Carbon emissions from tropical wetlands

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich für Physik und Elektrotechnik
der Universität Bremen

Vorgelegt von
Alexandra Klemme

- 06.08.2021 -
Gutachter:
PD Dr. Thorsten Warneke
Prof. Dr. Mihalis Vrekoussis

Weitere Mitglieder der Prüfungskommission:
Prof. Dr. Annette Ladstätter-Weißenmayer
Prof. Dr. Stefan Bornholdt
Dr. Matthias Buschmann
Thomas Visarius

Datum des Kolloquiums:
01.10.2021
Abstract

Carbon dioxide (CO$_2$) and methane (CH$_4$) are the two most important anthropogenic greenhouse gases. Due to human influences, their concentrations in the atmosphere have increased over the past 150 years, causing increased warming of the Earth’s surface. For the global budgets of CO$_2$ and CH$_4$ it is not only important to assess anthropogenic emissions of CO$_2$ and CH$_4$ but also to understand the response of their natural fluxes to a changing climate.

Wetlands are one of the world’s largest carbon pools. While natural wetlands represent a CH$_4$ source to the atmosphere, slow decomposition processes due to anaerobic conditions in their waterlogged soils lead to net carbon accumulation in wetlands. Especially peat soils, which consist of dead and decaying plant material, sequester large amounts of carbon from the atmosphere and, in their natural state, represent an atmospheric carbon sink. Among these peat soils are tropical peatlands which represent a globally significant carbon store. More than half of the known tropical peatlands are located in Southeast Asia. In recent years, the Southeast Asian peat carbon store has been destabilized due to deforestation and the transformation into plantations, causing high CO$_2$ emissions from peat soils and increased leaching rates of peat carbon into rivers.

High carbon leaching rates from Southeast Asian peat soils indicate that the carbon content in and the CO$_2$ emissions from peat-draining rivers in this region are high. Estimates based on field data suggest only moderate CO$_2$ emissions. The first part of this study aims to explain this phenomenon. It is found that carbon decomposition in peat-draining rivers is hampered by low pH. This limits CO$_2$ production in and emissions from peat-draining rivers. Data collected for this study yield an exponential pH limitation that shows a good agreement with laboratory measurements from high latitude peat soils. Additionally, the results suggest that enhanced input of carbonate minerals increase CO$_2$ emissions from peat-draining rivers by counteracting the pH limitation. This points out an important feedback mechanism of human activities that cause such inputs of carbonate minerals, like the deforestation of river catchments, liming in plantations and enhanced weathering projects.

Enhanced weathering is a CO$_2$ removal strategy that accelerates the CO$_2$ uptake by weathering via the distribution of rock-powder over land. During weathering, atmospheric CO$_2$ is converted into bicarbonate, which precipitates in soils and is washed out and transferred via rivers into the ocean. Weathering is favoured by warm and humid conditions and therefore target areas for enhanced weathering include the tropics. Among the suggested target areas
are tropical peatlands. The second part of this study investigates the impact of enhanced weathering on CO₂ emissions from tropical peat regions. Results indicate that enhanced weathering would destabilize the peat carbon store, which could offset the CO₂ uptake by enhanced weathering. Based on a case study for Sumatra, the pH dependence of peat decomposition is incorporated in enhanced weathering scenarios. The resulting emission estimates suggest that the enhanced weathering induced pH increase causes enhanced CO₂ emissions from peat soils, peat-draining river and coastal areas that amount to at least 50% and potentially more than 150% of the estimated CO₂ uptake by enhanced weathering.

The third research topic in this study aims to evaluate wetland CH₄ emissions by use of satellite data and a global transport model. Model runs show that the impact of CH₄ emissions from individual wetlands on regional atmospheric XCH₄ can be observed via satellite. Wetland CH₄ emission datasets vary strongly in regional CH₄ emission flux rates and flux seasonality. Model runs using these differing datasets were able to reproduce the atmospheric CH₄ concentrations and variations observed by satellites. The JSBACH emission dataset shows the best correlation to satellite data. However, the good agreement observed for all datasets indicates that the cause for the good representation of atmospheric CH₄ are modelled nudging fluxes rather than correct wetland emission fluxes. Further evaluation of these fluxes reveal a missing CH₄ source of approximately 120 TgCH₄ yr⁻¹ in the model. Comparison with published CH₄ budgets suggests that the reason for this CH₄ emission deficit could be missing inland water emissions. Model budgets considering these additional fluxes suggest higher inland water CH₄ emissions and atmospheric CH₄ sinks than stated in recent top-down estimates by the Global Carbon Project.
Contents

1. **Objective and outline**
2. **Wetlands in the global carbon cycle**
 2.1. The global carbon cycle
 2.1.1. Atmospheric carbon dioxide (CO₂)
 2.1.2. Atmospheric methane (CH₄)
 2.1.3. Climate change mitigation
 2.2. Carbon dynamics in wetlands and other aquatic systems
 2.2.1. Organic carbon species in aquatic systems
 2.2.2. Inorganic carbon species in aquatic systems
 2.2.3. Aerobic decomposition
 2.2.4. Anaerobic decomposition
 2.2.5. Atmospheric gas exchange with surface waters
3. **Methods**
 3.1. River campaigns and measurements
 3.1.1. Dissolved CO₂ measurements
 3.1.2. Water-atmosphere flux measurements
 3.1.3. DOC measurements
 3.1.4. Particulate carbon measurements
 3.1.5. pH and dissolved O₂ measurements
 3.2. Catchment properties and additional parameters
 3.2.1. Determination of catchment properties
 3.2.2. Atmospheric gas exchange coefficients
 3.2.3. River carbon yields
 3.3. Global atmospheric chemistry and transport model
 3.3.1. TM5-MP chemistry and transport model
 3.3.2. CH₄ emission datasets
 3.4. Satellite CH₄ data
 3.4.1. SCIAMACHY satellite
 3.4.2. GOSAT satellite
4. Limitation of CO₂ production in peat-draining rivers
 4.1. Background and objective ... 27
 4.2. Study area ... 28
 4.3. Interdependence of river carbon parameters 29
 4.3.1. Correlation of river DOC, pH, CO₂ and O₂ with peat coverage 29
 4.3.2. Correlation of river CO₂ and O₂ with DOC and pH 31
 4.4. Natural limitation in river CO₂ due to inhibition of decomposition 33
 4.4.1. Quantification of the pH and O₂ impact on decomposition rates 33
 4.4.2. Evaluation of linear and exponential pH limitation of decomposition 36
 4.5. Suspension of maximum CO₂ concentration in the Simunjan river 39
 4.6. Conclusion ... 41

5. Response of tropical peat areas to enhanced weathering
 5.1. Background and objective .. 43
 5.2. Study area ... 44
 5.3. Enhanced weathering estimates ... 45
 5.4. Response of soil carbon mobilisation to enhanced weathering 46
 5.4.1. Dependency of CO₂ and DOC mobilisation from peat soils on pH 46
 5.4.2. Response of CO₂ emissions from soils to enhanced weathering 48
 5.4.3. Response of DOC leaching from soils to enhanced weathering 49
 5.4.4. Response of DIC leaching from soils to enhanced weathering 50
 5.5. Response of river carbon export to enhanced weathering 51
 5.5.1. Description of river box-model 51
 5.5.2. Response of river CO₂ emissions to enhanced weathering 52
 5.5.3. Response of river DOC and DIC discharge to enhanced weathering 56
 5.6. Response of coastal carbon emissions to enhanced weathering 58
 5.6.1. Description of coastal water mixing calculations 58
 5.6.2. Response of coastal CO₂ emissions to enhanced weathering ... 59
 5.7. Sumatra’s carbon emission response to enhanced weathering 62
 5.8. Conclusion ... 63

6. Towards validation of wetland CH₄ emissions
 6.1. Background and objective ... 65
 6.2. Study Area ... 66
6.3. Impact of individual wetlands on regional atmospheric XCH$_4$ 67
6.4. Differences between the wetland emissions datasets ... 69
 6.4.1. Diagnostic wetland CH$_4$ emission datasets .. 69
 6.4.2. Prognostic wetland CH$_4$ emission datasets ... 72
6.5. Modelled CH$_4$ concentrations and nudging fluxes ... 74
 6.5.1. Modelled nudging emissions ... 74
 6.5.2. Correlation of modelled XCH$_4$ with satellite data 75
 6.5.3. Correlation of de-trended annual XCH$_4$ variations to satellite data 77
 6.5.4. Impact of wetlands on modelled XCH$_4$ for model runs including nudging 79
6.6. Deficit in the modelled XCH$_4$... 81
 6.6.1. Deficit in the model CH$_4$ budget .. 81
 6.6.2. Evaluation of CH$_4$ sources and sinks .. 82
6.7. Conclusion ... 84

7. Overall Conclusions ... 87

8. Outlook ... 89

A. Appendix ... 91
 A.1. Abbreviations ... 91
 A.1.1. Acronyms ... 91
 A.1.2. Chemical formulas ... 91
 A.2. Appendix to chapter 4 ... 92
 A.2.1. Additional figures and tables .. 92
 A.2.2. Discussion of individual river campaigns .. 96
 A.2.3. CO$_2$ emission estimates for Southeast Asian peat-draining rivers 97
 A.3. Appendix to chapter 5 ... 99
 A.3.1. Additional figures and tables .. 100
 A.4. Appendix to chapter 6 ... 101
 A.4.1. Additional figures and tables .. 101
 A.4.2. Seasonality of wetland CH$_4$ emissions .. 104
 A.4.3. Correlation of modelled XCH$_4$ to satellite data for additional regions 111

References ... 119

Acknowledgements ... 135
List of Figures

1.1. Time series of global surface temperature anomaly 1
2.1. Illustration of global carbon cycle ... 4
2.2. Time series of global atmospheric CO$_2$ concentrations 5
2.3. Time series of global atmospheric CH$_4$ concentrations 6
2.4. Global map of peatland coverage ... 9
2.5. Schematic of carbon dynamics in tropical wetland regions 10
2.6. Bjerrum plot of inorganic carbon species as function of pH 12
3.1. Picture of equipment used for measurements at Southeast Asian rivers 16
3.2. Headspace setup for dissolved CO$_2$ measurements 17
4.1. Map of Southeast Asian study area and rivers 28
4.2. Pictures of Southeast Asian peat-draining rivers 29
4.3. Dependency of measured river parameters on peat coverage 30
4.4. Dependency of river CO$_2$ and O$_2$ on DOC and pH 32
4.5. Correlation between river depths and gas exchange coefficients 35
4.6. Correlation plots of CO$_2$ and O$_2$ for linear decomposition approach 36
4.7. Correlation plots of CO$_2$ and O$_2$ for exponential decomposition approach 37
4.8. Data dependence on peat coverage including abnormal Simunjan campaigns 41
5.1. Map of Sumatran study area .. 44
5.2. Dependency of CO$_2$ and DOC mobilisation from peat soils on pH 47
5.3. Dependency of carbon mobilisation from peat soils on pH increase 48
5.4. Carbonate induced change in river pH and CO$_2$ versus original river pH .. 53
5.5. Carbonate induced change in river O$_2$ and DOC versus original river pH .. 54
5.6. River emission response to enhanced DIC and DOC leaching 55
5.7. River emission response to DOC leaching for different DIC leaching rates .. 56
5.8. Response of carbon export from rivers to enhanced DIC and DOC leaching . 57
5.9. Coastal emission response to enhanced DOC and DIC leaching 60
5.10. Coastal emission response to DOC leaching for different DIC leaching rates 61
5.11. Overview of Sumatra’s carbon emission response to enhanced weathering 62
6.1. Map of selected tropical wetland regions ... 66
6.2. Impact of emissions from individual wetlands on local atmospheric XCH$_4$. 68
6.3. Global map of wetland CH$_4$ emissions ... 69
6.4. Latitudinal distribution of wetland CH$_4$ emissions 70
6.5. Regional wetland CH$_4$ fluxes from diagnostic datasets 71
6.6. Exemplary seasonality of wetland CH$_4$ emissions for the Amazon region . . 72
6.7. Global map of wetland CH$_4$ emissions from prognostic datasets 73
6.8. Regional wetland CH$_4$ fluxes from prognostic datasets 73
6.9. Global distribution of nudging fluxes . 75
6.10. Time series of modelled and measured XCH$_4$ in the Amazon region . . . 76
6.11. Time series of modelled and measured XCH$_4$ seasonality in the Amazon region 78
6.12. Impact of wetland emissions on XCH$_4$ in selected wetland regions 80
6.13. XCH$_4$ deficit for model runs without nudging 81
6.14. Model CH$_4$ budget compared to budgets stated by the GCP 83
A.1. Correlation between river discharge and river water volume 93
A.2. Dependency of river CO$_2$ and O$_2$ on DOC for individual river campaigns . 96
A.3. Dependency of river CO$_2$ and DOC on local precipitation 97
A.4. Correlation between river carbon yields and peat coverage 98
A.5. Time series of parameters derived via the river box-model 100
A.6. Correlation between modelled and measured river parameters 100
A.7. Global wetland CH$_4$ emission maps for diagnostic GCP datasets 101
A.8. Global wetland CH$_4$ emission maps for prognostic GCP datasets 102
A.9. Detailed model CH$_4$ budget compared to budgets by the GCP 103
A.10. Seasonality of wetland CH$_4$ emissions from the Congo region 104
A.11. Seasonality of wetland CH$_4$ emissions from the Ganges region 105
A.12. Seasonality of wetland CH$_4$ emissions from the Southeast Asian region . 106
A.13. Seasonality of wetland CH$_4$ emissions from the Pantanal region 107
A.14. Seasonality of prognostic wetland CH$_4$ emissions from the Amazon region . 108
A.15. Seasonality of prognostic wetland CH$_4$ emissions from the Congo region . 108
A.16. Seasonality of prognostic wetland CH$_4$ emissions from the Ganges region . 109
A.17. Seasonality of prognostic wetland CH$_4$ emissions from the SE Asian region . 109
A.18. Seasonality of prognostic wetland CH$_4$ emissions from the Pantanal region . 110
A.19. Time series of modelled and measured XCH$_4$ in the Congo region 111
A.20. Time series of modelled and measured XCH$_4$ in the Southeast Asian region . 112
A.21. Time series of modelled and measured XCH$_4$ in the Ganges region 113
A.22. Time series of modelled and measured XCH$_4$ in the Pantanal region 114
A.23. Time series of modelled and measured CH$_4$ seasonality in the Congo region . 115
A.24. Time series of modelled and measured CH$_4$ seasonality in the SE Asian region . 116
A.25. Time series of modelled and measured CH$_4$ seasonality in the Ganges region . 117
A.26. Time series of modelled and measured CH$_4$ seasonality in the Pantanal region . 118
List of Tables

2.1. Description of wetland types .. 8
3.1. CH$_4$ emission sectors and global emissions 23
3.2. List of models that computed wetland CH$_4$ emission datasets 24
4.1. Decomposition parameters from linear pH approach 37
4.2. Decomposition parameters from exponential pH approach 38
4.3. Limitation of in-river decomposition caused by low pH and O$_2$ 39
4.4. Measured data for the four Simunjan campaigns 40
5.1. Previous enhanced weathering estimates 45
5.2. Soil feedback on enhanced weathering application on Sumatra 49
5.3. River feedback on enhanced weathering application on Sumatra 58
5.4. Coastal response to enhanced weathering application on Sumatra 61
6.1. CH$_4$ emission estimates from the GCP 66
6.2. Description and location of selected wetland regions 67
6.3. Average CH$_4$ emissions from selected wetland regions 70
6.4. Correlation of modelled XCH$_4$ in the Amazon region to satellite data 77
6.5. Correlation of modelled XCH$_4$ variations in the Amazon region to satellite data 79
6.6. Nudging fluxes from model runs based on diagnostic emission datasets ... 82
6.7. Atmospheric CH$_4$ burden derived from model budgets compared to literature 84
A.1. Derived river catchment properties 92
A.2. Measured river water properties .. 93
A.3. Conducted river campaigns in Southeast Asia 94
A.4. Limitation of in-river decomposition based on the linear pH approach . . 94
A.5. Equations to be optimized for exponential decomposition limitation by pH . 95
A.6. Equations to be optimized for linear decomposition limitation by pH 95
A.7. River carbon yields and outgassing fractions 99
A.8. Comparison of regional river CO$_2$ emissions to literature 99
A.9. Emissions from selected wetland regions as stated in diagnostic datasets .. 102
A.10. Emissions from selected wetland regions as stated in prognostic datasets . 103
A.11. Correlation of modelled XCH$_4$ in the Congo region to satellite data 111
A.12. Correlation of modelled XCH$_4$ in the SE Asian region to satellite data 112
A.13. Correlation of modelled XCH$_4$ in the Ganges region to satellite data 113
A.14. Correlation of modelled XCH$_4$ in the Pantanal region to satellite data 114
A.15. Correlation of modelled XCH_4 variations in the Congo region to satellite data 115
A.16. Correlation of modelled XCH_4 variations in the SE Asian region to satellite data 116
A.17. Correlation of modelled XCH_4 variations in the Ganges region to satellite data 117
A.18. Correlation of modelled XCH_4 variations in the Pantanal region to satellite data 118
1. Objective and outline

Climate and climate change mitigation studies have become highly relevant in the recent decades due to ongoing global warming (Figure 1.1; Huang et al., 2017). Scientists agree that human impacts since the industrial era have been the dominant cause of this changing climate (Hartmann et al., 2013a) and that an increase in atmospheric concentrations of greenhouse gases represents its main driver (Myhre et al., 2013). Carbon dioxide (CO$_2$) and methane (CH$_4$) are the two most important anthropogenic greenhouse gases (Smith et al., 2013). Thus, global carbon research is important to understand human induced impacts on global warming and to assess realistic climate change mitigation strategies (de Coninck et al., 2018). For this, not only anthropogenic greenhouse gas emissions are of interest but also the response of natural atmospheric CO$_2$ and CH$_4$ fluxes on a changing climate.

![Figure 1.1: Annual mean surface temperature anomaly between 1900 and 2020 from Huang et al. (2017). Anomalies are given with respect to temperatures in the year 1900.](image)

The objective of this study is to constrain carbon emissions from tropical wetland regions and to understand what drives these emissions. The study is structured into three major research topics. The first research topic focuses on tropical rivers that drain peatlands. It aims to explain moderate CO$_2$ fluxes observed from peat-draining rivers and to improve CO$_2$ emission estimates from these rivers. The second research topic aims to quantify the response of CO$_2$ emissions from tropical peat regions on the application of enhanced weathering. To achieve this, the CO$_2$ emission response from peat soils, peat-draining rivers and coastal areas on enhanced weathering induced pH changes are derived based on a case study for Sumatra. The third research topic aims to constrain CH$_4$ emissions from tropical wetland regions.
1. Objective and outline

For this, different emission datasets are evaluated by use of an atmospheric chemistry and transport model and satellite retrievals.

The thesis is structured into the following chapters:

Chapter 2 provides an introduction to the global carbon cycle with the focus on atmospheric CO$_2$ and CH$_4$ budgets, climate change mitigation strategies and the role of tropical wetlands in the carbon cycle.

Chapter 3 describes the methods used to obtain the data evaluated in this study. The measurement principles utilized during the field campaigns in Southeast Asia as well as the atmospheric transport model and satellite retrievals are described.

Chapter 4 illustrates the results of the first research topic. It analyses the carbon dynamics in tropical peat-draining rivers with the focus on the dependency of CO$_2$ emissions from those rivers on pH. Parts of this chapter have been published in Klemme et al. (in review, 2021).

Chapter 5 presents the results of the second research topic. It investigates the response of CO$_2$ emissions from tropical peat regions on enhanced weathering and provides an estimate for the impact of this response on the net CO$_2$ uptake by enhanced weathering.

Chapter 6 illustrates the results of the third research topic. It focuses on the evaluation of different wetland CH$_4$ emission datasets. For this, the datasets are used as input to an atmospheric chemistry and transport model and model results are compared to satellite data.

Chapter 7 summarizes the main findings from this study.

Chapter 8 provides an outlook on possible future work based on the results of this study.
2. Wetlands in the global carbon cycle

This chapter provides an introduction to the global carbon cycle and the role of tropical wetlands within it. Section 2.1 describes the global carbon cycle with the focus on atmospheric CO$_2$ and CH$_4$ budgets as well as on climate change mitigation strategies. Section 2.2 illustrates the role of wetlands in the global carbon cycle.

2.1. The global carbon cycle

The global carbon cycle (Figure 2.1) describes the exchange of carbon between different reservoirs. Depending on the time scale of the carbon exchange, one can distinguish between a slow and a fast component of the carbon cycle (Ciais et al., 2013). The fast component, with turnover times of years to decades, represents the carbon exchange between three major reservoirs: the atmosphere, the ocean and the land (Ciais et al., 2013). It includes carbon fluxes due to photosynthesis, respiration and fires as well as atmospheric gas exchange with surface waters and transport from the land to the ocean by rivers (Hannah, 2015). The slow component of the carbon cycle, with turnover times of 10,000 years and more, represents the carbon exchange with rocks and sediments (Ciais et al., 2013). It includes fluxes due to chemical weathering and volcanism as well as turnover and sedimentation in the ocean (Hannah, 2015).

Over the past centuries, anthropogenic activities such as deforestation and burning of fossil fuels have returned old carbon from stable carbon pools into the fast component of the carbon cycle (Ciais et al., 2013). Therefore, carbon concentrations in the reservoirs of the fast carbon cycle have increased. Approximately 50% of the additional carbon is stored in the atmosphere, while the other half is absorbed by the land and the ocean (Hartmann et al., 2013a).

In the atmosphere, carbon exists mainly in the form of CO$_2$ and in smaller concentrations as CH$_4$, carbon monoxide (CO) and other trace gases. CO, with an atmospheric lifetime of approximately two months (Khalil and Rasmussen, 1990), is relatively quickly oxidized to CO$_2$ by reaction with atmospheric hydroxyl radicals (OH). CO$_2$ and CH$_4$, which are relatively stable in the atmosphere, are the two most important anthropogenic greenhouse gases (Smith et al., 2013). They absorb infrared radiation from the Earth’s surface and re-emit it while letting most of the solar radiation pass through (Hansen et al., 2005). This process that causes an increase in the Earth’s surface temperature is called the greenhouse effect. It becomes
stronger with increasing atmospheric concentrations of greenhouse gases (Kweku et al., 2018). Subsection 2.1.1 and subsection 2.1.2 describe the atmospheric budgets of CO$_2$ and CH$_4$, respectively. Subsection 2.1.3 discusses possible climate change mitigation strategies with the focus on enhanced weathering.

![Figure 2.1: Illustration of the global carbon cycle (Ciais et al., 2013). Carbon stocks in the reservoirs are given in petagrams of carbon. Arrows represent exchange fluxes between reservoirs, which are given in petagrams of carbon per year. Black numbers represent the natural system based on data from 1750 as reference for the pre-industrial era. Red numbers indicate the change due to anthropogenic influences between 1750 and 2011.](image)

2.1.1. Atmospheric carbon dioxide (CO$_2$)

CO$_2$ is the most important anthropogenic greenhouse gas (Smith et al., 2013). It makes up the majority of atmospheric carbon with concentrations of several hundred ppm and long
atmospheric lifetimes of centuries to more than 1,000 years (Archer et al., 2009). Atmospheric CO$_2$ concentrations increased from pre-industrial concentrations of 270 ppm (Joos and Spahni, 2008) to more than 410 ppm in 2021 (Figure 2.2).

This increase is caused by an imbalance between atmospheric CO$_2$ sources and sinks which is driven by the increase in anthropogenic CO$_2$ emissions since the industrial era (Friedlingstein et al., 2019). For a long time, the dominating force in these anthropogenic emissions was land use change (Friedlingstein et al., 2019). However, while land use change emissions stayed relatively constant, fossil fuel emissions increased since 1850 and approximately since 1950 they outweigh land use change emissions. Today, fossil fuel emissions are about five times higher than land use change emissions (Friedlingstein et al., 2019).

Based on estimates by Friedlingstein et al. (2019) within the decade of 2009 to 2018 fossil fuel emissions averaged to (9.5 ± 0.5) petagrams of carbon (PgC) per year and land use change emissions were (1.5 ± 0.7) PgC yr$^{-1}$. Those emissions caused an atmospheric CO$_2$ increase of about 4.9PgC yr^{-1}, while (3.2 ± 0.6) PgC yr$^{-1}$ are taken up by the land and (2.5 ± 0.6) PgC yr$^{-1}$ by the ocean.

2.1.2. Atmospheric methane (CH$_4$)

CH$_4$ is the second most important anthropogenic greenhouse gas after CO$_2$ (Smith et al., 2013). Its instantaneous impact on the Earth’s energy balance is much stronger than that of CO$_2$ (Myhre et al., 2013). Yet, its atmospheric lifetime of approximately one decade (Kaplan
et al., 2006) lowers its global warming potential on a time horizon of 100 years to 28-34 (Myhre et al., 2013). Atmospheric CH$_4$ concentrations more than doubled from pre-industrial concentrations of 700 ppb (Loulergue et al., 2008) to about 1890 ppb in 2021 (Figure 2.3).

The atmospheric growth rate of CH$_4$ is determined by the balance between surface emissions and photochemical destruction by OH (Bousquet et al., 2006). Main anthropogenic CH$_4$ sources are agriculture and fossil fuel production and use (Saunois et al., 2020). Based on top-down estimates by Saunois et al. (2020) within the decade of 2008 to 2017 average fossil fuel emissions were 83 TgC yr$^{-1}$ and emissions from agriculture and waste were 163 TgC yr$^{-1}$, while biomass burning emissions (which are partially anthropogenic) were comparatively moderate with 23 TgC yr$^{-1}$. Additional CH$_4$ was emitted from wetlands (136 TgC yr$^{-1}$) and other natural sources (28 TgC yr$^{-1}$). Sinks from chemical reactions in the atmosphere compensated for the majority of these emissions (389 TgC yr$^{-1}$), while a smaller fraction (29 TgC yr$^{-1}$) is taken up by soils and approximately 10 TgC yr$^{-1}$ stay in the atmosphere (Saunois et al., 2020).

![Figure 2.3](image.png)

Figure 2.3: Monthly mean atmospheric CH$_4$ concentrations globally averaged over marine surface sites from NOAA ESRL (Dlugokencky, 2021). The deseasonalized data was derived by calculation of an annual rolling mean.

Other than the atmospheric CO$_2$ concentration, the concentration of CH$_4$ did not continuously increase over the past decades. For example, atmospheric CH$_4$ concentrations were fairly constant within the period of 1999 to 2006 (Figure 2.3). Possible explanations for the renewed atmospheric increase since 2007 are increased biogenic emissions as indicated by a decrease in the ratio of heavy CH$_4$ isotopes (Schaefer et al., 2016; Nisbet et al., 2016), increased
emissions from fossil fuels as indicated by concurrent ethane emissions (Hausmann et al., 2016) and decreased OH concentrations resulting in a reduced chemical sink of CH$_4$ (Turner et al., 2017; Rigby et al., 2017). However, it has not been possible to unambiguously link the observed CH$_4$ variations to specific sources (Turner et al., 2019).

2.1.3. Climate change mitigation

To mitigate climate change, a reduction in net greenhouse gas emissions is essential (Myhre et al., 2013). In 2016, the Paris Agreement was signed with the main objective to keep the global temperature increase at well below 2 °C above pre-industrial levels (Horowitz, 2016). For this, parties agreed to limit anthropogenic greenhouse gas emissions such that they will peak as soon as possible. The aim was to reach emission neutrality in the second half of the century (Horowitz, 2016). However, it has become clear that the reduction of greenhouse gas emissions to net zero is not sufficient to reach the Paris climate goal (Roy et al., 2018) and that further emission reduction is needed.

To achieve net negative atmospheric fluxes, atmospheric CO$_2$ removal strategies are discussed (de Coninck et al., 2018; Field and Mach, 2017). Such strategies include increased natural CO$_2$ uptake through reforestation, conservation agriculture and coastal restoration as well as CO$_2$ uptake through biomass based engineering like bio-energy with carbon capture and storage and CO$_2$ uptake through non-biological engineering approaches like direct air capture and enhanced weathering (Field and Mach, 2017).

Enhanced weathering is a CO$_2$ removal strategy that is based on large scale application of pulverized rocks over the land surface to accelerate weathering rates. Natural rock weathering consumes approximately 0.3 PgC yr$^{-1}$ of atmospheric CO$_2$, representing \approx 3% of the anthropogenic fossil fuel and land use change emissions (Figure 2.1). Studies on the cost efficiency of enhanced weathering have estimated promising carbon dioxide removal rates of up to 1,000 MgC km$^{-2}$ yr$^{-1}$ (Taylor et al., 2016; Srebrler et al., 2018; Beerling et al., 2020) which could lower atmospheric CO$_2$ by 30 to 300 ppm until 2100 (Taylor et al., 2016).

2.2. Carbon dynamics in wetlands and other aquatic systems

Wetlands represent one of the world’s largest carbon pools (Page et al., 2011). Differing definitions of wetlands are used. In this study they are referred to according to the definition in Wetlands (1995) as ecosystems that depend on constant or recurrent, shallow inundation or saturation at or near the surface of the substrate. Generally, wetlands can be divided
2. Wetlands in the global carbon cycle

into coastal wetlands and inland wetlands (Reddy and DeLaune, 2008a). Coastal wetlands exist in the forms of mangrove wetlands as well as tidal salt and freshwater marshes (Mitsch and Gosselink, 2015). Inland wetlands are comprised of freshwater marshes and peatlands as well as freshwater swamps and riparian wetlands (Mitsch and Gosselink, 2015). Short descriptions of these wetland types are given in Table 2.1.

<table>
<thead>
<tr>
<th>wetland type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mangrove swamp</td>
<td>wetland ecosystem in estuaries and marine shorelines where mangrove forests are present</td>
</tr>
<tr>
<td>tidal saltwater marsh</td>
<td>wetland ecosystem between land and open seawater that is covered by grasses, rushes or reeds and that is regularly flooded by the tides</td>
</tr>
<tr>
<td>tidal freshwater marsh</td>
<td>wetland ecosystem that is covered by herbaceous plants where influence of the tides causes flooding by freshwater rather than seawater</td>
</tr>
<tr>
<td>freshwater marsh</td>
<td>wetland ecosystem that is dominated by herbaceous plants like grasses, rushes and reeds</td>
</tr>
<tr>
<td>freshwater swamp</td>
<td>wetland ecosystem that is dominated by forests and does not accumulate large amounts of peat</td>
</tr>
<tr>
<td>peatlands</td>
<td>wetland ecosystem with thick waterlogged soil layers that consist of dead and decaying plant material</td>
</tr>
<tr>
<td>riparian wetlands</td>
<td>wetland ecosystem that is located along the margins of streams or rivers</td>
</tr>
</tbody>
</table>

Table 2.1: List and description of different wetland types (Finlayson, 2016a,b; Barendregt, 2016).

Other than mineral soils, which consist of approximately 50% solids, one-quarter air and one-quarter water (Reddy and DeLaune, 2008b), wetland soils are water saturated and consist of 50% solids and 50% water. Due to those waterlogged soil conditions, the oxygen (O₂) availability in wetland soils is limited, causing slow decomposition of organic matter (Megonigal et al., 2003). These slow decomposition rates cause accumulation of organic matter in the soils (Page et al., 2011). Despite acting as a net carbon sink, wetlands are the largest natural source of atmospheric CH₄ and cause approximately one third of the global CH₄ emissions (Kirschke et al., 2013).

Wetlands cover (6 – 8)% of the global land surface and store about one-third of the terrestrial soil carbon (500 Pg; Keller, 2011). Approximately half of this carbon is stored in tropical wetlands, mainly in deep peat soils that occur under mangrove and swamp forests (Dalmagro et al., 2019). Peatlands are classified as wetlands with thick waterlogged soil layers that consist of dead and decaying plant material (Table 2.1; Wetlands International). Thus, the soil consists mainly of organic matter (65%), has low pH and is poor in nutrients (Müller...
et al., 2015). Though peatlands only cover ≈ 3% of the global land area (Figure 2.4), they contain twice as much carbon as the world's forests (Wetlands International). Due to that immense amount of carbon, peatlands play an important role in the global carbon cycle.

![Figure 2.4: Global map of peatland coverage (Xu et al., 2018).](image)

The carbon accumulation in wetlands is conditioned by the balance of carbon uptake through photosynthetic activity and carbon loss through aerobic respiration, anaerobic respiration (methanogenesis) and leaching into rivers (Figure 2.5). Part of the carbon that is leached into rivers is emitted to the atmosphere, while the remaining fraction is transported to the ocean. In natural wetlands, O₂ supply is generally restricted to a thin layer of surface soil and to the water column (Page et al., 2011). Thus, in the majority of the soil, slow anaerobic respiration in the form of methanogenesis is performed (Reddy and DeLaune, 2008e). Approximately 3% of the net primary production (NPP = photosynthesis - plant respiration) in natural wetland regions is emitted back into the atmosphere in the form of methane (Whiting and Chanton, 1993). However, the drainage of wetland soils, as for example performed on peat soils to create plantations, increases the O₂ availability and changes soil respiration to aerobic reactions which are performed at faster rates and cause increased emissions of CO₂ (Reddy and DeLaune, 2008e). Additionally, deforestation for creation of plantations lowers the photosynthetic CO₂ uptake by vegetation (Longobardi et al., 2016).

Subsection 2.2.1 and subsection 2.2.2 specify carbon dynamics in wetlands and aquatic systems for organic and inorganic carbon species, respectively. Subsection 2.2.3 and subsection 2.2.4
describe aerobic and anaerobic decomposition processes, respectively, and subsection 2.2.5 illustrates the mechanics of gas exchange fluxes between surface waters and the atmosphere.

![Figure 2.5: Schematic of carbon fluxes from wetland areas. Blue arrows represent exchange in the form of CO₂, purple arrows represent exchange in the form of organic carbon and green arrows represent exchange in the form of CH₄ specifically. Orange-brown areas represent wetlands with anaerobic soil conditions, while the yellow-brown color represents aerobic soil conditions.](image)

2.2.1. Organic carbon species in aquatic systems

The organic carbon in aquatic systems exists in a variety of forms that can be roughly grouped in humic substances, non-humic substances and phenolic substances (Reddy and DeLaune, 2008d). Humic substances are at the end of organic degradation and bear no morphological resemblance to the structures from which they were derived (Adey and Loveland, 2007). Non-humic substances, in contrast, are for example carbohydrates, proteins and fats (Reddy and DeLaune, 2008d). This portion of the organic carbon is considered labile. It includes simple sugars that can enter microbial cells and be rapidly degraded (Stevenson, 1994). Phenolic substances are often included in humic substances (Pind et al., 1994). Common phenolic substances are lignins and tannins. Lignins are present in cell walls of plants and make up the majority of peat soils (Wetzel, 1991). They are build by cross-linked phenolic polymers (Martone et al., 2009). Special enzymes are needed to break phenolic bounds and thereby degrade phenolic molecules (Freeman et al., 2001).

In the following, it will not be distinguished between the different forms of organic carbon other than by molecule size. The total organic carbon (TOC) is the sum of all organic carbon compounds. It can be separated into dissolved organic carbon (DOC) and particulate organic carbon (POC), whereat DOC is defined as the fraction of organic carbon that passes through
2. Wetlands in the global carbon cycle

a filter of 0.45 μm pore size and POC is the remaining fraction with higher diameter. In wetland soils, DOC represents $\lesssim 1\%$ of the TOC (Reddy and DeLaune, 2008c). In wetland surface water and peat-draining rivers, however, the majority of TOC is in the form of DOC (Müller et al., 2015). POC and DOC can transition into each other by processes of decomposition (POC \rightarrow DOC) and adsorption (DOC \rightarrow POC).

2.2.2. Inorganic carbon species in aquatic systems

Like organic carbon, inorganic carbon can be separated into dissolved and particulate fractions. Particulate inorganic carbon (PIC) exists in the form of calcium carbonate (CaCO$_3$; Mitchell et al., 2017). While it is a major component in the global ocean carbon cycle, its concentrations in wetland soils and peat-draining rivers are generally low (Wit et al., 2018). In those systems, inorganic carbon mainly exists in dissolved forms of bicarbonate ions (HCO$_3^-$), carbonate ions (CO$_3^{2-}$) and the two electrically neutral forms of aqueous carbon dioxide (CO$_2$(aq)) and true carbonic acid (H$_2$CO$_3$). The concentrations of H$_2$CO$_3$ are much smaller than the concentrations of CO$_2$(aq) and the two forms are commonly summarized as dissolved CO$_2$ (Zeebe and Wolf-Gladrow, 2001). Thus, the whole concentration of dissolved inorganic carbon (DIC) is given by the sum of the concentrations (indicated by squared brackets) of these species:

$$\text{DIC} = [\text{CO}_2] + [\text{HCO}_3^-] + [\text{CO}_3^{2-}]. \quad (2.1)$$

The three forms constantly change into each other by reacting with water (H$_2$O) and hydrogen ions (H$^+$; Zeebe and Wolf-Gladrow, 2001). The chemical equilibrium equation can be written as

$$\text{CO}_2 + \text{H}_2\text{O} \overset{K_1}{\rightleftharpoons} \text{HCO}_3^- + \text{H}^+ \overset{K_2}{\rightleftharpoons} \text{CO}_3^{2-} + 2\text{H}^+, \quad (2.2)$$

with the equilibrium constants K_1 and K_2 depending on salinity (S), pressure (p) and temperature (T). They can be approximated by

$$K_1 (S, T, p) = \frac{[\text{HCO}_3^-][\text{H}^+]}{[\text{CO}_2]} \quad \text{and} \quad K_2 (S, T, p) = \frac{[\text{CO}_3^{2-}][\text{H}^+]}{[\text{HCO}_3^-]}. \quad (2.3)$$

The ratio of the inorganic carbon species to each other depends on water pH (Figure 2.6). For acidic conditions of pH < 5 the majority of DIC is in the form of CO$_2$. This is of high importance for peat soils and peat-draining rivers, as the pH in those is typically low (Pind et al., 1994; Wit et al., 2015).
2. Wetlands in the global carbon cycle

In order to generate a system of equations water alkalinity is introduced. It is defined as the number of H⁺ molecules that equals the excess of proton acceptors over proton donors (Mattson, 2010). For the total alkalinity (TA), all water ions need to be considered. The carbonate alkalinity (CA) can be derived from the concentrations of HCO⁻³ and CO²⁻³ as

\[CA = [\text{HCO}_3^-] + 2[\text{CO}_3^{2-}] \]

(2.4)

An increase of CO₂ concentrations in water (e.g. due to invasion of anthropogenic CO₂) leads to an increase in DIC but no change in TA or CA, since it does not affect the charge balance (Zeebe and Wolf-Gladrow, 2001). Equation (2.4), in combination with equation (2.1) and the equations (2.3), constitutes a system of four equations with six unknowns ([CO₂], [HCO⁻³], [CO²⁻³], [H⁺], DIC and CA). Therefore, it is sufficient to know two of the parameters in order to calculate the remaining four.

2.2.3. Aerobic decomposition

Aerobic decomposition uses O₂ as electron acceptor (Reddy and DeLaune, 2008e). During aerobic respiration, all carbon atoms within the organic substrate are oxidized to CO₂ (Reddy and DeLaune, 2008e). The breakdown of glucose under aerobic conditions can be written as

\[\text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2 \rightarrow 6 \text{CO}_2 + 6 \text{H}_2\text{O}. \]

However, as mentioned before, specific enzymes are needed for the decomposition of phenolic compounds (Freeman et al., 2001), which make up the majority of carbon compounds in peat soils (Wetzel, 1991). One enzyme that is able to break phenolic bounds is phenol oxidase (Reddy and DeLaune, 2008e). It is the main decomposition impelling enzyme in peat areas (Pind et al., 1994). After the initial breakdown of phenolic substances into smaller molecules
by phenol oxidase, other enzymes help with subsequent decomposition processes (Reddy and DeLaune, 2008e). The activity of phenol oxidase depends on pH and O_2 availability (Freeman et al., 2001; Pind et al., 1994). Thus, in peat soils, which are acidic and O_2-depleted, the enzyme activity is strongly limited, explaining the slow decomposition rate of organic matter in these regions.

The limiting effect of O_2 on phenol oxidase activity is represented by the Michaelis-Menten kinetics (Fang and Moncrieff, 1999; Pereira et al., 2017). This approach assumes that decomposition rates are linearly limited for low O_2 concentrations but that there is no limitation by O_2 once its concentration is sufficient to meet the decomposition demands (Keiluweit et al., 2016). Other than for the O_2 limitation, the form of pH limitation is still subject to discussion. Linear (Sinsabaugh, 2010) as well as exponential (Williams et al., 2000; Kang et al., 2018) correlations have been stated in literature.

2.2.4. Anaerobic decomposition

Anaerobic decomposition uses CO_2 as electron acceptor (Reddy and DeLaune, 2008e), which is energetically disadvantageous. As long as other electron acceptors are available, those will dominate the decomposition (Reddy and DeLaune, 2008e). In order of their energy yield other electron acceptors in wetlands are O_2, nitrate, manganese dioxide, ferric oxide, and sulfate (Reddy and DeLaune, 2008e). Microorganisms that perform methanogenesis can, depending on their substrate utilization, be separated into three groups (Madigan and Martinko, 2006): 1.) CO_2 utilizers (eg. $CO_2: CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$), 2.) formate methyl utilizers (eg. methanol: $4CH_3OH \rightarrow 3CH_4 + CO_2 + 2H_2O$) and 3.) acetate utilizers (eg. acetate: $CH_3COOH \rightarrow CH_4 + CO_2$). The breakdown of glucose under anaerobic conditions can be written as

$$C_6H_{12}O_6 + 3H_2O \rightarrow 3CH_4 + 3HCO_3^- + 3H^+.$$

Methanogenesis is not only less effective in energy gain but decomposition rates are also much slower than for aerobic decomposition (Reddy and DeLaune, 2008e) and anaerobic microbial groups are largely incapable of utilizing substrates such as lignin and humic substances that require initial oxygenation by oxygenases (Reddy and DeLaune, 2008e). This is why anaerobic peat soils and also freshwater DOC to a large fraction consist of phenolic compounds (Wetzel, 1991). Many phenolic compounds are also known to inhibit the activity of enzymes (Reddy and DeLaune, 2008c).
2. Wetlands in the global carbon cycle

2.2.5. Atmospheric gas exchange with surface waters

The gas exchange between water bodies and the atmosphere is regulated by processes of turbulence and molecular diffusion (Jähne et al., 1987). It can be described by the boundary layer theory (Bade, 2009). This theory states that the water system as well as the atmosphere are each well mixed due to turbulence. As turbulence declines towards the boundary between water and atmosphere, a boundary layer in which no turbulence exist is created between the two media. The upper surface of the water boundary layer, according to Henry’s Law, is in equilibrium with the overlying air (Äschbach-Herting, 2014). This creates a concentration gradient between the water surface and the gas concentrations within the deeper water layer. According to the second law of thermodynamics, this concentration gradient induces a flux towards the system with lower gas concentration that according to Fick’s law of diffusion is proportional to the concentration gradient. Since Henry’s law states that the concentration of a gas in water is proportional to its partial pressure, the atmospheric flux (F_x) of a gas x can be derived from the difference in the partial pressure within the water (p_x) and the atmosphere (p_{air}^x) according to

$$F_x = k_x K_0^x \left(p_x - p_{\text{air}}^x \right).$$

(2.5)

K_0^x is the gas specific and temperature-dependent Henry coefficient and k_x is the exchange coefficient of gas x. The exchange coefficient is a measure for the exchange velocity of gas between the water and the atmosphere. It mainly depends on water turbulence and wind speed (Andersson et al., 2016).
3. Methods

Data for the first two research topics of this study (chapter 4 & chapter 5) were measured in a number of research campaigns at Southeast Asian rivers. Those campaigns and the used measurement principles are illustrated in section 3.1, while section 3.2 describes how additional river parameters were determined. Section 3.3 focuses on the atmospheric chemistry and transport model and section 3.4 introduces the satellite data products that were used to determine modelled and measured CH$_4$ concentrations for the third research topic of this study (chapter 6).

3.1. River campaigns and measurements

River data for this study were derived from a total of 16 campaigns between 2004 and 2017 in Sumatra (Indonesia) and Sarawak (Malaysia). The individual campaigns and the included rivers are listed in the appendix in Table A.3. For the Indonesian rivers, ten measurement campaigns between 2004 and 2013 were conducted. Published data from Baum et al. (2007) were used for the Mandau, Tapung Kanan and Tapung Kiri rivers. Data from Wit et al. (2015) were used for the Siak, Indragiri, Batang Hari and Musi rivers and data from Rixen et al. (2016) were used for the Rokan and Kampar rivers.

For the Malaysian rivers, measurements were performed in six campaigns between 2014 and 2017. Data published by Müller-Dum et al. (2018) and by Müller et al. (2015) were used for the Rajang river and for the Maludam campaigns in 2014 and 2015, respectively. Additional campaigns for this study were conducted in March 2015 at the Simunjan and Sebuyau rivers as well as in January 2016, March 2017 and July 2017 at the Simunjan, Sebuyau and Maludam rivers. The measurements in March 2017 were performed as part of this study. Methods used in the individual campaigns are described in the respective publications. Measurement principles and equipment utilized to derive the non-published data for the additional campaigns are explained in the following parts of this section. Subsection 3.1.1 and subsection 3.1.2 focus on the measurement of dissolved CO$_2$ concentrations and atmospheric CO$_2$ fluxes, respectively. Subsection 3.1.3 describes the measurement of DOC concentrations, subsection 3.1.4 illustrates how concentrations of POC and PIC were measured and subsection 3.1.5 explains the measurements of O$_2$ concentrations and water pH.
3. Methods

Figure 3.1: The two pictures show the main measurement equipment that was used at the Malaysian river campaigns. Pictures were taken during the March 2017 campaign. White numbers mark the different devices, including the headspace canister (1), the DOC sample equipment (2), the CO₂ analyzer setup (3), the pressure sensor (4), the laptop for data logging (5) and the WTW logger with pH and O₂ sensors (6).

3.1.1. Dissolved CO₂ measurements

The partial pressure of CO₂ ($p_{\text{CO₂}}$) was measured by use of a LI-COR LI-820 CO₂ analyser (Figure 3.1, device (3)), which is an absolute non-dispersive infra-red gas analyser (NDIR; LI-COR Inc, 2011). Its measurement principle is based on absorption of infrared radiation by the measured gas. The intensity of two different wavelengths is measured after passing a certain distance of an air filled path. One wavelength ($3.95 \, \mu m$) is CO₂ inactive and functions as a reference signal, while the other wavelength ($4.26 \, \mu m$) shows the CO₂ absorption (LI-COR Inc, 2011). From the two signals, the mole fraction of CO₂ in the air is determined. The range of the measured CO₂ can be defined manually up to 20,000 ppm. CO₂ concentrations were derived based on the measured $p_{\text{CO₂}}$ as well as temperature-dependent Henry coefficients calculated according to Weiss (1974).

The LI-COR instrument measures gas concentrations in air. Accordingly, a device to create a thermodynamic equilibrium between water and air is needed to measure the dissolved CO₂ in water samples. For this, a headspace technique based on an air stream bubbling through water was used (Figure 3.2). A water sample was filled into a container, leaving a small air filled headspace. Through a closed circuit of tubes, air was pumped out of that headspace, through the gas analyser and back into the water canister, where it bubbled through the water back up into the headspace volume. In front of the analyser, particle and a moisture filters were installed to avoid contamination. For quicker equilibration time, a diffuser stone was attached to the gas outflow nozzle in the water. Thus, the air ascended in smaller bubbles that increase the gas-liquid interface area.
3. Methods

Figure 3.2: Schematic diagram of setup for dissolved CO2 measurements using the headspace technique. Gas is pumped through a tube circuit and bubbled through the water sample to achieve an equilibrium state. Before entering the LI-COR analyzer, it is filtered for particles and moisture.

This measurement setup requires a discrete water sample that is manipulated during the measurement due to the removal of CO2. This potentially shifts DIC towards higher carbonate concentrations and thereby induces a change in the sample pH (Figure 2.6). In order to minimize such manipulation, measurements were performed at a high water to air ratio. Fortunately, at the low pH in peat-draining rivers small changes in pH do not significantly impact the CO2 fraction of DIC. The short equilibration time of the setup (≈ 5 min) additionally prevented significant temperature changes during measurements.

In 2015 and 2016, measurements were performed with a 10 L container and 0.5 L headspace volume. In 2016, due to the analyser setup, only CO2 concentrations < 10,000 ppm could be measured. In the Simunjan river, the concentrations exceeded this limit. In March 2017, measurements were performed with a 15.6 L canister and 1 L headspace volume (Figure 3.1, device (1)) and in July 2017, a 10 L glass flask with 0.5 L headspace volume was used.

3.1.2. Water-atmosphere flux measurements

A floating chamber technique was used to measure CO2 exchange fluxes between rivers and the atmosphere. This technique is based on a closed system that is positioned on a water surface. To minimize the creation of artificial turbulence by the chamber it is allowed to drift freely. The chamber protects gas captured inside from interacting with the outside atmosphere. Therefore, the CO2 change in the chamber is solely driven by gas exchange through the water surface. The flux between the water and the gas in the chamber is strong for high pCO2 gradients between water and chamber air (equation (2.5)). The initial CO2 increase in the chamber is nearly linear and then decreases with time until an equilibrium is reached. The initial linear increase can be used to calculate the atmospheric CO2 flux.
3. Methods

according to

\[F = \frac{\Delta[CO_2] \cdot V \cdot p}{\Delta t \cdot A \cdot R \cdot T} \] \hspace{1cm} (3.1)

where \(\Delta[CO_2] \) is the change of CO\(_2\) concentration measured in the time \(\Delta t \), \(V \) is the chamber volume, \(p \) is the pressure in the chamber, \(A \) is the exchange area, \(R \) is the universal gas constant and \(T \) is the chamber temperature (Beaulieu et al., 2012). Several measurements with a duration of \(\approx 5 \) min each were conducted at each river. Chamber pressure and temperature during the initial linear CO\(_2\) increase were approximated by atmospheric pressure and temperature.

Advantages of the floating chamber technique are the simple equipment and flux calculations. A disadvantage is that the chamber protects the water surface from disturbances like wind and rain, which may have a strong influence on the exchange. Therefore, this technique is well suited for measurements in rivers or small lakes, where river-air exchange is mainly caused by turbulence within the water.

Measurements in 2015 and in 2017 were performed using a floating chamber with a volume of \(3 \) L and a surface area of \(0.3 \) m\(^2\). The measurements in 2014 were performed using a bigger chamber of \(8.7 \) L with a surface area of \(0.5 \) m\(^2\). The CO\(_2\) was measured with the LI-COR analyser described in subsection 3.1.1.

3.1.3. DOC measurements

For DOC measurements, \(30 \) mL water samples were taken. In order to prevent conversion between DOC, POC and DIC, the samples were filtered through a \(0.45 \mu m \) syringe filter and acidified using 21\% phosphoric acid to achieve a \(pH < 2 \). After acidification, the samples were frozen.

The general process of the DOC analysis can be split into three parts. 1) the removal of CO\(_2\) and thus DIC from the sample, 2) the oxidation of DOC to CO\(_2\) and 3) the detection of CO\(_2\). In this study, a Shimadzu TOC-VCSH analyser was used, combined with a Shimadzu ASI-V automatic sampler (Shimadzu Europa GmbH, 2015). These instruments were provided by the Centre for Tropical Marine Research (ZMT).

After preservation, the samples have a \(pH < 2 \). Therefore, the total DIC is in the form of CO\(_2\) (Figure 2.6). The first part of the analytic procedure is the removal of this CO\(_2\), to have solely organic carbon in the sample. This is achieved by purging the sample with an inert gas (Cauwet, 1999). This procedure might also cause the removal of volatile organic carbon.
from the sample, but since this is usually a very small fraction of the TOC, it is neglected. After removal of the inorganic carbon, the organic carbon is oxidized to CO$_2$. This is achieved through high temperature combustion (Cauwet, 1999; Shimadzu Europa GmbH, 2015). Small units of the DIC free sample are taken and combusted at a temperature of $\approx 720^\circ$C in a stream of O$_2$. A platinum catalyst is used to assure oxidation of all DOC (Shimadzu Europa GmbH, 2015). After oxidation, the created CO$_2$ is measured using a NDIR gas analyser, which works similar to the LI-COR analyser described in subsection 3.1.1. Due to the analyser’s high sensitivity, samples of 20 to 50 μL are sufficient for one measurement. For each water sample, the oxidation and CO$_2$ measurements were repeated five times to reduce the random error. Additionally, samples of Hansell II standardized water samples were measured after each ten samples of river water, to check the analyser’s calibration. Those samples are of 41 to 44 μmol L$^{-1}$ and were provided by the University of Miami.

3.1.4. Particulate carbon measurements

During the January 2016, March 2017 and July 2017 campaigns, concentrations of POC and PIC were measured. For this, water samples were filtered through pre-weighted and pre-combusted glass fiber filters (0.7 μm) to sample particulate material within the water volume. To determine the particulate carbon (organic and inorganic) within these samples, they were catalytically combusted at 1,050 $^\circ$C and the combustion products were measured by thermal conductivity using an Euro EA3000 Elemental Analyser. For POC measurements, the same procedure was repeated after the addition of 1 molar hydrochloric acid that removes the inorganic carbon from the sample. Finally, PIC was determined from the difference between the total particulate carbon and the measured POC concentration.

3.1.5. pH and O$_2$ measurements

Dissolved O$_2$ concentrations and river pH were measured using digital IDS sensors and a Multi-3420 data logger (Figure 3.1, device 4). The IDS DO sensor measured the O$_2$ content in water that can be displayed as concentration in mg L$^{-1}$, saturation in % or partial pressure in mbar. It can measure concentrations up to 20 mg L$^{-1}$ (GeoTech, 2015). The sensor includes an integrated temperature sensor that displays the temperature in $^\circ$C. After the sensor was used, it was rinsed with deionized water and stored in a protective casing. The IDS pH electrode measures in the range from 0 to 14. Additionally, it can be switched to show the sensor voltage in mV and like the DO sensor it has an integrated temperature sensor. After use, it was rinsed with deionized water and stored in a protection case, filled
with a solution of $3 \, \text{mol} \, \text{L}^{-1}$ potassium chlorate. The sensor was calibrated before the measurements, using a Merck 1 buffer set (GeoTech, 2015).

3.2. Catchment properties and additional parameters

This section describes additional river catchment properties as well as carbon parameters that were compiled in order to further investigate carbon dynamics in peat-draining rivers. Subsection 3.2.1 describes how additional geographical and hydrological properties of the river catchments were derived, subsection 3.2.2 explains how exchange coefficients were calculated from measured CO$_2$ fluxes and subsection 3.2.3 shows how carbon yields from peat-draining rivers were calculated.

3.2.1. Determination of catchment properties

River catchment sizes were derived from Hydro-SHEDS (Lehner et al., 2006) at 15′′ resolution. Sub-basins belonging to the catchments were identified using the HydroSHEDS 15′′ flow directions data set and added to the main basins. Stream surface areas were determined using stream widths from the Global River Width from Landsat (GRWL) database (Allen and Pavelsky, 2018). For the Maludam, Sebuyau and Simunjan rivers, stream width was not available in GRWL, so it was calculated using the hydraulic equation by Raymond et al. (2012). River coverage was determined from the stream surface area divided by catchment size.

Peat maps were gathered from Global Forest Watch (2019) for Indonesia and Malaysia. The Indonesian peatland map was published by the Indonesia Ministry of Agriculture (2012), while the Malaysian peat map was made available by Wetlands International (2009) and is based on a national inventory by the Land and Survey Department of Sarawak (1968). Both maps include peatlands in different conditions, from undisturbed peat swamp forest to disturbed peat under plantations. Peat coverage was determined from the areal extent of peatlands in the catchments divided by catchment size.

Air temperature and precipitation for the individual river catchments were derived from the Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) daily data product (Yatagai et al., 2020). 10 year means (2006 to 2015) were calculated for each catchment and uncertainties are given as standard deviation. River discharge was calculated from the difference between precipitation and evapotranspiration, multiplied by catchment area. The evapotranspiration was assumed to be 37.9% for moder-
ately to severely disturbed catchments and 67.7 % for undisturbed catchments (Moore et al., 2013). The value for undisturbed catchments was only used for the Maludam river. Discharge uncertainties were derived by Gaussian error propagation, considering uncertainties of catchment area, precipitation and evapotranspiration. An evapotranspiration uncertainty of 15 % is assumed, consistent with calculations by Rixen et al. (2016).

3.2.2. Atmospheric gas exchange coefficients

CO_2 exchange coefficients (k_{CO_2}) were determined from measured atmospheric CO_2 fluxes based on equation (2.5). Uncertainties were derived through Gaussian error propagation based on uncertainties in measured fluxes and CO_2 concentrations.

To compare coefficients derived for different gas species and at different water temperatures, exchange coefficients are usually converted to a standardized Schmidt number of 600. The Schmidt number is a constant that depends on water viscosity and gas diffusivity and it can be approximated for specific gas species based on water temperature and salinity. Schmidt numbers for CO_2 (Sc_{CO_2}) were calculated according to Wanninkhof (1992) and standardized exchange coefficients (k_{600}) were derived according to

$$k_{600} = \left(\frac{600}{\text{Sc}_{\text{CO}_2}(T)} \right)^{-n} \cdot k_{\text{CO}_2}.$$ \hspace{1cm} (3.2)

An exponent of $n = 2/3$ (valid for smooth surfaces and low wind speeds; Zappa et al., 2007) was used for the small Malaysian rivers (Maludam, Sebuyau & Simunjan) and an exponent of $n = 1/2$ (valid for rough surfaces; Zappa et al., 2007) for the bigger rivers. Uncertainties of k_{600} are the relative uncertainties of k_{CO_2}.

3.2.3. River carbon yields

River carbon yields describe the carbon export by rivers per catchment area of the rivers. The oceanic DOC and DIC yields of the investigated rivers in this study were calculated based on measured or modeled DOC and DIC concentrations as well as calculated river discharges (Q) and catchment areas (A) according to

$$\text{DOC yield} = \frac{\text{DOC} \cdot Q}{A} \quad \& \quad \text{DIC yield} = \frac{\text{DIC} \cdot Q}{A}. \hspace{1cm} (3.3)$$

Uncertainties were derived through Gaussian error propagation, whereas the standard deviation in DOC or DIC concentration as well as uncertainties in discharge and catchment area...
were considered. Total yields from Southeast Asian rivers were derived by weighing yields from individual rivers with river discharges.

Atmospheric CO\textsubscript{2} yields from the investigated rivers were derived from measured river pCO\textsubscript{2}, water temperature (T), exchange coefficients (k_{CO_2}) and the catchment’s river coverage ($p\%$) according to

$$\text{CO}_2 \text{ yield} = k_{CO_2}(T) \cdot K_{CO_2}(T) \cdot (pCO_2 - pCO_2^a) \cdot p\%.$$ (3.4)

For the atmospheric pCO\textsubscript{2} (pCO_2^a), monthly data from NOAA surface flask measurements at Bukit Kototabang were used (Dlugokencky and Tans, 2021). The temperature-dependent Henry coefficient ($K_{CO_2}(T)$) was calculated according to Weiss (1974). Uncertainties in the CO\textsubscript{2} yield were derived through Gaussian error propagation, whereat the standard deviation of the measured pCO\textsubscript{2} as well as uncertainties in the derived exchange coefficients and the catchment’s river coverage were considered. Total CO\textsubscript{2} yields from Southeast Asian rivers were derived by weighing yields from individual rivers with river catchment areas.

3.3. Global atmospheric chemistry and transport model

The atmospheric chemistry and transport model used in this study is the TM5-MP. It is a global Eulerian model that simulates the transport and chemistry of atmospheric species in the troposphere (Williams et al., 2017). The model runs offline and can be used to calculate atmospheric gas concentrations from known gas emission data (forward modelling) or inversely to calculate gas emissions from known atmospheric gas concentrations (inverse modelling).

In this study the model was run forward to simulate atmospheric CH\textsubscript{4} concentrations based on different wetland CH\textsubscript{4} emission datasets. Subsection 3.3.1 explains the model principle and subsection 3.3.2 describes the CH\textsubscript{4} emission datasets used for the model runs presented in this study.

3.3.1. TM5-MP chemistry and transport model

The full chemistry version of the TM5-MP (massive parallel) model (Williams et al., 2017) was used to derive atmospheric CH\textsubscript{4} concentrations for this study. A model resolution of $3^\circ \times 2^\circ$ was used, whereby the model combines longitudinal grid cells in the polar regions ($> 80^\circ$N/S). The atmosphere was separated into 25 vertical layers with the upper boundary of the model set at 0.1 Pa (Huijnen et al., 2010). Meteorological fields for the model were taken from the ECMWF ERA-Interim reanalysis (Dee et al., 2011). The model meteorology is
updated every 3 h, with interpolation of fields for the intermediate time periods (Williams et al., 2017). Performed steps within the model are calculation of horizontal and vertical advection, vertical diffusion, atmospheric chemistry and gas sources and sinks (Huijnen et al., 2010).

The gas-phase chemistry in the model is performed based on the cb05 chemical mechanism as described by Huijnen et al. (2010). While for CH$_4$ the only atmospheric reaction is oxidation by OH according to OH + CH$_4$ → CH$_3$ + H$_2$O, the atmospheric chemistry of OH is more complex. The OH chemistry implemented in the cb05 mechanism has first been validated by Huijnen et al. (2010) and again by van Noije et al. (2014) and Myriokefalitakis et al. (2020). As the TM5-MP includes no explicit stratospheric chemistry, a stratospheric nudging term is applied to the top model layer in order to ensure realistic stratosphere–troposphere gas exchange (Williams et al., 2017). Additionally a surface nudging term is applied to balance missing CH$_4$ sources.

3.3.2. CH$_4$ emission datasets

The model includes CH$_4$ emissions from natural and anthropogenic sources. Natural sources include emissions from wetlands, wildfires, termites, oceans and wild animals. The main anthropogenic sources include emissions from energy and agriculture as well as waste treatment and disposal. All included emission data sources are listed in Table 3.1. CH$_4$ sinks are included in the form of soil consumption (≈ 27 TgCH$_4$ yr$^{-1}$; Spahni et al., 2011), the chemical sink through reaction with OH (≈ 569 TgCH$_4$ yr$^{-1}$) and stratospheric CH$_4$ loss (≈ 55 TgCH$_4$ yr$^{-1}$).

<table>
<thead>
<tr>
<th>emission sector</th>
<th>global emissions</th>
<th>data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>wetlands (n)</td>
<td>149 TgCH$_4$ yr$^{-1}$</td>
<td>Saunois et al. (2020)</td>
</tr>
<tr>
<td>termites (n)</td>
<td>19 TgCH$_4$ yr$^{-1}$</td>
<td>Sanderson (1996)</td>
</tr>
<tr>
<td>ocean (n)</td>
<td>17 TgCH$_4$ yr$^{-1}$</td>
<td>Lambert and Schmidt (1993)</td>
</tr>
<tr>
<td>wild animals (n)</td>
<td>5 TgCH$_4$ yr$^{-1}$</td>
<td>Houweling et al. (1999)</td>
</tr>
<tr>
<td>biomass burning (n, a)</td>
<td>15 TgCH$_4$ yr$^{-1}$</td>
<td>CMIP6; Eyring et al. (2016)</td>
</tr>
<tr>
<td>energy (a)</td>
<td>151 TgCH$_4$ yr$^{-1}$</td>
<td>CMIP6; Eyring et al. (2016)</td>
</tr>
<tr>
<td>agriculture (a)</td>
<td>137 TgCH$_4$ yr$^{-1}$</td>
<td>CMIP6; Eyring et al. (2016)</td>
</tr>
<tr>
<td>waste (a)</td>
<td>65 TgCH$_4$ yr$^{-1}$</td>
<td>CMIP6; Eyring et al. (2016)</td>
</tr>
<tr>
<td>other (a)</td>
<td>14 TgCH$_4$ yr$^{-1}$</td>
<td>CMIP6; Eyring et al. (2016)</td>
</tr>
</tbody>
</table>

Table 3.1: List of CH$_4$ emission sectors and data sources. Natural and anthropogenic emissions are indicated by (n) and (a), respectively. Biomass burning includes emissions from natural and anthropogenic sources.

The main focus in the modelling part of this study is on CH$_4$ emissions from tropical wetlands. Model runs based on different wetland CH$_4$ emission datasets were performed. These datasets
3. Methods

were derived from thirteen biogeochemical soil and vegetation models (Table 3.2). They were collected to derive a bottom-up estimate of wetland CH\(_4\) emissions for the global CH\(_4\) budget published by the Global Carbon Project (GCP; Saunois et al., 2020) and were kindly provided for this study.

<table>
<thead>
<tr>
<th>model</th>
<th>institution</th>
<th>prognostic</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS-CTEM</td>
<td>Environment and Climate Change Canada</td>
<td>yes</td>
<td>Melton and Arora (2016); Arora et al. (2018)</td>
</tr>
<tr>
<td>DLEM</td>
<td>Auburn University</td>
<td>no</td>
<td>Tian et al. (2010, 2015)</td>
</tr>
<tr>
<td>ELM</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>yes</td>
<td>Riley et al. (2011)</td>
</tr>
<tr>
<td>JSBACH</td>
<td>MPI</td>
<td>no</td>
<td>Kleinen et al. (2020)</td>
</tr>
<tr>
<td>JULES</td>
<td>UKMO</td>
<td>yes</td>
<td>Hayman et al. (2014)</td>
</tr>
<tr>
<td>LPJ-GUESS</td>
<td>Lund University</td>
<td>no</td>
<td>McGuire et al. (2012)</td>
</tr>
<tr>
<td>LPJ-MPI</td>
<td>MPI</td>
<td>no</td>
<td>Kleinen et al. (2012)</td>
</tr>
<tr>
<td>LPJ-WSL</td>
<td>NASA GSFC</td>
<td>yes</td>
<td>Zhang et al. (2016)</td>
</tr>
<tr>
<td>LPX-Bern</td>
<td>University of Bern</td>
<td>yes</td>
<td>Spahni et al. (2011)</td>
</tr>
<tr>
<td>ORCHIDEE</td>
<td>LSCE</td>
<td>yes</td>
<td>Ringeval et al. (2011)</td>
</tr>
<tr>
<td>TEM-MDM</td>
<td>Purdue University</td>
<td>no</td>
<td>Zhuang et al. (2004)</td>
</tr>
<tr>
<td>TRIPLEX_GHG</td>
<td>UQAM</td>
<td>no</td>
<td>Zhu et al. (2014, 2015)</td>
</tr>
<tr>
<td>VISIT</td>
<td>NIES</td>
<td>yes</td>
<td>Ito and Inatomi (2012)</td>
</tr>
</tbody>
</table>

Table 3.2: List of models and institutions that provided the wetland emission datasets used in this study. Models that provided a prognostic dataset in addition to the diagnostic one are indicated under the prognostic column.

Each soil and vegetation model provided one emission dataset based on model runs with pre-set wetland area and dynamics datasets based on WAD2M (Wetland Area Dynamics for Methane Modelling; Zhang et al., 2021). Those datasets are from now on called diagnostic datasets. Nine of the thirteen models additionally provided prognostic datasets that were derived from model runs using individual calculations of wetland areas. The models that provided these prognostic datasets are indicated in Table 3.2. All 22 datasets (13 diagnostic & 9 prognostic) include monthly global 1° × 1° gridded wetland CH\(_4\) emission data spanning the time from 2000 to 2017.

3.4. Satellite CH\(_4\) data

The satellite CH\(_4\) data product used in this study is the merged L2 product retrieved from the SCIAMACHY and GOSAT satellites using the Ensemble Median Algorithm (EMMA; Buchwitz et al., 2018; Reuter et al., 2013). EMMA combines individual soundings of seven different algorithms for SCIAMACHY and GOSAT retrievals into one data set (Reuter et al., 2013).
Short descriptions of the SCIAMACHY and GOSAT instruments are given in subsection 3.4.1 and subsection 3.4.2, respectively.

For both instruments, retrievals are based on nadir observations of reflected solar radiation in near-infrared O$_2$ and CH$_4$ absorption bands (Buchwitz et al., 2018). Radiative transfer and instrument models are then used to simulate the satellite’s measurement of the atmosphere. An inversion method is used to find the atmospheric state that is in best agreement with the measurements and forward models (Reuter et al., 2013). The different retrieval algorithms included in the EMMA product are the BESD v01.00.01 and WFMD v2.2bcv7b for SCIAMACHY and the ACOS v2.9, NIES v02.xx, PPDF-DOAS, RemoteC v1.0 and UOL-FP v3.0 for GOSAT. Those algorithms are based on different absorption bands, use different inversion methods, and are based on different physical assumptions on the radiative transfer in scattering atmospheres (Reuter et al., 2013). The final dataset includes observations of the methane column-averaged dry-air mole fraction (XCH$_4$) for the time of 2013-2017.

3.4.1. SCIAMACHY satellite

The SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) instrument was located on the ESA Envisat satellite (Burrows et al., 1995; Bovensmann et al., 1999). It collected observations from August 2002 to April 2012. The main objective of its mission was to improve the knowledge of global atmospheric change and related issues of importance to the chemistry and physics of our atmosphere (Bovensmann et al., 1999). SCIAMACHY performed measurements in nadir, limb, and solar/lunar occultation geometries (Gottwald et al., 2006c). The satellite was on a polar, sun-synchronous orbit with an equatorial crossing time of 10 a.m. and an orbital period of 100.6 minutes (Gottwald et al., 2006b). It performed roughly 14 orbit cycles per day with a repeat cycle of about 35 days. The average satellite altitude was 799.8 km (Gottwald et al., 2006b). In nadir mode, SCIAMACHY was scanning the atmosphere in flight direction with a swath width of up to 1,000 km and the retrieved data have a spatial resolution of roughly 60×30 km (Gottwald et al., 2006a).

3.4.2. GOSAT satellite

The GOSAT (Greenhouse gases Observing SATellite) is a satellite that hosts the TANSO-FTS (Thermal And Near infrared Sensor for carbon Observation - Fourier Transform Spectrometer) instrument (Yokota, 2004). This instrument has been collecting atmospheric CH$_4$ observations since April 2009. The GOSAT mission objective is to contribute to environmental administration by estimating greenhouse gas sources and sinks on a sub-continental scale.
3. Methods

(Kasuya et al., 2009).

GOSAT performs nadir measurements from a sun-synchronous orbit with an equatorial crossing time of approximately 1 p.m. (Yokota, 2004). The satellite’s altitude is approximately 666 km and it flies roughly 15 orbits a day with a repeat cycle of three days (Yoshida et al., 2008). GOSAT is scanning the atmosphere with a swath width of up to 790 km and the retrieved data represent circles of 10.5 km diameter.
4. Limitation of CO\textsubscript{2} production in peat-draining rivers

This chapter investigates the carbon dynamics in peat-draining rivers with the focus on dependencies of in-river decomposition on O\textsubscript{2} and pH. Parts of this chapter have been published in Klemme et al. (in review, 2021).

Section 4.1 gives an introduction to the investigated topic and study objective and section 4.2 describes the study area. Section 4.3 discusses the dependencies of river CO\textsubscript{2} and other measured parameters on peat coverage and DOC concentrations. Section 4.4 investigates parameters that limit the DOC decomposition in peat-draining rivers and section 4.5 illustrates a mechanism that prohibits this natural limitation in decomposition for specific campaigns on the Simunjan river. Finally, section 4.6 summarizes the results from this chapter.

4.1. Background and objective

Rivers and streams emit high amounts of CO\textsubscript{2} to the atmosphere (Cole et al., 2007), but estimates of these emissions vary strongly (0.6 – 1.8 PgC yr-1, Aufdenkampe et al., 2011; Raymond et al., 2013). Studies agree that more than three-quarters of global river CO\textsubscript{2} emissions occur in the tropics (Raymond et al., 2013; Lauerwald et al., 2015). Despite scarcity in measurements from Southeast Asia, those regions are assumed to be emission hotspots due to the presence and degradation of carbon-rich peat soils (Wit et al., 2015).

Concentrations of DOC in peat-draining rivers are high and increase with increasing peat coverage of the river catchments (Wit et al., 2015). Riverine CO\textsubscript{2} is fed by the decomposition of this organic carbon (Rixen et al., 2016). However, despite DOC concentrations that can be more than four times higher than those in temperate regions (Butman and Raymond, 2011; Müller et al., 2015), measured CO\textsubscript{2} fluxes from tropical peat-draining rivers (25.2 gC m-2 yr-1) hardly exceed those from temperate rivers (18.5 gC m-2 yr-1, Wit et al., 2015; Butman and Raymond, 2011).

Possible reasons suggested for these moderate emissions are short residence times of peat derived DOC in rivers due to the location of peatlands near the coast (Müller et al., 2015) as well as the recalcitrant nature of DOC (Müller et al., 2016) and the lack of O\textsubscript{2} (Wit et al., 2015) which both lower the rate of DOC decomposition. Additionally, Borges et al. (2015) suggested a limitation of bacterial production and the resulting DOC decomposition in African peat-draining rivers as a consequence of low pH.

In the following, data from ten Southeast Asian rivers with varying peat coverage will be
analysed in order to explain the observed moderate CO\textsubscript{2} emissions. The limiting impact of low pH and O\textsubscript{2} on decomposition rates within the rivers will be quantified and the impact of carbonates on those limitation processes will be discussed.

4.2. Study area

Southeast Asian peatlands store 42 Pg soil carbon across an area of 271,000 km2 (Hooijer et al., 2010). More than 97 % of these peat soils are located in lowlands (Hooijer et al., 2006). The development of peatlands in Southeast Asia is favored by its tropical climate with high precipitation rates of about 2,700 mm yr-1 (Yatagai et al., 2020). Southeast Asian rivers mostly originate in mountain regions and cut through coastal peatlands on their way to the ocean (Figure 4.1). The measured data included in this study were obtained in river parts that flow through peat soils to capture the influence of peatlands on the carbon dynamics in the rivers.

The collective data were derived from four rivers on Borneo (Sarawak, Malaysia) and six rivers on Sumatra (Indonesia). The investigated rivers on Borneo are the Rajang, Simunjan, Sebuyau and Maludam and the rivers surveyed on Sumatra are the Rokan, Kampar, Indragiri, Batang Hari, Musi and Siak (Figure 4.1). Additionally, data from the Siak’s tributaries Tapung
4. Limitation of CO$_2$ production in peat-draining rivers

Kiri, Tapung Kanan and Mandau were included.

Catchment properties of all rivers are listed in the appendix in Table A.1. Figure 4.2 shows exemplary pictures taken on the Maludam, Simunjan and Rajang rivers. It gives an idea on the different river sizes. The river discharge varies strongly between $3 \text{ m}^3 \text{s}^{-1}$ for the Maludam and approximately $3,500 \text{ m}^3 \text{s}^{-1}$ for the Rajang. It correlates with river catchment sizes that range from areas of 90 km^2 for the Maludam catchment to almost $60,000 \text{ km}^2$ for the Rajang and Musi catchments. Peat coverage ranges from 4% in the Musi catchment to 91% in the Maludam catchment, whereby the bigger rivers that originate in the uplands generally exhibit lower peat coverage than smaller coastal rivers. Fractions of river surface area within the catchments range between 0.39% in the Maludam catchment and 0.94% in the Sebuyau catchment and show no correlation with catchment sizes.

<table>
<thead>
<tr>
<th>Maludam river</th>
<th>Simunjan river</th>
<th>Rajang river</th>
</tr>
</thead>
</table>

Figure 4.2: Pictures taken on the Maludam, Simunjan and Rajang rivers. The picture on the Maludam river was taken close to the river estuary in the Maludam city. The picture of the Simunjan river was taken within the main river arm and the picture on the Rajang was taken far upstream close to the city of Belaga.

4.3. Interdependence of river carbon parameters

During the river campaigns, DOC, CO$_2$ and O$_2$ concentrations as well as the pH in the river water were measured. An overview and discussion of averaged data per campaign is provided in the appendix A.2.2. This section focuses on averaged river parameters. Subsection 4.3.1 studies the parameter’s dependences on peat coverage and subsection 4.3.2 looks into the dependencies of CO$_2$ and O$_2$ on DOC and river pH. All averaged river parameters are listed in the appendix in Table A.1 and Table A.2.

4.3.1. Correlation of river DOC, pH, CO$_2$ and O$_2$ with peat coverage

Data correlations with the peat coverage of river catchments yield a linear increase of the river DOC concentration with peat coverage as well as a negative linear correlation between river pH and peat coverage (Figure 4.3). This agrees with results by Wit et al. (2015) and
4. Limitation of CO₂ production in peat-draining rivers

confirms the importance of peat soils as a major DOC source to peat-draining rivers, whereas the decomposition of DOC and leaching of organic acids from peat areas lower the pH.

The river CO₂ concentration shows a strong increase with peat coverage for peat coverage < 30% (Figure 4.3). This can be explained by increased DOC decomposition due to higher DOC concentrations and agrees with the results of Wit et al. (2015). Yet, despite further increase in DOC concentrations, CO₂ concentrations in rivers with peat coverage > 30% level off, resulting in a fairly constant CO₂ for peat coverage > 50% (Figure 4.3). The river O₂ concentration shows an opposite behaviour to the river CO₂. O₂ concentrations initially decrease with increasing peat coverage and show a decline in the regression rate for higher peat coverage, resulting in a minimum concentration of approximately 65 μmol L⁻¹ (Figure 4.3).

Figure 4.3: Dependency of measured river DOC, CO₂, pH and O₂ on peat coverage. Each data point represents one river. Ordinary least squares approximations were used to calculate linear correlations with DOC and pH and exponential correlations with CO₂ and O₂. Data that were included in a previous study by Wit et al. (2015) are indicated by squares. For the Simunjan river, the January 2016 and March 2017 campaigns were excluded from this correlation as is further discussed in section 4.5.
4. Limitation of CO\textsubscript{2} production in peat-draining rivers

After an initial linear increase of river CO\textsubscript{2} with peat coverage, the CO\textsubscript{2} levels off to fairly constant concentrations for peat coverages > 50%.

These correlations illustrate that despite the increase of DOC with peat coverage, CO\textsubscript{2} is levelling off. This behaviour causes the moderate CO\textsubscript{2} emissions measured at rivers of high peat coverage. From the measured CO\textsubscript{2} concentrations and exchange coefficients, CO\textsubscript{2} emissions from the investigated river can be derived. A comparison of those CO\textsubscript{2} emissions to the carbon export into the ocean as well as river CO\textsubscript{2} emission estimates for Malaysia, Indonesia and Southeast Asia are presented in the appendix A.2.3.

4.3.2. Correlation of river CO\textsubscript{2} and O\textsubscript{2} with DOC and pH

River DOC and pH are both linearly correlated with river peat coverage (Figure 4.3). This indicates that the general correlation between these parameters and CO\textsubscript{2} as well as O\textsubscript{2} is similar to the correlation of peat coverage with CO\textsubscript{2} and O\textsubscript{2}. Accordingly, CO\textsubscript{2} and O\textsubscript{2} concentrations level off for high DOC concentrations and for low water pH (Figure 4.4).

Decomposition of DOC is the biggest CO\textsubscript{2} source to rivers and likely the main cause for the observed correlation with CO\textsubscript{2}. The river pH also impacts CO\textsubscript{2} concentrations through its impact the carbonate system. Yet, its impact on the CO\textsubscript{2} in rivers of pH < 5 is small, as almost all of the DIC is already in the form of CO\textsubscript{2} (Figure 2.6). Thus, the correlation between CO\textsubscript{2} and pH is likely caused implicitly through both their correlations with peat coverage and DOC. A more in-depth discussion of the observed parameters for the individual campaigns is included in the appendix A.2.2.

Prior to this work, the correlation between river CO\textsubscript{2} and DOC concentrations as well as between O\textsubscript{2} and DOC concentrations has been assumed to be linear (Wit et al., 2015). This was confirmed for rivers with peat coverages of up to 25% and DOC concentrations of up to 2,000 \(\mu \text{mol L}^{-1} \). The assumption of these linear correlations was the main reasons why CO\textsubscript{2} emissions from Southeast Asian rivers were assumed to be high. The stagnation in CO\textsubscript{2} concentration for rivers of high DOC concentration observed in this study presents new information on such systems that have not been represented in past studies due to scarcity in data for rivers of high peat coverage.

While the CO\textsubscript{2} stagnation explains moderate CO\textsubscript{2} emissions measured at rivers of high peat coverage, the cause of this stagnation cannot be explained by the processes introduced so far. The main sources of river CO\textsubscript{2} are direct CO\textsubscript{2} leaching from soils (Abril and Borges,
4. Limitation of CO$_2$ production in peat-draining rivers

2019; Lauerwald et al., 2020) and the decomposition of leached DOC (Rixen et al., 2008). Both of these processes increase for rivers of high peat coverage. The main sink of river CO$_2$ is in-river photosynthesis. However, dark water colors in peat-draining rivers limit the light penetration into the river water column and thereby the in-stream photosynthetic reaction rates. This can be seen from the lack of diurnal CO$_2$ and O$_2$ variation in peat-draining rivers (Wit et al., 2015). Thus, the photosynthetic CO$_2$ consumption in peat-draining rivers is generally lower than in rivers of low peat coverage. All of these processes indicate that CO$_2$ concentrations in peat-draining rivers should be significantly higher than in rivers draining mineral soils.

![Figure 4.4: Dependency of river CO$_2$ and O$_2$ concentrations on pH and DOC concentrations.](image)

Since CO$_2$ concentrations in peat-draining rivers are mainly driven by the process of DOC decomposition (Rixen et al., 2008), which also couples CO$_2$ production and O$_2$ consumption, a process that hampers decomposition rates in rivers of high peat coverage is a likely expla-
nation for the stagnation in CO$_2$ and O$_2$ (Figure 4.3). Section 4.4 investigates dependencies of DOC decomposition rates on O$_2$ and pH.

Prior to this work, CO$_2$ and O$_2$ were assumed to be linearly correlated with DOC. Stagnations of CO$_2$ and O$_2$ for high DOC indicate limitations in DOC decomposition.

4.4. Natural limitation in river CO$_2$ due to inhibition of decomposition

In subsection 2.2.3 the importance of the enzyme phenol oxidase for decomposition rates was mentioned as well as the limitation of its activity by O$_2$ availability and by pH. This section aims at the quantification of the impact that these parameters have on decomposition rates and thereby on CO$_2$ emissions from the studied Southeast Asian rivers. Subsection 4.4.1 illustrates the theoretical concept and equations that this quantification is based upon. Then, subsection 4.4.2 presents and compares the results for two different approaches in the limitation by pH.

4.4.1. Quantification of the pH and O$_2$ impact on decomposition rates

The decomposition rate of DOC (R) is defined as molecules of CO$_2$ that are produced per available molecules of DOC during a specific time step and thus represents the proportionality factor between the CO$_2$ production rate and the DOC concentration:

$$ R = \frac{\Delta [CO_2]}{DOC \cdot \Delta t} \Rightarrow \frac{\partial [CO_2]}{\partial t} = R \cdot DOC. \quad (4.1) $$

Since R can be limited by O$_2$ concentrations and by pH, it can be represented by a maximum decomposition rate (R_{max}) multiplied with limitation factors for the impact of O$_2$ (L_{O_2}) and pH (L_{pH}):

$$ f_{dec} = \frac{\partial [CO_2]}{\partial t} = R_{max} \cdot L_{O_2} \cdot L_{pH} \cdot DOC. \quad (4.2) $$

Both L_{O_2} and L_{pH} can take values between 0 and 1. When O$_2$ concentrations and water pH are high enough not to limit the decomposition rate, both limitation factors are 1 and equation (4.2) simplifies to equation (4.1) with $R = R_{max}$.

In this study, an O$_2$ limitation factor based on the Michaelis-Menten equation is used as suggested by Pereira et al. (2017):

$$ L_{O_2} = \frac{[O_2]}{K_m + [O_2]}, \quad (4.3) $$
4. Limitation of CO₂ production in peat-draining rivers

\(K_m \) is the Michaelis constant for O₂ inhibition that is also called the half saturation constant and gives the O₂ concentration at which the O₂ deficit limits decomposition rates by 50% (Loucks and van Beek, 2017)

Publications state differing forms of pH limitation. In this study an exponential limitation factor \((L_{\text{exp}}^{\text{pH}})\) as suggested by Williams et al. (2000) is considered as well as a linear limitation factor \((L_{\text{lin}}^{\text{pH}})\) as suggested by Sinsabaugh (2010):

\[
L_{\text{exp}}^{\text{pH}} = e^{\lambda \cdot (pH - pH_0)} \quad \& \quad L_{\text{lin}}^{\text{pH}} = \frac{pH}{pH_0} \quad (4.4)
\]

\(\lambda \) is the exponential pH inhibition constant and \(pH_0 \) is a normalization constant that was set to 7.5 since this is reported to be the optimal pH for the activity of the decomposition impelling enzyme phenol oxidase (Pind et al., 1994; Kocabas et al., 2008). Since the pH limitation factors must be between 0 and 1, they are only valid for \(pH \leq pH_0 \). For higher pH, a different approach would be needed. However, for the acidic peat soils and peat-draining rivers investigated in this study the equations (4.4) are sufficient.

The DIC concentrations in peat-draining rivers, as a first approximation, result from an equilibrium between CO₂ emissions and CO₂ production by decomposition of DOC. Therefore, the parameters in equation (4.2) were optimized in such a way that the production of CO₂ in the water volume beneath a specific surface area equals the CO₂ flux to the atmosphere through this area. For this, the CO₂ production is calculated by multiplication of equation (4.2) with the product of river depth \(d \) and surface area \(A \) and the CO₂ emissions are calculated by multiplication of equation (2.5) with the surface area \(A \). For the exponential limitation by pH this yields the equation

\[
d \cdot A \cdot R_{\text{max}} \cdot \frac{[O_2]}{K_m + [O_2]} \cdot e^{\lambda \cdot (pH - pH_0)} \cdot \text{DOC} = A \cdot k_{\text{CO}_2}(T) \cdot ([CO_2] - K_{\text{CO}_2}(T) \cdot pCO_2). \quad (4.5)
\]

Analogously, O₂ concentrations in the rivers result from an equilibrium between the atmospheric O₂ flux and O₂ consumption due to decomposition. During decomposition, the O₂ consumption is proportional to the CO₂ production \((\Delta O_2 = -b \cdot \Delta CO_2) \). The proportionality factor \(b \) is usually between 0 and 1 since a fraction of the O₂ used for decomposition is taken from the O₂ content in the dissolved organic matter (Rixen et al., 2008). Thus, the equilibrium between O₂ consumption within the water volume and O₂ flux through the water surface
4. Limitation of CO₂ production in peat-draining rivers

area for exponential limitation by pH can be written as

\[-b \cdot d \cdot A \cdot R_{\text{max}} \cdot \frac{[O_2]}{K_m + [O_2]} \cdot e^{\lambda(pH - pH_0)} \cdot \text{DOC} = A \cdot k_{O_2}(T) \cdot ([O_2] - K_{O_2}(T) \cdot pO_2^2). \quad (4.6)\]

In order to compare these dependences to measured data, equation (4.5) and equation (4.6) were solved for CO₂ concentrations and for O₂ concentrations, respectively. The resulting equations are quite complex and listed in the appendix in Table A.5. The analogously derived equations for CO₂ and O₂ concentrations that result from the linear pH approach are listed in the appendix in Table A.6. Based on these equations, least squares optimizations were performed for the decomposition parameters \(R_{\text{max}}, b, K_m\) and \(\lambda\) such that CO₂(DOC, pH, O₂) and O₂(DOC, pH) were simultaneously optimized for the measured parameters of DOC, pH, T, CO₂ and O₂.

The equations in Table A.5 and Table A.6 depend on the river gas exchange coefficients for CO₂ \((k_{CO_2})\) and O₂ \((k_{O_2})\), which are both linked to \(k_{600}\) according to equation (3.2). Though exchange coefficients are poorly constrained and spatial as well as temporal extremely variable, a fairly good linear correlation between \(k_{600}\) and river depth \((d)\) was found (Figure 4.5). Therefore a fixed ratio of \(k_{600}/d = (7.0 \pm 0.5) \cdot 10^{-6} \text{ s}^{-1}\) was used for the least squares approximations of the equations in Table A.5 and Table A.6.

![Figure 4.5: Correlation of approximated river depth with measured gas exchange coefficients. An ordinary least squares approximation was performed to calculate a linear correlation between the parameters. It resulted in a linear coefficient of \(k_{600}/d \approx 2.5 \text{ cm h}^{-1} \text{ m}^{-1} \approx 7 \cdot 10^{-6} \text{ s}^{-1}\).](image)

In the following, the CO₂ and O₂ concentrations calculated based on the resulting correlations for linear and for exponential pH limitation factors were compared to measured CO₂ and O₂ concentrations in order to gain a better understanding of the impact that pH and O₂ concentrations have on decomposition rates.
4. Limitation of CO$_2$ production in peat-draining rivers

4.4.2. Evaluation of linear and exponential pH limitation of decomposition

Both the linear and the exponential approaches for the limitation of decomposition by pH reproduce the measured stagnation in CO$_2$ and O$_2$. The linear approach resulted in correlation coefficients between calculated and measured CO$_2$ and O$_2$ concentrations of $R^2 = 0.80$ and $R^2 = 0.88$, respectively (Figure 4.6). As indicated by these high correlation coefficients, the linear approach reproduces the observed stagnation in CO$_2$ and O$_2$ concentrations reasonably well. However, especially the values derived at high CO$_2$ and low O$_2$ concentrations, which are most strongly affected by the pH and O$_2$ limitation factors, contain high uncertainties.

The decomposition parameters resulting from this linear pH limitation of decomposition are listed in Table 4.1. Based on those values, the pH in the investigated rivers would limit decomposition rates by between 6% in the Batang Hari and 49% in the Maludam, while the low O$_2$ concentrations in the rivers would limit decomposition rates by between 71% in the Batang Hari and 88% in the Maludam and Siak rivers. Limitations factors derived for all rivers are listed in the appendix in Table A.4.

Like the linear approach, the exponential approach reproduces the stagnation in CO$_2$ and O$_2$ concentrations that was observed in the investigated rivers (Figure 4.7). The resulting correlation for CO$_2$ ($R^2 = 0.89$) is better than for the linear approach, while the O$_2$ correlation,
4. Limitation of CO$_2$ production in peat-draining rivers

with R$^2 = 0.85$, is worse. Overall, the exponential limitation seems to be more realistic than the linear limitation as it is better in representing river CO$_2$ especially for high CO$_2$ concentrations which are most strongly effected by the pH limitation.

In the studied peat-draining rivers, DOC decomposition is likely exponentially limited by pH.

The decomposition parameters that were derived for the exponential pH limitation are listed in Table 4.2. Based on these values the pH in the investigated rivers would limit decomposition rates by between 20% in the Batang Hari and 85% in the Maludam, while the O$_2$ concentration limits decomposition in the investigated rivers by $\leq 10\%$ (Table 4.3).

The proportionality factor for O$_2$ consumption by decomposition derived for both the linear approach with $b = (90 \pm 25)\%$ and the exponential approach with $b = (81 \pm 10)\%$ agree
with the fraction of 0.8 that is stated in literature based on calculations from the O₂ to carbon ratio in peat soils (Rixen et al., 2008).

Table 4.2: Decomposition parameters from the exponential pH approach. R_{max} is the maximum decomposition rate, b is the proportionality factor for O₂ consumption, K_m is the Michaelis constant for O₂ limitation and λ is the exponential pH limitation constant.

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{max}</td>
<td>4.0 ± 0.8</td>
<td>$\mu\text{molCO}_2\text{molDOC}^{-1}\text{s}^{-1}$</td>
</tr>
<tr>
<td>b</td>
<td>81 ± 10</td>
<td>%</td>
</tr>
<tr>
<td>K_m</td>
<td>6 ± 26</td>
<td>μmolL^{-1}</td>
</tr>
<tr>
<td>λ</td>
<td>0.52 ± 0.10</td>
<td></td>
</tr>
</tbody>
</table>

Data of global soil phenol oxidase activity were published by Sinsabaugh et al. (2008). They state a global average soil phenol oxidase activity of 70.6 $\mu\text{mol h}^{-1}$ per g organic matter. For a carbon content in peat organic matter of 38 mmol g^{-1} (Sinsabaugh, 2010) this represents approximately 0.5 $\mu\text{mol mol}^{-1}\text{s}^{-1}$. Sites of high phenol oxidase activity are listed with up to 3 $\mu\text{mol mol}^{-1}\text{s}^{-1}$ (Sinsabaugh et al., 2008). Thus, the derived maximum decomposition rates derived in this study, with 10 $\mu\text{mol mol}^{-1}\text{s}^{-1}$ for the linear pH approach and 4 $\mu\text{mol mol}^{-1}\text{s}^{-1}$ for the exponential pH approach are in a realistic order of magnitude. Yet, the linear estimate is by a factor of 3 larger than the highest rates stated in literature. This indicates that either decomposition in soils is generally limited by at least 60 % or that the linear pH decomposition approach overestimates the maximum decomposition rate.

The derived Michaelis constants for O₂ differ strongly with $K_m \approx 390 \mu\text{mol L}^{-1}$ for the linear pH approach and $K_m \approx 6 \mu\text{mol L}^{-1}$ for the exponential pH approach. The constant represents the O₂ concentration at which decomposition is limited by 50 %. Thus, a Michaelis constant that, as for the linear approach, is higher than the O₂ concentration in atmospheric equilibrium ($\approx 280 \mu\text{mol L}^{-1}$) would imply an O₂ deficit at atmospheric conditions that does not exist (Vaquer-Sunyer and Duarte, 2008). In the literature, Michaelis constants between 1 and 40 $\mu\text{mol L}^{-1}$ are suggested for the O₂ impact on phenol oxidase, depending on the phenolic species (Fenoll et al., 2002). Thus, the linear pH decomposition approach seems to highly overestimate the limiting impact of O₂.

The Michaelis constant for the exponential approach is in good agreement with the literature data (Fenoll et al., 2002). Its large uncertainty ($> 400 \%$; Table 4.2) is caused by relatively high concentrations of O₂ in the rivers. Due to exchange with atmospheric O₂ the concentrations in all rivers exceed the median O₂ threshold to lethal hypoxic conditions of 50 $\mu\text{mol L}^{-1}$ (Vaquer-Sunyer and Duarte, 2008). Thus, the O₂ limitation in peat-draining rivers is relatively
4. Limitation of CO₂ production in peat-draining rivers

small (between 3% and 10%, Table 4.3) and consequentially a majority of the limitation is caused by the low pH in peat-draining rivers that limits the decomposition rates in rivers of high peat coverage (low pH) by up to 85% (Table 4.3).

Low water pH in peat-draining rivers limits DOC decomposition by up to 85%, while the impact of O₂ is much smaller (3% to 10%).

The calculated exponential pH coefficient of $\lambda = 0.5 \pm 0.1$ is similar to coefficients reported for high latitude peat soils ($\lambda = 0.65 & \lambda = 0.77$) that were determined via laboratory measurements of phenol oxidase activity (Williams et al., 2000). The fact that the exponential inhibition by pH can be found in those high latitude peat soils as well as in tropical peat-draining rivers suggests that the investigated correlations and processes are also relevant in other regions and that soil and water pH are important regulators of global carbon emissions.

<table>
<thead>
<tr>
<th>River</th>
<th>pH lim. (%)</th>
<th>O₂ lim. (%)</th>
<th>total lim. (%)</th>
<th>River</th>
<th>pH lim. (%)</th>
<th>O₂ lim. (%)</th>
<th>total lim. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maludam</td>
<td>85 ± 5</td>
<td>10 ± 4</td>
<td>87 ± 6</td>
<td>Kampar</td>
<td>43 ± 6</td>
<td>6 ± 1</td>
<td>46 ± 7</td>
</tr>
<tr>
<td>Sebuyau</td>
<td>83 ± 6</td>
<td>9 ± 4</td>
<td>83 ± 6</td>
<td>Rokan</td>
<td>40 ± 6</td>
<td>5 ± 1</td>
<td>43 ± 6</td>
</tr>
<tr>
<td>Simunjan</td>
<td>68 ± 7</td>
<td>5 ± 1</td>
<td>70 ± 7</td>
<td>Siak</td>
<td>71 ± 7</td>
<td>10 ± 5</td>
<td>74 ± 8</td>
</tr>
<tr>
<td>Rajang</td>
<td>34 ± 5</td>
<td>3 ± 1</td>
<td>36 ± 5</td>
<td>Mandau</td>
<td>76 ± 7</td>
<td>9 ± 3</td>
<td>78 ± 7</td>
</tr>
<tr>
<td>Musi</td>
<td>28 ± 5</td>
<td>4 ± 1</td>
<td>31 ± 5</td>
<td>Tapung Kanan</td>
<td>59 ± 7</td>
<td>7 ± 2</td>
<td>62 ± 7</td>
</tr>
<tr>
<td>Batang Hari</td>
<td>20 ± 3</td>
<td>4 ± 1</td>
<td>23 ± 4</td>
<td>Tapung Kiri</td>
<td>46 ± 6</td>
<td>4 ± 1</td>
<td>49 ± 7</td>
</tr>
<tr>
<td>Indragiri</td>
<td>46 ± 6</td>
<td>6 ± 2</td>
<td>50 ± 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.3: List of fractions by which the decomposition in the individual rivers is lowered due to the impact of O₂ and pH. L_{O_2} and $L_{\text{exp pH}}$ are defined according to equation (4.3) and equation (4.4), respectively.

4.5. Suspension of maximum CO₂ concentration in the Simunjan river

In section 4.3 it was discussed that generally CO₂ concentrations stagnate for high peat coverage. An exception to this was observed during two campaigns in the Simunjan river (Figure 4.8). These campaigns were the only exception from otherwise low variation in the measured parameters along the rivers as well as between the different campaigns. In January 2016 and March 2017, DOC and CO₂ concentrations in the Simunjan river were significantly higher than in March 2015 and July 2017 (Table 4.4). O₂ concentrations during these campaigns ($\approx 50 \mu\text{mol L}^{-1}$) were lower than for the other Simunjan campaigns ($\approx 107 \mu\text{mol L}^{-1}$), while the water pH of 5.0 was slightly lower than during the other campaigns, where pH was 5.3 in average.
4. Limitation of CO\textsubscript{2} production in peat-draining rivers

The Simunjan campaigns with high DOC concentrations were accompanied by high concentrations of PIC in the form of CaCO\textsubscript{3} (Table 4.4), while CaCO\textsubscript{3} concentrations in July 2017 were much lower. Typically, concentrations of PIC in peat-draining rivers are low (Wit et al., 2018). Possible causes for high concentrations during these Simunjan campaigns could be increased erosion of mineral soils due to deforestation in mountain regions upstream or liming practices in plantations along the river. In either case, such high PIC concentrations at low river pH indicate high dissolution of carbonates.

<table>
<thead>
<tr>
<th>Campaign</th>
<th>pH</th>
<th>DOC (mmol L-1)</th>
<th>CO\textsubscript{2} (\mu mol L-1)</th>
<th>O\textsubscript{2} (\mu mol L-1)</th>
<th>CaCO\textsubscript{3} (mg L-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simunjan\textsubscript{1} Mar 2015</td>
<td>5.2 ± 0.3</td>
<td>1.7 ± 0.7</td>
<td>268 ± 71</td>
<td>99 ± 10</td>
<td>n.d.</td>
</tr>
<tr>
<td>Simunjan\textsubscript{2} Jan 2016</td>
<td>4.5 ± 0.3*</td>
<td>9.4 ± 1.2</td>
<td>> 330**</td>
<td>139 ± 9*</td>
<td>0.52 ± 0.34</td>
</tr>
<tr>
<td>Simunjan\textsubscript{2} Mar 2017</td>
<td>5.0 ± 0.3</td>
<td>7.4 ± 0.6</td>
<td>475 ± 97</td>
<td>52 ± 19</td>
<td>0.63 ± 0.64</td>
</tr>
<tr>
<td>Simunjan\textsubscript{1} Jul 2017</td>
<td>5.4 ± 0.3</td>
<td>1.4 ± 0.3</td>
<td>227 ± 16</td>
<td>115 ± 14</td>
<td>0.07 ± 0.05</td>
</tr>
</tbody>
</table>

Table 4.4: Data measured for the four Simunjan campaigns. Values are means of measurements. Data variability is given by standard deviation of measurements. *Due to technical problems, the March 2017 pH, CO\textsubscript{2} and O\textsubscript{2} data need to be treated cautiously. **In March 2017 only a minimum CO\textsubscript{2} concentration could be derived due to technical problems.

High carbonate concentrations in turn could explain the observed high river CO\textsubscript{2} concentrations as they might have counteracted a decrease in pH due to decomposition of DOC. The observed high DOC concentrations in January 2016 and March 2017 indicate a high rate of CO\textsubscript{2} production by DOC decomposition according to equation (4.2). In the absence of carbonates, the resulting CO\textsubscript{2} increase would decrease the river pH (Figure 2.6) which in turn would limit the CO\textsubscript{2} production. However, high carbonate concentrations could suspend this natural limitation of CO\textsubscript{2} production, as they would counteract the pH decrease, and thereby enable higher decomposition rates.

High carbonate concentrations in the Simunjan river suspend the pH limitation of DOC decomposition for rivers of high peat coverage.

This response to carbonate enrichment that was observed at the Simunjan river represents an important process that should also be considered for anthropogenic activities like liming and enhanced weathering. Liming is a practice to enhance soil fertility due to an increase in soil pH (Biasi et al., 2008) and enhanced weathering is a CO\textsubscript{2} removal technique based on the conversion of atmospheric CO\textsubscript{2} into carbonates (Field and Mach, 2017). Both of these practices result in enhancement of carbonates that could be leached into rivers and cause a
response similar to what was observed in the Simunjan river, where CO$_2$ emissions increased by almost 100\% compared to the campaigns with low carbonate concentrations.

![Graphs showing correlation of river peat coverage with DOC, pH, CO$_2$ & O$_2$](image)

Figure 4.8: Correlation of river peat coverage with DOC, pH, CO$_2$ & O$_2$ as displayed in Figure 4.3 but with the inclusion of the Simunjan campaigns in January 2016 and March 2017 (red data points) that were separated from the other Simunjan campaigns. Ordinary least squares approximations were used to calculate linear correlations with DOC and pH and exponential correlations with CO$_2$ and O$_2$. The Simunjan January 2016 and March 2017 campaigns are excluded from these correlations. Data from rivers that were included in a previous study by Wit et al. (2015) are indicated by squares.

4.6. Conclusion

In this chapter, measured data from ten Southeast Asian rivers were collected to investigate carbon dynamics in peat-draining rivers. Prior to this study, it was assumed, that CO$_2$ concentrations in rivers increase linearly with increasing river peat coverage of the river catchments due to enhanced leaching and decomposition of organic carbon. However, measured CO$_2$ emissions from Southeast Asian peat-draining rivers were hardly higher than emission from temperate rivers.

The data in this chapter show that CO$_2$ concentrations in Southeast Asian rivers stagnate for high peat coverages. Despite further increase in river DOC concentrations, CO$_2$ concen-
4. Limitation of CO$_2$ production in peat-draining rivers

Concentrations are fairly constant for peat coverages $>50\%$. It was found that this stagnation is caused by low water pH in rivers of high peat coverage that hampers decomposition rates due to limitation of phenol oxidase activity. This process provides an answer to the question why, in contrast to the high DOC export, CO$_2$ emissions from tropical peat-draining rivers are more moderate.

The most realistic cause for stagnating CO$_2$ concentrations is an exponential limitation of decomposition by pH. Calculations suggest that the low pH in rivers of high peat coverage reduces decomposition rates and thereby CO$_2$ production within the rivers by up to 85%. Although this study is based on measurements in Southeast Asian peat-draining rivers, comparisons to laboratory studies of decomposition in temperate peat soils suggest that the investigated correlations and processes are also relevant in other regions and that soil and water pH are important regulators of global carbon emissions.

As observed in the Simunjan river, one cause for increased water pH in peat-draining rivers can be the input of carbonates. It was found that CO$_2$ concentrations during the Simunjan campaigns that were accompanied by enhanced concentrations of suspended carbonates were significantly higher than those during campaigns of low carbonate concentrations. Carbonate enhancement resulted in CO$_2$ emissions from the Simunjan river that were increased by almost 100%. It is discussed that sources for enhanced carbonate concentrations can be rock weathering or soil erosion upstream of coastal peatland areas, or liming practices in plantations along the rivers, which are common practice to improve plant growth on acidic soils.

This carbonate impact should be considered when discussing the efficiency of enhanced weathering, which is a CO$_2$ removal strategy that extracts and binds anthropogenic CO$_2$ by transferring it to carbonate. The resultant pH increase, in regions of high peat coverage, could lead to enhanced decomposition and thereby emissions of CO$_2$ from rivers and soils. Chapter 5 will discuss the response of tropical peat areas, including peat-draining rivers, to enhanced weathering.
5. Response of tropical peat areas to enhanced weathering

This chapter investigates the response of tropical peat areas to the pH change induced by enhanced weathering. Parts of this chapter are currently being prepared for publication.

Section 5.1 provides an introduction to the topic and the study objective, section 5.2 gives a description of the study area and section 5.3 presents a summary of existing estimates for the CO\textsubscript{2} uptake by enhanced weathering. Section 5.4, section 5.5 and section 5.6 discuss the response of tropical peat soils, peat-draining rivers and coastal oceans to enhanced weathering, respectively. Section 5.7 concludes the overall impact of enhanced weathering on CO\textsubscript{2} emissions from tropical peat regions for a case study of Sumatra and finally, section 5.8 summarizes the results from this chapter.

5.1. Background and objective

The Paris climate agreement aims to limit the global average temperature rise to well below 2 °C with a target rise of less than 1.5 °C compared to pre-industrial times (de Coninck et al., 2018). While the reduction of anthropogenic CO\textsubscript{2} emissions is a key strategy to mitigate global warming, it has become clear that atmospheric CO\textsubscript{2} removal techniques have to be deployed to meet the target of the Paris agreement (de Coninck et al., 2018; Millar et al., 2017). One promising CO\textsubscript{2} removal technique is enhanced weathering (Field and Mach, 2017). It accelerates the natural process of CO\textsubscript{2} uptake by weathering via distribution of rock powder over the land surface (Hartmann et al., 2013b). During weathering, this atmospheric CO\textsubscript{2} is converted into HCO\textsubscript{3}−, which precipitates in soils or is washed out and transferred via rivers into the ocean. The input of HCO\textsubscript{3}− into the ocean counteracts ocean acidification and potentially favours the CO\textsubscript{2} uptake by the ocean (Hartmann et al., 2013b; Strefler et al., 2018; Köhler et al., 2010).

Since warm and humid climates accelerate weathering rates (Strefler et al., 2018), preferred target areas for enhanced weathering projects are tropical regions, including peatlands (Taylor et al., 2016; Beerling et al., 2020). First estimates of the cost efficiency of enhanced weathering considered application over all tropical land areas (Taylor et al., 2016). More recent studies pointed out that application on actively worked croplands would simplify transport and application procedures (Beerling et al., 2020) and thereby reduce overall application costs (Strefler et al., 2018). Combating climate change on one side and increasing the demand for agricultural products on the other side, represents a sustainability conflict that
5. Response of tropical peat areas to enhanced weathering

now needs to be contextualized with enhanced weathering as a measure that is suggested to reduce atmospheric CO$_2$.

In the following, impacts of the enhanced weathering induced pH increase on carbon dynamics in tropical peat regions are investigated for a case study of Sumatra. Results are based on the pH dependence of decomposition that was derived in the previous chapter.

5.2. Study area

Sumatra hosts more than 70,000 km2 of peatlands (Miettinen et al., 2016), representing 15.6% of its surface area of 464,301 km2 (Hooijer et al., 2006). This is more than 30% of the whole Indonesian peat area and over 25% of the Southeast Asian peat area (Hooijer et al., 2010). Most Sumatran rivers originate in the Barisian Mountains and cut through coastal peatlands before discharging into the Malacca Strait (Figure 5.1).

![Figure 5.1: Map of Sumatra with river catchments of the investigated rivers and peat areas as well as the defined extent of estuaries and coastal ocean. The map was rotated slightly as indicated by the north arrow.](image)

The aim of this study is to estimate the response of CO$_2$ emissions from Sumatra’s soils, rivers and coastal regions to enhanced weathering application. For the coastal regions, it will
be differentiated between the river estuaries and the coastal ocean. The areal extent of these categories, analogous to the study by Wit et al. (2018), is defined by salinity with $S \leq 25$ for estuaries and $25 < S < 32.8$ for the coastal ocean. Based on the results by Wit et al. (2018), these salinity values correspond to distances of ≈ 3 km and ≈ 67 km from shore and represent areas of 10,818 km2 and 127,674 km2, respectively.

The calculations in this chapter are based on data from the investigated rivers at which CO$_2$ measurements were performed. Those rivers include the Siak, Indragiri, Musi and Batang Hari (Figure 5.1). Additionally, the Rajang, Simunjan, Sebuyau and Maludam rivers on Borneo (Sarawak, Malaysia; Figure 4.1) are included. The Rajang river originates in the Iran mountains, a mountain region located at the border between Malaysia and Indonesia, before cutting through coastal peatlands and discharging into the South China Sea. The smaller rivers on Borneo originate closer to the coast and exhibit high peat coverage. Since all rivers drain tropical peat soils and are exposed to similar climatic conditions, they are considered representative for Southeast Asian peat-draining rivers and are handled equivalent in this study’s calculations.

5.3. Enhanced weathering estimates

Recent estimates of the CO$_2$ uptake by enhanced weathering were published by Taylor et al. (2016) and by Beerling et al. (Table 5.1, 2020).

<table>
<thead>
<tr>
<th>appl. rate (kg m$^{-2}$ yr$^{-1}$)</th>
<th>appl. depth (cm)</th>
<th>CO$_2$ uptake (gC m$^{-2}$ yr$^{-1}$)</th>
<th>HCO$_3^-$ formation (mol m$^{-2}$ yr$^{-1}$)</th>
<th>pH increase</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>50</td>
<td>4.2</td>
<td>1.3*</td>
<td>Taylor et al. (2016)</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>70</td>
<td>5.8</td>
<td>2</td>
<td>Taylor et al. (2016)</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>30</td>
<td>2.5</td>
<td>< 0.5</td>
<td>Beerling et al. (2020)</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>250</td>
<td>20.8</td>
<td>2.5*</td>
<td>Taylor et al. (2016)</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>300</td>
<td>25.0</td>
<td>2.5</td>
<td>Taylor et al. (2016)</td>
</tr>
</tbody>
</table>

Table 5.1: List of previous enhanced weathering estimates for basalt application over tropical regions. Scenarios differ in rock application rate and depth. *Taylor et al. (2016) did not include pH estimates for a basalt application depth of 10 cm. The values listed here are estimated based in the change in pH they state for dunite rock application of different depths.

Taylor et al. (2016) estimated CO$_2$ uptake and soil pH changes based on optimized enhanced weathering scenarios for application of different rock types, rock application rates and depths. This chapter focuses on enhanced weathering with nutrient-rich basalt rocks. Those
5. Response of tropical peat areas to enhanced weathering

rocks exist in huge amounts and have been found to co-benefit crop production and soil health (Beerling et al., 2020). In tropical regions, the estimated CO$_2$ uptake and pH increase for scenarios with basalt application range from 50 to 300 gC m$^{-2}$ yr$^{-1}$ and from 1.3 to 2.5, respectively (Table 5.1).

Simulations by Beerling et al. (2020) were performed for basalt application on cropland areas in different countries. For Indonesia, they resulted in formation of 2 to 3 mol HCO$_3^-$ m$^{-2}$ yr$^{-1}$, which correlate to a CO$_2$ uptake between 24 and 36 gC m$^{-2}$ yr$^{-1}$. Those estimates are lower than the ones Taylor et al. (2016) stated for tropical weathering hotspot areas. They also result in a lower pH increase with less than 0.5 values for the region of Indonesia (Table 5.1).

Further calculations in this chapter are based on the lower scale scenario by Taylor et al. (2016) for application rates of 1 kg m$^{-2}$ yr$^{-1}$ and an application depth of 10 cm over tropical weathering hotspot areas as well as on the scenario by Beerling et al. (2020) for application of 4 kg m$^{-2}$ yr$^{-1}$ over Indonesian cropland areas. Resulting CO$_2$ uptake and pH increase for those scenarios are (25 – 50) gC m$^{-2}$ yr$^{-1}$ and (0.2 – 1.3), respectively.

5.4. Response of soil carbon mobilisation to enhanced weathering

The application of enhanced weathering causes a pH increase in soils that impacts carbon mobilisation in from soil in the form of CO$_2$ emissions to the atmosphere and DOC leaching into rivers. Additionally the HCO$_3^-$ created during weathering leaches into rivers. In the following parts of this sections, the impact of these processes on CO$_2$ emissions is quantified for application of enhanced weathering on peat soils as well as on all Sumatra’s soils. Subsection 5.4.1 illustrates published dependencies of carbon mobilisation from peat soils on pH. Subsection 5.4.2, subsection 5.4.3 and subsection 5.4.4 illustrate the response of CO$_2$ emissions, DOC leaching and DIC leaching from soils to enhanced weathering, respectively.

5.4.1. Dependency of CO$_2$ and DOC mobilisation from peat soils on pH

The decomposition in peat soils and the associated mobilisation of peat carbon depend on the activity of the enzyme phenol oxidase (Freeman et al., 2004). Phenol oxidase, in turn, is strongly controlled by pH (Pind et al., 1994). Positive correlations between pH and decomposition rates in peat soils are reported in literature (Williams et al., 2000). Current estimates of the CO$_2$ uptake by enhanced weathering do not include this process (Taylor et al., 2016; Beerling et al., 2020). However, the pH increase associated with enhanced weathering scenarios (Table 5.1) would accelerate decomposition of peat carbon and thus exert a negative
5. Response of tropical peat areas to enhanced weathering

feedback on the CO$_2$ uptake by enhanced weathering. To quantify this effect, published correlations between CO$_2$ emissions as well as pore water DOC and the pH in peat soils (Kang et al., 2018) are used.

Data by Kang et al. (2018) yield a linear correlation between peat soil pH and CO$_2$ emissions (Figure 5.2). Their study includes data for fixed temperatures of $T = 5 \degree C$ and $T = 15 \degree C$. The increase in CO$_2$ emissions per pH increase of 1 at 5 $\degree C$ soils (≈ 14 gCO$_2$ kg$^{-1}$ yr$^{-1}$) is higher than at 15 $\degree C$ (≈ 12 gCO$_2$ kg$^{-1}$ yr$^{-1}$, Figure 5.2). This could indicate that the response of CO$_2$ emissions to pH at tropical temperatures is even lower. However, there are no studies available that investigate this correlation for tropical peat. Thus, the correlation at 15 $\degree C$ was used to calculate the response of soil CO$_2$ emissions to the enhanced weathering induced pH increase.

![Figure 5.2](image)

Figure 5.2: Dependency of carbon mobilisation in the form of CO$_2$ emissions (left) and DOC accumulation in pore water (right) on soil pH. Plot was created based on data by Kang et al. (2018) that were derived for temperatures of 5 and 15 $\degree C$. Correlation functions were derived via ordinary least squares correlations.

The correlation derived between accumulated pore water DOC and peat soil pH is non-linear. For $T = 5 \degree C$, the dependency of DOC accumulation on pH is fairly good represented by a function $\sim 2^\text{pH}$. Thus, at this temperature, the DOC accumulation doubles for a pH increase of 1. For temperatures of 15 $\degree C$, the data yield a correlation function $\sim 1.6^\text{pH}$, which equals an increase of 60% per pH increase of 1. Analogous to the CO$_2$--pH correlation, these data yield a decrease in the response of decomposition to pH changes for higher temperatures. This could indicate an even weaker response for peat soils at tropical temperatures. However,
5. Response of tropical peat areas to enhanced weathering

as for the CO$_2$–pH correlation, no data for tropical peat were available and the DOC–pH correlation derived for $T = 15^\circ$C has been used for further calculations in this study.

5.4.2. Response of CO$_2$ emissions from soils to enhanced weathering

In order to estimate the response of soil CO$_2$ emissions to enhanced weathering, the pH increase of 0.2 to 1.3 (section 5.3) was combined with the linear CO$_2$–pH correlation (Figure 5.2). The CO$_2$–pH relation was applied to the upper 15 cm of peat soils, assuming a peat soil density of 0.127 g cm$^{-3}$ (Warren et al., 2012).

![Figure 5.3: Carbon mobilisation for basalt application on peat soils (left) and on all Sumatran soils (right). Data were derived based on the estimated increase in soil pH and CO$_2$ uptake (section 5.3) and the pH dependences of CO$_2$ and DOC mobilisation (subsection 5.4.1).](image)

The pH increase caused by application of enhanced weathering on peat soils increases CO$_2$ emissions from the soils by $(12 - 81)$ gC m$^{-2}$ yr$^{-1}$ (Figure 5.3). For the lower bound of the enhanced weathering estimate (pH increase of 0.2), this increase in CO$_2$ emissions (12 gC m$^{-1}$ yr$^{-1}$) already compensates half of the CO$_2$ uptake by enhanced weathering. For the upper bound (pH increase of 1.3), peat soil CO$_2$ emissions alone are significantly higher than the estimated CO$_2$ uptake by enhanced weathering (Figure 5.3). These additional emissions represent $(8 - 26)$ % of the CO$_2$ uptake by enhanced weathering.

Enhanced weathering application on peat soils could cause soil CO$_2$ emissions that are significantly higher than the CO$_2$ uptake by enhanced weathering.

While the increase in soil carbon mobilisation is specifically based on correlations derived for peat soils (Kang et al., 2018), estimates of the CO$_2$ uptake by enhanced weathering do
not differentiate between peat and mineral soils (Taylor et al., 2016; Beerling et al., 2020). Thus, it is not known whether the stated CO$_2$ capture rates for tropical areas are valid for tropical peat soils specifically. Therefore, the carbon mobilisation within Sumatra’s peat soils and its impact on the net CO$_2$ uptake for Sumatra were investigated (Figure 5.3) as representative for tropical peat regions. Atmospheric CO$_2$ emissions from Sumatra’s soils were derived by multiplication of the emissions from peat soils with Sumatra’s peat coverage of 15.6% (Hooijer et al., 2006). The increase in CO$_2$ emissions from Sumatra’s soils results in (2 – 13) gC m$^{-2}$ yr$^{-1}$, representing up to almost one-quarter of the natural CO$_2$ emissions from Sumatra’s soils (Table 5.2; Prananto et al., 2020).

Enhanced weathering application on Sumatra’s soils causes soil CO$_2$ emissions that potentially re-emit 26% of the CO$_2$ uptake by enhanced weathering.

5.4.3. Response of DOC leaching from soils to enhanced weathering

The response of DOC leaching from soils to enhanced weathering was derived from the enhanced weathering induced pH increase of 0.2 to 1.3 (section 5.3) and the derived DOC–pH correlation (Figure 5.2). Since this correlation was stated for pore water DOC concentrations and DOC leaching is directly linked to those concentrations (Worrall et al., 2002), the derived correlation can be used for DOC leaching rates. However, the DOC–pH correlation is not linear (Figure 5.2) which means that a reference value is needed to derive the response to a specific increase in pH. Therefore, natural DOC leaching from Sumatra’s peat soils (Table 5.2) was applied as reference value.

<table>
<thead>
<tr>
<th>atm. CO$_2$ flux</th>
<th>DOC leaching</th>
<th>DIC leaching</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural</td>
<td>55 gC m$^{-2}$ yr$^{-1}$</td>
<td>20 gC m$^{-2}$ yr$^{-1}$</td>
</tr>
<tr>
<td>enhanced weathering induced increase</td>
<td>(2 – 13) gC m$^{-2}$ yr$^{-1}$</td>
<td>(2 – 17) gC m$^{-2}$ yr$^{-1}$</td>
</tr>
</tbody>
</table>

Table 5.2: Natural soil carbon mobilisation and its feedback on enhanced weathering application on Sumatra. For the natural CO$_2$ flux, published fluxes from tropical peat soils (Prananto et al., 2020) were multiplied with Sumatra’s peat coverage. Natural DOC and DIC leaching rates were derived according to equation (5.1) that will be introduced in subsection 5.5.1.

The DOC mobilisation caused by enhanced weathering results in (13 – 109) gC m$^{-2}$ yr$^{-1}$ (Figure 5.3). The total carbon mobilisation from peat soils is given by the sum of increased CO$_2$ emissions and increased DOC leaching. For the lower bound of the enhanced weathering
estimate (pH increase of 0.2) this total carbon mobilisation of approximately 25 gC m\(^{-2}\) yr\(^{-1}\) already compensates the CO\(_2\) uptake by enhanced weathering. For the upper bound (pH increase of 1.3) the carbon mobilisation, with almost 200 gC m\(^{-2}\) yr\(^{-1}\), is much higher than the estimated CO\(_2\) uptake of 50 gC m\(^{-2}\) yr\(^{-1}\) (Figure 5.3). This indicates that application of enhanced weathering on tropical peat soils could in fact create a net CO\(_2\) source to the atmosphere.

The DOC mobilisation from Sumatra’s soils is derived analogous to Sumatra’s CO\(_2\) mobilisation by multiplication of peat DOC mobilisation with Sumatra’s peat coverage. It results in (2 – 17) gC m\(^{-2}\) yr\(^{-1}\) (Figure 5.3) and is therewith in the range of natural leaching rates from Sumatra’s soils (Table 5.2).

The total carbon mobilisation from Sumatra’s soils (CO\(_2\) mobilisation + DOC mobilisation) amounts to (4 – 30) gC m\(^{-2}\) yr\(^{-1}\) (Figure 5.3). These values are solely based on the response of Sumatra’s peat soils and therefore might underestimate the total carbon mobilisation as they omit the response of mineral soils. However, these results already imply that a significant amount of the CO\(_2\) uptake by enhanced weathering is counteracted by carbon mobilisation within Sumatra’s peat areas (Figure 5.3).

The enhanced weathering induced pH increase in Sumatra’s soils causes soil carbon mobilisation of (4 – 30) gC m\(^{-2}\) yr\(^{-1}\).

5.4.4. Response of DIC leaching from soils to enhanced weathering

The estimated response of DIC leaching to enhanced weathering in this study was derived based on the assumption that the carbon captured during atmospheric CO\(_2\) uptake is transformed into HCO\(_3^-\) and over time leached into rivers. Thus, the maximum leaching rate is given by the rate of CO\(_2\) uptake ((25 – 50) gC m\(^{-2}\) yr\(^{-1}\)). However, this assumption ignores the possibility of direct CO\(_2\) re-emission due to the transformation of HCO\(_3^-\) to CO\(_2\) under the acidic conditions in peat soils, as it was observed for liming experiments on plantations in peatlands (Biasi et al., 2008). In a worst-case scenario, these acidic conditions could cause direct re-emission of the total CO\(_2\) uptake. In the other extreme, the total CO\(_2\) uptake could be leached as HCO\(_3^-\) from soils.

Efficiency studies of enhanced weathering so far assumed that all of the captured carbon is transported to the ocean, which would represent the best-case scenario. In reality however, even if the majority of the CO\(_2\) uptake is leached into rivers in the form of HCO\(_3^-\), the acidic conditions in peat-draining rivers could cause this carbon to be transformed into CO\(_2\) and
emitted to the atmosphere. At the same time, the enhanced HCO$_3^-$ supply could increase the river pH and thereby cause enhanced decomposition rates of the mobilized DOC which would further enhance river CO$_2$ concentrations and emissions. Section 5.5 investigates the fate of carbon leached into Sumatra’s rivers.

5.5. Response of river carbon export to enhanced weathering

River carbon dynamics are impacted by enhanced weathering through the increase in DOC and DIC leaching from soils that was discussed in section 5.4. To quantify the impact of the increase in carbon leaching on river CO$_2$ emissions and the carbon export to the coast, a river box-model was constructed. Subsection 5.5.1 provides a description of this model. Subsection 5.5.2 and subsection 5.5.3 discuss the response of river CO$_2$ emissions and the oceanic carbon export to the enhanced leaching of DOC and DIC.

5.5.1. Description of river box-model

The river box model was constructed to simulate in-river carbon dynamics and derive their response to changed carbon supply. The model simulates temporal changes in concentrations of DOC, DIC, CA, CO$_2$, O$_2$ and of water pH. It includes decomposition processes, atmospheric exchange fluxes and reactions in the carbonate system as well as river input fluxes through leaching and discharge fluxes into the ocean.

For each model run, leaching rates of DOC, DIC, CA and O$_2$ as well as the water temperature, the salinity, the ratio between discharge and water volume (Q/V) and the ratio between exchange coefficient and water depth (k_{600}/d) are fixed to calculate equilibrium concentrations of the river parameters.

Water temperatures of $T = 29^\circ$C and salinities of $S = 0.001$ were used for all rivers. For (Q/V) an average ratio for all rivers of $(1.1 \pm 0.6) \cdot 10^{-6}$ s$^{-1}$ (correlation in the appendix in Figure A.1) was used and (k_{600}/d) was set to $(7.0 \pm 0.5) \cdot 10^{-6}$ s$^{-1}$, consistent with the calculations in subsection 4.4.1. Natural leaching rates were calculated by the sum of their sinks minus the sum of their sources:

\[
\begin{align*}
\text{DOC}_{\text{leaching}} = & \quad \text{DOC} \cdot Q + f_{\text{dec}} (\text{DOC}, \text{O}_2, \text{pH}) \\
\text{DIC}_{\text{leaching}} = & \quad \text{DOC} \cdot Q + F_{\text{CO}_2} (\text{CO}_2, k_{\text{CO}_2}, T) - f_{\text{dec}} (\text{DOC}, \text{O}_2, \text{pH}) \\
\text{CA}_{\text{leaching}} = & \quad \text{CA} \cdot Q \\
\text{O}_2_{\text{leaching}} = & \quad [\text{O}_2] \cdot Q + b \cdot f_{\text{dec}} (\text{DOC}, \text{O}_2, \text{pH}) + F_{\text{O}_2} (\text{O}_2, k_{\text{O}_2}, T)
\end{align*}
\]
5. Response of tropical peat areas to enhanced weathering

f_{dec} describes the CO$_2$ production by in-river decomposition according to equation (4.2) with exponential limitation by pH. b is the fraction of O$_2$ that is consumed in relation to the CO$_2$ production (81%; Table 4.2). F_{CO_2} and F_{O_2} describe the atmospheric fluxes of CO$_2$ and O$_2$, respectively. These fluxes were derived according to equation (2.5).

For model runs that simulate rivers impacted by enhanced weathering, the derived increase in leaching rates (Table 5.2) was added to the natural leaching rates. Enhanced DOC leaching was added to the DOC$_{\text{leaching}}$ and enhanced DIC leaching was added to the DIC$_{\text{leaching}}$ and the CA$_{\text{leaching}}$. For each model run, time steps of 10 min were used. The number of iterations were set to 52,560, amounting to 1 year of modelled concentrations. Generally, equilibrium concentrations were reached after approximately 1 month. An exemplary time series is shown in the appendix in Figure A.5.

During each iteration, pH and CO$_2$ are calculated based on the current concentrations of DIC and CA according to the equation system explained in subsection 2.2.2. Then, the changes in DIC, DOC, CA and O$_2$ concentrations due to the processes of leaching, decomposition, atmospheric exchange and discharge are calculated according to:

\[
\begin{align*}
\Delta \text{DIC} &= \frac{Q}{V} \cdot ([\text{DIC}_{\text{leaching}}] - [\text{DIC}_{\text{river}}]) + f_{\text{dec}} + d \cdot F_{\text{CO}_2} \\
\Delta \text{DOC} &= \frac{Q}{V} \cdot ([\text{DOC}_{\text{leaching}}] - [\text{DOC}_{\text{river}}]) - f_{\text{dec}} \\
\Delta \text{CA} &= \frac{Q}{V} \cdot ([\text{CA}_{\text{leaching}}] - [\text{CA}_{\text{river}}]) \\
\Delta [\text{O}_2] &= \frac{Q}{V} \cdot ([\text{O}_2,\text{leaching}] - [\text{O}_2,\text{river}]) - b \cdot f_{\text{dec}} + d \cdot F_{\text{O}_2}.
\end{align*}
\]

$[X_{\text{leaching}}]$ and $[X_{\text{river}}]$ are the concentrations of species X in the water input to the river and in the river water that discharges into the ocean, respectively. $[X_{\text{river}}]$ are the current concentrations in the modelled river that the changes according to the equations (5.2) are applied to for each iteration. Uncertainties of the derived concentrations were estimated from best/worst case runs of the box-model based on variation of the respiration parameters (R, K_m, λ & b; Table 4.2) within their uncertainties.

5.5.2. Response of river CO$_2$ emissions to enhanced weathering

Natural runs of the river box-model (without impact of enhanced weathering) were performed for the individual rivers listed in section 5.2. CO$_2$ concentrations resulting from those runs range from approximately 70 μmol L$^{-1}$ in the Batang Hari to about 270 μmol L$^{-1}$ in the
5. Response of tropical peat areas to enhanced weathering

Maludam and Sebuyau and show a good agreement with the measured concentrations in these rivers. Correlations between modelled and measured concentrations are shown in the appendix in Figure A.6.

An increase in DIC leaching (in the form of HCO$_3^-$) results in increased river pH, whereby rivers of high peat coverage (low original water pH) respond with a stronger pH increase than rivers of low peat coverage (high original water pH; Figure 5.4). The pH increase shifts the carbonate system in the rivers towards HCO$_3^-$ and thereby lowers the CO$_2$ fraction of river DIC. However, this CO$_2$ decrease is overcompensated by enhanced supply of DIC due to increased HCO$_3^-$ leaching and DOC decomposition. Rivers with a strong pH increase also show a strong increase in CO$_2$ (Figure 5.4).

![Figure 5.4: River CO$_2$ concentrations and water pH versus the original pH in Southeast Asian peat-draining rivers. Colours indicate the parameter's response on increased DIC leaching. Data were derived by use of the box-model. Natural leaching rates for a DIC leaching increase of 0 were derived according to the equations (5.1).](image)

The pH increase enhances decomposition rates in the rivers and thereby causes a reduction of DOC and O$_2$ concentrations (Figure 5.5). In the Maludam and Sebuyau rivers (original pH < 4.5), O$_2$ concentrations decrease below 20 μmol L$^{-1}$ for a small increase in DIC leaching. Such low O$_2$ concentrations limit decomposition rates, which explains the small impact additional DIC leaching has on the CO$_2$ concentrations in these rivers (Figure 5.4). For the Siak river (pH ≈ 5.2), low O$_2$ hampers decomposition for leaching enhancement of ≥ 20 gC m$^{-2}$ yr$^{-1}$. Rivers of low peat coverage (pH > 6.5) show almost no change in CO$_2$
5. Response of tropical peat areas to enhanced weathering

and O\textsubscript{2} concentrations. This can be explained by the low pH change in those rivers as well as by generally slow decomposition due to low DOC concentrations.

![Figure 5.5: River O\textsubscript{2} and DOC concentrations versus the original pH in Southeast Asian peat-draining rivers. Colours indicate the parameter’s response to increased DIC leaching. Data were derived by use of the box-model. Natural leaching rates for a DIC leaching increase of 0 were derived according to the equations (5.1).](image)

Atmospheric river CO\textsubscript{2} fluxes were derived from modelled CO\textsubscript{2} concentrations in the rivers according to equation (2.5). For minimum and maximum flux estimates, exchange coefficients between \(k_{600} = 7 \text{ cm h}^{-1}\) and \(k_{600} = 20 \text{ cm h}^{-1}\) were considered. These exchange coefficients cover the range measured at the Southeast Asian rivers (appendix Table A.2). CO\textsubscript{2} fluxes based on the concentrations derived from box-model runs without increased leaching range between 2 and 18 gC m-2 day-1.

To compare the changes in river CO\textsubscript{2} emissions to the CO\textsubscript{2} uptake by enhanced weathering, CO\textsubscript{2} yields (emissions per catchment area) were derived according to equation (3.4). CO\textsubscript{2} yields from box-model runs without enhanced leaching range from \((4 - 12)\) gC m-2 yr-1 from the Batang Hari river to \((18 - 52)\) gC m-2 yr-1 from the the Maludam and Sebuyau rivers with average CO\textsubscript{2} yields from Sumatra of \((8 - 22)\) gC m-2 yr-1 (Table 5.3).

River CO\textsubscript{2} emissions increase with increasing DIC leaching rates and stagnate for high leaching rates (Figure 5.6), as the impact of HCO\textsubscript{3}- on pH becomes weaker (Figure 5.4) and O\textsubscript{2} depletion limits decomposition in rivers of high peat coverage (Figure 5.5). Due to this O\textsubscript{2} limitation, the stagnation is most prominent for rivers of high peat coverage (Figure 5.6).

As explained in section 5.3, the upper bound of enhanced DIC leaching into rivers is repre-
5. Response of tropical peat areas to enhanced weathering

Presented by the estimated enhanced weathering CO$_2$ uptake of $(25 - 50)$ gC m$^{-2}$ yr$^{-1}$. This leaching increase would correlate to an average increase in river CO$_2$ emissions of 11 to 13\%, whereby the rivers of high peat coverage (Maludam, Sebuyau, Simunjan & Siak) show the strongest emission increase of about 32\% (Figure 5.6). The increase in atmospheric CO$_2$ yields from Sumatra results to $(0.8 - 2.8)$ gC m$^{-2}$ yr$^{-1}$, which represents $(3 - 6)$\% of the enhanced weathering CO$_2$ uptake.

![Figure 5.6](image)

Figure 5.6: Response of river CO$_2$ emissions to enhanced DIC and DOC leaching from soils. The left panel shows the emission feedback on increased DIC leaching rates in the form of HCO$_3^-$. The right panel shows the emission feedback on increased DOC leaching rates in addition to a DIC leaching increase of 40 gC m$^{-2}$ yr$^{-1}$. Grey shaded areas represent the estimated range of enhanced DIC and DOC leaching caused by enhanced weathering.

An increase in DOC leaching in addition to the enhanced DIC leaching significantly increases CO$_2$ concentrations in and emissions from rivers of low peat coverage (Figure 5.6). Its impact on rivers of high peat coverage is much smaller due to depletion of O$_2$ (Figure 5.5) that hampers decomposition rates. Considering an increase in DIC leaching of 40 gC m$^{-2}$ yr$^{-2}$ and the estimated DOC leaching increase of $(2 - 17)$ gC m$^{-2}$ yr$^{-1}$, CO$_2$ emissions from Sumatra increase by $(20 - 75)$\% compared to the natural box-model run (Figure 5.6).

Variation in DIC leaching results in comparatively small changes in the CO$_2$ emissions (Figure 5.7). Thus, the retrieved impact of enhanced DOC leaching at the DIC leaching rate of 40 gC m$^{-2}$ yr$^{-1}$ seems to be representative for the estimated range of enhanced DIC leaching. The combined enhanced weathering induced increase of DIC and DOC leaching into Sumatra’s rivers (Table 5.2) results in CO$_2$ yields that increase by $(1.5 - 16.2)$ gC m$^{-2}$ yr$^{-1}$ (Table 5.3). This represents $(6 - 32)$\% of the CO$_2$ uptake by enhanced weathering.
5. Response of tropical peat areas to enhanced weathering

![Graph showing response of tropical peat areas to enhanced weathering.](image)

Figure 5.7: Increase in river CO\textsubscript{2} emissions from Sumatra versus enhanced DOC leaching for different rates of enhanced DIC leaching that cover the range estimated for enhanced weathering. The left panel shows the average emission increase from rivers of peat coverage > 30% and the right panel shows the average emission increase from all investigated rivers. The grey shaded area indicates the DOC leaching range estimated for enhanced weathering.

The enhanced weathering induced carbon leaching into peat-draining rivers causes river CO\textsubscript{2} emissions that potentially re-emit (6 – 32)% of the CO\textsubscript{2} uptake.

5.5.3. Response of river DOC and DIC discharge to enhanced weathering

The majority of riverine carbon that is not emitted to the atmosphere is discharged into the ocean. This carbon export in the form of DOC and DIC was derived via multiplication of modelled DOC and DIC concentrations in the individual rivers with their respective discharges. To derive the total carbon export from Sumatra’s rivers into the ocean, the carbon export from individual rivers was weighted by river discharge and extrapolated to the surface area of Sumatra. The natural box-model run resulted in carbon export of 7.5 TgC yr-1 in the form of DIC and 4.6 TgC yr-1 in the form of DOC. These export rates are of the same order of magnitude as previous estimates for Sumatra stated by Wit et al. (2018).

To compare this carbon export to the CO\textsubscript{2} uptake by enhanced weathering, oceanic carbon yields (river carbon export per catchment area) of DOC and DIC were derived via equation (3.3). Natural carbon yields from the individual rivers range between 3 and 15 gC m-2 yr-1 for DIC and between 4 and 76 gC m-2 yr-1 for DOC. Average DIC and DOC yields from Sumatra result in 11.7 gC m-2 yr-1 and 6.9 gC m-2 yr-1, respectively (Table 5.3).
Increased rates of DIC and DOC leaching from soils significantly increase the oceanic carbon export. For the DIC leaching increase estimated for enhanced weathering (Table 5.2), the oceanic DIC export from Sumatra’s rivers increases by $16 - 32$ TgC yr$^{-1}$ while the DOC export decreases by about 1 TgC yr$^{-1}$. For the combined increase in DIC and DOC leaching, the oceanic DIC export increases by $11 - 33$ TgC yr$^{-1}$ and the oceanic DOC export changes by -1 to 4 TgC yr$^{-1}$ (Figure 5.8).

Figure 5.8: Response of river DOC and DIC export to enhanced DIC and DOC leaching from soils. The left panel shows the response to increased DIC leaching rates in the form of HCO$_3$$. The right panel shows the response to increased DOC leaching rates in addition to a DIC leaching increase of 40 gC m$^{-2}$ yr$^{-1}$. Grey shaded areas represent the estimated range of enhanced DIC and DOC leaching caused by enhanced weathering.

Enhanced weathering causes oceanic carbon yields to increase by $24 - 71$ gC m$^{-2}$ yr$^{-1}$ in the form of DIC and by $2 - 9$ gC m$^{-2}$ yr$^{-1}$ in the form of DOC (Table 5.3). Accordingly, $(22 - 80)$ gC m$^{-2}$ yr$^{-1}$ of the additionally leached carbon reach the ocean, while $2 - 16$ gC m$^{-2}$ yr$^{-1}$ are emitted to the atmosphere. These enhanced yields from Sumatra’s rivers do not add up with the increase in carbon leaching (Table 5.2). This is likely caused by the different ways of deriving average yields from Sumatra, as CO$_2$ yields were derived via weighing by catchment areas while DOC yields and DIC yields from Sumatra were derived via weighing by river discharge.

More than 70% of the carbon that is leached into rivers due to enhanced weathering reach the ocean in the form of DIC.
5. Response of tropical peat areas to enhanced weathering

<table>
<thead>
<tr>
<th></th>
<th>CO$_2$ yield</th>
<th>DOC yield</th>
<th>DIC yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural</td>
<td>(8 − 22) gC m$^{-2}$ yr$^{-1}$</td>
<td>7 gC m$^{-2}$ yr$^{-1}$</td>
<td>12 gC m$^{-2}$ yr$^{-1}$</td>
</tr>
<tr>
<td>enhanced weathering induced increase</td>
<td>(2 − 16) gC m$^{-2}$ yr$^{-1}$</td>
<td>(-2 − 9) gC m$^{-2}$ yr$^{-1}$</td>
<td>(24 − 71) gC m$^{-2}$ yr$^{-1}$</td>
</tr>
</tbody>
</table>

Table 5.3: Natural river carbon yields from Sumatra and their response to the enhanced weathering induces increase in DIC and DOC leaching from soils (Table 5.2). Atmospheric CO$_2$ yields as well as oceanic DOC and DIC yields were calculated from CO$_2$, DOC and DIC concentrations derived via the river box-model according to equation (3.4) and the equations (3.3).

5.6. Response of coastal carbon emissions to enhanced weathering

Coastal carbon dynamics are impacted by enhanced weathering through the changed carbon export from rivers that was discussed in subsection 5.5.3. The impact of these changes on carbon emissions from the coast were derived via calculation of coastal water mixing. Subsection 5.6.1 explains the implemented mixing calculations and subsection 5.6.2 discusses the response of carbon emissions from Sumatra’s estuaries and coastal oceans to enhanced weathering.

5.6.1. Description of coastal water mixing calculations

CO$_2$ concentrations in the river estuaries (≤ 3 km distance from shore) and in the coastal ocean (3 km − 67 km distance from shore, Figure 5.1) of Sumatra were estimated based on water mixing between river water and ocean water. Concentrations of carbon parameters in the river water were derived via the box-model and concentrations in the ocean water were assumed to be DIC$_{ocean}$ ≈ 1,900 µmol L$^{-1}$ and TA$_{ocean}$ ≈ 2,200 µmol L$^{-1}$ (Schlitzer, 2021). Additional assumptions for the calculations were that the total river alkalinity is given by the carbonate alkalinity (TA$_{discharge}$ = CA$_{river}$) and that the whole DOC is oxidized to DIC when entering the estuaries (DIC$_{discharge}$ = DIC$_{river}$ + DOC$_{river}$).

The mixing ratios between river water and ocean water in estuaries and the coastal ocean were derived based on salinity. As salinity increases linearly with the amount of salt in a specific water volume, the river water fraction within estuaries and the coastal ocean can be estimated from average salinities in the respective regions. The estuarine area lies within the salinity range of approximately 0 to 25 (section 5.2). However, due to the uneven areal distribution of salinities in this estuarine region (Wit et al., 2018), average estuarine salinity is not equivalent to the mean value between the lower and upper salinity bounds.
5. Response of tropical peat areas to enhanced weathering

The largest fraction of the estuarine area is located outside the river mouths with \(S > 10 \) and the increase in salinity per distance from shore weakens for greater distance from the river mouth (Wit et al., 2018). Therefore, an average estuarine salinity of \(S_{\text{est}} \approx 20 \) is used. For the coastal ocean, where the salinity increase with distance from shore is fairly constant (Wit et al., 2018), the mean salinity of \(S_{\text{co}} \approx 28.9 \) is used.

From known salinity of the ocean \(S_{\text{ocean}} \approx 32.8 \), Schlitzer, 2021) and the rivers \(S_{\text{river}} \approx 0.001 \), subsection 5.5.1) fractions of river water in estuaries \((a_{\text{est}}) \) and in the coastal ocean \((a_{\text{co}}) \) can be derived according to:

\[
a_{\text{est}} = 1 - \frac{S_{\text{est}} - S_{\text{river}}}{S_{\text{ocean}} - S_{\text{river}}} \quad \text{and} \quad a_{\text{co}} = 1 - \frac{S_{\text{co}} - S_{\text{river}}}{S_{\text{ocean}} - S_{\text{river}}}
\] (5.3)

Based on those fractions, concentrations of DIC and TA in the estuaries and the coastal ocean were calculated to

\[
\begin{align*}
\text{DIC}_{\text{est/co}} &= a_{\text{est/co}} \cdot \text{DIC}_{\text{river}} + (1 - a_{\text{est/co}}) \cdot \text{DIC}_{\text{ocean}} \\
\text{TA}_{\text{est/co}} &= a_{\text{est/co}} \cdot \text{TA}_{\text{river}} + (1 - a_{\text{est/co}}) \cdot \text{TA}_{\text{ocean}}
\end{align*}
\] (5.4)

From these DIC and TA concentrations, estuarine and coastal \(\text{CO}_2 \) concentrations were derived. The CO2SYS program (Humphreys et al., 2020; Lewis and Wallace, 1998) was used for these coastal calculations of the carbonate system, as here the accurate calculations based on salinity are essential. For the earlier in-river box-model calculations (subsection 5.5.1), where high concentrations of organic acids impair the results of the CO2SYS program (Lyu et al., 2019), the equations explained in subsection 2.2.2 were used.

5.6.2. Response of coastal \(\text{CO}_2 \) emissions to enhanced weathering

Average natural \(\text{CO}_2 \) concentrations in Sumatra’s estuaries and coastal ocean result in approximately 50 \(\mu \text{mol} \text{L}^{-1} \) and 15 \(\mu \text{mol} \text{L}^{-1} \), respectively. Atmospheric \(\text{CO}_2 \) emissions were derived via multiplication of the corresponding atmospheric \(\text{CO}_2 \) fluxes with the respective estuarine and coastal areas (Figure 5.1). Atmospheric fluxes were derived according to equation (2.5) with a coastal exchange coefficient of \(k_{600} = 12 \text{cm} \text{h}^{-1} \) (Wit et al., 2018). Emissions result in 11.6 TgC yr\(^{-1}\), with 6.2 TgC yr\(^{-1}\) being emitted from the river estuaries and 5.4 TgC yr\(^{-1}\) from the coastal ocean.

\(\text{CO}_2 \) emissions from the coast initially decrease for enhanced soil DIC leaching (Figure 5.9). This is caused mainly by the accompanying increase in water pH that shifts the DIC towards carbonates and away from \(\text{CO}_2 \) (Figure 2.6) and thereby favors carbonate dissolution in
5. Response of tropical peat areas to enhanced weathering

the ocean. At higher rates of DIC leaching the increased carbon supply overcompensates
the uptake by the ocean. River estuary emissions increase above natural emissions for a
DIC leaching increase of $\geq 5 \text{gC m}^{-2} \text{yr}^{-1}$. Further from the shore, in the coastal ocean,
emissions are below natural for a DIC leaching increase of up to $30 \text{gC m}^{-2} \text{yr}^{-1}$. Total
coastal emissions exceed natural emissions for a leaching rate increase of $\geq 12 \text{gC m}^{-2} \text{yr}^{-1}$
(Figure 5.9).

![Figure 5.9: CO\textsubscript{2} emission increase from estuaries and the coastal ocean for enhanced
DOC and DIC leaching from soils. Coastal CO\textsubscript{2} emissions were derived based on water
mixing calculations (subsection 5.6.1). The left panel shows the emission response to
DIC leaching in the form of HCO\textsubscript{3} and the right panel shows the emission response
to increased DOC leaching in addition to DIC leaching that is fixed at an increase
of $40 \text{gC m}^{-2} \text{yr}^{-1}$. Grey shaded areas indicate the estimated DIC and DOC leaching
increase due to enhanced weathering.]

For the estimated enhanced weathering induced DIC leaching increase, total coastal emissions
increase by $(20 - 70)\%$, which corresponds to an absolute increase of $(2.4 - 8.2) \text{TgC yr}^{-1}$.
$(-0.3 - 1.4) \text{TgC yr}^{-1}$ of these are emitted from the estuaries and $(2.7 - 6.8) \text{TgC yr}^{-1}$ are
emitted from the coastal ocean. An increase in DOC leaching in addition to increased DIC
leaching massively increases emissions from the estuaries and from the coastal ocean (Figure
5.9). Considering enhancement in DIC leaching of $40 \text{gC m}^{-2} \text{yr}^{-1}$ and the estimated
increase in DOC leaching of $(2 - 17) \text{gC m}^{-2} \text{yr}^{-1}$, total coastal CO\textsubscript{2} emissions increase by
$(70 - 380)\%$ compared to natural emissions (Figure 5.9).

Variation of DIC leaching mainly effects coastal ocean emissions, while it shows no sig-
nificant effect on estuary emissions (Figure 5.10). Considering the DIC and DOC leaching
increase estimated for enhanced weathering (Table 5.2), the total coastal emissions in-
crease by \((8 - 44) \text{TgC yr}^{-1}\), of which \((2 - 25) \text{TgC yr}^{-1}\) are emitted from the estuaries and \((6 - 19) \text{TgC yr}^{-1}\) are emitted from the coastal ocean.

In order to compare the coastal emission increase to the CO\(_2\) uptake by enhanced weathering, coastal CO\(_2\) yields (emission increase per respective land area) were derived by division of absolute emissions with Sumatra’s surface area (Table 5.4). The resulting fluxes indicate that at between 36% and potentially more than 198% of the CO\(_2\) uptake by enhanced weathering could be re-emitted from coastal regions. However, it needs to be mentioned that the carbon loss through emissions from the estuaries was not considered when deriving emissions from the coastal ocean. While that impact might be negligible for the lower bound estimates, it likely causes overestimation in the upper bound of coastal ocean emissions.

The feedback of coastal areas on enhanced weathering is extremely uncertain but could potentially cause re-emission of \((36 - 198)\%\) of the CO\(_2\) uptake.

Table 5.4: Natural carbon yields from Sumatra’s coast and their response to increased DIC and DOC leaching from soils caused by enhanced weathering application (Table 5.2). CO\(_2\) yields from estuaries and from the coastal ocean were calculated from CO\(_2\) concentrations derived through water mixing described in subsection 5.6.1.
5. Response of tropical peat areas to enhanced weathering

5.7. Sumatra’s carbon emission response to enhanced weathering

This section summarizes the response of atmospheric carbon fluxes from Sumatra to enhanced weathering. Enhanced soil CO$_2$ emissions due to the enhanced weathering induced increase in soil pH amount to (0.9 – 6.0) TgC yr$^{-1}$ (Figure 5.11) which represents (8 – 26) % of the estimated enhanced weathering CO$_2$ uptake for Sumatra ((11.6 – 23.2) TgC yr$^{-1}$). Additionally, soil carbon is mobilized via enhanced DOC leaching from soils. This DOC leaching mobilizes (0.9 – 7.9) TgC yr$^{-1}$. Thus, the total carbon mobilisation from Sumatra’s soils yields (1.8 – 13.9) TgC yr$^{-1}$ (Figure 5.11).

Captured CO$_2$ is assumed to be leached into rivers in the form of HCO$_3^-$ This DIC leaching of (11.6 – 23.2) TgC yr$^{-1}$ in addition to the DOC leaching increase emissions from Sumatra’s rivers, estuaries and coastal ocean by (0.9 – 7.4) TgC yr$^{-1}$, (1.0 – 24.7) TgC yr$^{-1}$ and (3.2 – 21.2) TgC yr$^{-1}$, respectively (Figure 5.11). With an enhanced weathering uptake of up to 23 TgC yr$^{-1}$, this implies that in a worst-case scenario the increase in carbon emissions due to feedback reactions on enhanced weathering application in peat regions could cause re-emission of (50 – 250) % of the CO$_2$ uptake by enhanced weathering. Since the CO$_2$ emission feedback strongly depends on the response of DOC leaching rates to enhanced weathering, more research into the response of those leaching rates to increased soil decomposition is
needed. Additionally, the estimates for coastal CO$_2$ emissions are based on simplified mixing calculations and need to be viewed with caution.

The response of CO$_2$ emissions from Sumatra to enhanced weathering could offset (50 – 250) % of the CO$_2$ uptake.

By exclusion of the highly uncertain emissions from estuaries and the coastal ocean, the response of CO$_2$ emissions from soils and rivers to enhanced weathering would reduce existing enhanced weathering CO$_2$ uptake estimates by (15 – 58) %. This would leave a net CO$_2$ uptake of roughly 21 gC m$^{-2}$ yr$^{-1}$. This indicates that enhanced weathering could potentially create a carbon sink over land areas that would decrease tracked CO$_2$ emissions from specific countries while creating a CO$_2$ source from coastal areas.

5.8. Conclusion

This chapter aimed to quantify the response of CO$_2$ emissions from tropical peat regions to application of enhanced weathering. Enhanced weathering is a CO$_2$ removal strategy that accelerates the CO$_2$ uptake by weathering via distribution of rock-powder over land. During weathering, the captured CO$_2$ is changed into HCO$_3^-$.

Enhanced HCO$_3^-$ supply impacts the soil carbonate system and increases soil pH. It was estimated how enhanced weathering induced pH changes in tropical peat areas impact CO$_2$ emissions from peat soils, peat-draining rivers and the coast.

Results show that application of enhanced weathering on peat soils could cause enhanced soil decomposition such that soil CO$_2$ emissions increase by 12 to 81 gC m$^{-2}$ yr$^{-1}$. Those soil emissions alone could potentially be higher than the CO$_2$ uptake by enhanced weathering. However, the results are limited by data scarcity regarding the response of peat carbon mobilisation to changes in soil pH. Since no data was available for tropical peat, estimates in this chapter were derived based on published correlations by Kang et al. (2018) that are based on temperatures of 15 °C. Furthermore, it is possible that captured CO$_2$ is directly re-emitted from acidic peat soils. This process would lower the net CO$_2$ uptake by enhanced weathering as well as its impact on soil pH and the associated mechanisms discussed in this chapter.

A case study for enhanced weathering application on Sumatra was performed as representative for tropical peat regions. Soil emissions from Sumatra yielded an increase in CO$_2$ emissions of (2 – 13) gC m$^{-2}$ yr$^{-1}$, resulting in re-emission of (8 – 52) % of the CO$_2$ captured.
by enhanced weathering. The enhanced soil decomposition additionally increases leaching of DOC into peat-draining rivers.

In rivers, the enhanced carbonate supply is found to increase the pH and thereby shift the carbonate system away from CO₂. However, increased in-river decomposition overcompensates this CO₂ decrease. The overall feedback of river emissions on increased carbonate supply offsets 2 to 8% of the CO₂ captured by enhanced weathering. The increased DOC supply additionally increases in-river decomposition, whereby rivers of high peat coverage show a weaker response due to O₂ depletion. The overall emission feedback of rivers on increased DIC and DOC leaching is found to offset (8–64) % of the CO₂ uptake by enhanced weathering.

Changes in the in-river carbon dynamics impact the oceanic carbon export and thereby influence CO₂ emissions from estuaries and the coastal ocean. The increased carbonate supply initially favours the CO₂ uptake by the ocean and causes decreased CO₂ emissions for enhanced DIC leaching of up to 20 gC m⁻² yr⁻¹. However, the additional increase in coastal emissions due to DOC leaching results to be more important. The results indicate that coastal emissions have the potential to completely compensate the CO₂ uptake by enhanced weathering. This strong dependence on DOC leaching shows the need for further studies on the impact of soil decomposition on leaching rates, which are highly uncertain.

Overall, CO₂ emissions from Sumatra’s soils and rivers could reduce the net enhanced weathering CO₂ uptake by (15 – 58) %. The inclusion of CO₂ emissions from Sumatra’s coast increases the estimated re-emission to at least 50 % with potentially more than 150 % of the estimated CO₂ uptake. These results show that the regional feedback in tropical peat areas has the potential to offset the CO₂ uptake by enhanced weathering. This suggests that tropical peat areas should be excluded from enhanced weathering application.
6. Towards validation of wetland CH$_4$ emissions

This chapter aims to evaluate CH$_4$ fluxes from wetland models by the use of atmospheric modelling and satellite comparisons. Initially, a full evaluation of the methane emission datasets listed in subsection 3.3.2 was planned. However, the discovery of unexpectedly high nudging fluxes shifted the study objective as will be further explained within this chapter.

Section 6.1 introduces the research topic and objective. Section 6.2 provides a description of the selected study regions. Section 6.3 illustrates results from a test study that was performed to check the study’s feasibility. Section 6.4 visualizes and compares the different CH$_4$ emission datasets included in this study. Section 6.5 presents the results of model runs including nudging fluxes and the correlation of resulting CH$_4$ concentrations to satellite data. Section 6.6 illustrates results derived from model runs without nudging and provides a comparison between the model CH$_4$ budget and budgets published in literature. Finally, section 6.7 summarizes the findings within this chapter.

6.1. Background and objective

Wetlands are the largest natural source of atmospheric CH$_4$ (Saunois et al., 2020). They contribute about one-third of global CH$_4$ emissions (Kirschke et al., 2013) and dominate the inter-annual variability of global CH$_4$ concentrations (Bousquet et al., 2006). Yet, there are high uncertainties in estimates of wetland CH$_4$ emissions and their response to a changing climate (Kirschke et al., 2013).

In a recent study by the Global Carbon Project (GCP), a variety of CH$_4$ emission data products were compiled to understand and quantify the global CH$_4$ budget (Saunois et al., 2020). That study revealed strong discrepancies between process-based (bottom-up) emission estimates and those derived from atmospheric inversions (top-down, Table 6.1). Saunois et al. (2020) highlight that the most important source of uncertainty in their budget is attributable to natural emissions, especially those from wetlands and inland waters.

Bottom-up estimates of the wetland emissions stated by Saunois et al. (2020) were determined from data derived by the thirteen land surface models listed in Table 3.2. In the following, wetland CH$_4$ emission estimates from these thirteen land surface models will be analysed. The initial aim of this study was to evaluate these data for major tropical wetland regions by use of the TM5-MP atmospheric chemistry and transport model described in section 3.3 and the satellite retrievals described in section 3.4. Forward simulations of atmospheric CH$_4$ were derived based on the individual wetland emission datasets. From the resulting atmospheric
6. Towards validation of wetland CH\textsubscript{4} emissions

CH\textsubscript{4} concentrations, column-averaged dry-air mole fractions of CH\textsubscript{4} (XCH\textsubscript{4}) were derived and compared to satellite retrievals.

<table>
<thead>
<tr>
<th>(Tg C yr-1)</th>
<th>agriculture & waste</th>
<th>fossil fuel & BMB</th>
<th>wetlands</th>
<th>other natural emissions</th>
<th>total sinks</th>
<th>atmospheric burden</th>
</tr>
</thead>
<tbody>
<tr>
<td>bottom-up</td>
<td>206</td>
<td>158</td>
<td>149</td>
<td>222</td>
<td>625</td>
<td>112</td>
</tr>
<tr>
<td>top-down</td>
<td>217</td>
<td>141</td>
<td>181</td>
<td>37</td>
<td>556</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>(207 – 240)</td>
<td>(103 – 167)</td>
<td>(159 – 200)</td>
<td>(21 – 50)</td>
<td>(501 – 574)</td>
<td>(0 – 49)</td>
</tr>
</tbody>
</table>

Table 6.1: Global CH\textsubscript{4} budget as published by the GCP (Saunois et al., 2020). Emission estimates for the individual sectors are based on process-based studies (bottom-up) and atmospheric inversions (top-down).

However, the TM5-MP model adds additional CH\textsubscript{4} fluxes (nudging fluxes) to reproduce realistic atmospheric CH\textsubscript{4} concentrations. Those fluxes impact the modelled CH\textsubscript{4} concentrations and complicate the interpretation of inter-annual variations. Thus, the aim of this study shifted to an assessment of the impact that those nudging fluxes have on the retrieved concentrations and an evaluation of the internal model CH\textsubscript{4} budget to investigate why those nudging fluxes are needed.

6.2. Study Area

The five wetland regions that have been selected for this study are the Amazon, Pantanal, Congo, Ganges and Southeast Asian regions (Figure 6.1).

![Figure 6.1: Map of the selected tropical wetland regions.](image)
These regions represent tropical wetland CH$_4$ emission hotspots. They all contain significant wetland fractions and are at least partially located within the tropics (23°S to 23°N, Table 6.2).

<table>
<thead>
<tr>
<th>Region</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon</td>
<td>The Amazon region contains the western part of the Amazon Basin that includes the world’s largest tropical forest. Wetlands cover more than 800,000 km2 of the Amazon catchment (Hess et al., 2015).</td>
</tr>
<tr>
<td>Congo</td>
<td>The Congo region contains the Congo Basin that includes the world’s second largest tropical forest. Almost one-third (360,000 km2) of the Congo catchment is covered by wetlands (Bwangoy et al., 2010).</td>
</tr>
<tr>
<td>SE Asia</td>
<td>The Southeast Asian region includes the Malaysian Peninsula, Borneo, Sumatra, Java and Sulawesi. Southeast Asia contains large areas of peat soils in the forms of undisturbed peat swamp forest as well as disturbed peat under plantations.</td>
</tr>
<tr>
<td>Ganges</td>
<td>The Ganges region includes the whole Ganges-Brahmaputra Basin. The majority of wetlands in this region are located close to the Ganges-Brahmaputra-Meghna Delta in Bangladesh that contains almost 80,000 km2 of wetlands (Islam, 2016).</td>
</tr>
<tr>
<td>Pantanal</td>
<td>The Pantanal region includes the most southern part of the Amazon Basin with the Mamore floodplain in addition to the Pantanal wetland. The Pantanal is the largest South American savannah floodplain, with a total area of 138,183 km2 (Bastviken et al., 2010)</td>
</tr>
</tbody>
</table>

Table 6.2: Description and location of selected wetland regions

6.3. Impact of individual wetlands on regional atmospheric XCH$_4$

In order to determine whether the CH$_4$ emissions from individual wetlands result in regional variations of XCH$_4$ that can be detected by satellite, test model runs were performed. After a 7-year spin-up, the TM5-MP model was run for the years 2006 to 2009 with the model’s internal wetland CH$_4$ emissions from the LPJ-WHyMe dataset (Spahni et al., 2011). Three additional runs were performed, where wetland emissions from specific regions were excluded. Comparatively large regions with huge wetland extent were chosen for this experiment: 1) South American wetlands including the Amazon and Pantanal region, 2) African wetlands including the Congo and Lake Victoria regions and 3) Asian wetlands in the region of the Ganges-Brahmaputra-Meghna Delta (Figure 6.2).

Average emissions from the three regions are approximately 42 TgCH$_4$ yr$^{-1}$ from the South American region, 40 TgCH$_4$ yr$^{-1}$ from the African region and 16 TgCH$_4$ yr$^{-1}$ from the Asian region. The strongest response to the removal of wetland emissions is visible in the Amazon region, where XCH$_4$ generally decreases and the seasonal XCH$_4$ amplitude is reduced by approximately 20 ppb (\approx 50%, Figure 6.2). Removal of wetland emissions from the Congo region results in much weaker changes of atmospheric XCH$_4$ (\approx 5 ppb) with no impact on
6. Towards validation of wetland CH$_4$ emissions

the seasonality (Figure 6.2). In the Ganges region, the emission removal results in a decrease in the seasonal XCH$_4$ maxima of approximately 30 ppb ($\approx 50\%$), while it shows no impact on the XCH$_4$ minima (Figure 6.2).

![Figure 6.2: Impact of emissions from individual wetlands on atmospheric XCH$_4$. The map shows the global distribution of wetland CH$_4$ emissions from the LPJ-WHyMe dataset (Spahni et al., 2011) that was used for these model runs. Black rectangles denote the regions from which wetland CH$_4$ emissions were individually excluded to study their impact on atmospheric XCH$_4$. The three panels below show time series of modelled XCH$_4$ within these regions with and without emissions from the respective region. From left to right, they show XCH$_4$ in the Amazon, Congo and Ganges-Brahmaputra-Meghna region.](image)

The random error of single satellite retrievals in the EMMA product is ≈ 14 ppb with a regional bias to ground-based retrievals at sites of the Total Carbon Column Observing Network (TCCON) of ≈ 4 ppb (Reuter et al., 2020). Thus, the observed changes in seasonal XCH$_4$ for exclusion of regional wetlands of up to 30 ppb indicate that regional wetland emissions represent an observable fraction of the atmospheric XCH$_4$. However, the atmospheric XCH$_4$
response shown in Figure 6.2 is likely an underestimation due to the impact of nudging fluxes in the model. This will be further discussed in section 6.5.

CH$_4$ emissions from individual wetlands impact the regional XCH$_4$ concentrations and variations to a degree that is observable by satellite.

6.4. Differences between the wetland emissions datasets

In this section, the spatial distribution and absolute emissions stated in the different wetland CH$_4$ emission datasets (Table 3.2) are compared. Subsection 6.4.1 focuses on emissions from the diagnostic datasets that were derived based on uniform wetland extent and meteorology. Subsection 6.4.2 discusses emissions from the prognostic datasets derived from wetland extent and meteorology individually chosen by the different models.

6.4.1. Diagnostic wetland CH$_4$ emission datasets

As described in subsection 3.3.2, diagnostic datasets were derived using wetland extent and meteorology from WAD2M (Zhang et al., 2021). Global wetland CH$_4$ emissions in the thirteen diagnostic datasets range from 102 TgCH$_4$ yr$^{-1}$ in the TRIPLEX-GHG dataset to 180 TgCH$_4$ yr$^{-1}$ in the JULES dataset with an average of 148 TgCH$_4$ yr$^{-1}$ (Table 6.3). The global emission distribution shows high emissions from the wetland regions selected for this study (Figure 6.3). In general, emissions from tropical regions are high due to anaerobic decomposition in carbon rich tropical wetlands that is promoted by the warm tropical climate.

![Figure 6.3: Global map of wetland CH$_4$ emissions. Data represent the average of the thirteen diagnostic wetland emission datasets. Black rectangles illustrate the wetland regions that were selected for this study. Emission maps for the individual datasets are shown in the appendix in Figure A.7.](image-url)
6. Towards validation of wetland CH$_4$ emissions

The majority of wetland CH$_4$ emissions occur in tropical regions with 30% being emitted between 5°S and 5°N and 50% being emitted between 12°S and 12°N (Figure 6.4). Three-quarters of global wetland CH$_4$ emissions are emitted within the 30° latitude bands and northern high latitude peat soils between 50°N and 70°N emit more than half of the remaining emissions (Figure 6.4).

Figure 6.4: Latitudinal distribution of wetland CH$_4$ emissions. Data are based on average annual emissions calculated from the 13 diagnostic wetland emission datasets. Shaded areas indicate equatorial regions that include 30%, 50% and 70% of the global wetland CH$_4$ emissions.

Flux estimates for the individual study regions vary strongly (Figure 6.5). The highest fluxes are estimated for the Amazon and Congo regions. For the Amazon region, CH$_4$ emission estimates range from 2.6 gCH$_4$ m$^{-2}$ yr$^{-1}$ to 12.2 gCH$_4$ m$^{-2}$ yr$^{-1}$. For the Congo region, fluxes range from 2.0 gCH$_4$ m$^{-2}$ yr$^{-1}$ to 13.9 gCH$_4$ m$^{-2}$ yr$^{-1}$ (Figure 6.5).

<table>
<thead>
<tr>
<th>emissions (TgCH$_4$ yr$^{-1}$)</th>
<th>Amazon</th>
<th>Congo</th>
<th>SE Asia</th>
<th>Ganges</th>
<th>Pantanal</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>16.8</td>
<td>10.1</td>
<td>11.4</td>
<td>2.9</td>
<td>6.2</td>
<td>148.1</td>
</tr>
<tr>
<td>median</td>
<td>16.9</td>
<td>9.9</td>
<td>10.3</td>
<td>2.5</td>
<td>6.2</td>
<td>148.4</td>
</tr>
<tr>
<td>standard deviation</td>
<td>7.4</td>
<td>5.2</td>
<td>5.4</td>
<td>1.9</td>
<td>2.1</td>
<td>23.0</td>
</tr>
</tbody>
</table>

Table 6.3: Average regional emissions from selected wetland regions as well as global average emissions. Mean and median emissions as well as standard deviation based on annual emissions from the 13 diagnostic datasets. Emissions from the individual datasets are listed in the appendix in Table A.9

Though CH$_4$ emissions from Southeast Asia are also high, the modelled fluxes of (0.3 – 3.0) gCH$_4$ m$^{-2}$ yr$^{-1}$ are significantly lower than those for the other two equatorial wetland
regions (Figure 6.5). This is caused by the fact that a large fraction of the Southeast Asian grid box is covered by ocean. Fluxes derived from the Pantanal and Ganges regions are \((0.9 - 4.3) \text{ gCH}_4 \text{ m}^{-2} \text{ yr}^{-1}\) and \((0.4 - 3.5) \text{ gCH}_4 \text{ m}^{-2} \text{ yr}^{-1}\), respectively.

The datasets additionally show strong differences in the seasonality of regional CH$_4$ fluxes. For example in the Amazon region, the LPJ-MPI dataset shows a strong emission seasonality with an amplitude of approximately \(5 \text{TgCH}_4 \text{ m}^{-2} \text{ yr}^{-1}\). The DLEM and TEM-MDM datasets, in contrast, barely show any seasonality at all (Figure 6.6). Some, but not all, of the datasets show an increase in the seasonal emission amplitude for the years 2009 and 2013. Regional emission seasonality for the other selected wetland regions are shown in the appendix A.4.2.

Total wetland CH$_4$ emissions for the selected wetland regions were derived from the fluxes in Figure 6.5 and the respective extent of the region’s gridbox (Figure 6.1). The highest emissions come from the Amazon region, followed by the Congo and Southeast Asian regions (Table 6.3). The Pantanal and Ganges regions show significantly lower emissions than the equatorial regions (Table 6.3). Obviously, the average fluxes as well as total emissions from the selected regions strongly depend on the grid box extent that was chosen to represent these wetlands.
6. Towards validation of wetland CH$_4$ emissions

Figure 6.6: Exemplary seasonality of wetland CH$_4$ emissions for the Amazon region.
Each panel shows emissions from one of the diagnostic emission datasets. Emission seasonality derived for the other regions selected for this study as well as for the prognostic emission datasets are shown in the appendix A.4.2.

6.4.2. Prognostic wetland CH$_4$ emission datasets

Prognostic emission data were provided by nine of the thirteen wetland models. They were derived based on wetland extent and meteorology data individually chosen for the different models. The overall global emission patterns from these prognostic datasets (Figure 6.7) are similar to those derived from the diagnostic datasets (Figure 6.3). Yet, differences between the individual prognostic datasets are more pronounced than those between the diagnostic datasets.
Emission maps for the individual datasets are shown in the appendix in Figure A.8. Total emissions from the prognostic datasets range between $124\ \text{TgCH}_4\ \text{yr}^{-1}$ in the LPJ-WSL dataset and $316\ \text{TgCH}_4\ \text{yr}^{-1}$ in the LPJ-MPI dataset with average emissions of $185\ \text{TgCH}_4\ \text{yr}^{-1}$. These are higher than those derived from the diagnostic datasets. Regional prognostic emission estimates differ more than the diagnostic datasets (Figure 6.8).

The strongest difference in estimated regional fluxes was found for the Congo region, where the highest emission estimate, stated by the ORCHIDEE dataset ($13.2\ \text{gCH}_4\ \text{m}^{-2}\ \text{yr}^{-1}$), is more than 20 times higher than the lowest emission estimate, stated by the LPX dataset.
Towards validation of wetland CH$_4$ emissions

(0.6 gCH$_4$ m$^{-2}$ yr$^{-1}$). Total regional emissions from the prognostic datasets for the studied regions can be found in the appendix in Table A.10.

Emission estimates without preset wetland extent state higher CH$_4$ emissions and show higher variability between the regional fluxes.

6.5. Modelled CH$_4$ concentrations and nudging fluxes

In this section, CH$_4$ concentrations modelled based on the individual diagnostic wetland CH$_4$ emission datasets discussed in subsection 6.4.1 are compared to satellite XCH$_4$ retrievals. The initial objective of this model study was to evaluate the emission datasets through this comparison. However, evaluation of the modelled data revealed an unexpectedly high impact of internal model nudging calculations.

Subsection 6.5.1 explains the nudging calculations and shows the resulting nudging fluxes for the performed model runs. The impact of those nudging fluxes on the modelled XCH$_4$ variations and correlations to satellite data will be further examined in a follow-up study. However, subsection 6.5.2 and subsection 6.5.3 show preliminary results for the correlations of modelled XCH$_4$ concentrations and of de-trended annual XCH$_4$ variations to satellite data, respectively. As an example, these correlations will be shown for the Amazon region, while data for the other regions can be found in the appendix A.4.3.

6.5.1. Modelled nudging emissions

The surface nudging term in the TM5-MP model introduces additional fluxes that nudge the modelled CH$_4$ concentrations towards a reference field of surface CH$_4$ observations. It was included to the TM5-MP model as described by Williams et al. (2013) in order to account for uncertainties in CH$_4$ sources and sinks and to better constrain surface CH$_4$ concentrations and variations (Bândă et al., 2016). This nudging term creates seasonally dependent emissions based on the gradient between modelled CH$_4$ concentrations and reference concentrations stated in the Coupled Model Intercomparison Project Phase 6 database (CMIP6; Eyring et al., 2016). The emissions are calculated as a latitudinal polynomial but and are not allowed to vary along the longitudes (Figure 6.9).

For the model runs presented in this study, nudging calculations were performed based on a 10-day time scale. This time scale was chosen based on results from Bândă et al. (2016) that indicate this time scale to be appropriate to derive monthly variations representative of regional monthly emission signals. Bândă et al. (2016) state that compared to 3-day nudging
time scales, similar global nudging fluxes were found while local nudging was 2 to 3 times smaller. Thus, the impact of nudging fluxes on regional XCH_4 is weaker for 10-day nudging time scales than for 3-day nudging time scales.

Nudging calculations introduce additional CH_4 fluxes to the model that depend on the modelled concentrations and differ between model runs.

Comparison runs on a 3-day nudging time scale were performed to compare the impact of nudging calculations for the two time scales. Resulting nudging fluxes for the 3-day time scale are predominantly located at the equator, while nudging fluxes calculated on the 10-day time scale are more spread out and dominate in higher latitudes (Figure 6.9). This supports the results by Bândă et al. (2016) that the local seasonal impact of nudging fluxes is less dominant for the calculations on 10-day time scales. Yet, the overall nudging emissions for both time scales are in the same order of magnitude.

Figure 6.9: Global difference between model CH_4 budgets from the runs with and without wetland emissions. This budget difference is mainly driven by the nudging fluxes (latitudinal polynomial patterns) and to a smaller extent by differences in the CH_4-dependent chemical sink. The left and the right panel show differences for nudging timescales of 3 days and 10 days, respectively.

6.5.2. Correlation of modelled XCH_4 with satellite data

In order to evaluate the individual wetland emission datasets, modelled XCH_4 for specific wetland regions was compared to data derived via satellite measurements. For each wetland CH_4 emission dataset (Table 3.2), a model run for the years 2000-2018 was performed. Atmospheric composition in 2000 was set to results from test runs using the LPJ-WHyMe wetland emissions. To allow for a solid comparison between the model results and satellite data, the models were sampled at the same time and location as the satellite observations and the measurement-specific averaging kernels were applied.
This section focuses on data derived for the Amazon region. Modelled data for other regions can be found in the appendix A.4.3. In the Amazon region, modelled concentrations based on all emission datasets were able to reproduce the atmospheric XCH$_4$ fairly well (Figure 6.10).

Figure 6.10: Time series of modelled and measured XCH$_4$ in the Amazon region. Black data represent the median of monthly satellite XCH$_4$ observations. Each panel shows correlation to one of the derived model runs, whereby each run is based on one of the diagnostic wetland CH$_4$ emission datasets. Model values at specific time and location of the satellite observation as well as the median monthly concentrations from the runs are shown. Correlation coefficients derived for the individual datasets are listed in Table A.11.
6. Towards validation of wetland CH$_4$ emissions

Correlation coefficients between modelled and measured monthly median XCH$_4$ range between 0.82 and 0.85 and root mean square errors are between 14 ppb and 23 ppb (Table 6.4). The best correlation of monthly median values in the Amazon region is resulting from the model run based on the JSBACH dataset (Table 6.4).

<table>
<thead>
<tr>
<th>CLASS- CTM</th>
<th>DLEM</th>
<th>ELM</th>
<th>JS- BACH</th>
<th>JULES</th>
<th>LPJ- GUESS</th>
<th>LPJ- MPI</th>
<th>LPJ- WSL</th>
<th>ORCH- IDEE</th>
<th>TEM- MDM</th>
<th>TRIP- LEX</th>
<th>VISIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0.842</td>
<td>0.837</td>
<td>0.844</td>
<td>0.853</td>
<td>0.836</td>
<td>0.824</td>
<td>0.825</td>
<td>0.850</td>
<td>0.842</td>
<td>0.844</td>
<td>0.846</td>
</tr>
<tr>
<td>RMSE</td>
<td>16.6</td>
<td>13.8</td>
<td>22.6</td>
<td>17.2</td>
<td>23.3</td>
<td>16.0</td>
<td>20.9</td>
<td>19.6</td>
<td>14.9</td>
<td>22.3</td>
<td>13.9</td>
</tr>
</tbody>
</table>

Table 6.4: Correlation coefficients R^2 and root mean square errors (RMSE in ppb) derived for the correlation of satellite XCH$_4$ observations with modelled concentrations based on the diagnostic wetland emission datasets.

However, this good correlation with satellite observations is likely caused by the nudging fluxes that regulate modelled CH$_4$ concentrations based on reference data. Thus, it is more meaningful to investigate the interannual variation of XCH$_4$, which is mainly driven by wetland emissions (Bousquet et al., 2006) and for a 10-day nudging time scale is assumed to yield data representative for the individual emission datasets (Bánda et al., 2016).

6.5.3. Correlation of de-trended annual XCH$_4$ variations to satellite data

To derive correlations between the inter-annual variation in modelled XCH$_4$ and satellite observation of XCH$_4$, the data shown in Figure 6.10 were de-trended via subtraction of a rolling annual mean. The resulting XCH$_4$ seasonality for all wetland emission datasets shows an unexpectedly good agreement with satellite observations (Figure 6.11). It is surprising that despite large differences in the seasonality of wetland CH$_4$ emissions between the different datasets (Figure 6.6), modelled seasonal XCH$_4$ variations differ by only a few ppb (Figure 6.11). This is especially striking due to the fact that the test model run with exclusion of wetlands in the Amazon region indicated that approximately 50% of the observed XCH$_4$ variation is caused by wetland emissions (section 6.3). The lack of difference between the seasonal variations in XCH$_4$ modelled based on differing wetland emissions indicates significant corrections in the seasonality via nudging fluxes.

For correlations between the modelled and the measured XCH$_4$ seasonality, data derived between November 2005 and April 2009 were excluded. This exclusion was performed due to proceeding detector degradation in the spectral range used for the methane column retrieval in the SCIAMACHY instrument (Schneising et al., 2011). This detector degradation lowered the number of available detector pixels and caused larger scatter in retrieved data. Since data
6. Towards validation of wetland CH$_4$ emissions

in tropical regions tend to be scarce due to cloud cover over the inter tropical convergence zone (Buchwitz et al., 2005), this enlarged scatter does impact the derived median data for the investigated regions. Thus, it was decided to exclude the impacted data from the correlation. Time series from April 2009 onwards, when the GOSAT satellite retrievals provided additional data, are again included to the correlation.

Figure 6.11: Time series of de-trended XCH$_4$ seasonality in the Amazon region. Black data represent monthly median XCH$_4$ variation derived via satellite and blue data represent the modelled XCH$_4$ variation. Panels show the resulting data from model runs including the different diagnostic wetland emission datasets. The grey shaded area indicates months excluded from performed data correlations.
The best correlation in the de-trended data, like for the absolute XCH$_4$ correlation (subsection 6.5.2), was achieved by the model run using the JSBACH wetland emission dataset. For these emission data, the correlation of de-trended XCH$_4$ yielded a correlation coefficient of $R^2 = 0.53$ and a root mean square error of 7.4 ppb. Correlation of the de-trended data generally result in weaker correlation coefficients than correlation of the absolute XCH$_4$ since the considered concentration range is much smaller and outliers create large errors.

XCH$_4$ seasonalities modelled from differing wetland emission datasets show little differences despite strong discrepancies between emission seasonalities.

It needs to be mentioned again that the significance of the results shown in this section needs further evaluation, as nudging calculations impact the seasonality as well as absolute concentrations.

<table>
<thead>
<tr>
<th>CLASS-CTEM</th>
<th>DLEM</th>
<th>ELM</th>
<th>JSBACH</th>
<th>JULES</th>
<th>LPJ-GUESS</th>
<th>LPJ-MPI</th>
<th>LPJ-WSL</th>
<th>LPX</th>
<th>ORCHIDEE</th>
<th>TEM-MDM</th>
<th>TRIPLEX</th>
<th>VISIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0.444</td>
<td>0.432</td>
<td>0.442</td>
<td>0.522</td>
<td>0.434</td>
<td>0.394</td>
<td>0.504</td>
<td>0.508</td>
<td>0.467</td>
<td>0.463</td>
<td>0.440</td>
<td>0.414</td>
</tr>
<tr>
<td>RMSE</td>
<td>8.4</td>
<td>8.5</td>
<td>8.0</td>
<td>7.4</td>
<td>8.5</td>
<td>9.1</td>
<td>9.1</td>
<td>7.8</td>
<td>8.4</td>
<td>7.7</td>
<td>8.2</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Table 6.5: Correlation coefficients R^2 and root mean square errors (RMSE in ppb) derived for the correlation of satellite de-trended annual XCH$_4$ variation with modelled data based on the diagnostic wetland emission datasets. Data derived between November 2005 and April 2009 were excluded from these correlations due to detector degradation in the SCIAMACHY instrument.

6.5.4. Impact of wetlands on modelled XCH$_4$ for model runs including nudging

In order to assess the significance of the correlations derived in subsection 6.5.2 and subsection 6.5.3 for the validation of the wetland emission datasets, the impact of local wetland emissions on atmospheric XCH$_4$ and its variation need to be known. For this, model runs excluding individual wetlands analogue to the test study in section 6.3 were planned. To get a first estimate, one run that excluded all wetland emissions was performed and resulting concentrations were compared to those derived with inclusion of the diagnostic wetland emission datasets.

Exclusion of global wetland emissions mainly creates an offset in the resulting XCH$_4$ (Figure 6.12). Even for the LPJ-MPI dataset whose emission data show the strongest seasonal variation (Figure 6.6), the response in the seasonality ($(10 - 25)\%$ for the Amazon region) is weaker than it was observed for the test model runs described in section 6.3 (50\% for the
6. Towards validation of wetland CH$_4$ emissions

Amazon region). This lower impact on the seasonality is likely caused by the fact that for the test run emissions from individual wetlands were excluded, while global wetland emissions were excluded for the model results shown in Figure 6.12.

The exclusion of global wetland CH$_4$ emissions is an extreme measure and creates a strong atmospheric CH$_4$ deficit resulting in high nudging fluxes. Those nudging fluxes strongly impact atmospheric CH$_4$ concentrations and potentially seasonal CH$_4$ variations. The impact of nudging fluxes on the modelled seasonal XCH$_4$ variation likely increases for higher flux values. Thus, it is important to know the order of magnitude of the included nudging fluxes.

![Figure 6.12: Exemplary impact of emissions from wetlands based on the LPJ-MPI dataset on atmospheric CH$_4$.](image)

The map shows the global distribution of wetland CH$_4$ emissions from the LPJ-MPI dataset. The three panels below contain time series of the modelled CH$_4$ concentrations within the regions denoted by black rectangles in the map. Time series derived with and without the wetland CH$_4$ emissions are shown for the Amazon (left), Congo (middle) and Ganges (right) regions. To simplify comparison between the data seasonality, dotted lines show the data modelled without wetland emissions increased by a constant offset.
Model runs without wetland emissions result in a XCH$_4$ offset compared to other runs. Changes in the XCH$_4$ seasonality are less pronounced than expected (< 25 %).

Because of the uncertainties associated with the model nudging fluxes, model runs without nudging calculations were considered for the evaluation of wetland emission datasets. However, since the chemical CH$_4$ sink depends on absolute atmospheric CH$_4$ concentrations, it must be ensured that the overall model CH$_4$ budget yields realistic CH$_4$ concentrations. Those model runs without nudging emissions and the model CH$_4$ budgets are investigated in section 6.6.

6.6. Deficit in the modelled XCH$_4$

In this section, results from model runs without nudging calculations are evaluated to quantify the impact of nudging emissions on modelled XCH$_4$ concentrations. Subsection 6.6.1 shows modelled XCH$_4$ without nudging and discusses the resulting emission deficit. Subsection 6.6.2 investigates possible causes for this deficit via comparison of the model’s internal emission budgets to CH$_4$ budgets stated by the GCP (Saunois et al., 2020).

6.6.1. Deficit in the model CH$_4$ budget

Without the nudging fluxes, modelled XCH$_4$ concentrations are significantly lower than XCH$_4$ derived from satellite observations (Figure 6.13). The lowest concentrations are observed in the run with the TRIPLEX-GHG dataset and are roughly 300 ppb lower than satellite observations. Modelled concentrations using the ELM dataset are the closest to measured concentrations whilst still being \approx 160 ppb lower than satellite retrievals (Figure 6.13).

![Figure 6.13: Regional atmospheric XCH$_4$ from satellite retrievals and from model runs without nudging fluxes. Regions are defined as shown in Figure 6.1. Data are given as average concentrations for the year 2007.](image)
6. Towards validation of wetland CH\textsubscript{4} emissions

Nudging fluxes that were generated in the model runs with nudging to realize observed atmospheric XCH\textsubscript{4} range between 84 TgCH\textsubscript{4} yr-1 and 148 TgCH\textsubscript{4} yr-1 (Table 6.6). Model runs including more moderate wetland emissions, like the TRIPLEX-GHG dataset, naturally generate higher nudging emissions than model runs with higher wetland emissions like the JULES dataset. On average, the emission deficit in the model amounts to 120 TgCH\textsubscript{4} yr-1.

Model runs without nudging fluxes result in atmospheric XCH\textsubscript{4} that is by 150 to 300 ppb smaller than satellite observations.

This deficit in atmospheric CH\textsubscript{4} indicates that either the emissions included in the model (≈570 TgCH\textsubscript{4} yr-1 Table 3.1) are too low by about 20\% or that the CH\textsubscript{4} sinks in the model are overestimated. Subsection 6.6.2 compares the model CH\textsubscript{4} sources and sinks to budgets stated in literature to find the cause for the observed atmospheric CH\textsubscript{4} deficit.

<table>
<thead>
<tr>
<th>CLASS-CTEM</th>
<th>DLEM</th>
<th>ELM</th>
<th>JSBACH</th>
<th>JULES</th>
<th>LPJ-GUESS</th>
<th>LPJ-MPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>wetland emissions (TgCH\textsubscript{4} yr-1)</td>
<td>178</td>
<td>149</td>
<td>167</td>
<td>129</td>
<td>180</td>
<td>167</td>
</tr>
<tr>
<td>Nudging flux (TgCH\textsubscript{4} yr-1)</td>
<td>97</td>
<td>120</td>
<td>84</td>
<td>148</td>
<td>89</td>
<td>104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LPJ-WSL</th>
<th>LPX</th>
<th>ORCHIDEE</th>
<th>TEM-MDM</th>
<th>TRIPLEX</th>
<th>VISIT</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>wetland emissions (TgCH\textsubscript{4} yr-1)</td>
<td>143</td>
<td>140</td>
<td>139</td>
<td>107</td>
<td>102</td>
<td>163</td>
</tr>
<tr>
<td>Nudging flux (TgCH\textsubscript{4} yr-1)</td>
<td>130</td>
<td>126</td>
<td>135</td>
<td>148</td>
<td>161</td>
<td>103</td>
</tr>
</tbody>
</table>

Table 6.6: Global wetland emissions and generated nudging fluxes. Data are based on comparison between model simulation with and without nudging emissions for the years 2003-2008. All results are given for the diagnostic datasets.

6.6.2. Evaluation of CH\textsubscript{4} sources and sinks

CH\textsubscript{4} sources included in the TM5-MP model can be generally grouped into natural and anthropogenic emission sectors (Table 3.1). Emissions from the natural sector are dominated by wetland emissions and emissions from the anthropogenic sector are dominated by agriculture and waste emissions. Model emissions from these sectors as well as other natural emissions, other anthropogenic emissions and CH\textsubscript{4} sinks were compared to estimates from the global CH\textsubscript{4} budget by the GCP (Saunois et al., 2020, Figure 6.14).

Saunois et al. (2020) provided separate CH\textsubscript{4} budgets based on their top-down and bottom-up estimates. For most categories, the CH\textsubscript{4} emission estimates agree well (Figure 6.14). The only category where estimates differ strongly are non-wetland natural emissions with a top-down estimate of 37 TgCH\textsubscript{4} yr-1 and a bottom-up estimate of 222 TgCH\textsubscript{4} yr-1 (Figure 6.14). One explanation Saunois et al. (2020) suggest for this discrepancy is double-counting of CH\textsubscript{4}
emissions from wetlands in the bottom-up estimate of inland water emissions.

The emissions used for model calculations in this study (without nudging emissions) are within the uncertainties of the top-down emission estimates stated by Saunois et al. (2020, Figure 6.14). As discussed before, the atmospheric CH$_4$ concentrations resulting from this emission budget are significantly lower than satellite observations (Figure 6.13). Derived nudging fluxes indicate a missing CH$_4$ source of \approx 120 TgCH$_4$ yr$^{-1}$ (Table 6.6). Inclusion of these nudging fluxes to the model budget supports the bottom-up estimate of CH$_4$ emissions by Saunois et al. (2020) (Figure 6.14). This indicates that the missing CH$_4$ emissions in the model could be attributed to inland water emissions, which were not included in the TM5-MP model budget (Table 3.1).

![Figure 6.14](image.png)

Figure 6.14: Model CH$_4$ emissions and sinks in comparison to the emissions and sinks stated by the GCP (Saunois et al., 2020). All data are given as average for the decade 2008-2018. Emission budgets for model runs with and without nudging are included. A comparison of further subgroups of emissions and sinks is included in the appendix in Figure A.9.

The total CH$_4$ budget (CH$_4$ sources - CH$_4$ sinks) derived for the model runs with nudging emissions is in the same order of magnitude as the top-down estimate by the GCP, while the bottom-up estimate by the GCP yields a CH$_4$ budget that is much higher (Table 6.7). However, while all model emissions and sinks for the run with nudging emissions result in values within the uncertainties stated by the GCP bottom-up estimate, natural emissions in the model are on the lower end of that estimate and CH$_4$ sinks are on the upper side (Figure 6.14). As a consequence, the overall CH$_4$ budget for the TM5-MP model runs with
nudging emissions is in the same order of magnitude as top-down emissions and the observed atmospheric growth rates (Table 6.7). These results indicate that estimates from the top-down approach by the GCP could underestimate natural inland water emissions as well as CH$_4$ sinks, whereas the two CH$_4$ fluxes compensate each other in terms of the absolute atmospheric CH$_4$ budget.

The TM5-MP model CH$_4$ budget suggests higher inland water emissions and CH$_4$ sinks than estimates stated by the GCP top-down budget.

<table>
<thead>
<tr>
<th>Model Budget</th>
<th>Budget (TgCH$_4$ yr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model budget with nudging:</td>
<td>+19</td>
</tr>
<tr>
<td>Model budget without nudging:</td>
<td>+5</td>
</tr>
<tr>
<td>Bottom-up estimate GCP:</td>
<td>+112</td>
</tr>
<tr>
<td>Top-down estimate GCP:</td>
<td>+13</td>
</tr>
<tr>
<td>Observed atmospheric growth rate:</td>
<td>+18</td>
</tr>
</tbody>
</table>

Table 6.7: Atmospheric CH$_4$ budgets (difference between global CH$_4$ sources and sinks) from the model runs in this study and from the study by the GCP (Saunois et al., 2020). For comparison, the atmospheric growth rate observed via satellite is included as well.

6.7. Conclusion

This chapter aimed at the evaluation of wetland CH$_4$ emission datasets derived from various soil and vegetation models. The different emission datasets show strong differences in atmospheric CH$_4$ fluxes. For datasets with uniform assumptions of wetland extent, global emissions range between 102 and 180 TgCH$_4$ yr$^{-1}$, while datasets derived with individually set wetland extent vary stronger and show higher CH$_4$ emissions.

Test runs of the TM5-MP atmospheric chemistry and transport model show that fluxes from individual wetlands generate observable changes in the seasonality of local XCH$_4$ concentrations in tropical wetland regions.

Correlation of satellite data with modelled XCH$_4$ for all emission datasets agree fairly well. Yet, this agreement is mainly caused by modelled nudging fluxes that are generated based on differences between modelled CH$_4$ and reference data. Nudging calculations on 10-day time scales have been used since those were reported to yield results that represent local CH$_4$ emission in the XCH$_4$ seasonality. Yet, comparison of de-trended annual XCH$_4$ variation yielded little difference between the model runs performed for the different wetland emission datasets. Since the seasonality of wetland emissions between the datasets varies strongly, this lack of variability in modelled XCH$_4$ seasonality indicates that the modelled seasonality, like the absolute concentrations, is impacted by modelled nudging fluxes.
6. Towards validation of wetland CH$_4$ emissions

Quantification of these nudging fluxes amounts to ≈ 120 TgCH$_4$ yr$^{-1}$. Thus, CH$_4$ emissions in the model are 20% lower than they needed to be to generate atmospheric XCH$_4$ observed from satellite. This deficit in CH$_4$ emissions results in modelled XCH$_4$ that is by $(150 - 300)$ ppb lower than satellite observations.

A comparison of the internal model CH$_4$ budget to the atmospheric CH$_4$ budgets stated in the literature indicates that missing inland water emissions might be the reason for this emission deficit. However, inland water emissions at such high scales disagree with the recently published top-down estimate of CH$_4$ budgets by the GCP. Further investigation of the modelled CH$_4$ budgets indicates that this top-down estimate by the GCP might be underestimating inland water emissions as well as atmospheric CH$_4$ sinks.
7. Overall Conclusions

In this study, carbon fluxes from tropical wetlands were investigated. The study consists of three major research topics: 1) The investigation of carbon dynamics in Southeast Asian peat-draining rivers with the focus on the dependences of CO₂ emissions from those rivers, 2) the response of CO₂ emissions from tropical peat regions to the application of enhanced weathering and 3) the evaluation of CH₄ emissions from large tropical wetlands by use of atmospheric modelling and satellite observations.

Research topic 1: Carbon dynamics in peat-draining rivers

For the research of carbon dynamics in peat-draining rivers, measured data from ten Southeast Asian rivers were analysed. Prior to this study, it was assumed, that CO₂ concentrations in rivers increase linearly with increasing catchment peat coverage due to enhanced leaching and decomposition of organic carbon from peat soils into rivers.

The data collected for this study show that CO₂ concentrations in Southeast Asian peat-draining rivers stagnate for high peat coverage. Despite further increase in river DOC concentration, CO₂ concentrations are fairly constant for peat coverages > 50%.

Data evaluation based on different approaches for the limitation of DOC decomposition revealed an exponential limitation of DOC decomposition by water pH. It was found that the low pH in rivers of high peat coverage limits DOC decomposition by up to 85%. This limitation process provides an answer to the question why, in contrast to the high DOC export, CO₂ emissions from tropical peat-draining rivers are not significantly higher than emissions from temperate rivers.

Carbonate enhancement during two campaigns at one of the rivers resulted in CO₂ concentrations that were increased by almost 100%. This is explained by the pH-increasing impact of carbonates that weakens the limitation in decomposition.

Research topic 2: Feedback of tropical peat areas on enhanced weathering

Enhanced weathering is a CO₂ removal strategy that extracts CO₂ from the atmosphere while converting it into carbonates. To determine the feedback of CO₂ emissions from tropical peat regions on this carbonate enhancement and the accompanying pH increase, correlations between peat soil pH and soil carbon mobilisation as well as the pH-dependent decomposition rate determined in the first part of this study were used.

It is found that the application of enhanced weathering on peat soils could cause enhanced CO₂ emissions of (12 – 81) gC m⁻² yr⁻¹ and thereby potentially counteract the total CO₂
uptake by enhanced weathering. Furthermore, it is possible that captured CO$_2$ is directly re-emitted from acidic peat soils.

A case study for enhanced weathering application on Sumatra resulted in soil carbon mobilization of $(1.8 - 13.9)$ TgC yr$^{-1}$ of which $(0.9 - 6.0)$ TgC yr$^{-1}$ are emitted as CO$_2$. The rest is leached as DOC into rivers and together with enhanced carbonate leaching causes CO$_2$ emissions from peat-draining rivers, estuaries and the coastal ocean to increase by $(0.9 - 7.4)$ TgC yr$^{-1}$, $(1.0 - 24.7)$ TgC yr$^{-1}$ and $(3.2 - 21.2)$ TgC yr$^{-1}$, respectively.

Overall, carbon emissions from Sumatra’s soils and rivers could reduce the net enhanced weathering CO$_2$ uptake by $(15 - 58)$ %. The inclusion of CO$_2$ emissions from Sumatra’s coast increases the estimated re-emission to at least 50 % and potentially more than 150 % of the enhanced weathering CO$_2$ uptake. These results indicate that the regional feedback in tropical peat regions has the potential to offset the CO$_2$ uptake by enhanced weathering. This suggests that tropical peat areas should be excluded from enhanced weathering application.

Research topic 3: Evaluation of modelled wetland CH$_4$ emissions

To study the CH$_4$ emissions from major wetlands, the evaluation of datasets derived from 13 soil and vegetation models via atmospheric modelling and correlation to satellite data was planned. Comparison of emission datasets from the different soil and vegetation models revealed strong differences in regional atmospheric CH$_4$ fluxes and flux seasonality. For datasets with uniform assumptions of wetland extent, global emissions ranged between 102 and 180 TgCH$_4$ yr$^{-1}$, while datasets derived with individually set wetland extents varied stronger and showed higher CH$_4$ emissions.

Comparison of modelled XCH$_4$ to satellite observations resulted in a good correlation for all emission datasets. The best correlation was found for the JSBACH dataset. However, these good correlations were impacted by nudging fluxes in the model. Model runs excluding nudging revealed a discrepancy of $(150 - 300)$ ppb by which modelled data were lower than satellite observations. Examination of the model CH$_4$ budget revealed missing CH$_4$ sources of ≈ 120 TgCH$_4$ yr$^{-1}$. Thus, the CH$_4$ emissions used by the model were by 20% too low.

The model emissions used in this study agree with top-down CH$_4$ budgets stated in literature. Comparison to literature bottom-up CH$_4$ budgets indicated that missing inland water emissions might be the cause of the observed CH$_4$ deficit. Further evaluation of the model CH$_4$ budgets suggest higher inland water emissions and atmospheric CH$_4$ sinks than stated by top-down estimates in the literature.
8. Outlook

The research of carbon dynamics in peat-draining rivers in this study revealed an exponential limitation of the CO$_2$ production by decomposition in peat-draining rivers in Southeast Asia. The fact that a similar stagnation in CO$_2$ concentrations was observed for studies in African rivers indicates that similar processes control CO$_2$ emissions from tropical regions in general. Additional studies in tropical peat areas outside of Southeast Asia could validate this assumption. Additional studies in Southeast Asian rivers could improve the performed correlations and result in more robust results, considering especially the impact of seasonal variations in river carbon dynamics.

Further research on the response of tropical peat regions to enhanced weathering is needed to validate the results stated in this study. Here it is essential to quantify the response of carbon mobilisation from tropical peat soils to pH. To investigate this, leaching experiments as well as field measurements with soil chambers would be useful. Soil chamber experiments could also yield information on the response of direct re-emissions from acidic peat soils. Furthermore, the water mixing calculations that were performed in this study to yield a first approximation of coastal emission responses on enhanced weathering should be improved by use of more complex coastal modelling.

For the evaluation of wetland CH$_4$ emission datasets, model runs including inland water emissions in the scale of missing emissions as derived from the nudging fluxes will be performed. From those model runs, correlation of modelled XCH$_4$ seasonality to satellite data is planned. Those correlations should provide information on the quality of different wetland emission datasets for individual tropical wetland regions. Comparison runs for all of the emission datasets excluding specific wetland regions could yield further information on the impact of regional wetlands on atmospheric XCH$_4$. Finally, model runs with tracked CH$_4$ from individual sources are planned to understand the impact of wetland sources in even more detail. In order to reduce calculation times, model runs are planned to be performed using the a priori run of the newly developed adjoined TM5-4DVAR-MP model. This run would resemble a CH$_4$ tracer run including reaction with prescribed atmospheric OH fields rather than full chemistry model calculations.
A. Appendix

Section A.1 lists the abbreviations used within this study. Section A.2, section A.3 and section A.4 are individual appendices for chapter 4, chapter 5 and chapter 6, respectively.

A.1. Abbreviations

Subsection A.1.1 and subsection A.1.2 provide alphabetical lists of the acronyms and chemical formulas used in this study.

A.1.1. Acronyms

CA: Carbonate Alkalinity
DIC: Dissolved Inorganic Carbon
DOC: Dissolved Organic Carbon
EMMA: Ensemble Median Algorithm
GCP: Global Carbon Project
GOSAT: Greenhouse gases Observing SATellite
NPP: Net Primary Production
NDIR: Non-Dispersion Infra Red
PIC: Particulate Inorganic Carbon
POC: Particulate Organic Carbon
SCIAMACHY: Scanning Imaging Absorption Spectrometer for Atmospheric Chartography
SE Asia: Southeast Asia
TA: Total Alkalinity
TCCON: Total Carbon Column Observing Network
TOC: Total Organic Carbon
VOC: Volatile Organic Carbon
WAD2M: Wetland Area Dynamics for Methane Modelling

A.1.2. Chemical formulas

C₆H₁₂O₆: glucose
CaCO₃: calcium carbonate
CH₄: methane
CH₃COOH: acetate
CH₃OH: methanol
A. Appendix

- **CO**: carbon monoxide
- **CO₂**: carbon dioxide
- **CO³⁻**: carbonate ion
- **H₂**: hydrogen
- **H⁺**: hydrogen ion
- **H₂CO₃**: true carbonic acid
- **H₂O**: water
- **O₂**: oxygen
- **OH**: hydroxyl radical
- **pCO₂**: partial pressure of carbon dioxide
- **XCH₄**: methane column-averaged dry-air mole fraction

A.2. Appendix to chapter 4

This section presents the appendix to chapter 4 - *Limitation of CO₂ production in peat-draining rivers*. Subsection A.2.1 contains additional figures and tables to the study presented in chapter 4. Subsection A.2.2 shows data correlations for individual river campaigns and subsection A.2.3 presents estimates for regional river CO₂ emissions from Southeast Asia.

A.2.1. Additional figures and tables

<table>
<thead>
<tr>
<th>River</th>
<th>peat coverage (%)</th>
<th>catchment area (km²)</th>
<th>river coverage (%)</th>
<th>air temperature (°C)</th>
<th>precipitation (mm yr⁻¹)</th>
<th>discharge (m³ s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maludam</td>
<td>90.7 ± 1.5</td>
<td>91.1 ± 0.8</td>
<td>0.39 ± 0.10</td>
<td>26.98 ± 0.16</td>
<td>3.142 ± 415</td>
<td>2.9 ± 1.1</td>
</tr>
<tr>
<td>Sebuyau</td>
<td>60.7 ± 1.0</td>
<td>451 ± 4</td>
<td>0.94 ± 0.11</td>
<td>26.95 ± 0.17</td>
<td>3.262 ± 448</td>
<td>29 ± 11</td>
</tr>
<tr>
<td>Simunjan</td>
<td>42.9 ± 0.7</td>
<td>758 ± 6</td>
<td>1.00 ± 0.18</td>
<td>26.75 ± 0.16</td>
<td>3.256 ± 462</td>
<td>48 ± 18</td>
</tr>
<tr>
<td>Rajang</td>
<td>7.7 ± 0.1</td>
<td>51 659 ± 414</td>
<td>1.46 ± 0.03</td>
<td>25.94 ± 0.14</td>
<td>3.407 ± 461</td>
<td>3.466 ± 1.334</td>
</tr>
<tr>
<td>Musi</td>
<td>4.0 ± 0.1</td>
<td>57 602 ± 461</td>
<td>0.73 ± 0.03</td>
<td>26.40 ± 0.13</td>
<td>2.251 ± 566</td>
<td>2.551 ± 1.278</td>
</tr>
<tr>
<td>Batang Hari</td>
<td>5.4 ± 0.1</td>
<td>43 778 ± 350</td>
<td>0.79 ± 0.03</td>
<td>25.89 ± 0.15</td>
<td>2.098 ± 410</td>
<td>1.808 ± 804</td>
</tr>
<tr>
<td>Indragiri</td>
<td>11.4 ± 0.2</td>
<td>17 713 ± 142</td>
<td>1.00 ± 0.03</td>
<td>26.66 ± 0.12</td>
<td>1.958 ± 349</td>
<td>683 ± 292</td>
</tr>
<tr>
<td>Kampar</td>
<td>27.8 ± 0.5</td>
<td>23 610 ± 189</td>
<td>1.90 ± 0.04</td>
<td>26.39 ± 0.12</td>
<td>2.050 ± 366</td>
<td>953 ± 408</td>
</tr>
<tr>
<td>Rokan</td>
<td>18.6 ± 0.3</td>
<td>19 953 ± 160</td>
<td>0.71 ± 0.03</td>
<td>26.40 ± 0.16</td>
<td>2.301 ± 270</td>
<td>904 ± 332</td>
</tr>
<tr>
<td>Siak</td>
<td>25.9 ± 0.4</td>
<td>11 719 ± 94</td>
<td>0.43 ± 0.02</td>
<td>26.87 ± 0.16</td>
<td>2.288 ± 331</td>
<td>528 ± 208</td>
</tr>
<tr>
<td>Mandau*</td>
<td>48.1 ± 0.8</td>
<td>3 004 ± 24</td>
<td>n.d.</td>
<td>27.38 ± 0.17</td>
<td>2.254 ± 340</td>
<td>133 ± 53</td>
</tr>
<tr>
<td>Tapung Kanan*</td>
<td>53.4 ± 0.9</td>
<td>2 335 ± 19</td>
<td>n.d.</td>
<td>27.06 ± 0.16</td>
<td>2.368 ± 395</td>
<td>109 ± 45</td>
</tr>
<tr>
<td>Tapung Kiri*</td>
<td>3.9 ± 0.1</td>
<td>2 409 ± 20</td>
<td>n.d.</td>
<td>27.04 ± 0.15</td>
<td>2.337 ± 432</td>
<td>114 ± 49</td>
</tr>
</tbody>
</table>

For the Siak tributaries, peat coverage and catchment area are taken from Baum et al. (2007).

Table A.1: Catchment properties and hydrological data of the investigated rivers. All data is derived as mean values over the whole river catchment as described in section 3.2.
Table A.2: Measured data from the investigated rivers and the data sources. *pH values from Wit et al. (2015), measured between 2009 and 2013 are on free scale. **At the Siak, pH measurements on NBS scale (prior 2009) and free scale (2009 to 2013) are combined. ***For the Simunjan river, data from the January 2016 and March 2017 campaigns (Table 4.4) are excluded.

<table>
<thead>
<tr>
<th>River</th>
<th>pH</th>
<th>T_{water} (°C)</th>
<th>DOC (µmol L$^{-1}$)</th>
<th>O_2 (µmol L$^{-1}$)</th>
<th>pCO_2 (µatm)</th>
<th>k_{600} (cm h$^{-1}$)</th>
<th>publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maludam</td>
<td>3.8 ± 0.2</td>
<td>26.0 ± 0.5</td>
<td>4031 ± 805</td>
<td>55 ± 36</td>
<td>8500 ± 908</td>
<td>5 ± 2</td>
<td>this study, Müller et al. (2015)</td>
</tr>
<tr>
<td>Sebuyau</td>
<td>4.2 ± 0.2</td>
<td>27.8 ± 0.6</td>
<td>3025 ± 1747</td>
<td>61 ± 40</td>
<td>8834 ± 1050</td>
<td>5 ± 5</td>
<td>this study</td>
</tr>
<tr>
<td>Simunjan***</td>
<td>5.3 ± 0.4</td>
<td>28.2 ± 0.6</td>
<td>1533 ± 599</td>
<td>107 ± 21</td>
<td>7949 ± 1775</td>
<td>11 ± 5</td>
<td>this study</td>
</tr>
<tr>
<td>Rajang</td>
<td>6.7 ± 0.1</td>
<td>28.8 ± 1.2</td>
<td>169 ± 32</td>
<td>190 ± 26</td>
<td>2994 ± 494</td>
<td>9 ± 1</td>
<td>Müller-Dum et al. (2018)</td>
</tr>
<tr>
<td>Musi*</td>
<td>6.9 ± 0.3</td>
<td>30.6 ± 0.3</td>
<td>244 ± 5</td>
<td>149 ± 43</td>
<td>4316 ± 503</td>
<td>17 ± 4</td>
<td>Rixen et al. (2016), Wit et al. (2015)</td>
</tr>
<tr>
<td>Batang Hari*</td>
<td>7.1 ± 0.3</td>
<td>30.0 ± 0.1</td>
<td>321 ± 4</td>
<td>163 ± 1</td>
<td>2400 ± 18</td>
<td>17 ± 4</td>
<td>Rixen et al. (2016), Wit et al. (2015)</td>
</tr>
<tr>
<td>Indragiri*</td>
<td>6.3 ± 0.3</td>
<td>31.5 ± 0.1</td>
<td>692 ± 5</td>
<td>89 ± 3</td>
<td>5777 ± 103</td>
<td>17 ± 4</td>
<td>Rixen et al. (2016), Wit et al. (2015)</td>
</tr>
<tr>
<td>Kampar</td>
<td>6.4 ± 0.4</td>
<td>29.4 ± 0.7</td>
<td>1280 ± 44</td>
<td>98 ± 43</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Rixen et al. (2016)</td>
</tr>
<tr>
<td>Rokan</td>
<td>6.5 ± 0.1</td>
<td>28.9 ± 1.1</td>
<td>781 ± 53</td>
<td>114 ± 22</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Rixen et al. (2016)</td>
</tr>
<tr>
<td>Siak**</td>
<td>5.1 ± 0.5</td>
<td>30.0 ± 0.2</td>
<td>1829 ± 601</td>
<td>53 ± 22</td>
<td>8555 ± 747</td>
<td>17 ± 4</td>
<td>Rixen et al. (2016), Wit et al. (2015)</td>
</tr>
<tr>
<td>Mandau</td>
<td>4.8 ± 0.7</td>
<td>30.3 ± 2.3</td>
<td>2484 ± 669</td>
<td>63 ± 25</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Baum et al. (2007)</td>
</tr>
<tr>
<td>Tapung Kanan</td>
<td>5.8 ± 0.7</td>
<td>30.3 ± 1.0</td>
<td>1526 ± 109</td>
<td>86 ± 27</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Baum et al. (2007)</td>
</tr>
<tr>
<td>Tapung Kiri</td>
<td>6.3 ± 0.5</td>
<td>30.8 ± 2.2</td>
<td>640 ± 102</td>
<td>132 ± 50</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Baum et al. (2007)</td>
</tr>
</tbody>
</table>

Figure A.1: Correlation of river discharge with river water volume. An ordinary least squares approximation was performed to calculate a linear correlation between the parameters. It resulted in a linear coefficient of $Q/V = (1.1 ± 0.6) \cdot 10^{-6}$ s$^{-1}$.

Table A.2: Measured data from the investigated rivers and the data sources. *pH values from Wit et al. (2015), measured between 2009 and 2013 are on free scale. **At the Siak, pH measurements on NBS scale (prior 2009) and free scale (2009 to 2013) are combined. ***For the Simunjan river, data from the January 2016 and March 2017 campaigns (Table 4.4) are excluded.
Table A.3: List of river campaigns, indicated by month and year. Check marks specify the rivers that were included in the specific campaigns.

<table>
<thead>
<tr>
<th>River</th>
<th>03.04</th>
<th>09.04</th>
<th>08.05</th>
<th>03.06</th>
<th>04.06</th>
<th>11.06</th>
<th>03.08</th>
<th>10.09</th>
<th>10.12</th>
<th>04.13</th>
<th>03.14</th>
<th>01.16</th>
<th>08.16</th>
<th>03.17</th>
<th>07.17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maludam</td>
<td>−</td>
</tr>
<tr>
<td>Sebuyau</td>
<td>−</td>
</tr>
<tr>
<td>Simunjan</td>
<td>−</td>
</tr>
<tr>
<td>Rajang</td>
<td>−</td>
</tr>
<tr>
<td>Musi</td>
<td>−</td>
</tr>
<tr>
<td>Batang H</td>
<td>−</td>
</tr>
<tr>
<td>Indragiri</td>
<td>−</td>
</tr>
<tr>
<td>Kampar</td>
<td>−</td>
</tr>
<tr>
<td>Rokan</td>
<td>−</td>
</tr>
<tr>
<td>Siak</td>
<td>✓</td>
</tr>
<tr>
<td>Mandau</td>
<td>✓</td>
</tr>
<tr>
<td>Tapung Kanan</td>
<td>✓</td>
</tr>
<tr>
<td>Tapung Kiri</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table A.4: List of fractions by which the decomposition in the individual rivers is lowered due to the impact of pH and O₂ for the linear approach. \(L_O_2 \) and \(L_{pH}^{lin} \) are defined according to equation (4.3) and equation (4.4), respectively.

<table>
<thead>
<tr>
<th>River</th>
<th>(pH \text{ lim. (%)})</th>
<th>(O_2 \text{ lim. (%)})</th>
<th>(\text{total lim. (%)})</th>
<th>River</th>
<th>(pH \text{ lim. (%)})</th>
<th>(O_2 \text{ lim. (%)})</th>
<th>(\text{total lim. (%)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maludam</td>
<td>49 ± 2</td>
<td>87 ± 23</td>
<td>93 ± 2</td>
<td>Kampar</td>
<td>14 ± 5</td>
<td>80 ± 32</td>
<td>83 ± 13</td>
</tr>
<tr>
<td>Sebuyau</td>
<td>44 ± 3</td>
<td>87 ± 22</td>
<td>92 ± 3</td>
<td>Rokan</td>
<td>13 ± 2</td>
<td>77 ± 28</td>
<td>83 ± 9</td>
</tr>
<tr>
<td>Simunjan</td>
<td>29 ± 2</td>
<td>79 ± 27</td>
<td>85 ± 8</td>
<td>Siak</td>
<td>32 ± 7</td>
<td>88 ± 19</td>
<td>92 ± 4</td>
</tr>
<tr>
<td>Rajang</td>
<td>11 ± 2</td>
<td>67 ± 34</td>
<td>71 ± 20</td>
<td>Manda</td>
<td>36 ± 10</td>
<td>86 ± 22</td>
<td>91 ± 5</td>
</tr>
<tr>
<td>Musi</td>
<td>9 ± 3</td>
<td>72 ± 36</td>
<td>75 ± 23</td>
<td>Tapung Kanan</td>
<td>23 ± 9</td>
<td>82 ± 26</td>
<td>91 ± 10</td>
</tr>
<tr>
<td>Batang Hari</td>
<td>6 ± 4</td>
<td>71 ± 32</td>
<td>72 ± 32</td>
<td>Tapung Kiri</td>
<td>16 ± 6</td>
<td>75 ± 37</td>
<td>79 ± 19</td>
</tr>
<tr>
<td>Indragiri</td>
<td>16 ± 4</td>
<td>81 ± 25</td>
<td>84 ± 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{pH lim. (\%)} = (1 - L_{pH}^{lin}) \) and \(\text{O}_2 \text{ lim. (\%)} = (1 - L_{O_2}) \) are defined according to equation (4.3) and equation (4.4), respectively.
\[
\text{CO}_2(\text{DOC}, \text{pH}, \text{O}_2) = K_{\text{CO}_2}(T) \cdot p\text{CO}_2 + \frac{d R_{\text{max}} \text{DOC} \cdot \frac{O_2}{K_{\text{CO}_2}(T)}}{K_{\text{CO}_2}(T)} \exp\left(\lambda (\text{pH} - \text{pH}_0)\right)
\]

\[
\text{O}_2(\text{DOC}, \text{pH}) = \sqrt{\left(\frac{b \cdot d R_{\text{max}} \text{DOC} \cdot \exp(\lambda (\text{pH} - \text{pH}_0))}{2 K_{\text{O}_2}(T)} \left\{K_m - K_{\text{O}_2}(T) p\text{O}_2\right\}\right)^2 + K_{\text{O}_2}(T) \cdot p\text{O}_2 - \frac{b \cdot d R_{\text{max}} \text{DOC} \cdot \exp(\lambda (\text{pH} - \text{pH}_0))}{2 K_{\text{O}_2}(T)} \left\{K_m - K_{\text{O}_2}(T) p\text{O}_2\right\}}
\]

Table A.5: Equations to derive CO\(_2\) and O\(_2\) for the exponential pH limitation approach of DOC decomposition. The parameters \(R_{\text{max}}, K_m, \lambda\) and \(b\) (Table 4.2) were derived by least squares optimization of this equation based on measured DOC, pH, T, O\(_2\) and CO\(_2\) data in the investigated rivers.

\[
\text{CO}_2(\text{DOC}, \text{pH}, \text{O}_2) = K_{\text{CO}_2}(T) \cdot p\text{CO}_2 + \frac{d R_{\text{max}} \text{DOC} \cdot \frac{O_2}{K_{\text{CO}_2}(T)}}{K_{\text{CO}_2}(T)} \exp\left(\lambda (\text{pH} - \text{pH}_0)\right)
\]

\[
\text{O}_2(\text{DOC}, \text{pH}) = \sqrt{\left(\frac{b \cdot d R_{\text{max}} \text{DOC} \cdot \exp(\lambda (\text{pH} - \text{pH}_0))}{2 K_{\text{O}_2}(T)} \left\{K_m - K_{\text{O}_2}(T) p\text{O}_2\right\}\right)^2 + K_{\text{O}_2}(T) \cdot p\text{O}_2 - \frac{b \cdot d R_{\text{max}} \text{DOC} \cdot \exp(\lambda (\text{pH} - \text{pH}_0))}{2 K_{\text{O}_2}(T)} \left\{K_m - K_{\text{O}_2}(T) p\text{O}_2\right\}}
\]

Table A.6: Equations to derive CO\(_2\) and O\(_2\) for the linear pH limitation approach of DOC decomposition. The parameters \(R_{\text{max}}, K_m\) and \(b\) (Table 4.1) were derived by least squares optimization of this equation based on measured DOC, pH, T, O\(_2\) and CO\(_2\) data in the investigated rivers.
A. Appendix

A.2.2. Discussion of individual river campaigns

The general dependencies of river CO$_2$ and O$_2$ on DOC concentration that were observed for averaged river data (Figure 4.4) are also visible in the data derived for individual campaigns (Figure A.2). However, next to the campaigns with high HCO$_3^-$ concentrations in the Simunjan river, some more outliers are visible (Figure A.2). Campaigns at the Siak river yield lower O$_2$ concentrations than other rivers with similar DOC. This can be explained by the depth of the Siak river. The Siak with river depth of up to 30 m is one of the deepest rivers in Indonesia. Thus, the assumption of a uniform ratio between exchange coefficients and river depths (Figure 4.5) might not be true for the Siak river. Thus, the O$_2$ consumption by decomposition might be higher compared to the O$_2$ invasion from the atmosphere.

Figure A.2: River CO$_2$ and O$_2$ versus DOC concentrations for individual river campaigns. Data from the two Siak campaigns and from the anomalous Simunjan campaigns are indicated in green and red, respectively. Data derived from the 2016 Maludam, Sebuyau and Simunjan campaigns are indicated by grey circles. In 2016, due to technical problems, no CO$_2$ data was measured at the Simunjan river. Exponential correlation fits were derived via least squares optimizations.

In 2016, not only data at the Simunjan river yielded high DOC concentrations. At the Maludam and Sebuyau rivers DOC concentrations were also higher than during the other campaigns at those rivers (Figure A.2). Additionally, O$_2$ concentrations during these campaigns are high. The CO$_2$ concentrations in the Maludam and Sebuyau rivers, however, other than for the Simunjan river, are not higher than during the other campaigns (Figure A.2).

An explanation for this could be high precipitation during these campaigns that enhanced DOC leaching and atmospheric O$_2$ fluxes into the rivers. For the Maludam and Sebuyau rivers, where pH is low, the CO$_2$ production by decomposition would not have been significantly
increased by the enhanced DOC due to the exponential pH limitation (section 4.4). In the Simunjan river, however, where carbonate enrichment hinders the pH limitation, CO$_2$ concentrations would have been increased by high DOC decomposition (section 4.5).

The January 2016 campaigns were the only campaigns at the Malaysian rivers that were performed during the rain season. Accordingly, the precipitation during these campaigns were high (Figure A.3). Correlation of measured CO$_2$ and DOC with precipitation indicate a positive correlation between DOC and precipitation, while no correlation of CO$_2$ with precipitation was observed (Figure A.3). This supports the assumption that enhanced DOC concentrations for these campaigns were caused by high precipitation.

Figure A.3: Dependency of river CO$_2$ and DOC on local precipitation for individual campaigns. Colours indicate the different investigated rivers. Data derived from the 2016 Maludam, Sebuyau and Simunjan campaigns are indicated by grey circles. For the Simunjan 2016 campaign, due to technical problems, no CO$_2$ data exists.

A.2.3. CO$_2$ emission estimates for Southeast Asian peat-draining rivers

The carbon export per land surface area is called carbon yield. DOC/DIC yields denote the DOC/DIC discharge into the ocean per m2 of river catchment and were derived according to the equations (3.3). CO$_2$ yields indicate river CO$_2$ emissions per m2 of river catchment. They were derived according to equation (3.4). DOC yields from the investigated Southeast Asian rivers show stronger variation than DOC concentrations. Yet, they generally increase with increasing peat coverage of the river catchments (Figure A.4).

DIC yields decrease with increasing peat coverage. In rivers of high peat coverage DIC yields are negligible compared to DOC and CO$_2$ yields (Figure A.4). In rivers of low peat coverage, however, they are in the same order of magnitude. CO$_2$ yields from the investigated rivers
show no distinct correlation to peat coverages (Figure A.4). This is mainly caused by the variation in measured gas exchange coefficients that are lower for the smaller Malaysian rivers which exhibit the highest peat coverage. Exchange coefficients are spatially as well as temporally extremely variable and thus contain high uncertainties.

The river outgassing fraction denotes the fraction of mobilized soil carbon that is emitted from rivers to the atmosphere. It is derived from the quotient between atmospheric CO$_2$ yields and the total river carbon yields (DOC yield + DIC yield + CO$_2$ yield). In general, rivers of peat coverage $> 25\%$ show a lower outgassing fraction than rivers of higher peat coverage (Table A.7). The average outgassing fraction of rivers with low peat coverage of $\leq 25\%$ is 50\%, while the average outgassing fraction from rivers of peat coverage $> 25\%$ is 32\%. This is caused by the fact that the oceanic DOC yield increases with peat coverage, while the changes in DIC and CO$_2$ yields are smaller (Figure A.4).

To be able to compare these CO$_2$ emissions to previous estimates, they were extrapolated based on the derived correlation between CO$_2$ and peat coverage (Figure 4.3) and on averaged river exchange coefficients to represent emissions from Malaysia, Indonesia and total South-East Asia. Those fluxes as well as derived exchange coefficients and previous estimates from Raymond et al. (2013), Lauerwald et al. (2015) and Wit et al. (2015) are listed in Table A.8. These results range between those of Lauerwald et al. (2015) and Wit et al. (2015). In addition to the large regions in Table A.8, emissions from Sarawak and from Sumatra were calculated. Emissions from Sarawak result in (2.8 ± 1.6) TgC yr$^{-1}$ and emissions from Sumatra are (16.7 ± 7.5) TgC yr$^{-1}$. Thus, the emissions from Sarawak represent approximately half the
Malaysian emissions, consistent with it hosting about half the Malaysian peat area (Miettinen et al., 2016) and emissions from Sumatra represent approximately one-third of the Southeast Asian emissions, while hosting about 25.5% of the Southeast Asian peatlands.

<table>
<thead>
<tr>
<th></th>
<th>peat coverage (%)</th>
<th>DOC yield (gC m(^{-2}) yr(^{-1}))</th>
<th>DIC yield (gC m(^{-2}) yr(^{-1}))</th>
<th>CO(_2) yield (gC m(^{-2}) yr(^{-1}))</th>
<th>Outgassing (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maludam</td>
<td>90.7 ± 1.5</td>
<td>49 ± 28</td>
<td>3 ± 2</td>
<td>27 ± 23</td>
<td>24 ± 52</td>
</tr>
<tr>
<td>Sebuyau</td>
<td>60.7 ± 1.0</td>
<td>74 ± 53</td>
<td>7 ± 3</td>
<td>23 ± 12</td>
<td>22 ± 25</td>
</tr>
<tr>
<td>Simunjan</td>
<td>42.9 ± 0.7</td>
<td>37 ± 28</td>
<td>7 ± 3</td>
<td>22 ± 20</td>
<td>34 ± 56</td>
</tr>
<tr>
<td>Siak</td>
<td>25.9 ± 0.4</td>
<td>31 ± 22</td>
<td>5 ± 2</td>
<td>23 ± 8</td>
<td>39 ± 34</td>
</tr>
<tr>
<td>Indragiri</td>
<td>11.4 ± 0.2</td>
<td>10 ± 4</td>
<td>7 ± 3</td>
<td>36 ± 9</td>
<td>68 ± 39</td>
</tr>
<tr>
<td>Rajang</td>
<td>7.7 ± 0.1</td>
<td>4 ± 2</td>
<td>6 ± 2</td>
<td>8 ± 2</td>
<td>45 ± 31</td>
</tr>
<tr>
<td>Batang Hari</td>
<td>5.4 ± 0.1</td>
<td>5 ± 2</td>
<td>12 ± 6</td>
<td>10 ± 3</td>
<td>37 ± 24</td>
</tr>
<tr>
<td>Musi</td>
<td>4.0 ± 0.1</td>
<td>4 ± 2</td>
<td>16 ± 8</td>
<td>19 ± 7</td>
<td>49 ± 41</td>
</tr>
</tbody>
</table>

Table A.7: Calculated DOC, DIC and CO\(_2\) yields as well as the outgassing fractions of the total mobilized carbon for the studied rivers.

<table>
<thead>
<tr>
<th>Study</th>
<th>Malaysia (k_{CO_2}) flux (Tg C yr(^{-1}))</th>
<th>Indonesia (k_{CO_2}) flux (Tg C yr(^{-1}))</th>
<th>Southeast Asia (k_{CO_2}) flux (Tg C yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raymond et al. (2013)*</td>
<td>47.4 ± 11.4 48.8 ± 5.9</td>
<td>59.9 ± 11.3 144.7 ± 54.5</td>
<td>63.4 ± 19.6 181.5 ± 64.8</td>
</tr>
<tr>
<td>Lauerwald et al. (2015)*</td>
<td>24.6 ± 2.9 4.9 ± 1.6</td>
<td>24.6 ± 2.9 33.1 ± 10.7</td>
<td>24.6 ± 2.9 44.6 ± 14.4</td>
</tr>
<tr>
<td>Wit et al. (2015)</td>
<td>21.8 ± 11.5 6.2 ± 11.6</td>
<td>21.9 ± 4.7 53.8 ± 12.4</td>
<td>21.8 ± 7.0 66.8 ± 15.7</td>
</tr>
<tr>
<td>This study</td>
<td>10.2 ± 3.6 5.8 ± 3.4</td>
<td>22.0 ± 4.7 59.9 ± 27.0</td>
<td>13.4 ± 1.8 53.6 ± 6.2</td>
</tr>
</tbody>
</table>

Table A.8: Estimates on regional CO\(_2\) emissions from Malaysia, Indonesia and Southeast Asia. Exchange coefficients are stated for a CO\(_2\) Schmidt number of 360 (30 °C) consistent with the stated literature values. *Values from Raymond et al. (2013) and Lauerwald et al. (2015) for the specific regions were derived by Wit et al. (2015).

A.3. Appendix to chapter 5

Subsection A.3.1 includes additional figures to chapter 5 - *Response of tropical peat areas to enhanced weathering.*
A. Appendix

A.3.1. Additional figures and tables

Figure A.5: Exemplary time series of DOC, CO₂, O₂ and pH from the river box-model. Data are shown for DIC leaching enhancement of 30 gC m⁻² yr⁻¹ and DOC leaching enhancement of 6 gC m⁻² yr⁻¹ in the model with natural conditions of the Siak river.

Figure A.6: Correlation between modelled and measured river parameters for DOC, CO₂, O₂ and pH. Each data point represents one river. Grey lines indicate the 1:1 line.
A.4. Appendix to chapter 6

This section presents the appendix to chapter 6 - *Towards validation of wetland CH$_4$ emissions.* Subsection A.4.1 contains additional figures and tables to the study presented in chapter 6. Subsection A.4.2 displays the regional seasonality of wetland CH$_4$ for additional regions. Subsection A.4.3 provides the time series and correlations between modelled and measured XCH$_4$ data.

A.4.1. Additional figures and tables

Figure A.7: Global emission maps based on diagnostic GCP data.
A. Appendix

Figure A.8: Global emission maps based on prognostic GCP data.

<table>
<thead>
<tr>
<th>emissions (TgCH$_4$yr$^{-1}$)</th>
<th>Amazon</th>
<th>Congo</th>
<th>SE Asia</th>
<th>Ganges</th>
<th>Pantanal</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS-CTEM</td>
<td>13.3</td>
<td>8.1</td>
<td>23.6</td>
<td>2.5</td>
<td>6.1</td>
<td>178.4</td>
</tr>
<tr>
<td>DLEM</td>
<td>6.1</td>
<td>3.2</td>
<td>13.0</td>
<td>8.8</td>
<td>6.1</td>
<td>148.7</td>
</tr>
<tr>
<td>ELM</td>
<td>25.0</td>
<td>11.9</td>
<td>18.9</td>
<td>0.6</td>
<td>5.7</td>
<td>167.0</td>
</tr>
<tr>
<td>JSBACH</td>
<td>16.9</td>
<td>16.1</td>
<td>8.3</td>
<td>2.5</td>
<td>8.2</td>
<td>128.5</td>
</tr>
<tr>
<td>JULES</td>
<td>23.2</td>
<td>12.5</td>
<td>14.7</td>
<td>3.3</td>
<td>8.6</td>
<td>180.4</td>
</tr>
<tr>
<td>LPJ-GUESS</td>
<td>9.5</td>
<td>6.2</td>
<td>7.2</td>
<td>1.5</td>
<td>5.5</td>
<td>166.8</td>
</tr>
<tr>
<td>LPJ-MPI</td>
<td>21.2</td>
<td>13.8</td>
<td>14.8</td>
<td>2.2</td>
<td>8.6</td>
<td>161.2</td>
</tr>
<tr>
<td>LPJ-WSL</td>
<td>20.0</td>
<td>9.7</td>
<td>14.1</td>
<td>3.0</td>
<td>7.8</td>
<td>143.4</td>
</tr>
<tr>
<td>LPX</td>
<td>6.4</td>
<td>3.7</td>
<td>9.0</td>
<td>2.5</td>
<td>8.1</td>
<td>140.2</td>
</tr>
<tr>
<td>ORCHIDEE</td>
<td>29.1</td>
<td>22.7</td>
<td>1.6</td>
<td>1.5</td>
<td>7.8</td>
<td>139.0</td>
</tr>
<tr>
<td>TEM-MDM</td>
<td>8.7</td>
<td>3.2</td>
<td>6.8</td>
<td>1.9</td>
<td>1.7</td>
<td>106.6</td>
</tr>
<tr>
<td>TRIPLEX-GHG</td>
<td>11.9</td>
<td>7.7</td>
<td>9.2</td>
<td>1.9</td>
<td>2.8</td>
<td>102.4</td>
</tr>
<tr>
<td>mean</td>
<td>16.8</td>
<td>10.1</td>
<td>11.4</td>
<td>2.9</td>
<td>6.2</td>
<td>148.1</td>
</tr>
<tr>
<td>median</td>
<td>16.9</td>
<td>9.9</td>
<td>10.3</td>
<td>2.5</td>
<td>6.2</td>
<td>148.4</td>
</tr>
<tr>
<td>standard deviation</td>
<td>7.4</td>
<td>5.2</td>
<td>5.4</td>
<td>1.9</td>
<td>2.1</td>
<td>23.0</td>
</tr>
</tbody>
</table>

Table A.9: Emissions from selected wetland regions as well as global emissions from the diagnostic datasets.
Figure A.9: Internal model CH\textsubscript{4} sources and sinks as well as overall emission budget and comparison to the emissions and sinks derived in Saunois et al. (2020). The four panels show overall emission groups as well as more detailed emissions from natural CH\textsubscript{4} sources, anthropogenic CH\textsubscript{4} sources and CH\textsubscript{4} sinks.

<table>
<thead>
<tr>
<th>emissions (TgCH\textsubscript{4} yr-1)</th>
<th>Amazon</th>
<th>Congo</th>
<th>SE Asia</th>
<th>Ganges</th>
<th>Pantanal</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS-CTEM</td>
<td>17.6</td>
<td>1.7</td>
<td>13.7</td>
<td>4.6</td>
<td>2.7</td>
<td>134.4</td>
</tr>
<tr>
<td>ELM</td>
<td>24.9</td>
<td>7.2</td>
<td>23.5</td>
<td>1.3</td>
<td>7.2</td>
<td>218.3</td>
</tr>
<tr>
<td>JSBACH</td>
<td>48.2</td>
<td>3.5</td>
<td>30.3</td>
<td>3.8</td>
<td>7.4</td>
<td>230.9</td>
</tr>
<tr>
<td>JULES</td>
<td>24.7</td>
<td>4.6</td>
<td>15.7</td>
<td>5.3</td>
<td>4.7</td>
<td>180.4</td>
</tr>
<tr>
<td>LPJ-MPI</td>
<td>26.4</td>
<td>19.1</td>
<td>20.6</td>
<td>5.0</td>
<td>15.9</td>
<td>316.3</td>
</tr>
<tr>
<td>LPJ-WSL</td>
<td>19.0</td>
<td>6.5</td>
<td>5.3</td>
<td>6.1</td>
<td>10.5</td>
<td>123.5</td>
</tr>
<tr>
<td>LPX</td>
<td>10.3</td>
<td>1.0</td>
<td>7.7</td>
<td>5.6</td>
<td>3.1</td>
<td>127.8</td>
</tr>
<tr>
<td>ORCHIDEE</td>
<td>19.9</td>
<td>21.5</td>
<td>1.0</td>
<td>7.0</td>
<td>6.9</td>
<td>184.7</td>
</tr>
<tr>
<td>VISIT</td>
<td>11.7</td>
<td>3.7</td>
<td>3.6</td>
<td>24.6</td>
<td>2.1</td>
<td>162.5</td>
</tr>
<tr>
<td>mean</td>
<td>22.5</td>
<td>7.6</td>
<td>13.5</td>
<td>7.0</td>
<td>6.9</td>
<td>184.7</td>
</tr>
<tr>
<td>median</td>
<td>21.2</td>
<td>5.5</td>
<td>13.6</td>
<td>5.4</td>
<td>7.0</td>
<td>174.7</td>
</tr>
<tr>
<td>standard deviation</td>
<td>10.0</td>
<td>6.7</td>
<td>8.9</td>
<td>6.1</td>
<td>4.0</td>
<td>55.6</td>
</tr>
</tbody>
</table>

Table A.10: Emissions from selected wetland regions as well as global emissions from the prognostic datasets.
A. Appendix

A.4.2. Seasonality of wetland CH$_4$ emissions

![Seasonality of wetland CH$_4$ emissions from the Congo region. Each panel shows emissions from one of the diagnostic datasets.](image)

Figure A.10: Seasonality of wetland CH$_4$ emissions from the Congo region. Each panel shows emissions from one of the diagnostic datasets.
Figure A.11: Seasonality of wetland CH$_4$ emissions from the Ganges region. Each panel shows emissions from one of the diagnostic datasets.
Figure A.12: Seasonality of wetland CH$_4$ emissions from the Southeast Asian region. Each panel shows emissions from one of the diagnostic datasets.
Figure A.13: Seasonality of wetland CH$_4$ emissions from the Pantanal region. Each panel shows emissions from one of the diagnostic datasets.
A. Appendix

Figure A.14: Seasonality of wetland CH$_4$ emissions from the Amazon region. Each panel shows emissions from one of the prognostic datasets.

Figure A.15: Seasonality of wetland CH$_4$ emissions from the Congo region. Each panel shows emissions from one of the prognostic datasets.
Figure A.16: Seasonality of wetland CH$_4$ emissions from the Ganges region. Each panel shows emissions from one of the prognostic datasets.

Figure A.17: Seasonality of wetland CH$_4$ emissions from the Southeast Asian region. Each panel shows emissions from one of the prognostic datasets.
Figure A.18: Seasonality of wetland CH$_4$ emissions from the Pantanal region. Each panel shows emissions from one of the prognostic datasets.
A.4.3. Correlation of modelled XCH$_4$ to satellite data for additional regions

Figure A.19: Time series of modelled and measured XCH$_4$ in the Congo region. Black data represent the median of monthly satellite XCH$_4$ observations. Panels shows correlation to derived model runs based on the individual diagnostic wetland CH$_4$ emission datasets. Model values at specific time and location of the satellite observation as well as the median monthly concentrations from the runs are shown.

<table>
<thead>
<tr>
<th>CLASS-CTEM</th>
<th>DLEM</th>
<th>ELM</th>
<th>JS-BACH</th>
<th>JULES</th>
<th>LPJ-GUESS</th>
<th>LPJ-MPI</th>
<th>LPX</th>
<th>ORCHIDEE</th>
<th>TEM-MDM</th>
<th>TRIPLEX</th>
<th>VISIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0.866</td>
<td>0.855</td>
<td>0.848</td>
<td>0.848</td>
<td>0.821</td>
<td>0.800</td>
<td>0.858</td>
<td>0.863</td>
<td>0.822</td>
<td>0.852</td>
<td>0.861</td>
</tr>
<tr>
<td>RMSE</td>
<td>15.4</td>
<td>13.7</td>
<td>15.4</td>
<td>16.4</td>
<td>17.8</td>
<td>17.3</td>
<td>20.9</td>
<td>15.0</td>
<td>22.1</td>
<td>13.5</td>
<td>13.7</td>
</tr>
</tbody>
</table>

Table A.11: Correlation coefficients R^2 and root mean square errors (RMSE in ppb) derived for the correlation of satellite XCH$_4$ observations with modelled concentrations over the Congo region based on the diagnostic wetland emission datasets.
Figure A.20: Time series of modelled and measured XCH$_4$ in the Southeast Asia region. Black data represent the median of monthly satellite XCH$_4$ observations. Panels shows correlation to derived model runs based on the individual diagnostic wetland CH$_4$ emission datasets. Model values at specific time and location of the satellite observation as well as the median monthly concentrations from the runs are shown.

Table A.12: Correlation coefficients R^2 and root mean square errors (RMSE in ppb) derived for the correlation of satellite XCH$_4$ observations with modelled concentrations over the Southeast Asian region based on the diagnostic wetland emission datasets.
Figure A.21: Time series of modelled and measured XCH$_4$ in the Ganges region. Black data represent the median of monthly satellite XCH$_4$ observations. Panels shows correlation to derived model runs based on the individual diagnostic wetland CH$_4$ emission datasets. Model values at specific time and location of the satellite observation as well as the median monthly concentrations from the runs are shown.

Table A.13: Correlation coefficients R^2 and root mean square errors (RMSE in ppb) derived for the correlation of satellite XCH$_4$ observations with modelled concentrations over the Ganges region based on the diagnostic wetland emission datasets.
Figure A.22: Time series of modelled and measured XCH₄ in the Pantanal region. Black data represent the median of monthly satellite XCH₄ observations. Panels shows correlation to derived model runs based on the individual diagnostic wetland CH₄ emission datasets. Model values at specific time and location of the satellite observation as well as the median monthly concentrations from the runs are shown.

Table A.14: Correlation coefficients R^2 and root mean square errors (RMSE in ppb) derived for the correlation of satellite XCH₄ observations with modelled concentrations over the Pantanal region based on the diagnostic wetland emission datasets.
Figure A.23: Time series of de-trended XCH$_4$ seasonality in the Congo region. Black data represent monthly median XCH$_4$ variation derived via satellite. Panels include resulting data from model runs based on the individual diagnostic wetland emission datasets. The grey shaded area indicates months excluded from performed data correlations.

Table A.15: Correlation coefficients R^2 and root mean square errors (RMSE in ppb) derived for the correlation of satellite de-trended annual XCH$_4$ variation over the Congo region with modelled data based on the diagnostic wetland emission datasets. Data derived between November 2005 and April 2009 were excluded from the correlations due to detector degradation in the SCIAMACHY instrument.
Figure A.24: Time series of de-trended XCH₄ seasonality in the Southeast Asian region. Black data represent monthly median XCH₄ variation derived via satellite. Panels include resulting data from model runs based on the individual diagnostic wetland emission datasets. The grey shaded area indicates months excluded from performed data correlations.

Table A.16

<table>
<thead>
<tr>
<th>CLASS-CTEM</th>
<th>DLEM</th>
<th>ELM</th>
<th>JS-BACH</th>
<th>JULES</th>
<th>LPJ-GUESS</th>
<th>LPJ-MPI</th>
<th>LPJ-WSL</th>
<th>LPX</th>
<th>ORCHIDEE</th>
<th>TEM-MDM</th>
<th>TRIPLEX</th>
<th>VISIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0.784</td>
<td>0.786</td>
<td>0.789</td>
<td>0.821</td>
<td>0.818</td>
<td>0.788</td>
<td>0.800</td>
<td>0.826</td>
<td>0.829</td>
<td>0.803</td>
<td>0.815</td>
<td>0.821</td>
</tr>
<tr>
<td>RMSE</td>
<td>6.3</td>
<td>6.0</td>
<td>6.3</td>
<td>5.7</td>
<td>5.7</td>
<td>6.0</td>
<td>5.9</td>
<td>5.5</td>
<td>5.9</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Table A.16: Correlation coefficients R^2 and root mean square errors (RMSE in ppb) derived for the correlation of satellite de-trended annual XCH₄ variation over the Southeast Asian region with modelled data based on the diagnostic wetland emission datasets. Data derived between November 2005 and April 2009 were excluded from the correlations due to detector degradation in the SCIAMACHY instrument.
Figure A.25: Time series of de-trended XCH$_4$ seasonality in the Ganges region. Black data represent monthly median XCH$_4$ variation derived via satellite. Panels include resulting data from model runs based on the individual diagnostic wetland emission datasets. The grey shaded area indicates months excluded from performed data correlations.

Table A.17: Correlation coefficients R^2 and root mean square errors (RMSE in ppb) derived for the correlation of satellite de-trended annual XCH$_4$ variation over the Ganges region with modelled data based on the diagnostic wetland emission datasets. Data derived between November 2005 and April 2009 were excluded from the correlations due to detector degradation in the SCIAMACHY instrument.
Figure A.26: Time series of de-trended XCH$_4$ seasonality in the Pantanal region. Black data represent monthly median XCH$_4$ variation derived via satellite. Panels include resulting data from model runs based on the individual diagnostic wetland emission datasets. The grey shaded area indicates months excluded from performed data correlations.

Table A.18: Correlation coefficients R^2 and root mean square errors (RMSE in ppb) derived for the correlation of satellite de-trended annual XCH$_4$ variation over the Pantanal region with modelled data based on the diagnostic wetland emission datasets. Data derived between November 2005 and April 2009 were excluded from the correlations due to detector degradation in the SCIAMACHY instrument.
References

References

V. Eyring, S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental
References

References

References

References

References

References

G. J. Whiting and J. P. Chanton. Primary production control of methane emission from wetlands. *Nature*, 364, 1993. DOI: 10.1038/364794a0.

Acknowledgements

First of all, I would like to thank my supervisor PD Dr. Thorsten Warneke for his guidance and support throughout all stages of my study. His inventiveness and motivation strongly improved my work experience and research results. My honest gratitudes also go to Dr. Tim Rixen from ZMT and to Dr. Nikolaos Daskalakis from the IUP LAMOS group, who provided their assistance and knowledge in the fields of research that lie outside the expertise of our working group. Tim consistently helped advance my research on tropical peat regions with his enthusiasm and knowledge and Nikos introduced me to atmospheric transport modelling and was a huge help with all kinds of questions regarding the modelling part of my study. After that, I want to thank Prof. Dr. Justus Notholt for his support and my accommodation in his working group. In this context I also thank my colleagues from the working group who warmly welcomed me in their midst and provide their help throughout the years. On campus and in home office they were available for chats and I am grateful for the nice work environment. Special thanks go to Dr. Matthias Buschmann who was always available to answer various questions arising throughout my PhD journey and to Lukas Heizmann for his proofread of my thesis.

Moreover, I am grateful for the nice cooperation with our colleagues in Malaysia. Most notably, I want to thank Prof. Dr. Moritz Müller for his organisation of the measurement campaigns and for the collaboration on my research papers. Also, I want to thank the Sarawak Forestry Department and Sarawak Biodiversity Centre for permission to conduct collaborative research in Sarawak.

I would like to thank the Global Carbon Project for providing wetland emission datasets for my study. Special thanks in this regard go to Dr. Benjamin Poulter from NASA and Dr. Marielle Sainois from LSCE for their cooperation and our insightful discussions.

Another thanks goes to Prof. Dr. Mihalis Vrekoussis for dedicating his time to be the second reviewer of my thesis and to the other members of my PhD committee Prof. Dr. Annette Ladstätter-Weißenmayer and Prof. Dr. Stefan Bornholdt.

Finally, I want to thank my family for their love and support throughout my PhD journey and my life in general. Specifically I want to thank my parents Gabriele and Hans-Dieter Klemme for enabling me to study and their encouragement throughout the way. I want to thank my sister Victoria Klemme who helped me to unwind and remember life outside education. And ultimately, I want to thank my partner Linus Pleines for his love and understanding and for the emotional support during stressful episodes of my PhD journey.

Thank you all.