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Abstract

Global warming is already impacting the modern ocean. To recognize changes and predict

the future ocean, ocean color (OC) remote sensing aims at quantifying and monitoring

optically active oceanic constituents such as phytoplankton, as well as the underwater light

field, on synoptic scales. The underwater light field is typically characterized by the diffuse

attenuation coefficient (Kd), which describes how fast the downwelling light diminishes

with depth. Phytoplankton diversity is typically assessed by grouping phytoplankton with

respect to their function in biogeochemical cycles, which are described as phytoplankton

functional types (PFT). Typically, OC sensors record radiometric measurements at several

bands, 10-20 nm wide, in the visible and near-infrared. However, direct information of

OC variables in the ultraviolet (UV) spectral range is still widely lacking. Also, the

coarse spectral resolution of traditional OC sensors hampers the retrieval of information

on biodiversity, e.g., represented through PFT, and ecosystems.

While OC sensors have weaknesses in spectral resolution, a suite of atmospheric satellite

sensors measures radiation at high spectral resolution (about 0.5 nm) and in spectral ranges

(UV) not provided by typical OC sensors. These sensors are designed for the retrieval of

atmospheric trace gases using Differential Optical Absorption Spectroscopy (DOAS) and

have been utilized for OC retrievals by an adaptation of this method to the ocean domain.

PFT, light attenuation and availability, and chlorophyll-a fluorescence have been success-

fully derived from radiances recorded by the atmospheric sensor SCIAMACHY between

2002 and 2012. So far, only little experience has been gathered with other SCIAMACHY-

like sensors, limited to fluorescence retrievals at red wavelengths.

This thesis focuses on retrievals of OC variables in the UV to green spectral range from

multiple atmospheric sensors, namely SCIAMACHY, GOME-2, OMI, and TROPOMI.

By comparison of OC retrievals from multiple sensors, insight can be gained on retrieval

robustness and sources of uncertainty. Merging of data sets from multiple sensors is desir-

able for creating long time series necessary for observing climate change impacts. Three

hypotheses are investigated: (1) OC variables in the blue-green spectral range, such as

PFT and the diffuse attenuation coefficient, can be successfully retrieved from multiple

SCIAMACHY-like sensors; (2) OC variables from multiple SCIAMACHY-like sensors can
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be merged to create long time series; and (3) UV-visible bands of SCIAMACHY-like sen-

sors can be exploited for the retrieval of novel OC products in the UV. The thesis comprises

three studies. Two studies concentrate on the diffuse attenuation coefficient with the sec-

ond study focusing on novel Kd products in the UV. The third study utilizes knowledge

from the first two studies to retrieve two key PFT, diatoms and coccolithophores, in the

Southern Ocean.

Based on experience gathered with the SCIAMACHY sensor, the retrieval of OC vari-

ables was adapted to the other atmospheric sensors and further improved to provide com-

plementary and novel OC information. The mean Kd in the blue spectral range, 390 to

around 425 nm, was successfully derived from measurements taken by GOME-2, OMI,

TROPOMI (as well as SCIAMACHY). Coccolithophores were successfully retrieved from

GOME-2 data in the Southern Ocean, however, diatom retrievals were found to be more

challenging and resulting data quality was deemed insufficient. Intersensor biases were

found between the derived Kd data sets as well as for the derived PFT data in comparison

to the established SCIAMACHY PFT time series prior to this work. Complex instrument-

specific corrections would be necessary to remove these biases. Biases were successfully

reduced, but unfortunately merging of the multiple data sets is still not possible at this

stage. The UV-blue spectral range was exploited for deriving two novel Kd products in

the UV, 312.5 to 338.5 nm and 356.5 to 390 nm. Comparison with field measurements and

sensitivity analysis of the retrievals showed promising results.

Findings from the third study on Southern Ocean PFT support the Great Calcite Belt

hypothesis, which suggests that coccolithophores cause a wide band of enhanced water

reflectivity around Antarctica, and indicate that total chlorophyll-a concentration is not

an adequate variable for predicting coccolithophore abundance. Spectral-based PFT re-

trievals, as used in this thesis, are found to be more suitable. Future applications of the

data sets derived and characterized in this thesis include: the estimation of the oceanic

heat budget and the UV dose rate on marine organisms, the investigation of the sources of

colored dissolved organic matter and of phytoplankton photoprotective pigments, as well

as residence times of particulate inorganic carbon in the upper ocean.
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1 Introduction

1.1 Motivation

The Earth’s climate is changing. Anthropogenic activities, mainly fossil fuel combustion,

cement manufacturing, and land use change, have increased greenhouse gas concentrations

rapidly since the industrial revolution. The atmospheric carbon dioxide (CO2) concentra-

tion has risen to unprecedented values in the past 800,000 years. As a consequence, the

radiative forcing is increasing, causing global warming (IPCC, 2014).

The ocean acts as a buffer in the climate system. It has taken up more than 90% of the

excess heat caused by increased greenhouse gas emissions (IPCC, 2013). It additionally

acts as a carbon sink. About 25% of the released anthropogenic CO2 was taken up by the

ocean (Friedlingstein et al., 2019). As a consequence, the ocean is warming, sea levels are

rising, sea ice concentrations are declining, and ocean acidity is enhancing (IPCC, 2019).

The role of the marine biosphere for planetary future predictions has been recognized,

but is still not fully understood and difficult to parameterize in Earth system models (Bo-

nan and Doney, 2018). Complex coupling and feedback mechanisms between the marine

biosphere and global climate have been identified (Hense et al., 2017) and phytoplankton

play a key role (Hays et al., 2005; Sweeney et al., 2005; Jochum et al., 2010).

Phytoplankton are single-celled free-floating algae. They are the basis of the oceanic

food web (Fenchel, 1988) and provide life on Earth with a source of oxygen (Harris, 1986).

About half of global primary production is due to primary production by phytoplankton

(Field et al., 1998). Through photosynthesis, phytoplankton sequester CO2. The partial

pressure of CO2 is lowered in the upper ocean which increases the uptake of atmospheric

CO2 due to a steeper CO2 gradient (Falkowski et al., 2000). Some of the fixed carbon is

transported to the deeper ocean through gravitational sinking of dead phytoplankton cells

or fecal pellets of higher trophic organisms or through particle-injection pump mechanisms

(Boyd et al., 2019). This process known as the biological carbon pump removes CO2 from

the Earth system’s carbon cycle on long time scales (Passow and Carlson, 2012).

The phytoplankton community structure affects the efficiency of the biological carbon

pump (Basu and Mackey, 2018), biogeochemical cycling (Litchman et al., 2015; Jin et al.,

1



1 Introduction 1.1 Motivation

2006) and air-sea gas exchange (Carpenter et al., 2012), as well as nutrition supply for

higher trophic levels (Karl et al., 2001). Phytoplankton can be grouped with respect to

their physiological traits or function in the biogeochemical cycles into so-called phytoplank-

ton functional types (PFT) (Reynolds et al., 2002; Le Quéré et al., 2005). Grouping is usu-

ally done with respect to size or taxa. For instance, diatoms are mainly micrometer-sized

(microphytoplankton) silicifying phytoplankton associated also with large carbon export

rates. In contrast, cyanobacteria are small, photosynthetically active, and nitrogen-fixing

bacteria, which belong to the picophytoplankton group. Coccolithophores are calcifiers

belonging to the intermediate size group, the nanophytoplankton.

Phytoplankton and other dissolved and particulate oceanic substances, both organic

and inorganic, influence the underwater light field and determine how much light at differ-

ent wavelengths is absorbed or backscattered to the atmosphere (Dierssen and Randolph,

2013). Absorbed radiation impacts the overall global heat budget (Sathyendranath et al.,

1991; Morel and Antoine, 1994; Frouin and Iacobellis, 2002) and affects physical processes

such as mixed layer dynamics (Ohlmann et al., 1996). Radiation can have both harmful

as well as beneficial effects on marine organisms. Ultraviolet radiation can inhibit phy-

toplankton photosynthesis (Cullen and Neale, 1994), but also degrades colored dissolved

organic matter (CDOM), which increases light and nutrient availability, but also allows

exposure to harmful levels of radiation (Zepp et al., 2003, 2007). Visible radiation is essen-

tial for photosynthesis (McCree, 1981). A key variable for characterizing the underwater

light field is the diffuse attenuation coefficient for downwelling irradiance: Kd. It describes

how fast the light penetrating the ocean diminishes with depth z and is defined as (Gordon

et al., 1980):

Kd(z, λ) = −d lnEd(z, λ)

dz
, (1.1.1)

with downwelling irradiance Ed and wavelength λ.

Ocean color (OC) remote sensing retrieves information on oceanic variables such as the

total phytoplankton chlorophyll-a concentration (Chla) on regional to global scales, on

temporal resolutions of multiple hours to multiple days, and on spatial resolutions from

10 m to a few kilometers (Groom et al., 2019), providing valuable information, amongst

others (IOCCG, 2008), for the (climate) modeling community (IOCCG, 2020). Typical

OC satellite sensors record backscattered radiances from the ocean-atmosphere system

at multiple spectral bands at visible and near-infrared wavelengths. After removal of

the atmospheric and surface contributions to the satellite measurements, most OC algo-

rithms derive OC variables from band ratios of water-leaving radiances or reflectances (e.g.,

2



1 Introduction 1.1 Motivation

O’Reilly et al., 1998; O’Reilly and Werdell, 2019). The relationships between band ratios

and OC variables are obtained empirically from field measurements. Other algorithms are

semi-analytic (e.g., IOCCG, 2006). Relationships between radiance signals and optical

properties of the water are obtained from radiative transfer theory.

The Global Climate Observing System (GCOS) recognized total Chla and the water-

leaving radiance or reflectance at multiple wavelengths as essential climate variables (GCOS,

2011, 2016). Within a conducted survey, remote sensing scientists and climate mod-

elers indicated other variables as additionally useful including spectral information on

absorption and scattering coefficients of seawater and its particulate and dissolved con-

stituents, primary production, and phytoplankton community structure (Sathyendranath,

2011; Sathyendranath et al., 2019). A survey on photosynthetically available radiation

(PAR) further revealed user needs for a whole suite of spectral radiation products, includ-

ing information in the ultraviolet spectral range (Frouin et al., 2018). Some of these desired

OC variables are already operationally provided, have been presented as validated data

products, or have been explored in feasibility studies. The variables typically provided

on an operational basis are (https://oceancolor.gsfc.nasa.gov/): total Chla, fluorescence

line height, (instantaneous) PAR, remote sensing-reflectance at all spectral bands, total

absorption and backscattering at all spectral bands, absorption by colored dissolved or-

ganic matter (CDOM) and detritus as well as phytoplankton at a blue waveband, particle

backscattering at a blue waveband, diffuse attenuation coefficient at 490 nm, and par-

ticulate organic and inorganic carbon. Many approaches for determining phytoplankton

community structure from space have been presented (Mouw et al., 2017) and even im-

plemented as downloadable products in online services (e.g., Xi et al., 2020). Many more

approaches have been presented for deriving OC information from satellites that did not

make it to operational level (yet), but information is still lacking in some areas. Some in-

formation is difficult to obtain with OC remote sensing, including information on vertical

profiles of OC variables and information from below the first optical depth requiring lidar

and polarimetry technologies (Jamet et al., 2019), information on diurnal cycles usually

requiring geostationary satellites (Ruddick et al., 2014), etc. The spectral range and spec-

tral resolution of current OC satellite missions limits the retrieval of some OC variables of

interest. For instance, the ultraviolet spectral range is typically not included in common

OC satellite sensors (Frouin et al., 2018) with the exception of two recent OC sensors

which have bands placed at 355 and/or 380/385 nm (SGLI, Okamura et al., 2019; HY-

1C UVI, http://www.nsoas.org.cn/eng/item/204.html). The first hyperspectral satellite

sensors that record spectra continuously with a resolution of about 2 to 5 nm have been

explored in the past (e.g., Hyperion, Flores-Anderson et al., 2020; HICO, Corson et al.,
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2008), are now in space (e.g., DESIS, Krutz et al., 2019; PRISMA, Guarini et al., 2017), or

are planned for launch in the near future (e.g., PACE OCI, Werdell et al., 2019; EnMAP,

Guanter et al., 2015). Higher spectral resolution is thought to enable better detection

of phytoplankton functional types and ecosystem mapping (Giardino et al., 2019). The

Ocean Color Instrument of the PACE mission, planned to be launched at the end of 2023,

will also start recording radiances at 340 nm, partially covering the ultraviolet spectral

range.

For observing climate trends in OC variables, data sets with observation periods around

40 years (Henson et al., 2010) are needed due to decadal and multi-decadal sources of

variability (Schlesinger and Ramankutty, 1994; Trenberth and Hurrell, 1994). Planned

satellite mission lifetimes are typically five years. Although some sensors greatly exceed

this period (e.g., MODIS-Aqua has been recording data from 2002 to date), merging sev-

eral satellite sensors is required for creating a time series suitable for monitoring climate

change impacts (IOCCG, 2007). Merged time series from multispectral OC missions have

been created within the Global ocean Colour project (GlobColour, www.globcolour.info),

by the Making Earth Science Data Records for Use in Research Environments initiative

(MEaSUREs, wiki.icess.ucsb.edu/measures/), and by the Ocean Colour Climate Change

Initiative (OC-CCI, www.esa-oceancolour-cci.org/), of which the latter is the most inter-

nally consistent and stable with respect to inter-sensor biases so far (Couto et al., 2016;

Sathyendranath et al., 2019).

Several studies have shown that OC variables can also be retrieved from satellite sen-

sors which were designed for the retrieval of atmospheric trace gases (Bracher et al., 2009;

Sadeghi et al., 2012a; Dinter et al., 2015; Wolanin et al., 2015b). Due to their much

higher spectral resolution (about 0.5 nm), different retrieval methods are applied than

for multispectral OC data, offering independent OC products. Retrievals are based on

Differential Optical Absorption Spectroscopy (DOAS). In a single step, atmospheric and

oceanic absorption spectra are fitted to top-of-atmosphere (TOA) backscattered radiances

together with a low-order polynomial which accounts for all broadband effects, such as

elastic scattering. A higher spectral resolution is beneficial for discriminating PFT based

on their subtle differences in absorption spectra (e.g., Wolanin et al., 2016). Based on

spectrally highly-resolved data of these DOAS-type sensors, cyanobacteria, diatoms, coc-

colithophores and, to some extent, dinoflagellates have been successfully quantified in

terms of Chla (Bracher et al., 2009; Sadeghi et al., 2012a). The higher spectral resolution

of atmospheric sensors also offers the opportunity to exploit optical properties such as

vibrational Raman scattering which are not accessible with standard OC sensors (Vountas

et al., 2007). Besides the difference in spectral resolution, atmospheric and OC sensors
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usually cover different spectral ranges, optimized for their respective applications. Many

atmospheric sensors do not record radiances between 500 and 600 nm (OMI, Levelt et al.,

2006; TROPOMI, Veefkind et al., 2012), which may limit OC applications, but on the

other hand, atmospheric sensors generally record radiances in the ultraviolet wavelength

range, which may offer new opportunities for OC applications. Investigations of vibra-

tional Raman scattering in the ocean have already been carried out in this spectral region

and show reasonable spatial patterns (Vountas et al., 2007).

The Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIA-

MACHY) is a satellite sensor designed for atmospheric applications which recorded data

from 2002 until 2012 (Bovensmann et al., 1999). PFT (Bracher et al., 2009; Sadeghi et al.,

2012a), light availability and diffuse attenuation (Dinter et al., 2015), as well as marine

chlorophyll-a fluorescence (Wolanin et al., 2015b; Joiner et al., 2016) have been successfully

retrieved from the spectrally high-resolved backscattered radiances measured by SCIA-

MACHY. Losa et al. (2017a) have produced a PFT time series from the 10-year data

set. Few examples exist for OC retrievals on data measured by other atmospheric satellite

sensors. Wolanin et al. (2015b) and Joiner et al. (2016) also applied their chlorophyll-a

fluorescence retrieval to data measured by the Global Ozone Monitoring Experiment 2

(GOME-2). Differences in variability and biases between fluorescence results from SCIA-

MACHY and GOME-2 were observed, but results are generally similar. Due to the similar

sensor design of various atmospheric satellite sensors, other OC variables are also likely

retrievable from multiple atmospheric satellite sensors. The 10-year time series covered

by SCIAMACHY can potentially be complemented and extended by current and future

atmospheric satellite sensors to obtain long-term time series of OC variables which are not

necessarily retrievable from traditional OC sensors or are retrieved with independent meth-

ods. For atmospheric applications, merging time series from these atmospheric satellite

sensors has already been proven successful for different sensor combinations and different

atmospheric trace gases (e.g., Hilboll et al., 2013; Pastel et al., 2014; Coldewey-Egbers

et al., 2015; Heue et al., 2016).

1.2 Hypotheses

Based on the knowledge gaps identified above, this thesis investigates three major hypothe-

ses:

I. Ocean color variables in the blue-green spectral range (such as phytoplankton func-

tional types or the diffuse attenuation coefficient) can be successfully retrieved from

multiple SCIAMACHY-like satellite sensors (GOME-2, OMI, TROPOMI).
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II. Ocean color variables from multiple SCIAMACHY-like sensors can be merged to

create long time series.

III. Ultraviolet-visible bands of SCIAMACHY-like sensors can be exploited for the re-

trieval of novel ultraviolet OC products.

1.3 Main studies

To investigate the above overarching hypotheses, three main studies were conducted. Each

of these studies focuses on different objectives which, when combined, contribute to exam-

ining the overarching hypotheses. All studies give insight into hypotheses I and II, whereas

hypothesis III is mainly addressed in study 2.

Study 1: Global diffuse attenuation derived from vibrational Raman

scattering detected in hyperspectral backscattered satellite spectra

This study investigates diffuse attenuation of the underwater downwelling light-field in-

ferred from satellite data from the three sensors, SCIAMACHY, GOME-2, and OMI. The

diffuse attenuation coefficient is derived from retrievals of vibrational Raman scattering

using Differential Optical Absorption Spectroscopy on satellite-measured backscattered ra-

diances based on the method presented in Dinter et al. (2015). Nearly one year of data

is examined within a time period in which satellite missions overlap and data quality is

optimal. Resulting diffuse attenuation coefficients are intercompared between sensors with

respect to temporal and spatial differences. The operationally-provided diffuse attenuation

coefficient from common OC sensors is used as a reference. The study has two objectives:

(1) it investigates if vibrational Raman scattering can be found in TOA radiances of OMI

and GOME-2 and be adequately retrieved using Differential Optical Absorption Spec-

troscopy, and (2) if and how a product derived from vibrational Raman scattering (the

diffuse attenuation coefficient) can be merged from different sensors.

While study 1 focuses on an established vibrational Raman scattering retrieval which

has already been used for deriving light availability and diffuse attenuation in the blue

spectral range (Dinter et al., 2015), study 2 explores retrievals at shorter wavelengths for

deriving novel diffuse attenuation products.
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Study 2: TROPOMI-retrieved underwater light attenuation in three

spectral regions: ultraviolet to blue

The potential of the TROPOMI sensor for OC applications is explored in this study.

Based on the established vibrational Raman scattering retrieval in the blue spectral region

(Dinter et al., 2015; Losa et al., 2017a; study 1) and on a vibrational Raman scattering

retrieval in the ultraviolet spectral region (Vountas et al., 2007; Bracher et al., 2009),

vibrational Raman scattering is retrieved in three spectral regions in the ultraviolet and

blue spectral ranges for deriving two novel ultraviolet diffuse attenuation coefficients, next

to the formerly presented blue diffuse attenuation coefficient. The study is designed as

a feasibility study investigating one month of TROPOMI data which coincides with a

ship campaign. Field measurements from the ship campaign as well as operational diffuse

attenuation products are used for evaluation of derived diffuse attenuation coefficients.

Objectives of this study are the exploitation of TROPOMI’s ultraviolet-visible wavelength

bands for deriving novel diffuse attenuation coefficients in the ultraviolet spectral region

as well as their evaluation.

The first two studies focus on vibrational Raman scattering for two main reasons: (1)

interesting OC variables, the light availability and diffuse attenuation coefficients, can be

derived from vibrational Raman scattering, offering the possibility for new OC products,

especially in the ultraviolet spectral region, and (2) adequate retrievals of vibrational Ra-

man scattering are necessary to estimate the underwater light path needed for calculating

the chlorophyll-a concentration of PFT retrievals. Knowledge from the first two stud-

ies is used in the third study for improving the estimation of PFT-specific chlorophyll-a

concentration.

Study 3: Potential of GOME-2 for monitoring coccolithophores in the

Southern Ocean

Coccolithophore and diatom chlorophyll-a concentrations are retrieved from backscattered

radiances measured by GOME-2 using Differential Optical Absorption Spectroscopy based

on (Bracher et al., 2009; Sadeghi et al., 2012a). The study focuses on the Atlantic and

Indian sectors of the Southern Ocean. PFT concentrations are retrieved for two austral

summers, 12 months in total. Data are compared to field measurements conducted in the

same time period and area, as well as several other OC satellite products, including coccol-

ithophore and diatom concentrations from SCIAMACHY (Losa et al., 2017a). Objectives

of this study are to assess the performance of PFT retrievals from GOME-2 measurements
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and consider its suitability for long-term monitoring of diatoms and coccolithophores in

the Southern Ocean.

1.4 Thesis outline

Studies 1 to 3 can be found in chapters 3 to 5, respectively. Each study comprises an

introduction, methods, results, discussion and conclusion section and can, in principle, be

read separately from the others. If needed, information required from one of the other

studies is shortly summarized and the reader is referred to the corresponding section for

more details. A more detailed scientific background for the methods used here is given

in chapter 2. Chapter 5 concludes the thesis. Main conclusions and applications of the

three studies are presented. Studies 1 to 3 are then discussed in combination to address

the overarching hypotheses I to III.
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2 Scientific background

2.1 Principle of remote sensing

Remote sensing comprises Earth observation techniques which infer information on geo-

physical parameters such as soil moisture, sea surface temperature, atmospheric compo-

sition, sea ice concentration, and many more from measurements taken at a distance. In

contrast, in-situ measurements span those measurements where the instrument is taken ei-

ther to the field to directly measure the target medium at a certain location or samples are

taken in the field and brought to the lab for analysis. In remote sensing, electromagnetic

radiation is measured which interacted with the parameter of interest. The radiometric

measurements need to be interpreted by inversion techniques to retrieve information on

the target parameter (Liou, 2002). The electromagnetic signal is collected by the detector

after it interacted with the target medium, which contains the target observable and also

other molecules, particles, and surfaces. The target medium T determines the signal S,

which can be expressed in terms of an unknown function F ,

S = F (T ). (2.1.1)

This equation describes the forward model. If the state of T is known as well as F , namely

all the physical processes that determine S based on T , S can be calculated. Radiative

transfer theory is used to model S given T . It is introduced in section 2.6.

Remote sensing techniques deal with the inverse problem. T has to be determined based

on S,

T = F−1(S). (2.1.2)

Due to complexity of the Earth system, F is generally complex and inversion not straight-

forward. In general, the problem is not unique. The target medium usually consists of

many parameters. Multiple conditions of the medium can result in the same S. Usually

Equation 2.1.2 is solved by finding the parameters that combinedly best describe S. The

retrieval method used in this work is introduced in section 2.11.
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2.2 Ocean color remote sensing

Ocean color (OC) remote sensing (Mobley, 1994; Mobley et al., 2021) refers to the dis-

cipline that infers information on the ocean from optical measurements. Remote sensing

techniques can be active or passive. In passive remote sensing, measured light originates

from natural sources such as the sun or other stars. Passive OC satellite sensors measure

sunlight that entered the ocean and is backscattered through the atmosphere to the detec-

tor, which is looking down on the ocean, so-called nadir viewing geometry. The sunlight

propagates through the atmosphere where it is partly scattered and absorbed before it

reaches the sea surface. At the sea surface, a fraction of the sunlight is reflected back to

the sky. Some light penetrates the ocean where it interacts with the ocean constituents.

Through backscattering, multiple forwardscattering, and maybe sea bottom reflection,

light reaches back to the sea surface. Some of it is transmitted to the atmosphere. A frac-

tion of this light makes it all the way back through the atmosphere and into the satellite

sensor. Due to all these processes, the percentage of the signal which contains information

on the ocean interior is small. The majority of the signal measured by the satellite sensor,

typically more than 90%, has only interacted with the atmosphere or the surface.

Many passive satellite sensors are in sun-synchronous orbits (Burrows et al., 2011). The

satellite moves in accordance with the sun such that it always views the sunlit ocean. Such

a viewing geometry can be reached in lower Earth orbits, which have an altitude of about

800 km and an inclination angle between orbital plane and equator of ∼98°. Due to the

non-sphericity of the Earth, at this inclination and height, the orbit precesses at the same

rate as the Earth moves around the sun. The angle between orbital plane and sun-Earth

line is kept constant, ensuring that the satellite crosses the equator always at the same

local time. Satellites in these orbits circle the Earth about 14 times per day. The swath

is the area of the Earth which is observed by the satellite per orbit. Depending on the

width of the swath, the satellite can reach daily global coverage meaning that it measures

every point on Earth within one day. Measurement principles of optical sun-synchronous

satellite sensors are introduced in sections 2.12 and 2.13.

2.3 Radiometric quantities

Light is electromagnetic radiation which propagates as waves of perpendicular electric and

magnetic fields described by the Maxwell equations (Maxwell, 1865). For quantifying the

amount of light, e.g., reaching a satellite detector, different quantities can be defined (Liou,

2002). The radiance or intensity I is the radiant energy Q per time t and wavelength λ
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in a differential solid angle dΩ oriented at an angle θ normal to the surface element dA,

intercepting an effective area cos θdA:

I(λ) =
dQ(λ)

cos θdΩdλdtdA
[Jm−2nm−1s−1sr−1]. (2.3.1)

The plane irradiance is the normal component of the radiance integrated over the entire

hemispheric solid angle above dA:

E(λ) =


Ω

I(λ) cos θdΩ. (2.3.2)

For isotropic radiation, the irradiance is πI(λ). The total flux density of radiant energy is

obtained by integrating the irradiance over all wavelengths:

E =

 ∞

0

E(λ)dλ. (2.3.3)

The total flux or radiant power W incident onto a surface is:

W =


A

EdA. (2.3.4)

For optical oceanography, it is useful to define the upwelling plane irradiance, Eu, and

downwelling irradiance, Ed, as the irradiances measured by an instrument pointing down-

ward or upward, respectively, which captures light from the respective hemisphere (Mobley,

1994; Mobley et al., 2021):

Ed(λ) =

 2π

ϕ=0

 π/2

θ=0

I(λ)| cos θ| sin θdθdϕ, (2.3.5)

Eu(λ) =

 2π

ϕ=0

 π

θ=π/2

I(λ)| cos θ| sin θdθdϕ, (2.3.6)

with azimuthal angle θ and polar angle ϕ.

2.4 Concept of inherent and apparent optical properties

The concept of inherent and apparent optical properties is widely used in the field of optical

oceanography (Mobley, 1994; Mobley et al., 2021). Inherent optical properties (IOPs) only

depend on the properties of the medium, i.e., composition, size and shape of particles, and

concentration of the medium’s constituents. Apparent optical properties (AOPs), on the
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other hand, additionally depend on viewing geometry and surface properties.

The most prominent IOPs are the absorption and the scattering coefficients of a medium.

When a monochromatic and collimated light beam, with spectral radiant power W (λ),

passes through a small volume of a medium, some of the incident radiant power will be

scattered out of the direction of the light beam, some will be absorbed and some will exit

the volume unchanged. The absorptance is defined as the ratio of the absorbed radiant

power within the volume Wa(λ) to the incident radiant power Wi(λ),

A(λ) =
Wa(λ)

Wi(λ)
. (2.4.1)

Similarly, the scatterance can be defined as the ratio of scattered radiant power by the

volume Wb(λ) to the incident radiant power,

B(λ) =
Wb(λ)

Wi(λ)
. (2.4.2)

The transmittance is the ratio of the radiant power that exits the volume unchanged in

direction and wavelength, Wt(λ), to the incident radiant power

T (λ) =
Wt(λ)

Wi(λ)
. (2.4.3)

Due to conservation of energy, A(λ) + B(λ) + T (λ) = 1. The absorption coefficient a(λ)

of the medium is the change in absorptance with distance ds propagated through the

medium:

a(λ) =
dA

ds
[m−1], (2.4.4)

which can also be expressed as the product of absorption cross section σa (in units of

area) and the number density n (in units per volume), a(λ) = σa(λ)n. Analogously, the

scattering coefficient is given by

b(λ) =
dB

ds
= σb(λ)n [m−1], (2.4.5)

where σb is the scattering cross section. The sum of these two coefficients is the beam

attenuation coefficient c(λ) = a(λ) + b(λ). In optical oceanography, the term attenuation

is commonly used for the sum of absorption and scattering, whereas the atmospheric

community usually refers to it as extinction. Absorption and scattering are introduced in

more detail in the next section, 2.5, introducing also other IOPs such as the scattering
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phase function.

AOPs are those optical properties that can be determined via remote sensing, whereas

the IOPs are usually indirectly derived from these. IOPs give insight on the medium’s

constituents in a straightforward manner, however, they can only be measured in-situ with

technically demanding instrumentation. AOPs on the other hand are derived from rather

easily measurable radiometric quantities such as the radiance. To be acknowledged as an

AOP, a radiometric quantity is required to depend strongly on IOPs and only weakly on

the viewing geometry and other environmental parameters such as cloudiness and wind

speed such that valuable information on the medium can be gained. Ratios and gradi-

ents of irradiances and radiances generally fulfill these criteria. AOPs can be reflectances

such as the irradiance reflectance R(z, λ) = Eu(z, λ)/Ed(z, λ) at depth z as well as mean

cosines such as µ̄ = (Ed(z, λ) − Eu(z, λ))/Eo(z, λ), where Eo(z, λ) is the scalar spectral

irradiance. Logarithmic depth derivatives of irradiances or radiances, also known as diffuse

attenuation coefficients or K functions, are also AOPs. The diffuse attenuation coefficient

of downwelling irradiance is (Gordon et al., 1980)

Kd(z, λ) = −d ln[Ed(z, λ)]

dz
= − 1

Ed(z, λ)

dEd(z, λ)

dz
. (2.4.6)

The K functions depend on the angular distribution of the light field and therefore change

with depth near the surface even for homogeneous media. Far from boundaries, the K func-

tions only depend on the IOPs. In contrast, the beam attenuation coefficient is the same

for all depths. Kd is generally smaller than the beam attenuation coefficient, because the

downwelling irradiance can gain photons from neighboring beams through single-scattering

events, whereas in case of the beam attenuation coefficient, a multi-scattering event of pho-

tons from neighboring beams that go exactly into the incidents beam direction is rather

unlikely.

2.5 Absorption and scattering

When light interacts with particles, it can either be absorbed or scattered. Absorption

(Mobley, 1994; Burrows et al., 2011; Mobley et al., 2021) describes the process in which

the energy of a photon is passed to an atom or molecule leaving it in an excited state.

An atom consists of a nucleus with surrounding electrons, which occupy discrete energetic

states. The energy of a photon Eph = hν is determined by its frequency ν and the Planck

constant h. To be absorbed, the photon’s energy has to correspond to the difference in

energy Ei −Ej between two atomic energy levels i and j. These electronic transitions are
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therefore associated with sharp absorption lines for specific wavelengths. Typical energies

are in the ultraviolet and visible wavelength range. A molecule consists of several atoms

which can move as a unit or with respect to each other. Vibration and rotation of a

molecule are associated with energies one to four orders of magnitude less than electronic

transitions. For each electronic energy level, a fine structure of energy levels, corresponding

to different vibrational and rotational modes, appears. The ground state corresponds

to a certain occupation of electronic states and vibrational and rotational modes which

are described by a set of quantum numbers. In the process of absorption, a molecule

is excited from its ground state to a higher energetic state corresponding to a different

set of quantum numbers. Selection rules depending on spin and angular momentum of

photon and electrons within the molecule determine allowed transitions. The manifold

energy levels in a molecule due to vibration and rotation explain that a large molecule like

chlorophyll-a has broad absorption peaks.

Elastic scattering (Mobley, 1994; Mobley et al., 2021) occurs when light encounters a

change in index of refraction from one location to another. The index of refraction is

defined as the ratio of the speed of light in vacuum to the speed of light in a medium and

can be changed locally, e.g., by a particle along the light path or by density fluctuations

of a medium. Elastic scattering does not change the energy of the incoming light, only

its direction. The volume scattering function (VSF) describes the angular distribution of

unpolarized light scattered from its initial direction x⃗′ into direction x⃗ at wavelength λ.

Most media in the aquatic environment are isotropic, i.e., scattering only depends on the

angle ξ between x⃗′ and x⃗. The VSF can be defined as

β(ξ, λ) =
1

E(0, λ)

dI(ξ, λ)

dV
[m−1sr−1] (2.5.1)

with the incoming irradiance E(0, λ), the radiant intensity dI(ξ, λ) scattered to angle ξ,

and infinitesimal volume element dV . The scattering coefficient is the integral of the VSF

over all angles

b(λ) = 2π

 π

0

β(ξ, λ) sin ξdξ. (2.5.2)

The phase function is the VSF normalized to the scattering coefficient:

β̃(λ, ξ) =
β(λ, ξ)

b(λ)
. (2.5.3)

Since light reaching a satellite sensor is either backscattered or multiply forward scattered,
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backscattering is an important process. The backscattering coefficient bb is calculated from

the VSF only considering angles larger 90°:

bb(λ) = 2π

 π

π/2

β(ξ, λ) sin ξdξ. (2.5.4)

The backscattering ratio is the amount of backscattering relative to the amount of total

scattering: b̃ = bb/b.

Scattering on particles can be theoretically described by Mie theory. Mie theory covers

the situation of a plane electromagnetic wave interacting with a spherical particle with com-

plex refractive index, i.e., the particle scatters and absorbs, embedded in a non-absorbing

medium. The problem can be parameterized with a size parameter x,

x =
2πrnm

λ
, (2.5.5)

where λ is the wavelength in vacuum, r the particle’s radius, and nm the real refractive

index of the medium. The second parameter needed is the complex refractive index of the

particle relative to the refractive index of the medium,

m =
ns

nm

+
iks
nm

, (2.5.6)

where ns and ks are the real and imaginary part of the particle’s refractive index, respec-

tively.

The size parameter is a measure for the particle’s size in comparison to the incident

light’s wavelength and determines the scattering regime. If the size of the particle is much

smaller than the wavelength, x << 1, the Rayleigh approximation can be used. If the size

of the particle is much larger than the wavelength, x >> 1, geometric optics can be used.

In all other cases, when particle size and wavelength are similar, full Mie theory has to be

considered. However, Mie theory is for spherical particles and therefore an approximation

for real particles in the atmosphere and in the ocean, which are often non-spherical. Non-

sphericity has a large effect on the backscattering, which can easily differ by a factor of

three due to particle shape (Curtis et al., 2008).

In inelastic processes, the excitation state of the molecule is changed upon interaction,

consequently also changing the energy of the incident light. An inelastic process is there-

fore always associated with a shift in wavelength. An important inelastic process in the

atmosphere and ocean is Raman scattering. Light is scattered inelastically to longer or

shorter wavelengths which is caused by an instantaneous change of the molecule’s vibra-
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tional or rotational state or both. Scattered light to longer wavelengths is referred to as

Stokes line whereas the Anti-Stokes line appears due to scattering to shorter wavelengths.

Another important inelastic process is fluorescence that occurs when light is absorbed by a

molecule and re-emitted at longer wavelengths. Raman scattering and fluorescence occur

on different time scales. Raman scattering is an instantaneous process on time scales of

10−13-10−12 s compared to fluorescence being a process of absorption and later reemission

on the order of 10−9 s. In the framework of radiative transfer, both processes can be de-

scribed by an absorption process at λ′ and a reemission at λ. The inelastic scattering

coefficient,

bi(λ′ → λ) = bi(λ′)f i(λ′ → λ), (2.5.7)

is a product of the total inelastic scattering coefficient bi(λ′) and a wavelength distribution

function f i(λ′ → λ), which contains information on the wavelength shift. Emission due to

fluorescence is generally isotropic, whereas Raman scattering has an angular dependence.

2.6 Radiative transfer theory

Radiative transfer theory is the mathematical framework for describing the propagation

of radiation through a medium. Radiance measured by a satellite sensor is from sunlight

which propagates, at least partly, through the atmosphere and ocean and back into the

sensor. Several processes occur on the way which cause an increase or decrease in radiation

along the light path (Mobley, 1994; Mobley et al., 2021). Considering a monochromatic

light beam traveling a distance ds, radiative energy can be lost by absorption and turned

into chemical energy or heat. Photons can be elastically scattered out of the beam. En-

ergy can also be lost by inelastic processes, i.e., photons are absorbed by molecules and

re-emitted at longer wavelengths in the process of fluorescence or phosphorescence and

photons can be scattered to wavelengths differing from the incident light’s wavelength.

The inelastically scattered photons may be additionally out of the direction of the light

beam. Energy can be gained by elastic scattering from other directions into the light beams

direction or by inelastic processes, scattering or emitting light at the beam’s wavelength

and direction. In emission processes such as bioluminescence, chemical energy is converted

to radiative energy, which can also cause a gain in energy of the light beam.

Mathematically, the loss and gain processes of light propagating through a medium

can be expressed as follows (Liou, 2002). The reduction in intensity of the light beam is

determined by the absorption and scattering coefficient whose sum is the beam attenuation
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coefficient c:

dI(λ) = −c(λ)I(λ)ds = −σc(λ)nI(λ)ds, (2.6.1)

where σc = σa + σb is the attenuation cross section in units of area and n is the number

density of the medium. Similarly, the source term can be defined as:

dI(λ) = j(λ)ds = σj(λ)nds, (2.6.2)

with the source function coefficient j(λ) or cross section σj having the same physical mean-

ing as the attenuation coefficient or cross section, respectively. Source terms accounting

for different physical processes can be formulated. For example, the source term for con-

tributions from elastic scattering is

dI =

 2π

0

 π

0

I(s, θ′, ϕ′, λ)β(s, (θ′, ϕ′)→ (θ, ϕ), λ) sin θ′dθ′dϕ′ds, (2.6.3)

for scattering from direction (θ′, ϕ′) to (θ, ϕ). The basic monochromatic, one-dimensional,

time-independent radiative transfer equation (RTE) is given by the sum of the loss and

gain terms:

dI(λ) = −σc(λ)nI(λ)ds + σj(λ)nds. (2.6.4)

By solving the RTE, the radiation field can be determined at any point in the medium.

Polarization is an inherent property of light which describes the orientation of the electric

field vector of an electromagnetic wave with respect to its direction of propagation. To

account for polarization of light, the RTE needs to be in a vectorial form. For most oceanic

applications, this is not required because of the following reasons (Mobley et al., 2021):

� Oceanic particles are usually much larger than λ. The induced polarization by par-

ticles upon scattering is largest for particles much smaller than λ.

� Multiple scattering is usually present under water which decreases the degree of

polarization introduced by single scattering events.

� Often, irradiances are considered in optical oceanography. Integration over direction

tends to cancel out different polarization in different directions.

The RTE has to be solved for boundary conditions. The upper boundary is usually

given by the incident solar irradiation at the top of atmosphere and the lower boundary by
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the sea bottom. Even the basic RTE in Equation 2.6.4 has no analytic solution except for

simplified cases, e.g., no scattering. Accurate solutions of the RTE for realistic atmospheric

and oceanic conditions therefore require numerical solutions. In this work, the radiative

transfer model (RTM) SCIATRAN is used for solving the RTE.

2.7 Radiative transfer model: SCIATRAN

The radiative transfer model SCIATRAN (Rozanov et al., 2014, 2017) is used for solving

the radiative transfer equation based on the discrete ordinates technique. The method of

discrete ordinates was developed by Subrahmanyan Chandrasekhar (Chandrasekhar, 1960)

and discretizes the xyz-domain as well as the angular variables to approximately solve the

RTE numerically. Different modes can be used depending on the required results. In this

work, either intensities are calculated at the TOA as seen for a specific satellite sensor or

in-water fluxes are calculated at discrete depths. The model solves the RTE for a coupled

ocean-atmosphere system by an iterative approach until convergence is reached for the

radiation penetrating into the ocean and for the water-leaving radiation. Scattering and

absorption properties of the atmosphere and oceanic constituents as well as the sea surface

roughness need to be defined. Relevant physical processes in the ocean-atmosphere systems

are introduced in the next sections. Chosen parameterizations and settings are described

in each study (chapters 3-5), specific for each application.

2.8 Absorption and scattering processes in the

atmosphere

The atmosphere (Liou, 2002) can be divided into four distinctly different layers based on

the temperature change with altitude: the troposphere, stratosphere, mesosphere, and

thermosphere. Relevant absorption and scattering processes occur in the troposphere and

stratosphere. The troposphere is closest to the Earth’s surface and reaches up to about

12 km. The temperature decreases with altitude. All water vapor, clouds and precipitation

are confined in this layer. The stratosphere is adjacent to the troposphere and reaches to

an altitude of roughly 50 km. The temperature increases with altitude in this layer.

The chemical composition of the atmosphere is made up of several gases with permanent

or varying concentrations. Nitrogen, oxygen and argon are the biggest contributors to the

permanent gases and make up 99.6% of the atmosphere by volume. Other well-known

permanent gases are carbon dioxide and methane, although their concentrations have risen
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Figure 2.8.1: Absorption cross section of atmospheric absorbers used within ocean
color retrievals in this work: ozone (Serdyuchenko et al., 2014), nitrogen
dioxide (Vandaele et al., 1998), glyoxal (Volkamer et al., 2005), bromine
monoxide (Fleischmann et al., 2004), water vapor (Rothman et al., 2013,
using HITRAN 2009), and the oxygen dimer (Thalman and Volkamer,
2013).

in the past decades due to human activities. Concentrations of permanent gases have stable

volume ratios up to 60 km. Important variable constituents with respect to contribution

by volume are water vapor, ozone, sulfur dioxide, nitrogen dioxide, and ammonia. Most

of the ozone is found in the ozone layer at 15 to 30 km altitude with a maximum at 20 to

25 km, however, ozone is also present in the troposphere due to anthropogenic activities.

Nitrogen oxides NOx (NO, NO2) are also found in both layers. The main source of NOx in

the troposphere originates from transportation and combustion processes at the surface.

Aircrafts cause an increase in NOx at the upper troposphere and lower stratosphere. The

main source for NOx in the stratosphere is the dissociation of nitrous oxide (N2O).

The atmosphere also contains larger particles, aerosols, with sizes on the order of 10−3

to 20µm. Aerosols are produced in natural processes such as volcanic eruptions, sand

storms, forest fires, wave motion, but also in anthropogenic activities, mainly combustion.

Clouds cover more than 50% of the sky on the global scale.

Absorption and scattering of the atmospheric constituents is briefly discussed in the

following for the UV and visible spectral regions with a focus on 300 to 600 nm. Ab-

sorption cross sections of atmospheric absorbers above the sunlit ocean, relevant for OC

applications, are shown in Figure 2.8.1.
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2 Scientific background 2.8 Absorption and scattering processes in the atmosphere

2.8.1 Atmospheric absorption

Ozone absorbs most strongly in the Hartley bands from 200 to 300 nm. Medium absorption

is found for the Huggins bands between 300 and 360 nm and weak absorption in the

Chappuis bands in the visible spectral range (e.g., Gorshelev et al., 2014; Serdyuchenko

et al., 2014).

Nitrogen dioxide absorbs in the UV and visible wavelength range between 200 and 700 nm

(Vandaele et al., 1998; Solomon et al., 1999).

Molecular oxygen has absorption bands in the visible and infrared. The most important

bands at visible wavelengths are the A band (762 nm), the B band (688 nm), the γ band

(628 nm), and the δ band (580 nm) (Newnham and Ballard, 1998).

The oxygen dimer, referred to as O4, is induced by collision of two oxygen molecules.

O4 absorbs in broad spectral bands in the UV and visible spectral regions (e.g., Wagner

et al., 2002). The intensity of the O4 bands varies with the square of the oxygen pressure.

Water vapor H2O (e.g., Eldridge, 1967) has three fundamental vibrational modes in the

infrared. Some H2O lines are also present in the visible as overtones and combinations of

the vibration modes.

Bromine monoxide (BrO) absorbs in the UV wavelengths. Enhanced concentrations of

BrO can be found, amongst others, in the marine boundary layer (Leser et al., 2003; Sander

et al., 2003; Saiz-Lopez et al., 2004), especially in polar sea ice regions (e.g., Simpson et al.,

2007).

Iodine monoxide (IO) absorbs in the blue spectral range and exhibits sharp absorption

features. Similar to BrO, it is present in the marine boundary layer (e.g., Peters et al.,

2005). Concentrations are generally low, however, have been detected with remote sensing

techniques (Schönhardt et al., 2008).

Glyoxal (CHOCHO) and formaldehyde (HCHO) originate from oxidation of the majority

of volatile-organic compounds. Sources are vegetation, fossil fuel consumption, biomass

burning, and to a lesser extent, the ocean (Guenther et al., 1995; Andreae and Merlet, 2001;

Vrekoussis et al., 2010). Direct production is also possible, mainly from anthropogenic

emissions for formaldehyde and from fires in the case of glyoxal (Stavrakou et al., 2009;

Zhang et al., 2016). They are short-lived species, although evidence of transport has been

found recently (Behrens et al., 2019; Alvarado et al., 2020). Glyoxal absorbs at visible

wavelengths. The concentration of glyoxal over open ocean areas should be negligible and

was therefore also not further considered in chapters 4 and 5. Formaldehyde absorbs in the

UV. The main source for global background concentrations is the oxidation of methane.

Concentrations over ocean regions are generally low (Wittrock et al., 2006).

Furthermore, species such as sulfur dioxide (SO2), chlorine dioxide (OClO), chlorine
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monoxide (ClO), and nitrate (NO3) absorb in the UV wavelength range. However, these

are only relevant in certain situations or areas. SO2 is usually associated with volcanic

eruptions or anthropogenic activities such as coal burning. Satellite observations of SO2

show that concentrations over open ocean areas are usually low (e.g., Theys et al., 2015).

OClO and ClO are only significantly present in the dark polar vortex (Wagner et al., 2001)

and NO3 is rapidly photolyzed by sunlight (Orlando et al., 1993).

2.8.2 Mie and Rayleigh scattering

Atmospheric molecules are much smaller than UV-VIS wavelengths. Their scattering falls

in the Rayleigh regime, x << 1. Rayleigh scattering (Rayleigh, 1899) can be derived from

Mie theory or derived in the picture of interaction between light and an air molecule (Liou,

2002). An applied electric field induces an oscillating dipole in the molecule which produces

plane-polarized radiation, the scattered electromagnetic wave. The total scattered intensity

of unpolarized light incident on a molecule in the direction of ξ is given by:

I =
I0
s2
α2


2π

λ

4
1 + cos2 ξ

2
, (2.8.1)

with polarizability α. The scattered intensity is proportional to the incident intensity I0

and inversely proportional to the square of the distance s between the molecule and the

observer. The strong wavelength dependence, ∼ λ−4, is related to the blue color of the

sky. The phase function of Rayleigh scattering is

β̃ =
3

4
(1 + cos2 ξ). (2.8.2)

Forward scattering and backscattering are of equal magnitude, b̃ = 0.5.

Scattering on aerosols and cloud particles is described by full Mie theory since x ≈ 1.

It is similar to scattering on oceanic particles described in detail in section 2.9.6. The

scattering is predominantly in forward direction. The wavelength dependence is rather

weak and depends on particle size. Clouds and non-absorbing particles therefore appear

white.

2.8.3 Rotational Raman scattering

Raman scattering in the atmosphere (Burrows et al., 2011) is predominantly associated

with a change in rotational state of air molecules. Rotational Raman Scattering (RRS) on

N2 and O2 leads to a Raman shift up to ±200 cm−1. Additionally, the vibrational mode
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can be changed. For changes in vibrational state, the Raman shift is 2,331 cm−1 for N2

and 1,555 cm−1 for O2. Rotational-vibrational Raman scattering (RVRS) coefficients are

one order of magnitude weaker than RRS coefficients and RRS is one order of magnitude

weaker than Rayleigh scattering.

2.9 Absorption and scattering processes in the ocean

Particulate and dissolved organic and inorganic substances as well as liquid water itself

define the optical properties of oceanic water. Absorption and scattering properties of

oceanic constituents are introduced in the next sections following (Mobley, 1994; Mobley

et al., 2021).

2.9.1 Liquid water absorption

Liquid water absorption is at its minimum in the blue and increases towards shorter and

longer wavelengths. The absorption spectrum is broad band with absorption plateaus vis-

ible in the red and longer wavelengths. Vibrational modes of the water molecule originate

from bending and stretching of O-H bonds. In the liquid state, water molecules are not

free to rotate due to hydrogen bonding between molecules. Rotational modes are therefore

reduced to so-called libration modes. The absorption features seen in the red are caused

by harmonics of these vibration and libration modes. The water absorption coefficient is

challenging to measure in the laboratory (e.g., Buiteveld et al., 1994), especially in the UV

(e.g., Fry, 2000). Several literature values have been reported (e.g., Quickenden and Irvin,

1980; Smith and Baker, 1981; Pope and Fry, 1997; Cruz et al., 2009; Kröckel and Schmidt,

2014; Mason et al., 2016). Figure 2.9.1 shows two water absorption coefficients (Pope and

Fry, 1997; Mason et al., 2016), which are commonly used. The coefficients agree in the

green to red wavelength range, however, larger discrepancies are found in the UV and blue

spectral regions.

Temperature and dissolved ions change the structure of the water molecule cluster, lead-

ing to a temperature and, to a lesser degree, salinity dependence of the harmonics. Temper-

ature and salinity dependencies have been determined in laboratory measurements (Kou

et al., 1993; Buiteveld et al., 1994; Langford et al., 2001; Sullivan et al., 2006; Larouche

et al., 2008; Röttgers et al., 2014). Röttgers et al. (2014) find that below 500 nm, tem-

perature effects are negligible for visible wavelengths. Small effects are seen up to 575 nm.

Larger effects appear at longer wavelengths which should be taken into account for accu-

rate optical simulations and measurements. At visible wavelengths, the salinity effects are
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(a) (b)

Figure 2.9.1: Absorption coefficients for colored dissolved organic matter (aCDOM),
non-algal particles (aNAP), and liquid water (aw) in the wavelength range
(b) 300 to 700 nm and (b) 300 to 500 nm. Two absorption spectra are
shown for liquid water absorption measured by Pope and Fry (1997) and
Mason et al. (2016). The CDOM absorption coefficient was calculated
based on the parameterization of Morel and Maritorena (2001) for a
chlorophyll-a concentration of 1 mg/m2, corresponding to SCDOM =
0.014 nm−1 and aCDOM(440) = 0.013m−1. aNAP was calculated for a
medium slope of SNAP = 0.009 nm−1 and aNAP(440) = 0.02m−1.

only relevant for wavelengths larger 600 nm.

2.9.2 Phytoplankton absorption

Phytoplankton contain different types of pigments (Mobley et al., 2021; Blankenship, 2002)

that are used for photosynthesis and photoprotection. Chlorophyll-a is the main pigment

for photosynthesis contained in all phytoplankton. Other chlorophylls, carotenoids, and

phycobilipigments are other main pigments typically found in phytoplankton. Chlorophylls

have a tetrapyrole ring and a carbon chain tail, except chlorophyll-c which only has the

ring structure. These molecules have two absorption bands, one in the blue and one in

the red wavelengths. Carotenoids are long double-bonded carbon chains, often with a ring

structure at each end. Their absorption spectra show a broad absorption band in the blue-

green wavelengths. Phycobilipigments are chains of pyrole rings that absorb in the spectral

region from 550 to 650 nm. Figure 2.9.2 (a) shows absorption spectra of different pigments.

Each phytoplankton species has a specific pigment composition and the overall absorption

coefficient is generally the sum of the pigment absorption coefficients weighted according to

the phytoplankton’s pigment composition. Phytoplankton absorption coefficients, aϕ(λ),
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(a) (b)

Figure 2.9.2: (a) Estimated in-vivo weight-specific absorption coefficients of differ-
ent pigments. Pigment absorption spectra were measured in solvent
by High Performance Liquid Chromatography in relative values and
scaled to weight-specific absorption coefficients following Goericke and
Repeta (1993) and then shifted to in vivo positions of absorption
maxima as in Bidigare et al. (1990) (Figure was taken from Bricaud
et al. (2004)). Dv : divinyl, 19’-HF: 19’-hexanoyloxyfucoxanthin, 19’-
BF: 19’-butanoyloxyfucoxanthin. (b) Specific absorption coefficients of
three phytoplankton functional types: cyanobacteria, diatoms, coccol-
ithophores as in Bracher et al. (2009); Sadeghi et al. (2012a).
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are usually measured on bulk samples giving the absorption coefficient of a culture or

natural water sample. Normalization to the chlorophyll-a concentration yields the specific

absorption coefficient a∗ϕ(λ).

The pigment composition varies naturally within one species and therefore variations

in phytoplankton absorption spectra are found within one species. The formation of pig-

ments other than chlorophyll-a and the overall pigment concentrations are influenced by

light and nutrient conditions in the growth phase (Johnsen et al., 1994; Henriksen et al.,

2002; Staehr and Henriksen, 2002). At the level of phytoplankton functional types, where

multiple species are clustered, large variations in phytoplankton absorption, but also large

similarities are found. Most pigments are found in several phytoplankton functional types.

However, the same groups of pigments can be found in phytoplankton with similar evolu-

tionary lineages (Falkowski et al., 2004). Different phytoplankton functional types therefore

have absorption spectra with similar broad absorption bands, but distinctly different small

absorption peaks as shown in Figure 2.9.2 (b). Variability in phytoplankton absorption is

not only due to pigment concentration and composition, but also due to pigment packag-

ing. The light absorbing material in a phytoplankton cell is packaged which reduces the

absorption coefficient in relation to the absorption coefficient of the same light absorbing

material in an unpackaged state. A package effect index (Bricaud et al., 2004), Q∗
a(λ),

can be defined as the ratio of phytoplankton absorption coefficient, aϕ(λ), to the absorp-

tion coefficient of the corresponding phytoplankton cells’ content dispersed into a solvent,

asol(λ):

Q∗
a(λ) = aϕ(λ)/asol(λ). (2.9.1)

asol(λ) can be calculated as the sum of weight-specific absorption spectra of individual

pigments, a∗sol,i(λ), and their concentrations Ci in the solvent, asol(λ) =


a∗sol,i(λ)Ci. The

package effect index lies between 0 and 1, with 1 indicating no pigment packaging and 0

maximal pigment packaging. Bricaud et al. (2004) found that pigment packaging increases

with Chla. Since large phytoplankton are associated with higher algal biomass, the pigment

package effect increases with phytoplankton size.

Phytoplankton can also produce UV-absorbing pigments for protection from damaging

radiation. The mycosporine-like amino acids absorb between 320 and 350 nm peaking

around 330 to 340 nm (Vernet et al., 1994; Bracher and Wiencke, 2000). Production of

UV-absorbing pigments depends on UV irradiation and species and is highly variable

(Vernet et al., 1994).
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2.9.3 NAP absorption

Non-algal particles (NAP) are operationally defined as a fraction of particulate matter, i.e.,

does not pass a filter of 0.7 mm pore size. It is not extracted by methanol in spectropho-

tometric measurements of particles on a filter pad (Kishino et al., 1985). It is composed

of bacteria, other protists, zooplankton, detrital organic matter, and suspended inorganic

particles. NAP absorption, aNAP(λ), depends on wavelength. It is highest in the UV-blue

and exponentially decays to the red spectral range (see Figure 2.9.1):

aNAP(λ) = aNAP(440) exp(−SNAP(λ− 440)). (2.9.2)

The spectral slope SNAP varies between 0.006 to 0.013 nm−1 (Roesler et al., 1989; Babin

et al., 2003) depending on composition.

2.9.4 CDOM absorption

Colored dissolved organic matter (CDOM) is operationally defined as the absorbing matter

that passes through a filter of 0.2 mm pore size (Bricaud et al., 1981). This fraction

contains organic substances and inorganic salts. The inorganic salts are optically active in

the UV, whereas the fraction that absorbs in the visible is dominated by organic matter,

hence the name CDOM. Similar to NAP absorption, CDOM absorption, aCDOM(λ), decays

exponentially with wavelength (see Figure 2.9.1):

aCDOM(λ) = aCDOM(440) exp(−SCDOM(λ− 440)). (2.9.3)

However, spectral slopes are larger than for NAP. The spectral slope, SCDOM, varies natu-

rally in the range 0.007 to 0.026 nm−1 (e.g., Twardowski et al., 2004). Variations in spectral

slope are due to composition of the organic substances and are an indicator of their origin.

Fulvic material of terrestrial origin, e.g., degrading plants introduced by river run-off, has

generally smaller slopes than the humic material of marine origin, e.g., degrading phyto-

plankton. Depending on the spectral range used for determining SCDOM, SCDOM varies. In

the UV, generally larger values of SCDOM are found (Aurin et al., 2018).

2.9.5 Liquid water scattering

Pure water scatters elastically and inelastically. Inelastic scattering by pure water is intro-

duced in section 2.10. Elastic scattering by water can be understood as caused by density

fluctuations causing short term variations in refractive index. Density fluctuations are due
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to thermal movement of water molecules. Einstein (1910) and v. Smoluchowski (1908) first

described optical scattering due to thermodynamical fluctuations. Their theory was later

modified to include polarization and yields for water following VSF (e.g., Buiteveld et al.,

1994):

β(λ, ξ) =
2πkT

λ4βT

n2


∂n

∂P

2

T

6 + 6ρ

6− 7ρ


1 +

1− ρ

1 + ρ
cos2 ξ


(2.9.4)

with temperature T , Boltzman constant k, isothermal compressibility of water βT , isother-

mal pressure derivative of index of refraction

∂n
∂P


T

, and depolarization ratio ρ. Similar to

Rayleigh scattering on atmospheric molecules, scattering on water molecules inversely de-

pends on the wavelength to the power of 4. This analogy originates from the fact that the

spatial extent of the density fluctuations is, just as atmospheric molecules, much smaller

than the wavelength of visible light. The backscattering ratio of water is 0.5, half of the

incoming light is scattered forward and half is scattered backward. The scattering coeffi-

cient of sea water depends on temperature and salinity (Zhang et al., 2009). Variations on

the order of 30% are observed for typical salinity ranges in the ocean. The temperature

dependence is with 4% significantly weaker.

2.9.6 Particle scattering

Oceanic particles scatter in the Mie regime. Various particles of different sizes are present in

oceanic waters, including organic particles ranging from bacteria to large phytoplankton or

zooplankton and inorganic particles such as storm-induced terrestrial dust. Small particles

are much more abundant than large particles. Particle size distributions follow a hyperbolic

shape, so-called Junge distributions. The number of particles per unit volume with size

greater than r is proportional to r−µ with µ = 3− 5 for typical oceanic size distributions

(Kostadinov et al., 2009). Fournier and Forand (1994) derived an approximate analytic

phase function from Mie theory for a Junge particle distribution, given in its latest form

(Fournier and Jonasz, 1999) as:

β̃FF (ξ) =
1

4π(1− δ)2δη
[η(1− δ)− (1− δη) + [δ(1− δη)− η(1− δ)] sin2(ξ/2)] (2.9.5)

+
1− δη180

16π(δ180 − 1)δη180
(3 cos2 ξ − 1) (2.9.6)

η =
3− µ

2
, δ =

4

3(n− 1)2
sin2(ξ/2) (2.9.7)
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with δ180 being δ evaluated at 180°. The backscattering fraction is:

b̃ = 1− 1− δη+1
90 − 0.5(1− δη90)

(1− δ90)δ
η
90

(2.9.8)

with δ90 being δ evaluated at 90°. Typical oceanic b̃ range between 0.001, very large

phytoplankton, to 0.1, very small mineral particle (Mobley et al., 2021). This analytically

derived phase function best matches field measurements of phase functions of natural

waters. The exact choice of µ and η for a given backscattering fraction is not crucial. The

backscattering fraction can be wavelength dependent and is usually parameterized as a

power law decreasing with wavelength.

The strength of the total scattering coefficient is decreasing weakly with wavelength as

typical for the Mie scattering regime. The scattering coefficient can be parameterized in

terms of chlorophyll-a concentration C:

b = b0C
ϵ


500

λ

γ

(2.9.9)

b0, ϵ, and γ are constants that were empirically determined by, e.g., Gordon and Morel

(1983) as b0 = 0.3, ϵ = 0.62, γ = 1.

2.10 Inelastic processes

2.10.1 Phytoplankton fluorescence

Phytoplankton use light and water to convert carbon dioxide by photosynthesis to sugars

and oxygen. Photosynthesis consists of a light-dependent and a light-independent reaction.

During the light-dependent reaction, light is absorbed and transfered to electrons. In the

dark reaction, this energy is used to build sugars from carbon dioxide and water. Oxygen is

released as a waste-product. Light is absorbed by chlorophyll-a and other light-harvesting

pigments and transfered to the reaction centers, photosystems (PS) I and II (Kirk, 1994).

PS I and II consist of components needed for charge separation and electron transfer as well

as pigment-proteins (containing chlorophyll) for light-harvesting. The excited PS I and II

can return to ground state via three different mechanisms: photochemistry, fluorescence,

or heat release. Through photochemical quenching, the absorbed energy is used in the

photosynthesis reactions to ultimately produce sugars. Under stressful conditions or high

light intensity, when photochemical reactions saturate, fluorescence and heat release yields

increase. Chlorophyll-a fluoresces in two broad peaks around wavelengths 683 nm and
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736 nm, referred to as red and far-red peaks. From the ocean, only the red peak can be

sensed, because liquid water absorption is too strong in the far-red (e.g., Wolanin et al.,

2015b).

2.10.2 CDOM fluorescence

A fraction of CDOM fluoresces. Since CDOM consists of many different dissolved organic

compounds of terrestrial and marine origin, the fluorescent compounds are also diverse.

Generally, CDOM fluoresces at wavelengths from UV to blue-green (e.g., Hudson et al.,

2007).

2.10.3 Vibrational Raman scattering

Vibrational Raman scattering (VRS) is a significant process in water. Sugihara et al. (1984)

discovered that measurements of upwelling irradiance Eu are unexpectedly high at depths

below 50 m and wavelengths larger 520 nm, considering the absorption by water at these

wavelengths, and postulated that the contributions to Eu at these wavelengths are from

Raman scattered light in the blue-green wavelength range. VRS describes the light-water

interaction in which the vibrational excitation state of a water molecule is altered, yielding

scattered light at longer and shorter wavelengths λ than the incident light’s wavelength

λ′. The mean Raman shift for water is about ∆ν ≈ 3400 cm−1 at room temperature. The

VRS scattering coefficient

bVRS(λ′ → λ) = bVRS(λ′)fVRS(λ′ → λ) (2.10.1)

is given by the product of the total VRS scattering coefficient bVRS(λ′) and the wavelength

distribution function fVRS(λ′ → λ), which can be understood as a probability density

function for light with wavelength λ′ being scattered to wavelength λ.

The total VRS scattering coefficient can be calculated from (Kattawar and Xu, 1992)

bVRS(λ′) =
800Nπ

3


dσ(λ′)

dΩ


1 + 2ρ

1 + ρ


, (2.10.2)

with the VRS scattering cross section at a scattering angle of 90°, dσ(λ′)
dΩ

, the number of

molecules per cubic centimeter, N , and the depolarization ratio, ρ. dσ(λ′)
dΩ

has been mea-

sured in several studies for a reference wavelength of λ0 = 488 nm. Resulting bVRS(λ0) =

bVRS(488) ranges between 2.4 · 10−4 and 2.9 · 10−4 m−1 (Romanov and Shuklin, 1975;

Kondilenko et al., 1977; Marshall and Smith, 1990; Bartlett et al., 1998; Desiderio, 2000).
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The wavelength dependence of bVRS(λ′) can be either described as an inverse power law

bVRS(λ′) = bVRS(λ0)


λ0

λ′

γ

, (2.10.3)

with γ = 4 derived theoretically (Placzek, 1934), or a resonance model (Bischel and Black,

1983; Faris and Copeland, 1997),

bVRS(λ′) = bVRS(λ0)
1

Nr

ν4

(ν2
i − ν ′2)2

, (2.10.4)

with incident wave number ν ′ and normalization factor

Nr =
(ν2 − ν ′

0
2)2

ν4
0

with ν ′
0 = ν0 + ∆ν, (2.10.5)

where ν0 is the reference wave number corresponding to λ0 = 488 nm. The resonance

model is expected to better describe the wavelength dependence close to the absorption

band of water, located at 130 nm, corresponding to νi = 76923 cm−1.

The wavelength distribution function fVRS(λ′ → λ) can be described as a sum of four

Gaussian functions (Walrafen, 1967), see Figure 2.10.1 (a), which was parameterized in

Haltrin and Kattawar (1993),

fVRS(λ′ → λ) =
107

λ′2
1√

2π
4

i=1(αiσi)

4
i=1

αi exp


−

(10
7

λ′ − 107

λ
−∆ν̄i)

2

2σ2
i


, (2.10.6)

where the three parameters, αi, σi, ∆ν̄i, define the shape of the Gaussian functions. The

spectral shift of VRS is constant in terms of frequency. In terms of wavelength, the

shift increases with increasing wavelength and fVRS(λ′ → λ) broadens and flattens, see

Figure 2.10.1 (b). For incident light in the UV-VIS with wavelengths between 300 and

700 nm, the wavelength shift ranges between 33 and 100 nm. The shape parameters are

temperature and salinity dependent. The hydrogen bonds break and reform constantly

between water molecules which is thought to be the reason for the temperature dependence

(Hare and Sorensen, 1990). The temperature and salinity dependence are small (Bartlett

et al., 1998). Nevertheless, temperature and salinity dependencies of VRS are detectable

with specific instrumentation and were suggested to be exploited for remotely measuring

temperature and salinity of water bodies with a lidar-compatible Raman spectrometer

system (Artlett and Pask, 2015; de Lima Ribeiro and Pask, 2020).
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2 Scientific background 2.10 Inelastic processes

(a) (b)

Figure 2.10.1: (a) Wavelength distribution function as made up of four Gaussian func-
tions for a single VRS excitation wavelength of λ′ = 400 nm. (b) Wave-
length distribution functions for vibrationally Raman scattered light at
three different wavelengths, λ′ = 300, 350, and 400 nm.

The phase function of VRS is given by

β̃ =
3

16π

1 + 3ρ

1 + 2ρ


1 +


1− ρ

1 + 3ρ


cos2 ξ


(2.10.7)

with scattering angle ξ. It is similar to the shape of elastic scattering of liquid water.

2.10.4 Brillouin scattering

Einstein-Smoluchowski theory was introduced in section 2.9.5 which describes elastic scat-

tering in water due to density fluctuations. Later it was discovered that the elastic scat-

tering component is not a single spectral line, but actually a triplet. Brillouin proposed

the existence of two frequency-shifted lines due to scattering on dynamic fluctuations

(Brillouin, 1922). Interaction of electromagnetic radiation with these propagating acous-

tic phonons leads to a Doppler shift. The red- and blue-shifted lines are referred to as

Mandelstam-Brillouin (MB) doublet which are analogous to the Stokes and Anti-Stokes

line for Raman scattering. The center line of the triplet is not shifted with respect to the

incident light’s wavelength. It is caused by scattering on static fluctuations and called

Gross line (Gross, 1930). The ratio of the Gross line intensity to the MB doublet intensity

is called Landau Placzek ratio (Landau, L. D. and Placzek, G, 1934) and is about 1% for

water at 25°C (O’Connor and Schlupf, 1967).

In conclusion, almost all scattering in water is inelastic. However, at an incident wave-
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length of 450 nm, the wavelength shift is ∆λ ≈ ±0.006 nm for the MB doublet (Peters,

2013). This wavelength shift is so small that it is not relevant for the spectral resolution

usually considered in optical oceanography. Brillouin scattering is treated in the RTM as

an elastic component in the framework of Einstein-Smoluchowski theory. This assumption

is further discussed in section 2.11.1.

2.11 Differential Optical Absorption Spectroscopy

Differential Optical Absorption Spectroscopy (DOAS) (Platt and Stutz, 2008) has been

first used for determining trace gas concentrations of weak atmospheric absorbers in the

UV-VIS spectral range from ground-based spectroscopic measurements (Noxon, 1975; Platt

et al., 1979; Perner and Platt, 1979; Solomon et al., 1987). The method identifies spectral

features of the target’s absorption cross section in the measured spectra. DOAS-type in-

struments therefore record radiances over broad spectral ranges (on the order of 50-200 nm)

with moderate spectral resolution such that the rather broad band absorption features in

the UV-VIS, as opposed to line absorption features, can be resolved. The first space-borne

DOAS-type instrument was the Global Ozone Monitoring Experiment (GOME) (Burrows

et al., 1999). The DOAS method has since been applied to satellite-recorded backscattered

radiances from GOME and other DOAS-type satellite sensors and yielded global observa-

tions of concentrations of weak atmospheric absorbers such as nitrogen dioxide, bromine

monoxide, chlorine dioxide, formaldehyde, glyoxal, iodine monoxide, the oxygen dimer,

and sulfur dioxide.

DOAS is based on Beer-Lambert’s law which follows from the radiative transfer equation

(Liou, 2002). The RTE presented in Equation 2.6.4 can be solved analytically, if the source

term is neglected. The emission by atmospheric molecules and Earth’s surface is negligible

in the UV-VIS wavelength range. In the case of parallel incident sunlight and no multiple

scattering, the scattering contribution to the source term becomes zero as well. The RTE

at UV-VIS and near-infrared wavelengths is reduced to

dI(λ) = −σc(λ)nI(λ)ds, (2.11.1)

where n is the number density of absorbing molecules along the light path. With the

incident intensity I0(λ) at s = 0, the solution is

I(λ) = I0(λ) exp


−
 s1

0

σc(λ)nds


. (2.11.2)
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If σc(λ) is independent of distance s, the slant column density SCD can be introduced as

SCD =

 s1

0

nds. (2.11.3)

It follows Beer-Lambert’s law

Is1(λ) = I0(λ) exp(−σcSCD) = I0(λ) exp(−τ) (2.11.4)

which states that the intensity after traveling a distance s1 through a homogeneously

attenuating medium can be described by an exponential decay of the initial intensity

which decreases with the product of the attenuation cross section and the SCD. This

product is the optical depth τ .

The DOAS equation (Platt and Stutz, 2008; Richter and Wagner, 2011) is derived from

Beer-Lambert’s law. Each absorbing and/or scattering constituent i of the medium adds

to the optical depth:

I(λ) = ceffI0(λ) exp(−τ) = ceffI0(λ) exp


−

i

[σa,i(λ) + σb,i(λ)]SCDi


(2.11.5)

ln
ceffI0(λ)

I(λ)
= τ(λ) =


i

[σa,i(λ) + σb,i(λ)]SCDi. (2.11.6)

The efficiency factor ceff was introduced here to account for the fact that the DOAS method

is applied to scattered light and therefore the initial intensity is not just the extraterrestrial

solar irradiance I0. It needs to be corrected by taking into account the scattering efficiency.

The DOAS method separates high frequency spectral features from broad band features.

For this purpose, a low order polynomial is introduced to combine all broad band con-

tributions to the optical depth in one term. Since the wavelength dependencies of elastic

scattering in the atmosphere and ocean generally follow power laws, their contribution is

approximated by the polynomial. Assuming that the logarithm of the scattering efficiency

has a polynomial wavelength dependence, ln(ceff) also vanishes in the polynomial,

ln
I0(λ)

I(λ)
= τ(λ) =


i

σa,i(λ)SCDi +

m

wmλ
m, (2.11.7)

with polynomial coefficients wm. Equation 4.2.2 is a general form of the DOAS equation.

It is generally only valid for weak absorbers, because for strong absorbers, the light path

differs for light of different wavelengths. The absorption structure in the measured radiance

can then not be approximated by a scaling of the absorption cross section with a single
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factor (SCD). How to account for inelastic processes in the DOAS equation is discussed in

section 2.11.1. The DOAS equation is often formulated by introducing the concept of dif-

ferential cross sections. The differential cross section σ′
a,i is the high-frequency component

of the cross section. The broad band component of the cross section is then also included

in the polynomial,

τ(λ) =

i

σ′
a,i(λ)SCDi +


m

w′
mλ

m, (2.11.8)

consequently, with polynomial coefficients w′
m differing in value from wm.

The concentration of an atmospheric absorber is usually targeted in a certain wave-

length range, the fit window, where its absorption cross section shows distinct features

easily separable from those of other atmospheric contributions in this wavelength range.

Cross sections of atmospheric gases are determined prior, usually in laboratory measure-

ments. DOAS-type satellite sensors usually also record I0. With the measured τ as input

from instruments, Equation 4.2.2 is solved for the slant column densities SCDi and the

polynomial coefficients wm by minimization at several wavelengths. Since I0 and I are

measured at spectral resolution of the instrument, the cross sections are convolved with

the slit function of the instrument prior to the fit. This procedure is mathematically not

strictly correct, because the mathematical order of the convolution and the exponential

function in Equation 2.11.5 can not be switched and requires correction in case of strong

or structured absorption (Aliwell et al., 2002).

The DOAS retrieval yields the SCD for the target species, which needs to be converted

to a concentration in a second step. For atmospheric applications, slant column densities

SCD are usually in units of molecules per area. The light path, the actual distance s

that the light traveled to the instrument, needs to be known for converting SCD into an

absorber gas concentration. For realistic atmospheric conditions, obtaining ni from SCDi

is not so straight-forward, because the scattered light reaching the detector originates from

multiple paths. The effective path is influenced by multiple-scattering on air molecules and

aerosols. The relationship between slant column density and vertical column density V CD,

which is the vertically integrated absorber concentration above the satellite ground pixel,

is given by the air mass factor AMF ,

V CD = SCD/AMF. (2.11.9)

The AMF expresses the effective light path and depends on multiple parameters that

influence the light path such as vertical profile of the absorber, position of the sun, aerosol
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loading and vertical distribution, and surface albedo. It can be calculated with the help

of an RTM.

The DOAS method was extended for targeting concentrations of oceanic constituents

(PhytoDOAS) (Bracher et al., 2009; Sadeghi et al., 2012a). For satellite remote sensing

applications, absorption cross sections of oceanic absorbers σoc
a are fitted to measured

optical depths next to cross sections of atmospheric absorbers σatm
a

I0
I(λ)

= τ =

i

σatm
a,i SCDi +


j

σoc
a,jSCDj +


m

wmλ
m. (2.11.10)

Generally, a lower order polynomial is chosen for oceanic than for atmospheric applica-

tions, because oceanic absorption cross sections are rather broad band as compared to

atmospheric ones due to different rotational and vibrational degrees of freedom in liquids

compared to gases. The exponentially decaying absorption by CDOM and NAP with

wavelength can be approximated and is therefore accounted for by the polynomial, when

rather short fit windows are considered. Main oceanic absorbers that need to be specifically

considered are therefore liquid water and phytoplankton. As introduced in section 2.9.2,

the absorption of phytoplankton is usually determined as specific absorption coefficient a∗

normalized to Chla (usually in units m2/mg). The sum in Equation 2.11.10 can then be

expressed as


j σ
oc
o,jSCDj =


j a

∗
jSCD∗

j , where the slant column density is now defined

in terms of concentration Cj in units of mg/m3, SCD∗
j =


Cjds.

In earlier studies (Bracher et al., 2009; Sadeghi et al., 2012a,b), the concentration Cj of

the target oceanic constituent was directly inferred from SCD∗
j by estimating the under-

water light path. In recent studies (Dinter et al., 2015; Losa et al., 2017a), the conversion

of SCD∗
j to concentrations of oceanic quantities is achieved with the help of an RTM

and a look-up table (LUT) approach. The RTM is used to simulate radiances as seen by

the satellite sensor. Results of PhytoDOAS fits on these simulated radiances with known

oceanic concentrations can then be used to map the relationship between SCD∗
j and Cj in

form of a LUT. The LUT is then applied to retrieved SCD∗
j from actual measurements.

By comparing DOAS fits on simulated satellite measurements with fits on actual satellite

measurements, introduced errors due to violation of assumptions on weak absorption as

well as low degree of structuring of absorption features are mostly compensated.

Uncertainties of DOAS retrievals are mainly caused by insufficient calibration of the

sensor (see section 2.14), uncertainties in measured absorption cross sections, and spectral

correlation (Richter and Wagner, 2011). An additional source for uncertainty in the final

DOAS product is the conversion from the retrieval output to the physical unit of the target

using an RTM. Exact wavelength calibration of the sensor is important for the DOAS
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retrieval due to the spectrally narrow Fraunhofer lines (see also next section, 2.11.1) in

the solar spectrum. If wavelength alignment between I0 and I is not exact, large spectral

artifacts can result when the ratio of I0 and I is taken. Prior to solving Equation 2.11.10,

I0 is numerically aligned with respect to a reference solar spectrum (Fraunhofer atlas)

(Chance and Kurucz, 2010) to compensate for any residual wavelength calibration errors

(van Geffen, 2004). Additionally, I is allowed to shift and squeeze in the fitting routine

to ensure optimal wavelength alignment (Richter, 1997). Largest uncertainties in DOAS

retrievals arise from spectral correlation of the absorption cross section of the target species

with those of other absorbing species, and spectral features caused by inelastic scattering

(see next section, 2.11.1) or by instrumentation, e.g., by stray light. The fit window can be

optimized such that spectral correlation is minimized. The impact of remaining spectral

interferences on the fit result is reduced by taking into account cross sections for all spectral

effects, e.g., empirically determined pseudo-cross sections which characterize instrumental

stray light. Although less spectral information is contained in short fit windows, they

usually yield better results. In short fit windows, the distortion of absorption structures

due to the wavelength dependence of the light path is less pronounced, inaccuracies in

cross sections are better compensated by the polynomial, and wavelength dependence of

broad band effects following different power laws or even exponential decay, as is the case

for CDOM absorption, are better approximated by the polynomial.

2.11.1 Filling-in of Fraunhofer lines

Sharp lines of reduced intensity are present in the solar spectrum. These so-called Fraun-

hofer lines (Fraunhofer, 1817) are absorption lines, caused by absorption of sunlight by

gases in the sun’s photosphere (Kirchhoff, 1860). In measurements of the solar spectrum,

it has been observed that these lines are less pronounced when scattered sunlight is mea-

sured as compared to direct sunlight measurements. The lines are filled-in. This effect

is known as the Ring effect first observed by Grainger and Ring (1962). The filling-in

of Fraunhofer lines is caused by inelastic processes. The Ring effect is caused by RRS

and, to some extent, Brillouin scattering in the atmosphere (Kattawar et al., 1981) and

has also been observed in the ocean by (Kattawar and Xu, 1992) where it is caused by

VRS and also, to some extent, Brillouin scattering. Inelastic processes redistribute light to

wavelengths different from the incident light’s wavelength. More Raman scattering events

occur at wavelengths were light intensity is high compared to wavelengths of low light in-

tensity such as the Fraunhofer lines. Due to the wavelength shift associated with inelastic

processes, more light is scattered to wavelengths at the Fraunhofer lines than out of the
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Figure 2.11.1: Pseudo-absorption cross sections for VRS and RRS between 440 and
500 nm at instrumental resolution of GOME-2. The cross sections were
calculated based on Equation 2.11.11 from modeled radiances which
were convolved with the GOME-2 slit function prior to taking the
natural logarithm. The model run for VRS contained a chlorophyll-a
concentration of 0.1 mg/m3.

Fraunhofer lines. Consequently, the Fraunhofer lines become less deep. They are filled-in

with light from adjacent wavelengths. Fluorescence also leads to filling-in of Fraunhofer

lines at the emission wavelengths. Inelastic processes can be incorporated into the DOAS

equation as so-called pseudo-absorbers. The pseudo-absorption cross section that accounts

for the filling-in by inelastic process k can be determined as (Vountas et al., 1998)

σf,k(λ) = ln
I+(λ)

I−(λ)
, (2.11.11)

where I+ and I− are modeled radiances for a reference scenario calculated with and without

considering inelastic process k in the RTM, respectively. The PhytoDOAS Equation 2.11.10

becomes

τ =

i

σatm
a,i Si +


j

σoc
a,jSj +


k

σf,kSk +

m

wmλ
m. (2.11.12)

The SCD was exchanged with S, referred to as the fit factor, since the physical meaning

of the fit factors for inelastic processes Sk generally differs from the SCD. For consistency,

all SCD retrieved with DOAS in this work are referred to as fit factors independent of

their physical meaning. Pseudo-absorption cross sections as defined in Equation 2.11.11

have been proven successful to account for RRS, VRS, and chlorophyll-a fluorescence in

backscattered radiances measured by different satellite sensors (Vountas et al., 1998, 2003,
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2007; Dinter et al., 2015; Wolanin et al., 2015b).

Just as for atmospheric and oceanic absorbers, all relevant inelastic processes within a fit

window should be considered. In this work, DOAS fits are performed for fit windows within

the wavelength range 349 to 560 nm. Only two inelastic processes are considered in the

PhytoDOAS equation, RRS in the atmosphere and VRS in the ocean. Pseudo-absorption

cross sections of VRS and RRS are exemplarily shown for the wavelength range of 440 to

500 nm in Figure 2.11.1. Other inelastic processes are not considered for following reasons:

� VRS in the atmosphere: Lampel et al. (2015) investigated the effect of VRS in the

atmosphere on the DOAS method. They found that the effect is negligible for DOAS

fits with a root mean square (RMS) larger than 4 · 10−4, which is usually the case

for PhytoDOAS fits.

� Brillouin scattering: The wavelength shift of Brillouin scattering by liquid water is

small compared to VRS and RRS, but partial-filling in of Fraunhofer lines by Bril-

louin scattering in the ocean has been reported by Xu and Kattawar (1994). Peters

(2013) investigated if Brillouin scattering needs to be taken into account for DOAS

measurements from instruments with slit functions of different full width at half max-

imum (FWHM). For an instrument with a slit function of roughly 0.5 nm FWHM,

the optical depth for Brillouin scattering is 4 · 10−5 as estimated by RTM corre-

sponding to an RMS of 1.4 · 10−5. Peters (2013) concluded that for instruments with

spectral resolution of 0.5 nm, the influence of Brillouin scattering can be neglected,

because its optical depth is an order of magnitude lower than the residuals obtained

for DOAS fits with best fit quality. Brillouin scattering can also occur in the atmo-

sphere, however, the filling-in of Fraunhofer lines in satellite-measured backscattered

radiances with spectral resolution on the order of typically 0.5 nm can be sufficiently

accounted for by only considering RRS (Joiner et al., 1995).

� CDOM fluorescence: CDOM fluorescence is detectable using DOAS in CDOM-rich

waters, however, RRS and VRS are usually the dominant contributors to filling-in of

Fraunhofer lines depending on wavelength and on attenuation in the ocean (Wolanin

et al., 2015a). Pseudo-absorption cross sections for CDOM fluorescence σfCDOM were

found to differ significantly in spectral shape from those for VRS and RRS (Wolanin

et al., 2015a). Due to the wide range of fluorescent CDOM compounds and difficulties

in modeling their fluorescence, it is difficult to define σfCDOM for global applications

(Wolanin et al., 2015a). Neglecting CDOM fluorescence in the PhytoDOAS fit might

be a potential source of uncertainty in areas of high CDOM abundance. Since the

spectral dependence of σfCDOM and σVRS are distinctly different, the influence on
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retrieved VRS fit factors should be small. Furthermore, this work concentrates on

open ocean scenes, where CDOM abundance is generally low.

� chlorophyll fluorescence: Emission wavelengths are at red and near-infrared wave-

lengths, consequently, out of the considered wavelength range.

2.12 Atmospheric satellite sensors

A number of satellite sensors have been dedicated for determining atmospheric trace gases

using Differential Optical Absorption Spectroscopy. In this work, measurements from the

sensors SCIAMACHY (Bovensmann et al., 1999), GOME-2 (Munro et al., 2016), OMI

(Levelt et al., 2006), and TROPOMI (Veefkind et al., 2012) are used. Their measure-

ment principles are briefly presented in this section. All sensors are on satellites in sun-

synchronous orbits, recording backscattered radiances in nadir geometry and measuring

the extraterrestrial solar irradiance as reference once per day. For atmospheric applica-

tions, the spectral resolution of these instruments in the UV-VIS spectral range is required

to be around 0.5 nm. High signal-to-noise ratios (around 1000) are needed for accurate

retrievals. Table 2.12.1 summarizes instrumental parameters of the four sensors.

SCIAMACHY and GOME-2 are whisk-broom sensors. Their instrument design is very

similar. Whisk broom sensors scan the swath across track with a scan mirror. Conse-

quently, across-track ground pixels are measured subsequently, not simultaneously. Backscat-

tered radiation is collected by the scan mirror which directs the radiation through an aper-

ture to the entrance slit of the instrument. The dimension of the entrance slit is small for

these types of sensors leading to a narrow Instantaneous Field of View (IFOV). The light

is spectrally pre-dispersed by a prism and then directed to the spectral channels, of which

each has a grating for further dispersion. The resulting spectrum is then recorded with

photodiodes (1024 pixels). The light path to the detectors and the detectors themselves

are polarization sensitive. The prism not only pre-disperses the light, but also directs a

fraction of the light which is perpendicularly polarized with respect to the instrument’s

optical plane to the Polarization Measurement Device (PMD) by Brewster angle reflec-

tion. Together with pre-flight calibration data and data from the spectral detectors, the

polarization of the light can be determined from the PMD data.

OMI and TROPOMI are push-broom sensors. TROPOMI inherited the design of OMI.

These sensors have a wide IFOV. The full swath is measured at the same time. For this

purpose, the sensors are equipped with large 2-dimensional charge-coupled device (CCD)

arrays. One dimension is used for recording the spectral information, the other one for the
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Table 2.12.1: A selection of sensor parameters for SCIAMACHY, GOME-2, OMI,
and TROPOMI. The spatial resolution for GOME-2 and TROPOMI
was reduced in July 2013 and August 2019, respectively.

SCIAMACHY GOME-2 OMI TROPOMI
mission period/launch year 2002-2012 2006 2004 2017
spectral channels UV-SWIR UV-NIR UV-VIS UV-VIS,

NIR, SWIR
used spectral ranges [nm] 424-525 397-604 350-504 320-405,

405-500
spectral resolution [nm] 0.47 0.51 0.63 0.55
spatial resolution [kmxkm] 30x60 80x40 13x24 3.5x7
(across- x along-track) 40x40 3.5x5.5
local overpass time 10:00 09:30 13:45 13:30
node descending descending ascending ascending
global coverage [days] 6 1.5 1 1

spatial information. Upon entrance, the light first passes a polarization scrambler. The

unpolarized backscattered light is then subdivided and directed to different spectrometers

where the light is dispersed by gratings and measured by CCD arrays.

For the atmospheric science community, the spectral resolution of about 0.5 nm of these

sensors is only moderately high. In the context of optical oceanography, this spectral

resolution is much higher than those of recent or planned ocean color satellite sensors, and

also higher than the spectral resolution of most radiometers used for in-situ measurements.

These atmospheric sensors are referred to as hyperspectral sensors throughout this work.

Hyperspectral, in the context of optical oceanography, means that a continuous spectrum

is recorded over a broad spectral region. In contrast, multispectral sensors record radiances

at a number of wavelength bands. Their measurement principles are described in the next

section.

2.13 Ocean color satellite sensors

2.13.1 Measurement principle

Typical ocean color satellite sensors are multispectral sensors. Radiances are recorded at

a number of wavelength bands in the visible with typically 10-20 nm bandwidth. Data

from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) (Barnes and Holmes, 1993),

the Medium Resolution Imaging Spectrometer (MERIS) (Bezy et al., 1997), the Moderate

Resolution Imaging Spectroradiometer (MODIS) (Barnes and Salomonson, 1992), the Vis-
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Table 2.13.1: A selection of sensor parameters for the ocean color sensors SeaWiFS,
MODIS, MERIS, VIIRS, and OLCI. The bandwidth is given for the
ocean color bands of each sensor.

SeaWiFS MODIS MERIS VIIRS OLCI
operation period/ 1997-2010 1999 (Terra), 2002-2012 2011 2016 (S3A),
launch year 2002 (Aqua) 2018 (S3B)
number of bands 8 36 15 22 21
spectral range [nm] 410-865 410-14400 390-1040 400-1250 400-1020
bandwidth [nm] 20 10 10 20 10
spatial resolution [m] 1100 1000 1200 750 300

ible Infrared Imager Radiometer Suite (VIIRS) (Welsch et al., 2001), and the Ocean and

Land Colour Instrument (OLCI) (Nieke et al., 2012) are used for comparative purposes

in this work. Most of these instruments are also used for land applications and therefore

also record at spectral bands in the infrared. SeaWiFS, MODIS, and VIIRS are scan-

ning radiometers similar to GOME-2 and SCIAMACHY. For example, SeaWiFS has eight

spectral bands. Incoming radiation is collected by a folded telescope and reflected on a ro-

tating half-angle mirror. Dichroic beam splitters separate the incoming radiation into four

wavelength intervals of which each comprises two spectral bands. The bands are separated

by two spectral bandpass filters and imaged onto detectors. On the contrary, MERIS and

OLCI have a push-broom sensor design. The swath is covered by five cameras of which

each consists of a CCD array simultaneously measuring the incoming radiation across the

entire swath. Some OC sensors as SeaWiFS are tilted out of the nadir viewing geometry

to reduce sun glint. For a given spectral range and spectral resolution, the spatiotemporal

resolution of the sensors is limited by the data rate, which can be downlinked from the

satellite to the ground. Since the spectral resolution is much lower than for atmospheric

sensors, the spatial resolution is much higher. The introduced multispectral sensors have a

spatial resolution of about 1200 m or better. OLCI is the newest sensor with full resolution

of 300 m. Table 2.13.1 summarizes parameters of the five OC sensors.

2.13.2 Retrieval principle

Most ocean color algorithms use remote sensing reflectances or normalized water-leaving

radiances as input. The water-leaving radiance Lw is the radiance that is upwelled in the

water and crosses the sea-air interface. The remote sensing reflectance Rrs is the ratio of Lw

to the downwelling irradiance Ed that is incident on the water surface, Rrs = Lw/Ed. OC

algorithms often use band ratios of these quantities to derive OC variables from empirical

41



2 Scientific background 2.13 Ocean color satellite sensors

relationships which are derived from large match-up data bases of in-situ and satellite data.

A whole suite of such band ratio algorithms was developed for the retrieval of Chla (O’Reilly

et al., 1998; O’Reilly and Werdell, 2019). The most widely used empirical algorithm for

Chla retrievals from CZCS data, for example, uses the ratio of the normalized water-leaving

radiance of the band at 443 nm to that of the band at 550 nm for Chla smaller 1.5 mg/m3.

It switches to the ratio of normalized Lw at bands 520 nm and 550 nm for higher Chla,

when the blue-green band ratio is too low (Gordon et al., 1983; Feldman et al., 1989; Evans

and Gordon, 1994).

Satellite sensors measure the total radiance It reaching the instrument independent of

whether the electromagnetic radiation interacted with the ocean or not. An atmospheric

correction is used for obtaining Lw from It. In the following, the idea behind the atmo-

spheric correction is described and the normalization of derived Lw introduced.

Atmospheric correction

The goal of the atmospheric correction (Mobley et al., 2021) is to convert the satellite-

measured It to Lw which is needed as a starting point for OC retrievals. The ocean color

community typically uses L for radiances, whereas the atmospheric community typically

uses I. To be consistent with usual terminology in both fields, the notation with I is used

for atmospheric applications in this work and L for oceanic applications. In the following,

I is therefore used for atmospheric contributions and L for oceanic or sea-surface related

radiances. As briefly outlined in section 2.2, the radiance that is measured by the satellite

consists of different contributions from the atmosphere, the surface, and the ocean,

It = Iatm + LTOA
surf + LTOA

w (2.13.1)

Iatm and Lsurf are the radiance contribution from the atmosphere and the surface, respec-

tively. Angle and wavelength dependencies are omitted for brevity. Since Lw is tradi-

tionally defined just above the water surface, the superscripts TOA denote that these are

Lw and Lsurf at the top of atmosphere (TOA). Iatm shall always be defined at TOA. The

atmospheric contribution originates from scattering on atmospheric gases (Rayleigh con-

tribution IR) and aerosols (Ia) as well as multiple scattering between aerosols and gases

(IaR) (Gordon and Wang, 1994b). The surface contribution consists of a contribution from

specular reflection on the ocean surface (Wang and Bailey, 2001), known as sun glint,

LTOA
g , reflection of diffuse sunlight by the ocean surface LTOA

sky , and reflection of diffuse and

direct sunlight by white caps and foam LTOA
wc (Gordon and Wang, 1994a; Frouin et al.,
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1996). It can be written as

It = IR + Ia + IaR + LTOA
g + LTOA

sky + LTOA
wc + LTOA

w . (2.13.2)

Lsky is usually accounted for as part of IR. Transmittances are introduced to relate the

contributions from the surface and the water-leaving radiance at TOA to their values at

sea level where they are usually defined and measured in-situ,

It = IR + Ia + IaR + TLg + tLwc + tLw, (2.13.3)

where T is the direct and t the diffuse transmittance (Yang and Gordon, 1997; Wang, 1999).

All the contributions to It in Equation 2.13.3 need to be estimated to obtain Lw. Ancillary

data from other satellites or climatologies, empirical parameterizations of contributions,

and radiative transfer modeling are used to tackle this challenge.

Normalization

The water-leaving radiance as determined from satellite measurements generally depends

on SZA, viewing geometry, atmospheric conditions, and wave state at the time of measure-

ment. Lw is normalized (Mobley et al., 2021) in order to compare the satellite-measured

Lw to in-situ measurements for validation and algorithm development. The influence of the

sun’s position and atmospheric attenuation are removed in the normalized water leaving

radiance

[Lw(θV , ϕ)]N =


R

R0

2
Lw(θS, θV , ϕ)

cos θSt(θS)
(2.13.4)

with θV as VZA, θS as SZA, and t(θS) as atmospheric diffuse transmittance for irradiance

in sun’s direction for atmospheric conditions at time of measurement. The factor (R/R0)

corrects for the influence of the Earth-sun distance at the time of measurement. R is the

Earth-sun distance at time of measurement and R0 the mean Earth-sun distance. The

non-dimensional normalized water-leaving radiance is defined as

[ρw(θV , ϕ)]N =
π

F0

[Lw(θV , ϕ)]N (2.13.5)
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where F0 is the extraterrestrial solar irradiance at R0. The remote sensing reflectance Rrs

is the ratio of Lw and Ed just above the surface (denoted by 0+) which depends on SZA

Rrs(θV , ϕ) =
Lw(θS, θV , ϕ)

Ed(0+, θS)
(2.13.6)

Ed(0
+, θS) can be expressed in terms of the parameters introduced for normalization,

Ed(0
+, θS) = F0


R0

R

2

cos θSt(θS), (2.13.7)

which shows that the non-dimensional normalized water-leaving radiance and the remote

sensing reflectance are related by

[ρw(θV , ϕ)]N = πRrs(θV , ϕ). (2.13.8)

The dependence on viewing geometry is known as the BRDF effect. The bidirectional

reflectance distribution function (BRDF) is the radiance which is reflected by the surface

divided by the incident plane irradiance onto the surface. For a perfect Lambertian surface,

the reflected radiance is isotropic and the BRDF is 1/π. [ρw]N can be understood as the

BRDF of the ocean, Lw/Ed, normalized to the BRDF of a perfect Lambertian surface

[ρw]N =
Lw/Ed

1/π
= πRrs. (2.13.9)

The BRDF effect (Morel, 1991; Morel and Gentili, 1993, 1996) describes how the angu-

lar distribution of the upwelling radiance depends on the sky radiance distribution, the

viewing geometry, and water optical properties and needs to be removed to the greatest

possible extent to obtain a fully normalized satellite measurement. The correction requires

three parameters R, f , and Q. R is dimensionless and corrects for all transmission and

reflection effects of the wavy sea surface in the case of transmission of Ed(0
+) downward

and Lu(0−, θ′V , ϕ) upward through the surface. θ′V is the angle below the sea surface which

is refracted by the surface to the viewing direction θV above surface. f is also dimension-

less and relates the irradiance reflectance just below the sea surface, Eu(0−)/Ed(0
−), to

the most relevant IOPs, Eu(0−)/Ed(0
−) = f · bb/a. Q has units of steradian and expresses

the angular distribution of the upwelling radiance. Morel et al. (2002) incorporated these

factors to yield what they call the exact normalized water-leaving radiance,

[Lw]exN = [Lw(θV , ϕ)]N
R0(W )

R(W, θ′V )

f0(ATM,W, IOP)

Q0(ATM,W, IOP)

Q(θS, θ
′
V , ϕ,ATM,W, IOP)

f(θS,ATM,W, IOP)
, (2.13.10)
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where R0, f0, and Q0 are reference values for normal conditions. W is the wind speed

and IOP and ATM denote, respectively, the ocean IOPs and atmospheric conditions at

the time of measurement.

2.14 Calibration of optical satellite sensors

Calibration of a radiometric sensor (IOCCG, 2013) is required to relate the electrical

response of the detector in units of voltage or digital numbers to the radiant power incident

on the detector. An ideal sensor is only sensitive to radiation within a small wavelength

range λ ± ∆λ/2 and has a linear relationship between electrical output and radiometric

input signal. The electrical signal Vc(λ) that the detector measures when the input signal

is generated by a calibration source of known radiance Ic(λ) is given by

Vc(λ) = kI(λ)Ic(λ), (2.14.1)

where kI is the calibration constant in terms of radiance. Measurement of an unknown

source gives

V (λ) = kI(λ)I(λ) = [Vc(λ)/Ic(λ)]I(λ). (2.14.2)

Calibration of a radiometric sensor is generally complex, since sensors are not ideal. The

non-ideal behavior of the sensor needs to be characterized. Typical effects for multispectral

OC color sensors are out-of-band response, polarization sensitivity, bright-target response,

and non-linearity. A full characterization of the sensor performance is conducted in the

laboratory on ground before launch. This pre-launch calibration data is a first basis for

interpreting the electric output signal of the sensor when in space. However, during launch

and due to outgassing processes when in orbit as well as degradation of the sensor with

time, sensor characteristics change and pre-launch calibration data is not sufficient to

meet required radiometric accuracy. Satellite sensors are therefore also calibrated when

in orbit. This in-flight calibration is achieved with on-board calibration devices such as

lamps, extraterrestrial targets such as the moon and sun, and/or well-characterized Earth

targets. The sun is the gold standard for calibration since its spectrum is well-known.

Satellite sensors usually have different observation modes used for calibration. Radiation

from different calibration sources can be directed to the detector. On the dark side of the

orbit, all shutters are closed to determine the dark current of the sensor. Although a lot

of effort is made for calibration of the sensor and constant monitoring of its performance

throughout its mission lifetime, calibration is usually not perfect. On-board calibration
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devices also degrade. Often, different measurements are carried out for correcting the same

effect or the performance of calibration devices themselves is monitored by measurements

of moonshine spectra for example. The sun is a stable and well-known calibration source,

however, due to its high intensity, it can only be measured via a diffuser. Diffusers are also

non-perfect and therefore characterized prior to launch, but are also subject to degradation

which is difficult to perfectly monitor and characterize (Hilsenrath et al., 1995). Residual

calibration errors therefore remain in measured backscattered radiances.

The radiometric accuracy for OC satellite missions is especially demanding, because,

on average, 90% of the signal measured by the sensor only contains information on the

atmosphere and surface. Based on experience with the first OC sensor in space, the

Coastal Zone Color Scanner (CZCS), radiometric requirements of OC satellite sensors

were formulated. OC sensors should achieve an accuracy of normalized water-leaving

radiances within ±5% at 443 nm and retrieved Chla within ±30% in oligotrophic waters.

The atmospheric correction introduces uncertainties on the order of 2.5% for normalized

water-leaving radiances. At 443 nm, the water-leaving radiance is highest and contributes

about 20% to the measured signal at the TOA for oligotrophic ocean scenes. Consequently,

calibration uncertainty can not exceed about 0.5%. This requirement is challenging to reach

even in laboratory conditions and can only be fulfilled using vicarious calibration (IOCCG,

2013).

Vicarious calibration (IOCCG, 2013; Mobley et al., 2021) means that calibration data

are adjusted such that measured TOA radiance yields correct water-leaving radiance af-

ter atmospheric correction. It is assumed that the sensor calibration is optimal and only

residual calibration errors need to be corrected. Two different types of vicarious calibra-

tion exist, system and radiometric. Radiometric vicarious calibration requires accurate

measurements of atmospheric pressure, sky irradiance, and Lw as well as sunphotometer

measurements at the surface at the time of the satellite measurement. These measurements

are used to calculate It. Correction factors are then determined to match the predicted

It to the satellite-measured It. In the system approach, the sensor and the atmospheric

correction are combinedly calibrated. A system vicarious calibration is consequently spe-

cific for a certain sensor and atmospheric correction approach. For a system vicarious

calibration, the general idea is that the atmospheric correction that would be applied for

a certain ground pixel is reversed. Let’s assume that the true water-leaving radiance Lt
w

is the water-leaving radiance that is measured in-situ at this ground pixel location. By

reversing the atmospheric correction, Lt
w can be propagated to I tt , the radiance that the

satellite measures under given conditions. The ratio of this true satellite measurement to
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the actual satellite measurement is the gain factor

g(λ) =
I tt (λ)

It(λ)
. (2.14.3)

When a satellite measurement is multiplied by the gain factor, the correct water-leaving

radiance is retrieved. Gain factors are determined from match-up comparisons of satellite

and in-situ measurements. Usually, in-situ Lw are normalized for this purpose, because

measurement conditions can differ between the satellite and the in-situ measurement. Fur-

thermore, a band-pass correction factor has to be considered to account for different spec-

tral responses of satellite and in-situ measurement.

Calibration of hyperspectral atmospheric sensors usually comprises pre-launch and in-

flight calibrations correcting for polarization sensitivity, etalon spectral interference pat-

terns, stray light, pixel-to-pixel gain, etc. (e.g., Noël et al., 2003; Veefkind et al., 2012;

Munro et al., 2016; Dirksen et al., 2017). Exact wavelength calibration is essential for

DOAS-type retrievals that target high-frequency spectral structures. Which detector pixel

measures which wavelength depends on the instrument’s temperature. A spectral light

source that generates light with well-known spectral lines is carried on-board for the wave-

length calibration. All calibrations can be applied in the processing of the original level

0 data to generate level 1b data which is used as input for DOAS retrievals. The hyper-

spectral atmospheric sensors are usually not vicariously calibrated. Remaining residual

calibration errors can be removed, at least partly, within the DOAS methods. Imperfect

wavelength calibration, for example, is corrected by adjusting Fraunhofer lines to their

known spectral positions as well as shift and squeeze methods, as described in section 2.11.

Absolute radiometric requirements are not so high, since the DOAS method uses the ratio

of I/I0, which are both measured by the same instrument.
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3 Global diffuse attenuation derived

from vibrational Raman scattering

detected in hyperspectral

backscattered satellite spectra

This chapter has been published in Optics Express in 2019, DOI 10.1364/OE.27.00A829

(Oelker et al., 2019). Notation has been changed slightly to be in accordance with the

other parts of this document and cross-references have been added. Author contributions

are as follows: I conceptualized the study, ran all PhytoDOAS retrievals, post-processed

the data (including building of look-up-table and conversion to Kd), made all the RTM

simulations for which I incorporated new parameterizations, wrote the first draft of this

chapter and incorporated all revisions. Andreas Richter provided the DOAS software used

for the retrievals. He gave many ideas for retrieval settings and helped discussing the

results. Valuable discussions on retrieval settings and interpretation of results with Tilman

Dinter also significantly contributed to the study. Vladimir Rozanov helped with RTM

parameterizations. John P. Burrows and Astrid Bracher conceptualized the bigger scientific

frame this study is part of. They gave ideas for the focus of this study through discussion of

results. All co-authors revised the first draft of manuscript and the submitted and revised

versions and gave valuable comments on presentation of results and their discussion as

well as structure of the manuscript.

3.1 Introduction

Vibrational Raman scattering (VRS) in water is an inelastic scattering process occur-

ring when photons interact with water molecules. It leads to filling-in of Fraunhofer

lines (Vasilkov et al., 2002a) and a general spectral redistribution of the radiation in

the ocean and in water-leaving radiance. VRS needs to be taken into account to ac-

curately determine the underwater light field and to exploit this information in oceanic
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remote sensing applications, especially if the spectral resolution of measurements is high.

Not considering oceanic Raman scattering in radiative transfer modeling affects the de-

termination of inherent-optical-properties (IOPs) using inversion models on hyperspectral

in-situ data (Westberry et al., 2013) and atmospheric trace gas retrievals on hyperspec-

tral top-of-atmosphere (TOA) radiances (Vountas et al., 2003). With upcoming ocean

colour satellite missions planned to record radiances at higher spectral resolution (e.g.,

PACE, https://pace.gsfc.nasa.gov/), VRS is going to play an increasingly important role

for satellite-based ocean color retrievals.

The VRS signal in water-leaving radiances carries information about the number of in-

elastic scattering events in the water and consequently the number of photons in the ocean.

Since the VRS contribution from the atmosphere can be considered negligible (Vountas

et al., 1998), the VRS signal in TOA radiances can be exploited to estimate light levels

in the ocean (Dinter et al., 2015). Global data sets with good spatio-temporal resolution

that characterize the underwater light field are needed for estimating primary productivity

from satellite derived chlorophyll-a concentrations (Sathyendranath and Platt, 1993) and

heat budget (Lewis et al., 1990). At present, planar photosynthetically available radiation

(PAR) above surface, ultraviolet irradiance above surface, and diffuse attenuation coeffi-

cient at one wavelength are operationally provided from earth observations (Frouin et al.,

2018). An independent global data set could be provided by exploiting the VRS signal

in satellite-measured TOA radiances to spectrally derive the light availability and diffuse

attenuation coefficient in the ocean.

Several hyperspectral satellite sensors designed for the retrieval of atmospheric trace

gases have been used not only for quantifying the VRS contribution to TOA radiances

and assessing its retrieval-influence but also for inferring information about environmental

parameters. Using VRS, information on cloud pressure (Joiner et al., 2004) and ocean

parameters linking VRS to chlorophyll-a concentration and light penetration depth (Joiner

et al., 2004; Vountas et al., 2007; Bracher et al., 2009) have been derived.

These earlier studies investigated VRS in the ultraviolet (UV) region whereas more re-

cent publications analyzed VRS in the visible region to directly investigate the light used

for photosynthesis. Dinter et al. (2015) derived the light availability in the ocean from

VRS as the depth and wavelength integrated scalar irradiance in the wavelength range

from 390 to 444.5 nm. Through coupled ocean-atmosphere radiative transfer modeling,

they related the VRS signal in TOA radiances to light availability in the ocean which

was built into a look-up-table (LUT). Using Differential Optical Absorption Spectroscopy

(DOAS), VRS was first retrieved from TOA radiances measured by the Scanning Imaging

Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and converted
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to the amount of light in the ocean using the LUT. As evaluation of their light availabil-

ity product, the diffuse attenuation coefficient is additionally determined using radiative

transfer modeling. For one month of data, it was compared to the diffuse attenuation coef-

ficient at a wavelength of 490 nm Kd(490) from the merged ocean color product GlobColour

(http://www.globcolour.info/).

The connection between phytoplankton biomass and the VRS signal is more straight-

forward in the visible than in the UV, since this is the spectral region where chlorophyll-a

absorbs. VRS retrieved in the visible with DOAS from TOA radiances measured by SCIA-

MACHY has been used as a proxy for the light penetration depth to calculate chlorophyll-a

concentrations of different phytoplankton functional types (PFT) (Losa et al., 2017a).

SCIAMACHY measurements are only available until April 2012. Newer satellite sen-

sors with improved temporal coverage and spatial resolution can be explored. The Ozone

Monitoring Instrument (OMI) (Levelt et al., 2006) provides data with significantly im-

proved spatial resolution and daily global coverage from 2004 to date. The Global Ozone

Monitoring Experiment 2 (GOME-2) (Munro et al., 2016) provides global coverage within

one and a half days and long data time series being an operational mission with the first

sensor launched in 2006 on Metop-A, the second sensor in 2012 on Metop-B, and the

third sensor in 2018 on Metop-C. So far, the VRS signature has not been explicitly in-

vestigated in TOA radiances measured by OMI or GOME-2, especially not in the visible

wavelength region. For both sensors, spectral structures caused by VRS in TOA radiances

were pointed out to be interfering with atmospheric signals in various trace gas DOAS

retrievals although often not explicitly accounted for (Vrekoussis et al., 2009; Lerot et al.,

2010; Richter et al., 2011; Peters et al., 2014). Merely, vibrational and rotational Ra-

man scattering have been simultaneously included in a model in the UV to retrieve cloud

pressure for OMI (Joiner and Vasilkov, 2006). Like SCIAMACHY, OMI and GOME-2

can potentially be used for phytoplankton functional type retrievals. DOAS retrievals on

hyperspectral satellite data generally require an estimation of the light penetration depth

to calculate PFT chlorophyll-a concentrations. Adequate retrieval of VRS from OMI and

GOME-2 are therefore required. The approach developed by Dinter et al. (2015) to derive

the amount of light in the ocean from VRS can also be transferred to other sensors such

as OMI and GOME-2. Their study was a feasibility study showing one month of results.

Combining VRS from different satellite sensors could give a time series of global light

availability since 2002.

This study therefore has two objectives. First it is investigated, if VRS can be found in

TOA radiances recorded by OMI and GOME-2 and be adequately retrieved using DOAS.

Second it is investigated, if and how a VRS derived product, in this case the diffuse
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attenuation coefficient, can be merged from different hyperspectral satellite sensors. The

study focuses on the diffuse attenuation coefficient as VRS derived product instead of the

light availability. For this quantity, better possibilities exist to compare with established

ocean color products from multispectral sensors. It is also easier to intercompare diffuse

attenuation coefficients from different satellite sensors with differing overpass times and

viewing geometries, since the diffuse attenuation coefficient is regarded as a quasi-inherent

optical property of ocean water (Baker and Smith, 1980).

Diffuse attenuation coefficients are calculated from VRS retrieved from TOA radiances

measured by SCIAMACHY, OMI and GOME-2 closely following the approach presented

by Dinter et al. (2015). The quality of the resulting diffuse attenuation coefficient product

is evaluated by comparison with the diffuse attenuation coefficient at 490 nm provided by

the Ocean Colour Climate Change Initiative (OC-CCI) data set for nearly one year of data.

The same time series data are explored in different Longhurst biogeochemical provinces to

illustrate their broader comparability and possibility for a merged product.

3.2 Instrumentation and Methods

3.2.1 Satellite Sensors OMI, SCIAMACHY, and GOME-2

VRS signals are retrieved from three different hyperspectral satellite sensors, the Ozone

Monitoring Instrument (OMI), the Scanning Imaging Absorption Spectrometer for Atmo-

spheric Chartography (SCIAMACHY), and the Global Ozone Monitoring Experiment 2

(GOME-2) on Metop-A. All three sensors are on satellites in sun-synchronous orbits and

have the mission goal to monitor atmospheric trace gases. GOME-2 and SCIAMACHY

have a more similar instrument design compared to OMI, since they are both whisk-broom

instruments whereas OMI is a push-broom sensor.

OMI (Levelt et al., 2006) onboard the satellite Aura operated by NASA was launched

on 15 July 2004 and is still in operation. It has a local overpass time at the equator

at 1:45 pm in ascending node. OMI is designed as a nadir-viewing imaging spectrometer

with 60 across track ground pixels that are measured simultaneously. Ground pixel size is

13 km by 24 km at nadir becoming significantly larger at the swath edges. With a swath

of 2600 km, OMI achieves daily global coverage. It records spectra in the UV/Vis from

264-504 nm. Only level 1b data (version 003) from the visible channel (350 to 500 nm) were

used for the VRS retrievals. The spectral resolution of this VIS channel is 0.63 nm. OMI

measures the extraterrestrial irradiance spectrum and the upwelling earthshine spectrum.

Daily measured OMI irradiance spectra are of poor quality due to low signal. For the OMI
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retrieval, a solar irradiance spectrum averaged over all irradiance measurements recorded

in the year 2005 was used as reference (OMI, 2005).

The ESA instrument SCIAMACHY (Bovensmann et al., 1999) onboard ENVISAT col-

lected data from 2002 until April 2012. Local overpass time at the equator was 10:00 am

in descending node. The instrument had a spatial resolution of 30 km by 60 km for nadir

ground pixels. With a swath width of 960 km and alternating nadir-limb mode, global cov-

erage was reached within six days. Level 1b data (version 7.04.) from cluster 15 (424 to

525 nm) of channel 3 with a spectral resolution of 0.47 nm were used for the VRS retrievals.

SCIAMACHY daily recorded solar spectral irradiances.

The first GOME-2 (Munro et al., 2016) is hosted by the Metop-A satellite operated by

EUMETSAT. It was launched in 2006 providing data from January 2007 until date. The

spatial resolution was 40 km by 80 km for nadir ground pixels until 15 July 2013 when

it was changed to 40 km by 40 km at reduced coverage. The sensor has a swath width

of 1920 km and reaches global coverage in 1.5 days. Local overpass time at the equator

is 9:30 am in descending node. Level 1b data (version 5.3) from visible channel 3 (397

to 604 nm) were used for the retrieval which have a spectral resolution of 0.51 nm. Solar

spectral irradiances are recorded daily.

Ground pixel selection

Only ground pixels with solar zenith angle (SZA) smaller than 70°were used. Reflectance

thresholds and operationally provided cloud products were used to filter cloud, glint, and

ice affected ground pixels. An average reflectance R over the wavelength window used in

the VRS fit was calculated as R = πITOA/(F0 · cos(SZA)) using the spectrally averaged

TOA intensity ITOA and spectrally averaged solar irradiance F0 as input. Reflectance

thresholds were set to around 0.3. OMI and GOME-2 data were additionally cloud filtered

using the O2-O2 (Acarreta et al., 2004) and the FRESCO (Munro et al., 2016) cloud

products, respectively. Cloud fractions were set to 0.05. Backscans were excluded in

SCIAMACHY and GOME-2 data. OMI suffers from a row anomaly which varies with

time (http://projects.knmi.nl/omi/research/product/ rowanomaly-background.php). It is

assumed to be caused by a blocking object in front of the nadir port leading to changes in

radiation level and wavelength shift. It first appeared in June 2007 affecting CCD rows 53

and 54 (0-based). From May 2008 on, the number of affected rows increases. Operationally

provided flagging was used to filter affected ground pixels (Schenkeveld et al., 2017).
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Observation period

The year 2007 is chosen as time period for our investigations. This year appears to be

optimal for an intercomparison of the three hyperspectral sensors since all three sensors

were measuring and OMI measurements are not severely affected by the row anomaly yet.

GOME-2 measurements do not exist for the full month of January. For simplicity, the

entire analysis for all three sensors was performed for 01 February 2007 to 31 December

2007.

3.2.2 Vibrational Raman scattering

Vibrational Raman scattering occurs in liquid water when vibrational modes of the water

molecules are excited by inelastic scattering with photons. The wavelength of the photon

is shifted in this process. In this work, we considered only the shift to a longer wavelength

(Stokes line) around which radiation is emitted in a broad band. Based on experimental

work by Walrafen (1967), Haltrin and Kattawar (1993) formulated a function to describe

the broad band VRS emission by a combination of four Gaussian functions. In terms

of wavelength, the shift and broad band width is wavelength dependent. In the spectral

range from 400 nm to 700 nm, which phytoplankton use for photosynthesis, the light that

has been Raman scattered in water originates from the wavelength region 352 to 567 nm

and the emission band width ranges between 31 and 41 nm. This study evaluated the

VRS emission in a spectral window from 450 to 497 nm which corresponds to an excitation

wavelength range from 390 to 426 nm.

VRS leads to filling-in of Fraunhofer lines. It can be treated as a pseudo-absorber.

Following Vountas et al. (2003), a VRS pseudo-absorption, also called VRS compensation

spectrum σVRS, can be defined as

σVRS = ln(I+/I−) (3.2.1)

where I+ and I− are modeled TOA radiance spectra from a model run including VRS

processes and excluding VRS processes, respectively. The spectral signature of this pseudo-

absorption can be found in hyperspectral TOA radiances measured by satellites and can

be retrieved using Differential Optical Absorption Spectroscopy.

3.2.3 Differential Optical Absorption Spectroscopy

Differential Optical Absorption Spectroscopy (DOAS) is a technique commonly used for

the retrieval of atmospheric trace gases by distinguishing their high frequency absorption
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features (Perner and Platt, 1979) (see section 2.11 for details). The DOAS method has

been extended for investigating oceanic parameters. The amount of VRS (Vountas et al.,

2007), light availability (Dinter et al., 2015), chlorophyll-a concentration of different phy-

toplankton functional types (Bracher et al., 2009; Sadeghi et al., 2012a), and chlorophyll-a

fluorescence (Wolanin et al., 2015b; Joiner et al., 2016) have been successfully retrieved

from SCIAMACHY and partly (chlorophyll-a fluorescence) from GOME-2 measurements.

Starting from Beer-Lambert’s law, the optical depth τ is separated into broadband and

high frequency components by introducing a low-order polynomial.

ln(I0/I) = τ =

j

σ′
jSj +


i

biλ
i (3.2.2)

where I0 is a background spectrum, e.g., extraterrestrial solar spectrum, I is a measured

intensity, e.g., TOA radiance, and σ′
j are differential absorption cross sections of j com-

ponents in the observed system. The differential cross section is only the high frequency

component of the cross section. The broadband component is included in the polynomial.

All relevant absorbing atmospheric gases and absorbing ocean constituents plus inelastic

scattering processes in the atmosphere and ocean are considered. In the DOAS fit, Equa-

tion (3.2.2) is solved for the fit factors Sj of j components and the polynomial coefficients bi

at multiple wavelengths λ using a Levenberg-Marquardt least-squares minimization. The

polynomial accounts for broadband signals such as elastic scattering and absorption by

colored dissolved organic matter (CDOM) and suspended particulate matter. Retrieved

Sj of target components are converted to physical values, e.g. trace gas concentration, by

comparison with radiative transfer model (RTM) simulations. Theoretical TOA radiances

are modeled using an RTM and the same DOAS fit is performed on these.

In this study, the diffuse attenuation coefficient in the ocean was derived from the VRS

fit factor by comparison with theoretical VRS fit factors from modeled data. Details on the

comparison and radiative transfer modeling are elaborated below. Settings for the VRS

DOAS fit were chosen based on the latest SCIAMACHY VRS DOAS fit results as in Losa

et al. (2017a). Cross sections for following components were included in the DOAS VRS

fit

� absorption cross sections for ozone (O3) (Serdyuchenko et al., 2014), nitrogen dioxide

(NO2) (Vandaele et al., 1998), water vapor (H2O) (Rothman et al., 2013), oxygen

dimer (O4) (Thalman and Volkamer, 2013), glyoxal (CHOCHO) (Volkamer et al.,

2005).

� pseudo-absorption cross section for rotational Raman scattering (RRS) accounting
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for the Ring effect (Grainger and Ring, 1962) in the atmosphere. RRS pseudo-

absorption cross sections were calculated on the same principle as the VRS pseudo-

absorption cross section (Vountas et al., 1998).

� pseudo-absorption cross section for VRS that was calculated from modeled case-1

TOA radiances for a chlorophyll-a concentration of 0.1 mg/m3 and a SZA of 40°.

� ocean weighting function wfoc defined as in Dinter et al. (2015) calculated from case-

1 TOA radiances for a SZA of 40°. This weighting function describes the spectral

change in TOA radiances when the chlorophyll-a concentration in the model scenario

changes from 0.1 mg/m3 to 0.11 mg/m3. It combinedly accounts for phytoplankton

and liquid water absorption.

Although no weighting function DOAS (WF-DOAS) was used in this study, the ocean

weighting function from Dinter et al. (2015) was kept as cross section in the retrieval. Fit

factors for wfoc were not used for deriving any oceanic quantities, so their magnitude was

not of importance in this study. The advantage of using wfoc is that it combines the effect

of absorbing oceanic constituents and liquid water in a single spectrum, avoiding the fit of

multiple correlating absorption cross sections.

Pseudo-absorption cross sections for RRS and VRS as well as the ocean weighting func-

tion were calculated (see section 3.2.5) for each OMI CCD row separately and fitted for

each row specifically. The row-specific solar spectrum was used as background spectrum

for each CCD row. Daily recorded solar spectra were used as background spectra for

GOME-2 and SCIAMACHY (Azimuth Scan Mirror).

As in Losa et al. (2017a), instrumental artifacts were characterized by analyzing residual

structures over the Sahara region (Soppa et al., 2016b). A DOAS fit was made over a small

region in the Sahara (2°E to 6°E, 23.5°N to 34.5°N) where no VRS signal is expected. In

this pre-fit, only atmospheric components were considered and the resulting residuals were

analyzed using a principal component analysis (PCA). The first two eigenvectors from this

PCA were calculated on a monthly basis and included as cross sections in the DOAS fit.

This method was only used for SCIAMACHY and GOME-2. No correction of instrumental

effects through eigenvectors was used for OMI. As a test, the first two eigenvectors from a

PCA over the Sahara region were calculated as for SCIAMACHY and GOME-2 for each

CCD row separately and included in the VRS fit, however, no significant improvement of

the fit was obtained. The global VRS fit factors calculated with and without eigenvectors

had a correlation of r=0.99. To reduce the amount of retrievals and computation time, we

decided not to include eigenvectors in the VRS fit for OMI.
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The wavelength window for the fit was set to 450 nm to 497 nm which is slightly larger

than in Losa et al. (2017a) and significantly shorter than in Dinter et al. (2015). The

upper boundary is limited by OMI’s visible channel. The fit window was set the same for

all three sensors, since this simplifies comparison between the sensors and merging of the

data sets.

The only significant difference in the DOAS settings used here in comparison to Losa

et al. (2017a) is that a second order polynomial was used instead of a third order polyno-

mial. Due to the modifications in the RTM settings for calculating the pseudo-absorption

cross sections (see section 3.2.5), a second order polynomial quickly proved to be more

optimal.

3.2.4 Connection between VRS, light availability, and diffuse

attenuation

This study exploits the VRS signal to derive the light availability in the ocean. An increased

number of photons in the ocean leads to an increased number of inelastic scattering events.

Since the VRS contribution from the atmosphere is negligible (Vountas et al., 1998), the

VRS signal in the TOA radiances is closely linked to the light availability in the ocean. This

section summarizes the approach presented in Dinter et al. (2015) on how to derive light

availability and diffuse attenuation coefficient from VRS. They formulated a relationship

between the change in VRS signal at TOA and the amount of radiation energy in the

ocean. For a given wavelength region, the amount of radiation energy in the ocean ū is

the depth and wavelength integrated scalar irradiance Ēo divided by the speed of light c

given as

ū =
1

c
Ēo =

1

c

 H

0

 λ2

λ1

Eo(z, λ)dzdλ. (3.2.3)

The integration is performed from the surface z = 0 to the ocean bottom z = H. We

followed their approach to connect the VRS signal, retrieved as VRS fit factor SVRS using

DOAS, to Ēo. We established a look-up-table (LUT) relating Ēo to SVRS using a radiative

transfer model. To derive such a function,

Ēo = f(SVRS), (3.2.4)

two types of radiative transfer calculations are needed. On the one hand, TOA radiances

need to be calculated to obtain SVRS. On the other hand, in-water flux calculations are

needed to obtain Ēo. A DOAS fit was performed on the modeled TOA radiances to get the

theoretical VRS fit factor for a certain ocean scenario. For the same ocean scenario, in-
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water fluxes were calculated to give Ēo. For this ocean scenario, a single point in the LUT

was obtained. Various ocean scenarios were modeled to build up the whole LUT covering

situations found in the global oceans. Most of the global ocean can be considered as

case-1 waters where chlorophyll-a is the main driver for the underwater light field (Morel

and Prieur, 1977). A range of typical chlorophyll-a concentrations was therefore used

to generate the LUT. As shown in Dinter et al. (2015), Ēo depends strongly on SZA.

Model runs were made for a variety of SZAs giving a two-dimensional LUT Ēo(SVRS, SZA).

Retrieved DOAS VRS fit factors together with the corresponding SZA for each satellite

ground pixel were then converted into a global Ēo map by interpolating the LUT.

It is difficult to evaluate the quality of the resulting Ēo data set, since no comparable

ocean color satellite product for the depth integrated scalar irradiance in the investigated

wavelength range from 390 to 426 nm exists. However, the diffuse attenuation coefficient

at 490 nm Kd(490) is often retrieved from ocean color satellite data. It is closely linked to

the light availability in the ocean and was thus used for comparison in this study.

The diffuse attenuation coefficient can be calculated as a mean value over distant depths

z1 and z2 from the change in downwelling irradiance Ed(z) (Lee et al., 2005a)

Kd(z1 ←→ z2, λ) =
1

z2 − z1
ln


Ed(z1, λ)

Ed(z2, λ)


. (3.2.5)

which gives Kd(z90, λ) = 1/z90(λ) for the attenuation depth z90 defined as the depth at

which the downwelling irradiance has reduced to 1/e of its subsurface value (Gordon and

McCluney, 1975). From the flux calculations, Kd(z90, λ) was calculated for all modeled

case-1 scenarios. As for Ē0, a LUT relating Kd with SVRS and SZA was established. Since

the SVRS were retrieved in a certain wavelength range (450 - 497 nm), corresponding diffuse

attenuation coefficients were averaged over the excitation wavelength range Kd(z90, λext),

λext = 390 − 426 nm. The relationship Kd(z90, λext) = f(SVRS, SZA) was used to create

global Kd(z90, λext) maps which were compared to Kd(490) products from ocean color

satellites. In the following, the dependence on z90 was omitted for brevity.

3.2.5 Radiative transfer model simulations

Modeled TOA radiances were used to calculate VRS pseudo-absorption cross sections and

to perform comparative DOAS retrievals whereas underwater fluxes were used to calculate

the light availability and diffuse attenuation coefficient. The model should accurately

describe radiative transfer processes, especially inelastic processes, in the atmosphere and

in the ocean at high spectral resolution matching the spectral resolution of the satellites of
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about half a nanometer. We used the ocean-atmosphere coupled RTM SCIATRAN (Blum

et al., 2012; Rozanov et al., 2014, 2017) version 4.0.8 to model various case-1 scenarios.

The theoretical description of VRS is based on the above described formulation of VRS

by Haltrin and Kattawar (1993). Correct implementation of the VRS in SCIATRAN has

been evaluated by comparison with other radiative transfer models and experimental data

from satellite, ship-based, and underwater instruments (Rozanov et al., 2017).

TOA radiances were modeled for 23 different case-1 scenarios with chlorophyll-a con-

centrations ranging between 0 and 30 mg/m3. A standard case-1 model was used based

on Morel and Maritorena (2001) parameterization for chlorophyll and CDOM absorption.

Model settings follow Dinter et al. (2015) with some changes:

� a more recent clear water absorption spectrum by Mason et al. (2016) was used.

� particle scattering was described using a wavelength-independent Fournier-Forand

scattering function as in the widely used Hydrolight case-1 water model (Mobley

and Sundman, 2013). The phase function was parameterized using the backscatter-

ing ratio as input (Mobley et al., 2002). The change in backscattering ratio with

chlorophyll-a concentration is not robust, but as a first estimate for our global

open ocean retrieval, we used the relationship between backscattering ratio and

chlorophyll-a concentration found for case-1 stations by Twardowski et al. (2001).

The relationship between mass-specific scattering coefficient and chlorophyll-a was

taken from Gordon and Morel (1983).

� instead of an aerosol-free atmosphere, a background maritime aerosol was assumed

with aerosol optical depth (AOD) of 0.1 at 550 nm. AOD was taken from annual

mean AOD measured over the tropical South East Pacific by MODIS-Aqua (Remer

et al., 2008).

� atmospheric profiles for temperature, pressure, and ozone were set according to the

mid-latitude standard atmosphere model (Sinnhuber et al., 2009). As default, results

for April and latitude 45°N were chosen arbitrarily.

Instrument-specific extraterrestrial solar spectra were used for each sensor for the TOA

radiance calculations, since spectral alignment is very important for the DOAS retrieval.

For SCIAMACHY, a solar irradiance measured by SCIAMACHY was used (Skupin et al.,

2005). For OMI, an average over solar irradiance spectra recorded by OMI in the year of

2005 was used as mentioned above (OMI, 2005). For GOME-2, SCIATRAN calculations

were made at high spectral resolution of 0.01 nm using a Kurucz solar spectrum (Chance

and Kurucz, 2010). Resulting radiances were convolved to instrument spectral resolution
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using the GOME-2 slit function. Underwater fluxes were calculated instrument-unspecific

at a spectral resolution of 0.5 nm also using the Kurucz solar spectrum since they should

be insensitive to the exact spectral resolution.

Geometry settings were chosen as follows:

� TOA radiances were modeled for 13 different SZAs, i.e. 5° steps between 15° and 70°.

� viewing zenith angle (VZA) was set instrument-specific. For SCIAMACHY and

GOME-2, a nadir-viewing geometry was chosen VZA = 0°. For OMI, the VZA of

the different CCD rows was determined by averaging for each CCD row the VZA as

recorded in the level 1 data for globally distributed ground pixels.

� relative azimuth angle was set to 90°.

DOAS fit settings for the retrieval of theoretical VRS fit factors from the modeled TOA

radiances were the same as for the retrieval on satellite radiances (see section 3.2.3) except

for atmospheric cross sections. Only ozone was included as trace gas in the modeled

atmosphere, so only the ozone absorption cross section was used when fitting modeled

TOA radiances.

3.2.6 Retrieval sensitivity

The LUT used to convert VRS fit factors to Kd(λext) was kept simple with SZA as only

additional input parameter. In the following, the sensitivity of our retrieval with respect

to model assumptions on AOD and CDOM absorption was investigated. Four new sets of

model simulations were calculated. In two of these sets, AOD was increased or reduced

to 0.2 or 0.05 at 550 nm, respectively. The other two sets were calculated with increased

or reduced CDOM absorption. The coefficient for CDOM absorption in the Morel and

Maritorena (2001) parameterization was changed from 0.2 to 0.4 or 0.1, respectively. VRS

retrieval as described in section 3.2.3 was performed for each of these four synthetic TOA

radiance sets. Retrieved VRS fit factors were then converted to Kd(λext) using the LUT. For

each set, resulting Kd(λext) for each scenario were compared to the expected Kexp
d (λext) in

this scenario calculated from flux simulations with the four modified settings, i.e. higher

or lower AOD and higher or lower CDOM absorption. Figure 3.2.1 shows the relative

deviation of derived Kd(λext) from expected Kexp
d (λext), (Kd(λext)−Kexp

d (λext))/K
exp
d (λext),

as function of Kexp
d (λext). The analysis is shown in a Kexp

d (λext) range from 0 to 0.15 m−1,

since our retrieval is only applicable in this range due to too low VRS signals for higher

attenuating waters as discussed in section 3.4. For most SZAs, an increase in AOD leads

to an overestimation of Kexp
d (λext) whereas a reduction leads to an underestimation. The
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Figure 3.2.1: Retrieval sensitivity analysis: relative deviation of derivedKd(λext) from
expected Kexp

d (λext), (Kd(λext) − Kexp
d (λext))/K

exp
d (λext), in modeled

open ocean scenarios with reduced (solid lines) and increased (dashed
lines) (a) AOD and (b) CDOM absorption. Compared to the average
global open ocean scenario used for the retrieval and described in sec-
tion 3.2.5, AOD and CDOM absorption were reduced and increased by
a factor of two. Deviations are shown for a range of SZAs.

retrieval is especially sensitive to AOD when Kexp
d (λext) < 0.01 m−1. For these extremely

clear waters, deviations are significantly larger than in the range 0.01 m−1 to 0.15 m−1.

Here, deviations from Kexp
d (λext) are nearly constant and less than −5% in case of reduced

AOD and less than +20% in case of increased AOD. Higher or lower CDOM absorption

in the RTM simulations leads to underestimated or overestimated Kexp
d (λext) for most

scenarios, respectively. Deviations increase with increasing Kexp
d (λext). In the investigated

Kexp
d (λext) range, derived Kd(λext) deviate from Kexp

d (λext) by less than +15% in case of a

reduced CDOM absorption and between −10% and +5% in case of an increased CDOM

absorption.

The retrieval sensitivity to AOD and CDOM absorption is rather low, but not negligible.

Regarding AOD, the method could be improved by adding another dimension to the LUT

and taking AOD from a data base as third input parameter. Wolanin et al. (2015a)

calculated the average polynomial, resulting from the DOAS fit, to evaluate the brightness

of each ground pixel. They used this estimate of all broadband effects as input parameter in

a LUT. This approach could be implemented for the method presented here to reduce the

sensitivity to broadband effects such as AOD and CDOM absorption. We decided to keep

the LUT simple, since it turned out that the noise introduced by mismatches between
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model scenarios and observed scenes is a secondary effect. As discussed in section 3.4,

spectral features caused by instrumentation have a larger effect on the results.

Other model settings additionally influence the retrieval. Further sensitivity analyses

on the choice of phytoplankton spectra and vertical profiles of chlorophyll-a concentration

can be found in Dinter et al. (2015). The approaches are not one-to-one comparable, but

the sensitivity analyses presented there give an impression what to expect in our particular

approach.

3.2.7 OC-CCI as reference data set

Diffuse attenuation coefficients were taken from the release version 3.1 of the OC-CCI

(Sathyendranath et al., 2018) of the European Space Agency (http://www.esa-oceancolour-

cci.org/) for evaluating the quality of the diffuse attenuation coefficients derived from VRS

fit factors. OC-CCI provides the diffuse attenuation coefficient at 490 nm merged from

three different multispectral sensors MODIS, MERIS, and SeaWiFS.

Since OC-CCI diffuse attenuation coefficients are given at a wavelength of 490 nm

KOC
d (490), diffuse attenuation coefficients from the OC-CCI data set were converted to the

wavelength range of our retrieval output. SCIATRAN flux calculations were performed for

wavelengths up to 500 nm to investigate Kd’s wavelength dependence. The modeled diffuse

attenuation coefficient in the excitation wavelength region Kmod
d (λext) was related to the

modeled diffuse attenuation coefficient at 490 nm Kmod
d (490). Kmod

d (490) was calculated

by integrating fluxes between 485 nm and 495 nm. A 10 nm integration width was chosen

here to best resemble the band width of multispectral ocean color sensors used to calculate

KOC
d (490). A linear relationship between Kmod

d (490) and Kmod
d (λext) was found,

Kmod
d (λext) = a ·Kmod

d (490) + b, (3.2.6)

for all modeled SZA with r2 values above 0.99. Averaging over the slope and intercept

found by linear least squares regression for each SZA gave ā = 1.30 ± 0.02 and b̄ =

−0.018± 0.002 m−1 with standard deviations as uncertainties. The relationship was used

to wavelength-convert the OC-CCI KOC
d (490) product to KOC

d (λext) through

KOC
d (λext) = ā ·KOC

d (490) + b̄. (3.2.7)

Since we modeled different case-1 ocean scenarios to change the diffuse attenuation in

the model, the impact of the change in chlorophyll concentrations can clearly be seen

in the wavelength conversion function. For simulations with low diffuse attenuation, in
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our model a scenario with low chlorophyll content, the diffuse attenuation coefficient at

490 nm is larger than the diffuse attenuation coefficient in the excitation wavelength range.

With increasing chlorophyll concentration this difference becomes less until it is reversed.

For high chlorophyll concentrations, the diffuse attenuation coefficient in the excitation

wavelength range is larger than at 490 nm due to stronger absorption by chlorophyll at

shorter wavelengths. Other studies derived similar relationships between Kd(490) and, e.g.,

Kd(412) from experimental measurements of the spectral diffuse attenuation coefficient.

Linear relationships between Kd(490) and Kd(412) were estimated with a slope around 1.7

for measurements from a variety of different water types (Austin and Petzold, 1986, 1990;

Wang et al., 2008a). Regional studies predict lower slopes closer to the value found here

around 1.28 for the Arctic (Wang and Zhao, 2014) and 0.95 for the Southern Bay of Bengal

(Ashraf et al., 2013). Generally, differences in these studies show that relating Kd(490)

and Kd(λext) through a linear relationship is too simple to globally describe all open ocean

cases. The shape and magnitude of the specific absorption of the phytoplankton in the

water will certainly change the relation between Kd(490) and Kd(λext). The wavelength

conversion found here is merely an average value for a standard case-1 scenario which adds

uncertainty in the comparison between Kd(λext) from hyperspectral sensors and from OC-

CCI. This stresses the importance of directly determining diffuse attenuation coefficients

from satellite measurements over a wider spectral range and not just at 490 nm.

3.3 Results

Here, we present the results of the DOAS fits and diffuse attenuation coefficient derivation.

A separate discussion follows in section 3.4.

3.3.1 Global vibrational Raman scattering DOAS fit

Fit residuals and global distributions of VRS fit factors were analyzed for May 2007 as a

first quality check of the DOAS fit. Examples of the differential optical depth (second term

in Equation (3.2.2)) for VRS and the ocean weighting function accounting for absorption

by phytoplankton and liquid water are shown in Figure 3.3.1. Results are shown for ground

pixels from the South Pacific Gyre where a strong VRS signal is expected. The residual has

about the same magnitude as the reference indicating that the signals from VRS and other

ocean parameters are found moderately well by the DOAS fit in the TOA radiances. The

mean absolute residual of all cloud-free pixels in a small region in the South Pacific Gyre

(22-30°S, 115-125°E) during the month of May 2007 amounts to 0.0009 for SCIAMACHY,
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(a)

(b)

Figure 3.3.1: Resulting differential optical depth for (a) VRS and (b) other oceanic
parameters from the spectral fit on OMI (upper panel), SCIAMACHY
(center panel), and GOME-2 (lower panel) TOA radiances. The solid
lines are the references which are the differential cross sections multi-
plied by the retrieved fit factor for the corresponding ground pixel. The
dashed line is the retrieval result showing the reference plus the overall
fit residual. Results are from ground pixels in the South Pacific Gyre ob-
tained on 19 May 2007 (OMI: 24.29°S, 235.03°E; SCIAMACHY: 24.25°S,
235.03°E; GOME-2:24.68°S, 235.34°E).
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Figure 3.3.2: Global VRS fit factors retrieved using DOAS on TOA radiances from
(a) SCIAMACHY, (b) GOME-2, (c) OMI for May 2007. (d) KOC

d (λext)
from OC-CCI. (e) Global normalized frequency of VRS fit factors ex-
cluding land and coast pixels for May 2007 for OMI (blue, horizontally
striped), SCIAMACHY (green, dotted), and GOME-2 (red, diagonally
striped). For OMI, only ground pixels of the two nadir rows in the mid-
dle of the CCD are included (row 29 and 30 starting to count at 0).
f) Average VRS fit factor for OMI’s two nadir CCD rows (see (e)) as
retrieved from synthetic TOA radiances simulated with SCIATRAN for
different diffuse attenuation coefficients Kd(λext). Only results for every
second simulated SZA are shown for clarity.
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0.0006 for GOME-2, and 0.0013 for OMI.

Figure 3.3.2 shows monthly gridded global VRS fit factors for May 2007 from (a) OMI,

(b) SCIAMACHY, and (c) GOME-2. For comparison, Figure 3.3.2 (d) shows the diffuse

attenuation coefficient KOC
d (λext) from the OC-CCI data set for the same month. Due

to the definition of the VRS pseudo absorption cross section, VRS fit factors are usually

negative. We defined them as positive here for easier understanding by multiplying with

−1. Now, high VRS fit factors correspond to high VRS signals. VRS fit factors show similar

global patterns among the different sensors. These patterns are in agreement with regions

generally known to have high and low amount of light in the water. Clearly, there is an

anti-correlation between high/low VRS fit factors corresponding to regions with high/low

diffuse light attenuation for all three instruments.

Figure 3.3.2 (e) shows the normalized frequency of global VRS fit factors for the month of

May 2007 excluding land and coast pixels. Only ground pixels from OMI’s nadir CCD rows

29 and 30 were considered roughly enabling comparison with distributions from GOME-

2 and SCIAMACHY. VRS fit factor ranges are significantly different between the three

sensors which is expressed in a difference in mean value of 0.81 for OMI, 0.44 for SCIA-

MACHY, and 0.49 for GOME-2 and standard deviation of 0.35 for OMI, 0.31 for SCIA-

MACHY, and 0.22 for GOME-2. For all three instruments, negative VRS fit factors are

present in the global distribution. Among the three sensors, SCIAMACHY has the highest

amount of negative values. About 4% of all ground pixels have negative VRS fit factors.

Figure 3.3.2 (f) shows the VRS fit factor Smod
VRS as function of Kd(λext) as calculated from

SCIATRAN simulations for different SZAs. Since SCIATRAN simulations were calculated

instrument-specific, i.e., for each sensor individually, this relationship varies among the

sensors. Displayed is the averaged result for OMI’s two center CCD rows 29 and 30 (0-

based) for every second SZA that was simulated. The relationship Kd(λext)↔ (Smod
VRS, SZA)

looks very similar to the one for OMI’s nadir rows if SCIAMACHY and GOME-2 settings

were used. VRS fit factors retrieved on instrument-specific simulated TOA radiances for

SCIAMACHY and GOME-2 deviate by less than 3% from those in Figure 3.3.2 (f) for the

lowest simulated diffuse attenuation coefficients.

VRS fit factors are not directly comparable among the sensors, mostly, because they

depend on SZA which differs among the sensors due to different local overpass times,

and, minorly, because of different instrument design. A one-to-one comparison of the

VRS fit factors between the different hyperspectral sensors might not be meaningful. But,

through roughly comparing the theoretically expected VRS fit factor range as presented in

Figure 3.3.2 (f) with the global VRS fit factor frequencies in Figure 3.3.2 (e), differences

in fit factor frequencies are expected, but appear to be large. As seen in Figure 3.3.2 (f),
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the model predicts only positive VRS fit factors over the entire simulated Kd(λext) range,

but negative VRS fit factors are seen in the satellite data. This disagreement between

retrieval results on model and satellite data indicates a correlation between cross sections

as discussed in section 3.4.1.

3.3.2 Agreement between model and satellite data

A thorough comparison of the VRS fit performance between the three hyperspectral sen-

sors and quality estimation of each single sensor can only be made when VRS fit factors

are converted to a physical quantity, here, the diffuse attenuation coefficient in the exci-

tation wavelength region. A correct conversion from VRS fit factor to diffuse attenuation

coefficient requires that the VRS fit on modeled data accurately represents the VRS fit on

real satellite data. The robustness of the conversion can be estimated from comparing the

hyperspectral satellite derived diffuse attenuation coefficient to an independent data set.

Starting from the retrieved VRS fit factors, the diffuse attenuation coefficient for the

excitation wavelength range Kd(λext) was derived using a LUT built up by SCIATRAN

calculations (details in section 3.2.5) relating Smod
VRS, SZA, and Kd(λext) based on the rela-

tionship shown exemplarily in Figure 3.3.2 (f). Figure 3.3.3 shows retrieved Kd(λext) from

(a) SCIAMACHY, (b) GOME-2, and (c) OMI in comparison to the wavelength-converted

KOC
d (λext) using KOC

d (490) from OC-CCI as input (details in section 3.2.7). The scatter

plot contains data from 01 Feb 2007 to 31 Dec 2007. The comparison was calculated on a

daily basis using data gridded to 0.5°. Kd(λext) derived from SCIAMACHY and GOME-2

are much larger than KOC
d (λext) from the OC-CCI data set. Linear total least squares

regression shown by the dash-dotted black line yielded a slope of 3.02 for SCIAMACHY

and 2.05 for GOME-2 which indicates that their Kd(λext) are roughly 3 and 2 times, re-

spectively, larger than OC-CCI values. OMI shows a different behavior. Kd(λext) derived

from OMI is smaller than KOC
d (λext) over the entire data range expressed in a slope of

0.30. Regression statistics are summarized in Table 3.3.1.

In summary, the slopes found in comparison with the OC-CCI data differ significantly

from one and indicate a disagreement between the VRS fit factors found by fitting global

satellite data and those found by fitting model data. High slopes for SCIAMACHY and

GOME-2 express a lower VRS fit factor range in satellite data than in model data. Con-

versely, underestimation of Kd(λext) by OMI indicates a higher VRS fit factor range than

the model predicts.
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Figure 3.3.3: Scatter plots show Kd(λext) from VRS obtained with the DOAS fit set-
tings as in Losa et al. (2017a) from (a) SCIAMACHY, (b) GOME-2,
and (c) OMI in comparison to KOC

d (λext) which was wavelength con-
verted from OC-CCI KOC

d (490). The solid red line is the 1:1 line. The
dash-dotted black line is a linear total least squares regression through
the global data set. Daily gridded data with 0.5°grid cell size were used
as input. The comparison contains all data from 01 Feb 2007.

3.3.3 Modification of the VRS fit

Modifications of the VRS fit were tested to improve the agreement between VRS fit factor

ranges from fits on model and satellite data. For SCIAMACHY, including zeta and eta

functions was tested which were taken from calibration key data (Lichtenberg et al., 2006)

for correcting polarization structures. For GOME-2 and SCIAMACHY, the number of

eigenvectors accounting for instrumental artifacts were reduced from two to one eigenvector

in the DOAS fit. Since no eigenvectors were used in the DOAS fit on OMI data, no further

modifications of the DOAS fit were tested for OMI in this study. We merely tested if

reducing the number of CCD rows to the inner 20 CCD rows closest to nadir improves the

results. Looking at the 11 month comparison between Kd(λext) and KOC
d (λext), a slightly

different slope was found, but no change in correlation of the data set. Since no significant

improvement was achieved, diffuse attenuation coefficients from all CCD rows were kept

in the data set.

For GOME-2, reducing the number of cross sections from two to one eigenvector sig-

nificantly improved the derived diffuse attenuation coefficient product. Changing this fit

setting, shifted the globally retrieved VRS fit factor distribution towards higher values.

For example for May, the global distribution has now a higher mean value of 0.56 while

the standard deviation stayed the same.

For SCIAMACHY, best results were found when two eigenvectors were included for

correcting instrumental effects and additionally the zeta function was fitted. VRS fit
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Figure 3.3.4: Scatter plots showing Kd(λext) from VRS obtained with the modified
DOAS fits from (a) SCIAMACHY, (b) GOME-2, and (c) OMI in com-
parison to KOC

d (λext) wavelength converted from OC-CCI KOC
d (490).

The solid red line is the 1:1 line. The dash-dotted black line is a lin-
ear total least squares regression through the global data set and the
dashed magenta line is a linear total least squares regression through
the global data set where values above 0.15 m−1 were filtered out (grey
area). Daily gridded data with 0.5°grid cell size were used as input. The
comparison contains all data from 01 Feb 2007 until 31 Dec 2007.

factors generally increased and the number of negative VRS fit factors decreased. Similar

behavior to GOME-2 was found for the example month May. The global distribution has

a similar standard deviation of 0.30, but a higher mean value of 0.51 compared to the old

DOAS settings without zeta function.

Figure 3.3.4 shows Kd(λext) derived from VRS fit factors resulting from the modi-

fied DOAS fit on (a) SCIAMACHY and (b) GOME-2 in comparison to the wavelength-

converted OC-CCI diffuse attenuation coefficient product KOC
d (λext). Regression results

can be found in Table 3.3.1 (middle column). Considering all global ground pixels, lin-

ear total least squares regression yielded slopes of 1.73 for SCIAMACHY and 1.24 for

GOME-2. For large values, the spread in the scatter plots becomes large for both instru-

ments. Especially for SCIAMACHY, two pronounced wings are observed in the scatter

plot, where values from OC-CCI are very large when values derived from SCIAMACHY

are small and vice versa. We decided to restrict the retrieval of Kd(λext) from hyperspec-

tral satellite data to waters with diffuse attenuation coefficients below 0.15 m−1 given by

KOC
d (λext). Additionally, values of Kd(λext) above 0.15 m−1 were discarded. This filtering

left only data outside the grey area in Figure 3.3.4. Linear total least squares regression

is shown as dashed magenta line. Reducing the data set increased the correlation between

Kd(λext) and KOC
d (λext) from 0.27 to 0.66 for SCIAMACHY and from 0.25 to 0.66 for

GOME-2. The slopes changed for SCIAMACHY from 1.73 to 1.34 and for GOME-2 from
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Table 3.3.1: Slope, intercept, and Pearson correlation of the total linear least-squares
regression between Kd(λext) and KOC

d (λext) comparing 11 months of dif-
fuse attenuation coefficients derived with the original DOAS settings on
the full data set (left column: orig., full), with the modified DOAS set-
tings on the full data set (middle column: mod., full), and with modified
(SCIAMACHY and GOME-2) or original (OMI) DOAS settings on the
reduced data set (Kd(λext) and KOC

d (λext) < 0.15m−1) (right column:
mod.,red. or orig.,red.).

SCIAMACHY GOME-2 OMI
orig., mod., mod., orig., mod., mod., orig., orig.,
full full red. full full red. full red.

slope 3.02 1.73 1.34 2.05 1.24 1.25 0.30 0.77
intercept -0.070 -0.022 -0.008 -0.024 0.003 0.001 0.020 0.001
correlation 0.22 0.27 0.66 0.34 0.25 0.66 0.35 0.65

1.24 to 1.25. The same filtering approach was applied to results for OMI displayed in

Figure 3.3.4 (c). Correlation increased here from 0.35 to 0.65 and the slope increased from

0.30 to 0.77. Regression results for the reduced data sets can also be found in Table 3.3.1

(right column).

All results presented below were obtained using modified VRS fit settings and data

filtering as described in this section. The hyperspectral satellite Kd(λext) was filtered in

waters where KOC
d (λext) predicts values above 0.15 m−1 by gridding both data sets to the

same grid of 0.5° gridsize.

3.3.4 Derived global diffuse attenuation coefficients

Global Kd(λext) maps derived from VRS fit factors obtained with modified DOAS settings

are shown in Figure 3.3.5 for (a) SCIAMACHY, (c) GOME-2, and (e) OMI after Kd(λext)

was filtered as described in section 3.3.3. Systematic differences between the three sensors

can already be deduced from these global maps. Diffuse attenuation coefficients derived

from OMI VRS fit factors are globally lower than those derived from SCIAMACHY and

GOME-2 VRS fit factors. Higher values in the northern hemisphere are the most prominent

difference between SCIAMACHY and GOME-2 derived Kd(λext).

To identify regional differences between the hyperspectral satellite and the OC-CCI

products, the difference Kd(λext) −KOC
d (λext) is shown as global map in Figure 3.3.5 for

(b) SCIAMACHY, (d) GOME-2, and (f) OMI. As the pronounced difference between

GOME-2 and SCIAMACHY in the northern hemisphere suggested, a difference between

northern and southern hemisphere is observed for SCIAMACHY. In the northern hemi-

sphere, Kd(λext) is smaller than KOC
d (λext) for most ground pixels, whereas in the southern

70



3 Global Kd derived from VRS 3.3 Results

  

(a) 

(c) 

(b) 

(d) 

(e) (f) 

Figure 3.3.5: Global distribution of the diffuse attenuation coefficient at the excitation
wavelength region Kd(λext) derived from (a) SCIAMACHY, (c) GOME-
2, and (e) OMI VRS fit factors gridded for the time period 01 Feb 2007
to 31 Dec 2007. Data was gridded to 0.5° grid cell size. Globally mapped
distribution of the difference between the OC-CCI and the hyperspec-
tral satellite data sets Kd(λext)−KOC

d (λext) for (b) SCIAMACHY, (d)
GOME-2, and (f) OMI. In all six images, Kd(λext) was filtered below
0.15m−1 and restricted to waters where KOC

d (λext) < 0.15m−1.
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hemisphere Kd(λext) is larger than KOC
d (λext) for most ground pixels. The observed spread

in the scatter plot in Figure 3.3.4 (a) as two wings, where KOC
d (λext) is large when Kd(λext)

is small and vice versa, is mainly caused by a north-south trend in Kd(λext) originating

from a north-south trend in SCIAMACHY VRS fit factors. For GOME-2, no significant

north-south trend is observed. In low latitudes, KOC
d (λext) is larger than Kd(λext) in the

Mauretanian, Benguela, and Malvinas upwelling regions where diffuse attenuation coeffi-

cients are the highest. For open ocean situations such as the Southern Ocean, GOME-2

derived attenuation coefficients tend to be smaller than the OC-CCI product. However,

especially in the high latitudes in the north, spatial patterns are not so clear. As seen

from the global Kd(λext) map, averaged over one year, OMI derived Kd(λext) are generally

smaller than KOC
d (λext). Largest differences between the two data sets can be found in

northern high latitudes.

3.3.5 Diffuse attenuation coefficient time series

Figure 3.3.6 (a) shows mean diffuse attenuation coefficients in the excitation wavelength

range for SCIAMACHY, GOME-2, OMI, and OC-CCI in five different Longhurst provinces

(Longhurst et al., 1995) over the course of 2007, starting 01 Feb 2007. Mean Kd(λext) were

calculated as 7-day composites. Relative differences (Kd(λext) − KOC
d (λext))/K

OC
d (λext)

between hyperspectral satellites and OC-CCI in the five provinces are shown in Fig-

ure 3.3.6 (b). In general, largest differences between Kd(λext) and KOC
d (λext) are observed

in the NADR and ARCT region where a significant amount of data points deviates by up

to ±60%. Positive and negative deviations are observed for GOME-2 in all five provinces

showing a seasonal behavior. E.g., large positive deviations up to +120% are observed in

the winter months February, March, and December. During the other months, GOME-2

deviates from KOC
d (λext) by less than ±30% in the ISSG, ARAB, and BENG provinces

and less than ±40% in the NADR and ARCT provinces. OMI and SCIAMACHY dif-

fuse attenuation coefficients are mostly smaller than KOC
d (λext). This trend becomes more

striking with increasing latitude. Although SCIAMACHY and OMI generally have a sig-

nificant bias, they tend to be more stable with time than GOME-2. E.g., for the ARCT

province, OMI time series has a large bias, but is relatively stable in time in compari-

son to KOC
d (λext). Deviations range between −40% to −65% for most data points while

they range between −10% to −60% for SCIAMACHY and −40% to +40% for GOME-2

(excluding winter months).
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(a)

(b)
Figure 3.3.6: (a) Mean Kd(λext) from SCIAMACHY, GOME-2, OMI, and OC-

CCI and (b) relative deviation of SCIAMACHY, GOME-2, and OMI
Ksat

d (λext) from OC-CCIKOC
d (λext) in five different Longhurst provinces

(Longhurst et al., 1995) over the course of the year 2007. 7-day com-
posites were calculated starting 01 February 2007. Naming convention
follows the original naming by Longhurst et al. (1995). (i) ISSG - In-
dian S. Subtropical Gyre Province, (ii) ARAB - NW Arabian Upwelling
Province, (iii) NADR - N. Atlantic Drift Province, (iv) BENG - Benguela
Current Coastal Province, (v) ARCT - Atlantic Arctic Province.
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3.4 Discussion

3.4.1 Correlating cross sections in DOAS

The spectral signature of VRS was identified in all three satellite sensors OMI, SCIA-

MACHY, and GOME-2. Global VRS maps can be retrieved from TOA radiances mea-

sured by the three sensors and resulting global patterns agree with regions of high and

low diffuse light attenuation. However, a disagreement in VRS fit factor range between

model and satellite data was found. For nadir viewing geometry, VRS fit factors retrieved

from satellite data were lower than predicted by the model in case of SCIAMACHY and

GOME-2, whereas they were slightly higher than predicted by the model in case of OMI.

This discrepancy hints at a correlation between cross sections in the DOAS fit.

The difficulty of separating VRS from liquid water absorption spectral features in DOAS

is known. For circumventing this problem in phytoplankton DOAS retrievals, Bracher et al.

(2009) performed a PCA over clear water regions and included the first two eigenvectors in

the DOAS fit instead of including a separate VRS cross section. Peters et al. (2014) tried

to experimentally determine a VRS cross section to improve DOAS NO2 fits, but were not

able to separate liquid water absorption from VRS. They obtained the best NO2 results

over water regions when using a combined spectrum. Since we are particularly interested

in the VRS signal, we need it as separate cross section in the DOAS fit. In principle, a

combined spectrum of VRS and liquid water absorption could also be used as a proxy

for the diffuse attenuation coefficient in the ocean. However, the interpretation of such

an approach is more difficult, since the VRS excitation is in a different wavelength region

than the DOAS fit window where liquid water absorbs. It is not straightforward for which

wavelength range the light availability should be calculated.

To a certain extent, the comparison with model results accounts for the correlation

between the spectra, since the same DOAS fit is performed on modeled TOA radiances.

A theoretical correlation between cross sections also impacts retrieved fit factors from

modeled data. The VRS fit factors retrieved from satellite data are directly related to those

retrieved from modeled data to derive the diffuse attenuation coefficient in our approach.

Correlating spectra affect the model retrieval and the satellite retrieval in the same way

and the direct comparison of the two should compensate for this effect. However, in real

world applications with satellite spectra that are noisy and show spectral features caused

by the instrumentation, model and satellite results are not one-to-one comparable.

Differences in VRS fit factors between the three sensors suggest that not only the corre-

lation between cross sections, but primarily the instrument itself influences the fit results.

Major differences are that GOME-2 and SCIAMACHY are whisk-broom sensors whereas
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OMI is a push-broom sensor, that SCIAMACHY and GOME-2 provide higher quality

daily sun spectra than OMI for which a fixed sun spectrum has to be used, and that

SCIAMACHY and GOME-2 have no polarization scramblers. All these differences in in-

strument design plus differences in light path in the instrument interior cause different

spectral signatures in the recorded TOA radiances and sun spectra, e.g. caused by stray

light in the instrument or structures on the diffuser used for recording sun spectra. The

eigenvectors that were used in the DOAS fit in this study to account for instrumental

spectral artifacts that are not removed during the calibration differ between GOME-2 and

SCIAMACHY. The eigenvectors could also correlate with the VRS pseudo-absorption cross

section and change the theoretically expected VRS fit factor. In general, SCIAMACHY

and GOME-2 have a more similar instrument design in comparison to OMI. This may

explain, why the retrieved VRS fit factor ranges are more similar for these instruments

and why including eigenvectors in the DOAS fit for OMI hardly affects the result.

We want to note that the discrepancy found here between VRS results from simulations

and measurements determined with the DOAS settings as in Losa et al. (2017a) does

not mean that their results on SCIAMACHY measurements suffer from the same issues.

For converting their fit factors into PFT chlorophyll-a concentrations, they use a ratio of

fit factors for two quantities, i.e. PFT and VRS, while here only one fit factor is used

in combination with model results. Ratios of fit factors are more robust providing that

instrumental artifacts affect the two quantities similarly.

3.4.2 Implications of DOAS setting modifications

Modifications of the DOAS fit for GOME-2 and SCIAMACHY were tested and significantly

improved resulting diffuse attenuation coefficients. Evaluating the results by comparison

with wavelength-converted diffuse attenuation coefficients from OC-CCI data sets yielded

slopes close to one in the scatter plots (Figure 3.3.4). Through modifying the DOAS fit for

GOME-2 and SCIAMACHY, we were able to bring together fit performance on modeled

radiances with that on satellite-recorded radiances.

Including zeta and eta functions for polarization corrections in DOAS fits has been

suggested by McLinden et al. (2002) and shown to improve DOAS fit results on SCIA-

MACHY radiances for various atmospheric trace gas retrievals (Kühl et al., 2008). In

the VRS DOAS fit studied here, only including the zeta function worked best. For other

retrieval targets, other combinations of zeta and eta function were found beneficial. E.g.,

for BrO vertical profile retrievals from SCIAMACHY limb measurements, including the

eta function improved the fit, but including the zeta function destabilized the fit (Rozanov
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et al., 2011).

For OMI, DOAS fit settings were not modified. No significant improvement was achieved

through CCD row filtering for the 20 middle CCD rows which are closest to nadir and have

more optimal viewing geometries for ocean observations than the outer CCD rows. It can

be concluded that for OMI the viewing angle dependence in the model accurately describes

the situation found in measurements.

3.4.3 Restricting diffuse attenuation coefficient data sets

Large spreads in the scatter plots were observed for high diffuse attenuation coefficients, es-

pecially for OMI and SCIAMACHY, leading to wings in the scatter plot. Such a butterfly-

shape has been already observed by Dinter et al. (2015) when comparing one month of

derived diffuse attenuation coefficients from SCIAMACHY to Kd(490) from GlobColour.

They suggested the following reasons for the wings. The horizontal wing is possibly

caused by cloud-contaminated SCIAMACHY ground pixels leading to an overestimation

of Kd(λext) and the vertical wing is caused by deviations of vertical chlorophyll-a profiles

and specific chlorophyll-a absorption from those set in the model. They restricted their

statistical analysis of the comparison to diffuse attenuation coefficients below 0.06 m−1 and

improved the correlation from 0.42 to 0.69. One-to-one comparison for SCIAMACHY re-

sults found here with those published in Dinter et al. (2015) is not possible since DOAS

fit settings, observed time period, and multispectral reference product used for the com-

parison differ. However, it can be stated roughly that, when comparing correlations found

here and in their study, a similar degree of agreement was found, when Kd(λext) from

SCIAMACHY is compared to diffuse attenuation coefficients from multispectral sensor

data sets.

We similarly restricted our retrieval for all three hyper-spectral sensors to KOC
d (λext) <

0.15 m−1 to improve data quality justifying and adding general suggestions here for reasons

behind the observed spread in the scatter plots. Waters with high diffuse attenuation

coefficients have a low VRS signal. The sensitivity of the VRS DOAS fit in these waters

is therefore low and the fit is expected to be less accurate there (Vountas et al., 2007).

OC-CCI diffuse attenuation coefficients by the Lee method (Lee et al., 2005a) have better

accuracies for waters with high diffuse light attenuation (Lee et al., 2005b; Shang et al.,

2011). The VRS method is expected to be more sensitive to waters with low diffuse light

attenuation.

Additionally, derived diffuse attenuation coefficients from the hyperspectral sensors were

cut-off at 0.15 m−1 even if OC-CCI predicts values below 0.15 m−1. This filtering was
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necessary to improve the data quality sufficiently and was easy to apply. From a physical

point of view it is more difficult to understand though: considering OC-CCI values as

correct, the VRS fit gives wrong results for filtered out ground pixels, although the VRS

fit sensitivity should have been high. Partially this can be caused by noise in the recorded

TOA radiances. Cloud-contamination of ground pixels can significantly reduce the VRS

signal as already pointed out by Dinter et al. (2015). Other possible causes are a mismatch

between average ocean scenario used in the model simulations and the true state of the

ocean during the measurement, e.g. extremely high wind speeds or aerosol loads. By

restricting derived diffuse attenuation coefficients to waters where OC-CCI predicts values

below 0.15 m−1 and additionally cutting off all remaining values above 0.15 m−1, reduces

the data sets by less than four percent. It is unfortunate that these scenes have to be

removed from the data set, since biological activity is high and significantly contributes

to the overall primary production in open oceans, however, valuable information on open

ocean primary productivity may still be drawn from the remaining data points.

3.4.4 Spatial and temporal biases in diffuse attenuation coefficients

Despite the DOAS fit modifications, issues in the VRS DOAS fit remained. Possible origins

of these issues and impacts on the quality of the derived diffuse attenuation coefficient

became apparent when looking at spatial and temporal patterns of the derived diffuse

attenuation coefficient.

For SCIAMACHY, a clear north-south trend was found in the data which is most likely

caused by spectral features arising from polarization sensitivity of the instrument. Scatter

geometries differ from North to South causing differences in spectral features due to po-

larization (Liebing et al., 2018). If these spectral features, included as eigenvectors in the

fit, correlate with the VRS pseudo-absorption cross section, the north-south trend in these

spectral features is passed on to the VRS fit factors. The zeta function was included to

account for polarization. Including the zeta function in the fit reduced but did not fully

remove the north-south trend.

For OMI, agreement with OC-CCI becomes worse with increasing latitude. This finding

suggests that the model predicts a different SZA dependence of the VRS fit factor than

found in the DOAS retrieval results on measured TOA radiances. Detailed investigations

on this behavior have not been performed in this study.

For GOME-2, spread does not arise from spatial trends, but mainly from temporal

variations in the fit factors. Seasonal variations as observed here have been identified in

trace gas columns retrieved with DOAS from GOME and attributed to the diffuser plate
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causing spectral artifacts in the irradiances that correlate with absorber cross sections

(Richter and Wagner, 2001). This effect of seasonal variation has also been observed for

the weak signal of glyoxal in DOAS columns from GOME-2 measurements (Lerot et al.,

2010). Using a constant solar spectrum instead of daily solar spectra could improve the

situation for 2007, but is not a solution for the whole GOME-2 mission period due to

significant instrumental drifts (Richter et al., 2011; Dikty et al., 2012). Another option

as background spectrum (e.g. Meier et al., 2017, Dikty2012) is to use daily earthshine

spectra measured by GOME-2 over a region where no VRS signal is expected, e.g. over

the Sahara. We have quickly tested this option for the month of December 2007. Resulting

diffuse attenuation coefficients were closer to OC-CCI compared to results obtained with

daily solar spectra but still too high with a slope in the monthly scatter plot of 0.57 (filtered

below 0.15 m−1). Other correlating spectral features seem to be introduced that disturb

the fit results. The seasonal variation could also be empirically corrected, e.g., through

adjusting retrieved fit factors by forcing the fit factors in a certain region to a known

value (Hewson et al., 2013). The seasonal variation dominates the time series in the five

Longhurst provinces. To build up a consistent time series over the entire GOME-2 mission

period and analyze trends in diffuse attenuation coefficients from this series, a correction

for this variation is required.

Although we clearly saw that biases and seasonal variations in the three hyperspectral

sensors dominate the time series in the Longhurst provinces, also a difference between

OC-CCI data set and hyperspectral data sets arises due to a difference in data coverage

in the five Longhurst provinces. Coverage was calculated for all five provinces by dividing

the number of unique gridded ground pixels in one Longhurst province within one 7-day

composite by the total amount of gridded ground pixels fitting into the Longhurst province.

Largest differences in coverage between OC-CCI and the hyperspectral sensors were found

for NADR and ARCT which are strongly impacted by cloud occurrence (e.g. King et al.,

2013). In combination with a spatial inhomogeneity in biomass in these provinces due to

the occurrences of phytoplankton blooms, this may explain, why the diffuse attenuation

coefficients from hyperspectral sensors compare less well with the KOC
d (λext) data set in

these two provinces than in the other three provinces.

Due to the large ground pixel sizes of hyper-spectral satellite sensors and the associated

inhomogeneity within a ground pixel, in combination with the rather complex retrieval

method presented in this study, we expect diffuse attenuation coefficients derived from hy-

perspectral sensors to be associated with larger uncertainties and regard OC-CCI Kd(490)

as a solid data set to evaluate our retrieval performance. However, also the OC-CCI diffuse

attenuation coefficients are associated with uncertainties. KOC
d (490) was determined using
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the semianalytical method by Lee et al. (2005a). This method is a two step process. First,

inherent optical properties are derived with a Quasi-Analytical Approach from remote

sensing reflectances (Lee et al., 2002). Extensive radiative transfer simulations have been

made to relate these inherent optical properties, i.e., absorption and backscattering, in a

second step, to an apparent optical property, the diffuse attenuation coefficient. Model

runs were made with a whole range of different inherent optical properties found in dif-

ferent water classes. Other conditions were set to standard values describing the average

global scenario, though, limiting the accuracy of the approach. Similar settings as chosen

for the simulations in this study were used, e.g., a mean wind speed of 5 m/s, vertically

homogeneous waters, and clear sky conditions. The OC-CCI data set has been validated

in comparison with in-situ matchups. On regional scales, the performance quality of the

Lee method can vary (Shang et al., 2011; Soppa et al., 2013). The DOAS-based method

presented here and the method by Lee et al. differ fundamentally in determining diffuse

attenuation coefficient, but both approaches are rather analytical with a similar degree of

assumptions that have to be made. One advantage of the DOAS-based method is that

it effectively removes the atmospheric signal from the TOA radiances. No atmospheric

correction is needed as additional step before the VRS retrieval.

As discussed above, the time series analysis showed that biases and seasonal variations

are significant in the five Longhurst provinces. As the diffuse attenuation products are

now, the agreement between the three hyperspectral sensors and overall data quality are

not robust enough for merging the three data sets. Several studies have pointed out how

intermission differences affect trend analysis on merged ocean color time series (Gregg and

Casey, 2010; Beaulieu et al., 2013; Mélin, 2016). Based on the findings in this study,

the intersensor consistency of the diffuse attenuation coefficient product should now be

increased, e.g. through empirical corrections of the seasonal variations in GOME-2 as

mentioned above, statistical bias correction (Bai et al., 2016), better calibration of the

level 1 data (Lerot et al., 2014), or a combination of several correction schemes.

3.5 Conclusion

We evaluated the possibility of exploiting the VRS signal in radiances measured by hy-

perspectral satellite sensors for assessing the diffuse light attenuation over long time scales

building up on the work by Dinter et al. (2015). VRS signals were retrieved and diffuse

light attenuation coefficients were derived for nearly one year of earth observations from

three different hyperspectral satellite sensors, SCIAMACHY, GOME-2, and OMI.

VRS signals were detected in radiances from all three hyperspectral sensors. Starting
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with the latest published DOAS VRS retrieval settings, VRS fit factors were found to be

sensitive to spectral structures in the measured radiances caused by instrumentation. For

example, SCIAMACHY VRS fit factors were highly influenced by polarization features.

Modifying the DOAS retrieval for SCIAMACHY and GOME-2 by changing how instru-

mental effects are accounted for in the retrieval, resulted in significantly improved diffuse

attenuation coefficients. For SCIAMACHY, the zeta function was included to better cor-

rect for spectral features caused by polarization sensitivity of the sensor. For GOME-2, the

amount of cross sections accounting for instrumental effects determined through a PCA

on fit residuals over the Sahara were reduced from two to one eigenvector.

Through these DOAS fit setting modifications, VRS fit factor ranges from DOAS fits

on satellite measurements were brought in agreement with VRS fit factor ranges predicted

by fits on synthetic radiances calculated by radiative transfer modeling. In comparison to

the established diffuse attenuation coefficient product from OC-CCI, robust correlations

and slopes close to unity were found for all three sensors when only diffuse attenuation

coefficients below 0.15 m−1 were used. Highest correlation was found for GOME-2 data.

For further evaluating the quality of the derived diffuse attenuation coefficients from

GOME-2, SCIAMACHY, and OMI, spatial and temporal deviations from the OC-CCI

product were investigated by assessing global maps and time series of 7-day composites

in five different Longhurst provinces. SCIAMACHY and OMI both showed latitudinal

trends in derived diffuse attenuation coefficients. A north-south trend was found for SCIA-

MACHY indicating that spectral structures caused by polarization sensitivity could not be

completely corrected despite including the zeta function in the DOAS fit. For OMI, biases

with respect to the OC-CCI product become larger with increasing latitude indicating a

disagreement between the SZA dependence of the VRS fit factor found in measurements

in comparison to that predicted by radiative transfer modeling. This effect was not further

investigated here. GOME-2 shows spatially a more homogeneous agreement with OC-CCI,

but exhibits periodic changes in VRS fit factors over time which are probably caused by

spectral structures in recorded solar measurements changing over the course of one year

due to altering measurement geometries.

This first intercomparison of the performance of DOAS ocean retrievals on radiances

from three different hyperspectral satellites revealed how challenging it is to accurately

calibrate hyperspectral sensors to reliably and consistently retrieve small ocean signals.

Merging the data sets is difficult since significant biases between the sensors were found.

This study provides a good basis for further improving overall data quality and intersen-

sor consistency to create a long-term diffuse attenuation coefficient time series in the blue

spectral range. Based on the results of this study, it is unlikely that diffuse attenuation
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coefficients derived from measurements of the particular hyperspectral sensors presented

here could compete in quality with the diffuse attenuation coefficient from multispectral

sensors. However, since the method presented here is independent and offers assessing dif-

fuse attenuation in a different spectral range, it is worth further developing this approach,

especially with respect to upcoming satellite missions. Better calibration of hyperspectral

satellite sensors with respect to ocean applications could improve this situation. Building

up on this study, empirical corrections could be introduced to reduce biases and stabilize

the time series of hyperspectrally derived diffuse attenuation coefficients. A more complex

LUT could be build to reduce noise as shown by the presented sensitivity analysis. A thor-

ough uncertainty estimation is desired. Comparison with in-situ measurements becomes

possible for the most recent or upcoming sensors that provide measurements at much

higher spatial resolution. For example since October 2017, TROPOMI (TROPOspheric

Monitoring Instrument) Veefkind et al. (2012), similar in mission goal and design as OMI,

provides global hyperspectral radiances at a spatial resolution of 7 km by 3.5 km. Validat-

ing 7 km by 3.5 km large pixels with in situ point measurements would still be difficult,

but becomes more feasable for in situ measurements from towed systems yielding transects

of in situ data. With increased spatial resolution, DOAS fit quality is also expected to

improve due to increased homogeneity in satellite scenes. The suitablilty of TROPOMI

for ocean color applications is investigated in chapter 4.
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attenuation in three spectral regions:

ultraviolet to blue

This chapter is the basis for a research article that is in revision for resubmission to

Frontiers in Marine Science (Oelker et al., 2021). Author contributions are as follows:

I extended the DOAS algorithm to the UV domain, performed the DOAS retrievals and

RTM simulations, conceptualized and carried out the algorithm sensitivity analysis, and

calculated the resulting Kd product as well as the comparisons with in-situ and multispectral

data. I wrote the first draft of the manuscript and incorporated suggestions from the co-

authors. Svetlana Losa supported the comparisons of TROPOMI-derived Kd products to

multispectral and in-situ data sets and their discussion. Andreas Richter provided the

software for the DOAS retrievals and gave advice with respect to retrieval settings and use

of cloud products. Astrid Bracher initiated the project and gave the idea for the Kd-UV

retrievals based on the results of Dinter et al. (2015) and chapter 3 as well as provided

the in-situ Kd data set. All co-authors reviewed the first draft and the revised version

presented in this thesis and gave valuable comments on the presentation of results and

their discussion as well as structure of the manuscript.

4.1 Introduction

Light governs large-scale biological, physical, and chemical processes in the ocean. Incom-

ing radiation heats the ocean thereby influencing mixed layer dynamics (Ohlmann et al.,

1996) and ocean circulation, which in turn is coupled to atmospheric temperature and

circulation (Lewis et al., 1990; Miller et al., 2003; Shell et al., 2003). Optically active

biological and chemical constituents influence the heat and radiation budget of the ocean

(Sathyendranath et al., 1991; Morel and Antoine, 1994; Frouin and Iacobellis, 2002). Vis-

ible radiation controls primary productivity of phytoplankton and higher aquatic plants

(Sathyendranath et al., 1989) and thus the base of almost all life in the ocean. In contrast,
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ultraviolet (UV) radiation damages phytoplankton cells and other microorganisms (Cullen

and Neale, 1994; Sinha and Häder, 2002). Interactions between climate change and UV

radiation penetrating the ocean and its effect on biogeochemical cycles are complex (Zepp

et al., 2003, 2007). Upon photodegradation of colored dissolved organic matter (CDOM),

the primary absorber of UV radiation in the ocean (Siegel et al., 2002), light penetration

and nutrient availability increase. UV radiation also affects bioavailability of iron, cop-

per, and other trace metals and the exchange of trace gases across the air-sea interface,

changing atmospheric chemistry.

Adequately describing these light-ocean interaction processes and their role in biogeo-

chemical cycling and climate change feedback mechanisms requires measurements of radi-

ation parameters on a regular basis and large scales (IOCCG, 2008). Ocean color satellite

missions routinely monitor the global ocean from space providing some insight into radia-

tion in the ocean (Frouin et al., 2018). Standard products that are operationally provided

are the photosynthetically available radiation above the surface (PAR) and the diffuse at-

tenuation coefficient (Kd) at 490 nm (Kd(490)). Kd describes how fast the incoming light

diminishes with depth. The mean Kd over distant depths z1 and z2 can be calculated from

the downwelling plane irradiance Ed as (Lee et al., 2005a)

Kd(z1 ↔ z2, λ) =
1

z2 − z1
ln


Ed(z1, λ)

Ed(z2, λ)


. (4.1.1)

From passive remote sensing, the average Kd of the surface ocean can be retrieved. It

contains information of the first optical depth, i.e. the depth at which the incoming ra-

diation below the ocean surface has decreased to around 37% (Gordon and McCluney,

1975). Despite these limitations, it is a valuable parameter used for estimating, e.g., heat

budget (Lewis et al., 1990; Morel and Antoine, 1994; Kara et al., 2004) and primary pro-

ductivity (Platt, 1986; Sathyendranath et al., 1989). Kd(490) and Kd at other wavelengths

(Kd(λ)) can be calculated from ocean color satellite data using empirical (based on band

ratios) (Austin and Petzold, 1981; Morel, 1988; Mueller, 2000; Morel and Maritorena, 2001;

Chauhan et al., 2003; Werdell and Bailey, 2005; Doron et al., 2007; Zhang and Fell, 2007;

Kratzer et al., 2008; Shen et al., 2017), semi-analytical (Lee et al., 2005a; Morel et al.,

2007a; Wang et al., 2009), or neural network (Jamet et al., 2012) approaches.

Current and planned upcoming ocean color satellites can only provide limited informa-

tion on light penetration in the UV. For most ocean color sensors, the shortest wavelength

band lies around 412 nm, some reach down to 380 nm. The only recent OC sensor with

a band at shorter wavelengths, 355 nm, is the Ultraviolet Imager on HaiYang-1C satel-

lite launched in 2018 (http://www.nsoas.org.cn/eng/item/204.html). The Ocean Color
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Instrument of the upcoming PACE mission is planned to record radiances from 340 nm

with spectral resolution of 5 nm. However, the PACE mission will not be launched before

November 2023 (https://pace.oceansciences.org/). So far, the only existing UV product

for ocean color applications is the above-surface planar spectral UV irradiance at noon

from the hyperspectral Ozone Monitoring Instrument (OMI) (Tanskanen et al., 2006). In-

formation on Kd in the UV has been indirectly obtained from ocean color information

at visible wavelengths in several studies. Kd in the UV is empirically related to Kd or

absorption at visible wavebands (Smyth, 2011; Lee et al., 2013), blue-green reflectance

ratios (Johannessen et al., 2003), or principle components of visible reflectances (Fichot

et al., 2008) or it is estimated using an ocean case-1 UV model with the chlorophyll-a

concentration (Chla) from ocean color sensors as input (Vasilkov et al., 2005). All of these

approaches rely on the rather weak relationship of optical properties between the UV and

visible wavelength range (Vasilkov et al., 2002b; Morel et al., 2007b). Wang et al. (2021)

developed a deep-learning system to obtain the remote-sensing reflectance (Rrs) and from

this Kd at 360, 380, and 400 nm from Rrs at visible bands. They demonstrate the non-

linearity between Rrs at UV and visible wavelengths and do not apply their approach to

shorter wavelengths than 360 nm because there is no clear relationship between the phy-

toplankton absorption coefficient below 350 nm and that at visible wavelengths (due to

UV pigments). Frouin et al. (2018) have summarized user needs for radiometric satellite

products, revealing a need for information on ocean radiation in the UV. They suggest to

fill parts of this knowledge gap by utilizing current satellite missions such as Sentinel-5P

for UV products.

In this study, Sentinel-5P Tropospheric Monitoring Instrument’s (TROPOMI) UV and

visible bands are exploited for deriving two novel Kd products in the UV. These products

describe the average Kd in the wavelength regions 312.5 to 338.5 nm and 356.5 to 390 nm

for the first optical depth. In addition, the average Kd is derived in the range 390 to 423 nm.

The approach is based on (Dinter et al., 2015) further adapted in chapter 3, where this

latter Kd in the blue spectral range was derived from SCIAMACHY (Scanning Imag-

ing Absorption Spectrometer for Atmospheric CHartographY), GOME-2 (Global Ozone

Monitoring Experiment 2), and OMI satellite data. Differential Optical Absorption Spec-

troscopy (DOAS) is used to target the vibrational Raman scattering (VRS) signal in the

ocean. The number of these inelastic scattering processes depends on the number of pho-

tons in the ocean and causes filling-in of absorption structures such as Fraunhofer lines in

the solar spectrum. Because VRS is negligible in the atmosphere, the VRS signal found in

backscattered radiances measured by satellites can be linked to the radiation in the ocean

using radiative transfer simulations.
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This study is conceptually showing the feasibility by presenting first results of the novel

Kd-UV products and the Kd-blue product. It focuses on one month of TROPOMI data

in 2018, 11 May to 9 June, for which in-situ Kd(λ) data are available from a R/V Po-

larstern cruise transecting the Atlantic Ocean from Punta Arenas, Chile, to Bremerhaven,

Germany. The quality of these Kd products is evaluated against this in-situ data set and

wavelength-converted multispectral Kd products from the Ocean Colour Climate Change

Initiative (OC-CCI) data set and the Sentinel-3A Ocean and Land Colour Instrument

(OLCI).

4.2 Materials and methods

4.2.1 Data sets

TROPOMI data

The satellite Sentinel-5 Precursor (S5P) hosts the Tropospheric Monitoring Instrument

(TROPOMI) (Veefkind et al., 2012). It is in a low Earth orbit and its standard level

2 products provide daily global measurements of atmospheric trace gases and aerosols.

The satellite was launched in October 2017. Local solar time at ascending node is 13:30.

TROPOMI measures backscattered radiances at a spatial resolution of 3.5 km by 7 km at

nadir which was reduced to 3.5 km by 5.5 km in August 2019 due to high signal-to-noise

performance. Once per day the solar irradiance is recorded. Measurements are taken in

push-broom configuration at a swath width of 2600 km providing daily global coverage.

TROPOMI has spectral bands in the UV, visible (VIS), near-infrared, and the shortwave

infrared. Band 3 (UV) from 310 nm to 405 nm and band 4 (VIS) from 405 nm to 500 nm

are relevant for developing the Kd products in this study. Spectral resolution of these

bands is around 0.55 nm. Level 1b TROPOMI radiances V01.00.00 and corresponding

daily UVN (bands 1 to 6) irradiances (Vonk, 2018) were used. Clouds shield the radiance

signal from the ocean, so the TROPOMI data set was filtered for cloud-free scenes using a

cloud fraction of 0.01 as threshold. Cloud fractions were taken from FRESCO type cloud

retrieval in the nitrogen dioxide fit window (van Geffen et al., 2019). Pixels over land and

inland waters were removed from the data set.

In-situ data

Radiometric data were collected from 11 May to 9 June 2018 on Polarstern expedition

PS113, crossing the Atlantic from Punta Arenas, Chile, to Bremerhaven, Germany. Kd
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was determined at 19 discrete stations distributed along a transect between the Malvinas

upwelling region and the English channel. An irradiance sensor (RAMSES ACC-2-VIS,

TriOS GmbH, Germany) covering the wavelength region from 320 nm to 950 nm with a

spectral sampling of 3.3. nm, resolution of 10 nm, and accuracy of 0.3 nm was used. It is

additionally equipped with an inclination and pressure sensor. The sensor was mounted

to a steel frame for vertical profiling of the underwater downwelling irradiance Ed(z, λ) at

a distance of 5 m to the ship. The general measurement procedure followed Taylor et al.

(2011). A second RAMSES ACC-2-VIS sensor mounted on top of the ship recorded the

incident downwelling irradiance above the surface Ed(λ, 0
+), to correct for incident sunlight

variations. Mean Kd was calculated from Ed(z, λ) profiles mostly over the depth interval

7 to 22 m. Details on measurement procedure and determination of Kd can be found in

Bracher et al. (2020).

4.2.2 Multispectral satellite data

Derived Kd products from TROPOMI were compared to Kd(490) from Sentinel-3A OLCI

and the OC-CCI data set. OLCI onboard Sentinel-3A has a spatial resolution of 300 m.

Ocean color information is obtained from 21 spectral bands. The operational Kd(490)

product is calculated based on the OK2-555 algorithm (Morel et al., 2007a) which com-

bines a semi-analytical relationship between Chla and Rrs ratios with an empirical relation

between Chla and Kd(490). OLCI data were downloaded via EUMETSAT Streaming Ser-

vice. As second multispectral data set, the OC-CCI data set (Sathyendranath et al.,

2019) version 4.2 (Sathyendranath et al., 2020) (http://www.esa-oceancolour-cci.org) was

used. It is a merged product consisting of information from MODIS-Aqua and VIIRS

sensor for 2018. Data are provided on a sinusoidal grid with 4 km spatial and daily tem-

poral resolution. Kd(490) is retrieved semi-analytically (Lee et al., 2005a). Absorption

and backscattering are first obtained in a quasi-analytical approach (Lee et al., 2002) and

then related to Kd(490) using look-up tables (LUTs) established with radiative transfer

modeling.

4.2.3 Algorithm

Vibrational Raman scattering (VRS) is an inelastic scattering process which occurs in the

ocean when photons scatter off water molecules (Walrafen, 1966). It therefore contains

information of the amount of photons in the ocean. Photons are scattered to longer wave-

lengths with a wavelength shift of 33 to 99 nm in the UV-VIS (Haltrin and Kattawar,

1993). Absorption features such as Fraunhofer lines in the solar spectrum are filled-in by
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Figure 4.2.1: Flow chart illustrating TROPOMI Kd algorithm.

these photons detectable in backscattered radiances recorded by satellites, appearing as a

so-called pseudo-absorption, known as the Ring effect (Grainger and Ring, 1962). Using

Differential Optical Absorption Spectroscopy (DOAS), the VRS signal can be identified in

backscattered radiances from satellite sensors with sufficient spectral resolution (∼0.5 nm)

(Vasilkov et al., 2002a; Vountas et al., 2003, 2007). Since VRS is negligible in the at-

mosphere (Vountas et al., 1998), Dinter et al. (2015) exploited these spectral features to

infer the light availability and Kd in the ocean via radiative transfer modeling from SCIA-

MACHY backscattered radiances. Chapter 3 closely followed this approach with some

modifications on DOAS and RTM settings to derive Kd from SCIAMACHY and addition-

ally OMI, and GOME-2 for nearly one year of data in 2007. Here, the algorithm is based

on these earlier works with minor modifications. In the following, the retrieval steps for

deriving Kd from VRS are summarized, see also the flowchart in Figure 4.2.1.

PhytoDOAS

Differential Optical Absorption Spectroscopy (DOAS) (Perner and Platt, 1979) is a method

for inferring atmospheric trace gas concentrations from high-frequency absorption features

in backscattered radiances (see section 2.11 for details). The optical depth τ is calculated

from backscattered radiances I divided by a reference spectrum, e.g., an extra-terrestrial

solar spectrum I0. Low-frequency features are removed by subtracting a low-order polyno-

mial. Absorption spectra of atmospheric trace gases are fitted to the high-frequency part

of the optical depth to infer their concentrations. DOAS has been extended to the ocean

domain (PhytoDOAS) for retrieving phytoplankton functional types (Bracher et al., 2009;

Sadeghi et al., 2012a), light availability (Dinter et al., 2015), Kd (Dinter et al., 2015, study

1), through VRS (Vountas et al., 2003, 2007), and phytoplankton fluorescence (Wolanin
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et al., 2015b) by including (pseudo-) absorption spectra for oceanic constituents and inelas-

tic processes. Pseudo-absorption spectra σ can be calculated from RTM radiances, which

are calculated from a model run including (I+) and excluding (I−) inelastic processes

(Vountas et al., 1998):

σ =
I+

I−
. (4.2.1)

For this study, three VRS fits were performed in three spectral regions 349.5 to 382 nm,

405 to 450 nm, and 450 to 493 nm, in the following referred to as UV, short-blue, and

blue window, respectively. The blue and short-blue windows lie in TROPOMI’s band 4,

whereas the UV window lies in band 3. VRS fit factors have been successfully retrieved

in the UV window using data from the GOME and SCIAMACHY sensor (Vountas et al.,

2003, 2007). The blue window is slightly shorter than in Losa et al. (2017a) and chapter 3,

because TROPOMI’s band 4 ends before 497 nm. VRS fits in the short-blue window are

tested here for the first time. Considering all relevant processes in these fit windows for

targeting VRS, the DOAS equation can be formulated as:

τ = ln
I0
I

=
J

j=1

Sa,jσa,j(λ) + SV RSσV RS(λ) + SOCσOC(λ) + SRσR(λ) +
M

m=0

xmλ
m. (4.2.2)

with atmospheric absorption cross sections σa,j(λ) of J trace gases and pseudo-absorption

cross section σR(λ) for Rotational Raman Scattering (RRS) in the atmosphere based on

Equation 4.2.1. The pseudo-absorption cross section for VRS (σV RS) was calculated based

on Equation 4.2.1 from modeled case I TOA radiances for Chla of 0.1 mg/m3 and solar

zenith angle (SZA) of 40° (see Figure 4.2.2). The ocean weighting function (σOC) was

defined as in Dinter et al. (2015) calculated from case I TOA radiances for a SZA of

40°. The weighting function was calculated for a change in Chla from 0.1 mg/m3 to 0.11

mg/m3. For the blue and short-blue window, following atmospheric absorbers were fitted:

absorption cross sections for ozone (O3) (Serdyuchenko et al., 2014), nitrogen dioxide

(NO2) (Vandaele et al., 1998), water vapor (H2O) (Rothman et al., 2013, using HITRAN

2009), and oxygen dimer (O4) (Thalman and Volkamer, 2013). The VRS fits in the blue

and short-blue window only differ in fit window, whereas the UV window fit additionally

differs in fitted atmospheric absorbers. In the UV window, the absorption cross section for

bromine monoxide (BrO) was additionally fitted, but water vapor was removed from the

list of absorbers. For all three fit windows, a second order polynomial was chosen (M = 2).

Equation 4.2.2 is solved for the fit factors S and the polynomial coefficients xm.
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Figure 4.2.2: VRS pseudo-absorption spectrum as function of wavelength. Colored
areas indicate UV (red), short-blue (yellow) and blue (light-blue) DOAS
fit window. The thick blue line marks the end/start of band 3/4.

RTM SCIATRAN

The ocean-atmosphere coupled RTM SCIATRAN (Blum et al., 2012; Rozanov et al., 2014,

2017,https://www.iup.uni-bremen.de/sciatran/) version 4.0.8 was used for radiance sim-

ulations to calculate pseudo-absorption cross sections and LUTs. Two types of RTM

simulations have to be performed for the LUTs used to convert VRS fit factors to Kd.

On the one hand top-of-atmosphere (TOA) radiances and on the other hand underwater

radiant fluxes for various ocean scenarios are needed. 23 different case-1 scenarios (Morel

and Maritorena, 2001) were modeled with Chla ranging between 0 and 30 mg/m3, i.e.,

optical properties of the ocean are driven by Chla, other optically active constituents such

as CDOM change proportionally. Similar to the case-1 model in Hydrolight (Mobley and

Sundman, 2013), the phytoplankton absorption spectrum (Prieur and Sathyendranath,

1981) was extrapolated into the UV range as an exponentially decaying function leading

to a CDOM-dominated UV case-1 model. A background maritime aerosol was assumed

with aerosol optical depth (AOD) of 0.1 at 550 nm (LOWTRAN, Kneizys et al., 1988).

Detailed model settings can be found in section 3.2.5 adapted from Dinter et al. (2015).

TROPOMI-specific adaptations were made for this study. Since spectral alignment

is very important for the DOAS retrieval, a TROPOMI-measured extraterrestrial solar

spectrum was used for the TOA radiance calculations. A solar spectrum measurement from

a middle row of the charge-coupled device (row 225, 0-based) from May 2018 was chosen.

Underwater fluxes were simulated at a spectral resolution of 0.5 nm using a Fraunhofer

atlas (Chance and Kurucz, 2010) since they are insensitive to the exact spectral resolution.
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Figure 4.2.3: (a) Original VRS fit factors and correspondingly derived (b) Kd-blue,
both, gridded at 0.083° as mean for 11 May to 9 June.

Geometry settings were chosen to cover all of TROPOMI’s viewing geometries (5° steps

for SZA and viewing zenith angle (VZA)), except for the azimuth angle which was held

constant (90°).

Look-up-table for deriving Kd from VRS

The LUT for deriving Kd from VRS was built by combining VRS PhytoDOAS fits on

simulated TOA radiances with Kd calculated from simulated underwater radiant fluxes.

PhytoDOAS fit settings for the retrieval of theoretical VRS fit factors from the modeled

TOA radiances are the same as for the retrieval on satellite radiances (see above) except

for atmospheric cross sections. Water vapor was not fitted, since it was not included

in the SCIATRAN simulation. Kd was calculated according to Equation 4.1.1 for each

wavelength from the underwater radiant flux simulations, which give, amongst others, the

downwelling irradiance at discrete depths z. The first optical depth, z90, was determined

via linear interpolation of the log-transformed downwelling irradiance Ed at depth. Taking

into account the wavelength shift of the VRS process, resulting Kd were then averaged

over wavelength between 312.5 nm and 338.5 nm for Kd-UVAB, between 356.5 nm and

390 nm for Kd-UVA, and between 390 nm and 423 nm for Kd-blue. Kd calculations and

VRS PhytoDOAS retrievals were performed for each SZA and each VZA separately. VRS
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Figure 4.2.4: Kd-blue derived from (a) original VRS fit factors and (b), (c) offset-
corrected VRS fit factors in comparison to OLCI Kd-blue as mean for
11 May to 9 June. The comparison was calculated on a daily basis
taking data sets gridded at 0.083° as input. (b) shows the comparison
for a reduced data set, Kd-blue < 0.15m−1, used to optimize the applied
offset such that the slope of an orthogonal linear regression is equal to
unity. (c) shows the comparison for the full data set. Total least-squares
regression results (shown as black-dashed line) can be found on top of
the figure, together with the Pearson correlation coefficient r. The black
solid line is the 1:1 line.

fit factors were matched with Kd calculated from scenarios with the same Chla. As an

update to the two-dimensional LUT in chapter 3, a three-dimensional LUT was created

where Kd is a function of VRS fit factor, SZA, and (newly added) VZA.

Offset correction

TROPOMI-derived Kd-blue was much higher than expected (discussed in section 4.4.1),

necessitating an empirical offset correction, see Figures 4.2.3 and 4.2.4. Kd-blue much

better agreed with the wavelength-converted Kd(490) from OLCI and OC-CCI when a

constant was added to the VRS fit factors. Generally, TROPOMI Kd-blue is closer to

the OLCI Kd-blue than the OC-CCI Kd-blue and correlation is highest for low Kd values

(see Table 4.3.2). Hence, we concentrated on comparing the low values (Kd < 0.15 m−1)

from the TROPOMI Kd-blue to those from the OLCI Kd-blue data set to determine the

offset that best corrects the data. The comparison was calculated for the entire study time

period using 5 minute gridded daily Kd data as input. The offset correction was optimized

such that a linear total-least-square regression on this comparison data set (limited to

Kd < 0.15 m−1) yielded a slope close to one. The optimal offset was found to be 0.186.

Regression statistics for this setting were a slope of 1.01, intercept of -0.002 m−1, and

Pearson correlation coefficient of 0.80. The offset was used to correct all VRS fit factors
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and by that the whole Kd range.

4.2.4 Sensitivity analysis

The algorithm sensitivity was evaluated with respect to model settings similar to the

sensitivity analysis presented in section 3.2.6. Here, next to aerosol and CDOM settings,

the sensitivity analysis was extended to the parameters: CDOM slope, UV-absorbing

pigments, liquid water absorption, wind speed, and ozone concentration.

For each parameter, the sensitivity was analyzed as follows. An RTM simulation was

performed to calculate radiances and radiant fluxes in which one parameter is increased

or decreased with respect to the standard scenario used to build the LUT as described

in section 4.2.3. The PhytoDOAS fit was performed on this modified scenario. Resulting

VRS fit factors were converted to Kd using the LUT. The resulting Kd, K
der
d , was compared

to the expected Kd, K
exp
d , calculated from the radiant fluxes of the modified scenario. The

deviation of derived from expected Kd was determined, (Kder
d −Kexp

d )/Kexp
d .

Since mainly only a change in inherent optical properties changes Kd, the parameters can

be separated in two groups. One group comprises the atmospheric and surface parameters

which have no or only a minimal effect on the mean Kd over the first optical depth, but

may influence VRS since scattering is proportional to light intensity. The second group

comprises the oceanic parameters which affect both, Kd and VRS. For the second group,

Kd changes can be large, however, VRS changes accordingly, and Kd is retrieved correctly

within an uncertainty which is only a fraction of the change in Kd.

Atmospheric and surface parameters

Parameters within the first group were varied as follows: wind speed was reduced to 1 m/s

and increased to 8 m/s (standard: 4.1 m/s); aerosol optical depth (AOD) was reduced to

0.05 and increased to 0.2 (standard: 0.1); ozone profile was changed to one with reduced

total ozone column of 290 DU (standard: 420 DU). Figure 4.2.5 shows the influence of

these selected atmospheric and surface parameters on the filling-in by VRS as determined

by Equation 4.2.1 for Chla of 0.1 mg/m3. The influence of AOD and wind speed is largest

for the blue fit window and decreases with decreasing wavelength. It is negligible for

wavelengths smaller 360 nm. The influence of the ozone concentration is largest at the

short wavelengths. It is negligible for wavelengths larger 370 nm. Results for changes in

AOD and wind speed are therefore only presented for the short-blue and blue fit window

and in ozone for the UV fit window. The influence of aerosols on the Kd-blue retrieval

was already presented in section 3.2.6. A constant deviation over the Kd-blue range was
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Figure 4.2.5: Filling-in by vibrational Raman scattering for different model parame-
terizations in comparison to the standard simulation for the three wave-
length ranges of the PhytoDOAS VRS fits.

found which was less than −5% for the reduced AOD scenario and less than +20% for

the increased AOD scenario. Figures 4.2.6 (a) and (b) show that the influence of aerosols

on the Kd-UVA retrieval is similar in magnitude. The effect of aerosols on the Kd-UVAB

retrieval (not shown) is significantly lower with only +5% deviation for the increased AOD

scenario. Figures 4.2.6 (c) and (d) show the Kd-blue retrieval sensitivity with respect to

wind speed. For most SZA, an altered wind speed causes deviations from the expected

Kd-blue well below 5%. Larger deviations of up to ±10% are found for specific SZA at the

lower SZA range depending on wind speed. The influence on Kd-UVA was even smaller as

expected from the behavior of the filling-in by VRS. For the same specific SZA, deviations

up to ±5% can be found (not shown). The influence of the ozone column on the Kd-UVAB

retrieval is shown in Figure 4.2.6 (e) and is below 5%.

It can be seen that the retrieval performance is not robust for Kd > 0.3 m−1, outside

of grey-shaded area in Figure 4.2.6. Later on, results will show that TROPOMI Kd can

not be well retrieved for scenes with Kd > 0.3 m−1, discussed in section 4.4.3. Also, the

retrieval is less robust at high SZA and at high VZA, which causes large error bars in the

plots. This effect should be kept in mind, when the algorithm is applied in high latitudes.

In the investigated Atlantic region, SZA are only moderately high and satellite pixels with

high VZA are often screened out by the cloud filter due to their larger pixel size.

In summary, the infuence of atmospheric and surface parameterizations is generally
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2.6: Deviation of derived from expected Kd in case of (a) reduced AOD, (b)
increased AOD, (c) reduced wind speed, (d) increased wind speed, and
(e) reduced ozone column for different SZA. Results were averaged for
different VZA with the standard deviation given as error bar. (a), (b)
show results for Kd-UVA, (c), (d) for Kd-blue, and (e) for Kd-UVAB.
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Figure 4.2.7: Deviation of Kexp
d -UVAB as in the modified scenario from Kd-UVAB in

the standard scenario as function of Kexp
d -UVAB for tested variations in

oceanic parameters.

low on the Kd retrievals. Uncertainties increase with the difference between conditions

found for an actual satellite scene and the average ones used in the simulated standard

scenario. Largest uncertainties can be expected for scenes with high aerosol loadings, which

only occur in specific regions and times of the year (Remer et al., 2008). For the Atlantic

region, Saharan dust storms can have a significant influence (e.g.,van der Does et al., 2016).

Maritime aerosols were investigated here, terrestrial dust might have even stronger impacts.

These critical scenes are largely removed through the strict cloud filter criterion used in

this study (cloud fraction of 0.01). In the future, the dimensionality of the LUT can be

increased, when confidence in performance of Kd retrievals has been gained by comparison

with larger in-situ data sets than available for this study. The total ozone column, AOD,

and wind speed can be included in the LUT and taken from ancillary data (some variables

also available from TROPOMI) to further reduce uncertainty in TROPOMI Kd data sets.

Oceanic parameters

The case-1 assumption is generally not valid in the UV domain. The absorption coefficient

can not be accurately described using Chla (Vasilkov et al., 2002b; Morel et al., 2007b).

The influence of the case-1 parameterization used for the optical constituents in the ocean

on the ultraviolet Kd retrievals needs to be checked carefully. As introduced in section 4.2.3,

the case-1 parameterization for the visible wavelength range was used in combination with

a recent pure water absorption spectrum accurately measured for UV wavelengths (Ma-

son et al., 2016). Nevertheless, the influence of the choice of water absorption spectrum

was checked. A modified scenario was simulated with liquid water absorption coefficients
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2.8: Deviation of derived from expected Kd-UVAB in case of (a) reduced and
(b) increased CDOM coefficient, (c) reduced and (d) increased CDOM
slope, (e) liquid water absorption by Pope and Fry (1997), and (f) MAA
absorption as function of expected Kd-UVAB. Results were averaged
for different VZA with the standard deviation given as error bar. See
Figure 4.2.6 for symbol legend.
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from Pope and Fry (1997) which significantly differ at short wavelengths from those mea-

sured by Mason et al. (2016), see section 2.9.1. High uncertainty also lies within the

settings for phytoplankton and CDOM absorption. Presence of mycosporine amino acids

(MAA) causes higher UV absorption than prescribed in the standard case-1 parameteri-

zation. MAA absorb between 320 and 350 nm with a peak around 330 to 340 nm (Vernet

et al., 1994; Bracher and Wiencke, 2000). Presence of these UV-absorbing pigments should

therefore mainly influence Kd-UVAB (Wang et al., 2021). A modified scenario was simu-

lated using a phytoplankton absorption spectrum with medium MAA absorption (S9 from

Bracher and Wiencke (2000)). High variability can also be expected for the CDOM slope,

0.01 to 0.03 nm−1 (Vodacek and Blough, 1997) as compared to 0.014 nm−1 in the standard

case-1 scenario. Modified RTM simulations were made with a reduced CDOM slope of

0.007 nm−1 and an increased CDOM slope of 0.03 nm−1. Also the CDOM coefficient was

modified as in section 3.2.6, while keeping the CDOM slope at 0.014 nm−1.

Figure 4.2.7 shows the change in Kd-UVAB caused by the altered parameterizations

with respect to the standard scenario (Kstd
d ), calculated as (Kexp

d − Kstd
d )/Kstd

d . Imple-

mented changes cause drastic changes in Kd-UVAB. The influence of the water absorption

coefficients, MAA absorption, and a high CDOM slope is especially large. For the clearest

waters, the water absorption by Pope and Fry (1997) leads to an increase in Kd-UVAB by

200%. A similar increase is found for MAA absorption for waters with highest Chla. Since

the reference wavelength for CDOM absorption is in the visible spectral region, an increase

in CDOM slope causes extreme changes in Kd-UVAB (about 200-430%). The other tested

variations in CDOM parameterization lead to comparably moderate changes in Kd-UVAB

below 100%.

Figure 4.2.8 shows retrieval sensitivity results for the oceanic parameters for Kd-UVAB.

The focus here lies on the Kd range below 0.3 m−1. The change in water absorption

spectrum results in an overestimation of 15% for clear water scenarios which reduces to zero

for high Chla scenarios, see Figure 4.2.8 (a). The overestimation is counter-intuitive, since

Kexp
d is higher than Kstd

d . A changed parameterization often also causes a spectral change

in Kd which impacts the VRS fit quality and can result in this unexpected behavior. MAA

absorption leads to an underestimation which increases to 20% at Kd-UVAB = 0.3 m−1

and can be significantly higher for higher Kd-UVAB (Figure 4.2.8 (b)). A change in

CDOM coefficient causes deviations of ±10% (Figures 4.2.8 (c) and (d)). A reduced

CDOM slope results in an overestimation of up to 20% and an increased CDOM slope

in an underestimation of up to 30% depending on Chla as shown in Figures 4.2.8 (e)

and (f). The influence on the Kd-UVA retrieval was also evaluated with respect to water

absorption and CDOM (results not shown). Results are qualitatively similar, however, the
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influence is generally smaller. Overestimation up to 10% for the change in water absorption,

overestimation of up to 10% in case of reduced CDOM slope, and underestimation up to

25% in case of increased CDOM slope are found. A change in CDOM coefficients leads to

similar deviations of ±10%.

In conclusion, the Kd-UV retrievals are rather insensitive to the chosen RTM parame-

terization compared to the large variability that this parameterization causes in Kd in the

ultraviolet spectral range.

4.2.5 Kd product quality evaluation

Kd products were evaluated against in-situ and multispectral Kd data sets. For all com-

parisons, we provide metrics typically used for ocean color variables (Brewin et al., 2015;

Seegers et al., 2018): the slope and intercept of least-square regressions, the Pearson cor-

relation coefficient, the bias, the mean absolute error (MAE), root-mean-square difference

(RMSD), and, where useful, the unbiased RMSD, calculated as


RMSD2 − bias2.

Wavelength conversion for Kd(490)

To compare the TROPOMI-derived Kd products to Kd(490) from OLCI and OC-CCI,

Kd(490) needs to be wavelength-converted first. The spectral relationship between Kd-

blue, Kd-UVA, Kd-UVAB and Kd(490) was investigated based on the in-situ Kd(λ) from

19 stations of PS113. Kd-blue, Kd-UVA, Kd-UVAB were determined from the in-situ

Kd(λ) by averaging over the corresponding wavelength ranges. They were then plotted

against the in-situ Kd(490). Linear regression results can be found in Table 4.2.1. There

is a tight relationship between Kd-blue and Kd(490). Correlation with Kd(490) decreases

with decreasing wavelength. Based on these results, OLCI and OC-CCI Kd(490) were

wavelength-converted using

Kd-blue/-UVA/-UVAB = a ·Kd(490) + b (4.2.3)

with slope a and intercept b from Table 4.2.1.

Match-up analysis

Match-ups between geolocation of PS113 stations and TROPOMI gound pixels were cal-

culated using a loose criterion given the low number of stations (N = 19). For each station,

TROPOMI match-ups were searched within ±2 days and a radius of 5.5 km. If several

match-ups were found in this time period, the mean TROPOMI Kd was calculated from all
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Table 4.2.1: Linear least-square regression results for in-situ Kd-blue, Kd-UVA and
Kd-UVAB compared against in-situ Kd(490) from 19 stations during
PS113.

Kd slope a intercept b [m−1] Pearson correlation r

blue 1.40 -0.008 0.98
UVA 1.58 0.000 0.93
UVAB 2.57 0.012 0.84

match-ups per station. The standard deviation was noted as uncertainty of the TROPOMI

Kd. Using this loose criterion, match-ups were found for 8 stations. OLCI and OC-CCI

data were used to further quality control these 8 match-ups. The same spatial and tempo-

ral collocation criteria were applied to high-resolution OLCI data to find the corresponding

OLCI data for each match-up. Following the Sentinel-3 ocean color validation protocol

(EUMETSAT, 2021), OLCI match-ups were only considered valid if half of the pixel box

was filled and if the coefficient of variation was not larger than 0.2. In addition, OC-CCI

match-ups were determined with spatial collocation criterion of 1 by 1 (corresponding to

TROPOMI criterion) and 3 by 3 pixel box to additionally check the spatial homogeneity

as for OLCI. 7 of the TROPOMI match-ups were confirmed to be valid.

4.3 Results

Figure 4.3.1 shows VRS fit factors for the three PhytoDOAS fit windows in the (a) UV,

(b) short-blue, and (c) blue in the Atlantic Ocean for the time period 11 May to 9 June.

VRS fit factors in the blue window are presented offset-corrected. The data were gridded

to 0.083° (∼9 km). For all three fit windows, high and low VRS fit factors are found in

typically low and high Chla regions corresponding to low and high light penetration into

the ocean, respectively. As expected, the VRS signal decreases with decreasing wavelength.

Fit quality is similar for the PhytoDOAS fits in all three fit windows. The average root

mean square (RMS) of all fit residuals in this area and time period and its standard

deviation were evaluated to 1.0 · 10−3 ± 3 · 10−4 for the UV (excluding 26 outliers with

RMS > 4), 0.9 · 10−3 ± 2 · 10−4 for the short-blue, and 1.0 · 10−3 ± 3 · 10−4 for the blue

fit window. VRS fit factors from different fit windows are not strictly correlated, e.g.,

differences appear around Newfoundland and Great Britain.
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Figure 4.3.1: VRS fit factors in the (a) UV, (b) short-blue, and (c) blue fit window
in the Atlantic Ocean gridded at 0.083° as mean for 11 May to 9 June
2018.

Kd was derived from these VRS fit factors using separate LUTs for each wavelength

region. Figure 4.3.2 shows the resulting (a) Kd-UVAB, (b) Kd-UVA, and (c) Kd-blue in

the Atlantic Ocean gridded to 0.083° over the time period from 11 May to 9 June 2018.

Lowest Kd are found in the North and South Atlantic Gyres, highest Kd in the upwelling

regions along the African coast and the Amazon river plume. With decreasing wavelength,

Kd increases. However, Kd-UVAB is not generally larger than Kd-UVA. In the upwelling

regions off the coast of West African, the Amazon river plume, around Newfoundland,

and around Great Britain the ratio Kd-UVA/Kd-UVAB is larger than 1 (roughly 1.25 on

average, 2 in extreme cases). Kd-blue is strikingly larger than Kd-UVA and UVAB in the

productive areas north of the Northern Atlantic Gyre.

Derived TROPOMI Kd products were compared to in-situ Kd measurements taken dur-

ing expedition PS113. In general, the monthly mean satellite Kd matches well the in-situ

point data values. For a direct comparison, match-ups between TROPOMI and station

data were evaluated (Figure 4.3.2). Match-ups for TROPOMI Kd-UVAB, Kd-UVA, and

Kd-blue plotted against the corresponding in-situ Kd (Figure 4.3.3) show an overall good
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Figure 4.3.2: TROPOMI (a) Kd-UVAB, (b) Kd-UVA, and (c) Kd-blue in the Atlantic
Ocean gridded at 0.083° as mean for 11 May to 9 June 2018. Accordingly,
Kd-UVAB,Kd-UVA, andKd-blue measured in-situ at 19 stations during
expedition PS113 are overlayed as diamonds (match-ups) and circles
(unmatched stations).

agreement for all three spectral wavelength regions (correlation between r = 0.51 and

0.85), considering the low number of match-ups and loose match-up criterion. TROPOMI

Kd-blue shows good agreement with the in-situ Kd-blue, which might not be so surprising

since the VRS fit factors were offset-corrected for this wavelength range such that agree-

ment is maximized for low Kd-blue with OLCI Kd-blue. Linear regression obtains a slope

of 0.83 and an intercept of 0.01 m−1. A slightly lower slope is obtained for TROPOMI Kd-

UVAB and a higher one for Kd-UVA (Table 4.3.1). TROPOMI Kd-UVAB covers a larger

range of Kd values than the other two Kd, yielding the highest correlation coefficient. For

high Kd-UVAB values, TROPOMI tends to underestimate Kd-UVAB. Bias, RMSD, and

MAE increase with decreasing wavelength (Table 4.3.1). Considering the unbiased RMSD,

performance of TROPOMI Kd-blue and Kd-UVAB is similar and worse for Kd-UVA.

TROPOMI Kd-blue was compared to Kd data from the multispectral OLCI and OC-

CCI data sets. For the latter, Kd(490) was converted to Kd-blue via a linear wavelength
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Figure 4.3.3: TROPOMI (a) Kd-UVAB, (b) Kd-UVA, and (c) Kd-blue against in-
situ Kd-UVAB, Kd-UVA, and Kd-blue. Match-ups between TROPOMI
Kd data and PS113 in-situ data were searched for within ±2 days and
5.5 km radius of the in-situ measurement. If more than one match-up
was found within these search criteria, the mean TROPOMI Kd was
calculated with standard deviation shown as error bar.

Table 4.3.1: Metrics for the match-ups between TROPOMI against in-situ Kd-UVAB,
Kd-UVA, andKd-blue. Given are slope a and intercept b from linear least-
square regression, Pearson correlation coefficient r, bias, mean absolute
error (MAE), and (unbiased) root mean square difference (RMSD).

Kd a b r bias MAE RMSD unbiased RMSD
[m−1] [m−1] [m−1] [m−1] [m−1]

UVAB 0.61 0.01 0.85 -0.027 0.027 0.031 0.015
UVA 1.35 -0.002 0.51 0.013 0.023 0.025 0.021
blue 0.83 0.01 0.57 0.002 0.012 0.015 0.015
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conversion scheme (Table 4.2.1). Since this wavelength conversion is principally valid for

relating Kd(490) to Kd-blue, the comparison was restricted to Kd-blue and not extended

to the UV Kd. For the study period and on the same grid as in Figures 4.3.1 and 4.3.2,

Figure 4.3.4 shows Kd-blue for (a) TROPOMI in comparison to (b) OLCI and (c) OC-

CCI. Overall, TROPOMI Kd-blue patterns resemble the multispectral ones (e.g., gyres and

productive areas around the Amazon river plume, Mauretanian upwelling system, English

Channel). Regional differences are observed between TROPOMI and the multispectral Kd-

blue, but also among the multispectral products. In the Atlantic gyres, OC-CCI Kd-blue

is significantly higher than the other two products. Similar to OLCI, OC-CCI Kd-blue

is lower in the North than in the South Atlantic Gyre, whereas TROPOMI Kd-blue is

lower in the South. In the productive areas in the North Atlantic, the TROPOMI Kd-

blue product appears noisier than the multispectral products. A distinct difference again

is visible near Newfoundland. OLCI and OC-CCI show similar high-Kd patterns north

of Newfoundland whereas this pattern does not fully occur in the TROPOMI Kd-blue

product. Differences appear in maximum values south of 40°S, where SZAs are large and

data coverage is low and differs between sensors. Despite these differences between the

three data sets, comparison with RMSD (Figure 4.3.4 (d)) as provided in the OC-CCI data

set (converted to the blue spectral region) shows that these differences are on the order of

the uncertainty of the OC-CCI product (see Figure 4.3.5).

All above mentioned data sets were gridded to 0.083° on a daily basis for the study

period. Then, the satellite Kd-blue products were intercompared (TROPOMI vs. OLCI,

TROPOMI vs. OC-CCI, and OLCI vs. OC-CCI) as well as the three TROPOMI Kd

products among each other either based on the full data set or on a masked data set,

where values above 0.3 m−1 were excluded (Table 4.3.2). As can be seen from Figure 4.3.2,

most satellite scenes are within this masked data set. Correlations between masked data

sets are generally much larger than for full data sets. Significant correlation is found be-

tween TROPOMI Kd-blue and the multispectral Kd-blue, with slightly better agreement

between TROPOMI and OLCI, r = 0.77 for masked data set, than between TROPOMI

and OC-CCI, r = 0.74 for masked data set. We note that the VRS fit factors underlying

the Kd-blue product were corrected such that TROPOMI vs. OLCI yields a slope of one

for an even smaller data set (Kd-blue < 0.15 m−1). For the larger masked data set (Kd-

blue < 0.3 m−1), a slope of unity is still found. Higher correlation is found between the

multispectral data sets (r = 0.92). However, biases are observed depending on Kd range.

OC-CCI is larger than OLCI for small Kd-blue values, lower for medium Kd-blue values

and again larger for the highest Kd-blue values in the data set. The hyperspectral UV Kd

were only compared to TROPOMI Kd-blue and not to the multispectral data sets, since
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the wavelength conversion is less valid for the shorter wavelengths and the intercomparison

indirectly contains information of the UV Kd with the multispectral products. The correla-

tion between Kd-blue and Kd-UVA is lower than the one between Kd-blue and Kd-UVAB,

contrasting the finding on the relationship between the Kd from the in-situ Kd(λ).

Figure 4.3.4: (a) TROPOMI, (b) OLCI, and (c) OC-CCI Kd-blue gridded at 0.083° as
mean for 11 May to 9 June 2018. (d) RMSD provided in the OC-CCI
product which was wavelength-converted to blue spectral range.
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Figure 4.3.5: Mean absolute difference between (a) TROPOMI and OLCI, (b)
TROPOMI and OC-CCI, and (c) OLCI and OC-CCI Kd-blue for the
time period 11 May to 9 June and gridded at 0.083°. (d) RMSD as
provided in OC-CCI data set for same grid and time period.

Table 4.3.2: Comparison between TROPOMI against OLCI and OC-CCI Kd-blue,
Kd-UVA and Kd-UVAB calculated on daily gridded data (0.083°) over
time period 11 May to 9 June 2018. Given are slope a and intercept b
from linear total-least-square regression, Pearson correlation coefficient
r, bias, mean absolute error (MAE), and root mean square difference
(RMSD).

Kd data set a b r bias MAE RMSD
[m−1] [m−1] [m−1] [m−1]

TROPOMI
vs. OLCI

blue
full 0.38 0.034 0.45 0.005 0.026 0.102
masked 1.02 -0.002 0.77 0.001 0.015 0.028

TROPOMI
vs. OC-CCI

blue
full 0.57 0.021 0.45 0.004 0.022 0.076
masked 1.23 -0.015 0.74 0.003 0.015 0.027

OC-CCI vs.
OLCI

blue
full 1.10 -0.004 0.68 0.002 0.015 0.085
masked 0.86 0.009 0.92 0.002 0.009 0.017

TROPOMI
vs.
TROPOMI

blue vs.
UVA

full 1.01 0.019 0.44 0.020 0.039 0.073
masked 0.82 0.028 0.55 0.019 0.031 0.041

blue vs.
UVAB

full 0.69 0.054 0.53 0.037 0.051 0.071
masked 0.99 0.040 0.64 0.039 0.045 0.052
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4.4 Discussion

4.4.1 VRS retrievability

The VRS signal in TROPOMI-measured backscattered radiances can be successfully iden-

tified using DOAS. Spatial patterns of VRS fit factors are consistent with distribution

patterns of Chla, the main driver for light attenuation in the open ocean. Absolute values

of VRS fit factors retrieved from TROPOMI data are in reasonable agreement with those

retrieved from simulated backscattered radiances shown by the successful conversion to

Kd using the RTM-based LUTs. The conversion yielded better results for the UV and

short-blue than for the blue fit window. A simple additive correction was necessary here.

The requirement of an additive correction factor that brings together retrieved fit factors

with model predictions is a typical DOAS problem (Irie et al., 2015; Seo et al., 2019).

Peters et al. (2014) pointed out that theoretical VRS pseudo-absorption spectra are not

ideal for compensating VRS structures in actual DOAS measurements of clear waters.

Such a mismatch could explain the requirement of a correction term. If this is the case,

the effect of this mismatch on the DOAS retrieval is dependent on fit window, since we did

not observe an obvious need for a correction of VRS fit factors in the short-blue and UV

fit windows. Discrepancies between retrieved VRS fit factors on satellite and simulated

backscattered radiances have been already encountered for the sensors GOME-2, OMI,

and SCIAMACHY in study 1, chapter 3. In study 1, this discrepancy was reduced by

including cross sections in the DOAS fit for GOME-2 and SCIAMACHY which account

for spectral features caused by instrumentation. The DOAS VRS fit on OMI data showed

no sensitivity to empirical cross sections. We checked if such empirical cross sections

calculated from fit residuals over cloudy scenes - which are essentially VRS-free scenes

- improve the situation for TROPOMI. No impact on VRS fit factors was found. We

therefore suggest a different reason for the required offset correction. While performing

DOAS fits on simulated data, a correlation with O4 was observed that is strongest in the

blue fit window, weaker in the short-blue fit window and weakest in the UV fit window.

This correlation behaves differently for fits of actual satellite scenes. DOAS retrievals

targeting O4 also often require additive correction factors, caused by an insufficient quality

of the O4 absorption cross section (Spinei et al., 2015). The effect of O4 on the VRS

retrieval should be further investigated to obtain a correction which is independent from

other Kd products.
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4.4.2 Ultraviolet Kd product quality

We relied on in-situ match-up analysis for the evaluation of the Kd-UV product quality,

because no equivalent Kd-UV product is currently available from multispectral satellite

sensors. Match-up analysis was not feasible for older hyperspectral sensors due to large

ground pixel sizes. Before TROPOMI was launched, OMI had the best spatial resolution

with 13 km by 24 km at nadir. The spatial resolution has dramatically increased with

TROPOMI to 3.5 km by 7 km at nadir in 2018. This is still a large pixel size for comparison

with point measurements, yet the results show a decent agreement between match-ups of

hyperspectral and in-situ Kd. Since the number of stations was small, a loose criterion

was used to search for match-ups. The resulting number of match-ups is large considering

that almost half of the stations could be matched, but overall low. The information drawn

from the in-situ data comparison should not be over-interpreted, especially regarding the

correlation coefficient.

TROPOMI ultraviolet Kd products are promising shown by comparison to this in-situ

data set. Overall, there is good agreement between the TROPOMI and in-situ Kd, when

considering the small amount of match-ups. Quality of the in-situ Kd at short wavelengths

is limited. The TriOS sensor only measures down to 320 nm and its measurement accuracy

appears to decrease towards this lower end of the spectral range as observed also by other

users (Nicolaus et al., 2010). Consequently, the in-situ Kd-UVAB has a spectral mismatch

to the TROPOMI Kd-UVAB. Evaluated from the RTM simulations, the in-situ Kd-UVAB

is expected to be about 5 to 10% lower than the satellite Kd-UVAB due to this spectral

mismatch, which would imply an even larger underestimation of Kd-UVAB by TROPOMI.

Potential biases of TROPOMI Kd-UVAB need to be checked in the future with high-quality

radiometric measurements in the UV spectral range.

The ratio between Kd-UVA and Kd-UVAB is larger than 1 for high-Kd waters, which

is potentially related to the observed underestimation of TROPOMI Kd-UVAB for higher

Kd values (multiplicative bias). Kd-UVAB should always be larger than Kd-UVA from a

theoretical point of view considering that CDOM absorption decreases exponentially with

wavelength. A decreasing Kd with decreasing wavelength in the UV is backed up by field

data (Baker and Smith, 1982; Conde et al., 2000). An exception might be waters with ex-

tremely low CDOM concentrations for which hardly any difference was observed between

Kd at 310 and 465 nm (Højerslev and Aas, 1991). The multiplicative bias becomes impor-

tant in CDOM-rich or productive areas in the open ocean. For Kd < 0.3 m−1, covering

large parts of the open ocean, Kd-UVA and Kd-UVAB both are reasonable estimators for

UV light penetration as concluded from the in-situ comparison.

In addition to systematic biases, spatial patterns differ between the two Kd-UV prod-
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ucts. Daily comparisons of the gridded products with Kd-blue showed a lower correlation

with Kd-UVA than with Kd-UVAB. This observation contrasts the analysis of the spectral

relationships between Kd at different wavelengths derived from the in-situ Kd(λ). How-

ever, quality of the in-situ measurements decreases with wavelength, naturally causing the

correlation coefficient to decrease with wavelength. Other studies found also a decreasingly

robust relationship with wavelength between Kd in the UV range and optical properties

in the VIS range (Johannessen et al., 2003; Vasilkov et al., 2005; Smyth, 2011). A very

robust relationship between Kd at 310 and 465 nm with correlation 0.998 was found in low-

CDOM waters (Højerslev and Aas, 1991). It is therefore not generally clear how robustly

the Kd-UV are related to Kd-blue in different parts of the ocean. Light attenuation in the

UV is mainly determined by CDOM and mycosporine-like amino acid (MAA) absorption.

Based on its origin, CDOM has different absorption characteristics. VIS absorption is

much stronger for humic substances with less steep spectral slope as opposed to mostly

protein degrading substances of marine origin (Nelson and Siegel, 2002). MAA production

depends on UV irradiation and species composition (Vernet et al., 1994) and mainly influ-

ence Kd-UVAB due to MAA absorption peaks at 330 to 340 nm (for influence on Kd-UVA,

see also discussion in Wang et al., 2021). Since the link between optical properties in

different spectral regions of the UV-VIS is not robust from a biogeochemical perspective,

it is necessary to directly infer spectral information on light penetration, highlighting the

importance of this study. By covering three spectral regions, the TROPOMI Kd products

can give insight on CDOM origin and MAA production. The algorithm sensitivity analy-

sis has shown that the Kd-UV retrievals are only moderately sensitive to the chosen RTM

parameterization. Changes in Kd-UV caused by sufficiently large changes in CDOM and

phytoplankton absorption should therefore be resolvable.

More in-situ data are necessary to thoroughly evaluate Kd-UV performance. A larger

data set could then also be used for estimating if correction terms for the Kd-UV are

necessary (similar to Kd-blue) and for quantifying these correction terms.

4.4.3 Blue Kd product quality

TROPOMI Kd-blue agrees well with OLCI and OC-CCI Kd-blue. Differences between the

TROPOMI, OLCI, and OC-CCI Kd-blue products are of the same order of magnitude

as the uncertainties given for the OC-CCI data set. Higher agreement between the two

multispectral Kd-blue data sets than between multi- and hyperspectral ones has to be

put into perspective, considering different ground pixel sizes of the sensors. In addition,

a perfect correlation between multi- and hyperspectral products is not expected due to
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the uncertainty associated with the wavelength conversion. We therefore want to stress

the importance of direct retrievals of Kd at other wavelengths. However, we are confident

that the comparison between the hyperspectral and multispectral Kd-blue is robust in the

oligotrophic waters of the study area because wavelength conversion was calculated from

in-situ data measured in exactly these waters in the time period of the study. Evaluating

the offset correction term from comparison with OLCI Kd-blue for small values (Kd-blue

<0.15 m−1) is meaningful. Systematic biases between the data sets cannot be evaluated

independently, but comparing them was possible with respect to regional differences, dis-

crepancies for Kd-blue values above 0.15 m−1, and random errors.

Kd-blue product quality is especially good in clear water regions, but reduced in ar-

eas where Kd-blue > 0.3 m−1. As pointed out in study 1, chapter 3, the strength of the

hyperspectral algorithm lies in low-Kd waters since the VRS signal is highest here. The

PhytoDOAS retrieval uncertainty increases with increasing Kd. In some cases, the hyper-

spectral algorithm seems to fail for high-Kd scenes causing obvious regional discrepancies

in the TROPOMI Kd-blue product, as in the waters around Newfoundland. Not only the

general DOAS retrieval uncertainty plays a role for the performance in productive areas,

also the model setup. Because the model was set up for case-1 waters, the Kd-blue product

is only valid for open ocean scenarios. For coastal applications, the model has to be ad-

justed accordingly. The multispectral algorithms have already been adapted for high-Kd

waters. The semi-analytical algorithm by Lee et al. (2005a) has shown to perform well

in coastal areas (Lee et al., 2005b) and inland waters (Gomes et al., 2018) whereas the

OK2-555 algorithm by Morel et al. (2007a) only covers case-1 waters.

A north-south trend was observed for the Gyres with OC-CCI and OLCI agreeing on

lower values in the Northern than in the Southern Gyre in contrast to TROPOMI. Sim-

ilar behaviour was observed for SCIAMACHY and OMI in chapter 3. While in case of

SCIAMACHY the latitudinal trend was attributed to polarization effects, the SZA an-

gle dependence of OMI VRS retrievals did not match the SZA dependence as predicted

by the model. From experience with building the 3 dimensional LUT for TROPOMI,

additionally including the VZA, we conclude that also for TROPOMI the SZA and VZA

dependence of theoretical VRS fit factors as predicted by the RTM is not aligned with that

of satellite-retrieved VRS fit factors. Since angular dependencies are largely controlled by

surface roughness, it might be worthwhile to extend the LUT with wind speed as an input

parameter available from climatologies. However, the false angular dependency might also

be a DOAS-retrieval related problem, e.g., caused by an angle-dependent correlation with

O4.

The TROPOMI Kd-blue product outperforms other hyperspectral Kd-blue products.
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The product quality is higher in more productive waters than for SCIAMACHY, OMI,

and GOME-2. In chapter 3, the Kd-blue products were limited from these three older

hyperspectral sensors to below 0.15 m−1. For these reduced data sets, correlations with

OC-CCI Kd-blue around 0.65 were achieved. Since metrics were given for these sensors for

daily comparisons of almost one year of data, monthly metrics obtained here cannot be

compared one to one. However, TROPOMI Kd-blue correlation with the multispectral Kd-

blue is above 0.7 for the reduced data set including values up to 0.3 m−1. The scatter plots

presented in chapter 3 show that the hyperspectral Kd-blue already diverges from the OC-

CCI Kd-blue in this Kd regime. Partially, this improvement is caused by the much lower

ground pixel size of TROPOMI, which is closer to the multispectral satellite footprints, and

thus reduces the representation error between the data sets. Smaller ground pixel sizes also

reduce the inhomogeneity in satellite scenes improving fit quality. The improved DOAS

fit quality of TROPOMI compared to its heritage sensors has also been found for UV-

VIS retrievals of atmospheric trace gases (e.g., Seo et al., 2019; van Geffen et al., 2020).

The spread in the scatter plots appearing as a “butterfly shape” was first observed by

Dinter et al. (2015) for SCIAMACHY and has appeared in all comparisons between hyper-

and multispectral Kd products so far. A systematic difference in the method or sensor

measurement technique seems to cause a behavior where multispectral algorithms find

high Kd values for scenes for which the hyperspectral Kd is low and vice versa. Hardly any

high-Kd scenes occur in the data sets where hyper- and multispectral Kd are in agreement.

This behavior was discussed in Dinter et al. (2015) and chapter 3 and attributed to low

retrieval sensitivity for high-Kd scenes causing one wing of the distribution and to cloud

contamination and large deviations from the average ocean scenario prescribed in the model

causing the other wing.

4.5 Conclusion

TROPOMI’s UV-VIS bands were successfully exploited for deriving Kd in the open ocean.

This first application of TROPOMI data for oceanic retrievals yields promising results.

Two novel Kd products in the UV (312.5 to 338.5 nm (UVAB) and 356.5 to 390 nm (UVA))

were presented showing decent agreement with Kd in-situ data. In addition, a Kd product

in the blue was retrieved (390 to 423 nm) that showed a better performance than Kd-

blue from SCIAMACHY, GOME-2 and OMI in earlier studies. Kd-blue agrees well with

the wavelength-converted Kd(490) products from the multispectral data sets OLCI and

OC-CCI. Differences between the three Kd-blue products were found to be within the

uncertainties of the OC-CCI data set.
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The robust agreement of TROPOMI Kd products with multispectral data sets and the

reasonable agreement with in-situ data show that VRS can be successfully retrieved using

PhytoDOAS and converted to Kd using an RTM-based LUT. However, few retrieval issues

were identified which could be investigated in more detail and, based on an algorithm

sensitivity analysis, suggestions were made for improving the LUT in the future. A major

issue was an empirical offset correction that had to be applied to the VRS fit factors going

into the Kd-blue product. The TROPOMI Kd-blue product is therefore not independent

from the OLCI wavelength-converted Kd(490) product used as reference. A correlation

with O4 was found that might cause this offset. Finding a correction that aims at the

origin of this problem and is independent from other Kd data sets is desirable.

This study presents the first direct satellite retrievals of Kd in the UV spectral range.

We view the TROPOMI Kd products as gap-filling, providing information in wavelength

regions not fully accessible with current and, to some extent, also planned ocean color

sensors. TROPOMI Kd products for scenes with Kd > 0.3 m−1 should be treated with

caution. Unfortunately, not all open ocean scenes can be covered with the presented

TROPOMI data set since higher Kd values are typically found for, e.g., spring blooms in

the high latitudes. However, valuable information can be drawn in large parts of the open

ocean, including regions where UV dose rates are especially high. The uncertainties of

TROPOMI Kd products need to be evaluated with larger in-situ data sets. This study

therefore also stresses the need for collecting high-quality in-situ radiometric measurements

in the UV spectral range. As a next step, a Kd time series over the TROPOMI recording

time period can be derived and analyzed on global scales to investigate temporal and spatial

stability of the products. Once thoroughly validated, TROPOMI Kd-UV data sets can be

used, e.g., for modeling of photochemical reaction rates of climatically important chemical

substances (Smyth, 2011) and for estimating UV dose rates in combination with mixed

layer depth data and UV irradiance above surface (Vasilkov et al., 2001; Smyth, 2011).

Based on this work, the presented approach can be adapted by adjusting the LUT to

directly derive UV radiation in the ocean similar to Dinter et al. (2015). Intercomparison

of the three spectral TROPOMI-derived Kd in the UV-VIS region can give insight on

CDOM origin and production of UV-protective pigments by phytoplankton and be used

as an indicator for UV-sensitive and optically interesting regions in the open ocean.
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coccolithophores in the Southern

Ocean

5.1 Introduction

The Southern Ocean (SO) is a major carbon sink. About one fourth of the anthropogenic

CO2 released to the atmosphere has been taken up by the global oceans (Friedlingstein

et al., 2019). Roughly 40% of this uptake occurred in the SO (Raven and Falkowski, 1999;

Sabine et al., 2004; Khatiwala et al., 2009; Takahashi et al., 2009; Frölicher et al., 2015).

CO2 uptake is majorly due to physical processes, the so-called solubility pump. Through

primary productivity of phytoplankton, carbon is bound organically. Vertical transport

of this organically bound carbon to the ocean interior is responsible for about 10% of the

oceanic uptake (Cox et al., 2000; Siegel et al., 2014). The efficiency of this biological carbon

pump depends on the phytoplankton community structure. Phytoplankton species can be

grouped according to their function in the biogeochemical cycles, so-called phytoplankton

functional types (PFT) (Reynolds et al., 2002; Le Quéré et al., 2005). Dominating PFT in

the SO are silicifying diatoms, dimethyl-sulfate producing Phaeocystis sp., and calcifying

coccolithophores. Shifts in community structure due to global warming will effect car-

bon export efficiency and biogeochemical cycles with global consequences (Deppeler and

Davidson, 2017).

The SO is considered to be dominated by microphytoplankton (20 - 200µm) with blooms

predominantly consisting of large diatoms and Phaeocystis sp. (Bathmann et al., 1997;

Boyd, 2002; Poulton et al., 2007a). The role of coccolithophores was recognized through the

observation of the Great Calcite Belt (GCB). The GCB is an area of elevated backscatter-

ing due to particulate inorganic carbon (PIC) evident in satellite observations. It stretches

from 30°S to 60°S circling the SO with highest PIC concentrations found near the Patag-

onian Shelf and the Atlantic sector of the SO and decreased concentrations in Indian

and Pacific sector (Balch et al., 2011). Coccolithophores produce calcite plates, coc-
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coliths, which are attached to their cells or released into the water column. The shed

coccoliths backscatter light efficiently such that waters with coccolithophore blooms are

high-reflecting (Balch et al., 1996). Ship measurements have confirmed the presence of

elevated surface reflectances due to PIC and associated coccolithophore presence (Balch

et al., 2011, 2016). The GCB stretches over several fronts with the Subtropical Front

marking the northern boundary. Coccolithophores are most abundant north of the Polar

Front (Mohan et al., 2008), where they coexist with small lightly-silicified diatoms (Smith

et al., 2017). Large heavily-silicified diatoms are generally more abundant south of the

Polar Front (Froneman et al., 1995).

Large diatoms are associated with large carbon export rates through vertical transport

to the deep ocean (Salter et al., 2007; Assmy et al., 2013). Calcification releases CO2

which results in elevated partial CO2 pressure (pCO2) known as the carbonate counter

pump. A decrease in coccolithophore concentrations can therefore lower pCO2 and in-

crease the uptake of atmospheric CO2 by the ocean (solubility pump), but potentially also

reduces the vertical carbon flux, because calcified shells generally sink quickly due to their

weight (Riebesell et al., 2009; Müller et al., 2015; Balch et al., 2016). Effects of global

warming in the GCB, including increased ocean acidification, warming sea surface tem-

peratures, decreased salinity, shallower mixed layer depth, and increased ultraviolet and

visible radiation, will change the phytoplankton community structure, but the effects on

biogeochemical cycles and feedback to climate change are complex and not fully under-

stood (Deppeler and Davidson, 2017). For a better understanding, long-term monitoring

of phytoplankton community structure in the SO is neccessary (IOCCG, 2015).

Satellite observations can provide long-term data sets with sufficient spatiotemporal reso-

lution required for biogeochemical and climate modeling (e.g., Sathyendranath et al., 2019;

IOCCG, 2020). Several approaches have been presented for determining phytoplankton

community structure from space (e.g, Mouw et al., 2017). These methods differ in defining

PFT. Some give information on size classes, while others group PFT with respect to taxa.

For long-term studies of the community structure in the GCB, PFT products grouped ac-

cording to taxa are necessary, ideally distinguishing between diatoms, coccolithophores and

Phaeocystis sp.. The latter two are both in the same class, haptophytes, and have similar

size and photosynthetic pigments (e.g, Nair et al., 2008), and therefore often not explicitly

distinguished in remote sensing approaches. Approaches that provide Chlorophyll-a con-

centration (Chla) of these PFT are the abundance-based approach by Hirata et al. (2011)

and the spectral-based approaches by Bracher et al. (2009) and Sadeghi et al. (2012a)

as well as Xi et al. (2020). Hirata et al. (2011) exploit empirical relationships between

in-situ marker pigments of PFT (using large High Performance Liquid Chromatography,
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HPLC, data sets) and total Chla to derive Chla of diatoms and haptophytes as well as

of five other PFT from the standard total Chla product obtained with Ocean Color (OC)

satellite sensors. Such empirical relationships perform robustly on global scales, but have

to be adjusted for regions as the SO (Soppa et al., 2014). It is unclear if the empirical

relationships hold in future ocean conditions (e.g., IOCCG, 2014). Xi et al. (2020) use also

an empirical approach which exploits the relationship between HPLC-measured marker

pigments and empirical orthogonal functions of OC satellite-measured reflectances. The

algorithm was further tuned by separation in sea surface temperature regimes (Xi et al.,

2021). Chla of six PFT are determined including haptophytes and diatoms.

The spectral approach by Bracher et al. (2009) and Sadeghi et al. (2012a) is less empir-

ical. Spectral differences in PFT absorption spectra caused by PFT-specific pigments are

identified in satellite-measured backscattered radiances using Differential Optical Absorp-

tion Spectroscopy (PhytoDOAS). Unlike other PFT approaches, which use atmospheri-

cally corrected OC satellite data as input, this method has been applied to hyperspectral

backscattered radiances measured at the top of atmosphere by SCIAMACHY (Scanning

Imaging Absorption Spectrometer for Atmospheric Chartography), a sensor designed for

atmospheric trace gas observations. Losa et al. (2017a) have established a 10 year time

period of diatom, coccolithophore, and cyanobacteria Chla from SCIAMACHY data (2002

- 2012; Bracher et al., 2017). The spatial resolution of SCIAMACHY is much lower (30

by 60 km2) than for OC sensors. Losa et al. (2017a) have overcome this limitation by

synergistically combining SCIAMACHY-derived PFT data with OC-PFT data using the

approach by Hirata et al. (2011), combining the good spatial resolution of OC sensors with

the high-resolved spectral information from SCIAMACHY.

Since SCIAMACHY measurements end in 2012 and longer observation periods are

needed for studying climate change impacts, other SCIAMACHY-like sensors should be ex-

ploited for retrieving PFT Chla. In this study, the PhytoDOAS method was adapted to the

Global Ozone Monitoring Experiment-2 (GOME-2) and its performance analyzed. This

sensor is part of an operational mission with a series of satellites carrying the GOME-2 in-

strument which were launched in 2006 (MetOp-A), 2012 (MetOp-B), and 2018 (MetOp-C).

GOME-2 data therefore cover a long time period and can bridge the time between SCIA-

MACHY and more recent and upcoming hyperspectral sensors such as TROPOMI onboard

Sentinel-5P, for perspectively creating a PFT data set spanning multiple decades. The

Ozone Monitoring Instrument (OMI) can also fulfill this bridging task, however, OMI data

quality has significantly decreased from 2008 due to a detector row anomaly (Schenkeveld

et al., 2017) and OMI covers a smaller spectral range (only until 500 nm) which may ham-

per coccolithophore retrievals for which optimal fit windows for SCIAMACHY reached up
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to 521 nm (Sadeghi et al., 2012a; Losa et al., 2017a).

Coccolithophore and diatom Chla are retrieved in the Atlantic and Indian sectors of the

SO. The study focuses on the austral summer (October to March) of the years 2010/11

and 2011/12. Within the GCB project, measurements were taken by two ship expeditions

within this time period and region to understand the phenomenon of the GCB. Several

studies have used this data for connecting satellite-derived PIC, in-situ measured PIC,

diatom and coccolithophore abundance and species composition, nutrients, carbon fluxes,

carbon chemistry, and physical variables (Balch et al., 2016; Smith et al., 2017).

Objectives of this study are to assess the performance of PFT retrievals from GOME-

2 and its suitability for long-term monitoring of diatoms and coccolithophores, the two

key biomineralizing PFT in the GCB as one of the most biogechemically important ocean

regions. Quality of the data sets is determined by comparison with other satellite products,

such as PIC, OC-PFT, and SCIAMACHY PFT data, and with in-situ data from the

2011/12 SO ship expeditions. The study area is focused on the Atlantic and Indian sector

of the SO between 30° and 60°S (65°W-120°E, 30°- 65°S) and is referred to it as the SOAI

region.

5.2 Methods

An overview of the algorithm for retrieving coccolithophore and diatom Chla from GOME-

2 measured backscattered radiances can be found in Figure 5.2.1. The scheme also con-

tains information on comparisons made with other satellite data products. All steps are

explained in detail in the following. Data sets will be introduced first, followed by the

PhytoDOAS retrieval. Next, a section is dedicated to the choice of optimal retrieval set-

tings with respect to wavelength ranges. Various corrections are applied to the PhytoDOAS

output in a post-processing step before PhytoDOAS outputs are converted to Chla. The

conversion method is introduced first to give a better overview before corrections are ex-

plained in detail.

5.2.1 Data sets

GOME-2 data

Backscattered radiances and daily solar irradiances were taken from GOME-2 (Munro

et al., 2016) hosted by MetOp-A satellite as satellite input data for PhytoDOAS method.

Level 1 version 5.3 data were used. During the time period investigated in this study,

spatial resolution was 40 km by 80 km for nadir ground pixels. The spatial resolution
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Figure 5.2.1: Schematic of the algorithm flow for deriving coccolithophore and diatom
chlorophyll-a concentrations from GOME-2 backscattered radiances, in-
cluding comparisons with other satellite products.
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Table 5.2.1: Satellite data sets used for comparison with GOME-2 PFT results. Under
product output, only variables from the data set used in this study are
listed. Abbreviations used for the data sets throughout the study are
listed under naming. The names SynSenPFT, SCIA-PD, and OC-PFT
are used in combination with coccolithophore, haptophyte, and diatom
Chla, respectively.

data set algorithm product output unit naming
SynSenPFT SynSenPFT coccolithophore, mg/m3 SynSenPFT

(Losa et al., 2017a) diatom Chla
SCIAMACHY PhytoDOAS v3.3 coccolithophore, mg/m3 SCIA-PD

(Losa et al., 2017a) diatom Chla
OC-CCI v2.0 OC-PFT v2 haptophyte, mg/m3 OC-PFT

(Losa et al., 2017a) diatom Chla
OC-CCI v3.1 blended total Chla mg/m3 OC-CCI

(Jackson et al., 2017) total Chla
OC-CCI v4.2 semi-analytic Kd Kd(490) m−1 OC-CCI Kd

(Lee et al., 2005a)
MODIS-Aqua PIC (Gordon et al., 2001; PIC mmol/m3 MODIS PIC

Balch et al., 2005)

was changed to 40 km by 40 km in 2013 at reduced coverage, because the instrument was

operated in tandem with GOME-2 on MetOp-B. GOME-2A reaches global coverage in 1.5

days. Channel 3 (397 to 604 nm) was used for the retrieval, which has a spectral resolution

of 0.51 nm. The instrument passes the equator at 9:30 am local time in descending node.

Clouds were filtered based on the FRESCO+ product (Wang et al., 2008b). Only satellite

pixels with solar zenith angle (SZA) < 70°were considered.

Satellite data sets for comparison

Several satellite data sets were used for comparison with GOME-2-derived PFT products.

All data sets were regridded to 0.5° to match the chosen grid for GOME-2 PFT data.

SynSenPFT data, provided as daily files on 4 km sinusoidal grid, were downloaded from

Pangaea (Losa et al., 2017b). Files contain concentrations for diatoms, coccolithophores,

and cyanobacteria in mg/m3. The SynSenPFT product synergistically combines SCIA-

MACHY PhytoDOAS-PFT data version 3.3, also available on Pangaea as monthly grid-

ded data (0.5°) (Bracher et al., 2017), and OC-PFT data calculated from OC-CCI to-

tal Chla product (version 2) based on (Hirata et al., 2011; Soppa et al., 2014). Both

SynSenPFT input data products, SCIAMACHY PhytoDOAS-PFT and OC-CCI OC-PFT,

were also used as single products in this study. Diatom concentrations are available for

both, SCIAMACHY-PFT and OC-PFT data sets, whereas coccolithophore concentrations
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are available from the SCIAMACHY-PFT and haptophytes concentrations from the OC-

PFT data set.

PIC from MODIS-Aqua was downloaded as mapped daily data (4 km resolution) from

https://oceandata.sci.gsfc.nasa.gov/. The algorithm for deriving PIC is a hybrid of a two

band approach (Balch et al., 2005) and a three-band approach (Gordon et al., 2001). The

two-band approach relates the total backscattering coefficient of calcite at 546 nm to the

normalized water-leaving radiances at a blue and green wavelength via a LUT established

from in-situ measurements. PIC is then calculated by dividing by the calcite-specific

backscattering coefficient (1.628 m2mol−1). The three-band approach is used when the

two-band approach fails. It is usually more robust over high-reflecting waters and uses top-

of-atmosphere (TOA) radiances at three wavelengths from 670 to 865 nm as input. TOA

radiances are converted to reflectances and with an iterative procedure, contributions to

the TOA reflectances by atmosphere-ocean system are estimated and the backscattering

coefficient of calcite at 546 nm is derived. Conversion to PIC is then the same as in the

two-band approach.

Total Chla was taken from the release version 3.1 (Sathyendranath et al., 2018) of

OC-CCI data set (Sathyendranath et al., 2019) of the European Space Agency ESA

(http://www.esa-oceancolour-cci.org/). Daily data files with 4 km resolution were taken.

Total Chla is retrieved using a blended combination of several empirical band ratio algo-

rithms (Jackson et al., 2017).

For correction of vibrational Raman scattering, the diffuse attenuation coefficient at

490 nm was used from OC-CCI version 4.2 (Sathyendranath et al., 2020). Daily data on a

sinusoidal grid with 4 km resolution were used.

Different versions of OC-CCI products were used in this study mainly for historical

reasons. At the time of release of the SynSenPFT product, only OC-CCI version 2 data

were available. The total Chla product was mainly used for comparison with the here

presented GOME-2 retrieval outputs and therefore a newer version of the OC-CCI data

set was used. Compared to version 2, version 3.1 has increased data coverage and total

Chla is derived with a superior blending approach. The newer version was therefore chosen.

The correction of the vibrational Raman scattering was implemented at a later stage with

the newest OC-CCI version being available at the time. Comparisons between OC-CCI

total Chla and the SynSenPFT product are only made qualitively. Futhermore, OC-

CCI total Chla is also only used as a rough estimator for checking the reasonability of

derived GOME-2 coccolithophore Chla and their phenology as well as derived GOME-

2 diatom Chla and their spatial distribution. Differences between OC-CCI versions are

small compared with the differences found in intercomparison of different data sets in this
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study. Usage of different versions should therefore not influence any conclusions. Details

on different OC-CCI versions and their intercomparison can be found in (Krasemann et al.,

2017; Sathyendranath et al., 2019).

Time series processing

Time series were computed from GOME-2, PIC and total Chla satellite products. 7-day

running composites were calculated for six 4° by 4° regions from the 0.5° gridded satellite

products. For each day, all valid grid points within a given region were collected from

the given date and from the three days prior and after this date. Six regions across the

SOAI region were selected: Patagonian Shelf (62-58°W,50-46°S), North of South Georgia

(42-38°W,52-48°S), Southwest of South Africa (6-10°E,42-38°S), North of Crozet Islands

(46-50°E,46-42°S), South of Kerguelen Islands (71-75°E,54-50°S), Southwest of Western

Australia (110-114°E,46-42°S).

In-situ data sets

In-situ data were taken from two research cruises in the SO (principal investigator: W. M.

Balch, Bigelow Laboratory for Ocean Sciences, https://www.bco-dmo.org/dataset/560357).

Data in the Atlantic sector of the SO were sampled in the time period 17 January to 17

February in 2011 with R/V Melville. Data in the Indian sector were collected in the time

period 18 February to 20 March 2012 with R/V Roger Revelle. Samples were collected with

CTD casts or taken from the ships non-contaminated seawater system. From this data set,

coccolithophore cell counts were taken which were determined with optical microscopy as

the number of birefringent plates and aggregates as well as chlorophyll-a determined via

fluorometry (Balch et al., 2016). Only surface samples were considered. Samples at the

minimum depth for each station were taken which ranged between 1.6 and 25.5 m.

5.2.2 PhytoDOAS

The Differential Optical Absorption Spectroscopy method was used for retrieving PFT

(PhytoDOAS, Bracher et al., 2009; Sadeghi et al., 2012a) from backscattered radiances of

the GOME-2 sensor. The overall fitting procedure followed Bracher et al. (2009). In the

blue-green spectral range, PFT specific absorption spectra to the satellite-measured optical

depth were fitted together with cross sections accounting for clear water and instrumental

spectral features as well as relevant atmospheric absorption cross sections. Broadband

features caused, e.g., by scattering or CDOM absorption were removed by additionally

fitting a low order polynomial.
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The clear water cross sections were determined in a pre-fit, in which only atmospheric

absorbers were fitted to data from satellite scenes over a region in the South Pacific Gyre

(110°to 130°E, 25°to 29°S), where Chla is very low (≈0.02, e.g., Morel et al., 2007c).

Residuals of these fits were analyzed in a principal component analysis (PCA). The first

and second eigenvectors (EV) from the PCA combinedly describe liquid water absorption,

vibrational Raman scattering (VRS), and spectral features caused by instrumentation.

Figure 5.2.2 shows the first two EV as function of wavelength in the spectral range 425 to

495 nm. As comparison, a simulated clear water spectrum is shown that combines liquid

water absorption and VRS. It was obtained from a residual of a DOAS fit on simulated

backscattered radiances for an ocean scene without Chla (see section 5.2.3). Spectral

features of this clear water spectrum can be recognized in the first and second eigenvectors.

In the main fit, the PFT fit factors were targeted. Following specific fit settings were

chosen for both PFT:

� atmospheric absorption spectra: O3, NO2, O4, H2O (as in section 3.2.3),

� two eigenvectors from PCA of residuals in South Pacific Gyre region,

� a PFT specific absorption spectrum,

� a second-degree polynomial.

Coccolithophore and diatom fit factors were obtained in two separate fits, only fitting

one PFT cross section at a time, a so-called single PFT-fit. Coccolithophores were fitted

from 430 to 520 nm using an absorption cross section obtained from an Emiliania huxleyi

culture as in Sadeghi et al. (2012a). Emiliania huxleyi dominates global coccolithophore

abundance (Paasche, 2001). Diatoms were fitted from 425 to 495 nm using a specific

absorption sepctrum obtained in-situ during the EIFEX Atlantic Southern Ocean cruise

as used in Bracher et al. (2009). Figure 5.2.3 shows the two spetra in comparison.

Choice of PFT fit window

Above described PhytoDOAS settings were based on fit window analyses performed be-

forehand. The GOME-2 visible channel 3 used for the PFT DOAS fits extends from 397

to 604 nm. It provides a larger variety of possible fit window settings for the PFT fits

than possible for the SCIAMACHY sensor. SCIAMACHY PFT fit windows were limited

to the spectral region of 424 to 525 nm (Bracher et al., 2009; Sadeghi et al., 2012a), only

using a single spectral cluster (cluster 15 of channel 3) due to varying integration times

of different clusters (Bovensmann et al., 1999). Sadeghi et al. (2012a) have introduced
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Figure 5.2.2: Empirical cross sections as function of wavelength. First (blue line) and
second (red line) EV of PCA analysis of residuals over clear waters of
the South Pacific Gyre are shown in comparison to a residual (black
line) from a fit on simulated data that combines liquid water absorption
and VRS.

(a) (b)

Figure 5.2.3: (a) Coccolithophore and diatom specific absorption spectra. (b) Differ-
ential PFT absorption spectra for coccolithophores and diatoms calcu-
lated by subtracting a fitted quadratic function to the specific absorption
spectra in the wavelength ranges of the final fit window settings.
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(a) (b)

Figure 5.2.4: (a) Coccolithophore fit factors as function of Chla for a fix start wave-
length of 430 nm and end wavelengths ranging between 470 and 530 nm.
(b) Diatom fit factors as function of Chla for a fix start wavelength of
425 nm and end wavelengths ranging between 475 and 525 nm. PFT fit
factors were retrieved from simulated TOA radiances using PhytoDOAS
single-target fits.

the multi-target fit, i.e., the simultaneous fitting of several PFT absorption spectra in

the PhytoDOAS fit, for retrieving coccolithophores as opposed to the single-target fit in

Bracher et al. (2009), targeting diatoms and cyanobacteria separately. They determined

optimal fit windows for the SCIAMACHY sensor by analyzing spectral similarities between

PFT absorption spectra with the help of a fourth-derivative and orthogonality analysis of

specific absorption spectra of different PFT with the focus on coccolithophores and di-

atoms. The optimal result was a triple fit (diatoms, coccolithophores, dinoflagellates) in

the wavelength window 429 to 521 nm. Derivative analyses are a common tool for identi-

fying spectral regions showing high variability/uniqueness in spectra that can be used for

identifying PFT (Lee et al., 2007; Isada et al., 2015; Wolanin et al., 2016). Wolanin et al.

(2016) investigated optimal wavelength regions for identifying coccolithophores, diatoms,

and cyanobacteria. Several wavelength bands in the 400 to 520 nm region were identified

as interesting for spectrally distinguishing coccolithophores and diatoms. They point out

that the optimal wavelength regions for successfully differentiating certain PFT depends

on the used method.

It was explored, if the spectral regions below 424 and above 525 nm are suitable for PFT

retrievals using PhytoDOAS. Fit window analyses were done on simulated and satellite-

measured backscattered radiances. Not only the correlation between certain PFT limits

their retrieval, but also the correlation of absorption spectra of atmospheric gases or the
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EV used in the PFT fit containing information on VRS and liquid water absorption. By

performing single-target PFT fits on simulated and backscattered spectra, this correlation

of PFT spectra with non-PFT spectra was investigated.

The fit window analysis with simulated backscattered radiances was performed using

RTM settings as described below in section 5.2.3 and DOAS fit settings as described

above, except that water vapor is not fitted (since it is not contained in the simulated

atmosphere) and a theoretical clear water spectrum is fitted that combines VRS and liquid

water absorption instead of empirically determined EV (see Figure 5.2.2). The fit window

was varied with start wavelengths between 420 and 470 nm and end wavelengths between

470 and 570 nm with steps of 5 nm, restricting combinations to fit window lengths ≤
100 nm.

Selected fit windows should fulfill two criteria. The relationship between PFT fit factors

and PFT Chla should be monotonously increasing in the low Chla range. PFT fit factors

will reach a maximum value for a medium PFT Chla. For larger Chla values, the PFT fit

factors decrease because the signal from the ocean reaching the satellite drops. In combi-

nation with the VRS fit factors used as proxy for light penetration depth, the PFT/VRS

fit factor ratio monotonously increases over a larger Chla range (see also section 5.2.3 for

discussion). As a second criterion, PFT fit factors should be close to zero for ocean scenes

without Chla. Non-zero fit factors hint at correlations between cross sections in the DOAS

fit that should be avoided.

Almost all tested fit windows fulfill the two criteria. Examples are shown in Figure 5.2.4.

Some fit windows with end wavelengths close to the edges of the tested range (smaller

500 nm and larger 540 nm) show unambiguous relationships between PFT fit factors and

PFT Chla and/or large non-zero values for scenes without Chla. Results for diatoms

and coccolithophores are similar. Small differences appear in shape of PFT fit factor

to Chla relationship and larger differences in absolute PFT fit factor values. Since fit

windows ending at wavelengths larger than 540 nm do not seem ideal, the fit window

analysis on satellite-measured data was not carried out in this wavelength range. Fit

windows ending below 500 nm, however, were tested also on satellite-measured data, since

optimal fit windows in this wavelength range were found for diatom fits on SCIAMACHY-

measured backscattered radiances before (Losa et al., 2017a).

The degree of the polynomial used in the DOAS fit also influences the choice of optimal

fit window. Since PFT absorption spectra are rather broadband, a low polynomial degree

should be chosen. Additionally to the second degree polynomial used in the final settings,

a first degree polynomial was tested. The fit window analysis was repeated and showed

that an unambiguous relationship between PFT fit factors and PFT Chla can be found
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in significantly fewer fit windows (for both PFT). The fit window analysis on satellite-

measured backscattered radiances was therefore only performed using a second-degree

polynomial.

The fit window analysis on GOME-2-measured backscattered radiances was conducted in

the wavelength range between 400 and 540 nm. Single diatom and coccolithophore DOAS

fits with settings described above were tested as well as dual fits, i.e., fitting the diatom

and coccolithophore spectrum simultaneously. Two blocks of wavelength combinations

were tested. One covered the lower spectral range, start wavelengths ranging between 400

and 430 nm and end wavelengths between 485 nm and 520 nm, which included fit windows

used for SCIAMACHY retrievals, but also the lower spectral range not tested with the

SCIAMACHY sensor. The second block tested fit windows in the higher spectral range

which are not covered by SCIAMACHY’s cluster 15. Start wavelengths range between 430

and 460 nm and end wavelengths between 530 and 540 nm. Start and end wavelengths were

varied in steps of 5 nm. Only combinations resulting in fit window lengths ≤ 100 nm were

tested, because long fit windows are generally less suitable for DOAS (see section 2.11).

Fit windows were tested using the global GOME-2 data set for January 2011.

As for the analysis on simulated radiances, fit factors close to zero in low Chla regions

indicate low correlation of cross sections within the PhytoDOAS fit and therefore indicate

promising fit window candidates. Figure 5.2.5 shows the median fit factor of those 10%

of all ground pixels with the lowest fit factors in the global monthly data set. Results are

shown for all fit window combinations and different fit settings, i.e., single vs. dual fit.

Considering coccolithophore single fits first, fit windows from the block at the low spectral

range yield fit factors becoming more negative with decreasing start and end wavelengths.

Promising fit windows with fit factors close to zero are 430 to 510 nm and 430 to 520 nm.

For the block at higher spectral range, promising combinations are 445 nm with 530 or

535 nm. Fit windows with start wavelength smaller than 445 nm have more negative fit

factors and with start wavelength larger than 445 nm tend to yield fit factors slightly larger

zero. For the coccolithophore dual fit, trends are generally similar, but for all combinations,

the fit factors are shifted to more negative values resulting in an overall lower median value

for the lowest 10%. Consequently, a fit window yielding a median close to zero is found at

the high end of the spectral range, 460 to 530 nm.

Among the four promising fit windows for a coccolithophore single fit, the similarity of

the fit results was tested by comparing the gridded fit factor maps (0.5°) on a daily basis

against each other. Taking the fit window 430 to 520 nm as a reference, the correlation with

results from the other three fit windows is larger than 0.97 and intercepts range between

-0.2 and -0.32 mg/m2. Since no fundamental differences between the fit window candidates
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were found, 430 to 520 nm was chosen as final fit window, because it is most similar to the

coccolithophore fit window settings used for SCIAMACHY (427.5 to 521 nm) (Losa et al.,

2017a). Losa et al. (2017a) used a dual fit, which were discarded for GOME-2, because

correlation between the single and the dual fit for the 430 to 520 nm fit window was 0.9 in

the SOAI region, but the dual fit introduced a negative offset to the fit factors, intercept

of -2.26 mg/m2, slope of 1.03.

Diatom fit factors generally do not show as large non-zero fit factors as observed for the

coccolithophore fits (in agreement with analysis on simulated data, Figure 5.2.4). Several

fit window options are revealed. Fit windows from the block at the longer wavelength range

are generally less suitable than those from the block at the shorter wavelength range. From

the diatom single fit, it can be concluded that fit windows with start wavelength shorter

415 nm are not ideal and most fit windows with end wavelengths larger 505 nm. For the

most suitable fit windows, start wavelengths between 415 and 430 nm and end wavelengths

between 490 and 505 nm, the correlations of daily gridded diatom fit factors from the single

fit and from the dual fit are high, larger 0.9. Since prior fit windows chosen for SCIA-

MACHY PFT fits lie within the optimal selection of fit windows for diatoms, a fit window

was finally chosen that is similar to the diatom fit window in Losa et al. (2017a) for better

direct comparison with retrieval performance of PhytoDOAS on SCIAMACHY-measured

data. As final settings, a diatom single fit between 425 nm to 495 nm was chosen. Global

diatom fit factor results are similar to diatom dual fit results in the longer wavelength

range, 430 to 520 nm. The correlation is 0.87, slope 0.83, and intercept 0.38 mg/m2. As for

SCIAMACHY, the short fit window used in Bracher et al. (2009) and Losa et al. (2017a)

and the long fit window used in Sadeghi et al. (2012a) are both possible for diatom fits on

GOME-2-measured data.

Concluding the search for optimal PhytoDOAS fit windows, both on simulated and on

satellite-measured data, we found that the wavelength range covered by SCIAMACHY’s

spectral cluster 15 already contained the optimal fit windows for fitting coccolithophores

and diatoms. The larger spectral range that GOME-2 offers did not help in discriminating

coccolithophores and diatoms spectrally within the PhytoDOAS method. In accordance

with Wolanin et al. (2016), it was found that shorter fit windows at the shorter wavelength

range are more beneficial for fitting diatoms and the longer fit windows at the longer

wavelength range are more suitable for fitting coccolithophores. As stated in Wolanin

et al. (2016), fit windows with longer wavelengths than ∼520 nm might be ideal for fitting

cyanobacteria, which were not investigated in this study, but might be potentially well

retrieved by exploiting the larger spectral range that GOME-2 offers.
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(a) (b)

(c) (d)

Figure 5.2.5: Median of lowest 10% of global PFT fit factors for January 2011 for
different fit settings: (a) coccolithophore single fit, (b) coccolithophore
dual fit, (c) diatom single fit, (d) diatom dual fit. Grey shaded area
mark the spectral regions which are explorable with GOME-2’s visible
channel 3, but not with SCIAMACHY’s spectral cluster 15.
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5.2.3 Conversion to PFT Chla

PFT fit factors obtained from the PhytoDOAS fit are in units of mg/m2 and need to be

converted to PFT Chla by estimating the oceanic optical depth from which the satellite

signal originates. As discussed in Dinter et al. (2015) and chapter 3, VRS can be used

as a proxy for light penetration depth. For each satellite scene, PFT DOAS fits and a

VRS DOAS fit were performed separately. Following Losa et al. (2017a), the ratio of PFT

to VRS fit factors was calculated for scaling the PFT fit factor to the light penetration

depth. This ratio was then converted using a LUT relating PFT/VRS fit factor ratio to

PFT Chla as function of SZA.

Building of LUT

A relationship between PFT/VRS fit factor ratio and PFT Chla is required. First, the

relationship between PFT fit factor and PFT Chla as well as between VRS fit factor and

Chla were determined separately and then, in a second step, the two were combined by

taking the PFT/VRS fit factor ratio for a given Chla. The relationship between VRS

fit factors and Chla as function of SZA was determined for average open ocean scenarios

using a standard phytoplankton absorption spectrum as in section 3.2.5. The relationship

between PFT fit factor and PFT Chla was obtained from RTM simulations as described

in the following.

The RTM SCIATRAN was used for simulating TOA radiances for the open ocean with

water containing different PFT with various Chla ranging between 0 and 30 mg/m3. Aver-

age open ocean scenarios were modeled as in chapters 3 and 4 with respect to, e.g., surface

roughness, however, few changes were made:

� phytoplankton absorption coefficient aph: PFT specific absorption spectra a∗ph were

used to calculate the phytoplankton absorption coefficient at different Chla C, aph =

a∗ph · C.

� liquid water absorption coefficient aw: the spectrum by Pope and Fry (1997) was

used instead of the more recent spectrum by Mason et al. (2016), because the latter

one lead to ambiguous relationships between PFT fit factor and Chla for low Chla

(more pronounced than in Figure 5.2.4 and for almost all fit windows), which was

not evident in DOAS fits on satellite-measured backscattered radiances.

� CDOM absorption coefficient aCDOM: the parameterization was not changed with

respect to chapters 3 and 4, however, it is listed here explicitly, because it was used in

combination with a different parameterization for phytoplankton absorption. aCDOM
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(a) (b)

Figure 5.2.6: Look-up tables for converting PFT/VRS fit factor ratios to PFT
chlorophyll-a concentration as function of SZA for (a) coccolithophores
and (b) diatoms. Only a selection of simulated SZA is shown. Dotted
curves show cut-off areas due to ambiguity of relationship between ratio
and chlorophyll-a concentration.

was parameterized as in Morel and Maritorena (2001) using aCDOM = 0.2(aw(λ0) +

0.06C0.65) exp(−S(λ − λ0)) with S = 0.014 nm−1 and reference wavelength λ0 =

440 nm.

� particle scattering: was described by a Fournier-Forand scattering function as intro-

duced in sections 2.9.6 and 3.2.5, however, instead of using the scattering coefficient

as parameterized in Gordon and Morel (1983), the spectral variation of the atten-

uation coefficient c was parameterized as described in Voss (1992) as a power law

c = 0.39C0.57(490/λ)0.5, since it is more recent. The exact choice of the parameteri-

zation does not have a significant influence on the resulting LUT.

As in chapter 4, a realistic atmosphere was modeled containing aerosols and all relevant

trace gases except water vapor. Resulting LUT are displayed in Figure 5.2.6 for a selection

of simulated SZA. The LUT were cut off at high Chla (around 1 mg/m3) when relationship

between fit factor ratio and Chla become ambiguous. For the diatom LUT, the ratio also

decreases slightly at the lower end of the Chla range, which was additionally cut off.

The LUT has to be used cautiously for ocean scenes with Chla larger 1 mg/m3. At this

Chla value, the overall attenuation of the ocean is so high that the light path from which

the signal originates reaches a critical value. The signal that reaches the satellite sensor

drops unproportionally to the overall higher absorption in the ocean and lower PFT fit

factors result. The VRS fit factor, which monotonously decreases with increasing Chla,
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can not always compensate this behavior fully when the ratio of PFT to VRS fit factor

is taken as the simulations show (also already observed for LUT built for SCIAMACHY

PFT retrieval with slightly different RTM parameterization Soppa et al., 2016b). Since the

overall attenuation determines the signal at the satellite and not just the contribution from

a single PFT, absolute PFT Chla retrieved for ocean scenes with a total Chla value above

1 mg/m3 should be double checked for consistency. In the Southern Ocean, total Chla

above 1 mg/m3 are found on the Patagonian Shelf, especially in the months of October

and November, and in the vicinity of islands. No inconsistent behavior was observed that

indicates that the results presented in the next section are majorly influenced by this effect.

5.2.4 Viewing zenith angle correction

Clouds shield the radiance signal from the ocean. DOAS retrievals of completely cloud-

covered scenes are expected to yield fit factors of zero for oceanic reference spectra. Cloud-

covered scenes were analyzed on a monthly basis. Non-zero fit factors were found and a

distinct VZA dependence was observed. Figure 5.2.7 (a) shows coccolithophore, (c) diatom,

and (d) VRS fit factors as function of VZA for cloudy scenes with cloud fraction larger 0.95

in the SOAI region for the month of December 2011. Non-zero fit factors are observed for all

three variables. While fit factors are almost constant for positive VZA, linearly increasing

trends with negative VZA are found for coccolithophore and VRS fit factors and a linearly

decreasing trend for diatom fit factors. Figure 5.2.7 (b) shows coccolithophore fit factors

from cloud-free scenes (cloud fraction < 0.05) in a region of the North Pacific Gyre (150°-

180°W, 15°-25°N), where coccolithophore fit factors are also expected to be close to zero. A

similar trend is observed, i.e., a linear increase of fit factors with negative VZA and nearly

constant fit factors for positive VZA. The VZA effect is not only present over clouds,

i.e., not caused by clouds, but rather appears as a global phenomenon. Negative VZA

correspond to relative azimuth angles smaller 90°, corresponding to a viewing direction

tilting towards the sun. Such a distinct VZA dependence was not found for VRS fit

factors over cloudy scenes of other hyperspectral sensors (checked for TROPOMI). The

observation is therefore instrument-specific and not a general physical effect inherent to

the PhytoDOAS method. The origin of this effect is therefore difficult to examine and we

have no explanation for it yet.

It was decided to correct the observed effect. A VZA-depending offset correction was

determined that forces fit factors over clouds to zero. On a monthly basis, the VZA

dependence was determined in the SOAI region over cloudy pixels (cloud fraction > 0.95).

For each of the three oceanic variables, linear functions were determined describing the
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(a) (b)

(c) (d)

Figure 5.2.7: Coccolithophore fit factors as function of VZA (a) in the SOAI re-
gion over cloud-covered scenes (cloud fraction > 0.95) and (b) in the
North Pacific Gyre (150°-180°W, 15°-25°N) over cloud-free scenes (cloud
fraction < 0.05). (c) Diatom and (d) VRS fit factors in SOAI region
over cloud-covered scenes. Linear functions used for correction of VZA-
dependence are shown as red lines. Black lines show mean fit factor
value for positive VZA.
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VZA-dependence for positive and negative VZA separately (see Figure 5.2.7). Although

the VZA dependence for positive VZA is almost constant, a linear description enabled a

smoother transition of the correcting offsets at VZA = 0°. Slopes varied slightly over time.

For coccolithophores, a mean monthly slope of 0.02±0.01 and intercept of 1.2±0.5 mg/m2

was found for negative VZA and a slope of 0.006± 0.001 and intercept of 1.4± 0.4 mg/m2

for positive VZA for the investigated 12 months. The standard deviation is given as

uncertainty. For diatoms, mean monthly slopes and intercept were −0.015 ± 0.004 and

1.3 ± 0.2 mg/m2 for negative VZA and 0.004 ± 0.002 and 1.4 ± 0.2 mg/m2 for positive

VZA, respectively, and for VRS, 0.007 ± 0.002 and −0.006 ± 0.13 for negative VZA and

(−0.6± 2) · 10−4 and −0.08± 0.11 for positive VZA.

5.2.5 Offset correction

Since temporal biases in VRS fit factors were observed for GOME-2 (section 3.3.5), the

quality of the VRS fit factors was checked by converting them into diffuse attenuation

coefficients using a LUT as in chapter 3. The LUT was built from simulations that were

also used for building the LUTs for converting PFT fit factors to PFT Chla. Resulting

Kd were compared to wavelength-converted Kd(490) from the OC-CCI data set (version

4.2.). The same wavelength conversion as in chapter 3 was used. Much higher GOME-2

Kd values than expected from the OC-CCI data set were obtained. An offset correction

was applied to the VRS fit factors on a monthly basis similar to the correction made

for the TROPOMI Kd product in the blue spectral range (section 4.2.3). The optimal

additive offset for each month was determined by the value that yielded a slope close to

one (0.95 < slope < 1.05) when GOME-2 Kd was compared to OC-CCI Kd on a daily basis

using 0.5° gridded data of the SOAI region as input. The comparison was limited to Kd <

0.15 m−1, for which agreement between GOME-2 and OC-CCI Kd is significantly higher

than for larger Kd values (section 3.4.3). The slope becomes less meaningful for larger Kd

values, because data sets diverge. Averaged over the investigated 12 months, the mean

Pearson correlation coefficient between GOME-2 and OC-CCI Kd for this reduced data set

is 0.51 ± 0.08 in the SOAI region. Correcting the VRS fit factors with an additive offset

results in slopes close to one, however, the GOME-2 Kd values are generally higher than

those from OC-CCI. A mean intercept of 0.021 ± 0.006 m−1 is found for the 12 months.

Optimal offsets vary from month to month and between the years, ranging between 0.15

and 0.27 with a mean additive offset of 0.21± 0.04.

It is evident from the previous results in chapters 3 and 4 that the uncertainty in the VRS

fit factor increases with increasing light attenuation. For waters with Kd > 0.15 m−1, large
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uncertainties were found for the VRS-derived Kd. The uncertainty of Kd is influenced by

the uncertainty in VRS fit factor and the uncertainty associated with the LUT conversion.

Since their influence is challenging to separate, no filtering criterion is used to quality

control VRS fit factors. The uncertainty in VRS fit factors has to be kept in mind.

However, their influence on the conversion to PFT Chla might be less crucial than in the

approach to derive Kd, since ratios of fit factors are generally more robust.

5.2.6 Cloud correction

Clouds shield the radiance signal below them, reducing the retrieved DOAS fit factors

over partly cloudy scenes (Koelemeijer and Stammes, 1999). The Southern Ocean is a

region of high cloud coverage. Due to the large pixel size of GOME-2 measurements,

only low data coverage is achieved when applying a strict cloud filter (cloud fraction <

0.05). To overcome this major loss in information, a cloud correction was applied to keep

partly cloudy pixels in the data set. The correction scheme follows a cloud correction

introduced by Velders et al. (2001) and Richter and Burrows (2002) which was used for

correcting DOAS-retrieved fit factors of tropospheric NO2. The signal of surface-near NO2

was assumed to be completely shielded by clouds, which compares to the situation found

for oceanic signals.

The cloud radiance fraction for a satellite scene was estimated with the help of the RTM

SCIATRAN. Two different scenarios were simulated: a completely cloud covered scene

represented by a surface height of 1 km and a surface albedo of 0.8 (same cloud albedo as

assumed in FRESCO+ product) and a completely cloud-free scene with a surface albedo

of 0.1 at a height of 0 km. The average ocean albedo is estimated to be lower (Li et al.,

2018), however, results are rather insensitive to exact ocean albedo settings (0.07 was also

tested). For both scenarios, different combinations of SZA, VZA, and relative azimuth

were simulated. SZA range from 10° to 70° in steps of 5°, VZA from 0° to 60° in steps of

5°, and relative azimuth from 0° to 180° in steps of 10°. The model gave an output for

TOA radiance as a function of SZA, VZA, and relative azimuth resulting in a LUT for

a cloud-free and a completely cloud-covered case. The theoretical radiance for a satellite

scene in case of a completely cloud-covered pixel Lcloud and in case of a cloud-free pixel

Locean were obtained via interpolation using as input the SZA, VZA, and relative azimuth

information of each satellite ground pixel. The cloud radiance fraction was then calculated

as

fcr =
fLcloud

fLcloud + (1− f)Locean

(5.2.1)
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where f is the cloud fraction taken from the FRESCO+ cloud product (Wang et al.,

2008b).

The fit factor was corrected using the cloud radiance fraction:

Scorr = S
1

1− fcr
. (5.2.2)

Only ground pixels with fcr smaller than 0.5 were corrected, so that pixels were kept in the

data set only if more than half of the radiance information at the TOA originates from the

ocean. This threshold corresponds to a cloud fraction of about 0.16 depending on viewing

geometry.

5.3 Results

First, benefits of the applied cloud correction are presented. Next, GOME-2-derived PFT

results are compared to other satellite products. From this comparison, the diatom con-

centrations derived from GOME-2 were found to show insufficient data quality. The study

proceeds only with investigations on the coccolithophore concentrations. These are first

compared to in-situ data. A time series analysis follows, where the phenology is investi-

gated. In this study the term “bloom”does not follow any strict definition of a phytoplank-

ton bloom with respect to Chla levels, but rather refers to “above average concentrations” in

a certain region.

5.3.1 Benefits of cloud correction

For illustrating the effect of the cloud correction, different cloud filter and cloud correction

scenarios for VZA-corrected coccolithophore fit factors in the SOAI region are shown in

Figure 5.3.1 for the month of February 2011. Figure 5.3.1 (A) illustrates the coverage and

magnitude of fit factors when only almost cloud-free scenes are selected, cloud fraction <

0.05. Besides in the very North and close to Patagonia, data coverage is sparse. Including

also scenes with higher cloud fractions (up to 0.16), increases the coverage, but reduces

the mean fit factor as seen in Figure 5.3.1 (B). Figure 5.3.1 (C) shows the coccolithophore

fit factors after cloud correction which permits correction of partly cloudy scenes with

cloud fractions up to ∼0.16. The selection of ground pixels shown in (B) and (C) is

similar, however, mean coccolithophore fit factors are higher after cloud correction. The

cloud-corrected fit factor magnitudes are in line with the magnitudes observed in the cloud-

free case (A). The applied cloud correction scheme successfully corrects the influence of
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Figure 5.3.1: VZA-corrected coccolithophore fit factors in SOAI region gridded to
0.5° for February 2011. (A) A strict filter with cloud fraction < 0.05 was
used to select only cloud-free scenes. (B) Partially clouded scenes are in-
cluded with cloud fractions < 0.16. (C) VZA-corrected coccolithophore
fit factors after cloud correction which roughly permits correction of
ground pixels with cloud fractions < 0.16.
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clouds. The coverage is significantly increased. Averaged over the investigated 12 months,

the monthly coverage increases from a fraction of 0.52±0.04 for the cloud-free case (cloud

fraction < 0.05) to 0.76±0.04 when cloud correction is applied. The mean daily coverage for

the 12 months increases from 0.04±0.01 to 0.09±0.02. All further analysis are performed

on cloud corrected data.

5.3.2 Satellite product comparisons

Coccolithophores

Different satellite products were intercompared in the SOAI region. Figures 5.3.2 and

5.3.3 show the GOME-2 coccolithophore Chla in comparison to PIC from MODIS-Aqua,

SynSenPFT coccolithophore Chla and its two input data sets, the SCIA-PD coccolithophore

Chla and OC-PFT haptophytes Chla in the time periods 17 Jan to 17 Feb 2011 and 18 Feb

to 20 Mar 2012, respectively. All data products were gridded to 0.5°. Naturally, the worse

spatial resolution and coverage of the hyperspectral compared to the multispectral sensors

becomes apparent immediately. Features in the SCIA-PD product appear sharper than

those in the GOME-2 data caused by slightly better spatial resolution, but the product

seems significantly patchier, i.e. high and low coccolithophore concentrations alternate

on small scales. Generally, patterns appear similar, but the correlation between the hy-

perspectral sensors, considering the monthly gridded averages, is rather low with Pearson

correlation coefficient of r = 0.38 for 2011 and 0.32 for 2012 (see also Table 5.3.2 for

region-specific correlation coefficients). All correlations presented are calculated based on

gridded monthly means. A comparison on a monthly basis enhances the representation

error between different sensors which has to be kept in mind. Daily comparisons, however,

yielded results only covering very few areas of high data coverage within the SOAI region

and were therefore regarded as even less representative.

The magnitude of coccolithophore Chla is similar in all four PFT satellite products, how-

ever, the SCIA-PD data set reaches a bit higher values than the others. The hyperspectral

sensors (and consequently also SynSenPFT product) detect higher coccolithophore Chla

than the OC-PFT product in the open ocean areas of the SOAI regions far away from land

masses. For the hyperspectral sensors, the highest values in these open ocean areas are of

similar magnitude as the high values on the Patagonian Shelf. OC-PFT and the MODIS

PIC product show a larger contrast between Patagonian Shelf and open ocean areas, with

highest values clearly found on the Patagonian Shelf.

Since coccolithophores are calcifying organisms, PIC can be considered as a proxy for

coccolithophore presence (Balch et al., 2011, 2016). The following focuses on intercom-

136



5 Potential of GOME-2 for monitoring SO coccolithophores 5.3 Results

Figure 5.3.2: GOME-2-retrieved coccolithophore Chla in comparison to MODIS PIC,
SynSenPFT and SCIA-PD coccolithophore Chla, and OC-PFT hapto-
phytes Chla for the time period 17 January to 17 February 2011. All
data sets are gridded to 0.5°.
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Figure 5.3.3: GOME-2-retrieved coccolithophore Chla in comparison to MODIS PIC,
SynSenPFT and SCIA-PD coccolithophore Chla, and OC-PFT hapto-
phytes Chla for the time period 18 February to 20 March 2012. All data
sets are gridded to 0.5°.
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parison between MODIS PIC and the coccolithophore/haptophytes data sets. Results are

separated in north and south of the Polar Front, because coccolithophores are thought to

be most abundant north of the Polar Front (Mohan et al., 2008) and hyperspectral data

coverage significantly differs on the northern and southern side of the front. The Polar

Front roughly coincides with 50°S (Balch et al., 2016). North of 50°S, where the coverage of

the hyperspectral sensors is decent, GOME-2 and SCIAMACHY identify similar areas of

high coccolithophore Chla which are in good agreement with patterns of elevated MODIS

PIC concentrations. The OC-PFT product does not show enhanced haptophytes Chla for

some of these features where MODIS PIC is high, e.g., around 45°S, 40°E and 40°S, 90°W

(2011), 45°S, 30-50°W and 40°S, 90-110°W (2012). SynSenPFT coccolithophore patterns

generally agree well with MODIS PIC. South of 50°S, intercomparison of hyper- and mul-

tispectral data sets is difficult, because the coverage of the hyperspectral sensors is low.

In 2012, the coverage is a bit better in this area and a few features can also be identified

in the hyperspectral data sets. A high MODIS PIC concentration between Falkland Is-

lands and South Georgia is visible in terms of high coccolithophore Chla in the GOME-2

and SCIA-PD, but not in the OC-PFT data set. Enhanced MODIS PIC concentrations

between 10° and 20°W and roughly 50° and 60°S coincide with high coccolithophore Chla

values in all of the four other data sets. Roughly estimated from the few measurements

South of 50°S, hyperspectral data sets generally seem to show lower coccolithophore Chla

in the South than in the North, especially the GOME-2 data set.

For quantifying the similarity in patterns, Pearson correlation coefficients were calcu-

lated between MODIS PIC and the four other satellite data sets based on the monthly

gridded data in subregions of the SOAI region (see Table 5.3.1). The SOAI region was

subdivided into three major areas, referred to as the Patagonian region (30-60°S, 50-65°E),

the Northern SOAI region (30-50°S, 50°E-120°W), and the Southern SOAI region (50-65°S,

50°E-120°W). For the latter two, correlation coefficients were also calculated for two re-

duced regions excluding the area South of 60°S for the Southern SOAI region, and the area

North of 35°S for the Northern SOAI region, to exclude the influence of the extremely low

coverage in the South (GOME-2 in 2012) and the low Chla areas in the North.

As already recognized from visual inspection, correlations between MODIS PIC and the

four PFT satellite data sets are high in the Northern SOAI region (r = 0.4−0.63), consid-

ering that different variables and monthly means are intercompared and spatiotemporal

resolution varies among products. GOME-2 reaches higher correlation than SCIA-PD and

even exceeds OC-PFT correlation with PIC, which is remarkable considering the high rep-

resentation error due to much lower sampling by the GOME-2 sensor. For the Patagonian

region, correlations between MODIS PIC and SynSenPFT as well as OC-PFT are sim-
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ilarly high as in the Northern SOAI region. Correlations between MODIS PIC and the

hyperspectral coccolithophore Chla are significantly decreased, especially for SCIA-PD,

for which even slightly negative correlations are found. In the Southern SOAI region,

again, correlations are similarly high as in the Northern SOAI region for SynSenPFT and

OC-PFT. Correlations with OC-PFT tend to be slightly higher whereas correlations with

SynSenPFT are slightly lower in the South than in the North. For the hyperspectral data

sets, correlations with MODIS PIC are low, which is, however, difficult to interpret due to

low data coverage. The reduced Northern and Southern SOAI region show similar trends.

Excluding the low Chla region from the Northern area, on which all sensors agree, reduces

the correlation coefficient, which is especially true for the 2012 OC-PFT product. Exclud-

ing the low coverage area from the Southern SOAI region, increases correlations slightly

for the hyperspectral sensors (Table 5.3.1, regions labeled with small). No clear trend is

observed for OC-PFT and SynSenPFT.

Diatoms

Figures 5.3.4 and 5.3.5 show the GOME-2 diatom Chla in comparison to SynSenPFT,

SCIA-PD, and OC-PFT diatom Chla and total Chla from OC-CCI for the time periods

17 Jan to 17 Feb 2011 and 18 Feb to 20 Mar 2012, respectively. Diatom Chla data sets are

shown in comparison to a total Chla data set, because high total Chla is usually associated

with diatom presence (assumption of abundance-based approaches, e.g., Hirata et al., 2011)

and because the total Chla product gives a general idea of expected Chla ranges in the

SOAI region. Hyperspectral diatom data sets are noisy compared to multispectral products

and also compared to the hyperspectral coccolithophore data sets. Ranges of diatom Chla

vary strongly among different sensors. GOME-2 diatom Chla values are lowest among all

satellite data sets. Only in some areas, maximum Chla values of similar size as maximum

values in the OC-PFT and SynSenPFT product can be seen. OC-PFT, SynSenPFT, and

GOME-2 diatom Chla are generally lower than OC-CCI total Chla. In contrast, maximum

SCIA-PD diatom Chla values are roughly a factor of three higher than maximum values

of the total Chla product. GOME-2 and SCIA-PD diatom data are generally dissimilar.

Comparing the gridded monthly mean, only a Pearson correlation coefficient of 0.08 is

reached for 2011 and 0.04 for 2012. Pearson correlation coefficients with respect to the

Northern, Southern, and Patagonian region can be found in Table 5.3.2.

GOME-2 diatom Chla hardly show any distinct patters. Elevated concentrations around

0.1 to 0.3 mg/m3 are seen ubiquitously. Lower concentrations are found in the low Chla

areas in the North. Distinct features of higher diatom Chla (∼3 mg/m3) are only seen in

2012 west of the Falkland Islands and in the Indian sector at latitudes as of Kerguelen
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Figure 5.3.4: GOME-2-retrieved diatom Chla in comparison to OC-CCI total Chla
and SynSenPFT, SCIA-PD, and OC-PFT diatom Chla for the time
period 17 January to 17 February 2011. All data sets are gridded to
0.5°. Note that color scales vary between different panels due to large
differences in Chla ranges.
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Figure 5.3.5: GOME-2-retrieved diatom Chla in comparison to OC-CCI total Chla
and SynSenPFT, SCIA-PD, and OC-PFT diatom Chla for the time
period 18 February to 20 March 2012. All data sets are gridded to
0.5°. Note that color scales vary between different panels due to large
differences in Chla ranges.
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Islands. However, these features are not visible as high Chla areas in the total Chla

product. North of the Falkland Islands, where total Chla values are at its maximum in

the SOAI region, diatom Chla is low in the GOME-2 data set.

In the SCIA-PD product, diatoms are ubiquitously present throughout the SOAI region.

Low diatom concentrations are only seen in the low Chla areas in the North. Diatom Chla

increases southwards. In contrast to the total Chla product which shows distinct areas of

low Chla contrasting areas of high Chla South of 50°S, high diatom Chla is seen in the

SCIA-PD product spreading almost homogeneously over the entire SOAI region South of

50°S. SCIAMACHY detects high diatom Chla North of the Falkland Islands (2011) where

OC-CI total Chla is at its maximum, however, also South of the Falkland Islands (2011

and 2012) where only low Chla values are expected from the total Chla product.

The OC-PFT diatom product shows similar patterns as the total Chla product, since

it is derived from it, but more contrast. The SynSen product appears noisy and elevated

diatom concentrations are present throughout the SOAI region due to the influence of the

SCIAMACHY sensor on the data product. Patterns of high diatom Chla appear slightly

more similar to the total Chla product in the Atlantic sector than in the Indian sector.

Table 5.3.1: Pearson correlation coefficients between MODIS PIC and coccolithophore
or haptophytes Chla from GOME-2, SCIA-PD, SynSenPFT, and OC-
PFT, respectively, gridded to 0.5° and averaged over time periods 17 Jan-
uary to 17 February 2011 and 18 February to 20 March 2012. Nan values
were excluded.

GOME-2 SCIA-PD OC-PFT SynSenPFT
Region 2011 2012 2011 2012 2011 2012 2011 2012
Northern SOAI 0.63 0.56 0.40 0.55 0.56 0.52 0.63 0.62
Northern SOAI (small) 0.55 0.47 0.36 0.40 0.51 0.31 0.57 0.52
Southern SOAI 0.16 0.18 0.20 0.14 0.67 0.46 0.53 0.38
Southern SOAI (small) 0.22 0.23 0.28 0.22 0.61 0.56 0.51 0.51
Patagonian 0.39 0.20 -0.03 -0.07 0.47 0.51 0.50 0.57
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Table 5.3.2: Pearson correlation coefficients between GOME-2 and SCIA-PD coccol-
ithophore and diatom Chla, respectively, gridded to 0.5° and averaged
over time periods 17 January to 17 February 2011 and 18 February to 20
March 2012. Nan values were excluded.

coccolithophores diatoms
Region 2011 2012 2011 2012
SOAI 0.38 0.32 0.08 0.04
Northern SOAI 0.44 0.41 0.09 0.07
Southern SOAI 0.23 0.14 0.01 0.01
Patagonian 0.49 0.30 0.15 0.04

5.3.3 In-situ comparison

Comparison with in-situ data focused on the GOME-2 coccolithophore data, since the

GOME-2 diatom data quality appears insufficient from the satellite comparisons. Fig-

ure 5.3.6 (a) shows GOME-2 coccolithophore Chla averaged for the Atlantic sector over

the time period 17 Jan to 17 Feb 2011 and for the Indian sector over the time period 18

Feb to 20 Mar 2012 to match the time periods and cruise tracks (shown as line on top of

the 0.5° gridded data) of the 2011 R/V Melville and 2012 R/V Roger Revelle cruises. For

comparison, Figure 5.3.6 (b) shows the coccolithophore abundance sampled during these

two cruises (239 samples). Close agreement between in-situ and GOME-2 coccolithophore

data is not expected, since a monthly mean gridded to 0.5° is intercompared with in-situ

point measurements. In addition, data sets are given in different units and their conversion

underlies large natural variability (Daniels et al., 2014). However, in-situ coccolithophore

cell counts provide the only direct information on coccolithophore presence in this time

period and region, making a qualitative comparison of the two data types worthwhile.

The in-situ data set gives a rough idea of where coccolithophores can be expected in the

SOAI region in this time period. The spatial distribution of GOME-2 coccolithophore Chla

along the cruise tracks generally agrees well with patterns of the in-situ coccolithophore

cell counts. Similar areas of high and low coccolithophore abundance are identified by

in-situ cell counts and GOME-2 coccolithophore data. Coccolithophore concentrations are

high on the Patagonian Shelf, North of South Georgia, in the Atlantic sector and North of

Crozet Islands and South of Kerguelen Islands in the Indian sector. Uniform presence of

coccolithophores along the eastern transects in the Indian sector (East of 80°E) are seen

in in-situ cell counts and in the GOME-2 product. Low coccolithophore concentrations

are found in-situ and by GOME-2 in areas North of 35° and close to 60°S. The transect

between 10° and 30°W can not be intercompared due to too low coverage in the GOME-2
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Figure 5.3.6: (a) GOME-2 coccolithophore Chla gridded to 0.5° in the Atlantic sector
for the time period 17 Jan to 17 Feb 2011 and in the Indian sector for the
time period 18 Feb to 20 Mar 2012. Black lines show the cruise tracks
of R/V Melville and R/V Roger Revelle in 2011 and 2012, respectively.
Blue rectangles mark the regions in which time series were computed,
section 5.3.4. (b) Coccolithophore cell counts sampled in-situ. (c) OC-
CCI total Chla gridded to 0.5° for same time periods as in (a). In-situ-
sampled total Chla is shown overlayed as circles. Note that different
color scales are used in (a) and (c) due to the large difference in range.
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data set.

Following Poulton et al. (2013) and Smith et al. (2017), the cell count data was converted

to concentrations in terms of chlorophyll-a using 0.2 pgChla/cell (Haxo, 1985) as conversion

factor, which is a rather conservative value for E. huxleyi (e.g. 0.3 pgChla/cell (Daniels

et al., 2014)). Since the conversion factor underlies large variability depending on species

(Daniels et al., 2014), derived coccolithophore Chla from cell counts are only considered

here as a rough estimator for expected concentration ranges. At the Patagonian Shelf,

where E. huxleyi is dominating (Smith et al., 2017), in-situ coccolithophore Chla reach up

to 0.5 mg/m3. The range of GOME-2 derived coccolithophore Chla is with 0-1 mg/m3

reasonable.

In-situ sampled total Chla matches well the monthly OC-CCI total Chla values as shown

in Figure 5.3.6 (c). In-situ Chla is slightly higher than OC-CCI total Chla, especially

apparent for the maximum values. Underestimation of total Chla in the Southern Ocean by

globally-derived empirical Chla algorithms is a known issue (Johnson et al., 2013; IOCCG,

2015), e.g., the IOCCG (2015) finds an underestimation by a factor of two for version 6

of the ocean chlorophyll four-band algorithm (OC4v6, Werdell and Bailey, 2005, used in

OC-CCI version 2). The OC-CCI total Chla product can be well used for comparison of

spatial distributions and phenology, however, a possible underestimation needs to be kept

in mind for further analysis. The range of in-situ total Chla in the Indian sector is 0.06-0.9

mg/m3 except for one data point. Since multiple PFT contribute to the total Chla signal

(in-situ evidence for diatoms see Figure 3 in Balch et al., 2016), observed total Chla ranges

indicate an overestimation of GOME-2 coccolithophore Chla in the Indian sector.

Balch et al. (2016) also determined the integrated calcification and photosynthesis of nu-

merous discrete surface-water samples distributed along the cruise tracks. The integrated

calcification over integrated photosynthesis ratio (see Figure 2 F in Balch et al., 2016) is

high mostly in areas where total Chla is rather low, but GOME-2 coccolithophore Chla

and MODIS PIC are rather high (transects East of 80°and North-South transect between

∼30-45°W). Consequently, coccolithophores contribute significantly to the overall biomass

in these areas supporting the correct identification of coccolithophores in these areas by

GOME-2.

5.3.4 Time series

The temporal evolution of GOME-2 coccolithophore Chla in comparison to OC-CCI total

Chla and MODIS PIC was investigated over the course of the austral summer in 2010/2011

and 2011/12. Time series from beginning of October until the end of March of coccol-
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Figure 5.3.7: Time series of 7-day running composites computed from GOME-2 coc-
colithophore Chla (blue), MODIS-Aqua PIC (red), and OC-CCI total
Chla (black) data sets in three regions of the Atlantic sector: (a), (b)
Patagonian Shelf; (c), (d) North of South Georgia; (e), (f) Southwest
of South Africa; for the time periods from beginning of October until
end of March for 2010/11 and 2011/12, respectively. For MODIS-Aqua
PIC and OC-CCI total Chla, dashed lines show the 7-day running com-
posites based on the geocoordinates of the grid cells contained in the
corresponding GOME-2 coccolithophore composite for each date. Time
periods with dashed lines in the GOME-2 coccolithophore time series
indicate composites calculated from less than 10 grid points. Regions
are marked as blue rectangles in Figure 5.3.6.
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Figure 5.3.8: Time series of 7-day running composites computed from GOME-2 coc-
colithophore (blue), MODIS-Aqua PIC (red), and OC-CCI total Chla
(black) data sets in three regions of the Indian sector: (a), (b) North of
Crozet Islands; (c), (d) South of Kerguelen Islands; (e), (f) Southwest of
Western Australia; for the time periods from beginning of October until
end of March for 2010/11 and 2011/12, respectively. For MODIS-Aqua
PIC and OC-CCI total Chla, dashed lines show the 7-day running com-
posites based on the geocoordinates of the grid cells contained in the
corresponding GOME-2 coccolithophore composite for each date. Time
periods with dashed lines in the GOME-2 coccolithophore time series
indicate composites calculated from less than 10 grid points. Regions
are marked as blue rectangles in Figure 5.3.6.
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ithophore Chla from GOME-2, total Chla from OC-CCI, and PIC from MODIS-Aqua are

shown in Figure 5.3.7 and Figure 5.3.8 as 7-day running composites for three regions in

the Atlantic sector and three regions in the Indian sector, respectively, as introduced in

section 5.2.1. 7-day temporal and 4°x4°spatial variability can be large within these re-

gions as estimated from the standard deviation of the total Chla composites. Averaged

over the full time series, the mean standard deviation of each composite is 25% to 60%

of the mean total Chla value of each composite, with the higher value range obtained for

regions showing strong seasonal cycles. To reduce the influence of the GOME-2 spatial

coverage on the time series comparison, composites for MODIS PIC and OC-CCI total

Chla were additionally calculated only selecting grid cells with coordinates as present in

the corresponding GOME-2 composite (shown as dashed lines). This selection criterion

only has a weak influence on the time series. General temporal trends remain. The total

Chla time series is smoother than the PIC and especially the GOME-2 time series, which

both show high frequency features due to lower data coverage. The focus lies on broad

temporal patterns here.

Four regions show distinct bloom dynamics as visible from the pronounced maxima in

total Chla: Patagonian Shelf, North of South Georgia, North of Crozet Islands, and South

of Kerguelen Islands. Bloom dynamics are similar in the same region for different years,

however, bloom maxima can be shifted by a month indicating a rather large interannual

variability on this regional scale. Total Chla peaks within October to December. The

total Chla maximum is followed by a maximum in PIC and coccolithophore concentration

located within the months December through March. Overall temporal trends in PIC

and coccolithophore Chla agree in these months, although local maxima and minima are

not strictly correlated and PIC often peaks before coccolithophore Chla. For the months

of October and November, pronounced high PIC values are observed which are usually

associated with the total Chla maximum in the bloom regions of the Atlantic sector.

Coccolithophore concentrations are low in these months and regions.

The two northern regions, Southwest of South Africa and of Australia, show low to-

tal Chla values in the OC-CCI data set during the entire austral summer with no clear

bloom patterns except for the region Southwest of South Africa in the summer 2011/2012.

The OC-CCI total Chla maximum is observed mid February. MODIS PIC and GOME-2

coccolithophore Chla peak around the same time. In 2010/2012, a peak in GOME-2 coc-

colithophore Chla of short duration at the end of December might explain the persisting

high MODIS PIC values seen from January to March. This feature is not visible in the

total Chla product, however might be suppressed by dynamics of other PFT that decline

at the same time. In the area Southwest of Australia, the weak temporal variability in
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OC-CCI total Chla is nicely followed by MODIS PIC and GOME-2 coccolithophore Chla,

indicating that the fraction of coccolithophores in the phytoplankton community is roughly

constant over time.

Of all time series, there is an interesting feature appearing twice which is visible in

the regions Southwest of South Africa and South of the Kerguelen Islands in 2011/2012.

Peaks in GOME-2 coccolithophore Chla are anticorrelated with the OC-CCI total Chla

peak. The first GOME-2 coccolithophore peak appears at the beginning of January and

decreases when OC-CCI total Chla starts to rise. GOME-2 coccolithophore Chla rises

to a second peak at the end of February/beginning of March when OC-CCI total Chla

has almost reached its maximum (Southwest of South Africa) or is already at its decline

(South of Kerguelen Islands). The MODIS PIC concentration remains high after the first

GOME-2 coccolithophore peak. No local minimum is seen. The temporal evolution of PIC

in comparison to coccolithophore Chla can give insight into residence times of calcite in

the upper ocean as discussed in section 5.4.4.

5.4 Discussion

First, the GOME-2 diatom retrieval is discussed shortly, followed by an extensive discussion

of the more promising GOME-2 coccolithophore retrieval. Coccolithophore identification

by GOME-2 is discussed in terms of presence and absence and, next, their quantification

in terms of chlorophyll-a concentration. A discussion on coccolithophore phenology and

its connection to PIC follows. The discussion proceeds with illustrating the GOME-2

coccolithophore monitoring capabilities in the Southern Ocean and the benefits of the

presented data.

5.4.1 Diatom identification

Retrieving diatoms from GOME-2-measured backscattered radiances using PhytoDOAS

yields a diatom data set of poor quality in the SO. The diatom data set is noisier than the

coccolithophore data set and spatial correlation with OC-CCI total Chla is low. Noise in

combination with false spatial distribution indicates that the PhytoDOAS method has dif-

ficulties to identify diatom absorption in GOME-2-measured optical depths and to separate

it successfully from absorption spectra of other atmospheric and oceanic contributions or

spectral instrumental artifacts. Results on diatom Chla were dissimilar to those found for

SCIA-PD, indicating that the influence of spectral instrumental artifacts plays a significant

role for the retrieval outcome.

150



5 Potential of GOME-2 for monitoring SO coccolithophores 5.4 Discussion

SCIA-PD showed diatom Chla increasing towards the South which is in agreement with

current knowledge on the diatom distribution in the SO (e.g., Alvain et al., 2008; Soppa

et al., 2016a). Maximum values for SCIA-PD diatom Chla are about a factor three higher

than maximum values in the OC-CCI total Chla product. Considering, that total Chla is

generally underestimated by empirical band algorithms in the Southern Ocean (Johnson

et al., 2013), the range of diatom Chla is reasonable. However, SCIA-PD diatoms are

ubiquitously present in the South which is not expected from the spatial distribution seen

in the OC-CCI total Chla product. SCIA-PD diatom Chla therefore appear overestimated

on average. Losa et al. (2017a) pointed out an overestimation of diatom Chla derived

from SCIAMACHY on the global scale. The high data coverage in SCIA-PD compared

to the GOME-2 data set indicates that a less strict cloud filter is used for SCIA-PD and

there might be a small cloud contamination in the SCIA-PD products (also discussed in

section 5.4.5). GOME-2-derived diatom fit factors showed large positive values over clouds

compared to the diatom fit factor range over cloud-free ocean scenes. Assuming a similar

behavior for the retrieval on SCIAMACHY data, overestimation and ubiquitous presence

of diatoms across the SO could partially be attributed to influence from clouds. It might

be worthwhile to check, if similar results can be achieved for GOME-2 and SCIAMACHY

when the exact same fit settings are used for GOME-2 and a stricter cloud filter is applied

for SCIAMACHY. The retrieval might be more sensitive to small changes, e.g., in fit

window, than expected from retrievals on simulated backscattered radiances.

5.4.2 Coccolithophore identification

Coccolithophore presence or absence can be successfully identified in GOME-2-measured

backscattered radiances using the PhytoDOAS method. High correlation with MODIS PIC

and good spatial agreement with in-situ coccolithophore cell counts indicate that presence

of coccolithophores is correctly indicated in the GOME-2 coccolithophore data set north of

50°S. Less agreement between MODIS PIC and GOME-2 coccolithophore Chla was found

for the Patagonian area, however, in-situ and time series data show that GOME-2 results

are reasonable. Unfortunately, the large satellite foot print of the GOME-2 sensor and low

coverage due to clouds in the SO region in combination with limited in-situ coccolithophore

data sets (usually also in different units) do not permit a true validation of the GOME-2

product.

An issue for PFT retrievals is the correlation between specific absorption spectra of dif-

ferent PFT that cause their false identification. Although the fit window was identified

as optimal for the retrieval of coccolithophores, a non-zero correlation between PFT ab-
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sorption spectra remains as analyzed in Sadeghi et al. (2012a). Correlation between PFT

spectra is mainly caused by chlorophyll-a as absorbing pigment, present in every PFT.

Wolanin et al. (2015c) have analyzed the effect of constant or covarying background con-

centrations of other PFT on the coccolithophore PhytoDOAS retrieval with settings as in

Losa et al. (2017a). Constant background concentrations of 0.05 mg/m3 for diatoms or

0.005 mg/m3 for cyanobacteria can lead to an error of 50% in retrieved coccolithophore con-

centrations. Covarying background concentration of 20% diatoms or 2% cyanobacteria can

cause an error around 20%. Usually, an underestimation of the retrieved coccolithophore

concentration is observed. From the time series analysis, confidence is gained that false

PFT identification is not a major issue for the GOME-2 coccolithophore product. At the

OC-CCI total Chla maxima, GOME-2 coccolithophore Chla is usually low and similar to

concentrations outside of the total Chla maxima. The temporal evolution is independent

of OC-CCI total Chla. Presence of phytoplankton does not automatically cause elevated

or decreased coccolithophore fit factors due to correlation of spectra.

Presence of Phaeocystis sp. might cause residual coccolithophore concentrations in

GOME-2 data set. Most PFT algorithms do not differentiate between coccolithophores

and Phaeocystis sp. since they belong to the same phytoplankton class, the haptophytes.

Remote sensing PFT algorithms are usually empirically developed based on large global

HPLC data sets (IOCCG, 2014). HPLC data is used to determine PFT Chla of the phy-

toplankton community found in a water sample, based on absorption pigments which are

typically found in certain PFT. Variability in HPLC pigment data is usually not high

enough to enable discrimination of coccolithophores from Phaeocystis sp. (Kramer and

Siegel, 2019). Due to the high similarity in pigment composition, PhytoDOAS will likely

have difficulties to spectrally distinguish coccolithophores from Phaeocystis sp.. Elevated

coccolithophore Chla in the GOME-2 product might be caused by Phaeocystis sp. which

are known to form strong blooms in the South of the Southern Ocean (El-Sayed et al., 1983;

Fryxell and Kendrick, 1988). GOME-2 data coverage is very low below 60°S, but the few

data show elevated coccolithophore Chla. Also PIC and the other PFT satellite products

investigated in this study show high values South of 60°S. Coccolithophores are usually

found north of the Polar Front (Mohan et al., 2008). A steep decline in coccolithophore

concentration has been found going southwards (Balch et al., 2016). Coccolithophores can

be detected in-situ as far South as 61°S across Drake Passage (Charalampopoulou et al.,

2016), 70°S in the Weddell Sea (Winter et al., 1999), and 65°S of Australia (Cubillos et al.,

2007). From what is known about coccolithophores, it is unlikely that intense coccol-

ithophore blooms form South of 60°S. The high signal in MODIS PIC in the South can

possibly be caused by enhanced reflectance due to diatom frustules (Balch et al., 2005),
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storm-induced bubbles (Randolph et al., 2014), whitecaps and foam (Dierssen, 2019), or

glacial flour (Dierssen et al., 2002). The GOME-2 coccolithophore Chla in the South is

not so high as for the other satellite products (SCIA-PD, SynSenPFT, OC-PFT) which

indicates that presence of Phaeocystis sp. only moderately causes overestimation of coc-

colithophore Chla when derived with GOME-2. This study was not designed to check the

question how well PhytoDOAS can distinguish coccolithophores from Phaeocystis sp.. To

tackle this question in the future, GOME-2 coccolithophore results could be investigated

for specific times and regions for which in-situ evidence of Phaeocystis sp. blooms exists

(e.g. Poulton et al., 2007a), however, in-situ observations need to fall within the GOME-2

mission time.

5.4.3 Coccolithophore quantification

Coccolithophore quantification is a challenge using the PhytoDOAS method in combination

with a LUT approach. As estimated from in-situ data, GOME-2 derived coccolithophore

Chla are realistic on the Patagonian Shelf, but seem to be overestimated in all other open

ocean areas of the SOAI region, especially in the Indian sector. Sadeghi et al. (2012b)

also found overestimated coccolithophore Chla by SCIAMACHY close to New Zealand

and suggested that it is caused by a different coccolithophore species dominating these

waters. Since the magnitudes of specific absorption spectra are variable depending on

species, using a single specific absorption spectrum as reference in the PhytoDOAS fit can

lead to a wrong estimation of coccolithophore Chla. Smith et al. (2017) found an increase

in coccolithophore diversity moving eastward from Patagonian Shelf. At the Patagonian

Shelf, E. huxleyi is dominating. Coccolithophore diversity could therefore explain why

retrieved concentrations fit best at the Patagonian Shelf and are overestimated elsewhere.

The LUT had to be cut off at a value of around 1 mg/m3. In section 5.2.3, it was

already pointed out that results have to be interpreted carefully for waters with total

Chla larger 1 mg/m3. The overall consistency of coccolithophore Chla results found in

all analysis indicates that the retrieval produces reasonable results for most SO scenes

that are in the critical Chla range. It is not clear where the critical value lies exactly due

to natural variability of the phytoplankton absorption and likely different sensitivities of

the retrieval on simulated data compared to satellite-measured data. However, GOME-2

coccolithophore data on the Patagonian Shelf in the months October to November, when

total Chla is highest, should be treated carefully.

One source of error in conversion with the LUT lies in the differences in simulations used

for PFT and for VRS retrievals. Simulations for VRS reference spectra and backscattered

153



5 Potential of GOME-2 for monitoring SO coccolithophores 5.4 Discussion

radiances on which VRS retrieval were performed to map a relationship between VRS fit

factor and Chla differ slightly from those used for finding a relationship between PFT and

Chla. Since the two are matched with respect to Chla when the LUT is built relating the

ratio of the two fit factors to Chla, a mismatch arises, because Chla is the same in the

scenarios, but optical depth of the water slightly differs mainly due to the use of a different

water absorption spectrum. Simulations for VRS were not recalculated to match those

for PFT, but kept as in chapter 3, because of high computation times. The mismatch is

not regarded as the main source for the overestimation for two reasons. Sadeghi et al.

(2012b) also observe an overestimation in a similar area. Second, the coccolithophore fit

factors already appear to be too high when comparing them only with the PFT part of

the LUT, i.e. the PFT fit factors resulting from PhytoDOAS fits on simulated radiances.

Nevertheless, simulations should be recalculated in future.

Obtaining realistic physical quantities from PhytoDOAS-retrieved fit factors using a

LUT has already been in a challenge in chapters 3 and 4. Correlations with atmospheric

spectra and spectral artifacts caused by instrumentation have been suggested as one source

of error. As in chapter 4, the VRS fit factor had to be offset-corrected which indicates

a mismatch between retrievals performed on satellite data and retrievals performed on

model data. Without correction, coccolithophore Chla would be even higher. However,

offset-corrected Kd values were higher for GOME-2 than for OC-CCI which can also lead

to a general overestimation of coccolithophore Chla. This bias between the data sets was

not correctable using a simple additive offset. Unfortunately, often the fit behavior can

not be well predicted by results obtained on simulated data. As an example, a strong

VZA dependence of the fit factors was seen which is not in agreement with modeled VZA

dependence. Empirical conversion functions could be explored for newer hyperspectral

sensors, e.g., TROPOMI, which have better spatial resolution.

5.4.4 Coccolithophore phenology

The coccolithophore phenology as observed in the time series of GOME-2 coccolithophore

Chla is consistent with typical coccolithophore seasonal cycles. GOME-2 coccolithophore

Chla peaks generally after the OC-CCI total Chla product in austral summer, December

to March, which is in line with the general hypothesis that coccolithophore blooms follow

diatom blooms, when surface waters are nutrient depleted and stratification increases (Hol-

ligan et al., 1993a,b). This hypothesis is supported by seasonal cycles of coccolithophores

in the SO, which are often estimated from PIC satellite observations. E.g., following the

total Chla peak in November, Signorini et al. (2006) found that MODIS PIC concentrations
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start rising in November and peak in January.

Maxima in GOME-2 coccolithophore Chla roughly coincide with maxima in MODIS

PIC concentration. A clear succession of the MODIS PIC signal following the GOME-2

coccolithophore signal is not observed. The MODIS PIC product has been validated by

matchup comparison with ship measurements of PIC from several cruises in the Atlantic

Ocean and the GCB (Balch et al., 2016). The RMS error was determined as ±11%. Since

the MODIS PIC product is robust, it was used in this study for evaluating the GOME-2

coccolithophore retrieval performance. The two products are expected to agree in first

order. PIC is a proxy for coccolithophores due to their calcification activities, however,

PIC can maintain in the surface waters after coccolithophore blooms died (Balch et al.,

2007; Poulton et al., 2007b). The GOME-2 product, on the other hand, is only expected

to detect living coccolithophores, since it targets the absorption of pigments involved in

photosynthesis (Sadeghi et al., 2012a,b). Additionally, the calcification rates in a coccol-

ithophore bloom underly natural variability. It has been observed that coccolithophores

tend to increase calcification when growth rates slow and shed coccoliths due to cell stress

and cell death (Paasche, 2001; Müller et al., 2008). From these insights on the relation-

ship between PIC and coccolithophores, the MODIS PIC signal is expected to follow the

GOME-2 coccolithophore signal, because it captures the late coccolithophore bloom state

(Tyrrell and Merico, 2004). In the time series analyzed in this study, MODIS PIC of-

ten even peaks before GOME-2 coccolithophore Chla. Sadeghi et al. (2012b) investigated

the temporal evolution of mean monthly MODIS PIC in comparison to mean monthly

SCIAMACHY-derived coccolithophore Chla and found a general correlation between the

two, however, were not able to resolve a clear succession of SCIAMACHY coccolithophore

and MODIS PIC concentrations. This study finds similar behaviour for a higher temporal

resolution, however, differences in temporal and spatial scales between the data sets and

variability within the investigated regions remain large and might not enable to resolve

such clear temporal trends.

Clear discrepancies between GOME-2 coccolithophore Chla and MODIS PIC signal

were found in the months of October and November in areas with high total Chla max-

ima during these months. Most cruises that sampled for coccolithophore abundance on

the Patagonian Shelf and vicinity took place later in the season, in December (Holligan

et al., 2010; Poulton et al., 2013), January/February (Balch et al., 2016; Charalampopoulou

et al., 2016), and March (Balch et al., 2011) (also see Table 1 in Holligan et al., 2010).

Jacques and Panouse (1991) found presence of coccolithophores even further South, West

of the Antarctic Peninsula, at the end of November. Hardly any in-situ data are present

for coccolithophore abundance on the Patagonian Shelf in austral spring, however, from
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observations by Jacques and Panouse (1991), higher coccolithophore concentrations are

possible in these latitudes at this time of the year. The relative height of the MODIS

PIC spring peak in the here presented time series analysis appears too high compared

to the summer peak. Signorini et al. (2006) did not observe such a MODIS PIC feature

in their analysis of the Patagonian Shelf for the season 2004/2005. Their mixed layer

depths temporal evolution also indicates that environmental conditions are not favorable

for coccolithophores in October and start to become favorable in November. A look at the

environmental conditions during the austral summers of 2010/2011 and 2011/12 presum-

ably helps to answer the question, if PIC concentrations in these months are associated

with coccolithophores (not indicated by the GOME-2 product, however, since total Chla

is especially high for this area and time of the year, the GOME-2 product might not be

reliable) or have a different cause, contamination of the PIC algorithm by high total Chla

(Mitchell et al., 2017), high opal concentrations (Balch et al., 2005), etc.

The time series analysis showed examples where two GOME-2 coccolithophore Chla

maxima were observed in a time period for which MODIS PIC only showed one broad

maximum. The two GOME-2 coccolithophore Chla maxima anticorrelated with a peak

in OC-CCI total Chla. It is hypothesized that the coccolithophores start to grow, are

outcompeted by other PFT leading to a peak in total Chla, and then start to grow again

after, e.g., nutrient conditions are unfavorable for those other PFT. The PIC concentration

stays high due to coccoliths that reside in surface waters while the coccolithophore bloom

declines and reforms. By comparison of MODIS PIC and GOME-2 coccolithophore Chla,

residence times of PIC in surface waters and coccolith to coccolithophore ratios could be

estimated under different environmental conditions and bloom stages, when spatiotemporal

differences between data sets are carefully accounted for. A spread in PIC turnover times

of 7 to 50 days has been estimated from several cruises (Balch et al., 2007). Average global

PIC turnover times have been estimated to be shorter, ∼7 days (Hopkins et al., 2019),

and are comparable to short turnover times (3-7 days) found in-situ (Poulton et al., 2006).

Higher turnover times of 15 days have been estimated for the high latitudes (Hopkins

et al., 2019). Lags between GOME-2 coccolithophore and MODIS PIC concentrations

found in the presented time series analysis lie within these temporal ranges of observed

and predicted turnover times.

5.4.5 Monitoring coccolithophores in the Southern Ocean

The GOME-2 coccolithophore data set is suitable for monitoring coccolithophores in the

Southern Ocean Atlantic and Indian sectors north of the Polar Front including the Patag-
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onian Shelf. Phenology and spatial distribution are correctly reproduced and can be used,

e.g., as guideline for modelers working on reproducing coccolithophore seasonal cycles and

spatial patterns in the Southern Ocean. Absolute coccolithophore Chla should be treated

with caution, as well as relative coccolithophore Chla when different regions are intercom-

pared, especially if total Chla is larger 1mg/m3. Similar to other PFT remote sensing

products (e.g., Brewin et al., 2017; Xi et al., 2021), GOME-2-derived coccolithophore Chla

is associated with high uncertainties. For instance, Xi et al. (2021) present haptophyte

Chla ranges roughly between 0.1 to 0.5 mg/m3 in the SOAI region with per pixel uncer-

tainties ranging between 50% to 100%. GOME-2 coccolithophore Chla should be used

carefully, e.g., for estimating total coccolithophore biomass.

Monitoring of PFT requires sufficient data coverage which has been improved in this

study by using a cloud correction method. The developed cloud correction scheme for

GOME-2-derived oceanic quantities increased the coverage in the SO significantly and

was key for analyzing time series in multiple regions and broadscale spatial distribution.

Despite these advances, coverage remains an issue for the GOME-2 coccolithophore data

set even north of 50°S. Coverage is limited in some areas north of 50°S, e.g., low coverage

was found for the transect between 0-30°W. In-situ data showed a cooccurance of coccol-

ithophores and diatoms in this area (Balch et al., 2016), making it an interesting location

for a time series analysis. When computed, the GOME-2 time series had too many data

gaps and was too noisy (and therefore not shown) to obtain any valuable information.

An opportunity to overcome poor spatiotemporal resolution of hyperspectral products is

a combination with multispectral products as synergistically performed for the SynSenPFT

product (Losa et al., 2017a). As analyzed in this study, SynSenPFT coccolithophore Chla

compared well in comparison to MODIS PIC. Correlations with MODIS PIC north of 50°S

were highest among the PFT data sets. It exceeded the correlation between MODIS PIC

and the two input products, SCIA-PD coccolithophore and OC-PFT haptophytes prod-

uct, which indicates that the Kalman-type filtering, used for optimal interpolation in the

SynSenPFT method, successfully combines the input products yielding an overall improved

data set in the SOAI region. It is acknowledged here, that the OC-PFT product targets

haptophytes and not coccolithophores and therefore lower correlations with the MODIS

PIC product are naturally expected. The SynSenPFT approach can also be applied to

GOME-2 data in combination with a multispectral PFT product, which has been tested

with an older version of the GOME-2 PFT data and showed promising results (Losa et al.,

2018). However, when hyperspectral data coverage is low as in the SO, the synergistic

product will be completely dominated by the multispectral product. An extension of the

SynSenPFT method to include information from spatial and temporal averaging can im-
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prove the situation as suggested in Losa et al. (2017a). As the comparison between MODIS

PIC and OC-PFT has shown, OC-PFT can not predict high coccolithophore abundance

where Chla is low, since it assumes a rigid relationship between the two variables. High PIC

concentrations, but low total Chla have also been investigated in field-measurements of a

large-scale coccolithophore bloom in the northeast Atlantic Ocean (Fernández et al., 1993).

Palacz et al. (2013) have found that total Chla is a rather weak estimator for predicting

coccolithophores and suggested that modeling coccolithophore biomass should possibly

not be based on total Chla. For a synergistic coccolithophore product in the SO, it might

therefore be better to not use an abundance-based, but a spectral-based PFT product

as multispectral input data set, e.g., Xi et al. (2020). The mentioned multispectral data

sets only give haptophytes as output and do not distinguish between coccolithophores

and Phaeocystis sp.. The multispectral data sets could be analyzed to separate coccol-

ithophores from Phaeocystis sp., e.g., based on their ecological preferences (Palacz et al.,

2013), or even by extending the SynSenPFT approach to include biogeochemical modeling

as suggested in Losa et al. (2017a). Complete spectral discrimination of these two PFT

within the PhytoDOAS method is also challenging. However, using in-situ data and PFT

models, Phaeocystis sp. influence on the coccolithophore data set could be quantified.

Studying the influence of climate change on phytoplankton community structure requires

long-term data sets (Cadée and Hegeman, 2002; Suikkanen et al., 2013) spanning about 40

years (Henson et al., 2010). GOME-2 data series, using all three MetOP satellites, ranges

from 2006 to date and will presumably continue at least until 2023 based on designed mis-

sion life time (EUMETSAT, 2017), but probably even longer, considering that MetOP A

and B vastly exceeded their designed mission life times. A 20 year data set can be realisti-

cally expected from the GOME-2 instruments. Further extension of the time series requires

merging with other hyperspectral sensors (e.g., Hilboll et al., 2013; Coldewey-Egbers et al.,

2015; Heue et al., 2016), which additionally increases coverage in overlapping mission time

periods. SCIAMACHY, which started recording measurements in 2002, is a potential can-

didate for such a merged product. For the SOAI region, intercomparison of the SCIA-PD

and the GOME-2 coccolithophore product showed only moderate agreement, hampering

merging of data sets from the two sensors. The SCIA-PD coccolithophore product showed

a higher data coverage in the study area than the GOME-2 product, although no cloud

correction was used. SCIAMACHY has a smaller spatial resolution than GOME-2 (30 by

60 km2 as opposed to 40 by 80 km2). It only reaches global coverage within 6 days as

opposed to 1.5 days for GOME-2. Due to the large swath of GOME-2, groundpixels at the

edges are very large and usually screened out, because often not cloud-free. Cloud filtering

techniques are not directly comparable between the two sensors, but it appears likely that
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the reflectance threshold used for filtering clouds in the SCIA-PD product is not as strict

as the filter criterion used for GOME-2. The cloud correction method used in this study

can in principle be applied to any other PhytoDOAS-derived product and consequently be

used for increasing SCIAMACHY data coverage. Cloud contamination, if present in the

SCIA-PD product, does not seem to have a large impact on the coccolithophore product,

because general features are very similar compared to the other satellite products. Dif-

ferent cloud filtering criteria and representation error due to different sampling times can

explain low agreement between SCIA-PD and GOME-2 coccolithophore products found

in this study. However, insufficient agreement between sensors for merging has also been

found for PhytoDOAS-derived diffuse attenuation coefficients on the global scale in chap-

ter 3 for an earlier mission year (2007). Further analyses are needed and corrections might

have to be applied prior to merging.

Satellite time series need to be stable in time for trend analyses which can be impaired,

e.g., by sensor degradation (Lacan and Lang, 2011; Dikty et al., 2012; Munro et al., 2016).

Problematic non-physical seasonal cycles in DOAS-derived atmospheric and oceanic quan-

tities from GOME-2 backscattered radiances have been observed (Lerot et al., 2010, sec-

tion 3.3.5) and associated with seasonally changing spectral features in GOME-2 recorded

solar spectra caused by the diffuser plate as for the GOME instrument (Richter and Wag-

ner, 2001). Within the limited time period studied here, no such behavior appeared after

offset-correcting VRS fit factors with the help of the OC-CCI Kd product. Investigating

long-term stability of the GOME-2 coccolithophore Chla was out of the scope of this study.

The temporal stability needs to be checked, when full mission period is processed in the

future.

5.4.6 Benefits of GOME-2 coccolithophore Chla data

Although long-term monitoring of coccolithophores in the SO is an overall goal, valuable

insights on SO coccolithophores and their relationship with PIC can be already drawn

from the here presented two year data set and from the whole GOME-2 A time period

data product, which should be producible based on this study without further changes

to the method. The comparison between MODIS PIC and the GOME-2 coccolithophore

Chla, also in relation to OC-CCI total Chla product, yielded important results and raised

interesting research questions.

Spatial variability in PIC can be explained to a large extent by presence of living coc-

colithophores. High correlations between GOME-2-derived coccolithophores and MODIS

PIC across the Atlantic and Indian sectors of the GCB indicate that the MODIS PIC
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signal is indeed caused by living coccolithophores over large scales supporting the GCB

hypothesis. Furthermore, temporal variability is different for coccolithophores and PIC.

Coccolithophore phenology can only be roughly inferred from PIC on temporal scales on

the order of months. Examples have been found in the time series analysis, for which

only one persistent coccolithophore bloom would be deduced from MODIS PIC, while the

GOME-2 coccolithophore data set shows two blooms. Differences in the GOME-2 coccol-

ithophore and MODIS PIC time series could be exploited for inferring residence times of

PIC in surface waters. How long PIC remains in surface waters is interesting, because short

PIC turnover times in combination with high particulate organic carbon (POC) turnover

times are postulated to indicate regions of high carbon export (Balch et al., 2007). Gen-

erally, interesting regions and times of the year for further studies on understanding PIC

and coccolithophores in the SO and their remote-sensing can be identified by discrepancies

between PIC and coccolithophore Chla identified in the MODIS-Aqua and GOME-2 data,

respectively. Comparison of GOME-2 coccolithophore product to OC-CCI total Chla also

has further implications. Generally, a high degree of independence was observed between

the two data sets which substantiates the hypothesis that total Chla is not a good estimator

for coccolithophore abundance (Palacz et al., 2013) (in the SO).

Next to PIC and total Chla, GOME-2 coccolithophore Chla can be compared to time

series of environmental conditions such as mixed layer depth, sea surface temperature,

photosynthetically available radiation, surface velocity, and nutrients from other satellite

or model products similar to Sadeghi et al. (2012b) to further understand coccolithophore

phenology, e.g., identify optimal growth conditions. GOME-2 coccolithophore Chla data

offers the potential of studying phenology in the SO over broad spatial scales and seasonal

cycles (spring and summer months) which can not be realized with ship campaigns in

this remote area. From the full GOME-2 A time period, also the influence of climate

oscillations on coccolithophores could be investigated (e.g., as done for diatoms in Soppa

et al., 2016a).

5.5 Conclusion

This study evaluated monitoring capabilities of the GOME-2 sensor for two key PFT in

the Southern Ocean, coccolithophores and diatoms. PhytoDOAS retrieval performance on

GOME-2-measured hyperspectral data was assessed by comparison with PFT products,

total Chla, and PIC from other satellite sensors, as well as in-situ data. The study area

focused on the GCB in the Atlantic and Indian sector for the austral summer in 2010/11

and 2011/12.
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The standard PhytoDOAS approach was extended by implementing corrections which

increased temporal stability and coverage of resulting GOME-2 PFT data sets. A cloud

correction scheme was applied for the first time to oceanic parameters retrieved with

DOAS. It roughly doubled coverage in the often cloud-covered SO and was essential for

investigating PFT spatial distributions over large scales and time series. It is suggested

to use it where necessary also for improving coverage of other PhytoDOAS data sets from

different hyperspectral sensors.

The study focus was shifted to coccolithophores, because the retrieved diatom product

did not show sufficient data quality for, e.g., studying coexistence of the two PFT in the

SO. Although chosen fit settings were similar to previous retrievals on SCIAMACHY data,

results were dissimilar, indicating that sensitivity to exact fit settings and instrumentation

specific spectral features is high.

Identification of coccolithophores works well using PhytoDOAS. The spatial distribution

and temporal evolution of retrieved coccolithophore concentrations generally agree well

with MODIS PIC and does not follow the OC-CCI total Chla signal. Quantification of

coccolithophores using PhytoDOAS in combination with a LUT approach is challenging.

Absolute values of GOME-2 coccolithophore Chla are associated with higher uncertainties

and should be treated especially carefully if total Chla exceeds 1 mg/m3. Quantifying

uncertainties by validation with in-situ data was not feasible due to the lack in in-situ data

quantity and provision of in-situ data in units differing from those retrieved by satellites

as well as due to the comparably poor spatiotemporal resolution of the GOME-2 sensor.

Rough evaluation with in-situ data showed good agreement with GOME-2 coccolithophore

spatial distribution and reasonable coccolithophore Chla on the Patagonian Shelf. Towards

the Indian sector, an overestimation of GOME-2 coccolithophore Chla is observed, possibly

reflecting coccolithophore species diversity in specific absorption (Sadeghi et al., 2012b).

Despite the much coarser spatiotemporal resolution of the GOME-2 coccolithophore data

sets compared to typical ocean color products, this study illustrated its value for answer-

ing important research questions and identifying new areas of research. High agreement

between GOME-2 coccolithophore Chla and MODIS PIC supports the GCB hypothesis

that high-reflecting waters in the SO are associated with living coccolithophores. Just as

interesting are the differences between the two data sets. Temporal variability is generally

larger in GOME-2 coccolithophore Chla than in the MODIS PIC product showing a po-

tential for estimating PIC residence times in surface waters. These results stress the need

for coccolithophore products as uncertainties are introduced when coccolithophore phenol-

ogy is infered from PIC. Support was found in the GOME-2 coccolithophore Chla data

that total Chla is not a good estimator for coccolithophore abundance and spectral-based
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approaches appear therefore more suitable for coccolithophore identification from satellite

data than abundance-based approaches.

Regarding long-term monitoring of coccolithophores in the SO, GOME-2 data sets cover

a long time period, but extension of this time period by merging with other hyperspectral

sensors such as SCIAMACHY might be difficult and require further corrections. Possi-

bilities were discussed for synergistically combining (Losa et al., 2017a) GOME-2 data

with multispectral data to obtain improved data coverage and spatial resolution. As most

promising, the combination with a spectral-based approach applied to multispectral OC

data was identified as well as the assessment of Phaeocystis sp. influence on the data set

by including knowledge on ecological preferences.
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6 Concluding remarks

Main conclusions and applications of the work presented within the main three studies of

this thesis are summarized. The three studies are then combinedly discussed with respect

to the overarching hypotheses of this thesis.

6.1 Summary of main conclusions and applications

The first OC retrievals from the DOAS-type sensors GOME-2, OMI, and TROPOMI in the

blue and/or ultraviolet spectral range were presented based on the Differential Optical Ab-

sorption Spectroscopy method (PhytoDOAS). Filling-in by Vibrational Raman scattering

was successfully identified in backscattered radiances measured by all three sensors (as well

as SCIAMACHY). A diffuse attenuation coefficient (Kd-blue) was derived from VRS for the

blue spectral range (390 to 423 nm). Robust agreement with the operationally-provided

diffuse attenuation coefficient from common OC data sets was found after wavelength-

converting it. Intersensor differences were found for the DOAS-type sensors in terms of

spatial and temporal biases which hamper the merging of data sets from different sensors

and highlight the importance of accurate calibration of level-1 radiances for OC applica-

tions. Derived Kd-blue provides an independent data set based on a completely different

approach as compared to those used on multispectral sensors. In contrast to the multi-

spectral approaches, the PhytoDOAS retrieval uncertainty is lowest for the clearest waters.

Hyperspectral Kd-blue are potentially more accurate here. To substantiate this statement,

extensive validation with in-situ data are needed in the future. At present, such a valida-

tion was not feasible, as the work was limited by existing in-situ data sets and the spatial

resolution of DOAS-type satellite sensors, which was only recently improved.

The first direct derivation of diffuse attenuation coefficients from satellite measurements

in the ultraviolet spectral range was presented in this work. Two novel diffuse attenua-

tion products in the UV for the wavelength ranges 312.5 to 338.5 nm and 356.5 to 390 nm

were shown to have potential based on comparison with field measurements. These Kd

coefficients in the UV can be used to better estimate shortwave radiation penetration and

heat budgets. Comparison of Kd at three shortwave spectral ranges can provide insight
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on CDOM and UV-absorbing phytoplankton pigments. For all VRS retrievals, the light

availability, which is important for estimating primary productivity as well as photodam-

age or other photochemical processes, can also be directly obtained from VRS through a

modified LUT. UV dose rates can be directly inferred without going through a multistep

approach of considering atmosphere, surface and underwater properties separately.

Coccolithophore Chla was successfully retrieved from GOME-2 measurements in the

Southern Ocean by including knowledge on VRS retrievals from the first two studies.

Comparison with other satellite products and field measurements showed that the spatial

distribution and phenology of GOME-2-derived coccolithophore Chla are well represented,

but absolute coccolithophore Chla values are also associated with higher uncertainties.

An overestimation of coccolithophore Chla was identified for most parts of the Atlantic

and Indian sectors. High similarity between GOME-2 coccolithophore Chla and MODIS-

Aqua particulate inorganic carbon was found which strengthens the Great Calcite Belt

hypothesis. Elevated reflectances in the Southern Ocean are indeed caused by living coc-

colithophores. Comparison of the two data sets furthermore showed areas of high and

low PIC residence times; the latter indicate areas of possible high carbon export rates.

GOME-2 coccolithophore Chla showed a high degree of independence from total Chla in

the Southern Ocean, which substantiates the hypothesis that the total chlorophyll-a con-

centration is not a good descriptor for coccolithophore biomass. Retrieved diatom Chla

from GOME-2 revealed to be insufficient in data quality.

6.2 Hypothesis I: OC variables in the blue-green spectral

range can be retrieved from multiple

SCIAMACHY-like satellite sensors

The PhytoDOAS method is generally suitable for retrieving OC variables from SCIAMACHY-

like satellite sensors. The filling-in of Vibrational Raman Scattering was spectrally identi-

fied in backscattered radiances measured by GOME-2, SCIAMACHY, OMI, and TROPOMI.

VRS is highest in clear water regions where underwater light paths are long and many VRS

events occur. The spatial distribution of VRS in the global oceans showed patterns that

closely resemble those of phytoplankton biomass for all sensors. Phytoplankton are the

main driver for underwater light depths in the open ocean. When Chla is low, VRS is high

and vice versa. The amount of VRS can be connected to descriptors of the underwater light

field. The light availability and the diffuse attenuation coefficient around 400 nm had been

successfully derived for SCIAMACHY from VRS data prior to this work. This analysis
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was extended in this thesis from one month to nearly one year of SCIAMACHY data. The

approach was adapted and applied for the first time to GOME-2 and OMI satellite data

for the same time period. The resulting Kd-blue was compared to operationally-provided

Kd at 490 nm from multispectral sensors, which was wavelength-converted before analysis.

Robust agreement was found when the 11-month data sets were gridded to the same spa-

tial resolution and compared on a daily basis. Pearson correlation coefficients were around

0.65 for low Kd values (< 0.15 m−1). Similarly, the method was adapted for TROPOMI.

One month of TROPOMI Kd data were compared to the wavelength-converted Kd from

multispectral sensors and to in-situ data. An even higher correlation coefficient was found

for the comparisons with multispectral data sets for a larger Kd range (< 0.3 m−1), which

was in decent agreement with in-situ data.

With respect to PFT retrieval capabilities of DOAS-type sensors, derived coccolithophore

Chla from GOME-2 backscattered radiances showed robust results for the Atlantic and

Indian sectors of the Southern Ocean. Monthly gridded GOME-2 coccolithophore Chla

showed remarkably high correlations with MODIS-Aqua PIC, a proxy for coccolithophores,

despite the large representation error between the data sets. The time series of GOME-2

coccolithophore Chla for two austral summers showed temporal evolutions that were in

agreement with both MODIS-Aqua PIC and with what is known about coccolithophore

phenology in the Southern Ocean from other studies. GOME-2 coccolithophore Chla was

mostly independent in time and space from total Chla, which provides further confidence

that coccolithophores can be discriminated from other phytoplankton by the PhytoDOAS

method. Identification of diatoms did not work well for the GOME-2 sensor in the Southern

Ocean for the chosen fit settings. A wide range of fit settings was tested on simulated radi-

ances prior to this application, but the fit settings were not exhaustively tested. Sensitivity

of the PhytoDOAS fit with respect to specific settings might be different for fits on actual

satellite data. It is therefore only concluded that diatom fits are more challenging than

coccolithophore fits for the GOME-2 sensor. Spectral channels of OMI and TROPOMI

are shorter. Identified optimal fit windows for coccolithophores are not included. PFT fits

on OMI data have shown promising results and were presented at conferences (see list of

publications at beginning of document), but the conversion of the fit factors to PFT Chla

remained a major issue. PFT retrievals were therefore focused on GOME-2 data and not

further pursued for OMI data in this thesis. This thesis can not conclusively state whether

PFT retrievals of similar quality are possible for OMI and TROPOMI. It is also possible

that only certain PFT are retrievable from certain sensors.

Overall, PhytoDOAS retrievals perform best for open ocean where Chla is only mod-

erately high. Kd-blue retrievals were restricted to sites where Kd < 0.15 m−1 for SCIA-
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MACHY, GOME-2, and OMI and <0.3 m−1 for TROPOMI. These thresholds correspond

to a Chla value of about 2 mg/m3 and 6.5 mg/m3, respectively, in the average open ocean

standard scenario simulated with RTM for a SZA of 40° and a VZA of 0°. For PFT fits,

PhytoDOAS retrieval uncertainty is lowest for a PFT Chla value of about 1 mg/m3, which

is reached for lower PFT Chla, if other PFT are present. Derived PFT Chla in the current

data set for waters with total Chla > 1 mg/m3 need to be treated cautiously, because an

unambiguous assignment of PFT fit factor to PFT Chla concentration via LUT is not

possible at this stage.

Limitations of the PhytoDOAS retrieval were identified for its current state in combi-

nation with signal-to-noise ratios and calibration quality of backscattered radiances from

current DOAS-type sensors. Accurate quantification of OC variables from DOAS-type sen-

sors is a challenge. For instance, a general overestimation of TROPOMI-derived Kd-blue

was observed and of GOME-2 derived coccolithophore Chla. Additionally, even for open

ocean scenes with low PhytoDOAS retrieval uncertainty, a fraction of Kd-blue values were

found to be associated with high uncertainties for all sensors. Two predominant sources of

error were identified: (1) calibration of level 1 radiances and (2) RTM assumptions. Several

temporal and spatial biases were found in the PhytoDOAS-derived data sets, which did

not appear for all sensors, but rather were identified to be sensor-specific. Based on these

results, it is clear that PhytoDOAS retrievals are rather sensitive to instrumental spectral

artifacts introduced by insufficient calibration of the level 1 data. Specific RTM settings

also influence the quality of the results. An average scenario was chosen for determining a

VRS reference spectrum which causes poor fit quality for ocean sites that distinctly differ

from the average condition. Conversion of PhytoDOAS fit factors to physical values using

a LUT introduces additional uncertainty, because assumptions have to be made in the for-

ward model. The dimensionality of the LUT can be increased to account for the influence

of various parameters on the retrieval results, e.g., a parameterization with respect to wind

speed and aerosols can be added, and these variables are then taken from ancillary data

sets. For the shortest wavelengths, ozone concentration had the largest influence on the

retrieval, whereas in the visible, aerosols had the largest influence, followed by the influence

of wind speed. However, some parameters remain unknown, because they underlie high

natural variability, such as the phytoplankton absorption.
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6.3 Hypothesis II: OC variables from multiple

SCIAMACHY-like sensors can be merged to create a

long time series

Retrieved OC variables from multiple DOAS-type sensors showed dissimilarities which im-

pede merging the data sets in their current stage. Sensor-specific biases were found in

space and time. Partial explanations were found for some of these biases. For exam-

ple, the spectral influence of SCIAMACHY’s polarization sensitivity caused a north-south

trend, and the spectral influence of GOME-2’s diffuser structures caused a seasonal trend.

Although these causes were at least partially identified, the biases could not be corrected

fully by modifying the PhytoDOAS fit accordingly. For OMI and TROPOMI, no spe-

cific spectral artifacts caused by instrumentation could be identified. However, results for

these two sensors also showed unexpected behavior, which requires corrections. Biases can

lead to artificial trends in time series created by merging different sensors’ data sets and

therefore ought to be removed beforehand. At this stage, intricate corrections would be

necessary for each sensor. In the third study, for example, multiple corrections steps were

applied to reach sufficient data quality. Such corrections are difficult to develop accurately

if they rely on ancillary data. Analytical corrections, incorporated into the PhytoDOAS fit,

and empirical corrections, based on in-situ data, are optimal. Since analytical corrections

showed only limited success and empirical corrections are not feasible due to both ground

pixel sizes and limitations of in-situ data sets, comparable OC variables from multispectral

sensors were used for corrections in this work. An independent solution is ideal for this

scenario. Improved calibration of level-1 radiances is predicted to make most corrections

redundant.

6.4 Hypothesis III: Ultraviolet-visible bands of

SCIAMACHY-like sensors can be exploited for the

retrieval of novel ultraviolet OC products

Ultraviolet and visible bands of the DOAS-type sensor TROPOMI were successfully ex-

ploited for retrieving new OC variables: two ultraviolet Kd in the spectral ranges 312.5-

338.5 nm and 356.5-390 nm. Within a feasibility study of one month of TROPOMI data,

the quality of the two ultraviolet Kd derived from VRS in the UV-VIS spectral bands

was investigated. Comparison with in-situ data showed promising results. Solar radia-
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tion is lower in the UV than in the visible spectral range, and its attenuation is generally

higher in the atmosphere and for many open ocean conditions. UV radiances measured

by satellites are therefore generally lower. In accordance with reasonable VRS DOAS fit

results in the UV on SCIAMACHY backscattered radiances found prior to this work, it is

concluded that signal-to-noise ratios of TROPOMI are sufficient for accurately detecting

VRS in the wavelength range 349 to 450 nm. Kd can be derived from VRS up to a value

of Kd ≈ 0.3 m−1 with current retrieval settings. Sensitivity analysis showed that the re-

trieval is rather insensitive to the RTM parameterization of, e.g., CDOM, phytoplankton,

and water absorption, which underlie high natural variability or have not been measured

with high accuracy yet. A derivation of OC variables with the PhytoDOAS method in

combination with a LUT approach is therefore possible in the UV. Better knowledge of

UV parameterization can improve the retrieval accuracy, but is not a requirement to be

able to resolve changes in CDOM absorption and UV-absorbing phytoplankton pigment

production, for example. The potential of retrievals on TROPOMI data for ultraviolet Kd

was illustrated here. Further potential is seen for developing an operational retrieval based

on this work to establish new OC products.

6.5 Outlook

This work found general applicability of PhytoDOAS to data from SCIAMACHY-like

sensors for OC retrievals. However, some limitations were identified. In the following

section, some suggestions are made on how to improve the PhytoDOAS fit quality and

overcome some of the existing limitations.

A primary requirement for more accurate OC PhytoDOAS retrievals is an improvement

of calibration of level-1 backscattered radiances. The instrumental influence was observed

to be small for the TROPOMI sensor. One way to move forward would be to concentrate

on the TROPOMI sensor, as the calibration of this sensor is expected to increase in the near

future with the release of the second version of level-1b processor (Ludewig et al., 2020).

The spatial resolution of TROPOMI is the best among the current DOAS-type sensors

for comparison with field measurements. Towed and underway systems, which are actively

improving for in-situ measurements (e.g., Chase et al., 2013; Liu et al., 2019; Bracher et al.,

2020), can further reduce the spatial representation error between satellite ground pixels

and field measurements. Provided that calibration is sufficient, comparison with large in-

situ data sets would enable investigation of the retrieval behavior with respect to physical

instead of instrumental effects. A deeper understanding of the physical processes in the

PhytoDOAS method for different environmental conditions can be obtained. Empirically,
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insight can be gained on how the DOAS-retrieved fit factors relate to the physical variables

under different conditions to check the validity of the LUT. Replacement of RTM-based

LUT by empirically derived LUT could be a strategy in the event that improved calibration

does not lead to a reduced mismatch in fit factor behavior observed on satellite-recorded

and simulated data.

As a next step, the uncertainty in the LUT should be reduced by increasing its di-

mensionality. Increasing the computational effort for a multidimensional LUT is only

worthwhile if the calibration of level-1 radiances is sufficient and the influence of instru-

mental artifacts on the retrieval is reduced. Only then can the parameterization in the

LUT actually mimic the behavior of PhytoDOAS fits on satellite-measured radiances in

dependence of different environmental parameters. From the retrieval sensitivity analysis,

several factors were identified as larger sources of uncertainty (depending on the spectral

range), including wind speed, ozone concentration, and aerosol loading. These variables

could be incorporated in the LUT as a first step. Ancillary data sets taken as input data

require sufficient quality. A first attempt could be to take the data from climatologies,

which are more robust. Further, oceanic absorption coefficients, e.g., CDOM absorption,

could be taken from multispectral OC data to refine the LUT, given that uncertainties of

the ancillary data sets are sufficiently low.

Modifications to the PhytDOAS retrieval could also be tested for reducing the retrieval

uncertainty. The VRS reference spectrum is calculated for a certain Chla and for certain

viewing geometries and environmental parameters, which leads to higher uncertainties in

the DOAS fit the more the satellite scenario differs from the reference scenario. An iterative

approach could be used, similar to DOAS retrievals for SO2 (e.g., Richter, 2009). The VRS

reference spectrum could be adjusted after each iterative step to the approximate Chla

inferred from the VRS fit result. Improving the VRS fit at high Chla may also increase the

Chla range in which PFT Chla can be retrieved unambiguously with the LUT approach

based on the PFT/VRS fit factor ratio. For reducing the spectral mismatch introduced due

to viewing geometries, multiple reference spectra can be calculated to cover the full range

of viewing geometries. Depending on the viewing geometry of each satellite ground pixel,

the suitable VRS reference spectrum can be taken for the fit. Altogether, improvements

to the DOAS retrieval aim at improving the accuracy of retrieved OC variables required

by the user community for, e.g., climate modeling, as formulated in Frouin et al. (2018)

and Sathyendranath et al. (2019).
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171



Scharek, R., Schüller, S. E., Steigenberger, S., Webb, A., and Wolf-Gladrow, D. (2013).

Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the

iron-limited Antarctic Circumpolar Current. Proceedings of the National Academy of

Sciences, 110(51):20633–20638.

Aurin, D., Mannino, A., and Lary, D. (2018). Remote sensing of CDOM, CDOM spectral

slope, and dissolved organic carbon in the global ocean. Applied Sciences, 8:2687.

Austin, R. W. and Petzold, T. J. (1981). The determination of the diffuse attenuation

coefficient of sea water using the Coastal Zone Color Scanner. In Gower, J. F. R.,

editor, Oceanography from Space, pages 239 – 256. Springer US, Boston, MA.

Austin, R. W. and Petzold, T. J. (1986). Spectral dependence of the diffuse attenuation

coefficient of light in ocean waters. Optical Engineering, 25:471–479.

Austin, R. W. and Petzold, T. J. (1990). Spectral dependence of the diffuse attenuation

coefficient of light in ocean waters: a reexamination using new data. In Spinrad, R. W.,

editor, Ocean Optics X, volume 1302, pages 79 – 93. International Society for Optics

and Photonics, SPIE.

Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A., Obolensky, G., and

Hoepffner, N. (2003). Variations in the light absorption coefficients of phytoplankton,

nonalgal particles, and dissolved organic matter in coastal waters around Europe. Jour-

nal of Geophysical Research: Oceans, 108(C7):3211.

Bai, K., Chang, N.-B., Yu, H., and Gao, W. (2016). Statistical bias correction for creating

coherent total ozone record from OMI and OMPS observations. Remote Sensing of

Environment, 182:150–168.

Baker, K. S. and Smith, R. C. (1980). Quasi-Inherent Characteristics Of The Diffuse

Attenuation Coefficient For Irradiance. In Duntley, S. Q., editor, Ocean Optics VI,

volume 0208, pages 60 – 63. International Society for Optics and Photonics, SPIE.

Baker, K. S. and Smith, R. C. (1982). Bio-optical classification and model of natural

waters. Limnology and Oceanography, 27(3):500–509.

Balch, W. M., Kilpatrick, K. A., Holligan, P., Harbour, D., and Fernández, E. (1996). The

1991 coccolithophore bloom in the central North Atlantic. 2. Relating optics to coccolith

concentration. Limnology and Oceanography, 41(8):1684–1696.

172



Balch, W. M., Gordon, H. R., Bowler, B. C., Drapeau, D. T., and Booth, E. S. (2005).

Calcium carbonate measurements in the surface global ocean based on Moderate-

Resolution Imaging Spectroradiometer data. Journal of Geophysical Research: Oceans,

110(C7):C07001.

Balch, W. M., Drapeau, D., Bowler, B., and Booth, E. (2007). Prediction of pelagic

calcification rates using satellite measurements. Deep Sea Research Part II: Topical

Studies in Oceanography, 54(5):478–495.

Balch, W. M., Drapeau, D. T., Bowler, B. C., Lyczskowski, E., Booth, E. S., and Alley,

D. (2011). The contribution of coccolithophores to the optical and inorganic carbon

budgets during the Southern Ocean Gas Exchange Experiment: New evidence in sup-

port of the “Great Calcite Belt” hypothesis. Journal of Geophysical Research: Oceans,

116(C4):C00F06.

Balch, W. M., Bates, N. R., Lam, P. J., Twining, B. S., Rosengard, S. Z., Bowler, B. C.,

Drapeau, D. T., Garley, R., Lubelczyk, L. C., Mitchell, C., and Rauschenberg, S. (2016).

Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical

significance. Global Biogeochemical Cycles, 30(8):1124–1144.

Barnes, R. A. and Holmes, A. W. (1993). Overview of the SeaWiFS ocean sensor. In

Barnes, W. L., editor, Sensor Systems for the Early Earth Observing System Platforms,

volume 1939, pages 224 – 232. International Society for Optics and Photonics, SPIE.

Barnes, W. L. and Salomonson, V. V. (1992). MODIS: a global imaging spectroradiometer

for the Earth Observing System. In Pearson, J. E., editor, Optical Technologies for

Aerospace Sensing: A Critical Review, volume 10269, pages 280 – 302. International

Society for Optics and Photonics, SPIE.

Bartlett, J. S., Voss, K. J., Sathyendranath, S., and Vodacek, A. (1998). Raman scattering

by pure water and seawater. Applied Optics, 37(15):3324–3332.

Basu, S. and Mackey, K. R. M. (2018). Phytoplankton as key mediators of the biological

carbon pump: Their responses to a changing climate. Sustainability, 10(3):869.

Bathmann, U., Scharek, R., Klaas, C., Dubischar, C., and Smetacek, V. (1997). Spring

development of phytoplankton biomass and composition in major water masses of the

Atlantic sector of the Southern Ocean. Deep Sea Research Part II: Topical Studies in

Oceanography, 44(1):51–67.

173



Beaulieu, C., Henson, S. A., Sarmiento, J. L., Dunne, J. P., Doney, S. C., Rykaczewski,

R. R., and Bopp, L. (2013). Factors challenging our ability to detect long-term trends

in ocean chlorophyll. Biogeosciences, 10(4):2711–2724.

Behrens, L. K., Hilboll, A., Richter, A., Peters, E., Alvarado, L. M. A., Kalisz Hedegaard,

A. B., Wittrock, F., Burrows, J. P., and Vrekoussis, M. (2019). Detection of outflow

of formaldehyde and glyoxal from the African continent to the Atlantic Ocean with a

MAX-DOAS instrument. Atmospheric Chemistry and Physics, 19(15):10257–10278.

Bezy, J.-L., Delwart, S., Gourmelon, G., Baudin, G., Bessudo, R., and Sontag, H. (1997).

Medium-resolution imaging spectrometer (MERIS). In Fujisada, H., Calamai, G., and

Sweeting, M. N., editors, Advanced and Next-Generation Satellites II, volume 2957,

pages 31 – 41. International Society for Optics and Photonics, SPIE.

Bidigare, R. R., Ondrusek, M. E., Morrow, J. H., and Kiefer, D. A. (1990). In-vivo

absorption properties of algal pigments. In Spinrad, R. W., editor, Ocean Optics X,

volume 1302, pages 290 – 302. International Society for Optics and Photonics, SPIE.

Bischel, W. K. and Black, G. (1983). Wavelength dependence of Raman scattering cross

sections from 200–600 nm. AIP Conference Proceedings, 100(1):181–187.

Blankenship, R. E. (2002). Photosynthetic Pigments: Structure and Spectroscopy. In

Blankenship, R. E., editor, Molecular Mechanisms of Photosynthesis, chapter 4, pages

42–60. Blackwell Science Ltd, Oxford.

Blum, M., Rozanov, V. V., Burrows, J. P., and Bracher, A. (2012). Coupled ocean-

atmosphere radiative transfer model in the framework of software package SCIA-

TRAN: Selected comparisons to model and satellite data. Advances in Space Research,

49(12):1728–1742.

Bonan, G. B. and Doney, S. C. (2018). Climate, ecosystems, and planetary futures: The

challenge to predict life in Earth system models. Science, 359(6375):eaam8328.

Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V.,
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J. P., Deutschmann, T., Dorf, M., Goutail, F., Grunow, K., Hendrick, F., von Hobe, M.,

Hrechanyy, S., Lichtenberg, G., Pfeilsticker, K., Pommereau, J. P., Van Roozendael, M.,

Stroh, F., and Wagner, T. (2011). BrO vertical distributions from SCIAMACHY limb

measurements: comparison of algorithms and retrieval results. Atmospheric Measure-

ment Techniques, 4(7):1319–1359.

Rozanov, V. V., Rozanov, A. V., Kokhanovsky, A. A., and Burrows, J. P. (2014). Radia-

tive transfer through terrestrial atmosphere and ocean: Software package SCIATRAN.

Journal of Quantitative Spectroscopy and Radiative Transfer, 133:13–71.

201



Rozanov, V. V., Dinter, T., Rozanov, A. V., Wolanin, A., Bracher, A., and Burrows,

J. P. (2017). Radiative transfer modeling through terrestrial atmosphere and ocean ac-

counting for inelastic processes: Software package SCIATRAN. Journal of Quantitative

Spectroscopy and Radiative Transfer, 194:65–85.

Ruddick, K., Neukermans, G., Vanhellemont, Q., and Jolivet, D. (2014). Challenges and

opportunities for geostationary ocean colour remote sensing of regional seas: A review

of recent results. Remote Sensing of Environment, 146:63–76.

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof,

R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr,

A., Ono, T., and Rios, A. F. (2004). The oceanic sink for anthropogenic CO2. Science,

305(5682):367–371.

Sadeghi, A., Dinter, T., Vountas, M., Taylor, B. B., Altenburg-Soppa, M and Peeken, I.,

and Bracher, A. (2012a). Improvement to the PhytoDOAS method for identification of

coccolithophores using hyper-spectral satellite data. Ocean Science, 8(6):1055–1070.

Sadeghi, A., Dinter, T., Vountas, M., Taylor, B., Altenburg-Soppa, M., and Bracher, A.

(2012b). Remote sensing of coccolithophore blooms in selected oceanic regions using the

PhytoDOAS method applied to hyper-spectral satellite data. Biogeosciences, 9(6):2127–

2143.

Saiz-Lopez, A., Plane, J. M. C., and Shillito, J. A. (2004). Bromine oxide in the mid-

latitude marine boundary layer. Geophysical Research Letters, 31(3):L03111.

Salter, I., Lampitt, R. S., Sanders, R., Poulton, A., Kemp, A. E., Boorman, B., Saw, K.,

and Pearce, R. (2007). Estimating carbon, silica and diatom export from a naturally

fertilised phytoplankton bloom in the Southern Ocean using PELAGRA: A novel drifting

sediment trap. Deep Sea Research Part II: Topical Studies in Oceanography, 54(18):2233–

2259.

Sander, R., Keene, W. C., Pszenny, A. A. P., Arimoto, R., Ayers, G. P., Baboukas, E.,

Cainey, J. M., Crutzen, P. J., Duce, R. A., Hönninger, G., Huebert, B. J., Maenhaut,

W., Mihalopoulos, N., Turekian, V. C., and Van Dingenen, R. (2003). Inorganic bromine

in the marine boundary layer: a critical review. Atmospheric Chemistry and Physics,

3(5):1301–1336.

Sathyendranath, S., Platt, T., Caverhill, C. M., Warnock, R. E., and Lewis, M. R. (1989).

202



Remote sensing of oceanic primary production: computations using a spectral model.

Deep Sea Research Part A. Oceanographic Research Papers, 36(3):431–453.

Sathyendranath, S., Gouveia, A. D., Shetye, S. R., Ravindran, P., and Platt, T. (1991).

Biological control of surface temperature in the Arabian Sea. Nature, 349(3):54–56.

Sathyendranath, S. and Platt, T. (1993). Underwater light field and primary produc-

tion: Application to remote sensing. In Barale, V. and Schlittenhardt, P. M., editors,

Ocean Colour: Theory and Applications in a Decade of CZCS Experience, pages 79 –

93. Springer Netherlands, Dordrecht.

Sathyendranath, S. (2011). User Requirements Document, D 1.1, Ocean Colour Climate

Change Initiative – Phase One. Version 1.11. Technical report, European Space Agency.

Sathyendranath, S., Grant, M., Brewin, R. J. W., Brockmann, C., Brotas, V., Chuprin,

A., Doerffer, R., Dowell, M., Farman, A., Groom, S., Jackson, T., Krasemann, H.,

Lavender, S., Martinez Vicente, V., Mazeran, C., Mélin, F., Moore, T. S., Müller,
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den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich

gemacht habe.

Julia Oelker

Bremen, den 29.06.2021


	Abstract
	List of publications
	Introduction
	Motivation
	Hypotheses
	Main studies
	Thesis outline

	Scientific background
	Principle of remote sensing
	Ocean color remote sensing
	Radiometric quantities
	Concept of inherent and apparent optical properties
	Absorption and scattering
	Radiative transfer theory
	Radiative transfer model: SCIATRAN
	Absorption and scattering processes in the atmosphere
	Atmospheric absorption
	Mie and Rayleigh scattering
	Rotational Raman scattering

	Absorption and scattering processes in the ocean
	Liquid water absorption
	Phytoplankton absorption
	NAP absorption
	CDOM absorption
	Liquid water scattering
	Particle scattering

	Inelastic processes
	Phytoplankton fluorescence
	CDOM fluorescence
	Vibrational Raman scattering
	Brillouin scattering

	Differential Optical Absorption Spectroscopy
	Filling-in of Fraunhofer lines

	Atmospheric satellite sensors
	Ocean color satellite sensors
	Measurement principle
	Retrieval principle

	Calibration of optical satellite sensors

	Global diffuse attenuation derived from vibrational Raman scattering detected in hyperspectral backscattered satellite spectra
	Introduction
	Instrumentation and Methods
	Satellite Sensors OMI, SCIAMACHY, and GOME-2
	Vibrational Raman scattering
	Differential Optical Absorption Spectroscopy
	Connection between VRS, light availability, and diffuse attenuation
	Radiative transfer model simulations
	Retrieval sensitivity
	OC-CCI as reference data set

	Results
	Global vibrational Raman scattering DOAS fit
	Agreement between model and satellite data
	Modification of the VRS fit
	Derived global diffuse attenuation coefficients
	Diffuse attenuation coefficient time series

	Discussion
	Correlating cross sections in DOAS
	Implications of DOAS setting modifications
	Restricting diffuse attenuation coefficient data sets
	Spatial and temporal biases in diffuse attenuation coefficients

	Conclusion

	TROPOMI-retrieved underwater light attenuation in three spectral regions: ultraviolet to blue
	Introduction
	Materials and methods
	Data sets
	Multispectral satellite data
	Algorithm
	Sensitivity analysis
	Kd product quality evaluation

	Results
	Discussion
	VRS retrievability
	Ultraviolet Kd product quality
	Blue Kd product quality

	Conclusion

	Potential of GOME-2 for monitoring coccolithophores in the Southern Ocean
	Introduction
	Methods
	Data sets
	PhytoDOAS
	Conversion to PFT Chla
	Viewing zenith angle correction
	Offset correction
	Cloud correction

	Results
	Benefits of cloud correction
	Satellite product comparisons
	In-situ comparison
	Time series

	Discussion
	Diatom identification
	Coccolithophore identification
	Coccolithophore quantification
	Coccolithophore phenology
	Monitoring coccolithophores in the Southern Ocean
	Benefits of GOME-2 coccolithophore Chla data

	Conclusion

	Concluding remarks
	Summary of main conclusions and applications
	Hypothesis I
	Hypothesis II
	Hypothesis III
	Outlook


