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“The sea is everything. It covers seven tenths of the 

terrestrial globe. Its breath is pure and healthy. It is 

an immense desert, where man is never lonely, for 

he feels life stirring on all sides. The sea is only the 

embodiment of a supernatural and wonderful 

existence. It is nothing but love and emotion; it is 

the living infinite.” 

 

Jules Verne,  
Twenty Thousand Leagues Under the Sea 
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Abstract 
	
  

Arsenic (As) is a unique element, in terms of its chemical und physical 

characteristics and ubiquitously present in the terrestrial and marine environment. 

Despite its well-known toxicity and carcinogenicity and its reputation as the “king of 

poison”, several biogeochemical aspects are so far only rarely investigated and often 

poorly understood.  

The concentration of As in river waters (0.62 µg L-1) is lower than in seawater 

(1.7 µg L-1), which is the first unique attribute, as rivers normally represent dominant 

elemental sources to the oceans. The main factors controlling the concentration of As 

in seawater are, in addition to the riverine input, the weathering of the seafloor, input 

of volcanic gases, atmosphere-seawater exchange, as well as sedimentation on the 

seafloor and anthropogenic input. Another important and likely underestimated 

source are hydrothermal fluids emanating at the seafloor, which could be greatly 

enriched in their As concentration. The most important factors affecting this 

concentration, varying from below seawater to several thousand µg L-1, are the 

tectonic setting with its different physicochemical parameters like temperature, 

controlling phase separation processes, pH affecting As species, mobility and 

leaching capacity, pressure as a function of depth, the redox conditions and different 

adsorption and desorption reactions. Furthermore the H2S, CO2 and metal 

concentrations in the fluids, as well as the chemistry and mineralogy of the 

underlying host rocks are important parameters. In general, the higher the 

temperature and the amount of gases, and the lower the pH, the more As is leached 

from the host rock and transported with the hydrothermal fluids. However, the only 

slightly variable concentration of As in the underlying bulk rocks in the different 
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regimes cannot be responsible for the overall very variable concentrations observed 

in the hydrothermal fluids. The input of magmatic volatiles, which are able to 

transport a huge amount of metals and also As, has to be considered depending on 

the system and location and also the preferentially transport of one species over 

another during phase separation processes in the vapor or brine phase has to be 

taken into account. To get a deeper understanding about the influencing parameters 

from the different tectonic regimes, case studies were conducted during this thesis at 

the mid-ocean ridge, as well as in a typically back-arc basin environment and at an 

island-arc setting. In addition to this, the influence of the emitted As on the resident 

vent biota was investigated  

Hydrothermal fluids from mid-ocean ridges reveal mostly pretty low As 

concentrations in the range of several tens of µg L-1, most likely due to precipitation 

of As-bearing minerals in the subsurface or low leaching capacity. Clear 

hydrothermal fluids sampled at the Menez Gwen hydrothermal field at 37°N on the 

Mid-Atlantic Ridge were up to 285 °C hot with a pH between 4.0 and 5.1 and phase 

separation influenced. Concentrations of AsT were between 6 and 90 µg L-1 with only 

the two inorganic species arsenite (AsIII) and arsenate (AsV) found in the 

hydrothermal fluids in variable proportions.  

Higher fluid concentrations of mostly several hundred µg L-1 are reported from 

back-arc basin environments, where host rocks are more acidic, leading to low pH 

hydrothermal fluids. Samples taken at the PACMANUS and SuSu Knolls 

hydrothermal areas in the eastern Manus Basin revealed AsT concentrations of up to 

376 µg L-1. These were found in focused white smoker fluids bubbling liquid CO2 with 

temperatures of around 100 °C and a very low pH. Much lower concentrations were 

measured in black smoker fluids, most likely due to the precipitation of As-bearing 

minerals or particles in the subsurface and immediately when mixing with cold 

oxygenated seawater. Concentrations in clear fluids were also lower, as they 

represent a mixture of seawater and the pure hydrothermal fluids. Again only the 

inorganic AsIII and AsV species could be observed. 

These elevated values compared to seawater concentrations are superpassed 

by fluids from shallow-water island-arc settings, which typically show concentrations 

of several thousand µg L-1. Sediment cores of altered volcaniclastic sediments from 

the Palinuro volcanic complex in the Tyrrhenian Sea were taken in 630 m water 
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depth. Pore fluids had temperatures of up to 58 °C, a minimum pH of 6.3 and 

maximum dissolved sulfide concentrations of up to 3.5 mM. These samples were 

extremely enriched in AsT concentrations with up to 18.3 mg L-1 and for the first time, 

considerable amounts of mono-, di- and trithioarsenates (up to 94 %) were measured 

in fluids from systems located in those depths. A crucial step for the investigation of 

thioarsenic species is sample preservation between sampling and measurements, as 

these species are only marginally stable under oxygen and can easily precipitate, 

and an appropriate method for sample conservation has to be developed.  

Associated vent biota like mussels and snails living in the lower temperature 

zones where shimmering hydrothermal fluids discharge are able to bioaccumulate 

and biotransform the As emanating with the hydrothermal fluids. However, literature 

data is sparse, and only a few studies exist dealing with this topic despite this highly 

interesting and very special environment. The accumulated concentration depends 

on the characteristics of the fluids like AsT, As speciation, temperature and pH, as 

well as on the characteristics of the different vent animals like their metabolism, 

based on chemolithoautotrophic bacteria, and resistance against toxic metals. 

Hydrothermal vent snails like Alviniconcha hessleri from the Manus Basin are able to 

accumulate high concentrations of AsT with of up to 5580 mg kg-1 in the gill, 

721 mg kg-1 in the digestive gland, and 43.3 mg kg-1 in their muscle tissue. This value 

is highly increased compared to snails living in the photic zone and accumulating 

several tens or a few hundred mg kg-1. Lower concentrations could be found in the 

snails of the species Ifremeria nautilei living in colder fluids with a higher pH and 

lower AsT concentration, which accumulate up to 118.3 mg kg-1 in the gill, 

107.6 mg kg-1 in the digestive gland, and 21.7 mg kg-1 in the muscle tissue. High 

amounts of As found in the gill are due to the accumulation of iron-zinc-sulfur 

particles rich in As, but also due to the activity of chemosynthetic sulfur- or methane-

oxidizing symbionts. Furthermore high concentrations in the digestive gland could be 

explained as it acts as a pathway and storage organ for different metals. Overall 

lower concentrations could be found in mussels of the genus Bathymodiolus sampled 

at Menez Gwen (Bathymodiolus azoricus) and in the Manus Basin (Bathymodiolus 

manusensis), which only accumulate several tens of mg kg-1, with the highest 

concentrations found in the digestive gland, followed by the gill and muscle tissues.  
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After uptake of the inorganic species AsV and AsIII available in the surrounding 

seawater most likely via the essential phosphate transporter system, different 

methylation steps are following forming monomethylarsonic acid (MA) and 

dimethylarsinic acid (DMA). From these, different kind of arsenosugars are produced, 

which seem to be an endproduct in marine algae, but precursor for arsenobetaine in 

higher consuming marine animals, feeding from marine algae. Vent animals show a 

completely different metabolism carried out by chemolithoautotrophic bacteria 

located in their gill epithelial tissues. The snails and mussel from the deep situated 

Manus Basin hydrothermal system (1800 m), show no or only a very low 

concentration of arsenosugars, indicating that there might be other pathways of 

forming arsenobetaine, without the filtering and presence of marine algae. Compared 

to these, hydrothermal vent mussels from the Menez Gwen hydrothermal system 

(850 m) show an elevated amount of different arsenosugars and low arsenobetaine. 

Both organic species are present in the hydrothermal environment, where 

photosynthetic input is not or only very sparsely available, so that other pathways 

and mechanism for their formation may be possible, which could be connected to the 

very special chemolithoautotrophic nutrition. 
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Zusammenfassung 
	
  

Arsen (As) ist ein einzigartiges Element, betrachtet man seine chemischen 

und physikalischen Eigenschaften. Es ist zudem im terrestrischen und marinen Milieu 

allgegenwärtig präsent. Trotz seiner großen Bekanntheit als Nervengift und 

Karzinogen, sowie seinem Ruf als „König aller Gifte“, sind verschiedene bio-

geochemische Aspekte nur wenig erforscht und schlecht verstanden. 

Die Konzentration von As in Flüssen (0.62 µg L-1) ist geringer als die im 

Meerwasser (1.7 µg L-1), was eine erste Besonderheit darstellt, da normalerweise 

Flüsse eine maßgebliche Quelle für die verschiedenen Elemente im Ozean sind. Die 

dominierenden Faktoren für die Konzentration von As im Meerwasser sind neben 

dem Eintrag von Flüssen, die Verwitterung des Meeresbodens, der Eintrag von 

vulkanischen Gasen, der Austausch zwischen Atmosphäre und Meerwasser, die 

Sedimentation auf den Meeresgrund sowie der anthropogene Einfluss. Eine weitere 

wichtige und bis heute vielleicht unterschätzte Quelle sind hydrothermale Fluide, die 

am Meeresboden austreten und stark an As angereichert sein können. Die 

wichtigsten Faktoren für die Konzentration von As in diesen Fluiden, die zwischen 

unterhalb der Meerwasserkonzentration und mehreren tausend µg L-1 variieren kann, 

sind das tektonische Regime und dessen verschiedenen lokalen physikochemischen 

Bedingungen. Hierzu zählen die Temperatur, welche eine Phasenseparation 

hervorrufen kann, der pH-Wert, welcher die jeweilige As-Spezies, Mobilität und 

Lösungsprozesse beeinflusst, der Druck als Funktion der Tiefe, die Redox-

Bedingungen und verschiedene Absorptions- und Desorptions-Reaktionen. Des 

Weiteren spielen die H2S- und CO2-Konzentration sowie das Auftreten anderer 

Elemente wie Eisen oder Mangan in den Fluiden, aber auch die Chemie und 

Mineralogie des Wirtsgesteins eine entscheidende Rolle. Je höher die Temperatur 

und die Konzentration der Gase und je niedriger der pH-Wert, desto mehr As kann 
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aus dem Wirtsgestein gelöst und mit den hydrothermalen Fluiden in den Ozean 

transportiert werden. Jedoch kann der nur geringe Unterschied in der As-

Konzentration des Wirtsgesteins aus den verschiedenen tektonischen Regimen nicht 

allein für die stark variablen Konzentrationen in den hydrothermalen Fluiden 

verantwortlich sein. Der zusätzliche Eintrag von magmatischen Volatilen, die eine 

große Menge an verschiedensten Metallen sowie auch As transportieren können, 

muss hier in Abhängigkeit des tektonischen Regimes berücksichtigt werden, sowie 

auch der vorrangigen Transport verschiedener Spezies während der 

Phasenseparation. Um die jeweiligen Faktoren in den verschieden tektonischen 

Regimen besser zu verstehen, wurden Untersuchungen sowohl am 

Mittelozeanischen Rücken, als auch in einem Backarc-Becken und in einem 

Inselbögen-Milieu durchgeführt. Zusätzlich dazu wurde auch der Einfluss des As aus 

den hydrothermalen Fluiden auf die lokal ansässige Fauna untersucht. 

Hydrothermale Fluide, die an Mittelozeanischen Rücken beprobt wurden, 

zeigen eine zumeist sehr geringe As-Konzentration, oft im Bereich von wenigen 

zehner µg L-1. Dies geht wahrscheinlich auf die Ausfällung von As-reichen Mineralen 

im Meeresboden und einer geringen Lösungskapazität hervor. Klare hydrothermale 

Fluide, die am Menez Gwen Hydrothermalfeld bei etwa 37°N am Mittelatlantischen 

Rücken beprobt wurden, zeigten Temperaturen von bis zu 285 °C, einen pH-Wert 

zwischen 4.0 und 5.1 und As-Konzentrationen zwischen 6 und 90 µg L-1. Weiterhin 

zeigten die Analysen das Vorkommen der anorganischen Spezies Arsenit (AsIII) und 

Arsenat (AsV). 

Höhere As-Konzentrationen, zumeist im Bereich von mehreren hundert µg L-1, 

können in hydrothermalen Fluiden aus Backarc-Becken beobachtet werden. Hier 

sind zumeist saure Wirtsgesteine anzutreffen, welche Fluide mit einem sehr geringen 

pH-Wert zu Folge haben. Proben, die an den PACMANUS und SuSu Knolls 

Hydrothermalsystemen im östlichen Manus Becken gewonnen wurden, zeigten As-

Konzentrationen von bis zu 376 µg L-1 in weißen Fluiden, die mit ca. 100 °C, einem 

pH von 1.2, sowie einer hohe Konzentration von gelöstem CO2 austreten. Sehr viel 

geringere Konzentrationen wurden in Fluiden von schwarzen Rauchern gefunden, 

was auf die Ausfällung As-reichen Mineralen oder Partikeln im unterliegenden 

Gestein, aber auch während der Mischung mit dem umgebenden Meerwasser 

während des Austretens zurückzuführen ist. Auch klare und kältere Fluide zeigten 
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eine eher geringe Konzentration aufgrund der Vermischung des reinen 

hydrothermalen Fluids mit dem kalten Meerwasser. In diesen Proben konnten 

wiederum nur die anorganischen AsIII und AsV Spezies beobachtet werden.  

Diese im Vergleich zum Meerwasser bereits stark erhöhten Konzentrationen 

werden von Fluiden, die an Hydrothermalsystemen in Inselbögen austreten und 

mehrere tausend µg L-1 zeigen können, übertroffen. Mittels Schwerelot wurden 

Sedimentkerne bestehend aus alteriertem vulkanoklastischen Material nahe des 

untermeerischen Palinuro Vulkankomplexes im Tyrrhenischen Meer aus 630 m 

Wassertiefe geborgen. Die daraus gewonnen Porenfluide zeigten Temperaturen von 

bis zu 58 °C, einen minimalen pH-Wert von 6.3 und eine maximale Konzertration an 

gelöstem Sulfid von 3.5 mM. Des Weiteren enthielten sie extrem erhöhte As-

Konzentration von bis zu 18.3 mg L-1 und zum ersten Mal wurden hier beträchtliche 

Anteile von Mono-, Di-, und Trithioarsenaten (bis zu 94 %) in hydrothermalen Fluiden 

aus diesen Tiefen nachgewiesen. Ein wichtiger Schritt für die gute qualitative und 

quantitative Untersuchung dieser As-Schwefel-Spezies ist die Konservierung der 

Proben zwischen der Probennahme und der Analyse im Labor, da diese unter 

Sauerstoffeinfluss instabil sind und sich leicht Präzipitate bilden. Somit muss hier 

noch eine wirksame Konservierungsmethode gefunden werden. 

Die an und von den hydrothermalen Quellen und Fluiden lebenden Muscheln 

und Schnecken sind in der Lage, das austretende As einzulagern und umzuwandeln. 

Obwohl dieses ein sehr interessantes Themengebiet und Milieu ist, gibt es nur 

wenige Studien, die sich damit befassen. Die Menge an As, welche eingelagert 

werden kann, hängt auf der einen Seite von den Charakteristiken der Fluide wie der 

Konzentration an As, der Verteilung der Spezies, der Temperatur und dem pH-Wert, 

aber auch von den Charakteristiken der Organismen, geprägt durch ihre Ernährung 

mittels chemolithoautotrophen Bakterien und ihrer Resistenz gegenüber toxischen 

Metallen, ab. Die an den hydrothermalen Quellen des Manus Beckens lebenden 

Schnecken der Spezies Alviniconcha hessleri sind in der Lage große Mengen an As 

von bis zu 5 580 mg kg-1 in ihren Kiemen, 721 mg kg-1 in ihren Mitteldarmdrüsen und 

43.3 mg kg-1 in ihrem Muskelfleisch einzulagern. Verglichen zu Schnecken aus 

photischen Zonen, welche zumeist mehrere zehn bis wenige hundert mg kg-1 

einlagern können, sind diese Werte extrem erhöht. Weniger hohe Konzentrationen 

zeigen Schnecken der Spezies Ifremeria nautilei, die in kälteren Fluiden mit einem 
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höheren pH-Wert und geringeren As-Konzentrationen leben. Diese Schnecken 

lagern bis zu 118.3 mg kg-1 in ihren Kiemen, 107.6 mg kg-1 in ihrer Mitteldarmdrüse 

und 21.7 mg kg-1 in ihren Muskeln ein. Die extrem hohe Konzentration in den Kiemen 

kann auf die Einlagerung von Eisen-Zink-Schwefel-Partikeln, die viel As enthalten 

können, sowie auf die Aktivität der Sulfat- und Methan-reduzierenden Bakterien, 

zurückgeführt werden. Weiterhin lassen sich die hohen Konzentrationen in den 

Mitteldarmdrüsen auf ihre Eigenschaft als Durchgangs- und Einlagerungsorgan 

zurückführen. Insgesamt niedrigere Konzentrationen wurden in Muscheln der 

Gattung Bathymodiolus bei Menez Gwen (Bathymodiolus azoricus) und im Manus 

Becken (Bathymodiolus manusensis) gefunden, meist im Bereich von wenigen zehn 

mg kg-1. Hier wurden die höchsten Konzentrationen jeweils in der Mitteldarmdrüse 

gefunden, gefolgt von den Kiemen und Muskeln.  

Nachdem die im Meerwasser vorhandenen anorganischen AsIII und AsV 

Spezies über das essenzielle Phosphattransporter-System aufgenommen werden 

folgt die Anlagerung von Methyl-Gruppen und die Bildung von Methylarsonsäure 

(MA) und Dimethylarsinsäure (DMA). Aus diesen werden im Weiteren verschiedene 

Arsenozucker gebildet, die als Endprodukt in Algen vorkommen, aber auch als 

Ausgangsstoff für Arsenobetain in höher konsumierenden Organismen, die sich von 

diesen Algen ernähren, angesehen werden können. Organismen, die an den 

Hydrothermalquellen leben, zeigen eine extrem unterschiedliche Ernährungsweise 

im Vergleich zu Organismen aus der photischen Zone. Die Ernährungsweise basiert 

hier auf den an den Außenseiten der Kiemen befindlichen chemolithoautotrophen 

Bakterien. Die Schnecken und Muscheln aus dem Manus Becken (1800 m) zeigen 

keine oder nur sehr geringe Mengen an Arsenozucker, und dies ohne die Präsenz 

von photosynthetischen Organismen. Im Vergleich dazu lassen sich bei Muscheln 

vom Menez Gwen Hydrothermalfeld (850 m) höhere Konzentrationen dieser 

Arsenozucker erkennen, im Gegensatz zu einem geringen Anteil von Arsenobetain. 

Das Vorkommen beider Spezies in dieser sehr speziellen Umgebung, wo 

photosynthetische Biomasse wie Algen gar nicht oder nur sehr wenig verfügbar ist, 

lässt auf andere Wege und Mechanismen schließen, wodurch Arsenozucker oder 

Arsenobetain gebildet werden kann, die vermutlich im engen Zusammenhang mit der 

sehr speziellen chemosynthetischen Ernährung stehen. 
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1 | Introduction 
 

Arsenic (As) is a ubiquitous element ranking 14th in the elemental 

abundance of the seawater and is known for its toxicity and carcinogenicity. The 

average seawater concentration of As is 1.7 µg L-1 (Neff, 2002) and its cycling in 

the global ocean is controlled by different factors and sources of As. High amounts 

of As can be discharged into the oceans by riverine input, which can be affected by 

mining or industrial effluents and further by natural sources such as geothermal 

fluids, atmospheric precipitation, weathering of volcanic rocks and biological 

activity. A so far underestimated input is contributed by marine hydrothermal fluids 

emitting at the seafloor, which are able to provide a huge amount of different 

elements into the oceans. The most important factors controlling the hydrothermal 

systems and the concentration of As therein are the tectonic regime and different 

physicochemical conditions at and beneath the seafloor. The composition of the 

vent fluids has a strong influence on the surrounding ecosystem and allows unique 

organisms to dwell in this environment. Hydrothermal activity represents one of the 

fundamental processes involved in the transfer of energy and mass from the 

mantle and lithosphere into the oceans. Therefore, this thesis will focus on the fate 

and transport of the potentially toxic element As in hydrothermal fluids and the 

accumulation and transformation in the hydrothermal vent biota.  

The introduction of my dissertation will provide an overview of the 

abundance and behavior of As in terrestrial and aquatic systems. Further it 

describes the processes taking place in hydrothermal systems and their impact on 

the vent biota. Chapter 2 with the title “Arsenic in marine hydrothermal fluids” will 

give an overview of important studies on hydrothermal fluid chemistry, that 

consider As in their measurements and the factors controlling the amount of 

transported As in the hydrothermal fluids. This chapter also presents 
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thermodynamic calculations and modelling of the different As species and their 

precipitation as solid phases in shallow- and deep-water hydrothermal systems.  

The following three chapters represent case studies for As concentration 

and speciation in hydrothermal fluids and associated vent biota of three different 

tectonic regimes: mid-oceanic ridges, back-arc basins and island arc settings. 

Chapter 3 will describe a study on the Menez Gwen system at the Mid-Atlantic 

ridge, followed by a study on the PACMANUS and SuSu Knolls hydrothermal 

systems located in the Eastern Manus Basin in chapter 4 and at last chapter 5 

describes a study on the Palinuro volcanic complex at the Aeolian island arc in the 

Tyrrhenian sea.   

 

1.1  Arsenic in the environment 
The potentially toxic element As is ubiquitous present in the terrestrial and 

marine environment, whereas its concentrations can vary tremendously due to 

mobilization by natural and anthropogenic processes. Arsenic can be found in 

lithospheric rocks, soils and sediments, as well as in different types of water bodies 

such as rivers, lakes, oceans, groundwater and as well in high concentrations in 

acid mine drainage and industrial waste water.  

 

1.1.1 Arsenic in the terrestrial environment 
The average concentration of As in igneous rocks from the crust is 

estimated to be approximately 1.5 mg kg-1 with only small variations and in general 

below 5.0 mg kg-1 (Ure and Berrow, 1982; Plant et al., 2003). It behaves strongly 

chalcophile forming preferentially sulfide minerals in addition to oxides and 

phosphates. More than 300 As minerals are known to date and in more than 200 

minerals As acts as a major constituent. Most of them are ore minerals or 

associated alteration products and As is preferably incooperated in sulfide minerals 

like pyrite (FeS2) with up to 10% (Blanchard et al., 2007). Metamorphic rocks 

typically reflect concentrations measured in igneous rocks with only minor 

variations. Soils are generally more enriched in As compared to igneous and 

metamorphic rocks, with concentrations ranging between 5 and 13 mg kg-1 

(Smedley and Kinniburgh, 2002) and originating from geological processes or 
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anthropogenic contamination. Higher concentrations can be caused by the 

occurrence of sulfide minerals under reducing conditions or also due to the release 

during the oxidation of pyrite as observed in acid sulfate soils with As 

concentrations up to 50 mg kg-1 (Dudas, 1984). Anthropogenic contamination of 

soils by copper smelting, combustion of fossil fuels, or usage of agriculture 

pesticides is also highly relevant and can cause considerably higher As 

concentrations. Considering As concentrations in sedimentary rocks and 

unconsolidated sediments, which are typically in the range of 5 to 10 mg kg-1, it 

becomes obvious that concentrations vary a lot with up to 3 000 mg kg-1 in organic-

rich and sulfide-rich shales, or in high-iron and high-phosphate rocks (Smedley and 

Kinniburgh, 2002). This reveals again the impact of an increasing portion of sulfide 

minerals, organic matter, and clays on the concentration of As. Contamination of 

soils and sediments by industrial mining, especially from mine tailings and 

effluents, can result in highly increased concentrations of As (e.g. Sarmiento et al., 

2009). One reason is the co-existence of As and gold and originates from the 

finding that the fate of both elements are closely bound together as gold is often 

found in arsenopyrite (FeAsS) and As is mobilized when the gold is leached out of 

the ore mineral. The release of As itself from different ore-forming minerals is 

mostly related to the oxidation and changes in solubility of primary and secondary 

sulfide minerals rich in As (Masscheleyn et al., 1991). The primary mineral 

arsenopyrite (FeAsS) releases As due to its oxidation during mining activity or 

redistribution of tailings in ponds and heaps (Plant et al., 2003). The oxidation 

reaction of FeAsS can be described as follows: 
 

4FeAsS + 13O2 + 6H2O → 4Fe2+ + 4AsO4
3- + 4SO4

2- + 12H+        (Eq. 1) 

 

1.1.2 Arsenic in the aquatic and marine environment 
Arsenic is also often found in the aquatic and marine environment, with a mean 

seawater value of 1.7 µg L-1 and ranging between 0.5 µg L-1 and 3.0 µg L-1 (Neff, 

2002). Rivers transport between 0.1 µg L-1 and 0.8 µg L-1 with an average of 

0.62 µg L-1 (Gaillardet et al., 2003), which is typically in the same range or slightly 

higher than in lake waters. The As concentration in rivers, which might run into 

lakes or the oceans, depends mostly on the bedrock lithology with its As 
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concentration and on the surface recharge and the groundwater flow (Smedley and 

Kinniburgh, 2002). 

Extremely enriched values due to mobilization by weathering or dissolution 

were found in groundwater, geothermal waters and mine drainage waters, with up 

to several thousand µg L-1 of As. In addition to this, the disposal of industrial waste, 

smelting of As bearing minerals and burning of fossil fuels causes As enrichments 

and subsequent dramatic damages in the environment of rivers and the 

groundwater (Bissen and Frimmel, 2003). Significant problems are known 

especially from developing countries like Bangladesh, India, Argentina, Chile, 

Vietnam, Mexico and Taiwan, but since 2002, when the WHO set the United States 

drinking water standard from 50 µg L-1of As down to 10 µg L-1, a broad interest on 

the As geochemistry awoke again (Smith et al., 2002).  

The release and mobilization of As into rivers and groundwater is mainly 

controlled by two processes, whereof the first is an elevated pH (> 8.5) in 

combination with a semi-arid or arid environment, leading to a desorption of 

adsorbed As from various mineral oxides (especially Fe-oxides) or prevents 

adsorption at all. The second major process is triggered under strongly reducing 

conditions in combination with circum-neutral pH, again resulting in desorption of 

As from mineral-oxides, but also during the reduction of iron and manganese 

oxides (Smedley and Kinniburgh, 2002).  

The chemistry, toxicity, mobility, and behavior of As in the environment 

depends strongly on its oxidation state. In nature, the oxidation states +V 

(arsenate), +III (arsenite), 0 (arsenic), and –III (arsine) can be found, but in the 

aqueous environment, the inorganic As mostly occurs in the trivalent and 

pentavalent form (Mandal and Suzuki, 2002; Sharma and Sohn, 2009). Thereby, at 

the modern pH of the seawater, the most abundant form of inorganic pentavalent 

arsenate (AsV) is HAsO4
2- and some traces of H2AsO4

1- and AsO4
3- and in the case 

of arsenite (AsIII) its neutral form H3AsO3. In oxidized aqueous solutions, AsV is the 

most stable form, while under more reducing conditions (from about + 300 mV at 

pH 4 to -200 mV at pH 9) the trivalent AsIII species is more stable (Fig. 1). The 

most important species and structures found in aqueous systems are shown in 

Fig. 2. 
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Fig. 1: Eh-pH diagram for aqueous arsenic species in the  

system As-O2-H2O at 25 °C and 1 bar pressure (after Lu and Zhu, 2011). 
 

By examining the seawater for As species, it is striking that amounts of AsIII 

can be found, that are higher than thermodynamically feasible. This is probably 

due to biotic and abiotic reduction of AsV, atmospheric deposits, as well as input 

from upwelling of anoxic waters and input of hypoxic river basins (Cutter, 1992). 

Both, the reduction of AsV into AsIII and the reversible process, the oxidation of AsIII 

to AsV are relatively rapid processes promoted abiotically and/or biologically and 

has to be taken into account while preserving aqueous samples during until the 

measurements (e.g. McCleskey et al., 2004).  

In surface and coastal waters, where the biological activity is high and an 

impact of the industrial activity might be observed, organic forms of As have been 

frequently found, although in low concentrations. The two dominant organic As 
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species in seawater are methylarsonic acid (CH5AsO3; MA) and dimethylarsinic 

acid (C2H7AsO2; DMA). These two species are mainly generated by different 

reduction processes in combination with methylation by marine organisms like 

phytoplankton, bacteria and yeasts, followed by excretion into the seawater or 

during degradation of the biomass (Andreae and Klumpp, 1979; Vidal and Vidal, 

1980). Overall, AsV, AsIII and the methylated species MA and DMA can coexist in 

seawater, with the relative species distribution dominantly depending on the pH, 

the redox conditions additionally to the prevailing temperature and the overall 

availability of biomass.  
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Fig. 2: Different As species found in aqueous systems. 
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In the last years, the presence of different thioarsenic species was monitored in 

solutions with high dissolved sulfide and high As concentrations and their 

environmental relevance had become apparent. These As species were found and 

studied for instance in geothermal waters from the Yellowstone National Park or in 

contaminated industrial waters (e.g. Stauder et al., 2005; Planer-Friedrich et al., 

2007). Thioarsenic species exist as mono-, di-, tri- and tetrathioarsenates as well 

as mono-, di- and trithioarsenites. However, their preservation is highly 

challenging, because thioarsenates can quickly transform into AsIII and AsV due to 

decomposition and by a stepwise ligand exchange of SH- and OH-groups. For 

preservation of thioarsenates especially in iron-rich waters, the addition of acids 

lowers the pH and promotes the precipitation of poorly crystalline As2S3 (Smieja 

and Wilkin, 2003) and flash freezing solely supports the formation of iron 

hydroxides. To date, the most efficient method that has been described for the 

preservation of thioarsenates in iron-rich waters is the addition of EDTA for iron-

complexation in combination with flash freezing under anoxic conditions and a 

small headspace in the sampling vial, but this method needs a more careful 

development (Suess et al., 2011).  

 
 

1.2  Arsenic in marine organisms 
Organisms living in the marine environment are able to bioaccumulate and 

transform inorganic As from the surrounding seawater into their bodies reaching 

concentrations up to several hundred mg kg-1 and transfer it through the marine 

food web in different forms of organic As species. Marine plants and especially 

algae can only incorporate inorganic As from the surrounding seawater, whereas 

higher organisms are able to absorb it from the surrounding seawater as well as 

through the food chain by consumption of smaller organisms such as algae and 

phytoplankton (Edmonds and Francesconi, 2003). Several studies showed, that 

depending on the organisms and the availability of specific As species in the 

surrounding environment, variable amounts of As can be assimilated into the 

different tissues. Marine bivalves for instance are capable to accumulate up to 

214 mg kg-1 of As (in average 10.4 mg kg-1) and snails are able to accumulate 

even higher amounts with concentrations up to 530 mg kg-1 (in average 52 mg kg-1) 



8 INTRODUCTION 
 

(Neff, 1997). In general, organisms living in polluted environments with high input 

of As reveal higher accumulation of As.  

Marine bacteria, micro- and macroalgae, as well as plants assimilate via the 

cellular phosphate transporter system mainly inorganic pentavalent AsV, which is 

the dominant form of As in oxygenated sea- and freshwater. This is because AsV 

and phosphate are very similar to each other and thus AsV cannot be excluded 

from this essential mechanism performed by the organisms. However, differences 

between AsV and phosphate exist as AsV esters are less stable and can be 

reduced by different agents, whereas phosphate displays more inert properties 

(Benson et al., 1988). There are also different bacteria, which are able to excrete 

the As again in a more rapid way than it is assimilated, preventing a net 

accumulation in the cells (Silver and Misra, 1984). Due to the absence of a real 

competition between AsV and phosphate uptake in microbial experiments, there 

might be other mechanisms for the uptake and accumulation of inorganic As in 

algae possible (Andreae and Klumpp, 1979). After the assimilation of AsV, different 

steps of sequential reduction and oxidative methylation by microorganism are 

following. Thereby, AsV is first reduced to the much more mobile AsIII and then 

further to MA, DMA and trimethylarsine oxide (C3H9AsO) as proposed by the 

Challenger pathway (Challenger, 1945; Challenger, 1955). The process inducing 

the reduction from AsV to AsIII remains still unclear. However, as a source for the 

methyl groups, which are needed for processing the methylation, the S-

adenosylmethionine (C15H23N6O5S; AdoMet) was identified as an active and 

universal donor (Qin et al., 2006). By adding one more reaction step to the last 

product trimethylarsine oxide (Fig. 3), the relatively volatile trimenthylarsine is 

produced, which was proposed to be the final product by Challenger et al. (1955). 

Another pathway for As methylation in algae is the transformation of the adenosyl 

group from the AdoMet to the As atom of the DMA molecule, instead of adding the 

last methyl group and before forming trimethylarsine oxide (Edmonds and 

Francesconi, 1983).  
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 After processing the different methylated forms, algae are able to generate 

different ribose derivatives known as arsenosugars (As-sug), showing a 

comparably lower toxicity. After the first investigations, a total of 15 As-sug were 

identified and isolated from different algae families (Francesconi and Edmonds, 

1993), whereof the most important groups are phosphate-, sulfate-, sulfonate- and 

glycerol-sugars (Fig. 3). The presence of dimethylarsinoyladenosine found in the 

kidney of a giant clam supported the formation of As-sug due to enzymatic removal 

of adenine and glycosidation of matching algal metabolites (Edmonds and 

Francesconi, 1987). However, As-sug, which were solely observed in the marine 

environment and in urine from people consuming seafood, can be considered as a 

by-product of the various detoxification processes carried out by algae 

(Francesconi and Edmonds, 1993). In addition to these processes, As-sug can be 

synthesized by microorganisms performing different steps of methylation and 

adenosylation (Edmonds and Francesconi, 2003). These described As-sug seem 

to be an endproduct of As transformation in algae, while the finding of 

arsenobetaine (AsBet) in some special algae species (Slejkovec et al., 2006; Grotti 

et al., 2008) could have been caused by incorrect sample treatment when 

epiphytes were not correctly removed.  

 In general, AsBet (C5H11AsO2; Fig. 3) could be detected and was reported 

as the dominant form of organoarsenic in higher marine organisms such as fish or 

snails with fractions sometimes higher than 95 % of the total As (AsT) found in the 

tissues. Additionally, other compounds such as MA, DMA, arsenocholine 

(C5H14AsO+; AC; Fig. 3.) and various arsinylribosides were detected in these 

organisms. Both, the dimethylarsinylribosides and trimethylarsonioribosides, which 

are delivered by the food chain and ubiquitous present in marine algae, have been 

proposed to act as intermediates and to be precursors of AsBet (e.g. Francesconi 

and Edmonds, 1993; Edmonds and Francesconi, 2003). However, at least the 

direct transformation of dimethylarsinylribosides into AsBet in marine organisms 

seems to be highly unlikely (Edmonds and Francesconi, 1981) as this requires the 

cutting of the C3-C4 bond of the ribose ring, several oxidation steps, 

decarboxylation, and methylation. AsBet is in general metabolically stable and is 

thought to be the main endproduct of all metabolic and detoxification processes in 

higher marine animals and organisms.  
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Fig. 3: Various important organoarsenic compounds found in marine organisms. 
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1.3  Hydrothermal systems 

1.3.1 History of hydrothermal systems 
	
  

The impressive feature of deep-sea hydrothermal vent systems also called 

thermal springs in former times, were first discovered near the Galápagos Islands 

in 1977 as published in NATURE Geoscience (Corliss et al., 1979). Hydrothermal 

systems have been the subject of many investigations since their discovery 

unraveling their very special geology, chemistry and biology. The convective 

circulation of cold seawater through the lithosphere near the Galápagos Islands 

was already proposed some years earlier, deduced from heat flow and bottom 

water temperature measurements (Williams et al., 1974). First speculations about 

thermal springs near the mid-oceanic ridges were already published in 1965 with 

the discovery of “thermal areas” showing elevated heat fluxes and energy sources 

at depth by penetrative convection from the upper mantle (Elder, 1965). Further 

speculations were based on investigations of ophiolite complexes of E. Liguria 

(Italy), where the mineral assemblages and metamorphic parageneses gave 

evidence for sub-seafloor hydrothermal convection and transport of solutions 

enriched in heavy metal (Spooner and Fyfe, 1973). After the first discovery by 

Corliss et al. (1979), several studies were conducted on seawater-basalt 

interaction, modeling of convective systems, as well as on calculating global 

energy and mass fluxes. 

 The investigations at the different Galápagos sites called Clambake, 

Dadelions, Garden of Eden and Oyster bed in February and March 1977 with the 

deep submersible Alvin showed the presence of shimmering discharge of warm 

hydrothermal fluids with temperatures between 10 to 17 °C and fluid flow rates 

between 2 and 10 cm sec-1. The involved scientists discovered also the presence 

of different fascinating vent communities consisting mainly of crabs, mussels, 

limpets, and giant white tubeworms. The fluid geochemistry was characterized by 

an increased concentration of manganese, lithium, calcium, barium, silicon, carbon 

dioxide and a decreased concentration of magnesium with respect to the 

unaffected seawater. In addition to these observations, they discovered 

hydrothermal mound deposits with heights ranging from less than 1 m to over 

20 m, which consisted mainly of iron, silica and manganese (Corliss et al., 1978; 



12 INTRODUCTION 
 

Corliss et al., 1979). Only some years later (1979), impressive black smoker 

systems were discovered on the East Pacific Rise at 21°N, where hydrothermal 

fluids reached maximum temperatures of 350 °C and high fluid flow rates of 1 to 

5 m sec-1 (MacDonald et al., 1980). 

 During the last 35 years of research following these sensational discoveries, 

many more hydrothermal vent systems and associated ecosystems were 

discovered and investigated with submersibles or remotely operating vehicles 

(ROV) at various seafloor spreading centers, back-arc basins and near island-arcs. 

It is now well know, that these systems play an important role in the transfer of 

energy and mass from the mantle and crust into the ocean. Thereby, the 

ecosystems at hydrothermal systems may give insights into the first development 

of live. Until today, more than 300 sites of active hydrothermal venting have been 

found (http://www.interridge.org), while it is expected that there must exist many 

more that still have to be discovered. This makes quantification of fluxes on a 

global scale pretty difficult. At these sites, more than 500 new species of 

hydrothermal vent biota were discovered until today (Desbruyères et al., 2006), 

living in this dark, potentially toxic and hostile environment.   

 

1.3.2 Chemistry of hydrothermal fluids 
The chemistry of hydrothermal fluids discharging at the seafloor as clear, 

black, or white smoker fluids is largely controlled by the interaction of seawater with 

the underlying mainly basaltic rocks at elevated temperatures in addition to phase-

separation processes, when temperature and pressure conditions of the fluid 

approach the two-phase boundary. However, these two processes are inextricably 

linked to each other. Only insufficiently studied is the contribution of biological 

processes and magmatic degassing, whereas the contribution of the latter strongly 

depends on the tectonic setting, magma sources and maturity of the system (e.g. 

German and Von Damm, 2003).  

The heat source, causing these elevated temperatures could be a shallow 

magma chamber or due to serpentinization processes, which is the dominant 

process at slow spreading ridges. The cold seawater percolates into the crust 

through faults and fissures, passing the down-flowing “recharge zone” at elevated 
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temperatures before reaching the hot “reaction zone” near the axial heat source, 

where temperatures prevail exceeding 400 °C. After boiling, the fluids rise upwards 

again due to the difference in buoyancy compared to colder overlying seawater, 

and after passing the “discharge zone”, they are expelled at the seafloor (Alt, 

1995).   

  During the reaction of the seawater with the surrounding rocks, chemical 

species are gained and others lost during all stages or zones described above. 

This depletion or enrichment processes depend on different factors such as the 

temperature and pressure, but also on the bulk rock composition and mineralogy of 

the host rock. In the lower temperature recharge zone, which can be several km 

long, the alteration of basaltic glass, olivine and plagioclase has been observed. 

Several elements such as potassium, rubidium, cesium and boron are early 

removed from the penetrating cold seawater and silica and sulfur added to the 

fluids by leaching of the surrounding rocks. When the seawater is heated to 

temperatures above 150 °C, two major processes occur: the precipitation of 

anhydrite (CaSO4) where SO4 is lost from the fluid, and the formation of Mg-OH 

silicates, where Mg is fixed in and at the rocks and the fluid gets depleted in Mg.  

 The formation of anhydrite, showing retrograde solubility, removes all the 

calcium and around one-third of the sulfate from the down-flowing seawater. If 

calcium is leached from the surrounding host rock, further anhydrite precipitation 

will occur and the fluid gets more depleted in sulfate. When temperatures are in 

excess of 250 °C, the sulfate could also be reduced to hydrogen sulfide (H2S) 

when reacting with igneous pyrrhotite, resulting in slightly elevated δ34S values as 

observed in different studies on sulfide deposits (Shanks, 2001). 

Removal of Mg from the fluids and incorporation into clays can occur by the 

formation of Mg-rich smectite (T < 200 °C) or chlorite (T > 200 °C) as the following 

equation for the formation of chlorite shows: 
 

4(NaSi)0.5(CaAl)0.5AlSi2O8 + 15Mg2+ + 24H2O 1 

                  3Mg5Al2Si3O10(OH)8 + SiO2 + 2 Na+ + 2Ca2+ + 24H+    (Eq. 2) 
 

The release of H+ causes a decreasing pH value, and at the same time, H+ is 

consumed by silicate hydrolysis reactions, acting as a weak buffer. If temperatures 

increase to values higher than 250 °C, different ion exchange reactions will 
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influence the composition of the fluid. During albitization, basaltic anorthite is 

altered to albite, which strongly affects the concentration of calcium and sodium in 

the fluid as shown in Eq. 3, where these two elements replace each other in the 

plagioclase feldspars: 
 

CaAl2Si2O8 + 2Na+ + 4SiO2(aq) 1  2NaAlSi3O8 + Ca2+           (Eq. 3) 
 

When the altered seawater finally reaches the reaction zone near the heat 

source, it is slightly acidic, anoxic, alkali-rich and Mg-poor. Near the heat source, 

large quantities of heavy metals like Fe, Mn, Cu and Zn are leached from the 

surrounding host rock and rise up within the boiling fluid. Additionally, if the crust is 

rich in sulfur (sulfide minerals, elemental sulfur), it will be dissolved from the 

corresponding minerals and supplied to the hydrothermal fluid.  

 Drastic changes in the chloride concentrations (< 6 % to 200 % of seawater 

concentration) or the concentration of other elements in the hydrothermal fluid can 

be caused by the phase separation process. This process is expected to be 

ubiquitous in the sub-seafloor at hydrothermal systems, as almost every 

investigated hydrothermal fluid is depleted or enriched in chloride concentrations 

relative to the seawater. Phase separation occurs when fluid temperatures reach 

the two-phase boundary at a specific pressure. The deeper the system, the higher 

is the temperature of the boiling hydrothermal fluid as depicted in Fig. 4. When the 

fluid reach the theoretical two-phase curve it forms two phases, one phase gets 

strongly enriched in chloride and the other phase vice versa gets depleted in 

chloride. Furthermore, an important point in the two-phase scenario is the critical 

point, a kind of threshold which is calculated for seawater to be at 407 °C and 

298 bar (Bischoff and Rosenbauer, 1984). When fluids pass the two-phase 

boundary at lower P-T conditions than this critical point, a low chloride vapor phase 

containing salt is generated. In contrast to this subcritical phase separation, at P-T 

conditions above the critical point (supercritical phase separation), a high chloride 

brine phase will be produced (German and Von Damm, 2003). Generally, both 

phase separation processes are expected to occur in the underlying host rocks 

during hydrothermal convection, with minor amounts of halite precipitation. Most of 

the other cations in the fluids behave similar as chloride as they are partly present 
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as chloride-complexes and thus follow the chloride trend during phase separation 

processes.  

 

 
Fig. 4: Two-phase curve for seawater as a function of pressure and temperature (after Bischoff and 

Rosenbauer, 1984). 
 

In the reaction zone, magmatic volatiles from the degassing of an underlying 

magma chamber might be supplied to the hydrothermal fluid, which is indicated by 

high concentrations of CO2, CH4, H2, SO2 and 3He (Alt, 1995). In arc and back-arc 
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settings, magmatic SO2 was observed to disproportionate to H2S and H2SO4, when 

it reacts with the entrained altered seawater (Giggenbach, 1992). These fluids can 

be as well enriched in various metals such as Cu, Zn, Fe, As and Au, that were 

supplied together with the magmatic volatiles (e.g. Yang and Scott, 1996; Gamo et 

al., 1997).  

 All these processes occur in a very buoyant fluid that rises rapidly through 

the discharge zone back to the surface of the oceanic crust, where the 

hydrothermal fluids expel. This rise can be so fast, that it is unclear to which extent 

chemical equilibrium with the surrounding rocks can be attained in the discharge 

zone. Some predictions were made by thermodynamic calculations as quartz 

becomes saturated; nonetheless it cannot precipitate due to the kinetics during 

rapid rise in contrast to sulfide phases. The various sulfide phases can be 

precipitated, but also re-dissolved (Reed and Palandri, 2006). Minerals such as 

pyrite (FeS2), chalcopyrite (CuFeS2), galena (PbS) and sphalerite ((Zn,Fe)S) can 

precipitate and thus create huge hydrothermal ore deposits or mounds.  

 After passing through the discharge zone, the hydrothermal fluid is expelled 

at the seafloor as focused flow through chimneys with elevated temperature or 

more diffuse as shimmering water through cracks and fissures. Thereby, lower 

temperature fluids represent a mixture between hot hydrothermal fluid and cold 

seawater penetrating and mixing in the shallow oceanic crust. During this mixing of 

hot, anoxic and more reductive hydrothermal fluid with entrained oxygenated 

seawater, the physical conditions change rapidly causing the precipitation of iron 

monosulfide particles. This can be observed in form of the characteristic black 

smoke discharged at some of the chimneys, but also other minerals can precipitate 

during this mixing and create huge chimney-like structures.  

 

1.3.3 Hydrothermal ore deposits 
Hydrothermal ore deposits form when minerals precipitate out of 

hydrothermal solutions due to rapid changes in physicochemical conditions such 

as temperature, pH, redox conditions, gas fugacity and pressure. The most 

important factors controlling the composition and formation of ore deposits are the 

chemical composition and temperature of the hydrothermal fluid itself, as well as 
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the permeability and porosity of the oceanic crust. A wide range of different kinds 

of mineral deposits, mainly consisting of various types of sulfide minerals, were 

found at the different tectonic settings. In addition to massive mounds made of 

sulfide minerals from high-temperature discharge, precipitation of Fe-Mn-

oxyhydroxides occurs from low-temperature fluid discharge and accumulation of 

fine grained particles settling from the black smoker plumes have been observed 

(German and Von Damm, 2003).  

 Hydrothermal chimneys can grow up to several cm per day and can be 

several tens of meters high, until they become unstable, collapse and form so 

called detritus or talus. Inside the orifice of the chimneys, where hottest 

temperatures were measured, sulfide minerals like chalcopyrite (CuFeS2), 

pyrrhotite (Fe1-xS; x = 0 to 0.2), cubanite (CuFe2S3) and bornite (Cu5FeS4) have 

been observed, surrounded by a low temperature zone with pyrite (FeS2), 

sphalerite ((Zn,Fe)S), wurzite ((Zn,Fe)S) and anhydrite (CaSO4). With decreasing 

temperatures towards the rim and top of the chimney, anhydrite, barite (BaSO4) 

and amorphous silica (SiO2) dominantly precipitate, in parallel to a decrease in the 

concentration of sulfide minerals. These chimneys are located on top of 

hydrothermal mounds, constructed of collapsed chimney material and different 

mineral precipitations, while the mineralogical composition of these mounds is also 

temperature-zoned. The hot inner zones (T > 300 °C) consists mainly of Cu-Fe-

sulfides, whereas the low temperature more peripheral zones consist of Zn-Fe-

sulfides in combination with barite, anhydrite and amorphous silica. A good 

example to get an idea about the dimension of such a complex is the TAG 

hydrothermal mound on the Mid-Atlantic Ridge at 26°N, which is the largest single 

hydrothermal mound known to date with 250 m in diameter and 35 m in height 

consisting of massive sulfide minerals (Rona, 2005). This mound alone contains 

about 3.9 million tons of sulfide-bearing material with in average 2.1 wt% copper 

and 0.6 wt% zinc (Petersen et al., 2000). These high concentrations reveal the 

economic potential of such submarine ore deposits, which will probably become of 

highest economic interest in the near future.  

 A lot of these sulfide deposits are also known to be rich in As, as shown by 

different minerals like orpiment (As2S3) or realgar (As4S4), which are frequently 

found in low-temperature hydrothermal veins. However, at temperatures between 
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250 and 300 °C, these two minerals are extremely soluble and the dominant As 

bearing mineral is arsenopyrite (FeAsS) (Pokrovski et al., 2002). The precipitation 

of various As-bearing minerals in combination with sulfur or metals such as 

manganese and iron can lower significantly the concentration of As in the sampled 

hydrothermal fluids before they get discharged into the seawater.  

 

1.3.4 Hydrothermal vent biota 
Since their discovery in 1977 near the Galápagos spreading center, 

hydrothermal vent fauna surprises and fascinates the scientific community every 

time a scientific dive is performed, because at these sites, the highest production 

rates of biomass on our planet were observed (Lutz et al., 1994). Over 500 new 

species have been found and described to date and it is expected that there are 

living much more still unknown species in the low-temperature zones, where 

hydrothermal fluids mix with the ambient seawater or at the outer walls of the high-

temperature discharging chimneys, waiting for discovery and thorough 

investigations. 

 Compared to most ecosystems on earth, that rely on photosynthesis with 

light and carbon dioxide as energy source, the life of deep-sea vent communities is 

based on chemosynthesis. The main components and energy source for these 

processes are hydrogen sulfide (H2S) and methane (CH4), which are supplied by 

the hydrothermal fluids. The basic and principal reactions for the oxidation of 

hydrogen sulfide (Eq. 4) and methane (Eq. 5) can be described as in the following 

reactions: 

CO2 + 4H2S + O2 → CH2O + 4S0 + 3H2O                         (Eq. 4) 
 

CH4 + O2 → CO2 + 4H+                                     (Eq. 5) 

 

The most important and well-investigated reaction for energy gain by 

hydrothermal vent biota is the oxidation of hydrogen sulfide (Eq. 4), which is the 

dominant form of emitted sulfur form hydrothermal fluids. The oxidation of sulfide is 

performed by free-living chemolithoautotrophic sulfur-oxidizing bacteria. Those are 

able to yield ATP (Adenosine triphosphate) and convert inorganic carbon into 

organic carbon for their metabolic processes where the hydrothermal fluids 
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discharge into the cold seawater. In addition to this reaction, the reversible reaction 

is possible, where microorganisms reduce sulfate to hydrogen sulfide: 
 

SO4
2- + 2H+ + 4H2 → H2S + 4H2O                              (Eq. 6) 

 

 Organisms, living mainly in the low-temperature discharge zones, can be 

either free-living as individuals in the water like shrimps or crabs, or on the surface 

of different substrates like at the sides of active hydrothermal chimneys. Some 

organisms are living in symbiotic relationships with other hydrothermal organisms. 

The structure of the vent community also depends on the depth and the prevailing 

pressure conditions. In general, systems located in deeper areas have a longer 

history, which can lead to a higher number of obligate species, a high rank of 

obligate taxa and more complicated morphological and physiological adaptions 

(Tarasov et al., 2005). Shallow water hydrothermal systems in contrast, which are 

mostly located near the shore, have a higher input of photosynthetic compounds 

like benthic organisms, phytoplankton and algae in comparison. This may play an 

important and additional role in nutrition cycle of the resident biota (Kharlamenko et 

al., 1995). 

  Most of the ecosystems in the deep-sea are comprised of bacterial mats, 

different species of snails and mussels, in addition to various tubeworms, crabs, 

fishes and shrimps. The exact composition depends on the tectonic setting, as well 

as on the physiochemical characteristics of the fluids. However, the upper 

temperature limit in which microbial live might be still possible was measured to be 

approximately 121 °C and was recorded for cultivated microbes from the Mothra 

hydrothermal field on the Juan de Fuca Ridge (Kashefi and Lovley, 2003).  

 Hydrothermal vent ecosystems are also often associated with theories 

concerning the origin of life, because they harbor rich microbial communities 

despite the discharge of chemically toxic, anoxic and acidic hydrothermal fluids in 

this hostile deep-sea environment, which was always shielded from the UV 

radiation by the deep-water column. Black smoker systems most likely represent 

primordial environmental conditions, reminding of the early earth having extreme 

chemical and thermal differences operating on a small scale, as well as the 

appearance of reactive gases and dissolved elements (Martin et al., 2008). 
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Especially the Lost City hydrothermal system, located on the Atlantic Massif 

several kilometers off-axis from the spreading zone, is extremely different 

compared to black smoker systems with respect to its fluid and host rock 

composition, and is a good example for the extreme early earth conditions. The 

underlying ultramafic rocks have a similar composition to lavas erupting in the early 

ocean made of magnesium- and iron-rich olivine with low silica content and 

hydrothermal fluids that are highly alkaline, 40 to 91 °C hot, enriched in H2 and 

CH4, but depleted in CO2 (Kelley et al., 2005).  

These hydrothermal vent systems represent a very special and complex but 

at the same time very interesting environment for studying As accumulation and 

transformation in marine vent biomass, because the foodweb is extremely different 

to organisms living in the photic zone. Despite this interesting area of research, 

only two studies were published dealing with As and As speciation in hydrothermal 

vent biota to date (Larsen et al., 1997; Taylor et al., 2012). In the first study, 

shrimps of the species Rimicaris exoculata and mussels of the species 

Bathymodiolus puteoserpentis from the TAG and Snake Pit hydrothermal site at 

the Mid-Atlantic Ridge were collected and investigated. Thereby, the shrimp 

displayed AsT concentrations of 13 mg kg-1, whereof the As was mainly present as 

AsBet, and the mussels showed AsT concentrations of 40 mg kg-1, with the major 

portion of As being present as As-sug and lower portions of AsBet (Larsen et al., 

1997). This was somewhat surprising as algae can be hardly found in this 

environment and vent animals have a very special nutrition supplied by the 

chemoautotrophic bacteria. These bacteria are postulated by the authors to be 

responsible for the transformation of As into the organic species found here. The 

second and more recent study investigated shrimps of the species Rimicaris 

exoculata, mussels of the species Bathymodiolus azoricus, its commensal 

polychaete Branchipolynoe seepensis, as well as the gastropod Peltospira 

smaragdina from the TAG, Rainbow and Lucky Strike hydrothermal field on the 

Mid-Atlantic Ridge. The concentration of AsT in the shrimp was measured to be 

between 3.3 and 29.8 mg kg-1 with the As again almost exclusively present as 

AsBet, whereas Bathymodiolus azoricus showed concentrations up to 11.6 mg kg-1 

with the As mostly present as As-sug. The same dominance of As-sug was also 

observed in Branchipolynoe seepensis with AsT concentrations of 18.2 mg kg-1. No 
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speciation analysis was performed for the gastropod Peltospira smaragdina, but 

showing AsT concentrations of up to 67.8 mg kg-1(Taylor et al., 2012). The authors 

implied from the occurrence of organic As species, that there might be other 

pathways for the production of AsBet than the ones assumed known so far via As-

sug delivered via the food-web. The source of present As-sug in the vent 

organisms also remains unclear, as there prevail no or only very little algae.  
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2 | Motivation and objectives 
 

This study aims to contribute to a better and deeper understanding of arsenic 

(As) concentration, mobility and behavior in hydrothermal systems located in 

different tectonic settings and the influence on global ocean geochemistry. So far, 

only a few publications are dealing with the concentration and speciation of As in 

hydrothermal fluids. Even less publications are available dealing with As in 

hydrothermal vent biota, despite these are highly interesting and unique 

ecosystems. Furthermore, the preservation and conservation of the different kinds 

of samples showing high iron and dissolved sulfide was neglected and not 

considered critically at all. The main questions and objectives of my thesis are: 
 

1) What is the concentration of As in hydrothermal fluids from different tectonic 

settings and what are the influencing parameters for the observed overall 

low and extremely high values? What is the influence of hydrothermal fluids 

on the global ocean geochemistry and cycling of As therein? 
 

2) Which As species can be found in hydrothermal fluids and how can the 

speciation of hydrothermal fluids be preserved best with different matrixes of 

high iron or sulfur concentrations? Can thioarsenic species be found, 

preserved and measured in hydrothermal fluids from deep-water systems? 
 

3) How much AsT can be bioaccumulated by different hydrothermal vent 

animals in their gill, digestive gland and muscle? How are they able to deal 

with this highly toxic input, and are there correlations with other elements? 
 

4) Can speciation analysis help to understand the detoxification processes of 

As in the vent biota from this very special environment in a better way? 
 

5) How can the geochemistry of hydrothermal fluids influence the amount and 

species of As found in the vent biota living in the adjacencies of the fluids? 
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To answer the different questions, the existing literature was reviewed and new 

samples collected and the gathered data evaluated. The different chapters of this 

thesis represent the different scientific papers submitted to the journals.  

The first paper “Arsenic in marine hydrothermal fluids” by Breuer & Pichler 

(Chapter 3), which is already in press for Chemical Geology, gives an overview 

about all published data for As in marine hydrothermal fluids to date and also about 

the most important factors controlling the respective concentration in these fluids 

from the different tectonic settings like mid-ocean ridges, back-arc basins and 

island arcs. The overall different and highly variable As concentrations measured in 

hydrothermal fluids sampled at different locations makes it necessary to take a 

closer look at the systems, which differ greatly in their physicochemical conditions.  

Chapter 4 with the submitted paper “Arsenic in fluids and biota of the Menez 

Gwen hydrothermal system” (Deep-Sea Research Part 1) represents the first field 

study conducted at a hydrothermal system located on a mid-ocean ridge system. 

During a research cruise in September and October 2010, hydrothermal vent fluids 

and biological samples from associated vent biota were collected at the Menez 

Gwen hydrothermal field on the Mid-Atlantic Ridge at 37° 51’N and afterwards 

investigated in the labs for AsT and As species. 

The subsequent study “Arsenic in hydrothermal fluids and vent biota from the 

PACMANUS and SuSu Knolls hydrothermal fields, Manus Basin, Papua New 

Guinea” was conducted in a typical back-arc basins environment (Chapter 5). 

Sampling of black, white and clear discharging hydrothermal fluids as well as 

different vent animals like mussels and snails from the local ecosystem was 

performed during a research cruise with R/V Sonne in June and July 2011 and the 

help of the remotely operating vehicle QUEST 4000.  

The third and last tectonic setting is represented by island arc systems. For this 

study, four hydrothermal influenced gravity cores made of altered mineralized 

volcaniclastic sediments and intercalated layers of sulfide precipitates were 

recovered in February 2012 during a research cruise on R/V Meteor in the 

Tyrrhenian Sea. Their hydrothermal pore fluids were investigated for AsT and the 

various As species including thioarsenic species at the University of Bremen and 

Bayreuth as presented as the last study “Thioarsenates in pore fluids from the 

Palinuro volcanic deep-water hydrothermal complex” in Chapter 6.  



MOTIVATION AND OBJECTIVES 25 
 

 

Because several scientist were participating and contributing to the different 

studies and papers, the following list gives my contribution: 

 

Chapter 3: “Arsenic in marine hydrothermal fluids” 
- literature research 

- data collection and rework 

- manuscript writing and editing 

 

Chapter 4: “Arsenic in the Menez Gwen hydrothermal system” 
- preparation for the sampling cruise 

- measuring of hydrothermal fluids for AsT and As species on (HPLC-)ICP-MS 

- processing of biological samples and measuring on (HPLC-)ICP-MS 

- data evaluation for fluids and biota 

- manuscript writing and editing 

 

Chapter 5: “Arsenic in the Manus back-arc basins hydrothermal system” 
- preparation for the sampling cruise 

- participation in SO216 cruise, sampling and preservation of fluids and biota 

- measuring of hydrothermal fluids for AsT and As species on (HPLC-)ICP-MS 

- processing of biological samples and measuring on (HPLC-)ICP-MS 

- data evaluation for fluids and biota 

- manuscript writing 

 

Chapter 6: “Arsenic in pore fluids from the Palinuro hydrothermal system” 
- proposal writing for funding of the cruise for one scientist and one student 

- preparation and organization of the sampling cruise 

- participation in M86/4 cruise, sampling and preservation of pore-fluids 

- measuring of fluid samples on ICP-MS for AsT 

- data evaluation 

- manuscript writing 

 

 



26   MOTIVATION AND OBJECTIVES 
 

 



ARSENIC IN MARINE HYDROTHERMAL FLUIDS 27 
 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

3 | Arsenic in marine hydrothermal fluids 

 

	
  
 

Christian Breuer a,b & Thomas Pichler a,b 
 

 

 
a MARUM – Center for Marine Environmental Sciences 

b Department of Geosciences, University of Bremen 

 

 

 

 

Chemical Geology (2012) 
DOI: 10.1016/j.chemgeo.2012.10.044 

	
  

 
	
  



28 ARSENIC IN MARINE HYDROTHERMAL FLUIDS 
 

 

Abstract 
Hydrothermal fluids emerging at the seafloor near mid-ocean ridges (MOR) or in 

back-arc basins (BAB) and island arc (IA) settings are known to contain a 

considerable amount of dissolved metals (e.g. Fe, Zn, Cu, Cd) due to water–rock 

interaction at elevated temperatures and potentially magmatic degassing. The 

chemical input from these fluids plays an important role for ocean chemistry and the 

cycling of elements. Despite its notoriety as an environmental toxin and its 

abundance in hydrothermal ore deposits in combination with gold, arsenic (As) is one 

of the few elements, which has been only rarely investigated. 

Compared to the amount of As in open ocean seawater of around 1.7 µg L-1, 

hydrothermal fluids can have significantly higher concentrations. Fluids from MOR 

hydrothermal systems such as the East Pacific Rise can contain up to 80.5 µg L-1 As 

and at the Mid-Atlantic Ridge the highest values were around 24 µg L-1. Those 

values, although elevated are surpassed by As concentrations in BAB and IA hosted 

hydrothermal systems, which can be as high as 1386 µg L-1 in BAB settings and 

even higher with values up to 5 850 µg L-1 (~3900-times seawater) in IA shallow-

water settings, occurring near shore hydrothermal systems. 

The most important factors controlling the amount of As in hydrothermal fluids 

are the different – mostly physicochemical – conditions at and beneath the seafloor. 

These include temperature (controlling phase separation of the fluids and leaching 

processes in the host rock), pressure as a function of depth, pH directly influencing 

leaching processes, As mobility and speciation, reaction time and maturity of the 

system in combination with redox reactions and diverse chemical reactions like 

adsorption and desorption. The concentration of As in the underlying host rock may 

also play a role, although its mineralogical association may be more important than 

bulk rock concentration. Additional input of As could be caused by degassing 

magmatic metal-rich volatiles or sediment-fluid interaction in sediment covered 

hydrothermal systems. The contribution from magmatic volatiles is hard to quantify 

and therefore often neglected in calculations and discussions. Of the two As redox 

species, arsenate (AsV) and arsenite (AsIII), arsenite is easier transported in the 

vapor phase. However, As speciation has not been traditionally part of chemical 
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analyses. Prior to discharge at the seafloor, the concentration of As in hydrothermal 

fluids may decrease rapidly, if precipitation of As-bearing and As-scavenging 

minerals, such as pyrite, orpiment, claudetite and hydrous ferric/manganese oxides, 

occurs in the shallow subsurface as shown by thermodynamic calculations. This is 

consistent to the observation that those hydrothermal fluids high in Fe and Mn are 

often low in As. 

Arsenic concentrations in fluids from shallow BAB/IA hydrothermal systems are 

higher than those in deep situated MOR hydrothermal systems most likely due to 

their different physicochemical conditions. Basaltic host rocks (MOR) and 

dacitic/andesitic host rocks (BAB/IA) have As concentrations which are more or less 

identical and cannot account for the huge differences in fluid As concentration. 

Arsenic is one of the few trace elements whose concentration in seawater is 

higher than in river water, which could be caused by the flux of As from hydrothermal 

systems. Estimating that between 3.0 × 103 and 1.25 × 108 kg As could be 

discharged at the MOR annually, which is a substantial amount compared to 

53.9 × 106 kg transported annually by rivers. Higher flux can be expected at BAB and 

IA settings, however data is sparse. A single IA system, confined to a very small area 

of 60 by 100 m (Tutum Bay, Papua New Guinea), discharges around 5.5 × 102 kg As 

annually. 

 

 

Highlights: 
	
  
► We present data for arsenic in marine hydrothermal fluids. ► The concentration of 

arsenic is related to different physicochemical parameters. ► Different host rocks 

can't be responsible for varying arsenic concentrations alone. ► Hydrothermal input 

likely exceeds the riverine input of arsenic into the ocean. 

 

Keywords: 
	
  
Arsenic; Metalloids; Hydrothermal; Fluids; Ocean; Chemistry 
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1. Introduction 
Hydrothermal systems, discovered in 1977 near the Galápagos Islands 

(Corliss et al., 1979; Spiess et al., 1980), are mostly connected to thermal anomalies 

in the subseafloor at mid-ocean ridges (MOR) such as the Mid-Atlantic Ridge (MAR) 

and East Pacific Rise (EPR), back-arc basins (BAB) such as the Lau Basin and 

Manus Basin, sediment-hosted basins such as the Guaymas Basin and island arcs 

(IA) such as the Aeolian arc (Fig. 1). Hydrothermal fluid chemistry is largely 

controlled by physicochemical parameters in each system, such as depth and 

temperature in addition to host rock lithology, and systems are in general driven by a 

steep heat gradient, mostly due to an underlying magma chamber or serpentinisation 

processes. Cold and dense water percolates downward and is heated up to 

temperatures in excess of 400 °C near the heat source in the reaction zone, before 

rising upwards due to buoyancy. In the marine environment, hydrothermal systems 

can be divided based on their depth of occurrence in shallow- and deep-water 

systems, although the boundary is not clearly defined. Some authors draw the line at 

a water depth of 200 m on the assumption that deep water systems have a longer 

history, thus leading to a high number of obligate species and a high rank of obligate 

taxa, as well as more complicated morphological and physiological adaption 

(Tarasov et al., 2005). The depth of 200 m also coincides with a sharp change in the 

slope of the seawater-pressure boiling curve (Bischoff and Rosenbauer, 1984). In 

shallow-water systems of less than 200 m, the photosynthetic input from benthic 

organisms and phytoplankton may play an important role (Kharlamenko et al., 1995). 

Another difference is that seawater is the only fluid source for those hydrothermal 

systems located in deeper water, while hydrothermal systems in shallow water, near 

shore settings may also circulate meteoric water (Pichler, 2005). The temperature of 

the emanating fluids in both, shallow and deep systems, is limited by the boiling 

curve, so that shallow systems generally have temperatures of around 100 °C, while 

temperatures in deep systems can rise above 400 °C (Koschinsky et al., 2008; 

Devey and Garbe-Schönberg, 2011). 

In general, the chemistry of hydrothermal fluids has been intensively studied 

for most elements because they play an important role in ocean chemistry (e.g. Von 

Damm, 2001). Arsenic (As) is an element, which has been rarely investigated in 

hydrothermal fluids. This is surprising, considering this element plays an important 
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role in the formation of hydrothermal ore deposits (Cepedal et al., 2008) and is 

known as an environmental toxin (e.g. Ahmed et al., 2006). In gold deposits, for 

example, Au-As associations are common and As is known as a strictly ore-forming 

element, with the most important factors causing changes in conditions and 

precipitation of gold are temperature, pressure and the fugacity of oxygen and sulfur 

(Zhu et al., 2011). 

Elevated As concentrations in groundwater are responsible for the poisoning 

of almost 100 million people worldwide, particularly in the densely populated region 

of southeast Asia (Brammer and Ravenscroft, 2009). Those developments in 

conjunction with the lowering of the United States drinking water standard for As from 

50 to 10 µg L−1 (Smith et al., 2002) has renewed the overall interest in the study of 

As. Findings of extremely elevated concentration in marine shallow-water 

hydrothermal systems like Tutum Bay (Papua New Guinea), Milos (Greece), Bahía 

Concepción (Mexico) and several other locations sparked new interest in As cycling 

in the oceans and renewed interest of As in marine hydrothermal systems. 

Another interesting aspect is the vent biota living in the mixing zone between 

seawater and hydrothermal fluid, like shrimps, mussels and snails, as well as 

bacterial mats colonizing the areas of warm fluid discharge. Marine photosynthetic 

organisms like algae can absorb arsenate from the surrounding seawater because of 

its similarity to phosphate (Zhao et al., 2009) and convert it to arsenite and then 

further build up methylated species which are again converted and detoxified to 

different arsenosugars. These arsenosugars are postulated to be precursors for the 

less toxic arsenobetaine in higher marine organisms, which consume the 

photosynthetic organisms (e.g. Edmonds et al., 1977). However, several different 

pathways were proposed for this detoxification processes and are still under the 

matter of debate. 

 

1.1 Chemistry of hydrothermal fluids 
The general chemical composition of hydrothermal fluids depends on a 

multitude of factors, the most important being phase separation and water-rock 

interaction in addition to magmatic degassing and subsurface mixing (German and 

Von Damm, 2003). Biological processes also need to be considered, although their 

exact role remains unclear. Phase separation proceeds if the fluid encounters the 
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two-phase boundary and a vapor phase and a brine phase are generated. 

Furthermore, the critical point (407 °C / 298.5 bar) represents the boundary between 

subcritical conditions, when the separation takes places at pressures lower than the 

critical pressure, and supercritical conditions when separation takes place at 

pressures higher the critical pressure (Bischoff and Rosenbauer, 1988). When 

seawater is boiling under subcritical conditions, a gas-rich low Cl vapor phase and a 

high salinity brine phase are generated, while under supercritical conditions, 

condensation of small amounts of a dense brine phase occurs, leaving a relatively 

dense, low-Cl vapor phase (Koschinsky et al., 2008). An important factor is whether 

phase-separation is occurring in low-pressure systems, where the boiling can occur 

all the way from the heat source to the seafloor or in high-pressure systems, where 

phase-separation is mostly confined to the immediate vicinity of the hot magma 

chamber (Coumou et al., 2009). 

 

 

 
 

Fig. 1: Distribution of selected hydrothermal systems worldwide: 1 = Montserrat; 2 = Tutum Bay; 
3 = Milos; 4 = Bahía Concepción; 5 = Champagne Hot Springs; 6 = Menez Gwen; 7 = Lucky Strike; 
8 = TAG; 9 = Snakepit; 10 = Logatchev; 11 = Guaymas Basin; 12 = 21°N EPR; 13 = 13°N EPR; 
14 = 17–19°S EPR; 15 = Lau Basin; 16 = Manus Basin. 
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During water-rock interaction, the chemical composition of host rocks and 

water can change drastically, and species are either lost (e.g. Mg, SO4) or gained 

(e.g. Fe, Mn, Si) to the fluids depending on the water/rock ratio and reaction 

temperature. The ratio generally increases with increasing temperature and also 

increasing residence time. Seawater sulfate, for example, is removed via 

precipitation of CaSO4 at temperatures higher than 130 °C. Magnesium is lost due to 

the formation of Mg-OH silicates, which results in H+ generation contributing to low 

pH, mostly between 2 and 4 (German and Von Damm, 2003). Most metals and 

particularly trace and transition metals are generally enriched in hydrothermal fluids 

mainly due to complexation at low pH and high temperature (Douville et al., 2002). 

Fluid inclusion studies suggested that elements like Na, K, Fe and Mn preferentially 

partition into the brine phase during phase separation due to Cl-complexation, while 

trace elements like Cu, As and Au can accumulate in the vapor phase due to HS-

complexation (Heinrich et al., 1999). 

 
1.2 Arsenic and arsenic species in aqueous systems 

Arsenic is ubiquitously present in the aquatic environment with concentrations 

around 0.62 µg L-1 in river waters (Gaillardet et al., 2003) and between 0.5 and 

3.0 µg L-1 with a mean of 1.7 µg L-1 in the oceans (Neff, 2002). Based on redox and 

pH, As can occur in the oxidation states +5, +3, 0 and -3 (Mandal and Suzuki, 2002; 

Smedley and Kinniburgh, 2002), whereas the first two are the dominant in aqueous 

systems (Sharma and Sohn, 2009). In hydrothermal fluids from shallow-water island 

arcs, the dominant species at a pH range between 5 and 7 and reducing conditions 

(Eh < 0) should be the trivalent As(OH)3 arsenite species, and at higher temperatures 

and pressures like in deep-water systems from MOR and BAB, the H2AsO4
− arsenate 

species should occur more often as shown in modeled speciation diagrams for the 

different regimes (Fig. 2 A-C). These also show preferential precipitation of orpiment 

(As2S3) and claudetite (As2O3) at high temperature, and high iron and sulfur 

concentrations. Considering different concentrations for As, the stability field for 

claudetite expands with higher As concentration and the H2AsO4
− field shrinks 

(Fig. 3 A-C). At 100 °C and 200 °C (Fig. 3 D-E), claudetite is no longer stable, but the 

most important species under these conditions is the trivalent As(OH)3. Arsenite 

entering into aerobic seawater can be rapidly oxidized to arsenate due to abiotic and 
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microbial reactions, but the trivalent form is more toxic than the pentavalent form. 

The most important species and minerals in these systems and their thermodynamic 

properties and reactions are given in Table 1.  

Thioarsenic species are also possible in hydrothermal system rich in sulfide, 

and their existence is favored by thermodynamic studies of As sulfide solubility 

(Webster, 1990; Eary, 1992; Wilkin and Ford, 2006) and observations. 

Thioarsenates, for example, were reported for the geothermal waters of the 

Yellowstone National Park (Planer-Friedrich et al., 2007; Planer-Friedrich et al., 

2010). 

 

 
Fig. 2: Eh–pH diagrams for typical hydrothermal fluids from back-arc basins (A; Roman Ruins), mid-
ocean ridges (B; Logatchev), island arcs (C; Tutum Bay) and for pure seawater at 25 °C (D). Grey 
shaded areas show solid phases. 
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Fig. 3: Eh–pH diagrams for hydrothermal fluids from deep-water systems at different As activities at 
300 °C (A–C). ΣAs is 1.0 × 10−8 (A), 1.0 × 10−5 (B), and 1.0 × 10−2 (C). Diagrams D and E were made 
for 100 °C and 200 °C respectively and ΣAs of 10−5. Grey shaded areas show solid phases. 
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Tab. 1: Different species and minerals and their reactions for As speciation diagrams. 
 

Species / mineral Activity Reaction Log K+ 

As(OH)4
- 10-8 As(OH)4

- = As(OH)4
- 0 

AsH3 (aq) 10-8 AsH3 (aq) + 4H2O = As(OH)4
- + 6e- + 7H+ 9.3 

AsO4
3- 10-8 AsO4

3- + 2e- + 4H+ = As(OH)4
- 27.75 

AsOH3 10-8 AsOH3 + H2O = As(OH)4
- + H+ -8.39 

AsO2OH2- 10-8 AsO2OH2- + H2O + H+ = As(OH)4
- 10.07 

H2AsO4
- 10-8 H2AsO4

- + 2e- + 2H+ = As(OH)4
- 8.53 

H3AsO4 10-8 H3AsO4 + 2e- + H+ = As(OH)4
- 4.15 

HAsO4
2- 10-8 HAsO4

2- + 2e- + 3H+ = As(OH)4
- 16.31 

arsenolite 1 arsenolite + 5H2O + 4e- + 2H+ = 2As(OH)4
- -16.86 

As2O5 1 As2O5 + 3H2O + 4e- + 2H+ = 2As(OH)4
- 16.05 

claudetite 1 Claudetite + 5H2O = 2As(OH)4
- + 2H+ -17.26 

 
 

 
1.3 Arsenic in rocks from the oceanic lithosphere 

There is limited information about As in rocks from the oceanic lithosphere and 

overlying sediments. During rock forming processes, As behaves strongly 

chalcophile and therefore, the most important As minerals in the mafic rocks from the 

oceanic crust are cobaltite (CoAsS), loellingite-safflorite (FeS2(Co,Fe)As3), luzonite 

(Cu2AsS4), tennantite (Cu10(Fe,Zn)2As4S13), claudetite (As2O3) and elemental arsenic 

(As0), mostly intergrown with elemental gold (Mozgova et al., 2005). In ocean ridge 

basalts, the average As concentration was estimated to be approximately 1.0 mg kg-1 

(Matschullat, 2000). Data are rare, but available as shown in Tab. 2, for example, for 

ultrabasic rocks like abyssal peridotites from 15° 20'N MAR with average values of 

0.94 mg kg−1 (Paulick et al., 2006), and serpentinized peridotites from the Kane area 

(MAR), varying around 0.91 mg kg−1 (Werner and Pilot, 1997). Magmatic rocks from 

island arc and back-arc settings, such as andesite, dacite and rhyolite have generally 

slightly higher As concentrations than basic and ultrabasic rocks. In andesite, 

concentrations vary between 0.5 and 5.8 mg kg−1 and in rhyolite between 3.2 and 

5.4 mg kg−1 (Mandal and Suzuki, 2002). The average concentration of As in deep-

sea sediments was estimated to be approximately 40 mg kg−1 (Boström and Valdes, 
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1969). In oceanic sediments, As is mostly concentrated in fine-grained sediments, in 

particular those rich in organic matter, sulfide minerals, phosphates or iron oxides 

(Plant et al., 2003). 
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2. Sampling, preservation and determination of Arsenic in 
hydrothermal fluids 

Sampling of hydrothermal fluids is difficult and challenging because most 

systems are located in great depths and either submarines or remotely operated 

vehicles (ROVs) are required in addition to specific fluid sampling devices. During 

discharge, the hydrothermal fluids mix immediately with ambient seawater, causing a 

rise in pH, cooling and the addition of oxygen, initiating mineral precipitation. 

Unfortunately mineral precipitation alters the fluid chemistry during and after 

sampling on the way to the surface. Gas tight samplers – at the moment the best in-

situ sampling equipment for hydrothermal fluids – are needed to prevent oxidation 

and gas release (Seewald et al., 2002). Nevertheless, entrainment of seawater and 

mineral precipitation due to cooling may still take place. 

Another important aspect of As measurements is sample treatment, with the 

goal to preserve the total concentration and species distribution once at the surface. 

A first step is filtration through an unreactive membrane filter (commonly 0.22 µm) to 

remove microorganisms that might cause changes in speciation. During filtration, 

newly formed sulfides and hydrous ferric oxides are also separated from the 

hydrothermal fluid, however they have to be dissolved and their As concentration 

later re-included with the amount determined in the fluids. Further precipitation during 

storage and transport can be inhibited by acidification with HCl, HNO3, H2SO4 or 

H3PO4 (McCleskey et al., 2004). These methods however, are controversial: (1) HCl 

preserved samples have to be corrected due to the 40Ar35Cl+ molecular interference 

with 75As+ when using ICP-MS and (2) H2SO4 is difficult to purify and leads (also like 

HNO3 and H3PO4) to higher Eh-values, which could result in oxidation reactions and 

changes in species distribution. One possibility to preserve speciation is the addition 

of EDTA, but this it is difficult, because too much EDTA can increase pH and cause 

precipitation, while too little can be ineffective (McCleskey et al., 2004; Gault et al., 

2005). Flash freezing of the sample under anaerobic conditions seems to be the 

better solution to preserve speciation and is already utilized (e.g. Francesconi and 

Kuehnelt, 2004; Planer-Friedrich et al., 2007; Planer-Friedrich et al., 2009; Kumar 

and Riyazuddin, 2010).  

There are different analytical techniques for measuring total As concentration 

and its species: (1) spectroscopic methods (hydride generation in combination with 
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atomic absorption (HG-AAS) or with atomic fluorescence (HG-AFS) and graphite 

furnace atomic absorption (GFAAS)), (2) inductively coupled plasma (ICP) 

techniques where the ICP can be coupled to a mass spectrometer (ICP-MS) or 

atomic fluorescence spectroscopy (ICP-AFS), in addition to combination with hydride 

generation (HG-ICP-MS) or high pressure liquid chromatography (HPLC-ICP-MS) 

and (3) furthermore electrochemical methods (Hung et al., 2004). 

The today commonly used method for determination of As and the different 

species is ICP-MS coupled to HPLC, which allows determination and quantification of 

As species even at low concentrations with detection limits down to 0.2 µg L−1 

(Kohlmeyer et al., 2002; Ronkart et al., 2007).  

 

 

3. Arsenic in hydrothermal fluids 
To present As data, the hydrothermal systems were grouped into shallow-

water systems, such as those from island arcs (IA) settings and deep-water systems, 

such as mid-ocean ridge (MOR) and back-arc basin (BAB). All As values are given 

as endmember concentrations, which were calculated to zero Mg, unless otherwise 

stated. This possibly neglects magmatic input, but allows overall comparability. 

 

3.1 Shallow-water hydrothermal systems 
 

3.1.1 Montserrat 
The 800 km long Lesser Antilles IA results from the subduction of the North 

American plate below the Caribbean Plate. The island of Montserrat is located at the 

northern end of the inner arc, consisting of mostly andesitic rocks, younger than 

20 Ma (Bouysse et al., 1990; Le Friant et al., 2004). After an eruption of the Soufriere 

Hills volcano on Montserrat in July 1995, large increases in shallow water (2 to 5 m) 

hydrothermal discharge near the western coast were observed. These springs were 

sampled for one year revealing a sharp increase in Mn, Fe and As concentrations 

immediately after the eruption, followed by a steady decline (Cronan et al., 1997). In 

July 1995 the fluid As endmember concentrations were up to 3 600 µg L−1 (Tab. 3), 

approximately 2 400-times the mean of global seawater with fluid temperatures 30 °C 
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above ambient. In contrast to the As concentration, Na and Cl concentrations 

remained stable, indicating that no phase separation occurred (Cronan et al., 1997). 

 

3.1.2 Tutum Bay 
The shallow-water hot springs in Tutum Bay are located 150 m offshore along 

the southwest part of Ambitle Island (Papua New Guinea), which is a quaternary 

stratovolcano with a central eroded caldera. Submarine venting occurs in 5 to 10 m 

water depth with fluid temperatures up to 98 °C (Pichler and Dix, 1996). Phase 

separation in the deep reservoir, which feeds the Tutum Bay hot springs is likely 

(Licence et al., 1987). In addition to this high temperature focused discharge of 

slightly reducing fluids with a pH around 6.0, also low temperature diffuse venting 

was observed. Endmember As concentrations ranged from 750 to 1 050 µg L−1, 

which was up to 275-times local seawater enrichment (Tab. 3). Arsenic occurred 

more or less exclusively as the trivalent arsenite species (AsIII; Pichler et al., 1999a; 

Price and Pichler, 2005). The host rock of the Tutum Bay hydrothermal system is 

made of andesite, dacite and basalt, covered with sandy to pebbly unconsolidated 

sediments. The sediments consist mostly of feldspar, hornblende, pyroxene and 

magnetite, as well as weathering products coated with hydrous ferric oxide (HFO), 

which precipitated due to mixing between hydrothermal fluid and seawater (Pichler 

and Veizer, 1999; Pichler et al., 1999a; Pichler et al., 1999b; Price and Pichler, 

2005). Arsenic concentrations in HFO were in excess of 50 000 mg kg−1. 

 

3.1.3 Milos 
Milos is situated in the central Hellenic Volcanic Arc and formed due to the 

subduction of the African plate under the Aegean microplate (McKenzie, 1970). 

Discharge of acidic (pH ~ 5) and highly sulfidic hydrothermal fluids with temperatures 

up to 115 °C could be observed at the southeast coast in Paleochori Bay (Valsami-

Jones et al., 2005), where As concentrations were as high as 2 900 µg L−1. In the 

neighbouring Spathi Bay, As concentrations were even higher, with values up to 

5 850 µg L−1 (Tab. 3). This is approximately 2925-times local seawater and currently 

the highest value for marine hydrothermal systems. Speciation results for diffuse 

venting fluids indicate AsIII, AsV and also mono-, di-, and trithioarsenates (Price et al., 

2013). Two groups of hydrothermal fluids could be distinguished due to phase 
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separation at Milos: high-Cl fluids containing less As and a group of low-Cl fluids 

more enriched in As (Valsami-Jones et al., 2005). The host rock of the system at 

Milos consists of andesitic to dacitic volcanic rocks and greenschist facies 

metamorphic rocks. Overlying high carbonate sediments enriched in lead and zinc 

mostly consist of quartz, calcite, aragonite, feldspars, plagioclase and different clay 

minerals like smectite kaolinite and illite (Karageorgis et al., 1998).  

 

3.1.3 Bahía Concepción 
As one of the largest fault-bound bays, Bahía Concepción is located in the 

Gulf of California and its heat anomaly is connected to extensional and 

accommodation tectonics related to the extension during the Late Miocene (e.g. 

Angelier et al., 1981; Ledesma-Vázquez and Johnson, 2001; Negrete-Aranda and 

Cañón-Tapia, 2008). Hydrothermal activity was observed as diffuse and focused 

venting with temperatures between 50 °C (sea bottom) and 87 °C (at 10 cm below 

the water-sediment interface) with estimated As concentrations for the hydrothermal 

endmember of around 2 000 µg L−1 (Tab. 3). Emerging fluids of the sodium chloride 

type sampled at 5 m depth represented a mixture between seawater and a maximum 

of 40 % thermal endmember, with low Cl values leading to the assumption of phase 

separation and sampling of a low-density vapor phase (Prol-Ledesma et al., 2004). 

Metamorphic basement is overlain by dacitic to andesitic rocks from the lower 

Cretaceous (Busby et al., 2006), covered by a marine and continental sedimentary 

layer (Morán, 1984). Bright red and yellow precipitates as coatings on volcanic 

cobbles and boulders observed near the vent sites, mostly contain HFO, significantly 

enriched in As with concentrations up to 50 000 mg kg−1 (Canet et al., 2005; Berquó 

et al., 2007) 
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3.1.4 Champagne Hot Springs 
The Champagne Hot Springs shallow-water hydrothermal system is located 

along the southwest flank of the Morne Plat Pays volcanic system, near the island of 

Dominica. Hydrothermal activity is connected to the double island arc system of the 

Lesser Antilles, and Dominica is situated on the inner arc (Fink, 1972). Fluids were a 

mixture of seawater and meteoric water emerging at a depth of 1 to 5 m with 

temperatures up to 71.4 °C and a pH around 6.0 (McCarthy et al., 2005). Arsenic 

concentrations were between 18 and 80 µg L−1 leading to zero-Mg endmember 

concentrations between 50 and 190 µg L−1 with an average of 100 µg L−1 (Tab. 3). 

The dominant species found in these fluids was AsIII in addition to minor AsV. The 

host rocks of the Champagne Hot Springs hydrothermal system consist mainly of 

medium-K calk-alkaline andesites (Lindsay et al., 2003), and hydrothermal HFO 

found nearby, enriched in As with concentrations of up to 1 880 mg kg−1 (McCarthy et 

al., 2005). 

 

3.2 Deep-water hydrothermal systems 
 

3.2.1 Mid-Atlantic Ridge (MAR) 
The two hydrothermal systems Menez Gwen and Lucky Strike occur in close 

proximity and are located at 37° 50′N and 37° 17′N, respectively. They are similar in 

host rock composition and fluid geochemistry. Local spreading rates are around 

20 mm a−1 and both systems are influenced by the Azores plume resulting in 

enrichment of incompatible elements in the underlying E-MORB basalts (Marques et 

al., 2009). Sediment coverage is either poor or absent, indicating that the volcanic 

rocks are young, only years to decades old (Fouquet et al., 1995). Fluids were 

measured to be poor in Cl (< 18 440 mg kg−1) and Fe (< 44 mg kg−1) but gas-rich 

(Charlou et al., 2000). 

Menez Gwen is characterized by the absence of a central rift, with the main 

system being a 17 km in diameter and 700 m in high, circular volcano in the central 

part of the segment, which has a 6 km long, 2 km wide and 300 m deep axial graben 

at its top. The area of active hydrothermal discharge is located in a depth of 840 to 

865 m on the northern end of this graben, covering around 200 m2 (Fouquet et al., 

1994). Clear fluids emerge with temperatures around 285 °C (Charlou et al., 2000) 

and calculated endmember As concentrations were around 18.5 µg L−1 (Tab. 3). 
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Topographically, anhydrite chimneys and barite-rich mounds characterize the 

system. 

Lucky Strike has a well-developed 15 km wide and up to 905 m deep rift 

valley, but without an axial graben. Three circular volcanic cones are located at the 

summit with the on-going hydrothermal activity in the depression between them 

(Langmuir et al., 1997). Hydrothermal chimneys surround a lava lake, 300 m in 

diameter with fresh lavas, while the cones are old and consist of highly vesicular 

volcanic breccia (Fouquet et al., 1994). Metal-poor fluids discharged with 

temperatures between 170 and 324 °C and pH values between 3.8 and 4.5 (Charlou 

et al., 2000). The As endmember concentrations of the fluids were between 4.3 and 

24 µg L−1 with an average value of 15 µg L−1 (Tab. 3). A reversed correlation with Fe 

and high As/Fe ratios and variable Cl-concentrations (Pester et al., 2012) indicate 

that phase separation is occurring. 

The TAG hydrothermal field at 26°N on the MAR was discovered in 1972 

during the NOAA Trans-Atlantic Geotraverse (Rona et al., 1975; Rona, 1980), with 

the most impressive feature, an active mound, discovered in 1985 (Rona et al., 

1986). Black smoker fluids with temperatures around 366 °C and white smoker fluids 

with temperatures lower than 300 °C were observed, next to large areas of low 

temperature diffuse discharge (Edmond et al., 1995). Further south, at 23° 22′N, the 

Snakepit hydrothermal system is located atop a neovolcanic ridge, also showing high 

temperature (350 °C) black smoker fluids and lower temperature (270 °C) discharge 

of white fluids (Lalou et al., 1990). Fluids from both locations were Cl-rich and had As 

concentrations below the limit of detection of 0.8 µg L−1 for the two samples from 

TAG and 3.2 and 14.2 µg L−1 for the two samples from Snakepit (Douville et al., 

1999). Both systems are underlain by typical MORB, depleted in incompatible 

elements (Bryan et al., 1981). At the Logatchev hydrothermal field (14° 45′N) hot 

black smoker fluids (350 °C) and lower temperature diffuse fluids discharge in about 

3 000 m depth. Chlorinity was measured similar to seawater or slightly lower, which 

lead to the conclusion that there was no effect of phase separation (Douville et al., 

2002). Fluids contained As concentrations of 2.8 and 4.7 µg L−1 (Douville et al., 

1999), lower amounts of Si, Li and H2S, as well as elevated dissolved H and CH4 due 

to serpentinization reactions (Schmidt et al., 2007). The basement consists 



ARSENIC IN MARINE HYDROTHERMAL FLUIDS 45 
 

dominantly of ultramafic rocks made of serpentinized harzburgites, with intruding 

gabbros (Petersen et al., 2009). 

 

3.2.2 East Pacific Rise (EPR) 
The 9000 km long EPR located in the Pacific Ocean has comparatively higher 

spreading rates than the MAR (Rea and Scheidegger, 1979). Areas of hydrothermal 

activity on the EPR were found and investigated in different sections like in the 

Guaymas basin at 27°N and in regions at 21°Ν, 13°N, and at 17° to 19°S. 

The spreading center of the Guaymas Basin is located in the central Gulf of 

California in around 2 000 m water depth and characterized by a high sedimentation 

rate of 1 to 5 m ka−1 (Fisher and Becker, 1991). Discharging black smoker fluids were 

up to 315 °C in temperature, highly reducing (Soto, 2009) and contained As 

endmember concentrations between 21.1 and 80.5 µg L−1 with an average value of 

50.8 µg L−1 (Tab. 3). The high sedimentation rate results in a thick (> 300 m) 

coverage of unconsolidated organic- and carbonate-rich sediments of diatomaceous 

oozes and mud turbidites above the underlying basalts, intruded by dolerite sills 

(Einsele et al., 1980; Simoneit et al., 1984). Due to the sediment cover, the 

hydrothermal solution reacts with sediments in addition to the water-rock interaction 

at depth, and because of the pyrolysis of sedimentary organic matter, an enrichment 

of NH4
+ was observed in the hydrothermal fluids (Sturz et al., 1996). Further south, at 

21°N where the EPR exhibits an intermediate spreading rate of around 60 mm a−1, 

several fields of black smokers are situated in 2 600 m depth, with fluid temperatures 

measured up to 405 °C (Dekov, 2007). Chimneys are 20 m high and made of 

anhydrite, iron-, zinc- and copper-sulfides, as well as different alteration minerals 

(Haymon and Kastner, 1981). Concentrations of As in these fluids varied between 

2.3 (LOD) and 33.9 µg L−1 (Tab. 3), which is up to 17-times enriched in comparison 

to local seawater. The underlying rocks are composed of MORB with fresh basalt 

flows, talus and calcareous metalliferous sediments on the surface (Bäcker et al., 

1985).  

Another hydrothermal area linked to an axial graben (Ballard et al., 1984; 

Gente et al., 1986) exists near 13°N at 2 600 m water depth in a region of fast 

spreading of up to 120 mm a−1 (Klitgord and Mammerickx, 1982). Recent lava flows 

were observed (Fouquet et al., 1988) as well as black and white smoker fluids with 
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temperatures of up to 317 °C and a minimum pH of 3.8 (Michard et al., 1984). Of the 

two samples, which were analyzed for As, one was below the detection limit 

(< 0.8 µg L−1) and the other had a concentration of 1.4 µg L−1 (Douville et al., 1999). 

Further characteristics of the fluids were a high concentration of H2 (Merlivat et al., 

1987) and Cl (around 25 500 mg kg−1), leading to the assumption that phase 

separation is occurring. 

Along the southern EPR, where spreading is ultra-fast (143 to 147 mm a−1), a 

hydrothermal area exists between 17° and 19°S. This area is characterized by 

abundant faults and fissures and has a 50 m deep and several hundred meter wide 

graben (Urabe et al., 1995). During the Naudur Cruise in 1993, several fluid samples 

were collected and two different hydrothermal fluids could be distinguished: one set 

with low Cl, gas enrichment and low content of dissolved metals and another set with 

high Cl, lesser gas enrichment and a high concentration of metals (Charlou et al., 

1996). Samples from three black smokers with temperatures up to 300 °C were 

analyzed for As and endmember concentrations ranged from below the LOD 

(< 0.8 µg L−1; high Cl) up to 41.0 µg L−1 (low Cl) (Douville et al., 1999). Volcanic 

eruptions were ongoing, occurring every few years as indicated by a very thin layer of 

sediments (< 1 mm) leading the hydrothermal system to discharge diffuse low 

temperature to hot shimmering water and black smoker fluids (Renard et al., 1985; 

Auzende et al., 1996). 

 

3.2.3 Back-Arc Basins (BAB) 
Hydrothermal activity also occurs in back-arc spreading centers, where 

subduction leads to extension of the overriding plate due to roll-back and/or anchor 

behavior of the slab causing a high temperature gradient (Martinez et al., 2007). The 

chemical composition of the hydrothermal fluids is different from those at mid-ocean 

ridges because of the different geologic setting. Fluids are mostly very low in pH (~ 2) 

and contain a high amount of dissolved metals like Mn, Zn, Cu and Pb due to the 

interaction of seawater with the host rocks, composed of dacites and andesites at 

elevated temperatures (Taylor and Martinez, 2003). 

A typical example for an active BAB is the Lau Basin in the SW Pacific, 

located between the remnant Lau Ridge and the active Tofua volcanic arc (Mottl et 

al., 2011). In the southern segment of the Lau Basin from 21° to 23°S and in depths 
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between 1 700 and 2 000 m, the 150 km long Valu Fa Ridge consists of (basaltic) 

andesite and rhyodacite, showing a clear influence of the subducted slab (Jenner et 

al., 1987; Vallier et al., 1991). Fluids from black and white smokers sampled during 

the Nautilau cruise on R/V Nadir in 1989 ranged between 240 and 342 °C in 

temperature, showed a pH of 2 and high Cl concentrations between 23 000 and 

28 400 mg kg−1 (Fouquet et al., 1991). The amount of dissolved metals in these fluids 

were considerably higher than those measured at mid-ocean ridges and showed 

endmember As concentrations between 450 and 825 µg L−1 (Tab. 3), which is up to 

550-times seawater. Similar concentrations between 480 and 630 µg L−1 (Tab. 3) 

were measured in samples from the high temperature Vai Lili hydrothermal field at 

the central Valu Fa Ridge (Douville et al., 1999). Phase separation is unlikely, 

because the hydrothermal fluids had Cl concentrations similar to seawater. Only 

26 km further north, the Tui Malila hydrothermal field, sampled in 2005, showed 

maximum As values of 160 µg L−1 (Mottl et al., 2011), which is around 4-times lower 

than previous results at Vai Lili hydrothermal field. However, these measurements 

were made on not acidified samples, potentially resulting in lower As concentrations 

due to precipitation. 

Other hydrothermal systems are active in 1 650 to 2 500 m depth in the rapidly 

opening Manus Basin (Tregoning, 2002). At the New Britain Trench, the Solomon 

Plate is being subducted, causing the formation of the New Britain arc. Back-arc 

spreading is occurring along the Manus Ridge, which is bounded by the Willaumez 

transform fault in the west and the Djaul transform fault in the east. Another strongly 

active hydrothermal area with active spreading is located in the Eastern Manus Basin 

(EMB), bounded by the Djaul and Weitin transform fault (Taylor, 1979; Martinez and 

Taylor, 1996; Lee and Ruellan, 2006). Underlying host rocks show variations from 

arc-like character with BAB basalts close to the New Britain arc to MORB-like 

character with increasing distance from the spreading center (Sinton et al., 2003). 

The basalt hosted and sparsely sediment covered Vienna Woods 

hydrothermal field is located near the Manus Spreading center in 2 500 m water 

depth and comprises diffuse fluid flow as well as hot clear, black and grey smokers 

reaching temperatures up to 285 °C and a pH around 4.5 (Craddock et al., 2010; 

Reeves et al., 2011). Two fluid samples were taken during the Manusflux cruise in 

1995, which had As endmember concentrations of 6.3 and 23.2 µg L−1 respectively 
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(Douville et al., 1999). Fluids were also sampled in the EMB at the PACMANUS and 

the approximately 20 km northeast-located Desmos hydrothermal area. At the 

PACMANUS site, several chimney fields were observed on the felsic and only slightly 

sedimented Pual Ridge. The fluid temperatures were up to 358 °C, which is close to 

the phase boundary, and had a pH between 2.3 and 2.8, in addition to indications of 

involvement of magmatic fluids with acid-volatile constituents (Reeves et al., 2011). 

Emerging hydrothermal fluids had As concentrations of 1 200 and 1 390 µg L−1 

(Tab. 3) for samples from the Satanic Mills field, which is part of PACMANUS. Both 

samples were rich in Cl and Fe (90 and 250 mg L−1, respectively), with the second 

one showing higher As concentration also showing higher concentrations of Cl and 

Fe. The nearby located Desmos caldera is characterized by venting of hot and highly 

acidic (pH ≤ 2.1) white fluids with temperatures between 88 and 120 °C. Fluids were 

rich in sulfate due to a magmatic component rich in SO2, exsolving from a shallow 

intrusion (Gamo et al., 1997). One fluid sample from this location was analyzed for 

As and showed a concentration of 10 µg L−1 (Tab. 3) much lower than at Satanic 

Mills. In general, the hydrothermal fluids were rich in Mg and poor in Fe and the host 

rock composed of basaltic andesite and hyaloclastite deposits (Gena et al., 2001). 

 

4. Discussion 
The concentration of Arsenic (As) measured in marine hydrothermal fluids 

shows a broad range, from below detection (LOD) to 5 850 µg L−1 (Tab. 3). In 

general, As concentration in hydrothermal fluids from shallow-water hydrothermal 

systems show higher concentrations than those in deep-water, whereas in the latter, 

hydrothermal systems from back-arc basins (BAB) show higher values than those 

from mid-ocean ridges (MOR). 

Shallow-water hydrothermal systems mostly found in Island Arc (IA) settings 

like Tutum Bay, Milos, Bahía Concepción or Champagne Hot Springs, show the 

highest As concentrations of up to 5 850 µg L−1. The basement is dominantly made 

of andesitic and/or dacitic volcanic rocks with bulk rock As concentrations between 

0.5 and 5.8 mg kg−1 (Mandal and Suzuki, 2002). These hydrothermal systems are 

often covered by sediments due to their close proximity to land masses. Important 

differences between the different shallow-water systems are temperature (leading to 

phase separation), pH and H2S content, which seem to be responsible for the broad 
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range of observed As concentration. In addition, other physicochemical parameters 

like reaction time and maturity of the system, fluid pressure, redox state, iron 

concentration, and gas fugacity can affect the amount of As leached from the host 

rocks and transported in the hydrothermal fluid. Those fluids, which are higher in 

temperature, more acidic and high in H2S (e.g. Milos), show the highest amount of 

As, probably due to the higher leaching capacity and phase separation and low 

amount of precipitated As-bearing minerals in the subsurface, and systems with 

lower temperature, more alkaline pH and low H2S are also lower in As (e.g. 

Champagne Hot Springs). It seems that phase separation is one of the more 

important factors controlling the concentration of As in hydrothermal fluids. Phase 

separation produces a gas rich low-Cl vapor phase and a high-Cl brine phase, and 

As should partion into the vapor phase, due to the domination of the uncharged 

arsenite species (H3AsO3
0) at the prevailing pH and redox conditions in shallow-

water systems, additional to HS-complexation (Heinrich et al., 1999). There is no 

consensus if partioning is occurring (Pokrovski et al., 2005) and further research is 

needed, because the effect of sulfur ligands like H2S and SO2 was neglected with 

respect to the volatility of As (Pokrovski et al., 2008). An additional cause for As 

enrichment could be leaching from As-rich sediments in the shallow sub seafloor, 

prior to discharge (McCarthy et al., 2005; Price and Pichler, 2005). Although 

conceptually likely, there is currently no evidence for leaching of As from sediments. 

Concentrations of As in hydrothermal fluids, which discharge from discrete orifices in 

the bedrock from areas of low sedimentation, are similar or sometimes even higher 

than those which discharge diffusively through sediments (McCarthy et al., 2005). 

The system offshore in Montserrat showed higher As values during volcanic 

activity, but did not show any temperature increase or variations in Na and Cl, which 

would be indicative that phase separation occurred. Thus, the observed enrichment 

of As here may be caused by enhanced magmatic input (in form of magmatic 

volatiles) during the eruptive cycle. Unfortunately it is impossible to distinguish which 

proportions of As were leached from the host rocks due to water-rock interaction or 

added by magmatic volatiles. 

Considering values from the MOR, As concentrations are significant lower with 

the highest value of 80.5 µg L−1 measured in fluids from the sediment hosted 

Guaymas basin on the EPR (Von Damm et al., 1985). MOR host rocks are made of 
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E-MORB and MORB due to different sources, melting styles and depth of melt 

formation (Perfit, 2001), whose As concentrations are roughly around 1.0 mg kg−1 

(Matschullat, 2000) and often only sparsely covered with sediments. The slight 

difference in As concentration between andesites and dacites from the IA systems 

and the MORBs should not account for the overall lower values of the hydrothermal 

fluids from the MOR, leading to the conclusion that physicochemical parameters are 

more important than bulk As concentration of the host rock. A huge sink for As in 

these hydrothermal fluids could be a high amount of dissolved Fe transported with 

the fluids, leading to precipitation and incorporation of As into Fe-sulfides as 

observed in various hydrothermal ores where arsenopyrite or orpiment for example 

are common minerals. Eh–pH diagrams also show this where preferably minerals like 

orpiment and claudetite precipitate at low Eh and pH and high temperature (Fig. 2 

and Fig. 3). Hypogene origin of orpiment was also suggested earlier by different 

experimental studies at high temperatures (Weissberg et al., 1966). Different 

samples from the TAG hydrothermal mound showed As concentrations of up to 

210 mg kg−1 (Hannington et al., 1995) and up to 100 mg kg−1 were found in a 

sediment core in 13 to 16 cm depth from Lucky Strike (Dias et al., 2008). For BAB 

settings, massive sulfide deposits from the Jade Hydrothermal field (Okinawa 

Trough) showed As concentrations of up to 9.3 % and realgar (As4S4) and orpiment 

(As2S3) minerals were found (Halbach et al., 1989). The possible amount of As lost 

prior to discharge due to precipitation has not been quantified yet but could be huge 

as shown above and responsible for the overall lower values in deep-water systems 

compared to the shallow-water systems. Considering that the As concentration in the 

oceanic rocks from IA and MOR show only little variations, it is probably also not the 

bulk quantity that is responsible for the large variation of As, but rather where the As 

is bound in the rocks in addition to the various physical and chemical parameters. 

Data from the MOR tentatively verify the partioning of arsenite into the vapor 

phase during boiling and phase separation. Phase separation generally causes the 

vapor phase to be more enriched in As and the brine phase depleted, as observed in 

As enriched samples from Menez Gwen and Lucky Strike and depleted samples from 

TAG, Snakepit and 13°N EPR. At 17° to 19°S EPR, two vapor phase samples 

showed higher values than the assumed liquid brine phase sample (Douville et al., 

1999). 
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In comparison to the alkaline basalts at the MOR, hydrothermal systems in 

BAB are hosted in acidic host rocks like at IA. Values for As are in general higher, 

varying between 450 and 1390 µg L−1 for the usual BAB fluids because As seems to 

be strongly mobile during the interaction of seawater with the acidic rocks at 

greenschist-facies conditions (250 to 450 °C; 1 to 8 kbar). Exceptions are Vienna 

Woods, showing MORB-like host rock composition and low As values and Desmos 

caldera underlain by basaltic rocks and with very unique sulfate-rich fluids also 

showing low values. This may also be due to lower temperatures and the absence of 

phase separation or co-precipitation of As with Fe prior to discharge, resulting in low-

Fe fluids. 

As observed for two different measured values in the same area of the Lau 

Basin, the methods of As preservation and determination have to be reconsidered. 

The sampling strategy is a factor, affecting the quality of measurement and data. It 

would be the best to sample the pure fluid and keep it at bottom pressure to avoid 

oxygenation and precipitation with other elements, which can lower the original 

concentration and change speciation, and to acidify the samples for total As 

concentration to higher solubility and avoid precipitation. Most of the reviewed papers 

do not say anything about how the samples were taken and totally neglect errors in 

sampling strategy. Also different preservation methods make it hard to compare 

different data sets. Another important difficulty is the 40Ar35Cl+-interference during 

ICP-MS measurements with 75As+, where results have to be corrected carefully. 

The concentration of As in the global ocean is mainly controlled by factors like 

riverine input, weathering of seafloor and sedimentation on the seafloor in addition to 

atmosphere-seawater exchange and input of volcanic gases and hydrothermal fluids. 

The residence time of As in the global ocean was assumed to be between 

32 000 years (Matschullat, 2000) and 63 000 years (Turner, 1987) and compared to 

average river water values of around 0.62 µg L−1 (Gaillardet et al., 2003), As is 

enriched in the global ocean with an average value of 1.7 µg L−1 (Neff, 2002; 

Smedley and Kinniburgh, 2002; Plant et al., 2003). This is poorly understood, but 

hydrothermal input of As could be a possible explanation for the higher values. 

The input of As by hydrothermal fluids into the global ocean is difficult to 

estimate, but can be constrained for individual sources. Estimations of the fluid flux 

from MOR hydrothermal systems range from 6.0 × 1010 to 2.5 × 1015 kg a−1 (Mottl 
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and Wheat, 1994; Elderfield and Schultz, 1996; German and Von Damm, 2003). 

Based on these fluxes and available As data for MOR hydrothermal systems, the 

total flux of As can be estimated to be between 3.0 × 103 and 1.25 × 108 kg annually. 

However, this calculation neglects subsequent As removal through flocculation and 

precipitation within the hydrothermal plume and subsequent sedimentation. 

Nevertheless, in comparison to the annual input of As by rivers, which is around 

23 × 106 kg (Gaillardet et al., 2003), this amount is substantial. In addition the flux 

from BAB and IA systems has to be taken into account, although less data is 

available there. The hydrothermal system in Tutum Bay, for example, where 

sufficient data for the determination of As flux exists, discharges a minimum amount 

of 5.5 × 102 kg per year (Pichler et al., 1999a). This value alone is similar to the 

minimum estimate of the total annual flux from the MORs (see above). Unfortunately 

there are no other reliable flux measurements for hydrothermal systems in shallow-

water or from BAB hydrothermal systems, which prevents a better estimation. 

Nevertheless, considering the high As concentrations in many of these systems the 

overall hydrothermal flux may be the answer why As is higher in seawater than in 

river water. 

 

5. Conclusions 
Discharge of hydrothermal fluids with significant fluxes of heat and chemicals 

occurs at shallow- and deep-water hydrothermal systems due to the interaction of 

cold seawater with heated rocks and/or hot magma. Hydrothermal fluids contain 

variable amounts of the potentially toxic element arsenic (As), due to dissolution and 

mobilization at elevated temperatures in addition to magmatic degassing of a deep 

magma chamber. The most important factors controlling the specific amount are the 

physicochemical parameters like temperature, pH, the amount of H2S, reaction time, 

fluid pressure, redox reactions, iron and gas chemistry, in addition to the underlying 

host rocks mineralogy and crystallinity. Probably overlying sediments, the maturity 

and also the permeability of the different systems may play a role. All these factors 

seem to be important, but most of them are hard to quantify and vary substantially 

between the hydrothermal systems, nevertheless it can be concluded that: 
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I) Hydrothermal fluids from shallow-water island-arc (IA) settings are mostly 

very high in As (up to 5 850 µg L−1), followed by fluids from deep-water 

hydrothermal systems in back-arc basins (BAB; up to 1 386 µg L−1) and 

mid-oceanic ridges (MOR), whose As concentration is comparably much 

lower (up to 80.5 µg L−1). 
 

II) The higher the temperature and the amount of H2S, and the lower the pH, 

the more As is leached and transported with the fluids as observed in fluids 

from shallow-water hydrothermal systems. 
 

III) The only slightly higher bulk rock concentration of As in underlying acidic 

dacites and andesites from IA systems cannot be responsible for the 

overall much higher values of As compared to deep-water systems 

underlain by MORB. The efficiency of leaching should mostly dependent 

on the physicochemical parameters, but also on the As mineralogy of the 

host rocks. Precipitation of As-bearing minerals like orpiment and 

claudetite could be a huge sink for As in deep-water hydrothermal fluids as 

shown by thermodynamic calculations and diagrams. Different As-bearing 

minerals were also observed in drill cores from hydrothermal areas. 
 

IV) Phase separation occurring when the hydrothermal fluid encounters the 

two-phase boundary leads to separation into a gas rich Cl-poor vapor 

phase and a Cl-rich liquid phase and causes major variations in fluid 

composition. Based on low pH and low Eh conditions in most of the 

moderate and high temperature systems, H3AsO3 should the dominating 

As species, which should be preferentially transported in the vapor phase. 
 

V) Additional input of As due to magmatic volatiles has to be considered and 

could also be linked to eruptive cycles. 
 

VI) Changes in concentration and speciation due to incorrect sampling and 

storage have to be taken into account in addition to the analytical 

uncertainty. 
 

VII) An important upcoming question concerning As in hydrothermal systems 

will be to understand how hydrothermal flux affects the As concentration in 
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the ocean. First estimates showed, that large amounts are released by 

shallow IA and deep BAB systems, which may explain why the As 

concentration in seawater is higher than its concentration in river water. 
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Abstract 
Hydrothermal vent fluids emanating at the seafloor can contain considerable 

amounts of the element arsenic (As), which may be incorporated into vent 

macrofauna. Here we present combined results for total As (AsT) and As speciation 

for both, vent fluids and biota from the Menez Gwen hydrothermal system located on 

the Mid-Atlantic Ridge. Concentrations of As in emanating hot spring fluids range 

between 6 and 90 µg L-1 and contain the inorganic arsenite (AsIII) and arsenate (AsV) 

species in varying proportions. Mussels of the species Bathymodiolus azoricus, 

which are dominant in this hydrothermal ecosystem, were analyzed to study the 

effect of As concentration and speciation on bioaccumulation and biotransformation. 

Concentrations of As in Bathymodiolus azoricus were highest in the digestive gland 

(19.0 mg kg-1), followed by gill (14.9 mg kg-1) and muscle (6.4 mg kg-1) tissue. Higher 

amounts of As in the digestive gland may be due to the fact that this organ stores As 

and other elements, which accumulate by filtration of Fe-oxyhydroxide particles, and 

in the gill may be due to the activity of chemosynthetic sulfur- or methane-oxidizing 

symbionts. In methanol/water extractions of the tissues, elevated amounts of 

arsenosugars (As-sug) were observed accompanying unusually low amounts of 

arsenobetaine (AsBet) relative to marine animals from photic zones. The inorganic 

As-species AsIII and AsV were also detected in considerable proportions in the 

tissues. In general, marine algae have high concentrations of As-sug, whereas 

marine animals accumulate preferentially AsBet, with As-sug from algae possibly 

serving as precursors. The unusual high proportion of As-sug in Bathymodiolus 

azoricus from the Menez Gwen hydrothermal system could therefore be due to the 

presence of symbionts, or alternatively the exposure to elevated As input from 

hydrothermal fluids and overstressed detoxification processes. 
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Highlights: 
 
► We present novel and combined data for arsenic and arsenic species in 

hydrothermal fluids and vent biota. ► Hydrothermal vent mussels are able to 

accumulate and transform arsenic from hydrothermal fluids. ► Concentration of 

arsenic in the hydrothermal fluids sampled at Menez Gwen is up to 90 µg L-1. ► 

Bathymodiolus azoricus accumulates arsenic in the digestive gland (19.0 mg kg-1), 

gill (14.9 mg kg-1), and muscle tissue (6.4 mg kg-1). 
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1. Introduction 

Seafloor hydrothermal venting represents a fundamental process controlling 

the transfer of energy and mass into the oceans, and discharging fluids and 

associated biota have been extensively studied for their chemical composition, 

geologic setting and biological processes (e.g. Von Damm, 2001; German and Von 

Damm, 2003). Hydrothermal systems are typically driven by an underlying heat 

source (e.g. magma chamber), which progressively heats downward percolating cold 

seawater, before it rises upwards again due to the excess buoyancy (Alt, 1995). 

These systems can be located in diverse tectonic settings such as mid-ocean ridge 

axial zones, back-arc basins and submarine neovolcanic edifices, influencing the 

style and characteristics of venting. The potentially toxic element arsenic (As) was 

only rarely investigated during chemical analysis of hydrothermal fluids, what is 

surprising as it is known as an environmental toxin, strongly influences the biological 

environment and plays an important role in hydrothermal ore formation. 

 

1.1 Arsenic in the marine aquatic system 
The average concentration of arsenic (As) in the global ocean is estimated to 

be around 1.7 µg L-1 (Neff, 2002), with the main factors influencing its abundance 

being riverine input, weathering and sedimentation on the seafloor, as well as 

atmosphere-seawater exchanges and input of volcanic sources (Matschullat, 2000). 

Hydrothermal fluids represent an additional source of As in the oceans in which 

concentrations can be greatly enriched, depending on different physicochemical 

parameters like temperature, pH, pressure, redox reactions, Fe and H2S content and 

the composition and mineralogy of the host rock (Breuer and Pichler, 2012) 

 Arsenic in aqueous systems is mostly present as inorganic arsenite (AsIII) and 

arsenate (AsV), but also exists to a lesser extent as methylated forms like 

methylarsonic acid (MA) and dimethylarsinic acid (DMA) (Mandal and Suzuki, 2002; 

Neff, 2002). 
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1.2 Arsenic in marine organisms 
Marine organisms like algae, seagrass, plankton, bivalves, fish and 

gastropods accumulate and transform As, with typically concentrations between 1 

and 200 mg kg-1 dry weight. Accumulation and speciation depends mostly on the 

position in the food chain of the respective organism and on the amount of As 

available in the surrounding environment. Several studies were conducted regarding 

As accumulation in marine bivalves from coastal non-polluted areas with average 

values ranging between 4.2 and 7.8 mg kg-1 (e.g. Leatherland and Burton, 1974; 

Zingde et al., 1976; Lai et al., 1999), whereas bivalves from polluted areas are able 

to accumulate As in higher concentrations of up to 214 mg kg-1 (e.g. Neff, 1997; 

Valette-Silver et al., 1999; Whaley-Martin et al., 2012). The most abundant As 

compounds found in bivalves are As-containing ribofuranosides, commonly named 

arsenosugars (As-sug) and arsenobetaine (AsBet) (Shibata and Morita, 1992), with 

the latter form being the dominant organic As species in higher marine animals.  

Our understanding of As variability and speciation in hydrothermal vent fauna 

is limited, however, with only a few studies in existence. Larsen et al. (1997) 

investigated As in shrimps and mussels from the TAG and Snakepit hydrothermal 

systems located on the Mid-Atlantic ridge. Shrimps contained around 13 mg As kg-1 

and soft tissues of the mussels around 40 mg As kg-1, with AsBet as the dominant 

species in the shrimps and As-sug dominating in the mussels (Larsen et al., 1997). A 

recent study also determined As concentration and speciation in shrimps (Rimicaris 

exoculata), mussels (Bathymodiolus azoricus, Branchipolynoe seepensis) and a 

gastropod species (Peltospira smaragdina) from the Rainbow, TAG and Lucky Strike 

hydrothermal fields (Taylor et al., 2012). Shrimp showed As concentrations between 

3.3 and 29.8 mg kg-1, mussels between 9.9 and 18.2 mg kg-1 and gastropods 

between 14.0 and 67.8 mg kg-1. Arsenic was primarily present as AsBet in the 

shrimps and as As-sug in the mussels and gastropod. Stable isotope analysis (δ13C 

and δ15N) showed that food sources originated at the vents, and Taylor et al. (2012) 

hypothesized that organic As compounds can also be generated in the absence of 

photosynthetic organisms. Another study from a shallow-water hydrothermal system 

near Milos (Greece) evaluated gastropods (C. neritea), which contained As in 

concentration ranging between 15 and 24 mg kg-1. The dominant species were 

inorganic As species with low proportions of AsBet (Ruiz-Chancho et al., 2012). 
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However, these studies give As concentrations for the whole animal, without 

considering the different organs like gill, muscle and digestive gland, having entire 

different functions. Accordingly, they should accumulate different amount of As from 

the fluids and also process these in a different way.   

Primary producers like marine algae accumulate As directly from the seawater 

– where it exists mainly as inorganic As – and transform it into organoarsenic 

compounds, mainly As-sug. Marine animals can take up As from both the 

surrounding seawater and through the food chain (Edmonds and Francesconi, 2003). 

The biosynthetic pathways of organically-bound As in marine organisms are 

described in several studies, but are still not completely understood. The first step, 

the incorporation of inorganic As into microorganisms like phytoplankton, occurs 

because of the chemical and structural similarity of AsV to phosphate (PO4
3-) 

(Hellweger and Lall, 2004). The AsV is then reduced to AsIII, which is more mobile in 

the cells, but at the same time also more toxic. Then, the inorganic AsIII is further 

transformed to methylated As (MA and DMA) and/or higher organosarsenic 

compounds like As-sug (Francesconi and Edmonds, 1996). These processes are 

mostly followed by the excretion of the methylated or organic forms, which seems to 

be the main detoxification process. It is thought that As-sug produced from algae – if 

accumulated by higher organisms – are precursors of AsBet and Arsenocholine 

(AsC) (Hansen et al., 2003). AsBet is a less-toxic form of As that is also rapidly 

eliminated. The finding of a possible intermediate, referred to 

dimethylarsinoylethanol, supports this hypothesis (Edmonds and Francesconi, 2003). 

Moreover, other pathways for the formation of AsBet have been proposed (Edmonds 

and Francesconi, 2003), which do not involve As-sug. However, in the hydrothermal 

systems environment, located in the deep sea, photosynthetic algae are not or only 

sparsely available, so that As-sug produced by these do not play a key role in the 

biosynthesis of arsenobetaine in these systems. 

 

2. The Menez Gwen hydrothermal system (37°50’N, MAR) 
On the Mid-Atlantic ridge near the Azores, the Menez Gwen hydrothermal 

system is located in 840 to 865 m depth on a 700 m high and 17 km wide circular 

volcano, with a 6 km long and 2 km wide axial graben at its top, cutting the edifice in 

two symmetrical parts (Fouquet et al., 1995; Parson et al., 2000; Fig. 1). The 
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hydrothermal system is influenced by the Azores plume and the underlying host 

rocks are of enriched-MORB type. Previously reported fluids emanating at Menez 

Gwen were devoid of ‘black smoke’ precipitates, and rich in methane and reduced 

sulfide (Charlou et al., 2000). Temperatures up to 285 °C (close to boiling) and 

varying Cl concentrations measured in the hydrothermal fluids suggest phase 

separation.  

The mussel Bathymodiolus is common in hydrothermal systems worldwide 

forming extensive communities on the base and walls of hydrothermal vents. They 

preferentially live in the mixing zone between the high temperature anoxic and metal-

rich hydrothermal fluid and the cold oxic seawater. The dominant fauna at Menez 

Gwen is represented by Bathymodiolus azoricus (Bivalvia: Mytilidae), a bivalve living 

in dual endosymbiosis with methane- and sulfide oxidizing bacteria (MOX and SOX), 

which are located in specialized epithelial cells and within the gill epithelial tissue 

where they produce nutrients (Fiala-Médioni et al., 2002; Duperron et al., 2006). The 

energy obtained by microbial oxidation of sulfur and methane species plays an 

important role in the nutrition of Bathymodiolus azoricus. The gained energy is further 

used by the bacteria for the fixation of organic carbon via the Calvin Benson cycle 

(Felbeck et al., 1981), which is in turn utilized by the host animal. It was suggested, 

that these symbiotic bacteria play a protective role concerning toxic metals and 

oxidative stress (Kádár, 2007). Bathymodiolus azoricus may also partly feed on 

particulate and dissolved organic matter sinking through the water column from the 

surface (Riou et al., 2010b). 

 

3. Materials and methods 
 

3.1 Reagents, standards and Certified Reference Materials (CRM) 
All solutions were prepared with double deionized water from a MilliQ 

Advantage A10 water purification system (18 MΩ cm-1). Hydrochloric acid (HCl) and 

nitric acid (HNO3) were purified by sub-boiling distillation. Methanol of HPLC grade, 

and suprapure hydrogen peroxide (H2O2), were supplied by Merck.  
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Fig. 1: The Menez Gwen hydrothermal system with the circular volcano and the new volcano at the 
northern end of the graben (black box). Black dots indicate the different sampling sites.  
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Arsenite (AsIII) and arsenate (AsV) standard stock solutions were prepared 

from As2O3 (Sigma Aldrich) dissolved in 4 g L-1 NaOH (Merck) and from Na2HASO4 • 

7H2O (Sigma Aldrich) dissolved in water. Methylarsonate (MA) and dimethylarsinate 

(DMA) were prepared from (CH3)2AsO(ONa)2 • 6H2O (Chemservice) and from 

(CH3)AsO(ONa)2 • 6H2O (Merck) respectively, both dissolved in water. 

Arsenobetaine (AsBet) and arsenocholine (AC) were purchased at Sigma Aldrich and 

Argus Chemicals, respectively, and dissolved in water. Standards for the total arsenic 

(AsT) measurements were prepared from a CertiPur® multi-element standard 

solution (XVI, 100 mg L-1, Merck). All stock solutions were stored at 4 °C and further 

diluted standards for analysis were prepared daily.  

Two certified reference materials were used for organic As quality control: a 

dogfish muscle, certified for trace elements (NRCC-DORM-2), with a certified 

concentration of AsT (18.0 ± 0.1 mg kg-1), AsBet (16.4 ± 1.1 mg kg-1), and 

Tetramethylarsonin (0.248 ± 0.054 mg kg-1), as well as a tuna tissue (BCR-627) from 

the IRMM (Institute for Reference Materials and Measurements) with a certified AsT 

concentration of 4.8 ± 0.3 mg kg-1. This material was also certified for AsBet (3.9 ± 

0.2 mg kg-1) and DMA (0.15 ± 0.02 mg kg-1). 

For the identification of arsenosugars (phosphate (PO4-sug), sulfate (SO4-

sug), sulfonate (SO3-sug) and glycerol (Gly-sug) sugars) an aliquot of a freeze dried 

extract of Fucus serratus containing the four sugars was used, which was kindly 

supplied by Prof. Dr. K. A. Francesconi from the Karl-Franzens University in Graz, 

Austria (Madsen et al., 2000). 

 

3.2 Instruments 
For digestion of the mussel tissues, a temperature controlled Milestone Ethos 

microwave digestion system was used with a power of 1000 W. Concentrations of 

AsT in the fluids and biota samples were determined by high resolution inductive 

coupled plasma mass spectrometry (ICP-(HR)MS) using a Thermo Scientific 

ELEMENT 2 instrument equipped with a microflow nebulizer. Speciation analyses 

were performed by coupling the ELEMENT 2 to a Thermo Scientific Accela 600 

HPLC system system and using a “conical” nebulizer for sample introduction into the 

plasma. A Hamilton PRP-X100 column (250 x 4.1 mm, 10 µm; anion exchange) and 
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a Zorbax 300-SCX column (250 x 4.1 mm, 5 µm; cation exchange), both protected by 

guard columns, were used for anion and cation exchange chromatography, 

respectively, whereas the chromatographic conditions are listed in Table 1. The ion 

intensity for m/z 75 (75As+) was monitored at both, low (LR) and high resolution (HR) 

to identify possible argon-chloride-interferences (40As35Cl+).  

 

3.3 Sampling and sample preparation 
3.3.1 Sampling 

Fluid samples and mussels were collected during R/V Meteor expedition 

M82/3 in September 2010 using the remotely operating vehicle (ROV) 

QUEST 4000 m (MARUM). For fluids, both isobaric-gas tight samplers (IGT) 

(Seewald et al., 2002) and the Kiel-Pumping-System (KIPS) (Garbe-Schönberg et al., 

2006) were used, with a temperature probe attached to the respective fluid inlets for 

in situ temperature measurements. In total, 19 fluid samples were collected for 

chemical analyses. In addition, 8 mussels were collected from the hydrothermal area 

with nets manipulated by the mechanical arm of the ROV and stored in a sealed box 

during ascent to the surface. Fluid parameters measured onboard upon sampler 

recovery were pH (25 °C), Eh and sulfide by photometry. 

 
 
Tab. 1: Chromatographic conditions for the coupled system HPLC-ICP-(HR)MS used in the present study. 

 Anion Exchange Cation Exchange 

   
Column Hamilton PRP-X100 

250 x 4.1 mm, 10 µm 
Zorbax 300-SCX 

250 x 4.6 mm, 5 µm 

Mobile phase 20 mM NH4H2PO4 
pH: 5.8 (adj. with NH4 aq) 

20 mM pyridine 
pH: 2.6 (adj. with HCOOH) 

Flow rate 1.5 ml min-1 1.5 ml min-1 

Injection volume 20 µl 20 µl 

Arsenic species 
analyzed 

AsIII, AsV, MA, DMA, 
PO4-sug, SO3-sug, SO4-sug 

AsBet, AC, TETRA, TMAP, 
Gly-sug 
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3.3.2 Sample preparation and treatment 
Fluid samples were filtered through a 0.22 µm unreactive cellulose acetate 

membrane filter. One sample aliquot was acidified with purified HCl for determination 

of AsT concentrations, while the remaining aliquot was stored cryofrozen at -80 °C for 

speciation analysis. Mussel samples were also stored cryofrozen during transport to 

the University of Bremen. 

In the laboratory, frozen mussels were thawed under an Ar-atmosphere, then 

opened, cleaned with MilliQ water and dissected into gill, muscle and digestive gland. 

Gill, muscle and digestive gland samples were freeze-dryed and homogenized with 

mortar and pestle and afterwards stored at room temperature before analysis.  

 

3.4 Analytical Procedures 
3.4.1 Fluid major elements 

Fluid samples were analyzed for the major elements Mg, Cl, Fe and Mn using 

either Inductively-Coupled-Plasma-Optic-Emission-Spectrometry (for Mg, Fe, Mn; 

ICP-OES) or ion chromatography (for Cl; IC). A seawater salinity reference material 

IAPSO K15 was used as a standard, in addition to a Certified-Reference-Material 

seawater standard (CRM-SW, High Purity StandardsTM) certified for major element 

composition. 

 

3.4.2 Total Arsenic analysis 
To determine AsT concentrations, a Thermo Scientific ELEMENT 2 was used 

in HR mode using 115In as internal standard. Samples were quantified in triplicate 

with an external calibration. Procedure blanks and CRMs were analyzed in the same 

sequence.  

For the digestions of the mussels, 0.2 g aliquots from the gill, muscle and 

digestive gland and also from the CRMs (DORM-2 and CRM627) were weighed into 

the digestion vessels and 5 ml of concentrated nitric acid (HNO3) and 2 ml of 

hydrogen peroxide (H2O2) were added. Digestion of the samples was performed 

according to the following program: suspensions were heated for 2 min up to 80 °C, 

held there 1 min before heated further to 110 °C for 2 min. After that for 3 min from 

110 to 140 °C, 4 min from 140 to 180 °C, 6 min from 180 to 190 °C and lastly 

maintained for 12 min at 190 °C. After cooling down to room temperature, samples 
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were transferred into Falcon tubes and diluted up to 50 ml with double deionized 

water. Analyses of CRMs showed good agreement between the obtained and 

certified value. 

 

3.4.3 Arsenic speciation analysis 
For extraction of the different As species from the mussels, 50 mg from each 

freeze-dried and homogenized sample and also from the CRMs were weighed by 

triplicate in 20 ml PTFE (polytetrafluoethylene) vials and 5 ml of a MeOH/water 

mixture (1:1, v/v, purged with N2) was added. Samples were extracted for 16 h at 

room temperature in an end-over-end shaker running at 20 rpm. Afterwards, mixtures 

were centrifuged at 4500 rpm for 10 min and the supernatants filtered through a 

0.22 µm unreactive nylon filter before determination of As species by HPLC-ICP-

(HR)MS within the next 24 hours after extraction by using 2 chromatographic 

separations (Tab. 1). Identification of the species was performed by comparison of 

the retention times with standards. External calibration curves were used to quantify 

AsIII, AsV, MA, DMA and AsBet. Different As-sugars were identified by comparison of 

retention times with the As-sugars present in the Fucus serratus extract. They were 

quantified with the calibration curve of the closest As species in the chromatogram. 

Identification of TMAP and TETRA was made by comparing with the retention times 

in DORM-2. The presence of thio-arsenic species was investigated by addition of 

H2O2.  

 

4. Results 
 

4.1 Fluids 
Fluid samples showed maximum temperatures of up to 297 °C and an acidic 

pH (25 °C) between 4.0 and 5.1. Chlorinity varied between 8 180 and 19 730 mg L-1 

and magnesium concentrations between 72 and 1 240 mg L-1 (Tab. 2). All samples 

were extremely low in iron (< 9 mg kg-1) and manganese (< 5 mg kg-1) relative to 

most hydrothermal fluids (e.g. German and Von Damm, 2003), and no visible 

residual precipitates, also called the “dreg” fraction (Trefry et al., 1994), could be 

observed or recovered from either the fluid samplers or stored aliquots. Reported AsT 

concentrations and As species therefore reflect dissolved fractions only. Measured 
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AsT concentrations range from 6.1 to 89.1 µg L-1 (Tab. 2), the latter being up to 50-

times the mean seawater concentration of 1.7 µg L-1 (Neff, 2002). While As is 

elevated in all hydrothermal fluid samples, concentrations do not trend consistently 

with Mg in a similar manner to Fe and Mn. This indicates non-conservative As 

behavior during sampling even without visible residual precipitate formation, and we 

therefore cannot discount loss of As to unrecoverable precipitates or uncharacterized 

colloids. Hence, we do not attempt to calculate end-member As concentrations here. 

During speciation, only the two inorganic species arsenite (AsIII) and arsenate (AsV) 

were detected, with generally AsV more abundant than AsIII, also the recovery with 

respect to AsT was partly rather bad, getting lower with higher temperature (Tab. 3). 

 

4.2 Biota 
Hydrothermal vent biota living near the warm hydrothermal fluids accumulated 

different portions of As in the different organs. The AsT concentration was highest in 

the digestive gland (19.0 mg kg-1), followed by the gill (14.9 mg kg-1) and muscle 

(6.4 mg kg-1) tissues of the mussels Bathymodiolus azoricus (Tab. 4). In addition to 

these, also elevated concentrations of Sb, Cd, Mn and Fe could be observed, 

showing the same trend (Tab. 4). 

Based on considerations of speciation analysis, extraction efficiencies for As 

in tissues (calculated as the ratio of the total concentration after digestion and total 

concentrations in the methanol-water extract) were between 43.2 and 65.7 %. 

Column recoveries calculated as the ratio between the sum of the different species 

and AsT in the extract, were between 65.1 and 76.8 % (Tab. 4). Six different species 

were detected in variable proportions: the inorganic species AsIII and AsV, two As-

sugars (PO4-sug and Gly-sug), arsenobetaine (AsBet) and traces of DMA (Tab. 5). 

The fractions of the inorganic arsenic species ranged between 32.3 and 51.2 %, 

followed by As-sugars (28.2 to 55.0 %) and AsBet (8.0 to 23.0 %). One unknown 

species (UNK) was also detected at a retention time of 5.25 min during cation 

exchange chromatography. 
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Tab. 3: Concentration of AsT and the different As species, as well as maximum temperatures for 
selected cryofreezed KIPS hydrothermal fluid samples. 

 
Location 

 
AsT 

[µg L-1] 
AsIII 

[µg L-1] 
AsV 

[µg L-1] 
AsIII + AsV 

[µg L-1] 
Recovery 

[%] 
Tmax 
[°C] 

White Flames 9.04 ± 0.06 1.43 0.0 1.43 16 280.5 

Woody 1.84 ± 0.05 0 2.56 2.56 139 74.3 

Atos 10 8.60 ± 0.15 1.95 2.40 4.35 51 279.6 

White Flames 3.14 ± 0.11 1.12 2.43 3.55 113 117.0 

Marker 4 8.06 ± 0.56 1.51 2.61 4.12 51 256.1 

Fonte Nova 4.50 ± 0.14 0.96 2.51 3.47 77 154.1 

Fonte Nova 3.77 ± 0.25 0.90 2.43 3.33 88 154.1 

 
 

 
 
 
 
 

Tab. 4: Concentration of AsT (n=3), extraction efficiencies and column recovery for samples and 
CRMs as well as total antimony, cadmium, manganese and iron. 

 

 
AsT 

[mg kg-1] 
 

Extraction 
efficiency 

[%] 

Column 
recovery 

[%] 

Sb 
[mg kg-1] 

 

Cd 
[mg kg-1] 

 

Mn 
[mg kg-1] 

 

Fe 
[mg kg-1] 

 

Muscle 6.3 ± 0.2 65.7 69.6 0.08 ± 0.004 0.4 ± 0.02 4.7 ± 0.3 42 ± 3.8 

Gill 14.9 ± 0.8 64.1 76.8 0.9 ± 0.06 2.8 ± 0.1 4.1 ± 0.3 105 ± 12.5 

DG* 19.0 ± 1.4 43.2 65.1 1.1 ± 0.05 5.6 ± 0.3 22.2 ± 0.5 376 ± 11 

        
DORM 2 16.8 ± 0.8 106.2 84.4 0.03 ± 0.006 0.04 ± 0.004 2.8 ± 0.3 112 ± 7.6 

DORM2 
certified 

18.0 ± 1.1 - - - 0.043 ± 0.008 3.66 ± 0.34 142 ± 10 

CRM 627 4.5 ± 0.3 88.2 73.9 0.01 ± 0.001 0.17 ± 0.032 0.8 ± 0.02 71 ± 5.8 

CRM 627 
certified 

4.8 ± 0.3 - - - - - - 

 
* DG: Digestive Gland 
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5. Discussion 
 

5.1 Fluids 
Venting of submarine hydrothermal fluids can act as a substantial source for 

arsenic (As) to the oceans (e.g. Pichler et al., 1999; Price et al., 2012). The amount 

of AsT present in hydrothermal fluids evidently depends on a combination of tectonic 

setting and host rock composition, as well as various physicochemical parameters 

like temperature, pH, eH, as well as the hydrogen sulfide and iron concentrations 

(Breuer and Pichler, 2012).  

Measured concentrations of AsT in hydrothermal fluids at Menez Gwen (6 to 

90 µg L-1; Tab. 2) are enriched compared to seawater, but generally similar to values 

for other hydrothermal systems at mid-ocean ridges, showing values between < 0.8 

and up to 41 µg L-1 as observed on the East Pacific Rise at 17-19°S (Douville et al., 

1999). Various other hydrothermal systems also show typically several tens of µg L-1 

of As. A single concentration of AsT in Menez Gwen fluids of 18.5 µg L-1 (Douville et 

al., 1999) was previously reported. Arsenic concentrations in hydrothermal fluids from 

back-arc basins and island arc settings are generally much higher, with values up to 

5 850 µg L-1 (Milos/Greece; Price et al., 2012). Given the non-conservative behavior, 

it is currently impossible to distinguish if the As is solely derived from leaching of the 

underlying host rock or if there is an additional input due to magmatic degassing, 

which may contribute considerable amounts of As to hydrothermal fluids (Yang and 

Scott, 1996) 

No As speciation measurements are available from deep-water hydrothermal 

systems for comparison to this study. From a thermodynamic perspective, the 

prevalent conditions in many hydrothermal systems, such as low pH and Eh, favor 

the presence of the trivalent AsIII (Smedley and Kinniburgh, 2002). However, 

thermodynamic modeling for deep-water systems performed by the authors also 

shows the presence of considerable amounts of the pentavalent As species H2AsO4, 

compared to shallow-water systems, which should be dominated by the trivalent As 

species As(OH)3. These calculations also show the precipitation of different As-

bearing minerals like orpiment and claudetite, which might be responsible for the 

overall low-As hydrothermal fluids in deep-water hydrothermal systems (Breuer and 

Pichler, 2012). Furthermore, fluids at Menez Gwen are more oxidizing favoring the 
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presence of AsV (Charlou et al., 2000; Reeves et al., 2011a). In accordance with the 

thermodynamic modeling, also the analysis of fluids from the Menez Gwen 

hydrothermal system shows both inorganic species AsIII and AsV.   

The finding of AsV and the absence of organic As species is similar to 

observations from shallow-water hydrothermal systems in island-arc settings (e.g. 

Dominica and Ambitle Island) where hydrothermal fluids and pore waters were 

investigated (McCarthy et al., 2005; Price and Pichler, 2005; Price et al., 2007). 

However, compared to pore waters, deep-water hydrothermal systems are 

characterized by focused hydrothermal discharge, and fluids get immediately in 

contact with oxidized seawater, also favoring the oxidation of AsIII to AsV. The 

occurrence of AsV could also be due to oxidation in the time between sampling and 

measurements, because samples cannot always be conserved in-time, and oxygen 

cannot always be excluded. However, portions were variable and column recoveries 

were low, and the low recovery might be due to the overall low As concentration 

encountered in the fluids and analytical challenges.  

A mixture of meteoric water and seawater dominates shallow-water systems, 

which are mostly nearshore, in addition to a component of magmatic volatiles arising 

from a magma chamber, and this mixture of different types of fluids might strongly 

affect the AsT and species distribution. Compared to these shallow-water systems, 

however, hydrothermal fluids from mid-oceanic ridges are solely seawater derived, 

with minimal or no significant inputs of meteoric water (Shanks, 2001; German and 

Von Damm, 2003). The pore waters in the sediments surrounding the marine 

shallow-water hydrothermal system at Ambitle Island are dominated by AsV as a 

result of microbial oxidation (Akerman et al., 2011; Meyer-Dombard et al., 2011), 

which was also observed in areas of diffuse discharge of hydrothermal fluids. In 

contrast, focused fluids directly discharging from hydrothermal vents at Ambitle 

Island were dominated by AsIII.  

Thioarsenic species tend to transform quickly into AsIII and AsV when they are 

oxidized. However, although Menez Gwen is a highly sulfidic environment, no thio-

species were detected during such treatments or were rapidly oxidized during sample 

collection or handling. Spiking tests were performed with AsIII and AsV and showed 

good correlations with the measured values, thus the low recovery could also 

represent an unknown As species, which can resist oxidation with peroxide. 
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Significant lower Mg concentrations compared to seawater in some fluids 

show that the samples were not exclusively hydrothermal fluids, whose Mg 

concentration should be zero due to Mg-fixation (Von Damm, 2001; German and Von 

Damm, 2003), but a mixture of hydrothermal fluid and seawater that likely formed in 

the subsurface (Reeves et al., 2011b). For most of the samples, “dilution” of As-rich 

hydrothermal fluid with low As seawater could be observed, but calculating an 

endmember concentration is not possible because of the non-conservative behavior 

of As during sample collection and handling. Varying Cl concentrations in the fluids, 

which were mostly lower than ambient seawater (20 420 mg L-1), indicating that 

phase separation is likely occurring (Reeves et al., 2011a). It is widely speculated 

that AsIII, also like Cu, Sb, B and Au, should partition into low salinity vapor phases 

because of neutral HS-complex formation, as indicated by fluid inclusion studies 

(Heinrich et al., 1999). However such partitioning behavior is still a matter of debate 

and the physico-chemical mechanisms are poorly understood (Pokrovski et al., 

2005). In the case of Menez Gwen, all samples have lower Cl concentrations than 

seawater indicating a more vapor-like phase (Reeves et al., 2011a), but only a weak 

trend of increasing As with decreasing Cl could be observed (Fig. 2).  

 

5.2 Biota 
Bivalves of the species Bathymodiolus azoricus living in the vent fluid-

seawater mixing zones of the Menez Gwen hydrothermal system are evidently able 

to bioaccumulate and transform high amounts of different metals in their tissues 

(Colaço et al., 2006; Charmasson et al., 2011). They live in symbiosis with sulfide- 

and methane-oxidizing Gammaproteobacteria, located in specialized epithelial cells 

within the gill epithelial tissue but also feed from particulate and dissolved organic 

matter, which originates from the chemolithoautotrophic bacterial activity produced by 

the local vent biota (Duperron et al., 2006; Riou et al., 2010a). The amount of uptake 

also depends on the abundance and bioavailability of As in the environment of the 

mussels, as well as on their very special nutrition (Cosson et al., 2008). Coastal 

bivalves, for example, are able to accumulate up to 214 mg kg-1 of As, with average 

values of lower than 10 mg kg-1 from non polluted areas (Neff, 2002). 
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Fig. 2: As vs. Cl concentrations for the hydrothermal fluids from the different sampling locations. 

 

The highest concentration of AsT was found in the digestive gland of 

Bathymodiolus azoricus (19 mg kg-1), which is considered as an accumulation 

pathway and storage organ (Bennet-Clark, 1976). The gill of the mussels, consisting 

of fine filaments with symbiotic bacteria located inside, is directly exposed to the 

mixture of hydrothermal fluid and seawater, and shows AsT concentrations of 

15 mg kg-1 dry weight. This may also reflect accumulation of oxyhydroxide particles 

during filtration, in addition to the activity of the symbiotic bacteria. Muscle tissues are 

less involved in such exchange and nutrition processes and not directly exposed to 

the high amount of As, and therefore contain a lower concentration of AsT  

(6.3 mg kg-1). Similar distribution patterns of elemental concentrations were observed 

for other metalloids such as antimony (0.1 to 1.1 mg kg-1), cadmium (0.4 to 

5.6 mg kg-1), manganese (4 to 22 mg kg-1), and iron (42 to 376 mg kg-1) (Tab. 4), 

indicating similar take-up and accumulation mechanisms as observed for As.  

The extraction efficiency of approximately 60 % of As from tissues (Tab. 4) is 

low, but similar to numbers reported by others for coastal bivalves (e.g. Shibata and 
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Morita, 1992). Lower efficiency may due to the presence of different non-extractable 

polar arsenicals or precipitated As compounds like arsenic sulfides, which can form 

in this sulfide-rich environment. The latter forms may also explain the apparent non-

conservative behavior of As during sample collection. 

The cycling and transformation of As in this extreme environment relative to 

photic zone food webs can be better interpreted by investigating the As speciation. 

This shows the presence of different inorganic and organic As-species distribution in 

the different organs (Tab. 5), with the major As species observed are the two 

inorganic forms arsenite (AsIII) and arsenate (AsV), in addition to two oxo-

arsenosugars (phosphate- and glycerol-sugar) and lower but relatively constant 

portions of arsenobetaine (AsBet), as well as a very low amount of dimethylarsinic 

acid (DMA). This is comparable to results found by different authors in hydrothermal 

vent mussels of the genus Bathymodiolus from different hydrothermal fields on the 

Mid-Atlantic Ridge (Larsen et al., 1997; Taylor et al., 2012), and also comparable to 

different coastal bivalves from high As polluted environment (Whaley-Martin et al., 

2012). Concerning the sugars, the digestive gland is dominated by the glycerol-sugar 

(Gly-sug), and the gill and the muscle show high amounts of phosphate-sugar (PO4-

sug). These two sugars were also the only one (but at low concentrations) observed 

in the gut of the gastropod Cyclope nerita living the As-rich hydrothermal system off 

Milos Island (Greece) (Ruiz-Chancho et al., 2012). In general, the major and 

dominant As compound in marine animals from photic zones is AsBet (Reimer et al., 

2010), which is normally bioaccumulated to a larger degree than the other chemically 

similar organoarsenic compounds as for example shown by aquarium studies 

conducted on blue mussels (Gailer et al., 1995). Compared to this, As-sug are 

normally only present in low proportions in coastal bivalves from non-polluted areas 

and it is though that they might be precursors for AsBet. The high amount of 

inorganic AsIII and AsV found in samples from this study might also reflect saturation 

and overstrain of the different biochemical pathways, which normally transform the 

inorganic species into organoarsenicals in high As environments. Very low DMA 

concentration may indicate that it is an intermediated product and fully utilized by 

producing higher complex species.  

In marine algae, which are a primarily food source for marine organisms, As is 

present predominantly as complex carbohydrate derivatives like As-sug or 
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arsenoribosides. It is unclear why algae absorb AsV from seawater, but a possible 

explanation could be the similarity between phosphate (P) and AsV, and that As 

cannot be excluded from the P uptake mechanism and is taken up by different P 

transporters (Maugh, 1979; Zhao et al., 2009). AsV from seawater is further 

converted to AsIII because AsV is known to interfere with different metabolic 

processes in combination with phosphorylation (Slater, 1963), and the trivalent form 

is also more mobile within the cells. Regarding the food chain, some marine animals 

consume plants or exist in symbiotic relationships, allowing plant products to be 

incorporated in the marine animals. At Menez Gwen it seems more likely that As is 

directly accumulated from surrounding vent fluid-seawater mixtures where only the 

trivalent and pentavalent inorganic As forms are present, and the plant-stage of the 

food-chain is likely excluded because of depth below the photic zone and distance 

from terrestrial sources. However, other nutritional modes cannot be completely 

neglected, because Bathymodiolus azoricus also feeds from vent particulate and 

dissolved organic matter, with the amount of organic matter delivered to this depth 

being dependent on surface primary production. Another source of dissolved organic 

matter could be from the surrounding biological mats, which are present near and at 

the vent structures. The respective amount of energy delivered by filtering or by 

endosymbiosis also varies with the size of the mussel, with smaller mussels strongly 

dependent on filtering and larger ones obtaining relatively more energy from their 

symbiotic bacteria due to greater amounts of gill tissue (Martins et al., 2008). The 

detoxification of toxic metals in algae can be performed by different processes like 

binding to metallothioneins or incooperation to metabolically insoluble granules 

(Morgan et al., 2007). The “Challenger” pathway describes the methylation of As by 

microorganisms involving sequential oxidation and reduction methylation reactions 

with the relative volatile trimethylarsine as the end product (Challenger, 1945; 

Challenger, 1955). Another pathway was suggested in 1987 by Edmonds und 

Francesconi, who question the last step of the formation of a trimethylarsine and 

instead propose the transferring of an adenosyl group of the methylating agent to the 

As atom (Edmonds and Francesconi, 1987).  

In the different parts of the mussels, only PO4-sug and Gly-sug were found, 

and concentrations were anomalously high compared to AsBet which normally 

represents around 90 % of the As in marine animals. These sugars however are 
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thought to be precursors for AsBet and get converted to dimethylarsinoylethanol 

before further transformation to AsBet due to different oxidation und reduction 

reactions in combination with methylation (Edmonds et al., 1982; Edmonds and 

Francesconi, 1987; Francesconi et al., 1999). This process is poorly understood and 

thus, other processes need to be considered, such as the generation of AsBet from 

other precursors or that certain steps do not occur during generation (Edmonds, 

2000). Degradation of AsBet has to be taken into account. Overall, discussion of As 

compounds and their biochemical pathways is largely speculative and more research 

has to be conducted. The exceptional high proportion of As-sug may be of a different 

origin, either due to microbial activity of the methane- and sulfide oxidizing 

symbionts, or alternatively due to the high input of As in this extreme environment 

and overstressing of detoxification processes. Surprisingly, no thio-organic 

compounds (Schmeisser et al., 2004) were found during oxidation experiments by 

using H2O2, although this is a high sulfidic environment. 

 

6. Conclusions 
We presented novel and combined results for AsT and As speciation for fluids 

and vent biota from the Menez Gwen hydrothermal system and considered for the 

first time the different organs and their functions. Concentrations of As in the 

hydrothermal fluids were significantly higher than those in seawater and varied 

between 6 and 90 µg L-1. Only the inorganic arsenite (AsIII) and arsenate (AsV) 

species were found in the hydrothermal fluids during analysis. 

Throughout the Menez Gwen hydrothermal system the mussel species 

Bathymodiolus azoricus was abundant, living in the mixing zones of hydrothermal 

fluid and seawater. Thus, these mussels were exposed to higher than normal AsT 

concentrations and therefore, accummulated As in their digestive gland   

(19.0 mg kg-1), gill (14.9 mg kg-1) and potentially muscle tissue (6.4 mg kg-1). The 

concentration of As in coastal bivalves is mostly less 10 mg kg-1. The high amount of 

As found in the digestive gland could be due to its function as an ingestion pathway 

and storage organ. The relatively higher amount of As in the gill compared to the 

digestive gland could be due to the presence of symbiotic bacteria, which are 

responsible for gaining energy, or alternatively by contamination of the biological 

matrix with As adsorbed on Fe-oxyhydroxide particles. The mussels show an unusual 
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speciation pattern for the different organs with a particularly high amount of As-

sugars and lesser amount of AsBet. Considering the low amount of dissolved organic 

matter present in 800 m depth and the occurrence of two different symbiotic bacteria, 

we propose that the high amount of As sugars is due to the activity of the methane- 

and sulfide oxidizing bacteria located in the gill.  
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Abstract 

Hydrothermal activity taking place at the PACMANUS and SuSu Knolls 

hydrothermal fields located in the eastern Manus Basin is characterized by discharge 

of black, grey and white hydrothermal fluids and hydrothermal vent biota living as 

discrete habitats nearby. We present combined results for total arsenic (AsT) and As 

speciation in the different types of hydrothermal fluids, as well as for three different 

organisms living in the hydrothermal fluids. Sampled fluids from the Manus Basin 

were up to 348 °C hot with a pH between 1.4 and 7.0 (25 °C). Concentrations of AsT 

ranged between 1.5 and 376.0 µg kg-1, with the inorganic arsenite (AsIII) and 

arsenate (AsV) species in variable portions. Three different fluid trends could be 

distinguished: a low Cl vapor phase, a high Cl brine phase, both fairly enriched in AsT 

compared to seawater, in addition to a magmatic trend with Cl concentrations around 

seawater and highly enriched in AsT. 

Gastropods of the species Alviniconcha hessleri and Ifremeria nautilei and 

mussels of the species Bathymodiolus manusensis were the dominant species living 

in the lower temperature zones at the PACMANUS und SuSu Knolls hydrothermal 

systems. The vent snail Alviniconcha hessleri was able to bioaccumulate up to 

5 580 mg kg-1 of As in the gill, 721 mg kg-1 in its digestive gland and 43 mg kg-1 in its 

muscle tissue. In the gill of Alviniconcha hessleri, different small particles and 

coatings dominantly made of Fe, Zn, S and As were found, which were most likely 

responsible for the high concentrations of AsT. High concentrations measured in the 

digestive gland could be explained best by its activity as a pathway and storage 

organ. A similar pattern could be observed in the body parts of Ifremeria nautilei 

collected at the Roman Ruins site with 118 mg kg-1 in the gill, 108 mg kg-1 in the 

digestive gland and 22 mg kg-1 in the muscle tissue. Much lower concentrations were 

found in mussels of the species Bathymodiolus manusensis from the Fenway area, 

where the highest concentration was measured in the digestive gland (15.7 mg kg-1), 

followed by gill (9.8 mg kg-1) and muscle tissue (4.5 mg kg-1). These concentrations 

are similar to values found in mussels from the Menez Gwen hydrothermal field 

(Bathymodiolus azoricus).  
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The concentrations measured in the organisms correspond to the 

characteristics of the fluids, which were collected at the places where the organisms 

were living. Alviniconcha hessleri lived in the hottest (Tmax = 26.8 °C) fluid with the 

lowest pH (6.2), and highest concentration of AsT (12.7 µg kg-1) and Ifremeria nautilei 

in surrounding hydrothermal fluid of Tmax = 15.1 °C, a pH of 7.0 and an AsT 

concentration of 5.8 µg kg-1. Mussels of the species Bathymodiolus manusensis with 

the lowest amount of As accumulated lived in fluids with a maximum temperature of 

10.5 °C, a pH of 6.8 and the lowest AsT concentration of 3.3 µg kg-1. 

High percentages of the inorganic AsIII and AsV species (Ø 60 % of sum of the 

species) were found, in addition to arsenobetaine (AsBet; Ø 33 %) and lower 

amounts of arsenosugar (As-sug). Marine algae have generally high concentrations 

of As-sug, which are thought to be precursors for AsBet in higher consuming 

organisms. These higher organisms have only limited ability to accumulate inorganic 

As from the surrounding seawater. The presence of As-sug and AsBet in a deep-sea 

hydrothermal environment, where the nutrition is strongly dependent on 

chemolithoautotrophic bacteria, is therefore unexpected and indicates that there 

might be other pathways forming these organic arsenicals than via the uptake of 

algae. 

 

Highlights: 
 

► We present novel and combined data for arsenic and arsenic species in 

hydrothermal fluids and associated vent biota from the Manus Basin. ► Arsenic 

concentration in hydrothermal fluids sampled at PACMANUS and SuSu Knolls are up 

to 376 µg L-1 depending on the style of venting. ► Hydrothermal vent mussels and 

snails are able to accumulate and transform arsenic from hydrothermal fluids.           

► Investigations were performed on hydrothermal vent snails Alviniconcha hessleri 

and Ifremeria nautilei and mussels of the species Bathymodiolus manusensis. 

 

Keywords: 
 

Arsenic; Hydrothermal; Manus Basin; Vent biota; Metalloids; Fluids 



82 
AR

ARSENIC IN THE MANUS BACK-ARC BASIN HYDROTHERMAL SYSTEM 
 

 

1. Introduction 
The geochemistry and style of emanating hydrothermal fluids is influenced by 

various physicochemical parameters and processes such as temperature, pressure, 

water-rock interaction, mixing with cold and oxygenated seawater and the possible 

input of magmatic volatiles arising from a deep magma chamber (e.g. Von Damm, 

2001; German and Von Damm, 2003). These systems play an important role in 

transferring mass and energy from the crust into the oceans and have been the 

subject of many investigations concerning their geology, geochemistry and biology. 

They are mostly located at mid-ocean ridges, back-arc basins, or submarine 

neovolcanic edifices in arcs. Hydrothermal circulation is driven by a steep geothermal 

gradient, heating the downward percolating seawater up to temperatures in excess of 

400 °C. During water-rock interaction at high pressure and temperature, the host rock 

composition, as well as the fluid chemistry changes dramatically. Fluids typically 

become acidic (pH (25 °C) of 2 to 3) and have low SO4 and Mg concentrations, but 

are rich in metals, such as FeII and MnII, as well as magmatic CO2, H2S and 

dissolved H2. Much less is known about the behavior of metalloids, including As, in 

these hydrothermal processes. This potentially toxic element was only rarely 

investigated in marine hydrothermal fluids, although it can be strongly enriched and 

plays and important role in the process of hydrothermal ore formation and 

furthermore can be found in many ore deposits in combination with gold (e.g. Barnes, 

1997; Cepedal et al., 2008; Zhu et al., 2011) 

 In the immediate vicinity of the vents and commonly confined to the low-

temperature turbulent mixing zones of seawater and hydrothermal vent fluids, unique 

communities of hydrothermal vent animals can be found. The basis of all 

hydrothermal vent faunae is energy harnessing from oxidation of reduced 

compounds such as sulfide and methane performed by chemolithoautotrophic 

microorganisms. These microorganisms comprise free-living ones, which may form 

bacterial mats, and those living in symbiotic relation with different species of snails 

and mussels, as well as various crabs, tubeworms and shrimps (Fisher et al., 2007). 

However, there is only little known about the diverse evolutionary processes and their 

metabolic cycles including As and the respective detoxification mechanism used by 

these kind of animals 
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1.1 Arsenic in the marine aquatic system 
Arsenic (As) is ubiquitous in the terrestrial and marine environment with 

concentrations of around 0.62 µg L-1 in river waters (Gaillardet et al., 2003) and 

around 1.7 µg L-1 in seawater (Neff, 2002). This is somewhat uncommon, as normally 

rivers represent the main source for most elements into the oceans and rivers should 

be accordingly higher than seawater concentrations as it is observed for most of the 

elements. The main factors controlling the concentration of As in the oceans are in 

addition to the riverine input, the weathering and sedimentation on the seafloor, input 

from volcanic sources, atmosphere-seawater exchange and anthropogenic input due 

to industry by coal combustion and copper smelting (Matschullat, 2000; Deschamps 

and Matschullat, 2011). Another source are hydrothermal fluids emanating at the 

seafloor, which could be greatly enriched in As depending on different 

physicochemical parameters like temperature, pressure, pH, host rock composition 

and mineralogy, as wells as the concentration of CO2, Fe and H2S (Breuer and 

Pichler, 2012). The concentration of As in these fluids can vary between that of 

seawater to values several thousand times higher, with the highest values to date 

found in hydrothermal fluids from back-arc and island-arc settings (e.g. Douville et 

al., 1999; Price et al., 2012) 

Under the pH and redox conditions in and around hydrothermal vents, As can 

occur in different oxidation states (+5, +3, 0 and -3), with the first two being the most 

common in aqueous systems (Smedley and Kinniburgh, 2002; Sharma and Sohn, 

2009). Knowledge about As speciation is important, as toxicity, bioavailability as well 

as the physiological effects depend a lot on the chemical form (Bissen and Frimmel, 

2003). In deep-water hydrothermal systems with high temperature, low pH and high 

iron und sulfur concentrations like in back-arc basins, the pentavalent arsenate 

species H2AsO4
- should dominate as shown by thermodynamic calculations and 

minerals like orpiment (As2S3) and scorodite (FeAsO4 • 2H2O) are preferentially 

precipitated (Breuer and Pichler, 2012). In addition to the inorganic forms, organic 

forms such as methylarsonic acid (MA) and dimethylarsinic acid (DMA) can also be 

found in seawater depending on the location and processes like upwelling of anoxic 

waters (Andreae, 1978; Cutter, 1992; Cabon and Cabon, 2000). 
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1.2 Arsenic in marine organisms 
Marine organisms such as algae, plankton, bivalves, snails and fish are 

evidently able to bioaccumulate and transform As from the surrounding water and via 

the food chain. The most important factors controlling the accumulation are the 

concentration and chemical form of dissolved As, the position in the food web and 

the kind of nutrition. Marine bivalves are able to accumulate up to 214 mg kg-1 of As 

with an average value of 10.44 mg kg-1 (n = 151) and snails between 8.0 and 

533 mg kg-1 with average 51.97 mg kg-1 (n = 41), with a strong correlation of high As 

found in marine animals living in environmental polluted areas (Neff, 1997). 

Marine plants and algae are able to bioaccumulate inorganic As via the 

cellular phosphate transport system from the surrounding seawater and transform it 

from AsV via AsIII (which is more mobile) and different methylated forms to 

arsenosugar (As-sug). In contrast to these photosynthetic organisms, higher 

consuming marine animals have only limited ability to accumulate inorganic As, and 

they prefer to take up and bioaccumulate the organic forms of As from marine algae 

via the marine foodweb (Neff, 2002; Azizur Rahman et al., 2012) and convert it to 

their endproduct arsenobetaine (AsBet; (CH3)3As+CH2COO-) (Francesconi and 

Edmonds, 1993; Edmonds and Francesconi, 2003). This is the most abundant and 

important As species found in higher organisms.  

Studies dealing with As accumulation in marine organisms living at deep-sea 

hydrothermal vent systems are rare and information about As speciation in these 

animals even more limited. Larsen et al. (1997) investigated As in shrimps and 

mussels from the TAG and Snakepit hydrothermal field, showing that the shrimp 

Rimicaris exoculata accumulated up to 13 mg kg-1 and the mussel Bathymodiolus 

puteoserpentis up to 40 mg kg-1 in their soft tissues (Larsen et al., 1997). The 

dominant species in the shrimps was AsBet, and in the mussels As-sug. Another 

recent study conducted on organisms from the TAG, Rainbow and Lucky Strike 

hydrothermal fields revealed concentrations between 3.3 and 29.8 mg kg-1 of As in 

shrimps, between 9.9 and 18.2 mg kg-1 in mussels and between 14.0 and 

67.8 mg kg-1 in the snail Peltospira smaragdina. The dominant species in the shrimp 

Rimicaris exoculata was AsBet and in the mussels Bathymodiolus azoricus and 

Branchipolynoe seepensis, As-sug was primary present (Taylor et al., 2012). Taking 

that work a step further, our study shows the As concentrations in the different body 
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parts such as the gill, muscle and digestive gland to get a more detailed picture of the 

metabolism and function of the organs. By sampling the matching hydrothermal fluids 

and vent biota, the influence of the different fluid parameters such as temperature, 

pH and As concentration on the organisms could be investigated.  

 

2. Geological setting 
The Manus Basin is a young (3.5 Ma) and rapidly opening (137 mm a-1) back-

arc basin located in the northeastern part of the Bismarck Sea (e.g. Taylor, 1979; 

Martinez and Taylor, 1996; Tregoning, 2002). It is bordered by the fossil inactive 

Manus Trench in the north and by the actively New Britain Trench in the south, where 

the Solomon microplate is subducted beneath the New Britain Arc (Fig. 1; Lee and 

Ruellan, 2006). Active spreading takes place along three major spreading centers: 

the western Manus spreading center (WMSC), the Manus Ridge spreading center 

(MSC) and the southeastern ridges (SER), with the spreading centers bounded by 

the Willaumez (WiT), Djual (DT) and Weithin transform faults. Venting occurs in the 

eastern Manus Basin (EMB) in water depths between 1200 and 1700 m at two main 

areas: the Papua New Guinea-Australia-Canada-Manus (PACMANUS) hydrothermal 

system and the SuSu Knolls hydrothermal area comprising North Su, South Su and 

Suzette.  

PACMANUS, discovered in 1991, is located on the 500 m high and 20 km 

long dacitic to rhyodacitic Pual Ridge (Binns and Scott, 1993; Binns et al., 2007) with 

massive sulfide accumulations enriched in Au, Cu, As, Zn, Pb and Sb (Moss and 

Scott, 2001). Hydrothermal activity takes place at five main areas of discrete venting 

in depths between 1640 and 1710 m: Roman and Roger’s Ruins, Satanic Mills, 

Snowcap and Tsukushi. Focused black smoker fluids, lower temperature grey and 

white fluids, as well as low-temperature diffuse fluid flow could be observed in these 

areas (Fig. 2a-c). Another new site named Fenway was found during an expedition in 

2006 located around 200 m south of Satanic Mills and in 1710 m water depth with a 

40 m in diameter two-tiered mound in the center made of chimney debris, breccia of 

anhydrite and sulfide, as well as coarse anhydrite sand (Reeves et al., 2011).  

The SuSu Knolls hydrothermal area located 45 km east of PACMANUS is 

markedly different to the ridge-hosted PACMANUS area and consists of three 

volcanic edifices forming a NNW-trending chain. Each of these edifices is 1.0 to 
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1.5 km in diameter and shows a great variability regarding its style of venting with hot 

black and white smoker vents and lower temperature diffuse discharge (Tivey et al., 

2007). The cone-shaped North Su volcano rises up to 1150 m water depth and 

represents the most active area, with sulfide-rich black smoker fluids venting with 

temperatures of up to 325 °C near the summit, and very low pH white smoker fluids 

revealing a high amount of dissolved gases (Seewald et al., 2006).  

 

 

Fig. 1: Map of the tectonic setting of the Manus back-arc basin showing the major plates and their 
motions, as well as the different spreading centers and transform faults (WMSC: Western Manus 
Spreading Center; MSC: Manus Spreading Center; SER: Southeastern Ridges; WiT: Willaumez 
transform fault; DT: Djual transform fault; WT: Weitin transform fault). 
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3. Hydrothermal vent fauna from the EMB 

The hydrothermal vent fauna in the Manus Basin dominantly comprises of 

different gastropods, barnacles, bythograeid crabs, bresiliid shrimps, 

vestimentiferans, sea anemones and some new found species (Galkin, 1997). The 

most important and dominant primary consumers are snails of the species 

Alviniconcha hessleri and Ifremeria nautilei (also described as Olgaconcha tufari) 

from the family Provannidae, in addition to vent mussels of the species 

Bathymodiolus manusensis (Galkin, 1997; Desbruyères et al., 2006).  

The hairy yellowish gastropod Alviniconcha hessleri (Fig. 3a) is widespread in 

the entire western Pacific back-arc basin and in the Indian Ocean (Warén and 

Bouchet, 2001), living in sulfide-rich (up to 750 µM) vent fluids with average 

temperatures between 10 and 25 °C. Within their enlarged gill filaments, which can 

contain elemental sulfur (Stein et al., 1988), these species harbor sulphur-oxidizing 

thioautotrophic endosymbiontic γ- and ε -proteobacteria (Suzuki et al., 2005; Suzuki 

et al., 2006a). Thereby, the ε-proteobacteria use a carbon metabolism pathway, 
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which is different to the one used by γ-proteobacteria indicated by different δ13C-

values (Suzuki et al., 2005). The ε-proteobacteria also use different sulfur 

compounds to act as electron-donors and electron-acceptors, and the γ-

proteobacteria use two different sulfur-oxidizing pathways: a reverse sulfate 

reduction and a limited sulfur oxidation multienzyme system for their nutrition 

(Yamamoto and Takai, 2011). Radioisotope investigations from the gill showed an 

assimilation of CO2, but no activity of CH4 oxidizing bacteria (Galkin, 1997).  

The black vent snail Ifremeria nautilei (Fig. 3b) is more widely distributed in the 

Pacific area, although it cannot be found in the Mariana Through. In the gill of these 

deep-sea provannid gastropod, methanotrophic and sulphur-oxidizing bacteria were 

found (Galchenko et al., 1992), showing that symbiotic bacteria may play a more 

significant role in the metabolism of this snail. Further investigations indicate, that 

they nutritionally dependent upon endosymbionts, which fall phylogenetically only 

into the lineage of γ-proteobacteria, maybe because of their dispersal capabilities 

(Suzuki et al., 2006b). They also show a high assimilation of CO2, in addition to a 

high CH4-oxidizing activity (Galkin, 1997). 

Mussels of the genus Bathymodiolus (Mytilidae) are the common species in 

deep-sea hydrothermal vent systems worldwide (Van Dover et al., 2002), with the 

species Bathymodiolus manusensis (Fig. 3c) found in the Manus Basin (Hashimoto 

and Furuta, 2007). Their nutrition is also based on chemoautotrophic bacterial 

endosymbionts (Won et al., 2003), which also gain their energy from the oxidation of 

reduced compounds present in the hydrothermal fluids by sulphur- and methane-

oxidizing bacteria located within the gill epithelial cells in the lateral zone of the gill 

filaments (Duperron et al., 2009; Duperron, 2010). 
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4. Materials and methods 
 

4.1 Sampling and sample preparation 
4.1.1 Fluids 

Hydrothermal fluids from the PACMANUS and SuSu Knolls area were 

collected during R/V Sonne expedition SO216 in June and July 2011 using the 

remotely operated vehicle (ROV) QUEST 4000 m (MARUM) (Bach et al., 2011; Bach 

et al., 2012). Titanium isobaric gas-tight fluid samplers (IGT; Seewald et al., 2002) 

and the Kiel-Pumping-System (KIPS; Garbe-Schönberg et al., 2006) were mounted 

on and deployed from the ROV. An online temperature probe made of titanium was 

attached to the respective fluid inlets for in-situ temperature measurement during 

sampling (uncertainty ±2 °C) and an in situ mass spectrometer (ISMS; Wankel et al., 

2010) was installed on the back of the ROV to gain real-time information of the 

different fluid characteristics like H2S and CO2 concentrations, as well as pH (at 

ambient seafloor conditions).   
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In total, 37 fluid samples were collected for chemical analysis, 24 by KIPS and 

13 by IGT sampler, at the North Su, Fenway, Satanic Mills and Solwara 8 

hydrothermal areas. The samples taken by IGT were recovered with gas tight 

syringes from the sampling device and samples from the KIPS were decanted into 

PET tubes avoiding headspace and immediately closed. Further processing was 

performed in a glove-bag under Ar-atmosphere, where the samples were filtered 

through an unreactive membrane filter (0.22 µm) and filled into 4 ml Polyvials® tubes 

(HDPE, Zinsser) avoiding headspace. One split from each sample was acidified with 

subboiled HCl for measuring AsT and another non-acidified for investigating As 

speciation. After carefully closing the tubes, they were removed from the glove bag 

and the split for AsT stored at 4 °C and the one for speciation immediately frozen at   

-80 °C. All samples were kept and transported cool or frozen and thawed shortly 

before the analysis started. Fluid parameters measured onboard upon sampler 

recovery were pH (25 °C, 1 atm), dissolved H2 and Eh. Further splits were preserved 

by addition of HNO3 for measuring major and trace elements.  

 

4.1.2 Biota 
Snails of the species Alviniconcha hessleri and Ifremeria nautilei and mussels 

of the species Bathymodiolus manusensis were collected from the hydrothermal 

areas with scoop nets manipulated by the mechanical arm of the ROV and 

transported in sealed boxes on the porch of the ROV during ascent and recovery of 

the ROV. Specimens were immediately opened onboard, cleaned with MilliQ and 

dissected into gill, muscle and digestive gland in the glove-bag under Ar-atmosphere. 

Samples were stored in 20 ml Polyvials® tubes under Ar-atmosphere and stored and 

transported frozen at -80 °C. In the laboratory, they were freeze-dried and 

homogenized with mortar and pestle and afterwards stored at room temperature until 

analysis. 

  

4.2 Reagents, standards and Certified Reference Materials (CRM) 
All solutions were prepared with double deionized water from a Millipore water 

purification system (MilliQ Advantage A10, 18 MΩ cm-1), coupled to a Q-POD 

Element unit. Hydrochloric acid (HCl) and nitric acid (HNO3) were purified with a 

Milestone acid sub-boiling system. Methanol (MeOH) and hydrogen peroxide 
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(H2O2, 30 %) of HPLC and suprapure grade were delivered by MERCK. Formic acid 

(CH2O2; p.a.), ammonium phosphate ((NH4)H2PO4; s.p.) and pyridine (C5H5N; p.a.) 

were also purchased from MERCK. 

Standard stock solutions (1000 mg L-1) for arsenite (AsIII) were prepared from 

As2O3 (Sigma Aldrich) dissolved in 4 g L-1 NaOH (Merck) and for arsenate (AsV) from 

Na2HAsO4 • 7H2O (Sigma Aldrich) dissolved in water. Methylarsonate (MA) and 

dimethylarsinate (DMA) were prepared from (CH3)2AsO(ONa)2 • 6H2O (Chemservice) 

and from (CH3)AsO(ONa)2 • 6H2O (MERCK), respectively, both dissolved in 

deionized water. Standards for arsenobetaine (AsBet) and arsenocholine (AC) were 

purchased from Sigma Aldrich and from Argus Chemicals. A CertiPur® multi-element 

standard solution (XVI, MERCK) containing 100 mg L-1 of several elements including 

As was used for measuring AsT. All stock solutions were stored at 4 °C and further 

dilutions were prepared on a daily base.  

Two certified reference materials were used for quality control of the digestion, 

extraction and measurement procedure: a dogfish muscle (NRCC-DORM-2), certified 

for different trace elements, AsT (18.0 ± 0.1 mg kg-1), AsBet (16.4 ± 1.1 mg kg-1) and 

the tetramethylasonium ion (TETRA; 0.248 ± 0.054 mg kg-1), in addition to a tuna fish 

tissue (BCR-627; Institute for Reference Materials and Measurements), certified for 

AsT (4.8 ± 0.3 mg kg-1), AsBet (3.9 ± 0.2 mg kg-1) and DMA (0.15 ± 0.02 mg kg-1). 

For identification of the phosphate- (PO4-sug), sulfate- (SO4-sug), sulfonate- 

(SO3-sug) and glycerol-sugar (Gly-sug) by comparing retention times, an aliquot of 

freeze dried extract of Focus serratus containing these four sugars was used 

(Madsen et al., 2000), which Prof. Dr. K. A. Francesconi from the Karl-Franzens 

University in Graz (Austria) kindly provided.  

 

4.3 Instruments 
Sample digestion was performed using a temperature controlled Milestone 

Ethos digestion system with a microwave power of 1000 W. Concentrations of AsT 

was determined by using a Thermo Scientific iCAP Q inductive coupled plasma mass 

spectrometer (ICP-MS) and As speciation analysis were performed using a Thermo 

Scientific ELEMENT 2 high resolution inductive coupled plasma mass spectrometer 

(ICP-(HR)MS) coupled with an Accela 600 HPLC system. Performing anion 

exchange chromatography, a Hamilton PRP-X100 column (250 x 4.1 mm, 10 µm) 
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was used, and for cation exchange, a Zorbax 300-SCX column (250 x 4.1 mm, 

5 µm), both protected with guard columns, was used. Chromatographic conditions 

are given in Tab. 1. The ion intensity at m/z 75 (75As+) was monitored in low 

resolution (LR) and in high resolution (HR) mode to identify possible argon-chloride-

interferences (40Ar35Cl+). Scanning electron microscope (SEM) analyses were 

performed using a Zeiss SUPRATM 40 FESEM with a XFlash® 6|30 EDX detector 

(BRUKER) and backscattered images taken at 15 and 20 kV. 

 
Tab. 1: Chromatographic conditions for HPLC-ICP-(HR)MS measurments in the present study. 

 

 Anion Exchange Cation Exchange 

   
Column Hamilton PRP-X100 

250 x 4.1 mm, 10 µm 
Zorbax 300-SCX 

250 x 4.6 mm, 5 µm 

Mobile phase 20 mM NH4H2PO4 
pH: 5.8 (adj. with NH4 aq) 

20 mM pyridine 
pH: 2.6 (adj. with HCOOH) 

Flow rate 1.5 ml min-1 1.5 ml min-1 

Injection volume 20 µl 20 µl 

Arsenic species 
analyzed 

AsIII, AsV, MA, DMA, 
PO4-sug, SO3-sug, SO4-sug 

AsBet, AC, TETRA, TMAP, 
Gly-sug 

 
 

4.4 Procedures 
4.1.1 Fluid major elements 

Hydrothermal fluid samples were analyzed for Cl using ion chromatography 

(METHROM 883 IC Basic Plus) and for Mg using inductively coupled plasma optic 

emission spectrometry (Perkin Elmer Optima 3300 ICP-OES). A seawater reference 

material was used as internal standard (IAPSO K15), in addition to a certified 

reference material (CRM-SW).  

 

4.4.2 Total Arsenic analysis  
Concentration of AsT was measured using a Thermo Scientific iCAP Q ICP-MS 

and 115In as internal standard. All samples were measured gravimetrically and in 

triplicate together with procedure blanks and CRMs. The different body parts of the 

mussels and snails were digested by giving 0.2 g aliquots of the samples and also 
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from the CRMs (DORM-2 and CRM627) in digestion vessels and adding 5 ml of 

concentrated HNO3 and 2 ml of H2O2. Samples were heated stepwise: for 2 min up to 

80 °C, held there for 1 min, before heating to 110 °C for 2 min. Then, for 3 min from 

110 to 140 °C, for 4 min from 140 to 180 °C, 6 min from 180 to 190 °C and as the 

final step, maintained for 12 min at 190 °C. Samples were cooled down, transferred 

into falcon tubes and diluted to 50 ml with double deionized water before storing at 

4 °C. No visible residues were observed in the digestions vessels. 

 

4.4.3 Arsenic speciation analysis 

The different As species from the tissues were extracted by using 50 mg of 

each sample and also from the CRM materials and adding 5 ml of an N2-purged 

MeOH/water mixture (1:1, v/v) in 20 ml PTFE tubes. Extraction was performed in 

triplicate and under Ar-atmosphere for 16 h at room temperature in an end-over-end 

shaker operating at 20 rpm. Afterwards, samples were centrifuged for 10 min at 

4500 rpm and supernatants were filtered through a 0.22 µm unreactive nylon filter. All 

samples were stored at 4 °C and measured within hours by HPLC-(HR)ICP-MS. The 

different As species were identified by comparing the retention times with the 

prepared standards. TMAP and TETRA were identified by comparing with the 

retention times of the DORM-2 CRM and the different As-sug by comparison with the 

Focus serratus extract. The quantification was performed using the calibration curve 

of the closest As species in the chromatogram. The presence of thioarsenic species 

was investigated by adding hydrogen peroxide (H2O2). 

 Results for the standards DORM-2 and BCR-627 showed good agreement 

with the certified values. Extraction efficiency was above 90 % and the average 

column recovery in a good range between 78 and 86 %.  
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5. Results 
 

5.1 Fluid samples 
The fluid samples were collected at temperatures between 10.5 and 348 °C 

and yielded a pH (25 °C) between 1.35 and 7.02. Magnesium (Mg) concentrations for 

the hydrothermal fluids varied between 95 and 1 169 mg kg-1 and around 

1 296 mg kg-1 for the local seawater (Tab. 2). The chloride (Cl) concentration 

revealed concentrations between 17 270 and 24 110 mg kg-1 with an average value 

of 18 840 mg kg-1 for the local seawater. Depending on the style of venting, i.e. black 

or white smoker, or shimmering clear fluids, the concentrations of iron (Fe), 

manganese (Mn) and sulfate (SO4
2-) were either high or low. However, no “dreg” 

fraction (Trefry et al., 1994) could be observed, so that reported concentrations 

reflect the dissolved fractions only.  

The concentration of total arsenic (AsT) ranged between 1.5 and 376.0 µg kg-1 

(Tab. 2), with focused black smoker fluids from discrete orifices (Fig. 2a) revealing 

fairly low concentrations of AsT, between 1.5 and 12.5 µg kg-1 (n = 8; average 

5.7 µg kg-1). Clear fluids had AsT concentrations between 1.6 and 58.9 µg kg-1 

(n = 18; average 15.1 µg kg-1; Fig. 2b) and white hydrothermal fluids showed a wide 

range in AsT concentration between 2.3 and 376 µg kg-1 (n = 7; average 108 µg kg-1; 

Fig. 2c). Because no trend with Mg could be observed, we assume a non-

conservative behavior of As during water-rock interaction and fluid ascent and do not 

attempt to calculate endmember As concentrations.  

Three different species were observed in 18 selected samples (11 KIPS, 7 

IGT) with AsT concentrations between 1.5 µg kg-1 and 376.0 µg kg-1: the two 

inorganic arsenite (AsIII) and arsenate (AsV) in addition to one (or probably more) 

unidentified species with a broad peak and centered retention times between 5.08 

and 6.72 min in six of these samples (Tab. 3). It could not be distinguished if this 

peak is neither always the same, nor if it is an artifact, but it was observed in the 

black and white smoker fluids, in addition to high proportions in two of the clear fluids. 

Recovery rates were in a good range between 45.8 and 113.4 %, with an average 

value of 90.5 % (Tab. 3).  
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5.2 Hydrothermal vent biota 
Hydrothermal vent animals accumulate different portions of As and other elements in 

the different organs as shown in Tab. 4. The highest concentration of AsT was found 

in the snail Alviniconcha hessleri (Fig. 3a) with 5 580 ± 14 mg kg-1 measured in the 

gill, 721 ± 7 mg kg-1 in the digestive gland and 43.3 ± 1.5 mg kg-1 in the muscle 
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tissue. The snail Ifremeria nautilei (Fig. 3b) accumulated AsT concentrations of 

118.3 ± 1.2 mg kg-1 in the gill, 107.6 ± 1.6 mg kg-1 in the digestive gland and 

21.7 ± 0.4 mg kg-1 in the muscle tissue. Concentrations of AsT in the different parts of 

the mussel Bathymodiolus manusensis (Fig. 3c) were much lower with 

15.7 ± 0.5 mg kg-1 in the digestive gland, 9.8 ± 0.2 mg kg-1 in the gill and 

4.5 ± 0.1 mg kg-1 in the muscle tissue.  

Selenium, lead and cadmium reflect this trend with the highest concentrations 

always found in the gill of Alviniconcha hessleri, in contrast to high concentrations of 

iron, manganese, chromium and copper found in the digestive gland. The snail 

Ifremeria nautilei and the mussel Bathymodiolus manusensis always revealed the 

highest concentrations of the different elements in the digestive gland, followed by 

the gill and the muscle tissue (Tab. 4). These showed good correlations when 

plotting the different elemental concentrations in the organs against each other         

(r2: 0.85 – 0.99). 

Speciation analysis revealed 8 different As species in variable proportions. In 

addition to the inorganic AsIII and AsV species, smaller amounts of dimethylarsinic 

(DMA), SO4-sugar, arsenobetaine (AsBet), trimethylarsoniopropionate (TMAP), 

arsenocholine (Ac) and tetramethylasonium ion (TETRA) were found (Tab. 5). The 

sum of the inorganic AsIII and AsV species ranged between 32 and 99 % for the 

snails and between 8 and 33 % of total As species for the mussel. In addition, higher 

concentrations of AsBet were also observed in all samples along with smaller 

amounts of DMA, SO4-sugar, TMAP, Ac and TETRA, which were not observed in all 

samples. 

The extraction efficiencies (ratios of AsT in the digestions and AsT in the 

methanol-water extracts) were around 48 % for Alviniconcha hessleri, 22 % for 

Ifremeria nautilei and 51 % for Bathymodiolus manusensis. The column recoveries 

(ratios between AsT of the methanol-water extracts and the sums of the species) 

were generally higher and averaged 70 % for Alviniconcha hessleri, 89 % for 

Ifremeria nautilei, and 52 % for Bathymodiolus manusensis, respectively (Tab. 5). 
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6. Discussion 
 

6.1 Hydrothermal vent fluids 
Hydrothermal fluids emanating at the seafloor are able to transport a 

considerable amount of the potentially toxic element arsenic (As) into the oceans 

(Breuer and Pichler, 2012) and can act as a – probably until today underestimated – 

substantial net source for this element in the ocean’s As budget. The concentration of 

AsT in the hydrothermal fluids strongly depends on the tectonic setting, with the most 

important influencing parameters being temperature, pH, pressure, different redox 

reactions, composition and mineralogy of the host rock, as well as the metal, H2S 

and gas concentration.  

 Concentrations of total arsenic (AsT) in hydrothermal fluids from the 

PACMANUS and SuSu Knolls areas ranged between 1.5 and 376.0 µg kg-1 (Tab. 2). 

These values are up to 200-times enriched relative to seawater, but similar to values 

from other hydrothermal systems investigated in the Manus back-arc basin such as 

at Vienna Woods (6.3 to 23.2 µg L-1), Satanic Mills (1 210 to 1 390 µg L-1) and 

Desmos (10.2 µg L-1) (Douville et al., 1999). Various other hydrothermal fluids 

sampled in back-arc basins are in the same range, typically showing several hundred 

µg L-1 of As. Concentrations in fluids from mid-ocean ridges are generally lower with 

several tens of µg L-1 and hydrothermal fluids from island arc setting in general 

higher with several thousand µg L-1 (Breuer and Pichler, 2012). 

The concentration of AsT in the hydrothermal fluids strongly depends on the 

style of venting. Black smoker fluids, mostly sampled in the PACMANUS area, 

contained large amounts of metals like Fe and Mn, and were mostly very low in AsT 

with values between 1.5 and 12.4 µg kg-1 (average 5.7 µg kg-1, n = 8, Tab. 2). These 

low concentrations are very likely due to the formation and precipitation of Fe-Mn-S-

As minerals like arsenopyrite (FeAsS) in the subseafloor and upon sampling, when 

the vent fluids mix with the ambient cold and oxygenized seawater, changing 

physicochemical conditions within seconds. 

Clear fluids revealed much lower metal concentrations, but showed higher AsT 

concentrations between 1.6 and 58.9 µg kg-1 with an average value of 14.7 µg kg-1 

(n = 18), because lesser minerals are precipitated and so, lesser As extracted from 

the fluids. Furthermore, the mixing of hydrothermal fluids with cold seawater as well 
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as efficient zone refining (Pinto et al., 2005) with the precipitation of As could be 

reasons for the overall lower concentrations of As in the fluids.  

 Compared to these two kinds of fluids, sulfur-rich white smoker fluids, which 

were taken at the North Su site, revealed very variable AsT concentrations between 

2.3 and 376 µg  kg-1 (Tab. 2). The two white smoker samples showing the highest 

concentrations by far were collected at the newly found “Sulfur Candles” site in the 

North Su area (Dive 304, IGT 3 & 4) from a 90 and 107 °C hot and very low-pH 

focused white smoker. These data suggests that a high amount of dissolved gases 

and a very low pH and low concentration of metals leads to a high concentration of 

AsT in the hydrothermal fluids. A contribution of As-rich magmatic fluids rising from a 

deep magma chamber, which might also be responsible for the low pH and high gas 

concentrations, is very likely. 

 Calculations of As endmember concentrations in vent fluids are difficult, 

because of the non-conservative behavior of As during fluid ascent and sampling and 

the additional metal and As-rich component from magmatic degassing (Yang and 

Scott, 1996). Varying Cl concentrations in the fluids, higher and lower than in the 

surrounding seawater (18 837 mg L-1), indicate phase separation and segregation of 

the fluids into a Cl-poor gas rich vapor phase and a Cl-rich and gas poor liquid 

phase. Arsenic, like Cu and Au, is predicted to portion into the vapor phase due to 

HS-complexation. Elements such as Na, K, Fe and Mn should portion into the brine 

phase as Cl-complexes (Heinrich et al., 1999). This portioning behavior is still a 

matter of debate and the underlying mechanisms are poorly understood (Pokrovski et 

al., 2005). However, when plotting the Cl against the As concentrations (Fig. 4), three 

different trends could be observed: a low Cl vapor phase and a high Cl brine phase, 

which were both fairly enriched in AsT compared to seawater, in addition to a 

magmatic trend with Cl concentrations around seawater and highly enriched in AsT. 

In both, the low and high Cl fluids, As might only be delivered by leaching from the 

basement, but the magmatic fluids might deliver volatile As directly from the 

underlying magma chamber, accounting for the high concentrations of As in the white 

smoker fluids.  
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Fig. 4: AsT vs. Cl concentration for the hydrothermal fluids from the different sample locations showing 
a vapor, brine, and magmatic trend 

 

Data for As speciation are not available for deep-water hydrothermal systems 

at all, but thermodynamic modeling showed that considerable amounts of the 

pentavalent As species H2AsO4
- should be present despite low ph and Eh conditions 

(Breuer and Pichler, 2012). These calculations also show the preferential 

precipitation of orpiment (As2S3) and scorodite (FeAsO4 • 2H2O), when H2S and Fe 

are sufficient available. Speciation measurements revealed the two inorganic 

arsenite (AsIII) and arsenate (AsV) species in variable proportions as predicted, in 

addition to one unknown species. However, no trend with temperature or other 

elements with species distribution could be observed. When the hydrothermal fluids 

mix with oxygenized seawater, thioarsenic species, which are potentially present in 

the hydrothermal fluids, quickly degrade into the inorganic AsIII, which is then 

oxidized to AsV. No thioarsenic species could be found in these samples thought they 

were preserved in the best way possible and these are systems high in sulfide. 

Recoveries of the species compared to AsT showed typical values for this kind 

of measurement between 46 and 113 %, with the recovery of the black smoker fluids 
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being mostly very low. This was maybe because samples for speciation were just 

cryofrozen and not acidified compared to samples for AsT, as the pH directly 

influences the species distribution. The precipitation of small Fe-S-As particles could 

not be avoided before measurement during thawing, but anyway, this process was 

not observed visually in the lab during sample preparation, but could also happen in 

the column during separation. 

 

6.2 Hydrothermal vent biota 
6.2.1 Total As 

Snails of the species Alviniconcha hessleri and Ifremeria nautilei as well as 

bivalves of the species Bathymodiolus manusensis living in the hydrothermal mixing 

zones are evidently able to bioaccumulate and transform high amounts of different 

metals and As in their tissues. The accumulated concentration strongly depends on 

the concentration and species in the fluids from the proximal environment, but also 

on the special metabolism performed by the organisms. This process is affected by 

chemosynthesis and different As and nutrient uptake mostly related to sulfide- and 

methane-oxidizing Gammaproteobacteria located in specialized epithelial cells within 

the gill (Duperron, 2010) compared to the mechanisms observed from animals living 

in photic zones. Coastal bivalves from non-polluted areas incorporate in general less 

than 10 mg kg-1 of As and snails less than 50 mg kg-1 (Neff, 1997; Neff, 2002). 

The highest concentration of AsT was found in the gill of Alviniconcha hessleri 

(5 580 mg kg-1) sampled in the Fenway area. These snails were living in clear fluids 

with the highest temperature (Tmax = 26.8 °C), lowest pH of 6.2, as well as the highest 

concentration of AsT (12.7 µg kg-1). Furthermore, up to 721 mg kg-1 were 

accumulated in its digestive gland and 43 mg kg-1 of As were detected in the muscle 

tissue (Tab. 5, Tab. 6). No comparable values were published to date for those kind 

of animals and only one hydrothermal snail (Peltospira smaragdina) was investigated 

before from the Lucky Strike hydrothermal field, showing AsT concentrations of up to 

67.8 mg kg-1 (Taylor et al., 2012). The high amount of As in the gill, where other 

studies already revealed elemental sulfur (Stein et al., 1988), might be due to the 

formation of small suspended Fe-Zn-S-As-particles, which precipitate and 

accumulate when the hydrothermal fluid is filtered through the fine filaments of the 

gill. During scanning electron microscope analyses, those fine particles were found 
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attached to the gill filaments, but also as coating on the organic material. These 

revealed a considerable amount of As most likely responsible for the high 

concentration of AsT found in the gill (Fig. 5, Fig. 6). Particles and coatings could be 

most likely sulfide minerals such as sphalerite (ZnS), pyrite (FeS2), arsenopyrite 

(FeAsS), or orpiment (As2S3), all containing significant amounts of As. Furthermore, 

those particles cannot be leached during methanol-water washing, but they do get 

completely dissolved during acid digestion, explaining the low extraction efficiencies. 

Uptake of elements due to the dissimilatory activity of the chemolithoautotrophic 

bacteria in the gill or uptake via the essential phosphate transport system are 

alternative and additional explanations for the high As concentrations in the gill. The 

elevated amount of As in the digestive gland on the other hand, may be because as it 

acts as a pathway and especially storage organ for different elements and nutrients. 

However, the digestive gland is lesser involved in the nutrition cycle and metabolism 

because of the different symbiosis techniques and accordingly also reduced in size 

(Stein et al., 1988). Comparable low amounts of AsT in the muscle tissues is likely 

because of the lesser involvement in all these exchange and nutrition processes and 

the only indirect contact to the high As fluids.  

 
Tab. 6: Sampling locations and concentration of AsT (n=3), for the two snails Alviniconcha hessleri 
and Ifremeria nautilei and the mussel Bathymodiolus manusensis as well as the characteristics of the 
fluids they live in. 
 
Vent animal/ 
Ref material 

Location/ 
depth 

organ AsORGANISM 
[mg kg-1] 
 

AsFLUID 
[µg kg-1] 
 

TFLUID 
[°C] 
 

pHFLUID 
 

Alviniconcha Fenway area DG 721 ± 7    

hessleri 003° 43.687’ S 
151° 40.163’ E Gill 5580 ± 14 12.7 26.8 6.21 

 -1648 m Muscle 43.3 ± 1.5    

       

Ifremeria Roman Ruins DG 107.6 ± 1.6    

nautilei 003° 43.238’ S 
151° 40.519’ E Gill 118.3 ± 1.2 5.8 15.1 7.03 

 -1685 m Muscle 21.7 ± 0.4    

       

Bathymodiolus Fenway area DG 15.7 ± 0.5    

manusensis 003° 43.699’ S 
151° 40.347’ E Gill 9.8 ± 0.2 3.3 10.6 6.75 

 -1706 m Muscle 4.5 ± 0.1    
 

Note: DG: Digestive gland 
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The snails of the species Ifremeria nautilei were sampled at the Roman Ruins 

vent site living in lower temperature (Tmax = 15.1 °C) and lower As (5.8 µg kg-1) 

hydrothermal fluid. These accumulated lower concentrations of AsT, with 

118.3 mg kg-1 in the gill, 107.6 mg kg-1 in the digestive gland and 21.7 mg kg-1 in the 

muscle tissue (Tab. 5, Tab. 6), showing the same pattern like Alviniconcha hessleri, 

resulting in the same explanation, but with lower amounts of accumulated particles. 

The hydrothermal vent mussel Bathymodiolus manusensis collected at the Fenway 

hydrothermal field showed significant lower AsT concentrations than the two snails 

with 15.7 mg kg-1 in the digestive gland, 9.8 mg kg-1 in the gill and 4.5 mg kg-1 in the 

muscle tissue. Also, the concentration of AsT (3.3 µg kg-1) and the temperature 

(Tmax = 10.6 °C) of the fluids the mussels lived in are lower (Tab. 6). The 

concentrations of AsT found in Bathymodiolus manusensis are similar to those in 

mussels of the species Bathymodiolus azoricus from the Menez Gwen hydrothermal 

field. These specimens had AsT concentrations of 19.0 mg kg-1 in their digestive 

gland, 14.9 mg kg-1 in their gill and 5.3 mg kg-1 in their muscle tissue (Breuer et al., in 

review for DSR1).  

All in all, it can be shown that Alviniconcha hessleri seems to be more 

resistant against high concentrations of AsT in the fluids than Ifremeria nautilei and 

Bathymodiolus manusensis. Concerning the concentrations of Cr, Mn, Fe, Co and 

Cu, the highest amount was always found in the digestive glands acting as pathway 

and storage organ for these elements, contrasting Cd and Pb, where high 

concentrations were also found in the gills connected to the accumulation of different 

As-rich particles (Tab. 4). The reason for this overall selective accumulation remains 

unclear, but perfect correlations of Fe, Mn, Cr and Co for the different organs of the 

respective animals indicate that take-up mechanisms may be remarkably similar for 

these elements.  

 The extraction efficiency of approximately 48 % in tissues of Alviniconcha 

hessleri, 22 % in Ifremeria nautilei and 51 % in Bathymodiolus manusensis is low, but 

similar to other numbers reported for marine animals (e.g. Shibata and Morita, 1992; 

Lai et al., 2012). The overall lower efficiency might be also due to the presence of 

different non-extractable polar arsenicals or precipitation of different particles in the 

organs. 
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6.2.2. As speciation 
Speciation analysis can help to interpret and understand the cycling and 

transformation of As in this extreme environment as the vent biota metabolism is 

different from organisms living in the freshwater and seawater photic zone. Results 

are given in Tab. 5, revealing that the major As components in the snails are the 

inorganic arsenite (AsIII) and arsenate (AsV) species, in addition to smaller but 

constant amounts of arsenobetaine (AsBet). Furthermore, dimethylarsinic acid 

(DMA), sulfonate-sugar (SO4-sug), trimethylarsoniopropionate (TMAP), 

arsenocholine (Ac) and tetramethylasonium ion (TETRA) could be observed in some 

of the samples. There are no comparable values reported in the literature for 

hydrothermal vent snails and mussels like the ones sampled here.  

AsBet, which is known since 50 years, is preferentially bioaccumulated by 

higher marine organisms like fish, snails and mussels, and the dominant compound 

over other organoarsenic compounds in this organisms (e.g. Kaise et al., 1988; 

Ochsenkühn-Petropulu et al., 1997; Azizur Rahman et al., 2012). Derivates of 

dimethylarsinoylribisides and trimethylarsinoribosides, also called arsenosugars (As-

sug), which are only present as sulfonate-sugar (SO4-sug) in low proportions in the 

snail Alviniconcha hessleri, are the common and dominant species in marine 

seagrasses and algae. AsBet and As-sug are a lot less toxic than the inorganic forms 

AsIII and AsV (Edmonds and Francesconi, 1981; Niegel and Matysik, 2010). Some 

recent studies also revealed low concentrations of AsBet in different algae (Slejkovec 

et al., 2006; Grotti et al., 2008), but this could be related to incorrect sample pre-

treatment by not removing epiphytes.  

Those algae play a key role in As cycling in the marine environment because 

they act as food source for higher organisms, but their exact mechanism for As 

uptake from the surrounding seawater is only poorly understood. A possible and 

general accepted way could be the uptake of AsV from the surrounding seawater via 

the essential phosphate transport system into the cell membranes (Rosenberg et al., 

1977). Then, the AsV is reduced by arsenate reductases enzymes to AsIII 

(Mukhopadhyay et al., 2002), because this form is more mobile in the cells and AsV is 

known to interfere with several metabolic processes like the oxidative 

phosphorylation (Slater, 1963). Further detoxification steps are characterized by 

multioxidative and sequential methylation and reduction due to microorganism to 
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methylarsonic acid (MA) and further to dimethylarsinic acid (DMA) and 

trimethylarsine (TMA) as described by the “Challenger pathway” (Challenger, 1945; 

Challenger, 1955). However, since several years, it becomes clear, that this is not 

the only possible way forming organic As compounds in marine algae. Another 

pathway can be described by transferring the adenosyl-group of the methylation 

agent to the As-atom after forming DMA and eliminate the last step forming TMA 

(Edmonds and Francesconi, 1987). After that, different kinds of As-sug such as the 

sulfonate-, sulfate-, phosphate- and glycerol-sugar can be formed by adding methyl-

groups, which are thought to be an endproduct in marine algae. 

Even though primary producers like marine algae can accumulate their As 

from the surrounding seawater, consuming higher organisms such as bivalves and 

snails are theoretically able to take it up from both: the surrounding seawater and 

from algae through the food-chain (Edmonds and Francesconi, 2003). However, they 

have only limited ability to take up inorganic As from the seawater and prefer the 

accumulation mechanism via the foodweb (Azizur Rahman et al., 2012). It is thought 

that the As-sug produced, preconcentrated and transformed by marine algae are 

some kind of precursor for AsBet and arsenocholine (AsC) in higher marine 

organisms (Hansen et al., 2003). Algae are not or only sparsely available in this 

depth by filtering and chemolithoautothropic bacteria are the major nutrition for 

animals living in this environment. Only a small amount of As-sug could be observed 

in the gill of Alviniconcha hessleri, probably due to filtering of organic material, but in 

Ifremeria nautilei as well as Bathymodiolus manusensis, no sugars could be 

observed at all. So, there might be other pathways for the formation of 

organoarsenicals like AsBet found in the snails and mussels than via the 

accumulation of sugars delivered by algae, which could be connected to the 

autotrophic and symbiotic bacteria located in the gills of the organisms.  

Another reason for the high amount of inorganic As, dominantly found as AsIII 

and AsV, could be the high concentration of inorganic and reduced As in the low pH 

fluids and overstressing of detoxificaition processes and comparable slow 

methylation processes. Detoxification is normally performed by binding to 

metallothioneins or incooperation in metabolic insoluble granules (Morgan et al., 

2007). DMA seems to be bypassed as an intermediate product and immediately and 

fully utilized to As-sug and/or AsBet.  
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Compared to mussels of the species Bathymodiolus azoricus from the Menez 

Gwen hydrothermal field, which have a high concentration of As-sug and a 

comparable low amount of AsBet, no As-sug could be observed in the mussels 

Bathymodiolus manusensis, despite their nutrition should be comparable. This might 

be due to the different depth of the mussels and the availability of organic material as 

Menez Gwen is located in around 850 m water depth and Bathymodiolus 

manusensis lives in around 1700 m water depth.  

 

7. Conclusions 
We presented novel and combined data for AsT and As speciation for black, 

white and clear hydrothermal fluids from the Manus Basin and three different vent 

organisms living in the immediate vicinity of these fluids, separated into gill, muscle 

and digestive gland. Hydrothermal fluids were up to 348 °C hot and revealed 

maximum AsT concentrations of 376 µg kg-1 in low pH and white gas-rich fluids 

emanating with temperatures around 100 °C. Black smoker fluids had in general 

lower As concentrations because of precipitation of As-bearing minerals with high 

amounts of Fe, Mn and S transported with the fluids already in the subseafloor, but 

also immediately when mixing with the surrounding oxygenated seawater. The 

shimmering fluids as a mixture of hot hydrothermal fluids and cold seawater showed 

concentrations lower that the hot white fluids but higher that the black smoker fluids. 

Three different trends could be observed when plotting As against Cl concentrations 

with fairly enriched vapor and brine phases and a highly enriched magmatic phase 

with Cl concentrations close to seawater. Only the two inorganic arsenite and 

arsenate species could be observed in the fluids.  

 Hydrothermal vent fauna living in the warm mixture of hydrothermal fluids and 

oxygenated seawater are able to accumulate and transform As emanating with the 

fluids. Up to 5 580 mg kg-1 could be found in the gill tissue of Alviniconcha hessleri 

due to the accumulation of inorganic Fe-Zn-S-As particles as observed during 

scanning electron microscope analysis, but also due to the very special nutrition 

performed by the chemolithoautothropic bacteria and uptake via the essential 

phosphate transporter pathway system. The accumulation of small inorganic particles 

could also be confirmed by low extraction efficiencies of around 50 % and lower, 

because these particles can only hardly be leached during methanol-water 
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extraction. Higher amounts of AsT were also found in the digestive gland, which 

serves as a pathway and storage organ. Alviniconcha hessleri, accumulating the 

highest amount of AsT also lives in the hottest (26.8 °C) fluids with the highest 

concentration of AsT, (12.7 µg kg-1), compared to Ifremeria nautilei and 

Bathymodiolus manusensis, living in 15.1 °C and 10.6 °C warm hydrothermal fluids 

with AsT concentrations of 5.8 µg kg-1 and 3.3 µg kg-1, respectively. The 

concentration of AsT in Bathymodiolus manusensis is comparable to other 

hydrothermal vent mussels such as from the Menez Gwen hydrothermal system at 

the Mid-Atlantic Ridge. The two snails and the mussel dominantly show the inorganic 

species AsIII and AsV and a constant but low amount of arsenobetaine and no or only 

a very low concentration of arsenosugars, without the presence of photosynthetic life 

or algae utilized during nutrition. This supports the theory, that there might be other 

pathways for the formation of organic arsenicals than the proposed traditional ones, 

where As-sug are accumulated in algae and are thought to be precursors for AsBet 

in higher, consuming marine animals. 
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Abstract 

Hydrothermal fluids emanating at shallow- and deep-water hydrothermal 

systems are naturally enriched in the potentially toxic element arsenic (As), strongly 

influencing the concentration and cycling of As in the oceans. Four hydrothermal 

influenced gravity cores made of altered mineralized volcaniclastic material and 

layers of sulfide precipitates were recovered from 630 m water depth at the western 

Palinuro volcanic complex in the Tyrrhenian Sea. Sampled pore fluids revealed a 

slightly acidic pH between 6.3 and 6.7 and elevated temperatures of up to 58 °C, as 

well as high concentrations of dissolved sulfide (H2S, up to 3.5 mM) and low 

concentrations of dissolved iron. Total As concentrations were measured to be 

between 0.8 and 18.3 mg L-1, due to hydrothermal leaching of As from the underlying 

host rocks and arising magmatic fluids, superpassing all concentrations measured in 

marine hydrothermal fluids to date. In addition to the inorganic arsenite and arsenate 

species, also up to 94 % of thioarsenates were found as mono-, di-, and 

trithioarsenates. Those species were never detected in deep-water systems > 200 m 

before. The concentration of thioarsenates and H2S increased with depth, showing 

the influence of the downward penetrating cold seawater and warm advectively 

uprising hydrothermal fluid. Furthermore, a slight correlation with the appearance of 

sulfide crust could be observed. 
Sample preservation is a crucial step for accurate measurements, because 

when fluids cool down and thermodynamic conditions change rapidly, different As-

bearing minerals can precipitate in the sampled pore fluids, changing As speciation 

and total concentration. Commonly, those samples are filtered and cryofrozen to 

conserve the species distribution, because the common methods by adding acids to 

higher solubility would change the pH and influence the speciation. Precipitates were 

observed when unfreezing the samples leading to bad recoveries between 23 and 

284 % (average 124 %), when comparing the sum of the species to the total amount 

of As and new methods have to be developed for preserving those kind of samples.  
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Highlights: 
 
► We present data for arsenic and arsenic species in pore fluids from hydrothermal 

influenced sediment cores. ► Concentrations of As were up to 18.3 mg L-1 with up to 

94 % of thioarsenate species. ► Increasing concentrations of arsenic, thioarsenate 

portion and dissolved sulfide with depth showed the increasing hydrothermal 

influence. ► Bad recoveries showed the importance of good sample preservation. 
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Arsenic; Hydrothermal; Pore fluids; Tyrrhenian sea; Palinuro volcanic complex; 

Thioarsenates 
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1. Introduction 
Marine hydrothermal systems are driven by cold seawater penetrating 

downward into the oceanic crust through cracks, fissures and faults, which becomes 

progressively heated near an underlying magma chamber or due to serpentinisation 

processes, rises upwards again and expels at the seafloor due to excess buoyancy. 

This process and emanating fluids play a key role in ocean chemistry and cycling of 

elements from the oceanic crust into the oceans. The fluid chemistry strongly 

depends on different physicochemical parameters like temperature and pressure, 

causing phase separation, different water-rock reactions, magmatic degassing of an 

underlying magma chamber, as well as subsurface mixing with cold seawater and 

different biological processes, which are only poorly understood (e.g. Alt, 1995; 

German and Von Damm, 2003).  

 Hydrothermal fluids and pore-fluids from shallow-water hydrothermal areas are 

known to transport a high concentration of the potentially toxic element arsenic (As) 

in the range of several thousands µg L-1 into the oceans as shown by different 

studies from Tutum Bay or Milos (Pichler et al., 1999; Price et al., 2007; Price et al., 

2012). These concentrations are superpassing those found in hydrothermal fluids 

emanating at mid-ocean ridges or back-arc basins. Despite this high concentration 

and the role of As known as an environmental toxin, only a few studies exist dealing 

with the investigation of As in hydrothermal fluids from the different tectonic regimes. 

Contrasting to the high and very variable concentration of As in hydrothermal 

fluids, the average concentration of As in the global ocean is estimated to be 

constantly around 1.7 µg L-1 (Neff, 2002) and the concentrations in rivers even less 

around 0.62 µg L-1 (Gaillardet et al., 2003). This shows a paradox with a missing 

source of As, as normally rivers draining into the oceans reveal a higher elemental 

concentration than the oceans. The most important factors controlling the 

concentration of total arsenic (AsT) in hydrothermal fluids are the physicochemical 

parameters such as temperature and depth, controlling phase separation processes, 

pH, influencing As leaching and mobility, H2S and CO2 concentrations, as well as the 

amount of transported metals such as iron (Fe) and manganese (Mn). Furthermore 

different redox-, adsorption- and desorption-reactions and the mineralogy and 

crystallography of the underlying host rocks play an important role (Breuer and 

Pichler, 2012). In the aquatic environment, As can occur in different chemical 
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oxidation states, but is mostly present in the inorganic form as the trivalent 

(oxo)arsenite (H3AsO3) and the pentavalent (oxo)arsenate (H2AsO4
- and HAsO4

2-). In 

hydrothermal systems rich in dissolved sulfide (H2S) and As, also thioarsenic species 

should be present and constitute for a major fraction of the dissolved As as shown by 

thermodynamic modeling and experimental studies. These species are assumed to 

control As chemistry in reducing environments (Wilkin and Ford, 2006; Planer-

Friedrich et al., 2007; Planer-Friedrich et al., 2010). Different thioarsenic species 

were already confirmed in shallow-water hydrothermal systems near Milos, where the 

highest concentrations of AsT were measured to date with up to 5.85 mg L-1 (Price et 

al., 2012), but were never detected in deep-water hydrothermal systems located in 

depths > 200 m. 

 Preservation of As and As speciation in hydrothermal fluids rich in H2S and 

different metals like Fe or Mn is challenging but crucial. Wrong or inaccurate 

preservation can lead to precipitation of As-bearing minerals and lowering of AsT, as 

well as changes in species distribution. Several reviews exist, dealing with the critical 

consideration of this topic (Smieja and Wilkin, 2003; McCleskey et al., 2004; Gault et 

al., 2005; Suess et al., 2011) and the commonly used approach is filtering through a 

0.22 µm unreactive membrane filter to remove microorganisms, the addition of 

reagents like HCl, EDTA, EtOH, or NaOH and cooling or freezing. However, 

changing the pH due to the addition of acids or other reagents can cause 

precipitation and changes of species distribution. Thioarsenate species are also 

unstable when oxygen is present and precipitate at acidic pH (Planer-Friedrich et al., 

2007; Suess et al., 2009). Flesh freezing at -80 °C, which is already utilized, in 

combination with a low headspace in the vials to have low oxygen available, without 

adding reagents, seem to be the best method for sample preservation to date, 

though also this might not be the best and new techniques have to be investigated 

and tested for this very special kind of samples. 
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2. Geological and tectonic setting 
The Tyrrhenian Sea as part of the western Mediterranean Sea represents a 

young and semi-closed extensional basin, surrounded by the Italian mainland in the 

east, Sicily in the south and Corsica and Sardinia in the west (Fig. 1a). The major 

tectonic process is characterized by the collision of the African and Eurasian plate, 

and the subduction of the oceanic part of the African plate below Europe, which is an 

ongoing process with a velocity of about 1 cm a-1 (Silver et al., 1998). The extension, 

which could be observed today, is caused by the subduction of the Adriatic slab and 

roleback motion of the northwestward dipping Ionian slab, pulling the edge of the 

overriding Tyrrhenian plate and extending it (Gvirtzman and Nur, 1999).  

The southeastern part of the Tyrrhenian Sea comprises the volcanic cones of 

the Aeolian arc, the Marsili abyssal plain and the Palinuro volcanic complex (Fig. 1b). 

This complex represents an entirely submerged volcano, consisting of five coalesced 

volcanic edifices (Fig. 1c). It elongates along an east-west trending fault system with 

a size of 50 km in east-west direction and a maximum width of 25 km at the base. 

The edifices rise between 2 000 m (north) and 3 200 m (south) above the seafloor 

and the peaks of the volcanic cones are circular and may represent former eruption 

centers (Eckhardt et al., 1997; Monecke et al., 2009).  

  Investigations of the seafloor have shown large areas covered by sediments 

and underlain by massive sulfides and Mn-Fe-oxides, but volcanic rocks can only 

rarely be observed (Petersen and Monecke, 2008). Several colonies of tubeworms 

were found in areas of low-temperature hydrothermal discharge at Palinuro, which 

were not observed anywhere else in the Tyrrhenian Sea before, in addition to 

microbial communities hosted in the sediments (Monecke et al., 2009). The 

investigated cores were obtained in the western area of the Palinuro volcanic 

complex, with the top made of mineralized massive sulfides like pyrite (FeS2), galena 

(PbS) and sphalerite (ZnS), in addition to minor phases of marcasite (FeS2) and 

chalcopyrite (CuFeS2), buried under a several meters thick layer of unconsolidated 

hydrothermally altered sediments (Marani et al., 1997; Dekov and Savelli, 2004). 
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3. Sampling and Methods 
3.1 Sampling, preservation and shipboard analysis 

During R/V Meteor expedition M86/4 in February 2012, sediment coring was 

performed using a 3 m gravity corer with 125 mm inner diameter, 600 kg weight on 

top and a plastic liner inside the steel pipe. Temperature was measured immediately 

after recovery and the plastic liners filled with sediments were cut into 1 m long 

sections, before sealing the ends with plastic caps. Pore water sampling was 

performed by drilling holes into the plastic liner and using Rhizon Soil Moisture 

samplers every 10 or 20 cm, depending on the core and the assumed filling of the 

plastic liner. Rhizon samplers were made of a small microporous polymer tube 

(0.1 µm pore size) connected to a PVC-tube, which is again connected to a 10 mL 

syringe to produce low-pressure (Seeberg-Elverfeldt et al., 2005). Drilling small 

holes, immediately closing the liner sections and connecting the rhizon sampler to 

the syringes before sampling, minimized the oxygen contamination during sampling. 

After pore fluids were recovered, samples were immediately filled into 4 mL 

Polyvials® tubes (Zinsser) avoiding headspace and stored and transported 

cryofrozen at -80 °C until laboratory analysis.  

 Further sample splits were used for measuring the pH (WTW 191 and InLab 

Micro-D electrode) and concentration of H2S via spectral photometry (Genesys 10) 

on board, as well as one split acidified with HNO3 for major, minor and trace element 

analysis.  

 

3.2 Lab analysis  
Samples were analyzed for total As (AsT) and the inorganic As species 

arsenite, arsenate, mono-, di-, tri- and tetrathioarsenate at Bayreuth University. 

Sample and standard preparation before analysis was performed under anaerobic 

conditions in an atmosphere of 95 % nitrogen and 5 % hydrogen. All chemicals were 

of analytical reagent grade. Speciation was measured by IC (Dionex ICS 300 SP) 

coupled to ICP-MS (Thermo-Fisher XSeries2) and using an anion-exchange column 

(IonPac®, AG16/AS16, 4 mm, Dionex). The elution was performed by gradient using 

0.02-0.1 M NaOH (Fluka, for IC, 50-52%) at a flow rate of 1.2 mL min-1 and an 

anionic self-regenerating suppressor (ASRS) at 13 psi. Arsenic was detected as 

AsO+ (m/z 91) using the dynamic reaction cell technology with oxygen as reaction 
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gas (10 % O2, 90 % He) to avoid interferences of 75As+ with 40As35Cl+. Arsenite and 

arsenate were quantified based on a five-point calibration curve from their standards 

(NaAsO2 and Na2HAsO4 • 7H2O, Fluka). Thioarsenate peaks were quantified using 

the arsenate calibration due to a lack of commercial standards. This method has 

been previously validated by Planer-Friedrich et al. (2007).  

Major elements (Cl, Fe, Mn, Mg) were measured either using Inductively 

Coupled Plasma-Optical Emission Spectroscopy (ICP-OES; SPECTRO CIROS CCD 

SOP) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS; Agilent 7500cs). 

The certified reference materials NIST 1643e and IAPSO K15 were used for 

validating the results.  

 

4. Results 
4.1 Gravity cores 

The locations, water depths and recoveries, as well as temperature and pH of 

the four sediment cores recovered during the research cruise and investigated in the 

labs are given in Tab. 1. All cores showed elevated temperatures of up to 58.0 °C at 

their bottoms, decreasing to the top of the cores, with temperatures between 13.8 

and 26.1 °C. Sediment cores were mostly made of altered mineralized volcaniclastic 

sediments consisting of fine-grained tuffaceous deposits and intercalated layers of 

dark sulfide precipitates as well as massive sulfide crusts and variable amounts of 

disseminated elemental sulfur. Pictures of the cores and location of the sulfide layers 

mostly consisting of irregular arranged black crusts are shown in Fig. 2.  
 
 

Tab. 1: Characteristics of the different cores sampled during the M86/4 cruise in 2012. 
 
Core Latitude Longitude Water depth 

[m] 
Recovery 

[cm] 
Temperature* 

[°C] 
pHmin 

270 GC 39° 32.400’ N 14° 42.378’ E 630 290 58.0 / 48.1 / 37.7 / 26.1 6.4 

277 GC 39° 32.410’ N 14° 42.404’ E 630 300 39.0 / 26.4 / 25.2 / 17.5 6.3 

285 GC 39° 32.411’ N 14° 42.385’ E 629 285 38.1 / 28.4 / 20.3 / 13.8 6.7 

287 GC 39° 32.437’ N 14° 42.390’ E 630 300 40.0 / 29.2 / 30.4 / 25.2 6.6 
 

* measured when recovered on deck at the bottom / 2 m / 1 m / surface. 
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4.2 Pore fluids  
Pore fluids revealed a slightly acidic pH between 6.3 and 6.7 (Tab. 1) and a 

high concentration of dissolved sulfide (H2S) with up to 3487 µM observed at the 

bottom of core 277 GC. The concentration of H2S generally increased with sediment 

depth, but also to some extent correlating with the appearance of the sulfide crusts 

(Fig. 2, Tab. S1). Furthermore, the sampled pore fluids showed significantly elevated 

concentrations of chloride (Cl) with an average concentration of 26 625 mg L-1 when 

comparing to the ambient bottom seawater and background porewater samples 

(average Cl concentrations of 21 095 mg L-1, unpub. data D. Garbe-Schönberg). The 

concentrations of iron (Fe) in the pore fluids were mostly below the limit of detection 

(< 0.28 mg L-1) except for some samples near the sediment-seawater interface and 

the concentrations of manganese (Mn) varied between the limit of detection and 

22 mg L-1, revealing a slightly increasing trend with depth and correlating with 

decreasing magnesium (Mg) concentrations, which ranged between 591 and 

1 390 mg L-1 (Tab. S2) 

The concentrations of total Arsenic (AsT) were strongly enriched in the pore 

fluids compared to seawater and ranged between 810 and 18 315 µg L-1 (~ 10 000-

times seawater concentration), with an average value of 7 350 µg L-1. A general 

correlation of H2S and AsT and increase with depth could be observed (Fig. 2, Tab. 

S1). Elevated concentrations of H2S and AsT were also partly linked to the 

appearance of sulfide crusts layers. Speciation analysis showed the occurrence of 

the inorganic arsenite and arsenate species, as well as mono-, di- and trithioarsenic 

species in variable proportions (Fig. 3). The fraction of thioarsenic species dominates 

over the inorganic arsenite and arsenate with increasing depth, showing maximum 

values of up to 94.0 % in core 270 GC, 90.9 % in 277 GC, 80.0 % in 285 GC and 

87.0 % in 287 GC (Fig. 3), with an average value of 65 % regarding all cores and all 

samples.    

Recoveries calculated as the difference between AsT and the sums of the 

different species showed a big range between 23.4 and 284.0 % with an average 

value of 124.4 % (Tab. S1).  
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5. Discussion 
Shallow- and deep-water hydrothermal systems are known to act as a net 

source for arsenic (As) into the oceans (e.g. Pichler et al., 1999; Price et al., 2012) 

and play an important role in As transport and cycling therein. The concentration of 

total arsenic (AsT) present in emanating hydrothermal fluids and pore fluids from 

hydrothermal influenced sediment cores evidently depends on a variety of local 

physicochemical parameters such as temperature, pH, pressure, different redox, 

adsorption and desorption reactions, as well as the H2S, CO2 and metal 

concentration of the uprising fluids. Furthermore, the underlying host rocks and 

possible contribution of magmatic volatiles play important roles (Breuer and Pichler, 

2012). Those hydrothermal fluids are able to transport a considerable amount of 



ARSENIC IN PORE FLUIDS FROM THE PALINURO HYDROTHERMAL SYSTEM 125 
 

metals and also As from leaching of the underlying host rocks and the degassing of 

an underlying magma chamber (Heinrich et al., 1999).  

Diffuse discharge is an ongoing process at the Palinuro volcanic complex 

located in the western Tyrrhenian Sea. The different physical and chemical 

parameters such as temperature, pH and H2S concentrations showed an increasing 

hydrothermal influence with depth, as well as the influence of penetrating seawater in 

the upper parts of the sediment cores (Fig. 2, Tab. S1). This causes a distinct redox 

stratification, which could be observed in the chemical parameters of the pore fluids 

sampled from the sediment cores. Island-arc systems differ from those located at 

mid-ocean ridges or back-arc basins because of their shallow depth, favoring boiling 

and phase separation during fluid ascent, as well as different host rock composition 

and a major contribution of magmatic volatiles and metals as also observed in 

subaerial arc volcanoes (e.g. Giggenbach, 1992; Hannington et al., 2005).  

Gravity cores from the Palinuro volcanic system showed extremely elevated 

concentrations of H2S (up to 3.5 mM), increasing to the bottom of the cores and 

compared to a very low concentration at the sediment-seawater interface (Fig. 2, 

Tab. S1), going along with slightly acidic pH values. Microbial sulfate reduction 

and/or uprising hydrothermal fluids could be most likely the source for the high 

concentration of H2S with decreasing values towards sediment-water interface due to 

the oxidation of the H2S by the downward penetration seawater, responsible for 

shifting the oxic-anoxic boundary. The microbial sulfate reduction releases 

bicarbonate and increases the pH (Canfield, 2001), which otherwise would be more 

acidic. Furthermore, the presence of H2S and also H2SO4 leading to those acidic 

fluids could be explained by the disproportionation of magmatic SO2 arising with 

magmatic volatiles when these cool down and mix with penetrating seawater, as 

shown by the following equation (Giggenbach, 1992): 

2SO2 + 4H2O = H2S + 3HSO4
- + 3H+   (Eq. 1) 

Magmatic fluids could also be responsible for transporting a considerable amount of 

certain metals including As (Gamo et al., 1997; Herzig et al., 1998). The bottom of 

the cores respective the last sample always showed lower H2S concentrations most 

likely due to the contamination with oxygenated seawater during ascent of the gravity 

corer device.  
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Chloride (Cl) was significantly enriched with concentrations up to  

26 625 mg L-1, representing an emanating brine phase developed during phase 

separation when fluids encounter the two-phase boundary (Bischoff and 

Rosenbauer, 1984). The hypothetical hydrothermal endmember concentration of Cl 

was calculated to be around 31 945 mg L-1, revealing almost twice the salinity of 

seawater averaging 21 095 mg L-1. A brine or vapor phase portioning of As, which is 

still a matter of debate and only poorly understood (Pokrovski et al., 2005), could not 

be assumed as only the high-Cl brine phase was sampled. Furthermore, the 

concentration of iron was measured to be mostly below the limit of detection 

(Tab. S2) as the high concentrations of H2S favor the precipitation of iron-sulfides 

such as pyrite (FeS2) without remaining dissolved iron in the hydrothermal fluids. The 

concentrations of magnesium (Mg), which ranged between 591 and 1 390 mg L-1 

(Tab. S2) decreased with depth, because the pure arising hydrothermal fluids should 

be free of Mg due to the precipitation of Mg-OH silicates when seawater 

temperatures is heated to temperatures higher than 150 °C. Increasing Mg 

concentrations towards the sediment-seawater interface showed the influence of the 

penetrating Mg-rich seawater. 

Literature data for AsT and As speciation of marine pore fluids especially in 

hydrothermal influenced areas are very sparse. Several studies conducted at non-

hydrothermal environments showed the presence of the inorganic arsenite and 

arsenate species in highly variable proportions. The ratio between them does not 

reflect the redox conditions solely, but is furthermore controlled by a combination of 

pH, the adsorption and release from different solid phases and organic matter, as 

well as microbial reactions (Andreae, 1979; Peterson and Carpenter, 1986). 

However, conditions at the Palinuro hydrothermal system are dramatically different 

as the concentrations of AsT delivered with the hydrothermal fluids is several times 

higher, in addition to a high amount of available H2S and mixing of warm, reducing 

and slightly acidic hydrothermal fluids with penetrating cold oxygenated and slightly 

basic seawater. Sediments are made of intercalated layers of different sulfide 

minerals and also elemental sulfur could be observed. These favor different 

adsorption and desorption reactions with As, forming various As-bearing minerals like 

arsenopyrite (FeAsS) or orpiment (As2S3). An elevated concentration of AsT is to 

some extent connected to the appearance of these sulfide crusts as observed in the 
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upper parts of core 270 GC and 277 GC. Core 285 GC and 287 GC by contrast 

showed constantly high concentrations, not linked to the appearance of sulfide crusts 

(Fig. 2). 

Thioarsenic species dominate the pore waters with a maximum portion of 

94 % measured in core 270 GC, which were already observed in various geothermal 

waters (e.g. Planer-Friedrich et al., 2007), followed by the inorganic arsenite and 

arsenate species (Fig. 3). The general increasing portion of thioarsenic species with 

depth also represents the increasing hydrothermal influence going along with 

increasing temperature and H2S concentrations. A slight correlation with the 

appearance of the sulfide crusts, as well as between the concentration of H2S and 

portion of thioarsenic species could be observed. Overall, these data showed, that 

thioarsenic formation most likely depends on a high concentration of As combined 

with a high concentration of available H2S. 

Those thioarsenates are fast degraded when they get in contact with the 

downward penetrating cold and oxygenized seawater, which could be observed in 

decreasing concentrations of trithioarsenate and increasing portions of arsenate 

towards the sediment-seawater interface (Fig. 4). This process includes the stepwise 

transformation of trithioarsenates into dithioarsenate, monothioarsenate and finally 

arsenite, which could then be oxidized to arsenate. Preservation is a crucial step for 

those kind of samples with this very special matrix, containing high concentrations of 

As and H2S and under the influence of oxygen. The preservation for the inorganic 

arsenite and arsenate has been studied intensively and has been published in 

several publications (Smieja and Wilkin, 2003; McCleskey et al., 2004; Gault et al., 

2005), but only a few studies exist focusing on preservation and measurement of 

thioarsenate species (Suess et al., 2009; Suess et al., 2011). However, thioarsenic 

species are even more unstable than the inorganic arsenite and arsenate species, 

where changes are mostly pretty slow, but depending on the pH, presence of 

oxidants, microbial activity and the concentration of As in the solution. Under 

oxidizing conditions, thioarsenates decompose with time due to a stepwise ligand 

exchange of SH- by OH-groups via arsenite to arsenate. In addition to this, also 

different iron and As-bearing sulfides such as pyrite (FeS2) and orpiment (As2S3) can 

form, decreasing the concentration of AsT in the sampled solution and changing the 

original speciation. Because of inappropriate preservation of sulfidic waters and 
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technical challenges, thioarsenic species were most likely overlooked in previous 

studies. The most common and successful approach is a combination of filtration to 

remove microorganisms, adding of reagents like HCl, H2SO4, EtOH, or EDTA to 

higher solubility and preventing precipitation of As with Fe or Mn, storing in the dark 

to avoid photooxidation and keeping the samples cool or frozen. However, 

decreasing the pH of sulfidic solutions can cause precipitation of poorly crystalline 

As2S3, going along with a major loss of AsT. Furthermore, changing the pH directly 

influences and changes the species distribution. Flash-freezing for sample 

preservation was published for the first time in the mid 1980s (Crecelius et al., 1986) 

and – also some disadvantages are known due to the formation of iron hydroxides – 

is the best method for preservation of sulfidic water samples with a low concentration 

of iron to date. Precipitates observed in the sampled hydrothermal pore fluids, which 

were most likely yellowish orpiment particles, and bad recoveries when comparing 

the sum of the species to AsT showed, that new methods for the preservation of 

those kind of samples have to be developed, tested and adapted.  

 

6. Conclusions 
We presented results for pore fluids from hydrothermal altered cores 

measured for AsT and As speciation, which showed for the first time the presence of 

thioarsenic species in deep-water hydrothermal systems from depths greater than 

200 m. Samples taken at the Palinuro volcanic complex in the Tyrrhenian Sea at 

630 m water depth were strongly enriched in AsT concentrations with up to           

18.3 mg L-1 and revealed high concentrations of dissolved sulfide of up to 3.5 mM. 

Both increased with depth, reflecting the elevated hydrothermal influence, but were 

also partly linked to intercalated layers of sulfide crusts. In addition to the two 

inorganic arsenite and arsenate species, also mono-, di- and trithioarsenate were 

found in considerable proportions with up to 94 %, showing that thioarsenic species 

are a key species considering As redox chemistry in suldific aquatic hydrothermal 

systems.  

Bad recoveries between 23 and 284 % observed when comparing AsT with the 

sum of the species showed that preservation is a crucial step for As geochemistry 

and speciation analysis as different precipitates were observed. New methods have 



ARSENIC IN PORE FLUIDS FROM THE PALINURO HYDROTHERMAL SYSTEM 129 
 

to be developed for the preservation of thioarsenic species between sampling and 

measurements in the laboratories.   
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SUPPLEMENTARY MATERIAL 
 

Tab. S1: Concentration of AsT and As species measured in the pore fluids from the different cores. 
 

Core Depth 
[cm] 

AsT 
[µg L-1] 

AsIII 
[µg L-1] 

AsV 
[µg L-1] 

Mono- 
[µg L-1] 

Di- 
[µg L-1] 

Tri- 
[µg L-1] 

Recovery 
[%] 

H2S 
[µM] 

270 GC 35 10321 4284 180 85 529 4633 94 573 
 45 11915 6642 626 206 477 18700 224 1230 
 55 5142 1982 130 40 530 8804 223 2820 
 65 9586 2481 161 132 772 11180 154 1140 
 75 9876 2081 150 97 693 7332 105 3400 
 85 7013 2105 148 80 488 4379 103 2310 
 95 18315 1173 182 260 2180 18880 124 2240 
 115 11135 2012 241 158 1042 13540 153 1670 
 135 7464 1915 121 124 911 3578 89 2690 
 155 5251 1653 139 132 1134 3749 130 2760 
 215 4098 492 127 98 942 5447 173 3110 
 235 6084 2123 249 267 1112 6968 176 2540 
 255 7689 1905 161 226 1427 5905 125 3179 
 275 5580 2103 300 246 1181 4983 158 3120 
          

277 GC 10 2378 901 437 1970 248 239 160 0.3 
 30 1066 788 555 65 142 90 154 b.d.l. 
 50 6863 4948 443 421 117 106 88 1.5 
 70 1318 874 109 142 237 533 144 16,3 
 90 808 415 22 133 183 182 116 125 
 110 4475 901 62 120 523 964 57 303 
 130 3389 1926 169 254 734 1694 141 1013 
 150 5995 1912 72 143 1004 2869 100 573 
 190 5386 1954 190 488 1336 4497 157 577 
 210 3389 53 19 27 211 482 23 3064 
 230 4553 893 125 209 1229 5615 177 3487 
 270 6668 1024 159 369 2137 3955 115 3415 
 290 8596 2135 116 299 2178 5274 116 1970 
          

285 GC 110 10582 9437 1177 84 14 1 101 b.d.l. 
 130 3477 3050 505 49 33 2 105 5.1 
 150 2745 533 126 69 744 517 72 864 
 170 5866 2422 219 180 1481 2196 111 1861 
 190 6644 2711 284 346 2240 3682 139 1941 
 230 8421 2871 140 215 1000 1586 69 1562 
 250 4103 1938 388 1748 1245 6337 284 1251 
 270 13689 4085 136 159 919 1949 53 868 
          

287 GC 10 8081 7193 71 235 249 146 98 3 
 30 6397 706 17 125 708 712 35 303 
 50 9756 2859 71 436 1763 3586 89 577 
 90 7333 3860 387 370 1312 2534 115 170 
 110 13229 2807 166 357 2564 8828 111 444 
 130 3725 1755 1494 423 1823 9370 399 654 
 150 9426 2839 77 328 2678 8790 156 501 
 170 7498 4386 75 369 1599 4364 144 137 
 190 9619 3208 72 545 2302 5954 126 718 
 210 10704 1806 78 486 3764 8411 136 1380 
 230 15342 2751 68 567 4498 10710 121 1360 
 250 11736 1737 46 309 2637 7457 104 1267 
 270 10261 2929 53 320 2372 4608 100 1077 

 
Note: b.d.l.: below detection limit 
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Tab. S2: Concentration of Fe, Mn and Mg measured in the pore fluids from the different cores. 

 
Core Depth 

[cm] 
Fe 

[mg L-1] 
Mn 

[mg L-1] 
Mg 

[mg L-1] 
270 GC 35 b.d.l. 17.0 692.3 

 45 b.d.l. 16.0 624.1 
 55 b.d.l. 21.9 627.8 
 65 b.d.l. 16.6 612.9 
 75 b.d.l. 16.6 612.0 
 85 b.d.l. 20.6 602.6 
 95 b.d.l. 18.3 615.7 
 115 b.d.l. 15.5 617.6 
 135 b.d.l. 20.5 607.3 
 155 b.d.l. 19.8 620.4 
 215 b.d.l. 18.8 597.0 
 235 b.d.l. 20.0 615.7 
 255 b.d.l. 18.8 626.9 
 275 b.d.l. 18.8 621.3 
     

277 GC 10 1.81 b.d.l. 1390.2 
 30 2.62 b.d.l. 1362.2 
 50 0.54 b.d.l. 1306.1 
 70 b.d.l. b.d.l. 1387.4 
 90 b.d.l. 0.7 1379.0 
 110 b.d.l. 10.5 967.9 
 150 b.d.l. 18.9 647.5 
 190 b.d.l. 20.3 591.4 
 210 b.d.l. 20.4 594.2 
 230 b.d.l. 20.2 597.0 
 270 b.d.l. 18.4 590.5 
 290 b.d.l. 15.1 594.2 
     

285 GC 110 2.44 b.d.l. 1383.7 
 130 1.02 b.d.l. 1364.1 
 150 b.d.l. 3.4 1265.0 
 170 b.d.l. 12.1 834.3 
 190 b.d.l. 16.9 669.9 
 250 b.d.l. 17.2 597.9 
 270 b.d.l. 18.0 597.9 
     

287 GC 30 b.d.l. 2.0 1351.0 
 50 b.d.l. 14.1 873.6 
 110 b.d.l. 15.9 808.2 
 130 b.d.l. 15.6 797.9 
 150 b.d.l. 16.4 797.9 
 170 b.d.l. 15.4 784.8 
 190 b.d.l. 14.7 783.9 
 210 b.d.l. 15.6 783.9 
 230 b.d.l. 15.0 779.2 
 250 b.d.l. 14.5 772.7 
 270 b.d.l. 14.9 768.9 

 
Note: b.d.l.: below detection limit 
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7 | Summary and conclusions 
 

The different studies conducted and published during my dissertation revealed 

the importance of hydrothermal fluids emanating at the seafloor, which are able to act 

as a net source for arsenic (As) into the oceans and thus play an important role for 

As cycling therein. Hydrothermal fluids could act as the missing source of As in the 

oceans considering the low concentrations of As measured in rivers with respect to 

higher seawater values. The studies were performed at three different hydrothermal 

vent sites representing three highly distinct tectonic regimes characterized by 

different underlying host rocks, different physicochemical conditions and variable 

input of magmatic volatiles. Those magmatic volatiles are able to transport a huge 

amount of various metals and also As into the oceans (Heinrich et al., 1999). The 

concentration of As transported within the hydrothermal fluids strongly affects the 

surrounding ecosystem, as it is evidently accumulated and detoxified via different 

transformation processes by the hydrothermal vent biota mainly living in the low 

temperature discharging zones. 

The concentrations and species distribution observed in the respective 

hydrothermal fluids depends on a variety of physicochemical parameters such as the 

depth of the system and the temperature, both influencing phase separation 

processes and portioning into brine and vapor phase. The pH can be directly related 

to the mobility and leaching capacity of As and further important parameters are the 

amount of H2S, CO2, metals, as well as different redox, adsorption and desorption 

reactions. All these parameters are furthermore influenced by the underlying host 

rock mineralogy, the maturity and the permeability of the system. Because only a 

very limited amount of data is available in the literature concerning total arsenic (AsT) 

and As speciation in hydrothermal fluids and the associated vent biota, the content of 

this thesis is an important contribution for the scientific community.  
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Hydrothermal fluids from systems located at mid-oceanic ridges, as shown by 

the first study conducted at the Menez Gwen hydrothermal system (37°50’N, Mid-

Atlantic Ridge) show in general very low concentrations of As with only several tens 

of µg L-1. This is most likely due to the precipitation of different As-bearing sulfide 

minerals such as arsenopyrite (FeAsS) or orpiment (As2S3) in the sub-seafloor, as 

well as when the hot and reducing fluids get in contact with the surrounding cold and 

oxygenated seawater, accompanied by a rapid change in the physicochemical 

conditions. Clear, hot (Tmax: 285 °C) and slightly acidic fluids (pH: 4.0 to 5.1) collected 

during the M82/3 expedition of the German R/V Meteor in September 2010 displayed 

AsT concentrations between 6 and 90 µg L-1. This is up to 50-times the average 

seawater concentration of 1.7 µg L-1 (Neff, 2002). No trend with other elements like 

Mg, Fe, or Mn could be observed, indicating a non-conservative behavior of As within 

these samples. Speciation analysis on cryofrozen preserved samples showed the 

presence of the inorganic arsenite (AsIII) and arsenate (AsV) species in variable 

portions, but neither methylated species nor thioarsenic species were found, 

although we deal with an environment rich in dissolved H2S (Charlou et al., 2000). 

Mussels of the species Bathymodiolus azoricus, living in this very special 

environment near and in the discharging warm hydrothermal fluids, were collected 

and analyzed for the bioaccumulation, biotransformation and detoxification of As. 

These mussels are able to accumulate and transform the As emanating with the 

hydrothermal fluids in the various parts of their body. The highest concentration of As 

was detected in the digestive gland (19 mg kg-1), which acts as a pathway and 

storage organ, followed by the gill (14.9 mg kg-1) and the muscle tissue (6.4 mg kg-1). 

The gill harbors chemosynthetic sulfur- and methane-oxidizing symbiotic bacteria for 

gaining energy (Duperron et al., 2006), which are most likely responsible for the As 

accumulation and transformation into the various organoarsenicals. The low 

concentration of As in the muscle tissues might be due to its lower involvement in 

exchange processes with the surrounding fluids. In contrast to higher organisms like 

mussels from the photic zone, which normally exclusively accumulate arsenobetaine 

(AsBet; e.g. Phillips, 1990; Francesconi and Edmonds, 1996), a high amount of 

arsenosugars (As-sug) and only low concentrations of AsBet could be observed in 

Bathymodiolus azoricus. The different As-sugars are generally considered as an end- 

product in marine algae, but are thought to be precursors for AsBet in higher marine 
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consuming organisms (Francesconi and Edmonds, 1993; Edmonds and Francesconi, 

2003). A reason for this unusual As species distribution might be the very special 

nutrient source and the activity of the different symbiotic bacteria located in the gill, 

which are responsible for the uptake of elements discharging from the fluids. Another 

reason could be the exposure to elevated amounts of partly reduced As in the acidic 

and hot hydrothermal fluids and subsequent overstressing of detoxification 

processes.  

The second study was conducted in the eastern Manus Basin, a typical back-

arc basin environment, where samples were taken during a research cruise in June 

and July 2011 at the hydrothermal areas of PACMANUS and SuSu Knolls. These 

hydrothermal fields at 1800 and 1200 m water depth are characterized by highly 

distinct fluid discharge as focused hot black, white and clear fluids through discrete 

chimneys, next to low temperature clear fluids emanating through cracks and 

fissures. The discharging hydrothermal fluids revealed maximum AsT concentrations 

of up to 380 µg L-1. Samples of black smoker fluids were generally low in AsT and the 

highest concentrations of AsT among the analyzed samples were measured in a 

white smoker fluid with an extremely low pH of 1.2, high concentrations of CO2 and 

temperatures of approximately 100 °C. Three distinct fluid trends could be identified 

from the analyzed samples: a low Cl vapor phase and a high Cl brine phase trend, 

both significantly enriched in AsT with respect to seawater, as well as a magmatic 

trend highly enriched in AsT showing Cl concentrations around seawater values. 

Again, only the inorganic AsIII and AsV species were found in changing portions 

during speciation analysis. 

 Snails of the species Alviniconcha hessleri and Ifremeria nautilei as well as 

mussels of the species Bathymodiolus manusensis, which are the dominant species 

in the local hydrothermal ecosystem, revealed maximum AsT concentrations of 

5 580 mg kg-1 found in the gill of Alviniconcha hessleri. This high concentration was 

due to the accumulation of inorganic As-bearing sulfide particles in the gill during 

filtering of the hydrothermal fluids. This was proven by scanning electron microscope 

analysis, but also supported by the low extraction efficiencies and elemental sulfur 

found in the gill (Beinart et al., 2012), as well as the overall presence of inorganic AsIII 

and AsV. Another mechanism is represented by the uptake of As via the essential 

phosphate transporter system and the chemosynthetic symbionts located in the gill 
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epithelial tissues. Additionally to inorganic species, low but constant amounts of 

AsBet were found, but As-sug was hardly detectable. Input of photosynthetic 

organisms in these deep-water systems such as the common As-sug source algae, 

which are thought to act as precursors for AsBet, could be nearly neglected. This 

implies, that there might be other pathways for the formation of organic AsBet and 

As-sug independent of the contribution of algae, probably caused by the activity of 

the symbiotic bacteria.  

The final study was carried out on hydrothermal influenced sediments from the 

Palinuro volcanic complex in the Tyrrhenian Sea, representing a typical island arc 

environment. This study focused on thioarsenic species, which were already 

observed in shallow-water systems (e.g. Planer-Friedrich et al., 2007), but never in 

systems at water depths deeper than 200 m. The recovered sediment cores 

consisted of altered mineralized volcanoclastic sediments with intercalated layers of 

sulfide precipitates as well as elemental sulfur. Pore fluids sampled from these cores 

were slightly acidic with a pH between 6.3 and 6.7 and showed a high concentration 

of dissolved sulfide with up to 3.5 mM. Concentrations of AsT were in the range 

between 0.8 and 18.3 mg L-1, generally increasing with depth. Furthermore, 

increasing H2S concentrations and decreasing Mg concentrations also revealed the 

increasing hydrothermal influence with depth. The high concentrations of AsT could 

be due to the very different physicochemical conditions compared to mid-oceanic 

ridge or back-arc basin systems, but also due to an additional component of 

magmatic volatiles arising with the hydrothermal fluids. During As speciation 

analysis, considerable amounts of mono-, di-, and trithioarsenates were detected in 

addition to the inorganic AsIII and AsV. The sum of the thioarsenic species increased 

with depth and concentration of dissolved H2S (up to 94 %). Bad recoveries were 

observed when comparing AsT with the sum of the various As species, which showed 

once more the importance of correct sample preservation for a complex sample 

matrix with high amounts of As and H2S. 

 In conclusion, this thesis elaborated, that hydrothermal fluids represent a 

substantial source of As into the oceans, with the concentrations depending a lot on 

the tectonic regime as demonstrated by the three studies conducted at highly distinct 

settings. As one of the few trace elements, As concentrations in river water are lower 

than in seawater, which could be caused by relatively higher contributions of As from 
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hydrothermal systems. Because the global hydrothermal flux is difficult to estimate 

and the concentrations of AsT are highly variable, quantitative estimations for the 

global As discharge from hydrothermal fluids are hard to assess and need more 

investigations.  
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8 | Outlook 
 

This thesis reports new insights on total arsenic (AsT) concentrations and As 

speciation in hydrothermal vent fluids and associated vent biota from different 

tectonic regimes. The results indicate that hydrothermally driven systems play an 

important role in the transport and cycling of As from the oceanic crust into the 

oceans. However, several aspects concerning the cycling of As at hydrothermal 

systems remain unclear and request further investigations. There are still various 

technical and analytical challenges to overcome and the research on hydrothermal 

vent systems in the deep sea is still in its infancy. To date, only a few studies exist 

on the hydrothermal vent biota living in symbiosis with bacteria that thrive from the 

supply of reduced methane and sulfide delivered by hydrothermal fluids. Since the 

first discovery 35 years ago, 300 new sites of active hydrothermal venting and 500 

new species of hydrothermal vent biota have been reported 

(http://www.interridge.org) and it is expected that much more hydrothermal 

systems will be discovered in the near future.  

Technical challenges have to be tackled to explore hydrothermal systems at 

greater depths and to perform long-term observations with repeated sampling 

campaigns. This would enable a more accurate estimate of fluxes discharging at 

hydrothermal systems. In the case of As for example, this could help to unravel if 

the hydrothermally supplied As acts as the missing source for As transported into 

the oceans, as the supply by rivers is to low to explain the As concentrations in the 

oceans. Especially hydrothermal systems along island-arcs as shown by the 

shallow-water hydrothermal system in Tutum Bay, Milos and Palinuro are large 

sources for As and should gain more attention in the future. The hydrothermal 

system at Tutum Bay alone discharges a minimum amount of As of 5.5x102 kg a-1 

in an area of 6 000 m2 (Price and Pichler, 2005), which is worth to mention when 

considering a value of 23x106 kg a-1 As delivered by rivers (Gaillardet et al., 2003). 
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For these flux-calculations, it is essential to sample more hydrothermal systems, as 

well as to get a deeper understanding for As-leaching from underlying host rocks 

and the parameters influencing this process. This data could be supported and 

better interpreted by performing leaching experiments at different pressure and 

temperature conditions on smaller scales using high-pressure flow-through cells.  

Another important point, which has to be addressed in the next years and 

upcoming studies is the correct and suitable sample preservation, which is a 

crucial step for accurate measurements of the AsT concentration and the different 

As species. The precipitation of As-bearing minerals due to changes in 

temperature and pressure can significantly lower the concentration of AsT in the 

sample solutions. Furthermore, the influence of oxygen or shifts in pH e.g. due to 

acidification can cause changes and modify the original speciation. Various 

methods were tested for different kinds of aqueous samples (McCleskey et al., 

2004; Kumar and Riyazuddin, 2010; Suess et al., 2011), nonetheless, a matrix of 

high As, Fe and H2S is still challenging.  

In summary, this thesis can be seen as a suitable instruction for the 

investigation of As in hydrothermal fluids and the hydrothermal vent biota, but it is 

still a long way to go to fully understand this highly interesting research field at 

such unique hydrothermal environments.  
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