
Compressive Sensing based

Dynamic Spectrum Access for

Interference-Networks

Dissertation

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

vorgelegt dem Fachbereich 1 (Physik/Elektrotechnik)

der Universität Bremen

von

Dipl.-Ing. Dennis Wieruch

Tag des öffentlichen Kolloquiums: 25. Juni 2021
Gutachter der Dissertation: Prof. Dr.-Ing. A. Dekorsy

Prof. Dr.-Ing. A. Sezgin
Weitere Prüfer: Prof. Dr. A. Förster

Dr. rer. nat. P. Jung, Guest Prof.

Berlin, August 2021





Vorwort

Diese Arbeit ist meinem Vater gewidmet.
Die vorliegende Dissertation entstand unter anderem während meiner Tä-

tigkeit als wissenschaftlicher Mitarbeiter in der Abteilung Drahtlose Kom-
munikation und Netze am Fraunhofer Heinrich-Hertz-Institut.

Mein besonderer Dank gilt Dr. rer. nat. Peter Jung, der mich nicht nur in
das Forschungsfeld von Compressive Sensing einführte, sondern mich auch
während meiner Forschungsarbeit immer unterstützte, und zum Abschluss
als Prüfer fungierte. Weiterhin gilt mein besonderer Dank Prof. Dr.-Ing.
Armin Dekorsy, der mir ermöglichte im Arbeitsbereich Nachrichtentechnik
an der Universität Bremen als externer Doktorand zu promovieren, und
mir besonders in den letzten Zügen meiner Arbeit durch detailliertes und
konstruktives Feedback zu der jetzt vorliegenden Fassung verhalf.

Außerdem möchte ich auch Prof. Dr.-Ing. Aydin Sezgin von der Ruhr-
Universität Bochum für sein Interesse an meiner Forschungsarbeit und die
Übernahme des Zweitgutachtens danken. Prof. Dr. Anna Förster bin ich für
ihre Tätigkeit als Prüfer verbunden.

Weiterhin möchte ich allen Weggefährten am Fraunhofer HHI sowie im
Arbeitsbereich Nachrichtentechnik an der Universität Bremen für den kon-
struktiven und fachlichen Austausch sowie das freundschaftliche Arbeitsum-
feld danken. Besonders hervorheben möchte ich dabei meinen langjährigen
Kollegen und Freund Bernd Holfeld. Der Austausch und die zahlreichen
fachlichen Diskussionen haben meine Arbeit sehr bereichert.

Abschließend möchte ich meiner gesamten Familie, insbesondere meinen
beiden Kindern Liana und Nevian, meiner Frau Lisa und meiner Mutter,
danken, welche mich immer unterstützt und an mich geglaubt haben. Ohne
deren Unterstützung und Rückhalt wäre ich heute nicht da, wo ich jetzt bin.

Berlin, August 2021

Dennis Wieruch



IV Table of Contents



Contents

Contents VII

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis Structure and Contributions . . . . . . . . . . . . . . 3
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Dynamic Spectrum Access 9
2.1 Overview and Contributions . . . . . . . . . . . . . . . . . . 9
2.2 Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Transmission Model . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Binary Hypothesis Testing . . . . . . . . . . . . . . . . . . . 20

2.5.1 Neyman-Pearson Lemma . . . . . . . . . . . . . . . . 23
2.5.2 Karlin-Rubin Theorem . . . . . . . . . . . . . . . . . 24
2.5.3 Constant False Alarm Rate Property . . . . . . . . . 26

2.6 Signal Detection . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.1 Simple Log-Likelihood Ratio Test . . . . . . . . . . . 32
2.6.2 One-Sided Composite Log-Likelihood Ratio Test . . . 36

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Compressed Sensing 43
3.1 Overview and Contributions . . . . . . . . . . . . . . . . . . 43
3.2 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Recovery Criteria . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Null Space Property . . . . . . . . . . . . . . . . . . . 52
3.4.2 Mutual Coherence . . . . . . . . . . . . . . . . . . . . 54
3.4.3 Restricted Isometry Property . . . . . . . . . . . . . . 54

3.5 Estimation Algorithms . . . . . . . . . . . . . . . . . . . . . 56



VI Table of Contents

3.5.1 Reduced-Rank Least Squares . . . . . . . . . . . . . . 56
3.5.2 Basis Pursuit Denoising . . . . . . . . . . . . . . . . . 61
3.5.3 Orthogonal Matching Pursuit . . . . . . . . . . . . . 64

3.6 Partial Fourier Measurements . . . . . . . . . . . . . . . . . 66
3.6.1 Pilot-Based Channel Estimation . . . . . . . . . . . . 69
3.6.2 Amplitude-Based Channel Estimation . . . . . . . . . 72

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Gray Space Detection 83
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Main Contributions . . . . . . . . . . . . . . . . . . . 83
4.1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Detection Procedure . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Step 1: Energy Detection . . . . . . . . . . . . . . . . 93
4.3.2 Step 2: Amplitude-Based Channel Estimation . . . . 95
4.3.3 Step 3: Log-Likelihood Ratio Test . . . . . . . . . . . 99

4.4 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 105

4.5.1 Receiver Operating Characteristic . . . . . . . . . . . 106
4.5.2 Impact of SNR . . . . . . . . . . . . . . . . . . . . . . 108
4.5.3 Impact of System Load . . . . . . . . . . . . . . . . . 109
4.5.4 Impact of Blocksize . . . . . . . . . . . . . . . . . . . 110
4.5.5 Impact of Threshold Estimation . . . . . . . . . . . . 111

4.6 Practical Channel . . . . . . . . . . . . . . . . . . . . . . . . 114
4.6.1 Measurement Campaign . . . . . . . . . . . . . . . . 114
4.6.2 Representative Channel Models . . . . . . . . . . . . 118
4.6.3 Impact of Channel Model . . . . . . . . . . . . . . . . 121

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Allocation Map Retrieval 125
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1.1 Main Contributions . . . . . . . . . . . . . . . . . . . 125
5.1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2.1 Channel Transfer Function Measurements . . . . . . . 132
5.2.2 Spectral Channel Power Measurements . . . . . . . . 133
5.2.3 General Measurements . . . . . . . . . . . . . . . . . 134

5.3 Combinatorial Complexity . . . . . . . . . . . . . . . . . . . 137
5.4 Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4.1 Unlabeled Sensing . . . . . . . . . . . . . . . . . . . . 143



Table of Contents VII

5.4.2 Related Subproblems . . . . . . . . . . . . . . . . . . 147
5.4.3 Unlabeled Selection Sensing . . . . . . . . . . . . . . 148
5.4.4 Problem of Multiple Selections . . . . . . . . . . . . . 149

5.5 Objective Function . . . . . . . . . . . . . . . . . . . . . . . 150
5.5.1 Exchange of Arbitrary Element . . . . . . . . . . . . 151
5.5.2 Mixing of Sparse Signals . . . . . . . . . . . . . . . . 153
5.5.3 Joint Estimate . . . . . . . . . . . . . . . . . . . . . . 154

5.6 Simulative Analysis . . . . . . . . . . . . . . . . . . . . . . . 155
5.6.1 BPDN . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.6.2 OMP . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.6.3 Noisy Measurements . . . . . . . . . . . . . . . . . . 161
5.6.4 Spectral Channel Power Measurements . . . . . . . . 163

5.7 Structured Allocation Map . . . . . . . . . . . . . . . . . . . 165
5.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6 Summary 175

A Probability Distributions 181
A.1 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . 183
A.2 Complex Normal Distribution . . . . . . . . . . . . . . . . . 185
A.3 Circularly-Symmetric Complex Normal Distribution . . . . . 186
A.4 Chi Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 186
A.5 Rayleigh Distribution . . . . . . . . . . . . . . . . . . . . . . 187
A.6 Chi-Squared Distribution . . . . . . . . . . . . . . . . . . . . 188
A.7 Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . 190
A.8 Non-Central Chi-Squared Distribution . . . . . . . . . . . . . 194
A.9 Scaled Non-Central Chi-Squared Distribution . . . . . . . . . 195

Acronyms 201

Notation 205

List of Symbols 207

Own Publication List 215

Bibliography: Books 219

Bibliography 231

Index 233



VIII Table of Contents



Chapter 1

Introduction

Future wireless information and communications technologies shall address
manifold scenarios and applications. Key drivers behind this diversifica-
tion are especially the vertical industries such as automotive, manufactur-
ing, and energy in areas such as Industrie 4.0, autonomous driving, smart
grid, Internet-of-Things, augmented reality, and Tactile Internet. Due to
the heavy diversification, the requirements on future wireless information
and communications technologies are manifold, comprising different types
of wireless communications such as low-power wide area networks, device–
to-device communications, low-latency communications, as well as ultra-
reliable communications. Moreover, each application demands a different
mix of requirements. Therefore, supporting various devices with diverse
requirements on a single infrastructure is a highly anticipated requirement
for future wireless information and communications technologies.

Current wireless access systems like LTE, WLAN, and ZigBee either
address only individual types of wireless communications or are not
suitable for the special requirements of certain applications [SCF+13;
HWW+16]. In the course of the fifth generation of cellular mobile com-
munications (5G) [ABC+14; 3GP20h] the manifold scenarios and applica-
tions shall be represented by a single communication infrastructure. There-
fore, we need more flexibility in resource allocation to efficiently exploit the
scarce wireless spectrum while supporting the quickly increasing number of
applications. Furthermore, to enable efficient communication especially in
device-to-device applications the signaling overhead has to be reduced.

In the recent two decades flexible radio communication systems have
been studied within the areas of dynamic spectrum access, cognitive ra-
dio [Hay05], and software-defined radio. There, the communication system

https://en.wikipedia.org/wiki/Information_and_communications_technology
https://en.wikipedia.org/wiki/Self-driving_car
https://en.wikipedia.org/wiki/Smart_grid
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Augmented_reality
https://en.wikipedia.org/wiki/LPWAN
https://en.wikipedia.org/wiki/Device-to-device
https://en.wikipedia.org/wiki/Wireless_LAN
https://en.wikipedia.org/wiki/Zigbee
https://en.wikipedia.org/wiki/Cognitive_radio
https://en.wikipedia.org/wiki/Software-defined_radio
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shall adapt itself on the environment by mere observation, and for example
allocate the communication resource accordingly. Furthermore, the applica-
tion of compressed sensing [Don06; CRT06] introduced diverse new methods
to exploit sparse or compressible structure in general and in particular in
wireless communications. More specifically, the wireless channel has com-
pressible features [Mol05], which can be exploited by compressed sensing
approaches.

1.1 Objectives

The objectives of this thesis are the introduction of dynamic spectrum access
schemes, which are enabled by compressed sensing. Moreover, a measure-
ment campaign is described, where practical channel models are obtained
for performance evaluation of the dynamic spectrum access schemes.

In particular, we propose a gray space detection scheme for cognitive radio
system, which detects temporary small fraction of unused resources within
an already occupied primary user spectrum band. While energy detection
is a uniformly most powerful test for mere noise statistics, the gray space
detection method performs a uniformly most powerful one-sided composite
hypothesis test exploiting noise and channel statistics. We will describe the
gray space detection algorithm and give practical implementation consider-
ations, such that gray space detection can also be applied if the channel
statistics are only partially known. To evaluate the performance of gray
space detection, we compare gray space detection with energy detection for
different parameters and channel estimation methods.

Furthermore, we extend the gray space detection scheme considering
multiple active transmitters simultaneously transmitting on orthogonal re-
sources within a given spectrum band. There, we propose an objective
function to solve the combinatorial problem of allocation map retrieval for
frequency-division multiple access signals and show empirically that based
on the objective function a receiver is able to identify the non-adjacent re-
sources belonging to the same transmitter. Subsequently, we describe an
efficient, but suboptimal breadth-first search algorithm, which solves the
allocation map retrieval problem by traversing a decision tree and recon-
structing the resources belonging to the same transmitter. Finally, we show
the reconstruction capability of allocation map retrieval in the presence of
artificial sparse channels as well as practical performance channels.
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1.2 Thesis Structure and Contributions

The results of this thesis have been partially supported by the Ger-
man funded BMBF (Federal Ministry of Education and Research)
projects CoMoRa (16BU1200) and KoI (16KIS0195), the German funded
BMWi (Federal Ministry for Economic Affairs and Energy) project IC4F
(01MA17008) as well as the European Union funded Horizon 2020 project
FANTASTIC-5G (ICT-671660). In the following we will describe the main
contributions of this thesis on chapter basis.

• Chapter 2 will lay the foundation of the wireless communication the-
ory of this thesis, including the sparse wireless channel model and
the transmission model. A strong focus of Chapter 2 is the statisti-
cal hypothesis test for signal detection. There, we derive a uniformly
most powerful test for signal detection with single channel observa-
tions. In particular, we state the simple hypothesis test exploiting the
Neyman-Pearson lemma for mere energy detection, such that a desired
detection or false alarm rate is achieved. Then, we extend statistical
hypothesis test for applications, where the cumulative distribution
function of the observed signal is known. Using the Karlin-Rubin the-
orem we obtain a one-sided composite hypothesis test, where a desired
detection or false alarm rate can be selected to achieve a uniformly
most powerful test. Furthermore for practical usage, we exploit the
Glivenko–Cantelli theorem and derive approximations of the one-sided
composite hypothesis test for empirical cumulative distribution func-
tions. Some of the results on statistical hypothesis tests are published
in [WPJ13; WJW+16b].

• Chapter 3 introduces the fundamentals of compressed sensing, includ-
ing the classical channel estimation approaches of least squares and
reduced-rank least squares as well as the compressed sensing based
channel estimation algorithms of basis pursuit denoising and orthog-
onal matching pursuit. We consider two channel estimation schemes
for partial (random) Fourier measurements: pilot-based channel esti-
mation to retrieve the channel impulse response from channel transfer
function measurements as well as amplitude-based channel estimation
to retrieve the circular autocorrelation of the channel impulse response
from spectral channel power measurements. Based on probability dis-
tributions we derive error bounds for signal recovery for both channel
estimation schemes. In particular, for pilot-based channel estimation
we state the error bound depending on an approximated Gamma dis-
tribution. Furthermore for amplitude-based channel estimation, we
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derive an estimate for the expectation of the measurement error.

• Chapter 4 introduces our gray space detection scheme [WPJ13;
WJW+16b] as well as describes our channel measurement cam-
paign in an industrial environment [HWW+16; HWR+16; WHW16;
DHC+19]. We develop a gray space detection scheme, which exploits
small fractions of unused resources for interweave cognitive radio sys-
tem while one primary user is actively transmitting within the spec-
trum band. The main feature of gray space detection is that it can
cope with frequency-varying wireless channels. In particular, gray
space detection distinguishes inactive resources from frequency fading
while controlling the protection level of the primary user system. Our
gray space detection scheme consists of three steps. In the first step,
we observe the signal from the primary user and estimates a prelim-
inary set of active primary user resources via energy detection. In
the second step, the preliminary set is used to estimate the spectral
channel power from the primary user via amplitude-based channel esti-
mation introduced in the previous Chapter 3. Eventually in the third
step, we perform the log-likelihood ratio tests introduced in Chapter 2
to classify all resources by marking them as gray space or active pri-
mary user resource. Since the uniformly most powerful test is only
applicable with full statistical knowledge of the channel, we derive
two practical thresholds to perform log-likelihood ratio tests on the
available channel statistics. While the the individual energy detec-
tor just uses an individual threshold for each resource based on the
instantaneous channel knowledge, the more sophisticated gray space
test is based on a composite threshold obtained from the empirical
cumulative distribution function of the channel distribution. There,
we analyze the performance deviation of gray space detection via the
individual energy detector as well as via the gray space test towards
the uniformly most powerful test. Furthermore, we analyze the per-
formance of the gray space detection scheme using the different com-
pressed sensing estimators like orthogonal matching pursuit (OMP)
and basis pursuit denoising (BPDN), as well as the classical reduced-
rank least squares (RRLS) method. There, we evaluate the three
amplitude-based channel estimation approaches with regard to SNR,
primary user system load and allocated physical resource blocksize.
To assess the performance of our gray space detection scheme also in
practical scenarios, we conduct a measurement campaign to obtain
channel statistics for representative manufacturing process in factory
automation. In particular, we obtain short-range factory automation
channel models, which are applied on the gray space detection scheme.
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Gray space detection is eventually evaluated regarding our short-range
factory automation channel models as well as the common ITU chan-
nel models. The results of Chapter 4 have been partially published
in [WPJ13; WJW+16b; HWW+16; HWR+16; WHW16; DHC+19].

• Chapter 5 extends the framework discussed in Chapter 4 to multi-
ple transmitters. While a receiver in Chapter 4 observes the power
spectrum where a single transmitter is present with non-adjacent ac-
tive resources, a receiver in Chapter 5 observes the superposition of
multiple time signals containing non-adjacent, but disjoint active fre-
quency resources. We elaborate this framework for two distinct cases:
(i) channel transfer function measurements observing pilot transmis-
sions, and (ii) spectral channel power measurements observing con-
stant amplitude signals. Subsequently, we state the resulting joint es-
timation problem, where the receiver shall jointly recover all resources
belonging to the same transmitter as well as the channel to each trans-
mitter (channel impulse response for case (i) and circular autocorre-
lation of the CIR for case (ii)). In addition, we show that a part of
the joint estimation problem is related to a problem called unlabeled
sensing. To solve the joint estimation problem we derive an objec-
tive function based on sparsity of the transmission channel, such that
the resources of the same transmitter can be identified. Furthermore,
we propose an ℓ1-norm measure for basis pursuit denoising (BPDN)
and a joint ℓ0-pseudonorm ℓ2-error measure for orthogonal matching
pursuit (OMP). The feasibility of the objective function is shown via
numerical simulations, where we verify the objective function by per-
forming exhaustive search for small combinatorial problems. Based on
these results, we developed an efficient but suboptimal breadth-first
search algorithm, which traverses a decision tree and reconstructs the
resources belonging to the same transmitter. The breadth-first search
algorithm is evaluated via simulations based on artificial sparse chan-
nels as well as on practical performance channels. There, the applied
practical performance channels also include the measured channels
from Chapter 4. In addition, a transmission concept based on the
discussed framework has been filed as an international patent applica-
tion [WJH17]. The results of Chapter 5 have been partially published
in [WJW+15; WJB+15; WJW+16a; WJH17].



6 1 Introduction

1.3 Notation

In this Section, we will give a description of the conventions and the nomen-
clature utilized throughout the thesis. A summary of the notation and a
list of symbols specifying the meaning of each used variable are also given
at the end of the thesis.

The italic lower- and uppercase letters a, A will be used to denote scalars
unless stated otherwise. In addition, lower- and uppercase bold letters a,A
will be used to describe column vectors and matrices, respectively. Index
sets are generally represented by blackboard bold uppercase letters A. A
subscript (·)LS is used to distinguish different variables. Furthermore, a
subscript (·)n can also indicate dependency on a subscript variable.

The notation a ∈ [n, m) can be rewritten to n ≤ a < m, i.e., a can take
all values between n and m excluding the value m. Real and imaginary part
of variable a are denoted by Re{a} and Im{a}, respectively. An element
of matrix A or matrix Aa at row n and column m is denoted by A[n,m]

or (Aa)[n,m], respectively. Thus, a column vector is described with a =

[ a[0] a[1] ... a[N−1] ]⊺. Furthermore, multiple elements of a matrix or vector
can be selected over sets. For example, B = A[A,B] is a submatrix of A,
containing the rows of A marked by the index set A and the columns of A
marked by the index set B. In addition, B = A[· ,B] contains all the rows
of A, but selects only the columns of A marked by the index set B.

Set of natural, real and complex numbers are denoted by N,R and C,
respectively. Moreover, the set with notation R≥b = {a ∈ R : a ≥ b}
contains all real numbers equal or larger than b. A common special case
is R≥0 = {a ∈ R : a ≥ 0}, where the set contains all positive real num-
bers including zero. The dimension of matrices and vectors are generally
described in combination with the domain. Thus, A ∈ CN×M represents a
complex matrix A with N -rows and M–columns. Consequently, a ∈ RN×1

or a ∈ RN represents a real column vector a with N -rows. Furthermore, an
(N × M) matrix contains N -rows and M–columns, but the domain of the
matrix is not explicitly given.

A tilde above a variable (ã) denotes the estimate of the variable (a). A
modified or alternative meaning of a defined variable is expressed by (·)′.
In addition, the superscripts (·)⊺, (·)∗ and (·)H denote the transpose, the
complex conjugate and the conjugate transpose (Hermitian transpose), re-
spectively. The inverse and the pseudoinverse of matrix A is given by A−1

and A+, respectively. The circumflex (̂·) is used to describe the discrete
Fourier transform of a variable. Thus, the discrete Fourier transform of a
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vector is

â[m] =
1√
N

·
N−1∑

n=0

a[n] · exp
(

−i2π
m · n

N

)
. (1.3.1)

The symbols mod, ⊗ and · denote the operator of modulo, Kronecker prod-
uct and matrix product, respectively. Furthermore, the absolute value or
cardinality of a set is obtained by |·|.

The ℓp-norm, quasinorm and ”norm” are defined as

‖a‖p :=





∣∣{n : a[n] 6= 0}
∣∣ p = 0 ”norm”

(∑
n

∣∣a[n]

∣∣p)1/p
p ∈ (0, 1) quasinorm

(∑
n

∣∣a[n]

∣∣p)1/p
p ∈ [1, ∞) norm

max∀n

(∣∣a[n]

∣∣) p = ∞ norm.

(1.3.2)

For better readability at appropriate passages, we will refer to the ℓp-norm
also for p < 1. In addition, we define the support of a vector a by

supp(a) := {n : a[n] 6= 0}. (1.3.3)

Furthermore, the indicator function is defined as

1A(a) :=





1 a ∈ A

0 else.
(1.3.4)

https://en.wikipedia.org/wiki/Indicator_function
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Chapter 2

Dynamic Spectrum Access

2.1 Overview and Contributions

This Chapter will lay the foundation of the wireless communication theory
for the subsequent chapters. Therefore, we discuss the sparse wireless chan-
nel model and introduce our basic transmission model, which will be used
throughout this thesis. Then we will introduce some basics on statistical
hypothesis test and the notion of a uniformly most powerful test. Further-
more, we derive a uniformly most powerful statistical hypothesis test for
signal detection with single sample observations and provide formulas to
obtain desired detection or false alarm rates.

We will start by discussing relevant publications in the field of dynamic
spectrum access and spectrum sensing in Section 2.2. Subsequently, we in-
troduce the multipath channel model in Section 2.3 and state common per-
formance channel models summarized in Table 2.1, which will be used for
performance analysis throughout this thesis. In general, wireless channels
have sparse features, which will be important for the use of the compressed
sensing estimators provided in Section 3.5 as well as for our contributions in
Chapters 4 and 5. Afterwards, we turn our attention to the general system
model of this thesis in Section 2.4. In particular, we consider a cyclic-prefix
based OFDM communication system similar to 3GPP LTE and 3GPP NR.
Next, in Section 2.5 we discuss the statistical hypothesis test and the uni-
formly most powerful test, which is an optimal test to achieve a desired
performance criterion. In particular, we discuss the uniformly most pow-
erful likelihood ratio test established as simple hypothesis test (Neyman-
Pearson lemma in Section 2.5.1) and as one-sided composite hypothesis test
(Karlin-Rubin theorem in Section 2.5.2). Besides the uniformly most pow-
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erful test, we introduce constant false alarm rate property in Section 2.5.3,
which is desired in scenarios where the performance criterion of false alarm
rate shall be achieved independent of the parameters within the family of
distributions. To achieve uniformly most powerful test in our proposed
gray space detection scheme in the later Chapter 4, we extend the statisti-
cal hypothesis test of our publications [WPJ13; WJW+16b] to a uniformly
most powerful one-sided composite hypothesis test by exploiting the Karlin-
Rubin theorem in Section 2.6. Furthermore, we derive the thresholds for the
one-sided composite hypothesis test in Section 2.6.2 depending on the false
alarm rate and on the detection rate in (2.6.36) and in (2.6.43), respectively.
In particular, to enable statistical hypothesis test in practical settings, we
exploit the Glivenko–Cantelli theorem to obtain the empirical CDF from
i.i.d. observations. For sake of completeness, we also present the thresholds
for the simple hypothesis test in Section 2.6.1 depending on the false alarm
rate and on the detection rate in (2.6.23) and in (2.6.25), respectively. The
chapter concludes with a short summary on dynamic spectrum access in
Section 2.7.
Summary of own contributions within this Chapter:
[WPJ13; WJW+16b]

2.2 Spectrum Sensing

The licensed spectrum allocations carried out by regional, national and in-
ternational regulation entities such as ITU experience a slow transformation
to more flexibility. In the past and still currently, licenses are generally as-
signed in the magnitude of several years. However, in the past decades
spectrum sharing schemes like licensed shared access have been evolved, en-
abling new spectrum license procedures [KHB+15; WWH+16]. Especially
regarding 5G, new business models are likely to evolve, which demand for
regional and local licenses. One model under increasing discussion is private
networks [Qua17; PRI+18], which shall enable companies to deploy their
own wireless networks in licensed spectrum. In particular, Germany is push-
ing forward private networks under the term ”campus network” for usage in
wide variety of industries [BMW20]. First trials on private networks have
been conducted by network operators like the Deutsche Telekom [Deu18].
Nevertheless, the majority of the licensed spectrum is still fixed and in-
vestigations have shown its sparse utilization [VMB+10]. Thus, spectrum
sensing will be an important technology component of future inter-network
optimization for distinct private networks.

To increase the utilization of the licensed, but marginally exploited spec-
trum bands, tremendous research has been conducted in the field of cogni-
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tive radio [Hay05] and dynamic spectrum access (DSA) [GJM+09; YA09].
Spectrum sensing has been one key technology to enable cognitive radio
systems [Hay05]. The research was mainly driven by exploiting unused
spectrum bands of the so called white spaces at certain time and location,
which are an outcome of the underutilized spectrum. The classical spec-
trum sensing scheme of energy detection has been introduced by Urkowitz
in 1967 [Urk67]. Classical energy detection indicates based on power thresh-
old whether an observed spectrum band is occupied or empty. In particular,
the proposed scheme of Urkowitz exploits the central limit theorem using
the sum of i.i.d. random variables. A good introduction on classical energy
detection can be found in [ATJ14]. Although the first paper was already
published in the late 1960s, the major research on spectrum sensing has
been done in the last two decades, leading to a large number of publica-
tions [YA09; SNW+13]. Spectrum sensing can be broadly divided into
narrowband and wideband spectrum sensing. While the studies on spec-
trum sensing mainly focused on narrowband signals at the beginning of the
last decade [YA09], wideband spectrum sensing became the major focus in
recent years [SNW+13]. Besides the classical energy detection, other spec-
trum sensing approaches can be summarized in the group of cyclostationary
as well as feature detection [YA09].

While the term white space is generally used for unoccupied spectrum
bands (in wideband as well as narrowband spectrum sensing), the term
gray space refers to a temporary unused small fraction of spectrum within
an already occupied spectrum band. A similar terminology for gray space
is introduced in [Sar12; Peh13]. where they also present and discuss differ-
ent scenarios regarding gray spaces. In particular, they list radar systems
as well as (cellular) mobile communication systems as primary user system,
which is not fully exploiting the time-frequency resources. However, Saruthi-
rathanaworakun and Peha do not consider spectrum sensing, but spectrum
sharing mechanism to exploit the gray spaces.

Spectrum sensing schemes on gray spaces would permit further exploita-
tion of the scarce spectrum, which is not fully utilized by an existing wire-
less system. Even though spectrum sensing for narrowband signals has
been studied intensively, the most of them address only white spaces. Fur-
thermore, the most spectrum sensing application make extensive use of the
central limit theorem and the Wilks theorem [Wil38], where the sensing de-
cisions are based on averaging over multiple samples. However, in the case
of observations with just single samples the central limit theorem or the
Wilks theorem cannot be exploited. Therefore, we will study in Sections 2.5
and 2.6 spectrum sensing in the case where the central limit theorem and
the Wilks theorem cannot be applied, which will be used later on in our
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proposed gray space detection scheme in Chapter 4. For classical energy
detection, some performance evaluations have already been conducted by
Digiham et al. [DAS07] under fading channels, which are also applicable for
gray spaces as well as single (complex) samples.

Even though wideband spectrum sensing is not the focus of this thesis,
we discuss some relevant approaches like edge detection and Haar wavelets
applied in wideband spectrum sensing. In the classical signal models that
operate on Nyquist rate, wideband spectrum sensing is not feasible in practi-
cal systems due to the enormous hardware requirements. However, through
the advances in compressed sensing [Don06; CRT06] (see Chapter 3) and
sub-Nyquist sampling [VB01; WP11], the application of wideband spectrum
sensing became practical. Sub-Nyquist sampling exploits the fact, that the
reconstruction of multiband signals within a wideband spectrum is possi-
ble at Landau rate [Lan67a], which can be much smaller than the Nyquist
rate. Tian and Giannakis [TG06; TG07a] proposed a wideband spectrum
sensing scheme based on sub-Nyquist sampling. The sparse spectrum occu-
pation is obtained through edge detection, which identifies the boundaries of
piecewise smooth and almost flat power spectral density within a wideband
spectrum. Recently, Beck et al. [BBD19] presented a practical approach for
wideband spectrum sensing via edge detection. Further methods based on
the compressed sensing framework have been proposed for spectrum sens-
ing on wideband signals, e.g. multi-coset sampling and multirate wideband
sampling [SNW+13]. As an alternative to the Fourier basis used in [TG07a],
Haar wavelets were recently proposed as sparsity basis [EO15]. While the
Fourier basis assumes sparse spectrum utilization, Haar wavelets are inde-
pendent of the spectrum sparsity and directly exploit the edges between
spectrum bands. Consequently, Haar wavelets lead to superior performance
in strong utilized spectrum in comparison to [TG07a].

The techniques of edge detection as well as Haar wavelets are addressing
similar problems as the ones discussed in our approaches in Chapters 4
and 5. However, a major drawback is that edge detection as well as Haar
wavelets merely consider constant functions with some additive noise1. but
not general smooth functions like sine waves, Therefore, since propagation
channels are in general not flat, these techniques are not applicable for
narrowband spectrum sensing. In the subsequent Section 2.3 we discuss the
properties and characteristics of propagation channels.

1The noise within the power spectrum is in general following the Gamma distribution.

https://en.wikipedia.org/wiki/Constant_function
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Figure 2.1: The multipath propagation channel model induced by obstacles of
the environment and object velocity.

2.3 Channel Models

A signal emitted from a source via electromagnetic waves traverses through
a wireless medium to its destination. The paths of the signal lead through an
environment consisting of various obstacles, where each obstacle alters the
signal and its direction. In particular, diffraction, reflection and scattering
of obstacles as well as the velocity of obstacles, source and destination are
the major effects on the signal. Consequently, multiple altered copies of the
signal arrive at the destination over different ways at different times. These
effects are described by channels following the multipath propagation model,
or multipath channel model. A visual illustration of multipath propagation
and the effects caused by the obstacle is shown in Figure 2.1.

In general, the paths can be distinguished into line-of-sight and non-line-
of-sight. While the line-of-sight path represents the direct path of the signal
from the transmitter to the receiver (see Figure 2.1), non-line-of-sight paths
are traversing over obstacles. In general, if a dominant line-of-sight path
is present, a propagation channel exhibits Rice fading, which is described
by the Rice distribution, see Appendix A.9. In contrast to Rice fading
with non-zero mean, Rayleigh fading with zero mean occurs in propagation
channels, where mere non-line-of-sight paths are present or the line-of-sight
path is not dominant. More on the practical distinction between line-of-
sight and non-line-of-sight propagation channels will be discussed later in
Section 4.6.2. Rayleigh fading is described by the Rayleigh distribution, see
Appendix A.5.

Due to the continuous altering nature of the environment, a multipath

https://en.wikipedia.org/wiki/Rician_fading
https://en.wikipedia.org/wiki/Rice_distribution
https://en.wikipedia.org/wiki/Rayleigh_fading
https://en.wikipedia.org/wiki/Rayleigh_distribution
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channel is modeled by a linear time-variant system. In particular, the
wide-sense stationary uncorrelated scatterers (WSSUS) model introduced
by Bello in 1963 [Bel63] is assumed for multipath channels. There, the wide-
sense stationary property describes that the first and second order statistics
of the channel are time invariant. In addition, the uncorrelated scatterers
property defines the statistical independence of the multipath components.
Further explanation can also be found in [Mol11, Chapter 6.4].

A channel of a linear time-variant system is described by its continuous
channel impulse response h (t, τ), which is a function of the absolute time t
and delay τ of multipath components. In general, wireless channels are
varying slowly in time. Thus, on appropriate small time scales a channel
can be modeled as linear time-invariant (LTI), which is commonly also re-
ferred to as a block-fading channel. Within this block the channel impulse
response (CIR) is fully described by h (τ), which is a function of the de-
lay τ of multipath components only. The excess delay τED describes the
time span between the first and the last multipath component. However,
in reality the last multipath component is not well defined. Therefore, the
excess delay commonly describes the time span starting from the first mul-
tipath component in which a high percentage of the complete signal energy
is present

τED∫

0

|h (τ)|2 dτ ≫
∞∫

τED

|h (τ)|2 dτ. (2.3.1)

Thus, given a ratio ρed between zero and one, the excess delay is calculated
by

τED := argmin
τED


ρed <

τED∫
0

|h (τ)|2 dτ

∞∫
0

|h (τ)|2 dτ


. (2.3.2)

Since the actual CIR highly depends on the environment, different channel
models are applied for realistic representation of the natural environment.
For link level simulations performance channel models are commonly used,
representing urban, rural and indoor environments with different veloci-
ties. There, the model is usually described by the tapped delay line model,
where the average power and the corresponding delay is given for each mul-
tipath. From these parameters independent realizations of a block-fading
channel can be generated, so that for each realization n, different CIR func-
tions h (n, τ) can be derived. Usually, the power of the CIR realizations are
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Model
Number of r.m.s. Delay Excess
Multipaths Spread [ns] Delay [ns]

EPA 7 43 410

EVA 9 357 2510

IOA 6 37 310

Table 2.1: Summary of ITU and 3GPP channel model parameters.

normalized, such that the expectation of the accumulated power is one

E

[
∑

τ

|h (n, τ)|2
]

= 1 ∀n. (2.3.3)

Performance channel models are mainly used for performance evaluation,
comparing different link level simulations. Some of the most common per-
formance channel models are

• ITU indoor office A (IOA) [ITU97, Chapter 1.2.2],

• 3GPP extended pedestrian A (EPA) [3GP20e, Chapter B.2.1] and

• 3GPP extended vehicular A (EVA) [3GP20e, Chapter B.2.1],

which will be used throughout this thesis. While EPA and EVA are used by
3GPP [3GP20e], IOA was defined in 1997 by ITU in [ITU97]. In particular,
the 3GPP channel models EPA and EVA represent extended versions for
20 MHz bandwidth [SMF05] of the preliminary standardized ITU channel
models pedestrian A and vehicular A with 5 MHz bandwidth [ITU97, Chap-
ter 1.2.2]. EPA and EVA represent the extended channel models. While
the 3GPP EPA channel model represents an outdoor scenario for pedestrian
users, the 3GPP EVA represents an outdoor environment for vehicular de-
vices. In addition, the ITU IOA models an indoor office scenario. The major
difference between the three channel models lies within the number of mul-
tipath components, the distribution of its components and the excess delay.
While IOA has the smallest excess delay, EPA suffers from a slightly larger
excess delay. The largest excess delay is caused by EVA, which is more
than a factor of six in relation to EPA. The parameters are summarized
in Table 2.1. In addition, the power delay profile is visualized in Figure 2.2.

Since the channel transfer function is the Fourier transform of the CIR,
the delay and values of the multipath components have direct affect on
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Figure 2.2: The power delay profile of the channel models ITU IOA [ITU97],
3GPP EPA [3GP20e] and 3GPP EVA [3GP20e].

Figure 2.3: Examples for the spectral channel power of the models ITU
IOA [ITU97], 3GPP extended pedestrian A (EPA) [3GP20e] and
3GPP extended vehicular A (EVA) [3GP20e].

it. While the vast EVA model exhibits several frequency fades, the shorter
EPA and IOA models consist only of a few fading holes. An example for
the different fading characteristics of the models is visualized in Figure 2.3,
where the power of the channel transfer function is shown. Note, that the
spectral channel power in Figure 2.3 is symmetric, because the examples
are generated by setting the CIR merely to real values. In the following we
will refer to the spectral channel power to describe the power of the channel
transfer function. In particular, the spectral channel power describes the
power spectral density of the CIR.

In real environments, the actual CIR as well as its transforms have to be
estimated from measurements of the wireless channel, where the measure-
ments are generally acquired through transmission of a-priori known signals.
The estimation methods in general as well as the estimation of the wireless
channel from measurements will be discussed later in Section 3.5 and Sec-
tion 3.6, respectively. In addition, we describe the process to acquire the
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CIR from a measurement campaign in Section 4.6.
Furthermore, a significant consequence of the multipath propagation

model is that few multipath components are sufficient to describe the wire-
less channel in various environments. Therefore, sparsity (or compressibility
as introduced in Section 3.2) is natural induced by multipath propagation.
The effect is also validated in many measurement campaigns [Mol05]. Thus,
a sparse channel model for the time domain representation of the channel
can be used. Because this is an important aspect of this thesis, it will be
further discussed in Chapter 3.

2.4 Transmission Model

Throughout this thesis, we consider a multi-carrier system like the cyclic-
prefix (CP) based orthogonal frequency-division multiplexing (OFDM) com-
munication system similar to 3GPP LTE [3GP20a] and NR [3GP20h].
There, one subcarrier describes the frequency modulated version of the com-
plex frequency sample û[f ]

2 at OFDM frequency or subcarrier index f ∈ F

within the contiguous band F := {0, . . . , NDFT − 1}, where NDFT denotes
the size of the discrete Fourier transform (DFT) matrix. Furthermore, we
denote one resource as one complex frequency sample û[f ] ∈ P within the
contiguous transmission band P ⊆ F, cf. Figure 2.4. Thus, subcarriers
are only available as resources within the transmission band P, whereby
the remaining subcarriers are set to zero. Hence, given the time sample
indices t ∈ {0, . . . , NDFT − 1} the discrete samples of an OFDM time
domain symbol are obtained by

u[t] =
1√

NDFT

∑

f∈P

exp

(
i2π

ft

NDFT

)
û[f ], (2.4.1)

which are generated via the inverse DFT from the complex frequency sam-
ple û ∈ C

NDFT . If the resource set P is chosen with |P| < NDFT, then the
transmission vector u ∈ CNDFT is an oversampled version of the frequency
vector û[P] = {û[f ] : f ∈ P}. The transmission signal is considered solely
in the discrete domain without transmit filters like the raised cosine filter.
Therefore, we operate with time sample u[t] with the time index t and fre-
quency sample û[f ] with the frequency index or subcarrier f .

For our analysis it is sufficient to operate on single OFDM symbols with
CP. Therefore, we do not require an indexing of OFDM symbols and the
column vectors u as well as û refer to this single OFDM symbol.

2
û[f ] denotes the element at index f of vector û
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Figure 2.4: Example for transmit power allocation in OFDM based communica-
tion system.

Since our proposed approaches in Chapters 4 and 5 heavily rely on trans-
mit signals with constant amplitudes in the frequency domain like frequency
symbols with phase-shift keying, an important aspect is transmit power con-
trol and allocation in general OFDM based communication system. Power
control and allocation are dynamically applied at the transmitter to increase
power efficiency of the transmitter, to cope with the near-far problem and
to harden sensitive control information. In general, these procedures are ap-
plied for the complete transmission band or for predefined sets of subcarriers.
An example is visualized in Figure 2.4. In particular, 3GPP LTE describes
simple power allocation for the base station [3GP20d, Chapter 5.2] and
more advanced schemes of power control/allocation for the mobile device
called user equipment [3GP20d, Chapter 5.1]. Moreover, 3GPP NR [3GP20f;
3GP20g] enhances power control/allocation further for 5G. However, power
control/allocation is still applied only for predefined sets of subcarriers. Ad-
justing the power for each resource individually would require tremendous
signal overhead, since receiver signal processing like demodulator and equal-
izer needs knowledge about the relative power level for correct operation.
Consequently, the structure imprinted by the frequency samples û is also
kept after power control/allocation. Thus in general, phase-shift keying will
be still transmitted with constant amplitude and (2.4.1) is valid for the
transmitted signal.

To reduce signal overhead, transmission resources are aggregated to phys-
ical resource blocks (PRBs). In most OFDM communication modes, a PRB
contains consecutive subcarriers over multiple OFDM symbols. However,
in some modes (e.g. 3GPP single-carrier frequency-division multiple access
(SC-FDMA)) the aggregated subcarriers of a PRB are distributed among the
transmission band P. In the default mode of 3GPP LTE (normal CP), one
PRB aggregates 12 consecutive resources over 7 OFDM symbols [3GP20c],
which also represents the smallest unit used for scheduling. Here, we will
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refer to a PRB containing consecutive subcarriers unless it is stated oth-
erwise. Since we just consider single OFDM symbols the aggregation of
OFDM symbols over time is mostly irrelevant for this thesis. We will use the
term blocksize NB to denote the number of aggregated subcarriers within
one PRB.

The transmission signal is altered by a block-fading channel and additive
white Gaussian noise. Therefore, in the continuous domain, the received
signal w can be expressed as the convolution of the transmitted signal u
with the continuous time-invariant channel impulse response h by

w = h⊛u + e, (2.4.2)

where ⊛ denotes the convolution operator. In general, we can expect the
CIR h to be sparse, which is a realistic assumption as pointed out in [Mol05]
and will be further discussed in Chapter 3. We assume that the receiver
is frequency synchronized with the transmitter on a subcarrier basis, but
asynchronous in time with an unknown time offset τoffset ∈ R. To reflect
the time inaccuracy at the receiver, the function h is the convolution of the
wireless channel hw and the Dirac delta function δ(·) with the unknown
time offset

h(τ) := hw(τ − τoffset) = δ(τ − τoffset)⊛hw(τ) . (2.4.3)

The maximum excess delay τED,max of the CIR of the wireless channel hw

is assumed to be smaller than the cyclic-prefix length NCP. Furthermore,
we assume that unknown time offset is

τoffset ∈ [0, NCP − τED,max). (2.4.4)

Thus, the resulting CIR function h remains within the cyclic-prefix of
length NCP. Consequently, the asynchronicity for an OFDM system can
be considered in the frequency domain by using the Fourier transform

∞∫

−∞

exp

(
−i2πa

b

NDFT

)
δ(b − τoffset) da = exp

(
−i2πa

τoffset

NDFT

)
. (2.4.5)

Therefore, as long as the unknown time offset τoffset stay within the bounds
of (2.4.4) we can permit time asynchronicity of the receiver. Thus, the
function h models both, the wireless channel hw and the time asynchronicity
by an unknown time offset τoffset.

Now we turn back to the discrete domain. There, the received time
samples of (2.4.2) are expressed as the vector w ∈ CNDFT calculated by the
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truncated discrete convolution

w[t] = n[t] +
NCP∑

τ=0

h[τ ] · u[(t−τ) mod NDFT] (2.4.6)

with t ∈ {0, . . . , NDFT − 1}, where h ∈ CNCP+1 is the block-fading channel
and n ∈ CNDFT represents the additive white Gaussian noise vector. The
modulo operation mod on the transmit vector u from (2.4.1) extends the
transmit vector by the CP. The additive white Gaussian noise vector n

is circularly-symmetric complex normal distributed n[t] ∼ fCN
(
· ; 0, σ2

n

)
.

Exploiting the property of an OFDM system [Ste11, Page 131], the received
frequency samples through an NDFT-point DFT can be written in scalar
notation as [Ste11, Equation 5.8]

ŵ[f ] = ĥ[f ]û[f ] + n̂[f ] , f ∈ P, (2.4.7)

or as matrix notation
ŵ = diag

(
ĥ
)
û + n̂, (2.4.8)

where ŵ, ĥ, û, n̂ ∈ CNDFT. Consequently, the signal-to-noise ratio (SNR) in
dB of a received signal is calculated by the ratio of expectations with

SNRdB = 20 · log10

(
E
[∥∥∥diag

(
ĥ
)
û

∥∥∥
2

])
− 20 · log10(E[‖n̂‖2]) , (2.4.9)

where n̂[f ] is set to zero for f ∈ F\P so that noise is considered only at active
resource indices. Furthermore, the instantaneous SNR is directly calculated
from a received OFDM symbol and is given by

SNRdB, Instant = 20 · log10

(∥∥∥diag
(
ĥ
)
û

∥∥∥
2

)
− 20 · log10(‖n̂‖2) . (2.4.10)

2.5 Binary Hypothesis Testing

A statistical hypothesis test is applied in decision theory to obtain a decision
based on the probability distributions of the underlying process. Lehmann
and Romano [LR05] provide a good overview on this topic and will be used
as a reference in the following sections. Here, we will focus on probabil-
ity density functions (PDFs) described in Appendix A, which restrict the
probability distributions to continuous functions. Thus, its cumulative dis-
tribution functions are absolute continuous.

In this Section we will provide the definitions of binary hypothesis tests
and in particular the log-likelihood ratio test. There, we consider two classes

https://en.wikipedia.org/wiki/Probability_distribution#Continuous_probability_distribution
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Absolute_continuity#Absolute_continuity_of_functions
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of tests: (i) the simple hypothesis test and (ii) the composite hypothesis
test. For these two test classes we will state the requirement to achieve a
uniformly most powerful (UMP) test, which is highly desirable since a UMP
test is optimal for the given PDFs. Furthermore, we will also introduce
the property of constant false alarm rate, which may be easier achieved in
scenario with unknown or partially known distributions.

A special case of statistical hypothesis tests is the binary hypothesis test,
where a null hypothesis H0 is tested against an alternative hypothesis H1.
The random variable Y of each of these hypotheses follows a PDF fY (· ;θ),
where θ ∈ Θ is a parameter vector3 from a real-valued parameter set Θ.
Furthermore, the parameter set Θ0 ⊂ Θ is defined as a proper subset of
Θ. Consequently, Θ1 = Θ \ Θ0 defines the complementary set of Θ0. Thus,
given

∣∣Θn∈{0,1}
∣∣ = 1 the binary hypotheses are described by

H0 : Y ∼ fY (· ;θ) ,θ ∈ Θ0, (2.5.1)

H1 : Y ∼ fY (· ;θ) ,θ ∈ Θ1. (2.5.2)

However, in general one hypothesis does not consist of an exact PDF, but
a family of PDFs. Therefore, we introduce family of PDFs described by

fY

(
· ;θ[1] ∈ Θn,1, . . . ,θ[M ] ∈ Θn,M

)
:= {fY (· ;θ) : θ ∈ Θn} (2.5.3)

with n ∈ {0, 1}. There, θ[m] denotes a scalar parameter from the scalar
parameter set Θn,M of hypothesis n. An example for a family of PDFs can
be given by the normal distribution fN ,Y

(
· ; µY > 1, σ2

Y ∈ {1, 2}
)
, where the

family consists of all normal distribution with mean parameter larger than
one and variance parameter of one and two. For better readability, we will
shorten the notation for family of PDFs at appropriate points by

fY,Θn
(·) := {fY (· ;θ) : θ ∈ Θn}, n ∈ {0, 1}. (2.5.4)

Thus, we can describe the binary hypotheses with families of PDFs by

H0 : Y ∼ fY,Θ0(·) , (2.5.5)

H1 : Y ∼ fY,Θ1(·) . (2.5.6)

Since, the sets Θ0 and Θ1 are complementary, the two hypotheses H0 and H1

follow different PDFs. In general, only few parameters of the parameter vec-
tor θ differ between the PDFs of the hypotheses. To differentiate between

3An example parameter vector is θ = [ 0 1 ]⊺, which corresponds to µ = 0 and σ2 = 1
if the normal distribution fN (·;θ) is selected.
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Choice

Event
H0 is true H1 is true

correct decision type 2 error

accept H0 (detection) (false alarm)

Pd = P(Λ < ρ | H0) Pfa = P(Λ < ρ | H1)

type 1 error correct decision

reject H0 (missed detection) (no detection)

1 − Pd = P(Λ ≥ ρ | H0) 1 − Pfa = P(Λ ≥ ρ | H1)

Table 2.2: Terminology of binary hypothesis testing, where Λ describes the log-
likelihood ratio function as defined in (2.5.9) and (2.5.14).

parameters of direct interest and not of direct interest for the hypothesis test,
we introduce the term nuisance parameter. Thus, parameters required, but
not of immediate interest for the hypothesis test are called nuisance parame-
ters [CB01, Page 378]. In the case of a hypothesis test of fN ,Y

(
·; µY = 0, σ2

Y

)

against fN ,Y

(
·; µY = 1, σ2

Y

)
, the parameter σ2

Y is the nuisance parameter.
The decision between two hypotheses results in four cases, as depicted

in Table 2.2. There, two cases represent the true state, where the underlying
event is correctly accepted. The other two cases denote the incorrect state,
namely type 1 and type 2 error, where the underlying event is falsely rejected.
Note, that the definition of type 1 and type 2 error may differ in literature,
since it depends on the considered scenario. As performance metrics of the
binary hypothesis test, the detection probability Pd (also called detection
rate) and the probability of false alarm Pfa (also called false alarm rate)
are commonly used

Pd := P(accept H0 | H0 is true), (2.5.7)

Pfa := P(accept H0 | H1 is true). (2.5.8)

A widely used measure to describe the performance of statistical hypothesis
tests is the receiver operating characteristic (ROC), where the false alarm
rate versus the detection rate is plotted. More details on ROCs are found
in [Tre01, Chapter 2.2.2].

In general, a hypothesis is classified as simple or composite [LR05, Chap-
ter 3.2]. For a simple hypothesis the parameter vector of the underlying
probability density function fY (· ;θ) is completely specified. In particular,

https://en.wikipedia.org/wiki/Nuisance_parameter
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θ ∈ Θ with the parameter set Θ = {θ} consisting of one element only.
Thus, the simple hypothesis has only one state and the exact probability
density function is known. One example PDF of the simple hypothesis is
the Gamma distribution of (A.7.19) with fΓ

(
·; σ2 = 1, 1

)
.

In contrast to that, a composite hypothesis follows a family of probability
density functions fY,Θ(·). In particular, the parameter vector θ ∈ Θ, where
the parameter set Θ consists of multiple elements |Θ| > 1. Thus, a compos-
ite hypothesis consists of multiple states and therefore, the exact probability
density function of a composite hypothesis is in general unknown.

Consequently, a simple hypothesis test decides between simple hypotheses
only, while a composite hypothesis test performs a decision, where at least
one hypothesis is a composite hypothesis.

A statistical hypothesis test shall maximize the detection probability Pd

for a given probability of false alarm Pfa. The UMP test defines a statistical
hypothesis test, which achieves the highest detection probability Pd among
all possible tests for any given false alarm rate Pfa. However, UMP tests
do not exist in general. Even for the class of binary hypothesis tests, UMP
tests exist only for some distinct cases.

The theorems in the following sub-sections, the Neyman-Pearson lemma
in Section 2.5.1 as well as the Karlin-Rubin theorem in Section 2.5.2, will
provide the cases as well as the requirements to obtain a UMP test and are
valid for probability density functions in general.

2.5.1 Neyman-Pearson Lemma

The Neyman-Pearson lemma described for example in [LR05, Theo-
rem 3.2.1] and [CB01, Theorem 8.3.12] states that the uniformly most pow-
erful binary simple hypotheses test is the likelihood ratio test. The Neyman-
Pearson lemma was initially published by Jerzy Neyman and Egon Pearson
in 1933 [NP33].

A likelihood ratio test is based on the likelihood ratio and accepts or
rejects the null hypothesis depending on a threshold, which is chosen so
that a given false alarm rate is met. The likelihood ratio is defined as
a ratio of two likelihood functions or in our case two probability density
functions. Usually, the natural logarithm of the likelihood ratio is used,
namely the log-likelihood ratio. Consequently, a log-likelihood ratio test is
based on the log-likelihood ratio.

For simple binary hypothesis test we have |Θn| = 1 for n ∈ {0, 1}. Thus,
the PDF of each hypothesis is exactly known. Given some measurement y
the log-likelihood ratio function4 of two probability density functions is

4 Note that in the thesis the LLR is defined inverse to the general literature.
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defined by

Λ(y,θ0,θ1) := ln

(
fY (y;θ1)

fY (y;θ0)

)
,θn ∈ Θn (2.5.9)

with n ∈ {0, 1}. There, the PDF with parameter vector θ0 represents the
null hypothesis H0, see (2.5.1). Consequently, θ1 reflects the alternative
hypothesis H1, see (2.5.2).

The log-likelihood ratio test based on log-likelihood ratio function is equiv-
alent to the likelihood ratio test, since maximizing the log-likelihood ratio
is equivalent to maximizing the likelihood ratio. In particular, the natural
logarithm ln(·) is a strictly increasing function5 and the monotonic behav-
ior of the likelihood ratio is preserved for the log-likelihood ratio (LLR).
Thus, the log-likelihood ratio test of two simple hypotheses fulfills the re-
quirements of the Neyman-Pearson lemma. Consequently, the decision on
accepting or rejecting the null hypothesis H0 given measurement y results
from the log-likelihood ratio test by

Λ(y,θ0,θ1) < ρ : accept H0, (2.5.10)

Λ(y,θ0,θ1) ≥ ρ : reject H0. (2.5.11)

The threshold ρ is chosen, such that a given false alarm rate Pfa is achieved
for drawing a random variable Y with

ρ = argmax
ρ′

P(Λ(Y,θ0,θ1) < ρ′ | H1) ≤ Pfa. (2.5.12)

There, a threshold ρ is desired, such that P(Λ(Y,θ0,θ1) < ρ | H0)
!
= Pfa.

Inversely, the threshold ρ for a given detection rate Pd can be obtain by

ρ = argmax
ρ′

P(Λ(Y,θ0,θ1) < ρ′ | H0) ≤ Pd. (2.5.13)

2.5.2 Karlin-Rubin Theorem

While the Neyman-Pearson lemma of the last Section 2.5.1 is applicable on
simple hypotheses only, the Karlin-Rubin theorem can also operate on com-
posite hypotheses. Thus, the Karlin-Rubin theorem introduces uniformly
most powerful tests for a broader range of cases.

In contrast to simple hypotheses, composite hypotheses consists of a fam-
ily of probability density functions. Consequently, the log-likelihood ratio
function depends on family of probability density functions and its calcula-
tion is generally not trivial. Therefore, the log-likelihood ratio function of

5The derivative of ln(a) da = 1
a

is strictly positive for a ∈ R>0.

https://en.wikipedia.org/wiki/Monotonic_function
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the composite binary hypothesis test is expressed as a ratio of two families
of probability density functions given the parameter vectors θn ∈ Θn and
the measurement y. At least one of the parameter sets Θn has more than
one element, that means |Θ1| · |Θ2| > 1. Thus, the log-likelihood ratio
function is defined as

Λ(y, Θ0, Θ1) := ln

(
fY,Θ1(y)

fY,Θ0(y)

)
. (2.5.14)

The Karlin-Rubin theorem by Samuel Karlin and Herman Rubin extended
the Neyman-Pearson lemma in 1956 for one-sided (one-tailed) composite
hypothesis tests based on monotone likelihood ratios [KR56]. In partic-
ular, the Karlin-Rubin theorem states that a one-sided binary composite
hypothesis test is uniformly most powerful, if the test can be expressed as a
monotone likelihood ratio function. Below we will introduce one-sided tests
as well as define the monotone likelihood ratio property. More details on
the Karlin-Rubin theorem are given in [CB01, Theorem 8.3.17] and [LR05,
Theorem 3.4.1].

At first let us introduce the one-sided test [CB01, Page 391]. Given a
family of PDFs fY (·; θ ∈ Θ) with a single parameter θ, then a one-sided
hypothesis is present, if the hypothesis is directional. In particular, the
parameter of a one-sided hypothesis is larger than a value, e.g. θ > c, or
smaller than a value, e.g. θ ≤ c. Consequently, we call a test one-sided,
if the tested hypotheses are both one-sided. Note, that testing fY (·; θ = 0)
against fY (·; θ > 0) with θ ∈ R≥0 is also a one-sided test, which will be of
use in the later Section 2.6. The one-sided test holds also for hypothesis
test with PDF fY (·;θ ∈ Θ), where all but one parameter of the parameter
vector θ are nuisance parameters and the parameter of immediate interest
is directional.

Now we turn our attention to the monotone likelihood ratio property. The
monotone likelihood ratio property is present, if

exp(Λ(y0,θ0,θ1)) ≥ exp(Λ(y1,θ0,θ1)) ,

for every y0 > y1, ∀θn ∈ Θn, n ∈ {0, 1}. (2.5.15)

Since a logarithm loga(f(·)) of a real positive function f(·) ∈ R≥0 to a real
positive base a ∈ R≥0 does not change the monotonic behavior of f(·), a
monotone likelihood ratio function is also present, if

Λ(y0,θ0,θ1) ≥ Λ(y1,θ0,θ1) ,

for every y0 > y1, ∀θn ∈ Θn, n ∈ {0, 1}. (2.5.16)

https://en.wikipedia.org/wiki/One-_and_two-tailed_tests
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Furthermore, if the monotone likelihood ratio function is strictly monotone,
then the inverse log-likelihood ratio function exists and is defined as

Λ−1(ρ,θ0,θ1) := max (y ∈ R : ρ ≥ Λ(y,θ0,θ1)). (2.5.17)

Equation (2.5.17) will be of particular use to obtain the UMP test in the
later Section 2.6.2.

Thus, a one-sided composite binary hypothesis test based on a
monotone log-likelihood ratio function fulfills the requirements of the Karlin-
Rubin theorem and is defined as

Λ(y, Θ0, Θ1) < ρ : accept H0, (2.5.18)

Λ(y, Θ0, Θ1) ≥ ρ : reject H0. (2.5.19)

The threshold ρ holds for the given family of probability density functions
and therefore depends on the parameter sets Θ0 as well as Θ1. Note, that
the threshold ρ is a scalar constant and has to hold for all parameter sets.
The threshold ρ is chosen, such that a given false alarm rate Pfa is achieved
with

ρ = argmax
ρ′

P(Λ(Y, Θ0, Θ1) < ρ′ | H1) ≤ Pfa. (2.5.20)

Thus, the threshold ρ has to be chosen, such that a given false alarm rate Pfa

is achieved for the given family of probability density functions and is fixed
for the complete one-sided composite binary hypothesis test. If the PDF
of the parameters θn ∈ Θn for n ∈ {0, 1} is known, the statistics can be
used for calculation of the threshold. Inversely, the threshold ρ for a given
detection rate Pd can be obtain by

ρ = argmax
ρ′

P(Λ(Y, Θ0, Θ1) < ρ′ | H0) ≤ Pd. (2.5.21)

However, in general the determination of the threshold to achieve the desired
performance criterion like false alarm rate or detection rate is not trivial.

2.5.3 Constant False Alarm Rate Property

Besides a UMP test, another highly desirable property is constant false
alarm rate, which is generally also easier to achieve. A statistical hypothe-
sis test is called to have constant false alarm rate, if the false alarm rate Pfa

is independent of the unknown parameters θ1 ∈ Θ1 of the alternative hy-
pothesis H1 [SD91; Láz12]. Thus, a simple hypothesis test achieves constant
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false alarm rate because the parameters of the hypotheses are exactly given.
In general, the constant false alarm rate property is achieved by adjusting
the hypothesis test, so that the desired false alarm rate Pfa is obtained un-
der the current parameter set of the scenario. For example, the expected
signal power of the hypothesis test can be adapted according to the distance
between transmitter and receiver to achieve constant false alarm rate.

Tests with constant false alarm rate are highly desirable in scenarios where
the PDF are not or only partially known. Especially in these scenarios, the
performance of the tests can be increased while keeping the desired false
alarm rate by tracking the unknown parameters and adjust the parameters
of the hypothesis test accordingly. Furthermore, it may be desirable that
the false alarm rate is achieved independent of the parameters within a fam-
ily of distributions. Taking the example above, the false alarm rate shall
be kept independent of the distance between transmitter and receiver. In
general, the constant false alarm rate property is also referred to a statis-
tical hypothesis test, where the false alarm rate Pfa is approximately kept
constant [BL98, Page 91].

A test with constant false alarm rate property may be easier to achieve
than a uniformly most powerful (UMP) test. However, a constant false
alarm rate achieved by tracking the unknown parameters is in general not
a uniformly most powerful (UMP) test. Moreover, the constant false alarm
rate property is generally contradictory to UMP tests, since the constant
false alarm rate is achieved for each parameter set within the family of
distributions. In contrast to that, a UMP test achieves a desired false alarm
rate for the complete family of distributions altogether. Thus, while a UMP
test can achieve different false alarm rate for each parameter set within the
family of distributions, which ”sums up” to the desired false alarm rate,
tests with constant false alarm rate achieve the desired false alarm rate by
setting each parameters set within the family of distributions to the desired
false alarm rate. In summary, the constant false alarm rate property enables
tests to achieve a desired false alarm rate where a UMP test is not desired
or cannot be applied, in general with the cost of inferior performance in
comparison to a UMP test.

2.6 Signal Detection

Binary hypothesis testing is used in signal detection theory to test the pres-
ence of a transmitted signal u against its absence in a noisy environment.
Here, in contrast to the transmission model w = h ·u+e presented in (2.4.7),
we focus on a simplified model w = u+ e, where u can be regarded solely as
the transmitted signal or as a joint variable (h · u). Later in this Section we
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also consider u to follow a certain (but unspecified) distribution. There, the
results on the distribution are particular applicable on a joint variable (h · u)
as used in the transmission model, cf. (2.4.2) and (2.4.7).

The general aim of this Section is to provide the hypothesis test for the
signal detection procedure of the gray space detection scheme in Chapter 4.
We show that the provided composite hypothesis test is a UMP test, which
is therefore also valid for the provided simple hypothesis test. Furthermore,
in extension to Section 2.5, we will elaborate how the threshold ρ is obtained
to achieve a given performance criterion (false alarm rate or detection rate).
There, like in Section 2.5, we will consider the two classes of hypothesis
tests: (i) the simple hypothesis test in Section 2.6.1 and (ii) the composite
hypothesis test Section 2.6.2. In summary, we will provide a UMP test
including the calculation of the threshold ρ to achieve desired performance
criteria.

To test the presence of a signal, we can describe the null hypothesis H0

and the alternative hypothesis H1 by

H0 : mere noise (signal absent), (2.6.1)

H1 : signal + noise (signal present). (2.6.2)

Consequently, a receiver is faced with a binary hypothesis testing problem
and has to decide between the two events

w =

{
e : H0

u + e : H1,
(2.6.3)

where e ∼ fCN
(
· ; 0, σ2

e

)
denotes the circularly-symmetric complex normal

noise. The complex transmission signal u ∈ C follows an unknown proba-
bility density function (PDF). Note that in contrast to (2.4.2) we consider
here simply u. However, u can also be modeled as a joint variable ĥ[f ]û[f ]

from (2.4.7).
The outcome of the decision at the receiver results in four cases, as de-

picted in Table 2.2. The detection probability Pd (correct decision that no
signal is present) and the probability of false alarm Pfa (incorrect decision
that no signal is present) describe the performance of the decision process at
the receiver. Commonly the performance is visualized via receiver operating
characteristic curves, as applied for example in [Her98].

To distinguish between the two hypotheses H0 and H1 we exploit the
underlying PDF. While for H0 the expectation of the received signal W
is E[W = w | H0] = 0, for H1 we have E[W = w | U = u, H1] = u, where w
and u are the complex realization of the complex random variables W and U ,
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respectively. The complex mean parameter µw := E[W = w] describes the
expectation of the received signal W . Thus, the two hypotheses of (2.6.3)
are described via the proper complex normal distribution (cf. Appendix A.2)
by

H0 : W ∼ fCN
(
· ; 0, σ2

e

)
, (2.6.4)

H1,c : W ∼ fCN
(
· ; µw, σ2

e

)
, µw = u 6= 0, (2.6.5)

where σ2
e denotes the known noise variance. Since the mean parame-

ter µw 6= 0 of hypothesis H1,c comprises a range of values and not a single
value, hypothesis (2.6.5) is composite. Furthermore, since the complex nor-
mal distribution is defined on the whole complex plane W ∈ C, (2.6.5) does
not describe a one-sided hypothesis. However, to fulfill the Karlin-Rubin
theorem and achieve a uniformly most powerful test, the composite binary
hypothesis test has to be one-sided. Therefore, to obtain a one-sided com-
posite binary hypothesis test, the absolute squared received symbol is used
as the measurement z = |w|2. Thus, a receiver is faced with a binary
hypothesis testing problem between the two events

z =

{
|e|2 : H0

|u + e|2 : H1.
(2.6.6)

Since the received signal w is a complex variable with statistically in-
dependent and identically distributed real and imaginary part, the ab-
solute squared variable has two degrees of freedom and can be modeled
as Z = |W |2, cf. (A.9.13). Consequently, the scaled non-central chi-squared
distribution with two degrees of freedom (cf. Appendix A.9) describes the
distribution of the measurement z with

|W |2 = Z ∼ fχ2
sn

(
· ; 2, µχ2

sn
, 1

2 σ2
e

)
, (2.6.7)

where µχ2
sn

:= 1
2 |µw|2 = 1

2 |u|2 denotes the non-central parameter of the
scaled non-central chi-squared distribution, cf. (A.9.1), and σ2

e denotes the
known noise variance. While the null hypothesis H0 is described by the
exact value µχ2

sn
= 0, the alternative hypothesis H1,c comprises the family

of scaled non-central chi-squared distributions with two degrees of freedom
and the unspecific non-central parameter of µχ2

sn
6= 0. Thus, for the null

hypothesis H0 in (2.6.6) the PDF of (2.6.7) can be simplified to the Gamma
distribution (cf. Appendix A.7), since the non-central parameter µχ2

sn
is ex-

actly zero. Furthermore, since the non-central parameter is defined on the
positive real line only, i.e. µχ2

sn
∈ R≥0, the non-central parameter of H1,c is
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sufficiently described by µχ2
sn

> 0. Consequently, given the events of (2.6.6)
we obtain the two hypotheses, the simple null hypothesis H0 and the
composite alternative hypothesis H1,c, by

H0 : Z ∼ fΓ

(
· ; σ2

e , 1
)

, (2.6.8)

H1,c : Z ∼ fχ2
sn

(
· ; 2, µχ2

sn
, 1

2 σ2
e

)
, µχ2

sn
> 0. (2.6.9)

Similar to (2.6.4) and (2.6.5), the null hypothesis H0 (2.6.8) is simple and
the alternative hypothesis H1,c (2.6.9) is composite. However, in contrast
to H1,c (2.6.5), the family of scaled non-central chi-squared distributions is
described by the non-central parameter µχ2

sn
> 0. Thus, H1,c represents a

one-sided composite hypothesis. Furthermore, we define the simple alter-
native hypothesis H1,s with

H1,s : Z ∼ fχ2
sn

(
· ; 2, µχ2

sn
, 1

2 σ2
e

)
, µχ2

sn
= c, (2.6.10)

if the non-central parameter µχ2
sn

is exactly described by a constant c. There-
fore, testing the null hypothesis H0 (2.6.8) against the simple alternative
hypothesis H1,s (2.6.10) results in a simple binary hypothesis test. In con-
trast to that, a one-sided composite binary hypothesis test is present for
testing the null hypothesis H0 (2.6.8) against the composite alternative
hypothesis H1,c (2.6.9). Since the PDF of the composite and the simple al-
ternative hypothesis differ only in choice of the non-central parameter µχ2

sn
,

the log-likelihood ratio function is the same. Thus, the log-likelihood ra-
tio function is calculated by applying the two probability density function
from (2.6.8) and (2.6.9) into (2.5.14), resulting in

Λ
(
z, µχ2

sn

)
= Λ

(
z, µχ2

sn,H0
= 0, µχ2

sn
= µχ2

sn,H1
> 0, 1

2 σ2
e

)

= ln

(
fχ2

sn

(
z; 2, µχ2

sn
, 1

2 σ2
e

)

fΓ(z; σ2
e , 1)

)
. (2.6.11)

For ease of notation throughout this thesis, we will omit the nuisance pa-
rameter σ2

e , even though it is required to obtain the LLR. Furthermore, we
will write Λ

(
z, µχ2

sn

)
for log-likelihood ratios, where the null hypothesis H0

has µχ2
sn,H0

= 0. Consequently, µχ2
sn

of Λ
(
z, µχ2

sn

)
reflects the non-central

parameter µχ2
sn,H1

of the alternative hypothesis H1. Thus, Λ
(
z, µχ2

sn

)
is

just written as a function of the measurement z and the parameter of inter-
est µχ2

sn
of the alternative hypothesis H1.

Commonly, the Wilks theorem [Wil38] can be used to simplify the log-
likelihood ratio function. Shortly summarized, the Wilks theorem showed
that a log-likelihood ratio function constructed by two PDFs with a degree of
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freedom approaching infinity will be asymptotically chi-squared distributed.
Since the log-likelihood ratio function in (2.6.11) is only constructed by
PDFs with two degrees of freedom, the Wilks theorem cannot be applied.
However, to show that the log-likelihood ratio function is monotone we
need further simplification of (2.6.11). Therefore, we substitute the PDFs
by simpler PDFs with help of (A.7.19) and (A.9.14) and obtain

Λ
(
z, µχ2

sn

)
= ln




fχ2
nc

(
2z

σ2
e

; 2,
2µχ2

sn

σ2
e

)

fχ2

(
2z

σ2
e

; 2

)




= ln




exp

(
−σeµχ2

sn√
8

− z

σ2
e

) ∞∑
n=0

(√
2 · µχ2

sn
· z
)n

22n+1 · σn
e · (n!)2

1

2
exp

(
− z

σ2
e

)




= −σeµχ2
sn√

8
+ ln

( ∞∑

n=0

(√
2 · µχ2

sn
· z
)n

(4σe)n · (n!)2

)
, (2.6.12)

with µχ2
sn

= 1
2 |u|2. The inequality to prove the monotone behavior

of (2.6.12) is given by

Λ
(
z0, µχ2

sn

)
> Λ

(
z1, µχ2

sn

)
, for every z0 > z1, ∀µχ2

sn
∈ R>0, (2.6.13)

with z0, z1 ∈ R≥0. In particular, applying (2.6.12) in (2.6.13) we obtain

∞∑

n=0

(√
2 · µχ2

sn
· z0

)n

(4σe)n · (n!)2 >

∞∑

n=0

(√
2 · µχ2

sn
· z1

)n

(4σe)n · (n!)2

∞∑

n=0

(√
2 · µχ2

sn

)n

·

∈R>0︷ ︸︸ ︷
(z0)n − (z1)n

(4σe)n · (n!)2 > 0. (2.6.14)

where for every z0 > z1 and ∀µχ2
sn

> 0 the left side of the inequality is
always larger than the right side in each summation step. Thus, the LLR
function (2.6.11) is a strictly increasing monotone function. Consequently,
the LLR function (2.6.11) fulfills the monotone likelihood ratio property
of (2.5.16) and the one-sided composite binary hypothesis test is UMP.
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Detection Rate False Alarm Rate

H0 vs. H1,s z
H1,s

≷
H0

−σ2
e · ln(1 − Pd) z

H1,s

≷
H0

F−1

χ2
sn

(
Pfa; 2, µχ2

sn
, 1

2
σ2

e

)

(2.6.25) (2.6.23)

H0 vs. H1,c Λ
(
z, µχ2

sn

) H1,c

≷
H0

ρc0,Λ (Pd, N) Λ
(
z, µχ2

sn

) H1,c

≷
H0

ρc1,Λ (Pfa, N)

(2.6.43) (2.6.36)

Table 2.3: Overview of log-likelihood ratio test to achieve a certain detection or
false alarm rate for simple or composite binary hypothesis test.

The one-sided composite (µχ2
sn

> 0) and the simple binary (µχ2
sn

= c) log-
likelihood ratio test accepts the null hypothesis H0 if

Λ
(
z, µχ2

sn

) H0

< ρ. (2.6.15)

There, we use the inequality symbol
H0

< to indicate the condition where the
null hypothesis H0 is accepted. In general, the threshold ρ is selected, such
that a desired performance criterion like false alarm rate Pfa or detection
rate Pd is achieved. Note that the desired performance shall be achieved
for the scalar threshold ρ applied for all µχ2

sn
> 0. Finding the threshold ρ

for a desired performance criterion is not trivial.
In the following two subsections we will provide some insight on how to

obtain this threshold ρ. At first we turn our attention to the simple binary
hypothesis test in Section 2.6.1. Afterwards, given the performance criteria,
false alarm rate or the detection rate, we calculate the threshold for the one-
sided composite binary hypothesis tests in Section 2.6.2. Table 2.3 gives an
overview of the different binary hypothesis tests derived in the following.

2.6.1 Simple Log-Likelihood Ratio Test

In case of the simple binary hypothesis test, the simple null hypothesis H0

of (2.6.8) is tested against the simple alternative hypothesis H1,s of (2.6.10).
Thus, H0 is accepted according to (2.5.10) if

Λ(z)
H0

< ρs,Λ, (2.6.16)
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where Λ(z) = Λ
(
z, µχ2

sn
= c
)

and ρs,Λ denotes the threshold for the simple
binary hypothesis test. There are two options to select the threshold ρs,Λ,
(i) the threshold ρs,Λ = ρs1,Λ(Pfa) to achieve a desired false alarm rate
or (ii) the threshold ρs,Λ = ρs0,Λ(Pd) to achieve a desired detection rate.
In the following, we will at first review (2.6.16) and simplify the simple
binary hypothesis test. Afterwards, we will elaborate how to obtain the
threshold ρs1,Λ(Pfa) and the threshold ρs0,Λ(Pd).

Let us start by reviewing and simplifying (2.6.16) for the case of simple
hypothesis test. Since we have a simple hypothesis test, we can replace the
scalar threshold ρs,Λ by the log-likelihood ratio function (2.6.12) with the
scalar threshold ρs,z regarding the measurement z. Thus, we have

ρs,Λ = Λ(ρs,z) = −σeµχ2
sn√

8
+ ln

( ∞∑

n=0

(√
2 · µχ2

sn
· ρs,z

)n

(4σe)n · (n!)2

)
. (2.6.17)

Applying the advertised threshold (2.6.17) and the LLR regarding the mea-
surement z in (2.6.12) into the log-likelihood ratio test (2.6.16), we obtain

ln

( ∞∑

n=0

(√
2 · µχ2

sn
· z
)n

(4σe)n · (n!)2

)
< ln

( ∞∑

n=0

(√
2 · µχ2

sn
· ρs,z

)n

(4σe)n · (n!)2

)
, (2.6.18)

where the equal term is already canceled out. After taking the exponential
on both sides and rearrange the inequality, we obtain

0 <

∞∑

n=0

∈R≥0︷ ︸︸ ︷(√
2 · µχ2

sn
· ρs,z

)n

−

∈R≥0︷ ︸︸ ︷(√
2 · µχ2

sn
· z
)n

(4σe)n · (n!)2 . (2.6.19)

The two terms of the numerator at (2.6.19) are positive, because all variables
of the numerator are positive. Since from a ≷ b it follows an ≷ bn, ∀n
with a, b ∈ R≥0, the inequality (2.6.19) is true if

(√
2 · µχ2

sn
· ρs,z

)n

>
(√

2 · µχ2
sn

· z
)n

∀n. (2.6.20)

Thus, the inequality (2.6.19) is true if z < ρs,z. Consequently, we simplified
the log-likelihood ratio test of simple hypotheses in (2.6.16) to a test on the
actual measurement z only. The simple binary hypothesis test accepts
the null hypothesis H0 if

z
H0

< ρs,z. (2.6.21)
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Since we just test on the measurement z, the threshold ρs,z merely depends
on the PDF of the measurement under the tested hypothesis. While the
threshold ρs1,z(Pfa) to achieve certain false alarm rate Pfa is determined un-
der the simple alternative hypothesis H1,s (2.6.10), the threshold ρs0,z(Pd)
to achieve certain detection rate Pd is determined under the null hypothe-
sis H0 (2.6.8). Urkowitz already presented this result on the simple hypoth-
esis test in 1967 [Urk67].

Based on the simple binary hypothesis test derived in (2.6.21) we can
now derive the threshold ρs,z to achieve a certain performance criterion. We
begin by deriving the threshold ρs1,z(Pfa) to achieve a desired false alarm
rate Pfa and continue with the threshold ρs0,z(Pd) to achieve a desired
detection rate Pd.

False Alarm Rate Threshold

Since the simple binary hypothesis test is given by (2.6.21), the thresh-
old ρs1,z(Pfa) to achieve a desired false alarm rate Pfa just depends on
the distribution of the measurement z under the simple alternative hy-
pothesis H1,s (2.6.10). In particular, the measurement z follows fχ2

sn
(·)

for H1,s. Thus, we obtain the false alarm threshold ρs1,z(Pfa) in conjunc-
tion with (2.5.12) by the scaled non-central chi-squared inverse cumulative
distribution function (ICDF)

ρs1,z(Pfa) = argmax
ρ′

(Pfa ≥ P(z < ρ′ | H1,s))

= argmax
ρ′∈R

≥0

(
Pfa ≥ Fχ2

sn

(
ρ′; 2, µχ2

sn
,

1

2
σ2

e

))

= F−1
χ2

sn

(
Pfa; 2, µχ2

sn
,

1

2
σ2

e

)
. (2.6.22)

The scaled non-central chi-squared ICDF with two degrees of freedom is
given in (A.9.15) of Appendix A.9. Furthermore, an approximations of the
scaled non-central chi-squared ICDF is given in (A.9.10) of Appendix A.9,
which can be used to obtain an approximated closed-form expression. Con-
sequently, given the false alarm rate we obtain the simple binary hypoth-
esis test, testing the null hypothesis (2.6.8) against the simple alternative
hypothesis (2.6.10) and accepting the null hypothesis H0 if

z
H0

< F−1
χ2

sn

(
Pfa; 2, µχ2

sn
,

1

2
σ2

e

)
, (2.6.23)
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where µχ2
sn

= 1
2 |u|2 = c. The simple hypothesis test (2.6.23) can be used

to construct a test with constant false alarm rate property in the case of a
composite alternative hypothesis (2.6.9) describing a family of distributions.
There, the non-central parameter µχ2

sn
is tracked, so that the simple hy-

pothesis test (2.6.23) is conducted on measurement z given the non-central
parameter µχ2

sn
. Consequently, the desired false alarm rate is always met.

However, as discussed in Section 2.5.3, the constant false alarm rate prop-
erty does not guarantee a UMP test. In general, there exists a better test
by considering the false alarm rate performance for the complete family of
distributions. How to obtain the composite threshold ρc1,Λ(Pfa) given a
desired false alarm rate will be discussed later in Section 2.6.2.

Detection Rate Threshold

The threshold ρs0,z (Pd) achieving a desired detection rate can be obtained
similar to the calculation above for the false alarm rate threshold ρs1,z (Pfa).
Since (2.6.21) depends on the measurement z only, we merely need to con-
sider the null hypothesis H0 from (2.6.8) to describe simple binary hypoth-
esis test given the detection rate Pd. In particular, Thus, we obtain the
detection threshold ρs0,z(Pd) in conjunction with (2.5.13) by the Gamma
inverse cumulative distribution function

ρs0,z(Pd) = argmax
ρ′

(Pd ≥ P(z < ρ′ | H0))

= argmax
ρ′

(
Pd ≥ FΓ

(
ρ′; σ2

e , 1
))

= F−1
Γ

(
Pd; σ2

e , 1
)

= −σ2
e ln(1 − Pd) , (2.6.24)

where the Gamma ICDF is obtained from (A.7.21) in Appendix A.7. Ap-
parently, the simple threshold ρs0,z (Pd) for a desired detection rate is inde-
pendent of the non-central parameter µχ2

sn
. Consequently, given the desired

detection rate Pd we obtain the simple binary hypothesis test, testing
the null hypothesis (2.6.8) against the simple alternative hypothesis (2.6.10).
Thus, the null hypothesis H0 is accepted if

z
H0

< −σ2
e · ln(1 − Pd) . (2.6.25)

Since (2.6.24) is independent of µχ2
sn

, the simple binary hypothesis test
in (2.6.25) is also independent of the non-central parameter µχ2

sn
. Thus,
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given a desired detection rate the non-central parameter µχ2
sn

has not to
be known to achieve a uniformly most powerful test between two simple
hypotheses. Classical energy detection exploits this fact to detect signals
under unknown non-central parameter µχ2

sn
[Urk67].

However, in the case of composite hypothesis tests the simplification
of (2.6.21) does not hold since we are confronted with a family of distri-
butions. There, the knowledge of µχ2

sn
is required to achieve a UMP test.

The calculation of the composite threshold ρc1,Λ to achieve such a UMP test
will be conducted in the next Section 2.6.2.

2.6.2 One-Sided Composite Log-Likelihood Ratio Test

In contrast to the simple binary hypothesis tests, the one-sided composite
binary hypothesis tests is performed on a family of distributions. There-
fore, we have to consider alternative composite hypothesis (2.6.9) with
the non-central parameter µχ2

sn
> 0. Thus, for each non-central parame-

ter µχ2
sn

> 0 we can construct a log-likelihood ratio test fulfilling the re-
quirements of the Neyman-Pearson lemma. There, for each non-central
parameter a log-likelihood ratio test with an individual threshold ρs,z is
performed. However, a combination of these tests are not fulfilling require-
ments of the the Neyman-Pearson lemma for µχ2

sn
> 0. In other words,

there exists a log-likelihood ratio test for a given performance criterion,
which achieves at least as good performance (but generally better) as the
combined log-likelihood ratio test, where each test fulfills the requirements
of the Neyman-Pearson lemma.

In the case of a desired false alarm rate: There exists a log-likelihood
ratio test for a given false alarm rate Pfa, which achieves at least as high
detection rate Pd (but generally higher) as the combined log-likelihood ratio
test, where each test fulfills the requirements of the Neyman-Pearson lemma.
Thus, to achieve the uniformly most powerful (UMP) test, instead of select-
ing an individual threshold ρs1,z for each µχ2

sn
, the false alarm rate has to

be individually chosen for each non-central parameter µχ2
sn

, such that the
overall desired false alarm rate Pfa is met. Consequently, a single composite
threshold ρc1,z (Pfa) on z as in (2.6.22) for the simple binary hypothesis test
valid for all µχ2

sn
> 0 cannot be found6. In other words, the individual false

alarm rate for each non-central parameter has to be selected in such a way,
that the overall desired false alarm rate Pfa is met by a single ρc1,Λ (Pfa) for
all µχ2

sn
> 0. The above statements holds too, if a certain detection rate Pd

is desired.

6In general, the composite threshold ρc1,z (Pfa) on z would be different for each µχ2
sn

>

0.
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Since we cannot simplify the composite hypothesis test as done for the
simple hypothesis test in (2.6.21), the one-sided composite binary hy-
pothesis test accepts the null hypothesis H0 according to (2.5.18) if

Λ
(
z, µχ2

sn
> 0
) H0

< ρc,Λ. (2.6.26)

Before we turn our attention to the calculation of the composite thresh-
old ρc,Λ, we will provide a more specific inverse log-likelihood ratio (LLR)
than the one given in (2.5.17) for general PDFs. The inverse LLR is later
used to calculate the composite threshold ρc,Λ. Since the LLR function
in (2.6.11) has strict monotone likelihood ratio property (2.6.14), the in-
verse LLR function exists and is defined as

Λ−1
(
ρ, µχ2

sn

)
:= argmax

z∈R
≥0

(
ρ ≥ Λ

(
z, µχ2

sn

))
(2.6.27)

= argmax
z∈R

≥0

(
ρ ≥ ln

(
fχ2

sn

(
z; 2, µχ2

sn
, 1

2 σ2
e

)

fΓ(z; σ2
e , 1)

))
.

The inverse LLR function selects the maximum measurement z amongst all
those values whose LLR function is below or equal to a threshold ρ.

In the following sections, we will derive the composite threshold ρc1,Λ (Pfa)
for given false alarm rate Pfa and the composite threshold ρc0,Λ (Pd) for
given detection rate Pd.

False Alarm Rate Threshold

For ease of notation, we will use ρc1 = ρc1,Λ to denote the composite thresh-
old to achieve a desired false alarm rate Pfa. Since the false alarm rate
is given by the cumulative distribution function of the alternative hypothe-
sis H1,c, in particular Fχ2

sn
(·) given in (A.9.15)7, we can use the inverse LLR

function (2.6.27) to obtain the false alarm rate Pfa for a given threshold ρc1.
Therefore, from (2.5.20) given a desired false alarm rate Pfa it follows the
calculation of the composite false alarm threshold

ρc1 (Pfa) = argmax
ρ

(Pfa ≥ P(ρ)), (2.6.28)

where P(ρ) =

∫
Fχ2

sn

(
Λ−1(ρ, a) ; 2, a,

σ2
e

2

)
· fX(a) da, (2.6.29)

7Measurement z follows fχ2
sn

(·) for H1,c (2.6.9).
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where fX(a) is the PDF of the non-central parameter µχ2
sn

. The compos-
ite threshold ρc1 (Pfa) in (2.6.28) is determined by selecting the maximum
threshold ρ, such that the probability P(ρ) is below or equal the desired
false alarm rate Pfa. The probability P(ρ) is obtained by the integral of
the cumulative distribution function (CDF) of the composite alternative
hypothesis H1,c weighted with fX(a) denoting the PDF of the non-central
parameter µχ2

sn
. Thus, given a desired false alarm rate Pfa and the inverse

LLR function (2.6.27) the one-sided composite binary hypothesis test
of (2.6.26) can be refined to

Λ
(
z, µχ2

sn
> 0
) H0

< ρc1 (Pfa) (2.6.30)

= argmax
ρ

(
Pfa ≥

∫
Fχ2

sn

(
Λ−1(ρ, a) ; 2, a,

σ2
e

2

)
· fX(a) da

)
.

However in general, the PDF fX(a) of the non-central parameter µχ2
sn

is
hardly known. Therefore, in practical applications the composite thresh-
old ρc1 cannot be directly obtained from (2.6.28).

However, some observation of the non-central parameter distribu-
tion fX(a) may be available, enabling the estimation of the true CDF.

The empirical CDF (ECDF) is one approach to estimate the true CDF
from a given sample set. In contrast to other estimates the ECDF is a non-
parametric maximum likelihood estimate [Owe01, Chapter 2.1]. In other
words, ECDF does not require knowledge of the underlying distribution
family. The ECDF is obtained by independently drawing each measure-
ment xn of the random variable X with FX(a). Therefore, the empirical
CDF is defined as

F̌N (a) :=
1

N

N∑

n=1

1[−∞,a](xn), (2.6.31)

where 1[−∞,a](xn) denotes the indicator function. Following the
Glivenko–Cantelli theorem [Can33; Gli33], the ECDF with N approaching
infinity converges almost surely (a.s.) to its true CDF, thus

lim
N→∞

∥∥∥F̌N (a) − FX(a)
∥∥∥

∞
= 0 a.s. (2.6.32)

In other words, for (N → ∞) i.i.d. observations of FX(a) the ECDF of
the observations converges almost surely to its true FX(a). Consequently,
the ECDF approximates the CDF with a step function. Originally, the

https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Glivenko-Cantelli_theorem
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Glivenko–Cantelli theorem was formulated in Italian by Glivenko and Can-
telli in 1933 [Can33; Gli33]. Further information can also be found in [LR05,
Theorem 11.2.17].

Consequently, by applying the ECDF of (2.6.31) on (2.6.29), the approx-
imated composite false alarm threshold ρc1 is given by

ρc1 (Pfa) ≈ ρc1 (Pfa, N) = argmax
ρ∈R

(Pfa ≥ P(ρ, N)), (2.6.33)

where P(ρ, N) =
1

N

N∑

n=1

Fχ2
sn

(
Λ−1(ρ, xn) ; 2, xn,

σ2
e

2

)
, (2.6.34)

where each measurement xn is independently drawn from the PDF of the
non-central parameter with X ∼ fX(a). Thus, (2.6.34) approximates
(2.6.29) by calculating the arithmetic mean of the CDF over all measure-
ments (x1, . . . , xN ). As stated by the Glivenko–Cantelli theorem, the ap-
proximation (2.6.33) converges to (2.6.29) for N approaching infinity

ρc1 (Pfa) = lim
N→∞

ρc1 (Pfa, N) . (2.6.35)

Thus, the larger N , the better the approximation of the composite
threshold ρc1 (Pfa). Finally, given an approximated composite thresh-
old ρc1 (Pfa, N) based on a desired false alarm rate Pfa, (2.6.30) can be
refined to a one-sided composite binary hypothesis test accepting the
null hypothesis H0 if

Λ
(
z, µχ2

sn

) H0

< ρc1 (Pfa, N) (2.6.36)

= argmax
ρ∈R

(
Pfa ≥ 1

N

N∑

n=1

Fχ2
sn

(
Λ−1(ρ, xn) ; 2, xn,

σ2
e

2

))
.

Detection Rate Threshold

The composite threshold ρc0 = ρc0,Λ to achieve a desired detection rate Pd

is derived similar to the false alarm threshold ρc1 above. However, for calcu-
lation of the detection rate threshold ρc0 we consider the null hypothesis H0.
Therefore, we can apply the inverse LLR function (2.6.27) on the CDF of
the Gamma distribution FΓ(·) given in (A.7.20)8. Thus, given a desired

8Measurement z follows fΓ(·) for H0 (2.6.8).
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detection rate Pd it follows from (2.5.21) the calculation of the composite
detection threshold

ρc0 (Pd) = argmax
ρ∈R

(Pd ≥ P(ρ)), (2.6.37)

where P(ρ) =

∫
FΓ

(
Λ−1(ρ, a) ; σ2

e , 1
)

· fX(a) da, (2.6.38)

= 1 −
∫

exp

(
−Λ−1(ρ, a)

σ2
e

)
· fX(a) da. (2.6.39)

Consequently, given a desired detection rate Pd the one-sided composite
binary hypothesis test of (2.6.26) can be refined to

Λ
(
z, µχ2

sn
> 0
)

(2.6.40)

H0

< argmax
ρ

(
Pd ≥ 1 −

∫
exp

(
−Λ−1(ρ, a)

σ2
e

)
· fX(a) da

)
.

Similar to (2.6.34), the approximation of the composite threshold ρc0

is obtained by applying the ECDF of (2.6.31) on (2.6.39). Thus, we have

ρc0 (Pd) ≈ ρc0 (Pd, N) = argmax
ρ∈R

(Pd ≥ P(ρ, N)), (2.6.41)

where P(ρ, N) = 1 − 1

N

N∑

n=1

exp

(
−Λ−1(ρ, xn)

σ2
e

)
, (2.6.42)

where each measurement xn is independently drawn from the PDF of the
non-central parameter µχ2

sn
with X ∼ fX(a). The convergence result of

(2.6.35) also holds for the approximated composite threshold ρc0 (Pd, N).
Thus, given an approximated composite threshold ρc0 (Pd, N) based on a de-
sired detection rate Pd, (2.6.40) can be refined to a one-sided composite
binary hypothesis test accepting the null hypothesis H0 if

Λ
(
z, µχ2

sn

) H0

< ρc0 (Pd, N) (2.6.43)

= argmax
ρ∈R

(
Pd ≥ 1 − 1

N

N∑

n=1

exp

(
−Λ−1(ρ, xn)

σ2
e

))
.

The computation of the approximated composite threshold in (2.6.33)
and (2.6.41) can be performed by root-finding algorithms. In particular,

https://en.wikipedia.org/wiki/Root-finding_algorithms
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a well-chosen initial threshold ρ is used to obtain an initial estimate of the
performance criterion P(ρ, N), reflecting the desired detection rate Pd or
false alarm rate Pfa. Afterwards, the secant method can be applied to con-
verge to the true performance criterion, since we are operating on strict
monotone functions.

2.7 Summary

This Chapter introduced the concepts of wireless communications used in
the subsequent chapters. Therefore, we discussed the channel model and
provided the common performance channels ITU IOA as well as 3GPP EPA
and EVA. Furthermore, we established the general system model based on
cyclic-prefix OFDM similar to 3GPP LTE and NR. Finally, we derived
the basics for the statistical hypothesis test used in Chapter 4, where we
will heavily rely on the results for the one-sided composite hypothesis test
in (2.6.36). In particular, (2.6.36) will be used to establish a log-likelihood
ratio test for desired false alarm rate. The contributions on statistical hy-
pothesis tests are extensions of the test discussed in [WPJ13; WJW+16b].

https://en.wikipedia.org/wiki/Secant_method
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Chapter 3

Compressed Sensing

3.1 Overview and Contributions

In the recent decade compressed sensing (CS) has drawn immense attention,
starting with the foundation laid by the joint work of Candès, Romberg
and Tao [CRT06] as well as Donoho [Don06]. In particular, a breakthrough
in sampling theory [CRT06] enabled the recovery of sparse signals with a
sampling rate below the Nyquist rate. In this Chapter we will introduce
the fundamentals of compressed sensing. In particular, we will consider the
(partial) discrete Fourier transform as the basis for signal recovery and list
possible estimation algorithms. Finally, we will give some error bounds for
signal recovery, which are derived using probability theory.

We will start by introducing the notion of sparsity in Section 3.2, which
comprises the strict form of sparsity (3.2.1) as well as the relaxed form of
compressibility (3.2.5). Therefore, we also introduce the definition for the
union of subspaces (3.2.2) as well as the ℓp-error of best s-term approxi-
mation (3.2.3). Afterwards, we provide a basic view on linear systems in
Section 3.3, especially regarding the number of solutions of a linear system
of equations. Based on some facts from probability theory, we limit the so-
lution space on certain error bounds (3.3.8). With the foundation on linear
systems, we introduce the framework of compressed sensing in Section 3.4.
Besides the restricted isometry property (Section 3.4.3), which is a suffi-
cient compressed sensing condition for signal reconstruction under certain
error bounds, we also discuss the more tractable measure of mutual coher-
ence (Section 3.4.2) and the sufficient and necessary condition for sparse
recovery called the null space property (Section 3.4.1). In the subsequent
Section 3.5 we introduce the basic estimation algorithm used within this
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thesis. Reduced-rank least squares estimation (Section 3.5.1) is a classical
ℓ2–norm approach used for general problems of linear systems without fur-
ther structure like sparsity. To exploit sparsity within a given linear system,
the subsequently introduced compressed sensing methods are used: basis
pursuit denoising (Section 3.5.2), a convex optimization algorithm, as well
as the greedy orthogonal matching pursuit approach (Section 3.5.3). Finally,
the (probabilistic) partial Fourier model for compressed sensing is presented
in Section 3.6. On the one hand we discuss linear partial Fourier measure-
ments present in the channel transfer function (Section 3.6.1), and on the
other hand we study absolute squared partial Fourier measurements present
in the spectral channel power (Section 3.6.2). Depending on the measure-
ments, we apply a corresponding channel estimation scheme: pilot-based
channel estimation to retrieve the channel impulse response from channel
transfer function measurements as well as amplitude-based channel estima-
tion to retrieve the circular autocorrelation of the channel impulse response
from spectral channel power measurements. Therefore, based on probability
distributions we elaborate error bounds for the estimation algorithms in the
previous Section 3.5. In particular, we derive the probability distribution
of the measurement error in case of the channel transfer function (3.6.18)
and an estimate for the expectation of the measurement error in case of
the spectral channel power (3.6.42). The chapter concludes with a short
summary on compressed sensing in Section 3.7.

3.2 Sparsity

In this Section, we will introduce the two definitions of sparsity, the strict
concept of sparsity and the relaxed version of compressibility.

The straightforward definition of sparsity is as follows: Let x ∈ CM , then
x is called s-sparse if

s ≥ ‖x‖0 :=
∣∣{n : x[n] 6= 0}

∣∣ . (3.2.1)

In other words the vector x describes a signal with at most s non-zero
entries. An example for a 1-sparse vector is shown in Figure 3.1. Even
though, the ℓ0-”norm” is neither norm nor quasinorm, it is frequently used
in CS for counting the number of non-zero elements. Furthermore, we define
the set of all s-sparse vectors (union of s-dimensional subspaces) by

Σs := {x : ‖x‖0 ≤ s} (3.2.2)

As an example, for all 2-sparse vectors in R3, Figure 3.2 visualizes the
union of 2-dimensional subspaces. Consequently, a 2-sparse vector can only
be located on the plane spanned by each pair of axes.
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Figure 3.1: Notion of sparsity and compressibility in 2 dimensions.

However, the strict s-sparse definition (3.2.1) is not compatible with many
practical settings, where a vector has only few significant entries, but many
irrelevant entries as well. One example is the multipath channel described
in Section 2.3. At first, to quantify the compressibility of a vector we
can use the ℓp-error of best s-term approximation to the compressible vec-
tor x ∈ CM . Therefore, we define at first the ℓp-error of best s-term
approximation to a vector x ∈ CM by

γs(x)p := inf
[
‖x − b‖p , b ∈ Σs ⊂ C

M
]
. (3.2.3)

Consequently, the infimum is achieved by an s-sparse vector b, whose
non-zero entries match the entries of x, which are the s absolute largest
entries. The ℓ2-error of best s-term approximation is limited by [FR13,
Theorem 2.5]

γs(x)2 ≤ 1

2
√

s
· ‖x‖1 . (3.2.4)

There exist different common notions to define a compressible vector. We
will refer here to the notion via the ℓp-norm presented in [FR13, Chapter 2.1].
A vector x is called compressible (or commonly also sparse), if for some
small 0 < p < 1 the vector x is contained in the ℓp-ball

x ∈ A
M
p , (3.2.5)

where the ℓp-ball is defined by

A
M
p := {a ∈ C

M : ‖a‖p ≤ 1}. (3.2.6)

An example for a compressible x ∈ R2 contained in the ℓp-ball is shown
in Figure 3.1. Informally, the smaller p the closer is the vector located to
the union of s-dimensional subspaces Σs.
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Figure 3.2: Union of 2-dimensional subspaces Σ2 ⊂ R
3 [EK12, Figure 1.5]: set

of all 2–sparse vectors in 3 dimensions.

3.3 Linear Systems

Before introducing the framework of CS in the subsequent Section 3.4, we
will briefly introduce different settings of linear systems as well as give some
notions on solving them. In particular in noisy measurements we will state
some probabilities, such that the solution exists within a certain bound.

Algorithms to estimate an unknown x ∈ C
M from noisy measurement y ∈

CN through a linear map Φ ∈ CN×M are widely used. Signal processing and
in particular channel estimation [OA07; LTH+14] are applications, where
solving linear equations is required, such that an unknown vector x can be
reconstructed from noisy samples. Here, we consider the complex-valued
case. The real-valued case is derived similar.

We start with unaltered measurements, where the system of linear equa-
tions is written as

y = Φx. (3.3.1)

The number of linear equations N are represented by the number of rows
of measurement matrix Φ ∈ CN×M . Furthermore, the number of unknown
parameters M is represented by the number of columns of measurement ma-
trix Φ. Consequently, the relation between rows and columns of measure-
ment matrix Φ indicates, whether the system of linear equations is underde-
termined (N < M), balanced (N = M) or overdetermined (N > M) [Sel13].
However, the above classifications of underdetermined, balanced and overde-
termined systems are neither necessary nor sufficient conditions to state the
number of solutions of a system of linear equations.

To obtain the number of solutions of (3.3.1), the Rouché–Capelli theorem
can be applied on matrix Φ given a measurement y. Three results on
the solution space of systems of linear equations are possible: infinite, one
(and unique) or zero number of solutions. A system has no solution and is
called inconsistent, if rank(Φ) < rank([ Φ y ]), where [ Φ y ] represents the
augmented matrix. Consequently, a system has at least one solution and

https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/System_of_linear_equations
https://en.wikipedia.org/wiki/Underdetermined_system
https://en.wikipedia.org/wiki/Overdetermined_system
https://en.wikipedia.org/wiki/Rouche-Capelli_theorem
https://en.wikipedia.org/wiki/Augmented_matrix
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System of linear equations

No solution

Inconsistent

Unique solution

Full rankmatrix

Infinite solutions
Rank deficient

matrix

Consiste
nt

Figure 3.3: Solution space of a system of linear equations.

is called consistent, if rank(Φ) = rank([ Φ y ]). Note, since the row rank
and the column rank of any matrix are equal [Mac95], the rank of a matrix
describes both, the number of independent rows as well as the number of
independent columns. A consistent system can be further distinguished
in two matrix types. There, a unique solution of (3.3.1) is present if we
have a full rank matrix, i.e. rank(Φ) = min[N, M ]. Otherwise, we have an
infinite number of solutions if the matrix is rank deficient with rank(Φ) <
min[N, M ]. A simple diagram on the possible solution spaces is depicted
in Figure 3.3.

Even if the system of linear equations in (3.3.1) has zero or infinite solu-
tions, relaxation or further constraints on the system can lead to a single
(and in some cases even unique) solution [Sel13]. For example, solutions of
an inconsistent system of linear equations can be found by minimizing the
error of the system regarding a selected ℓp-norm

x̃ ∈ argmin
x

‖y − Φ · x‖p. (3.3.2)

For p ≥ 1 the solutions of (3.3.2) can be found via a convex program, which
can be solved with standard solvers and in particular for p = 2 in closed-
form. In case of a consistent system of linear equations with a rank deficient
matrix, a solution can be found by minimizing the unknown regarding a
selected ℓp-norm under the constraint induced by the linear equation

x̃ ∈ argmin
x

‖x‖p , s.t. y = Φx. (3.3.3)

Common approaches are the classical least squares (LS) based on the
ℓ2-norm and compressed sensing (CS) based on the ℓ1-norm, which is used
as relaxation of the ℓ0-”norm”, see Section 3.4. Commonly, classical LS
are applied on inconsistent systems, finding a least squares solution which

https://en.wikipedia.org/wiki/Rank_(linear_algebra)#Proofs_that_column_rank_=_row_rank
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minimizes the energy of the error. Nevertheless, LS can also be applied on
consistent systems, where the energy of the solution x is minimized. Instead
of the energy (ℓ2-norm) constraint, CS applies the ℓ1-norm to find solutions
for systems of linear equations.

As stated at the beginning of this Chapter, measurements are generally
error-prone due to noise. The disturbance can be taken into account by
extending the system of linear equations in (3.3.1) by an adversarial er-
ror e ∈ CN representing the induced error on the system

y = Φx + e. (3.3.4)

Noisy measurements are present in communication systems, which is also

reflected by our transmission model ŵ = diag
(
ĥ
)
û + n̂ defined in (2.4.8)

of Section 2.4. Consequently, given Φx = diag
(
ĥ
)
û, our transmission

model can be represented in form of (3.3.4), where Φ represents the discrete
Fourier transform matrix.

Since the actual realization of the adversarial error e is modeled by
a random variable, the exact value of e is usually not known. Thus,
solving (3.3.4) directly and retrieving the exact solution is impractical.
Therefore, we seek recovery of an estimate x̃ from noisy measurements.
In the overdetermined case (with full rank), (3.3.4) will be generally an
inconsistent system, because the addition of an adversarial error e will
cause rank(Φ) < rank([ Φ y ]) almost surely. Thus, an estimate x̃ of (3.3.4)
can be found by applying (3.3.2). However, (3.3.2) does not consider any
property of the adversarial error e.

In general, some statistical properties of the adversarial error e may be
known, such as a moment or a probability distribution (family). Conse-
quently, an estimate x̃ of (3.3.4) can be obtained by considering the sta-
tistical properties of e. For further discussion in this Section we will not
consider a specific distribution of the adversarial error e, but we simply
assume an independent and identically distributed (i.i.d.) random vari-
able e[n], n ∈ {0, . . . , N − 1}. However, a detailed discussion regarding the
distribution of the adversarial error e will follow in Section 3.6.

Assuming i.i.d. random variable e[n], n ∈ {0, . . . , N − 1}, we can use the

ℓ2-norm of error e, i.e. ‖e‖2
2, to derive bounds on the estimation error. We

know by (3.3.4) that for some ρ > 0 any x lies in the space ‖y − Φx‖2
2 ≤ ρ

with some probability. So with use of (3.3.3) we can solve for solu-
tions x̃ ∈ argminx ‖x‖p , s.t. ‖y − Φ · x‖2

2 < ρ, allowing for robust estima-
tion. The term robustness is used to describe reconstruction schemes [FR13,
Chapter 4.3], where the estimation error, e.g. ‖x − x̃‖2, can be controlled
by ρ > 0.

https://en.wikipedia.org/wiki/Moment_(mathematics)
https://en.wikipedia.org/wiki/Probability_distribution
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To actually calculate the bounds on the estimation error, i.e. ‖e‖2
2, we can

exploit Kolmogorov’s strong law of large numbers (LLN) [Kol33]. According
to Kolmogorov’s strong LLN, the scaled ℓ2-norm of the error vector e ∈ CN

for N approaching infinity converges almost surely (a.s.) to the expected
value of ‖e‖2

2, i.e.

lim
N→∞

1

N
‖e‖2

2 = E

[
1

N
‖e‖2

2

]
∀n a.s., (3.3.5)

iff E

[
1

N
‖e‖2

2

]
exists.

Furthermore, it follows from the Lindeberg–Lévy central limit theo-
rem (CLT) [Lin22; Lév26], that for finite variance and N approaching in-
finity the distribution of the properly translated and normalized ℓ2-norm
converges in distribution to the standard normal distribution, i.e.

lim
N→∞

‖e‖2
2 − µ

σ2
∼ fN (· ; 0, 1) . (3.3.6)

Note, that finite variance implies finite expected value. Since the median
of the normal distribution is equal to its expectation, from (3.3.6) we can
deduce

lim
N→∞

median

(
1

N
‖e‖2

2

)
= E

[
1

N
‖e‖2

2

]
. (3.3.7)

Consequently, given the noisy measurement (3.3.4) with i.i.d. random vari-
ables e[n], we can

find x,

s.t. ‖y − Φx‖2
2 ≤ ρ = λ E

[
‖e‖2

2

]
≈ λ · median

(
‖e‖2

2

)
. (3.3.8)

The constraint in (3.3.8) can be regarded as a relaxation of the constraint
in (3.3.3) for noisy measurements. If a feasible solution exists, any x̃ has to
be in the solution space limited by ρ. Thus, the estimation error ‖x − x̃‖2

2

is bounded by ‖x − x̃‖2
2 ≤ λ E

[
‖e‖2

2

]
. The tuning parameter λ ∈ R≥0 is

applied to control the maximal permitted estimation error. For λ = 1 the

bound can be approximated by median
(

‖e‖2
2

)
, so that the solution x lies

within ρ with probability of 50%.
The ℓ2-error can be further simplified by exploiting the fact, that the

expectation of a sum of random variables is equal to the sum of expectations

https://en.wikipedia.org/wiki/Law_of_large_numbers#Strong_law
https://en.wikipedia.org/wiki/Almost_surely
https://en.wikipedia.org/wiki/Convergence_of_random_variables#Convergence_in_distribution
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Expected_value#Linearity


50 3 Compressed Sensing

of random variables. In addition, if e consists of i.i.d. random variables, we
have

ρ = λ E
[
‖e‖2

2

]
= λ E

[
N−1∑

n=0

∣∣e[n]

∣∣2
]

= λ

N−1∑

n=0

E
[∣∣e[n]

∣∣2
]

= λN · E
[∣∣e[n]

∣∣2
]

. (3.3.9)

Since each e[n] is obtained from i.i.d. random variables, we can refer to
the expectation of any element of e, e.g. the first element e[0]. Hence, the

ℓ2-error of (3.3.8) is bounded by the expected value of
∣∣e[0]

∣∣2 and some tun-

ing parameter. As stated above, given λ = 1 we have ρ ≈ median
(

‖e‖2
2

)
,

so that the exact solution x is found within ρ with probability of 50%. How-
ever, for λ 6= 1 the probability cannot be simply stated, since mere tuning
of the expectation disregards the second central moment of

∣∣e[0]

∣∣2. There-
fore, including the variance into the calculation of the tuning parameter
will reflect the distribution of the adversarial error. Since the error e has
property (3.3.6), a properly adjusted tuning parameter can be obtained by
applying the desired probability on the inverse cumulative distribution func-
tion (also called the quantile function) of the normal distribution, see (A.1.8)
in Appendix A.1.

3.4 Recovery Criteria

According to the Nyquist-Shannon sampling theorem [Lan67b; Sha48], ban-
dlimited signals are firstly sampled at Nyquist rate and afterwards processed
to extract the information within the signal. For the general class of ban-
dlimited signals without extra information on the signal itself, sampling
at Nyquist rate is the optimal choice to sample a signal, so that the in-
formation within the signal is fully preserved. However, signals containing
further structure may have a more efficient way of sampling and processing.
Sparse signals are one of such classes, which occur in diverse applications.
Therefore, even before the term compressed sensing has been used, appli-
cations already exploited sparse properties of signals. Some well-known
applications are the multimedia codecs MP3 and JPEG. The joint work of
Candès, Romberg and Tao [CRT06] as well as Donoho [Don06] introduced
ℓ1-norm minimization and showed that it works optimally for random matri-
ces. For this they established the term compressed sensing (CS). Especially
the breakthrough in [CRT06] regarding the required number of measure-
ments with random Fourier samples for exact reconstruction of the signal

https://en.wikipedia.org/wiki/Normal_distribution#Quantile_function
https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Compressed_sensing
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Figure 3.4: Visualization of the compressed sensing model.

with high probability drew a lot of attention, leading to further work on that
subject. In the following we will give some basic statements for the field of
CS. For more comprehensive reading we refer to the books of Foucart and
Rauhut [FR13] as well as Eldar and Kutyniok [EK12].

In general, CS revolves around two aspects of general linear systems, a
signal with sparsity property in a certain basis and a measurement matrix
with random features. The CS model is formulated as a finite linear sys-
tem (3.3.4) as discussed in the previous Section 3.3

y = Φx + e. (3.4.1)

In extension of (3.3.4), the vector x ∈ CM is sparse and Φ ∈ CN×M is a
(structured) random measurement matrix1. A graphical visualization of CS
is exemplary shown in Figure 3.4. Note, that in certain cases the measure-
ment matrix is split into two matrices with Φ = AΦ

′ ∈ CM×M , such that
we have

y = AΦ
′x + e. (3.4.2)

There, A and Φ
′ represent a (structured) random matrix and a fixed orthog-

onal matrix, respectively. This is normally the case, if the sparse property
is not present in the canonical basis, but in some other basis. One example
is image reconstruction, where the pixel visualization is usually not sparse,
unlike its wavelet transform. While the model (3.4.1) will be of importance
in Chapter 4, the model (3.4.2) is more or less present in Chapter 5. In the
following, we will refer to (3.4.1), while (3.4.2) will be discussed in more
detail in Chapter 5.

As also previously discussed in Section 3.3, x shall be reconstructed from
measurements y. However here, we want to exploit the additional sparsity
information for reconstruction. Thus, problem (3.3.8) can be rewritten

min ‖x‖0 s.t. ‖y − Φx‖2
2 ≤ ρ. (3.4.3)

1
Φ can simply be an i.i.d. normal or Bernoulli random matrix, but also a structured

random matrix like the partial random Fourier matrix, which contains a random set of
rows of the DFT.
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Summarizing (3.4.3), we search for the sparsest x such that the inequality
holds. If the solution is outside the bound, we state the problem to be infea-
sible. Unfortunately, problem (3.4.3) is NP-hard [Nat95], such that solving
it is computationally infeasible. Moreover, changing the ℓ0-”norm” to an
ℓp-quasinorm with p < 1, we still encounter an NP-hard problem [GJY11].
To overcome the computational infeasibility, CS uses the convex (and there-
fore tractable) ℓ1-norm as a proxy of the ℓ0-”norm”, which is a valid relax-
ation under conditions discussed later in this Section. Thus, we obtain the
ℓ1-norm minimization problem

min ‖x‖1 s.t. ‖y − Φx‖2
2 ≤ ρ, (3.4.4)

which will also be addressed in Section 3.5.2. Regarding the ℓ1-norm relax-
ation, especially three notions are of importance to analyse reconstruction
properties: the null space property, the mutual coherence and the restricted
isometry property (RIP), which will be subsequently introduced.

3.4.1 Null Space Property

Starting with the noiseless case, we have (3.4.1) with e = 0. Thus, we
observe (3.3.3) with p = 1, which represents the basis pursuit approach. To
introduce the null space property (NSP), we firstly define the right null
space of a matrix Φ ∈ CN×M by

NS(Φ) := {a ∈ C
M : Φa = 0}. (3.4.5)

In other words, the null space is the set of all vectors a, which fulfills Φa = 0.
Consequently, we have the vector a = 0 as a trivial element of the null space.

Given a set A ⊂ B := {0, . . . , M − 1} and a complement set A∁ = B \ A,
then a matrix Φ ∈ CN×M fulfills the null space property (NSP) of order
s, if [FR13, Definition 4.1]

∥∥b[A]

∥∥
1

<
∥∥∥b[A∁]

∥∥∥
1

, ∀b ∈ NS(Φ) \ 0, (3.4.6)

for all A ⊂ B with |A| ≤ s. Therefore, given a pair of distinct s-sparse
vectors x,x′ ∈ Σs, the difference between these vectors will result in a
2s-sparse vector (b = x − x′). In the extreme case, b will have exactly
2s non-zero entries, if all indices of the non-zero entries in x and x′ differ,
i.e. supp(x) ∩ supp(x′) = ∅2. Informally speaking, the observation of x

and x′ via a measurement matrix Φ has to be different for all possible
pairs x,x′. Concluding, if and only if a measurement matrix Φ fulfills the

2supp(x) = {n : x[n] 6= 0}

https://en.wikipedia.org/wiki/NP-hardness
https://en.wikipedia.org/wiki/Nullspace_property
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NSP of order 2s, then every s-sparse x can be uniquely recovered from
measurement y via ℓ1-norm minimization (basis pursuit).

The NSP can also be extended to a stable form, such that the NSP is
a sufficient and necessary condition for the reconstruction of compressible
vectors, see [CDD08] and [FR13, Definition 4.11]. In general, stable recovery
refers to the property, that small errors on the measurement will only induce
small deviations to the solution. Here, stability refers to the recovery of
compressible vectors while the recovery error is controlled by the distance
to s-sparse vectors, e.g. the ℓ2-error of best s-term approximation.

The term null space property has been introduced by Cohen
et al. [CDD08], even though it has been already implicitly used in several
works before. The NSP is also described in more detail in [FR13, Chapter 4].

Switching to the case with noisy measurements, we observe the ℓ1-norm
minimization problem in (3.4.4). There, the NSP as defined in (3.4.6) is too
weak to guarantee robust recovery, since it does not account for measure-
ment errors. To obtain reconstruction guarantees, the null space property
can be strengthened to be robust in the presence of noise, then known as
robust NSP. Given a set A ⊂ B := {0, . . . , M − 1} and a complement set
A∁ = B \ A, a matrix Φ ∈ CN×M fulfills the robust NSP of order s,
if [FR13, Definition 4.17]

∥∥b[A]

∥∥
1

< α
∥∥∥b[A∁]

∥∥∥
1

+ β ‖Φb‖2 , ∀b ∈ C
M , (3.4.7)

with constant parameter 0 < α < 1 as well as β > 0 for all A ⊂ B with
|A| ≤ s. Obviously, in contrast to the NSP (3.4.6), (3.4.7) permits vec-
tors (x − x′) = b ∈ C

M ⊃ NS(Φ) and includes the distance to NS(Φ) as a
penalty term ‖Φb‖2. The parameter β controls the influence of the penalty
term, and therefore, controls the permitted measurement error on y. Thus,
the robust NSP (3.4.7) permits robust reconstruction, such that estimation
error ‖x − x̃‖2 is controlled by the measurement error ‖y − Φx‖2. Further-
more, the robust NSP is necessary and sufficient condition for recovery of
sparse signals with measurement errors (3.4.4).

However, in contrast to the subsequently introduced mutual coherence
one drawback of the NSP is that it cannot be easily verified. In particular,
Tillmann and Pfetsch [TP14] proved NP-hardness for the NSP. Note that,
while in noiseless settings exact reconstruction under certain conditions is
desired, stable and robust recovery is pursued in the noisy case, such that
the estimated signal is close to the original one. In general, ℓ1-norm min-
imization (3.4.4) can be applied to just recover the exact support of an
s-sparse vector, since for known supp(x) standard LS methods can be used
to stably and robustly recover x.
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3.4.2 Mutual Coherence

Mutual coherence is a measure of similarity between a pair of columns of
a matrix. Therefore, given a matrix Φ ∈ CN×M with normalized columns,
i.e.

∥∥Φ[·,n]

∥∥
2

= 1 ∀n, the mutual coherence introduced by Donoho and
Elad [DE03] is defined by

MC(Φ) := max
1≤n<m≤M

∣∣∣
(
Φ[·,n]

)H · Φ[·,m]

∣∣∣. (3.4.8)

The mutual coherence is related to the Welch bound [Wel74], such that the

range is restricted by the Welch bound3 with MC(Φ) ∈
[√

M−N
N(M−1) , 1

]
. In

general it can be stated, that the smaller the mutual coherence the better
the recovery performance via ℓ1-norm minimization (3.4.4). Therefore based
on the mutual coherence concept, matrices achieving the Welch bound are
most promising candidates for good reconstruction. For example, Welch
bound achieving matrices can be generated by constructing DFT submatri-
ces using difference sets [XZG05; XZG06]. However, even for wide matrices
with more columns than rows N ≪ M close to the Welch bound the number
of measurements required to solve problem (3.4.4) for all s-sparse signals
scales quadratically in sparsity, see [FR13, Chapter 5]. Consequently, de-
terministically generated matrices based on low mutual coherence will just
perform quadratic in scaling. Moreover, this result is valid for all currently
known deterministically generated matrices.

3.4.3 Restricted Isometry Property

The notion of the restricted isometry property (RIP) introduced by Candès
and Tao in 2005 [CT05] in conjunction with matrix random theory provides
a tool to surpass the quadratic scaling of mutual coherence. Informally, the
RIP can be regarded as a generalization of mutual coherence. Instead of just
considering the similarity between all pairs of column vectors of a matrix,
the RIP examines the joint similarity between all possible combinations of s
columns of a matrix. Even though the RIP is generally used in conjunction
with random matrices, the property can be applied on deterministic matrices
as well.

A matrix Φ has restricted isometry property (RIP) of order s, if
there exists a δs with 0 ≤ δs < 1 and

(1 − δs) ‖b‖2
2 ≤ ‖Φb‖2

2 ≤ (1 + δs) ‖b‖2
2 , ∀b ∈ Σs. (3.4.9)

3Note that the original bound described by Welch is actually more general.

https://en.wikipedia.org/wiki/Mutual_coherence_(linear_algebra)
https://en.wikipedia.org/wiki/Restricted_isometry_property
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Essentially, the RIP forces every subset of columns of Φ to be approximately
orthonormal. The δs parameter controls how strict the orthonormality is
enforced. Thus, the corner case of δs = 0 just permits orthonormal column
subsets of matrix Φ.

The RIP is connected to the previously discussed NSP. In particular, if a
matrix fulfills RIP, then under certain conditions [EK12, Theorem 1.5] the
matrix also fulfills NSP. Consequently, RIP represents a strictly stronger
condition than NSP. Since NSP is a sufficient and necessary condition for
successful recovery, RIP is a sufficient, but not a necessary condition.

In [EK12, Theorem 1.4] and [Dav10, Theorem 3.5] it has been shown, that
if a matrix Φ ∈ CN×M satisfies the restricted isometry property (RIP)
of order 2s with restricted isometry constant 0 < δ2s ≤ 1/2, then

|A| ≥ c · s · ln(M/s) , with c ≈ 0.28. (3.4.10)

If Φ fulfills RIP with certain restricted isometry constant, then all sub-
matrices Φ[A,·] will satisfy RIP with the corresponding restricted isometry
constant as well. In particular, (3.4.10) gives a lower limit on the number
of measurements, which are required to satisfy the RIP. For any number
of measurements below that requirement a successful recovery cannot be
guaranteed. Successful recovery refers to the exact solution for noiseless
measurements, i.e. e = 0 in (3.4.1). In the noisy setting, successful recovery
refers to stable and robust reconstruction. Note, that the actual required re-
stricted isometry constant depends on the estimation algorithms and has to
be chosen appropriately, see Section 3.5. However, a value of 0 < δ2s ≤ 1/2
is a valid choice for many approaches.

In comparison to mutual coherence, proving the RIP of a matrix is
NP-hard [TP14]. Therefore, deterministically generating a matrix with
RIP is computationally intractable. However, [CT06] and subsequent work
introduced probabilistic construction of matrices satisfying the RIP with
high probability. In particular, the close entanglement of the RIP and
the Johnson-Lindenstrauss lemma shown by Baraniuk et al. [BDD+08;
KW11] enabled a better access to a probabilistic construction of RIP ma-
trices. Some examples of how to construct matrices based on the Johnson-
Lindenstrauss lemma can be found in [JW15]. Besides normal and Bernoulli
random matrices, also the DFT submatrices obtained from random DFT
rows are common candidates for probabilistic RIP matrices. A classic re-
sult [CT06; BDD+08] states that for i.i.d. normal and Bernoulli ran-
dom matrices Φ ∈ CN×M the RIP is satisfied with high probability for

N ≥ O(s · ln(M/s)) . (3.4.11)

Thus, (3.4.11) implies linear scaling of the number of measurements N and

https://en.wikipedia.org/wiki/Orthonormality
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sparsity s, but the size of the solution space M scales only logarithmically
in N . Therefore, if s ≪ M , we can chose a measurement matrix Φ ∈ CN×M

with N < M , so that reconstruction is still possible for an underdetermined
linear system. In summary we can say that the linear scaling of probabilistic
RIP matrices strongly outperforms deterministically generated matrices via
mutual coherence with quadratic scaling.

3.5 Estimation Algorithms

In this Section, we will introduce the classical LS estimators, least
squares (LS) and reduced-rank least squares (RRLS), as well as the com-
mon compressed sensing approaches, basis pursuit denoising (BPDN) and
orthogonal matching pursuit (OMP). All discussed approaches estimate an
unknown x̃ from a linear system y = Φx + e (cf. (3.3.4) and (3.4.1)) with
non-adaptive measurements. Non-adaptivity refers to an approach, where
the rows of the measurement matrix Φ used for reconstruction are chosen
non-adaptively and independently of x. Commonly, the rows of the mea-
surement matrix Φ are constructed on deterministic basis or at random.

The initially considered LS estimators in Section 3.5.1 do not exploit spar-
sity. In contrast to that, the subsequently discussed CS methods, BPDN
in Section 3.5.2 and OMP in Section 3.5.3, will consider sparsity of the
unknown x. Furthermore, for the CS methods we provide bounds for ro-
bust and stable reconstruction with respect to the previously established
restricted isometry property (RIP).

3.5.1 Reduced-Rank Least Squares

The classical least squares (LS) estimator finds solutions of (3.3.8) by min-
imizing the ℓ2-norm of the adversarial error, which is frequently used in
channel estimation [BES+95]. Thus, given the linear system of (3.3.4) with
full rank measurement matrix Φ ∈ CN×M and N ≥ M , a unique estimate
of x is found by the ℓ2-norm version of (3.3.2) with

x̃ = argmin
x

‖y − Φ · x‖2
2 (3.5.1)

=
(
Φ

H · Φ
)−1

· ΦH · y

= Φ
+ · y = ELS · y,

which is referred to as the LS approach. Hence, the LS estimator ELS

is obtained by the pseudoinverse Φ
+ ∈ CM×N of the measurement ma-
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trix Φ. A full rank matrix is present almost surely for random matrices
as used in (3.4.1). Note that the LS approach is also applicable for un-
derdetermined systems (N < M) as well as rank deficient measurement
matrices Φ. There, in contrast to (3.5.1), the solution will not be unique,
i.e. x̃ ∈ argminx ‖y − Φ · x‖2

2.
In noisy environments, the LS estimator may have poor estimation per-

formance, since small eigenvalues of Φ can lead to strong noise amplifi-
cation. One option to get a least squares estimator robust against noise
is to consider an estimation matrix with reduced rank, which is obtained
from the truncated singular value decomposition. Applying the singular
value decomposition on the measurement matrix we obtain Φ = UΣV H .
The truncated version ΣL is obtained by setting all non-dominant singular
values of Σ to zero, i.e. (ΣL)[l,l] = 0 ∀l ≥ L. Note that the singular val-
ues Σ[l,l] are of descending order, i.e. Σ[l−1,l−1] ≥ Σ[l,l] ∀l > 0. Thus, the
truncated version of LS estimator, namely the reduced-rank least squares
(RRLS) estimator [BT90; EY36] of rank L, is defined as

ERRLS,L = V · Σ−1
L · UH , (3.5.2)

where
(
Σ

−1
L

)
[m,n]

:=





1

Σ[n,m]

, n = m, n < L

0 , else,

where the number of dominant singular values of the RRLS estimator is L =
rank

(
ERRLS,L

)
. The entries of the truncated diagonal (M ×N) matrix Σ

−1
L

are also given by diag
(
Σ

−1
L

)
=
[
Σ

−1
[0,0] . . . Σ

−1
[L−1,L−1] 0 . . . 0

]⊺
.

Note that since the singular values in Σ are of descending order, the non-zero
diagonal elements of Σ−1

L are of ascending order.
The error induced by truncation to L singular values can be calculated by

the Frobenius norm. In particular, regarding the RRLS estimator ERRLS,L,
the induced estimation error by truncation depends on the Frobenius norm
between Φ and its truncation ΦL = UΣLV

H , which is obtained by

‖Φ − ΦL‖2
F = Tr

(
Σ

2 − Σ
2
L

)
=
∑

l>L

Σ
2
[l,l], (3.5.3)

where Tr
(
Σ

2
)

denotes the matrix trace with
∑

∀l Σ
2
[l,l]. Therefore, the error

described by the Frobenius norm is the sum of the non-dominant singular
values of Φ. The Eckart–Young theorem [EY36] proved, that given an er-
ror described by the Frobenius norm ‖·‖F , the best truncation of Φ, i.e.
the best rank L approximation to Φ, is obtained by the truncated singu-
lar value decomposition UΣLV

H . Consequently, regarding the Frobenius
norm, ΦL is the best rank L approximation of Φ.

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm
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However, given the noise variance of the noisy measurement (3.3.4) we
still do not know how to choose the rank L of the RRLS estimator, so that
the truncation error in conjunction with the noise amplification is minimized.
Therefore, we consider the ℓ2-error between the RRLS estimate x̃L of rank L
and x with the use of (3.3.4) and (3.5.2)

‖x − x̃L‖2
2 =

∥∥x − ERRLS,L · y
∥∥2

2
=
∥∥x − ERRLS,L · Φ · x − ERRLS,L · e

∥∥2

2

=
∥∥x − V Σ

−1
L UHUΣV Hx − V Σ

−1
L UHe

∥∥2

2

=
∥∥x − V I′

LV
Hx − V Σ

−1
L UHe

∥∥2

2
. (3.5.4)

where with slight abuse of notation, the diagonal (M × M) matrix I′
L con-

tains ones on the first L ≤ M diagonal entries and zeros on the resid-
ual entries. Thus, I′

L represents a truncated identity matrix. Multiplying
the unitary matrix V H within the ℓ2-norm of (3.5.4) does not change the
ℓ2-norm. So we have

‖x − x̃L‖2
2 =

∥∥V Hx − I′
LV

Hx − Σ
−1
L UHe

∥∥2

2

=
∥∥(IM − I′

L)V Hx − Σ
−1
L UHe

∥∥2

2
. (3.5.5)

Applying the Minkowski inequality to (3.5.5), we split the ℓ2-norm in two
parts. However, since matrix (IM − I′

L) and matrix Σ
−1
L are non-zero

on disjoint rows, we have equality
∥∥a[A]

∥∥2

2
+
∥∥−b[B\A]

∥∥2

2
=
∥∥a[A] − b[B\A]

∥∥2

2
.

Thus, we have

‖x − x̃L‖2
2 =

∥∥(IM − I′
L)V Hx

∥∥2

2
+
∥∥Σ−1

L UHe
∥∥2

2
. (3.5.6)

Given the unitary matrix UH and the i.i.d. random variable e[n],
n ∈ {0, . . . , N − 1}, the expectation of the noise term is written

E
[∥∥Σ−1

L UHe
∥∥2

2

]
= E

[
Tr
(
Σ

−1
L UHe · eHU

(
Σ

−1
L

)H
)]

= Tr
(
Σ

−1
L UH E

[
e · eH

]
U
(
Σ

−1
L

)H
)

= Tr
(
Σ

−1
L UH E

[∣∣e[0]

∣∣2
]
U
(
Σ

−1
L

)H
)

= E
[∣∣e[0]

∣∣2
]

· Tr
(
Σ

−2
L

)
. (3.5.7)

Applying a unitary matrix UHe, the statistical properties of e are pre-
served [TV05, Chapter A.1]. Similar to (3.5.7), given the unitary matrix V H

https://en.wikipedia.org/wiki/Minkowski_inequality
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and the i.i.d. random variable x[n], n ∈ {0, . . . , N − 1}, we have

E
[∥∥(IM − I′

L)V Hx
∥∥2

2

]
= Tr


(IM − I′

L)V H
E
[
‖x‖2

2

]

M
V (IM − I′

L)
H




= Tr (IM − I′
L) ·

E
[
‖x‖2

2

]

M

=
M − L

M
· E
[
‖x‖2

2

]
. (3.5.8)

Thus, the expectation of the ℓ2-error between the RRLS estimate x̃L of
rank L and x is given by

E
[
‖x − x̃L‖2

2

]
=

M − L

M
· E
[
‖x‖2

2

]
+ λ E

[∣∣e[0]

∣∣2
]

· Tr
(
Σ

−2
L

)
, (3.5.9)

where the tuning parameter λ ∈ R≥0 controls the noise impact. Eventually,
the rank L of the RRLS estimator ERRLS is obtained by rearranging and
minimizing (3.5.9)

L = argmin
L′

(
E
[
‖x − x̃L′‖2

2

])

= argmin
L′


Tr

(
Σ

−2
L′

)
+

M − L′

λM
·

E
[
‖x‖2

2

]

E
[∣∣e[0]

∣∣2
]


 . (3.5.10)

We can further simplify (3.5.10) by retrieving the error induced by rank
reduction
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E
[
‖x − x̃L−1‖2

2

]
= Tr

(
Σ

−2
L−1

)
+

M − L + 1

λM
·

E
[
‖x‖2

2

]

E
[∣∣e[0]

∣∣2
]

= Tr
(
Σ

−2
L

)
+

M − L

λM
·

E
[
‖x‖2

2

]

E
[∣∣e[0]

∣∣2
]

− Σ
−2
[L,L] +

1

λM
·

E
[
‖x‖2

2

]

E
[∣∣e[0]

∣∣2
]

= E
[
‖x − x̃L‖2

2

]
− Σ

−2
[L,L] +

1

λM
·

E
[
‖x‖2

2

]

E
[∣∣e[0]

∣∣2
] . (3.5.11)

Thus, the error induced by reducing one rank is

E
[
‖x − x̃L−1‖2

2

]
− E

[
‖x − x̃L‖2

2

]
= −Σ

−2
[L,L] +

1

λM
·

E
[
‖x‖2

2

]

E
[∣∣e[0]

∣∣2
] . (3.5.12)

Since Σ
−2 is of ascending order and the second term is constant, the trun-

cation error in conjunction with the noise error is minimized for L such
that

Σ[L,L] =

√
λ E
[∣∣e[0]

∣∣2
]

·
√√√√

M

E
[
‖x‖2

2

] . (3.5.13)

In other words, if rank reduction leads to a larger truncation error than
the error induced by noise amplification, then the overall estimation error
will not benefit from further truncation. In particular, the truncation error
would more than diminish the gain of reduced noise amplification.

Since achieving precise equality (3.5.13) is impractical, the optimal rank L
of the RRLS estimator ERRLS,L is obtained by minimizing the difference
between the left side and the right side of (3.5.13). Note that the singular
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values Σ[l,l] are of descending order. Therefore, we have

L = argmin
l

∣∣∣∣∣∣∣
Σ[l,l] −

√
λ E
[∣∣e[0]

∣∣2
]

·
√√√√ M

E
[
‖x‖2

2

]

∣∣∣∣∣∣∣
(3.5.14)

≥

∣∣∣∣∣∣∣





l : Σ[l,l] ≥ ρ =

√
λ E
[∣∣e[0]

∣∣2
]

·
√√√√ M

E
[
‖x‖2

2

]





∣∣∣∣∣∣∣
. (3.5.15)

The approximation in (3.5.15) may return rank L − 1, which is smaller
than the optimal rank obtained by (3.5.14). However, the error induced
by the approximation will be generally not severe. Furthermore, standard
methods for the reduced rank pseudoinverse operate with threshold ρ given
in the form of (3.5.15). Therefore, given the linear system of (3.3.4) and
the singular value decomposition Φ = UΣV H the RRLS estimator used
throughout this thesis is defined by

ERRLS = V · Σ−1
L · UH , (3.5.16)

with L =

∣∣∣∣∣∣∣





l : Σ[l,l] ≥ ρ =

√
λ E
[∣∣e[0]

∣∣2
]

·
√√√√ M

E
[
‖x‖2

2

]





∣∣∣∣∣∣∣
.

Thus, given the RRLS estimator ERRLS ∈ CM×N and (N ≥ M), an RRLS
solution is found by

x̃ = ERRLS · y. (3.5.17)

Usually, we will consider x ∈ CM with ‖x‖2
2 = M (or at least to have

E
[
‖x‖2

2

]
= M), so that the term

√
M/ E

[
‖x‖2

2

]
vanishes. Note that

for E
[∣∣e[0]

∣∣2
]

= 0, the RRLS estimator ERRLS reduces to the LS estima-

tor ELS.

3.5.2 Basis Pursuit Denoising

In contrast to the LS approaches like RRLS, compressed sensing methods ex-
ploit supp(x) (support of the unknown x ∈ CM ). As described in Section 2.3
and [Mol05], typical wireless channels are sparse. Therefore, for s-sparse
vectors with s = |supp(x)| ≪ M the application of compressed sensing is
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desirable. Consequently, given the measurement matrix Φ ∈ CN×M and
the measurement y ∈ CN , the general linear problem stated in (3.3.8) as
well as the reformulated ℓ1-norm minimization problem in (3.4.4) may also
be uniquely solvable in the underdetermined case (N < M) if x is s-sparse,
cf. (3.4.11). The ℓ1-norm minimization approach is also often referred to
as least absolute shrinkage and selection operator (LASSO) [Tib96] or basis
pursuit denoising (BPDN) [CDS98; CT05], and is given by

x̃ := argmin
x

‖x‖1 ,

s.t. ‖Φx − y‖2
2 ≤ ρ = λN · E

[∣∣e[0]

∣∣2
]

. (3.5.18)

Hereinafter we will refer to (3.5.18) as the basis pursuit denoising (BPDN)
approach. The BPDN approach can also be written as an ℓ1-norm con-
strained least squares version

x̃ := argmin
x

‖Φx − y‖2
2 ,

s.t. ‖x‖1 ≤ ρ′. (3.5.19)

Moreover, the unconstrained Lagrangian equivalent of the constrained ver-
sions (3.5.18) and (3.5.19) is

x̃ := argmin
x

(
‖Φx − y‖2

2 + λ′ ‖x‖1

)
, (3.5.20)

where λ′ is a penalty operator for the ℓ1-norm term. In summary, each of the
three approaches (3.5.18) to (3.5.20) searches for a solution depending on a
certain parameter. In particular, the three versions solve a similar problem,
but differ in the choice of parameter. More precisely [FR13, Proposition 3.2]
states, that for each of the three versions a parameter exists, such that
the same x̃ is found, which uniquely minimizes the corresponding problem.
However, the precise conversion from one parameter to another is not trivial.

As discussed in Section 3.4, the restricted isometry property (RIP)4 is
a sufficient condition to give performance guarantees for solving (3.5.18).
Informally, reconstruction via the BPDN approach (3.5.18) is stable and
robust, if Φ ∈ CN×M acts almost isometrically on every possible s-sparse
vector. Thus, for a matrix Φ satisfying RIP of order s with a restricted
isometry constant below a certain value, stable and robust recovery of the
s-sparse x can be guaranteed for the linear system y = Φx + e.

4RIP is a strictly stronger condition than NSP, where NSP is a sufficient and necessary
condition solving (3.5.18).

https://en.wikipedia.org/wiki/Lasso_(statistics)
https://en.wikipedia.org/wiki/Basis_pursuit_denoising
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Since the RIP has been introduced in 2005 [CT05], there has been
a tremendous research effort to increase the sufficient restricted isome-
try constants for stable and robust recovery via BPDN. Andersson and
Strömberg [AS14] obtained a sufficient restricted isometry constant δ2s <
4/

√
41 ≈ 0.6246 for the noisy case, which can be found also in [FR13, The-

orem 6.12]. In more detail the theorem states, that having a matrix Φ

satisfying the RIP of order 2s with δ2s < 4/
√

41, then for any x ∈ CM

and y ∈ CN fulfilling ‖Φx − y‖2
2 ≤ ρ the s-sparse vector x̃ of (3.5.18)

approximates x with errors restricted by

‖x − x̃‖1 ≤ α · γs(x)1 + β · √
s · ρ,

‖x − x̃‖2 ≤ α√
s

· γs(x)1 + β · √
ρ, (3.5.21)

where α, β > 0 are constant parameters only depending on δ2s. Conse-
quently, the error limit scales with the ℓ1-error of best s-term approx-
imation γs(x)1 and the magnitude the measurement errors

√
ρ. Obvi-

ously, a matrix Φ satisfying the RIP of order 2s is of most interest here,
since it guarantees stable and robust reconstruction of all s-sparse vec-
tors x̃ from y = Φx + e. The work of Cai and Zhang [CZ14] extended
the restricted isometry constant for RIP of order 2s to a sharp bound
of δ2s < 1/

√
2 ≈ 0.7071. Even more general, they provided a RIP bound of

order as with δas <
√

(1 − a)/a, which is sharp for a ≥ 4/3 [CZ14].
In addition, if the RIP statements above are fulfilled, then the BPDN

approach is instance optimal [CT05; CDD08]. We call a reconstruction ap-
proach instance optimal5, if its approximation error has the same scaling
in s (up to a constant c) as the best s-term approximation [FR13, Defini-
tion 11.1]

‖x − x′
s‖1 ≤ c · γs(x)1, (3.5.22)

where x′
s denotes the best s-term approximation. Thus, under the above

RIP bounds, BPDN achieves in scaling as good performance as the best
s-term approximation.

The convex BPDN problem can be solved via quadratic programming,
where for example the interior point or the gradient projection method can
be applied. In particular, to solve the BPDN problem we use the SPGL1-
toolbox of Berg and Friedlander in [BF15], which implements a gradient
projection method in polynomial time. The description and theory behind
the SPGL1-toolbox can be obtained from [BF08].

5More precisely, ℓ1-instance optimal.
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3.5.3 Orthogonal Matching Pursuit

Instead of solving (3.5.18) via a quadratic program, (3.5.18) can also be
solved by greedy algorithms. One well-known greedy compressed sens-
ing method is the orthogonal matching pursuit (OMP) algorithm [TG07b;
EK12], which has reduced complexity in comparison to the basis pursuit
denoising method. Tropp et al. [TG07b] noted that OMP originated from
stagewise regression in the 1950s, and has been introduced independently
in [MZ93; PRR+93]. Besides OMP, other greedy methods solving (3.5.18)
exist. OMP can be counted to the family of greedy pursuit algorithm, where
different variations and extensions exist. Furthermore, alternate methods
like the thresholding approaches exist, where compressive sampling match-
ing pursuit (COSAMP) [NT10] is a common approach. A list of greedy
methods can be found in [EK12, Chapter 8.2]. Nevertheless, here we will
focus on the conventional OMP algorithm as published in [EK12, Algo-
rithm 8.3].

The conventional OMP is an iterative algorithm (see Algorithm 3.1),
which solves a least squares problem at each iteration and successively re-
constructs the unknown vector x, cf. line 5 in Algorithm 3.1. The pseudoin-
verse

(
Φ[·,B]

)+
is constructed from a submatrix of Φ, which contains the

columns selected by the index set B. Starting with an empty index set B,
B is extended at each iteration by the index with the largest projection of

Algorithm 3.1 Orthogonal matching pursuit (OMP) [EK12]

Input: y ∈ CN , Φ ∈ CN×M , λ, E
[∣∣ẽ[0]

∣∣2
]
, s

Initialize: B = ∅, ẽ = y, x̃ = 0, s = min[M, s]

1: while
(

‖ẽ‖2
2 ≥ ρ = λN · E

[∣∣ẽ[0]

∣∣2
])

and (|supp(x̃)| < s) do

2: a =
∣∣∣ΦH · ẽ

∣∣∣

3: m = argmax
m

a[m]∥∥Φ[·,m]

∥∥
2

4: B = B ∪ {m}

5: x̃[B] =
(
Φ[·,B]

)+ · y

6: ẽ = y − Φ · x̃

7: end while

8: return x̃, ẽ
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the adversarial error, cf. line 2-4 in Algorithm 3.1. At the end of each
iteration, the adversarial error is calculated, cf. line 6 in Algorithm 3.1.
Note that at line 3 in Algorithm 3.1, we do not have to check for m /∈ B,
because a[m] = 0 ∀m ∈ B.

The OMP algorithm terminates if a stopping criterion is met. However,
defining appropriate stopping criteria highly depend on the investigated
problem. Here, two stopping criteria are considered, cf. line 1 in Algo-
rithm 3.1. The first criterion terminates the algorithm, if the ℓ2-norm of
the adversarial error is below a certain threshold, i.e.

‖ẽ‖2
2 ≥ λN · E

[∣∣ẽ[0]

∣∣2
]

. (3.5.23)

Equivalent to (3.3.8), the threshold bounds the error of the estimate to be
within the expectation of the adversarial error element with some scaling λN .
The second criterion terminates the algorithm if a certain sparsity s of the
estimate x̃ is achieved, i.e.

|supp(x̃)| < s. (3.5.24)

In this way, an s-sparse estimated solution can be enforced. If the spar-
sity s is not provided, then the algorithm runs until the first stopping
criterion is met or all entries of x̃ are set and, thus x̃ ∈ CM has full sup-
port |supp(x̃)| = M . Note that as discussed earlier, compressed sensing (CS)
methods are principally required to recover the support of an s-sparse vector,
since problem (3.4.4) with known support can be simply solved by standard
LS approaches. Similar to that, OMP iteratively assembles supp(x), where
the estimate x̃ in each iteration step is primarily used to correctly update
the support in the next iteration step.

In the recent decade, OMP has been intensively studied to obtain con-
ditions for exact recovery for the noiseless case as well as for stable and
robust reconstruction under noisy regime. Similar to the statement above,
it is sufficient to prove exact support recovery for the noisy case to prove
stable and robust reconstruction, since knowing the support of an s-sparse
vector reduces the problem to a least squares problem, see (3.3.2) with p = 2.
In 2017 Wen et al. [WZW+17] published sharp conditions for exact support
recovery for noisy measurements. In particular, two theorems on recovery
conditions are presented for OMP, where we pick the one that bounds the
noise on the ℓ2-ball, which is the most relevant for us. [WZW+17, Theo-
rem 1] states for the linear system in (3.4.1), that if ‖e‖2

2 ≤ ρ and

min
n∈B

∣∣x[n]

∣∣ >
2 · √

ρ

1 − δs+1 ·
√

s + 1
(3.5.25)
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as well as Φ satisfy the RIP (3.4.9) with

δs+1 <
1√

s + 1
, (3.5.26)

then the OMP with stopping rule ‖ẽ‖2
2 ≤ ρ exactly reconstructs the B =

supp(x) of any s-sparse vector x in |B| iterations. Condition (3.5.25) en-
forces a magnitude on the entries of the s-sparse vector, such that the mag-
nitude is exceeding the accumulated noise magnitude by a certain factor.
Decreasing the restricted isometry constant δs+1 and therefore enforcing or-
thonormality of Φ will also permit smaller magnitudes on the entries of x.
In addition, Wen et al. [WZW+17] also provided a necessary condition for
the magnitudes of x. Note that Liu et al. [LFL17] recently provided a
weaker magnitude condition (3.5.25) for [WZW+17, Theorem 1], such that
the magnitudes of x can be smaller.

3.6 Partial Fourier Measurements

In the recent sections, we discussed the linear system y = Φx + e and the
requirements on the linear system for successful recovery. In particular, we
discussed the requirements on the measurement matrix Φ, where the actual
realization of Φ has been left fairly vague as (structured) random matrix.

In this Section, we will analyze partial Fourier measurements, which are
reflected by Φ being a partial (random) Fourier matrix. Furthermore, we
will discuss two types of partial Fourier measurements: (i) measurements of
the channel transfer function and (ii) measurements of the spectral channel
power (SCP). Depending on the type we will consider the following mea-
surement model: (i) channel transfer function measurements ŵ = Φ ·h+ n̂

and (ii) SCP measurements ẑ = Φ · v + ê. These two measurement models

are obtained from our transmission model ŵ = diag
(
ĥ
)
û + n̂ in (2.4.8)

of Section 2.4. By exploiting the property of partial (random) Fourier
matrices and sparsity, we show that we can perform channel estimation.
In particular, we show that we can obtain (i) the channel impulse re-
sponse (CIR) h from the channel transfer function measurement ŵ with
noise n̂ and (ii) the circular autocorrelation of the CIR (CAC) v from the
SCP measurement ẑ = |ŵ|2 with error ê. Therefore, we obtain a threshold,
where (i) the exact solution of the CIR is found with certain probability
and (ii) the solution of the CAC is found based on the expectation of the
measurement error. Furthermore, we discuss the solution space of the two
measurement models.



3.6 Partial Fourier Measurements 67

At first we start by defining the partial (random) Fourier matrix. An
NDFT-point DFT matrix is defined by

F[f,t] :=
1√

NDFT

· exp

(
−i2π

ft

NDFT

)
, (3.6.1)

where f, t ∈ F := {0, . . . , NDFT − 1} as also defined in Section 2.4. Thus,
we can define the measurement matrix Φ ∈ C|S1|×|A| by a NDFT-point DFT
submatrix with

Φ := F[S1,A] , (3.6.2)

where S1,A ⊆ F. Successful recovery of x from the measurement y = Φx+e,
cf. (3.4.1), depends particularly on the dimension and the indices of the
sets S1,A. There, C|A| defines the solution space of x ∈ C|A| and C|S1|

represents the measurement space of y ∈ C|S1|. As discussed in Sections 3.4
and 3.5, while RRLS (3.5.17) considers problems of dimension |S1| ≥ |A|,
BPDN (3.5.18) and OMP (Algorithm 3.1) consider problems of dimension
|S1| ≥ |supp(x)| ≪ |A|, cf. (3.4.11).

More specifically, let us consider our transmission model ŵ[f ] = ĥ[f ]û[f ] +
n̂[f ] in (2.4.7) with the transmission symbol û[f ] and noise symbol n̂[f ].

There, f ∈ S1 ⊆ P ⊆ F is limited on the transmission band P, where S1

represents the allocated frequency resources of a single transmitter (user).
To acquire information about the wireless channel, a subset of the trans-
mission resources are used as pilots. For example, given S1 being the set of
pilots of a single transmitter, the channel transfer function measurement ĥ[f ]

can be deduced from measurements ŵ[f ], f ∈ S1. Consequently, given ap-
propriate dimension and distribution of S1 and A, the channel impulse re-
sponse h ∈ CNCP+1 can be recovered from ĥ[f ] with the use of Φ ∈ C|S1|×|A|.
While hereinafter we discuss the general conditions on partial (random)
Fourier matrices Φ regarding the sets S1 and A, pilot-based channel esti-
mation to retrieve the channel impulse response as well as amplitude-based
channel estimation to retrieve the circular autocorrelation of the CIR will
be the topic of the subsequent sections, Section 3.6.1 and Section 3.6.2.

Due to its high relevance, the recovery performance of partial Fourier
matrices is an intensively studied topic. In general, the subject of par-
tial Fourier matrices can be divided into the field of deterministically (see
Section 3.4.2) and partially random (see Section 3.4.3) generated matri-
ces. While deterministic DFT submatrices are generally obtained by de-
creasing the mutual coherence, the RIP is used to generate partial random
Fourier matrices, where the rows are randomly selected from a Fourier ma-
trix. Note that there also exists work addressing the intermediate subject
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of deterministic design with only some partial probabilistic features, see for
example [JKM18].

Commonly, difference sets are used to generate deterministic DFT subma-
trix with Welch bound achieving mutual coherence [XZG05; XZG06; TH17].
Xia et al. [XZG05; XZG06] originally showed the application of difference
sets in construction of Welch bound achieving codebooks. Nevertheless, the
general concept of difference sets has been already introduced by [Bru55].
Besides the drawback, that difference sets are just available for certain sizes
of DFT matrices, the approach has the usual disadvantage of determinis-
tic matrices, such that the number of measurements scale quadratically in
sparsity, see Section 3.4.2.

In contrast to deterministic DFT submatrix via e.g. difference sets, the
scaling between number of measurements and sparsity for partial random
Fourier matrices is significantly better. Rudelson and Vershynin published
already in 2008 [RV08], that a stable and robust reconstruction for par-
tial random Fourier matrices can be achieved with high probability, if the
number of measurements scales by |S1| ≥ O

(
s · ln(|A|) 4

)
. The most re-

cent extension on this result has been done by Haviv and Regev in [HR17],
achieving a slightly enhanced scaling of

|S1| ≥ O
(
s · ln(|A|) 3

)
. (3.6.3)

In addition, recently Bandeiry et al. [BLM17, Theorem 16] obtained also a
lower bound on the scaling. Thus, the number of necessary measurements
scales by

|S1| ≥ O(s · ln(|A|)) . (3.6.4)

Therefore, given the results in (3.6.3) and (3.6.4), the implications of (3.4.11)
are also valid for partial random Fourier matrices. Hence, given a partial
random Fourier matrix Φ ∈ C|S1|×|A| with (|S1| < |A|), then a solution
of the underdetermined linear system can be found via compressed sensing
methods, if s ≪ |A|. Within this thesis, the considered size of DFT-matrices
does not exceed 211 = 2048. Therefore, in the region of interest the sufficient
scaling (3.6.3) is impractical, since already for small s the number of required
measurements quickly explodes. However, the lower bound (3.6.4) shows,
that the necessary condition for reconstruction is still accessible for the given
DFT-matrix size.

In the following two sections we will concentrate on our transmission
model (2.4.7) from Section 2.4

ŵ[f ] = ĥ[f ]û[f ] + n̂[f ], f ∈ S1, (3.6.5)

https://en.wikipedia.org/wiki/Difference_set
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where we restrict the transmission vector u to a certain transmission alpha-
bet. While we use pilot symbols in Section 3.6.1, we relax u to constant
amplitude symbols in Section 3.6.2.

3.6.1 Pilot-Based Channel Estimation

Classic channel estimation [OA07; LTH+14; JSW09] is concerned with the
recovery of the wireless channel from measurements at the receiver. Here,
we consider pilot-based channel estimation to reconstruct the channel im-
pulse response (CIR) from a known frequency resource set S1 of complex
pilots û[S1]. Therefore, for simplification of notation and without loss of
generality, the complex pilots are set to one, i.e.

û[f ] = 1 , f ∈ S1. (3.6.6)

Consequently, the transmission model (3.6.5) simplifies to

ŵ[f ] = ĥ[f ] + n̂[f ] , f ∈ S1. (3.6.7)

Since in CP based OFDM systems the support of the CIR has to ful-
fill (2.4.6)6

supp(h) ⊆ NCIR (3.6.8)

with NCIR := {0, . . . , NCP}, (3.6.9)

we restrict the NDFT-point DFT submatrix (3.6.2) on the CP set A = NCIR
7.

Thus, by applying the inverse discrete Fourier transform on the channel
transfer function ĥ we obtain

ĥ[f ] =
1√

NDFT

∑

t∈NCIR

exp

(
−i2π

ft

NDFT

)
· h[t]

=
∑

t∈NCIR

(
F[t,f ]h[t]

)
(3.6.10)

Therefore, (3.6.7) can be written as linear equations similar to (3.3.4) with

ŵ[f ] =
∑

t∈NCIR

(
F[t,f ]h[t]

)
+ n̂[f ] , f ∈ S1, (3.6.11)

6In particular, the cyclic-prefix of systems like CP based OFDM is designed to be
at least of size of the CIR, where the CIR contains the significant multipath entries, cf.
(2.3.2).

7Note that |NCIR| = NCP + 1.
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where the noise variable n̂ refines the generic adversarial error e. Further-
more, considering Φ = F[S1,NCIR] and h ∈ C|NCIR|, (3.6.11) can be written
using matrix notation

ŵ[S1] = Φ · h + n̂[S1]. (3.6.12)

Thus, the estimation algorithms presented in Section 3.5 can be directly
applied on (3.6.12) to estimate the CIR h. However, since the noise on
the channel transfer function measurements is assumed to be independent
and identically circularly-symmetric complex normally distributed n̂[f ] ∼
fCN

(
· ; 0, σ2

n̂

)
, the bounds on the ℓ2-error in (3.3.8) can be more precisely

stated.
Therefore, in the following we will provide different bounds on the ℓ2-error

in closed-form, so that a solution of (3.3.8) is found with certain probability.
We begin by simply bounding the ℓ2-error on the noise expectation. How-
ever, there a precise bound achieving a certain probability can be obtained
for λ = 1, only. Then, to obtain bounds achieving arbitrary probability,
we retrieve bounds on approximated probability distributions of n̂. There,
we provide two approximation, where the latter gives more precise results
especially for small number of measurements |S1|.

The ℓ2-norm of n̂ (also holds for the more general normal distribution
with zero mean) results in the Gamma distribution (Appendix A.7)

∥∥n̂[S1]

∥∥2

2
∼ fΓ

(
· ; σ2

n̂, |S1|
)

. (3.6.13)

Thus, we obtain the expected value of ‖n̂‖2
2 via the first raw moment of the

Gamma distribution (A.7.11)

E
[∥∥n̂[S1]

∥∥2

2

]
= |S1| · σ2

n̂. (3.6.14)

Hence, the problem (3.3.8) can be refined, such that we simply solve

find h,

s.t.
∥∥ŵ[S1] − Φ · h

∥∥2

2
≤ ρ = λ |S1| · σ2

n̂. (3.6.15)

where the ℓ2-norm term is constrained by the expectation of the Gamma
distribution |S1| · σ2

n̂ with some scaling λ ∈ R≥0. A solution of prob-

lem (3.6.15) can be found by RRLS estimation h̃ = ERRLS · ŵ[S1], cf.
(3.5.17), where the RRLS estimator ERRLS (3.5.16) is constructed using

ρ =
√

λ · σn̂ ·
√

|NCIR| / E
[
‖h‖2

2

]
. The threshold ρ is obtained by replacing

the expectation E
[∣∣e[0]

∣∣2
]

of (3.5.16) by (3.6.14) with |S1| = 1.

https://en.wikipedia.org/wiki/Moment_(mathematics)
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For |S1| = 1 the ICDF of the Gamma distribution can be expressed
in closed-form (A.7.21). Thus, for λ = 1 the solution h will be found
within ρ with probability of approximately 63.2%. Further example values
for |S1| = 1 are given in Table A.4. In addition, as stated for (3.3.8),
for |S1| → ∞ the expectation tends to the median. Thus, given λ = 1 the
true channel impulse response h is found within the bound with probability
of around 50%. Consequently, given λ = 1 the solution h exists within the
solution space with probability between 63.2% and 50%.

Furthermore, for large |S1| the Gamma distribution can be approxi-
mated by the standard normal distribution (A.7.15), such that the bound
in (3.6.15) on mere expectation is replaced by the inverse cumulative distri-
bution function

ρ = F−1
Γ

(
P ; σ2

n̂, |S1|
)

≈ F−1
N
(
P ; |S1| · σ2

n̂, |S1| · σ4
n̂

)
, (3.6.16)

where the mean (|S1|·σ2
n̂) and the variance (|S1|·σ4

n̂) of the Gamma distribu-
tion is given by (A.7.11) and (A.7.13), respectively. With the use of (A.1.8),
the ICDF of the normal distribution of (3.6.16) is replaced by

ρ = |S1| · σ2
n̂ + |S1| · σ4

n̂ ·
λ︷ ︸︸ ︷√

2 · erf−1 (2P − 1)

= λ |S1| · σ4
n̂ + |S1| · σ2

n̂, (3.6.17)

In this case, the probability that the solution exists within the bound (3.6.17)
can be obtained for given λ from the CDF of the standard normal distribu-
tion (A.1.2). Some example values for λ can be found in Table A.1, where
e.g. λ = 2 leads to probability of around 97.72%.

However, using directly the normal distribution as approximation will
lead to high deviations for small |S1|. Another option is to apply a modified
variable on the normal distribution, which results in more accurate proba-
bilities than (3.6.17). One approximation is given by (A.7.9), which sets the
bound dependent on an approximated Gamma distribution

ρ = |S1| · σ2
n̂

(
F−1

N (P )√
9 |S1|

+ 1 − 1

9 |S1|

)3

≈ F−1
Γ

(
P ; σ2

n̂, |S1|
)

. (3.6.18)

The approximation of the noise distribution in (3.6.16) and (3.6.18) enables
more precise adjustment of the threshold ρ on the solution space C|NCIR|.
In particular, we can chose the probability that the solution exists within
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the threshold. While RRLS (3.5.16) just restricts the ℓ2-error of the solu-
tion, BPDN (3.5.18) and OMP (Algorithm 3.1) additionally pose a sparsity
constrained on the solution.

In the literature, pilot-based channel estimation to obtain the CIR via
Fourier measurements utilizing compressed sensing has been intensively
studied, see overview publications in [BWH+10; BHS+10]. As implied
by (3.4.11), (3.6.3) and (3.6.4), we require |supp(h)| ≪ NCP + 1 to achieve
successful reconstruction from an underdetermined system of linear equa-
tions (|S1| < NCP + 1). As described in Section 2.3 and in [Mol05], typical
wireless channels h are compressible, see compressibility definition in (3.2.5)
of Section 3.2. Hence, we require a small number of non-zero taps only, i.e.

|supp(h)| ≪ NCP + 1, (3.6.19)

to have a good representation of the CIR. In other words, given the CIR vec-
tor h with sorted entries

∣∣h[t]

∣∣ ≥
∣∣h[t+1]

∣∣, the entries
∣∣h[t]

∣∣ will decay quickly,
i.e. exponential. Due to the compressibility property of h, CS methods are
highly applicable to solve (3.6.15). In addition, the performance of Algo-
rithm 3.1 (OMP) can be increased, if a-priori knowledge about |supp(h)| is
available. There, the stopping criterion based on sparsity is used to restrict
the solution on the significant multipath components, such that an s-sparse
CIR is enforced.

3.6.2 Amplitude-Based Channel Estimation

In the previous section, we discussed pilot-based channel estimation via
channel transfer function measurements ŵ = Φ · h + n̂ with the partial
Fourier measurements matrix Φ, the CIR h and noise n̂. In this section,
we will focus on amplitude-based channel estimation8 via spectral chan-
nel power (SCP) measurements ẑ = Φ · v + ê, where v and ê denote the
circular autocorrelation of the CIR (CAC)9 and the noise term, respec-
tively. The SCP measurements will be derived from our transmission model

ẑ = |ŵ|2 =
∣∣∣diag

(
ĥ
)
û + n̂

∣∣∣
2

in (2.4.8) of Section 2.4. In particular, we

will show that amplitude-based channel estimation can retrieve the CAC, if
the amplitudes |û| are known a-priori. This differs from pilot-based chan-
nel estimation discussed in the previous section, where the complex-valued
pilots û have to be known a-priori. Thus, we are able to obtain the SCP,
where we exploit the linear Fourier transformation between CAC and SCP.

8We will use here also the term channel estimation, even though we do not estimate
the channel directly, but its autocorrelation.

9The circular feature of the autocorrelation arises from the circular property of the
discrete Fourier transform (DFT).
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Furthermore, we use the expectation to obtain a bound on the ℓ2-error to
solve (3.3.8) and discuss the solution space.

The advantage of amplitude-based channel estimation over pilot-based
channel estimation is that instead of pilots only the amplitude of symbols
have to be known, yielding in a further degree of freedom at the transmit-
ter. However, while the pilot-based channel estimation in Section 3.6.1 is
able to reconstruct the complex-valued channel impulse response (CIR),
the here considered amplitude-based channel estimation with SCP mea-
surements just reconstructs the CAC. In general, retrieving the original
complex-valued CIR from the CAC is not feasible. However, we can obtain
the SCP from the CAC via the linear Fourier transformation, which reveals
information on the course of the wireless channel in the frequency domain.
In particular, the channel gain over frequency can be obtained, which is
of interest for e.g. signal quality measurements between transmitter and
receiver.

At first we show how amplitude-based channel estimation estimates the
CAC from SCP measurements. We begin by considering the power spectrum
observed at a receiver, which is given by our transmission model (3.6.5) with
absolute squared frequency measurements

ẑ[f ] =
∣∣ŵ[f ]

∣∣2 =
∣∣∣ĥ[f ]û[f ] + n̂[f ]

∣∣∣
2

. (3.6.20)

Just like in (3.6.6), the frequency resources f ∈ S1 are known a-priori. How-
ever, instead of pilots as in (3.6.6), we use transmit symbols with known am-
plitudes |û|, where û[f ] is selected from a known transmit alphabet. Phase-
shift keying symbols is an obvious choice for a transmit alphabet, since the
amplitude is constant for all symbols. Therefore, only a real-valued scalar
has to be known. Furthermore, for simplification of notation and without
loss of generality, we normalize the amplitude of all transmission symbols
to

∣∣û[f ]

∣∣ = 1 , f ∈ S1. (3.6.21)
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Thus, given (3.6.21) we can reformulate the power spectrum of (3.6.20) to

ẑ[f ] =
∣∣ŵ[f ]

∣∣2 =
∣∣∣ĥ[f ]û[f ] + n̂[f ]

∣∣∣
2

=
∣∣∣ĥ[f ] + û

∗
[f ] · n̂[f ]

∣∣∣
2

=
∣∣∣ĥ[f ]

∣∣∣
2

+ ĥ[f ]û[f ]n̂
∗
[f ] + ĥ

∗
[f ]û

∗
[f ]n̂[f ] +

∣∣n̂[f ]

∣∣2

=
∣∣∣ĥ[f ]

∣∣∣
2

+ ê[f ]

= v̂[f ] + ê[f ], f ∈ S1. (3.6.22)

Thus, we separated the spectral channel power (SCP) v̂[f ] =
∣∣∣ĥ[f ]

∣∣∣
2

∈ R≥0

and the error ê[f ] ∈ R given by

ê[f ] =
∣∣n̂[f ]

∣∣2 + ĥ[f ]û[f ]n̂
∗
[f ] + ĥ

∗
[f ]û

∗
[f ]n̂[f ]. (3.6.23)

In particular, the SCP is just the absolute squared of the channel transfer
function ĥ. Hence, in general the SCP is missing the phase information of
the channel transfer function. As stated in the previous Section 3.6.1, the
relation between channel transfer function and channel impulse response is
given by the DFT matrix (3.6.10)

ĥ = Fh. (3.6.24)

In addition to (3.6.24) a connection between the SCP and the circular auto-
correlation of the CIR can be established via the discrete Fourier transform
using the Wiener-Khintchine theorem [Wie30; Khi34]

∣∣∣ĥ[f ]

∣∣∣
2

︸ ︷︷ ︸
v̂[f]

=
∑

t



F[t,f ] · 1

NDFT
·

NDFT−1∑

n=0

(
h∗

[n] · h[(n+t) mod NDFT]

)

︸ ︷︷ ︸
v[t]




. (3.6.25)

More general, the Wiener-Khintchine theorem states that the power spectral
density is the Fourier transform of the autocorrelation function. Here, in ad-
dition, the circular property of the DFT enforces also the circular property
on the autocorrelation function. Thus, due to the Wiener-Khintchine theo-
rem, we obtain the power spectral density by the discrete Fourier transform
of the circular autocorrelation function and vice versa.

https://en.wikipedia.org/wiki/Wiener-Khinchin_theorem
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In the following, we will describe v̂ as the spectral channel power (SCP)
and v as the circular autocorrelation of the CIR (CAC). As discussed, the
SCP is connected to the CAC via the DFT matrix

v̂ = Fv. (3.6.26)

In addition, the circular autocorrelation of the CIR in (3.6.25) is explicitly
given by

v[t] =
1

NDFT
·

NDFT−1∑

n=0

(
h∗

[n] · h[(n+t) mod NDFT]

)
. (3.6.27)

Each element of the circular autocorrelation v[t] observes the linear relation
of h to its circular shifted version. If v[t] = 0 for any t, then the sum for
the circular shift t has to be zero. This occurs in two cases:
(i) Even though h∗

[n] · h[(n+t) mod NDFT] 6= 0, n ∈ supp(h) for a fixed t, the
summands can cancel each other out. For example, this happens for orthog-
onal sequences, which are particularly designed in that way.
(ii) If h∗

[n] · h[(n+t) mod NDFT] = 0, ∀n ∈ supp(h) for a fixed circular shift t,
which frequently occurs for sparse signals.

Using (3.6.25) we can rewrite (3.6.22) as linear equations similar to (3.3.4)
with

ẑ[f ] =
∑

t

(
F[t,f ] · v[t]

)
+ ê[f ] , f ∈ S1. (3.6.28)

A visualization of the relation between CIR, channel transfer function, SCP
and CAC is given in Figure 3.5. Furthermore, Figure 3.5 depicts the ampli-
tude of an exemplary CIR and its corresponding CAC.

Note that given a channel impulse response with certain structure, phase
information of the channel transfer function may be still present in the
SCP. In particular this is the case for sparse CIRs, where algorithms exist
to partially recover the phase information, e.g. phase retrieval [WBJ15].

We now turn our attention to the solution space, which is captured by
the support of the circular autocorrelation of the CIR. In particular, we
examine two cases: (i) the general solution space given by set NCAC, where
no sparsity is assumed on the signal, and (ii) the solution space given by
the support supp(v) of the CAC with h being sparse/compressible. At first
we will focus on the first case. The latter case will be discussed later in this
Section, see e.g. (3.6.45), where sparsity of the CAC is considered.

The set NCAC can be derived from the set NCIR (3.6.8). Since the circular
autocorrelation is obtained by comparison of the CIR to a shifted version
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Figure 3.5: Relation between CIR, channel transfer function, SCP and CAC
according to the Wiener-Khintchine theorem. The amplitude of an
exemplary CIR and its corresponding CAC are visualized.

of itself, the region of the CAC is

NCAC = {0, . . . , NCP} ∪ {NDFT − NCP, . . . , NDFT − 1}
= NCIR ∪ {NDFT − NCP, . . . , NDFT − 1}. (3.6.29)

Thus, if the support of the channel impulse response fulfills supp(h) ⊆ NCIR,
then supp(v) ⊆ NCAC has cardinality

|NCAC| = 2NCP + 1. (3.6.30)

Hence, the general solution space captured by NCIR and NCAC is increased
by approximately a factor of two. A rough example on the solution space
and the actual support of h and v is depicted in Figure 3.5. Therefore, we
can restrict the summation of (3.6.28) to the set, where the support of the
CAC can occur

ẑ[f ] =
∑

t∈NCAC

(
F[t,f ] · v[t]

)
+ ê[f ] , f ∈ S1, (3.6.31)

or with Φ = F[S1,NCAC] using matrix notation we write

ẑ[S1] = Φ · v[NCAC] + ê[S1]. (3.6.32)

Thus, the estimation algorithms presented in Section 3.5 can be directly ap-
plied on (3.6.32) to perform amplitude-based channel estimation. However,
similar to Section 3.6.1 we want to have a more precise description of the
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error ê[S1], such that we can obtain a bound for the ℓ2-error in (3.3.8). In
particular, to obtain a bound for (3.3.8)

E
[∥∥ê[S1]

∥∥2

2

]
=
∑

f∈S1

E
[∣∣e[f ]

∣∣2
]

= |S1| · E
[∣∣ê[0]

∣∣2
]

, (3.6.33)

we have to find the second absolute raw moment of the error ê[f ]

from (3.6.23), which is given by

∣∣ê[f ]

∣∣ =
∣∣∣
∣∣n̂[f ]

∣∣2 + ĥ[f ]û[f ]n̂
∗
[f ] + ĥ

∗
[f ]û

∗
[f ]n̂[f ]

∣∣∣ . (3.6.34)

Therefore, we expand the absolute square of the error term (3.6.34) using
the triangle inequality and the binomial formula

∣∣ê[f ]

∣∣2 =
∣∣∣
∣∣n̂[f ]

∣∣2 + ĥ[f ]û[f ]n̂
∗
[f ] + ĥ

∗
[f ]û

∗
[f ]n̂[f ]

∣∣∣
2

≤
∣∣n̂[f ]

∣∣4 +
∣∣∣ĥ[f ]û[f ]n̂

∗
[f ] + ĥ

∗
[f ]û

∗
[f ]n̂[f ]

∣∣∣
2

=
∣∣n̂[f ]

∣∣4 + 2
∣∣∣ĥ[f ]n̂[f ]

∣∣∣
2

+
(
ĥ[f ]û[f ]n̂

∗
[f ]

)2

+
(
ĥ

∗
[f ]û

∗
[f ]n̂[f ]

)2

.

(3.6.35)

As discussed in the previous Section 3.6.1, we have n̂[f ] ∼ fCN
(
· ; 0, σ2

n̂

)
.

Thus, we exploit the first and the second raw moment of the Gamma distri-
bution with 2 degrees of freedom (A.7.22) and obtain

E
[∣∣n̂[f ]

∣∣2
]

= σ2
n̂ (3.6.36)

E
[∣∣n̂[f ]

∣∣4
]

= 2σ4
n̂. (3.6.37)

Furthermore, we consider a propagation channel exhibiting Rayleigh or Rice

fading, see Section 2.3. Thus, the random variable of
∣∣∣ĥ[f ]

∣∣∣
2

follows the

scaled non-central chi-squared distribution (see Appendix A.9). Therefore,
to include the general case of Rice fading, we use the first raw moment of
the scaled non-central chi-squared distribution (A.9.7)

E

[∣∣∣ĥ[f ]

∣∣∣
2
]

= σ2
ĥ

+
∣∣∣E
[
ĥ[f ]

]∣∣∣
2

. (3.6.38)

https://en.wikipedia.org/wiki/Moment_(mathematics)
https://en.wikipedia.org/wiki/Triangle_inequality
https://en.wikipedia.org/wiki/Rayleigh_fading
https://en.wikipedia.org/wiki/Rician_fading
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Hence, given (3.6.36) to (3.6.38), the second absolute raw moment of the
error is limited by

E
[∣∣ê[f ]

∣∣2
]

≤ E
[∣∣n̂[f ]

∣∣4
]

+ E

[
2
∣∣∣ĥ[f ]n̂[f ]

∣∣∣
2
]

(3.6.39)

+ E

[(
ĥ[f ]û[f ]n̂

∗
[f ]

)2
]

︸ ︷︷ ︸
E[·]=0

+ E

[(
ĥ

∗
[f ]û

∗
[f ]n̂[f ]

)2
]

︸ ︷︷ ︸
E[·]=0

= 2σ4
n̂ + 2

(
σ2
ĥ

+
∣∣∣E
[
ĥ[f ]

]∣∣∣
2
)

· σ2
n̂

= 2σ2
n̂

(
σ2
n̂ + σ2

ĥ
+
∣∣∣E
[
ĥ[f ]

]∣∣∣
2
)

. (3.6.40)

Now, we consider the case of a Rayleigh fading propagation channel only.
Thus, the second absolute raw moment of ê are described by

E
[∣∣ê[f ]

∣∣2
]

≤ 2σ2
n̂

(
σ2
n̂ + σ2

ĥ

)
. (3.6.41)

Thus, (3.6.41) bounds the ℓ2-error of (3.3.8) with 2σ2
n̂

(
σ2
n̂ + σ2

ĥ

)
. Hence,

the problem (3.3.8) based on linear equations (3.6.32) can be refined, such
that we solve

find v[NCAC],

s.t.
∥∥ẑ[S1] − Φ · v[NCAC]

∥∥2

2
≤ 2λ |S1| · σ2

n̂

(
σ2
n̂ + σ2

ĥ

)
. (3.6.42)

where the second absolute raw moment of ê is applied with some scal-
ing λ ∈ R≥0. The RRLS estimator ERRLS (3.5.16) can be constructed using

ρ =

√
2λ · σ2

n̂

(
σ2
n̂ + σ2

ĥ

)
·
√√√√ |NCAC|

E
[∥∥v[NCAC]

∥∥2

2

] , (3.6.43)

which is obtained by replacing the expectation E
[∣∣e[0]

∣∣2
]

of (3.5.16)

by (3.6.41). Consequently, we can estimate the CAC with RRLS (3.5.17).
Now, we return to the analysis of the solution space. As discussed in

(3.6.29), if we just consider the dimension of the circular autocorrelation
with |NCAC| = 2NCP + 1, then we have a scaling of almost a factor of
two between the size of the CIR h and the CAC v. Now we turn our

https://en.wikipedia.org/wiki/Rayleigh_fading
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attention to the dimension of the support |supp(v)| of the circular auto-
correlation of the CIR. For the channel impulse response we already jus-
tified |supp(h)| ≪ NCP + 1 in (3.6.19). Similar to (3.6.29) (and roughly
visualized in Figure 3.5), the support (or number of relevant entries) of the
CAC depends on the support of the channel impulse response (CIR) and
the position of these entries within the CIR. Recalling the definition of the
circular autocorrelation (3.6.27) calculating the sum just on the support of
the CIR

v[t] =
1

NDFT
·

∑

n∈supp(h)

(
h∗

[n] · h[(n+t) mod NDFT]

)
, (3.6.44)

we obtain by mere counting, that the cardinality of the support of the CAC
is upper bounded by

|supp(v)| ≤ |supp(h)|2 − |supp(h)| + 1. (3.6.45)

In more detail, given that the distribution of non-zero elements on the CIR
follows the power function

h[n] =

{
an 6= 0, n = 2m − 1

0, else,
(3.6.46)

where m ∈ {0, . . . , |supp(h)|} with |supp(h)| ≤ log2(NDFT + 1), then for
each n 6= m in (3.6.44) at most one overlap of two non-zero elements will
occur. However, for n = m all |supp(h)| elements of h will overlap, reducing
the overall overlaps by |supp(h)| − 1. Thus, we obtain (3.6.45) as the upper
bound.

The lower bound on |supp(v)| is simply present, if h has perfect circular
autocorrelation properties, so that v[t] = 0 ∀t 6= 0. Thus, there we have the
lower bound of |supp(v)| = 1 independent from |supp(h)|. However, if we
are just interested in the number of overlaps of non-zero elements without
considering the cases where the elements cancel each other out, then the
lower bound will be higher. Therefore, modifying (3.6.44) to

v′
[t] =

1

NDFT
·

∑

n∈supp(h)

∣∣∣h∗
[n] · h[(n+t) mod NDFT]

∣∣∣ (3.6.47)

we will have v′
[t] 6= 0, if h∗

[n] · h[(n+t) mod NDFT] 6= 0 for any n. There, the
lower bound on the number of overlapping non-zero elements is achieved,
if the non-zero elements of the CIR are equidistant. Then, the number of
overlaps are equal to the number of non-zero elements of the CIR. Thus,

https://en.wikipedia.org/wiki/Exponentiation#Power_functions
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the lower bound on the number of overlapping non-zero elements is given
by

|supp(v′)| = |supp(h)| . (3.6.48)

Consequently, there are in general more non-zero entries within the CAC
than the CIR (except for some designed cases like orthogonal sequences,
where the summands of (3.6.44) cancel each other out). Nevertheless, the
significant entries of v still do not cover the complete set NCAC in many
scenarios. Therefore, the sparse assumption on the CAC often holds

|supp(v)| ≪ |NCAC| = 2NCP + 1. (3.6.49)

Also note, that (3.6.45) is just an upper bound and the actual support of the
circular autocorrelation can be much further below. Thus, having a sparse
CAC, CS methods like BPDN (3.5.18) and OMP in Algorithm 3.1 can
be applied. In addition similar to estimating the CIR, a-priori knowledge
about |supp(v)| can enforce an s-sparse CAC for OMP (Algorithm 3.1).

Note, that CS methods do not exploit the property of v being a circular
autocorrelation function. However, exploiting this fact is beyond the spar-
sity property and the compressed reception of bilinear combinations [JW15]
has to be well understood. It can be seen, that the Fourier amplitude mea-
surements and circular convolutions [WJP15] is a particular form of a phase
retrieval problem, which can be approached by methods from low-rank ma-
trix recovery.

In particular, we observe a simultaneous structured problem, where a
circular autocorrelation function with sparse properties is present. Oymak
et al. [OJF+15] and the refinement by Kliesch et al. [KSJ19] studied the
problem of simultaneous structured problems and came to the conclusion,
that there exists no convex algorithm jointly solving sparse and circular con-
volution problems with the current frameworks of CS and low-rank matrix
recovery. In other words, convex algorithms can only solve a simultaneous
structured problem for sparsity or circular autocorrelation separately.

3.7 Summary

Within this Chapter we introduced the basics of compressed sensing, build-
ing the foundation for the applications in the subsequent chapters. In par-
ticular, we provided recovery criteria for stable and robust reconstruction of
sparse signals from (random) linear measurement with noise. Furthermore,
we introduced the channel estimation algorithms: the classical reduced-rank
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least squares method (3.5.17) as well as the compressed sensing based ap-
proaches of basis pursuit denoising (3.5.18) and orthogonal matching pursuit
(Algorithm 3.1). Afterwards, we discussed (absolute squared) partial Fourier
measurement and provided bounds from the literature, when successful re-
covery of sparse signals is possible. There, we considered two channel es-
timation scheme: pilot-based channel estimation (3.6.15) to retrieve the
channel impulse response from channel transfer function measurements as
well as amplitude-based channel estimation (3.6.42) to retrieve the circular
autocorrelation of the channel impulse response from spectral channel power
measurements. For these two schemes, we derived bounds on the ℓ2-error for
noisy measurements. In particular, we stated the probability distribution of
the measurement error (3.6.18), such that the channel impulse response can
be estimated with a certain probability. Furthermore, we obtained an esti-
mate for the expectation of the measurement error (3.6.42) to reconstruct
the circular autocorrelation of the channel impulse response.
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Chapter 4

Gray Space Detection

4.1 Overview

This Chapter introduces the gray space detection scheme, which identifies
unused resources within active primary user spectrum. To enable detection
of just single or few resources, composite binary hypothesis testing is com-
bined with amplitude-based channel estimation based on compressed sens-
ing. In particular, given measurements of the power spectrum, the spectral
channel power from the primary user is reconstructed via amplitude-based
channel estimation. Further on, each resource is classified as used or idle
via the gray space test, which represents a composite log-likelihood ratio
test utilizing empirical cumulative distribution function to achieve a desired
false alarm rate. Finally, representative practical channel models from a
measurement campaign are used to evaluate the gray space detection ap-
proach.

4.1.1 Main Contributions

The main contributions of this Chapter comprise the gray space detection
scheme and the measurement campaign to retrieve representative practical
channel models.

In more detail, we propose a gray space detection scheme [WPJ13;
WJW+16b], which enables spectrum sensing in an already occupied, but
partly exploited primary user spectrum band for interweave cognitive radio
system [GJM+09]. In contrast to classical white space spectrum sensing for
cognitive radio [Hay05], where generally completely unoccupied spectrum
bands are exploited, gray space detection can exploit gray spaces, repre-
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senting temporary small fractions of unused resources within an already
occupied primary user spectrum band. While classical schemes like energy
detection [Urk67; ATJ14] generally rely on the central limit theorem as well
as the Wilks theorem [Wil38] to perform a simple hypothesis tests, spectrum
sensing via gray space detection can also operate on composite hypotheses
and does not require the central limit theorem and the Wilks theorem. Con-
sequently, gray space detection can be beneficially applied on problems with
random variables of low degree of freedom, like the here presented complex
random variable with two degrees of freedom in form of the spectral chan-
nel power, and identify primary user activity on single resource basis. Since
gray space detection exploits more realistic channel statistics via compos-
ite hypotheses, gray space detection achieves superior performance towards
classical schemes like energy detection.

Furthermore, since gray space detection takes the varying channel into ac-
count, our proposed approach can control the false alarm probability, which
represents the probability that a primary user occupied sample is falsely
identified as a gray space. Therefore, the protection of the primary user
system from interference of the cognitive radio can be controlled.

Our gray space detection approach consists of three steps: energy de-
tection (step 1), amplitude-based channel estimation (step 2), and log-
likelihood ratio test (step 3). Step 1 estimates a preliminary set of primary
user resources, so that step 2 can estimate the spectral channel power on it.
Eventually, step 3 estimates the final set of primary user resources, where
the complement set represents the identified gray spaces.

In this Chapter we develop our gray space detection scheme and compare
it with the conventional energy detector. The evaluation consists majorly of
three parts: (i) comparison of amplitude-based channel estimation methods,
(ii) comparison of our proposed thresholds for the log-likelihood ratio test,
and (iii) comparison of different channel models including our measurement
campaign.

First [WPJ13; WJW+16b], amplitude-based channel estimation in step 2
is performed via the different estimation methods introduced in Section 3.5.
There, the primary focus lies on compressed sensing estimators like greedy
orthogonal matching pursuit (OMP) [TG07b] and basis pursuit denoising
(BPDN) [CT05], which are compared with the traditional reduced-rank least
squares (RRLS) estimator. Simulation results regarding several aspects are
provided: SNR, primary user system load, and allocated physical resource
blocksize.

Second, since the uniformly most powerful hypothesis test is only appli-
cable with full statistical knowledge of the channel, we derive a gray space
test based on approximated composite threshold for the log-likelihood ra-
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tio test in step 3. Furthermore, we use individual energy detection with
an individual threshold for comparison. While the empirical cumulative
distribution function is exploited to calculate the approximated composite
threshold from partial local channel statistics, the individual threshold is
estimated on individual sample basis and thus, applied for each decision
independently. The gray space test is compared to individual energy detec-
tion and the UMP test. This second part is not yet covered by our official
publications.

Third, a measurement campaign was conducted to obtain channel
statistics for representative manufacturing process in factory automa-
tion [HWW+16; HWR+16; WHW16; DHC+19]. These short-range fac-
tory automation channel models are considered for our gray space detection
scheme and are used for evaluation in conjunction with the ITU models.
Summary of own contributions within this Chapter:
[WPJ13; WJW+16b; HWW+16; HWR+16; WHW16; DHC+19]

4.1.2 Structure

The outline of this Chapter is as follows: The subsequent Section 4.2 intro-
duces the system model of gray space detection and the problem description.
It is followed by Section 4.3 describing the complete gray space detection
algorithm, consisting of three steps: step 1 applies energy detection with-
out requiring knowledge about the spectral channel power to estimate a
preliminary base station resource allocation S̃E (Section 4.3.1), step 2 ex-
ploits S̃E to estimate the spectral channel power ˜̂v from the base station via
amplitude-based channel estimation (Section 4.3.2), and step 3 applies the
log-likelihood ratio test based on ˜̂v to estimate the final base station resource
allocation S̃G (Section 4.3.3). The link level simulation setup is described
in Section 4.4. At the subsequent Section 4.5 we present our simulation re-
sults, including the receiver operating characteristic at different SNRs (Sec-
tions 4.5.1 and 4.5.2), the primary user system load (Section 4.5.3), multiple
physical resource blocksizes (Section 4.5.4) and different thresholds for the
hypothesis test (Section 4.5.5). The following Section 4.6 contains our re-
sults on different channel models including practical channels (Section 4.6.3).
The representative practical channel models are obtained from our measure-
ment campaign (Section 4.6.1) and described in Section 4.6.2. The chapter
concludes with the summary on the gray space detection scheme in Sec-
tion 4.7.
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Figure 4.1: System setup with one base station (BS), several primary
users (PUs) and secondary users (SUs) [WJW+16b].

4.2 System Model

In this Section we introduce our system model based on the transmission
model in Section 2.4 for the application of gray space detection. Therefore,
we will describe the scenario of an interweave cognitive radio system, where
we apply the result of (3.6.22) on our transmission model (2.4.8) and for-
mulate the binary hypothesis testing problem similarly to (2.6.6). Given
the binary hypothesis testing problem at the end of this Section, we will
elaborate the statistical hypothesis testing, cf. Sections 2.5 and 2.6, as well
as amplitude-based channel estimation, cf. Section 3.6.2 in the subsequent
Section 4.3.

We consider a scenario as depicted in Figure 4.1, where multiple primary
users (PUs) are served in a single cell by a single-antenna downlink signal
from a base station (BS). The BS communicates only in the transmission
band P ⊆ F. A secondary user is located within the cell of the BS and
wants to communicate with another secondary user (SU) within the band P

occupied by the BS for downlink transmission. Thus, we have an interweave
cognitive radio system, where an SU intends to find unused time-frequency
resources, so that the SU itself can exploit these unused resources for its
own communication. Therefore, the SU observes the signal emitted by the
BS and searches for gray spaces, where the term gray space refers to a
temporary small fraction of unused resources within an already occupied
spectrum band.

If the PU system operates at full system load, then the available transmis-
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sion resources in the downlink are completely utilized by the BS. However,
in practice, there are several reasons that a PU system operates at lower
system load. Among others, poor channel conditions or only few active PUs
in the cell can lead to low system load. Thus, only a subset of the transmis-
sion band S1 ⊆ P is used for downlink transmission, where S1 denotes the
resource allocation of the BS. Therefore, we have two events

û[f ] = 0 , f ∈ P \ S1 : H0

û[f ] 6= 0 , f ∈ S1 : H1. (4.2.1)

Consequently, the BS operates with a system load below 100%, leaving
resources at subcarrier f ∈ P \ S1 vacant.

Furthermore, resources are scheduled on the basis of scheduling units,
where a scheduling unit generally refers to a block of consecutive time-
frequency resources. Thus, a PU either utilizes a complete scheduling unit
or leaves it completely unexploited. Consequently, unallocated scheduling
unit will leave distributed, but consecutive spectrum parts of the transmis-
sion band P unoccupied, as depicted in the time-frequency diagram of Fig-
ure 4.1. In 3GPP LTE a scheduling unit is referred to as a transmission time
intervals (TTIs), where one TTI consists of up to two PRBs [3GP20b, Chap-
ter 5.2.2, 5.3.2], i.e. a duration of up to 1 ms. One PRB is regarded as the
smallest scheduling unit, generally consisting of 7 consecutive OFDM sym-
bols and NB = 12 consecutive subcarriers [3GP20c], cf. Section 2.4. There,
we introduce blocksize NB to describe the number of adjacent subcarriers
scheduled by the BS as a single scheduling unit for downlink transmission.

As illustrated in Figure 4.1, an SU in form of a cognitive radio is located
in the PU cell. All devices, the SU and the PUs, receive the same down-
link signal from the BS. Thus, the SU observes the BS signal through a
sparse block-fading channel as described in (2.4.6). Since the resources at
the BS are allocated according to (4.2.1), the received samples of the null hy-
pothesis H0 (idle resources) contain only noise, i.e., ŵ[f ] = n̂[f ], f ∈ P \ S1.
Considering our transmission model from (2.4.7), we observe two events
similar to (2.6.3) with

ŵ[f ] =

{
n̂[f ] , f ∈ P \ S1 : H0

ĥ[f ]û[f ] + n̂[f ] , f ∈ S1 : H1.
(4.2.2)

Obviously, measurements of the channel transfer function ĥ[f ] from the BS
are available in the case of the alternative hypothesis H1 in (4.2.2) only.
Since the channel h of (4.2.2) can also incorporate an unknown time off-
set τoffset, cf. (2.4.3), H1 is also valid if the SU receives the BS signal with
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certain inaccuracy in time. Note that the BS resource allocation S1 for
downlink transmission is unknown to the SU. Therefore, the SU aims to
estimate S1.

Signal detection, cf. Sections 2.5 and 2.6, via statistical hypothesis
tests can be applied to detect signals emitted from the BS, i.e. distin-
guish between the two events of (4.2.2). Each event represents a state of
a resource, H0 being a gray space, i.e., f ∈ P \ S1, and H1 being a re-
source occupied by the BS altered through a channel, i.e., f ∈ S1. To
measure the performance of signal detection schemes, detection probability
Pd := P(accept H0 | H0 is true) defined in (2.5.7) or probability of false
alarm Pfa := P(accept H0 | H1 is true) defined in (2.5.8) are used. There,
detection rate refers to the probability that a gray space is correctly identi-
fied and false alarm rate refers to the probability that a signal from the BS
is not detected. While higher detection rate increases the number of gray
spaces for SU exploitation, lower false alarm rate reduces the interference on
the PU system. Therefore, low false alarm rate will protect the occupied BS
resources from SU exploitation. In general, the operation of cognitive radio
system in PU bands are more likely to be permitted, if certain protection
of the PU can be guaranteed. For example, the operation point of 3GPP
LTE is at 10% packet error rate [3GP20d], leaving the practical false alarm
rate significantly below 10%. Hence, the practical false alarm rate should
be significantly below 10%, so that a PU system is only marginally affected
by an SU. Therefore, a hypothesis test controlling the false alarm rate is
highly desirable.

Note that the final aim of an SU is the exploitation of the gray spaces.
Thus, an SU has to identify and utilize the gray space within a single schedul-
ing unit. One scheduling unit in e.g. 3GPP LTE [3GP20a] consist of up to
two PRBs, i.e. 14 OFDM symbols. Consequently, identifying a gray space
in the first OFDM symbols leaves 13 symbols for communication. However,
the amount of available resources depends on how fast the decision process
is executed.

Now, let us exploit the results obtained in Section 3.6.2. To enable
amplitude-based channel estimation at an SU, the SU has to know the
amplitudes of the PU symbols

∣∣û[f ]

∣∣, which are transmitted from the BS.
One option to know the amplitudes at an SU is to restrict the transmission
alphabet of the BS to complex symbols with constant amplitude. There,
the SU knows the amplitude of the PU symbols up to a global amplitude.
As discussed in Section 2.4, power allocation in the downlink is rather sim-
ple [3GP20d, Chapter 5.2], i.e. transmit power is constant for a complete
set of resources. Consequently, the imprinted power structure of the re-
stricted transmit alphabet is still present after transmit power allocation.
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Thus, the gray space detection scheme is particularly easy to realize if we
assume a transmit alphabet with complex symbols of constant amplitude,
i.e. phase-shift keying with amplitude one. Hence, we have two events

∣∣û[f ]

∣∣ =

{
0 , f ∈ P \ S1 : H0

1 , f ∈ S1 : H1.
(4.2.3)

With increase of complexity, gray space detection may also be applicable
for higher-order modulation scheme, i.e. quadrature amplitude modulation
(QAM) with multiple distinct amplitudes.

Applying the transmit alphabet with constant amplitude symbols
of (4.2.3) on the power spectrum of (4.2.2) and follow the derivation
of (3.6.22), we observe two events of the power spectrum similar to (2.6.6).
Thus, we end up with a binary hypothesis testing problem between two
power spectrum observations

ẑ[f ] =
∣∣ŵ[f ]

∣∣2 =





∣∣n̂[f ]

∣∣2 , f ∈ P \ S1 : H0

v̂[f ] + ê[f ] , f ∈ S1 : H1,
(4.2.4)

where the spectral channel power (SCP) is described by

v̂[f ] =
∣∣∣ĥ[f ]

∣∣∣
2

and the error term is given by

ê[f ] = û[f ]ĥ[f ]n̂
∗
[f ] + û

∗
[f ]ĥ

∗
[f ]n̂[f ] +

∣∣n̂[f ]

∣∣2 .

Similar to (4.2.2), only in the case of the alternative hypothesis H1 in (4.2.4)
observes the SCP of the transmission channel from the BS to an SU.

If the resource allocation S1 of the BS would be known to an SU, the
power spectrum from the BS could be directly measured. Consequently,
we could estimate the SCP from the BS via amplitude-based channel esti-
mation as discussed in Section 3.6.2. However, here the SU is ignorant of
the BS resource allocation S1. Therefore, we have to estimate S1 from the
observation at the SU. In the subsequent section we will recap energy de-
tection as well as introduce our gray space detection approach. In contrast
to energy detection, gray space detection operates on composite hypotheses
and, thus, is applicable under frequency-varying wireless channels, where
single spectrum samples are considered for signal detection.
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4.3 Detection Procedure

In this Section, we will introduce our gray space detection approach. Given
the binary hypothesis testing problem in (4.2.4) of the previous Section, we
will exploit the main results on statistical hypothesis testing, cf. Sections 2.5
and 2.6, as well as on amplitude-based channel estimation, cf. Section 3.6.2,
to derive the gray space detection procedure. Therefore, we will also recap
the classical scheme of energy detection.

The final aim of an SU is to identify the BS resource allocation S1, so
that unused resources f ∈ P \ S1 can be exploited for secondary user (SU)
communication. Our proposed method of gray space detection shall iden-
tify available transmission resources within an active and used transmission
band for the interweave cognitive radio system by estimating the utilized fre-
quencies. Furthermore, besides the capability of distinguishing gray spaces
from channel fades, our gray space detection approach shall also permit tun-
ing of the primary user (PU) protection level, so that the interference of an
SU on the PU system can be controlled.

Given the binary hypothesis testing problem in (4.2.4), an SU observes
two cases of resource allocation embedded in the power spectrum. Hence,
we can apply statistical hypothesis testing with the log-likelihood ratio test
as given in (2.6.15) by

Λ
(
ẑ[f ], v̂[f ]

) H1

≷
H0

ρ. (4.3.1)

There, the log-likelihood ratio Λ is written as a function of the observed
power spectrum ẑ and the spectral channel power (SCP) v̂ of the alternative
hypothesis H1. The nuisance parameter n̂ as well as v̂ = 0 of the null
hypothesis H0 are omitted, cf. definition of LLR function in (2.6.11). The
null hypothesis H0 is accepted, i.e. the spectrum sample ẑ[f ] is regarded as
a gray space, if the LLR lies above a certain threshold ρ. Thus, for each
spectrum sample we perform a test, whether we have H1 : ẑ[f ], f ∈ S1, i.e.
ẑ[f ] is part of the BS resource allocation S1, or H0 : ẑ[f ], f /∈ S1. Hence, we
eventually estimate the BS resource allocation S1.

The test in (4.3.1) describes a more general log-likelihood ratio test, nei-
ther specifying the type of the alternative hypothesis H1 nor the type of
the threshold ρ. Thus, given our system model in Section 4.2, we (i) have
to determine whether the test involves simple hypotheses or composite hy-
potheses, and (ii) have to decide how to choose the threshold ρ. Both
questions are related to the discussion in the previous Section about con-
trolling the SU interference on the PU system, and therefore, guaranteeing
a PU protection level.
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Figure 4.2: Observed power spectrum at a secondary user with primary user
activity [WJW+16b]. Can the power spectrum tell us something
about unused spectrum regions?

While simple hypotheses are used by classical schemes like energy de-
tection and resemble constant SCP, i.e. v̂[f ] = c, a composite hypothesis
describes varying SCP with v̂[f ] > 0, which reflects the actual channel char-
acteristic captured by v̂ in our system model, cf. Section 2.3. In addition,
the threshold can be chosen to achieve a desired performance criterion. In
our case, to guarantee certain PU protection, the false alarm rate Pfa is
a suitable performance metric. In the following, given our system model,
we will discuss in more detail how we eventually obtain a log-likelihood ra-
tio test for one-sided composite binary hypotheses achieving a desired false
alarm rate Pfa.

An exemplary power spectrum is depicted in Figure 4.2, where we can
already observe that the SCP is not a constant function. There, we ask if we
can identify the gray spaces by power spectrum observation, even though the
SCP is not a constant function. Each spectrum sample ẑ[f ] with low power
may indicate an unoccupied resource, i.e. gray space. However, channel
fading has a quite similar appearance, so that samples with low power may
also indicate a channel fade induced by the SCP.

In contrast to gray spaces, classical white spaces are present in the form of
complete spectrum bands, where multiple independent observations of the
spectrum band can be taken. Thus, if we consider the summation of mul-
tiple independent observations, then the summation can be modeled by a
random variable with large degree of freedom. There, given the CLT [LR05,
Chapter 11.2], the distribution is well approximated by the normal distribu-
tion, cf. (3.3.6). In consequence as showed by the Wilks theorem [Wil38],
the log-likelihood ratio function is well approximated by the chi-squared dis-
tribution. Classical schemes like energy detection [Urk67; ATJ14] exploit
this fact and identify white spaces based on simple hypotheses, where the
average path gain obtained by the summation of multiple independent ob-
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servations is approximated by a constant function. Simple hypotheses are
generally a good approximation, if the summation of multiple independent
observations is considered.

However, for single measurements (complex spectrum samples with two
degrees of freedom) on a frequency-varying wireless channel, the constant
property does apparently not hold for the SCP, see also the varying power
spectrum in Figure 4.2. I.e., the CLT as well as the Wilks theorem are
not valid and energy detection may misinterpret samples with low power
as gray spaces, increasing the interference to the PU system. Thus, an SU
is faced with the problem to distinguish gray spaces from channel fades,
which cannot be solved by a mere simple hypothesis test on the power spec-
trum at the receiver. For successful identification of gray spaces we need
to exploit the varying SCP from the BS, which is represented by the com-
posite alternative hypothesis H1,c with v̂[f ] > 0. Furthermore, as explained
in Section 2.5.2, the composite alternative hypothesis H1,c with v̂[f ] > 0 is
one-sided, i.e. directional. Consequently, given ẑ, σ2

n̂ and varying SCP with
v̂[f ] > 0, we can apply the log-likelihood ratio test for one-sided composite
binary hypotheses as given in (2.6.26) by

Λ
(
ẑ[f ], v̂[f ] > 0

) H1,c

≷
H0

ρc,Λ. (4.3.2)

Thus, the null hypothesis H0 is accepted, if the LLR lies above a certain
composite threshold ρc,Λ.

So now we turn our attention to the composite threshold ρc,Λ. We want
to select a composite threshold ρc,Λ, such that an SU can guarantee certain
protection to the PU system. In particular, to enable protection of occupied
PU resources, the log-likelihood ratio test has to control the interference of
an SU imposed on the PU system by regulating the false alarm rate Pfa.
Therefore, to control the interference, we have to calculate the composite
threshold ρc,Λ(Pfa) for a desired false alarm rate Pfa, cf. (2.6.28). Even-
tually, we have the log-likelihood ratio test for one-sided composite

binary hypotheses achieving a desired false alarm rate Pfa as given
in (2.6.30) by

Λ
(
ẑ[f ], v̂[f ] > 0

) H1,c

≷
H0

ρc1,Λ (Pfa) . (4.3.3)

The precise definition of the LLR function as well as the threshold will
be part of Section 4.3.3, where we will adapt the definitions of (2.6.11)
and (2.6.28) for our system model. Moreover, we will derive our gray space
test for practical implementations, where we exploit the results on empirical
cumulative distribution function and utilize the threshold given in (2.6.33).
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Even though we now have the test (4.3.3) for gray space detection at
hand, we miss several information to successfully apply this test. Initially,
an SU just has information about its power spectrum ẑ. In addition, the
variance σ2

n̂ of additive white Gaussian noise (AWGN) can be obtained from
measurements at idle time-frequency regions like guard bands between two
adjacent PU spectrum bands. However, to apply the test in (4.3.3) an SU
requires (i) the SCP v̂ corresponding to the power spectrum measurement ẑ
for the calculation of Λ, and (ii) the distribution of the SCP to obtain the
composite threshold ρc,Λ(Pfa). To obtain the missing information about
the SCP, we propose gray space detection procedure consisting of three
steps.

1. Step: We perform energy detection based on simple hypotheses
to obtain a preliminary estimate of the BS resource allocation S̃E.
There we exploit the fact that, given a desired detection rate, energy
detection does not need information about the SCP, cf. (2.6.25). The
set S̃E shall be used to estimate the SCP via amplitude-based channel
estimation in step 2.
Step 1 will be discussed in Section 4.3.1, where we will primarily
recap energy detection.

2. Step: Given the set S̃E obtained in step 1, we estimate the SCP ˜̂v
from the BS via amplitude-based channel estimation.
Step 2 will be discussed in Section 4.3.2, where we will exploit the
results on amplitude-based channel estimation, cf. Section 3.6.2, and
refer to the estimation algorithms in Section 3.5.

3. Step: Given ˜̂v obtained in step 2, we perform the log-likelihood
ratio test described in (4.3.3) to obtain the final estimate of the BS
resource allocation S̃G, which will be discussed in Section 4.3.3. In
particular, the log-likelihood ratio test classifies the spectrum samples
and mark them as gray space or occupied by the BS.
Step 3 will be discussed in Section 4.3.3, where we will also derive
the LLR function Λ

(
ẑ[f ], v̂[f ] > 0

)
as well as the composite threshold

ρc1,Λ (Pfa) required for the log-likelihood ratio test. Furthermore, we
derive our gray space test, which exploits the empirical cumulative
distribution function to operate on a practical composite threshold.

4.3.1 Step 1: Energy Detection

Step 1 of gray space detection effectively comprises the application of energy
detection [Urk67; ATJ14]. In general, classical energy detection is used for
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unknown transmit signals and multiple independent observation. However,
here we deal with single observations of a frequency-varying wireless chan-
nel. Therefore, energy detection can be generally outperformed by other
detection schemes. However, in step 1 we exploit the fact that energy de-
tection in (2.6.25) does not require information about the spectral channel
power (SCP) to estimate BS resource allocation S̃E.

Initially, an SU just has information about its power spectrum ẑ and the
noise variance σ2

n̂, where σ2
n̂ can be obtained from measurements at idle

spectrum parts like the guard band. However, the SU has no information
about the non-central parameter, cf. (A.9.1), here in the form of v̂ denot-
ing the SCP. Thus, to perform the log-likelihood ratio test in (4.3.3), we
have to estimate v̂. Since only spectrum samples ẑ[f ] at f ∈ S1 carry in-
formation about v̂, cf. (4.2.4), we firstly have to estimate a preliminary BS
resource allocation S̃E. This preliminary BS resource allocation is used to
estimate the SCP from the BS, where the SCP will be used to refine the BS
resource allocation S̃G via the log-likelihood ratio test. Thus, based on ẑ

and σ2
n̂ without v̂, in step 1 of gray space detection an SU has to estimate

the resource allocation S̃E of the BS, i.e. has to decide between the null
hypothesis H0 and the alternative hypothesis H1 of (4.2.4).

To find a suitable test depending on ẑ and σ2
n̂ only, we exploit the theory

on hypothesis testing as well as signal detection introduced and discussed
in Sections 2.5 and 2.6. Reviewing Table 2.3, we observe that the simple
hypotheses test to achieve a desired detection probability Pd (probability
that a gray space is correctly detected) in Section 2.6.1 just depends on ẑ

and σ2
n̂. Consequently, we apply the log-likelihood ratio test for simple

hypotheses to achieve a desired Pd from (2.6.25)

ẑ[f ]

H1,s

≷
H0

ρs,ẑ (Pd) = −σ2
n̂ · ln(1 − Pd) . (4.3.4)

In the following, we will also refer to this test as energy detection achieving
a desired detection probability Pd. The simple hypotheses considered in
(4.3.4) are given by

H0 : ẑ[f ] ∼ fΓ

(
ẑ[f ]; σ2

n̂, 1
)

, (4.3.5)

H1,s : ẑ[f ] ∼ fχ2
sn

(
ẑ[f ]; 2, ˜̂v[f ],

1
2 σ2

n̂

)
, ˜̂v[f ] = c, (4.3.6)

where the simple null hypothesis H0 is obtained from (2.6.8) and the simple
alternative hypothesis H1,s from (2.6.10).

However, recap that energy detection in (4.3.4) has two disadvantages
for our scenario, cf. Section 4.3. First, (4.3.4) just uses simple hypotheses,
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which does not consider frequency-varying wireless channel. Second, the
detection rate Pd cannot directly control the SU interference imposed on
the PU system. Therefore, energy detection in (4.3.4) is applied to acquire
a sufficient number of power spectrum measurements with ẑ[f ] at f ∈ S1 :
H1,s, while keeping the number of noise measurements with ẑ[f ] at f ∈
P \ S1 : H0 low. Given energy detection (4.3.4) as well as ẑ and σ2

n̂, an SU
estimates the BS resource allocation required for amplitude-based channel
estimation in step 2 by

S̃E = {f ∈ P : ẑ[f ] ≥ −σ2
n̂ · ln(1 − Pd)}. (4.3.7)

There, the detection rate Pd controls the probability, that the BS resource
allocation estimate S̃E contains spectrum samples of the null hypothesis H0,
i.e. samples containing just noise with ẑ[f ] =

∣∣n̂[f ]

∣∣2 at f ∈ P \ S1. A high
ratio of H1,s samples to H0 samples shall stabilize the amplitude-based
channel estimation in step 2.

In simulations we will use ẑ[f ] ≥ 4σ2
n̂ in step 1, which corresponds to detec-

tion rate of Pd ≈ 98.17%, cf. Table A.4 of Appendix A.7. Therefore, we will
contain less than 2% of noise samples, leaving a ratio of approximately 53.6.
However, keep in mind that this is just valid for simple hypotheses. Here,
we use simple hypothesis testing on actual composite hypotheses. There-
fore, especially in scenarios with low SNR, the frequency-varying wireless
channel will cause lower detection rate than the configured Pd of energy
detection.

In addition, we will use the approach of energy detection also for compar-
ison with our proposed gray space detection scheme. There, we will apply
general energy detection with

ẑ[f ]

H1,s

≷
H0

ρs,ẑ, (4.3.8)

where the simple threshold ρs,ẑ is selected to obtain a performance evalu-
ation of energy detection via the receiver operating characteristic [Tre01,
Chapter 2.2.2].

4.3.2 Step 2: Amplitude-Based Channel Estimation

In step 2 of gray space detection, we exploit the results of amplitude-based
channel estimation derived in Section 3.6.2. Given the estimated BS re-
source allocation S̃E from energy detection in step 1 as well as power spec-
trum measurements ẑ[f ] at f ∈ S̃E, the amplitude-based channel estimation
in step 2 estimates the spectral channel power (SCP) from the BS. The es-
timate of the SCP is required for step 3 to perform the log-likelihood ratio
test given in (4.3.3).
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Let us start with the alternative hypothesis H1 of (4.2.4), where the power
spectrum is given by

ẑ[f ] = v̂[f ] + ê[f ], f ∈ S̃E ⊆ S1 : H1, (4.3.9)

where ê[f ] = û[f ]ĥ[f ]n̂
∗
[f ] + û∗

[f ]ĥ
∗
[f ]n̂[f ] +

∣∣n̂[f ]

∣∣2 ,

ẑf =
∣∣ŵ[f ]

∣∣2 ,

v̂f =
∣∣∣ĥ[f ]

∣∣∣
2

.

Consequently, we assume that the estimated set S̃E just contains elements
of the true BS resource allocation S1. However, in practice S̃E also contains
some spectrum samples at f ∈ P \ S1, which result in an additional error of
the amplitude-based channel estimation. In the following, we will discuss
amplitude-based channel estimation for our scenario.

amplitude-based channel estimation will estimate the SCP v̂ via its time
domain representation, the circular autocorrelation of the channel impulse
response (CIR) denoted by v, cf. (3.6.26). Therefore, we apply the deriva-
tions of Section 3.6.2 with the DFT submatrix

Φ = F[̃
SE,NCAC

], (4.3.10)

where the definition of the DFT matrix is given in (3.6.1), so that (4.3.9) is
reformulated to

ẑ[̃
SE

] = Φ · v[NCAC] + ê[̃
SE

]. (4.3.11)

Consequently, we just consider the circular autocorrelation of the
CIR (CAC) within the set NCAC defined in (3.6.29), which is restricted
by the dimension of cyclic-prefix with |NCAC| = 2NCP + 1. To solve (4.3.11)
for v[NCAC], we have to

find v[NCAC],

s.t.

∥∥∥∥ẑ[̃SE

] − Φ · v[NCAC]

∥∥∥∥
2

2

≤ 2λ ·
∣∣∣S̃E

∣∣∣ · σ2
n̂

(
σ2
n̂ + σ2

ĥ

)
, (4.3.12)

which is obtain from (3.6.42). The estimation error is bounded by the second
raw moment of ê[̃

SE

] obtained from (3.6.41), where we require knowledge

about σ2
n̂ and σ2

ĥ
. As noted above, the noise variance σ2

n̂ can be obtained
from measurements at idle spectrum parts like the guard band. A straight-
forward approach to obtain also a coarse approximation of σ2

ĥ
is to consider
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the variance of the power spectrum at f ∈ S1, i.e.

σ2
ĥ

≈
∥∥∥∥ẑ[̃SE

]
∥∥∥∥

2

/
∣∣∣S̃E

∣∣∣ . (4.3.13)

However, in our simulations we have set σ2
ĥ

= 1/NDFT, since E[‖h‖2] = 1
for our considered channel models, cf. (2.3.3). For detailed derivation of
the second raw moment we refer to (3.6.35) to (3.6.40) in Section 3.6.2.

The solution of (4.3.12) can be found by the different estimation algo-
rithms presented in Section 3.5, of which we will state the main equations
in the following.

The reduced-rank least squares (RRLS) solution (3.5.17) is ob-
tained by

ṽ[NCAC] = ERRLS · ẑ[̃
SE

], (4.3.14)

where given the singular value decomposition Φ = UΣV H , the RRLS
estimator (3.5.16) is calculated by

ERRLS = V · Σ−1
L · UH , (4.3.15)

with L =

∣∣∣∣∣∣∣





l : Σ[l,l] ≥
√

2λ · σ2
n̂

(
σ2
n̂ + σ2

ĥ

)
·
√√√√ |NCAC|

E
[∥∥v[NCAC]

∥∥2

2

]





∣∣∣∣∣∣∣
.

The bound on the estimation error is refined by (3.6.43). The tuning pa-
rameter λ is typically set to one, which we have done for our simulations as

well. Furthermore, for our simulations we have E
[∥∥v[NCAC]

∥∥2

2

]
= |NCAC|, so

that the term

√
|NCAC| / E

[∥∥v[NCAC]

∥∥2

2

]
vanishes.

Thus, RRLS has to estimate |NCAC| number of entries of v. In contrast to
that, the CS methods exploit the sparsity of v[NCAC] and therefore, just have
to estimate |supp(v)| number of entries of v, where |supp(v)| ≪ |NCAC| =
2NCP + 1, cf. (3.6.49).

The basis pursuit denoising (BPDN) solution (3.5.18) [CT05] is
obtained by

ṽ[NCAC] := argmin
v[NCAC]

∥∥v[NCAC]

∥∥
1

,

s.t.

∥∥∥∥Φv[NCAC] − ẑ[̃
SE

]
∥∥∥∥

2

2

≤ 2λ ·
∣∣∣S̃E

∣∣∣ · σ2
n̂

(
σ2
n̂ + σ2

ĥ

)
, (4.3.16)
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Algorithm 4.1 Stopping criterion extension for OMP Algorithm 3.1

Input: ẑ ∈ C

∣∣̃SE

∣∣
, Φ ∈ C

∣∣̃SE

∣∣×|NCAC|, λ, σ2
n̂, σ2

ĥ
, s

Initialize: B = ∅, ˜̂e = ẑ, ṽ = 0, s = min[|NCAC| , s]

1: ρ = 2λ ·
∣∣∣S̃E

∣∣∣ · σ2
n̂

(
σ2
n̂ + σ2

ĥ

)

2: while

(∥∥∥˜̂e
∥∥∥

2

2
≥ ρ

)
and (‖ṽ‖0 < s) and

(∥∥∥˜̂e
′ − ˜̂e

∥∥∥
2

2
> ρ

|NCAC|

)
do

3: ˜̂e′
= ˜̂e , ṽ′ = ṽ

4: a =
∣∣∣ΦH · ˜̂e

∣∣∣

5: m = argmax
m

a[m]∥∥Φ[·,m]

∥∥
2

6: B = B ∪ {m}

7: ṽ[B] =
(
Φ[·,B]

)+ · ẑ

8: ˜̂e = ẑ − Φ · ṽ

9: end while

10: if

(∥∥∥˜̂e
′ − ˜̂e

∥∥∥
2

2
< ρ

)
then

11: ˜̂e = ˜̂e′
, ṽ = ṽ

′

12: end if

13: return ṽ, ˜̂e

where we apply the bound of (4.3.12).
In addition to the stopping criteria described for orthogonal matching

pursuit (OMP) in Section 3.5.3 [EK12, Algorithm 8.3], cf. line 1 in Algo-
rithm 3.1, we applied one further stopping criterion for gray space detection.
The complete OMP algorithm including the third stopping criterion is
given in Algorithm 4.1.

The third criterion at line 2 in Algorithm 4.1 terminates the algorithm
based on the gradient of the adversarial error. Thus, the noise improvement
captured by the difference of the residual in each iteration has to be larger
than the normalized adversarial error

∥∥∥˜̂e
′ − ˜̂e

∥∥∥
2

2
>

ρ

|NCAC| = 2λ ·

∣∣∣S̃E

∣∣∣
|NCAC| · σ2

n̂

(
σ2
n̂ + σ2

ĥ

)
. (4.3.17)
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For completeness, the first stopping criterion of (3.5.23) is given by the
ℓ2-norm of the residual with

∥∥∥˜̂e
∥∥∥

2

2
> ρ = 2λ ·

∣∣∣S̃E

∣∣∣ · σ2
n̂

(
σ2
n̂ + σ2

ĥ

)
. (4.3.18)

The third stopping criterion (4.3.17) does only slightly differ to the first
stopping criterion (4.3.18). In particular, while (4.3.18) is compared to the
total residual of the s-sparse solution ṽ[B] in each iteration, (4.3.17) is just
compared to the residual change in the current iteration. Therefore we can
say, if the induced error ρ

|NCAC| is larger than the gain due to the change of

the residual, then the previous solution ṽ
′ will be a better estimate. Thus,

OMP in Algorithm 4.1 will terminate, if one of the three conditions at line 2
are not fulfilled. In empirical evaluations we have seen that OMP with the
first stopping criterion (4.3.18) and the third stopping criterion (4.3.17)
achieves better performance than if we just use the first stopping criterion.

Therefore, Algorithm 3.1 is extended to Algorithm 4.1 by some lines to
include the third stopping criterion. The additions are highlighted in dark
red color and comprise lines 2, 3, 10 and 11 in Algorithm 4.1. The lines 3,
10 and 11 in Algorithm 4.1 are required to load and store the previous
estimate for comparison. In more detail, (i) at line 2 we included (4.3.17)
for the while-loop condition, (ii) at line 3 we store the previously calculated

residual ˜̂e′
and CAC ṽ

′ = ṽ for comparison and later use, and (iii) at line 11

we revert the residual ˜̂e and the CAC ṽ = ˜̃v to the previous solutions, if
line 10 is true and the current solution does not fulfill (4.3.17).

In summary, we have three amplitude-based channel estimation methods:
RRLS (4.3.14), BPDN (4.3.16) and OMP in Algorithm 4.1. The estimated
SCP based on these methods will be applied to the log-likelihood ratio test
in the following step 3. Therefore, we have three different SCP estimates to
evaluate the performance gray space detection.

4.3.3 Step 3: Log-Likelihood Ratio Test

Eventually, we arrive at step 3 of gray space detection, where based on the
log-likelihood ratio test given in (4.3.3), we classify the spectrum samples
within the transmission band P as H0 : gray space or H1 : occupied by
the BS. In the previous step, we obtained an estimate for the SCP, which
is required to LLR function of (4.3.3). However, besides a coarse estimate
of σ2

ĥ
in (4.3.13), we still lack of information about the distribution of the

SCP, which is required to obtain the composite threshold ρc,Λ(Pfa).
In this Section we will describe the last step of gray space detection com-

prising the specific definition of the log-likelihood ratio test. Therefore, at
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first we will recap the considered hypotheses, the simple null hypothesis H0

and the composite alternative hypothesis H1,c. Then, given the results ob-
tained in Section 2.6, we will state the LLR function. Furthermore, we will
derive estimates for the distribution of the SCP, so that we can calculate the
composite threshold. Given the LLR function and the composite threshold,
we will derive an approximated composite threshold and the corresponding
gray space test. In addition, we will provide a individual threshold for a
simple log-likelihood ratio test, i.e. individual energy detection. Finally we
will discuss our proposed gray space test based on empirical cumulative dis-
tribution function and its performance towards a uniformly most powerful
test.

As described in our system model in Section 4.2, we have an SU observing
the power spectrum, where the two cases, H0 and H1, are present, cf. (4.2.4).
However here, in contrast to energy detection in step 1, we do not just
consider simple hypotheses, but composite hypotheses. In particular, while
H0 still represents the simple null hypothesis, H1,c describes the composite
alternative hypothesis.

While the simple null hypothesis H0 denotes a gray space event (first
case of (4.2.4)), the composite alternative hypothesis H1,c denotes a pri-
mary user (PU) event (second case of (4.2.4)). The distributions of each
hypotheses are obtained from (2.6.8) and (2.6.9) with

H0 : ẑ[f ] ∼ fΓ

(
ẑ[f ]; σ2

n̂, 1
)

, (4.3.19)

H1,c : ẑ[f ] ∼ fχ2
sn

(
ẑ[f ]; 2, ˜̂v[f ],

1
2 σ2

n̂

)
, ˜̂v[f ] > 0. (4.3.20)

Based on these two PDFs, the log-likelihood ratio derived at (2.6.11)
and (2.6.12) is given by

Λ
(
ẑ[f ], ˜̂v[f ]

)
= ln




fχ2
nc

(
2 · ẑ[f ]

σ2
n̂

; 2,
2 · ˜̂v[f ]

σ2
n̂

)

fχ2

(
2 · ẑ[f ]

σ2
n̂

; 2

)




. (4.3.21)

Thus, with the LLR function in (4.3.21) we obtained the left side of the
log-likelihood ratio test in (4.3.3).

Now, let us turn our attention to the right side of our log-likelihood
ratio test in (4.3.3), the composite threshold ρc,Λ(Pfa) for a desired false
alarm rate Pfa. The desired false alarm probability Pfa denotes the prob-
ability, that the resource occupied by the BS is not detected. Therefore,
the false alarm probability Pfa significantly affects the protection of the PU
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system against the interference of an SU. To obtain the composite thresh-
old for the log-likelihood ratio test, the distribution of the spectral channel
power (SCP) and the noise variance σ2

n̂ is required, cf. (2.6.28). Since
the distribution of the channel is not known, only an approximated com-
posite threshold ρc,Λ(Pfa, N) can be estimated. Thus, the approximated
composite false alarm threshold from (2.6.33) is given by

ρc,Λ (Pfa, N) = max (ρ ∈ R : Pfa ≥ P(ρ, N)), (4.3.22)

where P(ρ, N) =
1

N

N∑

n=1

Fχ2
sn,ẑ

(
Λ−1

(
ρ, ˜̂v[fn]

)
; 2, ˜̂v[fn],

σ2
n̂

2

)
, (4.3.23)

where fn is sampled uniformly at random, without replacement, from P.
The inverse log-likelihood ratio function is taken from (2.6.27) with

Λ−1
(

ρc,Λ, ˜̂v[f ]

)
:= max

(
ẑ[f ] ∈ R≥0 : ρc,Λ ≥ Λ

(
ẑ[f ], ˜̂v[f ]

))
, (4.3.24)

where the log-likelihood ratio function of (4.3.21) is applied.
As described in our system model in Section 4.2, we just consider a sin-

gle OFDM symbol for spectrum power measurements. Therefore, the SCP
estimated in step represents just a single realization of the channel. Conse-
quently, the samples ˜̂v[fn] of the estimated SCP just reflect the distribution
of the current channel realization, cf. Glivenko–Cantelli theorem [Can33;
Gli33] in (2.6.32). The distribution of the complete time variant channel
is not known at the current observation. Since, we approximated only the
PDF of a single channel realization, (4.3.23) does not reflect the probability
of the whole channel statistics and the probability P(ρ, N) will differ. Thus,
our approximated composite false alarm threshold in (4.3.22) will change
for each channel realization, even if we increase N .

The log-likelihood ratio test in (2.6.15) is a UMP test, if the threshold ρc,Λ

is constant independent of the measurement, here in the form of the power
spectrum ẑ. Since our approximated threshold changes for each channel
realization, the log-likelihood ratio test constructed with this threshold will
not be a UMP test. However, we expect that the more stable a threshold
over different channel realization, the closer the performance of the log-
likelihood ratio test to a UMP test. Thus, the approximation of threshold
in (4.3.22) can be regarded as a stabilization of the threshold by achieving
a desired false alarm rate Pfa.

Consequently, we can refine now the log-likelihood ratio test of (4.3.3) to
achieve a desired false alarm rate Pfa. The one-sided composite log-likelihood
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ratio test obtained from (2.6.36), also called the gray space test, is

Λ
(
ẑ[f ], ˜̂v[f ]

) H1,c

≷
H0

ρc,Λ (Pfa, N) . (4.3.25)

Thus, we estimate BS resource allocation via the gray space test by

S̃G = {f ∈ P : Λ
(
ẑ[f ], ˜̂v[f ]

)
≥ ρc,Λ (Pfa, N)}, (4.3.26)

where the set P \ S̃G contains the estimated gray spaces.
Instead of approximating the composite threshold ρc,Λ(Pfa) for one chan-

nel realization ˜̂v, we can also obtain an individual threshold for each
spectrum sample ˜̂v[f ] by (2.6.22)

ρs,ẑ (Pfa) = F−1
ẑ,χ2

sn

(
Pfa; 2, ˜̂v[f ],

1

2
σ2
n̂

)
. (4.3.27)

The individual threshold describes a simple hypothesis for each spectrum
sample. Thus, we obtain an individual energy detector

ẑ[f ]

H1,s

≷
H0

F−1
ẑ,χ2

sn

(
Pfa; 2, ˜̂v[f ],

1

2
σ2
n̂

)
, (4.3.28)

which represents the simple log-likelihood ratio test (2.6.23) to achieve a
desired false alarm rate Pfa for each spectrum sample ẑ[f ] independently.
Since the threshold changes for each spectrum sample, the individual energy
detector is also not a uniformly most powerful test. Even more, the variance
of the individual threshold will be larger than the approximated composite
threshold of the gray space test in (4.3.25), since the gray space test uses an
averaged threshold. However, the computation of the individual threshold
is less complex than the approximated composite threshold.

Similar to (4.3.8), given the LLR in (4.3.21) and an threshold ρc,Λ with an
arbitrary constant value, we can refine (4.3.3) as the general composite
log-likelihood ratio test by

ln




fχ2
nc

(
2 · ẑ[f ]

σ2
n̂

; 2,
2 · ˜̂v[f ]

σ2
n̂

)

fχ2

(
2 · ẑ[f ]

σ2
n̂

; 2

)




H1,s

≷
H0

ρc,Λ. (4.3.29)

Moreover, since the threshold ρc,Λ is constant independent of the channel
realization, (4.3.29) represents a UMP test. However as discussed in Sec-
tions 2.5 and 2.6, the test (4.3.29) is not practical, since the performance
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Figure 4.3: Illustration of the log-likelihood ratio test on the received power spec-
trum and a threshold based on perfect spectral channel power (SCP)
knowledge for 10 dB SNR and false alarm rate of Pfa = 0.2.

in terms of detection rate and false alarm rate cannot be controlled. Nev-
ertheless, the UMP test shows the performance deviation of our practical
approaches.

Furthermore, we can use (4.3.29) to evaluate the performance of gray
space detection regarding its different amplitude-based channel estimation
methods provided in gray space detection step 2. Since the LLR is calculated
on the basis of the SCP estimate, the estimated SCP of the amplitude-based
channel estimation approaches will affect the performance of (4.3.29). There,
the UMP test is achieved, if perfect SCP knowledge is applied on (4.3.29).

A visualization of the composite threshold ρc,Λ(Pfa) is illustrated in Fig-
ure 4.3, where Pfa = 0.2 and σ2

n̂ = 0.1. The SNR domain and LLR domain
are shown. While the threshold is constant in the LLR domain, the thresh-
old differs for each spectrum sample in the SNR domain. The LLR or
alternatively the power spectrum samples (gray dots) above the threshold
(red dashed line) are detected as occupied BS resources. The remaining
samples are considered as gray space.

The four cases of log-likelihood ratio test listed in Table 2.2 are also
illustrated in Figure 4.3. While type 2 errors (false alarm) are provoked
within the true PU regions, type 1 errors (missed detection) arouse within
the true gray space regions (green). The primary cause for type 1 errors is
frequency selective fading.
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PU subcarriers |P| 1200

Cyclic-prefix 144

Pd for S̃E ≈ 98.17%

λ 1

Channel Model EPA

System Load 80%

Blocksize 12 subcarrier

SNR 10 dB

False Alarm Rate 10%

Algorithms Energy detector

Orthogonal matching pursuit (OMP)

Reduced-rank least squares (RRLS)

Basis pursuit denoising (BPDN)

Table 4.1: Default link level simulation parameters.

4.4 Simulation Setup

If not mentioned otherwise, the link level simulations are carried out with
the default parameters in Table 4.1. Each simulation is performed for multi-
ple independent channel realizations. We transmit a 20 MHz LTE downlink
signal [3GP20a], where |P| = 1200 subcarriers can be loaded. Thus, only
18 MHz of the complete transmission band P are used by the PU for trans-
mission. The cyclic-prefix is set to the 3GPP short cyclic-prefix value of
144 samples, representing duration of 4.7 µs. Therefore, a CIR lying within
144 samples can be reconstructed. The duration of a CAC is approximately
twice the duration of a CIR, in particular 287 samples. Thus, the estima-
tors are configured, such that they are able to reconstruct a CAC with the
maximum duration of 287 samples.

The transmission alphabet consists of complex samples with random
phase and constant amplitude. In addition, the base station has a default
system load of 80% and uses a PRB-size of 12. which reflects the number of
consecutive subcarriers in one physical resource block (PRB). Consequently,
a complete PRB of 12 subcarriers is either loaded or empty. A system load of
80% translates to 80 occupied PRBs with blocksize of 12 subcarriers. There-
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fore, 20 PRBs are randomly selected and left blank. These gray spaces shall
be detected by a secondary user (SU).

Three algorithms for amplitude-based channel estimation are considered
at the SU, RRLS, BPDN and OMP. The SPGL1–toolbox of Berg and Fried-
lander [BF15; BF08] is used to solve the convex BPDN problem stated in
(3.5.18). The BS resource allocation S̃E is estimated in gray space detection
step 1 with detection probability Pd ≈ 98.17%, so that approximately 98%
of gray spaces are excluded from amplitude-based channel estimation in gray
space detection step 2. The tuning parameter of each amplitude-based chan-
nel estimator is λ = 1. Furthermore, perfect knowledge about the SCP as
well as the classical energy detector are considered in the simulations. The
log-likelihood ratio test is performed with multiple thresholds, such that
different pairs of false alarm rate Pfa and detection rate Pd are obtained.
These pairs are used to generate the receiver operating characteristic.

4.5 Performance Evaluation

Our performance evaluations in this Section are divided in three parts,
(i) comparison of amplitude-based channel estimation methods, (ii) com-
parison of our proposed thresholds for the log-likelihood ratio test, and
(iii) comparison of different channel models including our measurement cam-
paign. Each part is compared to classical energy detection as a baseline, cf.
(4.3.8).

The first part in Sections 4.5.1 to 4.5.4 evaluates the three different esti-
mation algorithms for amplitude-based channel estimation in step 2. There,
we use (4.3.29) to perform the log-likelihood ratio test. We consider several
aspects: receiver operating characteristic (ROC) as well as the impact of
SNR, system load and physical resource blocksize. The curves of perfect
channel are obtained by having full knowledge of the SCP.

The second part in Section 4.5.5 evaluates our gray space test of step 3.
There, we compare our gray space test based on the approximated composite
threshold (4.3.25) with individual energy detection (4.3.28) and the UMP
test (4.3.29).

In the third part we evaluate the performance of the three estimation
algorithms for amplitude-based channel estimation in step 2 under different
channel models, including our the channel models derived from our mea-
surement campaign. There, we apply again the log-likelihood ratio test
of (4.3.29).
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4.5.1 Receiver Operating Characteristic

The receiver operating characteristic is used to completely describe the per-
formance of a statistical hypothesis test [Her98]. Therefore, the relation
between gray space detection rate and false alarm rate is shown. The sub-
figures of Figure 4.4 show the ROC for three different SNR values, a) at
0 dB, b) at 10 dB, c) at 15 dB and d) at 20 dB. The random process de-
notes the line, where the same results are obtained by just flipping a coin.
Thus, the closer the curve of the statistical hypothesis test is to the random
process, the worse is their performance. Moreover, for regions where an
algorithm operates below the line of the random process, it is even better
just flipping a coin for a decision.

At 0 dB SNR in Figure 4.4a) the approaches energy detection, OMP and
BPDN perform similar. Still, there is a small gap at low false alarm rates
to perfect channel knowledge. Due to the definition of RRLS in (3.5.16),
the measurement matrix consists only of zeros and therefore, a vector with
mere zeros is estimated. Thus, the ROC of RRLS is just a point at zero
false alarm rate and zero detection rate. Consequently, at low SNR region
of 0 dB the choice of the spectrum sensing approach does not matter. Fur-
ther information by estimating the SCP does not get any advantage in the
detection procedure. Nevertheless, at 0 dB SNR all algorithms have only a
small gain in comparison to a random process.

At 10 dB SNR (Figure 4.4b) the performance differs significantly from the
0 dB SNR region. The performance of energy detection, OMP and BPDN
increased strongly. Furthermore, OMP and BPDN achieves higher gray
space detection rate than the energy detection, especially at the operation
range of spectrum sensing below 10% false alarm rate. However, below 3%
false alarm rate the performance of BPDN dramatically decreases due to
some rare cases, where the SPGL1–toolbox does not converge. Nevertheless,
OMP outperforms all algorithms at all false alarm rates. Thus, information
of the SCP increases the performance of the detection procedure, because
fading holes can be distinguished from gray spaces. However, in contrast to
OMP and BPDN, gray space detection will suffer if the RRLS approach is
selected for SCP estimation. In particular, at 10 dB a lot of measurements ẑ

are excluded from the SCP estimation process, so that the (|NCAC| ×
∣∣∣S̃1

∣∣∣)
RRLS estimator ERRLS defined in (3.5.17) will be likely ill-posed. Thus,
reconstructing the large autocorrelation vector of |NCAC| = 287 samples by
RRLS estimation will likely fail. Finally, there is still a large gap especially
at low false alarm rates between perfect channel knowledge and the applied
algorithms.

Increasing the SNR by 5 dB to 15 dB (Figure 4.4c), the ROC curves
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Figure 4.4: The receiver operating characteristic at a) 0 dB, b) 10 dB, c) 15 dB
and d) 20 dB SNR for gray space detection vs. false alarm with or-
thogonal matching pursuit (OMP), basis pursuit denoising (BPDN)
and reduced-rank least squares (RRLS).
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Figure 4.5: Gray space detection for fixed false alarm rate of 10% over SNR.

are shifted to the left, achieving higher performance. OMP still outper-
forms all algorithms. However, down to 1% false alarm probability BPDN
achieves similar performance. Even RRLS achieves better results than en-
ergy detection at low false alarm rate. RRLS benefits from low receiver
noise variance σ2

n̂ and consequently from low noise threshold α ·σ2
n̂. Besides

the frequency fading holes and the gray space regions, a large distributed
number of spectrum samples are used for SCP estimation. Therefore, RRLS,
OMP and BPDN are able to estimate a more accurate SCP. Nevertheless,
there is still a gap between perfect channel knowledge and OMP as well as
OMP and RRLS. Energy detection profits the least from the increased SNR,
achieving almost the worst performance of all algorithms.

The trend continuous at the high SNR-regime, here illustrated with SNR
of 20 dB (Figure 4.4c). While the ROC curves of the gray space detection
algorithms becoming similar, the large gap to energy detection remains at
low false alarm rate. Therefore, gray space detection is well suited for the
high SNR-regime, where even RRLS is applicable for the selected physical
resource blocksize of 12 subcarriers.

4.5.2 Impact of SNR

In general, a cognitive radio system is configured to accomplish a certain
primary user (PU) protection. In particular, the target packet error rate
of a PU system like LTE is 10% [3GP20d]. Therefore, spectrum sensing
approaches have to achieve a false alarm rate below 10%. Otherwise, the
PU system suffers from severe secondary user interference, leading to signif-
icant performance degradation of the PU. Moreover, to guarantee a smooth
operation of the PU, the false alarm rate has to be even far below 10%. Nev-
ertheless, we will focus here on a 10% false alarm rate, because for many
systems this is the maximum tolerable error.

In Figure 4.5 we observe the gray space detection rate for a fixed false
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Figure 4.6: Gray space detection with orthogonal matching pursuit (OMP) for
multiple fixed false alarm rates over SNR.

alarm rate of 10%. As mentioned before, the RRLS method is only able
to achieve good detection results for high SNR regimes. At the other SNR
regimes RRLS is simply outperformed by the other approaches. In contrast
to RRLS, all other algorithms achieve better results. Gray space detection
based on compressed sensing have up to 10% detection gain in comparison to
energy detection. Furthermore, still a gap is visible between perfect channel
knowledge and the compressed sensing approaches.

For better comparison, we picked OMP and energy detection in Figure 4.6
and give a more detailed view for multiple false alarm rates. To see the trend
for higher false alarm rates, a false alarm of 15% is considered. Nevertheless,
the focus lies on the lower false alarm rates towards 1%, since the secondary
user (SU) interference on the PU system will be insignificant for the a con-
sidered primary user target packet error rate of 10%. The lower the false
alarm rate, the higher is the gap between OMP and energy detection. In
addition, for smaller false alarm rates the maximum gap between both ap-
proaches shift to higher SNR. E.g. a false alarm rate of 1% OMP is still
able to perform fairly good detection results at 15 dB SNR. In contrast to
that, energy detection suffers from significant performance loss. This result
is already obvious in Figure 4.4c). Therefore, for practical requirements of
PU protection, a gray space detector based on OMP leads to significant
increase of the gray space detection rate.

4.5.3 Impact of System Load

Another view on gray space detection is taken in Figure 4.7. At 10 dB
SNR and a false alarm rate of 10%, the detection rate is plotted over a
PU system load from 10% to 90%. E.g. at 90% system load 10 out of
100 physical resource blocks consisting of 12 subcarriers are left empty.

Since energy detection in (4.3.8) does not consider the SCP and only
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Figure 4.7: Gray space detection over primary user (PU) system load at fixed
false alarm rate of 10% and 10 dB SNR.

depends on the receiver noise, the detection rate stays roughly constant
at approximately 77%. In contrast to energy detection, RRLS, OMP and
BPDN are influenced by the system load. The lower the system load, the
less spectrum samples are available for amplitude-based channel estimation.
However, with decreasing system load the detection performance of OMP
is only slowly decreasing by a few percent. Even at 10% system load OMP
achieves better results than energy detection. In contrast to OMP, BPDN
stays coarsely constant down to 30% system load. Below 30% system load
BPDN approaches quickly the performance of energy detection. In contrast
to that, RRLS is strongly affected by system load. However, even at large
system load RRLS performs significantly below energy detection. Conse-
quently, OMP and BPDN are able to reconstruct the SCP even for low
system load and therefore outperform both, the energy detection and the
RRLS scheme.

4.5.4 Impact of Blocksize

Figure 4.8 takes a look on varying PRB-sizes. In 3GPP LTE the small-
est scheduling unit in the frequency domain is one physical resource
block (PRB) consisting of 12 subcarriers. Thus, we used 12 subcarriers
as default blocksize for link level simulations. However, the effect of larger
blocksizes may be valuable for systems using larger PRBs. An increase in
blocksize leads to an increase of the contiguous gray spaces. Thus, the es-
timate S̃E of the BS resource allocation in gray space detection step 1 will
miss an increasing number of contiguous spectrum samples, so that the per-
formance of the amplitude-based channel estimation methods in step 2 may
suffer.
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Figure 4.8: Impact of blocksize on gray space detection at fixed false alarm rate
of 10% and 10 dB SNR.

Energy detection does not depend on the estimation process and therefore
has a constant detection rate. However, also gray space detection based on
the CS algorithms orthogonal matching pursuit (OMP) and basis pursuit
denoising (BPDN) perform nearly constant. Thus, an increase of contiguous
gray spaces hardly affects the decision accuracy of CS based gray space de-
tection. Nevertheless, RRLS suffers dramatically from larger blocksizes and
goes even below 30% detection rate. Since RRLS estimates the CAC v[NCAC]

on the complete set NCAC, large contiguous gray spaces will severely degrade
the estimation performance of RRLS.

4.5.5 Impact of Threshold Estimation

So far we selected an arbitrary constant hypothesis threshold for the log-
likelihood ratio test, cf. (4.3.8) and (4.3.29), obtaining the uniformly most
powerful test for a given gray space detection algorithm. However, if a
specific false alarm probability is desired, the hypothesis threshold has to
be calculated.

In Section 4.3.3, we derived our gray space test to obtain a desired
false alarm rate. The gray space test (4.3.25) is based on composite
log-likelihood ratio test and utilizes the approximated composite thresh-
old ρc,Λ(Pfa, N = 10) from (4.3.22). The approximated composite thresh-
old is obtained from N = 10 elements, which are sampled uniformly at
random, without replacement, from P for each channel realizations. Thus,
the approximated composite threshold is constant for one channel realiza-
tion, but is recalculated for each channel realization. However, since we have
N = 10 < |P|, the threshold calculated in each channel realization is just an

estimate of ρc,Λ(Pfa, |P|). Therefore, P̃fa = P(ρc,Λ(Pfa, N), |P|) in (4.3.23) is
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Figure 4.9: Relative error

∣∣∣P̃fa − Pfa

∣∣∣ / Pfa to achieve desired false alarm rate Pfa

having perfect knowledge of the SCP with individual energy detec-
tion and gray space test.

also just an estimate of the desired false alarm rate Pfa.
For comparison we use the individual energy detection (4.3.28), where the

individual simple threshold ρs,ẑ(Pfa) is calculated for each measurement ẑ[f ]

independently. Thus, the individual threshold changes for each channel re-
alization. However, the individual threshold achieves the precise individual
desired false alarm rate for each measurement. Therefore, independent of
the actual channel statistics, the desired false alarm rate is precisely met.

Figure 4.9 shows the relative error
∣∣∣P̃fa − Pfa

∣∣∣ / Pfa, where

P̃fa = Fχ2
sn

(
ρ; 2, v̂[f ],

1
2 σ2

n̂

)
is obtained by applying the threshold ρ on

the distribution of H1, cf. (4.3.6) and (4.3.20). The threshold of the
corresponding approach is used, i.e. ρc,Λ(Pfa, |P|) for the gray space test
and ρs,ẑ(Pfa) for the individual energy detection. To evaluate the impact of
the gray space test only, perfect channel knowledge is assumed to calculate
the corresponding thresholds. Selecting the threshold individually leads
to low relative error of at least two order of magnitudes smaller than the
desired false alarm rate Pfa, which results from inaccuracy in calculation
of the probability density functions. However, the relative error of the gray
space test stays mainly constant at approximately 0.2, resulting mainly
from the estimation process. The notch at Pfa = 0.5 is due to a change

of sign of
(

P̃fa − Pfa

)
from the lower to the higher false alarm rate. In

summary, even though the individual threshold ρs,ẑ(Pfa) is more accurate,
the approximated composite threshold ρc,Λ(Pfa) should be still feasible for
practical implementations, where an relative error of approximately 0.2
will still leave P̃fa in the vicinity of Pfa.

In contrast to that, Figure 4.10 shows that the approximated compos-
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Figure 4.10: ROC of gray space test (4.3.25) in comparison with individ-
ual energy detection (4.3.28), uniformly most powerful (UMP)
test (4.3.29), general energy detection (4.3.8) and random process.

ite threshold ρc,Λ(Pfa) of the gray space test achieves higher detection rate
than ρs,ẑ(Pfa) of individual energy detection. Moreover, especially at low
false alarm rates the approximated composite threshold is close to the perfor-
mance of the uniformly most powerful test. Gray space test also outperforms
classical energy detection in the false alarm region of interest below 10 %. In
addition, individual energy detection also achieves better performance be-
low 10 % towards classical energy detection, since classical energy detection
assumes constant SCP. Therefore, at this region it is better to select ρs,ẑ

of energy detection individually than to fix the threshold to a constant. At
large false alarm rates the impact of the frequency-varying wireless chan-
nel on classical energy detection decreases and the performance approaches
quickly the detection rate of the uniformly most powerful test. However,
as mentioned above, the operation point of gray space detection is below
false alarm rate of 10%. Therefore, the approximated composite threshold
of the Gray space test is the best choice for gray space detection, even if
its accuracy regarding the desired false alarm rate is not as good as the
individual threshold, see Figure 4.9.
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Figure 4.11: Map of the Smart Automation Lab at the Laboratory for Ma-
chine Tools and Production Engineering of RWTH Aachen Uni-
versity [HWR+16].

4.6 Practical Channel

The performance evaluations in Section 4.5 have been conducted with the
3GPP EPA performance channel model. In Section 2.3 we introduced also
two other performance channel models, 3GPP EVA and ITU IOA. How-
ever, a performance evaluation on ground of practical wireless channels
directly obtained from measurements gives a more realistic look on the de-
tection scheme. Therefore, we use our measurement campaign [HWR+16;
WHW16; DHC+19] to extract some representative practical performance
channel models. The primary focus of the measurement campaign was
the investigation of wear-and-tear free transmission in factory automation.
Therefore, we picked the pick-and-place process as a representative manu-
facturing process.

4.6.1 Measurement Campaign

The measurement campaign took place in the Smart Automation Lab at
the Laboratory for Machine Tools and Production Engineering at RWTH
Aachen University, Germany, a highly sophisticated production environ-
ment. As shown in Figure 4.11 the dimension of the Smart Automation
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Figure 4.12: Measurement setup in the Smart Automation Lab at the Labo-
ratory for Machine Tools and Production Engineering of RWTH
Aachen University [HWR+16].

Lab is 29 × 15 m with a height of 7.3 m. In addition, the laboratory con-
tains several automation machine tools, automated transportation systems
and industrial robots as depicted in Figure 4.12. The building consists of
a concrete floor and a metallic ceiling, where some open metallic joists are
installed.

The channel measurements were conducted at the test automation cell in
Figure 4.11 with a dimension of around 4 × 5 m. The automation machine
tools nearby were actively used by workers during the measurements, thus
representing a live production environment. Therefore, the wireless channel
is time-variant due to the changing scattering and reflection characteristics.
Nevertheless, [WHW16] shows that the impact on the short-range factory
automation measurements is not significant.

The two articulated industrial robots as depicted in Figure 4.12 were
installed at the test automation cell, where the robot of interest was top-
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mounted on an open metallic joist. The antennas were placed on the robot
gripper and on the robot control, such that the wireless link bypasses the
moving parts of the robot. Thus, a wear-and-tear free transmission is inves-
tigated for manufacturing processes, in particular a pick-and-place process.
While the robot gripper is moving along programmed trajectories, the posi-
tion of the robot control is fixed. The distance between both antennas was
between 1.2 m and 2.7 m. The measurements were conducted at center fre-
quencies 5.85 GHz and 2.25 GHz with 250 MHz bandwidth, because both
frequency regions are targeted for the use of emerging use cases such as
short range devices [CEP14]. However, only the 2.25 GHz center frequency
is used to obtain the results below. During the measurement campaign no
other interfering wireless system was active in the corresponding frequency
ranges.

The measurement campaign was conducted with the High Performance
Digital Radio Testbed (HIRATE) real-time channel sounder [KKP+13]. In
particular, the HIRATE is a modular wireless radio testbed and consists
of a digital signal processing platform, a wideband signal converter and
reconfigurable radio frequency frontends. One HIRATE was used as the
transmitter and one as the receiver. A clock cable connects both HIRATE
units to enable frequency stability and time synchronization. Therefore,
the frequency offset between both units is negligible. Furthermore, the ab-
solute path delay between transmitter and receiver was recorded. Before the
measurements, the channel sounder setup was calibrated to remove channel
impairments induced by the measurement equipment itself. Therefore, a
calibration setup of hard-wired transmitter and receiver antenna ports was
used to obtain an ideal channel transfer function in the desired frequency
regions. Thus, the Huber+Suhner antennas were considered as part of the
wireless channel and were mostly removed in the measurement results. The
used linear and vertical polarized Huber+Suhner multiband antennas are
almost omni-directional with antenna gain of around 6 dBi at 2.25 GHz
band and 8 dBi at 5.85 GHz band.

HIRATE was configured to support an effective signal bandwidth of
ΩBW = 250 MHz. Thus, the corresponding sampling interval is 4 ns. The
Frank-Zadoff-Chu sequence [Fra63] of length n = 1024 was implemented
as sounding sequence, which was periodically repeated and correlated at
the receiver. The time duration of the sequence was configured, such that
τED,max = n/ΩBW ≪ τcoh is satisfied with τcoh as coherence time of the
channel. In particular, the maximum detectable channel excess delay was
set to τED,max = 4.096 µs. One sounding sequence exploits the complete
effective signal bandwidth of ΩBW = 250 MHz. In addition, the SNR of the
measured channel impulse response is increased by 18 dB by averaging of 64
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Scenario Short-range factory automation (SFA)

Center frequency 2.25 GHz

Bandwidth 250 MHz

Sampling resolution 4 ns

Channel sounder HIRATE

Antennas Huber+Suhner

model no. SWA 2459/360/7/20/V_2

Table 4.2: Measurement setup.

Figure 4.13: Measured power delay profile (PDP) and reconstructed PDP based
on the dominant multipath components (MPCs) of one measure-
ment snapshot [HWR+16].

received sounding sequences. The resulting channel impulse response rep-
resents one measurement snapshot. An overview of the basic configuration
parameters is given in Table 4.2.

The recorded complex channel impulse responses (CIRs) from the mea-
surement snapshots are processed offline to obtain a set of dominant mul-
tipath components (MPCs) on a non-equidistant delay grid, as depicted
in Figure 4.13. In this way, dominant MPCs for performance channel
models can be retrieved. The dominant MPCs are obtained by a modi-
fied space-alternating generalized expectation-maximization (SAGE) algo-
rithm [FTH+99], which is described in more detail in [KJT+15]. For better
visualization, Figure 4.13 shows the real-valued power delay profile instead
of the complex CIR. The modified SAGE algorithm iteratively determines
the MPCs on a non-equidistant delay grid, such that the reconstructed CIR
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calculated from the determined MPCs on the equidistant delay grid matches
the measured CIR. Consequently, after determining all dominant MPCs, the
measured and reconstructed CIR only differ by the noise floor.

4.6.2 Representative Channel Models

Among the reconstructed CIRs we extracted two representative short-
range factory automation (SFA) channels with their corresponding MPC

gains
∣∣h[n]

∣∣2 and path delays τp(n). One representative SFA channel rep-
resents line-of-sight (LOS) characteristics and the other non-line-of-sight
(NLOS) characteristics. To distinguish between LOS and NLOS we calcu-
late the K-factor

αKF =
(max |h|)2

‖h‖2
2 − (max |h|)2 , (4.6.1)

which is the ratio of the largest MPC gain to the power of the residual MPCs.
A ratio above 0 dB indicates LOS and below 0 dB NLOS characteristics.
Thus, we obtain two tapped delay line models for the performance channel
models for short-range factory automation, one for LOS in Table 4.3 and one
for NLOS in Table 4.4. For the performance channel models the path delay
of the first path is set to zero and the following path delays are adjusted
accordingly. In addition, the MPC gains are normalized, such that the
largest MPC gain is 0 dB. We restrict the minimal MPC gains to -30 dB,
having a range of up to 30 dB between the MPCs. The range of 30 dB
is similar to ITU IOA, 3GPP EPA and 3GPP EVA performance channels
discussed in Section 2.3.

The power delay profile (PDP) of the representative short-range factory
automation (SFA) channel with LOS characteristics in Table 4.3 and with
NLOS characteristics in Table 4.4 are visualized in Figure 4.14. At first
glance, the LOS channel has fewer MPCs lower MPC gain than the NLOS
channel. In addition, the excess delay of 188 ns for LOS is lower than for
NLOS. The excess delay for given path delays is calculated by

τED = τp(N) − τp(1). (4.6.2)

However, since the path delay of the first MPC is set to zero, the excess
delay is equal to the path delay of the last MPC.

In addition, examples for the spectral channel power of the representative
short-range factory automation (SFA) channel are visualized for 250 MHz
bandwidth in Figure 4.15. Note, that the spectral channel power is symmet-
ric, because the examples are generated by using channel impulse responses
with real values only.
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Path MPC Path MPC
Path Delay Gain Path Delay Gain

n τp(n)
∣∣h[n]

∣∣2 n τp(n)
∣∣h[n]

∣∣2
[ns] [dB] [ns] [dB]

1 0 0 15 61.7 −27.6
2 1.7 −29.9 16 66.6 −20.3
3 4.5 −29.7 17 72.3 −18.2
4 4.8 −3.1 18 77.7 −21.6
5 8.5 −12.3 19 84.0 −23.1
6 12.0 −12.7 20 91.1 −26.5
7 15.8 −16.8 21 93.6 −22.9
8 19.3 −11.0 22 103.0 −26.9
9 27.7 −26.2 23 109.0 −26.1
10 31.8 −17.0 24 126.0 −28.9
11 35.9 −25.6 25 129.0 −24.4
12 42.5 −26.1 26 137.0 −29.4
13 51.8 −26.1 27 188.0 −29.6
14 56.8 −17.9

Table 4.3: Tapped delay line model of short-range factory automation (SFA)
with line-of-sight (LOS).

Figure 4.14: The power delay profile of channel models for representative short-
range factory automation (SFA) with line-of-sight (LOS) and
non-line-of-sight (NLOS) characteristics.
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Path MPC Path MPC
Path Delay Gain Path Delay Gain

n τp(n)
∣∣h[n]

∣∣2 n τp(n)
∣∣h[n]

∣∣2
[ns] [dB] [ns] [dB]

1 0 −20.1 22 94.9 −20.8
2 2.8 0 23 99.5 −14.6
3 5.6 −21.1 24 106.0 −19.3
4 8.6 −3.6 25 111.0 −21.2
5 13.7 −7.5 26 120.0 −20.8
6 17.9 −10.9 27 123.0 −23.0
7 24.7 −10.0 28 131.0 −24.4
8 26.9 −27.9 29 141.0 −22.7
9 31.8 −9.9 30 145.0 −26.0
10 34.9 −18.1 31 151.0 −23.3
11 40.0 −16.4 32 157.0 −19.9
12 43.2 −5.4 33 169.0 −24.3
13 48.3 −11.8 34 175.0 −28.9
14 53.6 −15.7 35 178.0 −28.4
15 56.6 −22.1 36 189.0 −22.7
16 63.6 −14.2 37 195.0 −27.9
17 67.2 −16.9 38 222.0 −26.1
18 76.8 −21.2 39 224.0 −27.4
19 80.5 −18.1 40 236.0 −26.6
20 83.9 −14.1 41 261.0 −28.6
21 89.6 −12.7

Table 4.4: Tapped delay line model of short-range factory automation (SFA)
with non-line-of-sight (NLOS).

Figure 4.15: Examples for the spectral channel power of channel models for
representative short-range factory automation (SFA) with line-of-
sight (LOS) and non-line-of-sight (NLOS) characteristics.
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Model

K-Factor Number of r.m.s. Delay Excess

αKF Multipaths Spread [ns] Delay [ns]

[dB] N τDS τED

SFA-LOS 0.93 27 17 188

SFA-NLOS 41 33 261

ITU IOA 6 37 310

3GPP EPA 7 43 410

3GPP EVA 9 357 2510

Table 4.5: Parameters of short-range factory automation (SFA) as well as the
ITU and 3GPP channel models.

To compare the representative SFA channel models with ITU and 3GPP,
we calculate the root mean square (r.m.s.) delay spread

τDS =

√√√√√√√√

N∑
n=1

(∣∣h[n]

∣∣2 · (τp(n))2
)

‖h‖2
2

−




N∑
n=1

(∣∣h[n]

∣∣2 · τp(n)
)

‖h‖2
2




2

. (4.6.3)

An overview of the channel models of interest is given in Table 4.5. The
representative SFA channel models are more comparable with the ITU IOA,
since the r.m.s. delay spread and the excess delay are similar. However, the
number of multipaths of SFA channels is significantly higher than the ITU
and 3GPP channels.

4.6.3 Impact of Channel Model

To grasp the impact of different channel models, Figure 4.16 compares the
algorithms under the selected channel models. The detection performance
of all algorithms and even with perfect channel knowledge is decreasing
over the channel models with larger excess delay and r.m.s. delay spread.
Larger excess delay and r.m.s. delay spread lead to more frequency selective
fading. Thus, more fading holes are present and decrease the gray space
detection performance. Moreover, the spectral channel power estimation
is influenced by the channel characteristics. Especially larger number of
multipaths as well as larger excess delay decrease spectral channel power
estimation accuracy of compressed sensing methods and RRLS estimator.
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Figure 4.16: Behavior of gray space detection under different channel models at
fixed false alarm rate of 10% and 10 dB SNR.

However, the impact on the compressed sensing methods is not as severe
as for energy detection. The results indicate that gray space detection with
OMP and BPDN are more robust against varying channel models.

4.7 Summary

In this Chapter, we proposed the gray space detection scheme for interweave
cognitive radio system, which properly identifies empty resources within an
active primary user band. Therefore, gray space detection copes with fre-
quency fading holes and distinguishes them from inactive resources. In
contrast to the classical energy detection, gray space detection can be con-
figured to operate at desired false alarm rate. In other words, the primary
user can be protected from the cognitive radio system with a desired prob-
ability. The gray space detection procedure comprises of three steps to
acquire the unused resources: step 1 estimates a preliminary set of primary
user resources via energy detection, step 2 estimates the spectral channel
power via amplitude-based channel estimation on the given preliminary set
of step 1, and step 3 estimates the final set of primary user resources via
the log-likelihood ratio test, where the complement set represents the iden-
tified gray spaces. Different approaches for step 2, amplitude-based channel
estimation, and step 3, log-likelihood ratio test, are applied.

In particular, amplitude-based channel estimation of gray space detec-
tion step 2 considers the conventional reduced-rank least squares (RRLS)
method as well as the compressed sensing-based orthogonal matching pur-
suit (OMP) and basis pursuit denoising (BPDN) algorithm. The different
gray space detection approaches were compared with energy detection un-
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der several aspects: the receiver operating characteristic at different SNRs,
the primary user system load, and physical resource blocksize. To sum-
marize, gray space detection achieves in general better performance than
energy detection. Moreover, gray space detection has the advantage that
a desired primary user protection level can be achieved. For the different
estimation algorithm of gray space detection, the greedy OMP approach of
compressed sensing achieves the best performance results for a given false
alarm rate. However, compressed sensing BPDN achieves mostly similar
performance. The classical RRLS estimation is not well suited for gray
space detection, since the performance suffers from the distribution of the
primary user samples.

In addition, the gray space test is proposed for the log-likelihood ratio
test of gray space detection step 3, where the utilized approximated compos-
ite threshold exploits the empirical cumulative distribution function of the
wireless channel. We compared the gray space test with individual energy
detection, where the threshold is individually applied for each measurement.
There are generally two challenges to obtain a suitable threshold. First, to
achieve a uniformly most powerful test, a threshold has to be constant un-
der the considered channel model. Second, the threshold has to accurately
resemble the desired performance criteria like false alarm rate. We showed
that while the gray space test with the approximated composite threshold
suffers slightly in accuracy in comparison to the individual energy detec-
tion, the false alarm rate performance of the gray space test is significantly
closer to the uniformly most powerful test. The increased performance is
achieved by stabilizing the approximated composite threshold to be less
varying than the individual threshold. In conclusion, given that a relative
accuracy of 10% is sufficient, the gray space test outperforms the simple
log-likelihood ratio test.

Finally, we generated practical short-range factory automation channel
models for a representative manufacturing process in factory automation. In
addition to the ITU channel models, these short-range factory automation
channel models were used to evaluate our gray space detection approach.
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Chapter 5

Allocation Map Retrieval

5.1 Overview

This Chapter extends the system model of the previous Chapter 4 for mul-
tiple transmitters. Thus, in contrast to gray space detection of Chapter 4
we have more than two hypotheses. Furthermore, here we are interested in
retrieving the distinct resource allocation map of each transmitter. We will
propose an objective function to solve the combinatorial problem of alloca-
tion map retrieval for frequency-division multiple access signals and show
that based on the objective function a receiver is able to identify the non-
adjacent resources belonging to the same transmitter. Furthermore, we will
propose a breadth-first search approach for decision trees, which solves the
combinatorial problem of allocation map retrieval efficient but suboptimal.

5.1.1 Main Contributions

The main contribution of this Chapter comprises allocation map retrieval for
frequency-division multiple access (FDMA) signals [WJW+15; WJB+15],
where a receiver observes multiple transmitters exclusively allocating dis-
tributed frequency resources.

For this, we first extend the system model of Chapter 4 to multiple trans-
mitters. In particular, in Chapter 4 we observed the power spectrum at the
receiver consisting of a signal from a single transmitter and non-adjacent
inactive resources. In this Chapter, we extend this system model to sup-
port multiple transmitters, where the superposition of these signals in form
of an FDMA signal are observed by a receiver. Furthermore, we provide
the system model for two distinct cases: (i) channel transfer function mea-
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surements observing pilots, and (ii) spectral channel power measurements
observing constant amplitude signals. While in Chapter 4 we had only two
hypotheses describing active and inactive resources, this Chapter is dealing
with more than two hypotheses, each describing a different transmitter. In
addition, in Chapter 4 we focused on the detection of gray spaces, where
as a byproduct the resource allocation map of the single transmitter has
been estimated. In contrast to Chapter 4, in this Chapter we are partic-
ularly interested in retrieving the distinct resource allocation map of each
transmitter.

To understand our problem of allocation map retrieval, we put the prob-
lem into relation of the problem of unlabeled sensing studied by Unnikr-
ishnan et al. [UHV15a]. There we show that a part of our allocation map
retrieval problem, i.e. unlabeled selection sensing present in the single trans-
mitter setting, is a subproblem of unlabeled sensing, and therefore, given
sufficient i.i.d. measurements, a unique solution exists in the noiseless case
with probability one. Furthermore, we derive an objective function based
on sparsity for the allocation map retrieval problem. In particular, the
objective function exploits the sparsity of the transmission channel to dis-
tinguish the signals arriving from different transmitters. To evaluate the
feasibility of the objective function [WJW+16a], we provide combinatorial
simulations for small problem sizes and show that the true resource allo-
cation map generally corresponds to the global minimum of the objective
function.

Finally, given the derived objective function, we develop a feasible but
suboptimal breadth-first search algorithm for the allocation map retrieval
problem, which traverses a decision tree and reconstructs the resources be-
longing to the same transmitter, i.e. retrieve the resource allocation maps.
The breadth-first search algorithm is evaluated via simulations based on ar-
tificial sparse channels as well as on practical performance channels. There,
the practical performance channels consist of the ITU performance channels
as well as the SFA performance channels of our measurement campaign,
see Section 4.6.2.

Based on the discussed framework of allocation map retrieval, a transmis-
sion concept has been filed as an international patent application [WJH17].
Summary of own contributions within this Chapter:
[WJW+15; WJB+15; WJW+16a; WJH17]

5.1.2 Structure

The outline of the chapter is as follows: We begin with the introduction of
the system model for multiple transmitters in Section 5.2, where a receiver



5.2 System Model 127

observes the channel transfer functions in Section 5.2.1 and the spectral
channel powers in Section 5.2.2 of the different transmitters. Furthermore,
to ease evaluation of the two system models, we provide a unified system
model in Section 5.2.3. Afterwards, to understand the complexity of the
combinatorial problem of allocation map retrieval, we take a look on its
problem size in Section 5.3. Then, in Section 5.4, we elaborate our allocation
map retrieval problem in more detail. There, we introduce the problem of
unlabeled sensing of Unnikrishnan et al. [UHV15a] (Section 5.4.1) and show
that a part of our allocation map retrieval problem, i.e. unlabeled selection
sensing, is a subproblem of unlabeled sensing. Furthermore, in Section 5.4.4
we discuss the extension of the unlabeled selection sensing problem to multi-
ple transmitters, i.e. our original allocation map retrieval problem. Having
a clearer view on the problem, we derive the objective function in Section 5.5
and give simulative verification in the subsequent Section 5.6. For transmis-
sion signals with some structures, like embedded physical resource blocks of
certain blocksize, we develop a feasible but suboptimal algorithm based on
orthogonal matching pursuit in Section 5.7, and provide simulations results
in Section 5.8. The chapter concludes with the summary on allocation map
retrieval in Section 5.9.

5.2 System Model

In this Section, we will extend our system model of Section 2.4 to multiple
transmitters for the application of allocation map retrieval (AMR). For a sin-
gle transmitter, the system model is similar to the system model introduced
in Section 4.2. However, for multiple transmitters a frequency-division mul-
tiple access scenario is present, where each transmitter k allocates an ex-
clusive resource allocation set (RAS) Sk ⊆ P within the set P of available
resources in the transmission band, cf. Figure 5.1.

We will start by introducing the resource allocation framework in
frequency-division multiple access (FDMA) scenarios, where we will define
the set S of RASs of all transmitters. Furthermore, we will introduce phys-
ical resource blocks (PRBs) to support resource allocation on PRB basis.
Based on the RAS Sk, we describe the FDMA signal ûk generated by each
transmitter k ∈ K := {1, . . . , K} and the superimposed signal ŵ at the
receiver. At the end of this Section, we provide the system model for two
distinct cases: (i) channel transfer function measurements observing pilots
in Section 5.2.1, and (ii) spectral channel power measurements observing
constant amplitude signals in Section 5.2.2. Furthermore, to ease evalua-
tion of the two system models, we unify both measurement types in Sec-
tion 5.2.3 to describe channel transfer function and SCP measurements in
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Figure 5.1: Transmitter 1 and 2 transmit on exclusive but fragmented frequency
resources, while a receiver observes the superposition of both signals.

a single system model.
Wireless communication systems apply multiple access schemes to sup-

port multiple transmitters in a dedicated spectrum band, where the spec-
trum band is partitioned in a set P of available resources. Here, in extension
to our transmission model introduced in Section 2.4, multiple transmitters
operate simultaneously within the same transmission band. However, each
transmitter k ∈ K := {1, . . . , K} just allocates an exclusive RAS Sk ⊆ P via
a multiple access scheme, i.e.

Sk

⋂
Sk′ = ∅ , ∀k, k′ with k 6= k′. (5.2.1)

We focus on FDMA schemes like orthogonal FDMA (OFDMA) and devi-
ates, which are e.g. applied for downlink, uplink and device-to-device (D2D)
communication in 3GPP LTE [3GP20a] as well as NR [3GP20h]. Con-
sequently, as depicted in Figure 5.1, the resource allocation within the
transmission band is fragmented, such that each transmitter k utilizes a
RAS Sk ⊆ P ⊆ F := {0, . . . , NDFT − 1} distributed over the transmission
band. Therefore, each transmitter k just allocates a subset of the avail-
able resources contained in the resource pool P, where Sk represents the
RAS of transmitter k. The residual unallocated resources, not allocated to
any transmitter, are given by

S0 := P \
(
⋃

k∈K

Sk

)
. (5.2.2)

The set S0 can also be viewed as the RAS allocated by a single inactive
transmitter. Therefore, we introduce the set

K0 := {0} ∪ K = {0, . . . , K}, (5.2.3)
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which extends K by the set of unallocated resources. Thus, the union of the
RASs Sk, k ∈ K0 represent the set P, i.e.

K⋃

k=0

Sk = P. (5.2.4)

Consequently, the set of sets containing all RASs Sk, k ∈ K0 are representing
a partition of the set P. Thus, we can describe the resource allocation of all
transmitters by the set of RASs with

S := {Sk}K
k=0 = {S0, . . . , SK} , (5.2.5)

where S represents also a partition of the set P1. Consequently, we have a
bijective function from the resource set P of the transmission band to the
set S of RASs, so that each subcarrier index f ∈ P is exclusively assigned
to one RAS Sk, k ∈ K0.

In typical communication systems, resources are not allocated on single
subcarrier-basis, but as physical resource blocks (PRBs), see Section 2.4.
Each PRB contains a predefined set Tm ⊂ P of exclusive resources, where
the PRB-size NB = |Tm| , ∀m is fixed for all PRBs. Thus, the PRB-size NB

denotes the granularity, on which resources can be allocated by a trans-
mitter. Hence, we introduce the set of all PRBs in the transmission band
by2

T := {T0, . . . ,TNRB−1} , (5.2.6)

where Tm

⋂
Tm′ = ∅ , ∀m, m′ with m 6= m′,

where NRB denotes the number of PRBs in P and T represents a set of
sets. This definition also permits the use of PRBs containing resources
distributed over the transmission band, of which we will take advantage in
later sections. Now we can write the RAS Sk as a function of T with

Sk := f(S′
k,T) =

⋃

m∈S′
k

Tm, (5.2.7)

where S′
k ⊂ {0, . . . , NRB − 1} represents the PRB allocation set of transmit-

ter k.
1A partition of a set can also be referred to as a Bell set, as discussed later in Sec-

tion 5.3.
2In general, |P| is not an integer multiple of NB, so that some subcarrier indices f are

not assigned to any Tm. However, if |P| is an integer multiple of NB, then the set T is
a partition of the set P and, moreover, a Stirling set of the second kind, as defined later
in (5.3.3).

https://en.wikipedia.org/wiki/Partition_of_a_set
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As an alternative to the set notation, we can also describe the RAS Sk of
transmitter k by a binary allocation matrix

Sk := diag(sk) ,

where sk := 1Sk
(f) (5.2.8)

defines the binary allocation vector sk ∈ {0, 1}|P| via the indicator function.
Moreover, the binary resource allocation map (RAM) Sk can be concate-
nated to an overall RAM

S :=
[
S0 . . . SK

]
, (5.2.9)

where S ∈ {0, 1}|P|×(K+1)·|P|. Thus, the set S of RASs containing the re-
source allocation information of all transmitters is represented by the single
matrix S.

Now we have defined the required variables, so that we can extend the
transmit symbol calculation of (2.4.1) for multiple transmitters. Hence,
given the RAS Sk and the time sample indices t ∈ {0, . . . , NDFT − 1}, the
discrete samples of an OFDM time domain symbol at transmitter k
are obtained by

(uk)[t] =
1√

NDFT

∑

f∈Sk

exp

(
i2π

ft

NDFT

)
· (ûk)[f ] , (5.2.10)

where each complex frequency sample (ûk)[f ] is selected from a known trans-
mit alphabet. Furthermore, each transmitter is located on a different spa-
tial position. Thus, we can assume that the realizations of the transmission
channels differ from each other with high probability

∀k 6=mhk 6= hm. (5.2.11)

Consequently, the receiver in Figure 5.1 observes the superposition of mul-
tiple transmitted signals, each with a different channel hk. Besides the
block-fading wireless channel, also the unknown time offset τoffset of each
transmitted signal is embedded in the channel hk, as described in (2.4.3).
Therefore, time asynchronicity between the signals of the different transmit-
ters is permitted as long as the maximal offset between the signals does not
exceeds (NCP −τED,max), i.e. the gap between CP length and the maximum
excess delay τED,max of the channel impulse response, see (2.4.4). Thus, we
extend the block-fading transmission model of (2.4.6) and calculate the re-
ceived time samples by

w[t] = n[t] +
∑

k∈K

NCP∑

τ=0

(hk)[τ ] · (uk)[(t−τ) mod NDFT] (5.2.12)

https://en.wikipedia.org/wiki/Indicator_function
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with t ∈ {0, . . . , NDFT − 1}, where hk ∈ CNCP+1 is the block-fading channel
of transmitter k and n ∈ CNDFT represents the additive white Gaussian
noise vector. The modulo operation (mod) on the transmit vector uk ∈
CNDFT from (5.2.10) extends the transmit vector by the CP.

The corresponding received frequency samples through an NDFT-point
DFT derived from (2.4.7) for multiple signals are calculated by

ŵ[f ] = n̂[f ] +
∑

k∈K

(
ĥk

)
[f ]

· (ûk)[f ] . (5.2.13)

Given the RAM Sk, (5.2.13) can be written as matrix notation similar
to (2.4.8) by

ŵ = n̂ +
∑

k∈K

Sk · diag
(
ĥk

)
· ûk. (5.2.14)

Applying condition (5.2.1), permitting only exclusive RAMs Sk on (5.2.14),
the receiver observes merely the symbol (ûk)[f ] of a single transmitter k ∈ K

on subcarrier index f ∈ Sk altered by its channel and distorted by noise. All
other transmitters are inactive on this subcarrier. In the case of an unallo-
cated resource f ∈ S0, all transmitters remain inactive on the corresponding
subcarrier, so that the resource contains only noise. Thus, given the actual
RAS Sk, the receiver observes

ŵ[f ] =





n̂[f ] , f ∈ S0

(
ĥk

)
[f ]

· (ûk)[f ] + n̂[f ] , f ∈ Sk, k ∈ K.
(5.2.15)

Thus, if the RASs Sk are known at the receiver, then (5.2.15) results in
the classical transmission model, where the unknown channel ĥk has to
be estimated to achieve coherent wireless communication. However, here
the receiver is ignorant about which resource belongs to which transmitter.
Moreover, it is unknown to the receiver which set of non-adjacent resources
belong to the same transmitter. Throughout this chapter we will mainly fo-
cus on the latter problem of allocation map retrieval, which will be discussed
in more detail in Section 5.4. Solving the latter problem will simplify the
former problem of identifying the corresponding transmitters, since having
a known set of resources belonging to the same transmitter, a transmitter
identification can be transmitted via these resources or may be retrieved via
other techniques like wireless channel fingerprinting [YVS15].

In the following two sections, we consider two transmission alphabets:
(i) a complex pilot alphabet to estimate CIRs as described in Section 3.6.1
and (ii) a complex alphabet with constant amplitude to estimate CACs as
described in Section 3.6.2.
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5.2.1 Channel Transfer Function Measurements

For the first transmit alphabet, we consider complex pilots. Thus, the pilot
symbols (ûk)[f ] are known at the receiver. For simplicity and without loss
of generality the transmit alphabet is set to

(ûk)[f ] :=

{
0 , else

1 , f ∈ Sk.
(5.2.16)

Thus, if a pilot is transmitted on a subcarrier of transmitter k, then the
corresponding transmit symbol is set to one, otherwise zero. Consequently,
we directly observe one element of the channel transfer functions of a certain
transmitter at the corresponding subcarrier. Since the resources are exclu-
sively assigned to each transmitter, the received frequency domain samples
in (5.2.15) using (3.6.10) and (5.2.16) simplify to

ŵ[f ] =

{
n̂[f ] , f ∈ S0

Φ[f,· ] · hk + n̂[f ] , f ∈ Sk, k ∈ K.
(5.2.17)

Thus, at each subcarrier index f the received frequency domain sample just
contains a single channel transfer function measurement from one transmit-
ter. Consequently, there exists no interference between different transmit-
ters in the frequency domain.

The channel transfer function ĥk is obtained from the channel impulse
response hk via the NDFT-point discrete Fourier transform matrix Φ. To
retrieve the CIR in CP based OFDM systems, the CIR has to be within
the CP length NCP, cf. (3.6.8). Thus, we can restrict hk ∈ CNCP+1. There-
fore, we have Φ = F[P,NCIR] being a NDFT-point DFT submatrix as defined
in (3.6.2), where |NCIR| = NCP + 1, cf. (3.6.9). In matrix notation the
channel transfer function is simply written

ĥk = Φ · hk , k ∈ K. (5.2.18)

An illustration of (5.2.17) without noise is given in Figure 5.2, where the
received signal vector ŵ ∈ C

|P| emerges by selecting exclusive frequency
components of each channel vector hk. In other words, there are no
overlapping frequency components of different channel vectors. Further-
more, Figure 5.2 visualizes the discrete Fourier transform given in (5.2.18).
Given Sk ∈ {0, 1}|P|×|P| and n̂ ∈ C|P|, the received frequency domain sig-
nal of (5.2.17) can be expressed in matrix notation as superposition of the
system of linear equations (3.3.4) with

ŵ = n̂ +
∑

k∈K

SkΦhk. (5.2.19)
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Figure 5.2: Each element of the received vector ŵ just contains the channel
transfer function measurement

(
ĥk

)
[f ]

of a single transmitter f .

Thus, different transmitter signals do not interfere in the frequency
domain.

5.2.2 Spectral Channel Power Measurements

The second transmit alphabet is a relaxed version of the first transmit al-
phabet, where constant amplitude symbols are permitted, yielding in a fur-
ther degree of freedom at the transmitter. Thus, the phase of the transmit
symbol can be arbitrarily chosen, cf. (3.6.21) of Section 3.6.2. Note that
the amplitude of the same transmitter has to be constant for all frequency
symbols in Sk, but the amplitudes between different transmitters can vary.
Furthermore, if the relative values of the amplitude symbols for each trans-
mitter are known at the receiver, then the amplitudes can also differ within
the same transmitter. However, to simplify the system model but without
loss of generality, we require the transmission symbols to be of constant
amplitude and scaled to

∣∣∣(ûk)[f ]

∣∣∣ :=

{
0 , else

1 , f ∈ Sk.
(5.2.20)

In contrast to the pilot transmission of the previous section, here the receiver
observes the superposition of all transmitted signals in the power spectrum.
Applying (3.6.22) and (3.6.25) on (5.2.20) we obtain the power spectrum
measurements

ẑ[f ] =
∣∣ŵ[f ]

∣∣2 =





∣∣n̂[f ]

∣∣2 , f ∈ S0

Φ[f,· ] · vk + ê[f ] , f ∈ Sk, k ∈ K.
(5.2.21)

There, the adversarial error

ê[f ] =
∣∣n̂[f ]

∣∣2 + û[f ]ĥ[f ]n̂
∗
[f ] + û

∗
[f ]ĥ

∗
[f ]n̂[f ]
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for f ∈ Sk is taken from (3.6.23), which is reduced to ê[f ] =
∣∣n̂[f ]

∣∣2 for

frequencies f ∈ S0, where
∣∣∣(ûk)[f ]

∣∣∣ = 0. Furthermore, as discussed in Sec-

tion 5.2.1, the CIR in CP based OFDM systems is restricted to hk ∈ CNCP+1.
Thus, we have the circular autocorrelation of the CIR (CAC) vk ∈ C

2NCP+1

with supp(v) ⊆ NCAC and |NCAC| = 2NCP + 1, cf. (3.6.29). Therefore, we
have Φ = F[P,NCAC] being a NDFT-point DFT submatrix as defined in (3.6.2).
The DFT of the CAC is given by (3.6.26)

v̂k = Φ · vk , k ∈ K. (5.2.22)

The observed power spectrum at the receiver at a certain subcarrier repre-
sents the noisy spectral channel power (SCP) of the wireless channel from
the corresponding transmitter. Thus, Given Sk ∈ {0, 1}|P|×|P| and ê ∈ C

|P|,
the received frequency domain signal (5.2.21) can be expressed as superpo-
sition of the system of linear equations (3.3.4) with

ẑ = ê +
∑

k∈K

SkΦvk. (5.2.23)

5.2.3 General Measurements

In the previous two sections, Section 5.2.1 and Section 5.2.2, we provided
the system model for channel transfer function and SCP measurements. To
enable the evaluation for both transmission models at once, we will combine
these two models to a more general system model.

We introduce a general system model based on the notation used for
linear systems in Section 3.3 to represent both transmit alphabets, complex
pilots (5.2.16) in Section 5.2.1 as well as constant amplitude symbols (5.2.20)
in Section 5.2.2, and distinguish between them if required. Thus, given an
error ê ∈ C|P|, measurement matrix Φ ∈ C|P|×M and an unknown x ∈
CM representing v ∈ CM=2NCP+1 or h ∈ CM=NCP+1, the measurements
of (5.2.17) and (5.2.21) are

ŷ[f ] =

{
ê[f ] , f ∈ S0

Φ[f,· ] · xk + ê[f ] , f ∈ Sk, k ∈ K.
(5.2.24)

Given Sk ∈ {0, 1}|P|×|P|, in matrix notation of (5.2.19) and (5.2.23) we ob-
tain

ŷ = ê +
∑

k∈K

SkΦxk. (5.2.25)

Thus, we have a received vector constructed as exemplary depicted in Fig-
ure 5.3. Since the resources are exclusively assigned, the received vector
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Figure 5.3: Example of transmission model in (5.2.25) with two transmitters,
k = 1 and k = 2, with unknown exclusive RAMs Sk and unknown
sparse vectors xk. Allocation map retrieval shall retrieve the un-
known RAMs Sk.

just contains a single transmitter signal at each element. Consequently, we
have a received signal of overlapping transmitters in time domain, but not
in frequency domain.

The receiver is ignorant about the resource allocation map (RAM) Sk =
diag(sk), sk ∈ {0, 1}|P|, cf. (5.2.8), and the sparse vector xk ∈ C

M for
all transmitters k ∈ K. Note that the transmission model in (5.2.25) also
permits the use of physical resource blocks (PRBs). In particular, while
the set T of PRBs is known at the receiver, the set S′

k of allocated PRBs
of transmitter k is unknown. Therefore, we can obtain Sk from S′

k and T

via (5.2.7).
Given the overall RAM S ∈ {0, 1}|P|×|P|(|K|+1) defined

in (5.2.9), the stacked vector x ∈ CM(|K|+1), and the block ma-
trix ΦB ∈ C

|P|(|K|+1)×M(|K|+1), we can formulate the transmission model
of (5.2.25) in mere matrix notation

ŷ = SΦBx + ê, (5.2.26)

where x :=
[
x
⊺
0 · · · x

⊺
|K|

]⊺
,

S :=
[
diag(s0) . . . diag

(
s|K|

)]
,

ΦB := I|K|+1 ⊗Φ.

An illustration of the model in (5.2.26) is given in Figure 5.4, where we
observe |K| = 2 transmitters and the set of unassigned resources. Note,
that the allocation vector s0 contains the unallocated resource, as defined
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Figure 5.4: Example of transmission model in (5.2.26) with |K| = 2 transmitters
and the RAM S0 containing the unassigned resources.

(a) Φ
(0) = SΦB (b) f

(
Φ

(0)
)

= f(S)Φ with use of (5.2.28).

Figure 5.5: Illustration of linear transformation matrix Φ
(0) and f

(
Φ

(0)
)

as well
as its decomposition.

in (5.2.2). Thus, we can simply set the corresponding vector x0 = 0. There-
fore, we have an overall RAM S with full rank. The unknown vector x

is just the stacked vector of all xk. And finally, the Kronecker product ⊗
of the (|K| + 1) × (|K| + 1)3 identity matrix I|K|+1 with the measurement
matrix Φ ∈ C

|P|×M results in a block matrix ΦB.
With slight abuse of notation, we define the actual transformation matrix

by Φ
(0) = SΦB, see example in Figure 5.5a for |K| = 2. Obviously, the size

of the transformation matrix Φ
(0) ∈ C|P|×M(|K|+1) is significantly smaller

than its matrix factors S and ΦB. Even though the block matrix ΦB

is constructed via the Kronecker product of I|K|+1 and Φ, it can become
computational demanding due to its quickly growing size. To reduce the

3Matrix with |K| + 1 rows and columns.

https://en.wikipedia.org/wiki/Kronecker_product


5.3 Combinatorial Complexity 137

size of the block matrix ΦB, we can reformulate (5.2.26) as

ŷ = f(f(S)Φ)x + ê, (5.2.27)

where f(·) is a reshaping function

f(A) =
[
(A0)⊺ · · · (AN )⊺

]⊺
. (5.2.28)

Thus, we have f
(
Φ

(0)
)

= f(S)Φ, see example in Figure 5.5b for |K| = 2.

Thereby, the complexity is similar to the transmission model in (5.2.25).
The receiver is now faced with the task of allocation map retrieval (AMR),

where multiple hypotheses, each describing a different transmitter, have to
be distinguished. Thus, since xk and Sk are unknown for all transmitters k,
AMR has to jointly estimate the stacked vector x and the overall RAM S.
Before we elaborate our AMR problem in more detail in Section 5.4, we will
take a brief excursion on combinatorial sets and the resulting problems in
the subsequent Section 5.3, which will give some insights on the complexity
of the AMR problem.

5.3 Combinatorial Complexity

Now we take a brief digression on some combinatorial sets and problems
related to it. The focus of this Section will be on Bell sets and Stirling sets
of the second kind, which are set of sets resulting from partitioning a set.
These sets of sets are of particular importance in resource allocation, where
exclusive resources are allocated by multiple transmitters from a single set
of available resources, as given in (5.2.1) of Section 5.2. Therefore, these
sets of sets are also of particular importance for AMR, so that we can asses
the combinatorial problem size we are dealing with.

Since combinatorial problems evolve often in resource allocation, they are
also relevant in the context of dynamic spectrum access, and in particular
AMR. Many combinatorial problems are NP-hard [NW10] and thus, require
exponential time to be solved. However, a variety of combinatorial problems
can be solved suboptimal or in polynomial time considering additional in-
formation.

To grasp a feeling of the complexity of the considered problems in the
subsequent Section 5.4, we give some numbers for different problem sizes.
In particular, we want to assess the problem size of AMR, if the receiver
has to traverse all possible resource allocations of (5.2.5), where a set B of
resource allocation sets of a set A represents a partition of a set A. Given
a set A containing e.g. single elements like indices/numbers, a set B of sets
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is the partition of a set A consisting of a collection of subsets of A. Thus, a
partition of a set A can be described by

B := {B0, . . . ,Bn, . . . ,BN−1}, Bn 6= ∅, (5.3.1)

where Bn ⊆ A,
⋃

n

Bn = A, Bn ∩ Bm = ∅, ∀n 6= m.

The cardinality |A| of the set A as well as the cardinality |B| of a set B of
sets denotes the number of elements of A and the number of sets within B,
respectively. Our main interest lies in three different problem sizes, which
are represented by (i) the Bell number NBell [Bru09, Chapter 8.2], (ii) the
Stirling number of the second kind NStirling [Bru09, Chapter 8.2] and (iii) the
number of all possible equal partition sets Neps. The size of the three
problems are related by Neps ≤ NStirling ≤ NBell. In fact, the equal partition
set captured by Neps (iii) is a subset of the Stirling set of the second kind
captured by NStirling (ii), which is again a subset of the partition of a set,
also referred to as Bell set, captured by NBell (i). For comparison, we
will also state the size of common combinatorial problems: the number
of permutations of a set A calculated by the factorial |A|! as well as the
cardinality |P(A)| = 2|A| of the power set P(A), where e.g. the power set
of P({1, 2, 3}) is given by {∅, {1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}}.

The Bell number NBell [Bru09, Chapter 8.2] captures the prob-
lem size of partitioning a set A into indistinguishable, nonempty sub-
sets as constructed in (5.3.1). Therefore, it describes the number of
all possible sets of resource allocation sets S in (5.2.5) for unknown
number of transmitters |K|. For more intuitive relation to the Bell
number, we will also refer to a partition B of a set A as a Bell
set B of A. For example, all bell sets of A = {1, 2, 3} are given
by {{1}, {2}, {3}}, {{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}}, {{1, 2, 3}}.
Note, that |B| ≤ |A| and therefore, the number of sets within the set of
sets B cannot exceed the number of elements within a set A, since empty
sets are not permitted in B. The Bell number NBell(M) [Bru09, Chapter 8.2]
of A with |A| = M is recursively calculated by

NBell(|A|) =
|A|−1∑

n=0

(|A| − 1

n

)
· NBell(n) (5.3.2)

=
|A|−1∑

n=0

(|A| − 1)!

n! · (|A| − 1 − n)!
· NBell(n),

NBell(0) = 1.

https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Bell_number
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The Stirling number of the second kind, also known as Stirling partition
number NStirling [Bru09, Chapter 8.2], describes the number of possible
partitions of a set A containing only a fixed number of nonempty subsets.
Thus, we introduce a Stirling set of the second kind B of A as a Bell set
with fixed |B| = N . A Stirling set of the second kind is described by

B := {B0, . . . ,Bn, . . . ,BN−1}, Bn 6= ∅, |B| = N ∈ N, (5.3.3)

where Bn ⊆ A,
⋃

n

Bn = A, Bn ∩ Bm = ∅, ∀n 6= m,

which extends the Bell set given in (5.3.1) by the additional con-
straint |B| = N ∈ N to fix the cardinality of B. For example, all Stir-
ling sets of the second kind with |B| = 2 of A = {1, 2, 3} are given
by {{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}}. Consequently, the set of all
possible Stirling sets of the second kind in (5.3.3) is a subset of the set of all
possible partitions of a set A in (5.3.1). Given (5.3.3), the Stirling number
of the second kind NStirling(M, N) counts all possible Stirling sets of the
second kind B with |B| = N of A with |A| = M and is calculated by

NStirling(|A| , |B|) =
1

|B|! ·
|B|∑

n=0

(−1)(|B|−n)

(|B|
n

)
· n|A| (5.3.4)

=





|B| · NStirling(|A| − 1, |B|)
+ NStirling(|A| − 1, |B| − 1) , |A| > |B| , |B| 6= 0

1 , |A| = |B|

0 , else.

Therefore, the Stirling number of the second kind describes the number of
all possible sets of resource allocation sets S in (5.2.5) for a given number of
transmitters |K| = |B|. Furthermore, the summation of all Stirling numbers
of the second kind results in the Bell number of set A

NBell(|A|) =
|A|∑

n=0

NStirling(|A| , n). (5.3.5)

Therefore, a set captured by the Stirling number of the second kind is a
subset of the set captured by the Bell number.

Furthermore, we introduce an equal partition set as a partition of a set A
consisting only of a set B of sets with equal cardinality. Thus, an equal

https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
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Figure 5.6: Increasing problem size over set size |A| for different combinatorial
sets.

partition set is constructed as stated in (5.3.3), but additional forces the
subsets of B to be of same cardinality

B := {B0, . . . ,Bn, . . . ,BN−1}, Bn 6= ∅, (5.3.6)

where Bn ⊆ A, |B| = N ∈ N, |Bn| =
|A|
|B| ∈ N,

⋃

n

Bn = A, Bn ∩ Bm = ∅, ∀n 6= m.

For example, all equal partition sets with |B| = 2 of A = {1, 2, 3, 4} are
given by {{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}. Thus, an equal
partition set is only defined for sets A and B, where |A| is the integer multiple
of |B|. Consequently, the set of all possible equal partition sets in (5.3.6) is
a subset of the set of all possible Stirling sets of the second kind in (5.3.3).
The number Neps(M, N) of all possible equal partition sets B with |B| = N
of set A with |A| = M is calculated by

Neps(|A| , |B|) =
1

|B|! ·
|B|∏

n=1

(n·|A|
|B|
|A|
|B|

)
(5.3.7)

=
1

|B|! ·
|B|∏

n=1

(
n·|A|
|B|

)
!

(
|A|
|B|

)
! ·
(

(n−1)·|A|
|B|

)
!
,

where
|A|
|B| ∈ N.
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|A| 4 8 16

|A|! 24 40’320 ≈ 2 · 1013

|P(A)| 16 256 65’536

NBell (|A|) 15 4’140 ≈ 1010

NStirling(|A| , |B|) 7 1 127 1’701 32’767 ≈ 2 · 108

Neps(|A| , |B|) 3 1 35 105 6’435 ≈ 3 · 106

|B| 2 4 2 4 2 4

Table 5.1: Problem size for selected cardinalities of |A| and |B|.

For selected cardinalities of A and B (i) the Bell number NBell, (ii) the Stir-
ling number of the second kind NStirling and (iii) the number of all possible
equal partition sets Neps are presented in Table 5.1. In addition, the cardi-
nality of the power set |P(A)| as well as the number of permutations |A|!
are shown. Already at |A| = 16 the Bell number indicates that it is im-
practical to solve a combinatorial problem on a Bell set. Furthermore, for
|A| = 16 and |B| = 4 the Stirling number of the second kind as well as Neps

indicate an impractical combinatorial problem as well. However, for |B| = 2
and for smaller sets A a combinatorial problem may be still practical, at
least for simulations. In addition to Table 5.1, we plotted the combinatorial
problem size over set size |A| in Figure 5.6 for the considered combinatorial
problems.

In summary, we have two relevant problem classes, represented by the Bell
set and the Stirling set of the second kind. The Bell set addresses allocation
problems, where the number of sets within the set of sets is unknown. The
Bell set corresponds to problems, where the receiver does not know the
number of active transmitters. If the number of active transmitters is known,
then the allocation problem is described by the Stirling set of the second
kind, where the number of sets within the set of sets is given.

5.4 Problem Analysis

In this Section we will elaborate our allocation map retrieval problem for
our transmission model in (5.2.25) in more detail. First, we will formulate
our allocation map retrieval problem, where the receiver is ignorant of the
set S of resource allocation sets (RASs) and the transmission channel h.
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Then, in Section 5.4.1 we will introduce the problem of unlabeled sensing
formulated by Unnikrishnan et al. [UHV15a] and show that a part of our al-
location map retrieval problem, i.e. unlabeled selection sensing with only a
single transmitter, is a subproblem of the unlabeled sensing problem. In Sec-
tion 5.4.2, we will discuss further related subproblems of unlabeled sensing
and conclude in Section 5.4.3 with our subproblem of unlabeled selection
sensing. Afterwards in Section 5.4.4, the extension of the unlabeled selec-
tion sensing problem to multiple transmitters is discussed, which represents
our allocation map retrieval problem.

Given a fragmented spectrum band as depicted in Figure 5.1, where dis-
tinct RASs Sk are associated to a vector xk of transmitter k, see our trans-
mission model in (5.2.25), a spectrum observer or a receiver can carry out
the following three different tasks:

1. identify unused fraction of spectrum,

2. identify the resource allocation map of each transmitter, or

3. perform channel estimation and obtain the transmitted data.

While the first task is addressed with classical spectrum sensing [YA09], the
latter two tasks require more complex approaches. In particular, the first
task wants to estimate S0. Assuming frequency-selective channels, even the
first task requires additional channel estimation, so that a fading hole is
not mistaken as an unoccupied region as discussed in Chapter 4 as well
as [WPJ13; WJW+16b]. Gray space detection in Chapter 4 jointly esti-
mates S0 and xk = ẑk for |K| = 1, cf. Section 4.3.

The second task is more demanding and, besides spectrum sensing capa-
bilities, requires a further approach to distinguish the spectrum allocated by
different transmitters. Edge-detection identifies the borders of an occupied
spectrum band by exploiting edges within a flat channel spectrum [TG06;
EO15]. Therefore, it goes a step beyond classical spectrum sensing, which is
just indicating whether a selected spectrum band is occupied or not. How-
ever, edge-detection assumes a flat wireless channel, so that the SCP has con-
stant amplitude. Furthermore, edge-detection only indicates the change of
spectrum use like the switch between different transmitters. Consequently,
edge-detection cannot identify non-adjacent fragmented spectrum belong-
ing to the same transmitter. Therefore, other methods have to be applied
to identify spectrum belonging to the same transmitter. In general, a joint
estimation process has to be performed to recover the set S of RASs in the
second task, such that S := {S0, . . . , SK} and xk for all transmitters k ∈ K

are jointly estimated.
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The third task is partially addressed in the field of multi-user detec-
tion [ZG11; BSD13]. The activity and data of multiple devices are jointly
detected. Most applications address sensor devices in the emerging market
of Internet-of-Things. Nevertheless, current multi-user detection schemes
are not applied in fragmented spectrum and therefore does not deal with
task two. In general, to recover the transmitted data, joint estimation
of S := {S0, . . . , SK} and xk for all transmitters k ∈ K like in task two has
to be performed.

Consequently, we focus here on the underlying joint estimation problem
invoked by task two and three, where we want to jointly recover the RAS Sk

and the sparse unknown xk of all transmitters k ∈ K in (5.2.25). The
allocation map retrieval (AMR) problem can be written

find all Sk ∈ {0, 1}|P|×|P|,xk ∈ Σsk
,

s.t.

∥∥∥∥∥∥
ŷ −

|K|∑

k=1

SkΦxk

∥∥∥∥∥∥

2

2

≤ ρ,

|K|∑

k=0

Sk = I, (5.4.1)

where Σsk
represents the union of sk-dimensional subspaces as defined

in (3.2.2).
In the next subsections we will take a closer look on the AMR problem.

Therefore, we will at first consider (5.4.1) with |K| = 1, which we will
refer to as unlabeled selection sensing. There we will present the strongly
related problem of unlabeled sensing by Unnikrishnan et al. [UHV15a] and
elaborate the similarities between unlabeled selection sensing and unlabeled
sensing. Furthermore, we will show that the findings on unlabeled sensing
also hold for unlabeled selection sensing. Afterwards, in Section 5.4.4 we
will consider (5.4.1) with |K| > 1, i.e. our original AMR problem.

5.4.1 Unlabeled Sensing

Subsequently, we will introduce unlabeled sensing depicted in Figure 5.7
and its subproblems as well as related problems. In this Section, we slightly
abuse the notation for ŷ and ê by describing not only the Fourier transform,
but also other transforms depending on the used measurement matrix Φ.
The transformation applied will be obvious from the context.

The aim of this Section is twofold: (i) we want to provide an overview
of related problems to our unlabeled selection sensing problem representing
the special case of our AMR problem with |K| = 1, and (ii) want to show
that the findings on unlabeled sensing in [UHV15a] also hold for unlabeled
selection sensing.
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Figure 5.7: Unlabeled sensing with random linear measurements ŷ, where the
composite matrix AS1B and the vector x1 are unknown [UHV15a].

Before we go into more details on unlabeled sensing, we shortly detour to
the related approach of dictionary learning

ŷ = Φ
′x1 + ê, (5.4.2)

where an observation matrix Φ
′ ∈ CN×M represents an unknown overcom-

plete dictionary, such that N = rank
(
Φ

′) < M . Furthermore, x1 ∈ CM is
an unknown sparse vector and the measurement ŷ is disturbed by noise ê.
Dictionary learning now aims to find a fixed Φ

′, so that as many measure-
ments ŷ as possible have a sparse representation x1. Various approaches like
sparse Bayesian learning [WR04] can be applied to solve dictionary learn-
ing problems. However, note that in general solving the dictionary learning
problem is NP-hard [Til15]. Furthermore, given just a single measurement,
dictionary learning is not feasible in general.

In contrast to dictionary learning, unlabeled sensing is generally feasible
for single measurements ŷ, because unlabeled sensing just recovers a sparse
linear transformation AS1B of a known matrix Φ as depicted in Figure 5.7.
In addition, unlabeled sensing is generally also feasible for dense unknown
vectors x1. Thus, unlabeled sensing jointly recovers a partially known ob-
servation matrix Φ

′ = AS1BΦ and x1 from a measurement

ŷ = Φ
′x1 + ê

= AS1BΦx1 + ê, (5.4.3)

where the measurement matrix Φ is known, but not the sparse linear trans-
formation AS1B. Hence, the observation matrix Φ

′ ∈ CN×M can be de-
composed in an unknown composite matrix (AS1B) ∈ {0, 1}N×L and a
known measurement matrix Φ ∈ CL×M . One example of unlabeled sensing
without the adversarial error is visualized in Figure 5.7, where certain rows
of the measurement matrix Φ are selected by the rectangular composite
matrix AS1B.

https://en.wikipedia.org/wiki/Sparse_dictionary_learning
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Figure 5.8: Construction of the composite matrix AS1B from puncturing ma-
trix A, selection matrix S1 and permutation matrix B.

The unknown binary composite matrix AS1B can be further decomposed
into three components: a rectangular puncturing matrix A ∈ {0, 1}N×L, a
square selection matrix S1 ∈ {0, 1}L×L, and a permutation matrix B ∈
{0, 1}L×L. The composite matrix AS1B as well as each matrix for it-
self have only binary elements, and therefore the elements are not repre-
senting a convex set. Thus, in general, there exists no efficient straight-
forward algorithm to recover the binary matrices. Note that Unnikrish-
nan et al. [UHV15a] defined unlabeled sensing only by ŷ = ABΦx1 + ê,
where Φ consists of random i.i.d. elements.

An illustration of the construction of the composite matrix AS1B is given
in Figure 5.8. While a puncturing matrix A can be constructed from the
identity matrix I by omitting certain rows, the selection matrix has the
form of our binary resource allocation map defined in (5.2.8), constructed
by S1 = diag(s1) with s1 ∈ {0, 1}L. Consequently, the puncturing matrix
removes certain elements and the selection matrix sets certain elements to
zero. While the number of non-zero entries of the puncturing matrix equals
the number of rows of A, the number of rows of S1 just gives an upper
limit for the number of non-zero entries of the selection matrix. In contrast
to both, A and S1, the binary permutation matrix B is only restricted by
containing just a single non-zero entry in each row and column. Hence, just
the order of the elements is lost, but not the contained information.

Unlabeled sensing comprises the problem of recovering an unknown vec-
tor x1 and all three linear transformations as a single composite ma-
trix AS1B. There, A cuts out some rows of Φ and S1 sets some rows
of Φ to zero. Thus, not all rows of Φ are used to generate the measure-
ment ŷ from the unknown x1. Consequently, each row and each column
of the rectangular composite matrix AS1B contain only zeros or just a
single 1. For illustration of the effect of unlabeled sensing on measurement
matrix Φ, Figure 5.9 visualizes puncturing, selection and permutation on a
discrete Fourier transform matrix.

https://en.wikipedia.org/wiki/Permutation_matrix
https://en.wikipedia.org/wiki/Identity_matrix
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Figure 5.9: Unlabeled sensing with random Fourier measurements.

In [UHV15a; UHV15b] Unnikrishnan et al. analyzed the unlabeled sens-
ing problem of recovering x1 from a measurement

ŷ
′ = A · B · Φ · x1 + ê, (5.4.4)

where the composite matrix AB is unknown. The model of Unnikrishnan
et al. in (5.4.4) is similar to the formulated model in (5.4.3), but with S1 = I.
In principle, Unnikrishnan et al. [UHV15a, Theorem II.1] investigated the
recovery of a vector x1 from random linear observation ŷ

′ and derived con-
ditions, when successful recovery is possible for the noiseless case ê = 0. In
particular, given the real-valued case and a measurement matrix Φ ∈ RL×M

with i.i.d. random variables, then for measurement ŷ′ ∈ RN ′

with N ′ ≥ 2M
and probability one, a unique x1 ∈ RM exists solving (5.4.4).

The statement of Unnikrishnan et al. for the noiseless case ê = 0

in [UHV15a, Theorem II.1] can be extended to hold for (5.4.3) as well,
which we will proof in the following. Given [UHV15a, Theorem II.1]
with ŷ

′ = ABΦx1 and a predefined constant c, the probability of having
a measurement with precisely ŷ

′
[f ] = c is zero. Thus, having a measure-

ment with precisely ŷ′
[f ] = 0 is zero as well. Consequently, given now the

noiseless model ŷ = AS1BΦx1 in (5.4.3), we have ŷ[f ] = 0 if and only if
the respective row of S1 is zero. Note, that rows of S1 are punctured by A,
whereby also rows with zeros may be removed. Therefore, given the joined
matrix A′ = AS1, we can write

ŷ
′
[supp(ŷ)] = A′

[supp(ŷ),·] · B · Φ · x1, (5.4.5)

with A′
[supp(ŷ),·] being a puncturing matrix, where the zero rows of A′ are

removed. Thus, since (5.4.5) is equal to the formulation of Unnikrishnan
et al. in (5.4.4), we proved recovery also for using a selection matrix in the
noiseless setting. In particular, for measurement ŷ ∈ RN with |supp(ŷ)| ≥
2M and probability one, a unique x1 ∈ RM exists solving (5.4.3) with ê = 0.

In addition, Unnikrishnan et al. [UHV15a, Proposition VI.1] analyzes the
stability of the solution in the noisy case. However, the paper presents no
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practical algorithm to solve the unlabeled sensing problem in (5.4.3).

5.4.2 Related Subproblems

As indicated by the decomposition of matrix AS1B into three matrices
in (5.4.3) and Figure 5.8, unlabeled sensing can be subdivided in three
subproblems. We refer to these subproblems as:

1. unlabeled ordered sensing with A,

2. unlabeled selection sensing with S1, and

3. unlabeled permutation sensing with B.

In general, a structured matrix and a dense unknown vector x1 shall be
jointly recovered in all three subproblems. Various publications are address-
ing one of these subproblems, but usually induce further structure on the
unknown vector. Subsequently, we will discuss some recent results.

An application of unlabeled permutation sensing (subproblem 3) in a
sparse setting has been already described in 2014 by Emiya et al. [EBD+14],
where unknown sensor permutations and sparse x1 are jointly recovered

ŷ = BΦx1 + ê. (5.4.6)

The entries of the measurement matrix Φ are i.i.d. drawn from the normal
distribution. Since we have a permutation problem, the inverse of the square
permutation matrix B exists, which is exploited by Emiya et al. [EBD+14].
Nevertheless, [Til15] proves that the pure sensor permutation problem is
still computational intractable.

Besides a relaxed condition on x1 permitting dense vectors, the unla-
beled permutation sensing problem of [PWC16] is the same as in [EBD+14].
In [PWC16], Pananjady et al. focused merely on the recovery of the per-
mutation matrix from noisy measurements and provides SNR conditions
for exact permutation recovery. Moreover, they analyze approximate per-
mutation recovery, where the permutation matrix is recovered with some
distortions. The distortion is measured by the Hamming distance between
the approximation and the correct permutation. The approximate permuta-
tion recovery is linked to the SNR conditions by obtaining the probability of
certain distortion. Publication [PWC17] extends [PWC16] for multivariate
linear regression with shuffled data and noise.

Recently, various algorithms solving unlabeled permutation sensing were
published. An algorithm based on lattice basis reduction has been proposed
by Hsu et al. [HSS17] and Abid et al. [APZ17], presenting an approach
based on least squares and moments. Furthermore, Wang et al. [WZB+17]

https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Moment_(mathematics)
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analyzed unlabeled permutation sensing for binary quantized observations ŷ
and proposed an algorithm to recover the sparse vector x1. Most recently,
Prasad published an approach to jointly recover the permutation matrix
and a sparse vector [Pra18]. There, Prasad uses dictionary learning via
sparse Bayesian learning [WR04].

To model jitter [Bal62], Haghighatshoar et al. study the unlabeled or-
dered sensing problem (subproblem 1) [HC18]

ŷ = AΦx1 + ê. (5.4.7)

Instead of a permutation matrix B, unlabeled ordered sensing applies a
puncturing matrix A ∈ {0, 1}N×L. In general, a puncturing matrix is more
structured than a permutation matrix, cf. Figure 5.8. However, in contrast
to a permutation matrix the inverse of a puncturing matrix does not exist
in general. Nevertheless, a puncturing matrix preserves the order of the
measurement matrix Φ and has full rank with rank(A) = min[N, L].

In [HC18], Haghighatshoar et al. present the duality between compressed
sensing and unlabeled ordered sensing. Furthermore, they derive an alter-
nating minimization algorithm to solve the problem of unlabeled ordered
sensing. Although AMR (5.2.25) operates with a selection matrix S1, the
puncturing matrix A of unlabeled ordered sensing and the selection matrix
have some similarities. Both matrices, A and S1, preserve the order of the
measurement matrix Φ. The difference is merely that the puncturing ma-
trix A removes certain rows of Φ, and the selection matrix S1 sets certain
rows of Φ to zero.

5.4.3 Unlabeled Selection Sensing

Our AMR problem for |K| = 1 represents unlabeled selection sensing (sub-
problem 2), but with x1 being sparse

ŷ = S1Φx1 + ê. (5.4.8)

The problem of recovering the selection matrix S1 and sparse x1 for |K| = 1
is already addressed by gray space detection in Chapter 4. Note, that in con-
trast to subproblems 1 and 3 with puncturing and permutation matrix, the
selection matrix is rank deficient because some rows are zero. Nevertheless,
the problem (5.4.8) can be reformulated, such that an unknown selection
matrix S′

1 has full rank. Therefore, we apply the Kronecker product ⊗ on

https://en.wikipedia.org/wiki/Bayesian_inference
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the selection matrix and the measurement matrix, obtaining

ŷ = S′
1Φ

′x1 + ê, (5.4.9)

where S′
1 =

(
S1 ⊗

[
1 0

])
+
(

(I − S1) ⊗
[
0 1

])
,

and Φ
′ = Φ ⊗

[
1 0

]⊺
.

Consequently, the modified unknown selection matrix S′
1 ∈ CL×2L is now

a full rank rectangular matrix. The known measurement matrix Φ is
replaced by a rank deficient but still known modified measurement ma-
trix Φ

′ ∈ C2L×M . Therefore, the unlabeled selection sensing problem
in (5.4.9) may be solved similar as in [HC18] via an alternating minimization
algorithm.

In summary, our problem of interest represents unlabeled selection sens-
ing, but with sparse x1. Since unlabeled selection sensing is a subproblem
of unlabeled sensing, joint recovery is also possible if no structure is induced
on x1. However, as we will discuss in Section 5.5, the sparse structure of x is
mandatory for the complete AMR problem with |K| > 1. Furthermore, even
for |K| = 1, our AMR problem in (5.2.25) differs from the other two sub-
problems of unlabeled sensing in the presented publications. Briefly, while
unlabeled selection sensing seems more tractable than unlabeled permuta-
tion sensing due to fewer combinatorial solutions, the inverse of a selection
matrix does not exist. Furthermore, in contrast to both, permutation ma-
trix as well as puncturing matrix, a selection matrix S1 ∈ {0, 1}L×L is rank
deficient, i.e. rank(S1) < L. The selection matrix can be converted to a full
rank matrix, leaving the measurement matrix to be rank deficient. There-
fore, the published algorithms are not fully compatible to our AMR problem
with |K| = 1.

5.4.4 Problem of Multiple Selections

Now we shift our focus from unlabeled selection sensing to the complete
AMR model in (5.2.26). We encounter multiple sparse unlabeled selection
sensing problems as depicted for the case of |K| = 2 in Figure 5.3. In
contrast to |K| = 1, the support of sk = diag(Sk) for all k ∈ K cannot
be obtained as in gray space detection of Chapter 4, since more than two
hypotheses are present.

In general, to identify the correct resource allocation map S, we are faced
with two problems:

1. How many transmitters are active?
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2. How are the resources distributed among these transmitters?

In other words, the former problem tells us, how many resource allocation
sets (RASs) Sk, k ∈ K are present and the latter problem tells us, whether a
resource belongs to one or another transmitter. Both problems can be linked
to one combinatorial problem discussed in Section 5.3. In particular, the
first problem and the second problem are reflected by finding the correct set
within all Bell sets of P given in (5.3.1) and all Stirling sets of the second kind
of P given in (5.3.3), respectively. More precisely, while in the first problem
the number of users |K| is unknown, the number of users |K| = c is fixed in
the second problem. Therefore, while in the second problem, each resource
has to be assigned to a fixed number |K| of RASs, in the first problem,
the number of RASs is not fixed and therefore each resource can also be
assigned to a new RAS Sk. Consequently regarding these combinatorial
sets, the second problem is a subproblem of the first problem. In summary,
we have the following two problems:

1. problem: number of active transmitters is unknown and we find the
correct set within all Bell sets of P, as well as

2. problem: number of active transmitters is known and we find the
correct set within all Stirling sets of the second kind of P.

In the subsequent Section 5.5, we will derive the objective function, which
shall identify the correct set among all possible sets.

5.5 Objective Function

In Section 5.4, we analyzed the structure of the AMR problem and stated
two problem classes: (i) the set of all Bell sets of P, and (ii) the set of all
Stirling sets of the second kind of P. To actually solve the AMR problem
in (5.4.1), we first have to find a suitable objective function. Therefore, we
will start by discussing (piecewise) continuous functions and the ℓ1-norm
of its Fourier transforms. Based on this discussion, we turn to the discrete
setting in Section 5.5.1 and analyze the ℓ0-pseudonorm of sparse vectors,
where its corresponding discrete Fourier transforms is altered, i.e. arbi-
trary elements are exchange by continuous random variables. Furthermore,
in Section 5.5.2 we analyze the impact on the ℓ0-pseudonorm, when the
corresponding discrete Fourier transform of two sparse vectors are mixed.
Based on these findings, we will propose the objective function for AMR
in Section 5.5.3.

The aim of AMR is to identify all non-adjacent resources belonging to a
single transmitter by just observing the received vector ŷ of (5.2.26). There-
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fore, we follow the subsequent consideration. In the continuous setting, a
piecewise differentiable function is continuous, if and only if the (inverse)
Fourier transform is absolutely summable [Eng08]. In other words, the
ℓ1-norm is bounded. Even though for discrete functions the continuity
property cannot be applied, we can introduce the term edge to indicate
a strong deviation from one sample to another. In image processing, edge
detection is a common utility to detect strong deviations between two pixels.
Furthermore, Engelberg [Eng08] applied edge detection via discrete Hilbert
transform on discrete data sets. There, observing an edge in a Fourier do-
main signal for sample size approaching infinity, the ℓ1-norm of the time
domain signal approaches infinity. Thus, for two transmitters as depicted
in Figure 5.1, edges are generally present in the transition from one trans-
mitter spectrum to another. Consequently, the ℓ1-norm might be a good
measure to indicate, whether a measurement sample belongs to a specific
transmitter, or not. In particular this is the case, if the time domain signals
are sparse.

Subsequently, we will elaborate the above considerations for the discrete
Fourier transform. Given an N -point DFT matrix Φ, an s-sparse vector x1,
and the corresponding DFT obtained by x̂1 = Φx1, we will proof that
exchanging an arbitrary index of x̂1 by a random variable taken from an ab-
solutely continuous probability distribution will increase the ℓ0-pseudonorm
of the corresponding time domain vector, see (5.5.5). In addition, given the
sparse vectors x1,x2, we will show that a mix up of vectors in the frequency
domain will at least result at the same ℓ0-pseudonorm, see (5.5.8).

5.5.1 Exchange of Arbitrary Element

Given an N -point DFT matrix Φ and an s-sparse vector x1, the correspond-
ing DFT is obtained by x̂1 = Φx1. However, only supp(x1) of the s-sparse
vector x1 is relevant for construction of x̂1. Vice versa, the IDFT of x̂1

will only have (x1)[t] 6= 0 at indices t ∈ supp(x1). All residual indices will
cancel each other out since (x1)[t] = 0, ∀t /∈ supp(x1).

Given two vectors a1,a2 ∈ CN , where entries of a2 or of its corresponding
DFT â2 are independent random variables taken from absolutely continuous
probability distributions, then with probability one we have

(a1)[t] 6= (a2)[t] ∀t ∈ supp(a2) , and (5.5.1)

(â1)[f ] 6= (â2)[f ] ∀f ∈ supp(â2) . (5.5.2)

Thus, exchanging an arbitrary index f of x̂1 by a continuous random vari-
able, then with probability one we have (x̂1)[f ] 6=

(
x̂

′
1

)
[f ]

at the exchanged

https://en.wikipedia.org/wiki/Piecewise
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Edge_detection
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frequency index f . We denote the frequency vector with the exchanged
element by x̂

′
1. Thus, we obtain a 1-sparse vector b̂ = x̂

′
1 − x̂1. Given

the N -point DFT matrix Φ and a vector a, the multiplicative uncertainty
principle in [BLM17, Theorem 1] states that

‖a‖0 ≥ N

‖Φa‖0

∀a ∈ C
N \ 0. (5.5.3)

Thus, given a frequency domain vector b̂ = Φb with ‖Φb‖0 = 1, we ob-
tain the corresponding time domain vector b with only non-zero entries,
i.e. ‖b‖0 = N .

Now, we want to obtain the lower limit of ‖x′
1‖0 for x′

1 = x1 + b. Given
two vectors a1,a2 ∈ CN , where the entries of â2 are continuous independent
random variables, then because of (5.5.1) the elements of a1,a2 are not
canceling each other out. Thus, the lower limit is given by

max (‖a1‖0 , ‖a2‖0) ≤ ‖a1 + a2‖0 . (5.5.4)

There, the lower limit is achieved if the non-zero entries of both vectors are
fully overlapping.

Consequently, given ‖Φb‖0 = 1, we obtain ‖b‖0 = N from (5.5.3).
Thus, given x′

1 = x1 + b with x1 ∈ CN being s-sparse and the one
non-zero entry of b̂ ∈ CN being a continuous random variable, we
obtain ‖x′

1‖0 = ‖x1 + b‖0 ≥ max (‖x1‖0 , ‖b‖0) = ‖b‖0 = N from (5.5.4),
i.e. ‖x′

1‖0 = N . Consequently, given the s-sparse vector x1 ∈ C
N with

s < N , exchanging an arbitrary index f of x̂1 by a random variable taken
from an absolutely continuous probability distribution, will result with prob-
ability one in

‖x1‖0 < ‖x′
1‖0 . (5.5.5)

Interestingly, the multiplicative uncertainty principle in (5.5.3) also offers
insight on sparsity when more than one element are exchanged. Given a time
vector x1 ∈ C

N and 1-sparse frequency vectors b̂m ∈ C
N , where each non-

zero entry is a continuous independent random variable, then from (5.5.4)
with probability one we have

∥∥∥∥∥x1 +
M∑

m=1

b̂m

∥∥∥∥∥
0

= N , ∀M > 0. (5.5.6)

Thus, the resulting time domain vector will be completely filled, i.e. the
ℓ0-pseudonorm is N , independently of how many continuous independent
random 1-sparse frequency vectors are added.
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5.5.2 Mixing of Sparse Signals

Let us now consider a simple AMR setting, where a mix of two transmit-
ters is received. Thus, given two sparse vectors x1,x2 with continuous
independent random variables and two RAMs S1,S2 = I − S1 obtained
by diag(Sk) = 1Sk

(f) from resource allocation sets Sk, we have

ŷ = S1x̂1 + S2x̂2. (5.5.7)

Thus, if the correct Sk are applied, then with sufficient measurements the
receiver can reconstruct the sparse vectors xk via e.g. CS. Otherwise, if any
other RAM is applied, the sparse vectors xk cannot be reconstructed. In
the following, given the sparse vectors x1,x2 and S2 = I − S1, we want to
proof that

‖x1‖0 + ‖x2‖0 ≤ ‖Φ (I − S′
1) x̂1 + ΦS′

1x̂2‖0 (5.5.8)

+ ‖Φ (I − S′
2) x̂2 + ΦS′

2x̂1‖0

for any S′
1 ⊂ S2 or S′

2 ⊂ S1. Let us start by decomposing (5.5.7) to

ŷ = S1x̂1 + S′
1x̂2 + (S2 − S′

1) x̂2 (5.5.9)

with S
′
1 ⊂ S2 and S2 = I − S1, where S̃1 = S1 + S′

1 and S̃2 = S2 − S′
1

represent the false RAM of transmitters 1 and 2, respectively. Note that S̃2

contains the correct resources of transmitter 2, but just misses the resources
contained in S′

1. Assume that S̃2 contains sufficient resources to recon-
struct x2, then we only have to deal with the mix up S1x̂1 + S′

1x̂2 of (5.5.9).
Taking a genie reconstruction algorithm, we obtain

x̂′
1 = (I − S′

1) x̂1 + S′
1x̂2

= x̂1 − S′
1x̂1 + S′

1x̂2

= x̂1 + S′
1 (x̂2 − x̂1)

= x̂1 + S′
1b̂, (5.5.10)

where b̂ = x̂2 − x̂1 and x̂′
1 is reconstructed from x̂1 except on the frequency

positions contained in S′
1. Thus, since x1,x2 are constructed from contin-

uous independent random variables, the ℓ0-pseudonorm of both vectors via
(5.5.4) is

‖x′
1‖0 + ‖x2‖0 =

∥∥∥x1 + ΦS′
1b̂

∥∥∥
0

+ ‖x2‖0

≥ max
(

‖x1‖0 ,
∥∥∥ΦS′

1b̂

∥∥∥
0

)
+ ‖x2‖0 . (5.5.11)
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Applying the multiplicative uncertainty principle of (5.5.3) on (5.5.11) and
given an N -point DFT matrix Φ, we obtain

‖x′
1‖0 + ‖x2‖0 ≥ max

(
‖x1‖0 ,

N

‖S′
1‖0

)
+ ‖x2‖0 . (5.5.12)

Thus, with decreasing number of entries in S
′
1, the ℓ0-pseudonorm of (5.5.12)

is increasing, except for S′
1 = ∅. Consequently, (5.5.12) indicates a non-

convex problem.
Decomposing (5.5.7) to

ŷ = (S1 − S′
2) x̂1 + S′

1x̂2 + S′
2x̂1 + (S2 − S′

1) x̂2 (5.5.13)

with S′
1 ⊂ S2, S′

2 ⊂ S1 and S2 = I − S1, we obtain the ℓ0-pseudonorm
similarly to (5.5.12) by

‖x′
1‖0 + ‖x′

2‖0 ≥ max

(
‖x1‖0 ,

N

‖S′
1‖0

)
+ max

(
‖x2‖0 ,

N

‖S′
2‖0

)
, (5.5.14)

which is equal if ‖x1‖0 ≥ N/ ‖S′
1‖0 and ‖x2‖0 ≥ N/ ‖S′

2‖0. Thus, (5.5.14)
proofs the inequality in (5.5.8), because we have

‖x1‖0 + ‖x2‖0 ≤ ‖x′
1‖0 + ‖x′

2‖0 . (5.5.15)

5.5.3 Joint Estimate

By taking the consideration on continuous functions as well as the
ℓ0-pseudonorm in the discrete setting into account, the ℓ1-norm of an
s-sparse signal seems to be a good objective to identify the correct RAM.
Inspired by CS, we use the BPDN approach (3.5.18) and write the objective
function to solve (5.4.1) with

(
x̃, S̃

)
∈ argmin

x,S
‖x‖1 (5.5.16)

s.t.
∥∥ŷ − S

(
I|K|+1 ⊗Φ

)
· x
∥∥2

2
≤ λ |P| · E

[∣∣e[0]

∣∣2
]

, (5.5.17)

1 =
|K|∑

k=0

sk ∈ {0, 1}|P|, (5.5.18)

where x :=
[
x
⊺
0 · · · x

⊺
|K|

]⊺
,

S :=
[
diag(s0) . . . diag

(
s|K|

)]
.



5.6 Simulative Analysis 155

The objective function returns a joint estimate of the resource allocation
and the unknown. The main difference to original BPDN (3.5.18) lies in
the second condition (5.5.18), where the exclusive RAM is enforced. The
first condition (5.5.17) is still bounded by the ℓ2-error originating from the
receiver noise, see (3.3.9), (3.6.15) and (3.6.42). Therefore, in certain set-
tings, the tuning parameter λ can be obtained from a CDF to meet a certain
probability. However, in our evaluation we set λ = 1 for simplicity.

Consequently, (5.5.16) finds the smallest ℓ1-norm of the stacked unknown
vector x for a given observation ŷ over all possible sets S, which are given
depending on the problem size by all Bell sets or all Stirling sets of the second
kind. In order to solve (5.5.16), we have to jointly estimate x̃ and S̃.

5.6 Simulative Analysis

To evaluate the qualification of the objective function proposed in (5.5.16),
we perform brute-force simulations on the combinatorial allocation map re-
trieval (AMR) problem discussed in Section 5.3. To distinguish the different
resource assignments in the brute-force search, we introduce a superscript
on S, so that candidate n of the set of resource allocation sets (RASs) is
given by

S
(n) :=

{
S

(n)
k

}K

k=1
. (5.6.1)

While the correct resource assignment is present for n = 0, n > 0 denotes
all other possible but incorrect sets of RASs. Similar notations are used
for the set S

′(n) of PRB allocation sets, the overall resource allocation map
(RAM) S(n) and the overall PRB allocation map S′(n). For simplicity and if
appropriate, we will omit the superscript for n = 0. Hence, to solve (5.5.16),
x has to be estimated for each candidate S(n).

In particular, we study two cases, the exhaustive search in all Stirling
sets of the second kind with certain cardinality, as well as all Bell sets.
Exhaustive search estimates x for each S(n) and evaluates if the correct S(0)

corresponds to the smallest ℓ1-norm of x. To apply exhaustive search on
feasible set sizes and still keep the reconstruction ability of the estimation
algorithms presented in Section 3.5, we aggregate resources to PRBs as
introduced in (5.2.7). In particular, we use a resource pool of |P| = 128
resources with PRB-size NB = 16 in the CIR case with x = h and |P| = 256
with NB = 32 in the CAC case with x = v. In both transmission cases we
have NRB = |P| /NB = 8 PRBs within P. These 8 PRBs are exclusively
allocated by the transmitters, so that we observe |K| ≤ 8 active transmitters.
Furthermore, we choose the CP length NCP to be a multiple of 8 from 16
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to |P|. Note, that the CP length is equal to the solution space, where the
sparse entries of the channel impulse responses are located. The simulation
settings are summarized in Table 5.2.

In order to support good reconstruction performance via CS, the resources
in each PRB are randomly distributed over the resource pool P. Further-
more, exploiting S = f(S′,T) obtained via (5.2.7) with the use of (5.2.8),
we have a feasible number of Bell sets and Stirling sets of the second kind,
enabling exhaustive search over all sets S′(n) of PRB allocation sets to find
the smallest ℓ1-norm of x. In particular, the Bell number is NBell = 4′140
and the largest Stirling number of the second kind is NStirling = 1′701, cf. Ta-
ble 5.1. Thus, the number of possible sets of PRBs allocation sets S′(n) is
restricted to n = NBell or to n ≤ NStirling for the Bell sets or the Stirling
sets of the second kind, respectively. Thus, we can write (5.2.26)

ŷ = f(S′,T) · (IK+1 ⊗Φ) · x + ê, (5.6.2)

where K = 8 and f(S′,T) is obtained via (5.2.7) with the use of (5.2.8). Note
that generally some S′

k of k ∈ K will be zero, whereby these transmitters
have no resources allocated. Since we apply exhaustive search, we can split
our objective function (5.5.16) in two parts. First, we simply estimate x̃ for
each candidate S′(n) via BPDN (see Section 3.5.2)

x̃(n) = argmin
x

‖x‖1 (5.6.3)

s.t.
∥∥∥ŷ − f

(
S′(n),T

)
· (I ⊗Φ) · x

∥∥∥
2

2
≤ λ E

[
‖ê‖2

2

]
.

Then, we obtain a candidate by

ñ ∈ argmin
n

∥∥∥x̃(n)
∥∥∥

1
. (5.6.4)

If ñ = 0, we identified the correct candidate. The Stirling sets of the second
kind are generated for

∣∣S′(0)
∣∣, which is the cardinality of the correct set S′(0)

of PRB allocation sets. Thus, it represents the number of actual active
transmitters.

Now, we will describe the simulation settings of the exhaustive search
analysis. We select S′(0) randomly from all Bell sets. In this way, we have
a number of transmitters between 1 and 8 distributed according to the
distribution of the Bell sets. Therefore, for each selected PRB each trans-
mitter has NB resources distributed within P, enabling CS methods. In the
CIR case, Φ ∈ CNDFT×NCP+1 is set to a submatrix of the DFT-matrix of
size NDFT = |P| = 128, and in the CAC case we have Φ ∈ CNDFT×2NCP+1
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|P| = NDFT NRB NB NCP s-sparse |K|
CIR 128

8
16

16, 24, . . . , 128 1, 2, 4, 8, 16 ≤ 8
CAC 256 32

Table 5.2: Simulation settings for Figures 5.10 to 5.13.

with NDFT = 256. Finally, the entries of each s-sparse unknown xk are
randomly obtained from the circularly-symmetric complex normal distribu-
tion, whereas the location of the non-zero entries are uniformly randomly
distributed within NCP.

The evaluation of the brute-force AMR simulations is divided into four
parts: First we will consider BPDN in Section 5.6.1 and evaluate its AMR
performance based on the ℓ1-norm and channel transfer function measure-
ments. Then, we will consider OMP in Section 5.6.2, where we introduce a
joint ℓ0-pseudonorm ℓ2-error measure to improve AMR performance. After-
wards in Section 5.6.3, we evaluate the robustness of AMR via OMP with
noisy measurements. Finally, instead of channel transfer function measure-
ments, we will take a look on AMR with SCP measurements in Section 5.6.4.

5.6.1 BPDN

The results presented in Figure 5.10 for channel transfer function mea-
surements are obtained via BPDN (SPGL1-toolbox [BF15]) for NDFT =
128, NCP ∈ {16, 24, . . . , 128} and s = 2m, m ∈ {0, . . . , 4}, see Table 5.2. A
failure rate is shown for a given pair (NCP, s). In Figure 5.10, the per-
formance of successfully recovering S′(0) is shown for BPDN (5.6.3) and
ℓ1-norm (5.6.4). If reconstruction has been successful, then the ℓ1-norm of
the correct solution with S′(0) is smaller than all other solutions S′(n), n > 0
within the given set of sets. While the black region indicates, that there is
almost no recovery possible, the stained pattern marks the region, where all
reconstructions were successful for up to 105 simulations. The brighter the
region, the better is the reconstruction ability via exhaustive search.

In Figures 5.10a and 5.10b, the performance is given for recovering the
correct set within all Bell sets and all Stirling sets of the second kind, re-
spectively. Figure 5.10a shows, that taking the lowest ℓ1-norm of the BPDN
solutions of all Bell sets does not retrieve the correct set in general. How-
ever, for large solution spaces (CP length) and small sparsity of 1-sparse
and 2-sparse signals, the correct set is obtained in around 99% of the simu-
lations. The picture changes completely in Figure 5.10b just considering all
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(a) Bell set (b) Stirling set of the second kind

Figure 5.10: Failure rate of identifying the correct set via the ℓ1-norm of the
BPDN solutions for the CIR over sparsity and solution space within
128 samples for SNR of infinity.

Stirling sets of the second kind (1’701 in the worst case). Even though the
worst case set size is only about half the Bell number, the recovery ability
is heavily increased. Especially in the center regions (stained pattern), ex-
haustive search over all Stirling sets of the second kind always obtained the
correct set via the ℓ1-norm of BPDN for around 105 simulations. Therefore,
a failure rate in this region below 10−5 is anticipated.

In the following, we will take a brief analysis of the results. At first we
just consider the mere recovery ability of BPDN. In general, uniform random
Fourier samples achieve the best recovery performance for partial Fourier
measurements (Section 3.6). However, the higher s of s-sparse signals, the
higher the requirements on the distribution of the Fourier samples. Conse-
quently, the closer s is tending to the PRB-size of NB = 16, the more likely
that BPDN fails. Moreover, for s-sparse signals with s ≥ 16 a single PRB
is in general not sufficient for successful recovery via BPDN, see Section 3.4.
Thus, each transmitter needs to allocate more PRBs to enable successful
recovery for s ≥ 16. Since in our simulations we made no restrictions on the
number of PRBs per transmitter, it is highly probable that one transmitter
will be left with a single PRB and cannot be recovered. Therefore, the re-
covery fail of this transmitter leads to complete failure in our simulations.
This explains the increase of failure rate towards s = 16 in Figure 5.10b.

Further points are the two distinction problems discussed in Section 5.4.4.
Since for Stirling sets of the second kind the number of transmitters is fixed,
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only one of the two distinctions has to be made: finding the most probable
transmitter for each PRB, such that all transmitters have at least one PRB.
In contrast to the Stirling set of the second kind, the number of transmit-
ters in the Bell set is unknown. Consequently, also the second distinction
problem (activity detection) has to be solved within Bell sets: distinguish
whether a set of PRBs belongs to a single transmitter or partitions of a set of
PRBs belong to multiple distinct transmitters. Therefore, besides the larger
size of all Bell sets, a further distinction problem has to be solved, explaining
the recovery performance gap between Figure 5.10a and Figure 5.10b. In
particular, BPDN (5.6.3) seems not well suited for activity detection. Tak-
ing a closer look on Figure 5.10a, we observe reconstruction performance
for large solution spaces and high sparsity s ≤ 2. Due to the high sparsity,
a strong distinction between the resource sets of each transmitter may be
given, enabling activity detection for up to 99% of the simulations. In sum-
mary, knowing the number of active transmitters in advance or acquiring
them through activity detection can greatly reduce the problem size from
the Bell number to the Stirling number of the second kind. Nevertheless,
even though complete reconstruction is not possible, partial reconstruction
may be still available.

5.6.2 OMP

Now, we turn our attention from the convex BPDN method to the greedy
OMP approach, see Algorithm 3.1 in Section 3.5.3. Similar to the simula-
tion via BPDN we want to know the brute-force performance of OMP via
exhaustive search. We will use the same settings as for the BPDN simula-
tions, see Table 5.2. However, in contrast to BPDN, the ℓ1-norm proposed
in (5.6.4) for OMP will not suite as a measure to identify the correct overall
RAM S. In general, the BPDN approach using the SPGL1-toolbox will
quickly converge, such that (5.6.3) is solved for an ℓ2-error very close to

the constraint λ E
[
‖ê‖2

2

]
. However, due to the design of OMP, the ℓ2-error

strongly deviates for different solutions. Consequently, in contrast to BPDN,
where the candidate is identified only via the ℓ1-norm of x in (5.6.4), for
OMP we have to include the ℓ2-error in the identification process as well.
Therefore, instead of (5.6.4), we have to use an objective function which
takes the ℓ2-error into account

ñ ∈ argmin
n

(∥∥∥x̃(n)
∥∥∥

1
+ λ′

∥∥∥ŷ − f
(
S′(n),T

)
· (I ⊗Φ) · x̃(n)

∥∥∥
2

2

)
, (5.6.5)

where the tuning parameter λ′ has to be appropriately chosen. In addition,
two further remarks should be taken into account. First, since we perform
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(a) Bell set (b) Stirling set of the second kind

Figure 5.11: Failure rate of identifying the correct set via the joint
ℓ0-pseudonorm ℓ2-error measure of the OMP solutions for the CIR
over sparsity and solution space within 128 samples for SNR of
infinity.

exhaustive search, we solve (5.6.3) via OMP given in Algorithm 3.1 for each
candidate S′(n) satisfying the ℓ2-error constraint, where the measurement
matrix of OMP is given by f

(
S′(n),T

)
· (I ⊗Φ). Consequently, each solu-

tion S′(n) will be paired with an x̃(n), where the ℓ2-error is smaller or equal

to the constraint λ E
[
‖ê‖2

2

]
. Secondly, due to the iterative construction

of x̃(n), the number of iterations performed by the OMP algorithm directly
specifies the number of non-zero entries of the candidate vector x̃(n). There-
fore, we first obtain x̃(n) for each allocation S′(n) via the OMP algorithm
solving (5.6.3). Afterwards, we take the joint measure of ℓ0-pseudonorm
and ℓ2-error to identify the candidate with

ñ ∈ argmin
n



∥∥∥x̃(n)

∥∥∥
0

+

∥∥ŷ − f
(
S′(n),T

)
· (I ⊗Φ) · x̃(n)

∥∥2

2

λ E
[
‖ê‖2

2

]


 . (5.6.6)

Given λ = 1, the ℓ2-error is normalized by the constraint term, whereby
merely a fractional part is added to the ℓ0-pseudonorm. Consequently,
the ℓ0-pseudonorm represents the main classifier, whereas the ℓ2-error only
effect the choice of the solution if multiple candidates S′(n) have equal
ℓ0-pseudonorm.

In Figure 5.11, we show the reconstruction performance of OMP using
the joint ℓ0-pseudonorm ℓ2-error measure in (5.6.6). In comparison to the
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BPDN simulations, we observe a completely different picture. Note, that
the failure rate is one magnitude smaller than for Figure 5.10 reaching fail-
ure rates down to 10−6. While BPDN with the ℓ1-norm measure proposed
in (5.6.4) is in general not capable to reconstruct the correct resource alloca-
tion within all Bell sets, Figure 5.11a shows that OMP with (5.6.6) is able to
reconstruct S′(0) with high probability within almost all solution spaces for
1-sparse and 2-sparse signals. Only due to the smaller depicted magnitude
compared to BPDN, the failure rate of 2-sparse signals is visible. Conse-
quently, the performance results indicate that the OMP approach is suited
to solve both distinction problems, activity detection and resource mapping.
In addition, the OMP approach outperforms BPDN also for the Stirling sets
of the second kind where Figure 5.11b shows almost no sign of failure for the
complete region of 1-sparse and 2-sparse signals. Even for 4-sparse signals,
the failure rate is reaching a level below the detection limit of the BPDN sim-
ulations. However, for 8-sparse signals and above, the performance of OMP
degrades compared to the BPDN simulations in Figure 5.10b. The main
reason for the worse performance is that OMP is approaching the recovery
limit, set by the PRB-size NB = 16, earlier than BPDN, since the RIP
bound of OMP is larger than of BPDN, see Section 3.5. At small solution
spaces up to NCP ≤ 24, OMP benefits from the blocksize NB = 16, lead-
ing to reconstruction performance below the detection limit. In particular,
for s-sparse signals with large s OMP simply reduces to the LS estimator,
solving a mere balanced linear system.

Summarizing the obtained results, the OMP approach is better suited to
obtain the correct resource allocation within both sets: the Bell sets and the
Stirling sets of the second kind. Moreover, OMP can successfully solve both
distinction problems, activity detection and resource mapping. In all, the
superior performance of the OMP approach over BPDN may be explained
by the different applied measures, the mere ℓ0-norm for BPDN and the joint
ℓ0-pseudonorm ℓ2-error for OMP. However, the measure of OMP cannot be
easily transferred to BPDN, and vice versa.

5.6.3 Noisy Measurements

To evaluate the robustness of the objective function proposed in (5.5.16)
in noisy environments, we performed brute-force simulations for an SNR of
20 dB and the usual settings summarized in Table 5.2. We selected the OMP
approach with measure proposed in (5.6.6), since it performed better than
the BPDN approach with the mere ℓ1-norm. The failure rate is shown in
Figure 5.12, where Figure 5.12a and Figure 5.12b present the performance
for finding the correct set among all Bell sets and Stirling sets of the second
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(a) Bell set (b) Stirling set of the second kind

Figure 5.12: Failure rate of identifying the correct set via the joint
ℓ0-pseudonorm ℓ2-error measure of the OMP solutions for the CIR
over sparsity and solution space within 128 samples for SNR of
20 dB.

kind, respectively. Obviously and trivially, the performance decreases under
noisy settings. However in general, recovery is still possible for an SNR of
20 dB. The best results are achieved with 4-sparse signals, where recovery
among all Bell sets goes down to a failure rate of 10−4 and among all Stirling
sets of the second kind is beyond the detection limit.

Comparing both plots Figure 5.12 with Figure 5.11, we see directly that
the failure rate for 1-sparse signals increases significantly compared to other
s-sparse signals. This increase majorly results from two effects. First, the
s-sparse entries are randomly i.i.d. drawn from the circularly-symmetric
complex normal distribution. Thus, the amplitude of each 1-sparse signal
can differ strongly. At the receiver, AWGN is applied on the normalized
superimposed frequency signal, such that an SNR of 20 dB is obtained. Con-
sequently, while some 1-sparse signals experience only small distortion due
to the large amplitude, others perceive strong distortion compared to the se-
lected SNR. This is one reason why the failure rate increases more strongly
for 1-sparse signals. Secondly, there is a chance that multiple 1-sparse sig-
nals coincide in the position of the non-zero entry, whereby the distinction
between the 1-sparse signals is only given by the direct difference of the val-
ues on the complex plane. The smaller the difference between two 1-sparse
signals, the larger the probability that these two signals are seen as one sig-
nal under noise distortion. Note, that due to the complex domain, 1-sparse
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signals have two degrees of freedom. In particular, 1-sparse signals can be
seen as 2-sparse signals, where the positions of the entries are fixed. Even
though the complex plain offers more degrees of freedom, the chance that
two 1-sparse signals are identified as one is still present. While the first ef-
fect can be seen for all selected solution spaces, the second effect decreases
with increasing solution space. However, we did not evaluate how strong
the second effect is influencing the performance.

Nevertheless, the influence of both effects change with increasing sparsity.
The first one decreases with increasing sparsity, since multiple entries are
randomly i.i.d. drawn from the circularly-symmetric complex normal dis-
tribution, leading to an averaging of each s-sparse signal. For the second
effect, the chance of coinciding positions depends of the binomial distribu-
tion given s and the solution space, having the lowest probability at an
s = NCP/2. In contrast to that, the distance in the complex plain has to
be small for all s entries between the two s-sparse signals, which is less
probable for larger s.

Summarizing, from the simulation point of view the OMP approach is
also robust against noise. In general, the OMP approach is able to recover
the correct set among all Bell sets as well as all Stirling sets of the second
kind. Especially, 4-sparse signals achieve good reconstruction performance.

5.6.4 Spectral Channel Power Measurements

In the last simulations in Figure 5.13, we consider the identification perfor-
mance via spectral channel power measurements. Consequently, the sparsity
of the CAC x = v is exploited to identify the correct set using the proposed
objective function in (5.5.16). We consider just the Stirling sets of the sec-
ond kind (Figure 5.13), but for noiseless setting (Figure 5.13a) and an SNR
of 20 dB (Figure 5.13b). Note that the settings of the CAC simulations
change compared to the CIR simulations, see Table 5.2. In particular, the
resource pool and the PRB-size increase to |P| = 256 and NB = 32, respec-
tively. This is due to the increased support region of the CAC compared
to the CIR, see (3.6.29). Note that the sparsity is stated for the underlying
CIR of the CAC. The precise sparsity of the CAC cannot be directly ob-
tained, but is given by |supp(v)| ≤ max

(
2NCP + 1, s2 − s + 1

)
, see (3.6.45)

and (3.6.49). Therefore, the results of the CAC in Figure 5.13 cannot be sim-
ply compared with the previous results. Nevertheless, we can obtain some
performance indication for spectral channel power observations. Also note
that the failure rate limits between Figure 5.13a and Figure 5.13b differ.

In the noiseless case, Figure 5.13a shows similar results than for the CIR
in Figure 5.11b. In general, the similarity is plausible, since the s-sparse
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(a) SNR of infinity. (b) SNR of 20 dB.

Figure 5.13: Failure rate of identifying the correct set in all Stirling sets of
the second kind via the joint ℓ0-pseudonorm ℓ2-error measure of
the OMP solutions for the CAC over sparsity and solution space
within 256 samples.

entries of the underlying channel are restricted on the same solution space as
for channel transfer function measurements. Therefore, the restriction of the
solution space is also present for a CAC v with larger sparsity. Consequently,
in the noiseless setting good reconstruction performance among Stirling sets
of the second kind can be achieved for underlying sparsity up to s = 4 and
solution space up to 24.

In the noisy setting of 20 dB SNR in Figure 5.13b, the failure detection
limit is already at 10−3. However, similar results as for the CIR in Fig-
ure 5.12b are indicated. The best results are achieved for underlying spar-
sity of s = 4, which are beyond the detection limit of 10−3. As discussed
for Figure 5.12, an underlying 1-sparse signal is strongly distorted by noise,
such that the recovery performance drops dramatically. Consequently, the
correct set is unlikely to be retrieved from spectral channel power measure-
ments, if the underlying sparsity is s = 1.

In summary, based on the exhaustive search simulations, the objective
function proposed in (5.5.16) can be regarded as a good candidate to recon-
struct the correct overall RAM among others from noisy channel transfer
function measurements and spectral channel power measurements. However,
the BPDN approach with the measure based on the mere ℓ1-norm proposed
in (5.6.4) seems to be not suitable. Especially, BPDN hardly finds the cor-
rect set among all Bell sets. In contrast to BPDN, the OMP approach with
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the joint measure of ℓ0-pseudonorm and ℓ2-error, see (5.6.6), achieves good
reconstruction among Bell sets and Stirling sets of the second kind. More-
over, as observed in the brute-force simulations, the OMP method is also
robust in noisy settings.

5.7 Structured Allocation Map

To obtain an efficient algorithm instead of the exhaustive search traversing
through all possible candidates like in the previous Section 5.6, we have to
significantly decrease the combinatorial complexity. Therefore, we propose
an AMR algorithm that performs local decisions, which are generally sub-
optimal on the global scale. In particular, we structure the combinatorial
AMR problem as a decision tree, which can be traversed via breadth-first
search. At each iteration, a local decision is made, assigning the most
probable physical resource block (PRB) to a transmitter. The particularly
proposed breadth-first search approach is given in Algorithm 5.1.

The input parameters of Algorithm 5.1 are almost identical to Algo-
rithm 3.1, except that we also require the distinct PRB set T. We initialize
the estimated set S̃′ of PRB allocation sets with one set containing one in-
dex of T and initialize a temporary PRB set T

′ with the remaining indices
of T. Then, we traverse through all indices of T′ (line 2) and all sets of S̃′

including an empty set (line 3), constructing the resource allocation candi-
dates S′(m,k) for the current iteration (line 4-8). Furthermore, we calculate
the estimate x̃(m,k) for each resource allocation candidate via OMP with
Algorithm 3.1 (line 9). After the construction of all candidates at the cur-
rent level, we use the joint ℓ0-pseudonorm ℓ2-error measure from (5.6.6) in
line 12 to obtain the most probable candidate in line 13. Furthermore, the
index m′ is removed from T

′ in line 14. The iterative construction of S̃′ is
continued until the temporary PRB set T′ is empty (line 1). Finally, the
last estimate x̃(m,k) and the estimated set S̃′ of PRB allocation sets are
returned.

Since the order within sets are arbitrary, we cannot easily compare the
estimate S̃

′ with the original set S
′ of PRB allocation sets. Moreover, if S̃′

is not correctly estimated, then we require a measure to asses the quality of
our estimate. Informally, we need to find a sequence of sets, such that the
sum of intersections between each S̃′

k and S′
k is maximized. In other words,

given a group of the permutations of the transmitter set K with S(K)4 and
given a permutation Π ∈ S(K), then we search the maximal number of
intersections over all possible permutations in S(K). Thus, we can assess

4Frequently also referred to as symmetric group on a set K.

https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Permutation
https://en.wikipedia.org/wiki/Symmetric_group
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Algorithm 5.1 AMR for structured allocation pattern via OMP

Input: ŷ, T = {T0, . . . ,TNRB−1}, Φ ∈ CN×M , λ, E
[
‖ê‖2

2

]

Initialize: S̃′ = {{0}}, T′ = {1, . . . , |T| − 1},

1: while |T′| > 0 do

2: for all m ∈ T′ do

3: for k = 0 to
∣∣∣S̃′
∣∣∣ do

4: if k =
∣∣∣S̃′
∣∣∣ then

5: S′(m,k) =

{
S̃′

0, . . . , S̃′∣∣̃S′
∣∣−1

, m

}

6: else

7: S′(m,k) =

{
S̃′

0, . . . , S̃′
k ∪ m, . . . , S̃′∣∣̃S′

∣∣−1

}

8: end if

9: Via OMP (Algorithm 3.1) obtain

x̃(m,k) = argmin
x

‖x‖1

s.t.
∥∥ŷ − f

(
S′(m,k),T

)
· (I ⊗Φ) · x

∥∥2

2
≤ λ E

[
‖ê‖2

2

]

10: end for

11: end for

12:

(
m̃, k̃

)
= argmin

m,k

(∥∥∥x̃(m,k)
∥∥∥

0

+

∥∥ŷ − f
(
S′(m,k),T

)
· (I ⊗Φ) · x̃(m,k)

∥∥2

2

λ E
[
‖ê‖2

2

]




13: S̃′ = S′
(

m̃,̃k
)

14: Remove m̃ from T′

15: end while

16: return S̃′, x̃(m̃,̃k)
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the quality of the estimated set S̃′ of PRB allocation sets by the ratio of
maximal number of intersections to the number of PRBs NRB = |T| with

αRB+Inactive =
1

NRB
max

Π∈S(K)

|K|∑

k=0

∣∣∣S̃′
Π(k) ∩ S

′
k

∣∣∣ . (5.7.1)

Furthermore, (5.7.1) can be rewritten in matrix notation using the inner
product between the estimates s̃′

Π(k) and the original allocation vectors s′
k

by

αRB+Inactive =
1

NRB
max

Π∈S(K)

|K|∑

k=0

(
s̃′

Π(k)

)⊺
· s′

k. (5.7.2)

Therefore, in order to obtain the success rate of our Algorithm 5.1, we
just need to traverse through all possible permutations to find the best
match between our estimate and the correct solution. However, as also
discussed in Section 5.3, for large number of transmitters |K| the number
of permutations quickly increases (|K + 1|!). To cope with large numbers
of transmitters we apply the Hungarian algorithm [Kuh55], which had been
originally proposed by Kuhn in 1955.

In addition, also the number of subsets can differ between S̃′ and S′. In
particular, the estimated set S̃′ of PRB allocation sets can consist of less

or more transmitters
∣∣∣K̃′
∣∣∣ than

∣∣K′∣∣. Furthermore, S̃′ may also contain the

set S′
0 of inactive resources, but partitioned in multiple subsets. The eval-

uation in (5.7.2) interprets the inactive resources as a classical transmitter,
which have to be correctly estimated. Thus, the RB+Inactive ratio is
obtained via (5.7.2) and the Hungarian algorithm.

However, in many scenarios we are more interested in successful recovery
of the active resources. In particular, the grouping of inactive resources is
not of interest as long as the inactive resources are separately grouped from
the active resources. Thus, we obtain the RB ratio with

αRB =
1

∑|K|
k=1 ‖s′

k‖0

· max
Π∈S(K)

|K|∑

k=1

(
s̃′

Π(k)

)⊺
· s′

k. (5.7.3)

Note that the difference between (5.7.3) and (5.7.2) is also the start of the
sum, which begins here with k = 1.

One further evaluation represents the complete recovery of all resources
for a given transmitter. The Tx ratio is given by the number of transmit-
ters completely recovered to the overall number of transmitters, which is

https://en.wikipedia.org/wiki/Inner_product_space
https://en.wikipedia.org/wiki/Hungarian_algorithm
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calculated by

αTx =
1

|K| max
Π∈S(K)

 1

‖s′
k‖0

|K|∑

k=1

(
s̃′

Π(k)

)⊺
· s′

k

 , (5.7.4)

where ⌊·⌋ represents the flooring function, such that only complete recovered
transmitters are counted.

Finally, to also evaluate the performance in comparison to mere gam-

bling, we select two cases of resource assignment without estimation. In
the first case, we just assign all resources to a single transmitter. Therefore,
the ratio is obtained by the transmitter with largest number of resources
divided by the overall number of PRBs

αGambling01 =
1

NRB
max
k∈K

[s′
k]. (5.7.5)

In the second case, we just assign one resource to each transmitter, resulting
in a ratio simply calculated by |K| /NRB. To asses performance by the
gambling ratio, we just take the best shot of both

αGambling = max

[ |K|
NRB

,
1

NRB
max
k∈K

[s′
k]

]
. (5.7.6)

5.8 Results

We perform numerous simulations to evaluate our proposed Algorithm 5.1
for AMR. Therefore, we consider different SNRs to evaluate the robust-
ness against noise in Figures 5.14 and 5.15. Furthermore, we apply differ-
ent sparsity on the channel in Figure 5.16 and different physical resource
blocksizes NB on the transmission system in Figure 5.17. Finally, we also
obtain the performance over commonly used performance channels in Fig-
ure 5.18, including the short-range factory automation performance chan-
nels obtained in our measurement campaign (see Section 4.6.1). The main
settings of the simulations are summarized in Table 5.3.

As introduced in the previous Section 5.7, we consider three ratios to
evaluate the performance and one ratio to compare the performance to mere
gambling (5.7.6). The three performance ratios are RB (5.7.3), Tx (5.7.4),
and RB+Inactive (5.7.2). In principle, we will focus on the recovery of active
resources and the recovery of complete transmitters denoted as RB and Tx,
respectively. Furthermore, we just plot one gambling curve per figure, which
represents the best gambling for all settings within the corresponding figure.
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Model SNR NDFT |P| NCP NB |S′
k| |K|

CIR
8-sparse 10 dB 512 512

512 8
≥ |P|

8NB

4
CAC 256 32

CIR
EPA 0 dB 1024 600 72 24 ≥ |P|

4NB
CAC

Table 5.3: Simulation settings for Figures 5.14 to 5.18.

All the simulations are conducted with four transmitters. Furthermore,
we consider two different channel models, the s-sparse channel model and
the performance channel model. In addition, we also consider the two differ-
ent frequency observations, channel transfer function measurements as in-
troduced in Section 5.2.1 and spectral channel power measurements as intro-
duced in Section 5.2.2. To directly observe the impact of sparse channels on
the estimation performance, we consider the s-sparse channel model, where
random i.i.d. variables are drawn from the circularly-symmetric complex
normal distribution and uniformly distributed on s positions of the channel
vector. The s-sparse channel model simulations are commonly performed
for s = 8, SNR of 10 dB, and resource pool size of 512. The performance
channel models shall assess the ability in practical scenarios. We mainly use
the EPA model for performance evaluation at SNR of 0 dB. Furthermore,
we base the transmission settings on a 10 MHz system commonly used in
3GPP LTE [3GP20a] and NR [3GP20h]. Therefore, the resource pool only
consists of 600 resources with NDFT = 1024 and CP length of 72. Finally, to
enable reconstruction via compressed sensing methods and especially OMP,
we enforced a minimum number of physical resource blocks |S′

k| allocated
to each transmitter. The common settings for all simulations can be found
in Table 5.3. If settings differ from Table 5.3, it will be separately stated in
the text.

At first we turn our attention to the robustness of Algorithm 5.1 against
noise for s-sparse channels in Figure 5.14. For observations of the channel
transfer function we consider only 8-sparse channels with physical resource
blocksize NB = 16, but for observations of the spectral channel power we
additionally present the plots for 4-sparse channels with blocksize NB = 32.
While we can distinguish the channel impulse response (CIR) of 4 transmit-
ters with increasing SNR and by that retrieve the corresponding resource
allocation, the distinction of 4 transmitters via their circular autocorrela-
tion of the CIR (CAC) does not work for the same setting. This can be



170 5 Allocation Map Retrieval

Figure 5.14: Success rate over SNR for s-sparse channels.

Figure 5.15: Success rate over SNR for 3GPP EPA performance channel.

particularly seen in comparison to mere gambling, where a similar success
probability is achieved for identifying the resource allocation of the active re-
sources. Obviously, the circular autocorrelation of 8-sparse channels cannot
be reconstructed by mere blocksize NB = 16, leading already to wrong de-
cisions of Algorithm 5.1 within the first iterations. However, increasing the
blocksize and sparsity enable also the estimation of the resource allocation
for spectral channel power observations and therefore can distinguish the
CAC of the 4 transmitters. Since it is more demanding to estimate a single
transmitter correctly than just a certain number of overall resources, the Tx
estimation performance is worse than the performance based on (5.7.3). At
low SNR, the probability of Algorithm 5.1 identifying the correct physical
resource blocks belonging to the same transmitter approaches the perfor-
mance of mere gambling.

Changing to practical performance channels like 3GPP EPA in Fig-
ure 5.15, we observe lower CP length, but only compressible CIR. Chan-
nel transfer functions as well as spectral channel power observations are
obtained from equal simulation settings. Consequently, AMR via the CIR
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Figure 5.16: Success rate over s of
s-sparse channels
at an SNR of 10 dB.

Figure 5.17: Success rate over the
physical resource block-
size NB.

is already successful at a lower SNR than the estimation via the CAC, thus
we already have some visible performance gain at 0 dB SNR. Strangely,
however, starting with an SNR of 20 dB, the estimation performance via
CIR deteriorates, so that an SNR of 20 dB achieves the best performance
for a channel transfer function in the observed SNR region. This effect is
not seen for estimation via the CAC, which curiously outperforms channel
transfer function measurements for SNR of 30 dB and above. A reason for
the deterioration may be the use of the joint ℓ0-pseudonorm ℓ2-error mea-
sure described in (5.6.6). In particular, for high SNR, the weighting of the

ℓ2-error by 1/(λ E
[
‖ê‖2

2

]
) may be suboptimal. Another reason may be the

selected tuning parameter of λ = 1 (5.5.16), which may be not appropriate
for the CIR case. Nevertheless, the explanation of this behavior especially
regarding the different effects on CIR and CAC remains an open issue and
has to be studied further.

In Figure 5.16, we evaluate the reconstruction ability over different
s-sparse channels for a physical resource blocksize NB = 8 at an SNR of
10 dB. As discussed in Section 5.6 for Figure 5.12, the distinction of 1-sparse
channels suffers under noisy measurements due to the low degree of freedom.
Consequently, the resource allocation estimation achieves the best perfor-
mance for 2-sparse CIRs. For sparsity level equal to the blocksize NB = 8,
the failure rate rapidly increases. In Figure 5.16, we exemplarily plotted
also the recovery performance including the inactive resource. There we
see, that in certain cases the inactive resource will not be aggregated to
a single ’inactive’ transmitter. Thus, the inactive resources are indicating
multiple transmitters. Nevertheless, the deviation is not severe. Further-
more, as discussed in Section 5.7, in many scenarios we are more interested
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Figure 5.18: Success rate for the different performance channels (see Sections 2.3
and 4.6).

in the active resources. In such scenarios determining the resources of active
transmitters suffice.

In addition to the sparsity point of view, we consider the impact of the
physical resource blocksize NB on 8-sparse CIRs as well as EPA performance
channels in Figure 5.17. At first note, that obviously for increasing block-
size gambling is much easier, since guessing one physical resource block cor-
rectly results in a larger number of correct resources. Similar to Figure 5.16
for s-sparse channels, a blocksize of twice the number of s achieves good
estimation performance. For a larger blocksize, the failure rate is below
the detection limit. In contrast to that, the failure rate for distinguishing
EPA CIRs decreases slowly but steadily for larger blocksizes. However, in
comparison to the 8-sparse channel with 10 dB SNR, the EPA CIRs are
distinguished at an SNR of 0 dB. Nevertheless, for both channel types an
increasing blocksize significantly improves the identification of the resource
allocation map.

Finally, in Figure 5.18, we perform simulations for the different perfor-
mance channels from 3GPP and ITU (see Section 2.3) as well as the short-
range factory automation (SFA) channels from our measurements (see Sec-
tion 4.6.1). The performance channel models are sorted by the excess delay,
see Table 4.5. Interestingly, the estimation performance increases for larger
excess delay. In particular, Algorithm 5.1 performs visibly worse for an SFA
channel with LOS characteristics than for an SFA channel with NLOS char-
acteristics. The arguments are similar as stated before. For larger excess
delay the sparse entries are more distinguishable, leading to more complex
fingerprints of the CIRs. Thus, the CIRs can be easier distinguished from
each other. Consequently, the estimation performance of Algorithm 5.1 can
benefit from larger excess delay of compressible wireless channels.
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5.9 Summary

In this Chapter, we introduced a framework to identify non-adjacent re-
sources belonging to the same transmitter by frequency-division multiple
access signal observation from multiple transmitters. In particular, we per-
form allocation map retrieval without prior knowledge of the actual overall
resource allocation map. We analyzed two scenarios, (i) channel transfer
function measurements observing pilots, and (ii) spectral channel power
measurements observing constant amplitude signals. In general, allocation
map retrieval is a combinatorial problem, which addresses activity detec-
tion as well as identifying all resources of the same transmitter. Therefore,
we determined the combinatorial problem size of allocation map retrieval
given by the Bell number in general and by the Stirling number of the
second kind for a distinct number of transmitters. Furthermore, we elabo-
rated the general problem of allocation map retrieval in more detail. We
compared our problem with unlabeled sensing and pointed out similarities.
Subsequently, we derived an objective function based on the ℓ1–norm to
perform AMR. Furthermore, to enable the use of orthogonal matching pur-
suit (OMP), we proposed a joint ℓ0-pseudonorm ℓ2-error measure. To verify
the objective function, we performed combinatorial simulations based on ba-
sis pursuit denoising (BPDN) and OMP, where the joint measure of OMP
achieved superior performance over BPDN. Based on the objective function,
we developed a feasible but suboptimal algorithm based on OMP to identify
non-adjacent resources with certain structure. The performance is shown in
simulations using s-sparse channels as well as practical performance chan-
nels from 3GPP, ITU, and our measurement campaign presented in Sec-
tion 4.6.2. The performance results showed, that the proposed algorithm is
able to identify the non-adjacent resources belonging to the same transmit-
ter, if the channel representation can be reconstructed for the given physical
resource block. Furthermore, we would like to emphasize that finding the
correct resource allocation also yields the channel impulse response or the
circular autocorrelation of the channel impulse response.
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Chapter 6

Summary

In recent years the focus of wireless information and communications tech-
nologies laid in mobile broadband, which majorly addressed human-centric
communication for smartphones and computers. In future, wireless com-
munications will be strongly diversified. Besides human-centric communica-
tions also machine-to-machine communications with manifold requirements
shall be supported. There, sporadic access as well as device-to-device com-
munications play an important role. These new features demand for en-
hanced and new dynamic spectrum access schemes, which enable flexible
use of spectrum resources as well as reduce signaling overhead in communi-
cations. In this thesis, we proposed two dynamic spectrum access schemes:
gray space detection, which can be applied for cognitive radio system, and
allocation map retrieval, which can be used for reduction of signaling over-
head in device-to-device communications. In addition, we conducted a mea-
surement campaign to measure practical wireless channels, which have been
used to evaluate the dynamic spectrum access schemes on a practical basis.

In the first two chapters, Chapters 2 and 3, we introduced the foundations
of wireless communications, dynamic spectrum access and compressed sens-
ing. We introduced a multipath channel model based on the ITU and the
3GPP performance channels. In general, wireless channels exhibit sparse fea-
tures and can be regarded as compressible signals, which is one key aspect
exploited by our dynamic spectrum access schemes. As our basic wireless
system model we considered a multi-carrier system like cyclic-prefix based
OFDM communication system similar to the system used in 3GPP LTE and
3GPP NR. The considered channel estimation algorithms encompassed the
reduced-rank least squares approach, a classical ℓ2–norm approach for gen-
eral problems of linear systems without further structure like sparsity, and

https://en.wikipedia.org/wiki/Information_and_communications_technology
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compressed sensing methods, which exploit the sparsity of a signal. There,
basis pursuit denoising represents a convex method for sparse signals, while
orthogonal matching pursuit is just a greedy algorithm for sparse signals
performing iterative least squares estimations.

One important aspect addressed by Chapter 2 is the statistical hypothesis
tests. An optimal statistical hypothesis test is given by a uniformly most
powerful test, which does not exist in general. Classically, the Neyman-
Pearson lemma is exploited to obtain a uniformly most powerful test for
simple hypotheses. However here, we elaborated a uniformly most powerful
test based on the Karlin-Rubin theorem, which can be applied for signal
detection where a one-sided composite hypothesis is present. In particular,
we proposed a one-sided composite log-likelihood ratio test, where the false
alarm rate (or alternatively the detection rate) can be controlled. Further-
more, we derived a practical approximated hypothesis test based on the em-
pirical cumulative distribution function by exploiting the Glivenko–Cantelli
theorem. Consequently, we were able to perform signal detection with the
use of empirical channel statistics.

A further important aspect is addressed by Chapter 3, where bounds on
the ℓ2-error for partial Fourier measurements are derived. There, we consid-
ered two observations of the received signal, measurements of the channel
transfer function and the spectral channel power. While classic pilot-based
channel estimation retrieves the channel impulse response from complex
channel transfer function measurements, the circular autocorrelation of the
channel impulse response is retrieved via amplitude-based channel estima-
tion from real-valued spectral channel power measurements. Based on prob-
ability distributions we derived the error bounds for successful signal recov-
ery for both observation types. In particular, for channel transfer function
measurements we stated the error bound depending on an approximated
Gamma distribution. In the case of spectral channel power measurements,
we derived an estimate of the error bound depending on the expectation of
the measurement error.

In Chapter 4 we proposed our gray space detection scheme for interweave
cognitive radio system, which aims to find temporary small fractions of in-
active resources within an already occupied primary user spectrum band.
There, gray space detection copes with frequency fading holes and distin-
guishes them from inactive resources. In contrast to the classical energy
detection, gray space detection can be configured to protect the primary
user system from interference of a cognitive radio system with a desired
probability. The gray space detection procedure comprises of three steps to
acquire the unused resources: step 1 applies energy detection to estimate a
preliminary primary user resource allocation, step 2 exploits the preliminary



177

allocation to estimate the spectral channel power from the primary user via
amplitude-based channel estimation, and step 3 applies the log-likelihood
ratio test based on the estimated spectral channel power to acquire the final
primary user resource allocation. The complement set of the final allocation
represents the desired set of gray spaces.

For amplitude-based channel estimation in step 2 three approaches have
been applied: compressed sensing estimators like greedy orthogonal match-
ing pursuit (OMP) and basis pursuit denoising (BPDN) as well as the tra-
ditional reduced-rank least squares (RRLS) estimator. Since primary user
systems like 3GPP LTE target an error rate of 10%, the interesting range
of false alarm rate lies below 10%. There, gray space detection based on
the compressed sensing methods basis pursuit denoising and orthogonal
matching pursuit achieved in general better performance than energy de-
tection, especially in the interesting region below 10% false alarm rate. In
addition, besides the impractical uniformly most powerful hypothesis test
with complete knowledge of the cumulative distribution function of the pri-
mary user channel, we proposed practical thresholds for the log-likelihood
ratio test in step 3 to achieve a desired false alarm rate. In particular, we
derived the gray space test based on the empirical cumulative distribution
function of the primary user channel. Furthermore, we provided the individ-
ual energy detector, which just utilizes the instantaneous spectral channel
power, but no channel statistics. The simulations showed that the gray
space test achieves a significant performance gain over individual energy
detection. Moreover in comparison to the uniformly most powerful test, the
gray space test only visibly suffers at large false alarm rates above 10% (low
primary user protection).

To evaluate gray space detection also for practical wireless channels, we
conducted a measurement campaign presented in Chapter 4, where wireless
short-range factory automation channels of representative manufacturing
process have been measured. The measured channels have been used to
derive short-range factory automation channel models, such that the perfor-
mance of dynamic spectrum access schemes can be evaluated and compared
for practical channels.

Chapter 5 extended gray space detection of Chapter 4 to multiple trans-
mitters, where the superposition of multiple signals in form of an FDMA
signal are observed by a receiver. Thus, while in Chapter 4 only two hy-
potheses were present, describing active and inactive resources, Chapter 5
dealt with more than two hypotheses, each describing a different transmit-
ter. Moreover, in contrast to gray space detection, in Chapter 5 we were
particularly interested in retrieving the distinct resource allocation map of
each transmitter. Therefore, we introduced the framework of allocation map
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retrieval, which shall identify non-adjacent resources belonging to the same
transmitter. While for fixed number of transmitters the combinatorial prob-
lem size is given by the Stirling number of the second kind, for unknown
number of active transmitters the receiver also has to perform activity de-
tection, and therefore, the problem size increases to the Bell number. We
analyzed the allocation map retrieval problem for the two observation types
introduced in Chapter 3, the channel transfer function measurements with
embedded pilot tones, and the spectral channel power measurements with
constant amplitude signals (like in Chapter 4). We showed that the consid-
ered allocation map retrieval problem for the case of a single transmitter is
a subproblem of unlabeled sensing, where in general a permutation matrix
and a unknown vector are jointly recovered, and therefore, given sufficient
i.i.d. measurements, a unique solution exists for the single transmitter allo-
cation map retrieval problem in the noiseless case with probability one.

For both observation types we proposed an objective function solving the
combinatorial problem of allocation map retrieval by exploiting the sparse
properties of the wireless channel. Informally, the objective function selects
the pair of resource allocations and channel representations of the demixed
receive signal with the smallest ℓ1–norm. To verify the objective function,
we performed brute-force simulations based on BPDN and OMP, where
the joint ℓ0-pseudonorm ℓ2-error measure of OMP achieved superior perfor-
mance over BPDN.

In addition, we developed an efficient but suboptimal algorithm based
on the OMP approach to perform AMR with the use of physical resource
blocks. The simulation results showed, that the proposed algorithm is able
to identify the non-adjacent resources belonging to the same transmitter,
if the channel representation can be reconstructed for the given physical
resource blocksize. Note that finding the correct resource allocation gener-
ally also yields in retrieving the channel impulse response or the spectral
channel power depending on the used transmit alphabet.

Open Questions and Future Work

• In Chapter 3 we derived a bound on the ℓ2-error, such that the circular
autocorrelation of the channel impulse response can be estimated from
spectral channel power measurements. Unfortunately, the bound is
not very precise since the underlying distribution is represented by
the ℓ4-norm of complex normal random variable. The bound may be
refined using concentration inequalities [CL06].

• Gray space detection is also faced with a joint estimation problem,
where in the course of recovering the resource allocation of the pri-

https://en.wikipedia.org/wiki/Concentration_inequality
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mary user the spectral channel power is estimated as well. Currently,
the spectral channel power is estimated based on a preliminary set of
resources, where the preliminary set is obtained via energy detection.
The turbo principle like in [HB03; IKW+09] may increase the detec-
tion performance, if the final estimate of the primary user resources
allocation of step 3 is fed back to the spectral channel power estimator.

• Currently, the objective function for the allocation map retrieval prob-
lem in Chapter 5 is obtained mainly by heuristic considerations and
evaluated via simulations. The mathematical proof, whether the
ℓ1–norm can identify the correct allocation among all possible allo-
cation, is still open.

• In Chapter 5 we investigated the allocation map retrieval problem
for different physical resource blocksizes. However, there are some
further questions regarding the feasibility of the problem. First, let us
assume that the channel representations are known in advance. Are
there any restrictions on the physical resource blocksize, such that the
reconstruction of the resource allocation is successful? Furthermore,
let us assume that each transmitter selected sufficient resources to
reconstruct the channel representation. Are there restrictions on the
physical resource blocksize as well?

• In Chapter 5 an allocation map retrieval algorithm is proposed, which
iteratively reconstructs the resource allocation of all transmitters by
breadth-first search. The development of alternative algorithms based
on belief propagation or alternating minimization may result in better
estimation performance.
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Appendix A

Probability Distributions

Probability distributions of a random variable X are used in the complete
field of wireless communications. In particular the tuning of algorithms
to obtain the correct solution requires good knowledge about the underly-
ing distribution of variables (such as noise) and its derivatives. The two
volumes of Johnson in 1994 [JKB94] and 1995 [JKB95] give detailed in-
sights to the various probability distributions. In addition, the collection of
Walck [Wal07] provides a quick and comprehensive compilation of several
probability distributions. We will focus here on continuous distributions,
which can be described by probability density functions (PDFs).

A function fX(a) is called the PDF of a real-valued random variable X ,
if the following property is satisfied [Pap91, Chapter 2-2]

∞∫

−∞

fX(a) da = 1. (A.0.1)

The cumulative distribution function (CDF) FX(a) describes the probability
that X < b and is obtained from the integral of the PDF

P(X < b) = FX(b) =

b∫

−∞

fX(a) da. (A.0.2)

Note, that P(X < b) = P(X ≤ b), since P(X = b) = 0 for continuous distri-
butions. The probability that X lies within the interval of b and c is given
by

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution#Continuous_probability_distribution
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P(b < X < c) = FX(c) − FX(b) =

c∫

b

fX(a) da. (A.0.3)

Since the CDF (A.0.2) is a monotone function, the inverse function of the
CDF exists

F−1
X (P ) = max (c ∈ R : Pd ≥ FX(c)). (A.0.4)

The inverse cumulative distribution function (ICDF) describes the inverse
of the CDF, such that for a given probability the threshold of the CDF is
returned. The ICDF is also often referred to as percent-point function or
quantile function.

Besides the PDF or CDF, probability distributions are further described
by its properties. In general, central and raw moments of certain order
are used to describe the course of the probability distributions. The most
common properties are the first raw moment, mostly referred to as mean µX

or expectation E[X ], and the second central moment, mostly referred to as
variance σ2

X , which are defined as [Pap91, Chapter 5-3]

µX = E[X ] =

∞∫

−∞

a · fX(a) da

=

∞∫

0

(1 − FX(b)) db −
0∫

−∞

FX(b) db, (A.0.5)

σ2
X = E

[
(X − µX)2

]
=

∞∫

−∞

(a − µX)2 · fX(a) da. (A.0.6)

Given a random variable X and a function g(X) the expectation can be cal-
culated by the integral of the function g(a) and the PDF with fX(a) [Pap91,
Chapter 5-3]

E[g(X)] =

∞∫

−∞

g(a) · fX(a) da. (A.0.7)

Thus, following (A.0.7) the raw moment of order N is described by [Wal07,
Chapter 2.2] and [Pap91, Chapter 5-3]

https://en.wikipedia.org/wiki/Quantile_function
https://en.wikipedia.org/wiki/Moment_(mathematics)
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Moment_(mathematics)
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E
[
XN

]
=

∞∫

−∞

aN · fX(a) da (A.0.8)

For continuous distributions with support on the positive infinite inter-
val [0, ∞] (or alternatively P(X < 0) = 0), the N -th raw moment is cal-
culated with

E
[
XN

]
=

∞∫

0

aN · fX(a) da (A.0.9)

= N ·
∞∫

0

bN−1 · (1 − FX(b)) db. (A.0.10)

A.1 Normal Distribution

One of the most commonly known distribution is the normal distributed,
which is defined on the complete real line (−∞, ∞). In general, the normal
distribution is present in diverse scenarios. However, in the domain of signal
processing noise is often described via the normal distribution.

The standard normal distribution describes a normalized version of the
normal distribution. The PDF and CDF of a standard normal distributed
random variable X ∼ fN (· ; 0, 1) is given in (A.1.1) and (A.1.2), respec-
tively [JKB94; Wal07]

fN ,X(a) =
1√
2π

exp

(
−1

2
a2

)
, (A.1.1)

FN ,X(b) =
1√
2π

b∫

−∞

exp

(
−1

2
a2

)
da

=
1

2
+

1

2
· erf

(
b√
2

)
. (A.1.2)

The error function is defined by

erf (c) =
2√
π

c∫

0

exp
(
−a2

)
da. (A.1.3)

https://en.wikipedia.org/wiki/Normal_distribution
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FN ,X(b) 50% 84.13% 90% 95% 97.72% 99% 99.87%

b 0 1 1.28 1.64 2 2.33 3

Table A.1: Example values b for different P(X < b).

Consequently, the ICDF of the standard normal distribution is defined by

F−1
N ,X(P ) =

√
2 · erf−1 (2P − 1) . (A.1.4)

Some example probabilities of the standard normal distribution regarding b
are given in Table A.1, which are obtained by (A.1.2) or by (A.1.4).

The normal distributed random variable Y ∼ fN
(
· ; µY , σ2

Y

)
with mean µY

and variance σ2
Y represents the general version of the standard normal dis-

tribution. By substitution of a′ = a−µY

σY
in (A.1.1) the PDF of the normal

distribution is derived by

fN ,Y

(
a; µY , σ2

Y

)
da = fN ,X(a′) da′

= fN ,X

(
a − µY

σY

)
da′

da
da

= fN ,X

(
a − µY

σY

) d

(
a − µY

σY

)

da
da

= fN ,X

(
a − µY

σY

)
· 1

σY
da

=
1√
2π

· exp

(
−1

2

(
a − µY

σY

)2
)

· 1

σY
da. (A.1.5)

Thus, the PDF of the normal distribution is

fN ,Y

(
a; µY , σ2

Y

)
=

1√
2π · σY

· exp

(
−1

2

(
a − µY

σY

)2
)

. (A.1.6)

The corresponding CDF is obtained by substitution of b = b′−µY

σY
in (A.1.2)

FN ,Y

(
b; µY , σ2

Y

)
= FN ,X(b′)
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= FN ,X

(
b − µY

σY

)

=
1

2
+

1

2
· erf

(
b − µY√

2 · σY

)
. (A.1.7)

Consequently, the ICDF of the normal distribution (a generalization
of (A.1.4)) is defined by

F−1
N ,Y

(
P ; µY , σ2

Y

)
= µY +

√
2 · σY · erf−1 (2P − 1) . (A.1.8)

The example probabilities given in Table A.1 can also be obtained by ap-
propriate normalization of b in (A.1.7) with b−µY

σY
.

A.2 Complex Normal Distribution

The complex normal distribution is obtained by addition of two normal dis-
tributed random variable X = Re{X} + i · Im{X}. Therefore, a complex
normal distribution can also be seen as a joint distribution of two real ran-
dom variables. Both, the real and imaginary part of the random variable
follow the normal distribution with

Re{X} ∼ fN
(

· ; µRe{X}, σ2
Re{X}

)

Im{X} ∼ fN
(

· ; µIm{X}, σ2
Im{X}

)
.

The general complex normal distribution is fully described by three param-
eters: (i) the mean, (ii) the covariance matrix and (iii) the complementary
covariance (or pseudo-covariance) matrix. Here we will consider the special
case of proper complex normal distribution [SS14; NM93], where the com-
plementary covariance matrix is zero. Furthermore, we assume a diagonal
covariance matrix, where the values of the main diagonal are equal. There-
fore, we have independently distributed Re{X} and Im{X} with identical
variance. Thus, this proper complex normal distribution is fully described by
two scalar parameters: (i) the mean µX ∈ C and (ii) the variance σ2

X ∈ R≥0,
which are calculated by

µX = µRe{X} + i · µIm{X}, (A.2.1)

σ2
X = σ2

Re{X} + σ2
Im{X} = 2σ2

Re{X} = 2σ2
Im{X}. (A.2.2)

Note that σ2
Re{X} = σ2

Im{X} = 1
2 σ2

X . Consequently, the proper complex
normal distribution with identical variance is

X ∼ fCN
(
· ; µX , σ2

X

)
(A.2.3)

https://en.wikipedia.org/wiki/Normal_distribution#Quantile_function
https://en.wikipedia.org/wiki/Complex_normal_distribution
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and Re{X} and Im{X} are distributed by

Re{X} ∼ fN

(
· ;Re{µX} ,

1

2
σ2

X

)
,

Im{X} ∼ fN

(
· ; Im{µX} ,

1

2
σ2

X

)
. (A.2.4)

A.3 Circularly-Symmetric Complex Normal

Distribution

The circularly-symmetric complex normal distribution is a special case of
the proper complex normal distribution. There, a complex normal random
variable X = Re{X} + i · Im{X} is circularly-symmetric complex normal
distributed, if and only if Re{X} and Im{X} are statistically independent
and identically distributed [Gal08] with

Re{X} , Im{X} ∼ fN
(

· ; 0, σ2
Re{X}

)
.

Thus, the variance σ2
X of a circularly-symmetric complex normal distributed

variable
X ∼ fCN

(
· ; 0, σ2

X

)
(A.3.1)

is calculated in the same way as in (A.2.2) by [MC04]

σ2
X = σ2

Re{X} + σ2
Im{X} = 2σ2

Re{X} = 2σ2
Im{X}, (A.3.2)

where the distribution of real and imaginary part follows

Re{X} , Im{X} ∼ fN

(
· ; 0,

1

2
σ2

X

)
. (A.3.3)

E.g. the real and imaginary parts of a circularly-symmetric complex normal
random variable Y ∼ fCN (· ; 0, 1) are distributed with Re{Y } , Im{Y } ∼
fN
(
· ; 0, 1

2

)
.

A.4 Chi Distribution

The chi distribution derives from standard normal distributed random val-

ues, such that X =
√

|X1|2 + . . . +
∣∣XNf

∣∣2 with degree of freedom Nf ∈
R≥0, for further reference see [JKB94, Chapter 18] and [Wal07, Chap-
ter 8.14]. While the random variable X is chi distributed X ∼ fχ(· ; Nf), the

https://en.wikipedia.org/wiki/Complex_normal_distribution#Circularly-symmetric_normal_distribution
https://en.wikipedia.org/wiki/Chi_distribution
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Fχ,X(b; 1) 50% 68.27% 90% 95% 95.45% 99% 99.73%

b 0.67 1 1.64 1.96 2 2.58 3

Table A.2: Example values b for different P(−b < X < b), which represents the
coverage probability of the standard normal distribution.

underlying random variables are Xn ∼ fN (· ; 0, 1). The PDF and CDF of
the chi distribution on the supported semi-infinite interval (0, ∞) are given
in (A.4.1) and (A.4.2), respectively

fχ,X(a; Nf ) =
aNf −1 · exp

(
− a2

2

)

2

(
Nf

2 −1

)
· Γ
(

Nf

2

) (A.4.1)

Fχ,X(b; Nf) =
γ
(

Nf

2 , b2

2

)

Γ
(

Nf

2

) , (A.4.2)

For degree of freedom Nf = 1 the CDF of the chi distribution simplifies to

Fχ,X(b; 1) = erf

(
b√
2

)
. (A.4.3)

From (A.4.3) the ICDF is obtained by

F−1
χ,X(P ; 1) =

√
2 · erf−1 (P ) . (A.4.4)

In the context of standard normal distribution, the CDF of the chi distribu-
tion with Nf = 1 (A.4.3) states the coverage probability of standard normal
distribution

Fχ,X(b; 1) = P(−b < X1 < b)

= FN ,X1 (b; 0, 1) − FN ,X1 (−b; 0, 1) . (A.4.5)

Some example probabilities of the chi distribution with Nf = 1 regarding b
are given in Table A.2, which are obtained by (A.4.3) or by (A.4.4).

A.5 Rayleigh Distribution

The Rayleigh distributed is commonly used in communications for the propa-
gation model called Rayleigh fading, see Section 2.3. In contrast to the previ-

https://en.wikipedia.org/wiki/Normal_distribution#Standard_deviation_and_coverage
https://en.wikipedia.org/wiki/Rayleigh_distribution
https://en.wikipedia.org/wiki/Rayleigh_fading


188 Appendix A Probability Distributions

FRayleigh,Y

(
b; 1√

2
σX

)
63.21% 90% 95% 98.17% 99%

b 1 1.52 1.73 2 2.15

Table A.3: Example values b for different P(Y < b · σX).

ously characterized chi distribution in Appendix A.4, the Rayleigh describes
only 2 degrees of freedom, but with arbitrary variance σ2

X ∈ R>0. If we have
a circularly-symmetric complex normal random variable X ∼ fCN

(
· ; 0, σ2

X

)
,

then the derived absolute value is Rayleigh distributed

Y = ‖X‖2 =
√
Re{X}2 + Im{X}2 ∼ fRayleigh

(
· ;

1√
2

σX

)
, (A.5.1)

where the mode 1√
2
σX describes the Rayleigh distribution. The scaling of

the mode results from the underlying circularly-symmetric complex normal
distribution fCN

(
· ; 0, σ2

X

)
, see (A.3.3). Therefore, its PDF and CDF on the

supported semi-infinite interval (0, ∞) [JKB94; Wal07] is given by (A.5.2)
and (A.5.3), respectively

fRayleigh,Y

(
a;

1√
2

σX

)
=

2a

σ2
X

· exp

(
− a2

σ2
X

)
(A.5.2)

FRayleigh,Y

(
b;

1√
2

σX

)
= 1 − exp

(
− b2

σ2
X

)
, (A.5.3)

Setting σX =
√

2, the Rayleigh distribution equals the chi distribution with
two degrees of freedom. From (A.5.3) the ICDF is obtained by

F−1
Rayleigh,Y

(
P ;

1√
2

σX

)
= σX ·

√
− ln(1 − P ). (A.5.4)

Some example probabilities of the Rayleigh distribution regarding b are
given in Table A.3, which are obtained for σ2

X = 1 by (A.5.3) or by (A.5.4).
The same results are obtained by scaling b with σ2

X instead of setting σ2
X = 1.

A.6 Chi-Squared Distribution

The chi-squared distribution is supported on the semi-infinite interval (0, ∞)
and occurs frequently as the resulting distribution for squared ℓ2-norms of

https://en.wikipedia.org/wiki/Rayleigh_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution
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standard normal random variables. The chi-squared distribution is strongly
related to the chi distribution (see Appendix A.4), such that

√
X ∼ fχ(·)

for a chi-squared random variable X .
The chi-squared distribution with Nf degree of freedom as defined

in [JKB94; Wal07] describes the distribution of a random variable X =∑Nf

n=1 (Xn)2 ∼ fχ2 (· ; Nf ), where Xn ∼ fN (· ; 0, 1). The PDF and CDF of
the chi-squared distribution on (0, ∞) are given by

fχ2,X(a; Nf) =

(a

2

)
(

Nf
2 −1

)

· exp
(
− a

2

)

2 · Γ
(

Nf

2

) (A.6.1)

Fχ2,X(b; Nf) =
γ
(

Nf

2 , b
2

)

Γ
(

Nf

2

) (A.6.2)

Furthermore, for parameter Nf/2 ∈ N (present in sum of circularly-
symmetric complex normal random variables) the CDF of the chi-squared
distribution (A.6.2) in the interval (0, ∞) can be simplified to [Wal07, Chap-
ter 42.5.3]

Fχ2,X(b; Nf) = 1 − exp

(
b

2

) Nf
2 −1∑

n=0

bn

2n · n!
, Nf /2 ∈ N. (A.6.3)

The Gamma function Γ (·) and the lower incomplete Gamma function γ(·, ·)
are defined by

Γ (b) =

∞∫

0

ab−1 exp(−a) da, (A.6.4)

γ(b, c) =

c∫

0

ab−1 exp(−a) da. (A.6.5)

Since the argument of the Gamma function in (A.6.1) and (A.6.2) can only
be a positive natural number divided by two, the calculation of the Gamma
function (A.6.4) with N ∈ N can be simplified to a factorial expression



190 Appendix A Probability Distributions

Γ (N + 1) = N ! , (A.6.6)

Γ

(
N +

1

2

)
=

√
π · (2N)!

N ! · 4N
. (A.6.7)

A.7 Gamma Distribution

The Gamma distribution is supported on the semi-infinite interval (0, ∞)
and occurs often as the resulting distribution for ℓ2-norms of (complex)
normal random variables (e.g. the ℓ2-norm of noise). The chi-squared dis-
tribution of the previous Appendix A.6 is a special case of the Gamma
distribution.

In the literature the Gamma distribution is described with different pa-
rameterizations. We focus here on the Gamma distribution with two-
parameters as defined in [JKB94; Wal07]. A random variable X following
the Gamma distribution is characterized by the shape parameter c and scale
parameter d. Note, that [Wal07] uses the inverse scale parameter to describe
the Gamma distribution. The PDF and CDF for a, b > 0 and c, d > 0 are
given by

fΓ,X(a; c, d) =
ad−1 exp(−a/c)

cdΓ (d)
, (A.7.1)

FΓ,X(b; c, d) =
γ(d, b/c)

Γ (d)
. (A.7.2)

For the parameters c = 2 and d = Nf /2 the Gamma distribution represents
the chi-squared distribution. However, the chi-squared distribution only
supports the underlying standard normal distribution fN (· ; 0, 1). Thus, an
underlying normal distributed random variable Xn ∼ fN

(
· ; 0, σ2

X1

)
is only

supported indirectly by a scaled chi-squared distributed random variable

X/σ2
X1

=

Nf∑

n=1

(Xn/σX1 )2 ∼ fχ2 (· ; Nf) .

In contrast to that, the Gamma distribution X ∼ fΓ

(
· ; 2σ2

X1
, Nf /2

)
di-

rectly supports the underlying normal distribution with variance σ2
X1

and
zero mean. Considering circularly-symmetric complex normal random vari-

https://en.wikipedia.org/wiki/Gamma_distribution
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ables Yn ∼ fCN
(
· ; 0, σ2

Y1

)
, then

Y =

Nf /2∑

n=1

|Yn|2 ∼ fΓ

(
· ; σ2

Y1
, Nf/2

)
,

where Nf /2 is the number of complex normal random variables. For
completeness, taking (A.3.2) with σ2

Y1
= 2σ2

Im{Yn}, then we have Y ∼
fΓ

(
· ; 2σ2

Re{Yn}, Nf /2
)

. Note, that if not stated otherwise we will only con-

sider complex normal random variables. Thus, Nf /2 ∈ N is always fulfilled.
Rewriting (A.7.1) and (A.7.2) for the complex normal random variables
using the variance σ2

Y1
and Nf/2, we get

fΓ,Y

(
a; σ2

Y1
, Nf /2

)
= exp

(
− a

σ2
Y1

)
· a

Nf
2 −1

σ
Nf

Y1
·
(

Nf

2 − 1
)

!
, (A.7.3)

FΓ,Y

(
b; σ2

Y1
, Nf /2

)
=

γ

(
Nf

2 , b
σ2

Y1

)

Γ
(

Nf

2

)

= 1 − exp
(
−b/σ2

Y1

)
·

Nf
2 −1∑

n=0

bn

σ2n
Y1

n!
. (A.7.4)

In relation to the chi-squared distribution, the Gamma distribution with
regard to the variance σ2

Y1
can also be written

fΓ,Y

(
a; σ2

Y1
, Nf /2

)
= 2 · fχ2,Y

(
2a

σ2
Y1

; Nf

)
/σ2

Y1
, (A.7.5)

FΓ,Y

(
b; σ2

Y1
, Nf /2

)
= Fχ2,Y

(
2b

σ2
Y1

; Nf

)
. (A.7.6)

For large degree of freedom Nf the CDF of the Gamma distribution (A.7.4)
can be approximated by the normal distribution
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FΓ,Y

(
b; σ2

Y1
, Nf /2

)
≈ FN (b′) ,

where b′ =
2
√

b

σY1

−
√

2Nf − 1, (A.7.7)

or b′ =

√
9Nf

2
·
(

3

√
2b

Nfσ2
Y1

+
2

9Nf
− 1

)
, (A.7.8)

which is derived similar to the approximation of the chi-squared distribution
in [Wal07, Chapter 8.6]. While the simple approximation in (A.7.7) already
achieves good results, (A.7.8) utilizing the cubic root is even more accurate.

Considering the above approximations, we can also derive an approxima-
tion for the ICDF of the Gamma distribution for large degree of freedom.
Therefore, we plug the modified variable b′ of (A.7.8) into the CDF of the
standard normal distribution (A.1.2) and derive the inverse function. Thus,
based on (A.7.8) we obtain an approximated ICDF of the Gamma distribu-
tion

F−1
Γ,Y

(
P ; σ2

Y1
, Nf /2

)
≈ Nf

2
· σ2

Y1

(√
2

9Nf
F−1

N (P ) + 1 − 2

9Nf

)3

. (A.7.9)

The raw moment of order N of the Gamma distribution is calculated
by [Wal07, Chapter 17.3]

E
[
Y N
]

= σ2N
Y1

·
Γ
(

Nf

2 + N
)

Γ
(

Nf

2

) = σ2N
Y1

·

(
Nf

2 + N − 1
)

!
(

Nf

2 − 1
)

!
. (A.7.10)

Note, that Nf

2 ∈ N. Equation (A.7.10) can be further simplified for the first
raw moment. Thus, the mean of the Gamma distribution is given by

µY = E[Y ] = Nf /2 · σ2
Y1

. (A.7.11)

Taking the approximation of (A.7.8) the probability at the point of the
expectation (A.7.11) is simply written

FΓ,Y

(
Nf /2 · σ2

Y1
; σ2

Y1
, Nf /2

)
≈ FN

(√
2

9Nf

)
. (A.7.12)

https://en.wikipedia.org/wiki/Moment_(mathematics)
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Furthermore, the variance of the Gamma distribution is obtained by

σ2
Y = E

[
(Y − E[Y ])2

]
= E

[
Y 2
]

− E[Y ] 2

=
Nf

2

(
Nf

2
+ 1

)
σ4

Y1
−
(

Nf

2

)2

σ4
Y1

=
Nf

2
· σ4

Y1
. (A.7.13)

Since the Gamma distribution tends to the normal distribution for large
degree of freedom

lim
Nf →∞

2

Nf
FΓ,Y

(
b; σ2

Y1
, Nf/2

)
= FN ,Y

(
b; σ2

Y1
, σ4

Y1

)
, (A.7.14)

we can approximate the Gamma distribution also by the standard normal
distribution

lim
Nf →∞

FΓ,Y

(
b; σ2

Y1
, Nf /2

)
− Nf /2 · σ2

Y1

Nf /2 · σ4
Y1

= FN ,Y (b) . (A.7.15)

Thus, some approximated example probabilities of the normalized Gamma
distribution in (A.7.15) for large degree of freedom Nf regarding b are given
in Table A.1, which are obtained by (A.1.2).

A special case of the Gamma distribution is present for two random
variables X1, X2 ∼ fN

(
· ; 0, σ2

X1

)
, which can be rewritten as a circularly-

symmetric complex normal random variable

Y1 =
X1 + iX2√

2
∼ fCN

(
· ; 0, σ2

Y1

)
, (A.7.16)

which we have introduced in Appendix A.3. Thus, we have

Re{Y1} , Im{Y1} ∼ fN

(
· ; 0,

1

2
σ2

Y1

)
. (A.7.17)

Consequently, the Gamma distribution with Nf = 2 simply results from the
ℓ2-norm with

Y = ‖Y1‖2
2 ∼ fΓ

(
· ; σ2

Y1
, 1
)

. (A.7.18)

Note, that the special case with Nf = 2 represents the squared random
variable of the Rayleigh distribution as discussed in Appendix A.5. The
PDF and CDF from (A.7.3) and (A.7.4) simplifies to

fΓ,Y

(
a; σ2

Y1
, 1
)

=
1

σ2
Y1

· exp

(
− a

σ2
Y1

)
, (A.7.19)
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FΓ,Y

(
b; σ2

Y1
, 1
)

50% 63.2% 90% 95% 98.2% 99%

b 0.69σ2
Y1

σ2
Y1

2.3σ2
Y1

3σ2
Y1

4σ2
Y1

4.61σ2
Y1

Table A.4: Example values b given Nf = 2 for different P(Y < b).

FΓ,Y

(
b; σ2

Y1
, 1
)

= 1 − exp

(
− b

σ2
Y1

)
. (A.7.20)

Solving (A.7.20) for b results in

F−1
Γ

(
P ; σ2

Y1
, 1
)

= −σ2
Y1

· ln(1 − P ) , (A.7.21)

representing the ICDF of the Gamma distribution with Nf = 2.
Some example probabilities of the Gamma distribution with Nf = 2

regarding b are given in Table A.4, which are obtained by (A.7.20) or
by (A.7.21). The N -th order raw moment for two degrees of freedom sim-
plifies from (A.7.10) to

E
[
Y N
]

= N ! · σ2N
Y1

. (A.7.22)

A.8 Non-Central Chi-Squared Distribution

The non-central chi-squared distribution fχ2
nc

(·) with Nf degrees of freedom
and non-central parameter

µχ2
nc

=

Nf∑

n=1

(µXn
)2 (A.8.1)

as defined in [Mui82] describes the distribution of a random variable

X =

Nf∑

n=1

(Xn)2 ∼ fχ2
nc

(
· ; Nf , µχ2

nc

)
, (A.8.2)

where Xn ∼ fN (· ; µXn
, 1). The PDF and CDF of the non-central chi-

squared distribution on (0, ∞) are given by

https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
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fχ2
nc,X

(
a; Nf , µχ2

nc

)
=

∞∑

n=0

(µχ2
nc

2

)n

·
exp
(

−µχ2
nc

2

)

n!

·

(a

2

)
(

Nf
2 +n−1

)

· exp
(

−a

2

)

2 · Γ
(

Nf

2 + n
)

︸ ︷︷ ︸
fχ2,X(a;Nf +2n)

=
a

Nf
2 −1 exp

(
− 1

2

(
µχ2

nc
+ a
))

2
Nf

2
√

π

·
∞∑

n=0

(
µχ2

nc
a
)n

Γ
(

1
2 + n

)

(2n)! · Γ
(

Nf

2 + n
) , (A.8.3)

Fχ2
nc,X

(
b; Nf , µχ2

nc

)
= exp

(
−µχ2

nc

2

) ∞∑

n=0

(µ
χ2

nc

2

)n

n!
·

γ
(

Nf

2 + n, b
2

)

Γ
(

Nf

2 + n
)

︸ ︷︷ ︸
Fχ2,X(b;Nf +2n)

, (A.8.4)

where fχ2,X(a; Nf + 2n) (A.6.1) and Fχ2,X(b; Nf + 2n) (A.6.2) represents
the PDF and the CDF of the chi-squared distribution in Appendix A.6,
respectively.

A.9 Scaled Non-Central Chi-Squared Distri-

bution

Extending the non-central chi-squared distribution in the previous Ap-
pendix A.8, the scaled non-central chi-squared distribution operates on the
normal distribution Xn ∼ fN

(
· ; µXn

, σ2
Xn

)
as defined in Appendix A.1. In

particular, the scaled non-central chi-squared distribution describes the ran-
dom variable

X =

Nf∑

n=1

|Xn|2 ∼ fχ2
sn

(
· ; Nf , µχ2

sn
, σ2

X1

)
(A.9.1)
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with the non-central parameter

µχ2
sn

=

Nf∑

n=1

(µXn
)2

. (A.9.2)

By considering the scaling with appropriate substitution, the scaled
non-central chi-squared distribution can be described via the non-central
chi-squared distribution, see (A.8.3). Thus, for a > 0 we obtain the PDF

fχ2
sn,X

(
a; Nf , µχ2

sn
, σ2

X1

)
=

fχ2
nc,X

(
a

σ2
X1

; Nf , σX1 · µχ2
sn

)

σ2
X1

. (A.9.3)

The corresponding CDF of the scaled non-central chi-squared distribu-
tion for b > 0 is also given via the non-central chi-squared distribution
(see (A.8.4)) with

Fχ2
sn,X

(
b; Nf , µχ2

sn
, σ2

X1

)
= Fχ2

nc,X

(
b

σ2
X1

; Nf , σX1 · µχ2
sn

)
. (A.9.4)

The full form of the PDF is written

fχ2
sn,X

(
a; Nf , µχ2

sn
, σ2

X1

)
=

∞∑

n=0

(σX1 · µχ2
sn

2

)n

·
exp
(

− σX1 ·µ
χ2

sn

2

)

2 · n!

· fΓ,X

(
a

2
; σ2

X1
,

Nf

2
+ n

)

=
∞∑

n=0

(σX1 · µχ2
sn

2

)n

·
exp
(

− σX1 ·µ
χ2

sn

2

)

2 · n!

·

(
a

2σ2
X1

)
(

Nf
2 +n−1

)

· exp

(
− a

2σ2
X1

)

σ2
X1

· Γ
(

Nf

2 + n
)

= a
Nf

2 −1 exp

(
−1

2

(
σX1 · µχ2

sn
+

a

σ2
X1

))

·
∞∑

n=0

σ
−(n+Nf )
X1

·
(
µχ2

sn
· a
)n

22n+
Nf

2 · n! ·
(

Nf

2 + n − 1
)

!
, (A.9.5)



Appendix A.9 Scaled Non-Central Chi-Squared Distribution 197

where fΓ,X

(
a
2 ; σ2

X1
,

Nf

2 + n
)

represents the PDF from (A.7.1) of the Gamma

distribution. The full form of the corresponding CDF is given by

Fχ2
sn,X

(
b; Nf , µχ2

sn
, σ2

X1

)
= exp

(
−σX1 · µχ2

sn

2

) ∞∑

n=0

(
σX1 · µχ2

sn

)n

2n · n!

·
γ

(
Nf

2 + n, b
2·σ2

X1

)

Γ
(

Nf

2 + n
)

︸ ︷︷ ︸
FΓ,X

(
b
2 ;σ2

X1
,

Nf

2 +n

)

= exp
(

−σX1 · µχ2
sn

2

) ∞∑

n=0

(σX1 ·µ
χ2

sn

2

)n

n!
(A.9.6)

·


1 − exp

(
− b

2 · σ2
X1

) Nf
2 +n−1∑

m=0

bm

2m · m! · σ2m
X1


 ,

where FΓ,X

(
b
2 ; σ2

X1
,

Nf

2 + n
)

represents the CDF from (A.7.2) of the

Gamma distribution in Appendix A.7.
The first raw moment (mean) of the scaled non-central chi-squared dis-

tribution is calculated by [Wal07, Chapter 31.3]

µX = E[X ] = Nf · σ2
X1

+ µχ2
sn

. (A.9.7)

Approximations

To reduce the complexity, approximation of the scaled non-central chi-
squared distribution can be applied. In particular, the non-central chi-
squared distribution can be approximated by the chi-squared distribution
for large b and N ′

f [JKB95; Wal07]. Thus, we obtain an approximated
scaled non-central chi-squared distribution by

https://en.wikipedia.org/wiki/Moment_(mathematics)
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Fχ2
sn,X

(
b; Nf , µχ2

sn
, σ2

X1

)
≈ Fχ2,X

(
b′; N ′

f

)
with (A.9.8)

b′ =
b

σ2
X1

· Nf + σX1 · µχ2
sn

Nf + 2 · σX1 · µχ2
sn

,

N ′
f =

(
Nf + σX1 · µχ2

sn

)2

Nf + σX1 · µχ2
sn

.

Further reduction in complexity can be achieved by using the standard nor-
mal distribution for large (σX1 · µχ2

sn
), and for non-extreme values of b

σ2
X1

with [JKB95]

Fχ2
sn,X

(
b; Nf , µχ2

sn
, σ2

X1

)
= Fχ2

nc,X

(
b

σ2
X1

; Nf , σX1 · µχ2
sn

)
,

≈ FN ,X(b′) (A.9.9)

where b′ =

√
2b

σ2
X1

· c
−
√

2d

c
− 1,

c = 1 +
σX1 · µχ2

sn

d
,

d = Nf + σX1 · µχ2
sn

Moreover, for large (σX1 · µχ2
sn

) and large (P · (1 − P )) the ICDF of the
approximation (A.9.9) is

F−1
χ2

sn

(
P ; Nf , µχ2

sn
, σ2

X1

)
= σ2

X1
F−1

χ2
nc

(
P ; Nf , σX1 · µχ2

sn

)

≈
(

F−1
N (P ) +

√
2d

c
− 1

)2

· σ2
X1

· c

2
, (A.9.10)

where c = 1 +
σX1 · µχ2

sn

d
, d = Nf + σX1 · µχ2

sn
.

Note, that for values within invalid range the approximation is not a
monotonic increasing function. More detailed, decreasing the probabil-
ity P can increase the result of the ICDF. Empirically it can be said, that
for (P · (1 − P )) > 10−7 and (σX1 · µχ2

sn
) > 50 the approximation is within

valid range and achieves good results.
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Special Case

A special case of the scaled non-central chi-squared distribution is present
for the proper complex normal distributed random variable with identical
variance introduced in Appendix A.2. There, we rewrite the two random
variables X1, X2 with Xn ∼ fN

(
· ; µXn

, σ2
Y1

)
as a complex random variable

Y1 =
X1 + iX2√

2
∼ fCN

(
· ; µY1 , σ2

Y1

)
(A.9.11)

with µY1 = (µX1 + iµX2 ) /
√

2. Thus, we have

Re{Y1} ∼ fN

(
· ;

1√
2
Re{µY1} ,

1

2
σ2

Y1

)
,

Im{Y1} ∼ fN

(
· ;

1√
2
Im{µY1 } ,

1

2
σ2

Y1

)
. (A.9.12)

Consequently, the scaled non-central chi-squared distribution with Nf = 2
is described by

Y = ‖Y1‖2
2 ∼ fχ2

sn

(
· ; 2,

1

2
|µY1 |2 ,

1

2
σ2

Y1

)
. (A.9.13)

The special case is frequently used in communication theory to describe e.g.
the power of a signal. Furthermore, Y represents the squared random vari-
able of the Rice distribution [MC04]. Among others, the Rice distribution is
used in propagation of communication signals to model Rice fading, see Sec-
tion 2.3. The mean and the variance is obtained by (A.2.1) and (A.2.2), re-
spectively. Consequently, the PDF and CDF for Y from (A.9.5) and (A.9.6)
simplifies to

fχ2
sn,Y

(
a; 2,

1

2
|µY1 |2,

1

2
σ2

Y1

)
= exp

(
− 1√

32
· σY1 · |µY1 |2 − a

σ2
Y1

)

·
∞∑

n=0

(√
2 · |µY1 |2 · a

)n

23n · σn+2
Y1

· (n!)2 , (A.9.14)

https://en.wikipedia.org/wiki/Rice_distribution
https://en.wikipedia.org/wiki/Rician_fading
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Fχ2
sn,Y

(
b; 2,

1

2
|µY1 |2,

1

2
σ2

Y1

)
= exp

(
− 1√

32
· σY1 · |µY1 |2

)
(A.9.15)

·
∞∑

n=0

(√
2 · σY1 · |µY1 |2

)n

23n · (n!)2 · γ

(
1 + n,

b

σ2
Y1

)
.



Acronyms

3GPP 3rd Generation Partnership Project.

5G the fifth generation of cellular mobile communications.

a.s. almost surely.

AMR allocation map retrieval.

AWGN additive white Gaussian noise.

BP basis pursuit.

BPDN basis pursuit denoising.

BS base station.

CAC circular autocorrelation of the CIR.

CDF cumulative distribution function.

cf. confer.

CIR channel impulse response.

CLT central limit theorem.

COSAMP compressive sampling matching pursuit.

CP cyclic-prefix.

CS compressed sensing.

D2D device-to-device.

DFT discrete Fourier transform.

DSA dynamic spectrum access.

e.g. for example.

ECDF empirical CDF.

EPA extended pedestrian A.
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et al. and others.

EVA extended vehicular A.

FDMA frequency-division multiple access.

HIRATE High Performance Digital Radio Testbed.

i.e. that is.

i.i.d. independent and identically distributed.

ICDF inverse cumulative distribution function.

IDFT inverse discrete Fourier transform.

iff if and only if.

IOA indoor office A.

IoT Internet-of-Things.

ITU International Telecommunication Union.

LASSO least absolute shrinkage and selection operator.

LLN law of large numbers.

LLR log-likelihood ratio.

LOS line-of-sight.

LS least squares.

LTE Long-Term Evolution.

LTI linear time-invariant.

M2M machine-to-machine.

MLR monotone likelihood ratio.

MPC multipath component.

NLOS non-line-of-sight.

NP non-deterministic polynomial-time.

NR new radio.

NSP null space property.

OFDM orthogonal frequency-division multiplexing.

OFDMA orthogonal FDMA.

OMP orthogonal matching pursuit.

PDF probability density function.
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PDP power delay profile.

PRB physical resource block.

PSD power spectral density.

PU primary user.

QAM quadrature amplitude modulation.

r.m.s. root mean square.

RAM resource allocation map.

RAS resource allocation set.

RF radio frequency.

RIP restricted isometry property.

ROC receiver operating characteristic.

RRLS reduced-rank least squares.

s.t. subject to.

SAGE space-alternating generalized expectation-maximization.

SC-FDMA single-carrier frequency-division multiple access.

SCP spectral channel power.

SDR software-defined radio.

SFA short-range factory automation.

SNR signal-to-noise ratio.

SPGL1 spectral projected gradient for ℓ1–minimization.

SU secondary user.

SVD singular value decomposition.

TTI transmission time interval.

UE user equipment.

UMP uniformly most powerful.

WLAN wireless local area network.

WSSUS wide-sense stationary uncorrelated scatterers.
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Notation

a, A . . . . . . . . . Italic lower- and uppercase letters denote scalars

A . . . . . . . . . . Blackboard bold uppercase letters denote index sets

a . . . . . . . . . . Lowercase bold letters denote column vectors

A . . . . . . . . . . Uppercase bold letters denote matrices

(·)LS, (·)n . . . . . . Subscript distinguishes different variables
or indicate dependency on a subscript variable

a ∈ [n, m) . . . . . . n ≤ a < m, i.e., a takes all values between n and m
excluding value m

Re{a} , Im{a} . . . . Real and imaginary part of variable a

a[n] . . . . . . . . . The n-th element of column vector a

A[n,m] . . . . . . . The element of matrix A at row n and column m

A[·,m] . . . . . . . . Column m of matrix A

A[n,·] . . . . . . . . Row n of matrix A

A[A,B] . . . . . . . . Submatrix formed by selecting a set A of rows and a set B

of columns from A

A ∈ R
a×b . . . . . . Real matrix A with a rows and b columns

a ∈ C
a . . . . . . . Complex vector A with a rows

(a × b) matrix . . . . Generic matrix with a rows and b columns

(·)⊺ . . . . . . . . . Transpose of vector or matrix

(·)∗ . . . . . . . . . Conjugate complex of vector or matrix

(·)H . . . . . . . . Conjugate complex and transpose of vector or matrix

(̂·) . . . . . . . . . Fourier transform of variable



206 Notation

(·)′ . . . . . . . . . Modified version of variable

(̃·) . . . . . . . . . Estimate of a variable

A−1 . . . . . . . . Inverse of matrix A

A+ . . . . . . . . . Pseudoinverse of matrix A

a mod b . . . . . . . Modulo operation

A⊗B . . . . . . . Kronecker product of matrix A and B

a⊺ · b . . . . . . . . Matrix product of row vector a⊺ and column vector b

A · B . . . . . . . . Matrix product of matrix A and B

|·| . . . . . . . . . . Absolute value or cardinality of a set

⌊·⌋ . . . . . . . . . Flooring function

‖a‖
p

. . . . . . . . ℓp-norm, quasinorm or ”norm” depending on value p

‖·‖
F

. . . . . . . . Frobenius norm of a matrix

https://en.wikipedia.org/wiki/Floor_and_ceiling_functions


List of Symbols

Functions and Operators

S(A) . . . . . . . . Group of the permutations of A (symmetric group)

Γ (·) . . . . . . . . Gamma function

Π . . . . . . . . . . Permutation

δ(·) . . . . . . . . . Dirac delta function

γs(a)p . . . . . . . Error of best s-term approximation to a vector a

γ(·, ·) . . . . . . . . Lower incomplete Gamma function

E[X] . . . . . . . . Expectation of X

F(·)(·) . . . . . . . . CDF of random variable or distribution

F̌(·) . . . . . . . . . Empirical CDF

F−1(·) . . . . . . . ICDF (quantile function)

MC(A) . . . . . . . Mutual coherence of matrix

NS(A) . . . . . . . Null space of matrix

O(·) . . . . . . . . Big O notation

P(A) . . . . . . . . Power set of A

P(X) . . . . . . . . Probability of X

P(Y | X) . . . . . . Conditional probability of Y given X

d . . . . . . . . . . Differential operator

diag(A) . . . . . . . Diagonal elements of matrix A

diag(a) . . . . . . . Diagonal matrix constructed from vector a

erf (·) . . . . . . . . Error function

https://en.wikipedia.org/wiki/Symmetric_group
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erf−1 (·) . . . . . . . Inverse error function

exp(·) . . . . . . . . Natural exponential function

f(·) . . . . . . . . . Context specific function

f(·)(·) . . . . . . . . PDF of random variable or distribution

fΓ

(
· ; σ2, N ′

f

)
. . . . Gamma distribution (here PDF)

fN
(
· ; µ, σ2

)
. . . . . Real valued normal distribution (here PDF)

fCN
(
· ; µ, σ2

)
. . . . Complex normal distribution (here PDF)

fRayleigh(· ; σ) . . . . Rayleigh distribution (here PDF)

fχ(· ; Nf ) . . . . . . Chi distribution (here PDF)

fχ2 (· ; Nf ) . . . . . . Chi-squared distribution (here PDF)

fχ2
nc

(· ; Nf , µ) . . . . Non-central chi-squared distribution

fχ2
sn

(
· ; Nf , µ, σ2

)
. . Scaled non-central chi-squared distribution

g(·) . . . . . . . . . Context specific function

ln(·) . . . . . . . . Natural logarithm

loga(·) . . . . . . . Logarithm to base a

median (·) . . . . . . Median

rank(·) . . . . . . . Matrix rank

supp(·) . . . . . . . Vector support

Tr (·) . . . . . . . . Matrix trace

1A(·) . . . . . . . . Indicator function of set A

Matrices

Φ . . . . . . . . . . Measurement matrix

Σ . . . . . . . . . . Diagonal matrix

A . . . . . . . . . . Context specific matrix variable

B . . . . . . . . . Context specific matrix variable

ELS . . . . . . . . LS estimator

ERRLS . . . . . . . RRLS estimator

F . . . . . . . . . . DFT matrix
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IN . . . . . . . . . N × N identity matrix

S . . . . . . . . . . Overall resource allocation map, i.e. S =
[
S0 . . . SK

]

Sk . . . . . . . . . Resource allocation map of transmitter k

U . . . . . . . . . Unitary matrix

V . . . . . . . . . Unitary matrix

Scalars

Λ . . . . . . . . . . Log-likelihood ratio

ΩBW . . . . . . . . Bandwidth

α . . . . . . . . . . Context specific parameter

αKF . . . . . . . . K-factor

β . . . . . . . . . . Context specific parameter

δ . . . . . . . . . . Restricted isometry constant

λ . . . . . . . . . . Tuning parameter

µX . . . . . . . . . Mean of X

µa . . . . . . . . . Mean of a[n]

ρ . . . . . . . . . . Threshold

ρc,a . . . . . . . . . Composite hypothesis threshold on a

ρed . . . . . . . . . Threshold of excess delay

ρs,a . . . . . . . . . Simple hypothesis threshold on a

σX . . . . . . . . . Standard deviation of X

σa . . . . . . . . . Standard deviation of a[n]

σ2
X . . . . . . . . . Variance of X

σ2
a

. . . . . . . . . Variance of a[n]

τ . . . . . . . . . . Delay

τcoh . . . . . . . . . Coherence time

τDS . . . . . . . . . Delay spread

τED . . . . . . . . . Excess delay

τED,max . . . . . . . Maximum excess delay
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τoffset . . . . . . . . Time offset

τp . . . . . . . . . Path delay

A . . . . . . . . . . Context specific scalar variable

H0 . . . . . . . . . Null hypothesis

H1 . . . . . . . . . Alternative hypothesis

H1,c . . . . . . . . Composite alternative hypothesis

H1,s . . . . . . . . Simple alternative hypothesis

K . . . . . . . . . Number of transmitters

L . . . . . . . . . . Natural number

M . . . . . . . . . Natural number

N . . . . . . . . . Natural number

NB . . . . . . . . . Blocksize

NBell . . . . . . . . Bell number

NCP . . . . . . . . Cyclic-prefix length

NDFT . . . . . . . . DFT size

Neps . . . . . . . . Number of possible equal partition sets

Nf . . . . . . . . . Degree of freedom

NRB . . . . . . . . Number of resource blocks

NStirling . . . . . . . Stirling number of second kind

Pd . . . . . . . . . Detection probability

Pfa . . . . . . . . . False alarm probability

U . . . . . . . . . . Random variable

W . . . . . . . . . Random variable

X . . . . . . . . . Random variable

Y . . . . . . . . . . Random variable

Z . . . . . . . . . . Random variable

θ . . . . . . . . . . PDF parameter

a . . . . . . . . . . Context specific scalar variable

b . . . . . . . . . . Context specific scalar variable
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c . . . . . . . . . . Context specific scalar variable or constant

d . . . . . . . . . . Context specific scalar variable

e . . . . . . . . . . Adversarial error/noise symbol

f . . . . . . . . . . Frequency/subcarrier index

h . . . . . . . . . . Channel symbol

i . . . . . . . . . . Imaginary number
(
i =

√
−1
)

k . . . . . . . . . . Transmitter index

l . . . . . . . . . . Context specific index variable

m . . . . . . . . . . Context specific index variable

n . . . . . . . . . . Context specific index variable

p . . . . . . . . . . Hyperparameter of ℓp-norm

s . . . . . . . . . . Sparsity of vector, i.e. ‖a‖0 ≤ s

t . . . . . . . . . . Time index

u . . . . . . . . . . Transmit symbol

w . . . . . . . . . . Received symbol

x . . . . . . . . . . Unknown

y . . . . . . . . . . Measurement

z . . . . . . . . . . Absolute squared received symbol

Sets

Σ . . . . . . . . . . Canonical subspaces

Θ . . . . . . . . . . PDF parameter set

A . . . . . . . . . . Context specific set

B . . . . . . . . . . Context specific set

C . . . . . . . . . . Set of all complex numbers

F . . . . . . . . . . DFT index set

K . . . . . . . . . . Transmitter set

N . . . . . . . . . . Set of all natural numbers

NCAC . . . . . . . . CAC index set

NCIR . . . . . . . . Channel impulse response index set
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P . . . . . . . . . . Orthogonal frequency resource set

R . . . . . . . . . . Set of all real numbers

S . . . . . . . . . . Set of frequency resource sets

Sk . . . . . . . . . Frequency resource set of transmitter k

S̃E . . . . . . . . . Frequency resource set estimated by energy detection

S̃G . . . . . . . . . Frequency resource set estimated by gray space detection

T . . . . . . . . . . Set of PRBs

Tn . . . . . . . . . Resource set of n-th PRB

Vectors

θ . . . . . . . . . . PDF parameter vector

a . . . . . . . . . . Context specific column vector variable

b . . . . . . . . . . Context specific column vector variable

e . . . . . . . . . . Adversarial error/noise vector

h . . . . . . . . . . CIR vector

n . . . . . . . . . . Noise vector

s . . . . . . . . . . Resource allocation vector

u . . . . . . . . . . Transmit signal vector

v . . . . . . . . . . CAC vector

w . . . . . . . . . . Received signal vector

x . . . . . . . . . . Unknown variable

y . . . . . . . . . . Measurement or Observation vector

ẑ . . . . . . . . . . Power spectrum vector
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