accumulation rate frequency in greater depths is related to the magnitude and variability of the

accumulation rate. At sites with high and stable accumulation rates, the seasonal variability develops

with depth, whereas sites with low or varying accumulation rates do not show this pattern.240

4.1 Why is a seasonal frequency created with depth?

The presented data do not allow a sufficient analysis of the reason for the observed development

of seasonality with depth. We can only compare the high-resolution density data in terms of local

climate conditions, the appearance and intensity of the seasonality with depth and a few Ca concen-

tration profiles. Nevertheless we start here a preliminary discussion on possible mechanism, since245

the question is important for the analysis and interpretation of density-related properties such as the

air content in bubbly ice.

The Ca concentration exhibits a strong increasing correlation with density with increasing depth.

This correlation does not necessarily reflect the causal reason of the increase of seasonality in den-

sity with depth. Any parameter present with seasonal variability in the firn could cause the observed250

change in the density variability frequency. Possible candidates, which could alter the firn densifica-

tion, are impurities or the microstructure of the snow layers itself, i. e. grain size. In the following

we discuss the likelihood of grain size, and impurities altering firn density. We consider the Ca

concentration as a proxy, representing an unknown parameter, which is deposited with a similar

frequency as the Ca concentration.255

Microstructural properties such as the grain size and coordination number are considered as pa-

rameters influencing the densification (Alley et al., 1982; Alley, 1987; Salamatin and Lipenkov,

2008; Salamantin et al., 2009). Coarse firn is characterized by low density and few large connections

to neighbors and densifies faster than fine firn, characterized by high density and high connectivity

(Alley et al., 1982). If grain size shows seasonal variations it could be a possible reason for the260

observed development of seasonality in density with depth. There are observations from snow pits,

linking microstructure properties to distinct seasons. For example, depth hoar layers formed in fall
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or spring could carry another chemical composition and concentration then fine grained snow from

either winter deposition (Jones, 1983) or summer deposition (Koerner, 1971; Gow, 1965; Birnbaum

et al., 2010). However, microstructure seems to be closely linked to density. The starting density and265

a related coordination number of the grains leads to a different extent of the interval at which grain

boundary sliding acts as mean densification regime (Alley, 1987; Salamantin et al., 2009). Further

more a strong linear relationship between density and coordination number in polar firn has been

found by Freitag et al. (2008), indicating that single layers are characterized by specific grain size,

coordination number and density. These findings question the independence of grain size and density270

as physical properties of the upper polar firn layers. Additionally recent findings on irregular grain

boundaries and changing grain size distributions with depth in polar firn indicate dynamic recrystal-

lization to happen at all depth intervals in the firn column (Kipfstuhl et al., 2009). This implies that

the firn microstructure is not stationary but changes continually with depth and thus does probably

not carry a seasonal signal in greater depths. If grain size and density are related to each other in275

the surface firn, and if the grains undergo dynamic recrystallization, grain size must be questioned

as the parameter introducing seasonality in the density variability at greater depth.

Polar firn impurities on the other hand consists of soluble contents and micro-particles and both

can be thought to alter the density of the firn. The impact of micro-particles, i.e dust concentration,

on the physical firn properties has been observed earlier (Svensson et al., 2005). The impact of280

soluble chemistry on the snow and firn properties has been investigated only for surface snow.

For deeper firn and ice the impact of impurities on the grain growth (grain boundary migration) has

been shown in theory (Alley et al., 1986a,b). Impurities and inclusions such as micro particles or air

bubbles can hinder the migration of grain boundaries and therefore reduce the rate of grain growth.

This altered grain growth might have an impact on the density of single firn layers. From deep ice285

core observations of grain size and dust concentrations it seems, that depth intervals with high dust

concentration, correlated with high Ca concentrations, show smaller grain sizes and a higher degree

of deformation than depth intervals with lower dust concentration (Svensson et al., 2005). On the

other hand the theory and ice core observations hold for matrices of ice crystals, with contact areas

all around each grain. So it is questionable if these processes are relevant for the highly porous snow290

and firn at the surface, where much more mobility and degrees of freedom of the snow grains and

ice cluster is possible.

From Snow-Air Interaction studies it is known, that due to its high porosity much of the snow pack

volume consists of air that can be readily exchanged. Numerous physical and chemical processes

can affect trace gases in the snow pack (Domine and Shepson, 2002). There is a lack of knowledge295

of the physical and chemical nature of natural ice surfaces. A disordered layer, often called the

quasi-liquid layer, exists on ice surfaces and its thickness increases with temperature and ion solute

concentration (Domine and Shepson, 2002).

In principle there are two ways how an increased solute concentration may influence the interme-

12

130



diate densification below 12 m w.e. depth and the bubble close-off. Doping the individual (mono-300

crystalline) snow grains with ionic impurities generally increases the ductility of ice, i.e. its creep

(Kang, 2005). Thus, layers with higher impurity content can in principle densify faster.

Alternatively, a higher impurity content at the grain boundaries and triple junctions should in-

crease the thickness of the quasi-liquid layer coating individual grains. The migration of this quasi-

liquid by capillary forces has been hypothesized to contribute to the sintering process during firn305

densification (Dash, 1989; Dash et al., 2006). Again a high impurity content at the grain boundaries

would lead to an acceleration of the densification process. A detailed theoretical assessment of these

phenomena is beyond the scope of this paper, however, recent studies of the location of impurities

in poly-crystalline ice point to larger impurity concentrations at the grain boundaries and smaller

ones in the bulk of the snow grains. Obviously this is dependent on the ionic species considered but310

overall could support the quasi-liquid layer effect to be a possible explanation for the observed faster

densification of high impurity layers in polar firn.

Both, increased micro-particle or soluble component concentration could change the properties

of the firn in terms of density. It seems possible, that firn layers carrying more impurities densify

faster, than firn with layers with less impurities. Such a trend can be detected in the presented data:315

Layers with a high Ca concentration are correlated with high density values and vice versa (Figure

2, lowermost panel). But the mechanism for the impact of impurities on the density of the firn ca not

be detected within this study.

On the base of the presented results we hypothesize that seasonally deposited chemical impurities

lead to the observed signal of the accumulation rate frequency in the Ca concentration wavelet (for320

example B29). This Ca concentration variability with its specific frequency will be superposed

on the density variability, leading to the observed intensity peak in accumulation rate frequency at

greater depths. All of the five firn cores, where Ca concentration measurements are available show a

significant increasing Ca concentration-density correlation with increasing depth.

But since the three Antarctic cores do not show a distinct peak in the frequency of the accumula-325

tion rate in their density variability wavelet, we assume, that the temporal variability of accumulation

rate determines, whether a seasonal signal in chemical impurity concentration is influencing the den-

sity profile. Sites with high accumulation rates and with relatively small inter-annual variability in

accumulation rate show a seasonal deposition of chemical components, which will be superposed

on the density variability. If accumulation rate is small or shows a large variability, even a seasonal330

chemistry deposition would not lead to a accumulation rate frequency in the depth domain. Nev-

ertheless a coherent density and chemistry variability relationship is found below the minimum in

density variability, indicating the impact of impurities on the density of polar firn.
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5 Summary and Conclusion

We observe 1. that a seasonal signal in density develops with depth, 2. the correlation between335

density and Ca concentration develops with depth and conclude 3. that impurities or a yet unknown

parameter incorporated into the snow with the same frequency as the Ca concentration, alters the

firn densification. The snow density variability at the surface is rather random and only for some

sites inhabits a seasonal signal. The density variability at the firn-ice-transition shows a seasonal

signal at some sites, but this seasonality has developed with depth and does not originate from the340

surface. Either impurities or any parameter with likewise frequency in deposition does alter the firn

densification.

At densities and depths of the firn-ice transition we find increased variability in density. This

density varies with a seasonal frequency (Supplement Figure 2, B16, B17, B26, Figure 1,B29). So

one could indeed identify layers, which show a summer or winter signal, as is commonly assumed345

(Landais et al., 2006; Severinghaus and Battle, 2006; Kawamura et al., 2006). However, the vari-

ability and thus the distribution in high and low density layers is not a result of density distribution

at the surface. The density variability at the firn-ice-transition seems to be the result of unknown

process altering the density during burial and accordingly a link to original surface characteristics in

terms of density is not possible. The assumption of a direct link to surface conditions, governing the350

layering and density variability at the firn-ice transition is not confirmed.

Our findings have also important ramifications on the cause of precessional O2/N2 variations

found in records derived from air bubbles in polar ice (Bender, 2002; Kawamura et al., 2007). Those

variations are caused by a size dependent fractionation during the bubble close-off (Severinghaus

and Battle, 2006). Since the density signal looses its initial stratigraphic information completely in355

the top 10 - 15 m of the firn column, a direct line of influence of the local radiation balance on the

surface snow density cannot be the ultimate reason for the observedO2/N2 fractionation at close-off

depth.
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Table 1. The firn core sites with annual mean temperature, accumulation rate and references:

Name Lat Lon Elevation Annual mean Accumulation References

Temperature Rate

deg deg m a. s.l. deg C m w.e.

Greenland

NGT B 16 75.9402 -37.6299 3040 -27 0.142 (1), (2)

NGT B 17 75.2504 -37.6248 2820 (1), (2)

NGT B 18 76.6170 -36.4033 2508 -30 0.104 (1), (2)

NGT B 20 78.49 -36.30 21476 (1), (2)

NGT B 21 80.000 -41.1374 2185 -30 0.108 (1), (2)

NGT B 26 77.2533 -49.2167 2598 -31.6 0.18 (1), (3)

NGT B 29 76.0039 -43.4920 2874 -31.6 0.153 (1), (2)

Antarctica

Berkner Is B 25 -79.6142 -45.7243 886 -27 0.14 (4)

DML B 31 -75.5815 -3.4303 2669 -42 0.063 (5)

DML B 32 -75.0023 0.0070 2882 -42 0.061 (5)

DML B 33 -75.1670 6.4985 3160 0.044 (5)

DML B 36/37 -75.0025 0.0684 2891 -44.6 0.067 (6)

PreIPICS B 38 -71.1621 -6.6989 690 -18.1 1.25 (7)

PreIPICS B 39 -71.5680 -9.9167 654 -17.9 0.77 (7)

PreIPICS DML95 -71.5680 -6.6670 540 -19.2 0.55 (7)

PreIPICS DML97 -72.0640 -9.5583 760 -20.4 0.49 (7)

Dome C EDC2 -75.1000 123.3500 3233 -53 0.025 (8)

Appendix 1 Supplement Figure 5510
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Fig. 5. Depth dependence of the density variability, density-Ca relationship (upper panel) and wavelet spectrum

of the density (lower panel) of an artificial random density dataset. The results show constant density variability

and very small correlation values as expected for a random data series. The small number of spurious significant

correlation values, as well as some spurious significant patches in the wavelet spectra are expected, as both

significance tests are local / pointwise, and multiple testings are performed

Appendix 2 Supplement Figure 6
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Fig. 6. Density wavelet spectra for the remaining 12 firn cores from Greenland and Antarctica. The minimum

and secondary maximum of the density variability are marked with vertical lines and the scale of the accumu-

lation rate as horizontal line. Pointwise significant areas are marked with black contours. All cores show a

density variability at the surface, which is spread over a large range of frequencies. In greater depths, most

cores exhibit density variability around the frequency of the accumulation rate.
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ABSTRACT. Firn microstructure from six different sites in Greenland and Antarctica was investigated by6

means of X-ray-micro-Computer-Tomography. The effective radius was calculated from specific surface7

area (SSA) and used as a measure of grain size that avoids the ambiguities of alternative methods of grain8

size quantification. The evolution of grain size with depth, density and time was investigated at the different9

locations, covering a broad range in local climate conditions. The grain size shows large variations within10

single depth intervals at each site. Both density variability and grain size variability are strong indicators11

of layering of the firn. The variability in grain size seems to amplifiy with decreasing annual mean temper-12

ature and accumulation rate. A simple model of grain growth is developed which enables a prediction of13

the rapid grain growth at the uppermost meter driven by temperature gradients. This model can be used14

to simulate grain size profiles as an input for micro-wave backscatter models in a more realistic fashion.15

INTRODUCTION16

In-situ data of microstructure of the upper firn column are difficult and time consuming to obtain. Field data lack spatial representativity17

and upscaling field data can in principle be accomplished using remote sensing methods (Domine and others, 2008). Changes in mass18

balance of the polar ice sheets can be inferred from remote sensing signatures (Flach and others, 2005; Lacroix and others, 2008).19

For many cryospheric microwave remote sensing applications, it is necessary to consider microwave-firn interactions in the upper20

layers of the snow pack, with wavelength-dependent penetration depths ranging from centimeters to approximately 100 m (Legresy21

and Remy, 1998). In many studies the signal-snow microstructure interaction has been investigated (Flach and others, 2005; Rotschky22

and others, 2006; Srivastav and Singh, 1991; Tran and others, 2008). Regions with a certain pattern of backscatter signatures were23
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2 Hörhold and others: Firn microstructure

identified and assigned to have specific firn properties (Rotschky and others, 2006; Tran and others, 2008). However, distinct field data24

to parameterize these snow classes are still lacking.25

Grain size data are available for single points of measurement in Antarctica and Greenland (Alley and others, 1982; Courville and26

others, 2007; Freitag and others, 2004; Gay and others, 2002; Gow, 1969; Gow and others, 2004; Shiraiwa and others, 1996). The27

problem of comparing the published data lies in the the application of very different measurement methods and the different definitions28

of grain size. Furthermore observations differ in their time of the year and in resolution. Seldom a single study considers very different29

sites, so that a relative comparison of grain size and grain size evolution with depth obtained by similar methods are available. Examples30

are Nishimura and Maeno (1985), Shiraiwa (1996), Gay et al. (2002) or Taylor (1971). Main characteristic difference in grain size and31

grain size variability in terms of layering were found between firn columns from near coastal areas, katabatic wind regions and the32

high Antarctic Plateau (Shiraiwa and others, 1996; Gay and others, 2002).33

There is a lack of a comparable grain size definition. Recently, the effective radius determined from the specific surface area (SSA) as34

a grain size measure was introduced as a suitable parameter considering the interaction of the air-ice-interface in chemical or physical35

processes (Domine and others, 2008). Several alpine snow measurements and experiments were conducted using the effective radius,36

the SSA and other physical properties as comparable parameters for different snow types and their change with time (Flin and others,37

2004; Schneebeli and Sokratov, 2004; Kaempfer and Schneebeli, 2007). Most comprehensive overview of available snow properties38

is given by Domine et al. (2008) for alpine snow and by Gay et al. (2002) for Antarctic snow. A comparable and systematic study of39

polar snow and firn, investigating the grain size in terms of layering and evolution with depth and time under different local climate40

conditions is missing. For remote sensing applications the knowledge on firn grain size is substantial. The signal return at the sensor41

is sensitive to grain size [e.g. Lacroix and others (2008); Shi and Dozier (2000)] or strong gradients in microstructure properties at42

the interface of different layers within the firn (Flach and others, 2005; Lacroix and others, 2008; Rott and others, 1993; Shiraiwa43

and others, 1996). Accordingly, the strongly non-linear particle growth in the upper firn layers influenced by the seasonal and diurnal44

thermal gradient needs to be considered to approximate a realistic grain size profile.45

Various methods for modeling grain growth processes have been described in the literature. Jordan (1991), Colbeck (1983), Baunach46

and others (2001) model temperature gradient (TG) growth as a process driven by the saturation vapor pressure gradient. In this case,47

grains grow only when there is a temperature gradient present within the snowpack. Flanner and Zender (2006), among others,48

have created complex 3D models of firn metamorphism that consider physical processes of grain growth in great detail, but require49

substantial amounts of computation time. For a number of applications, it is desirable to use a simple, fast, empirical 1D approach to50

model firn properties. Maeno and Ebinuma (1983) found that snow grain growth can be described as a pressure sintering process, and51

there are many examples in literature where the Arrhenius equation is used to model equi-temperature (ET) grain growth as a function52

of depth e.g. by Alley and others (1982), Gow and others (2004), Flach and others (2005).53
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Due to a lack of inter-comparable grain size data, it has been difficult to asses the accuracy of grain size profiles simulated using54

above methods. Within this study we aim to fill the gap of missing comparable grain size data and present a set of grain size mea-55

surements from climatologically heterogeneous sites that can be used to verify and improve grain size modeling for remote sensing56

application. We use the effective radius obtained from specific surface area to investigate the grain size evolution with density, depth57

and time at 6 different polar sites in Greenland and Antarctica. We find variability due to the layering not only in density but also in58

grain size. We find that grain size and density are linked witch each other in specified depth intervals. Large grain size corresponds to59

low density and vice versa, whereas the overall trend with increasing depth and time shows an increase of grain size with increasing60

density. We find distinct differences in absolute grain size and grain growth at the different sites. But also the relation between density61

and grain size varies from site to site. We finally introduce a new simple grain growth model, which is able to capture the rapid grain62

growth in the uppermost depth intervals for a wide range of polar climate conditions.63

METHODS64

Firn Core Locations65

Six surface firn cores, one from Greenland and five from Antarctica are analyzed. They cover a broad range in annual mean tempera-66

ture, accumulation rate, elevation and distance to the coast (Figure 1, Table 1).

Hercules Dome

B36

Dome C

Depot700

B38

(a) Core location – Antarctica

B26

(b) Core location – Green-

land

Fig. 1: The location of the firn cores in Antarctica (a) and Greenland (b).

67

The B 26 firn core represents medium accumulation rate and annual mean temperature of the Greenland Plateau. The firn core68

from Dome C represents lowest temperatures and accumulation rate in Antarctica but only material starting from 6.6 meter depth69

is available. The DP7 firn core site shows almost similar annual mean temperature (estimated from Moderate-resolution Imaging70

Spectroradiometer (MODIS) surface temperature data) and a slightly higher accumulation rate (estimated from from interpolation of71
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4 Hörhold and others: Firn microstructure

Table 1: Firn core locations and environmental conditions

Campaign/ Name Latitude Longitude Temperature Accumulation Elevation

Location deg deg degC [m w.e. · a−1] m a.s. l.

Greenland

NGT B 26 77.2533 -49.2167 -31.6 0.18 2598

Antarctica

DML B 35/36 -75.0025 0.0684 -44.6 0.067 2415.5

PreIPICS B 38 -71.1621 -6.6989 -18.1 1.250 690

Norw.-amer. Traverse DP7 -75.65343 19.24484 -51.0 ∗ 0.045∗ 3530

Dome C FT -75.10 123.35 -53.0 0.025 3233

IPICS HD -86.00 -105.00 -37.0 ∗∗ 0.180 2610

accumulation rates of nearby sites (Isaksson and others, 1999). From Kohnen station (EDML drilling site) 2 firn cores B 35 and B 3672

are available. Furthermore 12 single surface measurements have been conducted in austral summer 2005/2006 at EDML. While the73

Hercules Dome firn core (HD) represents medium to low temperatures and medium accumulation rates, the B 38 firn core from the74

coastal area shows remarkable high accumulation rate and temperature. In a former study Antarctic surface snow has been classified75

into 10 classes, according to backscatter behavior of microwaves at two different frequencies (Rotschky and others, 2006). The firn76

core sites of this study cover 4 of these snow classes: B 38 falls into class 8, B 36 (B35) and DP7 into class 4, FT at the Dome C77

site into class 3 and Hercules Dome into class 10 (Table 2). The classification has been roughly described by known features of wind78

pattern, temperature and accumulation rate. But so far, no ground truth data were considered, in describing and parameterizing these79

snow classes.80

Density81

Densities are measured with a vertical resolution of 1 mm using a non-destructive logging system including a Löffel densimeter. As a82

radiation source 137Cs was used. Using the measured gamma-ray signal intensity I in relation to the signal’s intensity in air I0, the mass83

absorption coefficient μice = 0.085645m2kg−1±0.01 (Wilhelms, 1996, 2000) and the diameter d of the medium, the density ρ can be84

calculated. Details are given in Wilhelms (1996; 2000). All measurements were conducted at temperatures of -20 deg C in the cold85

laboratory of the Alfred Wegener Institute (AWI), Bremerhaven, Germany. High resolution density measurements were conducted at86

all but the Hercules Dome firn core.87
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Hörhold and others: Firn microstructure 5

Table 2: Firn core properties

Name depth interval time interval number of samples

m a

Greenland

B 26 0.012-7.3 0.025-16.18 154

Antarctica

B 35/36 0.29-10.94 1.79-71.26 114 / 121 /12

B 38 0.0325-10.96 0.157-4.4 180

DP7 0.05-11.978 0.37-112.27 369

FT 6.6125-20.36 110.825-367.912 374

HD 0.076-15.1 / 228

Computer Tomography and Image Analysis88

Microstructure imaging was conducted by Micro-Computer-Tomography. Cylindric snow samples of 2.5 cm length and 2 cm in89

diameter (1 cm for B38) were placed on a table in front of a X-ray source. The table was rotated with steps of 0.9 deg and each time90

a shadow image is taken. With a back projection procedure these shadow images were converted to a stack of horizontal grey value91

images. The resolution of the imaging was 40 μm for the firn cores B26, B36, DP7, FT and HD. For the firn core B 38 a resolution92

of 15.73 μm was used. Microstructure data of snow and firn obtained from Computer-Tomography are shown to fairly well reproduce93

the snow parameter such as density (Freitag and others, 2004) and are used for many applications (Kaempfer and Schneebeli, 2007;94

Schneebeli and Sokratov, 2004).95

CT measurements were conducted at all firn cores. For the cores B36, B38, and DP7 the uppermost 1-2 (DP7 4) meter were sampled96

continuously. Below, 40 cm (approximately 16 samples) were sampled every meter. B26 is sampled every meter from the very surface.97

The Hercules Dome data set contains discontinues samples with non-equal steps throughout the firn core. The lowermost meter of98

B38 and B26 was sampled continuously again. In the following the data from single depth intervals will be compared as a measure of99

ongoing metamorphism. The absolute number of samples in each interval differ in a range between 16 and more than 20. Linear or100

exponential fits were applied at each depth interval to parameterize the variability due to the layering.101

For image analysis the software MAVI, developed by the Fraunhofer Institute for Mathematics (Armbrecht and Sych, 2004)was102

used. The image stack is loaded into the software and treated as a 3-D object. After smoothing by applying a median 3x3x3 filter103
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the images were segmented. For estimation of the threshold value, two gaussian distribution functions were fitted to the grey value104

distribution (one for the pores and one for the ice phase) of three images of each stack. The arithmetic mean of the the maximim value105

of each of the gaussian distributions was taken as the threshold grey value for segmentation. After segmentation, an object filter was106

applied, to remove all objects adding less then 1 % to the pore or ice phase. From the 3-D binarized images, all relevant microstructure107

information of the sample volume can be obtained.108

From the measured region a cube of 400 x 400 x 400 voxels (16 x 16 x 16 mm for B 26, B36, DP7, HD and FT, 6.3 x 6.3 x 6.3 mm109

for B 38) was extracted. This size is sufficiently large enough to be representative in volume for the firn properties considered (Coleou110

and others, 2001; Kaempfer and Schneebeli, 2007). Porosity is calculated from the size of the pore fraction compared to the whole111

volume of the sample. Density can be computed from the ice fraction times the density of ice (ρice = 0.917 g/cm3). The chord length112

l in 3 or more directions as a measure of the grain li and pore lp size can be obtained. The specific surface area SSA represents the113

ice-air interface per unit mass:114

SSA =
Sd

ρ
(1)

with SSA = the specific surface area in cm2/g and Sd the surface density - the ratio of total surface and the total volume of the sample115

and ρ the density of the sample (Domine and others, 2008). From that the effective radius Re f f - the radius of equivalent-sized spheres116

with the same SSA can be obtained by:117

Re f f =
3

SSA×ρice
(2)

The assumption is, that the ice phase of the snow and firn can be represented by ice spheres of the radius Re f f . If we plot the118

measured SSA versus the measured chord length, we derive a surprisingly clear relationship (Figure 2), supporting the assumption,119

that the snow grains can be represented by equal sized spheres with a similar SSA.120

Additionally we computed the SSA from a sphere by:121

SSAsphere ∼ 3
4
3 × r×ρ

(3)

with r the radius of the sphere = 4
3 × lsphere. The computed SSAsphere is fairly well reproducing the measured values (Figure 2, red122

line).123

The SSA and the chord length l are two independently obtained parameters. Plotting SSAsphere over lsphere of very different firn types124

shows a bijective relationship (Figure 2). Thus from geometry it is reasonable to represent the firn microstructure by the effective125

Radius Re f f . In the following the effective radius Re f f is used as grain size parameter.126

All microstructure parameters obtained by MAVI represent values of the samples volume structure of each firn sample. For more127

details on microstructure analysis with MAVI, see (Ohser and Mücklich, 2000; Armbrecht and Sych, 2004)128
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sites. In red the SSA, calculated from the measured chord length, assuming equal sized spheres, is shown. The results show, that using

specific surface area under the assumption of equal sized spheres gives a surprisingly good approximation of the snow structure.

RESULTS129

Density130

The density profiles (smoothed by a running mean of 20 mm) of the firn cores show large fluctuations due to the layering of the firn131

(Figure 3) and differ in the densification rate. B 38 shows the highest density, followed by HD (density from CT-measurements). B 26132

starts with lower density, but overcomes B 36 and DP7. Fire Track shows the lowest density.
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Fig. 3: Density Profiles of the firn cores
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8 Hörhold and others: Firn microstructure

SSA and Grain Size133

For all sites we find a rapid increase in grain size in the upper few meter (Figure 3A). The B38 site shows smallest grain sizes whereas134

the DP7 site and the B26 site show largest grain sizes. In greater depths the EDC site has largest grain sizes (Figure 3A). The SSA135

decreases rapidly in the uppermost meters. B38 shows highest values at the surface, DP7 and B26 lowest (Figure 3B). In greater depths136

the EDC site shows smallest values.137
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Fig. 4: The evolution of grain chord length with porosity (a), pore chord length and grain chord length (b), the specific surface area

with porosity (c) and the anisotropy with grain size (d). The colors represent the evolution with depth and time - light grey from the

near surface samples to black with the oldest and deepest samples

Both, SSA and grain size show large fluctuations. In order to compare the density variability with the grain size variability both were138

investigated in detail (Figure 4). Density and grain sizes for every single depth interval are compared. A linear fit is applied for each139
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depth interval. The evolution with depth is indicated by a stepwise shift in color from light grey (near-surface samples, youngest) to140

black (deepest and oldest samples).141

B26142

This firn core represents medium accumulation rate and temperatures of the Greenland ice sheet. On the inter-layer level the grain size143

shows a negative trend with density. Low density samples have large grain size and vive versa (Figure 4A). With increasing depth and144

age the slope increases. The slopes range from approximately -0.39 mm/(g/cm3) to 0.81 mm/(g/cm3). The overall trend of grain145

size and density is positive - with increasing density the grain size increases.146

B35/36147

This firn core site represents medium accumulation rates of the Antarctic Plateau from Dronning Maud Land, Antarctica. The grain148

sizes of B35 and B36 also show a negative trend with density within single depth intervals (Figure 4B). Only the surface sample and149

the uppermost depth interval of B35 show a positive trend (Figure 4B). At the very surface high density is associated with large grain150

size and vice versa. At all other depth intervals representing deeper and older firn, large density values correlate with small grain sizes.151

Again the slope increases from shallow to steep values with increasing depth and time. The B36 firn core shows trends from -0.8 to152

-2.4 mm/(g/cm3), the surface interval shows a much higher slope, whereas the bags from core B35 show values slightly less than B153

36, ranging from approximately -0.33 to -1.44 mm/(g/cm3). The overall trend is again positive, with increasing density the grain size154

increases.155

B38156

The B38 firn core comes from the coastal region of Dronning Maud Land, Antarctica. It is not only characterized by very high157

annual mean temperature but also by a tremendous accumulation rate of 0.12 m w.e. per year. The grain size shows a positive trend158

with density for the single depth intervals (Figure 4C). Large grain size corresponds to high density and vice versa. The slope is not159

changing much with increasing depth. The slopes are positive, ranging from 0.35 mm/(g/cm3) at the surface to 0.54 mm/(g/cm3) at160

the lowermost depth interval. The overall trend is similar - with increasing density the grain size increases.161

Depot700 (DP7)162

The DP7 firn core comes from the high Antarctic Plateau with low accumulation rates. The grain size at DP7 site shows again a163

negative trend with density and the inter-layer level (Figure 4D). The slope is varying in the upper depth intervals, but is increasing164

with depth and time. The slope ranges approximately from -1.37 to -2.6 mm/(g/cm3), even though the surface bag shows a positive165

trend of 0.9 13 mm/(g/cm3) and some medium depth intervals values of approximately -0.6 mm/(g/cm3). Overall trend shows166

increasing grain size with increasing density. SSA shows a positive trend with density for the single depth intervals, and an overall167

negative trend (Figure 4D).168
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Fire Track (Dome C)169

The Fire Track firn core from the Dome C vicinity represents the coldest site with lowermost accumulation rate of this study. The170

sampling and microstructure analysis starts at depths below 6 meter and an age of more than 100 years. On the inter-layer level the171

grain size shows a well pronounced negative trend with density (Figure 4E). The slope is increasing with depth and time. It ranges172

from -1.696 mm/(g/cm3) at uppermost interval to -4.2662 mm/(g/cm3) at the lowermost depth interval. The overall trend shows173

again increasing grain size with increasing density.174

Hercules Dome (HD)175

For the Hercules Dome (HD) site no detailed sampling for single depth intervals was conducted. Therefore it can only be used to study176

the overall trend of grain size with increasing density (figure 4F).177

Whereas the overall trend shows the well known increase of grain size with increasing density, the inter-layer variability often shows178

an opposite trend. The firn cores B26, FT, DP7 and B35/ B36 show this behavior very well. Only the near-surface depth intervals (light179

grey lines) at the B35/36 site, as well as at the B26 site and all depth intervals of the B38 site show a positive trend - increasing grain180

size with increasing density.181

The slope of the linear fit changes from site to site. It seems that firn cores with low accumulation rates and annual mean temperatures182

show the strongest negative trend (FT and DP77). With increasing temperature and accumulation rate the slope is decreasing ( B35/36183

and B26) and turns to positive values at the warmest site with extremely high accumulation rate (B38). The slope is also increasing (in184

negative direction) with increasing depth and age. Surface depth intervals show weak slopes, whereas the intervals deeper down show185

more steep gradients.186

A simple model of grain growth187

The Arrhenius equation assumes linear particle growth under isothermal conditions:188

r2(t) = Kt + r2
0

(4)

with189

K = K0 exp(−E/RT ) (5)

The radius r(t) of a particle is determined from an initial radius r0 and growth rate K, which is a function of rate constant K0,190

activation energy E, gas constant R and absolute temperature T . Values for E vary between 47.0×103 J/mol [Gow (1969)] and191

42.4×103 J/mol [Paterson (1999)], while K0 is on the order of 6.75×107 mm2/a [Flach and others (2005)].192
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12 Hörhold and others: Firn microstructure

Growth rates calculated from the above range of parameters vary considerably. Budd and Jacka (1989) assumed E and K0 to be193

temperature–dependent, and Jacka and Li (1994) supply parameters to fit activation energy E and growth rate K to temperature. The194

initial value r0 is usually fixed at an arbitrary value, due to a lack of reference values obtained from the field.195

Growth rates196

From the measured grain size profiles we aim to find a parametrization of grain growth as a function of annual mean temperature T̄ ,197

temperature gradient ∇T and accumulation rate A.198

Effective radius measurements are available for each firn core in steps of 2.5 cm, with approximately 16 single measurements199

repeating in 1–meter intervals to capture grain size variability. To determine a mean grain size profile, effective radii are averaged200

over the measurement intervals. Firn age t(z) corresponding to the mean radius at depth z can be estimated from the velocity v(z) =201

A ·ρice ·ρ(z)−1 at which a snow layer is buried below the surface.202

t(z) =
∫ z

0

dz′

v(z)
(6)

Temperature propagation into the snow pack T (z) is modeled as an exponentially decaying oscillation as described by Paterson (1999),203

depending on T̄ , amplitude of the seasonal temperature signal at the surface ΔT , thermal diffusivity of snow k, and frequency ω and204

phase ϕ of the seasonal signal. The phase value is fixed at the point of positive temperature amplitude.205

T (z) = T̄ +ΔT exp
(
−z
√
ω/2k

)
· sin
(
ωϕ− z

√
ω/2k

)
(7)

Annual mean temperature T̄ and amplitude ΔT can be obtained from the MODIS Land Surface Temperature product. The thermal206

diffusivity is easily calculated from the measured firn core densities using the empirical approach developed by Sturm and others207

(1997).208
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Fig. 6: Growth rates derived from profile data, and Paterson (1999)
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Input data for the determination of the growth rate from radius measurements are mean grain size profiles with corresponding values209

for temperature, temperature gradient ∇T (derived from the temperature profile in equation (8)), density and firn age. The growth rate210

K = dr/dt is determined numerically for every depth interval. We compare growth rates determined from our data set with values211

published by Paterson (1999) and find our values in good accordance (fig. 6), albeit systematically larger. A possible explanation for212

this effect lies in the use of different methods to determine grain size. The temperature-dependent activation energy E and rate constant213

K0 are difficult to fit to parameters obtained from measurements, since they are very sensitive to noise in the data. For this reason, we214

chose to directly fit the growth rate K, and determine coefficients for equation (9):215

calculated.216

K(T ) = a0 exp (a1[1000/(T̄ +∇T )]+ a2) (8)

We propose using the following parameter set to estimate the temperature–dependent growth rate:217

a0 = 0.165

a1 = −5.218

a2 = −3.712

(9)

Surface grain size218

The grain size of the near-surface layer r0 depends on temperature and accumulation rate: high temperatures correspond to more water219

vapor transport and thus to faster grain growth [Domine and others (2008)]. Higher accumulation reduces the time the snow grains are220

subject to a strong temperature gradient and slows down the grain growth process.221

To quantify the temperature and accumulation dependency of the surface grain size, initial radii r0 and their standard deviation σr0
222

were estimated from the measured grain sizesof the upper 30 cm interval of each measured individual profile. This was done for all223

available grain size profiles except the FireTrack profile since it starts at a depth of 6m.224
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Table 3: Initial radii, radius standard deviation, temperatures, accumulation rates

Name r0 σr0
T̄ A

[oC] [m w.e. · a−1]

B26 0.40 ± 0.033 -31.60 0.180

B35 0.30 ± 0.035 -44.60 0.067

B36 0.28 ± 0.028 -44.60 0.067

B38 0.20 ± 0.010 -18.10 1.250

Depot700 0.25 ± 0.043 -51.00 0.045

Hercules Dome 0.35 ± 0.029 -37.00 0.180

A multiple linear regression applied to the data from table 3 yields the following relationship between initial grain radius r0, mean225

annual temperature T̄ [oC] and accumulation rate A [m w.e. · a−1].226

r0(T̄ ,A) = a0 + a1T̄ + a2A (10)

with227

a0 = 0.781±0.019

a1 = 0.085±0.002

a2 = −0.279±0.055

(11)

In order to test the accuracy of our fit, we compared initial radii determined from equation 10 with measured values. It can be seen228

that our multiple regression approach reproduces the measured values with sufficient accuracy.229

Model results230

Fig. 8 shows model results in comparison with grain size models from by Paterson Paterson (1999) and Zwally and Li (2002). We chose231

initial radii r0 from equation (11) for better comparison and varied only the way of calculating k. It can be seen that the rapid grain232

growth in the upper layers influenced by a strong temperature gradient are represented more realistically by the new approach. Our233

approach overestimates grain growth for B38 , a site with an extremely high accumulation rate of 1.25 m water equivalent per year and234

a comparably high mean annual temperature of -18oC. For the Depot700 core, the extreme growth caused by a very low accumulation235

of ≈ 0.045 m water equivalent per year and, in consequence, the long exposure time of snow layers to a large temperature gradient, is236

underestimated in our model. For intermediate polar climate conditions, the simulated grain size profiles closely fit the measurements.237
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Fig. 8: Modeled grain size profiles for six polar firn cores

DISCUSSION238

The sequence of unit layers in the firn is very important for the point of view of remote sensing, because the boundary of unit layers239

reacts as an interface between different dielectric materials. The main microstructural change at an interface occurs in the density and240

grain size of the firn layer. Often the density variability is taken as a proxy for stratigraphy and the total amount of layers is linked241

to backscatter signature (Flach and others, 2005; Rott and others, 1993). With our high resolution density data we can not define a242
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clear difference in variability in density or in the amount of layers between the different sites. Shiraiwa et al (1996) also compared the243

number of unit layers in 38 snow pits of 1 -2 meter depth from the coast up to the plateau. Their number of layers per meter was half244

as high as the number found in our study - ranging between 10 and 20, but a clear difference in the total amount of layers between245

sites at different local climate conditions was also not found (Shiraiwa and others, 1996). A slight trend for a higher amount of layers246

at higher altitude could be identified. The density variability in terms of layering can not be directly taken as a measure for number of247

layers and with that as a reason for different backscatter behavior.248

Grain size seems to be strongly connected to density. The sites differ considerably in absolute values, as does the density. Shiraiwa249

et al. (1996) find non-linear altitudinal changes in grain size and strong variations in regions of katabatic wind. The alteration of grain250

size and types and the thickness of single layers vary characteristically for the different sites. This could be a hint for the different251

interaction of snow and microwave signatures. On the other hand Gay and others (2002) find large variations in grain size along252

their traverse from Terra Nova Bay to Dome C. The grain size is strongly linked to wind patterns of erosion, crust formation or calm253

conditions. The exposure of snow to temperature gradients on large time scales enables the formation of large grains and wind crusts,254

which in turn explain a particular behavior in microwave signature (Gay and others, 2002) for example at the Dome C vicinity. We255

find clearly different grain sizes at the different sites. B38 with shows the warmest temperature, however due to the extremely high256

accumulation rate the grain size is the smallest of all sites. The next warm site is the B 26 firn core and indeed we here find the largest257

grain sizes of all firn core sites. On the other hand the two coldest sites FT and DP7 show similar large grain sizes in greater depth.258

This is due to the very low accumulation rate and the long time, a snow layer is exposed to temperature gradients at the surface. The259

grain growth is not only temperature dependent. The grain size at a certain depth is the result of the competing influence of annual260

mean temperature and accumulation rate.261

The grain growth at a single site is influenced by local climate factors such as temperature and accumulation rate and probably also262

by the initial grain size and grain size variability within the different layers. The overall trend for all sites is, that grain size increases263

and SSA decreases with increasing density. Nishimura and Maeno (1985) discussed the rounding and growth of ice particles as the264

main reason for the drastic decrease in specific surface area in the upper part (Nishimura and Maeno, 1985). The slower liner decrease265

in greater depth was attributed to the development of bonding and particles.266

The trend within single depth intervals is opposite to the overall trend. In general grain size is decreasing with increasing density.267

Also Taylor (1971) observed the inverse variation of density with grain size. For grain size the slope of the linear fits is increasing268

with depth and age. As deeper in the firn column and as older the firn, as steeper the slope in the trend of grain size and density. The269

exception is found at B38. Here the trend within single depth intervals follows the overall trend. If we compare the trend of grain size270

and density at the different sites, we again find, that as older the snow as more pronounced is the negative trend. FT as the coldest271

site with lowest accumulation rate shows the highest slope, DP7, with similar climate conditions and with surface samples also shows272

156



Hörhold and others: Firn microstructure 17

a high slope in greater depths. The slope is less strong at the surface, since it is developing with depth and time. B35/36 is the next273

warmer site with the next higher accumulation rate. Here we find a less strong slope and the surface samples show a weak or even274

positive slope. The same holds for B26. Finally at B38 with the warmest temperature and the highest accumulation rate shows positive275

values of the slope. Here the snow is moving down the firn column so fast, due to the extremely high accumulation rate, that the grains276

size has no time to adapt to density in the way than at the other sites.277

So obviously the surface ”fresh” snow inhabits a positive trend - large grain size corresponds to high densities. As soon as the snow278

is exposed to metamorphism in the near surface area - this trend turns to negative. Further more it seems, that at the surface a broad279

range in density can be covered by small range in grain size. In greater depth and with increased age the range in density decreases,280

whereas the range in grain size stays the same or even increases.281

Grain Growth Model282

Discussion of the model283

competing impact of temperature and accumulation rate - therefore overestimating B 38 samples and underestimating DP7 and FT284

samples285

No physical approach, but since such a broad range of local climate conditions is used for parameterizing the values, good approx-286

imation for polar conditions.287

Problems of the model approach: error sources288

Advantage of the model approach: easy to apply; use for back-scatter models in Remote sensing.289

Comparison of modeled grain radius with Flanner and Zenner (Flanner and Zender, 2006) for temperature gradient growth (their290

”long-term” growth is 30 days. But one experimental set up is comparable to Dome C (temperature -50, temperature gradient 20.291

Baunach (Baunach and others, 2001) has comparable temperature gradients (30 degree per meter)292

discussion initial gain size and impact of grain growth (Flanner and Zender, 2006)293

CONCLUSION294

We present a simple model of snow grain growth that incorporates effects of the strong TG growth in the upper layers of the snowpack295

as well as ET growth at depths no longer influenced by the seasonal temperature gradient. Our approach uses the Arrhenius equation296

to model particle growth and derives an empirical fit of the temperature–dependent growth rate from firn core data. Additionally, a297

solution to the problem of finding a realistic initial radius for eqation 4 is presented.298
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Since the firn cores used to derive our model parameter set do not exceed a depth of ≈ 20 m, we cannot predict the accuracy299

of our model results for greater depths and recommend this model for remote sensing applications that to consider firn–microwave300

interactions in the upper layers of the snow pack only.301

Using data from six firn cores from Greenland and Antarctica which represent a very heterogeneous set of environmental conditions302

to derive empirical parameters for our grain growth model, we can safely assume our model to be applicable to the entire polar regions.303

In order to further test the validity of our relation for estimating surface grain sizes, more data will be needed.304
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ABSTRACT. The first three-dimensional properties of polar firn obtained by X-ray microtomography are
used to study the microstructure of snow on a 15m deep firn core from West Antarctica. The snow is
found to undergo coarsening down to approximately 2.5m depth before grain growth and densification
become the prevalent mechanisms of microstructure change. In contrast to previous assumptions,
distinct anisotropy of the ice and pore geometry is observed throughout the profile, with a maximum at
2.5m depth. The air permeability and the degree of anisotropy vary with depth and can be linked to
short-term changes in accumulation rate via the residence time for which a certain snow layer stays in
the uppermost 2.5m. Patterns of the degree of anisotropy and air permeability of buried polar firn are
relative indicators of past accumulation rates.

INTRODUCTION

On polar ice sheets the surface snow and firn forms a layered
and porous medium that remains permeable to gases over
depths of many tens of meters. Local surface conditions
affect the generation and transformation of the snow and firn
column; the temperature by affecting the rate of densifica-
tion, and the accumulation rate by forming the layering and
determining the time the snow is exposed to insolation and
temperature gradients at the surface. Single snow layers are
created by depositional events and consist of very different
snow types, leaving a highly stratified firn pack (Gow, 1965;
Alley and others, 1982; Palais and others, 1982; Alley,
1988). Since the properties of the different snow layers are
very distinct in grain and pore size, forming diverse
stratigraphic horizons (Palais and others, 1982), they trans-
form differently in applied temperature gradients and load
(Alley and others, 1982).

The microstructure of surface snow and the stratigraphic
and grain-scale characteristics vary spatially with varying
accumulation rates on the East Antarctic ice sheet (Wata-
nabe, 1978; Shiraiwa and others, 1996), as does the air
permeability (Courville and others, 2007). However, it is not
clear how short-term changes in temperature or accumu-
lation rate are reflected in the firn properties over time, as
subsequent burial moves layers down through the firn
column. For a relatively high-accumulation site in West
Antarctica, Rick and Albert (2004) discuss the impact of
temperature and accumulation rate, on seasonal and
decadal scales, on the permeability and microstructure of
firn. Albert and others (2004) report that low accumulation
rates, in areas like the East Antarctic plateau, cause extreme
firn metamorphism, due to the length of time the snow is
exposed to insolation and wind at the surface. Small
differences in accumulation rate create very large differ-
ences in microstructure, permeability and thermal conduct-
ivity in the top meters of firn, which leave an enduring
record as the firn becomes buried (Rick and Albert, 2004;
Courville and others, 2007). The occurrence of highly
permeable and porous layers at greater depths in the
megadunes area documents that a change in climate

conditions would influence both the microstructure and
the permeability. At least at cold, low-accumulation sites, a
signature of changing accumulation rate is maintained in the
microstructure and air permeability of the firn column.

Earlier studies addressing polar snow microstructure used
thin or thick sections from firn samples to obtain information
about the microstructure (Gow, 1969; Alley and others,
1982; Rick and Albert, 2004). This technique enabled only a
two-dimensional analysis, and the quantitative microscopy
is limited (Davis and others, 1996). Recently, X-ray micro-
tomography has been used to study alpine or artificial,
sampled or sieved snow, observed for different time intervals
in the laboratory (Flin and others, 2004; Schneebeli and
Sokratov, 2004; Kaempfer and others, 2005; Kaempfer and
Schneebeli, 2007). In experimental set-ups for isothermal
metamorphism (Flin and others, 2004; Kaempfer and
Schneebeli, 2007), temperature gradient metamorphism
(Schneebeli and Sokratov, 2004) and micromechanical
studies (Pieritz and others, 2004), it has been shown that
snow can be correctly described using microtomography
and image-analysis tools (Coléou and others, 2001).

In this study, for the first time, microtomography is used to
profile polar firn with varying layers and properties. A 15 m
long firn core drilled during the US ITASE (International
Trans-Antarctic Scientific Expedition) campaign 2002 at
Hercules Dome is used to investigate the snow and firn
microstructure and air permeability. Hercules Dome is
situated at 868 S, 1058W, with relatively high accumulation
rates of 0.16–0.20 m w.e. a–1 over the last 300 years and low
temperatures of –35 to –408C (Jacobel and others, 2005).
Permeability measurements and microtomography are used
to describe the evolution of the microstructure with time and
depth. We observe a stratigraphically induced high vari-
ability in microstructure and air permeability and a distinct
anisotropy of the firn throughout the profile. In addition,
influences that induce variations of the firn characteristics
over a longer-term trend (and hence, across multiple layers)
impact the anisotropy and air-permeability profile. These
longer-term variations are superposed on the layering and the
changes that occur with depth due simply to layer de-
position, densification and other processes. By considering
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the time the snow is exposed to near-surface conditions, we
can link these variations to short-term changes in the
accumulation rate. Our results confirm that changes in
accumulation rate leave a signature in the firn permeability
and microstructure as the firn becomes buried.

METHODS
The firn-core permeability was measured following the
procedures described by Albert and others (2000), Rick and
Albert (2004) and Courville (2007). The measurements were
applied at 220 homogeneous firn-core sections, as identified
on a light-table, of 3–10 cm length. Due to poor core quality,
no permeability data were available in several intervals of
the uppermost 2 m and at 8.5–9.5 m depth. Homogeneous
coarse-, fine- and medium-grained layers, distinguished by
visual inspection of the grain size relative to the surrounding
layers, were sampled in every depth interval of the firn core
for further analysis. Microstructural properties of the firn
grain and pore space were obtained at –258C by X-ray
microtomography using a micro-CT (computed tomography)
scanner (1074 SkyScan) inside a cold room. A charge-
coupled device (CCD) camera of 768� 512 pixels and 256
grey levels was used as an X-ray detector. Cylindrical snow
and firn samples of 2 cm diameter and height were drilled
out of the main core with a hole saw. The sample was placed
on a turntable in front of the source, and was rotated in 0.98
intervals during scanning. A set of 210 shadow images was
captured while the rotation completed a semicircle.

A convolution algorithm with a back projection for fan
beams transformed the shadow images into a series of
horizontal cross-sections representing the three-dimensional
(3-D) structure of the snow. The resolution as well as the
distance between adjacent reconstructed images was 40 mm,
so the object was displayed by a 3-D grid of grey image
values (voxels) with a spacing of 40 mm in the x, y and z
directions. For digital image analysis a cubic region of
16 mm side length (leaving 400�400� 400 voxels) was
chosen out of the cylindrical sample. A sample 3-D image is
shown in Figure 1. The image size is large enough to
sufficiently represent the firn properties (Hörhold, 2006;
Freitag and others, 2008).

The image-processing and analysis procedures were
conducted with MAVI (Modular Algorithm for Volume

Images), a software for analyzing 3-D material, developed
by the Fraunhofer Institute (Armbrecht and Sych, 2005).
After application of filter and segmentation procedures, an
additional object filter was used to remove all objects
adding less than 1% to the total pore or ice volume.

All parameters were obtained and analyzed referring to
the volume of the firn cube. The porosity of a sample is given
by the ratio of void representing voxels to the total voxel
number of the firn cube. A measure for grain and pore size is
the grain- and pore-chord length, defined as the mean
intersection of a line with the object being the void or the
grain in different directions (Ohser and Mücklich, 2000). The
measurement of the surface area and the integral of mean
curvature is based on the application of the so-called
Crofton’s intersection formulae (Ohser and Mücklich, 2000;
Armbrecht and Sych, 2005). The surface density represents
the ratio of the ice–air surface and the corresponding
volume of the ice phase. Small-grained snow from the near
surface will have a larger surface density than sintered, well-
rounded snow deeper down the firn column. The integral of
mean curvature is defined as the mean of the minimum and
maximum curvature at each surface element, integrated over
the whole surface of the volume (Ohser and Mücklich,
2000). It therefore is a measure of the curvature of the ice
phase’s structure and displays the size and roundness of the
ice matrix. Divided by the number of voxels of each sample,
we obtain a mean value for the sample, so negative values
represent a mean of concave forms, and positive values a
mean of convex forms within the firn cube. Dendritic
crystals will show negative values and large, smooth
surfaces result in curvature values around zero.

The strength of MAVI is that it enables the 3-D study of
structure characteristics related to the surface density. Each
surface element of a microstructural component can be
represented by a surface-normal vector with its specific
direction. The surface-normal distribution displays the
directional distribution of all surface-normal vectors. Apart
from gravitational settling along the z axis in the snow,
vertical temperature gradients result in vertical water-vapor
transport within the snowpack. Thus a preferential direction
of the texture is to be expected in the vertical direction, and
isotropic behaviour in the horizontal direction. Therefore in
this paper we study the fraction of surface-normal vectors
orientated in two horizontal and the vertical directions with
an apex angle of 308 (Armbrecht and Sych, 2005). We take
the ratio of the fractions of the horizontal directions (the
mean of the two horizontal fractions) and the vertical
direction (s-n fraction). The ratio for an istotropic texture
such as a sphere will be 1, whereas the ratio of a texture
elongated within the horizontal plane will be >1, and a
texture elongated in the vertical plane will be <1 (Ohser and
Mücklich, 2000).

Depending on the length of the core pieces (3–10 cm, as
designated on the light-table), two to five subsamples were
analyzed by micro-CT and averaged, representing the
microstructure of that specific layer. In order to study
larger-scale features, a running mean was applied with a
window length covering several layers and weighting the
points by the number of measured subsamples.

Density measurements within the uppermost 2.5 m of firn
were used to convert this to a water equivalent depth of
0.9 m. Measured accumulation rates (personal communica-
tion from D. Dixon, 2006) were then used to calculate the
time taken for a snow layer to be buried to a depth of 2.5 m.

Fig. 1. A reconstructed firn cube with side length 16 mm showing
the pore phase from 2.5 m depth. White is the pore phase; voids
represent the ice grains.

Hörhold and others: Anisotropy and air permeability of polar firn626

163



RESULTS
At Hercules Dome for the most recent 60 year accumulation
estimates, based on chemical analysis and density measure-
ments, a mean accumulation rate of approximately
0.12 m w.e. a–1 is observed (Fig. 2a). The calculated resi-
dence time within the uppermost 2.5 m shows a peak near
6 m depth, a local minimum below, a second peak near
8.5 m depth, and then generally decreases, with a local
maximum near 12 m depth (Fig. 2a).

The results for permeability are shown in Figure 2b, and
microstructural characteristics are shown in Figure 3. We
observe a large variability of all parameters due to the
layering of the firn. For the chord length in grain size and
pore space (Fig. 3a and b) we find clearly larger values for
the vertical than for the two horizontal directions. The ratio
of the normal vector fractions is plotted in Figure 3f. A ratio
of 1 indicates isotropy. Values less than 1, as found here,
show that more surface-normal vectors point in the hori-
zontal plane than in the vertical plane. The firn texture is
vertically anisotropic.

In order to display the long-term trend, the running mean
is calculated for all parameters (Figs 2b and 3). For the
permeability we find an increase until 2.5 m depth. The
permeability below is decreasing, but shows two local
maxima near 6 and 12 m depth (Fig. 2b). Both the grain size
and the pore size increase rapidly until 2–3 m depth. Below,
the pore size decreases slowly (Fig. 3a and b). Whereas the
porosity almost linearly decreases with depth (Fig. 3c),
surface density and the mean of the integral of mean
curvature rapidly decrease and increase respectively until
2 m depth, continuing their trend, but at more gradual rates,
below this (Fig. 3d and e). For the anisotropy we find an
increase until 2–3 m depth, and then a decrease, but with a
region of low anisotropy between 7 and 8 m depth followed
by a region of increased anisotropy near 10 m depth (Fig. 3f).

The increase in the chord lengths and the mean of the
integral of mean curvature and the decrease of surface

density imply coarsening of the texture until 2–3 m depth,
accompanied not only by maximum permeability and pore
size but also by maximum anisotropy. Here we refer to
coarsening of firn as a general increase in both the grain
size and the pore size. Below that, densification becomes
significant, and continued gradual metamorphism de-
creases pore size and porosity while continuously in-
creasing the grain size. At this site the firn is highly
stratified, with each layer showing very different properties
in terms of microstructure, permeability and development
of anisotropy. The illustrated variation in the longer-term
trends, particularly in the permeability and anisotropy
profiles, is not related to the layering but to longer-term
processes.

ANISOTROPY
At Hercules Dome the maximum degree of anisotropy is
reached at approximately 2.5 m depth (Fig. 3d). However, in
contrast to previous studies (Alley, 1987), we find that
anisotropy does exist below that, though it tends to decrease
with depth. Moreover, these data show that anisotropy does
not decrease in monotonic fashion, but rather that there are
depths at which anisotropy is strongly pronounced and other
depths at which it is not.

Yosida and others (1955) and Colbeck (1983) introduced
models of oriented crystal growth. In natural snow subjected
to changes in weather, temperature gradients are mostly
oriented in the vertical direction. The temperature gradients
then induce gradients in water-vapor transport. Crystals
grow by condensation of water vapor on their bottom
portions, because the bottom of a growing particle is cold
relative to the average snow temperature at its height
(Colbeck, 1983). Alley and others (1982) found that crystals
in coarse firn exhibit a strong vertical shape orientation near
the surface, which can be attributed to the strong vertical
water-vapor and heat transport.

Fig. 2. (a) The accumulation rate as obtained by chemical analysis together with the calculated residence time in the uppermost 2.5 m and
(b) the measured air permeability. The black curve is the running mean average over the different layers, starting from 2.5 m.
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On the other hand, Schneebeli and Sokratov (2004) found
in temperature gradient experiments with different snow
layers that anisotropy occurred in dense, fine-grained layers,
whereas low-density layers exposed to similar gradients did
not show an anisotropy texture after the same time interval.
Our data support these observations: we find highly porous
layers to be less anisotropic than less porous layers in the
same depth interval. The small-scale variability in the
anisotropy profile is probably controlled by the different
formation of anisotropy in the different layers.

ACCUMULATION RATE AND RESIDENCE TIME
From the microstructure and permeability data we can
conclude that despite the very different properties of the
different layers in terms of permeability and anisotropy, the
larger-scale features shape the evolution with depth. These
features are visible in both the low- and high-permeability
layers and in the low- and high anisotropy layers respectively.
The observed variability does not originate from the layering

nor the linear compaction with depth. Changes in the meta-
morphic regime must be the basic cause. A major parameter
determining the metamorphism is the impact of the accumu-
lation rate, which, however, is difficult to parameterize since
it superimposes the effects of the layering and densification.

The maximum in coarsening, permeability and anisotropy
is obtained by 2.5 m depth, while below that, densification
combined with slow grain growth appears to become im-
portant. It appears that, at this site, as long as a certain layer
stays in the uppermost 2.5 m, it is exposed to significant tem-
perature gradients, periodically higher annual temperatures
and metamorphically induced coarsening. We hypothesize
that the degree of coarsening, permeability and anisotropy of
each layer deeper down the firn column is designated by the
degree of these parameters at 2.5 m depth. In turn the degree
at 2.5 m depth results from the history between 0 and 2.5 m
depth, i.e. the time spent in the near-surface area. This
residence time depends only on the accumulation rate.

We test the possibility that the time that snow spends in
the near surface influences its permeability and anisotropy at

Fig. 3. (a, b) The mean grain (a) and pore (b) chord lengths in x, y and z directions. Dark curves represent the running mean (grey for
horizontal; black for vertical). (c–f) The porosity (c), surface density (d), mean curvature (e) and ratio of the normal vector fractions s-n (f),
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depth, by using the density to calculate residence time in the
near surface (Fig. 2a). Since the accumulation rate and thus
the residence time were calculated on different scales and
samples than the microstructure and permeability, here we
can only compare the evolution with depth of these two
different parameter sets (Fig. 4a and b).

An examination of the residence time in comparison with
the average anisotropy in Figure 4a shows that it is the zone
between 7 and 8 m where the surrounding long residence
times are briefly interrupted by a phase of decreased
residence time. When the firn at 7–8 m depth in this firn
core was near-surface snow, it did indeed spend less time in
the near surface. The shorter time that it spent in the near-
surface region of higher temperature gradients means that it
was less exposed to rapid metamorphic processes. The result
is that the firn structure at 7–8 m shows low vertical
anisotropy (Fig. 4a). As shown in Figure 4a, the residence
time in the near-surface area decreases below 10 m depth
and thus results in a less anisotropic character. The features
of very short residence time around 11 m and at 13–14 m are
not reflected in anisotropy.

In Figure 4b the measured air permeability is shown,
together with the residence time. The peak in permeability at
2.5 m depth is due to the maximum of coarsening. Similar
increases in permeability down to 2–4 m have been reported
previously at different high-accumulation polar sites (Albert
and others, 2000; Albert and Schulz, 2002; Rick and Albert,
2004). The second maximum around 6 m depth and at
11–12 m can again be linked to the residence time. Increased
residence time strengthens the connectivity of the pore space
and by that the air permeability of the firn. The residence-time
minima at 7 and 11 m coincide with distinct permeability
minima. Nevertheless there are areas where a correlation is
not apparent, such as the decrease in permeability above 6 m,
even though the residence time is increasing.

Not all changes in residence time are displayed in the
analyzed microstructural parameters, especially at greater

depths. Additionally the anisotropy and the air permeability
of the firn clearly behave differently with regard to the
residence time (Fig. 4a and b). Accordingly, other processes
contribute to the evolution of firn properties with depth; the
mechanisms for the genesis of anisotropy and permeability
differ at depths below several meters in firn. Courville
(2007) observed a much larger impact of small changes in
accumulation pattern on microstructure and permeability
in regions of very low accumulation than in regions of high
accumulation. This might be one explanation for the less
pronounced influence of changes in accumulation rate in
the deeper firn layers, where the correlated accumulation
rate was higher than in the uppermost meter. On the other
hand, Rick and Albert (2004) show that the growth of necks
between the grains is the dominant mechanism for
permeability reduction at depths between approximately
2 and 10 m, and that a warming of temperatures over time
would also impact metamorphism at this depth. Thus, the
top ~10 m of firn is subject to a number of effects that
would be reflected in the permeability of buried layers,
including trends in surface temperature and accumulation
rates. The calculated residence time is an integrated
measure over the uppermost 2.5 m. We do not know the
residence time of individual layers (e.g whether a certain
layer has spent a certain fraction of the time in the very
uppermost centimeters and might therefore be exposed to
large temperature gradients, or whether it monotonically
became buried below 2.5 m depth). Anisotropy is probably
mainly generated within the upper few centimeters below
the surface, where temperature gradients are largest.
Permeability, on the other hand, could be the result of
longer-term processes such as the interaction of air venti-
lation and coarsening, which increase the pore size or pore
connectivity when densification does not overrule the
effect. This seems to be the case in the upper 2.5 m at
this site. Thus more differentiated residence times for
different depth intervals need to be investigated.

Fig. 4. The residence time with mean anisotropy (a) and air permeability (b).
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CONCLUSION
The highly layered polar firn reflects the occurrence of
metamorphism of different snow types at large timescales
and under constantly changing environmental conditions. At
Hercules Dome, the maximum in our permeability measure-
ments from this site is consistent with measurements at other
sites (Albert and others, 2000; Albert and Shultz, 2002; Rick
and Albert, 2004) showing a permeability maximum near
~2.5 m depth. Our first results from 3-D microtomography
scan imaging of polar firn show that this is accompanied by
general firn coarsening (increase in both grain size and
interstitial pore space) in this region. Below that, other
processes including grain growth, necking and compaction
influence the metamorphism of the microstructure. The
texture of the firn shows distinct anisotropy throughout the
profile, which is a result of vertical temperature gradients
and subsequent water-vapor gradients. Short-term changes
in accumulation rate affect the residence time of certain firn
layers in the uppermost meter of the firn column, where
rapid metamorphism takes place and the largest temperature
gradients occur. We found a clear signature of changing
accumulation rate in the firn-anisotropy and air-permeability
profiles in the firn below approximately 5 m depth. Our data
confirm that even though the effects of changes are most
pronounced in the near surface, they remain evident
through time as the firn becomes buried, even at this high-
accumulation site.
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Abstract

Recent advances in three-dimensional (3-D) imaging of snow and firn combined 

with numerical modeling of flow through complex geometries have greatly improved the 

ability to predict permeability values based on microstructure. In this work, we combined 

3-D reconstructions of polar firn microstructure obtained from micro-computed 

tomography (micro-CT) reconstructions and a 3-D lattice-Boltzmann model of air flow. 

We compared the modeled results to measurements of permeability for polar firn with a 

wide range of grain and pore scale characteristics.  The results show good agreement 

between permeability measurements and modeled permeability values from the lattice-

Boltzmann model over a wide range of sample types.  The lattice-Boltzmann model is 

better at predicting measured permeability values than traditional empirical equations for 

polar firn. 
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1. Introduction

Snow and firn properties influence the transport of gases between the atmosphere 

and underlying snowpack and are thus important for understanding chemical transport 

and interpreting ice cores [Albert et al., 2004].  Vapor transport, in particular, can be 

enhanced by “wind-pumping,” pressure driven ventilation in firn due to wind moving 

over surface roughness [Colbeck, 1989].  This effect is especially amplified in areas of 

high permeability, large grained (and large-pore-size) snow [Albert, 2002 and Albert et 

al., 2004]. Permeability is a material property that affects the ability of a fluid to move 

through a porous material. Until recently, it has been impossible to calculate the detailed 

flow field through a three dimensional (3-D) heterogeneous porous medium.  Past efforts 

to calculate transport through snow have used numerical solutions based on either 

continuum theory or a simplified representation of the microstructure. Simplified snow 

microstructures have been represented by either an assemblage of spherical grains or 

bundles of capillaries, and transport equations have been developed according to 

empirical formulas based on research in similar porous media such as soils and 

sandstones [Carman, 1956; Walsh and Brace, 1984; Costa, 2006]. The advantage of this 

approach is that the parameters utilized in the empirical formulas (e.g. porosity, volume-

to-surface ratio, grain size, pore size) are generally first-order and are relatively easily 

and inexpensively obtained from two-dimensional (2-D) thin or thick sections as well as 

newly developed optical techniques [e.g. Dominé et al., 2006; Matzl and Schneebeli,

2006; Painter et al., 2007; Gallet et al., 2009] for determining specific surface area. 

Snow researchers have recently begun to employ more sophisticated and realistic models 

of 3-D microstructural geometry in snow for use in heat transport models [Arons and 
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Colbeck, 1998] and 3-D data obtained from micro-computed tomography (micro-CT) 

imaging of snow for use in densification and heat and gas transport models in snow 

[Lundy et al., 2002; Freitag et al., 2004; Kaempfer et al., 2005]. Hörhold et al. [2009] 

presented the first 3-D analysis of anisotropy and permeability of polar firn based on 

micro-CT data using samples from Hercules Dome, Antarctica. 

57
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62 The permeability of a material can be expressed by Darcy’s equation: 

q
A

� �
k
�

�p ,         (1) 63

64

65

66

67

68

where k is the permeability of the medium, q is the volumetric flow rate, A is the 

cross-sectional area of the material, �p is the pressure gradient through the material, and 

���is the fluid viscosity.  The permeability of the medium can be expressed in terms of 

porosity by equating Poiseuille’s law with Darcy’s equation.  Poiseuille’s law for a 

conduit model of a porous medium comprised of cylindrical tubes of constant radius is: 

q
A

� �
R2

	

8�
�p                                                                                             (2) 69
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71
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where R is the radius of the tubes making up the conduit model and 	 is the total 

porosity of a material, or the total open space of the material, as determined by: 

	  = 1 - 
snow/
ice                                                                                      (3) 

where 
snow is the density of the snow and 
ice is the density of ice.  The total 

porosity is easily determined from laboratory measurements of density.  The open 

porosity, or the porosity open to air flow throughout the sample without the contribution 

of dead end or closed pores which do not contribute to air flow, is more germane to 
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77

78

determining the permeability, but also harder to determine.  Solving for the permeability 

produces the Kozeny-Carman equation [e.g. Revil and Cathles, 1999]: 

2 2

2
pV Rk

c S c
	 	� � � �

� �
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 �
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where Vp/S, is the ratio of the pore volume to surface area, which equals

(�R2L)/(2�RL) = R/2 when the pore geometry is assumed to be a bundle of cylindrical 

tubes. R is the radius of the tubes, L is the length of the tubes, and c is dependent on the 

cross-sectional area of the tubes that make up the microstructure model; c = 2 for circular 

pores, 1.67 for equilateral triangles, 1.78 for squares.  Empirically, c has been found to be 

5 for many types of granular porous media [Carman, 1956; Dullien, 1992].

Snow, existing as a solid in a range of temperatures approaching its melting point, 

is a unique porous medium in that surface layers undergo rapid metamorphism from 

sublimation and condensation processes driven by diurnal and seasonal temperature 

gradients [Colbeck, 1983; Kaempfer et al., 2005; Pinzer and Schneebeli, 2009]. Snow 

exists naturally in several complex forms, ranging from those best modeled as random 

assemblages of nearly spherical particles for newly fallen, wind blown snow, or as 

conduit bundles for compacted firn.   The microstructure of snow can be extremely 

complex, as exhibited by faceted, cup-shaped depth hoar.  Snow also exhibits a large 

variability of site-to-site permeability values [Rick and Albert, 2004] correlated to 

variations in conditions, as well as large temporal variability related to metamorphism 

and seasonal variability in snow properties.  Permeability of polar firn, snow more than 

one year old,  has been measured at a number of sites, e.g. Albert et al., [2000], Albert 
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and Shultz [2002], Rick and Albert [2004], Albert et al., [2004], Courville et al., [2007], 

Hörhold et al., [2009], and Fujita et al., [2009]. 
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Until recently, the only technique for imaging the 3-D microstructure of snow was 

to fill the pores with a fixative, perform serial thin sections of the encapsulated snow, and 

reassemble the thin sections. In recent years, micro-CT techniques have been developed 

that permit the nondestructive imaging of snow samples. The micro-CT uses sequential 

x-ray scans of a material to recreate 3-D images of snow samples taken from the field. It 

is a well-developed tool that has been used to examine the structure of a variety of porous 

media by several researchers [e.g. Auzerais et al., 1996; Coker et al., 1996; and Fredrich 

et al., 2006] and recently by investigators examining snow structure [Coléou et al., 2001; 

Flin et al., 2001; Lundy et al., 2002; Freitag et al., 2004; Pieritz et al., 2004; Schneebeli,

2004; Kaempfer et al., 2005; Flin and Brzoska, 2008; and Hörhold et al., 2009]. 

In conjunction with the improved ability to image 3-D microstructures, numerical 

techniques have been developed that use high resolution digital models to calculate heat 

conduction and gas flow through 3-D microstructures. One of these is the lattice-

Boltzmann method (LBM), which is well suited to model viscous flow through porous 

media.  Lattice-Boltzmann models were developed from lattice gas models in which 

discrete gas particles move on a lattice network. The particles are allowed to collide at 

nodes, with collisions governed by a simplified collision operator. After collision, the 

particles bounce back in the direction opposite the original path.  The movement and 

collision of the particles is governed by kinetic gas theory. After a collision, the 

distribution is allowed to relax into equilibrium by one of several collision operators 

which have been developed.  The Navier-Stokes equations can be recovered from the 
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lattice-Boltzmann algorithm through the collision operator [Succi, 2002].  Lattice-

Boltzmann models using micro-CT 3-D data as input have been used to compute the 

permeability of several types of porous media [Chen and Doolen, 1998] including 

sandstone [e.g. Auzerais et al., 1996; Manwart et al., 2002; Arns et al., 2004; White et al.,

2006; and Kemeda et al., 2006], sand [e.g. Ahrenholz et al., 2006; Lehmann et al., 2008], 

and metallic foams [e.g. Gerbaux et al., 2010]. Freitag et al. [2002] used 3-D data 

obtained from serial sectioning of snow samples in lattice-Boltzmann models of air 

permeability and gas diffusivity.  In this work, we combined 3-D micro-CT 

reconstructions and a 3-D lattice-Boltzmann model of air flow and compared the modeled 

results to measurements of permeability for polar firn with a wide range of grain and pore 

scale characteristics. 
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2. Methods 

2.1 Field sites and samples 

We examined two sets of firn samples as part of this work.  The first set of 

samples is taken from the megadunes region of East Antarctica (81°S, 125°E).  We chose 

eight samples from two different megadunes areas, located within 3 km of one another, 

with two different accumulation rates.  Four samples were taken from the windward face 

of a dune, in an area of low accumulation (2 to 3 cm w.e. a-1) and four samples were 

taken from the leeward face of the dune, in an area that experienced no snow 

accumulation (hiatus) [Courville et al., 2007]. The samples were taken from depths of 0.1 

m, 0.4 m, 8 m, 9 m, and 10 m.  The different accumulation rates in the megadunes area 

resulted in varying grain and pore sizes; in polar areas in general, low accumulation rates 

7

175



result in large grains due to longer residence times spent in near-surface temperature 

gradients.  The second set of samples were taken from an area experiencing relatively 

higher accumulation, Hercules Dome, Antarctica (86°S, 105°W), with an accumulation 

rate estimated to be 18 to 22 cm w.e. a
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-1.

  We obtained the core samples from the megadunes area using both an 

electromechanical drill and a hand drill.  These samples were 8 cm in diameter and 

nominally 1 m in length. The Hercules Dome firn cores were taken during the 2004 US 

ITASE traverse using a smaller electromechanical drill and were 5 cm in diameter and 1 

m in length.

2.2 Laboratory Methods 

The core samples were shipped to CRREL in Hanover, NH, where stratigraphy, 

density, permeability, grain size, gas diffusivity, and thermal conductivity measurements 

were made in a cold room laboratory. From the 1-m long cores retrieved in the field, we 

cut sections of relatively homogeneous layers based on visual stratigraphy.   These 

samples varied from 4- to 10-cm in length.   The density of each sample was determined 

from measurements of mass and volume. 

The permeability is determined from pressure and flow rate measured with a 

custom-designed permeameter [Albert et al., 2000].  The permeameter is based on 

Shimizu [1970]’s design, which incorporates a double-head flow sampler that eliminates 

edge effects. The sampler has two concentric regions in which flow and pressure are 

measured through the sample.  The pressure in the two regions is matched to ensure that 

the flow is the same, and measurements are read through the center of the sample. A 
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flexible rubber membrane is inflated around the core sample to create an air-tight seal.  

The rubber membrane accommodates a wide range of sample diameters and lengths. We 

make ten pressure measurements at incremental flow rates, and ensure that the pressure 

versus flow rate measurements follow Darcy’s equation, i.e. are linear.  Any 

measurement values that are not linear are repeated or discarded.  The ten values of 

permeability at the different flow rates for any given sample are generally within 3% of 

one another.  Replicate permeability values from tests on the same samples are on 

average within 6% of one another.  Permeability values from tests on samples from the 

same layer in a snow pack vary less than 10% [Albert and Perron, 2000].  The minimum 

length of a sample that can accurately be measured in the permeameter is 3 cm.   It is 

often the case that several stratigraphic layers are present in one bulk sample due to the 

inhomogeneous nature of most firn, especially near-surface firn from high accumulation 

areas.

2.3 Micro-tomography 

We shipped the core samples in insulated boxes as received, with no pore-filler, to 

the Alfred Wegener Institute (AWI) in Bremerhaven, Germany for micro-CT imaging.  

The AWI micro-CT scanner is a commercially available Skyscan 1074SR modified to 

operate in a -25°C cold room, as described in Freitag et al. [2002]. The CT scanner has 

an integrated microfocus X-ray tube that operates at 40 kV and 1000 �A.  A charge-

coupled device (CCD) camera is used as the X-ray detector with a total range of 256 

greyscale units.  The mean grey levels of ice and pore space differ by as many as 100 

greyscale units, with a signal-to-noise ratio >120, which allows the two phases to be 
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190
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210

211

212

distinguished from one another.  The snow sample is placed on a turntable which rotates 

at intervals of 0.9°.  210 shadow images make up one 180° rotation of the sample.  A 

digital convolution algorithm transforms the shadow images into a series of horizontal 

cross-sectional images that are used to construct the 3-D structure of the final image.  490 

horizontal scans at 40 micron spacing make up one three dimensional image. The 

resolution of one voxel is 40 microns.  The maximum size of sample that can fit in the 

CT-scanner is 25 mm in diameter and 20 mm in height. Each original bulk sample was 

cut into three to five subsamples 2 cm in length in order to fit in the CT-scanner.  A hole 

saw was used to cut a 2.5-cm diameter core out of the center of the original larger core 

sample. The 2.5-cm diameter grey value images from the CT-scanner are then cropped to 

a 1.6-cm cube, segmented and filtered, and used as the input in the lattice-Boltzmann 

model.

We determined the threshold value between air (white) and ice (black) pixels for 

each sample using two different methods.  The first method involved choosing a 

threshold value for each subsample so that the average overall porosity of the modeled 

subsamples equaled the original measured sample porosity. The threshold for each of the 

individual subsamples was chosen so that 2-D slices of the binary image matched the 

geometry of the greyscale image based on visual inspection.  The second method, as 

outlined in Freitag et al., 2004 and Hörhold et al., 2009, is to choose the threshold value 

as the mid-point of the maxima for the pore space and ice particle values in the greyscale 

histogram from several of the 2-D slices.  Threshold values for each individual subsample 

were chosen in this manner, as opposed to picking a universal threshold value for all 

samples.  Both methods result in reconstructed digital samples with porosities near the 
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measured porosities of the original samples (see Table 2 for a summary of the porosity 

values). Freitag et al., 2004 compare the density calculated from the micro-CT data to 

high-resolution density measured by gamma absorption and found that they agreed well.  

The sample images were processed either using a 3x3x3 Gaussian filter with � = 1.2 

(megadunes samples) or a 3-D median filter with a 3x3x3 mask (Hercules Dome 

samples) in order to remove image artifacts. The binary, filtered images were 

reassembled into a 3-D reconstruction and used as input for the 3-D LBM permeability 

model. Samples of the 3-D micro-CT digital reconstructions of firn from each megadunes 

area are shown in Figure 1.  Microstructural characterization from the 3-D 

reconstructions of the micro-CT data for the samples was determined using MAVI 

(Modulated Algorithms for Volume Images), a specialized, commercially-available,

micro-CT software package.   Microstructure data represent mean values of a volume of 

~4.096 cm
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3 of firn.   Porosity, 	, is the fraction of air voxels in the volume, or the total 

porosity.   The density of the snow sample is calculated from the micro-CT data as (1-

	)
ice, where 
ice  is the density of ice, equal to 0.917 g/cm3.  The specific surface of the 

snow matrix, SSA, is defined as the surface density per mass, and is determined from the 

micro-CT data as: 

SSA =  total surface area of snow/ total unit volume (5)

The effective diameter, deff, or optical grain size is then calculated from the SSA [Warren,

1982, Nolin and Dozier, 1993, Nolin and Dozier, 2000]: 

       deff = 6/SSA                                                                    (6)

We report the effective grain diameter, deff, as proposed by Dominé et al., 2008 and 

others.  The volume-to-surface-ratio of the pores, Vp/S, is calculated by dividing the total 
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254
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258

volume of the pores (air fraction) by the total surface.  The tortuosity factor can be 

calculated by MAVI geometrically. The value is obtained by an arithmetic mean of all 

pathways.

2.4 Lattice-Boltzmann Model 

The LB model uses a 19-direction D3Q19 lattice [Succi, 2002].  The middle node 

represents the rest particle, with the remaining nodes representing 18 possible non-zero 

velocities. The 3-D data from micro-CT scans are used as the input geometry for the 

model. Each voxel in the 3-D image represents one node in the lattice-Boltzmann model 

so that the resolution of the model is also 40 microns. The model uses a force at each 

pore node to drive the flow that approximates the pressure gradient across the sample. 

The model utilizes the Bhatnagar-Gross-Krook (BGK) collision operator which employs 

a single relaxation time parameter. The 3-D cubic model snow samples have a 40 micron 

resolution that results in 320x320x320 nodes. To make the sample periodic in the flow 

direction a cubic sample is reflected about the plane perpendicular to the flow and joined 

to its mirror image. The final sample has 320x320x640 nodes. Simple on-site bounce-

back is used at pore-solid interfaces as well as at the solid boundary at the sample sides. 

The flow through the model sample reaches reasonable convergence in about 5000 time 

steps, which takes approximately 10 hours to run on a PC. Low Reynolds numbers, less 

than 0.1, were used in order to insure laminar flow.  The Reynolds number is determined 

by VL/�, where V is the fluid velocity per unit cross-sectional area, as calculated by the 

LBM; L is an arbitrary length, equal to 10 lattice units; and � is the kinematic viscosity, 

which is set to a constant value.  The permeability of the sample is computed from 
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259

260

261

262

263

264

265

266

267

Darcy’s equation. The model was validated by testing flow around consolidated periodic 

arrays of spheres compared to published results [dos Santos et al., 2005; Larson and 

Higdon, 1989].  The results of the test of Stokes flow around consolidated spheres (i.e. 

spheres with non-zero contact area between spheres) are shown in Table 1, the 

dimensions are in lattice units.   

For the megadunes samples, the LBM composite permeability, kCOMP, for three to 

five subsamples were combined by adding the reciprocal of each subsample weighted by 

the subsample length to estimate the bulk permeability of the original sample: 

� ��

� m

i i

i
COMP

k
L

Lk  (7)268

269

270

271

272

273

274

275

276

277

278

279

280

where L is the total length of the sample, Li is the length of the subsample, i, and 

(k)i is the permeability of the ith subsample. For the Hercules Dome samples, we chose 

one representative subsample to model permeability using the LBM.   

 The REV (representative elementary volume) of the both coarse and fine grained 

sample types was determined by running the LB model for cubic volumes of 

100x100x100 voxels at 125 different starting voxel locations, 150x150x150 at 27 

different starting locations, 200x200x200 at eight different starting locations and 

250x250x250 at eight starting locations. The results for two different types of samples are 

shown in Figure 2.   For the fine-grained sample, the 200 unit voxel cube (0.5 cm3) is a 

stable result, with the permeability values calculated for the 250 unit cube (1 cm3) having 

a standard deviation of +/-7%.  For the course-grained sample, the 250 unit cube (1 cm3)
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gives a reasonable result, with the average deviation from the result of the model using 

the entire 320 cubic volume +/-5%, and the standard deviation of the results of the eight 

250 cubic units being +/-7%. This is within the limit of the error of our permeability 

measurements.  Examination of the REV model runs for the coarse-grained samples 

reveal that some of these subsample were stratified, with top and bottom portions having 

different permeability values, i.e. volumes sampled from different portions of the entire 

sample revealed systematic, geometrically based differences.  The result of the 

stratification of the coarse-grained subsample is that a larger REV is required to produce 

a reasonable permeability value.   

3. Model and Measurement Validation  

We determined the permeability of a 10-cm diameter, 10-cm height cylinder 

randomly packed with 4-mm diameter glass beads using the permeameter [Albert et al.,

2007].  The measured permeability for the beads was k = 9.97 x 10-9 m2 +/- 0.50 x 10-9 m2

for 20 replicate tests, which compares well to the Kozeny-Carman (KC), kKC = 10.12 x 

10-9 m2, and the Kozeny-Blake (KB), kKB = 12.15 x 10-9 m2, predictions for 

unconsolidated granular media of the same diameter and porosity.  The lattice-Boltzmann 

model value of a computer generated sample of glass beads with the same geometry was 

10.70 x 10-9 m2, with a relative error of 7% compared to the average measured value for 

the bead packs, and reasonably close to the precision of the permeameter, approximately 

5%.

4. Results for Firn Samples 

4.1 Microstructure characterization 
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Results for the microstuctural properties of the micro-CT data are summarized in 

Table 2. Hörhold et al., [2009] presents many more details on the Hercules Dome data.  

The near surface snow grains at the hiatus site were large, with an effective grain 

diameter of 1.5 mm on average, compared to the accumulation site, with an effective 

grain diameter of 1.0 mm in the near surface, as determined from micro-CT data. The 

average effective grain diameter of the Hercules Dome samples in the near surface was 

1.5 mm.  The porosities of the samples, determined from density measurements, vary 

from 0.4 to 0.6.  The average pore sizes, determined from the micro-CT data, vary from 

0.86 mm for the fine-grained, accumulation samples to 1.12-1.39 mm for the coarse-

grained, samples from the megadunes region and 0.6 mm for the Hercules Dome 

samples. This allows a minimum of 15 nodes per pore, above the 4 nodes per pore needed 

to insure that the LBM produces Poiseuille flow in the pores [Succi, 2002].

4.2 Lattice-Boltzmann model 

For the megadunes samples, the comparison between the calculated permeability 

values from the LBM and the original measured permeability values is shown in Figure 

3.  The composite permeability calculated from the subsample permeabilities, determined 

using Equation 7, is indicated by the open circles in the figure.  The results are 

summarized in Table 2. For the Hercules Dome modeling runs, one representative 

subsample of each sample was modeled and used to represent the composite value of the 

original sample, as the Hercules Dome samples tended to be shorter, more homogeneous, 

and less layered than the megadunes samples.  These results are shown in Figure 4 along 

with the composite values of permeability for the megadunes samples. In order to 
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examine the performance of the model in comparison to the experimental results, we 

examined the variability of the permeability values from modeled megadunes subsamples 

in comparison to the composite value, as well as the error between the modeled and 

measured results.  For the Hercules Dome samples, only one subsample was taken from 

each bulk original sample, and only the total error between measured and modeled results 

is reported in Table 2. 

4.3 Variability of megadunes subsamples  

The stratigraphy of the megadunes site is quite complex, with areas experiencing 

hiatus having coarse bands of large-grained, highly metamorphosed firn [Albert et al.,

2004] alternating with accumulation areas with near-surface layering as seen in other 

polar regions, and the beginning of a paleo-dune hiatus surface at depth.  This variability 

in the firn structure is seen in our measurements of both permeability and microstructure.  

For three of the megadunes samples, the modeled subsamples show considerable spread 

in permeability values, caused by inhomogeneous layering within the samples. The 

individual subsamples for Sample C, for instance, had values of volume-to-surface ratio 

(Vp/S) of the pore space varying from 0.14 mm to 0.22 mm.  Sample G had individual 

subsample Vp/S values varying between 0.27 mm and 0.40 mm.  Samples A and B, in 

comparison, had subsample Vp/S values which had no significant variation and variation 

in the range between 0.18 and 0.21 mm, respectively, and also smaller variability in the 

permeability values.  The largest variability occurs in samples near the surface (C and F) 

where more natural layering occurs, and consequently the original samples would not be 

as homogeneous.   Coarse-grained samples from the accumulation area at depth (D and 
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G) also have high variability.  This depth (approximately 10 m) at the accumulation site 

marked a transition between snow that had been accumulating and a hiatus dune surface 

buried below, which accounts for some of the variability in permeability and V
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p/S ratio 

between subsamples.   The rest of the samples, smaller grained and with less layering, 

have coefficient of variation (CV) values of calculated permeability between subsamples 

that range from 8 to 13%.  

4.4 Error 

The average composite modeled permeability values are within 25% (average 

absolute relative error of modeled values compared to measured values) of the measured 

bulk values. The 25% error has a large uncertainty of 18%, and is not normally 

distributed. About half of the simulations showed a relatively small error around +/- 0.3 x 

10-9 m2, Figure 5. The other half showed much larger errors, up to +/- minus 2 x 10-9 m2,

almost a factor of ten. We could not find a sufficient explanation of this large variation. 

The large errors may be partially explained by larger grain size. The samples which have 

the greatest error between the modeled and measured results are in general coarse-

grained, deeper samples (samples B, D, and G) from the megadunes site, or shallow 

samples (sample K and M) from Hercules Dome. The higher error in the Hercules Dome 

samples compared to measured results can be attributed to the use of one subsample to 

represent the original sample instead of finding a composite model result.   The high 

errors from the megadunes site may be partly due to metamorphic changes induced in 

transport, which is supported by the general trend of the modeled megadunes 

permeability values to be higher than the measured results.  It is likely that some 
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metamorphism of the snow samples from the megadunes occurred during shipment of the 

samples to Germany from the U.S., as evidenced by condensation on the inside of the 

plastic bags used to ship the samples and the disappearance of markings made on the 

samples before shipment.  No temperature data-loggers had been placed with the 

shipment to determine if the temperatures during transport were high enough (i.e. greater 

than -10ºC) to induce changes as was done with all later shipments, including the 

Hercules Dome samples.  The temperature logs during the Hercules Dome shipment 

show that temperatures stayed below -20�C, and metamorphism was likely minimized. 

Other methodological errors are 1) the reduced size of the CT samples, as 

compared to the measured sample size; 2) the destruction of the interface between 

subsamples caused by cutting the sample, which we are not able to reconstruct in the 

modeling; 3) errors introduced by the segmentation process and filtering; and 4) error due 

to the volume modeled for the coarse-grained subsamples being close to the REV.  This 

last effect is observable in a plot of the statistical error of the measured permeability 

values compared to the modeled permeability values versus the effective grain diameter 

of the sample in Figure 5.  There is an observable increase in error as the grain size for 

the sample increases. 

 It should be noted that the coarse-grained samples examined are end-members in 

terms of both grain sizes as well as permeability for polar firn, due to the fact that they 

are from an accumulation hiatus region.  For most types of firn will have REV’s for the 

LBM on the smaller end of the REV values determined here of ~1 to 1.5 cm3.

4.5   Comparison to traditional permeability correlations 
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 We compared the results from the LBM to empirical relationships for 

permeability (Figure 6).  Shimizu (1970) related permeability to grain size, d
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grain, for 

several types of season snow: 

 kshimizu = 0.077dgrain
2e(-7.8
*)                                           (8) 

where 
* is the specific gravity of snow.  For comparison, we calculated 
* for 

each sample based on density measurements.  We compared the LBM results to the 

Kozeny-Carman (KC) relationship (Equation 4) with c = 5.

 In previous work examining the permeability of polar firn, Rick and Albert [2004] 

and Hörhold [2006] developed relationships for permeability following Revil and Cathles

(1999) utilizing the concept of the formation factor, F, which is equal to 	
-m according the 

empirically based Archie relationship, where 	 is porosity and m is the “cementation 

exponent.” Rick and Albert (2004) modified the Kozeny-Carman relationship to include 

a pore size term:   

kRA =  (dpore/4)(Vp/S)2
	                                (9) 

Here we use the pore size as determined from micro-CT data for dpore. Hörhold

[2006] further added a term for the tortuosity of the firn, �, following Walsh and Brace 

[1984], as well as a term defining the anisotropy, dl, as described in Hörhold et al.,

[2009]:

khörhold = (dpore/4)(Vp/S)2(	/�)dl                          (10) 

Here we use the geometrical tortuosity,�, as determined by the micro-CT, and 

computed as the deviation of the flow pathway to that of a straight line.  It should be 

noted that this tortuosity is not the same as the tortuosity factor, which relates such 
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material properties of the porous medium as electrical conductivity, diffusivity, etc. to 

those in free air. 

 As can be seen in Figure 6, the LBM is much better at determining the 

permeability than the Shimizu’s relationship and the KC equation, which are traditionally 

used to predict snow permeability.  The model does moderately better at predicting the 

permeability than the newer formulations of Rick and Albert [2004] and Hörhold [2006] 

which incorporate more details on the microstructure of snow. These microstructural 

details, namely the pore size, tortuosity, and anisotropy, require data from the micro-CT 

that are not as easily determined as porosity, grain size, and SSA.  The microstructural 

values used in these relationships are based on the micro-CT data and are subject to many 

of the same errors and uncertainties as underlying structure for the LBM.   

5. Conclusions 

Lattice-Boltzmann modeling of flow through 3-D micro-CT reconstructions 

shows great promise in understanding microscale details of pressure-driven air flow 

through firn. The lattice-Boltzmann model is a useful tool for determining snow 

permeability, reproducing measured results and able to model permeability values at a 

much smaller scale than is possible with measurements.  This will be especially useful 

when examining the permeability of single stratigraphic layers on the order of 1 cm. 

Measured results across a range of porosities and grain sizes are reproduced by the 

model, and the model is better at predicting permeability than traditional permeability 

relationships for snow.  While computationally intensive, lattice-Boltzmann modeling 

can provide insight, by modeling the entire flow field in the snow matrix, into the nature 
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of the flow around the complex microstructure of the firn, without having to make 

simplifications to the snow or firn geometry.  
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Table Captions 

Table 1.  Results of Stokes flow around periodic array of consolidated spheres for the 

lattice-Boltzmann model compared to the empirical results of Larson and Higdon [1989].

Units are lattice units and model time step. 

Table 2. Results and errors for the modeled samples.  Vp/S is the volume-to-surface ratio 

of the pore space (mm); 	 is the porosity, comparing the measured bulk porosity (meas) 

to the average porosity  from the micro-CT data (CT) obtained for the individual 

subsamples as well as the total sample (in bold); for length, we report the total length of 

the original bulk sample (cm) in bold, as well as the length for the subsamples (2 cm);  k 

is permeability (m2); � is the standard deviation of the permeability values for the 

subsamples; CV is the coefficient of variation of the subsamples permeability for each 

bulk sample, defined as the standard deviation divided by the mean of the observations; 

and the relative error is the percent value of the modeled composite results as obtained 

using Equation 7 (in bold) compared to the bulk measured result (in bold) shown with the 

individual results for the subsamples.  Note that this is not the error of the individual 

subsamples compared to the measured result.  Samples A-H are samples from a 

megadune accumulation area (MD a) and a megadune hiatus area (MD h).  Samples I-M 

are from Hercules Dome (HD a).  For these samples, we chose one subsample to run in 

the lattice-Boltzmann, as indicated in the table, and present the microstructural data from 

the micro-CT of the other subsamples for comparison. 
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Figure Captions 

Figure 1. Firn samples from high accumulation megadunes site, left, at 0.4 m (top) and 9 

m (bottom) depths, compared to coarse-grained firn from accumulation hiatus site, right, 

at the same depths. White is snow and black is pore space. 

Figure 2. Determination of the REV of a coarse-grained sample (diamonds) and a fine-

grained sample (crosses).  The average values of the REV runs for a given volume are 

shown as open circles. 

Figure 3. Lattice-Boltzmann model versus measured results from different types of snow 

at a megadunes site; subsample permeabilities modeled by the LBM are compared to the 

bulk sample permeability, not permeability measurements for those subsamples.  

Different colors represent the individual samples, with the subsamples from each sample 

represented in the same color.  Open circles represent the bulk permeability values of the 

original samples.  Closed diamonds represent the subsections modeled from micro-CT 3-

D imaging.  Letters refer to different types of snow.  A, B, F, and H are snow samples 

from megadunes areas experiencing hiatus in snow accumulation.  C, D, E, and G are 

from a megadunes area experiencing low accumulation.  See Table 2 for a more complete 

description.  The straight line marks the value of the modeled permeability vs. measured 

permeability. 
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Figure 4. Modeled permeability results versus measured results for megadunes and 

Hercules Dome samples.  The composite modeled result for the megadunes samples is 

compared to the measured result. The modeled result from one representative subsample 

from the Hercules Dome samples is presented.  The straight line marks the value of the 

modeled permeability vs. measured permeability. 

Figure 5. Statistical error (modeled permeability minus measured permeability) vs. 

effective grain diameter. 

Figure 6. Comparison of LBM to empirical relationships for permeability of snow from 

Shimizu [1970], the Kozeny-Carman relationship (with c = 5), Rick and Albert [2004], 

and Hörhold [2006].  The straight line marks the value of the measured permeability. 
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692 Table 1 
diameter cell length k theoretical k modeled error (%) 

22 21 0.671 0.663 1.20
44 42 2.7763 2.7699 0.23
66 63 6.1671 6.1427 0.40
112 107 17.978 17.9515 0.15
138 131 25.114 25.0336 0.32
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693 Table 2.
sample site depth Vp/S 	 	 length deff k, calc. k, meas. rel. err.

(m) (mm) (meas) (calc) (cm) (mm) (m2) (m2) � CV
x10-9 x10-9 (m2)x10-9 % %

A MD h 9.7 0.16 0.40 0.40 8.3 1.71 1.79 1.59 2 12 12.6
A1 0.16 0.40 2 1.81 1.84 0.5 2.6
A2 0.16 0.39 2 1.67 2.02 2.2 12.4
A3 0.16 0.40 2 1.64 1.58 2.1 12
B MD h 8.5 0.20 0.41 0.41 7.2 1.73 2.46 1.66 3 13 48.2
B1 0.21 0.41 2 1.74 2.73 2.6 10.7
B2 0.21 0.41 2 1.75 2.63 1.7 6.9
B3 0.18 0.41 2 1.71 2.12 3.4 13.9
C MD a 0.1 0.19 0.56 0.56 12.7 0.93 3.02 2.69 39 86 12.3
C1 0.14 0.56 2 0.76 2.33 6.9 22.9
C2 0.15 0.56 2 0.89 1.95 10.7 35.5
C3 0.26 0.56 2 1.03 3.52 50.1 16.6
C4 0.22 0.56 2 0.98 1.02 7.2 239
D MD a 9.2 0.26 0.51 0.51 10.4 1.42 6.04 4.18 15 23 44.5
D2 0.27 0.51 2 1.34 5.91 1.3 2.2
D3 0.28 0.51 2 1.48 7.86 18.2 30.1
D4 0.23 0.51 2 1.49 4.99 10.5 17.3
E MD a 0.4 0.22 0.59 0.59 11.1 1.00 5.88 5.93 6 11 -0.8
E1 0.22 0.60 2 1.02 6.46 5.8 9.9
E2 0.18 0.58 2 0.98 5.26 6.2 10.5
E3 0.22 0.62 2 1.01 6.50 6.2 10.6
E4 0.25 0.57 2 1.04 5.50 3.8 6.4
F MD h 0.4 0.28 0.52 0.52 12.6 1.70 5.41 6.29 22 34 -14.0

F1 0.33 0.52 2 1.80 6.83 14.2 26.2
F2 0.27 0.52 2 1.43 2.62 27.9 52.5
F3 0.29 0.53 2 1.52 7.74 23.2 43
F4 0.26 0.52 2 1.85 7.78 23.7 43.8
F5 0.26 0.52 2 1.88 7.21 18 33.3
G MD a 10.4 0.34 0.51 0.50 9.5 1.72 10.24 7.94 29 27 29.0

G2 0.34 0.52 2 1.84 7.54 27 26.4
G3 0.40 0.48 2 1.66 13.10 28.5 27.9
G4 0.27 0.51 2 1.70 11.90 16.8 16.4
H MD h 0.2 0.24 0.58 0.58 11.5 1.71 8.04 9.70 7 8 -17.1
H1 0.27 0.58 2 1.55 8.42 3.8 4.8
H2 0.23 0.57 2 1.58 7.15 8.9 11.1
H3 0.22 0.58 2 1.69 8.59 5.4 6.8
H4 0.25 0.58 2 2.01 8.18 1.3 1.7
I HD a 10.0 0.14 0.43 0.43 4.1 1.20 1.19 1.09 9.2
J HD a 10.7 0.17 0.45 0.43 6.0 1.32 1.36 22.8
J1 0.17 0.43 2 1.31
J2 0.17 0.43 2 1.31 1.67
J3 0.17 0.44 2 1.33
K HD a 0.3 0.13 0.57 0.56 5.7 0.63 1.54 -26.6
K1 0.14 0.58 2 0.59 1.13
K2 0.13 0.53 2 0.67
L HD a 1.1 0.17 0.59 0.57 3.8 0.83 2.60 2.84 -8.5
M HD a 1.2 0.15 0.53 0.52 3.9 0.80 4.06 -59.1
M1 0.15 0.53 2 0.79 1.66
M2 0.14 0.51 2 0.81

 variability, ksub
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Figure 1. Firn samples from high accumulation megadunes site, left, at 0.4 m (top) and 9 

m (bottom) depths, compared to coarse-grained firn from accumulation hiatus site, right, 

at the same depths. White is snow and black is pore space. 
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Figure 2. Determination of the REV of a coarse-grained sample (diamonds) and a fine-

grained sample (crosses).  The average values of the REV runs for a given volume are 

shown as open circles. 

37

205



705

706
707

708

709

710

711

712

713

714

715

716

717

718

Figure 3. Lattice-Boltzmann model versus measured results from different types of snow 

at a megadunes site; subsample permeabilities modeled by the LBM are compared to the 

bulk sample permeability, not permeability measurements for those subsamples.  

Different colors represent the individual samples, with the subsamples from each sample 

represented in the same color.  Open circles represent the bulk permeability values of the 

original samples.  Closed diamonds represent the subsections modeled from micro-CT 3-

D imaging.  Letters refer to different types of snow.  A, B, F, and H are snow samples 

from megadunes areas experiencing hiatus in snow accumulation.  C, D, E, and G are 

from a megadunes area experiencing low accumulation.  See Table 2 for a more complete 

description.  The straight line marks the value of the modeled permeability vs. measured 

permeability. 
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Figure 4. Modeled permeability results versus measured results for megadunes and 

Hercules Dome samples.  The composite modeled result for the megadunes samples is 

compared to the measured result. The modeled result from one representative subsample 

from the Hercules Dome samples is presented.  The straight line marks the value of the 

modeled permeability vs. measured permeability. 
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Figure 5. Statistical error (modeled permeability minus measured permeability) vs. 

effective grain diameter. 
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Figure 6. Comparison of LBM to empirical relationships for permeability of snow from 

Shimizu [1970], the Kozeny-Carman relationship (with c = 5), Rick and Albert [2004], 

and Hörhold [2006].  The straight line marks the value of the measured permeability. 
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