Synthesis, crystal structures and characterization of novel alkali-metal containing rare-earth orthoborates ### Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften -Dr. rer. nat.- Vorgelegt dem Promotionsausschuss des Fachbereichs 02 (Biologie/Chemie) der Universität Bremen von Pengyun Chen Chemische Kristallographie fester Stoffe Bremen, im DEZ 2020 Erstgutachter: Prof. Dr. Hubert Huppertz, Universität Innsbruck Zweitgutachter: Prof. Dr. Thomas Schleid, Universität Stuttgart Tag der mündlichen Prüfung: 03.03.2021 Mitglieder des Prüfungsausschusses: 1. Prof. Dr. Jens Beckmann, Fachbereich 02 Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Metallorganische Chemie der Hauptgruppenelemente, Universität Bremen 2. Prof. Dr. Hubert Huppertz, Fakultät für Chemie und Pharmazie, Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck 3. Prof. Dr. Thorsten M. Gesing, Fachbereich 02 Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Chemische Kristallographie fester Stoffe, Universität Bremen 4. Dr. Michael Fischer, Fachbereich 05 Geowissenschaften, Kristallographie, Universität Bremen 5. Priv.-Doz. Dr. M. Mangir Murshed, Fachbereich 02 Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Chemische Kristallographie fester Stoffe, Universität Bremen 6. Carla Uribe, Fachbereich 02 Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Student im Masterstudiengang Chemie, Universität Bremen 2 ### **Acknowledgments** First of all, I would like to express my gratitude to my Doktorvater, Prof. Dr. Thorsten M. Gesing for allowing me to work in his group, for his continuous support and scholastic advice as well as for his profound insight into solid-state crystallographic chemistry. I deeply enjoy and benefit from his saying, "Do Rietveld refinement and show me, please". Many thanks go to my advisor, PD. Dr. M. Mangir Murshed for his guidance and the inspiring discussions as well as for his incredible patience to correct my manuscripts. I am also grateful to Dr. Lars Robben and Mrs. Gabriele Ebert for their kind help during my stay. I am honored that Prof. Dr. Hubert Huppertz at the University of Innsbruck and Prof. Dr. Thomas Schleid at the University of Stuttgart are willing to serve as the reviewer of my dissertation. I appreciate their time and suggestions for improving my dissertation. I am indebted to my lovely colleagues, past and present in the AG Gesing group for being good friends to me. Thanks Mathias Gogolin, Julia Butzlaff, Niels Lefeld, Dr. Andera Kirsch, Dr. Hilke Petersen, Dr. Xi Liu, Marius Wolpmann, Kowsik Ghosh, Sarah Wittmann, Dr. Sindu Shree, Christopher Reuter and Selina Schuh. As a german proverb says: "Berg und Tal kommen nicht zusammen, wohl aber die Menschen". I am thankful to Dr. Michael Wendschuh, Dr. Iris Spiess and Dr. Johannes Birkenstock in the AG Fischer group at the University of Bremen for the management and training of the X-ray diffractometers. Particular thanks go to Emeritus Prof. Armel Le Bail for his quick reply when I had questions concerning the powder diffraction and crystallography. I am grateful to the JANA workshops organized by the Laboratory of Crystallography, the Czech Academy of Sciences. I also thank the MATRAC summer schools for the theoretical and practical courses at the DESY in Hamburg and at the FRM II in Garching. I cordially acknowledge the University of Bremen for the administrative support and the China Scholarship Committee (CSC) for the financial support for my doctoral research. ## **Declaration** | I hereby declare that this submission is my own work and that, to the best of my knowledge | |---| | and belief, it contains no material previously published or written by another person nor | | material which to a substantial extent has been accepted for the award of any other degree or | | diploma of the university or other institute of higher learning, except where due | | acknowledgment has been made in the text. | | Signature: | Date: | |------------|-------| | | | **Declaration** Versicherung an Eides Statt Hiermit versichere ich, Pengyun Chen, an Eides statt durch meine Unterschrift, dass ich die vorstehende Arbeit mit dem Titel "Synthesis, crystal structures and characterization of novel alkali-metal containing rare-earth orthoborates" selbständig und ohne fremde Hilfe angefertigt und alle Stellen, die ich wörtlich dem Sinne nach aus Veröffentlichungen entnommen habe, als solche kenntlich gemacht habe, mich auch keiner anderen als der angegebenen Literatur oder sonstiger Hilfsmittel bedient habe. Ich versichere an Eides statt, dass ich die vorgenannten Angaben nach bestem Wissen und Gewissen gemacht habe und dass die Angaben der Wahrheit entsprechen und ich nichts verschwiegen habe. Die Strafbarkeit einer falschen eidesstattlichen Versicherung ist mir bekannt, namentlich die Strafandrohung gemäß § 156 StGB bis zu drei Jahren Freiheitsstrafe oder Geldstrafe bei vorsätzlicher Begehung der Tat bzw. gemäß § 161 Abs. 1 StGB bis zu einem Jahr Freiheitsstrafe oder Geldstrafe bei fahrlässiger Begehung. (Pengyun Chen) Bremen, 2020 5 ### Contents | Acknowledgement | 2 | |--|-----| | Abstract: Thesis structure | 7 | | List of Publications | 8 | | Chapter 1: Introduction | 9 | | Chapter 2: Experimental Methods | 52 | | Declaration on own contributions to the publications | 59 | | Chapter 3: $KLi_2RE(BO_3)_2$ (RE = Dy, Ho, Er, Tm, Yb and Y) | 61 | | Chapter 4: K ₃ RE ₃ (BO ₃) ₄ (RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) | 108 | | Chapter 5: K ₂ Pr ₂ O(BO ₃) ₂ | 148 | | Summary and Outlook | 174 | | Zusammenfassung und Ausblick | 176 | | Appendix | 178 | | Curriculum vitae | 182 | ### **Abstract** Inorganic metal borates are of research interest due to their structural diversity, interesting physico-chemical properties and wide applications in optics. To date, several rare-earth borates are developed as laser crystals, nonlinear optical crystals, self-frequency-doubling crystals, fluorescent phosphors and scintillation materials. In addition to these optical applications, rareearth borates attract intensive attention on fascinating magnetic behaviors arising from their unpaired inner shell 4f electrons. Therefore, the design and search of new rare-earth borates and the investigation of their unique properties are of practical and scientific significance. This cumulative dissertation involves the use of solid-state synthesis and flux crystal growth methods for exploring the descriptive chemistry of various alkali metal-containing rare-earth borate systems where several new structures were isolated. In **chapter 1**, a series of typical and appealing alkali metal-containing rare-earth borates are reviewed in terms of their crystal structures, structural variation as well as their applications. Chapter 2 refers to the experimental methods and consists of two parts: synthesis methods of powder and singlecrystal samples and multi-tool methods for a variety of characterization. Chapter 3 introduces a series of rare-earth orthoborates KLi₂RE(BO₃)₂ (RE = Dy, Ho, Er, Tm, Yb and Y) with a new structure-type along with their detailed investigations of the optical, magnetic, vibrational, and thermal properties as well as DFT calculation. In chapter 4, the synthesis and crystal structures of novel alkali rare-earth orthoborates K₃RE₃(BO₃)₄ (RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) along with the structural relationship between the reported A₃RE₃(BO₃)₄ (A = Na, K, Rb) systems are discussed. The following chapter 5 describes a novel layered potassium praseodymium oxo-orthoborate K₂Pr₂O(BO₃)₂ with crystal structure, optical, magnetic, vibrational, and thermal properties. The last chapter 6 is the overall summary and the outlook of this cumulative thesis. This thesis is submitted as cumulative research work, based on three published manuscripts, presented in chapters 3-5, and the respective references are given as follows: $KLi_2RE(BO_3)_2$ (RE = Dy, Ho, Er, Tm, Yb and Y): structural, spectroscopic and thermogravimetric studies on a series of mixed alkali rare-earth orthoborates. Pengyun Chen, M. Mangir Murshed*, Michael Fischer, Thomas Frederichs, Thorsten M. Gesing Published in Inorganic Chemistry, 59, 2020, 18214–18224 DOI: 10.1021/acs.inorgchem.0c02684 Synthesis and crystal structures of novel alkali rare-earth orthoborates $K_3RE_3(BO_3)_4$ (RE = Pr, Nd, Sm - Lu) Pengyun Chen, M. Mangir Murshed* and Thorsten M. Gesing Published in Journal of Materials Science, 56, 2021, 3639–3652 DOI: 10.1007/s10853-020-05506-5 Synthesis and characterization of $K_2Pr_2O(BO_3)_2$: structural, spectroscopic and thermogravimetric investigations of a novel potassium praseodymium oxoborate structure-type Pengyun Chen, M. Mangir Murshed* and Thorsten M. Gesing Published in: Springer Nature Applied Sciences, 2, 2020, 747 DOI: 10.1007/s42452-020-2553-2 Key words: Alkali-metal, Rare-earth borates, vibrational property, optical property, thermal stability, magnetic property ### Chapter 1. The search of new materials with unique properties is always the key to the design of innovative devices and components in advanced technology. The rapid progress of solid-state laser and the nonlinear optics can be attributed to the discovery and the development of borate compounds, such as β -BaB₂O₄ (β -BBO) [1], LiB₃O₅ (LBO) [2] and CsLiB₆O₁₀ (CLBO) [3-5]. The state-of-the-art nonlinear optical crystals used in the range of ultraviolet and deep ultraviolet are mostly inorganic borates [6]. The recent decades have witnessed substantial attention on inorganic borates and their application perspectives including second-harmonic generation
(SHG) [5], laser emission [7], photocatalysis [8, 9], phosphors for white lightemitting diodes (wLED) [10], scintillation [11, 12], axial negative thermal expansion [13, 14] and electrolytic capacitors in the nuclear industry [15, 16]. Besides, borates are well-known for their rich structural chemistry as a boron atom can connect either three or four oxygen atoms, forming isolated BO₃³⁻ triangle or BO₄⁵⁻ tetrahedra. Such BO₃³⁻ or/and BO₄⁵⁻ ortho-anions can further be interlinked by corner- or/and edge-sharing to be condensed into complex rings, onedimensional chains, two-dimensional slabs, and three-dimensional frameworks [17]. To date, nearly 4000 entries for inorganic borates have been indexed in the Inorganic Crystal Structure Database (ICSD) [18]. Structural diversity and practical application of inorganic borates have been significantly expanded in way of incorporating functional ions. The introduction of Be²⁺ into the matrix of borates is beneficial for the largest energy gap, i.e., the shortest absorption wavelength [19, 20]. A typical example is the KBe₂BO₃F₂ (KBBF) crystal that can be used to generate a deep ultraviolet solid-state laser with a wavelength of 177.3 nm [21]. Besides, a variety of 3d-transition metal-containing borates, such as LiMnBO₃ [22], PbMnBO₄ [23], SrCu₂(BO₃)₂ [24], and FeBO₃ [25] are of broad research interest because of their appealing electrochemical and magnetic properties. A common type of incorporated ions in inorganic borates is the rare-earth cation. Since ionic radii of rare-earth elements are close to each other, these rare-earth borates are favorable to host optically active cations such as Ce³⁺, Nd³⁺, Eu³⁺, and Yb³⁺ [7]. YBO₃ and GdBO₃ doped with Eu³⁺ and Tb³⁺ have been widely used as commercial red- and green-emitting phosphors in the plasma display panels because of their high absorption in the vacuum ultraviolet, efficient light conversion, and thermodynamic stability [26-28]. LuBO₃:Ce³⁺ with the calcite structure type is one of the most useful fast-decay scintillators: light yields of the polycrystalline demonstrate around three times than that of the commercial Bi₄Ge₃O₁₂ (BGO) scintillators [29]. To date, plenty of acentric rare-earth borates with large SHG coefficients such as RECa₄O(BO₃)₃ (RE=La, Gd, Y) [30], La₂CaB₁₀O₁₉ [31], REAl₃(BO₃)₄ (RE = La, Gd, Lu, Y) [32] and La_xY_ySc_{4-x-y}(BO₃)₄ [33] can serve as the lasing media. Their bulk single crystals doped with Nd³⁺ and Yb³⁺ are further technically exploited to be self-frequency doubling (SFD) materials. For instance, the continuous wave self-frequency-doubled green laser output power up to 1.1 W was achieved by using Yb³⁺:YAl₃(BO₃)₄ crystal [34]. One fascinating subgroup of rare-earth borates is the alkali metal-containing rare-earth borate, which has been investigated since the 1970s. ⁶Li- and ¹⁰B-enriched Li₆RE(BO₃) (RE = Gd, Lu, Y) were shown to be promising neutron scintillators [35-37] because of their good energy resolution and fast decay time for thermal neutron detection. A variety of compounds such as Na₃RE₂(BO₃)₃ (RE = La, Gd) [38, 39], Na₃La₉O₃(BO₃)₈ [40], and K₃REB₆O₁₂ (RE = Gd, Lu, and Y) [41] were reported to be promising NLO materials in the UV/Vis range. Furthermore, a series of near-ultraviolet-excitable emission-tunable phosphors for white light-emitting diodes were designed and developed by doping Ce³⁺, Eu³⁺, and Tb³⁺ at the rare-earth sites in the crystal structures [42-44]. Recently, a zeolite-like Na₃Y₃(BO₃)₄ [45] featuring an unusual structural motif of hexagonal open-tunnel was reported in the rare-earth borates for the first time. Additionally, the Ab-initio calculation reveals that the distorted coordination polyhedra of rare-earth atoms, such as Y atom in Na₃Y₃(BO₃)₄ and La atom in Na₃La₂(BO₃)₃, make a significant contribution to their optical susceptibilities. Very recently, alkali-metal containing rare-earth borates received increasing attraction for their diverse magnetic behaviors. A high terbium content orthoborate, LiCaTb₅(BO₃)₆ [46] was found to be an excellent Faraday rotator in the Vis-NIR range with a large Verdet constant of -234 rad/T·m at 633 nm, which is 55 % higher than that of the commercial Tb₃Ga₅O₁₂ garnet (TGG) crystal. Afterward, LiCaTb₅(BO₃)₆ [47] and K₃Li₃Gd₇(BO₃)₉ [48] were reported as promising magnetic refrigerator with a profound cooling enhancement over the benchmark medium Gd₃Ga₅O₁₃ garnet (GGG) especially above liquid hydrogen temperature. MBaRE(BO₃)₂ (M = Rb, K) [49, 50] with the buetschliite-type structure were attractive models for investigating magnetic frustration in rare-earth-bearing materials due to the triangular rare-earth lattices. For a better understanding, herein, the crystal structures of several typical and technically important alkali-metal containing rare-earth borates are discussed particularly in the viewpoint of rare-earth elements. **Figure 1.1.** (a) crystal structure of the Li₆Y(BO₃)₃ viewed from the **c**-axis; (b) $[Y(BO_3)_3]^{\infty}$ chains running along the **c**-axis in an edge-sharing scheme; (c) coordination sphere of Li atoms. The lithium-rich Li₆RE(BO₃)₃ family with RE = Nd, Sm-Lu, and Y, was initially demonstrated by Abdullaev et al. [51-54]. Li₆RE(BO₃)₃ (RE = Gd, Lu, and Y) crystals doped with other trivalent rare-earth ions, such as Ce³⁺, Nd³⁺, and Yb³⁺ have been widely studied for thermal neutron scintillation and solid-state laser emission [55, 56]. These compounds crystallize in the monoclinic space group $P2_1/c$, with the cell parameters of a = 715.7(5) pm, b = 1637.8(8) pm, c = 662.3(4) pm and $\beta = 105.32(5)^{\circ}$ and Z = 4 in the case of Li₆Y(BO₃)₃. The asymmetric cell of Li₆Y(BO₃)₃ contains one unique Y atom, three B, nine O, and six Li atoms. The Y atom is eight-coordinated by oxygen atoms to form a YO₈ polyhedron with C_1 point symmetry. Each YO₈ polyhedron is interlinked with three BO₃³⁻ groups by sharing common edges, and those YO₈ polyhedra are further interconnected together through edgesharing, resulting in one-dimensional zigzag [Y(BO₃)₃] chains along the **c**-axis (Figure 1.1(b)). These [Y(BO₃)₃] zigzag chains are separated from each other by six crystallographic-independent Li cations, forming a layered three-dimensional network along the **b**-direction shown in Figure 1.1(a). The separation of zigzag chains can detain the energy migration to one dimension, which may account for the high quenching concentrations of doping optically-active ions at the Y site. Of the six lithium cations, Li(1), Li(2), Li(3), and Li(4) are located between the layers, while Li(5) and Li(6) are situated inside the layers. As displayed in Figure 1.1(c), Li(1) and Li(2) cations are tetrahedrally coordinated, whereas Li(3), Li(4), Li(5), and Li(6) are coordinated by five oxygen atoms to form strongly distorted pyramids. The bond valence sum (BVS) calculation shows the value of 1.25(3), 0.97(2), 0.97(2), 0.92(2), 1.00(2), and 1.04(2) for Li(1), Li(2), Li(3), Li(4), Li(5) and Li(6), respectively, suggesting that all Li cations have normal charge value except Li(1) cation which is over-bonded. ### $LiRE_6O_5(BO_3)_3$ (RE = Pr, Nd, Sm-Tm and Y) **Figure 1.2**: (a) three-dimensional framework of LiGd₆O₅(BO₃)₃, (b) fluorite-like arrays along the [102] direction, (c) $[\text{LiO}(BO_3)_3]^{10}$ cluster A family of the rare-earth rich lithium-containing oxoborates followed with the formula of $LiRE_6O_5(BO_3)_3$ (RE = Pr, Nd, Sm-Tm and Y) was reported by Chaminade et al. for the first time [57, 58]. Ytterbium-doped $LiGd_6O_5(BO_3)_3$ single-crystals were grown from the high- temperature flux and were identified as a promising candidate for the ultra-pulsed and continuous-wave laser sources [59]. Moreover, Eu³⁺, Sm³⁺ co-doped LiY₆O₅(BO₃)₃ phosphors [60] were found to be attractive for white LED excited with the near-ultraviolet chips. The crystal structure of LiGd₆O₅(BO₃)₃ was solved by the single-crystal X-ray diffraction, revealing that it belongs to the monoclinic space group $P2_1/c$ with the lattice parameters of a =848.9(4) pm, b = 1570.6(3) pm, c = 1211.7(6) pm and $\beta = 132.27(2)^{\circ}$ and Z = 4. In the asymmetrical cell of LiGd₆O₅(BO₃)₃, there exist six Gd, three B, fourteen O, and one unique Li atoms which are all located on the 4e Wyckoff site. As shown in Figure 1.2a, the gadolinium atoms occupy two types of coordination polyhedra: Gd(1), Gd(2), Gd(4), and Gd(6) are in seven-coordination, and Gd(3) and Gd(5) are in eight-coordination. GdO₇ and GdO₈ polyhedra are joined together by sharing common edges and corners to constitute a dense threedimensional framework of LiGd₆O₅(BO₃)₃. Careful inspection of this structure reveals a close relationship to the fluorite-type CaF₂ structure, from both the structure and the composition point of views. If the Li atom is considered as Gd atom and the boron atoms are neglected in the structure, the composition would become exactly "GdO2" (Gd7O14). Furthermore, the crystal structure of LiGd₆O₅(BO₃)₃ can be interpreted as a distorted fluorite structure, where the vacant Gd cationic site is occupied by [LiO(BO₃)₃]¹⁰⁻ cluster which comprises one LiO₇ polyhedron and three isolated BO₃³- groups (Figure 1.2(c)). The fluorite-like arrays of GdO_{n=7.8} polyhedra and [LiO(BO₃)₃]¹⁰- clusters are displayed along the [102] lattice direction where GdO₈ (strongly distorted cubes), GdO₇ (truncated cubes with one corner missing) and [LiO(BO₃)₃]¹⁰⁻ clusters share common edges and apices (Figure 1.2(b)). Additionally, each GdO_{n=7,8} polyhedron is bound to four nearest neighbors, which structurally resembles C-type Gd₂O₃ even though Gd atoms in this cubic sesquioxide phase are all in six-coordination. **Figure 1.3**: (a) crystal structure of Li₃Gd(BO₃)₂; double layers of GdO₈ polyhedra; coordination polyhedra of Li cations (b) crystal structure of Na₃Gd(BO₃)₂; double layers of GdO₈ polyhedra; coordination polyhedra of Na cations $Li_3RE(BO_3)_3$ (RE = Gd, Er-Lu, Y) family as well
as the single-crystal structure determination of $Li_3Gd(BO_3)_2$ was demonstrated by Jubera et al. [61]. Recently, Huppertz et al. prepared the single crystal of $Li_3Y(BO_3)_2$ and solved the detailed structure [62]. $Na_3RE(BO_3)_2$ (RE = La, Nd) were published by Mascetti et al. [63]. Following La- and Nd-phases, the other members of $Na_3RE(BO_3)_2$ family (RE= Pr, Sm-Gd, Y) [64-66] were synthesized by several different groups. To date, crystal structures of $Na_3Nd(BO_3)_2$ and $Na_3Sm(BO_3)_2$ have been solved by X-ray single-crystal diffraction. Besides, the crystal structures of $Na_3Gd(BO_3)_3$ and $Na_3Y(BO_3)_3$ were identified by X-Ray powder diffraction using Rietveld refinement method. To sum up, the $Na_3RE(BO_3)_3$ family can adapt light rare-earth elements, while the $Li_3RE(BO_3)_3$ family can accommodate heavy rare-earth elements. Here, Li₃Gd(BO₃)₂ and Na₃Gd(BO₃)₂ are chosen to represent their respective family to describe their structures. Both Li₃Gd(BO₃)₃ and Na₃Gd(BO₃)₃ family crystallize into the monoclinic space group $P2_1/c$ with the lattice parameters of a = 872.4(2) pm, b = 642.5(2) pm, c = 1009.5(2) pm, and $\beta = 116.85(2)^{\circ}$, and a = 652.297(6) pm, b = 872.831(8) pm, c = 1214.76(1) pm and $\beta = 123.3525(5)^{\circ}$ for Li₃Gd(BO₃)₂ and Na₃Gd(BO₃)₂, respectively. The asymmetric unit cells of both phases are composed of 12 independent sites: one Gd, two B, six O, and three alkali-metal atoms. It is noteworthy that their crystal structures are not isotypic, although GdO₈ polyhedra and isolated BO₃ groups are present in both phases. Li₃Gd(BO₃)₂ features a double layer of GdO₈ polyhedra parallel to the *ac* plane (Figure 1.3a). Those double layers of GdO₈ polyhedra are bridged together by B(1)O₃ groups through the strong B-O covalent bond along the **a**-direction to constitute the three-dimensional network. By contrast, Na₃Gd(BO₃)₂ shows a single layer of GdO₈ polyhedra parallel to the *ac* plane (Figure 1.3b). The three-dimensional network of Na₃Gd(BO₃)₂ can be regarded as single layers of GdO₈ polyhedra joined together by B(1)O₃ groups through the B-O bond along the **a**-direction. In both single and double layers, it can be found that [Gd₂O₁₄] dimers are formed by edge-shared GdO₈ polyhedra and that two edges of the B(2)O₃ groups strengthen the connection of these [Gd₂O₁₄] dimers. It should be stated that the key difference between the double-layer and the single-layer lies in the orientation of the [Gd₂O₁₄] dimers. The two nearest neighboring dimers are arranged at angles of 88.40° and 81.57° in the double layer, whereas 89.75° and 147.47° are found for the same in the single layer, implying that [Gd₂O₁₄] dimers pack more tightly in the double layer than in the single layer. Besides, differences occur in the coordination polyhedra of alkali-metal cations. In Li₃Gd(BO₃)₃, Li⁺ cations are all coordinated by four oxygen atoms, forming regular tetrahedra. In Na₃Gd(BO₃)₂, Na(1), Na(2), and Na(3) cations are located in six, seven, and four coordination polyhedra, respectively. It seems that the size difference between Li⁺ and Na⁺ cations can markedly influence their crystal structure even though Li₃Gd(BO₃)₃ and Na₃Gd(BO₃)₃ have a similar formula. Furthermore, it would be interesting to synthesize LiNa₂Gd(BO₃)₂ and Li₂NaGd(BO₃)₂ to look that either the single layer or the double layer predominately emerges in these compounds. # K₃RE(BO₃)₂ (for RE = Pr, Nd, Sm-Gd in *Pnma*; RE = Y, Tb-Lu in *Pnnm*) **Figure 1.4** (a) [SmBO₇] zigzag chain and coordination environments of K^+ cations and crystal structure of K_3 Sm(BO₃)₂ (b) "isolated" YO₆ octahedra bridged by BO₃ groups, chain and coordination environments of K^+ cations and crystal structure of K_3 Sm(BO₃)₂ $K_3RE(BO_3)_2$ family was discovered by Gao et al. [67]. To begin with, $K_3RE(BO_3)_2$ (RE = Nd-Lu) family can be divided into two different structure types. The larger rare-earth cations with RE = Nd-Gd adopt the space group *Pnma*, whereas the smaller rare-earth cations with RE = Tb-Lu and Y belong to the space group *Pnnm*. Here, $K_3Sm(BO_3)_2$ and $K_3Y(BO_3)_2$ were selected as representative of each group to describe their crystal structures determined by single-crystal X-ray diffraction. The asymmetric unit cell of K₃Sm(BO₃)₂ consists of ten individual sites: one Sm, two K, two B, and five O atoms. Each Sm³⁺ cation is surrounded by seven O atoms, forming a REO₇ pentagonal bipyramid. These REO₇ bipyramids are linked together via corner-sharing along the **a**-direction shown in Figure 1.4(a). Two edges of the B(2)O₃ group further reinforce those REO₇ bipyramids in building the [SmBO₇] zigzag chains. All three vertexes of the B(1)O₃ group connect three [SmBO₇] zigzag chains, forming a scaffold-like three-dimensional framework. Two types of K cations are located in the interstitial sites: eightfold-coordinated K(1)⁺ and sixfold-coordinated K(2)⁺, respectively. Interestingly, K(1) cation is found to be over-bonded with a BVS of 1.37(1) v. u., and K(2) is markedly under-bonded with a BVS of 0.69(1) only. On the other hand, the asymmetric unit cell of K₃Y(BO₃)₂ is made up of six independent sites: one Sm, two K, one B, and two O atoms. In contrast to the sevenfold-coordinated Sm³⁺ in K₃Sm(BO₃)₂, Y³⁺ is connected to six O atoms, forming a YO₆ octahedron (Figure 1.4(b)). Unlike the corner-shared SmO₇ pentagonal bipyramid, these YO₆ octahedra are isolated from each other, but every vertex of YO₆ octahedron is connected to one BO₃ groups. The K(1) cation is surrounded by six oxygen atoms that are almost located in the same plane to create an unusual KO₆ hexagon, whereas K(2) cation and six oxygen build up a normal KO₆ octahedron. In contrast to the abnormal BVS values for the K cations in K₃Sm(BO₃)₂, the BVS values for K cations in K₃Y(BO₃)₂ are within the empirical range: 1.12(1) v. u. and 1.19(1) v. u. for K(1) and K(2), respectively. Comparing crystal structures of $A_3RE(BO_3)_2$ (A= Li, Na and K), one can reckon that both the alkali-metal and rare-earth cations have a substantial impact on crystal structures of alkali metal-containing rare-earth borates. **Figure 1.5** (a) coordination environments of Tb, Ca, and Li atom (b) crystal structure of $LiCaTb_5(BO_3)_6$ (c) chain-1 and chain-2 viewed along the **c**-direction (d) the triangular lattice layer in the ab plane. LiCaTb₅(BO₃)₆ in single crystal form was initially published as a promising Faraday rotator by Li and coauthors [46]. LiCaTb₅(BO₃)₆ crystallizes in the hexagonal space group $P6_522$ with lattice parameters of a = 704.24(4) pm, c = 2577.6(2) pm and Z = 3. The asymmetric cell of LiCaTb₅(BO₃)₆ contains three Tb, five O, two B, and one Li sites. Both Tb(1) and Tb(3) atoms are coordinated to six oxygen atoms to form distorted TbO₆ octahedra, while the Tb(2) atom locates at the centroid of a distorted TbO₈ dodecahedron (Figure 1.5 (a)). Interestingly, Ca²⁺ cations tend to merely admix with the 6-coordinated Tb³⁺ cations rather than the 8-coordinated Tb³⁺ cations: the substitutional disorder between Tb³⁺ and Ca²⁺ cations emerges at Tb(1) site and Tb(3) site with ratios of 0.9 and 0.6, respectively. On the contrary, Tb(2) site is solely on its Wyckoff site. As shown in Figure 1.5 (b), [Tb(1)/Ca]O₆ octahedra are joined together by means of corner-sharing to build up the chain-1 along the **c**-direction. Tb(2)O₈ dodecahedra and [Tb(3)/CaO₆] octahedra are alternately stacked along the c-direction, forming the chain-2. Each chain-1 is surrounded by six nearest neighboring chain-2 to constitute the framework of LiCaTb₅(BO₃)₆, shown in Figure 1.5 (c). Each B(1)O₃ shares one vertex with the chain-1 and two vertexes with the chain-2, while each B(2)O₃ group shares two vertices with the chain-1 and one vertex with the chain-2. Li⁺ is octahedrally coordinated but with a half occupancy. Although all Tb³⁺ atoms reside at the same height and form a triangular magnetic lattice in the *ab* plane, the Tb triangle deviates from an ideal triangular magnetic lattice displayed in Figure 1.5 (d). Nevertheless, such a high terbium content in the uniaxial LiCaTb₅(BO₃)₆ brings a pronounced Faraday radiation performance over Tb₃Ga₅O₁₂ (TGG) in the visible range. Just recently, polycrystalline LiCaRE₅(BO₃)₆ (RE = Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) were synthesized by Cong et al. using high-temperature solid-state reactions [68]. The authors also found all LiCaRE₅(BO₃)₆ members isotypic with LiCaTb₅(BO₃)₆ by utilizing Rietveld refinement method. **Figure 1.6** (a) crystal structure of Li₃RE₂(BO₃)₃ viewed from the **c**-axis (b) linkage of [RE(1)O₉] chain and [RE(2)O₉] chain in the *ab* plane (c) [RE(2)O₉] chain (d) coordination environments of B and Li atoms Li₃RE₂(BO₃)₃ family was first reported by Abdullaev et al. in 1977 [69]. In this family, Li₃Pr₂(BO₃)₃ is the first published member with the lattice parameters of a = 881.6(4) pm, b = 1412.7(8) pm; c = 581.2(3) pm, and $\beta = 103.72(4)^{\circ}$. The whole Li₃RE₂(BO₃)₃ (RE = La, Pr, Nd, Sm-Lu, and Y) family are isotypic in the space group of $P2_1/n$. To date, crystal structures of only RE = Pr, Nd, Eu members have been solved by single-crystal X-ray diffraction [70]. The asymmetric unit of Li₃RE₂(BO₃)₃ contains two RE, three B, three Li, and nine O atoms. Both RE(1) and RE(2) cations are surrounded by nine oxygen atoms. Since Li⁺ cation is exceedingly small, Li₃RE₂(BO₃)₃ crystallizes into a dense framework mainly made up of REO₉ polyhedra, shown in Figure 1.6(b). RE(1)O₉ polyhedra share common corners to form [RE(1)O₈] zigzag chains along the **a**-direction, while RE(2)O₉ polyhedra are connected via edge-sharing to form [RE(2)O₇] zigzag chains along the **c**-direction. Such [RE(1)O₈] and [RE(2)O₇] zigzag chains are firmly crosslinked together by sharing common edges and corners to construct the dense three-dimensional network of Li₃RE₂(BO₃)₃. All Boron atoms are coordinated by three oxygen atoms to form
isolated BO₃ groups. As shown in Figure 1.6(d), the B(1)O₃ group is connected with one RE(1)O₉ and one RE(2)O₉ polyhedra via common vertex and edge, the B(2)O₃ group is connected with two RE(1)O₉ and one RE(2)O₉ polyhedra through sharing all three edges while the B(3)O₃ group is connected with two RE(1)O₉ and one RE(2)O₉ polyhedra by two edges and one vertex. The Li(1), Li(2) and Li(3) are four-, five-, and six-fold coordinated, respectively. The BVS calculation shows the value of 1.12(1), 0.84(1), and 0.91(1) v. u. for Li(1), Li(2), and Li(3), respectively, suggesting that Li(1) is slightly over-bonded while Li(2) and Li(3) are slightly under-bonded. **Figure 1.7** (a) the unit cell of Na₃La₂(BO₃)₃. (b) coordination spheres of Na atoms (c) crystal structure of Na₃La₂(BO₃)₃ viewed along the **a**-axis (d) crystal structure of Na₃La₂(BO₃)₃viewed along the **c**-axis (d) Early in 1983 two compounds $Na_3La_2(BO_3)_3$ and $Na_3Nd_2(BO_3)_3$ were obtained by Mascetti et al. [71], and only the lattice parameters and space group were given. Afterward, Zhang et al. [72] published the detailed crystal structure of $Na_3La_2(BO_3)_3$ using single-crystal X-ray diffraction. $Na_3La_2(BO_3)_3$ crystallizes in the space group Amm2 with the lattice parameters of a = 5.1580(10) pm, b = 11.350(2) pm, c = 7.3230(15) pm, and Z = 2. Subsequently, $Na_3RE_2(BO_3)_3$ (RE=La, Sm, Gd) [38, 39, 73] were investigated with aspect to the bulk crystal growth and linear/nonlinear optical properties. Here, it should be stated that the detailed crystallographic data for Sm- and Gd- analogs have not been recorded yet, therefore $Na_3La_2(BO_3)_3$ was chosen to describe the crystal structure of this family. The asymmetric unit of Na₃La₂(BO₃)₃ consists of one La, two B, three Na, and four O independent atoms. La atom is surrounded by 9 oxygen atoms, forming a LaO₉ polyhedron. LaO₉ polyhedra are connected to each other via face-sharing to build up the [LaO₆]_n zigzag chains along the **c**-direction. Such one chain is further corner shared with four nearest neighboring chains to constitute a three-dimensional framework as shown in Figure 1.7. B(1)O₃ groups are aligned exactly perpendicular to the **a**-direction whereas B(2)O₃ groups are oriented at an angle of approximately $26.5(2)^{\circ}$ towards the *ab* plane. Here, it could be considered that B(1)O₃ groups strengthen the connection of [LaO₆]_n chains along the **b**-direction, and B(2)O₃ groups enhance the connection along the **a**-direction. Three types of Na⁺ ions are found to occupy interstitial voids with three different coordination polyhedra: six-, seven- and eight-fold coordination for Na(1), Na(2), and Na(3), respectively. The BVS calculation reveals that their values are 0.47(1), 1.25(1) and 0.96(1) v. u, for Na(1), Na(2) and Na(3), respectively, suggesting that Na(1)⁺ is seriously under-bonded and Na(2)⁺ is notably over-bonded while Na(3)⁺ is normal as expected. In other words, it can be assumed that Na(1) site is favored for larger monovalent cations while Na(2) site is favored for smaller monovalent cations. In 2012 a terbium analog Na_{2.67}Tb_{2.11}(BO₃)₃ in single crystal form was reported by Chen et al. [74]. The aliovalent substitution was identified as 11 % of Tb³⁺ cations entered into the Na(3) site, bringing the vacancy of 22 % at the Na(1) site accordingly. Interestingly, the terbium phase with the idealized composition of Na₃Tb₂(BO₃)₃ has not been reported yet. Later on, a new potassium-containing analog K_{1.34}Na_{1.66}La₂(BO₃)₃ was found by Zeng et al. [75]. Surprisingly, the Na(1) site is co-occupied by 90 % K⁺ and 10 % Na⁺; the Na(2) site is solely occupied by Na⁺ cation; the Na(3) site is co-occupied by 56 % K⁺ and 44 % Na⁺. The authors pointed out that the substitutional disorder between Na and K cations at both Na(1) and Na(3) sites was required judging from the isotropic/anisotropic atom displacement parameters at each site. They also considered that the isovalent substitution would be likely to occur at the Na(3) site instead of the Na(1) site. Intriguingly, in the course of his Ph.D. studies, the author of this dissertation also found two similar compounds, Na_{2.86}Gd_{2.07}(BO₃)₃ and K_{1.3(1)}Na_{1.7(1)}Pr₂(BO₃)₃. Their structures were solved by X-ray single-crystal diffraction. The result of the structure determination is consistent with the previous findings. The crystallographic data for these two compounds are placed in the Appendix part. A concise comparison of cations at the Na sites with their BVS values belonging to members of Na₃La₂(BO₃)₃ family is listed in Table 1.1. **Table 1.1** cations at Na sites and the corresponding BVS values | Compounds | Na(1) site | BVS | Na(2) site | BVS | Na(3) site | BVS | |--|---------------------------------------|---------|-----------------|---------|---|---------| | $Na_3La_2(BO_3)_3$ | Na ⁺ | 0.47(1) | Na ⁺ | 1.25(1) | Na ⁺ | 0.96(1) | | Na _{2.67} Tb _{2.11} (BO ₃) ₃ | 0.78Na ⁺ | 0.50(1) | Na ⁺ | 1.50(1) | $0.89 \text{Na}^+ / 0.11 \text{Tb}^{3+}$ | 1.45(1) | | K _{1.34} Na _{1.66} La ₂ (BO ₃) ₃ | 0.9K ⁺ /0.1Na ⁺ | 0.86(1) | Na ⁺ | 1.30(1) | 0.56Na ⁺ /0.44K ⁺ | 1.62(1) | | Na _{2.86} Gd _{2.07} (BO ₃) ₃ | 0.86Na ⁺ | 0.51(1) | Na ⁺ | 1.47(1) | 0.93Na ⁺ /0.07Gd ³⁺ | 1.42(1) | | $K_{1.3(1)}Li_{1.7(1)}Pr_2(BO_3)_3$ | K^{+} | 0.86(1) | Li ⁺ | 0.95(1) | 0.7Li ⁺ /0.3K ⁺ | 1.17(1) | Note: the origin of the unit cell of $Na_3La_2(BO_3)_3$ has been shifted and the atoms of $Na_3La_2(BO_3)_3$, $Na_{2.67}Tb_{2.11}(BO_3)_3$ and $K_{1.34}Na_{1.66}La_2(BO_3)_3$ have been uniformly renamed for a straightforward comparison. However, there are at least two open questions that are worth discussing or answering in the future: - 1) We can imagine that K⁺, Li⁺, and Na⁺ occupy the Na(1), Na(2), and Na(3) sites respectively. As a result, the BVS value for each Na⁺ site shall be close to 1. Thus, the question becomes if it is possible to synthesize the KLiNaRE₂(BO₃)₃ phase. - 2) What is the reason that the aliovalent substitution at the Na(3) site was observed for Tb³⁺ and Gd³⁺ cations rather than La³⁺ cation? # Rb₃RE₂(BO₃)₃ (RE=Y, Ho) B(2)O₃ Y(2)O₅ Y(1)O₆ B(3)O₃ Rb(1) Rb(2) Rb(3) Rb(3)O₈ (c) Rb(1)O₉ Rb(2)O₉ Rb(3)O₈ (b) **Figure 1.8** (a) [Y₂B₂O₁₀] sheet in the *ab* plane. (b) crystal structure of Rb₃Y₂(BO₃)₃ viewed along the **c**-direction (c) coordination environments of Rb⁺ cations Rb₃Y₂(BO₃)₃ was reported and structurally characterized by Gao et al. in 2007 [76]. This compound crystallizes into the orthorhombic space group $Pna2_1$ with the lattice parameter of a = 868.11(4) pm, b = 956.27(4) pm, c = 1219.14(6) pm. Comparing with Li₃RE₂(BO₃)₃ and Na₃RE₂(BO₃)₃, Rb₃Y₂(BO₃)₃ has a similar formula, but the crystal structure of Rb₃Y₂(BO₃)₃ distinctly differs from that of either Na₃RE₂(BO₃)₃ or Li₃RE₂(BO₃)₃. The asymmetric unit of Rb₃Y₂(BO₃)₃ consists of 17 independent sites: two Y, three Rb, three B and nine O atoms. Y(1)³⁺ cation is coordinated to six oxygen atoms, forming a distorted YO₆ octahedron. In contrast, Y(2)³⁺ cation is surrounded by seven oxygen atoms, forming a distorted YO₇ pentagonal bipyramid. YO₆ octahedron and YO₇ pentagonal bipyramid share a common face to build up a Y₂O₁₀ dimer. Such dimers are connected to each other by corner-sharing and firmly bridged by the B(1)O₃ and B(2)O₃ groups, forming a quasi-two-dimensional [Y₂B₂O₁₀] sheet in the *ab* plane (Figure 1.8(a)). Thus, the three-dimensional framework of Rb₃Y₂(BO₃)₃ is built up by those [Y₂B₂O₁₀] sheets bridged by the remaining B(3)O₃ groups along the **c**-direction. All Rb^+ cations reside between $[Y_2B_2O_{10}]$ sheets (Figure 1.8(c)): both Rb(1) and Rb(2) atoms are nine-fold coordinated while Rb(3) atoms are eight-fold coordinated. The BVS calculation shows the value of 1.12(1) v. u., 0.96(1) v. u. and 1.33(1) v. u. for Rb(1), Rb(2) and Rb(3), respectively, indicating that Rb(1) and Rb(2) are normal as expected while Rb(3) is significantly over-bonded. Just recently, Subanakov et al. [77] published the synthesis and crystal structure of the Rb₃Ho₂(BO₃)₃ compound which is isomorphic with Rb₃Y₂(BO₃)₃. **Figure 1.9** (a) one-dimensional YO₈ polyhedra backbone chain along the **b**-direction. (b) crystal structure of Na₃Y₃(BO₃)₄ viewed from the **c**-axis along with coordination environments of Na and B atom Na₃Y₃(BO₃)₄ single crystal was isolated from the Na₂O-Y₂O₃-B₂O₃ system by Zhang et al. [45]. This compound features the zeolite-like framework structure with an open hexagonal channel. It crystallizes in the space group $P6_3mc$ with the lattice parameter of a = 1011.36(14) pm, c = 674.85(13) pm, and Z= 2. The asymmetric unit of Na₃Y₃(BO₃)₄ comprises one Na, one Y, two B, and three O atoms. Y atom is surrounded by eight O atoms to form a distorted YO₈ polyhedron. Every YO₈ polyhedron is connected to their adjacent counterparts via sharing common faces to form a one-dimensional YO₈ polyhedra chain parallel to the c-direction, which serve as the backbone of the open framework (Figure 1.9). Such one-dimensional backbone chains are interlinked with each other through oxygen vertices to form open hexagonal tunnels along the c-direction. The B(1)O₃ group which is parallel to the *ab*-plane contributes all three oxygen atoms to linking three backbone chains, whereas the B(2)O₃ group almost parallel to the c-direction uses two oxygen-oxygen edges to stabilize the connection of its two adjacent backbone chains. Interestingly, Na⁺ cation is coordinated by seven oxygen atoms which are all on one side. Such a coordination environment is unusual for the Na⁺ cation with the closed electron shell, but it is common for Tl⁺, Pb²⁺, and Bi³⁺ cations due to the stereochemically active lone electron pairs. Nonetheless, the BVS value of 0.95(1) v. u. for Na⁺ is pretty close to the theoretical oxidation state. Of note, the unimpeded diameter
of the open hexagonal channel reaches up to 366.0 pm, comparable to that of several 3Å molecular sieves. That is to say, various molecules such as H₂, C₂H₂, NH₃, NO, and Cl₂ with a kinetic diameter smaller than 366.0 pm can freely move along the open channel. Therefore, Na₃Y₃(BO₃)₄ might be applied in the desiccation of petroleum cracking gas and alkenes, selective adsorption of H₂O in insulated glass. Hitherto, the synthesis of other rare-earth analogs has not been reported yet. If Tb³⁺ can fully substitute Y³⁺, the bulk single crystal of Na₃Tb₃(BO₃)₄ may be a good Faraday rotator in the UV/Vis range because of the uniaxiality and high terbium content. # **Figure 1.10**: (a) Three-dimensional framework of Na₃La₉O₃(BO₃)₈, (b) NaO₆ octahedron (c) trimer of La(1)O₈ polyhedra (d) arrangement of La(2)O₉ and BO₃ groups viewed along the **c**-direction. Single crystal of Na₃La₉O₃(BO₃)₈ was reported by Wu [78] and Gravereau [79], respectively. Na₃La₉O₃(BO₃)₈ belongs to the hexagonal $P\overline{6}2m$ space group with the unit cell parameters of a=890.33(3) pm, c=871.31(3) pm, and Z=1. The asymmetric cell of Na₃La₉O₃(BO₃)₈ contains two distinct La, one unique Na, three B, and four O atoms. Na atom at the 3*f* Wyckoff site is surrounded by six oxygen atoms, forming a distorted NaO₆ octahedron. La(1) at the 3*g* site is eight-coordinated while La(2) at the 6*i* site is nine-coordinated. Each La(1)O₈ polyhedron shares common oxygen vertices with the two nearest La(1)O₈ neighbors, forming a trigonal trimer parallel to the *ab*-plane. However, those La(1)₃O₂₁ trigonal trimers are isolated from each other. La(2)O₉ polyhedra are interlinked via corner-sharing to form a hexagonal infinite layer in the *ab* plane. As is shown in Figure 1.10(a), the three-dimensional framework of Na₃La₉O₃(BO₃)₈ can be regarded as a compact sandwich with La(2) layer, La(1) layer, Na layer, La(2) layer stacking along the **c**-direction in the sequence of *ABAC*.... The BVS calculation shows that La(1)³⁺ (3.34(1) v. u.) is over-bonded, while La(2)³⁺ (2.89(1) v. u.) and Na⁺ (0.88(1) v. u.) are slightly under-bonded. All three types of BO₃ groups are oriented perpendicular to the **c**-direction. B(1)O₃ groups are aligned parallel to B(3)O₃ groups but opposite to B(2)O₃ groups. From a microscopic viewpoint, such an arrangement of isolated BO₃ groups can still guarantee a large second harmonic generation (SHG) response which Maker fringe experiment using bulk single crystal shows as approximately 2.6 times as that of KH₂PO₄ (KDP). Recently, the synthesis and single-crystal structure of Na₃Nd₉O₃(BO₃)₈ were reported by Shan et al. [80], indicating that La³⁺ can be completely replaced by Nd³⁺. Owing to the non-centrosymmetric structure and the laser activity of Nd³⁺ cation, Na₃(La_{1-x}Nd_x)₉O₃(BO₃)₈ (x = 0-1) series may be potential self-frequency doubling (SFD) materials. ### $K_3REB_6O_{12}$ (RE = Y, Eu-Tb, Yb, Lu) $K_3GdB_6O_{12}$ discovered by Mutailipu et al. [41] was chosen to elucidate the crystal structure of this family. The Gd-phase crystallizes in the trigonal system with space group R32 with the lattice parameter of a = 1326.5(8) pm, c = 1528.2(14) pm, and Z = 3. Unlike the isolated orthoborate BO₃ groups that frequently appear in many alkali-metal containing rare-earth borates, $K_3GdB_6O_{12}$ features B_5O_{10} anionic group. In each B_5O_{10} anionic group (Figure 1.11(b)), one BO₄ tetrahedron condenses with four BO₃ triangles via sharing common corners to configure a dual ring. The structure of $K_3GdB_6O_{12}$ consists of two distinct Gd atoms with the Wyckoff position of 6c and 3b for Gd(1) and Gd(2), respectively. Although both Gd(1) and Gd(2) are surrounded by six oxygen atoms to form GdO₆ octahedra, Gd(2)O₆ octahedron is noticeably more distorted than Gd(1)O₆ octahedron. Additionally, the substitution disorder between Gd and K with a ratio of 0.5:0.5 occurs at the Gd(2) site whereas the Gd(1) site is fully populated by Gd(1) atom. Each (Gd_{0.5}K_{0.5})O₆ octahedron shares two common faces with two neighbor $Gd(1)O_6$ octahedra (up and down) to construct $Gd_2(Gd_{0.5}K_{0.5})O_{12}$ column parallel to the **c**-axis (Figure 1.11(c)). **Figure 1.11** (a) The view of the crystal structure of $K_3GdB_6O_{12}$ along the **c**-axis (b) $(B_5O_{10})^{5-}$ group (c) connection of B_5O_{10} groups and $Gd_2(Gd_{0.5}K_{0.5})O_{12}$ columns along the **c**-axis (d) coordination environment of Gd and K cations Thereby, the structure can be characterized as a three-dimensional framework composed of those $Gd_2(Gd_{0.5}K_{0.5})O_{12}$ columns bridged by B_5O_{10} anionic groups with the K^+ cations inserted into the interstitial cavities to maintain electrical neutrality. K(2), K(3), and K(4) are all coordinated to six oxygen forming KO_6 prisms. Those distorted KO_6 prisms can be regarded as stitches to support the linkage of $Gd_2(Gd_{0.5}K_{0.5})O_{12}$ columns and B_5O_{10} anionic groups. Of note, the structure type of $K_3GdB_6O_{12}$ exhibits a good tolerance for charge balance cation and anion substitutions. To better understand the structural features of $K_3REB_6O_{12}$, $K_3REB_6O_{12}$ is equivalently written as $K_{21}(K_{0.5}RE_{0.5})_3RE_6(B_5O_{10})_9$ or $K_{2.5}RE_{0.8333}B_5O_{10}$ in the following place: - 1. RE elements can vary from Eu to Lu and Y, but some subtle differences need to be pointed out: - (1) In the Y-member K₃YB₆O₁₂ published by Zhao et al. [81], the substitution disorder at the RE/K site was not observed, suggesting that the RE/K site splits into two distinct crystallographic sites in which RE³⁺ and K⁺ populate each. Therefore, a doubled *c*-parameter was given by Zhao in comparison with the structure information published by Mutailapu [41]. Based on the simulated powder diffraction patterns from Zhao's model, several noticeable diffraction peaks at low angles (Cu Kα radiation) can be observed, however these peaks shall be strictly forbidden in Mutailapu's model. Rietveld refinement would be useful to distinguish or verify the two models. - (2) In the case of Yb-member [82], the RE/K site is occupied only by the Yb $^{3+}$ cation but with the occupancy factor of 2/3, thus resulting in the formula of $K_{2.8}Yb_{1.0667}B_6O_{12}$, i.e., $K_{21}Yb_8B_{45}O_{90}$. - 2. $Rb_3REB_6O_{12}$ phases [77, 83-85] can be obtained through replacing all K^+ cations by Rb^+ . The RE/Rb disorder was found in $Rb_3YB_6O_{12}$ however not observed in other $Rb_3REB_6O_{12}$ phases with RE = Nd, Eu, and Ho. Accordingly, c-parameters of $Rb_3REB_6O_{12}$ (RE=Nd, Eu and Ho) enlarge by nearly one time compared to that of $Rb_3YB_6O_{12}$. - 3. A series of divalent cations can fully occupy the RE/K and RE/Rb site based on the charge balance $M^{2+} = 0.5 A^+ + 0.5 RE^{3+}$ where A = K, Rb and Li; and M = Ca, Sr, Ba, Zn, Cd, and Pb, yielding a rich family of $A_{21}M_3RE_6(B_5O_{10})_9$, i.e., $A_7MRE_2(B_5O_{10})_3$ [86-90]. Since no additional distinct site of M^{2+} are generated, the *c*-parameters will not be doubled. - 4. M^{2+} can further be substituted by two extremely disordered Li⁺ ions simultaneously, and then the K(3) cation is replaced with an additional Li⁺ cation to form $A_{18}Li_3RE_6(B_5O_{10})_9$, namely $A_6Li_3RE_2(B_5O_{10})_3$ [91]. ### $KBaRE(BO_3)_2$ (RE = Pr-Nd, Sm-Lu and Y) **Figure 1.12** (a) the crystal structure of KBaRE(BO₃)₂. (b) coordination environments of K, Ba, and B atoms (c) the ideal two-dimensional rare earth triangular lattice layers, as viewed down the **c**-axis. The Y-member, KBaY(BO₃)₂ was first reported and structurally characterized in 2011 [92]. KBaRE(BO₃)₂ crystallize into space group $R\overline{3}m$ and this family is isotypic with buetschlite K₂Ca(CO₃)₂ [93] through the schematic evolution (Figure 1.13): Figure 1.13 schematic evolution from K₂Ca(CO₃)₂ to KBaY(BO₃)₂ In the asymmetric unit, RE (Wyckoff site 3a), B (Wyckoff site 6c), and O (Wyckoff site 18h) are found to fully occupy their unique crystallographic positions. The substitution disorder occurs at the large atom site (Wyckoff site 6c) where K and Ba are randomly distributed in the proportion of each half. The Ba/K atom is nine-fold coordinated to build up a slightly distorted tricapped trigonal Ba/KO₉ prism in the point group of C_{3v} . The RE atom is surrounded by six O atoms to form a slightly distorted REO₆ octahedron. The B atom is coordinated to three O atoms from three neighboring REO₆ octahedra to form BO₃ triangles. As shown in Figure 1.12(a), those REO₆ octahedra are isolated from each other, and each REO₆ octahedron shares six corners with six BO₃ triangles, which is similarly found in K₃Y(BO₃)₂ [67]. In the *ab* plane, KBaRE(BO₃)₂ feature the infinite equilateral triangular lattices (Figure 1.12(c)). Such a geometric arrangement of RE³⁺ magnetons is promising to generate geometric magnetic frustration (GFM). Although no indication of magnetic ordering down to 1.8 K could be discovered in a low-spin triangular lattice magnet KBaYb(BO₃)₂ in single-crystal form, the antimagnetic or ferromagnetic ordering might still appear at sufficiently low temperature. Nevertheless, the coaction of the GFM and rare-earth-dependent crystal field is expected to provoke many fantastic behaviors, for instance, the quantum spin liquid in YbMgGaO₄ [94]. Interestingly, many recently discovered rare-earth borate compounds have a common formula of AAERE(BO₃)₂, where A = alkali metal and AE = alkaline earth metal. The space groups, unit-lattice parameters and fundamental building blocks of the representative members of the AMRE(BO₃)₂ family are briefly summarized in Table 1.2. Table 1.2 Space group (S. P.), lattice parameters (L. P. in pm) and fundamental building blocks (F.B.B) and the radius ratios (R. R.) of A^+ and AE^{2+} of the compounds of $AAERE(BO_3)_2$ family | , | | | . , | - | |--|------------------
---|--|------| | Compound | S. P. | L. P | F. B. B | R. R | | NaBaYb(BO ₃) ₂ [95] | $R\overline{3}m$ | a = 532.95(3), c = 3558.40(17) | YbO ₆ NaO ₉ BaO ₉ BO ₃ | 0.84 | | KBaYb(BO ₃) ₂ [96] | $R\overline{3}m$ | a = 541.59(1), c = 1756.29(3) | YbO ₆ (K _{0.5} Ba _{0.5})O ₉ BO ₃ | 1.05 | | RbBaYb(BO ₃) ₂ [50] | $P2_1/m$ | $a = 673.49(2) \ b = 545.52(2)$ | YbO ₆ RbO ₉ | 1.11 | | | | $c = 863.76(3) \beta = 105.5806(17)^{\circ}$ | BaO ₉ BO ₃ | | | KSrYb(BO ₃) ₂ [97]* | $P2_1/m$ | a = 654.10(4), b = 533.80(2) | YbO ₆ KO ₉ | 1.18 | | | | $c = 847.40(10), \beta = 105.4280(6)^{\circ}$ | SrO ₉ BO ₃ | | | KCaNd(BO ₃) ₂ [98] | Pbca | $a = 1020.69(5) \ b = 902.93(4)$ | $(Nd_{0.879}Ca_{0.121})O_9BO_3$ | 1.55 | | | | c = 1316.34(5) | (Ca _{0.879} Nd _{0.121})O ₆ KO ₉ | | ^{*} standardized from the original reported parameters of a = 926.3(10), b = 533.8(2), c = 654.1(4), and $\beta = 117.94(6)^{\circ}$ Their structures are depicted in Figure 1.14. The common structural feature of the AAERE(BO₃)₂ family is the layer-by-layer distribution of RE³⁺, A⁺ and AE²⁺ cations. NaBaYb(BO₃)₂ and KBaYb(BO₃)₂ both crystallize into the space group $R\overline{3}m$ but the c-parameter of the Na-phase is almost twice as that of the K-phase. This is due to the random disorder of K⁺ and Ba²⁺ over the same site aforementioned. By contrast, Na⁺ and Ba²⁺ occupy different sites probably due to the large size difference, causing the c-parameter to lengthen by one-fold. Thus, NaBaYb(BO₃)₂ can be viewed as the one-dimensional superstructure of KBaYb(BO₃)₂ along the c-direction. Accordingly, the arrangement of Yb³⁺ in NaBaYb(BO₃)₂ remains the ideal triangle magnetic lattice in the ab plane. RbBaYb(BO₃)₂ is free from the disorder of Rb⁺ and Ba²⁺ and is structurally correlated to KBaYb(BO₃)₂: it adopts with monoclinic $P2_1/m$, a subgroup of $R\overline{3}m$. The monoclinic a-, b- and c-parameters derive from the hexagonal setting by taking the transformation: $(a_m \ b_m \ c_m) = (a_h \ b_h \ c_h) [1 \ 1 \ -1/3; \ -1 \ 1 \ 1/3; \ 0 \ 0 \ 1/3]$. The symmetry reduction of RbBaYb(BO₃)₂ corresponds to the arrangement of Yb³⁺ cations deviating from the ideal triangle magnetic lattice as well as to the slightly tilted BO₃ triangles. Moreover, one can recognize that KSrYb(BO₃)₂ is isotypic to RbBaYb(BO₃)₂ via performing a standardization transformation of the cell parameters. The mild disorder of Ca²⁺ and Nd³⁺ was observed in KCaNd(BO₃)₂ where the Nd³⁺ cations are arranged in the ripple quasi-two-dimensional (Q2D) plane. Unlike the nearly parallel layout of the borate groups in the other four compounds, two independent BO₃ groups of KCaNd(BO₃)₂ are oriented perpendicularly to each other, Figure 1.14 Crystal structures of AAERE(BO₃)₂ family **Figure 1.15** (a) [Nd₃B₃O₂₁] chain; (b) [Nd₆B₆O₃₈] double layers consisting of [Nd₃B₃O₂₁] chains. (c) crystal structure of K₉Li₃Nd₃(BO₃)₇ viewed along [101] direction. (d) coordination polyhedra of the Li and K atoms. $K_9Li_3Nd_3(BO_3)_7$ is the first reported member of this family [99]. This Nd-phase adopts the monoclinic space group P2/n with lattice parameters of a=1145.24(7) pm, b=1012.66(6) pm, c=1154.38(7) pm, $\beta=115.263(1)^\circ$. The asymmetric cell of $K_9Li_3Nd_3(BO_3)$ contains 24 crystallographically independent atoms: two Nd, five K, eleven O, four B, and two Li atoms. Most of the atoms are located on the 4g Wyckoff sites except Nd(1) and K(5) at the 2f sites as well as O(2), B(4), and Li(1) on the 2e sites. Nd(1) and Nd(2) atoms are both coordinated by eight oxygen atoms to form NdO₈ polyhedra. Each Nd(1)O₈ polyhedron and two adjacent Nd(2)O₈ polyhedra are joined by three BO₃ groups to constitute [Nd₃B₃O₂₁] chains along the a-direction shown in Figure 1.15(a). Such corrugated [Nd₃B₃O₂₁] chains are connected by corner-sharing and further reinforced by the BO₃ groups to build up [Nd₆B₆O₃₈] double layers in the *ac* plane. Thus, the layered-like network of K₉Li₃Nd₃(BO₃)₇ can be viewed as [Nd₆B₆O₃₈] double layers stacking along the **b**-direction. K⁺ cations are in the eightfold, sevenfold, sixfold, fourfold, and sixfold coordination sphere with the corresponding BVS value of 1.16(1), 1.19(1), 0.91(1), 0.50(1), and 1.39(1) for K(1), K(2), K(3), K(4), and K(5), respectively. Li(1)⁺ cation is fourfold coordinated with the BVS value of 1.22(2) whereas Li(2)⁺ is fivefold coordinated with the BVS value of 0.97(2). Except that K(4) is significantly under-bonded and K(5) and Li(2) are remarkedly over-bonded, the BVS values of other cations are consistent with their respective formal oxidation state. # $K_3Li_3RE_7(BO_3)_9$ (RE = Y, Sm-Er) **Figure 1.16** (a) crystal structure of $K_3Li_3RE_7(BO_3)_9$ (b) arrangement of BO_3 groups in the unit cell (c) RE_5O_{32} pentamer and RE_2O_{14} dimer (d) arrangement of RE^{3+} cations viewed along the **b**-direction (e) coordination environments of K and Li cations $K_3Li_3Y_7(BO_3)_9$ is the first published member in the $K_3Li_3RE_7(BO_3)_9$ family by Huppertz's group [100]. The crystal structure of $K_3Li_3Y_7(BO_3)_9$ solved by single-crystal X-ray diffraction can be described in the polar space group $Pca2_1$ with the lattice parameter of a = 2074.3(8) pm, b = 638.7(2) pm, c = 1747.4(7) pm, and Z = 4. Afterward, the Gd-analog was reported as a promising magnetic cryogenic coolant down to 2K due to the high gadolinium content in this structure type [48]. As shown in Figure 1.16 (a) and (c), the crystal structure of the $K_3Li_3RE_7(BO_3)_9$ family features a condensed REO_n polyhedral network where all of RE atoms are 8-fold coordinated, except the RE(4) atom which is nine-fold coordinated. $RE(i)O_n$ (i = 1-5) polyhedra subsequently join together via corner-, edge-, face-sharing to form RE_5O_{32} pentamers. These RE_5O_{32} pentamers are further interconnected via edge-sharing to build up infinite triangle wave chains in the ac plane. Each RE_2O_{14} dimer, which is composed of edge-shared $RE(6)O_8$ and $RE(7)O_8$ decahedra, bridges three RE_5O_{32} pentamers to constitute the three-dimensional network. Of the nine independent BO₃ groups, B(1)O₃ and B(3)O₃ are almost oppositely oriented to each other. A similar opposite orientation was observed for B(2)O₃ and B(4)O₃, for B(5)O₃ and B(7)O₃ as well as for B(8)O₃ and B(9)O₃ groups (Figure 1.16 (b)). According to the anionic group theory, it can be assumed that such a microscopic arrangement of BO₃ groups may not be in favor of yielding a large macroscopic SHG response even though the whole structure is non-centrosymmetric. K(1), K(2), and K(3) cations are coordinated to eight, ten, and six oxygen atoms. All Li cations are coordinated to six oxygen atoms. The BVS calculation shows the values of 1.21(1), 1.42(1), 0.85(1), 0.98(1), 0.98(1), and 0.99(1) for K(1), K(2), K(3), Li(1) Li(2) and Li(3) respectively. Except that K(1) and K(2) are highly over-bonded, the BVS values for the other atoms are consistent with their expected formal ionic charge. Hitherto, considerable efforts have been made to search for novel compounds in the A_2O - RE_2O_3 - B_2O_3 and A_2O - Li_2O - RE_2O_3 - B_2O_3 systems where A are alkali-metal elements. These discovered compounds are listed in Table 1-3. Table 1-3. Space groups and fundamental building blocks (F.B. B) of the borate compounds in the $A_2O-RE_2O_3-B_2O_3$ and $A_2O-Li_2O-RE_2O_3-B_2O_3$ systems (A = Li, Na, K, Rb, Cs) | Systems | Compounds | F. B. B | |---|--|---| | $\text{Li}_2\text{O-RE}_2\text{O}_3\text{-B}_2\text{O}_3$ | $LiRE_6O_5(BO_3)_3 : P2_1/c$ | edge/corner-sharing REO ₇ , REO ₈ | | | (RE = Pr-Tm, Y) [57,58] | isolated BO ₃ | | | $\text{Li}_2\text{RE}_5\text{O}_4(\text{BO}_3)_3: P2_1/m$ | edge/corner-sharing REO ₇ | | | (RE = Yb, Lu) [101] | isolated BO ₃ | | | $Li_3RE_2(BO_3)_3: P2_1/n$ | edge/corner-sharing REO ₉ | | | (RE = La, Pr, Nd, Sm-Lu, Y) [69] | isolated BO ₃ | | | $\text{Li}_3\text{RE}(\text{BO}_3)_2: P2_1/c$ | edge/corner-sharing REO ₈ | | | (RE = Gd, Er-Lu, Y) [69, 70] | isolated BO ₃ | | | $Li_6RE(BO_3)_3: P2_1/c$ | edge/corner-sharing REO ₈ | | | (RE = Nd, Sm-Gd, Dy-Lu, Y) [51-54] | isolated BO ₃ | | Na ₂ O-RE ₂ O ₃ -B ₂ O ₃ | $Na_3RE_9O_3(BO_3)_8$: $P\overline{6}2m$ | face/edge/corner-sharing REO ₈ , REO ₈ | | | (RE = La, Nd) [79, 80] | isolated BO ₃ | | | $Na_2RE_2O(BO_3)_2 : P2_1/c$ | face/edge/corner-sharing REO ₈ | | | (RE = La, Nd, Sm-Ho, Y) [102-105] | isolated BO ₃ | | | $Na_3Y_3(BO_3)_4: P6_3mc$ [45] | face/corner-sharing REO ₈ | | | | isolated BO ₃ | | | $Na_3RE_2(BO_3)_3$: $Amm2$ | face/corner-sharing REO ₉ | | | (RE = La, Nd, Sm, Gd, Tb) [38, 71, 73, 74] | isolated BO ₃ | | | $Na_3RE(BO_3)_2: P2_1/c$ | edge/corner-sharing REO ₈ | | | (RE = La, Pr-Nd, Sm-Gd, Y) [63-66] | isolated BO ₃ | | | $Na_3GdB_8O_{15}: P\overline{1} [106]$ | isolated GdO ₈ , 1D-[B ₈ O ₁₅] chain | | K ₂ O-RE ₂ O ₃ -B ₂ O ₃ | $K_3Y_3(BO_3)_4: P2_1/c [107]$ | face/edge/corner-sharing YO ₇ , YO ₈ | | 2 2 2 2 3 | | isolated BO ₃ | | | $K_2RE_2(BO_3)_2O: P2_1/c$ | face/edge/corner-sharing REO ₈ | | | (RE = La, Nd, Sm, Eu) [108] | isolated BO ₃ | | | $K_3RE(BO_3)_2$: <i>Pnma</i> | corner-sharing REO ₇ | | | (RE = Nd, Sm - Gd) [67] | isolated BO ₃ | | | $K_3RE(BO_3)_2$: Pnnm | isolated REO ₆ | | | (RE = Tb - Lu, Y) [67] | isolated BO ₃ | | | $K_3REB_6O_{12}$, $K_{21}Yb_8B_{45}O_{90}$: $R32$ (RE = Eu | face-sharing REO ₆ | | | - Tb, Lu, Y) [41, 81, 82, 109-111] | $B_5O_{10}^{5-}$ group | | Rb ₂ O-RE ₂ O ₃ -B ₂ O ₃ | Rb ₃ La ₃ (BO ₃) ₄ : P2/c [112] | face/corner-sharing LaO ₇ LaO ₈ LaO ₁₀ | | Rozo Rezos Bzos | 33(3)4 | isolated BO ₃ | | | $Rb_3RE_2(BO_3)_3$:
$Pna2_1$ | face/corner-sharing REO ₆ REO ₇ | | | (RE = Y, Ho) [76, 77] | isolated BO ₃ | | | $Rb_3REB_6O_{12}: R32$ | face-sharing REO ₆ | | | (RE = Nd, Eu, Ho, Y) [77, 83-85] | $B_5O_{10}^{5-}$ group | | Cs ₂ O-RE ₂ O ₃ -B ₂ O ₃ | No compounds reported yet | -3-10 g5 | | Na ₂ O-Li ₂ O-RE ₂ O ₃ - | No compounds reported yet | | | | ivo compounds reported yet | | | B_2O_3 | VI: DE (DO) : D2 | f/-1/ | | $K_2O-Li_2O-RE_2O_3-$ | K ₃ Li ₃ RE ₇ (BO ₃) ₉ : Pca2 ₁ | face/edge/corner-sharing REO ₈ , REO | | B_2O_3 | (RE = Sm-Er, Y) [48, 100, 113, 114] | isolated BO ₃ | | | $K_9Li_3RE_3(BO_3)_7$: $P2/n$ | corner-sharing REO ₈ | | DI O I'O DE O | (RE = La, Pr, Nd) [99, 115] | isolated BO ₃ | | Rb ₂ O-Li ₂ O-RE ₂ O ₃ - | Rb ₂ LiRE(BO ₃) ₂ : <i>Pbcm</i> | corner-sharing REO ₈ | | B_2O_3 | (RE = Nd, Tb) [99, 116] | isolated BO ₃ | | Cs ₂ O-Li ₂ O-RE ₂ O ₃ - | CsLi ₂ Gd ₄ (BO ₃) ₅ : <i>P</i> 2/ <i>n</i> [117] | face/edge/corner-sharing GdO ₇ , GdO ₈ | | B_2O_3 | | GdO ₉ , isolated BO ₃ | | | Cs ₂ LiRE(BO ₃) ₂ : <i>Pbcm</i> [99, 115] | corner-sharing REO ₈ | | | (RE = La, Nd): | isolated BO ₃ | Comparing the alkali-metal containing rare-earth borates in the A₂O-RE₂O₃-B₂O₃ and A₂O-Li₂O-RE₂O₃-B₂O₃ systems, it can be reasonably summarized that: First of all, the coordination number of rare-earth cations ranges from 6 to 10 but the most common coordination numbers are 7, 8, and 9. When the content of alkali-metal cations increases, i.e., the content of rare-earth cations decreases, rare-earth cations tend to adopt the smaller polyhedra environments. Second, the face-sharing linkage of REO_n polyhedra is more likely to occur in the borates with high rare-earth content, which may be understood in terms of Pauling's third rule [118]. However, several exceptions are found in K₃REB₆O₁₂ and Rb₃REB₆O₁₂ where the face-sharing connection takes place with the low rare-earth content. Third, the trigonally coordinated boron atoms and the isolated orthoborate BO₃ groups are predominant in these the alkali-metal containing rare-earth borates. Thus far, the tetrahedral coordination of boron atoms in the alkali-metal containing rare-earth borates has just been found in B₅O₁₀⁵⁻ group of K₃REB₆O₁₂-type and in B₈O₁₅⁶⁻ group of Na₃GdB₈O₁₅. It shall be noted that these aforementioned compounds were synthesized at ambient pressure. Bearing in mind the pressure-coordination rule [119], the coordination number of boron may increase with rising pressure. Therefore, trigonally coordinated boron atoms, and the BO₄ groups might predominate in the novel alkali-metal containing rare-earth borates when high pressures are applied [120]. Fourth, the BVS values for rare-earth, boron, and oxygen ions in the alkali-metal containing rare-earth borates mostly agree well with their formal ionic charges. However, the pronounced deviations (approx. 40 %) concerning the BVS of alkali-metal cations sometimes occur, such as Na⁺ in Na₃La₂(BO₃)₃, K⁺ in K₃RE(BO₃)₂, K₉Li₃RE₃(BO₃)₇, and K₃Li₃RE₇(BO₃)₉ and Rb⁺ in Rb₃Y₂(BO₃)₃. Besides, as is reiterated several times, some of these rare-earth borates have stoichiometric similarity but crystallize in significantly different structures, where the size of the alkali and rare-earth cations is assumed to play an important role. For instance, Li₃RE₂(BO₃)₃ crystallize in the space group $P2_1/n$ whereas Na₃RE₂(BO₃)₃ crystallizes in the polar Amm2 and Rb₃RE₂(BO₃)₃ in the polar $Pna2_1$ space groups. Moreover, K₃RE(BO₃)₂ with light rare-earth elements (Nd, Sm, Eu and Gd) are to be refined in the orthorhombic space group Pnma whereas the heavy rare-earth elements (Tb, Dy, Ho, Er, Tm, Yb and Lu) are described using Pnnm. Besides, those reported alkali rare-earth borates such as Li₃Gd(BO₃)₂, Na₃Gd(BO₃)₂, K₃Sm(BO₃)₂, K₃Y(BO₃)₂, Rb₂LiNd(BO₃)₂ and Cs₂LiNd(BO₃)₂ adopt various structure type even though they possess a common "312" stoichiometric formula where 3, 1, and 2 stands for the number of alkali elements, rare-earth elements, and orthoborate groups, respectively. The main purpose of this cumulative dissertation is to continue the exploration of new compounds in the K₂O-Li₂O-RE₂O₃-B₂O₃ and K₂O-RE₂O₃-B₂O₃ systems and to further investigate their optical, magnetic, thermal, and vibrational properties. In general, this dissertation is composed of three parts: In the K_2O -Li₂O-RE₂O₃-B₂O₃ systems, six new compounds $KLi_2RE(BO_3)_2$ (RE = Dy, Ho, Er, Tm, Yb and Y) were obtained. Single crystal X-ray diffraction and Rietveld refinement of powder X-ray diffraction together confirm these six isotypic rare-earth borates crystalize into a new structure type, which is distinctly different from other previously known compounds. In the K_2O -RE₂O₃-B₂O₃ systems, a series of novel potassium rare-earth borates $K_3RE_3(BO_3)_4$ (RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) was syntheses using solid-state reaction as well as spontaneous crystallization from high-temperature flux. Combined X-ray single crystal and powder diffraction reveal the monoclinic space group $P2_1/c$ for $K_3RE_3(BO_3)_4$ (RE=Sm-Lu) and the triclinic space group $P\overline{1}$ for $K_3RE_3(BO_3)_4$ (RE = Pr, Nd). Amid differences in the space groups, each member of the series keeps close structural correlations in their motif and connectivity. In addition, a potassium-containing praseodymium oxoorthoborate, $K_2Pr_2O(BO_3)_2$ was isolated and belong to the $K_2La_2(BO_3)_2O$ family. A comparative view finds that $K_2RE_2(BO_3)_2O$ borates have many common structural features with the known KREOCO₃ carbonates #### Reference - [1] C. Chuangtian, W. Bochang, J. Aidong, Y. Guiming, A new-type ultraviolet SHG crystal—β-BaB₂O₄, Sci. Sin. Ser. B, 28 (**1985**) 235-243. - [2] Y.W. Chuangtian Chen, Aidong Jiang, Bochang Wu, Guiming You, Rukang Li, and Shujie Lin, New nonlinear-optical crystal: LiB₃O₅, J. Opt. Soc. Am. B, 6 (**1989**) 616-621. - [3] Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, S. Nakai, New nonlinear optical crystal: Cesium lithium borate, Appl. Phys. Lett., 67 (1995) 1818-1820. - [4] P. Becker, Borate Materials in Nonlinear Optics, Adv. Mater., 10 (1998) 979-992. - [5] C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, G. Aka, M. Yoshimura, Nonlinear optical borate crystals: Principals and applications, John Wiley & Sons**2012**. - [6] M. Mutailipu, S. Pan, Emergent Deep-Ultraviolet Nonlinear Optical Candidates, Angew. Chem. Int. Ed., 59 (2020) 20302-20317. - [7] R. Arun Kumar, M. Arivanandhan, Y. Hayakawa, Recent advances in rare earth-based borate single crystals: Potential materials for nonlinear optical and laser applications, Prog. Cryst. Growth Charact. Mater., 59 (2013) 113-132. - [8] H. Huang, Y. He, Z. Lin, L. Kang, Y. Zhang, Two Novel Bi-Based Borate Photocatalysts: Crystal Structure, Electronic Structure, Photoelectrochemical Properties, and Photocatalytic Activity under Simulated Solar Light Irradiation, J. Phys. Chem. C, 117 (2013) 22986-22994. - [9] W. Gao, Y. Jing, J. Yang, Z. Zhou, D. Yang, J. Sun, J. Lin, R. Cong, T. Yang, Open-Framework Gallium Borate with Boric and Metaboric Acid Molecules inside Structural Channels Showing Photocatalysis to Water Splitting, Inorg. Chem., 53 (2014) 2364-2366. - [10] Z. Xia, Q. Liu, Progress in discovery and structural design of color conversion phosphors for LEDs, Prog. Mater Sci., 84 (2016) 59-117. - [11] J.B. Czirr, Low-energy neutron detector based upon lithium lanthanide borate scintillators, US Patents, **1998**. - [12] M. Balcerzyk, Z. Gontarz, M. Moszynski, M. Kapusta, Future hosts for fast and high light output cerium-doped scintillator, J. Lumin., 87-89 (2000) 963-966. - [13] R.S. Bubnova, S.K. Filatov, Strong anisotropic thermal expansion in borates, Phys. Status Solidi B, 245 (2008) 2469-2476. - [14] M. Gogolin, M.M. Murshed, M. Ende, R. Miletich, T.M. Gesing, Uniaxial negative thermal expansion in the mullite-and borax-type PbAlBO₄ polymorphs, J. Mater. Sci., 55 (**2020**) 177-190. - [15] R.A. Smith, R.B. McBroom, Boron oxides, boric acid, and borates, Kirk-Othmer Encycl. Chem. Technol., (2000). - [16] H. Huppertz, D.A. Keszler, Borates: Solid-State Chemistry, Encycl. Inorg. Chem. Bioinorg. Chem., (2011) 1-12. - [17] P.C. Burns, J.D. Grice, F.C. Hawthorne, Borate minerals; I, Polyhedral clusters and fundamental building blocks, Can. Mineral., 33 (1995) 1131-1151. - [18] D. Zagorac, H. Müller, S. Ruehl, J. Zagorac, S. Rehme, Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features, J. Appl. Crystallogr., 52 (2019). - [19] R.K. Li, The interpretation of UV absorption of borate glasses and crystals, J. Non-Cryst. Solids, 111 (1989) 199-204. - [20] C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, L. Yu, Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr₂Be₂B₂O₇, Nat., 373 (**1995**) 322-324. - [21] Z. Wang, J.-y. Zhang, F. Yang, X. Cheng, Y. Zhou, J. Xu, Y. Xu, Y. Bo, Q. Peng, D. Cui, Stable operation of 4 mW nanoseconds radiation at 177.3 nm by second harmonic generation in KBe₂BO₃F₂ crystals, Opt. Express, 17 (**2009**) 20021-20032. - [22] V. Legagneur, Y. An, A. Mosbah, R. Portal, A.L.G. La Salle, A. Verbaere, D. Guyomard, Y. Piffard, LiMBO₃ (M= Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion properties, Solid State Ionics, 139 (2001) 37-46. - [23] H. Park, R. Lam, J.E. Greedan, J. Barbier, Synthesis, crystal structure, crystal chemistry, and magnetic properties of PbMBO₄ (M= Cr, Mn, Fe): a new structure type exhibiting one-dimensional magnetism, Chem. Mater., 15 (2003) 1703-1712. - [24] H. Kageyama, K. Yoshimura, R. Stern, N.V. Mushnikov, K. Onizuka, M. Kato, K. Kosuge, C.P. Slichter, T. Goto, Y. Ueda, Exact dimer ground state and quantized magnetization plateaus in the two-dimensional spin system SrCu₂(BO₃)₂, Phys. Rev. Lett., 82 (**1999**) 3168. - [25] A.J. Kurtzig, R. Wolfe, R.C. LeCraw, J.W. Nielsen, Magneto-optical properties of a green
room-temperature ferromagnet: FeBO₃, Appl. Phys. Lett., 14 (1969) 350-352. - [26] R.P. Rao, Tb³⁺ activated green phosphors for plasma display panel applications, J. Electrochem. Soc., 150 (2003) H165. - [27] R.P. Rao, D.J. Devine, RE-activated lanthanide phosphate phosphors for PDP applications, J. Lumin., 87 (2000) 1260-1263. - [28] R.P. Rao, D.J. Devine, Method of making green emitting alkaline earth aluminate phosphor for VUV excited light emitting device, US Patents, 2002. - [29] L. Zhang, C. Pédrini, C. Madej, C. Dujardin, J.C. Gcon, B. Moine, I. Kamenskikh, A. Belsky, D.A. Shaw, M.A. MacDonald, P. Mesnard, C. Fouassier, J.C. Van't Spijker, C.W.E. Van Eijk, Fast fluorescence and scintillation properties of cerium and praseodymium doped lutetium orthoborates, Radiat Eff. Defects Solids, 150 (1999) 47-52. - [30] G. Aka, E. Reino, P. Loiseau, D. Vivien, B. Ferrand, L. Fulbert, D. Pelenc, G. Lucas-Leclin, P. Georges, Ca₄REO(BO₃)₃ crystals for green and blue microchip laser generation: from crystal growth to laser and nonlinear optical properties, Opt. Mater., 26 (**2004**) 431-436. - [31] G. Wang, J. Lu, D. Cui, Z. Xu, Y. Wu, P. Fu, X. Guan, C. Chen, Efficient second harmonic generation in a new nonlinear La₂CaB₁₀O₁₉ crystal, Opt. Commun., 209 (**2002**) 481-484. - [32] N.I. Leonyuk, Half a century of progress in crystal growth of multifunctional borates RAl₃(BO₃)₄ (R=Y, Pr, Sm-Lu), J. Cryst. Growth, 476 (2017) 69-77. - [33] L. Gheorghe, M. Greculeasa, A. Broasca, F. Voicu, G. Stanciu, K.N. Belikov, E.Y. Bryleva, O. Gaiduk, Incongruent Melting La_xY_ySc_{4-x-y}(BO₃)₄: LYSB Nonlinear Optical Crystal Grown by the Czochralski Method, ACS Appl. Mater. Interfaces, 11 (**2019**) 20987-20994. - [34] P. Dekker, J.M. Dawes, J.A. Piper, Y. Liu, J. Wang, 1.1 W CW self-frequency-doubled diode-pumped Yb:YAl₃(BO₃)₄ laser, Opt. Commun., 195 (**2001**) 431-436. - [35] C.W.E. van Eijk, Inorganic scintillators for thermal neutron detection, Radiat. Meas., 38 (2004) 337-342. - [36] Z. Fu, S. Pan, F. Yang, S. Gu, X. Lei, Y. Heng, G. Ren, M. Qi, Neutron detection properties of Li₆Y(BO₃)₃:Ce crystal, Radiat. Meas., 72 (**2015**) 39-43. - [37] J. Yin, J. Zhang, J. Wang, F. Du, R. Li, S. Pan, J. Pan, Growth and scintillation properties of Ce:Li₆Y(BO₃)₃ crystal enriched with ¹⁰B isotopes, Radiat. Meas., 113 (**2018**) 20-24. - [38] W.W. Zhou, R.Z. Zhuang, W. Zhao, G.F. Wang, L.Z. Zhang, J.G. Ma, X. Bao, F.W. Wang, Y.H. Chen, Second harmonic generation in Na₃Gd₂(BO₃)₃ crystals, Cryst. Res. Technol., 46 (2011) 926-930. - [39] K. Li, G. Zhang, S. Guo, X. Zhang, R. He, J. Zhang, Z. Lin, Y. Wu, Linear and nonlinear optical properties of Na₃La₂(BO₃)₃ crystal, Opt. Laser Technol., 54 (**2013**) 407-412. - [40] A.H. Reshak, S. Auluck, I.V. Kityk, Optical susceptibilities of Na₃La₉O₃(BO₃)₈, ternary oxyborate nonlinear single crystal: theory and experiment, J. Phys.: Condens. Matter, 20 (**2008**) 145209. - [41] M. Mutailipu, Z. Xie, X. Su, M. Zhang, Y. Wang, Z. Yang, M.R.S.A. Janjua, S. Pan, Chemical Cosubstitution-Oriented Design of Rare-Earth Borates as Potential Ultraviolet Nonlinear Optical Materials, J. Am. Chem. Soc., 139 (2017) 18397-18405. - [42] B. Han, B. Liu, J. Du, Y. Dai, J. Zhang, H. Shi, K₃YB₆O₁₂:Ce³⁺,Tb³⁺: A near-ultraviolet-excitable emission-tunable phosphor for white light-emitting diodes, Opt. Laser Technol., 113 (2019) 211-216. - [43] Y. Fu, Z. Zhang, F. Zhang, C. Li, B. Liu, G. Li, Electronic structure, energy transfer mechanism and thermal quenching behavior of K₃YB₆O₁₂:Dy³⁺, Eu³⁺ phosphor, Opt. Mater., 99 (**2020**) 109519. - [44] I.V.B. Maggay, P.-C. Lin, W.-R. Liu, Investigation of luminescence properties and the energy transfer mechanism of Li₆Lu(BO₃)₃:Ce³⁺, Tb³⁺ green-emitting phosphors, RSC Adv., 5 (2015) 5591-5597. - [45] F. Shan, L. Kang, G. Zhang, J. Yao, Z. Lin, M. Xia, X. Zhang, Y. Fu, Y. Wu, Na₃Y₃(BO₃)₄: a new noncentrosymmetric borate with an open-framework structure, Dalton Trans., 45 (**2016**) 7205-7208. - [46] R.K. Li, C.C. Wu, M.J. Xia, LiCaTb₅(BO₃)₆: A new magneto-optical crystal promising as Faraday rotator, Opt. Mater., 62 (**2016**) 452-457. - [47] R. Li, Enhancing the Magnetocaloric Effect of a Paramagnet to above Liquid Hydrogen Temperature, Energy Technol., 7 (2019) 1801070. - [48] M. Xia, S. Shen, J. Lu, Y. Sun, R. Li, K₃Li₃Gd₇(BO₃)₉: A New Gadolinium-Rich Orthoborate for Cryogenic Magnetic Cooling, Chem. Eur. J., 24 (**2018**) 3147-3150. - [49] M.B. Sanders, F.A. Cevallos, R.J. Cava, Magnetism in the KBaRE(BO₃)₂ (RE = Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) series: materials with a triangular rare earth lattice, Mater. Res. Express, 4 (2017) 036102. - [50] S. Guo, T. Kong, W. Xie, L. Nguyen, K. Stolze, F.A. Cevallos, R.J. Cava, Triangular Rare-Earth Lattice Materials RbBaR(BO₃)₂ (R = Y, Gd–Yb) and Comparison to the KBaR(BO₃)₂ Analogs, Inorg. Chem., 58 (**2019**) 3308-3315. - [51] G.K. Abdullaev, K.S. Mamedov, Crystal structure of double ortho-borate of lithium and ytterbium Li₆Yb(BO₃)₃, Kristallografiya, 22 (**1977**) 389-392. - [52] G.K. Abdullaev, K.S. Mamedov, P.F. Rzazade, S.A. Guseinova, G.G. Dzhafarov, Synthesis and x-ray-diffraction study of double orthoborate crystals of lithium and holmium, Zh. Neorg. Khim., 22 (1977) 3239-3242. - [53] Y.F. Lou, W.Y. Wang, G.M. Cai, Y.P. Sun, C. Wang, Crystal structure determination of new compounds Li₆MB₃O₉ (M=Nd, Sm, Eu, Tm, Er), Powder Diffr., 23 (**2008**) 3-9. - [54] H. Chen, P. Loiseau, G. Aka, B. Baptiste, P. Veber, Crystal Growth and Characterization of Terbium-Based Borate Crystals of Sr₃Tb(BO₃)₃, Li₆Tb(BO₃)₃, and TbCa₄O(BO₃)₃: Color Centers, Spectroscopic Properties, and Optical Gain, Cryst. Growth Des., 20 (2020) 1905-1919. - [55] Y. Huang, C. Tu, Z. Luo, G. Chen, Spectra and intensity parameters of Li₆Y(BO₃)₃:Nd³⁺ laser crystal, Opt. Commun., 92 (**1992**) 57-60. - [56] J. Sablayrolles, V. Jubera, J.-P. Chaminade, I. Manek-Hönninger, S. Murugan, T. Cardinal, R. Olazcuaga, A. Garcia, F. Salin, Crystal growth, luminescent and lasing properties of the ytterbium doped Li₆Y(BO₃)₃ compound, Opt. Mater., 27 (**2005**) 1681-1685. - [57] J.-P. Chaminade, P. Gravereau, V. Jubera, C. Fouassier, A New Family of Lithium Rare-Earth Oxyborates, LiLn₆O₅(BO₃)₃ (Ln=Pr-Tm): Crystal Structure of the Gadolinium Phase LiGd₆O₅(BO₃)₃, J. Solid State Chem., 146 (**1999**) 189-196. - [58] J.H. Gao, Crystal structure of lithium yttrium borate LiY₆O₅(BO₃)₃, Chin. J. Struct. Chem., 25 (**2006**) 1175-1178. - [59] V. Jubera, P. Veber, M. Chavoutier, A. Garcia, F. Adamietz, V. Rodriguez, J.-P. Chaminade, M. Velázquez, Crystal growth and optical characterizations of Yb³⁺-doped LiGd₆O₅(BO₃)₃ single crystal: a new promising laser material, CrystEngComm, 12 (**2010**) 355-357. - [60] Q. Wen, Z. Xiang, X. Gao, X. Yang, S. Xiao, Luminescence properties of LiY₆O₅(BO₃)₃:Eu³⁺/Sm³⁺ phosphor, Mater Sci Eng, B, 197 (**2015**) 82-86. - [61] V. Jubera, P. Gravereau, J.P. Chaminade, Crystal structure of the new borate Li₃Gd(BO₃)₂: Comparison with the homologous Na₃Ln(BO₃)₂ (Ln: La, Nd) compounds, Solid State Sci., 3 (2001) 469-475. - [62] S. Bräuchle, H. Huppertz, Synthesis and structural characterization of Li₃Y(BO₃)₂, Z. Naturforsch., B, 72 (**2017**) 153-158. - [63] J. Mascetti, M. Vlasse, C. Fouassier, The crystal chemistry of the new rare-earth sodium borates $Na_3Ln(BO_3)_2$ (Ln = La, Nd), J. Solid State Chem., 39 (1981) 288-293. - [64] S. Asiri Naidu, S. Boudin, U.V. Varadaraju, B. Raveau, Influence of structural distortions upon photoluminescence properties of Eu³⁺ and Tb³⁺ activated Na₃Ln(BO₃)₂ (Ln=Y, Gd) borates, J. Solid State Chem., 190 (**2012**) 186-190. - [65] Z.X. Wang, H.K. Li, G.M. Cai, Z.P. Jin, Synthesis, crystal structure, and thermal stability of new borates Na₃REB₂O₆ (RE = Pr, Sm, Eu), Powder Diffr., 31 (**2016**) 110-117. - [66] D. Zhao, F.X. Ma, C.K. Nie, J. Wang, L. Zhang, Y.C. Fan, Structure Determination and Luminescent Property Studies of the Single Crystal Na₃Sm(BO₃)₂, Crystals, 7 (2017). - [67] J.H. Gao, R.K. Li, Potassium rich rare earth (RE) borates K₃RE(BO₃)₂, Solid State Sci., 10 (**2008**) 26-30. - [68] Y. Gao, C. Yin, P. Jiang, W. Gao, R. Cong, T. Yang, Synthesis, crystal structure of LiCaRE₅(BO₃)₆ (RE = Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) and Eu³⁺ luminescence in LiCaRE₅(BO₃)₆ (RE = Gd, Y, Lu), J. Solid State Chem., 293 (**2021**) 121821. - [69] G.K. Abdullaev, K.S. Mamedov, I.R. Amiraslanov, A.I. Magerramov, Crystal-structure of lithium praseodymium orthoborate Li₃Pr₂(BO₃)₃, J. Struct. Chem., 18 (**1977**) 331-333. - [70] S.A. Gamidova, Triangulation in the Li₂O-Ln₂O₃-B₂O₃ (Ln = Nd, Eu, Dy, Yb, and Y) systems and the melting character of ternary compounds, Russ. J. Inorg. Chem., 54 (**2009**) 141-144. - [71] J. Mascetti, C. Fouassier, P. Hagenmuller, Concentration quenching of the Nd³⁺ emission in alkali rare earth borates, J. Solid State Chem., 50 (1983) 204-212. - [72] G. Zhang, Y. Wu, P. Fu, G. Wang, S. Pan, C. Chen, A New Nonlinear Optical Borate Crystal Na₃La₂(BO₃)₃, Chem. Lett., 30 (2001) 456-457. - [73] G. Zhang, Y. Wu, P. Fu, G. Wang, H. Liu, G. Fan, C. Chen, A new sodium samarium borate Na₃Sm₂(BO₃)₃, J. Phys. Chem. Solids, 63 (**2002**) 145-149. - [74] Z.H. Cui, W. Liu, L.Z. Zhang, F.Y. Guo, C.C. Huang, J.Z. Chen, Crystal Structure and Properties of a Sodium Terbium Borate Na_{2.67}Tb_{2.11}B₃O₉, Chin. J. Struct. Chem., 31 (**2012**) 1823-1828. - [75] Q. Zeng, R.K. Li, Crystals Structure of (K,Na)₃La₂(BO₃)₃ Solid Solution System, Rengong Jingti Xuebao, 42 (**2013**) 815-818. - [76] J.H. Gao, R.K. Li, Rb₃Y₂(BO₃)₃ with a noncentrosymmetric structure, Acta Crystallogr., Sect. C, 63 (**2007**) I112-I114. - [77] A.K. Subanakov, E.V. Kovtunets, B.G. Bazarov, S.G. Dorzhieva, J.G. Bazarova, New double holmium borates: Rb₃HoB₆O₁₂ and Rb₃Ho₂B₃O₉, Solid State Sci., 105 (**2020**) 106231. - [78] Y. Wu, G. Zhang, P. Fu, C. Chen, Nonlinear optical crystals of compound Na₃La₉B₈O₂₇ and producing method and uses thereof, US Patents, **2005**. -
[79] P. Gravereau, J.-P. Chaminade, S. Pechev, V. Nikolov, D. Ivanova, P. Peshev, Na₃La₉O₃(BO₃)₈, a new oxyborate in the ternary system Na₂O-La₂O₃-B₂O₃: preparation and crystal structure, Solid State Sci., 4 (**2002**) 993-998. - [80] F. Shan, M. Xia, G. Zhang, J. Yao, X. Zhang, T. Xu, Y. Wu, Growth, structure, and optical properties of a self-activated crystal: Na3Nd₉O₃(BO₃)₈, Solid State Sci., 41 (**2015**) 31-35. - [81] S. Zhao, G. Zhang, J. Yao, Y. Wu, K₃YB₆O₁₂: A new nonlinear optical crystal with a short UV cutoff edge, Mater. Res. Bull., 47 (**2012**) 3810-3813. - [82] K. Feng, W. Yin, W. Hao, J. Yao, Y. Wu, A novel UV nonlinear optical crystal material: K₂₁Yb₈B₄₅O₉₀, CrystEngComm, 15 (**2013**) 5064-5069. - [83] Z. Jia, Q. Zeng, P. Gong, Y. Dong, X. Zhang, B. Xin, Z. Lin, M. Xia, Nonlinear-Optical Crystal Rb₃YB₆O₁₂ with Condensed B₅O₁₀ Blocks That Exhibits an Intriguing Structural Arrangement and a Short Ultraviolet Absorption Edge, Inorg. Chem., 59 (**2020**) 13029-13033. [84] V.V. Atuchin, A.K. Subanakov, A.S. Aleksandrovsky, B.G. Bazarov, J.G. Bazarova, S.G. Dorzhieva, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, A.M. Pugachev, Y.L. Tushinova, A.P. Yelisseyev, Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb₃NdB₆O₁₂, Adv. Powder - [85] V.V. Atuchin, A.K. Subanakov, A.S. Aleksandrovsky, B.G. Bazarov, J.G. Bazarova, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, S.Y. Stefanovich, Structural and spectroscopic properties of new noncentrosymmetric self-activated borate Rb₃EuB₆O₁₂ with B₅O₁₀ units, Mater. Des., 140 (**2018**) 488-494. Technol., 28 (2017) 1309-1315. - [86] Z. Xie, Y. Wang, S. Cheng, G. Han, Z. Yang, S. Pan, Synthesis, characterization, and theoretical analysis of three new nonlinear optical materials K₇MRE₂B₁₅O₃₀ (M= Ca and Ba, RE= La and Bi), Sci. China Mater., 62 (**2019**) 1151-1161. - [87] Z. Xie, M. Mutailipu, G. He, G. Han, Y. Wang, Z. Yang, M. Zhang, S. Pan, A Series of Rare-Earth Borates K₇MRE₂B₁₅O₃₀ (M = Zn, Cd, Pb; RE = Sc, Y, Gd, Lu) with Large Second Harmonic Generation Responses, Chem. Mater., 30 (**2018**) 2414-2423. - [88] Y. Li, F. Liang, H. Song, W. Liu, Z. Lin, G. Zhang, Y. Wu, Rb₇SrY₂(B₅O₁₀)₃: A Rare-Earth Pentaborate with Moderate Second-Harmonic Response and Interesting Phase-Matching Behavior, Inorg. Chem., 58 (**2019**) 8943-8947. - [89] W. Liu, X. Liu, J. Shen, Y. Li, H. Song, J. Feng, Z. Lin, G. Zhang, A new non-centrosymmetric Gd-based borate crystal Rb₇SrGd₂(B₅O₁₀)₃: growth, structure, and nonlinear optical and magnetic properties, Dalton Trans., 49 (**2020**) 9355-9361. - [90] J. Feng, X. Xu, C.-L. Hu, J.-G. Mao, $K_6ACaSc_2(B_5O_{10})_3$ (A = Li, Na, Li0.7Na0.3): Nonlinear-Optical Materials with Short UV Cutoff Edges, Inorg. Chem., 58 (2019) 2833-2839. - [91] S. Zhao, G. Zhang, J. Yao, Y. Wu, K₆Li₃Sc₂B₁₅O₃₀: A new nonlinear optical crystal with a short absorption edge, CrystEngComm, 14 (**2012**) 5209-5214. - [92] J. Gao, L. Song, X. Hu, D. Zhang, A buetschliite-type rare-earth borate, KBaY(BO₃)₂, Solid State Sci., 13 (**2011**) 115-119. - [93] A. Pabst, Synthesis, properties, and structure of K₂Ca(CO₃)₂, buetschliite, Am. Mineral., 59 (1974) 353-358. - [94] J.A.M. Paddison, M. Daum, Z. Dun, G. Ehlers, Y. Liu, Matthew B. Stone, H. Zhou, M. Mourigal, Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO₄, Nat. Phys., 13 (2017) 117-122. - [95] S. Guo, A. Ghasemi, C.L. Broholm, R.J. Cava, Magnetism on ideal triangular lattices in NaBaYb(BO₃)₂, Phys. Rev. Mater., 3 (2019) 094404. - [96] S. Guo, T. Kong, F.A. Cevallos, K. Stolze, R.J. Cava, Crystal growth, crystal structure and anisotropic magnetic properties of KBaR(BO₃)₂ (R = Y, Gd, Tb, Dy, Ho, Tm, Yb and Lu) triangular lattice materials, J. Magn. Magn. Mater., 472 (**2019**) 104-110. - [97] A.E. Kokh, N.G. Kononova, V.S. Shevchenko, Y.V. Seryotkin, A.K. Bolatov, K.A. Abdullin, B.M. Uralbekov, M. Burkitbayev, Syntheses, crystal structure and luminescence properties of the novel isostructural KSrR(BO₃)₂ with R = Y, Yb, Tb, J. Alloys Compd., 711 (2017) 440-445. - [98] A.B. Kuznetsov, K.A. Kokh, N.G. Kononova, V.S. Shevchenko, E.V. Kaneva, B. Uralbekov, V.A. Svetlichnyi, A.E. Kokh, Synthesis and growth of new rare earth borates KCaR(BO₃)₂ (R= La, Pr and Nd), J. Solid State Chem., 282 (**2020**) 121091. - [99] P. Chen, M. Xia, R. Li, Mixed Alkali Neodymium Orthoborates: $K_9Li_3Nd_3(BO_3)_7$ and $A_2LiNd(BO_3)_2$ (A = Rb, Cs), Z. Anorg. Allg. Chem., 642 (**2016**) 424-430. - [100] S. Bräuchle, H. Huppertz, Synthesis and structural characterization of Li₃K₃Y₇(BO₃)₉, J. Solid State Chem., 253 (**2017**) 242-248. - [101] V. Jubera, P. Gravereau, J.-P. Chaminade, C. Fouassier, A New Oxyborate in the Ternary Phase Diagrams Li₂O–Ln₂O₃–B₂O₃: Li₂Ln₅O₄(BO₃)₃ (Ln=Yb, Lu): Crystal Structure of the Ytterbium Phase, J. Solid State Chem., 156 (**2001**) 161-167. - [102] G. Corbel, M. Leblanc, E. Antic-Fidancev, M. Lemaître-Blaise, Crystal Structure of Sodium Rare Earth Oxyborates Na₂Ln₂(BO₃)₂O (Ln=Sm, Eu, and Gd) and Optical Analysis of Na₂Gd₂(BO₃)₂O:Eu³⁺, J. Solid State Chem., 144 (**1999**) 35-44. - [103] G. Heymann, K. Beyer, H. Huppertz, High-Temperature Synthesis, Crystal Structure, and Properties of the New Sodium Rare-Earth Oxide Borates Na₂Ln₂(BO₃)₂O (Ln: Dy, Ho), Z. Naturforsch., B: Chem. Sci., 50 (**2004**) 11-12. - [104] P. Peshev, S. Pechev, V. Nikolov, P. Gravereau, J.P. Chaminade, D. Binev, D. Ivanova, Studies on some ternary oxyborates of the Na₂O–Me₂O₃–B₂O₃ (Me=rare earth or aluminum) systems: Synthesis, structure and crystal growth, J. Solid State Chem., 179 (2006) 2834-2849. - [105] Z. Jia, M. Xia, Congruent melt terbium-rich borate Na₂Tb₂B₂O₇: Synthesis, crystal structure, optical and magnetic properties, J. Alloys Compd., 743 (2018) 537-542. - [106] D. Zhao, Y.-N. Li, Y.-P. Fan, B.-Z. Liu, S.-R. Zhang, R.-J. Zhang, Crystal structure, theoretical studies and luminescent properties of a new borate Na₃GdB₈O₁₅ with one-dimensional broad-banded anionic framework, Dalton Trans., 49 (**2020**) 13167-13175. - [107] J.H. Gao, R.K. Li, Preparation, structure and luminescent properties of a new potassium yttrium borate K₃Y₃(BO₃)₄, Mater. Res. Bull., 43 (**2008**) 882-888. - [108] Q.D. Zeng, R.K. Li, A new potassium rare earth oxyborate K₂La₂(BO₃)₂O, Solid State Sci., 12 (**2010**) 2144-2147. - [109] D. Zhao, F.-X. Ma, Z.-Q. Wu, L. Zhang, W. Wei, J. Yang, R.-H. Zhang, P.-F. Chen, S.-X. Wu, Synthesis, crystal structure and characterizations of a new red phosphor K₃EuB₆O₁₂, Mater. Chem. Phys., 182 (**2016**) 231-236. - [110] D. Zhao, F.-X. Ma, R.-J. Zhang, W. Wei, J. Yang, Y.-J. Li, A new rare-earth borate K₃LuB₆O₁₂: crystal and electronic structure, and luminescent properties activated by Eu³⁺, J. Mater. Sci.: Mater. Electron., 28 (**2017**) 129-136. - [111] D. Zhao, F.-X. Ma, R.-J. Zhang, M. Huang, P.-F. Chen, R.-H. Zhang, W. Wei, Substitution disorder and photoluminescent property of a new rare-earth borate: K₃TbB₆O₁₂, Z. Kristallogr. Cryst. Mater., 231 (**2016**) 525-530. - [112] J.H. Gao, M.S. Zheng, Synthesis and Crystal Structure of a Rubidium Lanthanum Borate Rb₃La₃(BO₃)₄, Chin. J. Struct. Chem., 28 (**2009**) 82-86. - [113] S. Bräuchle, M. Seibald, H. Huppertz, Synthesis and structural characterization of Li₃K₃Eu₇(BO₃)₉, Z. Naturforsch., B: Chem. Sci., 72 (**2017**) 959-965. - [114] P.Y. Chen, G. Wang, Syntheses, structure determination and characterization of two novel non-centrosymmetric mixed alkali rare-earth orthoborates: K₃Li₃RE₇(BO₃)₉ (RE=Dy, Tb), Solid State Sci., 108 (**2020**) 106442. - [115] R. Ma, Y. Yang, C. Hu, X. Dong, Z. Yang, S. Pan, LiCs₂La(BO₃)₂ and Li₃K₉La₃(BO₃)₇: new mixed alkali metal lanthanum borates with three-dimensional open frameworks and short cut-off edges, Dalton Trans., 47 (**2018**) 3512-3520. - [116] Z. Jia, D. Wang, Q. Huang, B. Xu, X. Zhang, M. Xia, Synthesis, single crystal structure, optical, and magnetic properties of mixed-alkali-metal terbium borate Rb₂LiTbB₂O₆, J. Mater. Sci.: Mater. Electron., 31 (**2020**) 6288-6294. - [117] M.J. Xia, R.K. Li, A new quaternary rare earth borate, CsLi₂Gd₄(BO₃)₅, Acta Crystallogr., Sect. E, 63 (**2007**) I173-U160. - [118] L. Pauling, The principles determining the structure of complex ionic crystals, J. Am. Chem. Soc., 51 (1929) 1010-1026. - [119] W. Schreyer, B. Stöckhert, High-pressure metamorphism in nature and experiment, Lithos, 41 (1997) 1-4. - [120] H. Emme, M. Valldor, R. Pöttgen, H. Huppertz, Associating Borate and Silicate Chemistry by Extreme Conditions: High-Pressure Synthesis, Crystal Structure, and Properties of the New Borates RE₃B₅O₁₂ (RE = Er–Lu), Chem. Mater., 17 (**2005**) 2707-2715. # **Chapter 2.** Experimental Methods ## 2.1 Synthesis of rare-earth borate compounds Series of samples were synthesized using the conventional solid-state reaction. This method ensures all the chemicals react together at the same time. Stoichiometric amounts of raw materials were thoroughly mixed in an agate mortar. The mixtures were put in covered platinum or corundum crucibles and typically heated in the Muffle furnaces (CAROLITE – CWF) with a heating rate (usually 100 K/ hour). The reaction temperatures and the dwelling time depend on the compounds themself. During the heating process, intermediate grindings are usually carried out to ensure the mixtures with a homogenous reaction. In this dissertation, single crystals were obtained by spontaneous crystallization using self-flux from the high-temperature solution. The educts are dissolved in platinum crucibles at high temperature, and then the melting slowly cools down (usually around 3K /hour) until the single crystal forms. #### 2.2 Single crystal X-ray diffractometer A Singe crystal with suitable size and high quality was picked under the microscope and was mounted on a glass fiber using epoxy glue, and then was placed on a KAPPA geometry goniometer. The single
crystal X-ray diffraction (SCXRD) data were recorded at room temperature on a D8 Venture diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) diffractometer equipped with the PHOTON 100 CMOS (Complementary Metal Oxide Sensor) detector where the active area is up to 100 cm². The Mo K α radiation was monochromated by the curved graphite single crystals with the wavelength of $\lambda\alpha_1 = 70.9300(3)$ pm and $\lambda\alpha_2 = 71.3574(2)$ pm, treated as average $\lambda = 71.073(1)$ pm. The collected data was integrated, merged, averaged to create an HKL file using APEX 3 software [1]. The numerical absorption correction was also carried out within APEX 3 software. Afterward, the HKL data file was transferred to the SHELXT software [2] where the structure was initially solved by the intrinsic phasing method. Finally, the crystal structure was refined by least-squares on the SHELXLE software [3]. All of the figures of the crystal structures displayed throughout the following chapters were created using the VESTA software program [4] (JP-Mineral, Tokyo, Japan). #### 2.3 Powder X-ray Diffraction X-ray powder-diffraction experiments were carried out using two instruments: - 1) on a Panalytical X'Pert Pro powder diffractometer in Bragg–Brentano geometry with $CuK\alpha_{1,2}$ ($\lambda_{k\alpha 1}=154.05929(5)$ pm, $\lambda_{k\alpha 2}=154.4414(2)$ pm) radiation. This instrument is equipped with a divergence slit (0.25°), an anti-scatter slit (0.5°), a soller slit (0.04 rad) and a mask (10 mm) in the primary beam. A soller slit (0.04 rad), a Ni-filter, and a X'Celerator detector system are used in the secondary beam. - 2) on a Bruker D8 Discover diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) in Bragg–Brentano geometry with $CuK_{\alpha1,2}$ ($\lambda_{k\alpha1}=154.0598(1)$ pm, $\lambda_{k\alpha2}=154.4439$ (1) pm) radiation. This instrument is equipped with a divergence slit (0.25°), a mask (10.5 mm), and an axial soller slit (2.5°) in the primary beam. A soller slit (2.5°), and an energy-sensitive detector (LynxEye XE) are provided in the secondary beam. The Rietveld refinement of all recorded PXRD data was performed using "DiffracPlus Topas 6 software" (Bruker AXS GmbH, Karlsruhe, Germany) [5]. The instrument profiles were determined by the fundamental parameter approach, where the fundamental parameters were fitted against a LaB₆ standard reference sample. #### 2.4 Bond Valence Sum (BVS) method Bond Valence Sum [6] is an approach based on Pauling second rule with summarizing a large number of crystal structures and considering the basic laws of structural chemistry. According to the Bond Valence theory, the valence of an atom is distributed on each bond it participates in, that is, each chemical bond has a bond valence S_i , which is determined by the bond length with the following equation $$S_i = exp \frac{(R_0 - R_i)}{B}$$ where R_i is the observed bond length, R_0 is an empirical parameter expressing the ideal bond length when the element has exactly valence, and B is an empirical constant, typically 37.0 pm. R_0 and B usually can be consulted in the relevant literature. Thereby, if the coordination environment of an atom is known, its Bond Valence Sum V can be calculated: $$V = \sum_{i} S_{i}$$ The *Bondstr* software within the FullProf suite was utilized to perform the BVS calculation throughout this dissertation. # 2.5 Scanning electron microscope (SEM) and Energy dispersive X-ray spectroscopy (EDX) Energy dispersive X-ray spectroscopy (EDX) data were collected in a JSM-6510 (JEOL Ltd, Tokyo, Japan) scanning electron microscope (SEM) equipped with an XFlash Detector 410-M with an accelerating voltage of 20 kV. Prior to the EDX measurement, the gold coating process was performed via argon plasma discharge to improve the samples' conductivity. The elemental analysis offered the constituent metals ratio in atom-% in the compound. The whole spectra were used for the quantification of the component elements. #### 2.6 UV/Vis diffuse reflectance spectroscopy Optical diffuse reflectance spectra were recorded at room temperature on a Shimadzu UV-2600 (Shimadzu, Kyoto, Japan) spectrophotometer equipped with an ISR-2600 plus two-detector integrating sphere (Pike Technologies, USA). Data were collected in the range of 200 to 850 nm with a step of 1 nm. A standard BaSO₄ sample was used as reference for the baseline correction. The diffuse reflectance spectra of samples were converted to F(R) spectra according to the Kubelka-Munk function [9]: $$F(R) = \frac{(1-R)^2}{2R}$$ where R is reflectance. The Tauc's method [10] followed by the Kubelka-Munk function are commonly used to estimate the bandgap energy by finding the intercept of the abscissa from the following relations: $$F(R)(h\nu) = B(h\nu - E_g)^n$$ Where h is the Planck's constant, v the frequency of light, E_g the bandgap in eV and n-the type of optical transition. That is, for n=2 and $\frac{1}{2}$ refers to direct and indirect transition, respectively. Recently, the derivation of absorption spectrum fitting (DASF) method [11] was proposed for thin films to calculate the bandgap energies without any presumption of the nature of the transition. Based on this, the DASF can also be expressed as follows proposed by Kirsch et al. [12, 13] for powder samples: $$\frac{dInF(R)}{dh\nu} = \frac{n}{h\nu - Eg}$$ Combining the results of the absolute bandgap width determination using the DASF method with the values for a direct or indirect transition obtained by the Tauc method, type, and width of the bandgap could be experimentally identified. #### 2.7 Fourier transform infrared (IR)-spectroscopy Fourier transform infrared (FTIR) spectra were recorded on a Bruker IFS66v/S spectrometer (Bruker Optik GmbH, Ettlingen, Germany) using the standard KBr method. Approx. 2 mg sample was mixed with 200 mg dried KBr and pressed at 100 kN, forming disks of 12 mm in diameter. The reference pellet consists of 200 mg dried KBr only. Measurements were carried out between 370 and 4000 cm⁻¹ with a total acquisition of 128 spectra, leading to a spectral resolution of 1.0 cm⁻¹. #### 2.8 Raman Spectroscopy Temperature-dependent Raman spectra were recorded on a LabRam ARAMIS (Horiba Jobin Yvon) Micro-Raman spectrometer equipped with a laser working at 785 nm and less than 5 mW. The use of a 50x long working distance objective (Olympus) with a numerical aperture of 0.55 provides a focus spot of about 2 µm diameter when closing the confocal hole to 200 μm. Raman spectra were collected in the range 85 cm⁻¹ to 1700 cm⁻¹ with a spectral resolution of approximately 1.2 cm-1 using a grating of 1800 grooves/mm and a thermoelectrically cooled CCD detector (Synapse, 1024 x 256 pixels). The spectral positions were calibrated against the Raman mode of Si before and after the sample measurements. The position of the Si peak was repeatedly measured against the Rayleigh line (0.0 cm-1) yielding a value of 520.7 ± 0.1 cm-1. The linearity of the spectrometer was calibrated against the emission lines of a neon lamp. For the low-temperature measurements, a pressed pellet of powder sample was placed on a Linkam cooling stage (THMS600) attached to a pump (LNP95 Cooling Pump) that provides a continuous flow of liquid nitrogen. The measurements were carried out between 78 K and 300 K. A ramp rate of 5 K/min and a holding time of 5 min were followed to properly equilibrate the temperature. For the spectrum at the ambient condition, the baseline was corrected and fitted with Pseudo-Voigt line shape. #### 2.9 Thermal analysis Simultaneous thermogravimetric analysis and differential scanning calorimetry (TGA/DSC) measurements were performed on a simultaneous TGA/DSC 3+ STAR e system (Mettler Toledo, Schwerzenbach, Switzerland). Approx. 10 mg of each polycrystalline samples were measured with a heating rate of 10 K/min and a continuous N₂ flow of 20 mL/min from room temperature to the destination temperature. Afterward, the data were normalized to the respective mass. An empty corundum crucible was used as a reference. A drift correction was applied based on the empty crucible data. ## 2.10 Magnetic susceptibility Temperature-dependent DC magnetic susceptibility measurements were carried out with a Magnetic Property Measurement System MPMS-XL7 (Quantum Design, San Diego, USA) using the field-cooling process in the range from 1.9 K to 300 K at a magnetic field of 0.01 T. Polycrystalline samples were sealed in a gel capsule and attached to a nonmagnetic sample holder. #### Reference - [1] Bruker: APEX3, SAINT, SADABS and XP. Bruker AXS Inc., Madison, Wisconsin, USA. - [2] G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, Acta Cryst. A71 (2015)., 3-8 - [3] C. B. Hübschle, G. M. Sheldrick and B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL, J. Appl. Cryst. 44, (2011), 1281-1284 - [4] K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst., 44 (2011), 1272-1276 - [5] A. A. Coelho, TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++, J. Appl. Cryst., 51 (2018), 210-218 - [6] Brown, I. D, The Chemical Bond in Inorganic Chemistry, (2002), the Oxford University Press. - [7] L. Pauling, The principles determining the structure of complex ionic crystals, J. Am. Chem. Soc., 51 (1929) 1010-1026. - [8] Rodriguez-Carvajal J, Roisnel T, WinPLOTR: A windows tool for powder diffraction pattern analysis, Mater. Sci. Forum, proceedings of the seventh European powder diffraction conference (2000), Barcelona, Spain, pp. 378–381. - [9] P. Kubelka, Ein Beitrag zur Optik der Farbanstriche, Z. Tech. Phys., 12 (1931) 593-601. - [10] J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, *Phys. Status Solidi B*, 15 (**1966**) 627-637. - [11] D. Souri, Z. E. Tahan, A new method
for the determination of optical band gap and the nature of optical transitions in semiconductors, *Appl. Phys. B*, 119 (**2015**) 273-279. - [12] A. Kirsch, M. M. Murshed, M. Schowalter, A. Rosenauer, T. M. Gesing, Nanoparticle precursor into polycrystalline Bi₂Fe₄O₉: an evolutionary investigation of structural, morphological, optical, and vibrational properties, *J. Phys. Chem. C*, 120 (**2016**) 18831-18840. - [13] A. Kirsch, M. M. Murshed, F. J. Litterst, T. M. Gesing, Structural, spectroscopic, and thermoanalytic studies on Bi₂Fe₄O₉: tunable properties driven by nano-and poly-crystalline states, *J. Phys. Chem. C*, 123 (**2019**) 3161-3171. #### Declaration on own contributions to the publications The results presented in this cumulative dissertation were obtained in collaborations with several other groups. In this section, I specifically announce my own contributions to the individual publications. The work presented in **chapter 3** is based on a previously published, <u>Pengyun Chen</u>, M. Mangir Murshed, Michael Fischer, Thomas Frederichs, Thorsten M. Gesing; KLi₂RE(BO₃)₂ (RE = Dy, Ho, Er, Tm, Yb, and Y): Structural, Spectroscopic, And Thermogravimetric Studies on a Series of Mixed-Alkali Rare-Earth Orthoborates, *Inorganic Chemistry*, *59*, (2020), 18214–18224 I conducted the following tasks: - Writing of the main manuscript - Generation of the figures - Solid state synthesis and single-crystal growth of the samples - Perform the measurements of powder and single-crystal XRD, SEM-EDX, UV/Vis, IR, Raman as well as their evaluation and interpretation including the single-crystal structure determination, and Rietveld refinements. - Evaluation of magnetic susceptibility data and their interpretation - DFT calculation of the electronic bandgap - Evaluation of DSC/TG data and their interpretation I did not conduct the following tasks: - DFT calculation of the vibrational properties (carried out by Dr. Michael Fischer) - Magnetic Measurements (done by Dr. Thomas Frederichs) - DSC/TG measurements (carried out by Julia Butzlaff) The work presented in **chapter 4** is based on a previously published, <u>Pengyun Chen</u>, M. M. Murshed, Thorsten. M. Gesing; Synthesis and crystal structures of novel alkali rare-earth orthoborates K₃RE₃(BO₃)₄ (RE = Pr, Nd, Sm - Lu), *Journal of Material Science*, 56 (2021) 3639-3652. I conducted the following tasks: - Writing of the main manuscript - Generation of the figures - Solid state synthesis and single-crystal growth of the samples - Perform the measurements of powder and single-crystal XRD, UV/Vis, IR, Raman as well as their evaluation and interpretation including the single-crystal structure determination, and Rietveld refinements. The work presented in **chapter 5** is based on a previously published, <u>Pengyun Chen</u>, M. M. Murshed, Thorsten. M. Gesing; Synthesis and characterization of K₂Pr₂O(BO₃)₂: structural, spectroscopic and thermogravimetric investigations of a novel potassium praseodymium oxoborate structure-type, *SN Applied Sciences 2*, (2020),747. #### I conducted the following tasks: - Writing of the main manuscript - Generation of the figures - Solid state synthesis and single-crystal growth of the sample - Perform the measurements of powder and single-crystal XRD, UV/Vis, IR, Raman as well as their evaluation and interpretation including the single-crystal structure determination, and Rietveld refinement. - Evaluation of magnetic susceptibility data and their interpretation - Evaluation of DSC/TG data and their interpretation #### I did not conduct the following tasks: - Magnetic Measurements (done by Dr. Thomas Frederichs) - DSC/TG measurement (carried out by Julia Butzlaff) # **Chapter 3** KLi₂RE(BO₃)₂ (RE = Dy, Ho, Er, Tm, Yb and Y): structural, spectroscopic and thermogravimetric studies on a series of mixed alkali rare-earth orthoborates Pengyun Chen¹, M. Mangir Murshed^{1,4*}, Michael Fischer^{2,4}, Thomas Frederichs³, Thorsten M. Gesing^{1,4} ¹University of Bremen, Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, Leobener Straße 7, D-28359 Bremen, Germany ²University of Bremen, Crystallography, Faculty of Geosciences, Klagenfurter Straße 2-4, D-28359 Bremen, Germany ³University of Bremen, Faculty of Geosciences, Klagenfurter Straße 2-4, D-28359 Bremen, Germany ⁴ University of Bremen, MAPEX Center for Materials and Processes, Bibliothekstraße 1, D-28359 Bremen, Germany *Corresponding author: e-mail address: murshed@uni-bremen.de, phone: +49 (0)421 218 63144, fax: +49 421 218 63145. #### **Abstract** We report a detailed structural, spectroscopic, and thermogravimetric investigation of a new series of mixed alkali rare-earth orthoborates $KLi_2RE(BO_3)_2$ (RE = Dy, Ho, Er, Tm, Yb and Y). Single crystals are directly prepared by a flux method, as well as mechanically separated from the polycrystalline powder obtained from the conventional solid-state reactions. All $KLi_2RE(BO_3)_2$ members are isotypic and crystallize in the space group $P2_1/n$. The novel structure type comprises of [RE₂(BO₃)₄O₄]¹⁴⁻ anionic clusters where the edge-sharing REO₇ pentagonal bipyramids are connected by BO₃ groups, and both K⁺ and Li⁺ cations are located at the interstitial voids of the 3D network. The metric parameters and crystal structural features obtained from single crystal data are in excellent agreement with those refined from powder data. The change of the lattice parameters and unit cell volumes can be explained in terms of lanthanide contraction effect. A comparison between KLi₂RE(BO₃)₂ and other rare-earth borates with similar chemical composition indicates that the sum of the ionic radii of the alkalimetal cations governs the symmetry of the crystals. Diffuse reflectance UV/Vis spectra display the characteristic absorption behaviors of the RE³⁺ cations and the fundamental absorption edge. Both Tauc's and derivation of absorption spectrum fitting (DASF) methods are used to identify the magnitude and the type of bandgap, respectively, which is compared with those obtained from density functional theory (DFT) calculations. The calculated phonon density of states and vibrational frequency at the gamma-point helps understand the Fourier-transform infrared and Raman spectra of KLi₂RE(BO₃)₂. The incongruent melting behavior and the thermal stability of each member of the KLi₂RE(BO₃)₂ series are also studied by thermogravimetric analyses. **Keywords**: Rare-earth borate, Crystal structure, Vibrational property, Optical property, Thermal stability, DFT #### 1. Introduction Inorganic metal borates are of research interests due to their structural diversity, interesting physico-chemical properties and wide applications especially in nonlinear optics (NLO). [1-3] To date, many acentric rare-earth borates such as La₂CaB₁₀O₁₉ [4], Na₃La₉O₃(BO₃)₈ [5], $YAl_3(BO_3)_4[6]$, $GdAl_3(BO_3)_4[7]$, $YCa_4O(BO_3)_3[8]$ and $K_7MRE_2(B_5O_{10})_3$ (M = Zn, Cd, Pb; RE = Sc, Y, Gd, Lu) [9-10] have been widely explored as NLO crystals due to their large optical second-harmonic (SHG) coefficients, suitable birefringence, high laser damage threshold, good crystal growth habit, mechanical strength and excellent hygroscopic resistance [4-12]. Moreover, rare-earth borates doped with other optically-active rare-earth cations (e.g., Er³⁺ and Yb³⁺) have as well received vast attentions as they are able to generate efficient radiation of solid-state lasers [13]. The continuous wave self-frequency-doubled green laser output powder up to 1.1 W has been achieved in Yb3+:YAl3(BO3)4 crystals [14]. Of notes, (Er³⁺,Yb³⁺):GdAl₃(BO₃)₄ and (Er³⁺,Yb³⁺):GdMgB₅O₁₀ crystals were demonstrated producing human eye-safe 1.5-µm laser and their slope efficiencies lie close to that of Er - Yb: commercial glass [15-16]. YGa₃(BO₃)₄ activated by Dy³⁺, Tm³⁺ [17] and Ca₄LaO(BO₃)₃ [18] co-doped with Dy3+ and Eu3+ are developed as single-phase phosphors, emitting white light under the excitation of near UV light. ⁶Li- and ¹⁰B-enriched Li₆RE(BO₃)₃ (RE = Gd, Lu, Y) crystals [19-20] were shown to be promising neutron scintillators because of their high yields for thermal neutron irradiation. Recently, rare-earth borates containing alkali elements have received increasing attractions for their diverse magnetic behaviors such as K₃Li₃Gd₇(BO₃)₉ [21] for cryogenic magnetic cooling, LiCaTb₅(BO₃)₆ [22] for Faraday rotation in the visible range, and ABaRE(BO₃)₂ (A = K, Rb, RE = Gd - Yb) [23-24] for the triangular rare-earth lattices. In search of novel phases in quasi-ternary alkali-rare-earth borate systems (A₂O-RE₂O₃-B₂O₃) compounds like Li₃RE(BO₃)₂ [25], LiRE₆O₅(BO₃)₃ [26], Na₃RE₂(BO₃)₃ [27], Na₃RE₉O₃(BO₃)₈ [11], K₂RE₂O(BO₃)₂ [28] and K₃RE(BO₃)₂ [29] were reported. In the present study, we particularly focus on mixed alkali rare-earth borates KLi₂RE(BO₃)₂. To the best of our knowledge, six structure types of rare-earth borates were reported in quasi-quaternary A₂O-Li₂O-RE₂O₃-B₂O₃ system: CsLi₂Gd₄(BO₃)₅ [30], K₆Li₃Sc₂B₁₅O₃₀ [31], A₂LiNd(BO₃)₂ (A = Rb, Cs) [32], K₉Li₃Nd₃(BO₃)₇ [32] and K₃Li₃Gd₇(BO₃)₉ [21]. The crystal structure of each compound of the series KLi₂RE(BO₃)₂ (RE = Dy, Ho, Er, Tm, Yb and Y) determined by single crystal X-ray diffraction data analysis is found to be a new structure type, which are distinctly different from other known compounds mentioned above. This study includes the syntheses and thermal stability of the KLi₂RE(BO₃)₂ compounds along with their detailed structural and spectroscopic features. ## 2. Experimental #### 2.1. Synthesis #### **Polycrystalline** Polycrystalline samples of KLi₂RE(BO₃)₂ (RE = Dy, Ho, Er, Tm, Yb and Y) were synthesized using conventional solid-state reaction methods. K₂CO₃, Li₂CO₃, RE₂O₃ (RE = Dy, Ho, Er, Tm, Yb, Y) and H₃BO₃ (analytical grade) were used as the starting materials. Stoichiometric mixtures of the educts were mixed, intensively ground in an agate mortar and loaded into alumina crucibles. The mixtures were preheated
at 773 K for 24 h to decompose the carbonates. The products were again thoroughly ground, followed by heating at 898 K. Afterward, the samples were held at this temperature for 72 hours with several intermediate grindings and mixings till the X-ray diffraction patterns did not change. Several micrometre-sized single crystals could be observed in the KLi₂Y(BO₃)₂, KLi₂Dy(BO₃)₂ and KLi₂Ho(BO₃)₂ polycrystalline samples under the microscope. **Table 1**: Crystallographic data and crystal structure refinements of $KLi_2RE(BO_3)_2$ (RE = Dy, Ho, Er, Tm, Yb and Y) | Formula | KLi ₂ Dy(BO ₃) ₂ | KLi ₂ Ho(BO ₃) ₂ | KLi ₂ Er(BO ₃) ₂ | KLi ₂ Tm(BO ₃) ₂ | KLi ₂ Yb(BO ₃) ₂ | KLi ₂ Y(BO ₃) ₂ | |--|--|--|--|--|--|--| | Weight | 333.1 | 335.53 | 337.86 | 339.53 | 343.64 | 259.51 | | Space group | $P2_1/n$ | $P2_1/n$ | $P2_1/n$ | $P2_1/n$ | $P2_1/n$ | $P2_1/n$ | | a /pm | 672.257(10) | 671.112(5) | 669.887(5) | 668.034(8) | 668.262(4) | 671.322(6) | | b/pm | 934.586(15) | 931.737(6) | 928.866(6) | 925.845(1) | 922.959(5) | 930.571(8) | | c/pm | 900.894(13) | 899.091(6) | 897.274(7) | 894.919(12) | 893.478(6) | 898.650(8) | | β / $^{\circ}$ | 102.8828(13) | 102.8257(6) | 102.7513(6) | 102.6660(10) | 102.5922(5) | 102.8351(8) | | $V \ / 10^6 \times pm^3$ | 551.768(15) | 548.174(7) | 544.546(7) | 540.034(10) | 537.822(6) | 547.371(9) | | Z | 4 | 4 | 4 | 4 | 4 | 4 | | Density /g cm ⁻ | 4.010(1) | 4.066(1) | 4.121(1) | 4.176(1) | 4.244(1) | 3.149(1) | | Temperature /K | 300(2) | 300(2) | 301(2) | 301(2) | 300(2) | 301(2) | | Wavelength /pm | 71.0747(6) | 71.0747(6) | 71.0747(6) | 71.0747(6) | 71.0747(6) | 71.0747(6) | | Crystal Size /mm ³ | 0.070 ×
0.086 ×
0.105 | 0.033 ×
0.071 ×
0.074 | 0.108 ×
0.122 ×
0.181 | 0.043 ×
0.054 ×
0.065 | 0.079 ×
0.123 ×
0.124 | 0.054 ×
0.061 ×
0.103 | | Absorption coefficient /mm ⁻¹ | 14.254 | 15.150 | 16.133 | 17.157 | 18.120 | 11.373 | | F(000) /e- | 596 | 600 | 604 | 608 | 612 | 488 | | θ range /° | 3.18 - 43.54 | 3.19 - 33.21 | 3.20 - 33.27 | 3.21 - 33.23 | 3.21 - 33.30 | 3.20 - 33.22 | | Range in hkl | $-11 \le h \le 12$,
$-18 \le k \le 17$,
$-17 \le l \le 15$ | $-10 \le h \le 10,$
$-14 \le k \le 14,$
$-13 \le l \le 13$ | $-10 \le h \le 10,$
$-14 \le k \le 14,$
$-13 \le l \le 13$ | $-10 \le h \le 10,$
$-14 \le k \le 14,$
$-13 \le l \le 13$ | $-10 \le h \le 10,$
$-14 \le k \le 14,$
$-13 \le l \le 13$ | $-10 \le h \le 10,$
$-14 \le k \le 14,$
$-13 \le l \le 12$ | | Reflections collected | 45894 | 19650 | 67326 | 31050 | 35921 | 18713 | | Data/
Restraints/
Parameters | 4106/0/110 | 2096/0/110 | 1676/0/110 | 2068/0/110 | 2072/0/110 | 2101/0/110 | | Goodness-of-
Fit on F ² | 1.048 | 1.053 | 1.074 | 1.042 | 1.054 | 1.005 | | R1 (all data)
wR2 (all data) | 0.0443
0.0348 | 0.0299
0.0319 | 0.0143
0.0246 | 0.0287
0.0310 | 0.0125
0.0321 | 0.0640
0.0559 | | CSD-number ^a | 1984916 | 1984917 | 1984918 | 1984919 | 1984920 | 1984921 | ^aFurther details can be obtained from Fachinformationszentrum Karlsruhe (Germany) referring to the respective CSD number. #### Single crystal Single crystals of $KLi_2RE(BO_3)_2$ (RE = Er, Tm and Yb) were obtained by high-temperature solution through spontaneous crystallization using the self-flux method. The mixture of samples with a molar ratio of $K_2CO_3: Li_2CO_3: RE_2O_3$ (RE = Er, and Yb): $H_3BO_3 = 3:3:1:1:8$ were transferred into platinum crucibles and heated to 1123 K with a heating rate of 100 K/h in a muffle furnace and hold at this temperature for 2 hours. Afterward, the melt was cooled down to 773 K at a cooling rate of 3 K/h followed by rapid cooling to room temperature by taking the crucible out of the furnace. Transparent millimetre sized reddish $KLi_2Er(BO_3)_2$ and colourless $KLi_2Tm(BO_3)_2$ and $KLi_2Yb(BO_3)_2$ single crystals were obtained. #### 2.2. X-ray diffraction #### Single crystal Selected single crystals of KLi₂RE(BO₃)₂ were mounted on a glass fibre with epoxy for structure determination. At ambient condition the single crystal X-ray diffraction were performed using a D8 Venture diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) devised with molybdenum radiation and a pyrolytic graphite monochromator, providing bichromatic MoK $\alpha_{1,2}$ ($\lambda_1 = 70.93171(4)$ pm, $\lambda_2 = 71.3607(12)$ pm treated as average λ = 71.073(1) pm). Numerical absorption corrections were carried out using the SCALE program in the APEX III software (Bruker AXS GmbH, Karlsruhe, Germany). The initial structures were solved by ShelxT [33] using the intrinsic phasing method, suggesting $P2_1/n$ space group. It is worth mentioning that space group $P2_1/n$ ($P2_1/c$, unique axis b, cell choice 2) [34] was chosen as the β -angle is closer to 90° compared to those values using other possible unique axis or cell choice settings for space group number 14. All associated coordinates were refined using full matrix least-squares techniques with anisotropic displacement parameters and the final least-squares refinement on Fo² with Fo² $\geq 2\sigma(\text{Fo}^2)$ data in the Shelxle packages [35]. The crystal structures of KLi₂RE(BO₃)₂ were further checked for missing symmetry elements using PLATON [36] and additional symmetries could not be found. Relevant crystallographic data, atomic coordinates, equivalent isotropic displacement parameters, bond valence sum (BVS) and select interatomic distances are listed in **Table 1**, **Table 2**, **Table 3** and **Table S1** (Supplementary Information), respectively. **Table 2**: Atomic coordinates, equivalent isotropic displacement parameters (U_{eq} / $10^4 \times pm^2$), and bond valence sum (BVS /v.u.) of KLi₂Ho(BO₃)₂. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor components. All atoms are in the 4e Wyckoff site. | Atoms | x | у | z | Ueq | BVS | |-------|------------|-------------|------------|-------------|----------| | Но | 0.53732(2) | 0.88288(2) | 0.34214(2) | 0.00490(4) | 3.18(1) | | K | 0.57442(9) | 0.37574(6) | 0.41377(7) | 0.01071(11) | 1.49(1) | | B1 | 0.6489(5) | 0.8589(3) | 0.7626(4) | 0.0071(5) | 2.87(2) | | B2 | 0.6314(4) | 0.6300(3) | 0.2151(3) | 0.0065(5) | 2.93(2) | | Lil | 0.4176(8) | 0.8833(6) | 0.9949(6) | 0.0132(10) | 1.14(1) | | Li2 | 0.4179(8) | 0.3848(6) | 0.0505(6) | 0.0145(10) | 0.94(1) | | O1 | 0.7233(3) | 0.72717(19) | 0.8172(2) | 0.0075(4) | -2.06(1) | | O2 | 0.6006(3) | 0.9643(2) | 0.8586(2) | 0.0083(4) | -2.04(1) | | О3 | 0.6021(3) | 0.8943(2) | 0.6075(2) | 0.0099(4) | -1.95(1) | | O4 | 0.6579(3) | 0.4983(2) | 0.1496(2) | 0.0078(4) | -2.06(1) | | O5 | 0.5740(3) | 0.7480(2) | 0.1239(2) | 0.0090(4) | -2.14(1) | | O6 | 0.6593(3) | 0.6505(2) | 0.3700(2) | 0.0090(4) | -2.20(1) | #### Powder X-ray powder diffraction (XRPD) pattern were recorded on a Panalytical X'Pert powder diffractometer (Panalytical, Almelo, The Netherlands) using Bragg-Brentano geometry with CuK $\alpha_{1,2}$ ($\lambda_{k\alpha 1}$ = 154.05929(5) pm, $\lambda_{k\alpha 2}$ = 154.4414(2) pm) radiation and an X'Cellerator detector system. Each measurement was carried out at ambient conditions in a range between 5° and 130° 2 θ with a step size of 0.0167° and a data collection time of 30 s/step. The fundamental parameter approach, where the fundamental parameters were fitted against a LaB₆ standard material, was applied for the Rietveld refinement using "DiffracPlus Topas 6" software (Bruker AXS GmbH, Karlsruhe, Germany). The starting lattice parameters and atomic coordinates were taken from the results of the single crystal structure determination. #### 2.3. UV/Vis diffuse reflectance spectroscopy UV/Vis diffuse reflectance spectra were recorded at room temperature on a Shimadzu UV-2600 (Shimadzu, Kyoto, Japan) spectrophotometer equipped with an ISR-2600 plus two-detector integrating sphere (Pike Technologies, USA). Data were collected in the range between 200 nm and 850 nm with a step size of 1 nm. Powder BaSO₄ sample was used as reference standard for baseline correction. The diffuse reflectance spectra of $KLi_2RE(BO_3)_2$ were converted to F(R) spectra using the following Kubelka-Munk expression [37]: $$F(R) = \frac{(1-R)^2}{2R}$$ (1) where *R* refers to reflectance. In the Tauc's method [38], the Kubelka-Munk function is commonly used to estimate the bandgap energy by using the intercept of the abscissa from the following relations: $$F(R)(h\nu) = B(h\nu - E_g)^n \quad (2)$$ Where h is the Planck's constant, v the frequency of light, E_g the bandgap [eV] and n-the type (direct or indirect) of optical transition. That is, for n = 2 and $\frac{1}{2}$ refers to direct and indirect transition, respectively. The derivation of absorption spectrum fitting (DASF) method [39] was proposed for the optical absorption spectra of thin films to calculate the bandgap energies. DASF offers peak-shape spectra, leading to a single bandgap value without any presumption of the nature of the transition. Recently, Kirsch et al. [40-41] proposed that the DASF can also be expressed as follows for powder samples: $$\frac{dInF(R)}{dhv} = \frac{n}{hv - Eg}$$ (3) Comparing the bandgap obtained from the DASF method with that of Tauc's direct or indirect transition, both the type and the width of the band gap can be better explained. #### 2.4. Infrared and Raman spectroscopy Fourier transform infrared (FTIR) spectra were recorded on a Bruker IFS66v/S spectrometer (Bruker Optik GmbH, Ettlingen, Germany). As a standard KBr procedure, 2 mg borate sample
was mixed with 200 mg dried KBr followed by exerting hydrostatic pressure of about 100 kN to make of pellet of 12 mm in diameter. Using the same procedure, the reference pellet comprises of 200 mg dried KBr only. FTIR spectra were collected in the mid-infrared range between 370 and 4000 cm⁻¹. A total of 128 acquisitions were counted, providing a spectral resolution of about 1.0 cm⁻¹. Since rare-earth cations are susceptible to photon induced 4f-electronic transitions, Raman spectra were measured at ambient condition using available three lasers of 532 nm, 633 nm and 785 nm. In this regard, the UV/Vis spectra (see below) helped to choose the laser wavelength to avoid possible fluorescence emissions from the 4f-4f transitions. That is, laser wavelength of 532 nm for KLi₂Dy(BO₃)₂, KLi₂Tm(BO₃)₂ and KLi₂Y(BO₃)₂, 633 nm for KLi₂Yb(BO₃)₂ and 785 nm for KLi₂Ho(BO₃)₂ and KLi₂Er(BO₃)₂ were chosen. Raman spectra were collected from 85 cm⁻¹ to 1700 cm⁻¹. The 50x objective, the moving grating of 1800 grooves/mm and a thermoelectrically cooled CCD detector (Synapse, 1024 × 256 pixels) provides the spectral resolution of approximately 1.1 cm⁻¹. The spectral positions were calibrated against the Raman mode of silicon before and after the sample measurements. #### 2.5. Scanning electron microscope investigations Energy dispersive X-ray spectroscopy (EDX) data were collected on a JSM-6510 (JEOL Ltd, Tokyo, Japan) scanning electron microscope (SEM) equipped with an XFlash Detector 410-M. Prior to the EDX measurement, the gold coating process was performed via argon plasma discharge to improve the samples' conductivity. The atomic ratio of K: RE for each KLi₂RE(BO₃)₂ analogue was analysed using measurements of three different single crystal each with an accelerating voltage of 20 kV. The individual result of the EDX measurements are displayed in **Table S2**. #### 2.6. Thermal analysis Simultaneous thermogravimetric analysis and differential scanning calorimetry (TGA/DSC) measurements were performed on a simultaneous TGA/DSC 3+ STAR e system (Mettler Toledo, Schwerzenbach, Switzerland). Approx. 10 mg of each polycrystalline samples of KLi₂RE(BO₃)₂ was measured with a heating rate of 10 K/min and a continuous N₂ low of 20 mL/min from 300 K to 1073 K. Afterward, the data were normalized to the respective mass. An empty corundum crucible served as reference, and a drift correction was applied based on the empty crucible data. #### 2.7. Magnetic susceptibility Temperature-dependent DC magnetic susceptibility measurements were carried out with a Magnetic Property Measurement System MPMS-XL7 (Quantum Design, San Diego, USA) using the field-cooling process in the range from 1.9 K to 300 K at a magnetic field of 0.01 T. Polycrystalline KLi₂Dy(BO₃)₂ (72.0 mg), KLi₂Ho(BO₃)₂ (41.1 mg), KLi₂Ho(BO₃)₂ (56.2 mg), KLi₂Tm(BO₃)₂ (55.6 mg) and KLi₂Yb(BO₃)₂ (46.0 mg) samples were sealed in a gel capsule and attached to a nonmagnetic sample holder. #### 2.8. Theoretical calculations To avoid the strongly correlated behavior of the f-elements, DFT calculations were performed for electronic and vibrational properties of the compound $KLi_2Y(BO_3)_2$. The crystallographic data of $KLi_2Y(BO_3)_2$ determined by single-crystal X-ray diffraction were used for the DFT calculations. The electronic band structure was calculated using the Quantum Espresso Burai1.3 software [42], which employs pseudopotentials to describe electron—ion interactions and represents electronic wave functions using a plane-wave basis set. The generalized gradient approximation (GGA) with the Perdew—Burke—Ernzerhof (PBE) functional was employed for the exchange—correlation potential [43]. The plane-wave energy cutoff was 676.9 eV using the projector augmented wave (PAW) pseudopotentials. The total energy and the force convergence thresholds were $1.0 \cdot 10^{-6}$ eV/atom and 0.5 eV/nm, respectively. A $5 \times 3 \times 3$ mesh of k-points was set to define the number of integration points in reciprocal space. The vibrational properties of the representative $KLi_2Y(BO_3)_2$ were also calculated using the plane-wave DFT code CASTEP [44]. The calculations used a plane-wave energy cutoff of 1200 eV and on-the-fly generated norm-conserving pseudo-potentials. The PBE for solids and surfaces (PBEsol) exchange-correlation functional was used [43] and a 3 × 2 × 2 mesh of k-points (three irreducible points) was employed in the sampling of the first Brillouin zone. The structure of $KLi_2Y(BO_3)_2$ was optimized, relaxing all atomic coordinates, but fixing the lattice parameters to the experimental values measured at 300 K. The convergence criteria for the total energy and the largest residual force were $1.0 \cdot 10^{-8}$ eV/atom and 0.01 eV/nm, respectively. Variational density functional perturbation theory [45] was used for the subsequent calculations of the phonon density of states (PDOS) and of the IR- and Raman-active modes (including intensities). These calculations used a $3 \times 2 \times 2$ mesh of q-points in reciprocal space. The total PDOS and the partial contribution of each non-equivalent atom were plotted using a smearing of 0.1 THz. # 3. Results and discussion ## 3.1. Crystal structure **Figure 1**: Crystal structure of $KLi_2Ho(BO_3)_2$, showing polyhedral structural units (a) $[Ho_2(BO_3)_4O_4]^{14}$ anionic clusters (b), 3D structure of $KLi_2Ho(BO_3)_2$ (c), view of the structure of $KLi_2Ho(BO_3)_2$ along the **b**-axis (d), and the infinite $[LiO_1O_{3/2}]^{\infty}$ in the **b**-direction (e). Both the single crystal diffraction data analysis and PXRD data Rietveld refinement results show that each member of the series KLi₂RE(BO₃)₂ (RE = Y, Dy, Ho, Er, Tm, Yb) crystallizes isotypically in the space group $P2_1/n$. As a representative member of the series we choose KLi₂Ho(BO₃)₂ to describe the detailed crystal structural features. The structure contains twelve crystallographic independent atoms in the asymmetric unit cell, located all at the 4e Wyckoff position (Tab. 2). HoO₇ pentagonal bipyramid, KO₈ dodecahedra, LiO₄ tetrahedra and trigonal planar BO₃ groups can be regarded as building units as shown in Figure 1. The mean B-O bond length of 138.8(4) pm and 138.0(3) pm, as given in **Table 3**, have been obtained from the isolated B(1)O₃ and B(2)O₃ groups, respectively. Both these values lie close to those of other alkali-metal rare-earth borate-containing isolated BO₃ groups, for instance, 137.4 pm in Li₃K₃Y₇(BO₃)₉ [46] and 137.6 pm in K₉Li₃Nd₃(BO₃)₇ [32]. The Ho³⁺ cations are found at the centroid of a slightly distorted pentagonal bipyramid, where the Ho-O bond distances vary from 229.8(2) pm to 238.8(2) pm with an average value of 233.1(2) pm; the values well fit for seven-coordinated Ho³⁺ cations [47-48]. Sharing the equatorial oxygen atoms two HoO₇ bipyramids are edge-shared and connected with four BO₃ groups, forming the [Ho₂(BO₃)₄O₄]¹⁴- anionic cluster which is regulated by the inversion centre (Fig. 1b). Each [Ho₂(BO₃)₄O₄]¹⁴⁻ anionic cluster is further bridged by eight neighbouring counterparts via corner-sharing four apical oxygen atoms (Fig. 1c and **1d)**. Hence, the 3D network of $KLi_2Ho(BO_3)_2$ is composed of $[Ho_2(BO_3)_4O_4]^{14}$ anionic cluster and interstitial K⁺ and Li⁺ cations. In the distorted KO₈ dodecahedron the interatomic distances of K-O range from 267.1(2) pm to 285.5(2) pm with a mean value of 276.3(2) pm, which is slightly shorter than 289.0 pm for the ideal K-O bond length. Bond valence sum (BVS) calculation performed in the BondSTR program within the scope of *FullProf* suite [49], gave a positive charge of 1.49(1) v.u. for K⁺, which is at least surprisingly high. **Table 3**. Interatomic bond distances/pm and the arithmetic mean in KLi₂Ho(BO₃)₂. | Bond | Bond dist. | Bond | Bond dist. | |--------|-------------------|--------|-------------------| | | B1O ₃ | | B2O ₃ | | B1-O1 | 137.4(3) | B2-O5 | 137.4(3) | | B1-O2 | 139.2(4) | B2-O6 | 137.7(4) | | B1-O3 | 139.9(4) | B2-O4 | 139.0(3) | | Mean | 138.8(4) | | 138.0(3) | | | HoO ₇ | | KO ₈ | | Но-О4 | 229.8(2) | K-O6 | 267.1(2) | | Но-Об | 230.9(2) | K-O1 | 271.7(2) | | Ho-O1 | 231.0(2) | K-O5 | 273.0(2) | | Но-О2 | 232.3(2) | K-O2 | 276.5(2) | | Но-О3 | 233.1(2) | K-O6 | 276.7(2) | | Но-О3 | 236.2(2) | K-O3 | 276.9(2) | | Но-О5 | 238.8(2) | K-O4 | 280.1(2) | | | | K-O1 | 285.5(2) | | Mean | 233.1(2) | | 276.3(2) | | | Li1O ₄ | | Li2O ₄ | | Li1-O5 | 187.0(6) | Li2-O4 | 196.7(6) | | Li1-O6 | 187.1(5) | Li2-O1 | 197.5(6) | | Li1-O2 | 195.9(6) | Li2-O5 | 200.8(6) | | Li1-O2 | 206.1(6) | Li2-O4 | 206.8(6) | | Mean | 194.0(6) | | 200.5(6) | The KO₈ dodecahedra can be regarded to serve as stitches to reinforce connection among [Ho₂(BO₃)₄O₄]¹⁴⁻ anionic clusters in the *ac*-plane. Both Li(1)⁺ and Li(2)⁺ are tetrahedrally coordinated with oxygen atoms. The Li(1)-O distances range from 187.0(6) pm to 206.1(6) pm with a mean value of 194.0(6) pm, while 196.7(6) pm to 206.1(6) pm with a mean value of 200.5(6) pm are found for the Li(2)-O distances. The BVS of lithium was found to be 1.14(1), and 0.94(1) v.u., respectively, for the Li(1)O₄ and Li(2)O₄ tetrahedra which are interlinked by both corner- and edge-sharing, building an infinite $[LiO_1O_{3/2}]^{\infty}$ chain parallel to the **b**-direction (**Fig. 1e**). The shortest observed Li-Li interatomic distance (Li(1)-Li(1)) in the $[\text{LiO}_1\text{O}_{3/2}]^{\infty}$ chain is 243(1) pm. Such a Li-Li distance is smaller than those in some well-known lithium ion solid-state electrolytes, for instance, 276.4(1) pm in anti-perovskite Li₃OCl [50], 252.4(1) pm in garnet-like Li₇La₃Zr₂O₁₂ [51], and 302.2(2) pm in NASICON-type Li_{1.4}Ti_{1.6}Al_{0.6}(PO₄)₃ [52]. The bond valence sums of the framework cations Ho, B(1), B(2) show 3.08(1), 2.87(2), and 2.93(2) v.u., respectively. The calculated structural BVS of the cations correspond well to their theoretical oxidation state except that the K⁺ cation is highly over-bonded. Although the K⁺
cation is shown with a large isotropic atomic displacement parameter, the substitutional or positional disorder at K⁺ cation can be thoroughly ruled out by the structure refinement and no significant electronic holes and peaks could be observed at the same time. The EDX (Tab. S2) shows the K: RE ratio close to 1:1 is in good agreement with the values obtained from the structure determination. Additional to the over-bonding of the K cations surprisingly short K-K distances of 307.25(9) pm are found for KLi₂Ho(BO₃)₂. While searching for comparable cases we found 9051 crystal structure reports in the ICSD data base (FIZ Karlsruhe, Germany) containing K and O. Out of these structures 37 are reported with K-K distances of less than 310 pm. Out of these 6 structures, KCrO₂ (304.3(1) pm, 1.56(1) v.u.) [53], KAlO₂ (304(17) pm, 1.4(2) v.u.) [54], KAuO₂ (300.5(1) pm, 1.44(1) v.u.) [55], KMo₄O₈ (296.4(9) pm, 1.47(2) v.u.) [56] K₂Mg₂Si₂O₇ (293.0(1) pm, 1.52(1) v.u.) [57] and KAlSi₃O₈ (272.3(1) pm, 1.58(6) v.u.) [58] provide at least one comparable BVS as calculated for the reported structures here. This did not really explain why the structures provide short K-K distances together with higher BVS, but shows that this phenomenon is not unique, although rare. Further detailed investigations should in future be carried out on these structures to probably find a common explanation. Figure 2: X-ray powder data Rietveld plots of KLi₂Ho(BO₃)₂. To cross-check the accuracy of the crystal structures obtained from X-ray single crystal data analysis complementary Rietveld refinements were performed on PXRD data of $KLi_2RE(BO_3)_2$. Figure 2 depicts a representative Rietveld plot of $KLi_2Ho(BO_3)_2$; the other Rietveld plots (RE = Dy, Er, Tm, Yb and Y) are shown in Figure S1 - S5. The evolution of the metric parameters obtained from the PXRD data Rietveld refinement are shown in Figure 3, which are in excellent agreement with those obtained from the single crystal structure determination (Tab. 1). The lanthanide contraction effect could be observed in the series of $KLi_2RE(BO_3)_2$. That is, the a-, b- and c-lattice parameters as well as the unit cell volumes decrease upon increasing the atomic numbers with smaller (decreasing) ionic radii. As a geometric consequence, the respective β -angle also contracts. **Figure 3:** Evolution of the metric parameters of KLi₂RE(BO₃)₂ (RE= Dy-Yb, and Y) with respect to the ionic radii of the rare-earth cation. Of notes, alike reported alkali rare-earth borates such as Li₃Sc(BO₃)₂ [59], Li₃Gd(BO₃)₂ [25], Na₃Gd(BO₃)₂ [60], K₃Sm(BO₃)₂ [29], K₃Y(BO₃)₂ [29], Rb₂LiNd(BO₃)₂ [32] and Cs₂LiNd(BO₃)₂ [32] the here reported KLi₂RE(BO₃)₂ phases also possess a "312" stoichiometric formulae where 3, 1, and 2 stands for the number of alkali elements, rare-earth elements and orthoborate groups, respectively. **Table S3** presents a comparative feature between KLi₂RE(BO₃)₂ and other "312" type rare-earth borates with respect to space group, unit cell dimension, sum of alkali-metal ionic radii, cationic coordination, and structural construction. To provide a more straightforward comparison, we transformed the space group settings of Li₃Gd(BO₃)₂ and Na₃Gd(BO₃)₂ from *P*2₁/*c* into *P*2₁/*n* taking a [1 0 1; 0 1 0; -1 0 0] transformation matrix using the *Jana2006* software [61]. The comparative view clearly reveals that KLi₂RE(BO₃)₂ comprises of a novel structural type although it crystallizes in the same *P*2₁/*n* space group as Li₃Sc(BO₃)₂, Li₃Gd(BO₃)₂ and Na₃Gd(BO₃)₂. The phases having average cationic radii of the alkalimetal smaller than 313 pm crystallizes monoclinically, while a larger value (> 313 pm) lead to orthorhombic phases (**Tab. S3**). #### 3.2. TGA/DSC investigation Figure 4: Differential scanning calorimetry (DSC) curves of KLi₂RE(BO₃)₂. All DSC curves contain pronounced endothermic peaks in the range from 945 K to 985 K, however, with no noticeable change of mass during the heating process, as shown in **Figure 4 and Figure S6**. Thermal decomposition starts at approximately 948 (1) K in KLi₂Dy(BO₃)₂ and at around 963(1) K in KLi₂Yb(BO₃)₂ and KLi₂Ho(BO₃)₂, whereas KLi₂Er(BO₃)₂, KLi₂Tm(BO₃)₂ and KLi₂Y(BO₃)₂ decompose unanimously at 982(1) K, indicating that the Er-, Tm-, Y-containing compounds are slightly more stable than Dy-, and Yb-containing analogues. X-ray diffraction patterns of the residuals after TGA/DSC (**Figure. S7**) reveal that the final residuals contain Li₆Ho(BO₃)₃ and some other unindexed compounds. Thermal analyses followed by X-ray diffraction suggests an incongruent nature of KLi₂Ho(BO₃)₂, indicating that a flux method would be necessary for the growth of bulk crystals. #### 3.3. UV/Vis spectra Beside the fundamental absorption edge, the UV/Vis spectra are dominated by characteristic electron transitions. According to the energy diagrams proposed by Dieke and Carnall [62, 63], the intra- (f-f) and inter-(f-d) orbital transitions of the RE³⁺ cations exhibit characteristic absorption peaks between 200 nm and 850 nm, shown in **Figure** 5 and **Figure S7 - S12**. KLi₂Dy(BO₃)₂ shows sharp absorption bands at 209(1) and 809(1) nm, which correspond to $4f^9 \rightarrow 4f^85d^1$ and $^6H_{15/2} \rightarrow ^6F_{5/2}$ 1094, respectively. KLi₂Ho(BO₃)₂ exhibits strong absorption bands at 361(1), 420(1), 448(1), 539(1) and 644(1) nm. KLi₂Er(BO₃)₂ also displays absorption bands at 255(1) 388(1), 489(1), 522(1), 652(1) and 800(1) nm. The absorption spectra of KLi₂Tm(BO₃)₂ emerges strong absorption bands at 262(1), 359(1), 686(1) and 791 nm. KLi₂Yb(BO₃)₂ and KLi₂Dy(BO₃)₂ do not contain any obvious absorption bands above 400 nm, which correspond well to their colourlessness in daylight. The characteristic electronic transition of RE³⁺ cations are labelled (**Fig. 5, Fig. S8 – S12**). To determine the type and width of the bandgap, a combination of Tauc and DASF method was used. The combined approach suggests that each member of the KLi₂RE(BO₃)₂ series exhibits direct transition with high bandgaps (insulator) of 5.85(1), 5.39(1), 5.37(1), 5.61(1), 5.08(1) and 5.76(1) eV for the Dy-, Ho-, Er-, Tm-, Yb- and Y- containing compound, respectively. These values are comparable to those of the other rare-earth sesquioxides and borates such as Y₂O₃ (5.6 eV) [64] and Na₃La₂(BO₃)₃ (5.82 eV) [65]. **Figure 5:** Kubelka-Munk transformed UV/Vis diffuse reflectance spectra of KLi₂Ho(BO₃)₂ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). #### 3.4. FTIR and Raman The measured FTIR and Raman spectra along with the fitted compound and component models are shown in **Figure 6**. Since the crystal structure of $KLi_2RE(BO_3)_2$ adopt $P2_1/n$ space group, factor group analysis predicts 156 vibrational modes at the zone center $(39A_g + 39A_u + 39B_g)$ + 39B_u), of which 75 modes (38A_u + 37B_u) are IR active, 78 modes (39A_g+39B_g) are Raman active and three modes are acoustic modes (A_u + 2B_u). The Raman spectra of KLi₂RE(BO₃)₂ are shown in Figure 6b. From the UV/Vis spectrum of KLi₂Er(BO₃)₂ (Fig. S9) the strong photoluminescence peaks of Er³⁺ hardly leaves any transparent (absorption) region to irradiate the sample with available lasers. Therefore, the Raman spectrum of KLi₂Er(BO₃)₂ under irradiation of the 785 nm laser contains several non-phononic peaks, originating from the photoluminescence of Er³⁺. For instance, the sharp bands centered at around 323 cm⁻¹ (805 nm in wavelength) could be attributed to ${}^4I_{9/2} \rightarrow {}^4I_{15/2}$ of Er³⁺ cation. The vibrational features of each KLi₂RE(BO₃)₂ sample looks similar with a slight global shift due to different metric parameters. The representative Raman spectrum of KLi₂Ho(BO₃)₂ at ambient condition could be fitted with 56 component peaks (Fig. 6d). Several intense bands below 600 cm⁻¹ can be ascribed to the bending and stretching vibrations associated with the heavy cations such as K-O and Ho-O bonds. The bands in the range of $600 - 700 \text{ cm}^{-1}$ and $700 - 800 \text{ cm}^{-1}$ correspond to v₄ and v₂ modes, respectively. The bands between 600 cm⁻¹ and 1600 cm⁻¹ owing to vibration of planar BO₃³- groups, can be classified into four types [46, 66]: (I) in-plane bending (v4; 600 - 700 cm⁻¹), (II) out-of-plane bending (v2; 750 cm⁻¹ - 770 cm⁻¹), (III) B-O symmetric stretching $(v1; \sim 905 \text{ cm}^{-1})$ and (IV) B-O asymmetric stretching (v3; 1000 cm⁻¹ and 1600 cm⁻¹). Clearly, the intense band at about 928 cm⁻¹ can be assigned to v₁ mode of BO₃ group, which is also a common feature to other rare-earth orthoborates such as Li₂Ca₅Tb(BO₃)₅ [67] and KCaLa(BO₃)₂ [68]. Alike Raman, the IR bands of KLi₂RE(BO₃)₂ (Fig. 6a) also show global shifts due to varying size of the RE-cations. The IR spectrum of KLi₂Ho(BO₃)₂ at ambient conditions requires 50 component peaks (Fig. 6b). The resolved frequencies between 400 cm⁻ ¹ and 600 cm⁻¹ can be compared to those of the RE-O vibrational bands [69] in some C-type [70] rare-earth sesquioxides. Clearly, the ν_2 and ν_3 modes are more intense than that of ν_1 . Group analysis of an ideal planar BO₃ group possesses D_{3h} symmetry, where v₂ and v₃ are IR active, whereas the v_1 is IR inactive. Therefore, the clear appearance of v_1 in the IR spectrum indicates that the BO₃ groups in some KLi₂RE(BO₃)₂ crystallites are distorted from an ideal symmetry, comparable to PbMBO₄ (M = Cr, Mn, Fe) phases [71] where the boron distance to the oxygen plain was evaluated by neutron diffraction data analysis. **Figure 6:** Infrared (left-top), Raman (right-top) spectra of KLi₂Ho(BO₃)₂ along with their respective fittings (bottom), showing the fitted component and compound models. #### 3.5. Magnetic properties Temperature-dependent DC magnetic susceptibility, $\chi(T)$ of $KLi_2RE(BO_3)_2$ (RE = Dy - Yb) and the corresponding inverse susceptibility (χ^{-1}) are displayed in **Figure 7**. Of them, only $KLi_2Dy(BO_3)_2$
shows a clear antiferromagnetic peak-shape behaviour at 5(1) K in the susceptibility curve. Fitting the inverse susceptibility using Curie–Weiss law ($\chi = C/(T-\theta_{cw})$) where C and θ_{cw} are the Curie constant and the Curie–Weiss temperature, respectively, the negative θ_{cw} values of -3.4(1) K, -5.5(1) K and -32.9(1) K for KLi₂Ho(BO₃)₂, KLi₂Er(BO₃)₂ and KLi₂Yb(BO₃)₂, respectively, correlate these phases exhibiting antiferromagnetic ordering. Both KLi₂Dy(BO₃)₂ and KLi₂Tm(BO₃)₂ are of weakly ferromagnetic nature with small positive θ_{cw} values of 6.1(1) K and 0.6(1) K, respectively. In KLi₂Yb(BO₃)₂, although no long-range ordering is observed down to 2 K, a pronounced deviation from the Curie-Weiss behaviour starts around 125 K, indicating that crystal field effects (CFEs) of Yb³⁺ cations should be considered [72]. The effective magnetic moments were obtained as 10.47(1) [10.63] μ_B, 10.50(1) [10.58] μ_B, 9.47(1) [9.59] μ_B, 7.16(1) [7.54] μ_B and 4.41(1) [4.54] μ_B calculated for Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺ and Yb³⁺ cations in KLi₂Dy(BO₃)₂, KLi₂Ho(BO₃)₂, KLi₂Er(BO₃)₂, KLi₂Tm(BO₃)₂ and KLi₂Yb(BO₃)₂ compounds, respectively, which are in good agreement with the respective theoretical values given in the square brackets. **Figure 7:** Temperature-dependent field-cooling DC magnetic susceptibilities and respective inverse magnetic susceptibilities (inset) of KLi₂RE(BO₃)₂. #### 3.6 Theoretical calculations Figure 8: Calculated electronic band structure of KLi₂Y(BO₃)₂ in some high symmetry directions. The electronic band structures and the electronic density of states (EDOS) of KLi₂Y(BO₃)₂ was obtained using the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) functional, as shown in **Figure 8**. The calculated direct bandgap of 5.1 eV for KLi₂Y(BO₃)₂ would well agree to the experimental direct bandgap of 5.05(1) eV (**Fig. S12**). But one has to consider that in most cases the GGA method underestimates the bandgap energy by around 0.5 eV as the unoccupied eigenvalues of the electronic states cannot not be accurately described. Therefore, the direct band gap of 5.7(1) eV obtained using the direct Tauc plot analysis and the DASF method seems to be more reliable. Nevertheless, both the calculated and the experiment value unanimously confirm KLi₂Y(BO₃)₂ as an insulator. Figure 9: Phonon density of states (PDOS) of KLi₂Y(BO₃)₂ along with the constituent atoms. The phonon density of states (PDOS) of KLi₂Y(BO₃)₂ along with the respective atomic contributions are plotted in **Figure 9**. The heavy atoms (Y and K) and the light boron dominate the low (200 cm⁻¹) and high (> 600 cm⁻¹) frequency regions of the PDOS, respectively. Since for each vibrational feature an oxygen atom is a common neighbor, contributions of oxygen atoms are present spreading the whole PDOS. Of particular notes, although lithium is a light atom, its spectral feature is seen below ~ 500 cm⁻¹, which can be associate with rather longer Li-O interatomic distances (**Tab. 3**). The PDOS can be described using two continua: the low-frequency region (0 - 760 cm⁻¹) is composed of two discrete optical modes and the high-frequency region spreads between 1080 and 1360 cm⁻¹. The isolated sharp band feature centered at 920 cm⁻¹ is exclusively contributed by oxygen, that is, the symmetric stretching of B(1)O₃ and B(2)O₃ groups. The high-frequency spectral region (> 1080 cm⁻¹) is also mainly due to the rigid BO₃ groups, where B(1) is coordinated with O1, O2 and O3, and B(2) with O4, O5 and O6 atoms. **Figure S13** shows a comparative view between the PDOS, Raman and IR spectra, where the calculated Raman spectrum shows an excellent agreement with that of the experimental one, especially when taking the temperature difference from 0 K for the calculations and 298 K for the measurement into account. #### 4. Conclusion Complementary results from single crystal and powder X-ray diffraction revealed that KLi₂RE(BO₃)₂ (RE = Dy, Ho, Er, Tm, Yb and Y) belong to a novel structure type of rare-earth borates, where the void of the anionic cluster [RE₂(BO₃)₄O₄]¹⁴⁻ is filled with interstitial K⁺ and Li⁺ cations. From our experimental trials it seems that this new structure type is somehow governed by the selective size of the RE- and alkali-cations. For instance, trials using RE-cation with either larger (Eu³⁺, Gd³⁺ and Tb³⁺) or smaller (Lu³⁺, Sc³⁺ and In³⁺) radii could not produce the phase (Table S4). Moreover, trials to replace K⁺ with larger alkali cations such as Rb⁺ and Cs⁺ did not work either. Based on these exercises, we can safely conclude that the structure type of KLi₂RE(BO₃)₂ crystallizes by adjusting the suitable cationic sizes. Due to the incongruent nature of KLi₂RE(BO₃)₂ a high-temperature flux method seems to be promising to grow bulk crystals. The characteristic absorption behaviors in the visible range owing to the inner 4fⁿ-configuration of the observed trivalent rare-earth cations, calculation of band gaps from the UV/Vis diffuse reflectance spectra is challenging, which may additionally complicate the Raman data analysis. The effective magnetic moment of the RE-cations obtained from the DC magnetic susceptibility excludes the possible RE-RE coupling at the investigated temperature range. Since KLi₂Y(BO₃)₂ with high lithium and boron content is of high transparency and has no fundamental absorption in the visible range (insulator), investigations such as lithium ion conductivity, photoluminescence and neutron scintillation etc. may be some attractive avenues for future investigations. ## Acknowledgement PYC gratefully thanks the China Scholarship Council for the financial support to carry out this work. The scientific and technical support from the University of Bremen is acknowledged with high appreciation. MF is indebted to Andreas Lüttge and Rolf Arvidson for generous access to the Asgard cluster for CASTEP calculations. ### Supporting Information X-ray crystallographic data of KLi₂RE(BO₃)₂ (RE= Dy, Ho, Er, Tm, Yb and Y) in CIF format; Atomic coordinates, Wyckoff sites, isotropic displacement parameters of KLi₂RE(BO₃)₂; Structural comparison between "312"-type rare-earth borates; Phases or compounds emerged in the process of the trials of $ALi_2RE(BO_3)_2$ (A = Rb and Cs, RE = Eu, Gd, Tb, Lu, Sc and In) EDX analysis results, X-ray powder data Rietveld plots, Thermal gravimetric analysis and Kubelka-Munk transformed diffuse reflectance spectra of KLi₂RE(BO₃)₂; Powder XRD patterns of KLi₂Ho(BO₃)₂ before and after the TG/DSC; Calculated PDOS, Raman and IR spectra of KLi₂Y(BO₃)₂; #### Reference - [1] Tran, T.; Yu, H.; Rondinelli, J.; Poeppelmeier, K.; Halasyamani, P.; Deep ultraviolet nonlinear optical materials, *Chem. Mater.*, **2016**, *28*, 5238-5258. - [2] Mutailipu, M.; Pan, S.; Emergent Deep-Ultraviolet Nonlinear Optical Candidates, *Angew. Chem. Int. Ed.*, **2020**, 59, 20302-20317 - [3] Becker, P., Borate materials in nonlinear optics, Adv. Mater., 1998, 10, 979-992. - [4] Yan, C.; Wang, Y.; Xu, D.; Zhang, L.; Li, K.; Li, Z.; Li, J.; Liu, P.; Yu, H.; Zhang, G.; Wang, L.; Shan, F.; Wang, N.; Wang, B.; Yang, Y.; Lin, X.; Wu, Y.; Yao, J., High-power high-efficiency picosecond 355nm ultraviolet laser based on La₂CaB₁₀O₁₉ crystal, Proc. SPIE, High-Power Lasers and Applications VII, **2014**, 9266, 92661G-1-5. - [5] Zhang, J.; Wang, L. Li, Y.; Wang, G.; Zhang, G.; Wu, Y.; 355nm laser generation based on Na₃La₉O₃[BO₃)₈ crystal, *Opt. Express*, **2012**, 20, 16490-16493. - [6] Rytz, D.; Gross, A.; Vernay, S.; Wesemann, V., YAl₃(BO₃)₄: a novel NLO crystal for frequency conversion to UV wavelengths, *Solid State Lasers and Amplifiers III*, International Society for Optics and Photonics, **2008**, 699814. - [7] Yue, Y.; Zhu, Y.; Zhao, Y.; Tu, H.; Hu, Z., Design, Growth and nonlinear optical properties of GdAl₃(BO₃)₄ in a flux without molybdate, *Cryst. Growth Des.*, **2016**, *16*, 347-350. - [8] Tu, X.; Wang, S.; Xiong, K.; Zheng, Y.; Shi, E., Growth and properties of large aperture YCOB crystal for NLO application, *J. Cryst. Growth*, **2020**, *535*, 125527. - [9] Xie, Z.; Mutailipu, M.; He, G.; Han, G.; Wang, Y.; Yang, Z.; Zhang, M.; Pan, S., A series of rare-earth borates $K_7MRE_2B_{15}O_{30}$ (M = Zn, Cd, Pb; RE = Sc, Y, Gd, Lu) with large second harmonic generation responses, *Chem. Mater.*, **2018**, *30*, 2414-2423. - [10] Mutailipu, M.; Xie, Z.; Su, X.; Zhang, M.; Wang, Y.; Yang, Z.; Janjua, M.; Pan, S., Chemical cosubstitution-oriented design of rare-earth borates as potential ultraviolet nonlinear optical materials, *J. Am. Chem. Soc.*, **2017**, *139*, 18397-18405. - [11] Gravereau, P.; Chaminade, J.; Pechev, S.; Nikolov, V.; Ivanova, D.; Peshev, P., Na₃La₉O₃(BO₃)₈, a new oxyborate in the ternary system Na₂O-La₂O₃-B₂O₃: preparation and crystal structure, *Solid State Sci*, **2002**, *4*, 993-998. - [12] Chen, C.; Sasaki, T.; Li, R.; Wu, Y.; Lin, Z.; Mori, Y.; Hu, Z.; Wang, J.; Aka, G.; Yoshimura, M., Nonlinear optical borate crystals: Principals and applications, John Wiley & Sons **2012**. - [13] Tu, C.; Wang, Y.; Al-Khursan, A., Ed.; INTECH Open Access Publisher: Rijeka, Croatia, The Recent Development of Rare Earth-Doped Borate Laser Crystals, Solid State Laser; **2012**, 63-118. - [14] Dekker, P.; Dawes, J.; Piper, J.; Liu, Y.; Wang, J., 1.1 W CW self-frequency-doubled diodepumped Yb: YAl₃(BO₃)₄ laser, *Opt. Commun.*, **2001**, *195*, 431-436. - [15] Gorbachenya, K.; Kisel, V.; Yasukevich, A.; Maltsev, V.; Leonyuk, N.; Kuleshov, N., Eyesafe 1.55 µm passively Q-switched Er,Yb:GdAl₃(BO₃)₄ diode-pumped laser, *Opt. Lett.*, **2016**, *41*, 918-921. - [16] Chen, Y.; Huang, Y.; Lin, Z.; Huang, Y., Passively Q-switched Er:Yb:GdMgB₅O₁₀ pulse laser at 1567 nm, *OSA Continuum*, **2019**, *2*, 3598-3603. - [17] Yin, C.; Wang, R.; Jiang, P.; Cong, R.; Yang, T., Dy³⁺ and Tm³⁺ doped YGa₃(BO₃)₄ for near ultraviolet excited white phosphors, *J. Solid State Chem.*, **2019**, *269*, 30-35 - [18] Wu,
X.; Yin, B.; Ren, Q.; Ren, Y.; Hai, O., Compounds, Structure, luminescence, properties and energy transfer of Dy³⁺ and Eu³⁺ codoped Ca₄LaO(BO₃)₃ phosphor, *J. Alloys Compd.*, **2020**, *822*, 153562. - [19] Singh, A. K.; Tyagi, M.; Desai, D. G.; Singh, S. G.; Sen, S.; Gadkari, S. C, A Comparative Study of Li₆R(BO₃)₃ (R= Gd, Lu, and Y) Single Crystals for Thermal Neutron Detection, *Phys. Status Solidi A*, **2018**, *215*, 1800224. - [20] Yin, J.; Zhang, J.; Wang, J.; Du, F.; Li, R.; Pan, S.; Pan, J., Growth and scintillation properties of Ce:Li₆Y(BO₃)₃ crystal enriched with ¹⁰B isotopes, *Radiat. Meas.*, **2018**, *113*, 20-24. - [21] Xia, M.; Shen, S.; Lu, J.; Sun, Y.; Li, R., K₃Li₃Gd₇(BO₃)₉: A New Gadolinium-Rich Orthoborate for Cryogenic Magnetic Cooling, *Chem. Eur. J.*, **2018**, *24*, 3147-3150. - [22] Li, R.; Wu, C.; Xia, M., LiCaTb₅(BO₃)₆: A new magneto-optical crystal promising as Faraday rotator, *Opt. Mater.*, **2016**, *62*, 452-457. - [23] Guo, S.; Kong, T.; Xie, W.; Nguyen, L.; Stolze, K.; Cevallos, F. A.; Cava, R., Triangular Rare-Earth Lattice Materials RbBaR(BO₃)₂ (R = Y, Gd–Yb) and Comparison to the KBaR(BO₃)₂ Analogs, *Inorg. Chem.*, **2019**, *58*, 3308-3315. - [24] Guo, S.; Kong, T.; Cevallos, F. A.; Stolze, K.; Cava, R., M. Materials, Crystal growth, crystal structure and anisotropic magnetic properties of KBaR(BO₃)₂ (R = Y, Gd, Tb, Dy, Ho, Tm, Yb and Lu) triangular lattice materials, *J. Magn. Magn. Mater.*, **2019**, *472*, 104-110. - [25] Jubera, V.; Gravereau, P.; Chaminade, J. P., Crystal structure of the new borate Li₃Gd(BO₃)₂: Comparison with the homologous Na₃Ln(BO₃)₂ (Ln: La, Nd) compounds, *Solid State Sci.*, **2001**, *3*, 469-475. - [26] Chaminade, J.-P.; Gravereau, P.; Jubera, V.; Fouassier, C, A New Family of Lithium Rare-Earth Oxyborates, LiLn₆O₅(BO₃)₃ (Ln = Pr–Tm): Crystal Structure of the Gadolinium Phase LiGd₆O₅(BO₃)₃, J. Solid State Chem., **1999**, 146, 189-196. - [27] Mascetti, J.; Fouassier, C.; Hagenmuller, P. Concentration quenching of the Nd³⁺ emission in alkali rare earth borates, *J. Solid State Chem.*, **1983**, *50*, 204-212. - [28] Zeng, Q.; Li, R., A new potassium rare earth oxyborate K₂La₂(BO₃)₂O, *Solid State Sci.*, **2010**, *12*, 2144-2147. - [29] Gao, J.; Li, R., Potassium rich rare earth (RE) borates K₃RE(BO₃)₂, *Solid State Sci.*, **2008**, *10*, 26-30. - [30] Xia, M.-J.; Li, R., A new quaternary rare earth borate, CsLi₂Gd₄(BO₃)₅, *Acta Crystallogr.*, *Sect. E*, **2007**, *63*, i173-i173. - [31] Zhao, S.; Zhang, G.; Yao, J.; Wu, Y. J., K₆Li₃Sc₂B₁₅O₃₀: A new nonlinear optical crystal with a short absorption edge, *Cryst. Eng. Comm.*, **2012**, *14*, 5209-5214. - [32] Chen, P.; Xia, M.; Li, R., Mixed Alkali Neodymium Orthoborates: K₉Li₃Nd₃(BO₃)₇ and A₂LiNd(BO₃)₂ (A = Rb, Cs), Z. Anorg. Allg. Chem., **2016**, 642, 424-430. - [33] Sheldrick, G. M., SHELXT–Integrated space-group and crystal-structure determination, *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2015,** *71*, 3-8. - [34] International Tables for Crystallography Vol. A, 2006., Space group 14, 184–191. - [35] Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B., ShelXle: a Qt graphical user interface for SHELXL, *J. Appl. Crystallogr.*, **2011**, *44*, 1281-1284. - [36] Spek, A. L., checkCIF validation ALERTS: what they mean and how to respond, *Acta Crystallogr.*, Sect. E, **2020**, 76, 1-11. - [37] Kubelka, P., Ein Beitrag zur Optik der Farbanstriche, Z. Tech. Phys., 1931, 12, 593-601. - [38] Tauc, J.; Grigorovici, R.; Vancu, A., Optical properties and electronic structure of amorphous germanium, *Phys. Status Solidi B*, **1966**, *15*, 627-637. - [39] Souri, D.; Tahan, Z. E., A new method for the determination of optical band gap and the nature of optical transitions in semiconductors, *Appl. Phys. B*, **2015**, *119*, 273-279. - [40] Kirsch, A.; Murshed, M. M.; Schowalter, M.; Rosenauer, A.; Gesing, T. M., Nanoparticle precursor into polycrystalline Bi₂Fe₄O₉: an evolutionary investigation of structural, morphological, optical, and vibrational properties, *J. Phys. Chem. C*, **2016**, *120*, 18831-18840. - [41] Kirsch, A.; Murshed, M. M.; Litterst, F. J.; Gesing, T. M., Structural, spectroscopic, and thermoanalytic studies on Bi₂Fe₄O₉: tunable properties driven by nano-and poly-crystalline states, *J. Phys. Chem. C*, **2019**, *123*, 3161-3171. - [42] Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M., Advanced capabilities for materials modelling with Quantum ESPRESSO, *J. Phys.: Condens. Matter*, **2017**, *29*, 465901. - [43] Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces, *Phys. Rev. Lett.*, **2008**, *100*, 136406 - [44] Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I.; Refson, K.; Payne, M. C., First principles methods using CASTEP, *Z. Kristallogr.-Cryst. Mater.*, **2005**, *220*, 567-570. - [45] Refson, K.; Tulip, P. R.; Clark, S. J., Variational density-functional perturbation theory for dielectrics and lattice dynamics, *Phys. Rev. B*, **2006**, *73*, 155114. - [46] Bräuchle, S.; Huppertz, H., Synthesis and structural characterization of Li₃K₃Y₇(BO₃)₉, *J. Solid State Chem.*, **2017**, *253*, 242-248. - [47] Shannon, R. D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, *Acta Crystallogr.*, *Sect. A: Found. Crystallogr.*, **1976**, 32, 751-767. - [48] Jia, Y. J., Crystal radii and effective ionic radii of the rare earth ions, *J. Solid State Chem.*, **1991**, *95*, 184-187. - [49] Rodriguez-Carvajal, J.; Roisnel, T., WinPLOTR: A windows tool for powder diffraction pattern analysis, *Mater. Sci. Forum, Proceedings of the Seventh European Powder Diffraction Conference*, Barcelona, Spain, **2000**, pp. 378-381. - [50] Emly, A.; Kioupakis, E.; Van der Ven, A., Phase stability and transport mechanisms in antiperovskite Li₃OCl and Li₃OBr superionic conductors, *Chem. Mater.*, **2013**, *25*, 4663-4670. - [51] Murugan, R.; Thangadurai, V.; Weppner, W., Fast lithium ion conduction in garnet-type Li₇La₃Zr₂O₁₂, *Angew. Chem. Int. Ed.*, **2007**, *46*, 7778-7781. - [52] Pérez-Estébanez, M.; Isasi-Marín, J.; Többens, D.; Rivera-Calzada, A.; León, C., A systematic study of Nasicon-type $\text{Li}_{1+x}M_x\text{Ti}_{2-x}(\text{PO}_4)_3$ (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy, *Solid State Sci.*, **2014**, *266*, 1-8. - [53] Scheld, W.; Hoppe, R., Über den α-NaFeO₂-Typ: Zur Kenntnis von NaCrO₂ und KCrO₂, Z. Anorg. Allg. Chem., **1989**, 568, 151-156. - [54] Husheer, S. L. G.; Thompson, J. G.; Melnitchenko, A., Cristobalite-Related Phases in the KAlO₂–KAlSiO₄ System, *J. Solid State Chem.*, **1999**, *147*, 624-630. - [55] Wasel-Nielen, H.-D.; Hoppe, R., Zur Kristallstruktur von Li₃AuO₃, Li₅AuO₄, KAuO₂ und RbAuO₂, Z. Anorg. Allg. Chem., **1970**, 375, 43-54. - [56] Torardi, C. C.; Calabrese, J. C., Hydrothermal synthesis of a new molybdenum hollandite containing tetranuclear metal-atom clusters. X-ray crystal structure of K₂Mo₈O₁₆, *Inorg. Chem.*, **1984**, *23*, 3281-3284. - [57] Matsuzaki, T.; Hagiya, K.; Shatskiy, A.; Katsura, T.; Matsui, M., Crystal structure of anhydrous phase X, K_{1.93}(Mg_{2.02}Cr_{0.02})Si_{2.00}O₇, *J. Mineral. Petrol. Sci.*, **2010**, 105, 303-308. - [58] Yamada, H.; Matsui, Y.; Ito, E., Crystal-chemical characterization of KAlSi₃O₈ with the hollandite structure, *Mineral. J*, **1984**, *12*, 29-34. - [59] Mao, L.; Zhou, T.; Ye, N., Trilithium scandium bis (orthoborate), *Acta Crystallogr., Sect. E,* **2008**, *64*, i38-i38. - [60] Naidu, S. A.; Boudin, S.; Varadaraju, U.; Raveau, B., Influence of structural distortions upon photoluminescence properties of Eu³⁺ and Tb³⁺ activated Na₃Ln(BO₃)₂ (Ln = Y, Gd) borates, *J. Solid State Chem.*, **2012**, *190*, 186-190. - [61] Petříček, V.; Dušek, M.; Palatinus, L., Crystallographic Computing System JANA2006: General features, *Z. Kristallogr.-Cryst. Mater.*, **2014**, 229, 345–352. - [62] Dieke, G. H.; Crosswhite, H. M., The Spectra of the Doubly and Triply Ionized Rare Earths, *Appl. Opt.*, **1963**, *2*, 675-686. - [63] Carnall, W.; Fields, P.; Rajnak, K., Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Dy³⁺, Ho³⁺, Er³⁺, and Tm³⁺, *J. Chem. Phys.*, **1968**, *49*, 4424-4442. - [64] Som, S.; Sharma, S., Eu³⁺/Tb³⁺-codoped Y₂O₃ nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization, *J. Phys. D: Appl. Phys.*, **2012**, *45*, 415102. - [65] Zhang, G.; Wu, Y.; Fu, P.; Wang, G.; Pan, S.; Chen, C., A new nonlinear optical borate - crystal Na₃La₂ (BO₃)₃, Chem. Lett., **2001**, 30, 456-457. - [66] Steele, W.; Decius, J., Infrared absorption of lanthanum, scandium, and indium borate and the force constants of borate ion, *J. Chem. Phys.*, **1956**, *25*, 1184-1188. - [67] Tao, C.; Wu, C.; Xia, M.; Li, R., Li₂Ca₅Tb(BO₃)₅: An orthoborate with large spherical hollow cages, *Opt. Mater.*, **2019**, *96*, 109358. - [68] Kuznetsov, A.; Kokh, K.; Kononova, N.; Shevchenko, V.; Kaneva, E.; Uralbekov, B.; Svetlichnyi, V.; Kokh, A., Synthesis and growth of new rare earth borates KCaR(BO₃)₂ (R= La, Pr and Nd), *J. Solid State Chem.*, **2020**, *282*, 121091. - [69] Dilawar, N.; Mehrotra, S.; Varandani, D.; Kumaraswamy, B.; Haldar, S.; Bandyopadhyay, A., A Raman spectroscopic study of C-type rare earth sesquioxides, *Mater. Charact.*, **2008**, 59, 462-467. - [70] Abrashev, M. V.; Todorov, N. D.; Geshev, J., Raman spectra of R₂O₃ (R-rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study, *J. Appl. Phys.*, **2014**, 116, 103508. - [71] Park, H.; Lam, R.; Greedan J. E.; Barbier, J., Synthesis, Crystal Structure, Crystal Chemistry, and Magnetic Properties of PbMBO₄ (M = Cr, Mn, Fe): A New Structure Type
Exhibiting One- Dimensional Magnetism, *Chem. Mater.*, **2003**, 15, 1703–1712 - [72] Besara, T.; Lundberg, M. S.; Sun, J.; Ramirez, D.; Dong, L.; Whalen, J. B.; Vasquez, R.; Herrera, F.; Allen, J. R.; Davidson, M. W.; Siegrist, T., Single crystal synthesis and magnetism of the BaLn₂O₄ family (Ln = lanthanide), *Prog. Solid State Chem.*, **2014**, *42*, 23-36. ## For Table of Contents Only #### **Synopsis** A series of mixed alkali rare-earth orthoborates with novel structure types, KLi₂RE(BO₃)₂ (RE = Dy, Ho, Er, Tm, Yb and Y), comprise [RE₂(BO₃)₄O₄]¹⁴⁻ anionic clusters where the edge-sharing REO₇ pentagonal bipyramids are connected by BO₃ groups, and both KO₈ dodecahedra and LiO₄ tetrahedra are located at the interstitial voids of the three-dimensional network. # **Supplementary Information** KLi₂RE(BO₃)₂ (RE = Dy, Ho, Er, Tm, Yb and Y): structural, spectroscopic and thermogravimetric studies on a series of mixed alkali rare-earth orthoborates Pengyun Chen¹, M. Mangir Murshed^{1,4*}, Michael Fischer^{2,4}, Thomas Frederichs³, Thorsten M. Gesing^{1,4} ¹University of Bremen, Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, Leobener Straße 7, D-28359 Bremen, Germany ²University of Bremen, Crystallography, Faculty of Geosciences, Klagenfurter Straße 2-4, D-28359 Bremen, Germany ³University of Bremen, Faculty of Geosciences, Klagenfurter Straße 2-4, D-28359 Bremen, Germany ⁴University of Bremen, MAPEX Center for Materials and Processes, Bibliothekstraße 1, D-28359 Bremen, Germany *Corresponding author: e-mail address: murshed@uni-bremen.de, phone: +49 (0)421 218 63144, fax: +49 421 218 63145. **Table S1**: Atomic coordinates, equivalent isotropic displacement parameters (U_{eq} /10⁴pm²), and bond valence sum (BVS /v.u.) of $KLi_2RE(BO_3)_2$. U_{eq} is defined as one-third of the trace of the U_{ij} tensor components. All atoms are in the *4e* Wyckoff. | Atom | x | у | z | Ueq | BVS | | |--|--|------------------|-----------------------------------|------------|----------|--| | KLi ₂ Dy(BO ₃) ₂ | | | | | | | | Dy | 0.53708(2) | 0.88265(2) | 0.34218(2) | 0.00483(2) | 2.81(1) | | | K | 0.57478(7) | 0.37572(5) | 0.41357(4) | 0.01071(7) | 1.46(1) | | | B1 | 0.6471(3) | 0.8590(2) | 0.7634(2) | 0.0068(3) | 2.86(1) | | | B2 | 0.6301(3) | 0.6296(2) | 0.2148(2) | 0.0061(3) | 2.93(1) | | | Li1 | 0.4182(6) | 0.8835(4) | 0.9944(4) | 0.0120(6) | 1.13(1) | | | Li2 | 0.4174(6) | 0.3842(4) | 0.0495(4) | 0.0132(7) | 0.95(1) | | | O1 | 0.7220(2) | 0.72711(14) | 0.81783(15) | 0.0075(2) | -2.00(1) | | | O2 | 0.6002(2) | 0.96401(14) | 0.85915(15) | 0.0081(2) | -2.01(1) | | | О3 | 0.6014(2) | 0.89412(15) | 0.60856(15) | 0.0095(2) | -1.88(1) | | | O4 | 0.6565(2) | 0.49831(14) | 0.14945(15) | 0.0074(2) | -2.00(1) | | | O5 | 0.5732(2) | 0.74754(14) | 0.12375(15) | 0.0089(2) | -2.10(1) | | | O6 | 0.6594(2) | 0.65034(15) | 0.36933(15) | 0.0091(2) | -2.15(1) | | | | | KLi ₂ | Er(BO ₃) ₂ | | | | | Er | 0.53739(2) | 0.88315(2) | 0.34192(2) | 0.00536(4) | 2.87(1) | | | K | 0.57422(7) | 0.37571(4) | 0.41403(5) | 0.01082(8) | 1.50(1) | | | B1 | 0.6491(3) | 0.8593(2) | 0.7621(2) | 0.0069(3) | 2.86(1) | | | B2 | 0.6320(3) | 0.6298(2) | 0.2153(2) | 0.0068(3) | 2.93(1) | | | Li1 | 0.4171(7) | 0.8826(4) | 0.9945(5) | 0.0132(7) | 1.15(1) | | | Li2 | 0.4167(7) | 0.3853(4) | 0.0502(5) | 0.0132(7) | 0.94(1) | | | O1 | 0.7253(2) | 0.72683(15) | 0.81675(17) | 0.0080(2) | -2.02(1) | | | O2 | 0.6001(2) | 0.96430(16) | 0.85810(16) | 0.0089(2) | -2.02(1) | | | О3 | 0.6028(3) | 0.89482(16) | 0.60672(17) | 0.0103(3) | -1.89(1) | | | O4 | 0.6584(2) | 0.49800(15) | 0.14996(17) | 0.0077(2) | -2.03(1) | | | O5 | 0.5746(2) | 0.74868(16) | 0.12402(17) | 0.0092(2) | -2.11(1) | | | O6 | 0.6600(2) | 0.65146(16) | | 0.0093(2) | -2.18(1) | | | | KLi ₂ Tm(BO ₃) ₂ | | | | | | | Tm | 0.53721(2) | 0.88334(2) | 0.34175(2) | 0.00472(4) | 3.06(1) | | | K | 0.57512(10) | 0.37571(7) | 0.41441(7) | 0.01183(12) | 1.54(1) | |---|-------------|------------------------|--------------------------------|-------------|----------| | B1 | 0.6485(5) | 0.8591(3) | 0.7612(4) | 0.0062(5) | 2.86(2) | | B2 | 0.6323(5) | 0.6300(3) | 0.7012(4) | 0.0071(5) | 2.95(2) | | Li1 | 0.0323(3) | ` , | 0.2133(4) | 0.0071(3) | | | Li2 | . , | 0.8835(6)
0.3857(6) | . , | | 1.16(1) | | | 0.4146(8) | . , | 0.0501(6) | 0.0136(10) | 0.95(1) | | 01 | 0.7257(3) | 0.7260(2) | 0.8159(2) | 0.0074(4) | -2.05(1) | | O2 | 0.5992(3) | 0.9639(2) | 0.8575(2) | 0.0076(4) | -2.07(1) | | O3 | 0.6016(3) | 0.8952(2) | 0.6054(2) | 0.0097(4) | -1.95(1) | | O4 | 0.6592(3) | 0.4975(2) | 0.1501(2) | 0.0071(4) | -2.07(1) | | O5 | 0.5756(3) | 0.7489(2) | 0.1242(2) | 0.0091(4) | -2.16(1) | | O6 | 0.6589(3) | 0.6517(2) | 0.3706(2) | 0.0094(4) | -2.22(1) | | Yb | 0.52722(2) | | $\frac{b(BO_3)_2}{0.24144(2)}$ | 0.00474(2) | 2.95(1) | | | 0.53733(2) | 0.88369(2) | 0.34144(2) | 0.00474(3) | 2.85(1) | | K | 0.57460(8) | 0.37563(5) | 0.41460(5) | 0.01035(8) | 1.54(1) | | B1 | 0.6501(3) | 0.8593(2) | 0.7609(2) | 0.0058(3) | 2.87(1) | | B2 | 0.6323(3) | 0.6305(2) | 0.2155(3) | 0.0062(3) | 2.94(2) | | Lil | 0.4191(8) | 0.8830(5) | 0.9952(5) | 0.0154(8) | 1.17(1) | | Li2 | 0.4152(7) | 0.3859(5) | 0.0508(5) | 0.0134(8) | 0.94(1) | | O1 | 0.7268(2) | 0.72642(16) | 0.81537(17) | 0.0074(2) | -2.03(1) | | O2 | 0.5993(2) | 0.96458(17) | 0.85708(17) | 0.0083(3) | -2.04(1) | | O3 | 0.6031(3) | 0.89628(17) | 0.60504(18) | 0.0096(3) | -1.88(1) | | O4 | 0.6599(2) | 0.49777(16) | 0.15072(18) | 0.0072(2) | -2.04(1) | | O5 | 0.5754(2) | 0.74960(17) | 0.12390(17) | 0.0089(3) | -2.14(1) | | O6 | 0.6598(2) | 0.65330(17) | 0.37112(17) | 0.0087(3) | -2.18(1) | | KLi ₂ Y(BO ₃) ₂ | | | | | | | Y | 0.53708(4) | 0.88293(3) | 0.34189(3) | 0.00516(7) | 3.04(1) | | K | 0.57467(9) | 0.37586(7) | 0.41398(6) | 0.01089(12) | 1.47(1) | | B1 | 0.6480(4) | 0.8591(3) | 0.7628(3) | 0.0066(5) | 2.85(2) | | B2 | 0.6319(4) | 0.6296(3) | 0.2146(3) | 0.0072(5) | 2.93(2) | | Lil | 0.4171(7) | 0.8831(6) | 0.9934(5) | 0.0125(9) | 1.13(1) | | Li2 | 0.4172(8) | 0.3851(6) | 0.0502(5) | 0.0142(10) | 0.93(1) | | O1 | 0.7239(3) | 0.72693(19) | 0.8169(2) | 0.0073(4) | -2.04(1) | | O2 | 0.6000(3) | 0.9640(2) | 0.8587(2) | 0.0084(4) | -2.04(1) | | О3 | 0.6014(3) | 0.8945(2) | 0.6074(2) | 0.0098(4) | -1.93(1) | |----|-----------|-------------|-----------|-----------|----------| | O4 | 0.6584(3) | 0.4983(2) | 0.1495(2) | 0.0074(4) | -2.05(1) | | O5 | 0.5739(3) | 0.7481(2) | 0.1238(2) | 0.0092(4) | -2.11(1) | | O6 | 0.6597(3) | 0.65126(19) | 0.3696(2) | 0.0088(4) | -2.19(1) | **Table S2.** Energy dispersive X-ray (EDX) analysis results on three different single crystals of each KLi₂RE(BO₃)₂ (RE = Dy, Ho, Er, Tm, Yb and Y) compound, showing the K:RE atomic ratio. | | K: RE | | | | | |--|-------------------|------------------|-------------------|--|--| | Compound | Crystal-1 | Crystal-2 | Crystal-3 | | | | KLi ₂ Dy(BO ₃) ₂ | 1.03(3): 1.00(10) | 1.00(3):1.00(10) | 1.04(2): 1.00(6) | | | | KLi ₂ Ho(BO ₃) ₂ | 1.11(3): 1.00(9) | 1.06(3): 1.00(9) | 1.03(3): 1.00(9) | | | | KLi ₂ Er(BO ₃) ₂ | 1.05(4):1.00(13) | 1.03(2): 1.00(8) | 1.00(3): 1.00(10) | | | | KLi ₂ Tm(BO ₃) ₂ | 1.01(2): 1.00(9) | 1.06(2): 1.00(7) | 1.08(2): 1.00(7) | | | | KLi ₂ Yb(BO ₃) ₂ | 1.01(2): 1.00(8) | 1.17(3): 1.00(9) | 1.13(2): 1.00(7) | | | | KLi ₂ Y(BO ₃) ₂ | 1.12(3): 1.00(8) | 0.91(2):1.00(7) | 1.05(3): 1.00(8) | | | **Table S3**: Structural comparison between "312"-type rare-earth borates in terms of space group (SG), sum of ionic radii of alkali-metals (Σ in units of pm), metric parameter (a, b and c in units of pm) and β in degree), coordination and their connectivity. | Formula | SG | Σ | Metric | Coordination | Structural details | Reference | |---|--------------------|-----|--|---|--|-----------| | Li ₃ Sc(BO ₃) ₂ | P2 ₁ /n | 177 | a = 478.3(2)
b = 595.4(2)
c = 816.3(3)
$\beta = 90.70(1)$ | ScO ₆ octahedra
BO ₃ triangle
LiO ₄ tetrahedra
LiO ₄ rectangle | Isolated ScO ₆ octahedra are linked via LiO ₄ rectangles along the <i>b</i> axis, further bridged by LiO ₄ tetrahedra and BO ₃ triangles | [1] | | Li ₃ Gd(BO ₃) ₂ | P2 ₁ /n | 177 | a = 992.3
b = 642.5
c = 872.4
$\beta = 114.815$ | GdO ₈
dodecahedra
BO ₃ triangle
LiO ₄ tetrahedra | Double layers of [Gd ₂ O ₁ 4] dimer connected by BO ₃ triangles with LiO ₄ tetrahedra inserted into the cavity. | [2] | | KLi ₂ Ho(BO ₃) ₂ | P2 ₁ /n | 269 | $a = 671.112(5)$ $b = 931.737(6)$ $c = 899.091(6)$ $\beta = 102.8257(6)$ | HoO ₇ pentagonal
bipyramid
BO ₃ triangle
KO ₈ dodecahedra
LiO ₄ tetrahedra | [Ho ₂ (BO ₃) ₄ O ₄] ¹⁴ anionic clusters
connected to each other by corner-
sharing, with KO ₈ dodecahedra and
LiO ₄ tetrahedra filled into the voids | This work | | Na ₃ Gd(BO ₃) ₂ | P2 ₁ /n | 313 | $a = 1014.8$ $b = 872.83$ $c = 652.3$ $\beta = 89.12$ | GdO ₈ dodecahedra BO ₃ triangles NaO ₇ monocapped octahedra NaO ₆ triangle prism, NaO ₄ tetrahedra | Single layers of [Gd ₂ O ₁₄] dimer are further bridged by the BO ₃ triangles and NaO _x polyhedra. | [3] | | Rb ₂ LiNd(BO ₃) ₂ | Pbcm | 363 | a = 711.3(2)
b = 969.1(3)
c = 1013.5(3) | NdO ₈
dodecahedra BO ₃
triangle
RbO ₅ pentagonal
pyramid
LiO ₄ tetrahedra | Corner-shared [NdO ₅ B(1)O ₃] chains are
reinforced by B(2)O ₃ groups to build up [Nd ₄ B ₄ O ₂₄] _n layers in the <i>bc</i> plane. | [4] | | K ₃ Sm(BO ₃) ₂ | Pnma | 414 | a = 904.6(3)
b = 710.0(2)
c = 1118.6(3) | SmO ₇ pentagonal
bipyramid
KO ₆ octahedra
KO ₆ triangle
prism | B(1)O ₃ triangle bridges three [SmO ₄ B(2)O ₃] chains in a scaffolding-like way with KO ₆ residing the interstitials | [5] | | K ₃ Y(BO ₃) ₂ | Pnnm | 414 | a = 933.77(9)
b = 677.01(6)
c = 550.58(4) | YO ₆ octahedra
BO ₃ triangle
KO ₆ octahedra
KO ₆ hexagons | Isolated YO ₆ octahedra use all oxygen atoms sharing with BO ₃ groups to form a 3-dimensional framework. | [5] | | Cs ₂ LiNd(BO ₃) ₂ | Pbcm | 446 | a =721.13(3)
b = 996.21(4)
c = 1033.47(4) | NdO ₈
dodecahedra BO ₃
triangle
CsO ₅ pentagonal
pyramid
LiO ₄ tetrahedra | Isostructural to Rb ₂ LiNd(BO ₃) ₂ | [4] | **Table S4**: Phases identified from the X-ray powder data Rietveld refinement during the synthesis trials of $ALi_2RE(BO_3)_2$ (A = Rb and Cs, RE = Eu, Gd, Tb, Lu, Sc and In) compounds. | Target compound | Observed phase/phases | |---|---| | KLi ₂ Eu(BO ₃) ₂ | Li ₆ Eu(BO ₃) ₃ | | $KLi_2Gd(BO_3)_2$ | Li ₆ Gd(BO ₃) ₃ | | KLi ₂ Tb(BO ₃) ₂ | Li ₆ Tb(BO ₃) ₃ | | KLi ₂ Lu(BO ₃) ₂ | K ₃ Lu(BO ₃) ₂ and LuBO ₃ | | KLi ₂ Sc(BO ₃) ₂ | Li ₃ Sc(BO ₃) ₂ , LiScO ₂ and KBO ₂ | | KLi ₂ In(BO ₃) ₂ | In_2O_3 | | RbLi ₂ Er(BO ₃) ₂ | Li ₆ Er(BO ₃) ₃ and ErBO ₃ | | RbLi ₂ Yb(BO ₃) ₂ | Li ₆ Yb(BO ₃) ₂ and YbBO ₃ | | CsLi ₂ Er(BO ₃) ₂ | Li ₆ Er(BO ₃) ₃ and ErBO ₃ | | CsLi ₂ Yb(BO ₃) ₂ | Li ₆ Yb(BO ₃) ₂ and YbBO ₃ | Figure S1: X-ray powder data Rietveld plot of KLi₂Dy(BO₃)₂. Figure S2: X-ray powder data Rietveld plot of KLi₂Er(BO₃)₂. Figure S3: X-ray powder data Rietveld plots of KLi₂Tm(BO₃)₂ Figure S4: X-ray powder data Rietveld plot of KLi₂Yb(BO₃)₂. Figure S5: X-ray powder data Rietveld plots of KLi₂Y(BO₃)₂. Figure S6: Thermal gravimetric analysis (TGA) curves of KLi₂RE(BO₃)₂. **Figure S7**: Powder XRD patterns of KLi₂Ho(BO₃)₂ before and after the TG/DSC. The simulated XRD pattern of Li₆Ho(BO₃)₃ is only for comparison. **Figure S8:** Kubelka-Munk transformed diffuse reflectance spectrum (DRS) of KLi₂Dy(BO₃) (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S9**: Kubelka-Munk transformed diffuse reflectance spectrum of KLi₂Er(BO₃) (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S10:** Kubelka-Munk transformed diffuse reflectance spectrum of KLi₂Tm(BO₃) (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S11:** Kubelka-Munk transformed diffuse reflectance spectrum of KLi₂Yb(BO₃) (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S12:** Kubelka-Munk transformed diffuse reflectance spectrum of KLi₂Y(BO₃) (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S13:** Comparative view between the phonon density of states (PDOS), Raman and infrared (IR) spectra of KLi₂Y(BO₃)₂. ### References - [1] Mao, L.; Zhou, T.; Ye, N., Trilithium scandium bis (orthoborate), *Acta Crystallogr., Sect. E*, **2008**, *64*, i38-i38. - [2] Jubera, V.; Gravereau, P.; Chaminade, J. P., Crystal structure of the new borate Li₃Gd(BO₃)₂: Comparison with the homologous Na₃Ln(BO₃)₂ (Ln: La, Nd) compounds, *Solid State Sci.*, **2001**, *3*, 469-475. - [3] Naidu, S. A.; Boudin, S.; Varadaraju, U.; Raveau, B., Influence of structural distortions upon photoluminescence properties of Eu³⁺ and Tb³⁺ activated Na₃Ln(BO₃)₂ (Ln = Y, Gd) borates, *J. Solid State Chem.*, **2012**, *190*, 186-190. - [4] Chen, P.; Xia, M.; Li, R., Mixed Alkali Neodymium Orthoborates: $K_9Li_3Nd_3(BO_3)_7$ and $A_2LiNd(BO_3)_2$ (A = Rb, Cs), Z. Anorg. Allg. Chem., **2016**, 642, 424-430. - [5] Gao, J.; Li, R., Potassium rich rare earth (RE) borates K₃RE(BO₃)₂, *Solid State Sci.*, **2008**, *10*, 26-30. # **Chapter 4** Synthesis and crystal structures of novel alkali rare-earth orthoborates $K_3RE_3(BO_3)_4$ (RE = Pr, Nd, Sm - Lu) Pengyun Chen¹, M. Mangir Murshed^{1,2}*, Thorsten M. Gesing^{1,2} ¹University of Bremen, Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, Leobener Straße 7, D-28359 Bremen, Germany ²University of Bremen, MAPEX Center for Materials and Processes, Bibliothekstraße 1, D-28359 Bremen, Germany *Corresponding author: e-mail address: murshed@uni-bremen.de, phone: +49 (0)421 218 63144, fax: +49 421 218 63145. **Abstract** We report a series of novel alkali rare-earth orthoborates K₃RE₃(BO₃)₄ (RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) prepared by high-temperature solid state syntheses. Single crystals of K₃Pr₃(BO₃)₄, K₃Er₃(BO₃)₄, K₃Tm₃(BO₃)₄, K₃Yb₃(BO₃)₄ and K₃Lu₃(BO₃)₄ are obtained by spontaneous crystallization using a flux. Complementary single crystal and powder X-ray diffraction measurements followed by structure refinements reveal that both Pr- and Nd- containing phases crystallize in the space group $P\overline{1}$ (Z = 4), whereas the other K₃RE₃(BO₃)₄ members with higher atomic number (RE = Sm to Lu) crystallize in the higher symmetry space group $P2_1/c$ (Z = 8). Amid differences in the space groups each member of the series keeps close structural correlations in their motif and connectivity. The crystal structures of $K_3RE_3(BO_3)_4$ (RE = Sm - Lu) consists of quasi-two-dimensional [RE₈(BO₃)₈] layers parallel to the ab-plane which are connected by out-of-layer RE₂O₁₂ and RE₂O₁₄ dimers as well as BO₃ groups in the c-direction, forming a 3D framework. On the other hand, both K₃Pr₃(BO₃)₄ and K₃Nd₃(BO₃)₄ phases are comprised of the [RE₄(BO₃)₄] layers, indicating to the absence of 2₁ screw axis along the b-axis. The K⁺ cations are located between the [RE₈(BO₃)₈] and [RE₄(BO₃)₄] layers, occupying the interstitial voids. All samples exhibit characteristic absorption features in the UV/Vis range relevant to the rare-earth cations, and their optical bandgaps are evaluated by both conventional Tauc plot and derivation of absorption spectrum fitting (DASF) methods. The geometric deviations away from the D_{3h} symmetry of the BO₃ planar groups are verified using Fourier transformed infrared and Raman spectra, and supported by the X-ray diffraction results. Keywords: rare-earth borate, crystal structure; UV-Vis, infrared, Raman 109 #### 1. Introduction Inorganic rare-earth borates are of growing interest owing to their diverse structural motifs and wide applications in particular in optics. (Y, Gd)BO₃ doped with Eu³⁺ and Tb³⁺ have been widely used as commercial red- and green-emitting phosphors in the plasma displays panels for their high vacuum ultraviolet absorption, efficient light conversion and thermodynamic stability [1, 2]. The calcite structure type Lu_{1-x}Sc_xBO₃:Ce³⁺ [3, 4] is one of the most useful orthoborates as a fast-decay scintillator; light yields of the polycrystalline presents around three times than that of the commercial Bi₄Ge₃O₁₂ (BGO) scintillators. Some rare-earth borates exhibit promising nonlinear optical (NLO) properties such as La_xY_vSc_{4-x-v}(BO₃)₄ [5], Ca₄REO(BO₃)₃ (RE = La, Gd, Y) [6], Cd₄REO(BO₃)₃ (RE = La, Gd and Y) [7], REAl₃(BO₃)₄ (RE = Y, Gd, Lu) [8-10] and $K_7MRE_2(B_5O_{10})_3$ (M = Ca, Sr, Ba, Zn, Cd, Pb; RE = Sc, Y, Gd, Sc,Lu) [11, 12]. Rare-earth borates are also suitable candidates to host optically-active Er³⁺ and Yb³⁺ cations to serve as laser crystals [13, 14] and self-frequency doubling crystals [15, 16]. A high terbium content borate, LiCaTb₅(BO₃)₆ was found to be a promising Faraday rotator [17] possessing 55 % higher Verdet constant in the Vis-NIR range than that of commercial Tb₃Ga₅O₁₂ (TGG) crystal. Recently, LiCaTb₅(BO₃)₆ was further reported as a novel magnetic refrigerator [18] with a profound cooling enhancement over the benchmark medium Gd₃Ga₅O₁₃ (GGG) for the cryogenic temperatures especially above liquid hydrogen temperature. A fascinating subgroup of the rare-earth borates is the quaternary $A_2O-RE_2O_3-B_2O_3$ (A = alkali metals, RE = rare earth) system, which attracts intensive research attention in recent years particularly due to its structural richness. To date, a vast array of novel alkali metal rare-earth borates with various structural motifs have been reported, such as Li₃RE₂(BO₃)₃[19], Li₃RE(BO₃)₂ [20, 21], Na₃RE(BO₃)₂ [22-24], Na₃Y₃(BO₃)₄ [25], K₃RE(BO₃)₂ [26], K₃REB₆O₁₂ [12, 27], K₃Y₃(BO₃)₄ [28], Rb₃REB₆O₁₂ [29-31] and Rb₃La₃(BO₃)₄ [32]. Some of these compounds have stoichiometric similarity but crystallize in significantly different structures, where the size of the alkali and rare-earth cations is assumed to play an important role. For instance, Li₃RE₂(BO₃)₃ crystallize in the space group *P*2₁/*n* whereas Na₃RE₂(BO₃)₃ crystallizes in the polar *Amm*2 and Rb₃RE₂(BO₃)₃ in the polar *Pna*2₁ space groups. Moreover, K₃RE(BO₃)₂ with light rare-earth elements (Nd, Sm, Eu and Gd) are to be refined in the orthorhombic space group *Pnma* whereas the heavy rare-earth elements (Tb, Dy, Ho, Er, Tm, Yb and Lu) are described using *Pnnm*. In search of new compounds in the quaternary systems we obtained a series of potassium rare-earth borates K₃RE₃(BO₃)₄ (RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) with novel structure types using solid-state synthesis as well as spontaneous crystallization methods. Herein, we described their comparative structural and spectroscopic features using single crystal and powder X-ray diffractions, FTIR, Raman and UV/Vis spectroscopy. #### 2. Experimental #### 2.1. Synthesis Single crystals of K₃RE₃(BO₃)₄ (RE = Er,
Tm and Yb) were obtained by spontaneous crystallization from high-temperature flux. The starting materials K₂CO₃, Li₂CO₃, RE₂O₃ (RE = Er, Tm and Yb) and H₃BO₃ with a molar ratio of 3: 3: 1: 8, were thoroughly ground in an agate mortar, and transferred to platinum crucibles. The mixtures in the crucibles were heated up to 1193 K in a muffle furnace with a heating rate of 100 K/h and maintained at that temperature for 2 h to be thoroughly molten, then slowly cooled down to 773 at 3 K/h. Transparent millimeter-sized reddish K₃Er₃(BO₃)₄ and, colorless K₃Tm₃(BO₃)₄ and K₃Yb₃(BO₃)₄ single crystals were obtained. Single crystals of K₃RE₃(BO₃)₄ (RE = Pr and Lu) were prepared by flux-assisted syntheses. For K₃Pr₃(BO₃)₄, the starting materials K₂CO₃, PrO₂ and H₃BO₃ with a molar ratio of 2: 3: 5, and for K₃Lu₃(BO₃)₄, K₂CO₃, Lu₂O₃ and H₃BO₃ with a molar ratio of 2: 1.5: 5 were thoroughly mixed and ground in an agate mortar. The mixtures were transferred to platinum crucibles followed by heating up to 1223 K in a muffle furnace with a heating rate of 100 K/h and kept at that temperature for 24 h. The sample were then cooled down to room temperature, followed with power off. Transparent submillimeter-sized yellowish K₃Pr₃(BO₃)₄ and, colorless K₃Lu₃(BO₃)₄ single crystals were mechanically separated under the microscope. The polycrystalline samples of K₃RE₃(BO₃)₄ (RE = Pr, Nd, Sm - Lu) were synthesized by solidstate reactions in alumina crucibles with analytically pure starting materials K₂CO₃, H₃BO₃ and rare-earth oxides PrO₂, Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃ and Lu₂O₃. The stoichiometric mixtures were thoroughly ground, then heated at 773 K for 24 h, 973 K for another 24 h, finally sintered at 1173 K for another 24 h with intermediate grindings between the heating steps. ## 2.2. X-ray diffraction Single crystal X-ray diffraction were performed at room temperature using a D8 Venture diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) with molybdenum target using a pyrolytic graphite monochromator providing dichromatic $MoK\alpha_{1,2}$ ($\lambda_1 = 70.93171(4)$ pm, $\lambda_2 = 10.93171(4)$ pm, $\lambda_3 = 10.93171(4)$ pm, $\lambda_4 = 10.93171(4)$ pm, $\lambda_5 λ_5 71.3607(12) pm treated as average $\lambda = 71.073(1)$ pm) radiation. The numerical absorption correction was applied to the intensity data sets. The systematic extinctions and $|E^2-1|$ statistics suggested the monoclinic space group $P2_1/c$ for $K_3Er_3(BO_3)_4$, $K_3Tm_3(BO_3)_4$, $K_3Yb_3(BO_3)_4$ and K₃Lu₃(BO₃)₄; therefore, the structure determination was performed in this space group. Their structures were finely solved via the intrinsic phasing method and successfully refined on F² by full-matrix least-square methods with the ShelxT [33] and Shelxle [34] program packages. All atoms were refined with anisotropic displacement parameters and the final difference Fourier synthesis did not reveal any significant residual electron density. However, although the monoclinic space group P2/c for $K_3Pr_3(BO_3)_4$ was initially suggested, the subsequent structure solution and refinement could not be successfully performed in the P2/c, Pc, P2 and even in any monoclinic space groups. Nevertheless, remarkable residual electron peaks and holes, high R-values, low $|E^2-1|$ value (~ 0.8), plenty of non-positive definite (NPD) atoms and significantly long interatomic B-O distances, suggested to conjecture the occurrence of a pseudo-merohedral twining in $K_3Pr_3(BO_3)_4$, namely the metric parameters of α and γ happen to be very close to 90 $^{\circ}$. Thus, a triclinic space group $P\overline{1}$ was used to solve the structure by intrinsic phasing method, resulting to a starting R_1 value of 13 %. Afterward, a twin law (-1 0 0 0 1 0 0 0 -1) and an initial BASF value of 0.45, as suggested by the PLATON software [35], was introduced into the refinement. As a consequence, the R_1 factor converged down to 4.66 %. After all atoms were anisotropically refined, the final circle converges with $R_1 = 2.69 \%$, wR_2 = 3.03 % and BASF value of 0.4963(5), indicating a nearly "perfect twin" of K₃Pr₃(BO₃)₄. Meanwhile, neither non-positive definite atoms nor obvious residual electron densities were present in the final refinement, and none of constraint and restraint were used during the whole refinement process. Relevant crystallographic data are listed in **table 1**. The bond valence sum (BVS) calculations were performed by the *Bondstr* software within the scope of the *FullProf* Suite [36]. **Table 1:** Crystallographic data and single crystal structural refinement for $K_3RE_3(BO_3)_4$ (RE = Pr, Er, Tm, Yb and Lu). | Formula | K ₃ Pr ₃ (BO ₃) ₄ | K ₃ Er ₃ (BO ₃) ₄ | K ₃ Tm ₃ (BO ₃) ₄ | K ₃ Yb ₃ (BO ₃) ₄ | K3Lu3(BO3)4 | |--------------------------------|--|--|--|--|--| | Weight | 775.27 | 854.31 | 859.33 | 871.65 | 877.45 | | Space group | $P\overline{1}$ | $P2_1/c$ | $P2_1/c$ | $P2_1/c$ | $P2_1/c$ | | <i>a</i> / pm | 1081.67(10) | 1051.89(2) | 1049.94(5) | 1045.92(2) | 10.4282(3) | | <i>b</i> / pm | 907.76(9) | 1743.22(4) | 1738.14(8) | 1735.19(4) | 17.3029(6) | | <i>c</i> / pm | 1410.14(16) | 1383.05(3) | 1379.29(6) | 1376.14(3) | 13.7515(4) | | α /° | 90.051(6) | 90 | 90 | 90 | 90 | | β /° | 110.257(6) | 110.5210(10) | 110.514(2) | 110.329(1) | 110.286(1) | | γ /° | 89.901(6) | 90 | 90 | 90 | 90 | | $V/10^6 \times pm^3$ | 1299.0(2) | 2375.14(9) | 2357.50(19) | 2341.95(9) | 2327.39(13) | | Z | 4 | 8 | 8 | 8 | 8 | | Temperature /K | 303(2) | 303(2) | 302(2) | 301(2) | 303(2) | | Wavelength /pm | 71.0747(6) | 71.0747(6) | 71.0747(6) | 71.0747(6) | 71.0747(6) | | Crystal Size /mm ³ | 0.141 ×
0.124 ×
0.092 | 0.059 ×
0.058 ×
0.054 | 0.214 ×
0.184 ×
0.093 | 0.147 ×
0.107 ×
0.091 | 0.108 ×
0.093 ×
0.075 | | Abs. coeff. / mm ⁻¹ | 12.092 | 22.118 | 23.525 | 24.883 | 26.387 | | F(000) /e | 1400 | 3016 | 3040 | 3064 | 3088 | | θ range /° | 2.06-30.578 | 1.96 - 28.37 | 1.96 - 30.60 | 1.97 - 28.36 | 1.97 - 30.59 | | Range in hkl | $-15 \le h \le 15$,
$-12 \le k \le 12$,
$-20 \le l \le 20$ | $-14 \le h \le 14,$
$-23 \le k \le 23,$
$-18 \le l \le 18$ | $-15 \le h \le 15$,
$-24 \le k \le 24$,
$-19 \le l \le 19$ | $-13 \le h \le 13$,
$-23 \le k \le 23$,
$-18 \le l \le 18$ | $-14 \le h \le 14$,
$-24 \le k \le 24$,
$-19 \le l \le 19$ | | No. of reflections | 74731 | 149449 | 135682 | 155507 | 155571 | | Data/ Parameters | 7319/399 | 5931/398 | 7232/398 | 5848/398 | 7135/398 | | GOF (F ²) | 1.055 | 1.072 | 1.109 | 1.131 | 1.086 | | R_1 (I > 2 σ (I)) | 0.0206 | 0.0218 | 0.0191 | 0.0224 | 0.0295 | | R_1 (all data) | 0.0269 | 0.0333 | 0.0266 | 0.0316 | 0.0493 | | wR_2 (all data) | 0.0303 | 0.0353 | 0.0356 | 0.0395 | 0.0381 | The X-ray powder diffraction (XRPD) pattern were recorded on a Bruker D8 Discover powder diffractometer using Bragg-Brentano geometry with $CuK_{\alpha 1,2}$ ($\lambda_{k\alpha 1}=154.05929(5)$ pm, $\lambda_{k\alpha 2}=154.4414(2)$ pm) radiation. The measurements were carried out at ambient condition with a step size of 0.0149° and a data collection time of 1 s/step. The fundamental parameter approach, where the fundamental parameters were fitted against a LaB₆ standard material, was applied for the Rietveld refinement using "Diffrac^{Plus} Topas 6" software (Bruker AXS GmbH, Karlsruhe, Germany). The starting lattice parameters and atomic coordinates were taken from the results of the single crystal structure determinations. In some cases, small amount of REBO₃ phase was identified and the associated spectroscopic analyses shall be considered. # 2.2. Spectroscopy # Fourier transform infrared (FTIR) spectroscopy The FTIR spectra were recorded on a Bruker IFS66v/S spectrometer (Bruker Optik GmbH, Ettlingen, Germany) using the standard KBr method for the data collection in the mid infrared range (MIR). 2 mg sample was mixed with 200 mg dried KBr and pressed at 10 kN, forming disks of 12 mm in diameter. The reference pellet consists of 200 mg dried KBr only. Measurements were carried out between 370 and 4000 cm⁻¹ with a total acquisition of 128 spectra, leading to a spectral resolution of about 1.0 cm⁻¹. #### Raman spectroscopy Due to laser induced susceptibility of the 4f-electronic transitions of the rare-earth cations, Raman spectra were measured at ambient condition using at least three lasers (532 nm, 633 nm and 785 nm). To avoid the fluorescence emissions arising from 4f-4f transitions of K₃RE₃(BO₃)₄ (see also UV/Vis spectra below) laser wavelengths of 532 nm was chosen for RE = Yb, 633 nm for RE = Nd, Sm, Gd, Tb, Dy, Tm and Lu, and 785 nm for RE = Pr, Ho and Er. Raman spectra were collected in the range between 85 cm⁻¹ and 1700 cm⁻¹ with a moving grating of 1800 grooves/mm and a thermoelectrically cooled CCD detector (Synapse, 1024 × 256 pixels). The spectral positions were calibrated against the Raman mode of silicon before and after the sample measurements. #### UV/Vis diffuse reflectance spectroscopy Optical diffuse reflectance spectra were recorded at room temperature on a Shimadzu UV-2600 (Shimadzu, Kyoto, Japan) spectrophotometer equipped with an ISR-2600 plus two-detector integrating sphere (Pike Technologies, USA). Data were collected in the range of 200 to 850 nm with a step of 1.0 nm. A standard BaSO₄ sample was used as reference for the baseline correction. The diffuse reflectance data were converted to F(R) spectra according to the Kubelka-Munk function [37] $$F(R) = \frac{(1-R)^2}{2R}$$ where R is the reflectance. The Tauc's method [38] followed by the Kubelka-Munk
function are commonly used to estimate the bandgap energy by finding the intercept of the abscissa from the following relations: $$F(R)(h\nu) = B(h\nu - E_g)^n$$ where h is the Planck's constant, v the frequency of light, E_g the bandgap in eV and nthe type of optical transition. That is, for n=2 and $\frac{1}{2}$ refers to direct and indirect transition, respectively. Recently, the derivation of absorption spectrum fitting (DASF) method [39] was proposed for thin films to calculate the bandgap energies without any presumption of the nature of the transition. Based on this, the DASF can also be expressed as follows proposed by Kirsch et al. [40, 41] for powder samples: $$\frac{dInF(R)}{dhv} = \frac{n}{hv - Eg}$$ Combining the results of the absolute bandgap width determination using the DASF method with the values for a direct or indirect transition obtained by the Tauc method, type and width of the band gap could be experimentally identified. #### 3. Results and discussion ## Crystal structure **Figure 1**: Representative crystal structure of K₃Tm₃(BO₃)₄, showing the building blocks Single crystal diffraction data analysis reveals that each member of $K_3RE_3(BO_3)_4$ (RE = Er - Lu) is isotypic and can be described in the space group $P2_1/c$ whereas both $K_3Pr_3(BO_3)_4$ and $K_3Nd_3(BO_3)_4$ are as well isotypic to each other but must be described in space group $P\overline{1}$. Herein we choose representative $K_3Tm_3(BO_3)_4$ and $K_3Pr_3(BO_3)_4$ to describe the detailed crystal structural features. The metric parameters of the monoclinic phase $K_3Tm_3(BO_3)_4$ were obtained as a = 1049.94(5) pm, b = 1738.14(8) pm, c = 1379.29(6) pm and $\beta = 110.514(1)^\circ$. As shown in **figure 1**, the crystallographic asymmetric unit of $K_3Tm_3(BO_3)_4$ comprises six unique thulium, six potassium, eight boron and twenty-four oxygen atoms. Each boron atom is bound to three oxygen atoms, building an isolated BO₃ triangular anionic group. Interestingly, four of the BO₃ groups, namely, (B(1)O₃, B(2)O₃, B(3)O₃ and B(4)O₃) are almost parallel to the ab plane, whereas the other four $(B(5)O_3, B(6)O_3, B(7)O_3)$ and $B(8)O_3$ groups are oriented parallel to the c-direction. The thulium atoms adopt two types of coordination: Tm(1), Tm(2), Tm(3) and Tm(5) are locate at the centroid of a slightly distorted TmO₇ pentagonal bipyramid while Tm(4) and Tm(6) are surrounded by eight oxygen atoms forming a distorted TmO₈ dodecahedra. The Tm(1)O₇, Tm(2)O₇, Tm(3)O₇, Tm(4)O₈ polyhedra are linked with each other via cornersharing and are further joined by B(1)O₃, B(2)O₃, B(3)O₃ and B(4)O₃ groups to generate a quasi-two-dimensional (Q2D) $[Tm_8(BO_3)_8]^{\infty}$ layer in the ab plane, as displayed in **figure 2**. This Q2D $[Tm_8(BO_3)_8]^{\infty}$ layer is regulated by the 2_1 screw axis along the **b**-direction, where every BO₃ group reinforce three TmO_{7/8} polyhedra. The B(1)O₃ trigonal group is linked via three oxygen vertices of the Tm(1)O₇, Tm(2)O₇ and Tm(3)O₇ polyhedral units. Opposite, the $B(2)O_3$ and $B(4)O_3$ groups share the edges with $Tm(1)O_7$, $Tm(2)O_7$, $Tm(4)O_7$, and $Tm(2)O_7$, Tm(3)O₇ Tm(4)O₇ polyhedra, respectively. Moreover, the B(3)O₃ groups share two edges with $Tm(1)O_7$ and $Tm(3)O_7$ and one vertex with $Tm(4)O_8$. Between the $[Tm_8(BO_3)_8]^{\infty}$ layers, Tm(5)₂O₁₂ and Tm(6)₂O₁₄ dimers are linked via single edge-sharing (**figure 2b**). Two adjacent [Tm₈(BO₃)₈][∞] layers are interconnected along the **c**-direction alternately by Tm(5)₂O₁₂ and Tm(6)₂O₁₄ dimers through face/edge-sharing. The B(5)O₃, B(6)O₃, B(7)O₃ and B(8)O₃ groups additionally strengthen the linkage among these Q2D [Tm₈(BO₃)₈][∞] layers by the contributions of the strong covalent B-O bonds along the **c**-direction, forming a 3D framework. The K(1), K(2), K(3) and K(4) cations are located in a channel along the **a**-direction while K(5) and K(6) are located at interstitial voids of the 3D framework. **Figure 2:** Crystal structures of $K_3Tm_3(BO_3)_4$ (a) and $K_3Pr_3(BO_3)_4$ (d) along the **a**-axis. The quasi-two-dimensional $[Tm_8(BO_3)_8]$ (c) $[Pr_4(BO_3)_4]$ (f) layers show the connectivity of $Tm(5)_2O_{12}$ and $Tm(6)_2O_{14}$ (b), and $Pr(5)_2O_{12}$ and $Pr(6)_2O_{14}$ dimers (e), respectively. **Table 2:** Average bond length (M-O /pm) of the MO_x coordination spheres for Tm, K and B atoms together with their bond valence sum (BVS /v.u.) of K₃Tm(BO₃)₄. | Polyhedra | М-О | BVS | Polyhedra | M-O | BVS | |---------------------|----------|---------|--------------------|-----------|---------| | Tm(1)O ₇ | 229.9(3) | 3.17(1) | K(1)O ₇ | 281.9(3) | 1.13(1) | | $Tm(2)O_7$ | 231.3(3) | 3.19(1) | $K(2)O_8$ | 285.02(3) | 1.26(1) | | $Tm(3)O_7$ | 233.0(3) | 3.17(1) | $K(3)O_8$ | 285.5(3) | 1.23(1) | | $Tm(4)O_8$ | 246.0(3) | 2.68(1) | $K(4)O_8$ | 286.8(3) | 1.16(1) | | $Tm(5)O_7$ | 230.4(3) | 3.19(1) | K(5)O ₇ | 284.7(3) | 1.14(1) | | $Tm(6)O_8$ | 237.1(3) | 3.05(1) | K(6)O ₉ | 292.0(3) | 1.17(1) | | $B(1)O_3$ | 137.7(5) | 2.95(1) | $B(5)O_3$ | 137.4(5) | 2.98(1) | | $B(2)O_3$ | 137.1(5) | 3.00(1) | $B(6)O_3$ | 137.0(5) | 3.01(1) | | $B(3)O_3$ | 137.9(5) | 2.94(1) | $B(7)O_3$ | 136.7(5) | 3.04(1) | | $B(4)O_3$ | 137.5(5) | 2.97(1) | $B(8)O_3$ | 137.7(5) | 2.95(1) | The average B-O bond distances range from 136.7(5) to 137.9(5) pm with the bond valence sums (BVS) from 2.94(1) to 3.01(1) v.u. (table 2). The average Tm-O distances vary from 229.9(3) to 246.0(3) pm. As could be seen, most of the Tm cations are slightly over bonded, except Tm(4) which is strongly under bonded and Tm(6), which has a normal charge value. Here, it shall be mentioned that those oxygen atoms with the interatomic distances to K cations below 320.0 pm will be considered to participate the coordination spheres of central K cations. As a consequence, K(1) and K(5) locate at the centroid of KO_7 polyhedra, K(2), K(3) and K(4)of KO₈ polyhedra, K(6) of a KO₉ polyhedron, respectively. The average interatomic distances and BVS of K-O are between 280.50(5) pm / 1.26(1) v.u. to 281.9(3) pm / 1.13(1) v.u (table 2). All the bond lengths fall in the normal range of the sum of effective ionic radii [42, 43] with the corresponding coordination number (CN): 138.0 pm of O²-; 94.0 pm and 99.4 pm of Tm³⁺ with CN = 7, 8; 146.0 pm, 151.0 pm and 155.0 pm of K^+ with CN = 7, 8, 9, respectively. The calculated BVS value of each atom lies close to their respective integer oxidation state (Table 4). 3): 3.07(1), 1.18(1) and 2.98(1) v.u. for Tm³⁺, K⁺ and B³⁺, respectively. A slightly higher BSV of K⁺ indicates to tight K-O bonding to the channels, where the charge difference could be compensated by the available framework cations. This leads to the assumption that the K⁺ cations may hardly be replaced by ion exchange. Similar results are found for K₃Er₃(BO₃)₄ and for $K_3Yb_3(BO_3)_4$ as well as for $K_3Lu_3(BO_3)_4$ (table 3). The crystal structure of $K_3Pr_3(BO_3)_4$ is described using the triclinic space group $P\overline{1}$ with metric parameters of a=1081.67(10) pm, b=907.76(9) pm, c=1410.14(16) pm, $\alpha=90.051(6)^\circ$, $\beta=110.257(6)^\circ$ and $\gamma=89.901(6)^\circ$ (**table 1**). The structure is highly correlated to that of $K_3Tm_3(BO_3)_4$. Each of the boron atoms is triangularly coordinated by oxygen atoms, forming BO₃ group. Pr(1), Pr(2), Pr(3) and Pr(5) are located at the centroid of a slightly distorted PrO₇ pentagonal bipyramids and, Pr(4) and Pr(6) of PrO₈ dodecahedra. Pr(1)O₇, Pr(2)O₇, Pr(3)O₇ and PrO₈ polyhedra are further interlinked with four BO₃ groups, building the Q2D [Pr₄(BO₃)₄] ^{ω} layers. The length of the [Pr₄(BO₃)₄] ^{ω} layer is nearly half of the length of the [Tm₈(BO₃)₈] $^{\omega}$, corresponding to the *b*-parameter of K₃Pr₃(BO₃)₄ approximately half of that of K₃Tm₃(BO₃)₄. Those Q2D [Pr₄(BO₃)₄] ^{ω} layers are alternatively connected by Pr(5)₂O₁₂ or Pr(6)₂O₁₄ dimers almost along the **c**-direction, unlike Tm(5)₂O₁₂ and Tm(6)₂O₁₄ dimers along the **c**- and **b**-direction. A different arrangement of K⁺ and BO₃ groups could also be observed, arising from the absence of the 2₁-screw axis along the **b**-direction in K₃Pr₃(BO₃)₄. The symmetry reduction from $P2_1/c$ for K₃Tm₃(BO₃)₄ to $P\overline{1}$ for K₃Pr₃(BO₃)₄ may result from the size effect, where the Pr³⁺ cation possesses a larger radius than that of the Tm³⁺ cation. All the bond lengths in K₃Pr₃(BO₃)₄ results in BVS values close to the respective integer ones, as given in **table 3**. **Figure 3:** X-ray powder data Rietveld plots of K₃Tm₃(BO₃)₄ (left) and K₃Pr₃(BO₃)₄ (right), showing the high angle region as insets. **Table 3:** Average bond length (M-O /pm) and bond valence sums (BVS /v. u.) of the cations (M) of $K_3RE_3(BO_3)_4$ (RE = Pr, Nd, Sm-Lu). | Compound | RE-O | K-O | В-О | BVS (B) | BVS (K) | BVS (RE) | |--|----------|----------|----------|---------|---------|----------| | $K_3Pr_3(BO_3)_4$ | 247.4(3) | 296.8(3) | 137.8(5) | 3.19(1) | 0.99(1) | 2.95(1) | | $K_3Nd_3(BO_3)_4$ | 246.1(3) | 296.8(5) | 137.2(5) | 3.03(1) | 1.03(1) | 3.00(1) | | $K_3Sm_3(BO_3)_4$ | 242.2(3) | 295.9(5) | 137.9(8) | 3.28(1) | 1.07(1) | 2.94(1) | | $K_3Eu_3(BO_3)_4$ | 242.0(3) | 291.7(5) | 138.9(8) | 3.23(1) | 1.10(1) | 2.86(1) | | $K_3Gd_3(BO_3)_4$ | 240.7(3) | 288.5(5) | 138.2(8) | 3.23(1) | 1.09(1) | 2.93(1) | | $K_3Tb_3(BO_3)_4$ | 239.4(3) | 286.1(5) | 138.0(8) | 3.03(1) | 1.11(1) | 2.93(1) | | $K_3Dy_3(BO_3)_4$ | 237.4(3) | 287.9(5) | 138.6(8) | 2.88(1) | 1.12(1) | 2.88(1) | | K ₃ Ho ₃ (BO ₃) ₄ | 236.8(3) | 287.3(5) | 138.1(8) | 3.12(1) | 1.14()1 | 2.93(1) | | $K_3Er_3(BO_3)_4$ | 235.8(3) | 286.3(4) | 137.4(6) | 2.89(1) | 1.15(1) | 2.98(1) | | $K_3Tm_3(BO_3)_4$ | 234.9(3) | 286.2(3) | 137.4(5) | 3.07(1) | 1.18(1) | 2.98(1) | | $K_3Yb_3(BO_3)_4$ | 234.3(4) | 285.9(4) | 137.4(7) | 2.88(1) | 1.19(1) | 2.98(1) | | K ₃ Lu ₃ (BO ₃) ₄ | 233.6(4) | 285.5(5) | 137.3(7) | 2.99(1) | 1.21(1)
| 2.99(1) | To further cross-check the accuracy of crystal structure obtained from the X-ray single crystal diffraction data, complementary Rietveld refinements were performed on X-ray powder diffraction data of $K_3RE_3(BO_3)_4$ (RE = Pr, Nd, Sm - Lu). The representative Rietveld plots of $K_3Tm_3(BO_3)_4$ and $K_3Pr_3(BO_3)_4$ are depicted in **figure 3**, and the other Rietveld plots are shown in **figure S1** – **S10**. (Supplementary Information). Although the powder diffraction pattern of all $K_3RE_3(BO_3)_4$ members look similar to each other, the results of Rietveld refinement reveal that $K_3RE_3(BO_3)_4$ (RE = Sm - Lu) are isotypic to be described in the monoclinic $P2_1/c$ space group except the Pr- and Nd-analogues which crystallize in the triclinic space group $P\overline{1}$. Of notes, we also attempt to use the starting model with the space group $P2_1/c$ and P2/c to refine the powder diffraction patterns of $K_3Pr_3(BO_3)_4$ and $K_3Nd_3(BO_3)_4$, leading to poor refinement results (e.g., **figure S11**). A similar pseudo-monoclinic symmetry was observed in the oxygen-deficient distorted fluorite-type rare-earth borates $RE_{26}O_{27}\square(BO_3)_8$, for instance, $P2_1/c$ for $La_{26}O_{27}\square(BO_3)_8$ and $P\overline{1}$ for $Nd_{26}O_{27}\square(BO_3)_8$, where the α and γ angles slightly deviate from 90, unveiled by the combined X-ray single crystal analyses and Rietveld refinement of the powder diffraction data [44-46]. Table 4: Comparison of the space group (SG), lattice parameters (/pm), β-angle (/°) and unit cell volumes (/10⁴ pm³) between the present and reported alkali rare-earth borates $A_3RE_3(BO_3)_4$ for A = Na, K, Rb. | Compound | SG | а | b | c | β | V | Sample | CSD/Ref. | |---|-----------------|--------------|--------------|--------------|--------------|--------------|----------------|----------| | K ₃ Pr ₃ (BO ₃) ₄ | $P\overline{1}$ | 1081.67(10) | 907.76(9) | 1410.14(16) | 110.257(6) | 1299.0(2) | Single crystal | 2034347 | | $K_3Pr_3(BO_3)_4$ | $P\overline{1}$ | 1079.873(10) | 908.101(9) | 1408.573(14) | 110.193(1) | 1296.36(29) | powder | - | | $K_3Nd_3(BO_3)_4$ | $P\overline{1}$ | 1075.98(2) | 903.140(19) | 1406.27(3) | 110.2693(16) | 1281.90(5) | powder | 2034350 | | $K_3Sm_3(BO_3)_4$ | $P2_{1}/c$ | 1070.484(17) | 1786.10(3) | 1400.94(2) | 110.4510(10) | 2509.76(7) | powder | 2034349 | | $K_3Eu_3(BO_3)_4$ | $P2_{1}/c$ | 1067.682(19) | 1779.76(3) | 1397.72(3) | 110.4574(11) | 2488.46(8) | powder | 2034351 | | $K_3Gd_3(BO_3)_4$ | $P2_{1}/c$ | 1064.37(2) | 1773.32(4) | 1396.09(3) | 110.4400(15) | 2469.17(10) | powder | 2034410 | | $K_3Tb_3(BO_3)_4$ | $P2_{1}/c$ | 1061.574(14) | 1763.58(2) | 1392.425(19) | 110.5702(8) | 2440.65(6) | powder | 2034353 | | $K_3Dy_3(BO_3)_4$ | $P2_{1}/c$ | 1058.688(12) | 1757.482(19) | 1388.286(16) | 110.5317(7) | 2419.00(5) | powder | 2034354 | | $K_3Ho_3(BO_3)_4$ | $P2_{1}/c$ | 1055.028(15) | 1752.58(2) | 1385.81(2) | 110.4841(9) | 2400.37(6) | powder | 2034355 | | $K_3Er_3(BO_3)_4$ | $P2_{1}/c$ | 1051.46(3) | 1741.61(5) | 1382.37(4) | 110.544(1) | 2370.45(12) | Single crystal | 2034356 | | $K_3Er_3(BO_3)_4$ | $P2_{1}/c$ | 1052.391(6) | 1745.265(11) | 1383.500(9) | 110.4914(4) | 2380.29(3) | powder | - | | $K_3Tm_3(BO_3)_4$ | $P2_{1}/c$ | 1049.94(5) | 1738.14(8) | 1379.29(6) | 110.514(2) | 2357.50(19) | Single crystal | 2034357 | | $K_3Tm_3(BO_3)_4$ | $P2_{1}/c$ | 1048.289(8) | 1738.862(13) | 1376.936(11) | 110.4031(5) | 2352.46(3) | powder | - | | $K_3Yb_3(BO_3)_4$ | $P2_{1}/c$ | 1045.92(2) | 1735.19(4) | 1376.14(3) | 110.329(1) | 2341.95(9) | Single crystal | 2034376 | | $K_3Yb_3(BO_3)_4$ | $P2_{1}/c$ | 1046.216(8) | 1737.961(12) | 1376.727(10) | 110.3269(5) | 2347.39(5) | powder | - | | $K_3Lu_3(BO_3)_4$ | $P2_{1}/c$ | 1042.82(3) | 1730.29(6) | 1375.15(4) | 110.2860(10) | 2327.39(13) | Single crystal | 2034358 | | $K_3Lu_3(BO_3)_4$ | $P2_{1}/c$ | 1043.461(5) | 1731.655(8) | 1375.873(6) | 110.2734(3) | 2332.071(19) | powder | - | | $K_3Y_3(BO_3)_4$ | $P2_{1}/c$ | 1046.67(16) | 1736.1(3) | 1378.1(2) | 110.548(8) | 2344.8(7) | Single crystal | [28] | | $Na_3Y_3(BO_3)_4$ | $P6_3mc$ | 1011.36(14) | 1011.36(14) | 674.85(13) | 90.0 | 597.79(16) | Single crystal | [25] | | Rb ₃ La ₃ (BO ₃) ₄ | P2/c | 1100.24(17) | 929.79(14) | 1450.0(2) | 110.879(2) | 1385.9(4) | Single crystal | [32] | **Figure 4:** Lattice parameters as well as unit cell volumes of K₃RE₃(BO₃)₄ (RE = Pr, Nd, Sm - Lu) The structural parameters are in excellent agreement with those of the results obtained from the single crystal data analyses. The evolution of the metric parameters obtained from the XRPD data Rietveld refinement are shown in **figure 4** and **table 4**. The a- and c-parameters of $K_3RE_3(BO_3)_4$ (RE= Pr, Nd, Sm-Lu) decrease with an increase of the atomic number with the shrinking radius of the RE^{3+} cations, known as the lanthanide contraction. Due to the absence of the 2_1 -screw axis running along the **b**-direction, the **b**-parameters of Pr and Nd-containing phases are approximately half of those of the other rare-earth analogues. Nevertheless, the **b**-parameters and cell volumes of $K_3RE_3(BO_3)_4$ (RE = Sm-Lu) comply with the lanthanide contraction. A detailed comparison between the previously reported $A_3RE_3(BO_3)_4$ phases (A = Na, K, Rb) and the present $K_3RE_3(BO_3)_4$ (RE = Pr, Nd, Sm - Lu) phases are summarized (**table 4**). Despite similar chemical formulae, structural variation occur in $Na_3Y_3(BO_3)_4$ ($P6_3mc$) [25], $K_3RE_3(BO_3)_4$ (Pr, Nd in $P\overline{1}$, Sm-Lu and Y in $P2_1/c$) and $Rb_3La_3(BO_3)_4$ (P2/c) [32]. As the asymmetric units of $K_3Y_3(BO_3)_4$ [28] $K_3Tm_3(BO_3)_4$ contain similar Wyckoff sites, it can be safely concluded that $K_3Y_3(BO_3)_4$ is isostructural to the $K_3RE_3(BO_3)_4$ (RE = Sm - Lu). Due to the size of Y³⁺ cations, close to that of Dy³⁺ and Ho³⁺ cations, this isomorphism is expected. The lattice parameters of Rb₃La₃(BO₃)₄ is comparable to those of K₃RE₃(BO₃)₄ (RE = Pr, Nd), which implies that Rb₃La₃(BO₃)₄ to be structurally correlated to K₃RE₃(BO₃)₄ family. In the unit cell of Rb₃La₃(BO₃)₄[32], two La-, two B- and two O-atoms are found to occupy the twofold special sites whereas the whole of crystallographic independent sites in the asymmetric unit of K₃RE₃(BO₃)₄ (Pr, Nd, Sm - Lu) are general sites, indicating that the symmetry of 2-fold rotation axis along the **b**-direction breaks in all of K₃RE₃(BO₃)₄ members. As a result, $K_3RE_3(BO_3)_4$ (RE = Pr - Nd) could be regarded as a pseudo-monoclinic archetype of $Rb_3La_3(BO_3)_4$ while $K_3RE_3(BO_3)_4$ (RE = Sm - Lu) can be viewed as a one-dimensional superstructure of Rb₃La₃(BO₃)₄ along the **b**-axis. It is worthwhile to mention that we also tried to solve the structure of K₃Tm₃(BO₃)₄, K₃Er₃(BO₃)₄, K₃Yb₃(BO₃)₄ and K₃Lu₃(BO₃)₄ with the P2/c space group and b/2-parameters of Rb₃La₃(BO₃)₄. However, the respective structure refinements presented four positional disorder O-atoms and serval much too long B-O bonds (bond lengths approach to around 144.5 pm for trigonal BO3 group). Therefore, it can be concluded that the structures of $K_3RE_3(BO_3)_4$ (RE = Sm - Lu) crystallize in space group $P2_1/c$ and not in the P2/c symmetry of Rb₃La₃(BO₃)₄. In comparison to Na₃Y₃(BO₃)₄ with a hexagonal open framework, much more close-packed arrangements are found in K₃RE₃(BO₃)₄ and Rb₃La₃(BO₃)₄ probably owing to the larger ionic radii of K⁺ and Rb⁺ than Na⁺. Furthermore, attempts to synthesize K₃La₃(BO₃)₄ and K₃Ce₃(BO₃)₄ was not successful, suggesting that both La³⁺ or Ce³⁺ cations may be too large for the structure of K₃RE₃(BO₃)₄ family. #### UV/Vis spectra **Figure 5:** UV/Vis diffuse reflectance spectrum of K₃Tm₃(BO₃)₄ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). Beside the fundamental band gap absorption edge, the UV/Vis spectra are dominated by characteristic electron transitions. According to the energy diagrams proposed by Dieke and Carnall [47, 48] the intra- (f-f) and inter-(f-d) orbital transitions of the RE³⁺ cations exhibit characteristic absorption peaks between 200 nm and 850 nm, as shown in **figure** 5 and **figure S12** – **S22**. Among them, $K_3Tm_3(BO_3)_4$ exhibits strong absorption bands at 255(2), 360(2), 455(2), 680(2) and 790(2) nm, which usually correspond to the intra f-f transitions: ${}^3H_6 \rightarrow {}^3P_2$, 1D_2 , 1G_4 , ${}^3F_{n=2}$, 3 and 3H_4 , respectively. The characteristic absorption bands of other rare-earth cations in the visible range are observed at 445(2), 471(2), 487(2) and 590(2) nm for K₃Pr₃(BO₃)₄; 533(2), 590(2) and 742(2) nm for K₃Nd₃(BO₃)₄; 405(2) and 473(2) nm for K₃Sm₃(BO₃)₄; 483(2) nm for K₃Tb₃(BO₃)₄; 419(2), 453(2), 537(2) and 640(2) nm for K₃Ho₃(BO₃)₄; 487(2), 523(2) and 651(2) nm for $K_3Er_3(BO_3)_4$. Samples $K_3RE_3(BO_3)_4$ for RE = Eu, Gd, Yb, Lu do not contain significantly intense absorptions above 400 nm, which contribute to their colourlessness in daylight. As such, beside the fundamental absorption, the characteristic electronic transition of RE³⁺ cations are labelled respectively. To determine the type and width of the bandgap, a combination of the Tauc method analysing $[F(R)*hv]^{1/n}$ with n = 2 for indirect and n = 0.5 for direct bandgap transitions and the DASF method by evaluating the derivative transition peak to obtain the absolute value of the bandgap energy (figure 5d) were used. The combined approach implies that each member of the K₃Er₃(BO₃)₄ series exhibits indirect bandgaps of 4.71(1), 5.28(1), 5.51(1) and 4.45(3) eV for Pr-, Gd-, Tm- and Yb-analogues, respectively. Direct bandgaps of 5.74(3), 4.99(1), 3.82(1), 5.41(1), 5.86(4), 5.99(1), 6.02(1) and 6.09(2) eV are observed for Nd-, Sm-, Eu-, Tb-, Dy-, Ho-, Er-, Lu-analogues, respectively. These values are comparable to those of the other rare-earth
sesquioxides [49], but significantly lower than that of the well-known β-BaB₂O₄, LiB₃O₅ and KBe₂BO₃F₂ NLO borate crystals [50]. #### Vibrational spectra **Figure 6:** Fourier transform infrared (left) and Raman (right) spectra of K₃RE₃(BO₃)₄ (Pr, Nd, Sm-Lu). FTIR spectra of K₃RE₃(BO₃)₄ (RE = Pr, Nd, Sm-Lu) are given in **figure 6**. Generally, all absorption bands in the IR spectra from 400 and 1700 cm⁻¹ can be assigned to the trigonal planar BO₃ groups [51-53]. The pronounced broad absorption bands between 1000 to 1600 cm⁻¹ originate from the B-O asymmetric stretching (v3) of the BO₃ groups. The vibrational regions from 600 to 700 cm⁻¹ and from 700 to 800 cm⁻¹ correspond to in-plane bending mode (v4) and out-of-plane bending mode (v2), respectively. Several medium absorption peaks centering between 850 cm⁻¹ and 900 cm⁻¹ can be assigned to the symmetric stretching modes (v1) of the BO₃ groups. Notably, the v_1 mode of the ideal BO₃ group (D_{3h}) is theoretically infrared inactive due to the invariability of the molecular dipole moment. In contrast, the v_1 modes in K₃RE₃(BO₃)₄ are infrared activate since the symmetry of BO₃ group is lower to the C_{2v} or C_s point group. Such distortion from the ideal geometry of BO₃ groups fits well to the results of the structural features observed by X-ray diffraction. The Raman spectra in the region of 90 to 1800 cm⁻¹ are also shown (**figure 6b**). Below the 400 cm⁻¹ region is dominantly contributed by the stretching modes of RE–O bonds and K-O bonds; the complex lattice vibrations at this region can be explicitly distinguished [51-53] from the rest of the spectral intensity. The most intensive peaks in the spectra located around between 900 and 980 cm⁻¹ fit well to the stretching vibrations (v1 modes) of BO₃ groups which are formally Raman active. Alike FTIR spectra, the Raman shifts from 1000 to 1600 cm⁻¹ can be ascribed to the BO₃ asymmetric stretching vibrations (v3 modes), while those bands observed in the regions of 560 – 700 cm⁻¹ and 700 - 800 cm⁻¹ arise from v4 and v2 modes, respectively. The vibrational features of BO₃ groups observed in the Raman spectra are in good agreement with the FTIR spectra. Beside the vibrational features appeared in the FTIR and Raman spectra, extra bands elsewhere can be assigned either to REBO₃ impurity (if any) or to 4f-electronic transitions. #### 4. Conclusion A series of novel rare-earth borate compounds $K_3RE_3(BO_3)_4$ (RE = Pr, Nd, Sm - Lu) are obtained by solid state syntheses and spontaneous crystallization from a high-temperature flux. Combined X-ray single crystal and powder diffraction reveal the monoclinic space group $P2_1/c$ for $K_3RE_3(BO_3)_4$ (RE=Sm-Lu) and triclinic space group $P\overline{1}$ for $K_3RE_3(BO_3)_4$ (RE=Pr, Nd). The lattice parameters of $K_3RE_3(BO_3)_4$ determined by Rietveld refinement using the powder X-ray diffraction are found to comply with the lanthanide contraction. A thorough crystal structural analysis reveals that $K_3RE_3(BO_3)_4$ (RE = Pr, Nd) can be considered as pseudomonoclinic archetypes of $Rb_3La_3(BO_3)_4$ and $K_3RE_3(BO_3)_4$ (RE = Sm - Lu) viewed as one-dimensional superstructures of $Rb_3La_3(BO_3)_4$ along the **b**-axis. However, all family members are structurally distinct from the hexagonal-open-framework such as in Na₃Y₃(BO₃)₄. The results allowed to reveal a morphotropic series for alkali rare-earth borates based on the cationic size effects. Acknowledgement PYC gratefully thanks the Chinese Scholarship Council (CSC) for the financial support. The University of Bremen is cordially acknowledged for the technical and administrative supports. The authors thank the Deutsche Forschungsgemeinschaft (DFG) for financial supports for large scientific instruments INST 144/458-1 FUGG used for this project. **Compliance with Ethical Standards:** **Conflict of Interest:** The authors declare that they have no conflict of interest. 130 #### Reference - [1] R. P. Rao, D.J. Devine, RE-activated lanthanide phosphate phosphors for PDP applications, *J. Lumin*, 87-89 (**2000**) 1260-1263. - [2] R. P. Rao, Tb^{3+} activated green phosphors for plasma display panel applications, *J. Electrochem. Soc.*, 150 (2003) H165-H171.. - [3] L. Zhang, C. Pédrini, C. Madej, C. Dujardin, J.C. Gcon, B. Moine, I. Kamenskikh, A. Belsky, D.A. Shaw, M.A. MacDonald, P. Mesnard, C. Fouassier, J.C. Van't Spijker, C.W. E. Van Eijk, Fast fluorescence and scintillation properties of cerium and praseodymium doped lutetium orthoborates, *Radiat. Eff. Defects Solids*, 150 (1999) 47-52. - [4] Z.-J. Zhang, T.-T. Jin, M.-M. Xu, Q.-Z. Huang, M.-R. Li, J.-T. Zhao, Low-Temperature Vaterite-Type LuBO₃, a Vacancy-Stabilized Phase Synthesized at High Temperature, *Inorg. Chem.*, 54 (2015) 969-975. - [5] L. Gheorghe, M. Greculeasa, A. Broasca, F. Voicu, G. Stanciu, K. N. Belikov, E.Y. Bryleva, O. Gaiduk, Incongruent Melting La_xY_ySc_{4-x-y}(BO₃)₄: LYSB Nonlinear Optical Crystal Grown by the Czochralski Method, *ACS Appl. Mater. Interfaces*, 11 (**2019**) 20987-20994. - [6] G. Aka, E. Reino, P. Loiseau, D. Vivien, B. Ferrand, L. Fulbert, D. Pelenc, G. Lucas-Leclin, P. Georges, Ca₄REO(BO₃)₃ crystals for green and blue microchip laser generation: from crystal growth to laser and nonlinear optical properties, *Opt.Mater.*, 26 (**2004**) 431-436. - [7] G. Zou, Z. Ma, K. Wu, N. Ye, Cadmium-rare earth oxyborates Cd₄ReO(BO₃)₃ (Re = Y, Gd, Lu): congruently melting compounds with large SHG responses, *J. Mater. Chem.*, 22 (**2012**) 19911-19918. - [8] D. Rytz, A. Gross, S. Vernay, V. Wesemann, YAl₃(BO₃)₄: a novel NLO crystal for frequency conversion to UV wavelengths, *Proc. SPIE*, *Solid State Lasers and Amplifiers III* (**2008**), 6998 - [9] Y. Yue, Y. Zhu, Y. Zhao, H. Tu, Z. Hu, Growth and Nonlinear Optical Properties of GdAl₃(BO₃)₄ in a Flux without Molybdate, *Cryst. Growth Des*, 16 (**2016**) 347-350. - [10] S. H. Fang, H. Liu, L.X. Huang, N. Ye, Growth and optical properties of nonlinear LuAl₃(BO₃)₄ crystals, *Opt. Express*, 21 (2013) 16415-16423. - [11] M. Mutailipu, Z. Xie, X. Su, M. Zhang, Y. Wang, Z. Yang, M. Janjua, S. Pan, Chemical Cosubstitution-Oriented Design of Rare-Earth Borates as Potential Ultraviolet Nonlinear Optical Materials, *J. Am. Chem. Soc.*, 139 (2017) 18397-18405. - [12] Z. Xie, M. Mutailipu, G. He, G. Han, Y. Wang, Z. Yang, M. Zhang, S. Pan, A Series of Rare-Earth Borates $K_7MRE_2B_{15}O_{30}$ (M = Zn, Cd, Pb; RE = Sc, Y, Gd, Lu) with Large Second Harmonic Generation Responses, *Chem. Mater.*, 30 (2018) 2414-2423. - [13] K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, N.V. Kuleshov, Highly efficient continuous-wave diode-pumped Er, Yb:GdAl₃(BO₃)₄ laser, *Opt. Lett.*, 38 (2013) 2446-2448. - [14] A. Broasca, L. Gheorghe, M. Greculeasa, F. Voicu, G. Stanciu, S. Hau, C. Gheorghe, G. Croitoru, N. Pavel, Czochralski Growth and Characterization of Pure and Yb-Doped La_xY_ySc₄- - x-y(BO₃)₄ Nonlinear and Laser Crystal, *Laser Applications Conference, Opt. Soc. Am*, **2019**, pp. JM5A. 40. - [15] P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, J. Wang, 1.1 W CW self-frequency-doubled diode-pumped Yb:YAl₃(BO₃)₄ laser, *Opt. Comm.*, 195 **(2001)** 431-436. - [16] D. Z. Lu, Q. N. Fang, X. S. Yu, X. K. Han, J. Y. Wang, H. H. Yu, H. J. Zhang, Power scaling of the self-frequency-doubled quasi-two-level Yb:YCOB laser with a 30% slope efficiency, *Optics Letters*, 44 (2019) 5157-5160. - [17] R. K. Li, C. C. Wu, M. J. Xia, LiCaTb₅(BO₃)₆: A new magneto-optical crystal promising as Faraday rotator, *Opt. Mater.*, 62 (**2016**) 452-457. - [18] R. Li, Enhancing the Magnetocaloric Effect of a Paramagnet to above Liquid Hydrogen Temperature, *Energy Technol.*, 7 (2019) 1801070. - [19] G. K. Abdullaev, K.S. Mamedov, I. R. Amiraslanov, A.I. Magerramov, Crystal structure of lithium praseodymium orthoborate Li₃Pr₂(BO₃)₃, *J. Struct. Chem.*, 18 (**1977**) 331-333. - [20] B. Sebastian, H. Hubert, Synthesis and structural characterization of Li₃Y(BO₃)₂, Z. *Naturforsch.*, B, 72 (2017) 153-158. - [21] V. Jubera, P. Gravereau, J. P. Chaminade, Crystal structure of the new borate Li₃Gd(BO₃)₂. Comparison with the homologous Na₃Ln(BO₃)₂ (Ln: La, Nd) compounds, *Solid State Sci.*, 3 (2001) 469-475. - [22] J. Mascetti, M. Vlasse, C. Fouassier, The crystal chemistry of the new rare-earth sodium borates Na₃Ln(BO₃)₂(Ln = La, Nd), *J. Solid State Chem.*, 39 (**1981**) 288-293. - [23] Y. Zhang, X.L. Chen, J. K. Liang, T. Xu, Synthesis and structural study of new rare earth sodium borates Na₃Ln(BO₃)₂ (Ln=Y, Gd), *J. Alloys Compd*, 333 (2002) 72-75. - [24] Z. Wang, H. Li, G. Cai, Z. Jin, Synthesis, crystal structure, and thermal stability of new borates Na₃REB₂O₆ (RE = Pr, Sm, Eu), *Powder Diffr.* 31 (**2016**) 110-117. - [25] F. Shan, L. Kang, G. Zhang, J. Yao, Z. Lin, M. Xia, X. Zhang, Y. Fu, Y. Wu, Na₃Y₃(BO₃)₄: a new noncentrosymmetric borate with an open-framework structure, *Dalton Trans.*, 45 (**2016**) 7205-7208. - [26] J. H. Gao, R. K. Li, Potassium rich rare earth (RE) borates K₃RE(BO₃)₂, *Solid State Sci.*, 10 (2008) 26-30. - [27] S. Zhao, G. Zhang, J. Yao, Y. Wu, K₃YB₆O₁₂: A new nonlinear optical crystal with a short UV cutoff edge, *Mater. Res. Bull*, 47 (**2012**) 3810-3813. - [28] J. H. Gao, R. K. Li, Preparation, structure and luminescent properties of a new potassium yttrium borate K₃Y₃(BO₃)₄, *Mate. Res.Bull.*, 43 (**2008**) 882-888. - [29] V.V. Atuchin, A.K. Subanakov, A.S. Aleksandrovsky, B.G. Bazarov, J. G. Bazarova, S.G. Dorzhieva, T. A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, A.M. Pugachev, Y.L. Tushinova, A.P. Yelisseyev, Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb₃NdB₆O₁₂, *Adv. Powder Technol.*, 28 (2017) 1309-1315. - [30] A. K. Subanakov, E.V. Kovtunets, B.G. Bazarov, S.G. Dorzhieva, J.G. Bazarova, New double holmium borates: Rb₃HoB₆O₁₂ and Rb₃Ho₂B₃O₉, *Solid State Sci*, 105 (**2020**)
106231. - [31] V.V. Atuchin, A.K. Subanakov, A.S. Aleksandrovsky, B.G. Bazarov, J.G. Bazarova, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, S.Y. Stefanovich, Structural and spectroscopic properties of new noncentrosymmetric self-activated borate Rb₃EuB₆O₁₂ with B5O10 units, *Mater. Design*, 140 (**2018**) 488-494. - [32] J. H. Gao, M.S. Zheng, Synthesis and Crystal Structure of a Rubidium Lanthanum Borate Rb₃La₃(BO₃)₄, *Chin. J. Struct. Chem.*, 28 (**2009**) 82-86. - [33] G. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, *Acta Crystallogr. A*, 71 (2015) 3-8. - [34] C. B. Hubschle, G.M. Sheldrick, B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL, *J. Appl. Crystallogr.*, 44 (2011) 1281-1284. - [35] A. Spek, Single-crystal structure validation with the program PLATON, *J. Appl. Crystallogr.*, 36 **(2003)** 7-13. - [36] J. Rodriguez-Carvajal, T. Roisnel, WinPLOTR: A windows tool for powder diffraction pattern analysis, *Mater. Sci. Forum, Proceedings of the Seventh European Powder DiffractionConference*, Barcelona, Spain, **2000**, pp. 378-381. - [37] P. Kubelka, Ein Beitrag zur Optik der Farbanstriche, Z. Tech. Phys., 12 (1931) 593-601. - [38] J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, *Phys. Status Solidi B*, 15 (**1966**) 627-637. - [39] D. Souri, Z. E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors, *Appl. Phys. B*, 119 (**2015**) 273-279. - [40] A. Kirsch, M. M. Murshed, M. Schowalter, A. Rosenauer, T. M. Gesing, Nanoparticle precursor into polycrystalline Bi₂Fe₄O₉: an evolutionary investigation of structural, morphological, optical, and vibrational properties, *J. Phys. Chem. C*, 120 (**2016**) 18831-18840. - [41] A. Kirsch, M. M. Murshed, F. J. Litterst, T. M. Gesing, Structural, spectroscopic, and thermoanalytic studies on Bi₂Fe₄O₉: tunable properties driven by nano-and poly-crystalline states, *J. Phys. Chem. C*, 123 (**2019**) 3161-3171. - [42] R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, *Acta Crystallogr. A*, 32 (1976) 751-767. - [43] Y. Q. Jia, Crystal radii and effective ionic radii of the rare earth ions, *J. Solid State Chem.*, 95 (1991) 184-187. - [44] J. H. Lin, M. Z. Su, K. Wurst, E. Schweda, The Structure of La₂₆(BO₃)₈O₂₇: A structure with a distorted fluorite type arrangement of atoms, *J. Solid State Chem.*, 126 (**1996**) 287-291. - [45] S. Noirault, S. Célérier, O. Joubert, M.T. Caldes, Y. Piffard, Effects of Water Uptake on the Inherently Oxygen-Deficient Compounds $Ln_{26}O_{27}\square(BO_3)_8$ (Ln = La, Nd), *Inorg. Chem.*, 46 (2007) 9961-9967. - [46] S. Noirault, S. Célérier, O. Joubert, M.T. Caldes, Y. Piffard, Incorporation of Water and - fast proton conduction in the inherently oxygen-deficient compound La₂₆O₂₇□(BO₃)₈, 19 (**2007**) 867-870. - [47] G.H. Dieke, H. M. Crosswhite, The Spectra of the Doubly and Triply Ionized Rare Earths, *Appl. Opt.*, 2 (1963) 675-686. - [48] W. T. Carnall, P. R. Fields, K. Rajnak, Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Dy³⁺, Ho³⁺, Er³⁺, and Tm³⁺, *J. Chem. Phys.*, 49 (**1968**) 4424-4442. - [49] A. V. Prokofiev, A. I. Shelykh, B. T. Melekh, Periodicity in the band gap variation of Ln_2X_3 (X = O, S, Se) in the lanthanide series, J. Alloys Compd., 242 (1996) 41-44. - [50] R. He, H. Huang, L. Kang, W. Yao, X. Jiang, Z. Lin, J. Qin, C. Chen, Bandgaps in the deep ultraviolet borate crystals: Prediction and improvement, *Appl. Phys. Lett.*, 102 (2013) 231904. - [51] A. Haberer, R. Kaindl, H. Huppertz, Synthesis and Crystal Structure of the Praseodymium Orthoborate λ -PrBO₃, *Z. Naturforsch.*, B, 65 (**2010**) 1206. - [52] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, *Handbook of Vibrational Spectroscopy* (2006). - [53] C. Tao, C. Wu, M. Xia, R. Li, Li₂Ca₅Tb(BO₃)₅: An orthoborate with large spherical hollow cages, *Opt. Mater.*, 96 (**2019**) 109358. # **Supporting Information** # Synthesis and crystal structures of novel alkali rare-earth orthoborates $K_3RE_3(BO_3)_4$ (RE = Pr, Nd, Sm - Lu) Pengyun Chen¹, M. Mangir Murshed^{1,2*}, Thorsten M. Gesing^{1,2} ¹University of Bremen, Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, Leobener Straße 7, D-28359 Bremen, Germany ²University of Bremen, MAPEX Center for Materials and Processes, Bibliothekstraße 1, D-28359 Bremen, Germany *Corresponding author: e-mail address: murshed@uni-bremen.de, phone: +49 (0)421 218 63144, fax: +49 421 218 63145. Figure S1: X-ray powder data Rietveld plot of K₃Nd₃(BO₃)₄. Figure S2: X-ray powder data Rietveld plot of K₃Sm₃(BO₃)₄. Figure S3: X-ray powder data Rietveld plot of K₃Eu₃(BO₃)₄. Figure S4: X-ray powder data Rietveld plot of K₃Gd₃(BO₃)₄. Figure S5: X-ray powder data Rietveld plot of K₃Tb₃(BO₃)₄. Figure S6: X-ray powder data Rietveld plot of K₃Dy₃(BO₃)₄. Figure S7: X-ray powder data Rietveld plot of K₃Ho₃(BO₃)₄. Figure S8: X-ray powder data Rietveld plot of K₃Er₃(BO₃)₄. Figure S9: X-ray powder data Rietveld plot of K₃Yb₃(BO₃)₄. Figure S10: X-ray powder data Rietveld plot of K₃Lu₃(BO₃)₄. **Figure S11**: X-ray powder data Rietveld plots of $K_3Pr_3(BO_3)_4$ with the starting models of the space group $P2_1/c$ (top) and P2/c (bottom). **Figure S12:** Diffuse reflectance spectrum of K₃Pr₃(BO₃)₄ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S13:** Diffuse reflectance spectrum of K₃Nd₃(BO₃)₄ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S14:** Diffuse reflectance spectrum of K₃Sm₃(BO₃)₄ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S15:** Diffuse reflectance spectrum of K₃Eu₃(BO₃)₄ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S16:** Diffuse reflectance spectrum of K₃Gd₃(BO₃)₄ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S17:** Diffuse reflectance spectrum of K₃Tb₃(BO₃)₄ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S18:** Diffuse reflectance spectrum of K₃Dy₃(BO₃)₄ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S19:** Diffuse reflectance spectrum of K₃Ho₃(BO₃)₄ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S20:** Diffuse reflectance spectrum of K₃Er₃(BO₃)₄ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S21:** Diffuse reflectance spectrum of K₃Yb₃(BO₃)₄ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). **Figure S22:** Diffuse reflectance spectrum of K₃Lu₃(BO₃)₄ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). # **Chapter 5** Synthesis and characterization of $K_2Pr_2O(BO_3)_2$: structural, spectroscopic and thermogravimetric investigations of a novel potassium praseodymium oxoborate structure-type Pengyun Chen¹, M. Mangir Murshed^{1,2*}, Thorsten M. Gesing^{1,2} ¹University of Bremen, Institute of Inorganic Chemistry and Crystallography, Leobener Straße 7, D-28359 Bremen, Germany ²University of Bremen, MAPEX Center for Materials and Processes, Bibliothekstraße 1, D-28359 Bremen, Germany *Corresponding author: e-mail address: murshed@uni-bremen.de, phone: +49 (0)421 218 63144, fax: +49 421 218 63145. #### **Abstract** Single crystal and polycrystalline powder samples of a new potassium praseodymium oxoborate K₂Pr₂O(BO₃)₂ were prepared by high-temperature solid-state methods. The crystal structure obtained from single-crystal X-ray diffraction data was confirmed by powder X-ray data Rietveld refinement ($P2_1/c$, a = 1135.00(3) pm, b = 660.64(2) pm, c = 1072.03(3) pm, β = 117.128(2) °, $V = 715.41(3) \times 10^6$ pm³). The bond-valence sum of the central cation for KO_{6/7}, PrO₉ and BO₃ coordination lies close to the respective empirical value. Both Fourier-transform infrared (FTIR) and Raman spectroscopy demonstrated the vibrational features of the isolated BO₃ planar group. The diffuse UV/Vis reflectance spectra showed fundamental absorption edge at 4.49(1) eV obtained from the combined approach using Tauc and derivation of absorption spectrum fitting (DASF) methods. The greenish color of the sample was identified originating from 4f-4f-electron transitions. The thermal stability was investigated by using simultaneous thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC). The decomposed products $Pr_{26}O_{27}(BO_3)_8$ (90(2) wt.%) and Pr_6O_{11} (10(2) wt.%) were confirmed by powder X-ray diffraction data analysis, complementary to the weight-loss during the heating process. Since Pr^{3+} cation is known to show interesting photoluminescence property this novel compound may be a prospective candidate as phosphor. Keywords: Potassium praseodymium borate, Crystal structure, Vibrational property, Optical property, Thermal stability ### 1. Introduction Inorganic rare-earth borates have received intensive interests owing to their wide range of applications in nonlinear optics (NLO), laser hosts and photoluminescence materials [1-3]. Among the most attractive features of borate crystals, the key characteristics are their transparency in the wide
range from mid-infrared to deep-ultraviolet [4], high optical damage threshold [5] and suitable physico-chemical stability [6]. Hitherto, Na₃La₉O₃(BO₃)₈ [7], La₂CaB₁₀O₁₉ [8], and YAl₃(BO₃)₄ [9] have been widely used as NLO crystals for second harmonic generation (SHG). Since the ionic radii of the rare-earth elements are close to each other, these rare-earth borates are favorable to host optical active cations such as Ce3+, Nd3+ and Yb3+ [10]. Therefore, the rare-earth borates can further serve as an array of functional materials in optics: Ce³⁺:Li₆Y(BO₃)₃ [11] as scintillator materials for neutron detection, Nd³⁺:YAl₃(BO₃)₄ [12] as crystals for green laser emission, and Yb³⁺:LiGd₆O₅(BO₃)₃ [13] as ultrashort-pulse lasers. Rare-earth orthoborate YBO₃ doped with Eu³⁺ and Tb³⁺ [14] are appropriate phosphors in plasma-display panels due to their high luminous efficacy and thermally stable luminescence yield. Recently, Pr^{3+} cation-doping materials have drawn an intense research attention due to their promising applications in white-light emitting diodes [15-17]. The Pr^{3+} cation is able to release rich fluorescence spectral lines in the red, orange, green, and blue regions, which originate from the electronic transition between the 4f inner-shell configurations. For instance, in the alkalimetal borates steady and high-efficiency red emission have been detected in Pr^{3+} :KSr₄(BO₃)₃ powder [18], Pr^{3+} :Na₃La₉O₃(BO₃)₈ crystal [19] and Pr^{3+} doped lithium borate glasses [20] when activated by blue or ultraviolet light due to $^3P_0 \rightarrow ^3H_6$ and $^1D_2 \rightarrow ^3H_4$ transitions. Despite much works on Pr^{3+} -doped borates, purely praseodymium borates have not been extensively studied. In search of novel rare-earth borate compounds the present investigation focus on $A_2O-Pr_2O_3-B_2O_3$ (A = alkali metal) quasi-ternary systems and their crystal-, chemico-physical properties. To the best of our knowledge, only $Li_3Pr_2(BO_3)_3$ [21], $LiPr_6O_5(BO_3)_3$ [22], $Na_3Pr(BO_3)_2$ [23] and $K_9Li_3Pr_3(BO_3)_7$ [24] were reported in these ternary systems. The alkali-metal praseodymium borate $K_2Pr_2O(BO_3)_2$ has been found to be a new member of the $K_2La_2(BO_3)_2O$ family [25]. The report particularly emphasizes on the synthesis, crystal structure, vibrational, optical and thermal properties of $K_2Pr_2O(BO_3)_2$. ### 2. Experimental ## 2.1. Synthesis Single crystals of K₂Pr₂O(BO₃)₂ were obtained by means of the flux–assisted solid state reaction method. The starting materials K₂CO₃, PrO₂ and H₃BO₃ with a molar ratio of 1.5: 2: 3, respectively, were thoroughly ground in an agate mortar, and put into a platinum crucible. The mixture of the starting chemicals can be regarded as the target product K₂Pr₂O(BO₃)₂ together with the assisted-flux KBO₂ in the molar ratio of 1:1. The crucible was heated up to 1173 K in a muffle furnace with a heating rate of 100 K/h and maintained at that temperature for 12 h. Afterward, the crucible was cooled down to room temperature with a cooling rate of 300 K/h. The obtained K₂Pr₂O(BO₃)₃ was found as greenish, chunk-shaped, air and water-resistant single crystals. Polycrystalline samples of K₂Pr₂O(BO₃)₂ were prepared using a solid-state synthesis method in a platinum crucible. First, a stoichiometric batch of intimately mixed K₂CO₃, PrO₂ and H₃BO₃ (analytical grade) was heated at 773 K for 12 h to completely decompose K₂CO₃ and H₃BO₃. The resulting samples were then ground in agate mortar and heated further at 1123 K for 48 h. A 10 % excess molar ratio of K₂CO₃ was added into the samples during the sintering process to compensate the evaporation of potassium. The mixtures were repeatedly heated at 1123 K with intermediate grindings until their powder X-ray diffraction pattern confirms a pure phase. #### 2.2. X-ray single crystal diffraction The small crystals of $K_2Pr_2O(BO_3)_2$ were isolated by mechanical fragmentation and picked using a polarization microscope. Single-crystal diffraction data were collected on a Bruker D8-Venture diffractometer in Kappa geometry with $Mo_{k\bar{\alpha}}$ radiation ($\lambda_{k\bar{\alpha}} = 71.0747(6)$ pm) at 297(2) K. A numerical absorption correction was applied to the intensity data sets. The systematic extinctions and $|E^2-1|$ statistics suggested the monoclinic space group $P2_1/c$; therefore the structure determination of $K_2Pr_2O(BO_3)_2$ was performed in this space group. The structure was finely solved via the intrinsic phasing method and successfully refined on F^2 by full-matrix least-square methods with the ShelxT and Shelxle program packages [26, 27]. All atoms were refined with anisotropic displacement parameters and the final difference Fourier synthesis did not reveal any significant residual electron density. All relevant details of the data collection and the refinement are listed in **table 1**, atomic coordinates and displacement parameters in **table 2** and the bond valence sums (BVSs) in **table 3**. Further details of the crystal structure information can be obtained from FIZ Karlsruhe, 76344 Eggenstein Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz- karlsruhe.de) on quoting the deposition number CSD-1978814. **Table 1**. Crystal structure determination of $K_2Pr_2O(BO_3)_2$ in the space group $P2_1/c$ (No.14) from single crystal and powder X-ray diffraction data. | Crystals | Single | Powder | | | |---|--------------------------|------------------------|--|--| | $Dimension/\mu m^3/L_{Vol}(IB)/nm$ | $93 \times 66 \times 52$ | 249(8) | | | | a/pm | 1133.77(3) | 1135.00(3) | | | | b/pm | 660.47(2) | 660.64(2) | | | | c/pm | 1071.30(3) | 1072.03(3) | | | | eta / $^{\circ}$ | 117.07(1) | 117.13(1) | | | | Z | 4 | 4 | | | | Temperature/K | 297(2) | 300(2) | | | | Diffractometer | Bruker D8 Venture | Panalytical X'Pert Pro | | | | Wavelength/pm | 71.0747(6) | 154.1866(1) | | | | Absorption coefficient/mm ⁻¹ | 14.638 | 113.568(6) | | | | Absorption correction method | Numerical | | | | | $F(000)/e^{-}$ | 888 | 888 | | | | $\theta / 2\theta$ range/° | 2.017-46.021 | 5-130 | | | | | $-22 \le h \le 20,$ | $0 \le h \le 13,$ | | | | Range in hkl | $-12 \le k \le 13,$ | $0 \le k \le 7$ | | | | | $-20 \le 1 \le 21$ | -12 ≤ 1 ≤ 11 | | | | Reflections collected | 64145 | 1230 | | | | Data/restraints/parameters | 6129/0/119 | 7480/8/54 | | | | Goodness-of-fit on F^2 | 1.043 | 1.92 | | | | R_1/wR_2 (all data) | 0.0401/0.0438 | $R_{wp} = 0.07786$ | | | ## 2.3. X-ray powder diffraction The powder X-ray diffraction (PXRD) pattern was recorded on a Panalytical X'Pert Pro powder diffractometer using Bragg-Brentano geometry with $CuK_{\alpha 1,2}$ ($\lambda_{k\alpha 1}=154.05929(5)$ pm, $\lambda_{k\alpha 2}=154.4414(2)$ pm) radiation. The measurement was carried out at ambient condition in a range between 5° and 130° 2θ with a step size of 0.0167° and a data collection time of 30 s/step. The fundamental parameter approach, where the fundamental parameters were fitted against a LaB₆ standard material, was applied for the Rietveld refinement using "Diffrac^{Plus} Topas 6" software (Bruker AXS GmbH, Karlsruhe, Germany). The starting lattice parameters and atomic coordinates were taken from the results of the single crystal structure determination. ## 2.4. UV/Vis spectroscopy The UV/Vis diffuse reflectance measurement was collected from 200 nm to 850 nm with a step of 1 nm on a UV-2700 spectrophotometer (Shimadzu, Japan) equipped with an ISR-2600 plus two-detector integrating sphere (Pike Technologies, USA). The baseline correction was carried out against BaSO₄ powder. #### 2.5. Vibration spectroscopy The Fourier transform infrared (FTIR) spectrum was recorded on a Bruker IFS66v/S spectrometer using the standard KBr method between 370 cm⁻¹ and 4000 cm⁻¹. KBr pallets consist of 2 mg sample mixed with 200 mg KBr (sample) and 200 mg KBr (reference), pressed at 100 kN, forming disks of 12 mm in diameter. Temperature-dependent Raman spectra were recorded on a LabRam ARAMIS (Horiba Jobin Yvon) Micro-Raman spectrometer equipped with a laser working at 785 nm and less than 5 mW. The use of a 50x long working distance objective (Olympus) with a numerical aperture of 0.55 provides a focus spot of about 2 μm diameter when closing the confocal hole to 200 μm. Raman spectra were collected in the range 85 cm⁻¹ to 1700 cm⁻¹ with a spectral resolution of approximately 1.2 cm⁻¹ using a grating of 1800 grooves/mm and a thermoelectrically cooled CCD detector (Synapse, 1024 x 256 pixels). The spectral positions were calibrated against the Raman mode of Si before and after the sample measurements. The position of the Si peak was repeatedly measured against the Rayleigh line (0.0 cm⁻¹) yielding a value of 520.7 ±0.1 cm⁻¹. The linearity of the spectrometer was calibrated against the emission lines of a neon lamp. For the low-temperature measurements, a pressed pellet of powder sample was placed on a Linkam cooling stage (THMS600) attached to a pump (LNP95 Cooling Pump) that provides a continuous flow of liquid nitrogen. The measurements were carried out between 78 K and 300 K. A ramp rate of 5 K/min and a holding time of 5 min were followed to properly equilibrate the temperature. For the spectrum at ambient condition the baseline was corrected and fitted with Pseudo-Voigt lineshape, account. #### 2.6. Thermal analysis Simultaneous thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) measurements were performed on TGA/DSC 3⁺ STAR^e system of Mettler Toledo. The sample was measured with a heating rate of 10 K/min and a continuous N₂ flow of 20 mL/min from 300 K to 1473 K. Afterward, the data were normalized to their respective mass. Approximately 16.159 mg of K₂Pr₂O(BO₃)₂ was measured relative to an empty corundum crucible as the reference. A drift correction was applied based on empty crucible data. **Table 2**: Crystal structural data of
$K_2Pr_2O(BO_3)_2$. The isotropic $(B_{iso}/10^4 \text{ x pm}^2)$ and equivalent isotropic $(U_{eq}/10^4 \text{ x pm}^2)$ atomic displacement parameters are obtained from powder X-ray and single crystal X-ray diffraction data analysis, respectively. | Atom | Wyckoff | SOF | x | у | Z | U_{eq} | B_{iso} | |----------------|---------------|--------------|--------------|--------------|-------------|-------------|--------------------| | Pr1 4e | 1 | 0.51850(2) | 0.04466(2) | 0.31939(2) | 49.0(2) | - | | | | 1 | 0.5184(3) | 0.0452(4) | 0.3202(3) | - | $0.46(5)^a$ | | | D2 | D-2 4 - | 1 | 0.32360(2) | 0.41647(2) | 0.41561(2) | 56.3(2) | - | | Pr2 4 <i>e</i> | 1 | 0.3230(3) | 0.4159(4) | 0.4162(3) | - | $0.46(5)^a$ | | | TZ 1 | *** | 1 | 0.03193(5) | 0.06011(7) | 0.26414(5) | 129.9(8) | - | | K1 | 4 <i>e</i> | 1 | 0.0320(9) | 0.0569(15) | 0.2666(10) | - | $0.55(18)^b$ | | W2 | 4 - | 1 | 0.11866(5) | 0.74422(8) | 0.05575(5) | 137.7(3) | - | | K2 | 4 <i>e</i> | 1 | 0.1200(9) | 0.7564(15) | 0.0596(12) | - | $0.55(18)^b$ | | D.1 | B1 4e | 1 | 0.6946(2) | 0.3446(3) | 0.1441(2) | 67(3) | - | | BI | | 1 | 0.6946^{d} | 0.3446^{d} | 0.1441^d | - | 0.529^{d} | | D2 | 4 - | | 0.1978(2) | 0.2469(3) | 0.0897(2) | 73(3) | - | | B2 | B2 4 <i>e</i> | 1 | 0.1978^{d} | 0.2469^{d} | 0.0897^d | - | 0.576^{d} | | 0.1 | O1 4e | 1 | 0.79983(15) | 0.2513(2) | 0.14046(17) | 103(3) | - | | O1 | | | 0.808(3) | 0.258(5) | 0.144(3) | - | $1.5(3)^{c}$ | | 02 | | 1 | 0.12430(16) | 0.3490(3) | 0.46490(17) | 114(3) | | | O2 | 4 <i>e</i> | | 0.128(3) | 0.327(4) | 0.482(3) | | $1.5(3)^{c}$ | | 02 | 4 - | e 1 | 0.14560(16) | 0.3469(3) | 0.16568(17) | 119(3) | - | | О3 | 4 <i>e</i> | | 0.154(2) | 0.363(4) | 0.169(3) | - | $1.5(3)^{c}$ | | 0.4 | 4 - | 4 <i>e</i> 1 | 0.63161(15) | 0.2468(2) | 0.21263(17) | 90(3) | - | | O4 | 4 <i>e</i> | | 0.622(3) | 0.267(4) | 0.221(3) | - | $1.5(3)^{c}$ | | 0.5 | _ | -e 1 | 0.52705(15) | 0.3776(2) | 0.40277(16) | 77(2) | - | | O5 4e | 4e | | 0.528(3) | 0.395(4) | 0.419(3) | - | $1.5(3)^{c}$ | | O6 4 <i>e</i> | 4 | 1 | 0.33651(15) | 0.2428(2) | 0.13950(17) | 97(3) | - | | | 4e | | 0.346(3) | 0.233(4) | 0.142(3) | - | $1.5(3)^{c}$ | | 07 | 4 | le 1 | 0.35215(16) | 0.0341(2) | 0.41402(17) | 92(3) | - | | Ο7 | 4 <i>e</i> | | 0.361(2) | 0.010(4) | 0.402(3) | - | $1.5(3)^{c}$ | ^{a,b,c} values with the same letters were constrained to each other during the refinements. $^{^{\}rm d}$ these values were fixed during the refinement. $U_{\rm ij}$ tensors can be obtained from CSD-1978814. **Figure 1**. Crystal structure of $K_2Pr_2O(BO_3)_2$, showing polyhedral structural units (a) connectivity of $Pr(1)O_8$ dodecahedra (b), $Pr(2)_2O_{14}$ polyhedral dimer (c), and view of the structure of $K_2Pr_2O(BO_3)_2$ along the **b**-axis (d). ## 3. Results and discussion ### 3.1. Crystal structure of K₂Pr₂O(BO₃)₂ $K_2Pr_2O(BO_3)_2$ crystallizes in a new structure type in the monoclinic space group $P2_1/c$ (no. 14) with lattice parameters of a=1133.77(3) pm, b=660.47(2) pm, c=1071.30(3) pm, $\beta=117.072(1)^\circ$, and Z=4. The structural building units of $K_2Pr_2O(BO_3)_2$, as shown in **figure 1**, can be regarded as PrO_8 dodecahedra, KO_6 octahedra and KO_7 pentagonal bipyramid together with isolated trigonal planar BO₃ groups. Both Pr(1) and Pr(2) form distorted PrO₈ dodecahedra, where the Pr-O bond lengths vary from 235.9(2) pm to 260.1(2) pm in Pr(1)O₈, and from 234.6(2) to 274.6(2) pm in Pr(2)O₈. The Pr(1)O₈ dodecahedra are axially connected with its neighbors via sharing two triangular faces to construct an infinite zig-zag chain along the baxis (Fig. 1b). These zig-zag chains are further joined together by edge-sharing to form infinite two dimensional $Pr(1)O_{(3+3+2)/2}$ layers with elongated hexagonal voids in the bc-plane. Such a 2D REOn layer with "honeycomb-like" voids was also found in other rare-earth borates, for instance, in Na₃La₂(BO₃)₃ [28]. By contrast, two Pr(2)O₈ dodecahedra share their O(5)-O(5) edge to construct Pr(2)₂O₁₄ dimers that fill into those "honeycomb-like" voids (Fig. 1c). It is interesting to mention that O(5), the isolated oxygen anion in K₂Pr₂O(BO₃)₂, connects only to Pr-atoms and plays an important role in the formation of a Pr(2)₂O₁₄ dimer. Therefore, $[Pr_2O(BO_3)_2]^{2-}$ sheets are composed of $Pr(1)O_{(3+3+2)/2}$ layers, $Pr(2)_2O_{14}$ dimers, isolated B(1)O₃ and B(2)O₃ planar groups via corner and edge sharing in the ac-plane. Two adjacent [Pr₂O(BO₃)₂]²⁻ sheets in the structure are regulated by the inversion center (**Fig. 1d**). Two types of potassium K(1) and K(2) are found to occupy the inter-sheet space and separate the $[Pr_2O(BO_3)_2]^{2-}$ sheets along the **a**-axis. Similar stacking modes were also observed in other layered alkali-metal rare-earth borates such as K₉Li₃Nd₃(BO₃)₉ [24] and Rb₂LiNd(BO₃)₂ [24]. K(1) is six-fold coordinated to form a distorted K(1)O₆ octahedron while K(2) connects to seven oxygens in exhibition of a distorted pentagonal bipyramid K(2)O₇. The K-O distances range from 265.9(2) to 282.4(2) pm with mean values of 273.6 (2) pm and 282.3 (2) pm for K(1)O₆ and K(2)O₇ polyhedra, respectively. These values fit well with the sum of the ionic radii of oxygen and potassium in six-fold and seven-fold coordination [29]. In the unit cell, both B(1) and B(2) atoms are three-coordinated to oxygen atoms, forming isolated planar BO₃ groups. The B-O distances range from 134.2(5) to 141.0(6) pm with an averaged bond length of 137.0(3) pm for B(1)O₃ and 137.9(3) pm for B(2)O₃, respectively. These values are in agreement with those of other alkali-metal rare-earth borate-containing isolated BO₃ groups, for instance 137.1 pm in K₃Sm(BO₃)₂ [30], 137.4 pm in Li₃K₃Y₇(BO₃)₉ [31] and 137.6 pm in K₉Li₃Nd₃(BO₃)₇ [24]. The bond valence sums (BVS) calculation was performed for K₂Pr₂O(BO₃)₂ using the Bondstr software of the FullProf suite [32], which are listed in **table 3**. The structural BVSs of the atoms correspond well with the formal integer charge of the respective atoms. To confirm the single crystal structure of its bulk representative as well the purity of the as-synthesized K₂Pr₂O(BO₃)₂ polycrystalline powder sample, X-ray powder data Rietveld refinements were performed. The corresponding Rietveld plot is shown in **figure 2**. The metric parameters ($\alpha = 1135.00$ (3) pm, b = 660.641(15) pm, c = 1072.03(3) pm, $\beta = 117.128(2)^{\circ}$ and $V = 715.41(3) \times 10^{6}$ pm³) are in excellent agreement with those obtained from the single crystal structure determination (**Tab. 1 & 2**). **Figure 2.** X-ray powder data Rietveld plots of K₂Pr₂O(BO₃)₂ and of the decomposition products as inset. $\label{eq:table 3. Interatomic bond distance /pm and bond valence (BV /v.u.) and bond valence sum (BVS /v.u.) of the PrO_8, KO_{6,7} and BO_3 polyhedra in K_2Pr_2O(BO_3)_2.$ | Bond | Bond length | BV | Bond | Bond length | BV | |--------|-------------------|-------------------------------------|--------|------------------|-----------| | | Pr1O ₈ | Pr1O ₈ Pr2O ₈ | | | | | Pr1-O5 | 235.9(2) | 0.551(2) | Pr2-O5 | 234.6(2) | 0.570(2) | | Pr1-O5 | 245.6(2) | 0.424(2) | Pr2-O5 | 238.6(2) | 0.511(3) | | Pr1-O6 | 246.3(2) | 0.416(1) | Pr2-O1 | 253.9(2) | 0.339(1) | | Pr1-O4 | 246.4(2) | 0.415(2) | Pr2-O7 | 254.7(2) | 0.331(1) | | Pr1-O6 | 249.3(2) | 0.384(2) | Pr2-O3 | 255.6(2) | 0.323(1) | | Pr1-O7 | 251.6(2) | 0.360(2) | Pr2-O6 | 256.2(2) | 0.318(2) | | Pr1-O4 | 252.0(2) | 0.356(1) | Pr2-O2 | 258.25(2) | 0.301(2) | | Pr1-O7 | 260.1(2) | 0.286(1) | Pr2-O4 | 274.6(2) | 0.193(1) | | | BVS(Pr1) | 3.190(5) | | BVS(Pr2) | 2.886(5) | | | K1O ₆ | | | K2O ₇ | | | K1-O1 | 265.9(2) | 0.241(1) | K2-O1 | 265.4(2) | 0.244(1) | | K1-O1 | 266.5(2) | 0.237(1) | K2-O2 | 275.0 (2) | 0.188(1) | | K1-O2 | 267.3(2) | 0.232(1) | K2-O4 | 278.91(2) | 0.169(1) | | K1-O2 | 270.4(2) | 0.213(1) | K2-O3 | 283.51(2) | 0.149(1) | | K1-O3 | 275.7(2) | 0.185(1) | K2-O2 | 286.8(2) | 0.137(1) | | K1-O3 | 282.4(2) | 0.154(1) | K2-O3 | 291.5(2) | 0.121(0) | | | | | K2-O1 | 295.1(2) | 0.109(1) | | | BVS(K1) | 1.261(1) | | BVS(K2) | 1.118(1) | | | B1O ₃ | | | B2O ₃ | | | B1-O1 | 135.9(3) | 1.033(8) | B2-O2 | 136.7(3) | 1.011(7) | | B1-O7 | 139.1(3) | 0.948(6) | B2-O3 | 137.3(3) | 0.992(9) | | B1-O4 | 139.3(3) | 0.939(8) | B2-O6 | 141.3(3) | 0.894(7) | | | BVS(B1) | 2.920(13) | | BVS(B2) | 2.897(13) | #### 3.2. UV/Vis spectrum The UV/Vis reflectance spectrum of $K_2Pr_2O(BO_3)_2$ in the range of 200 nm - 850 nm is shown in **figure 3**. The optical absorption in the visible range accounts for the green color of $K_2Pr_2O(BO_3)_2$ and also corresponds well to the presence of Pr^{3+} cation. All visible absorption bands in $K_2Pr_2O(BO_3)_2$ result from the inner-shell $4f^2$ -configuration electronic transitions from the ground state (3H_4) to various excited states. According to the energy level scheme proposed by Dieke and Crosswhite [33], these bands from 400 nm to 520 nm can be assigned, respectively to ${}^3H_4 \rightarrow {}^3P_2$, 3P_1 , and 3P_0 , while the band in the range of 550 nm - 650 nm ascribed to ${}^3H_4 \rightarrow {}^1D_2$. Of particular notes, we clearly observe the Stark splitting of 3P_2 , 3P_1 , and 3P_0 and 1D_2 multiplets, which may help calculate the crystal field levels of Pr^{3+} cation in $K_2Pr_2O(BO_3)_2$. The monotonic drop of the reflectance between 290 nm to 270 nm (**Fig. 3**) corresponds to the valence-to-conduction-band absorption edge. The Kubelka-Munk function [34] treatment followed by the Tauc method [35] are often used to estimate the corresponding bandgap energy by finding the intercept of the abscissa from the following relations: $$F(R) = \frac{(1-R)^2}{2R}$$ $$F(R)(h\nu) = B(h\nu - E_g)^n$$ where R is the reflectance (%) in the UV/Vis spectra, h the Planck's constant, v the frequency of light, E_g the bandgap in eV, and n-the type of optical transition. That is, n = 2 for an indirect transition (plotted as $[F(R)\cdot(hv)]^{1/2}$
vs. hv) and n = 1/2 for a direct transition (plotted as $[F(R)\cdot(hv)]^2$ vs. hv). The intercepts of the abscissa (**Fig. 3**) demonstrate bandgap values of 4.40(1) eV and 4.50(1) eV for an indirect and direct transition, respectively. These bandgap values of $K_2Pr_2O(BO_3)_2$ are smaller than those of 4.96 eV for λ -PrBO₃ [36] and 6.32 eV for Rb₂LiLaB₂O₆ [37]. Recently, the DASF method was proposed by Souri et al. [38] for thin films to calculate the bandgap energies without any presumption of the nature of the transition. Notably, the DASF method can also be expressed as follows proposed by Kirsch et al. [39, 40] for powder samples: $$\frac{\mathrm{dIn}F(R)}{\mathrm{d}h\nu} = \frac{\mathrm{n}}{h\nu - \mathrm{Eg}}$$ The obtained bandgap of 4.49(1) eV using the DASF method is similar to the determined bandgap of 4.50(1) eV for a direct transition within the estimated uncertainty. Therefore, the combined approach suggests a direct bandgap transition for $K_2Pr_2O(BO_3)_2$. **Figure 3**. Reflectance spectrum of K₂Pr₂O(BO₃)₂ (top left), Tauc plots for indirect (bottom left) and direct (top right) optical transitions, and DASF plot (bottom right). ### 3.3. FTIR and Raman spectra **Figure 4**. FTIR (left top) and Raman (left bottom) spectra of K₂Pr₂O(BO₃)₂ at ambient condition along with fitted compound and component models. Temperature-dependent Raman spectra (right); temperature increases upward from 78 K to 300 K. The observed FTIR and Raman spectra along with the fitted compound and component models are shown in **figure 4**. Since the crystal structure of $K_2Pr_2O(BO_3)_2$ adopts $P2_1/c$ space group, factor group analysis predicts 156 vibrational modes at the zone center $(39A_g + 39A_u + 39B_g + 39B_u)$, where 75 modes $(38A_u + 37B_u)$ are IR active, 78 modes $(39A_g + 39B_g)$ are Raman active and 3 are acoustic modes $(A_u + 2B_u)$. To fit the observed IR spectrum, it requires 41 bands. The bands between 400 and 550 cm⁻¹ can be attributed to bending of Pr-O, which was explicitly characterized in other praseodymium oxides [41, 42]. The bands between 600 cm⁻¹ and 1600 cm⁻¹ owing to vibration of planar BO_3^{3-} groups, can be categorized into four different types [37, 43, 44]: the in-plane bending (v4; 550 - 700 cm⁻¹), out-of-plane bending (v2; 740 cm⁻¹ - 780 cm⁻¹) of BO₃, B-O symmetric stretching (v1; \sim 903 cm⁻¹) and B-O asymmetric stretching (v3; 1000 cm⁻¹ and 1500 cm⁻¹). Clearly, the v2 and v3 modes have much stronger absorption than that of v3 and v1. Group analysis of an ideal planar BO₃ group possesses D_{3h} symmetry, where v2 and v3 are IR active, whereas the v1 is IR inactive. The clear appearance of v1 in the IR spectrum indicates that the BO₃ groups in K₂Pr₂O(BO₃)₂ are distorted from an ideal symmetry. The observed Raman spectrum of K₂Pr₂O(BO₃)₂ at ambient condition could be fitted with 56 component peaks (Fig. 4). Several intense bands below 550 cm⁻¹ can be ascribed to the bending and stretching vibrations of K-O and Pr-O bonds as well as the lattice vibrations. The bands observed in the range of 600 - 700 cm⁻¹ and 700 - 800 cm⁻¹ correspond to the v4 and v2 modes, respectively. The most intense bands occur at 915 cm⁻¹ resulting from the v1 mode. The symmetric stretching mode (v1) of BO33- group is a strong Raman active vibration as known from other Pr³⁺-containing orthoborates such as λ-PrBO₃ [37, 43, 44] and KCaPr(BO₃)₂ [45]. Above 1000 cm⁻¹, one peak locating at 1050 cm⁻¹ and several border bands are found and can be ascribed to the v3 mode of BO₃³⁻ groups. Of notes, the Raman spectrum also clearly confirms the vibrational features of BO₃ and PrO_x groups in K₂Pr₂O(BO₃)₂. The temperaturedependent Raman spectra of K₂Pr₂O(BO₃)₂ from 83 K to 298 K (**Fig. 4**) show that the overall global quasi-harmonic change is not significant within the investigated low-temperature range. For instance, the intense band at 916.4(1) cm⁻¹ at 83 K shifts only to 914.5(1) cm⁻¹ at 298 K. Any phase transition driven by any optical soft-mode was not observed during the sample cooling from 298 K to 83 K. Extrapolation of the frequency of this mode down to 0 K suggests that the compound K₂Pr₂O(BO₃)₂ would be stable, a guideline for the phonon calculation using density functional theory calculation. ### 3.4. Thermal analysis **Figure 5**. Thermogravimetry (TG) and differential scanning calorimetry (DSC) curves of $K_2Pr_2O(BO_3)_2$. For the bulk single-crystal growth of inorganic compounds, determination of the melting point or the decomposition temperature is indispensable. The thermal behavior of K₂Pr₂O(BO₃)₂ was investigated by using simultaneous TGA and DSC methods. As shown in **figure 5**, the DSC curve demonstrates one sharp endothermic signal peak at 1318(1) K as well as one border and tiny peaks after 1400 K. The distinct endotherm in the range of 1273(3) K and 1330(3) K corresponds to melting or thermal decomposition. From the TG curve a weight-loss of 21.96(1) % is found to be at 1273(3) K. After the TGA /DSC experiment, X-ray powder data Rietveld refinement (**inset Fig. 2**) demonstrates that the residual consists of $Pr_{26}O_{27}(BO_3)_8$ and Pr_6O_{11} phases. It is worthwhile to note that we used $Nd_{26}O_{27}(BO_3)_8$ [46] as the starting model and replaced Nd -atom with Pr-atom in the same Wyckoff position during the Rietveld refinement. For the obtained isotypic $Pr_{26}O_{27}(BO_3)_8$ lattice parameters of a = 676.160(17) pm, b = 1269.56(4) pm, c = 1432.28(3) pm, $\alpha = 89.9979(17)^\circ$, $\beta = 99.9008(17)^\circ$, $\gamma = 89.9995(19)^\circ$ were calculated. From the distinct weight loss during the heating process one can safely assume that $K_2Pr_2O(BO_3)_2$ decomposes into $Pr_{26}O_{27}(BO_3)_8$, Pr_6O_{11} and potassium borates which eventually evaporates at the high-temperature regime. The TGA /DSC also confirms that $K_2Pr_2O(BO_3)_2$ possess an incongruent melting point, suggesting that the flux method would be necessary for the growth of its bulk crystal. #### 3.5 Magnetic Property Plots of the magnetic susceptibility (χ) as well as reciprocal susceptibility (χ^{-1}) as a function of temperature at 100 oe field in the Zero Field Cooling (ZFC) and the Field cooling (FC) states for $K_2Pr_2O(BO_3)_2$ are given in Fig. 4. Above all, the magnetic susceptibilities for both ZFC and FC are observed to increase from 299 K to 2K without any suspicious bifurcation, implying that $K_2Pr_2O(BO_3)_2$ exhibits paramagnetism in this range. Thereby, Curie-Weiss law [47] $$\chi^{-1} = \frac{T - \theta_{cw}}{C}, \qquad C = \frac{\mu_{eff}^2}{8}$$ where T temperature, θ_{cw} the Weiss constant, C the Curie constant, μ_{eff} the effective magnetic moment, was applied to fit both the ZFC and FC reciprocal susceptibility plots, giving μ_{eff} = 3.32(1) μ_B and θ_{cw} =-29.8(1) K for the ZFC as well as μ_{eff} = 3.33(1) μ_B and θ_{cw} =-29.6(1) K for the FC, respectively. The negative Weiss temperatures indicate antiferromagnetic interactions between those Pr³⁺ cations. As is known to us, the free Pr³⁺ cation ion with a 4f² electron configuration is a non-Kramers ion in which a crystal field itself can resolve degeneracies to give a non-magnetic ground state [47]. As a result, the ${}^{3}\text{H}_{4}$ ground state of the Pr ${}^{3+}$ cation (this state is also the ground state in the UV/VIS spectrum) split into and three singlets and three doublets via the crystalline field, leading to the effective magnetic moment of 3.58(1) μ_{B} . The calculated values for both ZFC and FC are close to this expected value, further suggesting that $K_{2}Pr_{2}O(BO_{3})_{2}$ is a Curie-Weiss magnet throughout the temperature range 2-300 K. **Figure 6**. The temperature-dependent molar magnetic susceptibility and reciprocal susceptibility for K₂Pr₂O(BO₃)₂ measured in the Zero Field Cooling (ZFC) and the Field cooling (FC) states with applied fields of 100 oe ## 3.6 Structural comparison of K2RE2O(BO3)2 and KREOCO3 **Figure 7.** (a) crystal structure of KREOCO₃ viewed along the [101] (b) crystal structure of K₂RE₂O(BO₃)₂ viewed along the [010] (c) the simulated powder XRD patterns of KLaOCO₃ and K₂Pr₂O(BO₃)₂ In certain cases, the synthetic rare-earth orthoborates cam be considered to originate from the natural carbonate minerals, such as β -LuBO₃ (CaCO₃ calcite) [48], YCa₃(MnO)₃(BO₃)₄ and BiSr₃(YO)₃(BO₃)₄ (Ca₄Mn₃(BO₃)₃CO₃O₃, gaudefroyite) [49-51], and Ca₃La₃(BO₃)₅ $(Na_4La_2(CO_3)_5)$ and $Na_2Ca_4(CO_3)_5$ Naburbankite) [52-53]. It is interesting to compare this potassium-containing rare-earth oxo-orthoborate $K_2RE_2O(BO_3)_2$ family [25] with the potassium-containing rare-earth oxo-carbonate $KREOCO_3$ i.e., $K_2RE_2O_2(CO_3)_2$ family [54-55]. One could see that $K_2RE_2O_2(CO_3)_2$ and $K_2RE_2O(BO_3)_2$ have a series of common features: - 1) Both families characterize layered structures composed of infinite sheets of REO_n polyhedra and K^+ cations reside between the layers. - 2) Anionic groups (CO₃²- and BO₃³-) in these two families are in the planar triangle geometry. - 3) RE³⁺ cations are all eight-coordinated in these two structural types. - 4) Both $K_2RE_2O_2(CO_3)_2$ and $K_2RE_2O(BO_3)_2$ can merely accommodate these light rare-earth elements with RE= La, Pr, Nd, Sm, Eu. - 5) Both compounds exhibit pronounced preferred orientation along their stacking directions due to their layered nature and plate-like habitus. On the other hand, the structural difference between KREOCO₃ and K₂RE₂O(BO₃)₂ also exists. Above all, compared to K₂RE₂O₂(CO₃)₂ family in the monoclinic space group $P2_1/c$, KREOCO₃ crystallizes into a higher orthorhombic space group Pcca with a pseudo-tetrahedral lattice parameter of a = 567.93(3) pm, b = 1238.41(3) pm, c = 567.93(3) pm in the case of the La-member. As a result, the asymmetric unit of KREOCO₃ contains K⁺, RE³⁺ and CO₃²⁻ each unique. In contrast to the face-sharing REO₈ polyhedra in
K₂RE₂O(BO₃)₂, the REO₈ polyhedra in KREOCO₃ only share common edges. Besides, the isolated oxygen anion in K₂RE₂O(BO₃)₂ connects only to RE³⁺ cations, whereas that one in KREOCO₃ does not connect to RE³⁺ at all. Thus, the actual ratio of RE: O in KREOCO₃ shifts to 1/3, making the REO₈ polyhedra arranged similar to that in REMnO₃ perovskite (Pbnm) [56]. In brief, understanding the structural features of KREOCO₃ and K₂RE₂O(BO₃)₂ may provide helpful clues to the design and exploration of novel rare-earth borates derived from rare-earth carbonates, and vice versa. ### 4. Conclusion The detailed structural, spectroscopic and thermal analysis reveal that the synthesized alkali metal praseodymium borate K₂Pr₂O(BO₃)₂ belongs to the new member of the K₂La₂(BO₃)₂O family [25] providing also a new structure type. The crystal structure consists of 2D [Pr₂O(BO₃)₂]²⁻ sheets and K⁺ cations in a layered stacking along the a-axis. The greenish color stems from the electronic transitions from the ground state to various excited states within the 4f²-configuration rather than from the fundamental absorption edge that lies in the UV-region. Since Pr³⁺ cation is of interest due to its photoluminescence property, K₂Pr₂O(BO₃)₂ may be a prospective red phosphor under the radiation of blue light [15-17]. Density functional theory (DFT) calculation would be necessary to distinguish the observed Raman and infrared bands between phonon at the zone-center and photoluminescence as well as for a fuller assignment of the modes. Given that K₂Pr₂O(BO₃)₂ is an incongruent melting compound, the bulk crystals may be grown via high-temperature flux method, which would help elucidate possible anisotropic properties. ### Acknowledgement PYC gratefully thanks the China Scholarship Council to carry out this work through a fellowship. PYC also acknowledges the supports from the University of Bremen. ## Compliance with ethical standards Conflict of interest: The authors declare that they have no conflict of interest. #### Reference - [1] M. Mutailipu, Z. Xie, X. Su, M. Zhang, Y. Wang, Z. Yang, M.R.S.A. Janjua, S. Pan, Chemical cosubstitution-oriented design of rare-earth borates as potential ultraviolet nonlinear optical materials, *J. Am. Chem. Soc.*, 139 (2017) 18397-18405. - [2] A. Yoshida, A. Schmidt, V. Petrov, C. Fiebig, G. Erbert, J. Liu, H. Zhang, J. Wang, U. Griebner, Diode-pumped mode-locked Yb: YCOB laser generating 35 fs pulses, *Opt. Lett.*, 36 (2011) 4425-4427. - [3] A. Kruopyte, R. Giraitis, R. Juskenas, D. Enseling, T. Jüstel, A. Katelnikovas, Luminescence and luminescence quenching of efficient GdB₅O₉: Eu³⁺ red phosphors, *J. Lumin.*, 192 (2017) 520-526. - [4] W. Yao, R. He, X. Wang, Z. Lin, C.J. Chen, Analysis of Deep-UV Nonlinear Optical Borates: Approaching the End, *Adv. Opt. Mater.*, 2 (2014) 411-417. - [5] R.A. Kumar, M. Arivanandhan, Y. Hayakawa, Recent advances in rare earth-based borate single crystals: Potential materials for nonlinear optical and laser applications, *Prog. Cryst. Growth Charact. Mater.*, 59 (2013) 113-132. - [6] C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, G. Aka, M. Yoshimura, Nonlinear optical borate crystals: Principals and applications, John Wiley & Sons2012. - [7] A.H. Reshak, S. Auluck, I. Kityk, Optical susceptibilities of Na₃La₉O₃(BO₃)₈, ternary oxyborate nonlinear single crystal: theory and experiment, *J. Phys. Condens. Matter*, 20 (2008) 145209. - [8] G. Wang, J. Lu, D. Cui, Z. Xu, Y. Wu, P. Fu, X. Guan, C. Chen, Efficient second harmonic generation in a new nonlinear La₂CaB₁₀O₁₉ crystal, *Opt. Commun.*, 209 (2002) 481-484. - [9] D. Rytz, A. Gross, S. Vernay, V. Wesemann, YAl₃(BO₃)₄: a novel NLO crystal for frequency conversion to UV wavelengths, *Proc. SPIE 6998*, *Solid State Lasers and Amplifiers III*, 2008, 699814. - [10] H.J. Eichler, J. Eichler, O. Lux, Lasers: basics, advances and applications. Springer, 2018. - [11] J. Yin, J. Zhang, J. Wang, F. Du, R. Li, S. Pan, J. Pan, Growth and scintillation properties of Ce: Li₆Y(BO₃)₃ crystal enriched with ¹⁰B isotopes, *Radiat. Meas.*, 113 (2018) 20-24. - [12] D. Jaque, J. Capmany, J. Garcıa Solé, Red, green, and blue laser light from a single Nd: YAl₃(BO₃)₄ crystal based on laser oscillation at 1.3 µm, *Appl. Phys. Lett.*, 75 (1999) 325-327. - [13] V. Jubera, P. Veber, M. Chavoutier, A. Garcia, F. Adamietz, V. Rodriguez, J.-P. Chaminade, M. Velázquez, Crystal growth and optical characterizations of Yb³⁺-doped LiGd₆O₅(BO₃)₃ single crystal: a new promising laser material, *Cryst. Eng. Comm.*, 12 (2010) 355-357. - [14] J. Dexpert-Ghys, R. Mauricot, B. Caillier, P. Guillot, T. Beaudette, G. Jia, P.A. Tanner, B.-M. Cheng, VUV excitation of YBO₃ and (Y, Gd)BO₃ phosphors doped with Eu³⁺ or Tb³⁺: comparison of efficiencies and effect of site-selectivity, *J. Phys. Chem. C*, 114 (2010) 6681-6689. - [15] B. Han, Y. Dai, J. Zhang, X. Wang, W. Shi, H. Shi, NaLaMgWO₆:Pr³⁺: A novel blue-light excitable red-emitting phosphor for white light-emitting diodes, *J. Lumin.*, 196 (2018) 275-280. - [16] L.Niu, Y. Zhou, C. Zhu, Z. He, X. Meng, Pr³⁺ doped oxyfluoride silicate glasses for LEDs - Ceram. Int., 45 (2019) 4108-4112. - [17] L. Marek, M. Sobczyk, Spectroscopic investigations of Pr³⁺ ions in Na₂O-La₂O₃-ZnO-TeO₂ glasses, *J. Non-Cryst. Solids*, 487 (2018) 96-103. - [18] S.-Z. Ma, W.-L. Feng, R. Chen, Z.-Q. Peng, KSr₄(BO₃)₃: Pr³⁺: a new red-emitting phosphor for blue-pumped white light-emitting diodes, *J. Alloys Compd.*, 700 (2017) 49-53. - [19] X. Luo, F. Shan, T. Xu, X. Zhang, G. Zhang, Y. Wu, Growth and optical properties of Pr3+doped Na₃La₉O₃(BO₃)₈ crystal, *J. Cryst. Growth.*, 455 (2016) 1-5. - [20] D. Ramteke, H. Swart, R. Gedam, Spectroscopic properties of Pr³⁺ ions embedded in lithium borate glasses, Physica B, 480 (2016) 111-115. - [21] G. Abdullaev, K.S. Mamedov, I. Amiraslanov, A. Magerramov, Crystal structure of lithium praseodymium orthoborate Li₃Pr₂(BO₃)₃, *J. Struct. Chem.*, 18 (1977) 331-333. - [22] J.-P. Chaminade, P. Gravereau, V. Jubera, C. Fouassier, A New Family of Lithium Rare-Earth Oxyborates, LiLn₆O₅(BO₃)₃ (Ln= Pr–Tm): Crystal Structure of the Gadolinium Phase LiGd₆O₅(BO₃)₃, *J. Solid State Chem*, 146 (1999) 189-196. - [23] Z. Wang, H. Li, G. Cai, Z. Jin, Synthesis, crystal structure, and thermal stability of new borates Na₃REB₂O₆ (RE= Pr, Sm, Eu), *Powder Diffr.*, 31 (2016) 110-117. - [24] P. Chen, M. Xia, R. Li, Mixed Alkali Neodymium Orthoborates: K₉Li₃Nd₃(BO₃)₇ and A₂LiNd(BO₃)₂ (A= Rb, Cs), Z. Anorg. Allg. Chem., 642 (2016) 424-430. - [25] Q. Zeng, R. Li, A new potassium rare earth oxyborate K₂La₂(BO₃)₂O, *Solid State Sci.*, 12 (2010) 2144-2147. - [26] G.M. Sheldrick, SHELXT-Integrated space-group and crystal-structure determination, *Acta Cryst. A*, 71 (2015) 3-8. - [27] C.B. Hübschle, G.M. Sheldrick, B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL, *J. Appl. Crystallogr.*, 44 (2011) 1281-1284. - [28] G.C. Zhang, Y.G. Li, P.Z. Fu, S.L. Pan, F. Chang, Y.C. Wu, Crystal Structure of Sodium Lanthanum Borate Na₃La₂ (BO₃)₃, *J. Synt. Cryst.*, 33 (2004) 490-495. - [29] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, *Acta Crystallogr. A*, 32 (1976) 751-767. - [30] J. Gao, R. Li, Potassium rich rare earth (RE) borates K₃RE(BO₃)₂, *Solid State Sci.*, 10 (2008) 26-30. - [31] S. Bräuchle, H. Huppertz, Synthesis and structural characterization of Li₃K₃Y₇(BO₃)₉, *J. Solid State Chem*, 253 (2017) 242-248. - [32] T. Roisnel, J. Rodríquez-Carvajal, WinPLOTR: a windows tool for powder diffraction pattern analysis, Materials Science Forum, Transtec Publications; 1999, 2001, pp. 118-123. - [33] G.H. Dieke, H. Crosswhite, The spectra of the doubly and triply ionized rare earths, *Appl. Opt*, 2 (1963) 675-686. - [34] P. Kubelka, F. Munk, Ein Beitrag zur Optik der Farbanstriche, Z. Tech. Phys., 12 (1931) 593-601. - [35] J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, *Phys. Status Solidi B*, 15 (1966) 627-637. - [36] T.-T. Jin, Z.-J. Zhang, H. Zhang, J.-T. Zhao, Crystal structure, phase transition and optical properties of v-PrBO₃, *J. Inorg. Mater.*, 28 (2013) 1153-1157. - [37] D. Xu, F. Zhang, Y. Sun, Z. Yang, B. Lei, L. Liu, S. Pan, LiRb₂LaB₂O₆: a new rare-earth borate with a MOF-5-like topological structure and a short UV cut-off edge, *Dalton Trans.*, 46 (2017) 193-199. - [38] D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors, *Appl. Phys. B*, 119 (2015) 273-279. - [39] A. Kirsch, M.M. Murshed, M. Schowalter, A. Rosenauer, T.M. Gesing, Nanoparticle precursor into polycrystalline Bi₂Fe₄O₉: an evolutionary investigation of structural, morphological, optical, and vibrational properties, *J. Phys. Chem. C*, 120 (2016) 18831-18840. - [40] A. Kirsch, M.M. Murshed, F.J. Litterst, T.M. Gesing, Structural, spectroscopic, and thermoanalytic studies on Bi₂Fe₄O₉: tunable properties driven by nano-and poly-crystalline states, *J. Phys. Chem. C*,123 (2019) 3161-3171. - [41] Z. Mo, Y. Sun, H. Chen, P. Zhang, D. Zuo, Y. Liu, H. Li, Preparation and characterization of a PMMA/Ce(OH)₃, Pr₂O₃/graphite nanosheet composite, *Polym.*, 46 (2005) 12670-12676. - [42] S. Zinatloo-Ajabshir, M. Salavati-Niasari, Nanocrystalline Pr₆O₁₁: synthesis, characterization, optical and photocatalytic properties, *New J. Chem*, 39 (2015) 3948-3955. - [43] W. Steele, J. Decius, Infrared absorption of lanthanum, scandium, and indium borate and the force constants of borate ion, *J. Chem. Phys.*, 25 (1956) 1184-1188. - [44] A. Haberer, R. Kaindl, H. Huppertz, Synthesis and crystal structure of the praseodymium orthoborate λ-PrBO₃, *Z. Naturforsch. B*, 65 (2010) 1206-1212. - [45] A. Kuznetsov, K. Kokh, N. Kononova, V. Shevchenko, E. Kaneva, B. Uralbekov, V. Svetlichnyi, A.E. Kokh, Synthesis and growth of new rare earth borates KCaR(BO₃)₂ (R= La, Pr
and Nd), *J. Solid State Chem.*, 282 (2020) 121091. - [46] S. Noirault, S. Celerier, O. Joubert, M.T. Caldes, Y. Piffard, Effects of water uptake on the inherently oxygen-deficient compounds Ln₂₆O_{27□}(BO₃)₈ (Ln= La, Nd), *Inorg. Chem.*, 46 (2007) 9961-9967. - [47] R. L. Carlin, Magnetochemistry, Springer, 1986 - [48] Levin, Ernest M., Robert S. Roth, and Jerry B. Martin, Polymorphism of ABO₃ type rare earth borates, *Am. Mineral.*, 46 (1961) 1030-1055. - [49] R. K. Li, C. Greaves, YCa₃(MnO)₃(BO₃)₄: A manganese borate containing ferromagnetic chains on a kagomé lattice, *Phys. Rev. B*, 68 (2003) 172403 - [50] Gao, Jianhua, and Shuai Li, BiSr₃(YO)₃(BO₃)₄: a new gaudefroyite-type rare-earth borate with moderate SHG response, *Inorg Chem.*, 51 (2012) 420-424. - [51] R. K. Li, C. Greaves, One-dimensional ferromagnetism of gaudefroyite Ca₄(MnO)₃(BO₃)₃CO₃, *Phys. Rev. B*, 70 (2004) 132411. - [52] Zhou, T., Ye, N, Redetermination of tricalcium trilanthanum pentakis (orthoborate) from single-crystal data. *Acta Crystallogr. E*, 64 (2008), i37-i37 - [53] Rashchenko, Sergey V., Vladimir V. Bakakin, Anton F. Shatskiy, Pavel N. Gavryushkin, Yurii V. Seryotkin, and Konstantin D. Litasov, Noncentrosymmetric Na₂Ca₄(CO₃)₅ carbonate of "M1₃M2₃XY₃Z" structural type and affinity between borate and carbonate structures for design of new optical materials, *Cryst. Growth Des.* 17 (2017) 6079-6084 - [54] Günther, W., and R. Schöllhorn, Complete substitution of Cu/O layers in T-type oxocuprates by carbonate: The new series LnKO(CO₃), *Mater. Res. Bull.*, 30 (1995) 285-290. - [55] Günther, W., W. Paulus, and R. Schöllhorn, stacking disorder in a layered carbonate phase: the structure of LaKOCO₃, *J. Phys. Chem. Solids*, 61 (2000) 1945-1953. - [56] Z. Jirák, J. Hejtmánek, K. Knížek, R.Sonntag, Structure and Properties of the $Pr_{1-x}K_xMnO_3$ perovskites (x = 0–0.15), J. Solid State Chem., 132 (1997) 98-106 ## **Summary and Outlook** Within the scope of this cumulative dissertation, several novel alkali-metal containing Rareearth orthoborates were reported and extensively investigated: 1. Complementary X-ray Single-crystal and powder diffraction reveal that KLi₂RE(BO₃)₂ (RE= Dy, Ho, Er, Tm, Yb and Y) crystallize isotypic in the $P2_1/n$ space group and represent a new, previously unreported structure type. KLi₂RE(BO₃)₂ phases are shown to possess a limited tolerance regarding the ionic radii of the incorporated rare-earth cations, as attempts to employ either larger (Eu³⁺, Gd³⁺ and Tb³⁺) or smaller (Lu³⁺, Sc³⁺ and In³⁺) radius cations did not result in the target phases. Moreover, trials to replace K⁺ with larger alkali cations such as Rb⁺ and Cs⁺ did also not produce the desired compounds. Given that KLi₂Y(BO₃)₂ has a high lithium and boron content and is of high transparency with no optical bandgap absorption in the visible range (insulator), investigations such as lithiumion conductivity, photoluminescence and neutron scintillation etc. may be some attractive avenues for future investigations. 2. $K_3RE_3(BO_3)_4$ (RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) were obtained by solid state syntheses and spontaneous crystallization from a high-temperature flux. Combined X-ray single crystal and powder diffraction reveal the monoclinic space group $P2_1/c$ for $K_3RE_3(BO_3)_4$ (RE=Sm-Lu) and triclinic space group $P\overline{1}$ for $K_3RE_3(BO_3)_4$ (RE=Pr, Nd). The monoclinic and triclinic compounds are equivalent in terms of geometry and bonding and are related by symmetry lowering and doubling of the *b*-cell parameter. These materials are not to be confused with the hexagonal-open-framework compounds such as in Na₃Y₃(BO₃)₄, from which they are structurally distinct. Attempts to obtain $K_3La_3(BO_3)_4$ and $K_3Ce_3(BO_3)_4$ were unsuccessful, indicating La^{3+} and Ce^{3+} are too large for the $K_3RE_3(BO_3)_4$ family. These results demonstrate a morphotropic series to exist for alkali rare-earth borates, based on the cationic size effect. $K_3Gd_3(BO_3)_4$ and $K_3Lu_3(BO_3)_4$ co-doped by Eu^{3+} , Tb^{3+} , Ce^{3+} may be potential materials for white LED or scintillation. $(Er^{3+},\ Yb^{3+})$ -doped $K_3Gd_3(BO_3)_4$ and $K_3Lu_3(BO_3)_4$ could be interesting for up-conversion eye-safe emission. Due to the high gadolinium content, $K_3Gd_3(BO_3)_4$ is expected to exhibit a strong magnetocaloric effect. 3. The alkali metal praseodymium borate $K_2Pr_2O(BO_3)_2$ ($P2_1/c$) represents a new structure type in the $K_2RE_2(BO_3)_2O$ family. Its crystal structure consists of 2D $[Pr_2O(BO_3)_2]^{2-}$ sheets and K^+ cations stacked alternatingly along the **a**-axis. The $K_2RE_2(BO_3)_2O$ family is found to have many common features with the potassium-bearing rare-earth metal oxo-carbonates (KREOCO₃), which is also of a layered structure type. Since the Pr^{3+} cation is of interest due to its photoluminescence properties, $K_2Pr_2O(BO_3)_2$ and $K_2La_{1-x}Pr_xO(BO_3)_2$ solid solution phases may serve as red phosphors or high-temperature sensors under blue light irradiation. We hope that these novel alkali-metal containing Rare-earth orthoborates will enrich the crystal chemistry of the rare-earth and borate structures. The synthesis, property investigation and their structural comparison might prove beneficial in searching and designing novel rare-earth compounds for practical applications. ## **Zusammenfassung und Ausblick** Im Rahmen dieser kumulativen Dissertation wurde über mehrere neuartige alkalimetallhaltige Seltenerd-Orthoborate berichtet und diese ausführlich untersucht: 1. Komplementäre Röntgen-Einkristall- und Pulverdiffraktometrie zeigten, dass KLi₂RE(BO₃)₂ (RE=Dy, Ho, Er, Tm, Yb und Y) isotyp in der Raumgruppe *P*2₁/n kristallisieren und einen neuen, bisher nicht berichteten Strukturtypen darstellen. Es hat sich gezeigt, dass KLi₂RE(BO₃)₂-Phasen eine begrenzte Toleranz hinsichtlich der Ionenradien der inkorporierten Seltenerdkationen aufweisen, da Versuche, entweder Kationen mit größeren (Eu³⁺, Gd³⁺ und Tb³⁺) oder kleineren (Lu³⁺, Sc³⁺ und In³⁺) Ionenradien scheiterten. Darüber hinaus führten Versuche, K⁺ durch größere Alkalikationen wie Rb⁺ und Cs⁺ zu ersetzen, ebenfalls nicht zu den gewünschten Zielverbindungen. Angesichts der Tatsache, dass KLi₂Y(BO₃)₂ einen hohen Lithium- und Borgehalt aufweist und von hoher Transparenz, ohne optische Bandlückenabsorption im sichtbaren Bereich (Isolator) ist, könnten Untersuchungen wie Lithiumionenleitfähigkeit, Photolumineszenz und Neutronenszintillation usw. einige attraktive Ansätze für zukünftige Untersuchungen sein. 2. $K_3RE_3(BO_3)_4$ (RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und Lu) wurden durch Festkörpersynthesen und spontane Kristallisation aus der Flussmittelschmelze erhalten. Kombinierte Röntgen-Einkristall- und Pulverdiffraktometrie weisen auf die monokline Raumgruppe $P2_1/c$ für $K_3RE_3(BO_3)_4$ (RE = Sm-Lu) und die trikline Raumgruppe $P\overline{1}$ für $K_3RE_3(BO_3)_4$ (RE=Pr, Nd) hin. Die monoklinen und triklinen Verbindungen sind in Bezug auf Geometrie und chemische Bindungen äquivalent und stehen durch Symmetrieabsenkung und Verdoppelung des **b**-Zell-Parameters miteinander in Beziehung. Diese Verbindungen sind nicht zu verwechseln mit den hexagonalen, offenen Gerüstverbindungen wie beispielsweise Na $_3Y_3(BO_3)_4$, von denen sie sich strukturell stark unterscheiden. Versuche, K₃La₃(BO₃)₄ und K₃Ce₃(BO₃)₄ zu erhalten blieben erfolglos, was darauf hindeutet, dass La³⁺ und Ce³⁺ für die K₃RE₃(BO₃)₄-Familie zu groß sind. Diese Ergebnisse belegen eine morphotrope Reihe für Alkali-Seltenerdborate auf der Grundlage des kationischen Größeneffekts. K₃Gd₃(BO₃)₄ und K₃Lu₃(BO₃)₄, kodotiert mit Eu³⁺, Tb³⁺, Ce³, könnten potenzielle Materialien für weiße LED oder Szintillatoren sein. (Er³⁺, Yb³⁺)-dotiertes K₃Gd₃(BO₃)₄ und K₃Lu₃(BO₃)₄ könnten für augensichere Hochkonversions-Emission interessant sein. Zudem wird aufgrund des hohen Gadoliniumgehalts ein starker magnetokalorischer Effekt für K₃Gd₃(BO₃)₄ erwartet. 3. Das Alkalimetall-Praseodym-Borat K₂Pr₂O(BO₃)₂ (*P*2₁/*c*) stellt einen neuen Strukturtypen in der K₂RE₂(BO₃)₂O-Familie dar. Seine Kristallstruktur besteht aus 2D [Pr₂O(BO₃)₂]²⁻ Schichten welche mit Schichten von K⁺-Kationen abwechselnd entlang der **a**-Achse gestapelt sind. Es hat sich herausgestellt, dass die K₂RE₂(BO₃)₂O-Familie viele Gemeinsamkeiten mit den kaliumhaltigen Seltenerdmetalloxocarbonaten (KREOCO₃) aufweist, welche ebenfalls Schichtstrukturverbindungen sind. Da das Pr³⁺-Kation aufgrund seiner Photolumineszenz-Eigenschaften von Interesse ist, sind K₂Pr₂O(BO₃)₂ und K₂La_{1-x}Pr_xO(BO₃)₂-Mischungsreihen bei Bestrahlung mit blauem Licht potenziell als rote Leuchtstoffe oder Hochtemperatursensoren von Interesse. Wir hoffen, dass diese neuartigen alkalimetallhaltigen Seltenerd-Orthoborate die Kristallchemie der Seltenerd- und Boratstrukturen bereichern werden. Die Synthese, die Untersuchung der Eigenschaften und ihr Strukturvergleich könnten sich bei der Suche und dem Entwurf neuer Seltenerdverbindungen für praktische Anwendungen als nützlich erweisen. # **Appendix** The crystallographic data for $K_{1.31(1)}Li_{1.69(1)}Pr_2(BO_3)_3$ (Table A1), Na_{2.86}Gd_{2.07}(BO₃)₃ (Table A2), Tl₂Pb(SO₄)₂ (**Table A3**) with the corresponding atomic coordinates, equivalent isotropic displacement parameters (U_{eq} /pm²), and bond valence sum (BVS /v.u.) **Table A1** K_{1.31(1)}Li_{1.69(1)}Pr₂(BO₃)₃, space group: Amm2, a = 504.69(18) pm, b = 1105.0(3) pm, c = 733.92(14) pm, $R_1 = 0.0138$ $wR_2 = 0.0300$ for all data, GooF=1.174, Flack parameter = 0.08(2) | Atoms | Wyckoff | x | у | z | U_{eq} | SOF | BVS | |-----------|------------|-----------|-------------|-------------|-----------|--------------------|------------| | Pr1 | 4 <i>e</i> | 1/2 | 0.77852(2) | 0.43667(4) | 58.7(2) | 1 | 3.099(4) | | K1 | 2a | 0 | 1/2 | 0.53616(15) | 218.8(15) | 1 | 0.855(1) | | Li1 | 2b | 1/2 | 1/2 | 0.2131(14) | 185(13) | 1 |
0.955(4) | | K2
Li2 | 2 <i>a</i> | 0 | 0 | 0.5203(4) | 199(9) | 0.31(1)
0.69(1) | 1.171(1) | | B1 | 2b | 0 | 0.6981(2) | 0.2631(3) | 96(3) | 1 | 2.900(14) | | B2 | 4 <i>d</i> | 1/2 | 0 | 0.2271(5) | 79(4) | 1 | 2.939(14) | | O1 | 4 <i>d</i> | 0 | 0.8033(3) | 0.3642(3) | 209(4) | 1 | -2.105(12) | | O2 | 8 <i>f</i> | 0.2399(2) | 0.64329(11) | 0.22242(18) | 115.8(16) | 1 | -1.737(11) | | О3 | 4 <i>e</i> | 1/2 | 0.89143(15) | 0.1365(2) | 133(3) | 1 | -2.023(5) | | O4 | 2 <i>b</i> | 1/2 | 0 | 0.4169(3) | 118(4) | 1 | -2.118(7) | **Figure A1** (a) coordination spheres of Pr^{3+} , Li^+ and K^+ cations; (b) the orientation of BO_3 groups in the unit cell;(c) the projection of the crystal structure along the **a**-direction, (d) the crystal structure viewed along the **c**-direction. **Table A2** Na_{2.86}Gd_{2.07}(BO₃)₃, space group: Amm2, a = 504.69(18) pm, b = 1105.0(3) pm, c = 733.92(14) pm, $R_1 = 0.011$ $wR_2 = 0.0248$ for all data, GooF = 1.183, Flack parameter = 0.05(2) | Atoms | Wyckoff | x | y | z | U_{eq} | SOF | BVS | |------------|------------|-----------|------------|------------|----------|--------------------|----------| | Gd1 | 4 <i>e</i> | 1/2 | 0.78777(2) | 0.89751(3) | 88.9(6) | 1 | 3.07(1) | | Na1 | 2 <i>a</i> | 0 | 1/2 | 0.5579(10) | 630(30) | 0.86 | 0.51(1) | | Na2 | 2b | 1/2 | 1/2 | 0.2447(4) | 154(5) | 1 | 1.47(1) | | Na3
Gd3 | 2 <i>a</i> | 0 | 0.5 | 0.9793(2) | 94(5) | 0.93(1)
0.07(1) | 1.42(1) | | B1 | 2 <i>b</i> | 0 | 0.7809(5) | 0.7006(8) | 142(8) | 1 | 2.99(3) | | B2 | 4 <i>d</i> | 1/2 | 1/2 | 0.2271(5) | 107(9) | 1 | 3.07(3) | | O1 | 4 <i>d</i> | 0 | 0.6718(6) | 0.7886(9) | 432(15) | 1 | -1.82(3) | | O2 | 8 <i>f</i> | 0.2370(4) | 0.3383(2) | 0.1654(4) | 152(4) | 1 | -2.07(1) | | О3 | 4 <i>e</i> | 1/2 | 0.6068(3) | 0.5587(6) | 343(12) | 1 | -2.13(2) | | O4 | 2 <i>b</i> | 1/2 | 1/2 | 0.8542(9) | 155(10) | 1 | -2.12(2) | **Figure A2** (a) coordination spheres of Gd³⁺ and Na⁺ cations;(b) the projection of the crystal structure along the **a**-direction, (c) the crystal structure viewed along the **c**-direction. **Table A3** Tl_{2.}Pb(SO₄)₂, space group: $R\overline{3}m$, a = 559.55(2) pm, c = 22.1001(9) pm, $R_1 = 0.0224$ $wR_2 = 0.0497$ for all data, GooF = 1.123, | Atoms | Wyckoff | х | У | z | U_{eq} | BVS | |-------|-------------|-----------|-----------|-------------|----------|------------| | Tl | 6 <i>c</i> | 1/3 | 2/3 | 0.46244(2) | 24.31(8) | 1.967(3) | | Pb | 3 <i>a</i> | 0 | 1/2 | 0.5371(10) | 26.63(9) | 1.984(9) | | S | 6 <i>c</i> | 1/2 | 1/2 | 0.2447(4) | 15.4(5) | 5.985(24) | | O1 | 18 <i>h</i> | 0.4766(3) | 0.5234(3) | 0.24795(13) | 24.9(5) | -1.964(20) | | O2 | 6 <i>c</i> | 1/3 | 2/3 | 0.3372(2) | 38.8(8) | -1.967(3) | **Figure A3** (a) coordination sphere of Tl^+ , S^{6+} and Pb^{2+} cations; (b) the layered crystal structure of $Tl_2.Pb(SO_4)_2$, (c) the PbO_{12} layer embedded with SO_4 , viewed along the **c**-direction. ## **Curriculum Vitae** #### **Pengyun Chen** Solid State and Crystallographic Chemistry, Universität Bremen Leobener Straße / NW2, D-28359 Bremen (Germany) Email: pengyun@uni-bremen.de #### Education University of Bremen, Bremen, Germany PhD student in Solid-state Chemistry and Crystallography, Supervisor: Prof. Dr. Thorsten M. Gesing Beijing Center for Crystal Research and Development, Chinese Academy of Sciences (CAS), China Master of Science in Inorganic Chemistry, Supervisor: Prof. R. K. Li Beijing University of Chemical Technology (BUCT), Beijing, China Bachelor of Science in Applied Chemistry #### Publications during the stay in Prof. Thorsten M. Gesing's group - 1. <u>P. Chen</u>, M. Murshed*, T. M. Gesing, Synthesis and characterization of K₂Pr₂O(BO₃)₂: structural, spectroscopic and thermogravimetric investigations of a novel potassium praseodymium oxoborate structure type, *Springer-Nat. Appl. Sci.*, **2020**, 747, - 2. <u>P. Chen</u>, M. Murshed*, M. Fischer, T. Frederichs, T. M. Gesing, KLi₂RE(BO₃)₂ (RE = Dy, Ho, Er, Tm, Yb and Y): Structural, Spectroscopic, And Thermogravimetric Studies on a Series of Mixed-Alkali Rare-Earth Orthoborates, *Inorg. Chem.*, **2020**, 59, 18214–18224 - 3. <u>P. Chen</u>, M. Murshed*, T. M. Gesing, Synthesis and crystal structures of novel alkali rare-earth orthoborates: $K_3RE_3(BO_3)_4$ (RE = Pr, Nd, Sm-Lu), *J. Mater. Sci.*, **2021**, 56, 3639–3652.