

Machine Learning Techniques for Autonomous

Multi-Sensor Long-Range Environmental Perception

System

Muhammad Abdul Haseeb

Universität Bremen 2020

Machine Learning Techniques for Autonomous

Multi-Sensor Long-Range Environmental Perception

System

Vom Fachbereich für Physik und Elektrotechnik

der Universität Bremen

zur Erlangung des akademischen Grades

Doktor–Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von

M.Sc. Muhammad Abdul Haseeb

aus Pakistan

Referent: Prof. Dr.-Ing. Axel Gräser

Korreferent: Prof. Dr.-Ing. Udo Frese

Eingereicht am: 04.09.2020

Tag des Promotionskolloquiums: 28.01.2021

i

Acknowledgements

First of all, I would like to express my gratitude to my supervisor Prof. Dr.-Ing. Axel

Gräser for offering me a Ph.D. position at the Institute of Automation (IAT) and for

his valuable guidance, expert advice, and support throughout my research work. I

would like to thank Prof. Dr.-Ing. Udo Frese for accepting to be the second reviewer

of this thesis as well as Prof. Dr.-Ing. Alberto Garcia-Ortiz and Prof. Dr.-Ing. Walter

Lang for accepting to be examiners of this thesis.

I would like to express my gratitude to my colleague Dr. Danijela Ristic-Durrant for

extended discussions and valuable suggestions which have significantly contributed to

the improvement of the thesis. Additionally, I would like to thank my former

colleague Dr.-Ing. Maria Kyrarini for her encouragement and support.

Special thanks to the University of Nis partners for making the arrangments and

obtaining the permits to perform experiments on the Serbian railway's sites, which

helps to collect data for the thesis. My gratitude goes as well to all the participants in

my experiments. I would like to thank Mr. Michael Ehlen for his technical support. I

also thank all students who during the work on their Master Theses and Master

Projects contributed to this thesis.

I am very thankful to the Postgraduate International Programme (PIP) of Physics and

Electrical Engineering faculty at the University of Bremen for partially funding my

participation in conferences.

I am deeply thankful to my parents, sister, and brother, for their love and

unconditional support. I am forever grateful to my parents for giving me the

opportunities and experiences that have made me who I am. Their encouragement

made me pursue my destiny and explore new directions in life. I dedicate this

milestone to them.

My thesis acknowledgement would be incomplete without thanking my wife Zarmeen

for always being there for me, without her, this thesis would never have written and

my baby-daughter, Ayra, whose smiling face always made me happy and inspired me.

Having her midway during my Ph.D. was certainly not easy for me, but she has made

my life wonderful, better, and more fulfilled than I could have ever imagined.

ii

iii

Abstract

An environment perception system is one of the most critical components of an

automated vehicle, which is defined as a vehicle where the driver does not require to

monitor the vehicle’s behaviour and its surroundings during driving. This thesis

addresses some of the main challenges in the development of vision-based

environment perception methods for automated driving, focusing on railway vehicles.

The thesis aims at developing methods for detecting obstacles on the rail tracks in

front of a moving train to reduce the number of collisions between trains and various

obstacles, thus increasing the safety of rail transport.

In the field of autonomous obstacle detection for automated driving, besides

recognising the objects on the way, the crucial information for collision avoidance is

estimated distances between the vehicle and the recognised objects (e.g. cars,

pedestrians, cyclists). With the limited capabilities of current state-of-the-art sensor-

based environment perception approaches, it is unrealistic to detect distant objects and

estimates the distance to them. Mid-to-long-range obstacle detection system is one of

the fundamental requirements for heavy vehicles such as railway vehicle or trucks,

due to required long braking distance. However, this problem is unaddressed in the

computer vision community. The emphasis of this thesis is on the development of

robust and reliable algorithms for real-time vision-based mid-to-long-range obstacle

detection. In this thesis, the algorithms for obstacle detection from single cameras

were developed and evaluated on images captured from RGB, Thermal and Night-

Vision camera.

The developed algorithms are based on advanced machine/deep learning techniques.

The development of machine-learning-based algorithms was supported by a novel

mid-to-long-range obstacle detection dataset for railways that is proposed in the

thesis, which compiles of annotated images with the object class, bounding box, and

ground truth distance to the object.

The developed novel methods for autonomous long-range obstacle detection, tracking

and distance estimation for railways were evaluated on real-world images, which were

recorded in different illumination and weather conditions by the obstacle detection

system mounted on a static test-bed set-up on the straight rail track and as well on a

iv

moving train. Although the focus is on railways, the developed algorithms are also

capable to use for road vehicles, hence evaluated on the images of road-scene

captured by a camera mounted on moving cars.

v

Kurzfassung

Ein System zur Wahrnehmung der Umgebung ist eine der kritischsten Komponenten

eines automatisierten Fahrzeugs, der Definition nach also eines Fahrzeugs, bei dem

der Fahrer das Verhalten des Fahrzeugs und seiner Umgebung während der Fahrt

nicht überwachen muss. Diese Arbeit befasst sich mit einigen der wichtigsten

Herausforderungen in der Entwicklung sensorgestützter Methoden zur

Umgebungswahrnehmung im Kontext automatisierten Fahrens, wobei der

Schwerpunkt auf Schienenfahrzeugen liegt. Ziel der Arbeit ist die Entwicklung von

Methoden zur Erkennung von Hindernissen auf den Gleisen vor einem fahrenden

Zug, um die Anzahl der Kollisionen zwischen Zügen und verschiedenen Hindernissen

zu reduzieren und damit die Sicherheit des Schienenverkehrs zu erhöhen.

Im Bereich der autonomen Hinderniserkennung für automatisiertes Fahren sind neben

der Erkennung der Objekte auf der Straße die für die Kollisionsvermeidung

entscheidenden Informationen die geschätzten Abstände zwischen dem Fahrzeug und

den erkannten Objekten (z.B. Autos, Fußgänger, Radfahrer). Mit den begrenzten

Möglichkeiten der heutigen sensorbasierten Umgebungswahrnehmung ist es

unrealistisch, entfernte Objekte zu erkennen und den Abstand zu ihnen abzuschätzen.

Das System zur Erkennung von Hindernissen im mittleren bis langen Bereich ist

aufgrund des erforderlichen langen Bremsweges eine der grundlegenden

Anforderungen an schwere Fahrzeuge wie Schienenfahrzeuge oder Lastwagen. Dieses

Problem wird jedoch in der Computer-Vision-Gemeinschaft nicht angegangen. Der

Schwerpunkt dieser Arbeit liegt in der Entwicklung echtzeitfähiger, robuster und

zuverlässiger Algorithmen für eine bildbasierende Hinderniserkennung im mittleren

bis langen Bereich. In dieser Arbeit werden die Algorithmen zur Hinderniserkennung

von Einzelkameras entwickelt und anhand von Bildern, die von RGB-, Wärme- und

Nachtsichtkameras aufgenommen wurden, bewertet.

Die entwickelten Algorithmen basieren auf fortgeschrittenen machine/deep learning

Techniken. Die Entwicklung der auf maschinellem Lernen basierenden Algorithmen

wurde durch einen neuartigen Datensatz zur Hinderniserkennung im mittleren bis

langen Bereich für Eisenbahnen unterstützt, der in der Arbeit vorgeschlagen wurde

und der aus annotierten Bildern mit der Objektklasse, der Bounding Box und dem

Abstand zum Objekt zusammengestellt wurde.

vi

Die entwickelten neuartigen Methoden zur autonomen weiträumigen

Hinderniserkennung, -verfolgung und -abschätzung für Eisenbahnen wurden an realen

Bildern evaluiert, die unter verschiedenen Beleuchtungs- und Witterungsbedingungen

durch das Hinderniserkennungssystem auf einem statischen Prüfstandsaufbau auf der

geraden Schiene und auch auf einem fahrenden Zug aufgenommen wurden. Obwohl

der Schwerpunkt auf Eisenbahnen liegt, wurden die entwickelten Algorithmen auch

auf den Bildern der Straßenszene ausgewertet, die von einer auf einem fahrenden

Wagen montierten Kamera aufgenommen wurden.

vii

viii

Table of Contents

Acknowledgements ... i

Abstract .. iii

Kurzfassung .. v

1. Introduction .. 1

1.1 Problem statement .. 2

1.2 Thesis Contributions .. 3

1.3 Thesis Overview ... 5

2. Machine learning-based environmental perception for

autonomous systems ... 7

2.1 Machine learning techniques .. 7

2.1.1 Supervised Learning ... 8

2.1.2 Unsupervised learning .. 9

2.1.3 Semi-supervised learning ... 9

2.1.4 Reinforcement learning .. 9

2.2 Artificial neural networks... 10

2.2.1 Activation Function .. 11

2.2.2 Training .. 12

2.2.3 Optimisation algorithm .. 13

2.2.4 Regularisation .. 13

2.2.5 Error and Loss function .. 14

2.2.6 Hyperparameter .. 15

2.2.7 Training, testing and validation set .. 16

2.3 Deep Neural Networks ... 16

2.3.1 Deep Learning for Computer vision .. 18

2.3.1.1. Classification .. 21

2.3.1.2. ... 21

2.3.1.3. ... 22

2.3.2 You Only Look Once (YOLO) .. 22

2.4 Datasets for environmental perception ... 34

2.4.1 Kitti Dataset ... 35

2.5 Distance estimation .. 38

2.5.1 LiDAR .. 38

ix

2.5.2 RADAR .. 39

2.5.3 Stereo Camera .. 39

2.5.4 Monocular Camera-based approaches ... 42

2.5.1 Evaluation Matrices ... 44

3. Dataset for long-range object detection and distance estimation ... 46

3.1. Dataset Preparation ... 47

3.1.1.Sensors Specifications .. 48

3.1.2. Data Collection Experiments .. 53

3.1.3. Data Acquisition Procedure .. 57

3.1.4 Dataset labelling ... 58

3.2 Data Augmentation .. 61

4. A machine learning-based distance estimation from a single

camera .. 65

4.1 DisNet: a machine learning-based object-specific distance estimation from a single

camera .. 65

4.1.1 Feature Extraction .. 67

4.1.2 DisNet architecture and training .. 68

4.1.3. Performance Evaluation .. 72

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera .. 86

4.2.1 Modification of YOLOv3 network .. 87

4.2.2 Loss Function ... 89

4.2.3 Dataset preparation ... 90

4.2.4 Training and testing .. 92

4.2.5 Performance Evaluation ... 94

4.2.6 Discussion .. 105

5. A machine learning based distance estimation from multiple

cameras .. 108

5.1 Multi-DisNet: a machine learning-based robust distance estimation from multiple

cameras .. 108

5.1.1 Feature Extraction .. 109

5.1.2 Multi-DisNet Architecture ... 110

5.1.3 Performance Evaluation ... 111

5.1.3 Discussion .. 117

6. A machine learning based multiple object tracking 119

x

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects tracking

from a single camera .. 120

6.1.1 Deep Learning Network architecture ... 122

6.1.2 Dataset .. 124

6.1.3 Features selection ... 125

6.1.4 Training and testing phase ... 126

6.1.5 Multiple Object Mapping (MOM) ... 128

6.1.6 Evaluation .. 128

6.1.7 Discussion .. 130

7. Real-time Performance Evaluation .. 133

7.1 Requirement Analysis ... 133

7.2 Hardware ... 135

7.2.1 Sensors ... 136

7.2.2 Network .. 136

7.2.3 Processing unit ... 137

7.3 Software .. 137

7.3. Machine learning-based algorithms timing considerations 139

8. Conclusion and Outlook .. 143

8.1 Conclusion .. 143

8.2 Outlook ... 145

Bibliography ... 147

Appendix A: Publications by the author .. 164

Abbreviations ... 167

Table of Figures ... 169

i

1

1. Introduction

Autonomous environment perception is one of the fundamental elements of

automated vehicles as well as of many other autonomous indoor and outdoor

applications such as mobile robots [1], assistive robots [2], and industrial robots [3].

The purpose of environment perception systems is to provide crucial information on

the autonomous system surroundings, including potential obstacles, their velocities

and locations, and even prediction of their future states. The collected information

helps the automated vehicle in many ways, such as to avoid collision with obstacles,

localisation, and navigation [4].

As research in the field of autonomous systems has matured in the previous decades,

outstanding work has been seen in the advancements of the environment perception

systems. Environment perception for automated vehicles typically combines multiple

sensing technologies (i.e., LiDAR, radar, ultrasound, and visual) to detect obstacles

and to provide their physical position in the environment. The fusion of multiple

sensing technologies helps to overcome the drawbacks and limitations of one sensor

by utilising the benefits of others [4].

Though the accuracy of the active sensing technologies such as LiDAR, RADAR, and

ultrasound sensors is high, it is quite computational power consuming and expensive.

On the other side, cameras are considered as the most functioning perception sensor

which provides rich visual information of the surrounding, with every possible detail

in it, in the form of images [5]. Cameras work in the same way as the human eye; help

to detect and classify objects, understand the situation, and estimate the depth.

However, the depth estimation is a critical task using cameras. Stereo-vision is the

most common approach to estimate depth. The images taken by two cameras are used

to triangulate and estimate distances [6].

1.1 Problem statement

2

Although stereo-vision systems work well in many applications, they are

fundamentally limited by the baseline, which is the distance between the two stereo

cameras. The stereo-vision based depth estimates tend to be inaccurate when the

distances measured are large as the baseline is long. The reason behind the inaccurate

measurement for longer distance is that even very minor errors in triangulation

estimation cause very large errors in distance measurement [7]. Additionally, stereo-

vision tends to fail for textureless regions of images, in which it is difficult to find the

corresponding regions reliably [8].

Monocular cameras-based vision detection systems have been proposed to overcome

the limitations of stereo-vision. As traditional monocular vision is unable to provide

accurate and robust distance measurement, most of the methods are machine learning-

based solutions [9]. These monocular cameras based object detection approaches rely

on the dataset with ground truth collected via LiDAR or stereo-vision [10].

1.1 Problem statement

Many approaches for autonomous environmental perception have been presented for

different application fields and scenarios. Whereas other transport modes have been

quick to automate certain operations, the rail runs the risk of lagging behind. One of

the critical challenges, which has so far hindered the automation of rail systems, is the

lack of a safe and reliable onboard obstacle detection system for trains within existing

infrastructure [11]. In recent years, there is a tendency to use experience from obstacle

detection both in the automotive and the aviation sector for the development of

autonomous obstacle detection in railways [12] [13]. While the main principle of

obstacle detection in front of a vehicle from the automotive sector can be applied to

railway applications, there are also specific challenges. Since this topic is not much

explored, there are countless challenges, and one of the primary challenges is Long-

Range Obstacle Detection.

Long-range obstacle detection: Sensor technology in current land transport research

can look some 200 m ahead [14]. The required rail obstacle detection interfacing with

loco control should be able to look ahead up to 1000 m detecting objects on and near

track which may potentially interfere with the clearance and ground profile. The trains

are running with high speed due to which and the train size and weight, the braking

1.1 Problem statement

3

distance is much longer than for road vehicles. Therefore, a long-range obstacle

detection system for railway vehicles is crucial. It is a very challenging task to detect

objects in real-time which are at far distance and project in a couple of pixels on an

image plane [15].

1.2 Thesis Contributions

The focus of this thesis is on long-range autonomous environmental perception.

Therefore the novel algorithms for object detection, distance estimation, multiple

object tracking, and sensor fusion are presented. The long-range perception is

required and needed in many areas such as long-range obstacle detection system for

autonomous trains or other heavy vehicles. The methods for long-range obstacle

detection presented in this thesis are developed with the main goal of providing a

solution to railways. However, the same methods can be used for self-driving cars as

well; hence the evaluation of the developed was also performed on images of road

scenes taken from a camera mounted on a moving passenger car.

The developed methods for railway scenarios were evaluated on the images taken by

cameras of a prototype autonomous Obstacle Detection System (ODS) developed

within the H2020 Shift2Rail project SMART-Smart Automation of Rail Transport

[11] [16].

The major contributions of this thesis are listed below:

1. Long-range object detection and distance estimation dataset (LRODD)

There are object detection datasets available that contain labeled objects and

distance information however the size of objects in images is relatively large

due to the ground truth distance up to nearly 150 meters. There are no datasets

available which provide annotated bounding boxes of distant objects at more

than 150 meters with the ground truth distance information which indeed

required to build long-range obstacle detection system. A novel dataset for

long-range object detection is presented in this thesis. The dataset is built on

the images acquired from three RGB cameras set up at different zooming

factors to cover short, mid to long-distance range, a thermal camera, a night

vision camera, a LiDAR sensor for short-range ground truth distance

measurement, and a GPS (Global Positioning System) sensor for positioning.

1.1 Problem statement

4

The dataset contains the images of rail scenes that occurred during the data

recording experiments taking place in the lifetime of H2020 Shift2Rail Project

SMART. Although containing images of rail scenes, the dataset can be used in

many other applications for long-range obstacle detection, distance estimation,

and tracking, such as automotive and robotics applications. The dataset ranges

from 0 to 1000 meters and contains several object classes.

2. A single camera-based distance estimation to a detected object in an image

(DisNet)

Distance estimation to the detected object using a vision sensor either with the

monocular camera or stereo cameras is one of the critical tasks in computer

vision. In this thesis, a novel method for long-range distance estimation using

a single camera is presented. The proposed method is able to work with any

type of monocular camera, such as thermal or RGB camera, and can estimate

the distance to the object from short to long-range depending on the resolution

of the image. The method can be used in various applications where distance

estimation is required for short to long-range using a monocular camera.

Moreover, the method does not require any prior calibration of the camera.

3. Distant object detection and distance estimation (YOLO-D)

Current state-of-the-art object detection methods are designed to localise and

classify the objects in an image. However, they do not estimate object

distance. In this thesis, the existing state-of-the-art machine learning-based

method YOLO (You Only Look Once) for object detection was modified to

estimate the distance to the detected objects and so-called end-to-end learning

was enabled.

4. Sensor fusion of multiple cameras for distance estimation (Multi-DisNet)

A novel machine learning-based sensor fusion method for distance estimation

is presented in this thesis. The method based on the fusion of object detection

results from thermal and RGB camera estimates the distance to the detected

object. The method helps to provide reliable distance estimation to the

obstacle in adverse weather and illumination condition or in the case where

one of the sensors fails to detect the object.

5. Multiple object tracking (DisNet-RNN Tracker)

1.1 Problem statement

5

A machine learning-based method for multiple object tracking is also

investigated in the thesis as a method for improving reliability of object

detection and distance estimation. The method helps to track objects in cases

where the object detection module fails to detect or produces unreliable object

detection. It further helps to estimate the distance to the undetected object

based on the tracked information.

6. Evaluation of developed algorithms in real-world scenarios

The machine learning based algorithms developed in this thesis were tested on

real-world scenarios in railways. The algorithms were developed to meet the

requirements of real-time performance.

1.3 Thesis Overview

This thesis is organized in the following chapters:

• Chapter 2 introduces the application of machine learning in computer vision.

As first, an introduction to machine learning is given, following with the state-

of-the-art machine learning-based computer vision algorithms and their

applications.

• Chapter 3 describes the novel dataset for long-range object detection and

distance estimation LRODD.

• Chapter 4 presents the two novel machine learning-based methods for distance

estimation using a single camera, namely DisNet and YOLO-D. The

performance evaluation of each method is presented within the chapter.

• Chapter 5 describes the machine learning-based sensor-fusion method for

distance estimation from multiple cameras Multi-DisNet. The evaluation

results are discussed in the chapter.

• Chapter 6 presents the methods for multiple objects tracking DisNet-RNN

Tracker and the results achieved.

• Chapter 7 presents the real-time implementation and requirements analysis of

developed methods.

• Chapter 8 summarises the conclusions from all the chapters and discusses the

outlook.

6

2.1 Machine learning techniques

7

2. Machine learning-based

environmental perception for

autonomous systems

The main aim of this chapter is to provide the necessary theoretical background of

machine learning, its application in the field of computer vision and datasets to

support the proposed methods described in the following chapters. Therefore, an

introduction to machine learning and datasets is given followed by state-of-the-art

particularly in vision-based object recognition, distance estimation, and object

tracking.

2.1 Machine learning techniques

Computer Vision is defined as a field of study about how computers see and

understand the content of digital images. Computer vision aims to develop methods

that imitate human visual perception. With the great evolvement in the field of

computer vision in the last couple of decades, still many problems remain unsolved.

The main reason is due to the limited understanding of human vision and the human

brain [17].

However, integration of machine learning and deep learning in computer vision

brought significant advancement in high-level problems such as text understanding

[18], 3D model building (photogrammetry) [19], medical imaging [20], human-

computer interaction [21], automotive safety [22], surveillance [23], fingerprint

recognition and biometrics [24], and others.

Machine learning (ML) is a subgroup of Artificial intelligence (AI). In the last few

decades, several fields were revolutionized within the ML. Neural Network (NN) is a

sub-field of ML, and Deep Learning (DL) lies within the NN [25]. Similar to machine

2.1 Machine learning techniques

8

learning algorithms, deep learning methods can also be classified as follows:

supervised, semi-supervised, or partially supervised, and unsupervised. Additionally,

there is another learning approach category called Reinforcement Learning (RL) or

Deep RL (DRL) that is often discussed under semi-supervised or sometimes

unsupervised approaches to learning [26].

Figure 1. The grouping of AI and its sub-groups [25]

2.1.1 Supervised Learning

Supervised learning is a method of learning that use labelled data. In the case of

supervised approaches, the environment has a set of inputs and corresponding outputs

(xi, yi). For example, if for input xu, the agent predicts yu
/= f(xu), the agent will receive

a loss value L(yu, yu
/). The agent will modify the network parameters iteratively until

it achieved a better estimate of the desired outputs. After training, the agent will be

able to predict the output close to the desired output on the given set of input from the

environment [27].

Some popular supervised machine learning algorithms are linear regression for

regression problems, random forest for classification and regression problems,

Support vector machines (SVM) for classification problems. Likewise, several

supervised learning approaches are involved in deep learning, including Deep Neural

Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural

Networks (RNN), containing Long Short Term Memory (LSTM), and Gated

Recurrent Units (GRU) [25].

Supervised learning can be split into two main types, that are classification and

regression. Classification is used when the required output is categorical for example

2.1 Machine learning techniques

9

sorting of email into “spam” or “non-spam” class, diagnosis of a disease based on

observation of the patient such as sex, blood pressure, or certain symptoms. On the

other hand, regression is used when the output is continuous value; for example, the

prediction of stock based on observation [28].

2.1.2 Unsupervised learning

The unsupervised learning method is based on unlabeled data. The data without the

presence of labels is known as unlabeled data. In this case, the machine learning

model understands the internal representation, pattern, or features to determine

unknown relationships or mapping within the given unlabeled input data. Typically,

clustering, generative, and dimensional reduction techniques come into unsupervised

learning approaches. Most popular unsupervised machine learning algorithms are K-

means for clustering and Apriori algorithm for association rule learning problems

[29]. Generative Adversarial Networks (GAN), RNNs such as LSTM and RL are used

for unsupervised deep learning methods as well [25].

Similar to supervised learning, unsupervised learning is also classified as two main

types which are Clustering and Association. Clustering is used when it is needed to

organise or group data based on similarities between them, for example, grouping

customers based on their purchasing behaviour or interests. Whereas Association is

used to correlate or find relations between variables in the data, for example, you find

the rule if a person buys X also tend to buy Y.

2.1.3 Semi-supervised learning

Semi-supervised learning is another learning method that uses partially labelled

datasets. Typically in this learning technique, a small labelled data together with large

unlabeled data are used in training. Deep Reinforcement Learning (DRL) and

Generative Adversarial Networks (GAN), RNN, including LSTM and GRU, are also

used with semi-supervised learning [30].

2.1.4 Reinforcement learning

Reinforcement learning is another type of Machine Learning, where an agent learns

how to act in a situation by performing actions and observing the results. The main

idea behind RL is that an agent learns from the environment by interacting with it and

2.2 Artificial neural networks

10

by receiving rewards for the taken actions. For the right results, the positive reward is

given to the action and similarly a negative reward in case of bad results. In this way,

an agent learns the sequence of actions to be taken by interacting with the

environment [25].

Figure 2. Category of Deep Learning approaches [25]

2.2 Artificial neural networks

As explained earlier Machine Learning is a super-set of Deep Learning. The main

idea of deep learning was inspired by Artificial Neural Networks abbreviated as

ANN, often called Neural Networks (NN). Firstly, it is essential to explain ANN and

some important facts that described deep learning techniques. The ANN is inspired by

human biological neural networks [31]. Figure 3 shows the basic NN architecture.

Figure 3. A basic artificial neural network architecture

Usually, the architecture of NN always consists of an input layer, hidden layers, and

an output layer. It is also called as Multi-Layer Perceptron (MLP) [17]. The input

layer is the very first layer of artificial neurons that bring the data into a network for

further processing by subsequent frames; the input data can be pixels of the image or

2.2 Artificial neural networks

11

any computed feature. The hidden layers are layers between input and output layers

where artificial neurons take weighted input and produce output through an activation

function. The weights of artificial neurons are learned during the training process,

whereas activation function defines the output of the neuron. The output layer is the

final layer of NN that outputs the prediction result based on the input data feed into

the neural network.

Briefly, the Neural Network can be defined as an approximation function of the any

given problem in which learn parameters (weights) in hidden layers multiply with

input and predict output close to desired output [28].

The basic computation unit in the neural network is known as a neuron, often called a

node, perceptron, or unit, as shown in Figure 4. It receives input from previous nodes,

or an external source, and computes output. Based on the relative importance of input

to other inputs, each input is associated with a weight (w). The neuron determines a

weighted sum of all its inputs. An additional parameter Bias is added to the weighted

sum is a constant value which helps the model in a way that it can fit best for the

given data. Further, it produces output by applying a function g on it, which is also

known as activation function [32].

Figure 4. The architecture of basic computational unit in ANN

𝑦 = 𝑔 (𝑏 + ∑𝑤𝑖𝑎𝑖

𝑛

𝑖=1

) (2-1)

2.2.1 Activation Function

The purpose of the activation function is to learn complex non-linear representations

of data and introduce non-linearity into the output of the neuron. The neural network

without an activation function would be a simple linear regression model with less

power to learn complex nonlinear problems. Another essential characteristic of the

2.2 Artificial neural networks

12

activation function is that it should be differentiable. It is required to be differentiable

so as to compute gradients of Error (Loss) with respect to weights while performing

backpropagation optimisation to fine-tune the weights using optimisation techniques

to reduce error. There are many activation functions, but the most popular one is

sigmoid or logistic, Tanh - hyperbolic tangent, softmax, ReLu (Rectified Linear Unit),

or identity functions [26].

• Sigmoid: Take an actual input and squash between 0 and 1.

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (2-2)

• Tanh — Hyperbolic tangent: it limits the output between -1 and 1

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2-3)

• ReLu -Rectified linear units: The formula is deceptively simple: max(0,x).

R(𝑥) = {
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

 (2-4)

Figure 5. Three most common activation functions [33]

2.2.2 Training

In this section, the training process of NN will be explained. However, some

important factors need to be described for training processes such as dataset, loss

function, and optimisation techniques. The newly created neural network is like new-

born babies: with their exposure, mistakes, and experiences, they learn new things.

Similarly, NNs during the training phase learn something new through given data and

improve the performance by their own mistakes (Error). The knowledge of neural

networks is captured in the form of parameters i.e. weights and bias. The input data

propagate from the input layer via hidden layers to the final prediction layer. The

prediction layer makes decision-based on a given input. At the beginning of the

2.2 Artificial neural networks

13

training phase, often the decision made by NN is wrong because the parameters

through which data propagate are not optimally adjusted. Typically training process

composed of multiple iterations or also known as epochs until the NN learns correctly

and predicts output close to the desired output. For each epoch, the error is measured

which is defined as Loss function and parameters of NN are adjusted in a way to

reduce the error to make predictions close to the desired output. The error J(w) is the

function of NN internal parameters, i.e. weights and bias. If the parameters change, the

error changes as well [30] [25].

2.2.3 Optimisation algorithm

The parameters are adjusted using optimisation algorithms. A neural network

propagates data from the input layer towards the output layer known as forward

propagation. However, the changing of parameters is done in reverse order. During

the parameter adjustments, the network back propagates to optimise parameters. The

optimisation algorithms help to find the minimum of a loss function and adjust

parameters accordingly.

w𝑘+1 = w𝑘 −
𝜕

𝜕𝑤𝑘
𝐽(𝑤) (2-5)

Usually, optimization functions measure the gradient, i.e. the partial derivative of the

loss function with respect to weight, weights are adjusted in the opposite direction of

the measured gradient. This process is repeated until a loss function minimizes [34].

Figure 6. Gradient Descent [35]

2.2.4 Regularisation

The best choice of the number of training epochs cannot be measured, and with the

inappropriate training epochs, the NN can lead to overfitting or underfitting problems.

2.2 Artificial neural networks

14

The under the fitted model is neither performs on training data nor on new data.

Whereas the overfitted model performs well on training data but not on evaluation

data due to over learning of training data.

Figure 7. Regularisation [36]

Another important technique that needs to be highlighted is early-stopping.

Early stopping is one of the classical regularization techniques used in the training

process to stop the training once the model performance stops improving or in other

words, loss function stops converging [28].

2.2.5 Error and Loss function

most commonly in many learning networks, the error is calculated as the difference

between the desired output and the predicted output. The function that calculates error

is known as loss function 𝑙(𝑤), often named as the objective function.

𝑙(𝑤) = 𝑦 − 𝑦̂ (2-6)

There is no single loss function that works with data of any kind. This depends on the

factors including the existence of outliers, choice of the machine learning algorithm,

gradient descent time efficiency, ease of finding derivatives, and prediction

confidence. Loss functions can be categorized into two main types: Classification and

Regression Loss. The regression model predicts the quantity while the classification

model predicts the probability of class label.

• Classification loss functions: Log loss, Focal loss, Kullback–Leibler (KL)

Divergence/ Relative Entropy, Exponential Loss, Hinge Loss.

• Regression loss functions: Mean Square Error/Quadratic Loss (L2), Mean

Absolute Error (LI), Huber Loss/Smooth Mean Absolute Error, Log cosh loss,

Quantile loss.

2.2 Artificial neural networks

15

 Below two very popular regression loss functions are described.

Mean Absolute Error (MAE) – L1 Loss: Another loss function used for regression

models is Mean Absolute Error. It is defined as the sum of the absolute differences

between our target and the variables predicted.

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1

𝑛
 (2-7)

Mean Square Error – L2 Loss: Mean Square Error is the most widely used

regression loss function. It is defined as the total sum of squared distances between

our target variable and predicted values.

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

𝑛
 (2-8)

Figure 8. A plot of MAE and MSE Loss (Y-axis) vs Predictions (X-axis)

Both the MAE and MSE loss functions reach the minima when the predicted value

exactly equal to the desired value. The selection of loss function depends on the task.

The MSE is easier to solve to find gradients thus converge faster to minima. On the

other side, MAE is more robust to outliers but more complicated to solve due to not

continuous derivatives.

2.2.6 Hyperparameter

The components of a neural network model, i.e. the activation function, loss function,

and optimisation algorithm play a crucial role in the effective and efficient training of a

model and delivers accurate results. Specific tasks require a different set of such

functions to deliver the best results possible. All of these components of the neural

network, also known as hyperparameters.

The hyperparameters are set of variables that determine the network structure such as

number of hidden layers, number of neurons, and the variables which determine in

2.3 Deep Neural Networks

16

what way the network is trained such as weight initialisation, batch size, number of

epochs, learning rate, activation function.

There is no pre-defined or specific way to select the hyperparameters for the

construction and training of a neural network. The most common practice of tuning of

hyperparameters or optimisation of hyperparameters to find the best configuration of

parameters is the manual search method. There are hyperparameters selection

methods such as RandomSearch [37] and GridSearch [38] which find the best

parameters from the given set of parameters. Both methods are very similar; the best

parameters are selected based on the training of network with all possible

combinations of parameters. This method is suitable for simple models which take

less time to train, but if the model takes longer time, almost all deep learning

networks or the search space is big, this approach could not be the best option.

2.2.7 Training, testing and validation set

Usually, the labelled dataset is split into three sets training, validation, and test. The

training set on which the model find optimal values of weights to fit the given set. The

validation set is used during the training process to find optimal hyperparameters of

neural networks, such as the number of hidden layers, stopping point of training, and

others. The test set is used to estimate the performance of the final trained model. The

test set does not have any impact on the training of the neural network. The splitting

of the dataset depends on the size of the dataset. Most commonly, the dataset spits

into 80% for the training set, 10% for validation, and 10% for testing [25] [26].

2.3 Deep Neural Networks

The procedure and techniques of feature extraction and learning are the key difference

between traditional machine learning and deep learning [39]. Traditional machine

learning used handcrafted engineering, several feature extraction methods extract

features, and then the extracted features are provided to the learning model to predict

the output. Additionally, often several pre-processing algorithms are involved in

traditional machine learning. Whereas in deep learning, DL itself extract and learn

features from raw data. DL minimises the human effort by extracting the features

itself. Features are represented hierarchically in the multi-layer network. Similar to

human brain biological neural networks, deep learning contains layered architecture

2.3 Deep Neural Networks

17

where high-level features are extracted from the last layers, and low-level features are

extracted by first layers. Table 1 shows the different learning methods based on the

features with different learning steps [25].

Table 1. Different feature learning approaches

Approaches Learning Steps

Rule-based Input Hand-design

features

Output

Traditional

Machine Learning

Input Hand-design

features

Mapping

from features

Output

Representation

Learning

Input Features Mapping

from features

Output

Deep Learning Input Simple

features

Complex

Features

Mapping

from features

Output

A basic structure of deep neural networks is the traditional ANN network with

multiple hidden layers. The ‘shallow’ neural network has only one hidden layer is

opposed to deep neural network contains more than one hidden layer, often of several

types. There are many deep learning methods rooted in the initial ANNs, including

supervised (DBNs, RNNs, CNNs), unsupervised (AE, DBNs, RBMs, GAN), semi-

supervised (often GAN) and DRL. The deep neural networks learning techniques are

similar to neural networks. However, some advancement is also made in the learning

process to fasten the learning process of a large number of parameters.

Another significant difference between traditional ML and DL is the performance of

ML and DL with respect to the amount of data. The study [40] shows that the ML

approaches show better performance for a lesser amount of data. Whereas the amount

of data increases beyond certain limits, the performance of ML does not show further

improvements and becomes steady. on the other side, the performance of DL

approaches increases with respect to the increase in the data value [41].

2.3 Deep Neural Networks

18

Figure 9. The deep learning efficiency with regard to the amount of data

2.3.1 Deep Learning for Computer vision

The deep learning often refers to universal learning because it can be used and applied

in many application domains. With the many success stories of deep learning in

almost every field, one of the well-known and evident applications of deep learning is

in Computer Vision (CV). The DNN is widely used in CV and has excellent

capabilities such as in image pattern recognition [39]. Convolution Neural Network

(CNN) is the type of DNN most commonly applied in computer vision to analysing

images in a similar way as human visual sense does. The first Convolution Neural

Network (CNN) was introduced in 1988 however; it was not so popular back then due

to limited sources of computational power to process and train the CNN network. In

the 1990s, the authors [42] achieved excellent results for handwritten digits

classification problems using a gradient-based learning algorithm to CNNs. After that,

the drastic change has been noticed in the 2000s after the revolution of high-

performance processing components such as GPUs [43] and computer platforms such

as Nvidia Drive [44] that were explicitly designed to work for convolutional network

and to work with high-dimensional data [43].

Mostly computer vision problems are surrounded by CNN architectures.

Convolutional Neural Network (CNN) is a type of Deep Neural Networks (DNN) and

is commonly used for image classification and segmentation. A convolutional neural

network (CNN) is made up of an input layer, output layer as well as multiple hidden

layers. In contrast, hidden layers are typically comprised of convolutional layers,

pooling layers, and fully connected layers.

2.3 Deep Neural Networks

19

The main function of the convolutional layer is to extract the features from the input

image or the previous layer, by using a fixed-sized convolutional kernel to do the

convolution operation with the input in the form of sliding window, as shown in

Figure 10 [45].

Figure 10. Example of convolution operation [46]

Each convolutional layer is made up of many feature maps, and each feature map is

the convolution output between the current kernel and the feature maps of the former

layer. The calculation of the convolutional layer can be represented as the following

formula (2-9):

𝑦𝑗
𝑙 = 𝑓(∑ 𝑦𝑖

𝑙−1
𝑖𝜖𝑀𝑗

 𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑙) (2-9)

Where 𝑘𝑖𝑗
𝑙 is the convolutional kernel between the i-th feature map of the l-th layer

and the j-th feature map of the l-th layer, 𝑀𝑗 is one example of the input feature map,

𝑏𝑗
𝑙 is the bias of the j-th feature map of the l-th layer, and f() is the activation function,

including Sigmoid, Tanh, ReLU(Rectified Linear Unit) function, etc.

Then, the pooling layer would reduce the dimensionality of each feature map from the

forward layer while keeping valuable information [47]. There are mainly two kinds of

pooling layer, max-pooling layer, and average-pooling layer. As the name implies, the

max-pooling layer selects the most significant number of each given feature map,

while the average-pooling layer takes the average number. After that, the fully

connected layer transforms the feature map matrix of the previous layer into the form

2.3 Deep Neural Networks

20

of vector. Finally, the output layer outputs the class by using an activation function,

which includes softmax regression or logistic regression, and classifies the images.

One of the toughest computer-vision problems encounter by CNN is object

recognition. Object recognition is a task to classify the objects in an image into known

objects labels. The revolutionary results have been seen in ImageNet-2012 Large

Scale Visual Recognition Challenge (LSVRC) when DL networks outperformed the

human accuracy of object recognition. ImageNet- LSVRC is a yearly competition

focused on image classification. Various state-of-the-art CNN based object

recognition methods including AlexNet [48], Clarifia [49], VGG-16 [50],

GoogLeNet19 [51] and ResNet152 [52] were tested on ImageNet [53] dataset. Figure

x shows the improvement of DL techniques overtime in ImageNet challenges since

2012. The ResNet152 has achieved a 3.57% error rate as opposed to humans with an

error rate of 5%.

Figure 11. Accuracy of different DL models on ImageNet classification challenge [25]

The AlexNet recognised as one of the first deep networks that showed significant

accuracy in ImageNet competition. It is designed by the SuperVision group from the

University of Toronto. AlexNet consists of five convolutional layers followed by

three fully connected layers much larger than the previously used CNN network

LeNet [42] for computer vision tasks. The uniqueness of AlexNet architecture is that

it uses the ReLu activation function instead of the tanh to add non-linearity, which

also accelerates the speed of the training process by six times and improves accuracy.

Further, it overlaps pooling layers to reduce the size of the network. Another problem

this network solved was reducing the over-fitting by using dropout layers after every

2.3 Deep Neural Networks

21

FC layer. It has 60 million parameters and 650,000 neurons. In 2012 with limited

hardware capabilities, it took 5 to 6 days to train Alexnet on two GTX 580 3GB

GPUs.

Figure 12. AlexNet architecture [54]

After the success of AlexNet, many models were proposed, and dramatically the

performance of object recognition has been improved over time. Some of the state-of-

the-art models for classification, segmentation, and detection task are listed as

follows:

2.3.1.1. Classification

The input images are encoded in different steps with convolution and sub-sampling

layers according to the classification models architecture, and eventually, the SoftMax

method is used to determine class likelihood. Such models with a classification layer

can, however, be used for segmentation and detection tasks as feature extraction. The

list of some classification models are as follows: AlexNet [48], VGGNet [50] ,

GoogleNet [51], ResNet [52], DenseNet [55], FractalNet [56], CapsuleNet [57],

IRCNN [58] , IRRCNN [59], DCRN [60] and so on. These classification models also

refer to base feature extractors due to their role in object detection and object

segmentation.

2.3.1.2. Segmentation

Several semantic segmentation models proposed during the last few years. The

segmentation model is composed of two units: encoding and decoding. In the

encoding unit, the convolution and subsampling operations are carried out to encrypt

the latent space in the lower dimensions whereas the decoding unit decodes the image

from latent space conducting deconvolution and upsampling process [25]. Fully

2.3 Deep Neural Networks

22

Convolutional Network (FCN) is the very first form of segmentation [61]. Later the

improved version of this network which is called SegNet is introduced [62]. Recently,

several new models have been introduced which include RefineNet [63], PSPNEt

[64], and DeepLab [65].

2.3.1.3. Detection

The topic of detection is a bit different compared with classification and segmentation

problems. The purpose of the model is to classify target categories with their

respective positions. The model answers two questions: What is the object

(classification problem)? and where the object (regression problem)? To achieve these

goals, two losses are calculated for classification and regression unit at the top of the

feature extraction module, and the model weights are updated with respect to both

losses. For the very first time, Region-based CNN (RCNN) is proposed for object

detection task [66]. Recently, there are some improved solutions to detection have

been suggested, including focal loss for dense object detector [67] better detection

approaches have been proposed, Later the different improved version of this network

is proposed called fast RCNN [68]. mask R-CNN [69], You only look once (YOLO)

[70] and SSD: Single Shot MultiBox Detector [71]. All these detection models use

classification models as their base to make feature extraction.

In addition, the classical methods can be found back in the 1960s, and later, some of

the widely used methods are Haar-like features [72], SIFT [73], SURF [74], GLOH

[75] and HOG detectors [76].

2.3.2 You Only Look Once (YOLO)

In this section, YOLO object detection model is discussed to support the

implementation and modifications in the next chapters.

Up till 2015, object detection systems were re-purposing existing classifiers to

perform detection. This meant the use of a sliding window technique in looking at

specific regions of the image one by one and making predictions accordingly based on

that region. YOLO (You Only Look Once) identifies object detection as a regression

problem, thereby spatially separating bounding boxes and their associated class

probabilities. YOLO uses a single neural network to detect multiple objects directly

from an RGB camera image and predict its bounding boxes with associated class

2.3 Deep Neural Networks

23

probabilities [70]. Up to now, there are three YOLO version available: YOLO [70],

YOLOv2 [77] and YOLOv3 [78]

2.3.2.1 YOLO

YOLO aims to perform object detection in real-time. Therefore, it does not use the

sliding window technique traversing over the image region by region. Instead, it looks

at the entire image once during training and testing to formulate contextual

information about object appearance and class. This makes YOLO much faster than

other detection algorithms. Competing detection algorithms of the time like Fast R-

CNN [79] had better accuracy when compared to YOLO but was considerably slower

with much more background noise [70].

YOLO is a CNN which uses 24 convolutional layers and two FC (fully connected)

layers. The convolutional layers extract feature maps from the image and the two FC

layers regress the network for bounding box parameters and class.

Figure 13. YOLO’s Image Grid. Each grid cell detects only one object [80]

This section attempts to summarize YOLO’s network architecture and its prediction

methodology. YOLO divides the input image into S×S grid (Figure 13). Each grid cell

is responsible of predicting one object. For example, in Figure 13, the yellow grid cell

tries to predict the person class because its centre (blue dot) lies inside the grid cell

[80]. Moreover, each grid cell also predicts a fixed number of bounding boxes. In

2.3 Deep Neural Networks

24

Figure 14, the yellow grid cell predicts two bounding boxes for the person object [80].

So for each grid cell, YOLO,

• predicts B bounding boxes with each box having a confidence score.

• detects one object only, irrespective of the number of bounding boxes

detected.

• predicts C conditional class probabilities (one for every class in the training

dataset).

Figure 14. Each grid cell making a fixed number of bounding boxes for one object [80]

Figure 15 shows YOLO’s prediction sequence for a S×S grid. Each bounding box has

5 constituents [80] as follows:

• center x-coordinate (x),

• center y-coordinate (y)

• box width (w)

• box height (h)

• box confidence score.

2.3 Deep Neural Networks

25

Figure 15. YOLO making S x S predictions with B bounding boxes [80]

Figure 16. YOLO detecting B bounding boxes for a single image with S x S grid

The confidence score reflects the likelihood of an object present in the bounding box

and also accuracy of the bounding box [80]. Each grid cell also predicts C conditional

class probabilities for every bounding box detected, giving the class probability of

each detected object where C is the number of classes in the training dataset.

Therefore, YOLO’s prediction shape for a single image is (S, S, B × 5 + C) [80].

Figure 16 shows YOLO predictions on a single image for a complete S × S gird.

2.3 Deep Neural Networks

26

Figure 17. YOLO Network Architecture [70]

Figure 17 details out YOLO's network architecture. YOLO builds a CNN with 24

covolutional layers and two fully connected layers at the end. The convolutional

layers extract visual features from the image and two FC layers at the end perform a

linear regression to output bounding box parameters [80].

As explained in equation 2-10, YOLO's loss function is a sumsquared error between

actual and predicted values [80]. To compute loss for true positives, YOLO only

needs one bounding box for each object in the image. However, each grid cell can

detect multiple bounding boxes. To eliminate this problem, YOLO selects the

bounding box with the highest IoU (intersection over union) with the ground truth

during training [80]. On the other hand, YOLO can also make multiple detections for

the same object. To fix this, YOLO uses non-maximal suppression [81] to remove

detections with lower confidence score. This technique works through sorting the

predictions by their confidence score, and then starting from top, removing

predictions if current prediction has the same class and an IoU > 0.5 than the previous

prediction [80].

2.3.2.2 YOLOv2

Figure 18 shows YOLOv2's accuracy and speed as compared to other popular object

detectors. Following is a list of design changes making YOLOv2 better than YOLO:

• Most state-of-art object detection classiers are pre-trained on ImageNet, which

operate on smaller input images of 256x256. YOLOv2 is ne tuned with an

image size of 448x448 on the entire ImageNet dataset for 10 epochs [77]. This

2.3 Deep Neural Networks

27

makes YOLOv2 a high resolution classier and give almost a 4% mAP increase

when compared to YOLO [77].

• Unlike YOLO that uses fully connected layers for final prediction, YOLOv2

uses anchor boxes on convolutional layers to make predictions. Anchor box is

an estimate of a bounding box (width, height). YOLOv2's convolutional layers

downsample the image by a factor of 32 therby reducing an input image of

416x416 to 13x13 feature map. Using convolutional layers with achors for

prediction reduces mAP by 0.4 but also reduce computational cost by 33%

[77].

• Anchor boxes are either provided randomly or calculated from the training

dataset through clustering methods. Calculating anchor boxes using any

clustering method like K-means clustering helps in increasing the training

process [77]. Otherwise the network has to determine the actual anchor boxes

by itself. Anchors help in increasing recall.

• YOLOv2 make detections on a 13x13 feature map, which is fine for larger

objects, but not fine enough for detecting smaller objects. To fix this problem,

YOLOv2 uses a pass-through layer. This layer concatenates the lower

resolution features obtained at earlier convolution layer of 26x26 resolution

with the higher resolution features at 13x 13 resolution [77].

• After every 10 batches, the network selects a dfferent image dimension to

make training multi-scale [77]. This enables the network to train and predict

well on different image resolutions.

YOLOv2's implementation uses Darknet-19 [82], an open source NN (neural

network) framework written in C and CUDA [83] with 19 convolutional layers.

2.3 Deep Neural Networks

28

Figure 18. YOLOv2 Accuracy and Speed Compared to other Object Detectors [77]

2.3.2.3 YOLOv3

YOLOv3 improves onto YOLOv2 detection metrics by adding some incremental

changes [78]. Following is a list of design changes making YOLOv3 slightly better

than YOLOv2 [78]:

• YOLOv3 predicts an object confidence score for each bounding box through

logistic regression and gets a score of 1 if its overlap with ground truth is more

than any other prediction.

• Each bounding box has an independent logistic classifier to predict detected

object class.

• Figure 19 shows YOLOv3's network architecture. Unlike YOLOv2, YOLOv3

predicts bounding boxes at 3 different scales. Feature maps are up-sampled

and merged with feature maps from former layers. Furthermore, new

convolutional layers are added to precess these feature maps predict object

bounding boxes. K-means clustering is used to determine anchor boxes. 9

cluster are selected and divided equally between 3 scales, with 3 predictions at

each scale.

2.3 Deep Neural Networks

29

Figure 19. YOLOv3 Network Architecture [73]

2.3 Deep Neural Networks

30

Figure 20. Darknet-53 layers [78]

• YOLOv3 also uses darknet-19 like YOLOv2, but adding all the residual layers

and feature map merging makes the network larger, coming to 53

concolutional layers. The underlying framework is therefor now called

darknet-53 (Figure 20). This makes the network larger and slower compared to

YOLOv2 but improves accuracy.

2.3.2.4 Loss function

The loss function of YOLO contains three parts: the localization loss (errors between

the predicted box and the ground truth box), the confidence loss (objectness of the

box) as well as the category loss, as given in equation (2-10) [70] below:

2.3 Deep Neural Networks

31

𝐿𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝑙𝑜𝑠𝑠𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 + 𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠

= ∑∑1𝑖,𝑗
𝑜𝑏𝑗

𝐵

𝑗=0

𝑆2

𝑖=0

 [(𝑡𝑥 − 𝑡̂𝑥)
2 + (𝑡𝑦 − 𝑡̂𝑦)

2
+ (𝑡𝑤 − 𝑡̂𝑤)2 + (𝑡ℎ − 𝑡̂ℎ)2]

+∑∑(1𝑖,𝑗
𝑜𝑏𝑗[− log(𝜎(𝑡𝑜)]

𝐵

𝑗=0

𝑆2

𝑖=0

+ 1𝑖,𝑗
𝑛𝑜𝑏𝑗[− log(1 − 𝜎(𝑡𝑜)])

+∑ ∑ 1𝑖,𝑗
𝑜𝑏𝑗𝐵

𝑗=0
𝑆2

𝑖=0 [∑ 𝐵𝐶𝐸(𝑝̂𝑐, 𝜎(𝑝𝑐))
𝐶
𝑐=1]

(2-10)

Here, each line represents each part of loss. 𝑡𝑥,𝑡𝑦 are the predicted bounding box

coordinates and 𝑡𝑤,𝑡ℎ are the width and height of the box. 1𝑖,𝑗
𝑜𝑏𝑗

 indicates that j th

bounding box in i th cell is responsible for that prediction [70]. 𝑡𝑜 is the predicted

objectness score for that box and 𝑝𝑐 is the predicted class probability. Mean Squared

Error (MSE) function is adopted to calculate the localization loss and Binary Cross

Entropy (BCE) function is employed to calculate the confidence loss and

classification loss.

2.3.2.5 Evaluation Matrics

Intersection over Union, also referred to as the Jaccard Index, is one of the most

common and most basic concept to measure the performance of object detector. It

quantifies the similarity between the ground truth bounding box and the predicted

bounding box to evaluate how accurate the predicted box is. The IoU score ranges

from 0 to 1, the similar the two boxes, the higher the IoU score. It is defined and

calculated as the area of the intersection divided by the area of the union of the

predicted bounding box and the ground-truth box, as illustrated in Figure 21.

Figure 21. Illustration of Intersection over Union (IoU) [84]

2.3 Deep Neural Networks

32

By computing the IoU score for each detection, the IoU values above the defined

threshold are considered positive predictions and those below are considered to be

false predictions. More precisely, the predictions are classified into True Positives

(TP), False Negatives (FN), and False Positives (FP) [85].

An example of confusion matrix of car detection is shown in Table 2- 3.Generally

speaking, when the prediction class matches the class of the ground truth and IoU is

greater than some certain threshold, then this prediction would be considered as truth

positive (TP); otherwise, when the prediction class doesn’t match the ground truth

class or the IoU is lower than the threshold, then it would be viewed as false positive

(FP). False negative (FN) refers to that the ground truth cannot be detected and true

negative (TN) represents a correct misdetection.

Table 2. An example of confusion matrix of car detection

 Actual

 Prediction
Car Not Car

Car True Positive (TP) False Positive (FP)

Not Car False Negative (FN) True Negative (TN)

Based on the confusion matrix, precision and recall can then be calculated and

obtained. Precision is the ability of a model to detect only the relevant objects, which

is defined as the number of true positives divided by the sum of true positives and

false positives, as shown in equation (2-11):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑡𝑟𝑢𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑜𝑥𝑒𝑠

(2-11)

Recall is the ability of a model to identify all the relevant objects, which is defined as

the number of the true positives divided by the sum of true positive and false

negatives (all ground truths), as shown in equation (2-12) [85]:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑡𝑟𝑢𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑥𝑒𝑠

(2-12)

2.3 Deep Neural Networks

33

During detection, not only can the detector output the predicted bounding box, but

also can predict the confidence score, which represents the probability that the

bounding box contains the object. By setting the threshold for confidence score at

different levels, different pairs of precision and recall can be obtained, and then

Precision-Recall (PR) curve can be plotted, which indicates the relationship between

the two metrics and helps to judge the performance of an object detector. An object

detector of a particular class is considered good if its precision stays high as recall

increases, which means that no matter how you vary the confidence threshold, the

precision and recall will still be high [85].

Although the precision-recall curve can be used to evaluate the performance of a

detector, it is not always easy to compare among different detectors straightforward

when the curves cross with each other. Therefore, the average precision (AP), a

numeric metric, which calculates the area under the Precision-Recall curve, is

adopted. Essentially, AP is the precision averaged across all unique recall levels

between 0 and 1 [85]. Given a PR curve, there are two ways to calculate AP: 11-point

interpolation and all-points interpolation. The 11-point interpolation is a traditional

method, which summarizes the shape of Precision-Recall curve by averaging the

precision at a set of 11 equally spaced levels [0,0.1,0.2, …,1], as shown in Equation

13 [85].

𝐴𝑃 =
1

11
∑ 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)

𝑟∈{0,0.1,…,1}

 (2-13)

With

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) = max
𝑟̃:𝑟̃≥𝑟

𝑝(𝑟̃) (2-14)

Where 𝑝(𝑟̃) is the measured precision at recall 𝑟̃. The interpolated precision 𝑝𝑖𝑛𝑡𝑒𝑟𝑝 at

a certain recall level 𝑟 is defined as the highest precision found for any recall level

𝑟̃ ≥ 𝑟, as shown in equation 14. While currently, a new standard is to choose all

unique recall levels in the data and interpolate through all points, without

interpolating only 11 equally spaced points, which improves precision under low AP.

AP can then be obtained by calculating the area under the interpolated precision-recall

curve, as shown in equation (2-15) [85]:

2.4 Datasets for environmental perception

34

𝐴𝑃 = ∑(𝑟𝑛+1 − 𝑟𝑛)

1

𝑟=0

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1) (2-15)

Where,

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1) = max
𝑟̃:𝑟̃≥𝑟𝑛+1

𝑝(𝑟̃) (2-16)

An example of all-points interpolation in Precision-Recall curve is illustrated in

Figure 22. The blue line is the original PR curve and the red dotted line is the

interpolated version. The average precision (AP) is then acquired by calculating the

area under the red dotted line. mAP (mean Average Precision) is the average of AP

among all the classes.

Figure 22 An example of all-points interpolation in Precision-Recall curve [85]

2.4 Datasets for environmental perception

An essential component in the development of a machine learning method is an

appropriate dataset. Machine learning can be applied to analyze data that are difficult

to express mathematically. Numerous complex systems, for instance, autonomous

vehicles components such as object detection rely on machine learning-based

methods. The qualitative and quantitative datasets often required to generalize

complex problems with machine learning.

2.4 Datasets for environmental perception

35

Assuming a correctly designed machine learning model, a high computational power

machine and optimally set training parameters, the model is likely to perform well.

However, it is proven [86] that the size of dataset makes a lot of impact on results.

Especially for the machine learning-based visual object detection techniques, the

quantity of dataset improves the performance of the machine learning model [86].

In this section, some popular datasets available for object detection and their

performance on different object detection models will be discussed. Some of the

available object detection dataset provides range information up to about 100 meters

measured by LiDAR or stereo camera as a ground truth, but none of the dataset is

focussed or specifically designed to predict the distance to the detected object.

Additionally, the available datasets contains annotated objects which are relatively big

in size, in other words, close to the camera and secondly contains images of urban

driving scenarios, captured during sunny day and in decent weather conditions.

The recently published nuScenes [87] is a multimodal dataset for autonomous driving.

This dataset was recorded with 6 cameras, 5 radars, and 1 lidar, all with a 360-degree

field of view. It consists of 1000 scenes, each 20 seconds long and fully annotated

with 3-dimensional bounded boxes for 23 classes and 8 attributes. The Honda

Research Institute 3D (H3D) Dataset [88] is a large scare 3D multi-object detection a

tracking dataset collected using a 3D LiDAR Scanner. H3D consists of 160 crowded

traffic scenes. However, both datasets are focused on urban environments and traffic

scenes, which differ from a railway setup.

Microsoft COCO Dataset (MS COCO) [89] contains complex scenes with common

everday objects. Dataset contains in total 91 object classes with 2.5 million instances

in about 328k images. The dataset is basically for object recognition purpose hence

does not contaians any objects pose information. Objects are labeled using

segmenting individual object instances.

2.4.1 Kitti Dataset

KITTI dataset [90] is a dataset built by the Karlsruhe Institute of Technology and

Toyota Technological Institute at Chicago. The dataset was recorded from a car

equipped with one Inertial Navigation System (GPS/IMU), one Laser scanner, two

2.4 Datasets for environmental perception

36

grayscale cameras and two high-resolution color cameras, (as shown in Figure 23)

while driving around the city of Karlsruhe in Germany.

Figure 23. Recording Platform of KITTI dataset [90]

The detailed information about that recording platform and sensor setup can be seen

in Figure 24.

Figure 24. Detailed information on the recording platform [90]

The images include the scene of City, Residential, Road, Campus, and Person, which

demonstrates the diversity of the KITTI dataset. The images are at the resolution of

1242x375 pixels. Some examples can be seen in Figure 25.

The accurate ground truth in benchmarks is provided by the Velodney laser scanner

and the GPS localization system. Each object in the dataset is described by several

parameters, including the information about the class of the objects (8 types

available), truncation and occlusion, the 2D bounding box information of an object,

2.4 Datasets for environmental perception

37

the dimension and location of the 3D object as well as its orientation. The detailed

explanation of the annotations in the KITTI dataset can be seen in Table 3.

Figure 25. Examples from KITTI dataset [90]

Table 3. A detailed explanation of the annotations in KITTI dataset [90]

2.5 Distance estimation

38

Here, in the row of No.1 in Table 3, ‘DontCare’ labels denote regions where objects

have not been labeled, e.g. because they have been too far away from the laser

scanner. What’s more, based on these classes, all the objects in the dataset were

divided into two classes again, i.e. person and car. To be specific, the class of

‘Pedestrian’, ‘Cyclist’ and ‘Person_sitting’ were combined into the class of ‘person’,

and the types of ‘Car’, ’Van’,’ Truck’, ’Tram’ and ’Misc’ were combined into the

class of ‘car’. The object location at Z-axis (camera direction) is considered as the

distance between camera and object. The distance range in the KITTI dataset is

between 0 to roughly 150 meters. An example of the labeled images is shown in

Figure 26.

Figure 26. An example of labeled images in KITTI dataset [90]

2.5 Distance estimation

In many computer vision applications such as robotics and specifically in autonomous

vehicles, precise depth information is crucially important. In this section, an

introduction to often used sensors and approaches to estimate distance is given. Some

of the sensors and methods which are commonly used in indoor and outdoor

applications to produce distance or depth information are as follows.

2.5.1 LiDAR

 LiDAR (Light Detection And Ranging) is a sensing method that measures the

distance to the target by measuring the time required by the transmitted pulse of

invisible laser light to reflect back to the sensor. The difference in laser pulse returns

time and wavelengths is further used to make a digital 3D representation of target or

surrounding. LiDAR is considered a reliable method to detect an object and

accurately measure the distance to the object which is in its range, has high

2.5 Distance estimation

39

reflectivity and of sufficient size [91]. More than the distance measurements, LiDAR

also provides size, the position of objects, and the speed of moving targets.

However, one of the limitations of LiDAR sensors is their limited range. Typically

currently available commercial off-the-shelf LiDAR sees well about 60 to 100 meters

[92]. Some LiDAR such as SICK LDMRS claiming the range up to 300 meters for

ideally 100% reflective objects but this is dubious and practically not achievable.

LiDAR is independent of illumination and weather conditions. However, rain, snow,

fog, or dense dust causes the scattering of light. Therefore a tiny amount of laser

pulses return back to the sensor which causes reducing the effectiveness and range of

the LiDAR.

LiDAR is commonly used in indoor and outdoor robot localization [93] [94], mapping

[95], obstacle detection [96], human tracking [97], and also become a part of some

autonomous cars [98].

2.5.2 RADAR

RADAR (RAdio Detection And Ranging) works in much similar to LiDAR. The

difference is it transmits the radio waves instead of a laser and analyzes the waves

reflected back to it. The reflected waves tell that the obstacle is in the propagation

direction. It is also used to determine the velocity, distance, and angle of objects.

Radar produces lighter data than a camera and a LiDAR.

The radio waves have less absorption than light waves. Thus, radar can work

relatively longer range than lidar and can reliably work in adverse weather conditions

such as rain, snow, fog. However, commonly available long-range radar sensors for

autonomous cars ranges up to 200 meters. Another advantage of radar is that the

reflection helps to see behind the obstacles. However the significant limitations of

radar are it easily faces interference with several objects in the air, poor quality to

distinguish between multiple objects, and also the radio waves travel slower than light

waves which cause slower data receiving.

2.5.3 Stereo Camera

Another way to determine depth information is the stereo vision. The term

“stereoscopic” refers to the human ability to see simultaneously from both eyes in

2.5 Distance estimation

40

similar but slightly different viewing angles, as a result of the physical horizontal

separation between the left and right eye which gives human, true depth perception

[99], also known as stereopsis. The difference in object location in images seen by the

left and right eyes is referring to as retinal or binocular disparity [99].

A stereo camera is the type of camera setup with two or more cameras. The stereo

camera is widely used in robotics, and it gives human-like vision perception to

humanoids to perform tasks such as object manipulating tasks. For such tasks, the

robots need close object depth estimation. In the use case of short-range applications,

a good stereo camera can reliably and accurately estimate the depth and can even

eradicate the need for lidar or radar sensors.

Figure 27 shows the setup of ideally parallel stereo cameras. The depth estimation is

possible only for the overlapping field of view (FOV) of cameras, as shown in Figure

27. The overlapping FOV depends on the physical horizontal separation between the

cameras refers as baseline B and the FOV angle of the camera. The baseline also

defines as centres of projection of cameras CL and CR. Point P in 3D space projects to

PL and PR on the image plane. XL and XR are co-ordinates of PL and PR with respect to

principal points CL and CR. The depth to point P in 3D space refers to Z is the

difference between point P and the baseline.

Figure 27. The stereo vision setup

As we know from similar triangles theorem, two triangles of the same shape and

different in size are similar if their corresponding angles are congruent and their

corresponding sides are in proportion. In Figure 27, the triangles (PL,P,PR) and

(OL,P,OR) are similar. The depth Z can be express as a function of xL, xR, f, and B.

2.5 Distance estimation

41

𝐵 + 𝑥𝐿 − 𝑥𝑅

𝑍 − 𝑓
=

𝐵

𝑍
 (2-17)

𝑑 = 𝑥𝐿 − 𝑥𝑅 (2-18)

𝑧 = 𝑓
𝐵

𝑑
 (2-19)

Disparity d measures the distance between the corresponding points in the left and

right images. The depth Z is inversely proportional to the disparity. The representation

of computed disparity between the entire left and right images is known as a disparity

map. The disparity map is a 3D image and can be visualized in 3D known as a point

cloud or in 2D known as a disparity image. In disparity image, bright pixels represent

the highest disparity or closest points in 3D space and dark points have the lowest

disparity or farthest points in 3D space. Furthermore, algorithms such as block

matching also produce uniform and accurate bounding boxes [100].

Figure 28. Input – First frame (left image), Depth image (center), Prespective view (right) [100]

The baseline is inversely proportional to the depth error. The wider is the baseline, the

better is the depth estimation, but it also causes a smaller overlapping field of view.

Thus, challenging to calibrate due to a large minimum depth of field.

𝐷𝑒𝑝𝑡ℎ 𝑒𝑟𝑟𝑜𝑟 ∝
1

𝐵
 (2-20)

In general, the stereo cameras are not ideally parallel to each other. Therefore required

stereo calibration to align them parallel, the calibration gives the external relation

between the cameras with respect to reference point in the 3D world coordinate

system. The relationship is further used to project the images from the left and right

camera on a reference system [100].

As shown in Figure 29, the wide baseline stereo camera in comparison to the narrow

baseline stereo camera is suitable for long-range distance estimation however in

practice it is not possible to set up a stereo camera for long-range.

2.5 Distance estimation

42

Figure 29. Error-Depth diagram for narrow and wide baseline [101]

2.5.4 Monocular Camera-based approaches

Previous research for distance estimation mainly paid particular attention to build a

model that represents the geometry relationship between points on images and their

corresponding physical distances on the real-world coordinates. Inverse perspective

mapping (IPM) [102] is one of these classical methods, which transforms the forward-

facing images to a top-down “bird’s eye” view and changes the nonlinear relationship

between distances in the image and the real world into a linear relationship. However,

the limitation of this method is that it performs poorly when objects lie on the sides of

the camera or the curved road and when objects are far away from the camera (above

40 meters) [103].

Sadreddini et al. [104] proposed a system that estimates distances from a single

camera for an indoor mobile robot application. The developed method utilized

information from floor line detection and morphological operations extracted from an

object to estimate the distance. However, this method was evaluated in only one use

case. Pathi et al. proposed a method to estimate the distance between humans and a

robot using images from a single camera mounted on the robot. The method first

extracts 2D poses (skeleton structure) of the humans in the scene and then it uses the

effect of perspective distortion from the camera’s point of view to estimate the

distance. For the experimental validation of the method, the authors collected three

datasets and the method demonstrated its effectiveness.

A recent work by Ali et al. [105] proposed a real-time vehicle distance estimation

using a single view geometry. A fully convolutional deep network is used for lane

detection on the road. Subsequently, an Inverse Perspective Mapping (IPM) and

2.5 Distance estimation

43

camera height are estimated from a known lane width and the detected horizon. At

last, the distances of the vehicles on the road are calculated by back projecting image

point to a ray intersecting the reconstructed road plane. The method was evaluated in

three datasets, KITTI [90], nuScences [87], and Lyft level 5 dataset [106]. All the

datasets have color images along with LiDAR data. The proposed method performed

better on the nuScenes and Lyft datasets in comparison to two other deep learning

approaches. However, the proposed method did not perform well on the KITTI

dataset.

In [103], a base model that directly predicts distances for given objects in the images

was introduced, which contains three parts: a feature extractor to generate a feature

map for the entire RGB image, a distance regressor to directly predict a distance from

the object-specific Region Of Interest (ROI) feature and a multi-class classifier to

predict the category of an object from the ROI feature, as shown in Figure 30 [103].

Figure 30. Framework of the base model [103]

To be specific, the popular network structures (vgg16 and res50) are adopted as

feature extractor and extract the feature map for the whole image. Then the extracted

feature map from the feature extractor and the object bounding boxes are feed into an

ROI pooling layer to generate a fix-size feature vector to represent each object in the

image [103]. After that, the distance regressor and classifier utilize the pooled feature

to predict a distance and class information for each object. The distance regressor is

made up of three fully connected layers and a softplus activation is employed on the

output of the last fully connected layer to make sure the predicted distance is positive.

The classifier uses a fully connected layer followed by a softmax function to predict

the category.

2.5 Distance estimation

44

Furthermore, in [103], an enhanced model with a keypoint regressor is proposed,

which optimizes the base model by introducing a projection constraint and improves

the performance of distance prediction, as shown in Figure 31 [103]. Here, the

keypoint regressor is adopted to predict an approximate keypoint position in the 3D

camera coordinate system [103].

Figure 31. The Framework of the enhanced model [103]

2.5.1 Evaluation Matrices

RMSE (Root Mean Square Error) is a measure of how far spread the data is

from the line of best fit. Equation 2-21 shows the spread of predicted distance

from the ground truth which is the actual distance in a total of N detections. RMSE is

a common technique used to analyze regression problems. Since

distance estimation can be classified as a regression problem, RMSE is a good metrics

to evaluate experimental results.

(2-21)

45

46

3. Dataset for long-range object

detection and distance estimation

Among all the significant advancements in many sectors due to the introduction of

machine learning, the most notable achievement has been seen in object recognition.

Numerous datasets for object recognition were created in recent years from the

images gathered from the internet such as Google, for example, COCO [89], SUN

[107], PASCAL VOC [108] and ILSVRC [53] [109]. Some datasets were formed by

collecting the images from a multisensory obstacle detection system containing

cameras and other short-range ranging sensors such as LiDAR or RADAR mounted

on a car moving on streets such as KITTI [90] and the Caltech Pedestrian Datasets

[110]. The labelled datasets are used to train and evaluate machine learning models

such as AlexNet [48], Faster-RCNN [111], YOLO [70] and FCIS [112]. Also, the

comparison of various datasets and performance of machine learning models on the

datasets is made [110] to evaluate the quality of datasets and performance of models.

The current popular datasets and object detection models show promising results for

object detection in indoor and outdoor applications.

However, there are no datasets which are suitable for long-range object detection and

distance estimation. The currently available dataset contains labelled objects which

are at short-distance; hence the object size in the image is relatively big. Such as the

state-of-the-art datasets COCO [89], KITTI [90] consists of images captured

relatively at a short-range up to approximately 100 meters thus the size of the object is

large in the image and tends to work for short-range object detection. The distance

range and close objects labelling fulfill the requirement of autonomous cars obstacle

detection system where the required range is relatively less in comparison to an

obstacle detection system for railways. Due to that in the thesis, it was needed first to

3.1 Dataset Preparation3.1 Dataset Preparation

59

develop a new dataset that can work for long-range obstacle detection. The developed

dataset is named as Long-Range Object Detection and Distance Estimation

(LRODD).

The dataset was prepared in order to detect objects at short to long-distance from 20

meters to 1000 meters. moreover, the dataset created in this thesis contains images in

which objects look smaller in size as they were captured at longer distances of up to

1000 meters. The objects' size-range due to capturing at different distances is needed

to train machine learning models to detect objects small in size due to long-distance

capturing.

The created dataset contributes not only to long-range object detection. It is also

beneficial for providing long-range ground truth distance information to the labelled

objects in images. Distance information is further utilized to train novel machine

learning-based methods to estimate the object distance from a single monocular

camera which is further explained in Chapter 4. Additionally, the use of the created

dataset for sensor fusion and object tracking is given in Chapter 5 and Chapter 6

respectively. In the next sections, the data acquisition procedure, data extraction, and

data augmentation procedures to create the LRODD dataset are described.

3.1 Dataset Preparation

The LRODD dataset is generated from the images taken from various experiments,

including experiments conducted over two years period within the project SMART -

SMart Automation of Rail Transport [16]. SMART image dataset is the first dataset

aiming at object recognition for railways and it consists of images of objects, potential

obstacles, on railway tracks. The images were captured using the vision sensors of

SMART multisensory Obstacle Detection System (ODS) [16]: three RGB cameras

with optical zooming functionality and Thermal Camer. In addition, LiDAR and GPS

sensors were used for ground truth distance recording. The images of different objects

were captured at different day and night time and in different weather conditions such

as snow, dry, rain.

The experiments were conducted at the University of Bremen and Serbian Railways.

Furthermore, in this Thesis, the data augmentation techniques were developed and

implemented to expend the size of the dataset collected from real-world experiments.

3.1 Dataset Preparation3.1 Dataset Preparation

59

In the following, before giving details on data acquisition and data collection

experiments, the specifications of the used sensor are given.

3.1.1.Sensors Specifications

RGB Cameras:

The zooming cameras from the imaging source (TIS) (Figure 32) were selected due to

their optical zooming functionality to cover long-range imaging and high resolution.

The zoom camera DFK Z12GP031 [113] is categorised as GigE interface cameras

that provide high data transfer rate, high bandwidth, and power over Ethernet (PoE)

features which, in comparison to, for example, USB interface or FireWork interface,

allows transmitting of twice bigger images. In performed experiments, three RGB

cameras were used, configured at different zooming factors, to cover short, mid and

long-range objects imaging. The main features of the DFK Z12GP031 zoom GigE

camera are listed in Table 4.

Figure 32. DFK Z12GP031 from the Imaging Source [113]

Table 4. Main Features DFK Z12GP031 zoom GigE camera

Specification

Resolution 2,592×1,944 (5 MP)

Frame rate 15 FPS (Maximum)

Pixel Size H: 2.2 µm, V: 2.2 µm

Focal length 4.8 mm (wide) to 57.6 mm (tele)

Interface GigE

Supply voltage 11 VDC to 13 VDC or POE: 48 VDC to 56 VDC

Trigger Software and Hardware

I/Os Yes

Dimension H: 50 mm, W: 50 mm, L: 103 mm

Weight 330 g

Shutter 1/20,000 s to 30 s

3.1 Dataset Preparation3.1 Dataset Preparation

59

Gain 0 dB to 12 dB

White balance -2 dB to 6 dB

Thermal camera:

The thermal camera FLIR TAU2 model (Figure 33) with a resolution of 640x480

pixels and a 100mm objective lens [114] was chosen for SMART project experiments

due to the GigE ethernet interface expansion module. The camera is further equipped

with the narrow field lens with a long focal distance to achieve sufficient

magnification for the detection of distant objects. The thermal camera also known as

the IR camera is sensitive to wavelength in the infrared region. The imaging in

invisible space helps to see the objects emitting invisible heat radiations regardless of

lighting conditions.

(a) FLIR Tau2 camera and GigE ethernet module

from worskwell
(b) Objective lens from FLIR

Figure 33. FLIR Tau2 Camera and objective lens [114]

FLIR lens of 100mm focal length and f-number 1.6 fulfills all requirements for this

sensor channel, detailed in Deliverable 1.1 of SMART project [115]. The main

features of the selected thermal camera can be found in Table 5.

Table 5. Main Features of FLIR Tau2 Camera

Specification

Resolution 640x512 (0.328 MP)

Frame rate 9 FPS (Maximum)

Pixel Size 17 µm

Focal length 100 mm

Interface Workswell GigE adapter

Supply voltage POE: 48 VDC to 56 VDC

Spectral range Long Wavelength InfraRed (LWIR)

3.1 Dataset Preparation3.1 Dataset Preparation

59

I/Os Yes

Dimension (including

lens)
Length: 110 mm Diameter: 82 mm

Weight (including lens) 479 g

Operational temperature

range
-40° C to +80° C external temp

Gain 0 dB to 12 dB

Accuracy ±5°C

field of view 6.2° x 5°

Night-vision camera

A monochrome DMK 33GP031 CMOS camera (Figure 34) from TIS [113] with GigE

communication interface equipped with a custom made image intensifier and

objective lens from HARDER Digital SOVA was chosen for SMART ODS. The

image intensifier and objective lens were designed to capture a minimal amount of

light and magnify it on the CMOS sensor to produce a digital image of the scene.

Table 6 summarizes the features of the CMOS sensor.

Figure 34. A monochrome CMOS camera sensor equipped with image intensifier and objective

lens [116]

Table 6. Main features of the Nigh vision camera

Specification

Resolution 2,592×1,944 (5 MP)

Frame rate 15 FPS (Maximum)

Pixel Size H: 2.2 µm, V: 2.2 µm

Focal length 4.8 mm (wide) to 57.6 mm (tele)

Interface GigE

Supply voltage 11 VDC to 13 VDC or POE: 48 VDC to 56 VDC

Trigger Software and Hardware

I/Os Yes

Dimension H: 29 mm, W: 29 mm, L: 57 mm

3.1 Dataset Preparation3.1 Dataset Preparation

59

Weight 65 g

Shutter 50 µs to 30 s

Gain 0 dB to 15.02 dB

Video Format Monochrome

Laser scanner

A SICK laser scanner LD-MRS400001S01 (Figure 35) was selected [117] to provide

mid-range distance information of the objects. The scanner helps the OD system by

contributing the accurate distance measurement in 3D coordinates basing on the

Time-of-Flight (ToF) technology and its built-in feature of object tracking. The LD-

MRS sensor has the multi-echo capability which allows its use in adverse weather

conditions (rain, snow, etc).

Due to the limited range up to 300 meters for highly reflective objects. The laser

scanner does not show any practical advantage for real-time long-range obstacle

detection however it is an excellent source to provide a precise ground truth distance

for short to mid-range datasets.

Figure 35. Laser scanner LD-MRS400001S01 from SICK [117]

In Table 7, some most important features of the SICK LD-MRS laser scanner are

mentioned [117].

Table 7. Main features of SICK LD-MRS laser scanner

Specification

Laser class 1

Field of Application Outdoor

Horizontal Field-of-View (HFOV) 110°

Vertical Field-of-View (VFOV) 3.2°

Range 0.5 m - 300 m

Max. range with 10 % reflectivity 50 m

3.1 Dataset Preparation3.1 Dataset Preparation

59

Angular resolution 0.125°, 0.25°, 0.5

Scanning frequency 12.5 Hz ... 50 Hz, object tracking at 12.5 Hz

Operating voltage 9 V ... 27 V

Power consumption 8 W

Weight 1 kg

Dimensions (L x W x H) 94 mm x 165 mm x 88 mm

Layers 4

Echoes 3

GPS Sensor

The USB GPS sensor module from Odroid [118] (Figure 36) was used to collect the

real-world position of SMART ODS in real-time and further with respect to object

GPS coordinates estimate the ground truth distance to the object for dataset

preparation of long-range.

Figure 36. USB GPS module from Odroid [118]

Table 8. Main features of the GPS module from Odroid [118]

Specification

Chipset Ublox 6010

Interface USB 2.0

GPS protocol NMEA 0183 position, velocity, altitude, status

and control

Power consumption 100 mA (5 V-)

Dimensions 50x38x16 mm

Tracking sensitivity -160dBm

Acquisition sensitivity 0.125°, 0.25°, 0.5

3.1 Dataset Preparation3.1 Dataset Preparation

59

3.1.2. Data Collection Experiments

University of Bremen experiments, July 2017:

The first experiments for data collection were performed in July 2017 on-site

University of Bremen Campus. The RGB cameras and LiDAR were mounted on a

test-stand as shown in Figure 37. Images were captured simultaneously with LiDAR

point cloud of various objects moving from 0 to 100 meters including various objects

such as pedestrians, bicycles, cars, and bikes. Figure 38 shows some of the collected

images.

Figure 37. Field tests performed in University Campus. Test-stand with the vision sensors and

laser scanner.

Figure 38. Example images from the experiments at the University of Bremen Campus

Serbian Railways experiments, November 2017-May 2019:

The most extensive set of data collection experiments were performed on Serbia

railway tracks in the period November 2017 – May 2019 within the H2020 Shift2Rail

project SMART [119]. Two types of experiments were conducted: Static and

Dynamic field tests.

3.1 Dataset Preparation3.1 Dataset Preparation

59

In the static experiments, vision sensors were mounted on the static test-stand as

shown in Figure 39. The camera images were recorded on the location of the straight

rail tracks in the length of about 1100 m in different times of the day and night and in

different weather conditions in November 2017, March 2018 and November 2018.

During the performed static field tests, for the purpose of dataset generation, members

of the SMART team imitated possible obstacles (persons) on the rail tracks in

addition to various objects such as bicycles and suitcases located at known distances

from the cameras in the range from 0 to 1000 meters.

Figure 39. Field tests performed on the straight rail tracks; Test-stand with the vision sensors

viewing the rail tracks and an object (person) on the rail track.

In this set of experiments selected LiDAR could not be used as the source of ground

truth objects distances due to the limited range of LiDAR. Instead, the ground truth

distance was collected manually by indicating the locations on the rail tracks where

the objects were located. For example, in the experiments conducted in November

2018, for the purpose of ground truth distance estimation, two persons were walking

along the rail tracks 1000 m away from the cameras and back, 1000 m towards the

cameras. At every 5 m, while walking in both directions, they signalized in a

particular way, so that frames recorded at moments of the signalization could be used

for the dataset generation. These camera frames, corresponding to person locations at

every 5 meters from 0 to 1000 meters, were extracted from the whole recorded video

so that manually drawn bounding boxes of the objects (persons) could be labelled

with ground truth distance. The example RGB and Thermal images recorded in static

field experiments for the purpose of dataset generation are given in Figure 40.

3.1 Dataset Preparation3.1 Dataset Preparation

59

Figure 40. RGB and thermal images recorded in field experiments performed on the long-range

straight rail tracks for dataset generation [120]

Dynamic experiments were performed in July 2018 and May 2019. During these

experiments, vision sensors were integrated into specially designed protective

sensors’ housing (as shown in Figure 41), which was mounted onto the moving

locomotive Serbia Cargo type 444 pulling the freight train with 21 wagons on the

Serbian part of the Pan European Corridor X to Thessaloniki in the length of 120 km

with a maximal train speed of 80 km/h. The sensors’ housing mounted onto

locomotive at the beginning of dynamic experiments is shown in Figure 41. The on-

board cameras recorded the data of the real-world rail tracks scenes in front of the

locomotive. SMART team members mimicked objects (obstacles) on several

crossings along the route according to previously adopted test protocols. During the

rest of the tests, as the train was in real traffic, unintended objects were detected along

the route. These objects represented possible obstacles, which could cause an

accident. The GPS coordinates of the train were recorded simultaneously with

cameras’ images recording to label ground truth distance. The ground truth object

distances were calculated off-line using recorded GPS coordinates of the train and

approximate GPS positions of objects on Google Maps calculated using Google maps

GPS coordinates of the infrastructure (e.g. crossings) and railway infrastructure

information (e.g. distance between pillars).

The Serbian Railways experiments were performed in different illumination

conditions including day, night, and dawn as well as in different weather conditions

including winter (snow) and summer (38°C environmental temperature). In this way,

recorded data formed a dataset of diversity needed for the development of reliable

3.1 Dataset Preparation3.1 Dataset Preparation

59

machine learning-based methods for obstacle detection in railways. Some of the

images from the dataset are given in Figure 42.

Figure 41. SMART ODS mounted on Serbian freight train during dynamic tests

Figure 42. Example images of a real-world scene captured during dynamic experiments

SMART ODS

3.1 Dataset Preparation3.1 Dataset Preparation

59

3.1.3. Data Acquisition Procedure

Robot Operating System (ROS) [121] based data acquisition interface was developed

that provides services such as hardware abstraction, low-level control, and data

passing between different modules. A data acquired from sensors in the form of ROS

messages were recorded in ROSBAGS file. The data from each sensor can be

accessed by subscribing to a specific ROS topic assigned to a specific sensor. The

rosbags were created by subscribing to the ROS topics of specific sensors and storing

the data in an efficient file structure in a local memory of the computer.

The asynchronous data recorded from all the sensors were time-synchronized by

comparing the timestamps of each sensor’s messages and outputs set of messages that

were close in the timestamp. Figure 43 shows an example where four sensors are

giving data at varying frequencies illustrated as horizontal lines and blue dots

represent acquired data over time. The red dots represents data and dotted lines

indicate a set of messages that are approximately timely synchronised.

Figure 43. Time approximate synchronization of data at carrying frequency [122]

The sensors synchronisation is needed for multisensory dataset creation to process the

data captured by each sensor at the same time event. To be specific, all the sensors

provide data at different frequencies and in order to correspond the data from all the

sensors, the data synchronization is needed. However, time-approximate

synchronisation of data downsamples the data which causes loss of data of high-

frequency sensors due to not correspond with data of the low-frequency sensors

within the threshold of time approximation.

The asynchronous recorded data shows the random length of samples and can happen

that the number of data samples of one sample differs from other sensors. After the

3.1 Dataset Preparation3.1 Dataset Preparation

59

synchronisation, the length of data samples becomes the same for all the sensors;

hence the data correspond and useable for the dataset labelling stage.

3.1.4 Dataset labelling

Once the sensor data is collected, the camera images are further processed to

manually label them with ground truth distance, object bounding box, and object class

in an image. The method to manually label dataset is also called “hand-engineering”

where a person manually assigns the ground truth to the corresponding input data. The

ground truth or expected output can be defined as the desired output from the machine

learning model on a given set of inputs.

The recorded images were manually labelled using an annotation tool [123]. The

annotation tool helps to create a bounding box around a region in an image where the

potential object is, and helps to label the region with ground truth distance and object

class as shown in Figure 44. The manually created bounding box coordinates in

pixels, the respective image file name, the object class, and distance to the object were

recorded and structured in the form of a table. Similarly, the whole set of images, one

by one, was labelled and the LRODD dataset was formed. Most images contained

multiple objects so that each camera frame consists of multiple objects bounding box

information.

It is also important to statement that the LRODD dataset consists of sequential data

which means the subsequent frames were labelled to form a sequential dataset. This

characteristic of LRODD dataset make it also unique over other datasets since other

object detection datasets are built on random images without any temporal relation.

The sequential datasets benefit in object tracking as presented in chapter 6.

3.1 Dataset Preparation3.1 Dataset Preparation

59

Table 9 shows the size of the whole LRODD dataset, and here it is also clear that the

dataset itself consists of small segments of synchronised images based on a set of

cameras used because in some experiments not all the cameras were used to record

data. However, the table also shows that the dataset consists of multiple object classes

and also shows the distance ground truth measurement method.

Figure 44. Bounding Box Toolbox for Annotation of Images

However, in the dataset obtained from the experiments, there are few instances for

object class bicycle in comparison to person class, hence data augmentation

techniques were also considered in order to increase the size and improve the quality

of the LRODD dataset for bicycle class. Data was augmented only for the object class

Bicycle.

The Table 9, shows that in total 136,419 synchronised images were recorded with

ground truth distance information and objects instances. Where as around 517,235 are

totala number of combined synchronized images from cameras.

60

Table 9. Long-Range Obstacle Detection and Disance Estimation Dataset (LRODD)
T

o
ta

l
S

y
n
ch

ro
n
is

ed

Im
ag

es

S
y
n
ch

ro
n
is

ed

Im
ag

es

 Image Sensors Ground Truth Object Classes

D
is

ta
n
ce

R
an

g
e

(m
)

C
am

-0
1

C
am

-0
2

C
am

-0
3

N
ig

h
t-

v
is

io
n

T
h
er

m
al

G
P

S

L
ID

A
R

M
an

u
al

P
er

so
n
s

V
eh

ic
le

s

B
ic

y
cl

es

A
n
im

al
s

340,700 68,140 20 – 925       -     -

1008 252 20 – 925     - - -   - - -

3600 900 20 – 925    -  - -   - - -

43,524 14,508 20 – 925    - - - -   - - -

49,221 16,407 20 – 925  -   -  - -  -  

14,034 4,678 20 – 925  - - -  - -   - - -

25,088 12,544 20 – 925 -  - -  - -   - - -

25,880 12,940 20 – 925 - - -   - -   - - -

7660 3,830 20 – 925 -   - - - - -    -

280 140 20 – 925   - - - - - -   - -

6240 2080 20 - 140    - - -      

=517,235 =136,419

3.2 Data Augmentation

61

3.2 Data Augmentation

The data augmentation techniques were applied to improve the LRODD dataset

extracted from real-world images. In the original dataset, the instances of objects such

as bicycle or vehicles other than persons were very few for the long-range distances.

The proposed object augmentation technique allows augmenting objects in an image

by placing it in an image with random rotations and scale also considering the object

projection on image plane with respect to change in distance. Figure 45 presents the

flow chart for the dataset augmentation.

Figure 45. Flow Chart for Dataset Augmentation

An object class Bicycle was chosen to increase images in dataset with augemented

bicycle. A bicycle was overlaid on the images in different sizes relative to distance.

First, the relation between the average size of bicycle appearances in an image with

respect to change in distance to the camera was approximated. It was needed to map

the real-size object to 2D image that can be calculated by projective transformation.

The geometry of the bicycle in the real-world and the size of the bicycle in pixels in

multiple images taken at various known distances. By doing so the factor 𝑘 by which

the bicycle size in image change with respect to change in distance was found.

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑛 𝐼𝑚𝑎𝑔𝑒 ∝
𝑘

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑜𝑏𝑗𝑒𝑐𝑡

Using the factor the bicycle was placed at different scales on an image from the

original dataset with known ground truth distance from 0 to 1000 meters. An example

of augmented images is given in Figure 46.

3.2 Data Augmentation

62

Figure 46. Black bicycle overlaid at 60 m (left). Red bike rotated by 180 degrees overlaid at 60 m

(right)

a) Rotated bicycle Right Forward at 50m b) Rotated bicycle Right Forward at 50m

c) Rotated bicycle Right Forward at 50m d) Rotated bicycle Right Forward at 50m

Figure 47. Augmentation Example of a Bicycle

3.2 Data Augmentation

63

To diversify and add more data, the bicycle was placed at each 45-degree angle shift

with respect to the camera. Hence for each 5 meters interval, the five samples were

formed as follows, bicycle without rotation and four samples with a rotation of 45,

135, 225, and 315 degrees. Figure 47 illustrates the bicycle placement at various

angles at 50 meters ground truth. The images are zoomed for clarity. Table 10 shows

the augmented bicycle images in total. The augmentation techniques were only

applied on two RGB camera images and Table 10 shows the total addition in the

dataset for the object class bicycle with long-range ground distances.

Table 10. Augmented Data through Object Placement

 Reference

Camera
Rescaled Rotated

Total

Augemented

Bicycles
CAM01 364 728 1092

CAM02 410 820 1230

Combined - 774 1548 2322

The Table 10. Shows that total 2322 augmented images were added into original

LRODD dataset. The augmentation was done by varying scale and rotation of object

overlaid in image. The scale and rotation augmentation improve the performance of

ML models to detect bicycle from different angles and appearance in real-time

captured images.

64

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

65

4. A machine learning-based distance

estimation from a single camera

A single camera-based distance estimation to the object is a very challenging task and

up to now, this topic is not explored considerably. In this chapter, two novel object

distance estimation methods from a single camera are presented. The first proposed

method named DisNet (Distance Network) has been presented by Haseeb et al. in

[124] and in [125]. The method estimates the distance of the objects detected by the

object detector. DisNet makes use of features extracted from the objects bounding box

and object class type, to estimate the distance to the detected objects. The method can

be used with any object detector that outputs object bounding box and object class.

However, in this work, a state-of-art object detector namely You Only Look Once

(YOLO) has been used.

The second proposed method is named YOLO-D. It is another approach to estimate

distance to the detected object by modifying the architecture of the YOLO object

detection model, a deep learning network. In this method, the modified architecture of

YOLO predicts the distance to the detected object besides its primary function of the

object bounding box and class prediction.

4.1 DisNet: a machine learning-based object-specific distance estimation

from a single camera

In this thesis, the very first method DisNet that estimates the distance based on

bounding box information of detected objects is presented. Any object detector that

outputs object bounding box and class in an image such as YOLO, fast RCNN,

MaskNet can be used with DisNet to estimate the distance to the detected objects.

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

66

During the development of DisNet, YOLOv3 is considered as an object detector to

obtain an object bounding box and class.

The architecture of the DisNet-based distance estimation system is illustrated in

Figure 48. The main blocks are YOLO based object detection, feature extraction, and

DisNet.

The camera image is input to the Object Detector which is based on a state-of-the-art

computer vision object detector YOLO (You Only Look Once) [70] pre-trained with

the COCO object detection dataset [89]. YOLO is a fast and accurate object detector

based on Convolution Neural Network (CNN) as explained in chapter 2. Its outputs

are bounding boxes of detected objects in the image and labels of the classes detected

objects belong. The objects bounding boxes resulted from the YOLO object detector

are then processed further to calculate the features, bounding boxes parameters. Based

on the input features, the trained DisNet gives as outputs the estimated distance of the

object to the camera sensor. In the system architecture illustrated in Figure 48, an

example of the estimation of distances of two persons on the rail tracks is shown.

Figure 48. The DisNet -based system used for object distance estimation from a monocular

camera [89]

For the training of DisNet, a supervised learning technique was used. This method

required a collected dataset including both inputs and outputs, i.e. the ground truth. In

the presented system, a set of LRODD dataset was used to train the DisNet model.

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

67

The set of LRODD dataset used to train DisNet contains in total 2000 samples of the

object classes person, bicycle, and vehicles for the distance range of 0 to 70 meters.

The details of the structure and training of DisNet are given in the following sections.

4.1.1 Feature Extraction

In the presented work, the objective is that DisNet is trained for the estimation of an

object’s distance to the onboard sensory obstacle detection system. More formally, the

task is to estimate the distance to an object in the laser’s reference frame, which is on

the same distance from the object as the camera reference frame, given an input also

called feature vector v. In the presented work, v contains the features of the bounding

box of the object detected in camera images and the ground-truth is the distance to the

object as measured by the laser scanner. Some of the objects recorded at different

distances and their bounding boxes from the dataset are shown in Figure 49.

Figure 49. Example of some objects bounding boxes at various distances

For each extracted object bounding box, a six-dimensional feature vector v was

calculated:

 𝒗 = [1/𝐵ℎ 1/𝐵𝑤 1/𝐵𝑑 𝐶ℎ 𝐶𝑤 𝐶𝑏] (4-1)

where the coordinates of vector v, features, are:

Height, 𝐵ℎ=(height of the object bounding box in pixels/image height in pixels)

Width, 𝐵𝑤=(width of the object bounding box in pixels/image width in pixels)

Diagonal, 𝐵𝑑=(diagonal of the object bounding box in pixels/image diagonal in pixels)

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

68

The ratios of the object bounding box dimensions to the image dimensions Bh, Bw, and

Bd enable the reusability of the DisNet trained model with a variety of cameras

independent of image resolution. Ch, Cw, and Cb in (4-1) are the values of average

height, width, and breadth of an object of the particular class. For example for the

class “person” Ch, Cw and Cb are respectively 175 cm, 55 cm, and 30 cm, and for the

class “vehicle” 160 cm, 180 cm, and 400. The features Ch, Cw, and Cb are assigned to

objects labelled by YOLO detector as belonging to the particular class in order to

complement 2D information on object bounding boxes and so to give more

information to distinguish different objects.

The relationships of the calculated features of object bounding boxes in the 2D image,

Bh, Bw, and Bd, and the real distance to the image measured by laser scanner in the

range 0-70 m, are given in Figure 49. Geometrically, by the projective

transformations, the object bounding box size is expected to get smaller the further

away the object is, so the inverse of bounding box size is expected to increase as the

distance increases. Inspection of the data confirms that this is the case and suggests

that the relationship is approximately linear, which gives a clear motive to use it for

the dataset used for the training of DisNet.

Table 11. Correlation between the extracted features with distance

Attributes Width Height Diagonal 1/Width 1/Height 1/Diagonal

Distance -0.630 -0.682 -0.693 0.805 0.769 0.953

Table 11 and Figure 50 also show that the inverse relation of bounding box height,

width, and diagonal highly correlate with distance, thus the inverse was selected for

DisNet.

4.1.2 DisNet architecture and training

In order to find the appropriate number of hidden layers experiments with various

numbers of hidden layers (1, 2, 3, 5, and 10) were performed assuming that each

hidden layer had 100 neurons. Figure 51 (a) shows the accuracy of distance estimation

over 1000 epochs achieved for the different number of hidden layers. As obvious,

DisNet with one hidden layer achieves the lowest distance estimation accuracy. It is

also apparent that there is no significant difference in distance estimation accuracy

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

69

achieved with 2, 3, 5 and 10 hidden layers. For this analysis, a reduced dataset was

used. The networks were trained on the 80% dataset and the estimation accuracy

reported is on the 10% validation set.

Figure 50. Distance vs inverse and non-inverse bounding box features

Similar behaviour can also be seen in Figure 51(b) where the Mean Absolute Error

over 1000 epochs achieved for a different number of hidden layers is shown. As

obvious, the Mean Absolute Error is most significant for the DisNet with one hidden

layer, while there is no significant difference in the Error achieved with 2, 3, 5 and 10

hidden layers.

 (a) (b)

Figure 51. (a) Distance Estimation Accuracy and (b) Mean Absolute Error achieved for different

numbers of hidden layers

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

70

Even though the smallest values of Mean Absolute Error were achieved for 10 hidden

layers and the distance accuracy was highest for 10 hidden layers, a trade-off was

made between the computational time and accuracy/error and finally, DisNet with 3

hidden layers was chosen.

After deciding on the network with 3 hidden layers, in order to find the appropriate

number of neurons for the hidden layers experiments with various numbers of hidden

neurons were performed. Figure 52(a) shows the accuracy of distance estimation over

1000 epochs achieved for the different number of neurons per hidden layer. As

obvious, the distance estimation accuracy achieved with 10 hidden neurons is very

low, much lower than distance estimation accuracy achieved with 30, 100 and 200

hidden neurons. The magnified diagram in Figure 52 (b) shows that distance

estimation accuracy with 30 hidden neurons is lower than with 100 and 200 neurons.

Bearing in mind that there is no significant difference in distance accuracy estimation

with 100 and 200 hidden neurons, in order to reduce the complexity of DisNet,

finally, 100 neurons per hidden layer were chosen.

(a) (b)

Figure 52. Distance Estimation Accuracy achieved for different number of hidden neurons per

hidden layer in 3-hidden layers neural network DisNet

The final structure of DisNet having 3 hidden layers with 100 hidden neurons per

layer is shown in Figure 53.

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

71

Figure 53. The structure of DisNet used for object distance prediction

DisNet input layer consists of 6 neurons corresponding to 6 features, parameters of

output layer consists of only one single neuron. The output of this node is the

estimated distance between the camera and the object viewed with the camera.

For training the network the input dataset was firstly randomly split into a training set

(80% of the data), validation set (10% of the data), and test set (10% of the data). The

DisNet was trained using the backpropagation method with Adam optimizer [16] to

minimize the Mean Absolute Error (MAE) loss function for distance estimation give

in equation 4-2, in which 𝑦𝑖 refer to estimated distance and 𝑦𝑖̂ refer to ground-truth

distance.

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 (4-2)

Scikit-Learn's GridSearchCV [126] hyperparameters tuning technique was used to

fine-tune the hyperparameters of our model. The combinations of hyperparameters

were given to Gridsearch and it evaluates the performance on all possible

combinations and gave the best configuration of parameters. To find the best

combination, the following set of hyperparameters was given:

• Optimizers = adam [127], rmsprop [128]

• Weights initializer [129] = glorot_uniform, glorot_normal, he_normal

• Batch size = 25, 50, 100

• learning rate = 0.001, 0.0001, 0.00001

• Number of layers = 1, 2, 3, 5, 10

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

72

• Number of hidden units = 10, 30, 100, 200

• Activation function = relu, elu, selu

The best combination of parameters was selected for DisNet given by GridSearch

method of hyperparameters tuning: SELU (Scaled Exponential Linear Unit) activation

function, batch size of 50, epochs 1000 with early stopping technique, uniform

weights initialization, and learning rate of 0.001.

4.1.3. Performance Evaluation

For the evaluation purpose, the performance of DisNet was measured on the test

dataset by measuring the Mean Absolute Error (MAE) and Accuracy is computed by

the equation (4-3). Figure 54, shows that the DisNet, distance estimation is close to

the actual distance. The DisNet accuracy is measured with the tolerance criteria which

means the estimation with less than 5 meters error is considered as an accurate

measurement.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛
∑(|𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑟𝑢𝑒 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑| < 5)

𝑛

𝑖=1

 (4-3)

Figure 54. the distance estimation vs ground truth distance

Furthermore, for the sake of performance evaluation, some popular neural network

models were also compared with the DisNet model, trained on the same set of datasets

as DisNet. The bar diagram in Figure 55, shows the comparison of DisNet with linear

regression model [130], lasso regression model [131], Gaussian RBF kernel Models

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

73

[132], and support vector machine with linear kernel [133], respectively. The

accuracy of each model is shown in Figure 55. The straight lines on top of each bar

represent error bars and indicate the error or uncertainty in a reported measurement.

The standard error of the mean (SEM) [134] of each model is 4.25, 4.52, 3.91, 6.24,

1.90 respectively. The test accuracy of the DisNet model achieves 94.5% and Mean

Absolute Error loss 1.90 with a 753 training epoch using the early stop method.

Figure 55. Distance accuracy of DisNet vs other models

The performance of DisNet on unseen data has also been evaluated. The DisNet-based

system for distance estimation was evaluated on two different scenarios, the railway

scene, and the road scene. The next section is divided into two sub-sections, namely

static and dynamic experiments. The static experiments section contains results of the

railway scene where the SMART ODS system was placed at a fixed position while

objects were moving. Whereas, in dynamic experiments, the section contains results

from railway and road scene while both the camera and the objects were moving

simultaneously. The images recorded in the field tests within the H2020 Shift2Rail

project SMART [119] were used for railway scene evaluation. The details of SMART

ODS are given in section 3.1.

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

74

4.1.3.1. Static Experiments

The sensor data, which were used for the evaluation of a DisNet-based system for

object distance estimation, were recorded in the field tests on the straight rail tracks at

different times of the day and night on the location of the straight rail tracks (Figure

39 – Section 3.1.2). Monocular RGB cameras, thermal and night vision camera were

mounted on the static test-stand, together with the laser scanner in the locations which

resemble their intended locations in the dynamic obstacle detection experiments

(Figure 39 – Section 3.1.2). During the performed field tests, the members of the

SMART Consortium imitated potential static obstacles on the rail tracks located on

different distances from the test-stand.In this section, some results of DisNet on RGB,

thermal, and night vision images were taken at different weather and illumination

conditions covering short, mid, and long-range are presented.

Distance estimation from single RGB camera images

Some of the results of the DisNet objects (persons) recognition and distance

estimation from RGB images are given in Figure 56 and Figure 57. The estimated

distances are also given in Table 12.

Table 12. Estimated distances from RGB images vs. ground truth

Figure Object
Rail Scene

Ground Truth Distance estimated from DisNet Error

Figure 56
Person 1

100 m
101.89 m 1.89%

Person 2 99.44 m 0.6%

Figure 57

Person 1 50 m 54.26 m 8.52%

Person 2 150 m 167.59 m 11.726%

Person 3 100 m 132.26 m 32.26%

Person 4 300 m 338.51 m 12.836%

Figure 58
Person 1

835 m
826.90 m 0.97%

Person 2 849.57 m 1.74%

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

75

Figure 56. DisNet estimation of distances to objects in a rail track scene from the RGB camera

image. Distance estimation of detected persons at 100 m

Figure 57. DisNet estimation of distances to objects in a rail track scene from the RGB camera

image. Magnified RGB image overlaid with bounding boxes and distance estimation of detected

persons at 50, 100, 150, and 300 m respectively.

As evident from Figure 56 and Figure 57, YOLO based object detection in images is

reliable even though the YOLO detector was used in its original form trained with the

COCO dataset, without re-training with the images from the SMART field tests. Also,

it is obvious that achieved distance estimation is satisfactory in spite of the fact that

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

76

the DisNet database did not contain object boxes from the real rail tracks scenes. This,

in the first place, means that the objects in real field test scenes were at larger

distances from the sensors than in the recording tests used for dataset generation.

Also, the distances of the objects in field tests were outside the laser scanner range (0

m – 60 m) used for the training of DisNet. However, the difference in the estimation

of distances of persons at 100 m (Figure 57) indicates the need for overcoming the

problem of bounding box extraction inaccuracy.

As per the requirement of long-range obstacle detection for railways, the DisNet

successfully able to estimate the distance to the distant objects. The results shown in

Figure 58 prove that DisNet can precisely estimate the distance to the object

regardless of how far it is from the camera, if it is detected by the object detector.

Figure 58. Object detection and distance estimation in RGB camera image recorded in winter

(snow) environmental conditions; Ground truth distance: 835 m (0,97 % and 1,74%

respectively).

Distance estimation from thermal camera images

Another advantage of DisNet is that it can work with any type of camera. DisNet

originally is trained with bounding box features extracted by RGB images. Besides

RGB camera, the performance was also evaluated on thermal and night vision

cameras. Some of the results of the DisNet object distance estimation in thermal

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

77

camera images of the same scenes as in Figure 56 and Figure 57 are given in Figure

59 and Figure 60. The estimated distances are also given in Table 28.

Table 13. Estimated distances from thermal image vs. ground truth

Figure Object
Rail Scene

Ground Truth Distance estimated from DisNet Error

Figure 59
Person 1

100 m
101.06 m 1.06%

Person 2 100.10 m 0.1%

Figure 60

Person 1 50 m 48.36 m 3.28%

Person 2 150 m 157.02 m 4.68%

Person 3 100 m 161.02 m 61.02%

Person 4 500 m 469.94 m 6.012%

Figure 59. DisNet estimation of distances to objects in a rail track scene from the thermal images.

Distance estimation of detected persons at 100 m

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

78

Figure 60. DisNet estimation of distances to objects in a rail track scene from the thermal images.

Distance estimation of detected persons at 50, 100, 150 and 500 m respectively

As obvious from Figure 59 and Figure 60, YOLO based object detection in images is

reliable in spite of the fact that the YOLO classifier was used in its original form

based on RGB images from the COCO dataset, without re-training with the thermal

camera images. Moreover, it is obvious that achieved distance estimation is

satisfactory in spite of the fact that DisNet database did not contain object bounding

boxes from the images of rail tracks scenes, both either RGB or thermal camera

images. Also, it is obvious that long-range object distance estimation (500 m) was

achieved with satisfactory accuracy in spite of the fact that distances of the objects in

the field tests were much outside the laser scanner range (0 m – 60 m) used for the

training of DisNet. However, due to inaccuracy in bounding boxes extraction, there

are more significant errors in some estimation results, i.e. for 100 m estimation in

Figure 60. This indicates the need for a method to overcome the problem of

uncertainty in single cameras object detection. Moreover, the results of object

detection and distance estimation from two cameras, RGB and thermal show the

advantages of multiple viewing angles due to different positioning of cameras on the

test-stand. The multiple perspectives assist to detect the person at 300 m in RGB

image, which cannot be seen in the thermal image view due to its position behind the

person at 500 m. Similarly, a person at 500 m can be seen in the thermal image, but

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

79

not in the RGB image. A machine learning-based method for distance estimation from

multiple cameras, which overcome the mentioned problems of distance estimation

from monocular cameras is given in detail in Chapter 5.

Distance estimation from night vision camera images

Figure 61 shows the results obtained on the night vision image were two persons

walking at a 225-meter distance from the camera. Table 14 shows the estimated

distances from the night vision images and the ground truth.

Table 14. Estimated distances from Night Vision images vs. ground truth

Object
Railway Scene

Ground Truth Distance estimated by DisNet Error

Person 1
225 m

225.93 m 0.413%

Person 2 237.23 m 5.435%

Figure 61. DisNet estimation of distances to objects in a rail track scene from the night vision

images.

4.1.3.2. Dynamic Experiments

Railway Scene

For all dynamic tests of SMART ODS, the OD demonstrator was mounted onto the

test locomotives. The test length was 120 km, the average speed was 34 km/h and the

run on the whole length lasted 3.5 h. On the straight rail-tracks sections, between Niš

Marshalling Yard and station Grdelica, the maximal speed was 80 km/h.

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

80

Similar to Static experiments, SMART team members mimicked objects (obstacles)

on two crossings along the route according to previously adopted test protocols.

During the rest of the test, as the train was in real traffic, accidental objects were

detected along the route. These objects represented possible obstacles, which could

cause an accident, for example, a truck crossing the unsecured crossing at the station

while the train was approaching.

Some of the results of the DisNet based distance calculation with RGB cameras are

shown in Figure 62. Figure 62 (a)-(d) show four subsequent frames of the RGB

camera video in which two persons crossing the track are recognized out of which one

person is pushing the bike, which also was recognized. The person and the bike were

recognized though they are not on the same track as the train. As can be seen from

Figure 62, a person without the bike, who is crossing the rail track, in four subsequent

frames was recognized at distances 121,74 m, 114,16 m, 86,37 m, and 81,71 m as

opposed to ground truth distances of 120.12 m, 111.95 m, 83.66 m, and 80.62 m

respectively. The ground truth distances were calculated using GPS coordinates of the

train, Google maps GPS coordinates (e.g. crossing), and railway infrastructure

information (e.g. distance between pillars).

Table 15. Long-range distance estimation

Object
Railway Scene

Ground Truth Distance estimated by DisNet Error

Person

120.12 m 121.74 m 1.34%

111.95 m 114.16 m 1.97%

83.66 m 86.37 m 3.23%

80.62 m 81.71 m 1.35%

Due to the geometry of the rail tracks in dynamic tests, there were no straight rail

tracks sections longer than 600 m on which accidental objects could be detected.

However, Mid- to Long-range results of about 200 m - 600 m were achieved as

illustrated in Figure 63-66, from RGB, thermal and night vision camera. Static tests

were performed in November 2018 on the straight rail tracks in the length of about

1000 m, with the planned (mimicked objects) on the whole length, complementing so

dynamic tests (a result shown in Figure 57). Due to the positive results achieved in

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

81

static field tests, similar performance is expected to be achieved in operational

conditions as well.

(a)

(b)

(c)

(d)

Figure 62. Four subsequent frames of the RGB camera video overlaid with the bounding boxes of

the detected objects as well as with the estimated distances from the locomotive to the objects

Table 16. Long-range distance estimation for RGB, Thermal and Night Vision Images

Figure Object
Rail Scene

Ground Truth Distance estimated from DisNet Error

Figure 63 Person 1 272.75 m 245.02 m 10%

Figure 64

Person 1

231.97 m

253.65 m 8.2%

Person 2 251.09 m 8.24%

Figure 65 Person 1 266.69 m 231.42 m ~8.32%

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

82

Figure Object
Rail Scene

Ground Truth Distance estimated from DisNet Error

Person 2 281.44 m

Person 3 280.87 m

Car 4 597.87 m 593.71 m 0.69%

Figure 66
Person 155 m 154.96 m 0.025 %

Truck 202 m 196.34 m 2.8%

Figure 67

Person 1 162 m 158.68 m 2.04%

Person 2 181 m 182.90 m 1.04%

Person 3 176 m 179.99 m 2.26%

Figure 63. Mid-range object detection and distance estimation in on-board RGB camera image;

Ground truth distance: 272.75 m (error 10%)

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

83

Figure 64. Mid-range object detection and distance estimation in on-board RGB camera image;

Ground truth distance: 231.97 m (errors 8.2% and 8.24% respectively)

Figure 65. Mid- to Long-range object detection and distance estimation in on-board RGB camera

(zoom) image; Ground truth distance: for persons (station middle point) 266.69 m (average error

8.32%), for the car 597.87 m (error 0,69%)

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

84

Figure 66. Object detection and distance estimation in onboard thermal camera image recorded

in the environmental condition of 38°C; Good detection result in spite of low-contrast image;

Ground truth distance for a person: 155 m (0.025 %)

Figure 67. Mid-range object detection and distance estimation in on-board night vision camera

image; Ground truth distance: 162 m, 181 m and 176 m opposed to 158.68 m, 182.90 and 179.99

m respectively.

Road Scene

Although the presented DisNet-based method for distance estimation from the

monocular camera has been originally developed for autonomous obstacle detection

4.1 DisNet: a machine learning-based object-specific distance estimation from a

single camera

85

in railway applications, it can be applied to road scenes as well. To demonstrate this,

the presented method was applied to the image of a different resolution than images

used for the training of DisNet. The images recorded within the project HiSpe3D-

Vision presented in [135] [136] were used to evaluate the performance of the DisNet

on-road scene. The main goal of HiSpe3D-Vision was to develop a high speed, low

latency stereo vision-based collision warning system for automotive applications. The

obstacle detection and distance calculation for collision warning was based on the

segmentation of the disparity map created from the car-mounted stereo-vision system.

The result of object detection and distance estimation in a dynamic environment

(moving car and moving object-obstacle) is shown in Figure 68, where the original

image is overlaid with the bounding cuboid for the object closest to the car (the person

on the bike). Distance for this object, as estimated by the HiSpe3D-Vision method, is

given in the left upper corner of the image in Figure 68, as well as in Table 17.

In contrast to the HiSpe3D-Vision method, which detected only the object closest to

the car, the presented DisNet method recognized different objects in the scene

recorded by the car-mounted camera: person, bicycle, car, and track. The bounding

boxes of the recognized objects are overlaid on the image in Figure 68 together with

distances estimated by DisNet. The objects distance estimation achieved by DisNet

vs. the distance estimation achieved by the HiSpe3D stereo vision method is given in

Table 17.

Table 17. Objects Distances Estimated by DisNet vs. Objects Distances Estimated by HiSpe3D-

Vision method (adapted from [124])

Object

Road Scene

Distance estimated by HiSpe3D-

Vision [136]
Distance estimated by DisNet

Person 6.24 m 6.12 m

Bicycle - 5.39 m

Car - 27.64 m

Truck - 30.25 m

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

86

Figure 68. Road scene image overlaid with objects recognition and distance estimation results

achieved by proposed DisNet and by stereo-vision based HiSpe3D method [124]

As obvious, DisNet outperforms the HiSpe3D-Vision method in a number of different

objects recognized in the recorded scene. The person distance estimation by both

methods is comparable.

Presented results illustrate the reliable estimation of distances from a single RGB, a

thermal camera, and a night vision camera to objects in static and dynamic railway

scenes recorded by cameras in various weather and illumination conditions. The

general nature of the presented distance estimation method is demonstrated by the

result of distance estimation in a dynamic road scene captured with a different type of

cameras. This indicates that the presented method can be used for object distance

estimation from different types of monocular cameras, such as thermal camera and

night vision camera.

4.2 YOLO-D: a deep learning-based object-specific distance estimation

from a single camera

In this section, the second method for distance estimation from a single camera has

been discussed. The method is based on YOLOv3 named as YOLO-D (You Only

Look Once to estimate distance). Together with object detection, the method also

predicts the distance to detected object. The main idea behind this method is to

replace handcrafted features calculation and DisNet as a separate network for distance

estimation with a direct estimation of distance from YOLOv3 beside object detection.

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

87

In this section, firstly the modification into the existing YOLOv3 network architecture

to achieve the task of object detection and distance estimation is presented. Secondly,

the dataset and training method are discussed. At the end of this section, some

evaluation results and the advantages and limitations of YOLO-D are also given.

4.2.1 Modification of YOLOv3 network

As explained in section 2.3.2., the “You Only Look Once,” or YOLO is a series of

models that come into different versions namely YOLOv1, YOLOv2, and YOLOv3.

The end-to-end deep learning models designed for fast object detection, developed

by Joseph Redmon, et al. and first term in the paper titled “You Only Look Once:

Unified, Real-Time Object Detection” [70].

The YOLO is built on a single deep convolution network called DarkNet53 originally

based on VGG. The proposed method is based on YOLOv3. The primary objective of

YOLO as an object detection model is to predict the bounding box and classify

objects. However, the proposed method based on YOLOv3 along with its primary

objective of object detection also simultaneously estimates the distance to the detected

objects. Hence the proposed method is named YOLO-D where D refers to distance

estimation. In this section, the modification into YOLOv3 architecture and changes

made in the learning process are explained.

In order to achieve this task, two major changes are made. Firstly one more output

that is distance is added into the three detection layers of the YOLO architecture. For

the simplification, the modification into the detection layer is shown in Figure 69. The

details of YOLO architecture is given in section 2.3.2.

The purpose of three detection layers is to detect objects of big, medium, and small in

size. The first, second, and third detection layers are of size 13x13x255, 26x26x255

and 52x52x255 respectively. The 13x13, 26x26 and 52x52 represent the size of the

feature map whereas 255 come from the 3 x (4+1+80). ‘3’ is the number of a

bounding box that each grid cell predicted; ‘4’ represents the coordinates of the

predicted box: 𝑡x, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ; then the ‘1’ refers to the objectness score, which

indicates how likely there is an object in that grid cell; and ‘80’ is the number of

predicted class. However, the number of classes is not fixed it depends on the classes

on which YOLO is trained. In the default version, the YOLO is trained with the

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

88

COCO dataset which contains 80 classes. For example in case of two classes to

predict the size of detection layers will be 21 come from the 3 x (4+1+2).

Likewise, in case of modification, the sizes of detection layers are changed due to the

addition of one more output that is distance estimation. The sizes of three detection

layers are changed to 13x13x24, 26x26x24 and 52x52x24 respectively. The 24 comes

from 3 x (4+1+1+2) where additional 1 indicated the estimation of the distance to the

corresponding detected object and 2 is the number of classes to predict.

Figure 69. The graphical representation of YOLO architecture and modification on its final

detection layers [137]

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

89

Figure 70. The architecture of modified YOLOv3 (YOLO-D)

4.2.2 Loss Function

The second major change to achieve distance estimation from YOLOv3 is made into

its loss function by adding the distance loss function into the YOLOv3 default loss

function. The YOLO loss function is a cumulative loss function of localization (errors

between the predicted bounding box and the ground truth bounding box), confidence

(likelihood of objectness of the box) and class type. By adding the loss function for

distance estimation the loss function for YOLO-D will be as given in equation (4-4).

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 + 𝐿𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 + 𝑳𝒐𝒔𝒔𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 (4-4)

From the understanding of loss function selection during the development of DisNet,

the Mean Absolute Error function was selected over other loss function due to its

small loss relative to other loss functions. Similarly, the loss function selection

process was also conducted for YOLO-D training. Since the distance estimation is a

regression problem, the selection of loss functions was made between the two famous

MAE and MSE loss function as given in equation x and y.

𝑀𝐴𝐸 =
1

𝑛
∑|𝑑𝑖𝑠𝑡𝑖 − 𝑑𝑖𝑠𝑡𝑖̂|

𝑛

𝑖=1

 (4-5)

𝑀𝑆𝐸 =
1

𝑛
∑(𝑑𝑖𝑠𝑡𝑖 − 𝑑𝑖𝑠𝑡𝑖̂)

2
𝑛

𝑖=0

 (4-6)

Let’s add the distance loss into the YOLO loss function. The total loss function of

YOLO-D based on MAE based distance loss function is given in equation (4-7) and

similarly the total loss function by adding the MSE based distance loss function is

given in equation (4-8).

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

90

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 + 𝐿𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 + 𝑳𝒐𝒔𝒔𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝑴𝑨𝑬)

 = ∑∑1𝑖,𝑗
𝑜𝑏𝑗

[(𝑡𝑥 − 𝑡𝑥̂)
2 + (𝑡𝑦 − 𝑡𝑦̂)

2
+ (𝑡𝑤 − 𝑡𝑤̂)2+(𝑡ℎ − 𝑡ℎ̂)2]

𝐵

𝑗=0

𝑠2

𝑖=0

+ ∑∑ 1𝑖,𝑗
𝑜𝑏𝑗[− log(𝜎(𝑡𝑜)) − log(1 − 𝜎(𝑡𝑜))]

𝐵

𝑗=0

𝑠2

𝑖=0

+ ∑∑ 1𝑖,𝑗
𝑜𝑏𝑗

[∑ 𝐵𝐶𝐸(𝑦𝑘 ,̂ 𝜎(𝑠𝑘))

𝑐

𝑘=1

] +

𝐵

𝑗=0

𝑠2

𝑖=0

∑∑1𝑖,𝑗
𝑜𝑏𝑗

|𝑑𝑖𝑠𝑡 − 𝑑𝑖𝑠𝑡̂ |

𝐵

𝑗=0

𝑠2

𝑖=0

(4-7)

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 + 𝐿𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 + 𝑳𝒐𝒔𝒔𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝑴𝑺𝑬)

 = ∑∑1𝑖,𝑗
𝑜𝑏𝑗

[(𝑡𝑥 − 𝑡𝑥̂)
2 + (𝑡𝑦 − 𝑡𝑦̂)

2
+ (𝑡𝑤 − 𝑡𝑤̂)2+(𝑡ℎ − 𝑡ℎ̂)2]

𝐵

𝑗=0

𝑠2

𝑖=0

+ ∑∑1𝑖,𝑗
𝑜𝑏𝑗[− log(𝜎(𝑡𝑜)) − log(1 − 𝜎(𝑡𝑜))]

𝐵

𝑗=0

𝑠2

𝑖=0

+ ∑∑1𝑖,𝑗
𝑜𝑏𝑗

[∑ 𝐵𝐶𝐸(𝑦𝑘 ,̂ 𝜎(𝑠𝑘))

𝑐

𝑘=1

]

𝐵

𝑗=0

𝑠2

𝑖=0

+∑∑ 1𝑖,𝑗
𝑜𝑏𝑗

(𝑑𝑖𝑠𝑡 − 𝑑𝑖𝑠𝑡̂)
2

𝐵

𝑗=0

𝑠2

𝑖=0

(4-8)

Both MAE and MSE based loss functions are evaluated for YOLO-D training and

testing as given in the next sections.

4.2.3 Dataset preparation

Before beginning with the training process, firstly the dataset is required to discuss for

the training of YOLO-D. There are some of the comprehensive datasets available for

object detection, but none of them serves the specific purpose of this thesis which is

long-range object detection with distance estimation. Table 18 shows a list of

available online datasets relevant to object detection. Although the KITTI dataset [90]

does have short-range distance information, it only covers urban driving scenarios.

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

91

While the primary focus of this thesis is long-range object detection and distance

estimation using a single camera. Hence the proposed LRODD was also utilized.

The LRODD dataset proposed in this thesis provides all the information required for

end-to-end training of YOLO-D for object detection and distance estimation,

including ground truth distance to the annotated bounding box and object class.

Despite the usefulness of the LRODD dataset, the dataset itself is not enough to train

YOLO-D for object detection and distance estimation. The dataset provides very few

data samples for object classes other than person object class. Furthermore, due to a

few diverse examples, the dataset performance for object detection is not satisfactory.

However, still, the distance ground truth labelling is beneficial for the distance

estimation task of YOLO-D. In order to train YOLO-D for a new task of distance

estimation without losing its performance on object detection, two widely used object

detection datasets i.e. COCO, KITTI were also used in the training process together

with LRODD dataset. COCO teaches the network object detection while KITTI and

LRODD dataset teaches distance estimation and improve object detection for road and

railway scenes.

Table 18. List of available datasets related to object detection and distance estimation

Dataset Annotated Images Distance Range

COCO ~ 120,000 No distance information

Pascal VOC ~ 12000 No distance information

KITTI ~ 7500 0 to ~120 meters

LRODD ~ 8000 20 to ~ 925 meters

KITTI Dataset

In order to combine KITTI and LRODD dataset to train YOLO-D, the KITTI labelled

dataset was organized in the form of a table in same order as LRODD dataset in a text

file. Each row of the text file corresponds to one particular image as well as the

bounding box, class and distance information of the objects in that image. The

parameters in each row are arranged as follow:

img_path dist bbox_left bbox_top bbox_right bbox_bottom class_id ………

Where, ‘img_path’ is the location of the training image; ‘bbox_left’ and ’bbox_top’

are the left top coordinates of the bounding box of the object in the image, while

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

92

’bbox_right’ and ‘bbox_top’ are the right bottom coordinates; ‘class_id’ refers to

‘Person’ and ‘Car’ object class; ‘dist’ represents the distance to the object. More than

one object in an image is also represented in the same row.

There were 7481 annotated images from KITTI combined with 192 images from the

LRODD dataset containing multiple objects. In total 7673 annotated images were

used for the training and testing of YOLO-D. The KITTI and LRODD datasets were

randomly split into 80% of training, 14% of validation, and 6% of the test dataset, as

shown in Table 19.

Table 19. Information about training, validation and test sets for the KITTI and LRODD

datasets

Dataset
Annotated

images

Training

dataset

Validation

dataset

Test

dataset

KITTI 7481 5985 1047 449

LRODD 192 153 27 12

KITTI +

LRODD
7673 6193 1074 461

4.2.4 Training and testing

Instead of training the modified YOLO (YOLO-D) from scratch, the weights of the

network trained from the COCO dataset were loaded. The main concept of transfer

learning was applied here while training YOLO for distance estimation. The pre-

trained YOLO model with COCO images learned the object detection task. It is

assumed that the pre-trained YOLO network with COCO dataset has been trained

quite well for object detection, by training the whole YOLO-D network, the weights

of the network can modify too soon (lower layers) and too much which can disturb the

performance of the model on object detection task. The YOLO-D model was trained

to fine-tune the weights learned from the COCO dataset to work on the targeted

dataset and also to predict distance.

Considering the size of our training dataset and the computation capability of the

processing computer in the lab, a mini-batch gradient descent method was utilized, i.e.

the total training images are divided into the batch size of 8 and for epoch, 8 images

are fed into the network to train.

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

93

The training of our YOLO-D network comprises two training stages. In the first

training stage, the first 53 convolutional layers (main body of YOLOv3 network

which is Darknet-53) were frozen, only the last remaining convolutional layers were

trained. In order to get a stable loss for the first stage, the network was trained by all

the training images for 50 epochs. In the second training stage, the first 53 layers are

unfrozen and all the layers are trained for another 50 epochs. During the first training

stage, the network adapts its weights of last layers, whereas in the second stage whole

network fine-tune its weights based on weights learned from the first stage. In order to

avoid over-fitting, the early-stopping method and learning rate reducing method were

applied. To be specific, during training, when the loss on the validation dataset after 3

subsequent epochs stops reducing, the learning rate will become 10 times smaller, and

if the loss doesn’t change for 10 epochs, the training will be stopped. The two stages

of the training process of YOLO-D on two versions of loss function are shown in

Figure 71 and Figure 72.

Figure 71. 1st and 2nd training stage of the based on MAE-distance loss function

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

94

Figure 72. 1st and 2nd training stage of the based on MAE-distance loss function

From the figures listed above, it is clear that, for the network based on MAE-distance

loss function, the training loss drops constantly and the training stops at 37 epochs at

the second stage; while for the network of MSE-distance loss function, the loss is

relatively significant and unstable and the training stops at 28 epochs at the second

stage.

4.2.5 Performance Evaluation

In this section, the performance on object detection and distance estimation is

measured separately for the YOLO-D model based on MAE and MSE loss functions.

The performance of object detection is measured based on the confusion matrix and

metrics of precision and recall as well as the average precision (AP) [138] of two

object classes ‘Person’ and ‘Car’. The test dataset images were used for performance

evaluation. The test dataset of 461 images contains 2159 cars and 326 persons which

were labelled, as shown in Figure 75.

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

95

Figure 73. Number of ground-truth labelled cars and persons in the test dataset

The YOLO-D model trained with MAE loss function detects 1729 cars out of 2159

and 209 persons out of 326. On the other side MSE based YOLO-D model, detects

only 1402 cars and 140 persons correctly, as shown in Figure 74. Here, when the

detected object shares the same label with the ground truth object and the IoU

(Intersection over Union) is greater than 0.5, the detection would be considered as true

positive. False-positive refers to the detection whose IoU with ground truth object is

less than 0.5 or no ground truth object matches that detection.

Figure 74. Detection results of network based on MAE-distance loss

An example of true positive and false positive during the evaluation process can be

reviewed in Figure 75. In which the light blue bounding boxes are the ground truth

bounding box provided by the KITTI dataset, green boxes are true positive predicted

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

96

bounding boxes, and red box is the false positive prediction that falsely predicts that

symbol as a person.

Figure 75. An example of true positive and false positive during the evaluation process

By referring to the method [138] and setting a different threshold for the confidence

score that we predicted, we got different pairs of precision and recall value and then

plotted the Precision-Recall (PR) curve of these two classes, as shown in Figure 76

and Figure 77.

Figure 76. PR curve of car prediction by network-based on MAE and MSE-distance loss

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

97

Figure 77. PR curve of person prediction by network-based on MAE and MSE distance loss

Then through calculating the area under the Precision-Recall curves, the average

precision (AP) for these two classes (car and person) as well as the mean average

precision (mAP) for these two types of network is measured, as shown in Figure 78.

Figure 78. Average Precision of prediction by network-based on MAE and MSE distance loss

From Figure 78, it is clear that for the network trained by MAE- distance loss, the

average precision of car and person achieves 79% and 59% separately and the mean

average precision is 68.84% for two object classes i.e. Person and Car; while for the

other type, the average precision of car and person is relatively lower, 63% and 39%

respectively, and the mAP is 50.98%.

Additionally, the detection performance was evaluated on LRODD images from the

test and validation dataset. For the network trained by MAE-distance loss, 67 out of

the 86 persons could be detected correctly (IoU>=0.5), while for the other, only 39

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

98

persons could be detected correctly. An example of these two detections at the ground

truth distance of 320m is shown in Figure 79 and Figure 80, respectively.

Figure 79. Detected objects at 320m by network-based on MAE-distance loss

Figure 80. Detected objects at 320m by network-based on MSE-distance loss

From the figures and statistics listed above, the conclusion could be obtained that, the

object detection performance of the YOLO-D model trained by MAE-distance loss is

better than that trained by MSE-distance loss.

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

99

Similarly, the performance of YOLO-D to estimate distance is measured for both

detection classes. KITTI test dataset and SMART test dataset were separately

evaluated. Firstly, in the KITTI test dataset, for the network based on MAE-distance

loss, the average error is 1.12 meters and on the other side, the average error for the

MSE-based model is 1.25 meters as shown in Table 20. Average error and accuracy

of YOLO-D for both object classes on KITTI test dataset. The accuracy of the

network for distance estimation based on MAE-distance loss is 97.5% while for the

MSE-based is 96.9%. The accuracy of the model is measured with the tolerance

criteria of 5 meters which means that the distance estimation with an error less than or

equal to 5 meters is considered as an accurate measurement.

Table 20. Average error and accuracy of YOLO-D for both object classes on KITTI test dataset

Modified Network Average Error Accuracy (<=5m)

Modified YOLOv3 Network based on

MAE-distance loss
1.12m 97.5%

Modified YOLOv3 Network based on

MSE-distance loss
1.25m 96.9%

Similarly, in the LRODD test dataset, the average error between predicted distance

value and ground truth distance value for the network based on MAE-distance loss is

10.83 meters, while for the other is 46.03 meters. Since the distance range in the

LRODD dataset is quite large (from 20 meters to 925 meters) and the evaluation

dataset size is quite small, therefore the accuracy of predicted distance is not

calculated as a distance evaluation metric. Instead, the scatter plot of distance between

the ground truth and predicted value on these two types of model are plotted, as

shown in Figure 81.

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

100

Figure 81. Scatter plot of distance on the network based on MAE and MSE distance loss

In Figure 81, the left plot shows that the estimated values are closer to ground truth

distance compared to the right plot. It shows that, for long-range distance estimation,

the performance of network-based on MAE distance loss is better than the network

based on MSE distance loss function.

In conclusion, when it comes to the performance of object detection, the network

trained by MAE-distance loss performs much better than the model trained by MSE-

distance loss. With regard to the performance of distance estimation on the KITTI

dataset, there is no noticeable difference between these two networks, while for the

long-range distance in the LRODD dataset, the performance of network-based on

MAE-distance loss is better than the MSE-based model.

4.2.5.1 Road Scene

Some results of test images as well as the ground truth information is shown in the

following figures 81-83 and tables 21-23:

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

101

Figure 82. YOLO-D detection result of test image 1 from KITTI dataset

Table 21. Ground truth and estimated distance test image 1 from KITTI dataset

 Car1 Car2 Car3 Car4 Car5 Car6

Estimated 12.42m 21.89m 34.75m 36.18m 44.66m 58.73m

Ground

Truth
12.85m 23.78m 35.79m 37.12m 46.16m 61.98m

Figure 83. YOLO-D detection result of test image 2 from KITTI dataset

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

102

Table 22. Ground truth and estimated distance test image 2 from KITTI dataset

 Car1 Car2 Car3

Estimated 9.51m 27.44m 27.66m

Ground Truth 9.48m 26.36m 28.67m

Figure 84. YOLO-D detection result of test image 3 from KITTI dataset

Table 23. Ground truth and estimated distance test image 3 from KITTI dataset

 Car1 Car2 Car3 Car4 Person1

Estimated 4.80m 7.04m 15.38m 28.39m 27.20m

Ground

Truth
5.37m 7.35m 14.45m 26.42m 26.91m

In addition, the performance of YOLO-D model is compared with DisNet and

HiSpe3D-Vision method [51] by applying these methods into an image that is totally

different from our training dataset (i.e., the resolution and color of the image). The

detection result of HiSpe3D-Vision is shown in the left upper corner of the image in

Figure 85, which could only detect the distance to the person. The detection from

YOLO-D is also shown in the form of bounding boxes and overlaid distance above

the detected objects. The results of DisNet are taken from the Table 17 as shown in

section 4.1.3. The comparison of distance estimation results among these methods are

given in Table 24.

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

103

Figure 85. Objects distance estimated by YOLO-D vs DisNet vs HiSpe3D-Vision method

Table 24. Comparison of distance estimation among three methods

Object
Distance Estimation

HiSpe3D-Vision DisNet YOLO-D

Person 6.24 m 6.12 m 8.30 m

Bicycle - 5.39 m -

Car - 27.64 m 23.90 m

Truck - 30.25 m -

The distance estimated by YOLO-D method is close to the estimation from DisNet.

Although YOLO-D could not detect the Truck and Bicycle currently, as the training

dataset does not contain these classes and model was not trained to detect them.

4.2.5.2 Railway Scene

Some of the results of the YOLO-D based distance calculation with RGB cameras for

railway scenarios are shown in Figure 85-87. However, the result of YOLO-D

distance estimation for thermal and night vision images are not shown here but the

method is also capable to work for them.

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

104

Figure 86. YOLO-D detection result of test image 1 from LRODD dataset

Table 25. Ground truth and estimated distance test image 1 from LRODD dataset

 Person1 Person2

Estimated 206.59m 201.47m

Ground Truth 205m 205m

Figure 87. YOLO-D detection result of test image 2 from LRODD dataset

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

105

Table 26. Ground truth and estimated distance test image 2 from LRODD dataset

 Person1 Person2

Estimated 266.87m 257.79m

Ground Truth 260m 260m

Figure 88: YOLO-D detection result of test image 3 from LRODD dataset

Table 27: Ground truth and estimated distance test image 3 from LRODD dataset

 Car

Estimated Distance 13.7 m

Ground Truth Distance 14.5 m

4.2.6 Discussion

In this chapter, two methods to estimate the distance to the detected objects were

presented. The first method is named DisNet, which is a classical artificial neural

network-based method that takes as an input hand-crafted features of the detected

object to estimate the distance to the detected object. In contrast to DisNet, the second

method named as YOLO-D is a deep learning method that does not require manual

extraction of features for distance estimation to the detected objects. It works on the

principle of end-to-end learning, it estimates distance and detects objects in a given

4.2 YOLO-D: a deep learning-based object-specific distance estimation from a single

camera

106

input image. It finds itself the relation to change of distance to the object of a specific

class in an image by investigating the visual features.

In this chapter, the methodology, concept, and evaluation results of DisNet and

YOLO-D were explained. Both the methods show promising results for distance

estimation; however, some limitations and future ideas to improve their performance

are important to highlight.

One of the main limitations of both methods is to deal with object occlusion,

unreliable distance estimation in case of false and imprecise object bounding box

prediction from the object detection model. Furthermore, the methods were evaluated

on a limited size dataset, the performance can be improved more with the increase in

dataset specifically for YOLO-D which as deep learning-based object detection and

distance estimation network required more data to train in comparison to DisNet. The

dataset designed explicitly for object detection and distance estimation such as the

LRODD dataset can fulfill the requirement for the training of YOLO-D. Additionally,

more object classes can be added to the dataset.

In the next section and chapters, the problems encounter is addressed and some new

ideas are presented to overcome such problems.

107

5.1 Multi-DisNet: a machine learning-based robust distance estimation from multiple

cameras

108

5. A machine learning based distance

estimation from multiple cameras

In this chapter, a novel method for distance estimation from multiple cameras to the

object viewed with these cameras is presented named Multi-DisNet. Multi-DisNet is a

multilayer neural network, which is used to learn the relationship between the sizes of

the bounding boxes of the objects in the camera's images and the distance between the

object and cameras.

The supervised learning technique was used to train the Multi-DisNet network where

the input features were manually calculated parameters of the objects bounding boxes

in the camera's images and desired outputs were ground-truth distances between the

objects and the cameras. The performance of multi-DisNet was evaluated on images

of real-world railway scenes. As a proof-of-concept, the results on the fusion of two

sensors, an RGB and thermal camera mounted on a moving train, in the Multi-DisNet

distance estimation system are shown. Presented results demonstrate both the good

performance of the Multi-DisNet system to estimate the mid (up to 200 m) and long-

range (up to 1000 m) object distance and benefit of sensor fusion to overcome the

problem of not reliable object detection. The Multi-DisNet was presented by Haseeb

et al. in [120].

5.1 Multi-DisNet: a machine learning-based robust distance estimation

from multiple cameras

The architecture of the Multi-DisNet-based distance estimation system, with the setup

assuming two cameras mounted horizontally parallel, an RGB camera and a thermal

camera, is illustrated in Figure 89.

5.1 Multi-DisNet: a machine learning-based robust distance estimation from multiple

cameras

109

Figure 89. The Multi-DisNet-based system for object distance estimation from a multi-camera

system.

Each of two synchronized images of the same scene, captured by RGB and thermal

camera sensors, are inputs to an Object Detector module. Different object detectors

can be integrated into the system. Independently of the Object Detector type, its

outputs must be bounding boxes of detected objects in the image. The resulted

corresponding objects bounding boxes are then processed to calculate the features,

bounding boxes parameters based on which the trained Multi-DisNet gives as outputs

the estimated distance of the object to the multi-camera sensors. In the system

architecture illustrated in Figure 89, an example of the estimation of the distance of a

person on the rail tracks is shown.

5.1.1 Feature Extraction

In total, 755 bounding boxes of objects were manually extracted from recorded

synchronised RGB and thermal camera images using the VGG Image Annotator tool

[139]. For each object bounding box extracted from RGB images and for each object

bounding box extracted from thermal images, a three-dimensional feature vector v

was calculated:

𝒗 = [1/𝐵ℎ𝑖, 1/𝐵𝑤𝑖, 1/𝐵𝑑𝑖], 𝑖 = 𝑟, 𝑡 (5-1)

5.1 Multi-DisNet: a machine learning-based robust distance estimation from multiple

cameras

110

where indexes r and t indicate features extracted from RGB and thermal images

respectively, and the coordinates of vector v are the following features:

Height, 𝐵ℎ𝑖=(height of the object bounding box in pixels/image height in pixels)

Width, 𝐵𝑤𝑖=(width of the object bounding box in pixels/image width in pixels)

Diagonal, 𝐵𝑑𝑖=(diagonal of the object bounding box in pixels/image diagonal in

pixels)

The ratios of bounding box sizes and image size were used as the features so to enable

the use of the generated dataset for any image resolution. The inverse of features,

𝐵ℎ𝑖, 𝐵𝑤𝑖 and 𝐵𝑑𝑖 were finally selected as the best features due to their high correlation

with the desired output (distance to the object). Combining the features extracted from

both sensor modules, a joint vector, that is a vector of fused data vf of dimensions 6x1

is obtained.

vf = [1/Bhr, 1/Bwr, 1/Bdr, 1/Bht, 1/Bwt, 1/Bdt] (5-2)

5.1.2 Multi-DisNet Architecture

In order to find the appropriate number of hidden layers and neurons per layer, the

best configuration of hidden layers and neurons obtained from the GridSearch

estimator [140] was used for Multi-DisNet architecture. As shown in Figure 90, the

Multi-DisNet network consists of 6 neurons in the input layer which represents the

features extracted from bounding boxes, followed by the 3 hidden layers with 150

neurons in each layer and one neuron in the output layer which represents the distance

estimation. For this analysis and proof-of-concept, a reduced dataset was used.

Whereas the dataset was split into 3 sets for training 80%, validation 10%, and testing

10%.

5.1 Multi-DisNet: a machine learning-based robust distance estimation from multiple

cameras

111

Figure 90. The structure of Multi-DisNet for the estimation of object distance from the multi-

sensory system [120]

5.1.3 Performance Evaluation

The Multi-DisNet-based system for object distance estimation was evaluated on

images recorded in different field tests. As first, testing data of the generated long-

range dataset were processed by Multi-DisNet system and the results on the testing

dataset are shown in Figure 91. As can be seen, the estimated object distances vary

slightly around the ground truth distance.

Figure 91. Ground truth vs estimated object distance from testing dataset [120]

5.1 Multi-DisNet: a machine learning-based robust distance estimation from multiple

cameras

112

The error in distance estimation is rather larger with larger distances and the

calculated mean absolute error (MAE) was 22.76 m and root means square error

(RMSE) was 34.09 m. These results demonstrate the ability of Multi-DisNet to

estimate the long-range distance of up to 1000 m with an acceptable error.

Some of the results of the Multi-DisNet long-range object distance estimation in RGB

and thermal images are given in Figure 92. The estimated distances to the objects

(persons) detected in the images are given in Table 28. The object bounding boxes in

the images were manually extracted so that an ideal object detector, able to extract

bounding boxes of distant objects of very small size in the images, was assumed.

Figure 92. Manually detected objects in magnified RGB (left) and thermal images (right) from

the long-range dataset field tests [120]

Table 28. Estimated distances vs Ground truth.

Object Ground Truth Multi-DisNet

Person 1
925 m

937.19 m

Person 2 899.25 m

In order to evaluate performances of the Multi-DisNet system with autonomous object

bounding boxes extraction, the state-of-the-art computer vision object detector YOLO

[70] trained with COCO dataset [89] was implemented in the Object Detector module.

The images from the above described explained field tests were processed by YOLO

and the resulted in YOLO objects bounding boxes were processed to calculate the

Multi-DisNet input features, bounding boxes parameters. Based on the input features,

the trained Multi-DisNet gave as outputs the estimated distances of the objects,

5.1 Multi-DisNet: a machine learning-based robust distance estimation from multiple

cameras

113

persons on the rail tracks, to the camera sensors. It is important to note that images

processed are those recorded while persons were walking along the rail tracks

between the points of signalizations done for data set images recording, as explained

in Section 3.1. Some of the results of the Multi-DisNet object distance estimation in

RGB and thermal images are given in Figure 93. The estimated distances to the

objects (persons) detected in the images are given in Table 29. Shown results illustrate

the longest range achieved by YOLO, about 395 m, as YOLO detector failed to

produce the object bounding boxes for distances larger than 395 m as the YOLO was

trained with the COCO dataset, which contains objects only at a short distance to the

camera.

Figure 93. Object detected in RGB and Thermal images using the YOLO object detector [120]

Table 29. Estimated distances vs Ground truth

Object Ground Truth Multi-DisNet

Person 1
395 m

352.86 m

Person 2 408.25 m

Further sensor data for the Multi-DisNet evaluation purposes were recorded during

the dynamic field tests [141]. The RGB and thermal cameras were mounted onto the

moving locomotive Serbia Cargo type 444 pulling the freight train with 21 wagons on

the Serbian part of the Pan European Corridor X to Thessaloniki (Greece) in the

length of 120 km with a maximal train speed of 80 km/h. The cameras were mounted

into specially designed housing as shown in Figure 94.

5.1 Multi-DisNet: a machine learning-based robust distance estimation from multiple

cameras

114

Figure 94. Vision sensors for obstacle detection integrated into sensors’ housing mounted on the

frontal profile of a locomotive below the headlights [120]

The sensors’ housing was vibration isolated to prevent transmitting of vibrations from

the locomotive onto the cameras as moving vehicle vibration can severely deteriorate

the quality of acquired images. The vibration isolation system was designed with the

rubber-metal springs [119] and it was suitable to suppress low-frequency vibrations

providing almost 94% isolation efficiency for vehicle primary resonant frequency of

27 Hz. For frequencies above 50 Hz, the isolation efficiency was greater than 98%.

During the train run, onboard cameras recorded the data of the real-world rail tracks

scenes in front of the locomotive. Example frames sequence of thermal images is

shown in Figure 95. As can be seen, the example frames show the scene when a

person accidentally crossed the rail track while the train was approaching. These

frames were processed by YOLO object detector for person bounding box extraction.

The extracted bounding boxes were processed for the extraction of bounding boxes

parameters, inputs to Multi-DisNet, so that trained Multi-DisNet estimated distances

to the detected object (person crossing the rail tracks). The distance estimation result

is given in Table 30. However, as can be seen from Figure 95c, YOLO failed to detect

object bounding boxes in the thermal camera frame. The cause for object detection

failure in some of the thermal camera images was low images contrast due to lower

camera performances influenced with high outside temperature during the dynamic

SMART

ODS

5.1 Multi-DisNet: a machine learning-based robust distance estimation from multiple

cameras

115

field test of about 38°C. As the Multi-DisNet assumes input feature vectors of six

elements where three elements represent features of the object bounding box in the

thermal image it was necessary to estimate the object bounding box in thermal camera

based on detected object bounding box in the RGB camera image. This assumption of

the bounding box in the thermal image was done based on the relationship between

the sizes of the objects bounding boxes in RGB and thermal images learned from the

generated dataset. The corresponding object bounding boxes between the cameras

highly correlate and show a linear relationship, which allows estimation of the

missing bounding box in one camera as corresponding to the bounding box detected

in the other camera. The results show how Multi-DisNet addresses the problem of

object detection module failure to detect an object in one of the camera images. The

trained Multi-DisNet estimated person distances to the cameras, which were mounted

on the moving locomotive using the calculated features of originally detected object

bounding boxes in RGB images and the features of estimated object bounding boxes

in thermal images, from all subsequent cameras frames. The distance estimation result

is given in Table 30. For the sake of better understanding of Multi-DisNet distance

estimation accuracy, the ground truth distance in dynamic experiments was calculated

offline using the relative GPS position of the train and the approximate GPS position

of obstacle on Google Maps.

Table 30. Distance Estimation from Multi-DisNet in the dynamic experiment

Frames Ground Truth (GPS) Multi-DisNet

(a) 155 m 160.92 m

(b) 146 m 141.80 m

(c) 138 m 135.61 m

5.1 Multi-DisNet: a machine learning-based robust distance estimation from multiple

cameras

116

(a) subsequent synchronized frame 1

(b) subsequent synchronized frame 2

(c) subsequent synchronized frame 3

Figure 95. Three subsequent synchronized frames of RGB and thermal cameras of the scene with

a person crossing the rail tracks accidentally, with the YOLO object bounding boxes overlaid.

YOLO failed to extract the object bounding box in the last thermal camera frame.

5.1 Multi-DisNet: a machine learning-based robust distance estimation from multiple

cameras

117

5.1.3 Discussion

In this Thesis, a method for long-range obstacle detection from multiple monocular

cameras is presented. The method is based on a novel multilayer neural network

named Multi-DisNet that learns the relationship between the distance from the

multiple cameras to the detected objects and the corresponding sizes of the objects in

both camera images. The presented work is a part of the research and development of

a novel integrated onboard obstacle detection system for railway applications. The

presented system was evaluated for the setup consisting of an RGB and thermal

camera.

This Thesis also presents the generation of the first long-range dataset reflecting the

real-life railway applications, which was necessary for supervised training of the

Multi-DisNet network to enable learning of the relationship between the sizes of the

bounding boxes of the detected object in the camera’s images and the distance of the

object to the cameras. For the calculation of the object bounding boxes parameters,

the Multi-DisNet distance estimation system assumes an Object Detector able to

extract object bounding boxes. The evaluation results shown in this Thesis

demonstrate the performance of the Multi-DisNet to reliably estimate the long-range

distances in case the object bounding boxes are manually extracted. The system

achieved long-range object detection of about 1000 m, which is the desired

performance in applications such as railway applications. However, the evaluation

results in the case of using the YOLO for automatic object detection demonstrated

system performance of estimating the distance up to 400 m, as the YOLO object

detector failed to extract the bounding boxes in long-range images. These results

indicate the need for improvement of the object detection system module and need of

training of object detector module with datasets consist of objects at a longer distance

(small in size) in the future work, so to achieve reliable autonomous long-range

obstacle detection. Nevertheless, the presented system reflects the novelty in long-

range obstacle detection as current sensor technology in current land transport

research is able to look some 200 m ahead [14] [142]. However, the required rail

obstacle detection interfacing with loco control should be able to look ahead up to

1000 m detecting objects on and near track which may potentially interfere with the

clearance and ground profile [143].

118

5.1 Multi-DisNet: a machine learning-based robust distance estimation from multiple

cameras

119

6. A machine learning based multiple

object tracking

The environmental perception system, which performs object detection and tracking

task, is the core for autonomous vehicles. Object detection tremendously evolves

along with the advancement in sensor technology, and with the development of

classical and machine learning-based algorithms, while multiple object tracking seems

less developed [144]. Object tracking is essential for many tasks of autonomous

driving such as obstacle avoidance and intention prediction [145]. It is a critical task

and it becomes more challenging for situations such as objects at far distance, low

frame rate video sequence, frequent occlusion, camera vibration or movement, and so

on.

Mainly there are four object tracking methods categorized as region-based tracking

[146], model-based tracking [147], contour-based tracking [148], and feature-based

tracking [149]. All those methods rely on object detection. In general, tracking utilizes

the detection information from previous frames to predict the detection in frames

where detection is missing.

In [145] a traditional object tracking method based on a monocular camera for

autonomous vehicles is present. By using the camera model to map pixel position into

the distance, the distance to the vehicles with respect to the vehicle was measured.

Further Kalman Filter (EKF) is used to refine distance accuracy and track detected

vehicles. The results show that the method is capable to track 3D positions with

sufficient accuracy.

Relatively modern machine learning-based methods [150] are introduced for object

tracking based on Recurrent Neural Networks (RNNs) followed by long short-term

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects tracking

from a single camera

120

memory (LSTM) and Gated recurrent units (GRU). The RNN based networks are

often used for sequential data and thus also applicable for object tracking in video

sequences.

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects

tracking from a single camera

In this Thesis, a novel approach for multiple object tracking and distance estimation

from an onboard monocular camera, aiming at improvements in the safety and

security of railways, is presented. The approach is based on deep learning architecture

using a deep Convolutional Neural Network (CNN) object detection followed by a

multi hidden-layer Gated Recurrent Neural Network (RNN) referred to as DisNet-

RNN Tracker, which consists of two sub-networks for distance estimation and

bounding box prediction respectively. The DisNet-RNN Tracker learns and estimates

the distance between the detected object and the camera sensor, and predicts the

object bounding box based on sequential input from previous and current detection.

The presented DisNet-RNN Tracker tracks multiple objects in case where the object

detection module fails to detect an object. The presented method is evaluated on the

real-world railway dataset recorded with the onboard Obstacle Detection System

developed within an H2020 Shift2Rail project SMART - Smart Automation of Rail

Transport. The presented work has the potential to benefit other applications where

reliable object detection, tracking, and long-range distance estimation are needed such

as autonomous cars, transportation, and public security.

The workflow of DisNet-RNN Tracker based object detection, tracking, and distance

estimation from a single monocular camera is illustrated in Figure 96. The frames

captured by an RGB monocular camera are inputs to Object Detector Module.

Different object detectors, which outputs bounding box and class of detected objects,

can be integrated into the system. The resulted object bounding boxes from the

detection module further feed into the Multiple Objects Mapping (MOM) module.

The object mapping module matches previous object detection results to the current

detection results for the sake of objects tracking and assigning unique IDs for

unmatched or newly detected objects. Further, the Features Calculation module

extracts features of the objects bounding boxes and based on those features DisNet-

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects tracking

from a single camera

121

RNN Tracker estimates object distance at the current frame and predicts object

bounding box in the next frame. In the system architecture in Figure 96, an example

of the distance estimation and bounding box prediction based on prior detection

information for a human walking along the rail tracks is shown.

In this Thesis, the YOLO object classifier [70] trained with the COCO dataset [89] is

considered as an object detector module, whereas any other state-of-the-art object

detector can be used. However, no matter which state-of-the-art object detection

module is used, false detection or unprecise bounding boxes extraction cannot be

avoided in cases such as object partially or fully occluded, object shadow, change in

image quality due to illumination and the similarity of object texture or colour with

the background. This problem is unfavourable for those applications where high

reliability is demanded such as obstacle detection systems for autonomous vehicles.

DisNet-RNN Tracker, proposed by Haseeb et al. in [151], aims at reliable overall

object distance estimation and object tracking in spite of the failure of the

intermediate object detector module.

Figure 96. DisNet-RNN Tracker based object distance estimation and tracking system from a

monocular camera [151]

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects tracking

from a single camera

122

6.1.1 Deep Learning Network architecture

The DisNet-RNN Tracker consists of two independent sub-networks based on

Recurrent Neural Network (RNN) architecture. The reason to use RNN is that due to

its unique characteristic of being suitable to work with sequential data and its memory

cell able to preserve information from inputs provided in previous time moments

[150]. In the scenario considered in this Thesis, two types of object detection failures

are possible: the target objects are not detected in some frames, and the bounding

boxes of some of the detected objects are not accurate. Using the RNN, which has a

memory of previous inputs, can help to predict the object position and estimate

distance more reliably. DisNet-RNN Tracker uses the sequential data from previous

two-time steps to improve the estimation of the object distance at the current time step

and predicts the position and size of the object bounding box in the next time step.

Figure 97 shows the DisNet-RNN Tracker architecture. The architecture consists of

two subnetworks represented with two main blocks one under the other in Figure 97.

The upper network is used to estimate the object distance named as distance estimator

and the lower network named as bounding box predictor is used to predict the top left

corner A, and the bottom right corner B, of the object bounding box. Prediction of

these two bounding box corners’ points relates to the prediction of the bounding box

position and size.

As shown in Figure 97, a three hidden layers network was adopted for the distance

estimation. A deep recurrent neural network is stacked with Gated Recurrent Unit

(GRU) layers and the output from the last GRU layer is connected to a fully

connected output layer to perform final distance estimation. For the bounding box

prediction, the network consists of a single hidden layer of GRUs with a fully

connected layer as an output layer. A new loss function in training distance estimator

network was defined and it is given in (6-1). This loss function calculates losses from

all distance prediction results from three time-steps and in a similar way, the Mean

Absolute Error (MAE) loss function for the bounding box predictor network was

defined given in (6-2).

𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
1

3𝑛
∑∑|𝑌𝑖𝑗−𝑡𝑟𝑢𝑒 − 𝑌𝑖𝑗−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|

𝑛

𝑗=1

3

𝑖=1

 (6-1)

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects tracking

from a single camera

123

𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

=
1

3𝑛
∑∑|𝐴𝑢𝑖𝑗−𝑡𝑟𝑢𝑒 − 𝐴𝑢𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑛

𝑗=1

3

𝑖=1

+ |𝐴𝑣𝑖𝑗−𝑡𝑟𝑢𝑒 − 𝐴𝑣𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

+ |𝐵𝑢𝑖𝑗−𝑡𝑟𝑢𝑒 − 𝐵𝑢𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

+ |𝐵𝑣𝑖𝑗−𝑡𝑟𝑢𝑒 − 𝐵𝑣𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

(6-2)

where:

• 𝑛 : training data numbers

• 𝑌𝑖𝑗−𝑡𝑟𝑢𝑒: the ground truth distance of jth training data at time step i.

• 𝑌𝑖𝑗−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑- the estimated distance of jth training data at time step i.

• 𝐴𝑢𝑖𝑗−𝑡𝑟𝑢𝑒, 𝐴𝑣𝑖𝑗−𝑡𝑟𝑢𝑒: the top-left corner coordinates of ground truth object

bounding box of jth training data at time step i.

• 𝐵𝑢𝑖𝑗−𝑡𝑟𝑢𝑒, 𝐵𝑣𝑖𝑗−𝑡𝑟𝑢𝑒: the bottom-right corner coordinates of ground truth

object bounding box of jth training data at time step i.

• 𝐴𝑢𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝐴𝑣𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑: the top-left corner coordinates of predicted

object bounding box of jth training data at time step i.

• 𝐵𝑢𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝐵𝑣𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑: the bottom-right corner coordinates of

predicted truth object bounding box of jth training data at time step i.

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects tracking

from a single camera

124

Figure 97. DisNet-RNN Tracker Architecture consists of two sub-networks namely distance

estimator on top and bounding box predictor in bottom [151]

6.1.2 Dataset

Recurrent Neural Networks requires a sequential dataset that needs to be prepared

before training DisNet-RNN Tracker. As described earlier, DisNet-RNN Tracker

consists of two sub independent RNN networks. In order to train and test these

subnetworks, manually a dataset of the size of 8000 sequential inputs was created

using images recorded in real-world railways scenarios. Each sample of the dataset

represents extracted features from three subsequent frames. The annotation tool [14]

provides the object bounding boxes coordinates, which were labelled together with

ground truth distance. The ground truth for distance estimation network was recorded

during the dataset generation using the GPS positioning system which later in the

offline phase allows calculating the relative distance between train and objects.

Whereas for bounding box prediction, the manually drawn bounding box on the fourth

frame is considered as a ground truth as shown in Figure 98.

Figure 98. Dataset generation for bounding box prediction [151]

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects tracking

from a single camera

125

In the next section, it is explained how the features were calculated and the dataset

was organized to train the DisNet-RNN Tracker, to learn distance estimation and

bounding box prediction.

6.1.3 Features selection

As it is known from the projective transformation, the object’s size in the camera

image is inversely proportional to the object’s distance from the camera. The distance

estimator network, trained to learn the relationship between the changes in sizes of the

objects’ bounding boxes in an image with respect to change in the distances between

the objects and the camera over time. The dataset for network Distance Estimator,

organized in the form of a two-dimensional feature matrix 𝑋1 for distance estimation

is given in (6-4), where each matrix row represents the six features of the feature

vector 𝒗 of an object at time-steps t, t-1 and t-2 respectively. Vector 𝒗 was calculated

from manually annotated objects’ bounding boxes for a class label as:

 𝒗 = [1/𝐵ℎ 1/𝐵𝑤 1/𝐵𝑑 𝐶ℎ 𝐶𝑤 𝐶𝑏] (6-3)

• 𝐵ℎ: height of the object bounding box in pixels/image height in pixels

• 𝐵𝑤: Width of the object bounding box in pixels/image width in pixels

• 𝐵𝑑: diagonal of the object bounding box in pixels/image diagonal in pixels

• Ch, Cw, and Cb: average height, width and length of each object class in meters

Ch, Cw, and Cb are defined as unique features that actually represent different classes.

These features generalize the network to learn distance vs bounding box relation for

multiple object classes. For example, the predefined features for object class person

are the average height, width, and breadth of the humans, and similarly, these features

were predefined for other classes. These features do not have any meaning and

contribution to distance learning but help to differentiate different object types.

Similarly feature matrix 𝑋2 was calculated for network Bounding Box Predictor. Each

row in 𝑋2 matrix represents coordinates of the top left corner A and the bottom right

corner B of an object bounding box at time-steps t, t-1 and t-2 respectively, where

(u,v) are image point coordinates.

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects tracking

from a single camera

126

𝑋1 = [

𝒗𝑡

𝒗𝑡−1

𝒗𝑡−2

] =

[

1
𝐵ℎ

⁄
𝑡

1
𝐵𝑤

⁄
𝑡

1
𝐵𝑑

⁄
𝑡

1
𝐵ℎ

⁄
𝑡−1

1
𝐵𝑤

⁄
𝑡−1

1
𝐵𝑑

⁄
𝑡−1

1
𝐵ℎ

⁄
𝑡−2

1
𝐵𝑤

⁄
𝑡−2

1
𝐵𝑑

⁄
𝑡−2

𝐶ℎ 𝐶𝑤 𝐶𝑏

𝐶ℎ 𝐶𝑤 𝐶𝑏

𝐶ℎ 𝐶𝑤 𝐶𝑏

]

 (6-4)

𝑋2 = [

𝒃𝑡

𝒃𝑡−1

𝒃𝑡−2

] = [

𝐴𝑢𝑡
𝐴𝑣𝑡

𝐵𝑢𝑡

𝐴𝑢𝑡−1
𝐴𝑣𝑡−1

𝐵𝑢𝑡−1

𝐴𝑢𝑡−2
𝐴𝑣𝑡−2

𝐵𝑢𝑡−2

𝐵𝑣𝑡

𝐵𝑣𝑡−1

𝐵𝑣𝑡−2

] (6-5)

In order to make DisNet-RNN Tracker more robust as well as to make it also work in

the situations where an object is detected in one or two subsequent frames and not

only in three subsequent frames, the dataset shall be augmented and extended with

modified feature matrices (6-5). Namely, as mentioned earlier, each row of the matrix

𝑋1relates to time-steps t, t-1 and t-2. By zero-padding of the first and the second row,

the modified feature matrices are:

𝑋1 = [

0
0

1
𝐵ℎ

⁄
𝑡

1
𝐵𝑤

⁄
𝑡

1
𝐵𝑑

⁄
𝑡

𝐶ℎ 𝐶𝑤 𝐶𝑏

]

𝑋1 =

[

0
1

𝐵ℎ
⁄

𝑡

1
𝐵𝑤

⁄
𝑡

1
𝐵𝑑

⁄
𝑡

1
𝐵ℎ

⁄
𝑡−1

1
𝐵𝑤

⁄
𝑡−1

1
𝐵𝑑

⁄
𝑡−1

 𝐶ℎ 𝐶𝑤 𝐶𝑏

𝐶ℎ 𝐶𝑤 𝐶𝑏
]

(6-6)

(6-7)

In the same way, the extended dataset is generated for the feature matrix 𝑋2. Using the

extended datasets means that the network does not need to wait for an object to be

detected in three continuous frames in time to predict the distance.

6.1.4 Training and testing phase

The dataset generated contains 8000 samples which were randomly split into training

data 80%, validation data 10% and test data 10%. DisNet-RNN Tracker sub-networks

were trained with Adam optimizer and with a learning rate of 1e-4. During the

training, a mini-batch gradient descent algorithm with a minibatch size of 100 and an

Early Stop technique with 20 tolerant epochs has been used. Finally, after 246 training

epochs, the mini loss on the test dataset according to equation 6-1 was 1.28.

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects tracking

from a single camera

127

Figure 99. Left: Mean Absolute Error (loss) in distance estimation of DisNet-RNN Tracker for

detection in 1, 2, and 3 subsequent frames. Right: Distance Accuracy vs Different mean absolute

error [151]

Figure 99 illustrates that with the use of more previous detection results, the mean

square error reduces. This assures that the sequential input data really help in the

estimation of distance and also shows the performance of a trained model when the

object is detected in three subsequent frames, two subsequent frames, and only in one

frame refer as RNN_Seq = 3, 2 and 1 respectively.

Besides mean absolute error (loss), another measurement parameter, distance

accuracy 𝐴𝑐𝑐, is defined in equation (6-8). In Figure 99, the accuracy vs mean

absolute error plots help to understand the advantage of using sequential data. An

estimation is considered accurate in 𝐴𝑐𝑐𝑗when estimation distance is in the range

[𝑦𝑡𝑟𝑢𝑒−𝑖 - j, 𝑦𝑡𝑟𝑢𝑒−𝑖+ j]. Where j is Mean Absolute Error in the range of 1 to 5.

𝐴𝑐𝑐𝑗 =
1

𝑛
∑(|𝑦𝑡𝑟𝑢𝑒−𝑖 − 𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑−𝑖| ≤ 𝑗)

𝑛

𝑖=1

 (6-8)

From the comparison results Table 31, it is clear that the performance of DisNet-RNN

Tracker with more sequential input (previous detection results) is more accurate than

using less sequential input. Similar results for the bounding box prediction network

were obtained hence not included in this section.

Table 31. Comparison result of DisNet-RNN Tracker Accuracy at different MAE

 Acc1 (%) Acc2 (%) Acc3 (%) Acc4 (%) Acc5 (%) MAE (m)

RNN_Seq =1 43.31 65.16 78.82 87.45 92.89 1.90

RNN_Seq =2 64.87 84.59 92.82 96.67 98.43 1.07

RNN_Seq =3 75.45 89.98 94.24 96.74 98.32 0.87

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects tracking

from a single camera

128

6.1.5 Multiple Object Mapping (MOM)

Another problem needs to be solved before DisNet-RNN Tracker can be used in

object tracking. The multiple detected objects in the current frame need to be

associated with the multiple detected objects in previous frames to form sequential

data (6-6) and (6-7), which is input to DisNet-RNN Tracker. Therefore, a Multiple

Object Mapping (MOM) module is introduced to perform object association and

generate sequential feature matrices for DisNet-RNN Tracker. The MOM module

calculates the Intersection Over Union (IOU) of current detected and previously

detected objects and based on high correlation associate the objects. The entire

working of the MOM module is shown in Figure 100. If the objects do not correlate

then MOM initialises the new tracker for newly detected objects and assigns a unique

ID.

Figure 100. Multiple Object Mapping based object association of current detected objects and

previously detected objects

6.1.6 Evaluation

The DisNet-RNN Tracker based system for distance estimation and object tracking

was evaluated on images recorded by an RGB monocular camera mounted on the

frontal profile of the moving freight train during the field tests within H2020

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects tracking

from a single camera

129

Shift2Rail project SMART. The RGB camera from The Imaging Source [152]

provides images with the maximum resolution of 2592x1944 at 2 FPS.

 Figure 101 shows the performance of DisNet-RNN Tracker on six subsequent frames

from a video of a real-world dynamic railway scene with a truck parked in the rail

track area (vehicle 3), which is a potential intrusion, and a van (vehicle 4) crossing the

unsecured crossing while the train is approaching the crossing. The estimated

distance to the vehicle objects from the camera (i.e. from the locomotive), object

class, and tracking ID are shown in the left upper corner of each frame. The

detection/prediction of the objects is marked by the object bounding boxes. The blue

and brown coloured bounding boxes represent the prediction results, achieved by

DisNet-RNN Tracker, whereas the red bounding boxes represent the object detection

results of the YOLO object detection. As it is evident, the DisNet-RNN Tracker is

able to track the object (vehicle 3), to predict its bounding box and to estimate the

distance even in the case object is occluded by the other vehicle (frames 2 and 3) and

YOLO object detector failed. Moreover, the YOLO object detector failed even in the

case of a fully visible object (vehicle 3) in frame 6, whereas the proposed DisNet-

RNN Tracker achieved the object bounding box prediction and distance estimation.

During the train run, the ground truth was also measured using relative GPS positions

of the objects (from the google maps) and the train (GPS on the train). According to

the ground truth distance, the van (vehicle 3) and truck (vehicle 4) were

approximately 45 meters apart. The ground truth distances to the van were measured

as 135m, 128 m, 123m, 120m, 117m and 108m respectively for six subsequent frames

shown in Figure 99. Hence, the estimated distance from DisNet-RNN Tracker in

comparison with the ground truth demonstrates also reliability of the proposed

method.

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects tracking

from a single camera

130

Figure 101. A real-world scene where truck is parked near rail track and the van crossing the rail

track while train approaching [151]

6.1.7 Discussion

Object tracking and distance estimation are crucial for safety-critical applications such

as obstacles and track intrusion detection in railways. The use of information from

previous object detections improves the distance estimation and also enables the

tracking of objects by prediction of the object’s position in frames in which the object

detector fails.

Vehicle 3 180.2 m

Vehicle 4 134.6 m
1 2 Vehicle 3 173.7 m

Vehicle 4 129.1 m

4 Vehicle 3 166.7 m

Vehicle 4 119.8 m
3 Vehicle 3 171.2 m

Vehicle 4 126.6 m

5 Vehicle 3 157.7 m

Vehicle 4 114.4 m
6 Vehicle 3 153.8 m

Vehicle 4 106.4 m

6.1 DisNet-RNN Tracker: robust distance estimation and multiple objects tracking

from a single camera

131

In this Thesis, DisNet-RNN Tracker consists of two sub-independent networks named

distance estimator and bounding box predictor is presented. Gated Recurrent Neural

Network architecture is chosen for object distance estimation and object tracking. By

using a monocular camera, the presented method can precisely track and estimate the

distance to the target objects as shown by the evaluation results from a real-world

railway scenario. However, the proposed object distance estimation system still has

several limitations such as object occlusion for a longer period introduces an error that

increases with time. So dependency on prediction results for a longer period is not

recommended, as the error increases with time until the estimation is corrected by the

detection.

Some efforts could be made in the following aspects in order to improve the

performance and conquer the drawbacks of presented distance estimation and object

tracking system. Moreover, for the improvement of distance estimation and object

tracking, the dataset needs to be extended, for long.-range detection and tracking of

multiple objects.

132

7.1 Requirement Analysis

133

7. Real-time Performance Evaluation

The basic need to detect and estimate the distance of various obstacles on the rail

tracks in real-time is a big challenge. In this chapter, the main development and

performance characteristics of proposed object detection, tracking, and distance

estimation methods in real-time are presented. The focus is on vision-based obstacle

detection system as in the final realization of ODS, vision sensors (cameras) were

used for mid- and long-range obstacle detection in the operational environment. Real-

time systems (RTS) are defined as hardware and software-based systems that assure

the system response within the specified time constraints. The required “event-to-

response time”, or in other words, “system response time” depends on many factors.

For example, in a high-speed machine vision application where the system is

physically moving fast or the capturing scene is moving fast, many factors such as

processing time and hardware selection, to be taken into account during the

development of such systems.

A challenging machine vision application is a highly bandwidth-demanding

application which brings a considerable amount of data streams from a vision sensor

to the processing unit. The obstacle detection system requires a high-bandwidth and

low latency network to connect all cameras to the central processing unit. Based on

the nature of the application, during the development of real-time Obstacle Detection

System (ODS) for rail transport, both challenges were presumed, high-speed and

high-bandwidth. In the next section, the requirements of the ODS system discussed in

detail.

7.1 Requirement Analysis

The requirements to make SMART ODS real-time grouped in two main categories:

high processing speed and high bandwidth requirements as listed below.

7.1 Requirement Analysis

134

High processing speed:

1. ODS mounted on a moving freight train running at 80 km/h, which is a

speed of a conventional freight train.

2. Train-stopping distance of approximately 700 meters for the above-

mentioned speed according to the regulations.

3. Moving or continuously changing scene/environment

High bandwidth:

1. Mid-range (up to 200 m) and Long-range (up to 1000 m) obstacle

detection requires high-resolution images to enable distant objects'

visibility in the image.

2. Simultaneous data acquisition from multiple vision sensors.

Based on the factors mentioned above the minimal required response time and

bandwidth analysis were performed as described in the following sections.

Minimum requirement approximation:

In order to estimate the minimum requirement of ODS, let’s assume a freight train

moving at 80 km/h (22.22 m/s) on a straight rail track. According to railway

regulations, the stopping distance of the freight train for speed of 80 km/h is about

700 meters.

The required event-to-response time 𝑡𝑟𝑒𝑠 (time required by perception module) should

be less than the data acquisition time 𝑡𝑎𝑐𝑞 , which means the system should be able to

process the captured data (camera frame) and response before the acquisition of the

next subsequent frame:

𝑡𝑟𝑒𝑠 < 𝑡𝑎𝑐𝑞 (7-1)

𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑡𝑎𝑐𝑞 + 𝑡𝑟𝑒𝑠 (7-2)

The stopping distance 𝑑𝑠𝑡𝑜𝑝 and stopping time 𝑡𝑠𝑡𝑜𝑝 of the train equipped with ODS

while running with speed 𝑣 can be calculated as:

𝑡𝑠𝑡𝑜𝑝 = 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + 𝑡𝑏𝑟𝑎𝑘𝑖𝑛𝑔 + 𝑡𝑑𝑒𝑙𝑎𝑦 (7-3)

𝑑𝑠𝑡𝑜𝑝 = 𝑣 ∙ 𝑡𝑠𝑡𝑜𝑝 (7-4)

7.2 Hardware

135

Where 𝑡𝑏𝑟𝑎𝑘𝑖𝑛𝑔 refers to the time required to stop the train after the brake engagement

fully, 𝑡𝑑𝑒𝑙𝑎𝑦 refers as driver reaction time after the ODS system warning and 𝑡𝒑𝒓𝒐𝒄𝒆𝒔𝒔

can be defined as total processing time, i.e. time required by the hardware and

software components to deliver output from the moment at which the event occurred.

However, the braking time 𝑡𝑏𝑟𝑎𝑘𝑖𝑛𝑔 depends on many physical factors of the train

itself [153]:

1. the speed of the train at the time when the brakes are engaged;

2. the deceleration rate available with a full-service brake application, which

varies according to the coefficient of friction between wheel and rail;

3. the delay from when the train driver commands the brakes to when they are

become effective (brake delay time);

4. the state of the wear of the brake pads and the air pressure available in the

brake cylinders;

5. the geography of the track, in particular, the track gradient the train travels

over from when the brakes commanded to where the front of the train stops;

6. the mass distribution of the train.

7.2 Hardware

A real-time obstacle detection system for operational trains can be challenging to

implement as a PC computer-based system because of the needed potential for high

computational cost and algorithm complexity.

Emerging embedded vision system-based solutions for robotics and security

applications allow swift processing information and taking appropriate actions. Such

systems show high performance, high accuracy while requiring low energy

consumptions. Despite high demanding needs, in work for prototyping the ODS, a PC

computer-based system was considered for real-time implementation because it was

sufficient to meet the prototype system requirement. In order to cope with object

detection and distance estimation as a computationally expensive task, hardware-

specific optimisations of the proposed algorithms were performed, that allow the

algorithms to run in real-time. The hardware contains three parts: Sensors, Network,

and Processing Unit which are explained in the next sections.

7.2 Hardware

136

7.2.1 Sensors

ODS consists of 5 vision sensors including three RGB zooming cameras from the

Imaging Source, thermal camera from FLIR, night vision sensor consisting of custom-

made night vision lens mounted on a monochrome camera from The Imaging Source

(section 3.1.1). Some specifications of sensors given below which also considered

during the selection and designing of the network and processing unit.

Table 32. Vision Sensors

Vision Sensor Resolution (Pixels) Frequency (Hz) Size (Megapixels)

RGB 2592x1944 15 5MP

Thermal (TH) 640x512 9 0.328MP

Night Vision (NV) 2592x1944 15 5MP

7.2.2 Network

The minimum requirements estimation and selection of the network hardware is

crucial for applications such as SMART ODS which characterised with the extensive

size data and high speed. In SMART ODS due to the large size of images, a high

bandwidth network was needed. As described in Section 3.1, the original network

setup is based on a gigabit network. However, during sub-system conformance testing

it was established that a gigabit network is not sufficient to enable real-time sensor

connection, and consequently, it was decided to increase the network bandwidth to 10

GB network. This had as a consequence a change of the network switch from

originally planned ADVANTECH EKI-9512P to NETGEAR XS708T [154]. The

selected industrial 10GB network switch was chosen to overcome the problem of data

overflowing and to enable getting the maximum resolution images at high speed.

The SMART networks receive data about 7 Hz at maximum resolution

simultaneously from all sensors. However, further the software-based data

synchronization lower down the data acquisition to 2 Hz. The hardware or software-

based synchronisation is needed to synchronised data captured independently from

SMART vision sensors at 7 Hz, in order to process the same scene captured by all

vision sensors. This downsampling of acquired data does not affect the real-time

performance of SMART ODS and provides enough information.

7.3 Software

137

Considering the train speed of 80 km/h, the data acquisition frame rate was set to 7

FPS (frame per 143 milliseconds) which means that at about every 3 meters travelled

distance the new data has been captured. Whereas the actual processing is done on

two frames out of seven captured frames meaning that SMART ODS processes an

image taken at every 500 milliseconds or in other words at every 11.11 meters

travelled distance.

7.2.3 Processing unit

Machine learning-based algorithms for obstacle detection and distance estimation

require a high-performance processing unit to enable real-time processing. Because of

the different sizes in which objects may appear in the image, the large image search

space is involved in object detection algorithms, which increases the complexity and

slows down the overall performance of SMART ODS real-time implementation.

SMART PC-computer based processing unit was used for the real-time obstacle

detection system prototyping. The processing unit was equipped with INTEL core i9

CPU and two Nvidia GTX 1080 16 GB GPUs (graphics processing units). Parallel

GPUs computing enable real-time object detection and distance estimation.

7.3 Software

ODS software architecture developed on the Robot Operating System (ROS) [121]

distribution Kinetic Kame operated on a Linux operating system (Ubuntu 16.04 64-

bit, http://releases.ubuntu.com/16.04/). During developing hardware and software for

SMART the goal was to achieve high reliability, modularity, redundancy,

performance, speed and redundancy characteristics for SMART ODS.

 The ROS works here as middleware that provides the virtual interface between

different software modules such as data acquisition, object detection, distance

estimation, visualisation and offline processing modules (Figure 102).

http://releases.ubuntu.com/16.04/

7.3 Software

138

Figure 102. Block-diagram of ROS-based software architecture of SMART ODS

ROS messaging middleware [155] provides an Inter-Process Communication (IPC) or

shared memory. The IPC mechanism of subscriber/publisher enables

intercommunication between modules and sub-modules.

Sensor interface module: The sensor interface module is responsible for providing

data from sensors to other modules. Each sensor has its own dedicated data

acquisition interface. Besides providing data from the sensors, the sensor interface

modules are also responsible for sensor parameters configuration during pre-run test

and during run. This means it is not needed to completely stop the SMART ODS in

case changing any sensors parameters, the parameters can be changed while SMART

ODS is running and train is moving. The user can change the sensors parameters

using Dynamic Parameters Interface as shown in Figure 2. The user interface interacts

with dynamic parameters configurator, which further passes user’s configuration

changes to sensor interface modules. Some of the parameters possible to change are:

camera FPS, exposure time, field of view, resolution.

Perception module: the received sensors data after data synchronisation are further

processed on machine learning and computer vision-based perception module. The

perception module is the core building block of the whole SMART ODS software

7.3. Machine learning-based algorithms timing considerations

139

framework and it is responsible for processing the raw data from sensors and for

providing the meaningful information, i.e. rail track detection (ROI), objects

detection, recognition, tracking and distance estimation.

Global services module: this module includes data logging module that is capable of

recording the raw data from sensors, parameters configuration, sensors parameters

and processed data. The recorded data can be retrieved to analysis the performance of

SMART ODS for further improvement and development. Further, the global service

module includes map, which together with GPS sensor input [118], is used to

visualize real-time position of the train on the map. The map can be set up in offline

mode that means the pre-saved map can be used if internet service is not available.

However, the online mapping can also be done when access to internet is possible.

User interface module: the user interface module includes visualization of all

processed information from perception module and real-time positioning of the train

on the map. The user interface assists and facilitates the driver by providing

information regarding the obstacles on the rail tracks. The information on the user

interface is designed to only alert the driver, who is still responsible to make the front-

end decision. Further, the user interface provides the control interface for the

responsible ODS technician to troubleshoot the problems, configure parameters and

monitor sub-system modules.

7.3. Machine learning-based algorithms timing considerations

Machine learning has a fundamental role in SMRT ODS software development. The

machine learning algorithms were developed under the Keras API (https://keras.io/)

running on top of Tensorflow development kit (https://www.tensorflow.org/). The

Tensorflow is one of the widely used frameworks due to its high performance and

processing speed in comparison to other available frameworks. Tensorflow based

machine learning algorithms were optimized in a way to have high processing rate to

achieve real-time processing. The achieved processing rate of Tensorflow based

SMART ODS modules run on SMART PC is 8 FPS that means SMART machine

learning-based perception module is able to process in 125 ms. Referring to equation

(7-1) in Section 7.1

𝑡𝑟𝑒𝑠 < 𝑡𝑎𝑐𝑞 (7-5)

https://keras.io/

7.3. Machine learning-based algorithms timing considerations

140

the processing rate should be larger than the data acquisition rate. In case of SMART

ODS, the data acquisition rate is 7 Hz, however after data synchronization the data at

2 Hz are forwarded to processing unit where the SMART perception module is able to

process at 8 Hz on SMART PC. The processing rate is four times the actual data

acquisition rate. This shows that the algorithms are highly optimized to perform

reliably in real-time environment and can perform on higher data acquisition rate as

well.

As described in chapter 4, state-of-the-art object detection algorithm YOLO-You

Only Look Once was chosen as object detector for SMART DisNet-based object

detection and distance estimation (Figure 48). YOLO uses a single deep-learning

network for both object classification and object localization in an image, and it is

considered as real-time fast multi-object detection algorithm with higher accuracy

rate.

The DisNet-based algorithm was developed for object detection and distance

estimation from a monocular camera and can be applied to all three SMART camera

types, RGB, Thermal and Night Vision camera. As described in Section 4, the results

of obstacle detection from single-camera are satisfactory, but the results could be

improved when performing the sensor fusion so that there is interest to process more

than one camera image at the time. For the purpose of timing consideration, the

calculation of total processing time when only one sensor (RGB camera) used is

performed and compared to the total processing time when more than one sensor

used, 2 (thermal+ RGB camera) and 5 (all 5 SMART vision sensors, 3 RGB, Thermal

and Night Vision). The sensors’ data acquisition times are given in Table 32 as well

as in Table 33. The time performance table (Table 33) shows that SMART ODS

satisfies the minimal requirement approximation. However, the time can be reduced

more with the better-performing processing unit.

In Table 33, 𝑓 refers to frequency and 𝑡𝒑𝒓𝒐𝒄𝒆𝒔𝒔 is the total time required by the

acquisition module and perception module to provide an output in case of a single

camera, whereas the data synchronization time is considered instead of data

acquisition time in case of multiple cameras.

7.3. Machine learning-based algorithms timing considerations

141

Table 33. Time performance

Module Sensor Interface Module

Perception

Module

Total

Processing

Time

𝑓𝒑𝒓𝒐𝒄𝒆𝒔𝒔, 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠

Sub Module

Data

Acquisition

𝑓𝑎𝑐𝑞 , 𝑡𝑎𝑐𝑞

Data

Synchronizatio

n

𝑓𝑎𝑐𝑞
́ , 𝑡𝑎𝑐𝑞́

Object detection,

tracking and

distance

estimation

𝑓𝑟𝑒𝑠, 𝑡𝑟𝑒𝑠

RGB Camera

15 Hz, 66.6

ms
- 8 Hz, 125 ms

5.21 Hz, 191.6

ms

RGB +

Thermal

Camera

9 Hz, 111

ms
5 Hz, 200 ms 6.5 Hz, 153.8 ms

2.82 Hz, 353.8

ms

All sensors

7 Hz, 142

ms
2 Hz, 500 ms 2.5 Hz, 400 ms 1.11 Hz, 900 ms

As evident from the time performance table, the total processing time is increasing

gradually for cases where more than one camera is used in comparison to a single

camera. The results of performance evaluation of SMART ODS (Section 4) show that

using one camera at a time gives obstacle detection and distance estimation result that

meets the requirements of mid- and long-range object detection (with up to ±10%

error). Fusing with thermal camera processing results can lead to better performance

(Section 5) while still enabling real-time processing (Table 33). However, for using

more than two vision sensors at a time, it is needed to reduce processing time, which

could be achieved with a processing unit of higher performances. Nevertheless, the

SMART ODS meets the requirements of real-time by delivering the object detection

and distance estimation results in a fraction of second.

142

8.1 Conclusion

143

8. Conclusion and Outlook

8.1 Conclusion

This thesis addresses the problem of long-range environmental perception for the

applications where autonomous obstacle detection is safety-critical such as automated

vehicles. The particular focus of the thesis is on autonomous obstacle detection for

railways bearing in mind that long-range obstacle detection is explicitly required due

to longer braking distances for trains. Following the traditional and state-of-the-art

approaches for object detection in other applications, the first dataset for long-range

obstacle detection and distance estimation (LRODD) was generated in this Thesis as

described in chapter 3. The dataset contains images captured by monocular cameras

including three RGB cameras set with three different focal lengths to cover the short,

mid to long-range, a thermal camera and a night vision camera, short-range distance

information from LiDAR and GPS for positioning of ODS. The images were recorded

during various static and dynamic experiments conducted within project SMART and

contain examples of real-world scenarios that a train driver usually faces every day

including potential obstacles on the rail track or near to the rail track. The recorded

images, containing potential obstacles, were manually labelled for object bounding

boxes, object classes and related object ground truth distance, using an annotation tool

to form a dataset LRODD. Further, the labelled dataset was used in the development

of algorithms proposed in this thesis.

In chapter 4, the focus is on monocular camera-based distance estimation to the object

imaged by the camera. Two different approaches to the estimation of the distance to

the object using a single monocular camera have been presented. Both approaches

show the potential of using a single camera to object distance estimation without the

need for any camera parameters calibration. The first method proposed in chapter 3 is

8.1 Conclusion

144

referred to as DisNet, which is an abbreviation for Distance Network, and it is based

on a neural network which estimates the distance to the object based on the size of the

object bounding box in the image. DisNet expects to receive an input, containing

object bounding box and object class, from an object detection module in order to

estimate the distance to the object. DisNet can work with any object detection module

which produces the object bounding box and object class. DisNet is a single network

that works for multiple object classes. However, in some cases, it shows some

limitations to accurate distance estimation. For example, it tends to wrongly estimate

the object distance when a false or unprecise bounding box, produced by object

detection module inputs the DisNet, or objects of the same class appear in different

sizes in the image which leads to the understanding to consider object at a different

distance than the actual distance. In the same chapter, the second method named

YOLO-D, which is derived from the state-of-the-art object detection module You

Only Look Once (YOLO) and - D is added to represent distance estimation. YOLO is

a well-known object detector that localises and classifies the objects in an image. In

YOLO-D, the original YOLO architecture, loss function, and training methods were

modified so that an additional output was added, which is distance estimation to the

detected object. Due to the addition of another output, the original loss function was

also modified to adapt to the changes in the network architecture. In comparison to

original YOLO, the YOLO-D estimates the distance to the object in the image in

addition to object localisation and classification.

Further, for the training of YOLO-D additional information is necessary that is ground

truth distance to the object in a training image. That is why YOLO-D was trained in

this thesis with novel dataset LRODD containing labelled objects and also the

distance to them. Additionally, a transfer learning approach was applied to train

YOLO-D further with another state-of-the-art dataset KITTI which also has distance

information to the objects in order to improve the accuracy distance estimation by

YOLO-D.

In comparison to DisNet, YOLO-D is a single end-to-end network that detects an

object and estimates object distance and works with multiple object classes. Both

proposed methods in chapter 4 were tested in real-time and real-world applications

including railway and road scenarios.

8.2 Outlook

145

In chapter 5, a machine learning-based sensor fusion method named Multi-DisNet has

been proposed to estimate the distance to an object based on the object’s appearance

in the images captured from two cameras mounted apart from each other. The main

principle of this method was inspired by the DisNet method. After the simultaneous

object detection on images captured from both cameras, the size of the corresponding

object bounding box of the same object in both images is feed to the neural network

that estimates distance. However, only an object class ‘Person’ was investigated in the

development of this method.

In chapter 6, the Recurrent Neural Network-based method of multiple object tracking

has been presented. The RNN based network architecture tracks and predicts the

position of the object in the frames where the object detection module fails to identify

the object or the object is occluded. This method further estimates the distance to the

object continuously. Additionally, this method also refines the object bounding box

position and size based on the previous detection results in a current frame.

In chapter 7, the real-time implementation of the developed algorithms and

capabilities to use these algorithms in the real-world application was investigated. The

minimum hardware and software requirements for the obstacle detection system for

freight trains were also studied considering the physical braking constraints.

8.2 Outlook

The proposed methods in this thesis focusing on long-range detection and distance

estimation shows potential to overcome the limitation of commercial off-the-shelf

sensors technology to measure long-range distances. The methods shows that distant

objects can be detected and distance to them can be estimated by processing the high

resolution image obtained from a single camera.

Although the results presented in this Thesis show the reliability of the autonomous

multi-sensor long-range obstacle detection, tracking and distance estimation system,

there are few open questions are future directions. These are summarized as follows.

One research question is how the information from the autonomous system will be

communicated with the driver of the train. An intelligent Human-Computer

Interaction (HCI) system will be needed, which will need to ensure that it does not

distract the driver but also it is not ignored. Research and decades of commercial

8.2 Outlook

146

development in aviation, that has advanced the interaction between planes and pilots,

could guide the development of a successful HCI system for trains.

As it was mentioned before, the developed obstacle detection and distance estimation

system could also be applied for short-range detection, not only on autonomous cars

but also on autonomous robots. In a laboratory setting, DisNet was adjusted to detect

and estimate the position of household objects, such as cup and glass, and humans

with very promising results [21]. Further research will be needed to enable the

employment of DisNet in robotics.

Furthermore, YOLO-D shows potential to be use as a single neural network that can

detect object and simultenoulsy estimate distance to it. The performance can be

improve by further training with large annotated dataset, more classes and ground

truth distance.

Bibliography

147

Bibliography

[1] Y. J. Li, Z. Zhang, D. Luo and G. Meng, "Multi-sensor environmental

perception and information fusion for vehicle safety," in IEEE International

Conference on Information and Automation, Lijiang, 2015.

[2] H. Nguyen and C. C. Kemp, "Bio-inspired assistive robotics: Service dogs as a

model for human-robot interaction and mobile manipulation," in 2nd IEEE RAS

& EMBS International Conference on Biomedical Robotics and

Biomechatronics,, Scottsdale, 2008.

[3] J.-K. Oh and C.-H. Lee, "Development of a stereo vision system for industrial

robots," in International Conference on Control, Automation and Systems,

Seoul, 2007.

[4] J. Foucault, S. Lesecq, G. Dudnik, M. Correvon, R. O’Keeffe, V. Di Palma, M.

Passoni, F. Quaglia, L. Ouvry, S. Buckley, J. Herveg, A. di Matteo, T.

Rakotovao, O. Debicki, N. Mareau, J. Barrett, S. Rea, A. McGibney, F. Birot

and de Chaumont, "INSPEX: Optimize Range Sensors for Environment

Perception as a Portable System.," Sensors , vol. 19, p. 4350, October 2019.

[5] M. Bernas, B. Płaczek, W. Korski, P. Loska, J. Smyła and P. Szymała, "A

Survey and Comparison of Low-Cost Sensing Technologies for Road Traffic

Monitoring," Sensors , vol. 18(10), p. 3243, September 2018.

[6] L. Nalpantidis and A. Gasteratos, "Stereo Vision Depth Estimation Methods for

Robotic Applications," in Depth Map and 3D Imaging Applications: Algorithms

and Technologies, IGI Global, 2011, pp. 397-417.

[7] A. Saxena, J. Schulte and A. Ng, "Depth Estimation Using Monocular and

Stereo Cues.," in IJCAI International Joint Conference on Artificial

Intelligence, 2007.

[8] R. Atienza, "Fast Disparity Estimation using Dense Networks," in International

Conference on Robotics and Automation (ICRA), Brisbane, 2018.

Bibliography

148

[9] M. Moukari, S. Picard, S. L. and F. Jurie, "Deep Multi-Scale Architectures for

Monocular Depth Estimation," in 25th IEEE International Conference on Image

Processing (ICIP), Athens, 2018.

[10] W. Maddern, G. Pascoe, C. Linegar and P. Newman, "1 Year, 1000km: The

Oxford RobotCar Dataset," in The International Journal of Robotics Research

(IJRR), 2016.

[11] Shift2Rail, "Multi-Annual Action Plan," Brussels, 2015.

[12] J. Weichselbaum, C. Zinner, O. Gebauer and W. Pree, "Accurate 3D-vision-

based obstacle detection for an autonomous train," Computers in Industry, vol.

64, p. 1209–1220, 2013.

[13] A. Berg, K. Oefjaell, J. Ahlberg and M. Felsberg, "Detecting Rails and

Obstacles Using a Train-Mounted Thermal Camera," in Lecture Notes in

Computer Science, vol. 9127, Springer, Cham, SCIA 2015, p. 492–503.

[14] P. Pinggera, U. Franke and R. Mester, "High-performance long range obstacle

detection using stereo vision," in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Hamburg , 2015.

[15] N. Fürstenau, Virtual and Remote Control Tower: Research, Design,

Development and Validation, 2014.

[16] P. SMART, 07 2020. [Online]. Available: http://www.smartrail-automation-

project.net.

[17] J. Brownlee, "A Gentle Introduction to Computer Vision," July 2019. [Online].

Available: https://machinelearningmastery.com/what-is-computer-vision/.

[18] S. Long, X. He and C. Yao, "Scene Text Detection and Recognition: The Deep

Learning Era," Computer Vision and Pattern Recognition, November 2018.

[19] K. Bobkowska, A. Kaczyńska, A. Kosiński and M. Przyborski, "Digital

Photogrammetry in the Analysis of the Ventricles' Shape and Size," in Baltic

Geodetic Congress (BGC Geomatics), Gdansk, 2017.

Bibliography

149

[20] W. Zhao, J. Y, Chang, D. M. Smith and M. D. Ginsberg, "Disparity analysis

and its application to three-dimensional reconstruction of medical images," in

Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical

Systems, NC, USA, 1992.

[21] M. Kyrarini, Q. Zheng, M. A. Haseeb and A. Gräser, "Robot Learning of

Assistive Manipulation Tasks by Demonstration via Head Gesture-based

Interface," in IEEE 16th International Conference on Rehabilitation Robotics

(ICORR), Toronto, ON, Canada, 2019.

[22] D. Howard , "Enhanced driver safety with advanced vision systems," in Pan

Pacific Microelectronics Symposium (Pan Pacific), Waimea, HI, 2018.

[23] G. Jianju, M. Kyrarini, M. A. Haseeb, D. Ristic-Durrant and A. Gräser, "Safety

Surveillance System for Co-operative Robot using 360-Degree Camera," in

Conference: XIV International SAUM Conference on Systems, Automatic

Control and Measurements, Niš, Serbia, 2018.

[24] X. Li, X. Zhao, Y. Fu and Y. Liu, "Bimodal gender recognition from face and

fingerprint," in IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, San Francisco, CA, 2010.

[25] M. Alom, T. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. Nasrin, M. Hasan,

B. Van Essen, A. Awwal and V. Asari, "A State-of-the-Art Survey on Deep

Learning Theory and Architectures," Electronics 2019, vol. 8, p. 292, 2019.

[26] O. Campesato, Artificial Intelligence, Machine Learning, and Deep Learning,

San Francisco, CA: Stylus Publishing, LLC, 2020.

[27] M. R. M. Talabis, I. Miyamoto and D. Kaye, Information Security Analytics, R.

McPherson and J. L. Martin, Eds., Syngress, 2015.

[28] V. Roman, Jan 2019. [Online]. Available:

https://towardsdatascience.com/supervised-learning-basics-of-classification-

and-main-algorithms-c16b06806cd3.

[29] J. Brownlee, "Supervised and Unsupervised Machine Learning Algorithms," 16

Bibliography

150

March 2016. [Online]. Available:

https://machinelearningmastery.com/supervised-and-unsupervised-machine-

learning-algorithms/.

[30] J.-N. Vittaut, M.-R. Amini and P. Gallinari, "Learning Classification with Both

Labeled and Unlabeled Data," in Learning Classification with Both Labeled and

Unlabeled Data, 2002.

[31] A. Orhan E, "Computational Basis of Neural Elements," in Artificial Neural

Network for Drug Design, Delivery and Disposition, Elsevier , 2016, pp. 29-82.

[32] G. Shenk, August 2019. [Online]. Available:

https://www.functionize.com/blog/machine-learning-humans-behind-screen/.

[33] M. R. Tarabay, August 2020. [Online]. Available:

http://rafietarabay.blogspot.com/2019/05/pytorch-and-deep-learning.html.

[34] J. Duchi, E. Hazan and Y. Singer, "A Survey of Optimization Methods from a

Machine Learning Perspective," Journal of Machine Learning Research, vol.

12, p. 2121–2159, 2011.

[35] S. Raschka, August 2020. [Online]. Available:

http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-

optimization/.

[36] A. Bhande, "What is underfitting and overfitting in machine learning and how

to deal with it," July 2020. [Online]. Available:

https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-

learning-and-how-to-deal-with-it-6803a989c76.

[37] J. Bergstra and Y. Bengio, "Random Search for Hyper-Parameter

Optimization," Journal of Machine Learning Research, vol. 13, pp. 281-305,

2012.

[38] E. Ndiaye, T. Le, O. Fercoq, J. Salmon and I. Takeuchi, "Safe Grid Search with

Optimal Complexity," in International Conference on Machine Learning, 2019.

[39] J. Walsh, N. O' Mahony, S. Campbell, A. Carvalho, L. Krpalkova, G. Velasco-

Bibliography

151

Hernandez, S. Harapanahalli and D. Riordan, "Deep Learning vs. Traditional

Computer Vision," in Computer Vision Conference (CVC), Las Vegas, 2019.

[40] Z. Zhou, . N. V. Chawla, . Y. Jin and G. J. Williams, "Big Data Opportunities

and Challenges: Discussions from Data Analytics Perspectives [Discussion

Forum]," IEEE Computational Intelligence Magazine, vol. 9, no. 4, pp. 62-74,

November 2014.

[41] H. D. Hlynsson, N. Alberto, B. Escalante and W. Laurenz, "Measuring the Data

Efficiency of Deep Learning Methods," in 8th International Conference on

Pattern Recognition Applications and Methods, 2019.

[42] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-Based Learning

Applied to Document Recognition," in Proceedings of the IEEE, 1998.

[43] A. R., Brodtkorb, T. R., Hagen, S. Christian and H. Geir, "GPU computing in

discrete optimization. Part I: Introduction to the GPU," EURO Journal on

Transportation and Logistics, vol. 2, p. 129–157, 2013.

[44] nvidia. [Online]. Available: https://www.nvidia.com/en-us/self-driving-

cars/drive-platform/.

[45] Y. Liu, "Feature Extraction and Image Recognition with Convolutional Neural

Networks," Journal of Physics: Conference Series, vol. 6, September 2018.

[46] A. Dertat, 02 2020. [Online]. Available:

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-

neural-networks-584bc134c1e2.

[47] "Convolutional Neural Networks (CNNs / ConvNets)," Stanford CS class,

[Online]. Available: https://cs231n.github.io/convolutional-networks/.

[48] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with

Deep Convolutional Neural Networks," in Neural Information Processing

Systems, 2012.

[49] M. D Zeiler and R. Fergus, "Visualizing and Understanding Convolutional

Networks," 2013.

Bibliography

152

[50] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for

Large-Scale Image Recognition," 2014.

[51] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.

Vanhoucke and Rabinovich, " Going deeper with convolutions," in In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Boston, MA, USA, 2015.

[52] K. He, X. Zhang, S. Ren and J. Sun, " Deep residual learning for image

recognition," in In Proceedings of the IEEE, Las Vegas, NV, USA, 2016.

[53] J. Deng, W. Dong, R. Socher, L. Li, K. Li and L. Fei-Fei, "ImageNet: A Large-

Scale Hierarchical Image Database," [Online]. Available: http://www.image-

net.org/papers/imagenet_cvpr09.bib.

[54] X. Han, Y. Zhong, L. Cao and L. Zhang, "Pre-Trained AlexNet Architecture

with Pyramid Pooling and Supervision for High Spatial Resolution Remote

Sensing Image Scene Classification," Remote Sens, vol. 9, 2017.

[55] G. Huang, Z. Liu, L. Van Der Maaten and K. Weinberger, "Densely connected

convolutional networks," in In Proceedings of the IEEE conference on

computer vision and pattern recognition , 2017.

[56] G. Larsson, M. Maire and G. Shakhnarovich, "Fractalnet: Ultra-deep neural

networks without residuals," in arXiv preprint arXiv:1605.07648, 2016.

[57] S. Sabour, N. Frosst and G. Hinton, "Dynamic routing between capsules," in

Advances in neural information processing systems , 2017.

[58] K. Zhang, W. Zuo, S. Gu and L. Zhang, "earning deep CNN denoiser prior for

image restoration," in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2017.

[59] M. Alom, M. Hasan, C. Yakopcic, T. Taha and V. Asari, "Improved inception-

residual convolutional neural network for object recognition," Neural

Computing and Applications, vol. 32, no. 1, pp. 279-293, 2020.

[60] S. Gao, Z. Miao, Q. Zhang and Q. Li, "DCRN: Densely Connected Refinement

Bibliography

153

Network for Object Detection," Journal of Physics: Conference Series, vol.

1129, no. 1, 2019.

[61] J. Long, E. Shelhamer and T. Darrell, "Fully convolutional networks for

semantic segmentation," in In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Boston, MA, USA, 2015.

[62] V. Badrinarayanan, A. Kendall and R. Cipolla, "SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation," IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481-2495,

December 2017.

[63] G. Lin, A. Milan, C. Shen and I. Reid, "Refinenet: Multi-path refinement

networks for high-resolution semantic segmentation," in In Proceedings of the

2017 IEEE Conference on Computer Vision and Pattern Recognition CVPR, ,

Honolulu, HI, USA, 2017.

[64] H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, "Pyramid scene parsing network," in

In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Honolulu, HI, USA, 2017.

[65] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. Yuille, "Deeplab:

Semantic image segmentation with deep convolutional nets, atrous convolution,

and fully connected," in IEEE Trans. Pattern Anal. Mach. Intell., 2018.

[66] R. Girshick, J. Donahue, T. Darrell and J. Malik, " Rich feature hierarchies for

accurate object detection and," in In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition CVPR, Columbus, OH, USA, 2014.

[67] T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, "Focal Loss for Dense

Object Detection," in Computer Vision and Pattern Recognition (CVPR), 2018.

[68] R. Girshick, "Fast R-CNN," in International Conference on Computer Vision

(ICCV), 2015.

[69] K. He, G. Gkioxari, P. Dollár and R. Girshick, "Mask R-CNN," in IEEE

International Conference on Computer Vision (ICCV), Venice, 2017.

Bibliography

154

[70] J. Redmon, S. Divvala, . R. Girshick and A. Farhadi, "You Only Look Once:

Unified, Real-Time Object Detection," in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Las Vegas, NV, 2016.

[71] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg,

"SSD: Single Shot MultiBox Detector," Lecture Notes in Computer Science,

Springer International Publishing, p. 21–37, 2016.

[72] P. Viola and M. Jones, "Rapid Object Detection Using a Boosted Cascade of

Simple Features," in IEEE Computer Society Conference on Computer Vision

and Pattern Recognition. CVPR , Kauai, HI, USA, 2001.

[73] D. Lowe, "Distinctive image features from scale-invariant keypoints,"

International Journal of Computer Vision, vol. 60, p. 91–110, 2004.

[74] H. Bay, T. Tuytelaars and L. Van Gool, "Surf: Speeded up robust features," in

In European Conference on Computer Vision, Springer , Berlin, Germany,

2006.

[75] K. Mikolajczyk and C. Schmid, "A Performance Evaluation of Local

Descriptors," IEEE TRANSACTIONS ON PATTERN ANALYSIS AND

MACHINE INTELLIGENCE, vol. 27, no. 19, pp. 1615-1630, October 2005.

[76] N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human

Detection," in In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, San Diego, CA, USA, 2005.

[77] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,

HI, 2017.

[78] J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement," in ArXiv

abs/1804.02767, 2018.

[79] R. Girshick, "Fast R-CNN," in IEEE International Conference on Computer

Vision (ICCV), Santiago, 2015.

[80] J. Hui, August 2019. [Online]. Available:

Bibliography

155

https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-

yolov2-28b1b93e2088..

[81] L. Van Gool and A. Neubeck, "Efficient Non-Maximum Suppression," in 18th

International Conference on Pattern Recognition, Hong Kong, 2006.

[82] J. Redmon. [Online]. Available: http://pjreddie.com/darknet/, 2013{2016.

[83] N. Developer, August 2020. [Online]. Available:

https://developer.nvidia.com/about-cuda.

[84] August 2020. [Online]. Available: https://github.com/Cartucho/mAP.

[85] M. E. Aidouni, October 2019. [Online]. Available:

https://manalelaidouni.github.io/manalelaidouni.github.io/Evaluating-Object-

Detection-Models-Guide-to-Performance-Metrics.html.

[86] M. Johnson, "How much data is enough? Predicting how accuracy varies with

training data size," 2017.

[87] H. Caesar, V. Bankiti, A. Lang, S. Vora, V. Liong, Q. Xu, A. Krishnan, Y. Pan,

G. Baldan and O. Beijbom, "nuScenes: A multimodal dataset for autonomous

driving," in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2020.

[88] A. Patil, S. Malla, H. Gang and Y. Chen, "The H3D Dataset for Full-Surround

3D Multi-Object Detection and tracking in crowded urban scenes," in 2019

International Conference on Robotics and Automation (ICRA), 2019.

[89] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and C.

Zitnick, "Microsoft COCO: Common Objects in Context," ECCV 2014, Lecture

Notes in Computer Science, vol. 8693, 2014.

[90] A. Geiger, P. Lenz and R. Urtasun, "Are we ready for autonomous driving? The

KITTI vision benchmark suite,," in IEEE Conference on Computer Vision and

Pattern Recognition, Providence, RI, 2012.

[91] A. Kashani, M. Olsen, C. Parrish and N. Wilson, "A Review of LIDAR

Bibliography

156

Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous

Radiometric Calibration," Sensors , vol. 15, pp. 28099-28128, 2015.

[92] J. Hecht, "Lasers for Lidar: FMCW lidar: An alternative for self-driving cars,"

2019.

[93] Y. Wang, C. Peng, A. Ravankar and A. Ravankar, "A single LiDAR-based

feature fusion indoor localization algorithm," Sensors, vol. 18, no. 4, p. 1294,

2018.

[94] T. Gee, J. James, W. Van Der Mark, P. Delmas and G. Gimel'farb, "Lidar

guided stereo simultaneous localization and mapping (SLAM) for UAV outdoor

3-D scene reconstruction," in 2016 International Conference on Image and

Vision Computing New Zealand (IVCNZ), 2016.

[95] B. Schwarz, "Mapping the world in 3D," Nature Photonics, vol. 4, no. 7, pp.

429-430, 2010.

[96] W. Ali, S. Abdelkarim, M. Zidan, M. Zahran and A. El Sallab, "Yolo3d: End-

to-end real-time 3d oriented object bounding box detection from lidar point

cloud," in Proceedings of the European Conference on Computer Vision

(ECCV), 2018.

[97] D. Ristić-Durrant, G. Gao and A. Leu, "Facta Universitatis, Series: Automatic

Control and Robotics," Low-level sensor fusion-based human tracking for

mobile robot, vol. 1, no. 1, pp. 17-32, 2016.

[98] J. Hecht, "Lidar for self-driving cars," Optics and Photonics News, vol. 29, no.

1, pp. 26-33, 2018.

[99] N. Qian, "Binocular disparity and the perception of depth," Neuron, vol. 18, no.

3, pp. 359-368, 1997.

[100] L. Matthies, R. Szeliski and T. Kanade, "Incremental estimation of dense depth

maps from image sequences," in CVPR, 1988.

[101] N. Short, "3-D Point Cloud Generation from Rigid and Flexible Stereo Vision

Systems," 2020.

Bibliography

157

[102] M. Bertozz, A. Broggi and A. Fascioli, "Stereo inverse perspective mapping:

theory and applications," Image and vision computing, vol. 16, no. 8, pp. 585-

590, 1998.

[103] J. Zhu and e. al, "Learning Object-specific Distance from a Monocular Image,"

in International Conference on Computer Vision (ICCV), Seoul, Korea, 2019.

[104] Z. Sadreddini, T. Çavdar and H. Jond, "A distance measurement method using

single camera for indoor environments," in 2016 39th International Conference

on Telecommunications and Signal Processing (TSP), 2016.

[105] A. Ali, A. Hassan, A. Ali, H. Khan, W. Kazmi and A. Zaheer, "Real-time

vehicle distance estimation using single view geometry," in The IEEE Winter

Conference on Applications of Computer Vision, 2020.

[106] "Lyft Level 5 Dataset," [Online]. Available: https://self-

driving.lyft.com/level5/data/.

[107] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva and A. Torralba, "SUN database:

Large-scale scene recognition from abbey to zoo," in IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, San Francisco, CA,

2010.

[108] M. Everingham, S. Eslami, L. Van Gool, C. Williams, J. Winn and A.

Zisserman, "The PASCAL Visual Object Classes Challenge: A Retrospective,"

in International Journal of Computer Vision, 2015.

[109] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.

Karpathy, A. Khosla, M. Bernstein and A. Berg, "Imagenet large scale visual

recognition challenge," International Journal of Computer Vision, vol. 115, pp.

211-252, 2015.

[110] P. Dollár, C. Wojek, B. Schiele and P. Perona, "Pedestrian Detection: A

Benchmark," in IEEE Conference on Computer Vision and Pattern Recognition,

Miami, FL, 2009.

[111] S. Ren, K. He, R. Girshick and J. Sun, "Faster r-cnn: Towards real-time object

Bibliography

158

detection with region proposal networks," IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, June 2017.

[112] Y. Li, H. Qi, J. Dai, X. Ji and Y. Wei, "Fully Convolutional Instance-Aware

Semantic Segmentation," in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

[113] "The Imaging Source Europe GmbH," July 2020. [Online]. Available:

https://www.theimagingsource.com/products/zoom-autofocus-cameras/gige-

color-zoom-cameras/dfkz12gp031/.

[114] F. Systems, July 2020. [Online]. Available: https://www.flir.com/products/tau-

2/.

[115] D. Ristić-Durrant, M. A. Haseeb, M. Banić and I. Ćirić, "D1.1 Obstacle

Detection System Requirements and Specification," Bremen, 2019.

[116] M. A. H. M. B. a. D. R. Danijela Ristić-Durrant, "D2.1 - Report on selected

sensors for multi-sensory system for obstacle detection," Bremen, 2017.

[117] "3D LiDAR sensors LD-MRS / LD-MRS 4-Layer / Outdoor," SICK, [Online].

Available: https://www.sick.com/ag/en/detection-and-ranging-solutions/3d-

lidar-sensors/ld-mrs/ld-mrs400001s01/p/p251942.

[118] "USB GPS Module," [Online]. Available:

https://www.hardkernel.com/shop/usb-gps-module/.

[119] "SMART - Smart Automation of Rail Transport," [Online]. Available:

http://www.smartrail-automation-project.net/.

[120] M. Haseeb, D. Ristic-Durrant, A. Gräser, B. M. and S. D., "Multi-DisNet:

Machine Learning-Based Object Distance Estimation from Multiple Cameras,"

in International Conference on Computer Vision Systems, 2019.

[121] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler and

A. Ng, "ROS: an open-source Robot Operating System," in ICRA workshop on

open source software, 2009.

Bibliography

159

[122] "Approximate Time," ROS, [Online]. Available:

http://wiki.ros.org/message_filters/ApproximateTime.

[123] B. Russell, A. Torralba, K. Murphy and W. Freeman, "LabelMe: a database and

web-based tool for image annotation," International journal of computer vision,

vol. 77, no. 1-3, pp. 157-173, 2008.

[124] M. Haseeb, J. Guan, D. Ristic-Durrant and A. Gräser, "Disnet: A novel method

for distance estimation from monocular camera," in 10th Planning, Perception

and Navigation for Intelligent Vehicles (PPNIV18), IROS, 2018.

[125] M. Haseeb, D. Ristić-Durrant and A. Gräser, "Long-range obstacle detection

from a monocular camera," in ACM Computer Science in Cars Symposium

(CSCS 2018), ECCV, 2018.

[126] "Tuning the hyper-parameters of an estimator," scikit learn, [Online]. Available:

https://scikit-learn.org/stable/modules/grid_search.html#grid-search.

[127] D. Kingma and J. Ba, "Adam: A method for stochastic optimization," in arXiv

preprint arXiv:1412.6980, 2014.

[128] T. Tieleman and G. Hinton, "Lecture 6.5-rmsprop, coursera: Neural networks

for machine learning," University of Toronto, Technical Report, 2012.

[129] "Layer weight initializers," Keras, [Online]. Available:

https://keras.io/api/layers/initializers/.

[130] S. Chatterjee and A. Hadi, Regression analysis by example, John Wiley & Sons,

2015.

[131] R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the

Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267-288,

1996.

[132] J. Wang, A. Hertzmann and D. Fleet, "Gaussian process dynamical models,"

Advances in neural information processing systems, pp. 1441-1448, 2006.

[133] J. Suykens and J. Vandewalle, "Least squares support vector machine

Bibliography

160

classifiers," Neural processing letters, vol. 9, no. 3, pp. 293-300, 1999.

[134] D. Lee, J. In and S. Lee, "Standard deviation and standard error of the mean,"

Korean journal of anesthesiology, vol. 68, no. 3, p. 220, 2015.

[135] A. Leu, D. Aiteanu and A. Gräser, "High speed stereo vision based automotive

collision warning system," Applied Computational Intelligence in Engineering

and Information Technology, pp. 187-199, 2012.

[136] A. Leu, D. Bacără, D. Aiteanu and A. Gräser, "Hardware acceleration of image

processing algorithms for collision warning in automotive applications," in

Methods and Applications in Automation: 32nd – 33rd Colloquium of

Automation, Salzhausen/Leer, Germany, 2012.

[137] August 2020. [Online]. Available:

https://www.itread01.com/content/1541167345.html.

[138] Z. E. and Z. Y., "Average Precision," Encyclopedia of Database Systems, 2009.

[139] A. Dutta and A. Zisserman, "The VIA annotation software for images, audio

and video," in Proceedings of the 27th ACM International Conference on

Multimedia, 2019.

[140] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, P. M. and E. Duchesnay, "Scikit-learn: Machine

Learning in Python," Journal of Machine Learning, Research, 2011.

[141] D. Ristić-Durrant, M. A. Haseeb, M. Banić, S. D., S. M., Ć. I., N.-k. V., N. D.

and R. D., "SMART: a novel on-board integrated multi-sensor long-range

obstacle detection system for railways," in RAILCON, 2018.

[142] L. Duvieubourg, F. Cabestaing, S. Ambellouis and P. Bonnet, "Long distance

vision sensor for driver assistance," IFAC Proceedings Volumes, vol. 40, no. 15,

pp. 330-336, 2007.

[143] "Shift2Rail Joint Undertaking, Multi-Annual Action Plan," Brussels, 2015.

Bibliography

161

[144] Y. Zhang, Y. Huang and L. Wang, "Multi-task deep learning for fast online

multiple object tracking," in 2017 4th IAPR Asian Conference on Pattern

Recognition (ACPR), 2017.

[145] A. Kuramoto, M. Aldibaja, R. Yanase, J. Kameyama, K. Yoneda and N.

Suganuma, "Mono-camera based 3d object tracking strategy for autonomous

vehicles," in 2018 IEEE Intelligent Vehicles Symposium (IV), 2018.

[146] Y. Huang, T. Huang and H. Niemann, "A region-based method for model-free

object tracking," in Object recognition supported by user interaction for service

robots, 2002.

[147] H. Cho, S. Song, J. Kim and J. Cho, "Simple object coordination tracking based

on background modeling," in 2015 Signal Processing: Algorithms,

Architectures, Arrangements, and Applications (SPA), 2015.

[148] M. Yokoyama and T. Poggio, "A contour-based moving object detection and

tracking," in Visual Surveillance and Performance Evaluation of Tracking and

Surveillance, 2005.

[149] L. Fan, "A feature-based object tracking method using online template

switching and feature adaptation," in 2011 Sixth International Conference on

Image and Graphics, 2011.

[150] H. Hsu and J. Ding, "FasterMDNet: Learning model adaptation by RNN in

tracking-by-detection based visual tracking," in 2017 Asia-Pacific Signal and

Information Processing Association Annual Summit and Conference (APSIPA

ASC) , 2017.

[151] M. Haseeb, D. Ristić-Durrant and A. Gräser, " A deep learning based

autonomous distance estimation and tracking of multiple objects for

improvement in safety and security in railways," in BMVC 2019 workshop on

Object Detection and Recognition for Security Screening (ODRSS2019),

Cardiff, 2019.

[152] "The imaging Source - Technology based on standards," [Online]. Available:

Bibliography

162

https://www.theimagingsource.com/.

[153] D. Barney, D. Haley and G. Nikandros, "Calculating train braking distance," in

Conferences in Research and Practice in Information Technology Series, 2001.

[154] "10-Gigabit Smart Managed Pro Switch Series," [Online]. Available:

https://www.netgear.com/business/products/switches/smart/XS708T.aspx.

[155] S. Cousins, "Welcome to ros topics [ros topics]," IEEE Robotics & Automation

Magazine, vol. 17, no. 1, pp. 13-14, 2010.

[156] S. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. Eng, D. Rus and

M. Ang, "Perception, Planning, Control, and Coordination for Autonomous

Vehicles," Machines , vol. 6, no. Mechatronics: Intelligent Machines, 2017.

[157] A. Geiger, P. Lenz, C. Stille and R. Urtasun, "Vision meets robotics: the KITTI

dataset," The International Journal of Robotics Research, vol. 32, pp. 1231-

1237, 2013.

[158] J. Hui, "Real-time Object Detection with YOLO, YOLOv2 and now YOLOv3,"

17 March 2018. [Online]. Available: https://medium.com/@jonathan_hui/real-

time-object-detection-with-yolo-yolov2-28b1b93e2088.

[159] "Choosing a Convolutional Neural Network Architecture for Real-Time Object

Tracking (Part 1)," 1 December 2017. [Online]. Available:

https://blog.kickview.com/choosing-a-convolutional-neural-network-

architecture-for-real-time-object-tracking-part-1/.

[160] A. Rosebrock, "Intersection over Union (IoU) for object detection," 7

November 2016. [Online]. Available:

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-

object-detection/.

[161] Y. Liu, "The Confusing Metrics of AP and mAP for Object Detection / Instance

Segmentation," 25 October 2018. [Online]. Available:

https://medium.com/@yanfengliux/the-confusing-metrics-of-ap-and-map-for-

object-detection-3113ba0386ef.

Bibliography

163

[162] J. Hui, "mAP (mean Average Precision) for Object Detection," 6 March 2018.

[Online]. Available: https://medium.com/@jonathan_hui/map-mean-average-

precision-for-object-detection-45c121a31173.

[163] "Most popular metrics used to evaluate object detection algorithms," Python

Awesome, 21 July 2018. [Online]. Available:

https://pythonawesome.com/most-popular-metrics-used-to-evaluate-object-

detection-algorithms/.

[164] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, "Vision meets robotics: The kitti

dataset," International Journal of Robotics Research, vol. 32, no. 11, pp. 1231-

1237, 2013.

Appendix A: Publications by the author

164

Appendix A: Publications by the author

This appendix lists the publications by the author, which have been produced

throughout this thesis, and they are the basis of this thesis.

Related Publications to the PhD thesis

[1] Ristic-Durrant, D., Haseeb, M.A., Franke, M., Banić, M., Simonović, M. and

Stamenković, D., 2020. Artificial intelligence for obstacle detection in

railways: Project SMART and beyond. In 1st International Workshop on

Artificial Intelligence for RAILwayS (AI4RAILS), Dependable Computing -

EDCC 2020 Workshops, Springer, Munich, Germany

[2] Haseeb, M.A., Ristic-Durrant, D., Gräser, A., Banić M. and Stamenković D.,

2019. Multi-DisNet: Machine Learning-Based Object Distance Estimation

from Multiple Cameras. In International Conference on Computer Vision

Systems (ICCV), pp. 457-469. Springer, Cham., Thessaloniki, Greece, doi:

10.1007/978-3-030-34995-0_41

[3] Haseeb, M.A., Ristic-Durrant, D., Gräser, A., 2019. A deep learning based

autonomous distance estimation and tracking of multiple objects for

improvement in safety and security in railways. In British Machine Vision

Conference (BMVC) - Workshop on Object Detection and Recognition for

Security Screening (ODRSS2019), Cardiff, UK

[4] Haseeb, M.A., Guan, J., Ristic-Durrant, D. and Gräser, A., 2018. Disnet: A

novel method for distance estimation from monocular camera. 10th Planning,

Perception and Navigation for Intelligent Vehicles (PPNIV18), IROS, Madrid,

Spain.

[5] Haseeb, M.A., Ristić-Durrant, D. and Gräser, A., 2018. Long-range obstacle

detection from a monocular camera. In ACM Computer Science in Cars

Symposium (CSCS 2018), ECCV, Munich, Germany

[6] Ristić-Durrant, D., Haseeb, M.A., Emami, D., Gräser, A., 2018. Multimodal

Sensor Fusion for Reliable Detection of Obstacles on Railway Tracks. Journal

of Mechatronics, Automation and Identification Technology, 3(2), pp. 1-7,

Novi Sad, Serbia

[7] Ristić-Durrant, D., Haseeb, M.A., Banić M., Stamenković, D., Ćirić, I.,

Simonović, M., Nikolić, V., Nikolić, D. and Radovanović, D., 2018. SMART:

Appendix A: Publications by the author

165

a novel on-board integrated multi-sensor long-range obstacle detection system

for railways. RAILCON, Nis, Serbia.

[8] Ristić-Durrant, D., Haseeb M. A., Emami, D., Gräser A., 2018, SMART

concept of an integrated multi-sensory on-board system for obstacle

recognition in 7th Transport Research Arena (TRA) , Vienna, Austria

[9] Ristić-Durrant, D., Haseeb, M.A., Emami, D., Gräser, A., Ćirić, I.,

Simonović, M., Nikolić, V., Nikolić, D., Eßer, F.P., Schindler, C., 2017.

Reliable Obstacle Detection for Smart Automation of Rail Transport. In 1st

International Railway Symposium Aachen (IRSA), Aachen, Germany. doi:

10.18154/RWTH-2018-222952

Other Publications

[1] Kyrarini M., Haseeb M.A., Ristić-Durrant D., Gräser A., 2019. Robot

Learning of Industrial Assembly Task via Human Demonstrations.

Autonomous Robots, 43(1), pp. 239-257. doi: 10.1007/s10514-018-9725-6

[2] Kyrarini M., Zheng Q., Haseeb M.A, Gräser A., 2019. Robot Learning of

Assistive Manipulation Tasks by Demonstration via Head Gesture-based

Interface. In International Conference on Rehabilitation Robotics (ICORR),

Toronto, Canada, pp.210-216. IEEE. doi: 10.1109/ICORR.2019.8779521

[3] Haseeb M.A, Kyrarini M., Jiang S., Ristić-Durrant D., Gräser A., 2018. Head

Gesture-based Control for Assistive Robots. In 11th ACM International

Conference on Pervasive Technologies Related to Assistive Environments

(PETRA), Corfu Greece, pp. 379-383. ACM. doi: 10.1145/3197768.3201574

[4] Guan J., Kyrarini M., Haseeb M.A, Ristić-Durrant D., Gräser A., 2018. Safety

Surveillance System for Co-operative Robot using 360-Degree Camera. In

XIV International SAUM Conference on Systems, Automatic Control and

Measurements, Niš, Serbia

[5] Kyrarini M., Haseeb M.A., Ristić-Durrant D., Gräser A., 2017. Robot

Learning of Object Manipulation Task Actions from Human Demonstrations.

Facta Universitatis, series: Mechanical Engineering (FU Mech Eng), 15(2),

pp. 217-229. doi: 10.22190/FUME170515010K

166

Abbreviations

167

Abbreviations

ANN Artificial Neural Network

CNN Convolutional Neural Network

DisNet Distance Network

DisNet-RNN-Tracker
Distance Network and Reccurent Neural Network based

object Tracker

DL Deep Learning

GRU Gated Recurrent Unit

LRODD
Long-Range Obstacle Detection and Distance Estimation

Dataset

LSTM Long Short-Term Memory

MAE Mean Absolute Error

ML Machine Learning

MOM Multiple Object Mapping

MSE Mean Square Error

Multi-DisNet Multiple cameras – Distance Network

ODS Obstacle Detection System

RGB Red-Green-Blue

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RTS Real Time Systems

YOLO You Only Look Once

YOLO-D You Only Look Once – Distance Estimation

168

Table of Figures

169

Table of Figures

Figure 1. The grouping of AI and its sub-groups [25] ... 8

Figure 2. Category of Deep Learning approaches [25] .. 10

Figure 3. A basic artificial neural network architecture .. 10

Figure 4. The architecture of basic computational unit in ANN 11

Figure 5. Three most common activation functions [33] ... 12

Figure 6. Gradient Descent [35] ... 13

Figure 7. Regularisation [36] ... 14

Figure 8. A plot of MAE and MSE Loss (Y-axis) vs Predictions (X-axis) 15

Figure 9. The deep learning efficiency with regard to the amount of data 18

Figure 10. Example of convolution operation [46] .. 19

Figure 11. Accuracy of different DL models on ImageNet classification challenge

[25] ... 20

Figure 12. AlexNet architecture [54] ... 21

Figure 13. YOLO’s Image Grid. Each grid cell detects only one object [80] 23

Figure 14. Each grid cell making a fixed number of bounding boxes for one object

[80] ... 24

Figure 15. YOLO making S x S predictions with B bounding boxes [80] 25

Figure 16. YOLO detecting B bounding boxes for a single image with S x S grid 25

Figure 17. YOLO Network Architecture [70] ... 26

Figure 18. YOLOv2 Accuracy and Speed Compared to other Object Detectors [77] 28

Figure 19. YOLOv3 Network Architecture [73] ... 29

Figure 20. Darknet-53 layers [78] .. 30

Figure 21. Illustration of Intersection over Union (IoU) [84] 31

Table of Figures

170

Figure 22 An example of all-points interpolation in Precision-Recall curve [85] 34

Figure 23. Recording Platform of KITTI dataset [90] ... 36

Figure 24. Detailed information on the recording platform [90] 36

Figure 25. Examples from KITTI dataset [90] .. 37

Figure 26. An example of labeled images in KITTI dataset [90] 38

Figure 27. The stereo vision setup ... 40

Figure 28. Input – First frame (left image), Depth image (center), Prespective view

(right) [100] .. 41

Figure 29. Error-Depth diagram for narrow and wide baseline [101] 42

Figure 30. Framework of the base model [103] ... 43

Figure 31. The Framework of the enhanced model [103] ... 44

Figure 32. DFK Z12GP031 from the Imaging Source [113] 48

Figure 33. FLIR Tau2 Camera and objective lens [114] ... 49

Figure 34. A monochrome CMOS camera sensor equipped with image intensifier and

objective lens [116] .. 50

Figure 35. Laser scanner LD-MRS400001S01 from SICK [117] 51

Figure 36. USB GPS module from Odroid [118] .. 52

Figure 38. Field tests performed in University Campus Test-stand with the vision

sensors and laser scanner. .. 53

Figure 37. Example images from the experiments at the University of Bremen

Campus .. 53

Figure 39. Field tests performed on the straight rail tracks; Test-stand with the vision

sensors viewing the rail tracks and an object (person) on the rail track. 54

Figure 40. RGB and thermal images recorded in field experiments performed on the

long-range straight rail tracks for dataset generation [120] ... 55

Figure 41. SMART ODS mounted on Serbian freight train during dynamic tests 56

Table of Figures

171

Figure 42. Example images of a real-world scene captured during dynamic

experiments .. 56

Figure 43. Time approximate synchronization of data at carrying frequency [122] ... 57

Figure 44. Bounding Box Toolbox for Annotation of Images 59

Figure 45. Flow Chart for Dataset Augmentation ... 61

Figure 46. Black bicycle overlaid at 60 m (left). Red bike rotated by 180 degrees

overlaid at 60 m (right) .. 62

Figure 47. Augmentation Example of a Bicycle .. 62

Figure 48. The DisNet -based system used for object distance estimation from a

monocular camera [89] .. 66

Figure 49. Example of some objects bounding boxes at various distances 67

Figure 50. Distance vs inverse and non-inverse bounding box features 69

Figure 51. (a) Distance Estimation Accuracy and (b) Mean Absolute Error achieved

for different numbers of hidden layers ... 69

Figure 52. Distance Estimation Accuracy achieved for different number of hidden

neurons per hidden layer in 3-hidden layers neural network DisNet 70

Figure 53. The structure of DisNet used for object distance prediction 71

Figure 54. the distance estimation vs ground truth distance .. 72

Figure 55. Distance accuracy of DisNet vs other models .. 73

Figure 56. DisNet estimation of distances to objects in a rail track scene from the

RGB camera image. Distance estimation of detected persons at 100 m 75

Figure 57. DisNet estimation of distances to objects in a rail track scene from the

RGB camera image. Magnified RGB image overlaid with bounding boxes and

distance estimation of detected persons at 50, 100, 150, and 300 m respectively. 75

Figure 58. Object detection and distance estimation in RGB camera image recorded in

winter (snow) environmental conditions; Ground truth distance: 835 m (0,97 % and

1,74% respectively). ... 76

Table of Figures

172

Figure 59. DisNet estimation of distances to objects in a rail track scene from the

thermal images. Distance estimation of detected persons at 100 m 77

Figure 60. DisNet estimation of distances to objects in a rail track scene from the

thermal images. Distance estimation of detected persons at 50, 100, 150 and 500 m

respectively .. 78

Figure 61. DisNet estimation of distances to objects in a rail track scene from the

night vision images. ... 79

Figure 62. Four subsequent frames of the RGB camera video overlaid with the

bounding boxes of the detected objects as well as with the estimated distances from

the locomotive to the objects ... 81

Figure 63. Mid-range object detection and distance estimation in on-board RGB

camera image; Ground truth distance: 272.75 m (error 10%) 82

Figure 64. Mid-range object detection and distance estimation in on-board RGB

camera image; Ground truth distance: 231.97 m (errors 8.2% and 8.24% respectively)

 .. 83

Figure 65. Mid- to Long-range object detection and distance estimation in on-board

RGB camera (zoom) image; Ground truth distance: for persons (station middle point)

266.69 m (average error 8.32%), for the car 597.87 m (error 0,69%) 83

Figure 66. Object detection and distance estimation in onboard thermal camera image

recorded in the environmental condition of 38°C; Good detection result in spite of

low-contrast image; Ground truth distance for a person: 155 m (0.025 %) 84

Figure 67. Mid-range object detection and distance estimation in on-board night

vision camera image; Ground truth distance: 162 m, 181 m and 176 m opposed to

158.68 m, 182.90 and 179.99 m respectively. ... 84

Figure 68. Road scene image overlaid with objects recognition and distance

estimation results achieved by proposed DisNet and by stereo-vision based HiSpe3D

method [124] .. 86

Figure 69. The graphical representation of YOLO architecture and modification on its

final detection layers [137] .. 88

Figure 70. The architecture of modified YOLOv3 (YOLO-D) 89

Table of Figures

173

Figure 71. 1st and 2nd training stage of the based on MAE-distance loss function 93

Figure 72. 1st and 2nd training stage of the based on MAE-distance loss function 94

Figure 73. Number of ground-truth labelled cars and persons in the test dataset 95

Figure 74. Detection results of network based on MAE-distance loss 95

Figure 75. An example of true positive and false positive during the evaluation

process .. 96

Figure 76. PR curve of car prediction by network-based on MAE and MSE-distance

loss ... 96

Figure 77. PR curve of person prediction by network-based on MAE and MSE

distance loss ... 97

Figure 78. Average Precision of prediction by network-based on MAE and MSE

distance loss ... 97

Figure 79. Detected objects at 320m by network-based on MAE-distance loss 98

Figure 80. Detected objects at 320m by network-based on MSE-distance loss 98

Figure 81. Scatter plot of distance on the network based on MAE and MSE distance

loss ... 100

Figure 35. YOLO-D detection result of test image 1 from KITTI dataset 101

Figure 36. YOLO-D detection result of test image 2 from KITTI dataset 101

Figure 37. YOLO-D detection result of test image 3 from KITTI dataset 102

Figure 38. Objects distance estimated by YOLO-D vs DisNet vs HiSpe3D-Vision

method .. 103

Figure 39. YOLO-D detection result of test image 1 from LRODD dataset 104

Figure 40. YOLO-D detection result of test image 2 from LRODD dataset 104

Figure 41: YOLO-D detection result of test image 3 from LRODD dataset 105

Figure 89. The Multi-DisNet-based system for object distance estimation from a

multi-camera system. ... 109

Table of Figures

174

Figure 90. The structure of Multi-DisNet for the estimation of object distance from

the multi-sensory system [120] .. 111

Figure 91. Ground truth vs estimated object distance from testing dataset [120] 111

Figure 92. Manually detected objects in magnified RGB (left) and thermal images

(right) from the long-range dataset field tests [120] .. 112

Figure 93. Object detected in RGB and Thermal images using the YOLO object

detector [120] ... 113

Figure 94. Vision sensors for obstacle detection integrated into sensors’ housing

mounted on the frontal profile of a locomotive below the headlights [120] 114

Figure 95. Three subsequent synchronized frames of RGB and thermal cameras of the

scene with a person crossing the rail tracks accidentally, with the YOLO object

bounding boxes overlaid. YOLO failed to extract the object bounding box in the last

thermal camera frame. ... 116

Figure 96. DisNet-RNN Tracker based object distance estimation and tracking system

from a monocular camera [151] ... 121

Figure 97. DisNet-RNN Tracker Architecture consists of two sub-networks namely

distance estimator on top and bounding box predictor in bottom [151] 124

Figure 98. Dataset generation for bounding box prediction [151] 124

Figure 99. Left: Mean Absolute Error (loss) in distance estimation of DisNet-RNN

Tracker for detection in 1, 2, and 3 subsequent frames. Right: Distance Accuracy vs

Different mean absolute error [151] .. 127

Figure 100. Multiple Object Mapping based object association of current detected

objects and previously detected objects ... 128

Figure 101. A real-world scene where truck is parked near rail track and the van

crossing the rail track while train approaching [151] .. 130

Figure 102. Block-diagram of ROS-based software architecture of SMART ODS .. 138

