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Abstract 

An environment perception system is one of the most critical components of an 

automated vehicle, which is defined as a vehicle where the driver does not require to 

monitor the vehicle’s behaviour and its surroundings during driving. This thesis 

addresses some of the main challenges in the development of vision-based 

environment perception methods for automated driving, focusing on railway vehicles. 

The thesis aims at developing methods for detecting obstacles on the rail tracks in 

front of a moving train to reduce the number of collisions between trains and various 

obstacles, thus increasing the safety of rail transport. 

In the field of autonomous obstacle detection for automated driving, besides 

recognising the objects on the way, the crucial information for collision avoidance is 

estimated distances between the vehicle and the recognised objects (e.g. cars, 

pedestrians, cyclists). With the limited capabilities of current state-of-the-art sensor-

based environment perception approaches, it is unrealistic to detect distant objects and 

estimates the distance to them. Mid-to-long-range obstacle detection system is one of 

the fundamental requirements for heavy vehicles such as railway vehicle or trucks, 

due to required long braking distance. However, this problem is unaddressed in the 

computer vision community. The emphasis of this thesis is on the development of 

robust and reliable algorithms for real-time vision-based mid-to-long-range obstacle 

detection. In this thesis, the algorithms for obstacle detection from single cameras 

were developed and evaluated on images captured from RGB, Thermal and Night-

Vision camera. 

The developed algorithms are based on advanced machine/deep learning techniques. 

The development of machine-learning-based algorithms was supported by a novel 

mid-to-long-range obstacle detection dataset for railways that is proposed in the 

thesis, which compiles of annotated images with the object class, bounding box, and 

ground truth distance to the object. 

The developed novel methods for autonomous long-range obstacle detection, tracking 

and distance estimation for railways were evaluated on real-world images, which were 

recorded in different illumination and weather conditions by the obstacle detection 

system mounted on a static test-bed set-up on the straight rail track and as well on a 
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moving train. Although the focus is on railways, the developed algorithms are also 

capable to use for road vehicles, hence evaluated on the images of road-scene 

captured by a camera mounted on moving cars. 
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Kurzfassung 

Ein System zur Wahrnehmung der Umgebung ist eine der kritischsten Komponenten 

eines automatisierten Fahrzeugs, der Definition nach also eines Fahrzeugs, bei dem 

der Fahrer das Verhalten des Fahrzeugs und seiner Umgebung während der Fahrt 

nicht überwachen muss. Diese Arbeit befasst sich mit einigen der wichtigsten 

Herausforderungen in der Entwicklung sensorgestützter Methoden zur 

Umgebungswahrnehmung im Kontext automatisierten Fahrens, wobei der 

Schwerpunkt auf Schienenfahrzeugen liegt. Ziel der Arbeit ist die Entwicklung von 

Methoden zur Erkennung von Hindernissen auf den Gleisen vor einem fahrenden 

Zug, um die Anzahl der Kollisionen zwischen Zügen und verschiedenen Hindernissen 

zu reduzieren und damit die Sicherheit des Schienenverkehrs zu erhöhen. 

Im Bereich der autonomen Hinderniserkennung für automatisiertes Fahren sind neben 

der Erkennung der Objekte auf der Straße die für die Kollisionsvermeidung 

entscheidenden Informationen die geschätzten Abstände zwischen dem Fahrzeug und 

den erkannten Objekten (z.B. Autos, Fußgänger, Radfahrer). Mit den begrenzten 

Möglichkeiten der heutigen sensorbasierten Umgebungswahrnehmung ist es 

unrealistisch, entfernte Objekte zu erkennen und den Abstand zu ihnen abzuschätzen. 

Das System zur Erkennung von Hindernissen im mittleren bis langen Bereich ist 

aufgrund des erforderlichen langen Bremsweges eine der grundlegenden 

Anforderungen an schwere Fahrzeuge wie Schienenfahrzeuge oder Lastwagen. Dieses 

Problem wird jedoch in der Computer-Vision-Gemeinschaft nicht angegangen. Der 

Schwerpunkt dieser Arbeit liegt in der Entwicklung echtzeitfähiger, robuster und 

zuverlässiger Algorithmen für eine bildbasierende Hinderniserkennung im mittleren 

bis langen Bereich. In dieser Arbeit werden die Algorithmen zur Hinderniserkennung 

von Einzelkameras entwickelt und anhand von Bildern, die von RGB-, Wärme- und 

Nachtsichtkameras aufgenommen wurden, bewertet. 

Die entwickelten Algorithmen basieren auf fortgeschrittenen machine/deep learning 

Techniken. Die Entwicklung der auf maschinellem Lernen basierenden Algorithmen 

wurde durch einen neuartigen Datensatz zur Hinderniserkennung im mittleren bis 

langen Bereich für Eisenbahnen unterstützt, der in der Arbeit vorgeschlagen wurde 

und der aus annotierten Bildern mit der Objektklasse, der Bounding Box und dem 

Abstand zum Objekt zusammengestellt wurde. 
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Die entwickelten neuartigen Methoden zur autonomen weiträumigen 

Hinderniserkennung, -verfolgung und -abschätzung für Eisenbahnen wurden an realen 

Bildern evaluiert, die unter verschiedenen Beleuchtungs- und Witterungsbedingungen 

durch das Hinderniserkennungssystem auf einem statischen Prüfstandsaufbau auf der 

geraden Schiene und auch auf einem fahrenden Zug aufgenommen wurden. Obwohl 

der Schwerpunkt auf Eisenbahnen liegt, wurden die entwickelten Algorithmen auch 

auf den Bildern der Straßenszene ausgewertet, die von einer auf einem fahrenden 

Wagen montierten Kamera aufgenommen wurden. 
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1.  Introduction 

Autonomous environment perception is one of the fundamental elements of 

automated vehicles as well as of many other autonomous indoor and outdoor 

applications such as mobile robots [1], assistive robots [2], and industrial robots [3]. 

The purpose of environment perception systems is to provide crucial information on 

the autonomous system surroundings, including potential obstacles, their velocities 

and locations, and even prediction of their future states. The collected information 

helps the automated vehicle in many ways, such as to avoid collision with obstacles, 

localisation, and navigation [4]. 

As research in the field of autonomous systems has matured in the previous decades, 

outstanding work has been seen in the advancements of the environment perception 

systems. Environment perception for automated vehicles typically combines multiple 

sensing technologies (i.e., LiDAR, radar, ultrasound, and visual) to detect obstacles 

and to provide their physical position in the environment. The fusion of multiple 

sensing technologies helps to overcome the drawbacks and limitations of one sensor 

by utilising the benefits of others [4].  

Though the accuracy of the active sensing technologies such as LiDAR, RADAR, and 

ultrasound sensors is high, it is quite computational power consuming and expensive. 

On the other side, cameras are considered as the most functioning perception sensor 

which provides rich visual information of the surrounding, with every possible detail 

in it, in the form of images [5]. Cameras work in the same way as the human eye; help 

to detect and classify objects, understand the situation, and estimate the depth. 

However, the depth estimation is a critical task using cameras. Stereo-vision is the 

most common approach to estimate depth. The images taken by two cameras are used 

to triangulate and estimate distances [6]. 
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Although stereo-vision systems work well in many applications, they are 

fundamentally limited by the baseline, which is the distance between the two stereo 

cameras. The stereo-vision based depth estimates tend to be inaccurate when the 

distances measured are large as the baseline is long. The reason behind the inaccurate 

measurement for longer distance is that even very minor errors in triangulation 

estimation cause very large errors in distance measurement [7]. Additionally, stereo-

vision tends to fail for textureless regions of images, in which it is difficult to find the 

corresponding regions reliably [8]. 

Monocular cameras-based vision detection systems have been proposed to overcome 

the limitations of stereo-vision. As traditional monocular vision is unable to provide 

accurate and robust distance measurement, most of the methods are machine learning-

based solutions [9]. These monocular cameras based object detection approaches rely 

on the dataset with ground truth collected via LiDAR or stereo-vision [10]. 

1.1 Problem statement 

Many approaches for autonomous environmental perception have been presented for 

different application fields and scenarios. Whereas other transport modes have been 

quick to automate certain operations, the rail runs the risk of lagging behind. One of 

the critical challenges, which has so far hindered the automation of rail systems, is the 

lack of a safe and reliable onboard obstacle detection system for trains within existing 

infrastructure [11]. In recent years, there is a tendency to use experience from obstacle 

detection both in the automotive and the aviation sector for the development of 

autonomous obstacle detection in railways [12] [13]. While the main principle of 

obstacle detection in front of a vehicle from the automotive sector can be applied to 

railway applications, there are also specific challenges. Since this topic is not much 

explored, there are countless challenges, and one of the primary challenges is Long-

Range Obstacle Detection. 

Long-range obstacle detection: Sensor technology in current land transport research 

can look some 200 m ahead [14]. The required rail obstacle detection interfacing with 

loco control should be able to look ahead up to 1000 m detecting objects on and near 

track which may potentially interfere with the clearance and ground profile. The trains 

are running with high speed due to which and the train size and weight, the braking 
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distance is much longer than for road vehicles. Therefore, a long-range obstacle 

detection system for railway vehicles is  crucial. It is a very challenging task to detect 

objects in real-time which are at far distance and project in a couple of pixels on an 

image plane [15].  

1.2 Thesis Contributions 

The focus of this thesis is on long-range autonomous environmental perception. 

Therefore the novel algorithms for object detection, distance estimation, multiple 

object tracking, and sensor fusion are presented. The long-range perception is 

required and needed in many areas such as long-range obstacle detection system for 

autonomous trains or other heavy vehicles. The methods for long-range obstacle 

detection presented in this thesis are developed with the main goal of providing a 

solution to railways. However, the same methods can be used for self-driving cars as 

well; hence the evaluation of the developed was also performed on images of road 

scenes taken from a camera mounted on a moving passenger car.  

The developed methods for railway scenarios were evaluated on the images taken by 

cameras of a prototype autonomous Obstacle Detection System (ODS) developed 

within the H2020 Shift2Rail project SMART-Smart Automation of Rail Transport 

[11] [16]. 

The major contributions of this thesis are listed below: 

1. Long-range object detection and distance estimation dataset (LRODD) 

There are object detection datasets available that contain labeled objects and 

distance information however the size of objects in images is relatively large 

due to the ground truth distance up to nearly 150 meters. There are no datasets 

available which provide annotated bounding boxes of distant objects at more 

than 150 meters with the ground truth distance information which indeed 

required to build long-range obstacle detection system. A novel dataset for 

long-range object detection is presented in this thesis. The dataset is built on 

the images acquired from three RGB cameras set up at different zooming 

factors to cover short, mid to long-distance range, a thermal camera, a night 

vision camera, a LiDAR sensor for short-range ground truth distance 

measurement, and a GPS (Global Positioning System) sensor for positioning. 



1.1 Problem statement  

 

4 

 

The dataset contains the images of rail scenes that occurred during the data 

recording experiments taking place in the lifetime of H2020 Shift2Rail Project  

SMART. Although containing images of rail scenes, the dataset can be used in 

many other applications for long-range obstacle detection, distance estimation, 

and tracking, such as automotive and robotics applications. The dataset ranges 

from 0 to 1000 meters and contains several object classes. 

2. A single camera-based distance estimation to a detected object in an image 

(DisNet) 

Distance estimation to the detected object using a vision sensor either with the 

monocular camera or stereo cameras is one of the critical tasks in computer 

vision. In this thesis, a novel method for long-range distance estimation using 

a single camera is presented. The proposed method is able to work with any 

type of monocular camera, such as thermal  or RGB camera, and can estimate 

the distance to the object from short to long-range depending on the resolution 

of the image. The method can be used in various applications where distance 

estimation is required for short to long-range using a monocular camera. 

Moreover, the method does not require any prior calibration of the camera. 

3. Distant object detection and distance estimation (YOLO-D) 

Current state-of-the-art object detection methods are designed to localise and 

classify the objects in an image. However, they do not estimate object 

distance. In this thesis, the existing state-of-the-art machine learning-based 

method YOLO (You Only Look Once) for object detection was modified to 

estimate the distance to the detected objects and so-called end-to-end learning 

was enabled.  

4. Sensor fusion of multiple cameras for distance estimation (Multi-DisNet) 

A novel machine learning-based sensor fusion method for distance estimation 

is presented in this thesis. The method based on the fusion of object detection 

results from thermal and RGB camera estimates the distance to the detected 

object. The method helps to provide reliable distance estimation to the 

obstacle in adverse weather and illumination condition or in the case where 

one of the sensors fails to detect the object. 

5. Multiple object tracking (DisNet-RNN Tracker) 
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A machine learning-based method for multiple object tracking is also 

investigated in the thesis as a method for improving reliability of object 

detection and distance estimation. The method helps to track objects in cases 

where the object detection module fails to detect or produces unreliable object 

detection. It further helps to estimate the distance to the undetected object 

based on the tracked information. 

6. Evaluation of developed algorithms in real-world scenarios 

The machine learning based algorithms developed in this thesis were tested on 

real-world scenarios in railways. The algorithms were developed to meet the 

requirements of real-time performance.   

1.3 Thesis Overview  

This thesis is organized in the following chapters: 

• Chapter 2 introduces the application of machine learning in computer vision. 

As first, an introduction to machine learning is given, following with the state-

of-the-art machine learning-based computer vision algorithms and their 

applications.  

• Chapter 3 describes the novel dataset for long-range object detection and 

distance estimation LRODD.  

• Chapter 4 presents the two novel machine learning-based methods for distance 

estimation using a single camera, namely DisNet and YOLO-D. The 

performance evaluation of each method is presented within the chapter.  

• Chapter 5 describes the machine learning-based sensor-fusion method for 

distance estimation from multiple cameras Multi-DisNet. The evaluation 

results are discussed in the chapter.  

• Chapter 6 presents the methods for multiple objects tracking DisNet-RNN 

Tracker and the results achieved.      

• Chapter 7 presents the real-time implementation and requirements analysis of 

developed methods. 

• Chapter 8 summarises the conclusions from all the chapters and discusses the 

outlook.      
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2.  Machine learning-based 

environmental perception for 

autonomous systems 

The main aim of this chapter is to provide the necessary theoretical background of 

machine learning, its application in the field of computer vision and datasets to 

support the proposed methods described in the following chapters. Therefore, an 

introduction to machine learning and datasets is given followed by state-of-the-art 

particularly in vision-based object recognition, distance estimation, and object 

tracking.  

2.1 Machine learning techniques 

Computer Vision is defined as a field of study about how computers see and 

understand the content of digital images. Computer vision aims to develop methods 

that imitate human visual perception. With the great evolvement in the field of 

computer vision in the last couple of decades, still many problems remain unsolved. 

The main reason is due to the limited understanding of human vision and the human 

brain [17].  

However, integration of machine learning and deep learning in computer vision 

brought significant advancement in high-level problems such as text understanding 

[18], 3D model building (photogrammetry) [19], medical imaging [20], human-

computer interaction [21], automotive safety [22], surveillance [23], fingerprint 

recognition and biometrics [24], and others. 

Machine learning (ML) is a subgroup of Artificial intelligence (AI). In the last few 

decades, several fields were revolutionized within the ML. Neural Network (NN) is a 

sub-field of ML, and Deep Learning (DL) lies within the NN [25]. Similar to machine 
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learning algorithms, deep learning methods can also be classified as follows: 

supervised, semi-supervised, or partially supervised, and unsupervised. Additionally, 

there is another learning approach category called Reinforcement Learning (RL) or 

Deep RL (DRL) that is often discussed under semi-supervised or sometimes 

unsupervised approaches to learning [26].  

 

Figure 1. The grouping of AI and its sub-groups [25] 

2.1.1 Supervised Learning 

Supervised learning is a method of learning that use labelled data. In the case of 

supervised approaches, the environment has a set of inputs and corresponding outputs 

(xi, yi). For example, if for input xu, the agent predicts yu
/= f(xu), the agent will receive 

a loss value L(yu, yu
/). The agent will modify the network parameters iteratively until 

it achieved a better estimate of the desired outputs. After training, the agent will be 

able to predict the output close to the desired output on the given set of input from the 

environment [27]. 

Some popular supervised machine learning algorithms are linear regression for 

regression problems, random forest for classification and regression problems, 

Support vector machines (SVM) for classification problems. Likewise, several 

supervised learning approaches are involved in deep learning, including Deep Neural 

Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural 

Networks (RNN), containing Long Short Term Memory (LSTM), and Gated 

Recurrent Units (GRU) [25].  

Supervised learning can be split into two main types, that are classification and 

regression. Classification is used when the required output is categorical for example 
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sorting of email into “spam” or “non-spam” class, diagnosis of a disease based on 

observation of the patient such as sex, blood pressure, or certain symptoms. On the 

other hand, regression is used when the output is continuous value; for example, the 

prediction of stock based on observation [28]. 

2.1.2 Unsupervised learning 

The unsupervised learning method is based on unlabeled data. The data without the 

presence of labels is known as unlabeled data. In this case, the machine learning 

model understands the internal representation, pattern, or features to determine 

unknown relationships or mapping within the given unlabeled input data. Typically, 

clustering, generative, and dimensional reduction techniques come into unsupervised 

learning approaches. Most popular unsupervised machine learning algorithms are K-

means for clustering and Apriori algorithm for association rule learning problems 

[29]. Generative Adversarial Networks (GAN), RNNs such as LSTM and RL are used 

for unsupervised deep learning methods as well [25]. 

Similar to supervised learning, unsupervised learning is also classified as two main 

types which are Clustering and Association. Clustering is used when it is needed to 

organise or group data based on similarities between them, for example, grouping 

customers based on their purchasing behaviour or interests. Whereas Association is 

used to correlate or find relations between variables in the data, for example, you find 

the rule if a person buys X also tend to buy Y.  

2.1.3 Semi-supervised learning 

Semi-supervised learning is another learning method that uses partially labelled 

datasets. Typically in this learning technique, a small labelled data together with large 

unlabeled data are used in training. Deep Reinforcement Learning (DRL) and 

Generative Adversarial Networks (GAN), RNN, including LSTM and GRU, are also 

used with semi-supervised learning [30]. 

2.1.4 Reinforcement learning 

Reinforcement learning is another type of Machine Learning, where an agent learns 

how to act in a situation by performing actions and observing the results. The main 

idea behind RL is that an agent learns from the environment by interacting with it and 
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by receiving rewards for the taken actions. For the right results, the positive reward is 

given to the action and similarly a negative reward in case of bad results. In this way, 

an agent learns the sequence of actions to be taken by interacting with the 

environment [25].  

 

Figure 2. Category of Deep Learning approaches [25] 

2.2 Artificial neural networks 

As explained earlier Machine Learning is a super-set of Deep Learning. The main 

idea of deep learning was inspired by Artificial Neural Networks abbreviated as 

ANN, often called Neural Networks (NN). Firstly, it is essential to explain ANN and 

some important facts that described deep learning techniques. The ANN is inspired by 

human biological neural networks [31]. Figure 3 shows the basic NN architecture.  

 

Figure 3. A basic artificial neural network architecture 

Usually, the architecture of NN always consists of an input layer, hidden layers, and 

an output layer. It is also called as Multi-Layer Perceptron (MLP) [17]. The input 

layer is the very first layer of artificial neurons that bring the data into a network for 

further processing by subsequent frames; the input data can be pixels of the image or 
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any computed feature. The hidden layers are layers between input and output layers 

where artificial neurons take weighted input and produce output through an activation 

function. The weights of artificial neurons are learned during the training process, 

whereas activation function defines the output of the neuron. The output layer is the 

final layer of NN that outputs the prediction result based on the input data feed into 

the neural network.  

Briefly, the Neural Network can be defined as an approximation function of the any 

given problem in which learn parameters (weights) in hidden layers multiply with 

input and predict output close to desired output [28].  

The basic computation unit in the neural network is known as a neuron, often called a 

node, perceptron, or unit, as shown in Figure 4. It receives input from previous nodes, 

or an external source, and computes output. Based on the relative importance of input 

to other inputs, each input is associated with a weight (w). The neuron determines a 

weighted sum of all its inputs. An additional parameter Bias is added to the weighted 

sum is a constant value which helps the model in a way that it can fit best for the 

given data. Further, it produces output by applying a function g on it, which is also 

known as activation function [32]. 

 

Figure 4. The architecture of basic computational unit in ANN 

𝑦 = 𝑔 (𝑏 + ∑𝑤𝑖𝑎𝑖

𝑛

𝑖=1

) (2-1) 

2.2.1 Activation Function 

The purpose of the activation function is to learn complex non-linear representations 

of data and introduce non-linearity into the output of the neuron. The neural network 

without an activation function would be a simple linear regression model with less 

power to learn complex nonlinear problems. Another essential characteristic of the 
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activation function is that it should be differentiable. It is required to be differentiable 

so as to compute gradients of Error (Loss) with respect to weights while performing 

backpropagation optimisation to fine-tune the weights using optimisation techniques 

to reduce error. There are many activation functions, but the most popular one is 

sigmoid or logistic, Tanh - hyperbolic tangent, softmax, ReLu (Rectified Linear Unit), 

or identity functions [26]. 

• Sigmoid: Take an actual input and squash between 0 and 1. 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (2-2) 

• Tanh — Hyperbolic tangent: it limits the output between -1 and 1 

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2-3) 

• ReLu -Rectified linear units: The formula is deceptively simple: max(0,x).  

R(𝑥) = {
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

 (2-4) 

 

Figure 5. Three most common activation functions [33] 

2.2.2 Training 

In this section, the training process of NN will be explained. However, some 

important factors need to be described for training processes such as dataset, loss 

function, and optimisation techniques. The newly created neural network is like new-

born babies: with their exposure, mistakes, and experiences, they learn new things. 

Similarly, NNs during the training phase learn something new through given data and 

improve the performance by their own mistakes (Error). The knowledge of neural 

networks is captured in the form of parameters i.e. weights and bias. The input data 

propagate from the input layer via hidden layers to the final prediction layer. The 

prediction layer makes decision-based on a given input. At the beginning of the 
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training phase, often the decision made by NN is wrong because the parameters 

through which data propagate are not optimally adjusted. Typically training process 

composed of multiple iterations or also known as epochs until the NN learns correctly 

and predicts output close to the desired output. For each epoch, the error is measured 

which is defined as Loss function and parameters of NN are adjusted in a way to 

reduce the error to make predictions close to the desired output. The error J(w) is the 

function of NN internal parameters, i.e. weights and bias. If the parameters change, the 

error changes as well [30] [25].  

2.2.3 Optimisation algorithm 

The parameters are adjusted using optimisation algorithms. A neural network 

propagates data from the input layer towards the output layer known as forward 

propagation. However, the changing of parameters is done in reverse order. During 

the parameter adjustments, the network back propagates to optimise parameters. The 

optimisation algorithms help to find the minimum of a loss function and adjust 

parameters accordingly. 

w𝑘+1 = w𝑘 −
𝜕

𝜕𝑤𝑘
𝐽(𝑤) (2-5) 

Usually, optimization functions measure the gradient, i.e. the partial derivative of the 

loss function with respect to weight, weights are adjusted in the opposite direction of 

the measured gradient. This process is repeated until a loss function minimizes [34]. 

 

Figure 6. Gradient Descent [35]  

2.2.4 Regularisation 

The best choice of the number of training epochs cannot be measured, and with the 

inappropriate training epochs, the NN can lead to overfitting or underfitting problems. 
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The under the fitted model is neither performs on training data nor on new data. 

Whereas the overfitted model performs well on training data but not on evaluation 

data due to over learning of training data. 

 

Figure 7. Regularisation [36] 

Another important technique that needs to be highlighted is early-stopping. 

Early stopping is one of the classical regularization techniques used in the training 

process to stop the training once the model performance stops improving or in other 

words, loss function stops converging [28].  

2.2.5 Error and Loss function 

most commonly in many learning networks, the error is calculated as the difference 

between the desired output and the predicted output. The function that calculates error 

is known as loss function 𝑙(𝑤), often named as the objective function.   

𝑙(𝑤) = 𝑦 − 𝑦̂ (2-6) 

There is no single loss function that works with data of any kind. This depends on the 

factors including the existence of outliers, choice of the machine learning algorithm, 

gradient descent time efficiency, ease of finding derivatives, and prediction 

confidence. Loss functions can be categorized into two main types: Classification and 

Regression Loss. The regression model predicts the quantity while the classification 

model predicts the probability of class label. 

• Classification loss functions: Log loss, Focal loss, Kullback–Leibler (KL) 

Divergence/ Relative Entropy, Exponential Loss, Hinge Loss. 

• Regression loss functions: Mean Square Error/Quadratic Loss (L2), Mean 

Absolute Error (LI), Huber Loss/Smooth Mean Absolute Error, Log cosh loss, 

Quantile loss. 
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 Below two very popular regression loss functions are described. 

Mean Absolute Error (MAE) – L1 Loss: Another loss function used for regression 

models is Mean Absolute Error. It is defined as the sum of the absolute differences 

between our target and the variables predicted. 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1

𝑛
 (2-7) 

Mean Square Error – L2 Loss: Mean Square Error is the most widely used 

regression loss function. It is defined as the total sum of squared distances between 

our target variable and predicted values. 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

𝑛
 (2-8) 

 

Figure 8. A plot of MAE and MSE Loss (Y-axis) vs Predictions (X-axis) 

Both the MAE and MSE loss functions reach the minima when the predicted value 

exactly equal to the desired value. The selection of loss function depends on the task. 

The MSE is easier to solve to find gradients thus converge faster to minima. On the 

other side, MAE is more robust to outliers but more complicated to solve due to not 

continuous derivatives. 

2.2.6 Hyperparameter 

The components of a neural network model, i.e. the activation function, loss function, 

and optimisation algorithm play a crucial role in the effective and efficient training of a 

model and delivers accurate results. Specific tasks require a different set of such 

functions to deliver the best results possible. All of these components of the neural 

network, also known as hyperparameters.  

The hyperparameters are set of variables that determine the network structure such as 

number of hidden layers, number of neurons, and the variables which determine in 
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what way the network is trained such as weight initialisation, batch size, number of 

epochs, learning rate, activation function. 

There is no pre-defined or specific way to select the hyperparameters for the 

construction and training of a neural network. The most common practice of tuning of 

hyperparameters or optimisation of hyperparameters to find the best configuration of 

parameters is the manual search method. There are hyperparameters selection 

methods such as RandomSearch [37] and GridSearch [38] which find the best 

parameters from the given set of parameters. Both methods are very similar; the best 

parameters are selected based on the training of network with all possible 

combinations of parameters. This method is suitable for simple models which take 

less time to train, but if the model takes longer time, almost all deep learning 

networks or the search space is big, this approach could not be the best option. 

2.2.7 Training, testing and validation set 

Usually, the labelled dataset is split into three sets training, validation, and test. The 

training set on which the model find optimal values of weights to fit the given set. The 

validation set is used during the training process to find optimal hyperparameters of 

neural networks, such as the number of hidden layers, stopping point of training, and 

others. The test set is used to estimate the performance of the final trained model. The 

test set does not have any impact on the training of the neural network. The splitting 

of the dataset depends on the size of the dataset. Most commonly, the dataset spits 

into 80% for the training set, 10% for validation, and 10% for testing [25] [26]. 

2.3 Deep Neural Networks 

The procedure and techniques of feature extraction and learning are the key difference 

between traditional machine learning and deep learning [39]. Traditional machine 

learning used handcrafted engineering, several feature extraction methods extract 

features, and then the extracted features are provided to the learning model to predict 

the output. Additionally, often several pre-processing algorithms are involved in 

traditional machine learning. Whereas in deep learning, DL itself extract and learn 

features from raw data. DL minimises the human effort by extracting the features 

itself. Features are represented hierarchically in the multi-layer network. Similar to 

human brain biological neural networks, deep learning contains layered architecture 
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where high-level features are extracted from the last layers, and low-level features are 

extracted by first layers. Table 1 shows the different learning methods based on the 

features with different learning steps [25]. 

Table 1. Different feature learning approaches 

Approaches Learning Steps 

Rule-based Input Hand-design 

features 

Output  

Traditional 

Machine Learning 

Input Hand-design 

features 

Mapping 

from features 

Output  

Representation 

Learning 

Input Features Mapping 

from features 

Output  

Deep Learning Input Simple 

features 

Complex 

Features 

Mapping 

from features 

Output 

A basic structure of deep neural networks is the traditional ANN network with 

multiple hidden layers. The ‘shallow’ neural network has only one hidden layer is 

opposed to deep neural network contains more than one hidden layer, often of several 

types. There are many deep learning methods rooted in the initial ANNs, including 

supervised (DBNs, RNNs, CNNs), unsupervised (AE, DBNs, RBMs, GAN), semi-

supervised (often GAN) and DRL. The deep neural networks learning techniques are 

similar to neural networks. However, some advancement is also made in the learning 

process to fasten the learning process of a large number of parameters.  

Another significant difference between traditional ML and DL is the performance of 

ML and DL with respect to the amount of data. The study [40] shows that the ML 

approaches show better performance for a lesser amount of data. Whereas the amount 

of data increases beyond certain limits, the performance of ML does not show further 

improvements and becomes steady. on the other side, the performance of DL 

approaches increases with respect to the increase in the data value [41].  
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Figure 9. The deep learning efficiency with regard to the amount of data 

2.3.1 Deep Learning for Computer vision 

The deep learning often refers to universal learning because it can be used and applied 

in many application domains. With the many success stories of deep learning in 

almost every field, one of the well-known and evident applications of deep learning is 

in Computer Vision (CV). The DNN is widely used in CV and has excellent 

capabilities such as in image pattern recognition [39]. Convolution Neural Network 

(CNN) is the type of DNN most commonly applied in computer vision to analysing 

images in a similar way as human visual sense does. The first Convolution Neural 

Network (CNN) was introduced in 1988 however; it was not so popular back then due 

to limited sources of computational power to process and train the CNN network. In 

the 1990s, the authors [42] achieved excellent results for handwritten digits 

classification problems using a gradient-based learning algorithm to CNNs. After that, 

the drastic change has been noticed in the 2000s after the revolution of high-

performance processing components such as GPUs [43] and computer platforms such 

as Nvidia Drive [44] that were explicitly designed to work for convolutional network 

and to work with high-dimensional data [43].  

Mostly computer vision problems are surrounded by CNN architectures. 

Convolutional Neural Network (CNN) is a type of Deep Neural Networks (DNN) and 

is commonly used for image classification and segmentation. A convolutional neural 

network (CNN) is made up of an input layer, output layer as well as multiple hidden 

layers. In contrast, hidden layers are typically comprised of convolutional layers, 

pooling layers, and fully connected layers. 
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The main function of the convolutional layer is to extract the features from the input 

image or the previous layer, by using a fixed-sized convolutional kernel to do the 

convolution operation with the input in the form of sliding window, as shown in 

Figure 10 [45]. 

 

Figure 10. Example of convolution operation [46] 

Each convolutional layer is made up of many feature maps, and each feature map is 

the convolution output between the current kernel and the feature maps of the former 

layer. The calculation of the convolutional layer can be represented as the following 

formula (2-9): 

𝑦𝑗
𝑙 = 𝑓(∑ 𝑦𝑖

𝑙−1
𝑖𝜖𝑀𝑗

 𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑙)        (2-9) 

Where 𝑘𝑖𝑗
𝑙  is the convolutional kernel between the i-th feature map of the l-th layer 

and the j-th feature map of the l-th layer, 𝑀𝑗 is one example of the input feature map, 

𝑏𝑗
𝑙 is the bias of the j-th feature map of the l-th layer, and f() is the activation function, 

including Sigmoid, Tanh, ReLU(Rectified Linear Unit) function, etc.  

Then, the pooling layer would reduce the dimensionality of each feature map from the 

forward layer while keeping valuable information [47]. There are mainly two kinds of 

pooling layer, max-pooling layer, and average-pooling layer. As the name implies, the 

max-pooling layer selects the most significant number of each given feature map, 

while the average-pooling layer takes the average number. After that, the fully 

connected layer transforms the feature map matrix of the previous layer into the form 
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of vector. Finally, the output layer outputs the class by using an activation function, 

which includes softmax regression or logistic regression, and classifies the images. 

One of the toughest computer-vision problems encounter by CNN is object 

recognition. Object recognition is a task to classify the objects in an image into known 

objects labels. The revolutionary results have been seen in ImageNet-2012 Large 

Scale Visual Recognition Challenge (LSVRC) when DL networks outperformed the 

human accuracy of object recognition. ImageNet- LSVRC is a yearly competition 

focused on image classification. Various state-of-the-art CNN based object 

recognition methods including AlexNet [48], Clarifia [49], VGG-16 [50], 

GoogLeNet19 [51] and ResNet152 [52] were tested on ImageNet [53] dataset. Figure 

x shows the improvement of DL techniques overtime in ImageNet challenges since 

2012. The ResNet152 has achieved a 3.57% error rate as opposed to humans with an 

error rate of 5%. 

 

Figure 11. Accuracy of different DL models on ImageNet classification challenge [25] 

The AlexNet recognised as one of the first deep networks that showed significant 

accuracy in ImageNet competition. It is designed by the SuperVision group from the 

University of Toronto. AlexNet consists of five convolutional layers followed by 

three fully connected layers much larger than the previously used CNN network 

LeNet [42] for computer vision tasks. The uniqueness of AlexNet architecture is that 

it uses the ReLu activation function instead of the tanh to add non-linearity, which 

also accelerates the speed of the training process by six times and improves accuracy. 

Further, it overlaps pooling layers to reduce the size of the network. Another problem 

this network solved was reducing the over-fitting by using dropout layers after every 
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FC layer. It has 60 million parameters and 650,000 neurons. In 2012 with limited 

hardware capabilities, it took 5 to 6 days to train Alexnet on two GTX 580 3GB 

GPUs.     

 

Figure 12. AlexNet architecture [54] 

After the success of AlexNet, many models were proposed, and dramatically the 

performance of object recognition has been improved over time. Some of the state-of-

the-art models for classification, segmentation, and detection task are listed as 

follows: 

2.3.1.1. Classification 

The input images are encoded in different steps with convolution and sub-sampling 

layers according to the classification models architecture, and eventually, the SoftMax 

method is used to determine class likelihood. Such models with a classification layer 

can, however, be used for segmentation and detection tasks as feature extraction. The 

list of some classification models are as follows: AlexNet [48], VGGNet [50] , 

GoogleNet [51], ResNet [52], DenseNet [55], FractalNet [56], CapsuleNet [57], 

IRCNN [58] , IRRCNN [59], DCRN [60] and so on. These classification models also 

refer to base feature extractors due to their role in object detection and object 

segmentation. 

2.3.1.2. Segmentation 

Several semantic segmentation models proposed during the last few years. The 

segmentation model is composed of two units: encoding and decoding. In the 

encoding unit, the convolution and subsampling operations are carried out to encrypt 

the latent space in the lower dimensions whereas the decoding unit decodes the image 

from latent space conducting deconvolution and upsampling process [25]. Fully 
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Convolutional Network (FCN) is the very first form of segmentation [61]. Later the 

improved version of this network which is called SegNet is introduced [62]. Recently, 

several new models have been introduced which include RefineNet [63], PSPNEt 

[64], and DeepLab [65]. 

2.3.1.3. Detection 

The topic of detection is a bit different compared with classification and segmentation 

problems. The purpose of the model is to classify target categories with their 

respective positions. The model answers two questions: What is the object 

(classification problem)? and where the object (regression problem)? To achieve these 

goals, two losses are calculated for classification and regression unit at the top of the 

feature extraction module, and the model weights are updated with respect to both 

losses. For the very first time, Region-based CNN (RCNN) is proposed for object 

detection task [66]. Recently, there are some improved solutions to detection have 

been suggested, including focal loss for dense object detector [67] better detection 

approaches have been proposed, Later the different improved version of this network 

is proposed called fast RCNN [68]. mask R-CNN [69], You only look once (YOLO) 

[70] and SSD: Single Shot MultiBox Detector [71]. All these detection models use 

classification models as their base to make feature extraction. 

In addition, the classical methods can be found back in the 1960s, and later, some of 

the widely used methods are Haar-like features [72], SIFT [73], SURF [74], GLOH 

[75] and HOG detectors [76]. 

2.3.2 You Only Look Once (YOLO) 

In this section, YOLO object detection model is discussed to support the 

implementation and modifications in the next chapters. 

Up till 2015, object detection systems were re-purposing existing classifiers to 

perform detection. This meant the use of a sliding window technique in looking at 

specific regions of the image one by one and making predictions accordingly based on 

that region. YOLO (You Only Look Once) identifies object detection as a regression 

problem, thereby spatially separating bounding boxes and their associated class 

probabilities. YOLO uses a single neural network to detect multiple objects directly 

from an RGB camera image and predict its bounding boxes with associated class 
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probabilities [70]. Up to now, there are three YOLO version available: YOLO [70], 

YOLOv2 [77] and YOLOv3 [78] 

2.3.2.1 YOLO 

YOLO aims to perform object detection in real-time. Therefore, it does not use the 

sliding window technique traversing over the image region by region. Instead, it looks 

at the entire image once during training and testing to formulate contextual 

information about object appearance and class. This makes YOLO much faster than 

other detection algorithms. Competing detection algorithms of the time like Fast R-

CNN [79] had better accuracy when compared to YOLO but was considerably slower 

with much more background noise [70].  

YOLO is a CNN which uses 24 convolutional layers and two FC (fully connected) 

layers. The convolutional layers extract feature maps from the image and the two FC 

layers regress the network for bounding box parameters and class.  

 

Figure 13. YOLO’s Image Grid. Each grid cell detects only one object [80] 

This section attempts to summarize YOLO’s network architecture and its prediction 

methodology. YOLO divides the input image into S×S grid (Figure 13). Each grid cell 

is responsible of predicting one object. For example, in Figure 13, the yellow grid cell 

tries to predict the person class because its centre (blue dot) lies inside the grid cell 

[80]. Moreover, each grid cell also predicts a fixed number of bounding boxes. In 
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Figure 14, the yellow grid cell predicts two bounding boxes for the person object [80]. 

So for each grid cell, YOLO, 

• predicts B bounding boxes with each box having a confidence score.  

• detects one object only, irrespective of the number of bounding boxes 

detected.  

• predicts C conditional class probabilities (one for every class in the training 

dataset).  

 

Figure 14. Each grid cell making a fixed number of bounding boxes for one object [80] 

Figure 15 shows YOLO’s prediction sequence for a S×S grid. Each bounding box has 

5 constituents [80] as follows: 

• center x-coordinate (x), 

• center y-coordinate (y) 

• box width (w) 

• box height (h) 

• box confidence score. 
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Figure 15. YOLO making S x S predictions with B bounding boxes [80] 

 

Figure 16. YOLO detecting B bounding boxes for a single image with S x S grid 

The confidence score reflects the likelihood of an object present in the bounding box 

and also accuracy of the bounding box [80]. Each grid cell also predicts C conditional 

class probabilities for every bounding box detected, giving the class probability of 

each detected object where C is the number of classes in the training dataset. 

Therefore, YOLO’s prediction shape for a single image is (S, S, B × 5 + C) [80]. 

Figure 16 shows YOLO predictions on a single image for a complete S × S gird. 
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Figure 17. YOLO Network Architecture [70] 

Figure 17 details out YOLO's network architecture. YOLO builds a CNN with 24 

covolutional layers and two fully connected layers at the end. The convolutional 

layers extract visual features from the image and two FC layers at the end perform a 

linear regression to output bounding box parameters [80]. 

As explained in equation 2-10, YOLO's loss function is a sumsquared error between 

actual and predicted values [80]. To compute loss for true positives, YOLO only 

needs one bounding box for each object in the image. However, each grid cell can 

detect multiple bounding boxes. To eliminate this problem, YOLO selects the 

bounding box with the highest IoU (intersection over union) with the ground truth 

during training [80]. On the other hand, YOLO can also make multiple detections for 

the same object. To fix this, YOLO uses non-maximal suppression [81] to remove 

detections with lower confidence score. This technique works through sorting the 

predictions by their confidence score, and then starting from top, removing 

predictions if current prediction has the same class and an IoU > 0.5 than the previous 

prediction [80]. 

2.3.2.2 YOLOv2 

Figure 18 shows YOLOv2's accuracy and speed as compared to other popular object 

detectors. Following is a list of design changes making YOLOv2 better than YOLO: 

• Most state-of-art object detection classiers are pre-trained on ImageNet, which 

operate on smaller input images of 256x256. YOLOv2 is ne tuned with an 

image size of 448x448 on the entire ImageNet dataset for 10 epochs [77]. This 
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makes YOLOv2 a high resolution classier and give almost a 4% mAP increase 

when compared to YOLO [77]. 

• Unlike YOLO that uses fully connected layers for final prediction, YOLOv2 

uses anchor boxes on convolutional layers to make predictions. Anchor box is 

an estimate of a bounding box (width, height). YOLOv2's convolutional layers 

downsample the image by a factor of 32 therby reducing an input image of 

416x416 to 13x13 feature map. Using convolutional layers with achors for 

prediction reduces mAP by 0.4 but also reduce computational cost by 33% 

[77]. 

• Anchor boxes are either provided randomly or calculated from the training 

dataset through clustering methods. Calculating anchor boxes using any 

clustering method like K-means clustering helps in increasing the training 

process [77]. Otherwise the network has to determine the actual anchor boxes 

by itself. Anchors help in increasing recall. 

• YOLOv2 make detections on a 13x13 feature map, which is fine for larger 

objects, but not fine enough for detecting smaller objects. To fix this problem, 

YOLOv2 uses a pass-through layer. This layer concatenates the lower 

resolution features obtained at earlier convolution layer of 26x26 resolution 

with the higher resolution features at 13x 13 resolution [77]. 

• After every 10 batches, the network selects a dfferent image dimension to 

make training multi-scale [77]. This enables the network to train and predict 

well on different image resolutions. 

YOLOv2's implementation uses Darknet-19 [82], an open source NN (neural 

network) framework written in C and CUDA [83] with 19 convolutional layers. 
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Figure 18. YOLOv2 Accuracy and Speed Compared to other Object Detectors [77] 

2.3.2.3 YOLOv3 

YOLOv3 improves onto YOLOv2 detection metrics by adding some incremental 

changes [78]. Following is a list of design changes making YOLOv3 slightly better 

than YOLOv2 [78]: 

• YOLOv3 predicts an object confidence score for each bounding box through 

logistic regression and gets a score of 1 if its overlap with ground truth is more 

than any other prediction. 

• Each bounding box has an independent logistic classifier to predict detected 

object class. 

• Figure 19 shows YOLOv3's network architecture. Unlike YOLOv2, YOLOv3 

predicts bounding boxes at 3 different scales. Feature maps are up-sampled 

and merged with feature maps from former layers. Furthermore, new 

convolutional layers are added to precess these feature maps predict object 

bounding boxes. K-means clustering is used to determine anchor boxes. 9 

cluster are selected and divided equally between 3 scales, with 3 predictions at 

each scale. 
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Figure 19. YOLOv3 Network Architecture [73] 



2.3 Deep Neural Networks   

 

30 

 

 

Figure 20. Darknet-53 layers [78] 

• YOLOv3 also uses darknet-19 like YOLOv2, but adding all the residual layers 

and feature map merging makes the network larger, coming to 53 

concolutional layers. The underlying framework is therefor now called 

darknet-53 (Figure 20). This makes the network larger and slower compared to 

YOLOv2 but improves accuracy. 

2.3.2.4 Loss function 

The loss function of YOLO contains three parts: the localization loss (errors between 

the predicted box and the ground truth box), the confidence loss (objectness of the 

box) as well as the category loss, as given in equation (2-10) [70] below: 

 



2.3 Deep Neural Networks   

 

31 

 

𝐿𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝑙𝑜𝑠𝑠𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 + 𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 

= ∑∑1𝑖,𝑗
𝑜𝑏𝑗

𝐵

𝑗=0

𝑆2

𝑖=0

 [(𝑡𝑥 − 𝑡̂𝑥)
2 + (𝑡𝑦 − 𝑡̂𝑦)

2
+ (𝑡𝑤 − 𝑡̂𝑤)2 + (𝑡ℎ − 𝑡̂ℎ)2] 

+∑∑(1𝑖,𝑗
𝑜𝑏𝑗[− log(𝜎(𝑡𝑜)]

𝐵

𝑗=0

𝑆2

𝑖=0

+ 1𝑖,𝑗
𝑛𝑜𝑏𝑗[− log(1 − 𝜎(𝑡𝑜)]) 

+∑ ∑ 1𝑖,𝑗
𝑜𝑏𝑗𝐵

𝑗=0
𝑆2

𝑖=0 [∑ 𝐵𝐶𝐸(𝑝̂𝑐, 𝜎(𝑝𝑐))
𝐶
𝑐=1 ]                   

(2-10) 

Here, each line represents each part of loss. 𝑡𝑥,𝑡𝑦 are the predicted bounding box 

coordinates and 𝑡𝑤,𝑡ℎ are the width and height of the box. 1𝑖,𝑗
𝑜𝑏𝑗

 indicates that j th 

bounding box in i th cell is responsible for that prediction [70]. 𝑡𝑜 is the predicted 

objectness score for that box and 𝑝𝑐 is the predicted class probability. Mean Squared 

Error (MSE) function is adopted to calculate the localization loss and Binary Cross 

Entropy (BCE) function is employed to calculate the confidence loss and 

classification loss. 

2.3.2.5 Evaluation Matrics 

Intersection over Union, also referred to as the Jaccard Index, is one of the most 

common and most basic concept to measure the performance of object detector. It 

quantifies the similarity between the ground truth bounding box and the predicted 

bounding box to evaluate how accurate the predicted box is. The IoU score ranges 

from 0 to 1, the similar the two boxes, the higher the IoU score. It is defined and 

calculated as the area of the intersection divided by the area of the union of the 

predicted bounding box and the ground-truth box, as illustrated in Figure 21. 

 

Figure 21. Illustration of Intersection over Union (IoU) [84] 
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By computing the IoU score for each detection, the IoU values above the defined 

threshold are considered positive predictions and those below are considered to be 

false predictions. More precisely, the predictions are classified into True Positives 

(TP), False Negatives (FN), and False Positives (FP) [85]. 

An example of confusion matrix of car detection is shown in Table 2- 3.Generally 

speaking, when the prediction class matches the class of the ground truth and IoU is 

greater than some certain threshold, then this prediction would be considered as truth 

positive (TP); otherwise, when the prediction class doesn’t match the ground truth 

class or the IoU is lower than the threshold, then it would be viewed as false positive 

(FP). False negative (FN) refers to that the ground truth cannot be detected and true 

negative (TN) represents a correct misdetection.  

Table 2. An example of confusion matrix of car detection 

 

                    Actual 

      Prediction 
Car Not Car 

Car True Positive (TP) False Positive (FP) 

Not Car False Negative (FN) True Negative (TN) 

Based on the confusion matrix, precision and recall can then be calculated and 

obtained. Precision is the ability of a model to detect only the relevant objects, which 

is defined as the number of true positives divided by the sum of true positives and 

false positives, as shown in equation (2-11): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
= 

𝑡𝑟𝑢𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑜𝑥𝑒𝑠
 

(2-11) 

Recall is the ability of a model to identify all the relevant objects, which is defined as 

the number of the true positives divided by the sum of true positive and false 

negatives (all ground truths), as shown in equation (2-12) [85]: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 

𝑡𝑟𝑢𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑥𝑒𝑠
 

(2-12) 
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During detection, not only can the detector output the predicted bounding box, but 

also can predict the confidence score, which represents the probability that the 

bounding box contains the object. By setting the threshold for confidence score at 

different levels, different pairs of precision and recall can be obtained, and then 

Precision-Recall (PR) curve can be plotted, which indicates the relationship between 

the two metrics and helps to judge the performance of an object detector. An object 

detector of a particular class is considered good if its precision stays high as recall 

increases, which means that no matter how you vary the confidence threshold, the 

precision and recall will still be high [85]. 

Although the precision-recall curve can be used to evaluate the performance of a 

detector, it is not always easy to compare among different detectors straightforward 

when the curves cross with each other. Therefore, the average precision (AP), a 

numeric metric, which calculates the area under the Precision-Recall curve, is 

adopted. Essentially, AP is the precision averaged across all unique recall levels 

between 0 and 1 [85]. Given a PR curve, there are two ways to calculate AP: 11-point 

interpolation and all-points interpolation. The 11-point interpolation is a traditional 

method, which summarizes the shape of Precision-Recall curve by averaging the 

precision at a set of 11 equally spaced levels [0,0.1,0.2, …,1], as shown in Equation 

13 [85]. 

𝐴𝑃 =  
1

11
∑ 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)

𝑟∈{0,0.1,…,1}

 (2-13) 

With 

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) =  max
𝑟̃:𝑟̃≥𝑟

𝑝(𝑟̃) (2-14) 

Where 𝑝(𝑟̃) is the measured precision at recall 𝑟̃. The interpolated precision 𝑝𝑖𝑛𝑡𝑒𝑟𝑝 at 

a certain recall level 𝑟 is defined as the highest precision found for any recall level 

𝑟̃ ≥ 𝑟, as shown in equation 14. While currently, a new standard is to choose all 

unique recall levels in the data and interpolate through all points, without 

interpolating only 11 equally spaced points, which improves precision under low AP. 

AP can then be obtained by calculating the area under the interpolated precision-recall 

curve, as shown in equation (2-15) [85]: 
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𝐴𝑃 =  ∑(𝑟𝑛+1 − 𝑟𝑛)

1

𝑟=0

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1) (2-15) 

Where, 

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1) =  max
𝑟̃:𝑟̃≥𝑟𝑛+1

𝑝(𝑟̃) (2-16) 

An example of all-points interpolation in Precision-Recall curve is illustrated in 

Figure 22. The blue line is the original PR curve and the red dotted line is the 

interpolated version. The average precision (AP) is then acquired by calculating the 

area under the red dotted line. mAP (mean Average Precision) is the average of AP 

among all the classes. 

 

Figure 22 An example of all-points interpolation in Precision-Recall curve [85] 

2.4 Datasets for environmental perception 

An essential component in the development of a machine learning method is an 

appropriate dataset. Machine learning can be applied to analyze data that are difficult 

to express mathematically. Numerous complex systems, for instance, autonomous 

vehicles components such as object detection rely on machine learning-based 

methods. The qualitative and quantitative datasets often required to generalize 

complex problems with machine learning.  
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Assuming a correctly designed machine learning model, a high computational power 

machine and optimally set training parameters, the model is likely to perform well. 

However, it is proven [86] that the size of dataset makes a lot of impact on results. 

Especially for the machine learning-based visual object detection techniques, the 

quantity of dataset improves the performance of the machine learning model [86]. 

In this section, some popular datasets available for object detection and their 

performance on different object detection models will be discussed. Some of the 

available object detection dataset provides range information up to about 100 meters 

measured by LiDAR or stereo camera as a ground truth, but none of the dataset is 

focussed or specifically designed to predict the distance to the detected object.  

Additionally, the available datasets contains annotated objects which are relatively big 

in size, in other words, close to the camera and secondly contains images of urban 

driving scenarios, captured during sunny day and in decent weather conditions. 

The recently published nuScenes [87] is a multimodal dataset for autonomous driving. 

This dataset was recorded with 6 cameras, 5 radars, and 1 lidar, all with a 360-degree 

field of view. It consists of 1000 scenes, each 20 seconds long and fully annotated 

with 3-dimensional bounded boxes for 23 classes and 8 attributes. The Honda 

Research Institute 3D (H3D) Dataset [88] is a large scare 3D multi-object detection a 

tracking dataset collected using a 3D LiDAR Scanner. H3D consists of 160 crowded 

traffic scenes. However, both datasets are focused on urban environments and traffic 

scenes, which differ from a railway setup.  

Microsoft COCO Dataset (MS COCO) [89] contains complex scenes with common 

everday objects. Dataset contains in total 91 object classes with 2.5 million instances 

in about 328k images. The dataset is basically for object recognition purpose hence 

does not contaians any objects pose information. Objects are labeled using 

segmenting individual object instances. 

2.4.1 Kitti Dataset 

KITTI dataset [90] is a dataset built by the Karlsruhe Institute of Technology and 

Toyota Technological Institute at Chicago. The dataset was recorded from a car 

equipped with one Inertial Navigation System (GPS/IMU), one Laser scanner, two 



2.4 Datasets for environmental perception   

 

36 

 

grayscale cameras and two high-resolution color cameras, (as shown in Figure 23) 

while driving around the city of Karlsruhe in Germany. 

 

Figure 23. Recording Platform of KITTI dataset [90] 

The detailed information about that recording platform and sensor setup can be seen 

in Figure 24. 

 

Figure 24. Detailed information on the recording platform [90] 

The images include the scene of City, Residential, Road, Campus, and Person, which 

demonstrates the diversity of the KITTI dataset. The images are at the resolution of 

1242x375 pixels. Some examples can be seen in Figure 25. 

The accurate ground truth in benchmarks is provided by the Velodney laser scanner 

and the GPS localization system. Each object in the dataset is described by several 

parameters, including the information about the class of the objects (8 types 

available), truncation and occlusion, the 2D bounding box information of an object, 
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the dimension and location of the 3D object as well as its orientation. The detailed 

explanation of the annotations in the KITTI dataset can be seen in Table 3. 

 

 

Figure 25. Examples from KITTI dataset [90] 

Table 3. A detailed explanation of the annotations in KITTI dataset [90] 
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Here, in the row of No.1 in Table 3, ‘DontCare’ labels denote regions where objects 

have not been labeled, e.g. because they have been too far away from the laser 

scanner. What’s more, based on these classes, all the objects in the dataset were 

divided into two classes again, i.e. person and car. To be specific, the class of 

‘Pedestrian’, ‘Cyclist’ and ‘Person_sitting’ were combined into the class of ‘person’, 

and the types of ‘Car’, ’Van’,’ Truck’, ’Tram’ and ’Misc’ were combined into the 

class of ‘car’. The object location at Z-axis (camera direction) is considered as the 

distance between camera and object. The distance range in the KITTI dataset is 

between 0 to roughly 150 meters. An example of the labeled images is shown in 

Figure 26. 

 

Figure 26. An example of labeled images in KITTI dataset [90] 

2.5 Distance estimation 

In many computer vision applications such as robotics and specifically in autonomous 

vehicles, precise depth information is crucially important. In this section, an 

introduction to often used sensors and approaches to estimate distance is given. Some 

of the sensors and methods which are commonly used in indoor and outdoor 

applications to produce distance or depth information are as follows. 

2.5.1 LiDAR 

 LiDAR (Light Detection And Ranging) is a sensing method that measures the 

distance to the target by measuring the time required by the transmitted pulse of 

invisible laser light to reflect back to the sensor. The difference in laser pulse returns 

time and wavelengths is further used to make a digital 3D representation of target or 

surrounding. LiDAR is considered a reliable method to detect an object and 

accurately measure the distance to the object which is in its range, has high 
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reflectivity and of sufficient size [91]. More than the distance measurements, LiDAR 

also provides size, the position of objects, and the speed of moving targets.  

However, one of the limitations of LiDAR sensors is their limited range. Typically 

currently available commercial off-the-shelf LiDAR sees well about 60 to 100 meters 

[92]. Some LiDAR such as SICK LDMRS claiming the range up to 300 meters for 

ideally 100% reflective objects but this is dubious and practically not achievable. 

LiDAR is independent of illumination and weather conditions. However, rain, snow, 

fog, or dense dust causes the scattering of light. Therefore a tiny amount of laser 

pulses return back to the sensor which causes reducing the effectiveness and range of 

the LiDAR.  

LiDAR is commonly used in indoor and outdoor robot localization [93] [94], mapping 

[95], obstacle detection [96], human tracking [97], and also become a part of some 

autonomous cars [98].  

2.5.2 RADAR 

RADAR (RAdio Detection And Ranging) works in much similar to LiDAR. The 

difference is it transmits the radio waves instead of a laser and analyzes the waves 

reflected back to it. The reflected waves tell that the obstacle is in the propagation 

direction. It is also used to determine the velocity, distance, and angle of objects. 

Radar produces lighter data than a camera and a LiDAR.  

The radio waves have less absorption than light waves. Thus, radar can work 

relatively longer range than lidar and can reliably work in adverse weather conditions 

such as rain, snow, fog. However, commonly available long-range radar sensors for 

autonomous cars ranges up to 200 meters. Another advantage of radar is that the 

reflection helps to see behind the obstacles. However the significant limitations of 

radar are it easily faces interference with several objects in the air, poor quality to 

distinguish between multiple objects, and also the radio waves travel slower than light 

waves which cause slower data receiving.  

2.5.3 Stereo Camera 

Another way to determine depth information is the stereo vision. The term 

“stereoscopic” refers to the human ability to see simultaneously from both eyes in 
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similar but slightly different viewing angles, as a result of the physical horizontal 

separation between the left and right eye which gives human, true depth perception 

[99], also known as stereopsis. The difference in object location in images seen by the 

left and right eyes is referring to as retinal or binocular disparity [99].  

A stereo camera is the type of camera setup with two or more cameras. The stereo 

camera is widely used in robotics, and it gives human-like vision perception to 

humanoids to perform tasks such as object manipulating tasks. For such tasks, the 

robots need close object depth estimation. In the use case of short-range applications, 

a good stereo camera can reliably and accurately estimate the depth and can even 

eradicate the need for lidar or radar sensors. 

Figure 27 shows the setup of ideally parallel stereo cameras. The depth estimation is 

possible only for the overlapping field of view (FOV) of cameras, as shown in Figure 

27. The overlapping FOV depends on the physical horizontal separation between the 

cameras refers as baseline B and the FOV angle of the camera. The baseline also 

defines as centres of projection of cameras CL and CR. Point P in 3D space projects to 

PL and PR on the image plane. XL and XR are co-ordinates of PL and PR with respect to 

principal points CL and CR. The depth to point P in 3D space refers to Z is the 

difference between point P and the baseline. 

  

Figure 27. The stereo vision setup 

As we know from similar triangles theorem, two triangles of the same shape and 

different in size are similar if their corresponding angles are congruent and their 

corresponding sides are in proportion. In Figure 27, the triangles (PL,P,PR) and 

(OL,P,OR) are similar. The depth Z can be express as a function of xL, xR, f, and B. 
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𝐵 + 𝑥𝐿 − 𝑥𝑅

𝑍 − 𝑓
=

𝐵

𝑍
 (2-17) 

𝑑 = 𝑥𝐿 − 𝑥𝑅 (2-18) 

𝑧 = 𝑓
𝐵

𝑑
 (2-19) 

Disparity d measures the distance between the corresponding points in the left and 

right images. The depth Z is inversely proportional to the disparity. The representation 

of computed disparity between the entire left and right images is known as a disparity 

map. The disparity map is a 3D image and can be visualized in 3D known as a point 

cloud or in 2D known as a disparity image. In disparity image, bright pixels represent 

the highest disparity or closest points in 3D space and dark points have the lowest 

disparity or farthest points in 3D space. Furthermore, algorithms such as block 

matching also produce uniform and accurate bounding boxes [100]. 

 

Figure 28. Input – First frame (left image), Depth image (center), Prespective view (right) [100] 

The baseline is inversely proportional to the depth error. The wider is the baseline, the 

better is the depth estimation, but it also causes a smaller overlapping field of view. 

Thus, challenging to calibrate due to a large minimum depth of field.  

𝐷𝑒𝑝𝑡ℎ 𝑒𝑟𝑟𝑜𝑟 ∝  
1

𝐵
 (2-20) 

In general, the stereo cameras are not ideally parallel to each other. Therefore required 

stereo calibration to align them parallel, the calibration gives the external relation 

between the cameras with respect to reference point in the 3D world coordinate 

system. The relationship is further used to project the images from the left and right 

camera on a reference system [100].  

As shown in Figure 29, the wide baseline stereo camera in comparison to the narrow 

baseline stereo camera is suitable for long-range distance estimation however in 

practice it is not possible to set up a stereo camera for long-range. 
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Figure 29. Error-Depth diagram for narrow and wide baseline [101] 

2.5.4 Monocular Camera-based approaches 

Previous research for distance estimation mainly paid particular attention to build a 

model that represents the geometry relationship between points on images and their 

corresponding physical distances on the real-world coordinates. Inverse perspective 

mapping (IPM) [102] is one of these classical methods, which transforms the forward-

facing images to a top-down “bird’s eye” view and changes the nonlinear relationship 

between distances in the image and the real world into a linear relationship. However, 

the limitation of this method is that it performs poorly when objects lie on the sides of 

the camera or the curved road and when objects are far away from the camera (above 

40 meters) [103].  

Sadreddini et al. [104] proposed a system that estimates distances from a single 

camera for an indoor mobile robot application. The developed method utilized 

information from floor line detection and morphological operations extracted from an 

object to estimate the distance. However, this method was evaluated in only one use 

case. Pathi et al. proposed a method to estimate the distance between humans and a 

robot using images from a single camera mounted on the robot. The method first 

extracts 2D poses (skeleton structure) of the humans in the scene and then it uses the 

effect of perspective distortion from the camera’s point of view to estimate the 

distance. For the experimental validation of the method, the authors collected three 

datasets and the method demonstrated its effectiveness.  

A recent work by Ali et al. [105] proposed a real-time vehicle distance estimation 

using a single view geometry. A fully convolutional deep network is used for lane 

detection on the road. Subsequently, an  Inverse Perspective Mapping (IPM) and 
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camera height are estimated from a known lane width and the detected horizon. At 

last, the distances of the vehicles on the road are calculated by back projecting image 

point to a ray intersecting the reconstructed road plane. The method was evaluated in 

three datasets, KITTI [90], nuScences [87], and Lyft level 5 dataset [106]. All the 

datasets have color images along with LiDAR data. The proposed method performed 

better on the nuScenes and Lyft datasets in comparison to two other deep learning 

approaches. However, the proposed method did not perform well on the KITTI 

dataset.  

In [103], a base model that directly predicts distances for given objects in the images 

was introduced, which contains three parts: a feature extractor to generate a feature 

map for the entire RGB image, a distance regressor to directly predict a distance from 

the object-specific Region Of Interest (ROI) feature and a multi-class classifier to 

predict the category of an object from the ROI feature, as shown in Figure 30 [103]. 

 

Figure 30. Framework of the base model [103] 

To be specific, the popular network structures (vgg16 and res50) are adopted as 

feature extractor and extract the feature map for the whole image. Then the extracted 

feature map from the feature extractor and the object bounding boxes are feed into an 

ROI pooling layer to generate a fix-size feature vector to represent each object in the 

image [103]. After that, the distance regressor and classifier utilize the pooled feature 

to predict a distance and class information for each object. The distance regressor is 

made up of three fully connected layers and a softplus activation is employed on the 

output of the last fully connected layer to make sure the predicted distance is positive. 

The classifier uses a fully connected layer followed by a softmax function to predict 

the category. 
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Furthermore, in [103], an enhanced model with a keypoint regressor is proposed, 

which optimizes the base model by introducing a projection constraint and improves 

the performance of distance prediction, as shown in Figure 31 [103]. Here, the 

keypoint regressor is adopted to predict an approximate keypoint position in the 3D 

camera coordinate system [103]. 

 

Figure 31. The Framework of the enhanced model [103]  

2.5.1 Evaluation Matrices 

RMSE (Root Mean Square Error) is a measure of how far spread the data is 

from the line of best fit. Equation 2-21 shows the spread of predicted distance 

from the ground truth which is the actual distance in a total of N detections. RMSE is 

a common technique used to analyze regression problems. Since 

distance estimation can be classified as a regression problem, RMSE is a good metrics 

to evaluate experimental results. 

 

(2-21) 
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3.  Dataset for long-range object 

detection and distance estimation 

Among all the significant advancements in many sectors due to the introduction of 

machine learning, the most notable achievement has been seen in object recognition. 

Numerous datasets for object recognition were created in recent years from the 

images gathered from the internet such as Google, for example, COCO [89], SUN 

[107], PASCAL VOC [108] and ILSVRC [53] [109]. Some datasets were formed by 

collecting the images from a multisensory obstacle detection system containing 

cameras and other short-range ranging sensors such as LiDAR or RADAR mounted 

on a car moving on streets such as KITTI [90] and the Caltech Pedestrian Datasets 

[110]. The labelled datasets are used to train and evaluate machine learning models 

such as AlexNet [48], Faster-RCNN [111], YOLO [70] and FCIS [112]. Also, the 

comparison of various datasets and performance of machine learning models on the 

datasets is made [110] to evaluate the quality of datasets and performance of models. 

The current popular datasets and object detection models show promising results for 

object detection in indoor and outdoor applications.  

However, there are no datasets which are suitable for long-range object detection and 

distance estimation. The currently available dataset contains labelled objects which 

are at short-distance; hence the object size in the image is relatively big. Such as the 

state-of-the-art datasets COCO [89], KITTI [90] consists of images captured 

relatively at a short-range up to approximately 100 meters thus the size of the object is 

large in the image and tends to work for short-range object detection. The distance 

range and close objects labelling fulfill the requirement of autonomous cars obstacle 

detection system where the required range is relatively less in comparison to an 

obstacle detection system for railways.  Due to that in the thesis, it was needed first to 
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develop a new dataset that can work for long-range obstacle detection. The developed 

dataset is named as Long-Range Object Detection and Distance Estimation 

(LRODD). 

The dataset was prepared in order to detect objects at short to long-distance from 20 

meters to 1000 meters. moreover, the dataset created in this thesis contains images in 

which objects look smaller in size as they were captured at longer distances of up to 

1000 meters. The objects' size-range due to capturing at different distances is needed 

to train machine learning models to detect objects small in size due to long-distance 

capturing.  

The created dataset contributes not only to long-range object detection. It is also 

beneficial for providing long-range ground truth distance information to the labelled 

objects in images. Distance information is further utilized to train novel machine 

learning-based methods to estimate the object distance from a single monocular 

camera which is further explained in Chapter 4. Additionally, the use of the created 

dataset for sensor fusion and object tracking is given in Chapter 5 and Chapter 6 

respectively. In the next sections, the data acquisition procedure, data extraction, and 

data augmentation procedures to create the LRODD dataset are described.  

3.1 Dataset Preparation 

The LRODD dataset is generated from the images taken from various experiments, 

including experiments conducted over two years period within the project SMART - 

SMart Automation of Rail Transport [16]. SMART image dataset is the first dataset 

aiming at object recognition for railways and it consists of images of objects, potential 

obstacles, on railway tracks. The images were captured using the vision sensors of 

SMART multisensory Obstacle Detection System (ODS) [16]: three RGB cameras 

with optical zooming functionality and Thermal Camer. In addition, LiDAR and GPS 

sensors were used for ground truth distance recording. The images of different objects 

were captured at different day and night time and in different weather conditions such 

as snow, dry, rain.  

The experiments were conducted at the University of Bremen and Serbian Railways. 

Furthermore, in this Thesis, the data augmentation techniques were developed and 

implemented to expend the size of the dataset collected from real-world experiments.  
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In the following, before giving details on data acquisition and data collection 

experiments, the specifications of the used sensor are given. 

3.1.1.Sensors Specifications 

RGB Cameras: 

The zooming cameras from the imaging source (TIS) (Figure 32) were selected due to 

their optical zooming functionality to cover long-range imaging and high resolution. 

The zoom camera DFK Z12GP031 [113] is categorised as GigE interface cameras 

that provide high data transfer rate, high bandwidth, and power over Ethernet (PoE) 

features which, in comparison to, for example, USB interface or FireWork interface, 

allows transmitting of twice bigger images. In performed experiments, three RGB 

cameras were used, configured at different zooming factors, to cover short, mid and 

long-range objects imaging. The main features of the DFK Z12GP031 zoom GigE 

camera are listed in Table 4. 

 

Figure 32. DFK Z12GP031 from the Imaging Source [113] 

Table 4. Main Features DFK Z12GP031 zoom GigE camera 

Specification 

Resolution 2,592×1,944 (5 MP) 

Frame rate 15 FPS (Maximum) 

Pixel Size H: 2.2 µm, V: 2.2 µm 

Focal length 4.8 mm (wide) to 57.6 mm (tele) 

Interface GigE 

Supply voltage 11 VDC to 13 VDC or POE: 48 VDC to 56 VDC 

Trigger Software and Hardware 

I/Os Yes 

Dimension H: 50 mm, W: 50 mm, L: 103 mm 

Weight 330 g 

Shutter 1/20,000 s to 30 s 
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Gain 0 dB to 12 dB 

White balance -2 dB to 6 dB 

Thermal camera: 

The thermal camera FLIR TAU2 model (Figure 33) with a resolution of 640x480 

pixels and a 100mm objective lens [114] was chosen for SMART project experiments 

due to the GigE ethernet interface expansion module. The camera is further equipped 

with the narrow field lens with a long focal distance to achieve sufficient 

magnification for the detection of distant objects. The thermal camera also known as 

the IR camera is sensitive to wavelength in the infrared region. The imaging in 

invisible space helps to see the objects emitting invisible heat radiations regardless of 

lighting conditions.  

 
 

(a) FLIR Tau2 camera and GigE ethernet module 

from worskwell  
(b) Objective lens from FLIR 

Figure 33. FLIR Tau2 Camera and objective lens [114] 

FLIR lens of 100mm focal length and f-number 1.6 fulfills all requirements for this 

sensor channel, detailed in Deliverable 1.1 of SMART project [115]. The main 

features of the selected thermal camera can be found in Table 5. 

Table 5. Main Features of FLIR Tau2 Camera 

Specification 

Resolution 640x512 (0.328 MP) 

Frame rate 9 FPS (Maximum) 

Pixel Size 17 µm 

Focal length 100 mm 

Interface Workswell GigE adapter 

Supply voltage POE: 48 VDC to 56 VDC 

Spectral range Long Wavelength InfraRed (LWIR) 
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I/Os Yes 

Dimension (including 

lens) 
Length: 110 mm Diameter: 82 mm 

Weight (including lens) 479 g 

Operational temperature 

range 
-40° C to +80° C external temp 

Gain 0 dB to 12 dB 

Accuracy ±5°C 

field of view 6.2° x 5° 

Night-vision camera 

A monochrome DMK 33GP031 CMOS camera (Figure 34) from TIS [113] with GigE 

communication interface equipped with a custom made image intensifier and 

objective lens from HARDER Digital SOVA was chosen for SMART ODS. The 

image intensifier and objective lens were designed to capture a minimal amount of 

light and magnify it on the CMOS sensor to produce a digital image of the scene. 

Table 6 summarizes the features of the CMOS sensor.  

 

Figure 34. A monochrome CMOS camera sensor equipped with image intensifier and objective 

lens [116] 

Table 6. Main features of the Nigh vision camera 

Specification 

Resolution 2,592×1,944 (5 MP) 

Frame rate 15 FPS (Maximum) 

Pixel Size H: 2.2 µm, V: 2.2 µm 

Focal length 4.8 mm (wide) to 57.6 mm (tele) 

Interface GigE 

Supply voltage 11 VDC to 13 VDC or POE: 48 VDC to 56 VDC 

Trigger Software and Hardware 

I/Os Yes 

Dimension H: 29 mm, W: 29 mm, L: 57 mm 
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Weight 65 g 

Shutter 50 µs to 30 s 

Gain 0 dB to 15.02 dB 

Video Format Monochrome 

Laser scanner 

A SICK laser scanner LD-MRS400001S01 (Figure 35) was selected [117] to provide 

mid-range distance information of the objects. The scanner helps the OD system by 

contributing the accurate distance measurement in 3D coordinates basing on the 

Time-of-Flight (ToF) technology and its built-in feature of object tracking. The LD-

MRS sensor has the multi-echo capability which allows its use in adverse weather 

conditions (rain, snow, etc).  

Due to the limited range up to 300 meters for highly reflective objects. The laser 

scanner does not show any practical advantage for real-time long-range obstacle 

detection however it is an excellent source to provide a precise ground truth distance 

for short to mid-range datasets.  

 

Figure 35. Laser scanner LD-MRS400001S01 from SICK [117] 

In Table 7, some most important features of the SICK LD-MRS laser scanner are 

mentioned [117]. 

Table 7. Main features of SICK LD-MRS laser scanner 

Specification 

Laser class 1 

Field of Application Outdoor 

Horizontal Field-of-View (HFOV) 110° 

Vertical Field-of-View (VFOV) 3.2° 

Range 0.5 m - 300 m 

Max. range with 10 % reflectivity 50 m 
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Angular resolution 0.125°, 0.25°, 0.5 

Scanning frequency 12.5 Hz ... 50 Hz, object tracking at 12.5 Hz 

Operating voltage 9 V ... 27 V 

Power consumption 8 W 

Weight 1 kg 

Dimensions (L x W x H) 94 mm x 165 mm x 88 mm 

Layers 4 

Echoes 3 

 

GPS Sensor 

The USB GPS sensor module from Odroid [118] (Figure 36) was used to collect the 

real-world position of SMART ODS in real-time and further with respect to object 

GPS coordinates estimate the ground truth distance to the object for dataset 

preparation of long-range. 

 

Figure 36. USB GPS module from Odroid [118] 

Table 8. Main features of the GPS module from Odroid [118] 

Specification 

Chipset Ublox 6010 

Interface USB 2.0 

GPS protocol NMEA 0183 position, velocity, altitude, status 

and control 

Power consumption 100 mA (5 V-) 

Dimensions 50x38x16 mm 

Tracking sensitivity -160dBm 

Acquisition sensitivity 0.125°, 0.25°, 0.5 
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3.1.2. Data Collection Experiments 

University of Bremen experiments, July 2017:  

The first experiments for data collection were performed in July 2017 on-site 

University of Bremen Campus. The RGB cameras and LiDAR were mounted on a 

test-stand as shown in Figure 37. Images were captured simultaneously with LiDAR 

point cloud of various objects moving from 0 to 100 meters including various objects 

such as pedestrians, bicycles, cars, and bikes. Figure 38 shows some of the collected 

images. 

 

Figure 37. Field tests performed in University Campus. Test-stand with the vision sensors and 

laser scanner. 

 

Figure 38. Example images from the experiments at the University of Bremen Campus 

Serbian Railways  experiments, November 2017-May 2019:  

The most extensive set of data collection experiments were performed on Serbia 

railway tracks in the period November 2017 – May 2019 within the H2020 Shift2Rail 

project SMART [119]. Two types of experiments were conducted:  Static and 

Dynamic field tests.   
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In the static experiments, vision sensors were mounted on the static test-stand as 

shown in Figure 39. The camera images were recorded on the location of the straight 

rail tracks in the length of about 1100 m in different times of the day and night and in 

different weather conditions in November 2017, March 2018 and November 2018.  

During the performed static field tests, for the purpose of dataset generation, members 

of the SMART team imitated possible obstacles (persons) on the rail tracks in 

addition to various objects such as bicycles and suitcases located at known distances 

from the cameras in the range  from 0 to 1000 meters. 

 

Figure 39. Field tests performed on the straight rail tracks; Test-stand with the vision sensors 

viewing the rail tracks and an object (person) on the rail track. 

In this set of experiments selected LiDAR could not be used as the source of ground 

truth objects distances due to the limited range of LiDAR. Instead, the ground truth 

distance was collected manually by indicating the locations on the rail tracks where 

the objects were located. For example, in the experiments conducted in November 

2018, for the purpose of ground truth distance estimation,  two persons were walking 

along the rail tracks 1000 m away from the cameras and back, 1000 m towards the 

cameras. At every 5 m, while walking in both directions, they signalized in a 

particular way, so that frames recorded at moments of the signalization could be used 

for the dataset generation. These camera frames, corresponding to person locations at 

every 5 meters from 0 to 1000 meters, were extracted from the whole recorded video 

so that manually drawn bounding boxes of the objects (persons) could be labelled 

with ground truth distance. The example RGB and Thermal images recorded in static 

field experiments for the purpose of dataset generation are given in Figure 40.  
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Figure 40. RGB and thermal images recorded in field experiments performed on the long-range 

straight rail tracks for dataset generation [120] 

Dynamic experiments were performed in July 2018 and May 2019. During these 

experiments, vision sensors were integrated into specially designed protective 

sensors’ housing (as shown in Figure 41), which was mounted onto the moving 

locomotive Serbia Cargo type 444 pulling the freight train with 21 wagons on the 

Serbian part of the Pan European Corridor X to Thessaloniki in the length of 120 km 

with a maximal train speed of 80 km/h. The sensors’ housing mounted onto 

locomotive at the beginning of dynamic experiments is shown in Figure 41. The on-

board cameras recorded the data of the real-world rail tracks scenes in front of the 

locomotive. SMART team members mimicked objects (obstacles) on several 

crossings along the route according to previously adopted test protocols. During the 

rest of the tests, as the train was in real traffic, unintended objects were detected along 

the route. These objects represented possible obstacles, which could cause an 

accident. The GPS coordinates of the train were recorded simultaneously with 

cameras’ images recording to label ground truth distance. The ground truth object 

distances were calculated off-line using recorded GPS coordinates of the train and 

approximate GPS positions of objects on Google Maps calculated using Google maps 

GPS coordinates of the infrastructure (e.g. crossings) and railway infrastructure 

information (e.g. distance between pillars).  

The Serbian Railways experiments were performed in different illumination 

conditions including day, night, and dawn as well as in different weather conditions 

including winter (snow) and summer (38°C environmental temperature). In this way, 

recorded data formed a dataset of diversity needed for the development of reliable 
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machine learning-based methods for obstacle detection in railways. Some of the 

images from the dataset are given in Figure 42. 

 

 

Figure 41. SMART ODS mounted on Serbian freight train during dynamic tests 

 

 

Figure 42. Example images of a real-world scene captured during dynamic experiments  

SMART ODS 
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3.1.3. Data Acquisition Procedure 

Robot Operating System (ROS) [121] based data acquisition interface was developed 

that provides services such as hardware abstraction, low-level control, and data 

passing between different modules. A data acquired from sensors in the form of ROS 

messages were recorded in ROSBAGS file. The data from each sensor can be 

accessed by subscribing to a specific ROS topic assigned to a specific sensor. The 

rosbags were created by subscribing to the ROS topics of specific sensors and storing 

the data in an efficient file structure in a local memory of the computer.   

The asynchronous data recorded from all the sensors were time-synchronized by 

comparing the timestamps of each sensor’s messages and outputs set of messages that 

were close in the timestamp. Figure 43 shows an example where four sensors are 

giving data at varying frequencies illustrated as horizontal lines and blue dots 

represent acquired data over time. The red dots represents data and dotted lines 

indicate a set of messages that are approximately timely synchronised. 

 

Figure 43. Time approximate synchronization of data at carrying frequency [122] 

The sensors synchronisation is needed for multisensory dataset creation to process the 

data captured by each sensor at the same time event. To be specific, all the sensors 

provide data at different frequencies and in order to correspond the data from all the 

sensors, the data synchronization is needed. However, time-approximate 

synchronisation of data downsamples the data which causes loss of data of high-

frequency sensors due to not correspond with data of the low-frequency sensors 

within the threshold of time approximation.  

The asynchronous recorded data shows the random length of samples and can happen 

that the number of data samples of one sample differs from other sensors. After the 
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synchronisation, the length of data samples becomes the same for all the sensors; 

hence the data correspond and useable for the dataset labelling stage.  

3.1.4 Dataset labelling 

Once the sensor data is collected, the camera images are further processed to 

manually label them with ground truth distance, object bounding box, and object class 

in an image. The method to manually label dataset is also called “hand-engineering” 

where a person manually assigns the ground truth to the corresponding input data. The 

ground truth or expected output can be defined as the desired output from the machine 

learning model on a given set of inputs. 

The recorded images were manually labelled using an annotation tool [123]. The 

annotation tool helps to create a bounding box around a region in an image where the 

potential object is, and helps to label the region with ground truth distance and object 

class as shown in Figure 44. The manually created bounding box coordinates in 

pixels, the respective image file name, the object class, and distance to the object were 

recorded and structured in the form of a table. Similarly, the whole set of images, one 

by one, was labelled and the LRODD dataset was formed. Most images contained 

multiple objects so that each camera frame consists of multiple objects bounding box 

information.  

It is also important to statement that the LRODD dataset consists of sequential data 

which means the subsequent frames were labelled to form a sequential dataset. This 

characteristic of LRODD dataset make it also unique over other datasets since other 

object detection datasets are built on random images without any temporal relation. 

The sequential datasets benefit in object tracking as presented in chapter 6.
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Table 9 shows the size of the whole LRODD dataset, and here it is also clear that the 

dataset itself consists of small segments of synchronised images based on a set of 

cameras used because in some experiments not all the cameras were used to record 

data. However, the table also shows that the dataset consists of multiple object classes 

and also shows the distance ground truth measurement method. 

 

Figure 44. Bounding Box Toolbox for Annotation of Images 

However, in the dataset obtained from the experiments, there are few instances for 

object class bicycle in comparison to person class, hence data augmentation 

techniques were also considered in order to increase the size and improve the quality 

of the LRODD dataset for bicycle class. Data was augmented only for the object class 

Bicycle. 

The Table 9, shows that in total 136,419 synchronised images were recorded with 

ground truth distance information and objects instances. Where as around 517,235 are 

totala number of combined synchronized images from cameras.  
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Table 9. Long-Range Obstacle Detection and Disance Estimation Dataset (LRODD) 
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340,700 68,140 20 – 925       -     - 

1008 252 20 – 925     - - -   - - - 

3600 900 20 – 925    -  - -   - - - 

43,524 14,508 20 – 925    - - - -   - - - 

49,221 16,407 20 – 925  -   -  - -  -   

14,034 4,678 20 – 925  - - -  - -   - - - 

25,088 12,544 20 – 925 -  - -  - -   - - - 

25,880 12,940 20 – 925 - - -   - -   - - - 

7660 3,830 20 – 925 -   - - - - -    - 
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6240 2080 20 - 140    - - -       

=517,235 =136,419 
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3.2 Data Augmentation 

The data augmentation techniques were applied to improve the LRODD dataset 

extracted from real-world images. In the original dataset, the instances of objects such 

as bicycle or vehicles other than persons were very few for the long-range distances. 

The proposed object augmentation technique allows augmenting objects in an image 

by placing it in an image with random rotations and scale also considering the object 

projection on image plane with respect to change in distance. Figure 45 presents the 

flow chart for the dataset augmentation. 

 

Figure 45. Flow Chart for Dataset Augmentation 

An object class Bicycle was chosen to increase images in dataset with augemented 

bicycle. A bicycle was overlaid on the images in different sizes relative to distance. 

First, the relation between the average size of bicycle appearances in an image with 

respect to change in distance to the camera was approximated. It was needed to map 

the real-size object to 2D image that can be calculated by projective transformation. 

The geometry of the bicycle in the real-world and the size of the bicycle in pixels in 

multiple images taken at various known distances. By doing so the factor 𝑘 by which 

the bicycle size in image change with respect to change in distance was found.  

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑛 𝐼𝑚𝑎𝑔𝑒 ∝
𝑘

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑜𝑏𝑗𝑒𝑐𝑡
 

Using the factor the bicycle was placed at different scales on an image from the 

original dataset with known ground truth distance from 0 to 1000 meters. An example 

of augmented images is given in Figure 46. 
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Figure 46. Black bicycle overlaid at 60 m (left). Red bike rotated by 180 degrees overlaid at 60 m 

(right) 

  

a) Rotated bicycle Right Forward at 50m b) Rotated bicycle Right Forward at 50m 

  

c) Rotated bicycle Right Forward at 50m d) Rotated bicycle Right Forward at 50m 

Figure 47. Augmentation Example of a Bicycle 
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To diversify and add more data, the bicycle was placed at each 45-degree angle shift 

with respect to the camera. Hence for each 5 meters interval, the five samples were 

formed as follows, bicycle without rotation and four samples with a rotation of 45, 

135, 225, and 315 degrees. Figure 47 illustrates the bicycle placement at various 

angles at 50 meters ground truth. The images are zoomed for clarity. Table 10 shows 

the augmented bicycle images in total. The augmentation techniques were only 

applied on two RGB camera images and Table 10 shows the total addition in the 

dataset for the object class bicycle with long-range ground distances. 

Table 10. Augmented Data through Object Placement 

 Reference 

Camera 
Rescaled Rotated 

Total 

Augemented 

Bicycles 
CAM01 364 728 1092 

CAM02 410 820 1230 

Combined - 774 1548 2322 

The Table 10. Shows that total 2322 augmented images were added into original 

LRODD dataset. The augmentation was done by varying scale and rotation of object 

overlaid in image. The scale and rotation augmentation improve the performance of 

ML models to detect bicycle from different angles and appearance in real-time 

captured images.  
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4.  A machine learning-based distance 

estimation from a single camera 

A single camera-based distance estimation to the object is a very challenging task and 

up to now, this topic is not explored considerably. In this chapter, two novel object 

distance estimation methods from a single camera are presented. The first proposed 

method named DisNet (Distance Network) has been presented by Haseeb et al. in 

[124] and in [125].  The method estimates the distance of the objects detected by the 

object detector. DisNet makes use of features extracted from the objects bounding box 

and object class type, to estimate the distance to the detected objects. The method can 

be used with any object detector that outputs object bounding box and object class. 

However, in this work, a state-of-art object detector namely You Only Look Once 

(YOLO) has been used.  

The second proposed method is named YOLO-D. It is another approach to estimate 

distance to the detected object by modifying the architecture of the YOLO object 

detection model, a deep learning network. In this method, the modified architecture of 

YOLO predicts the distance to the detected object besides its primary function of the 

object bounding box and class prediction. 

4.1 DisNet: a machine learning-based object-specific distance estimation 

from a single camera 

In this thesis, the very first method DisNet that estimates the distance based on 

bounding box information of detected objects is presented. Any object detector that 

outputs object bounding box and class in an image such as YOLO, fast RCNN, 

MaskNet can be used with DisNet to estimate the distance to the detected objects. 
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During the development of DisNet, YOLOv3 is considered as an object detector to 

obtain an object bounding box and class. 

The architecture of the DisNet-based distance estimation system is illustrated in 

Figure 48. The main blocks are YOLO based object detection, feature extraction, and 

DisNet.  

The camera image is input to the Object Detector which is based on a state-of-the-art 

computer vision object detector YOLO (You Only Look Once) [70] pre-trained with 

the COCO object detection dataset [89]. YOLO is a fast and accurate object detector 

based on Convolution Neural Network (CNN) as explained in chapter 2. Its outputs 

are bounding boxes of detected objects in the image and labels of the classes detected 

objects belong. The objects bounding boxes resulted from the YOLO object detector 

are then processed further to calculate the features, bounding boxes parameters. Based 

on the input features, the trained DisNet gives as outputs the estimated distance of the 

object to the camera sensor. In the system architecture illustrated in Figure 48, an 

example of the estimation of distances of two persons on the rail tracks is shown. 

 

Figure 48. The DisNet -based system used for object distance estimation from a monocular 

camera [89] 

For the training of DisNet, a supervised learning technique was used. This method 

required a collected dataset including both inputs and outputs, i.e. the ground truth. In 

the presented system, a set of LRODD dataset was used to train the DisNet model. 
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The set of LRODD dataset used to train DisNet contains in total 2000 samples of the 

object classes person, bicycle, and vehicles for the distance range of 0 to 70 meters. 

The details of the structure and training of DisNet are given in the following sections. 

4.1.1 Feature Extraction 

In the presented work, the objective is that DisNet is trained for the estimation of an 

object’s distance to the onboard sensory obstacle detection system. More formally, the 

task is to estimate the distance to an object in the laser’s reference frame, which is on 

the same distance from the object as the camera reference frame, given an input also 

called feature vector v. In the presented work, v contains the features of the bounding 

box of the object detected in camera images and the ground-truth is the distance to the 

object as measured by the laser scanner. Some of the objects recorded at different 

distances and their bounding boxes from the dataset are shown in Figure 49.   

 

Figure 49. Example of some objects bounding boxes at various distances 

For each extracted object bounding box, a six-dimensional feature vector v was 

calculated: 

                𝒗 = [1/𝐵ℎ 1/𝐵𝑤 1/𝐵𝑑 𝐶ℎ 𝐶𝑤 𝐶𝑏] (4-1) 

where the coordinates of vector v, features, are: 

Height, 𝐵ℎ=(height of the object bounding box in pixels/image height in pixels) 

Width, 𝐵𝑤=(width of the object bounding box in pixels/image width in pixels) 

Diagonal, 𝐵𝑑=(diagonal of the object bounding box in pixels/image diagonal in pixels) 
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The ratios of the object bounding box dimensions to the image dimensions Bh, Bw, and 

Bd enable the reusability of the DisNet trained model with a variety of cameras 

independent of image resolution. Ch, Cw, and Cb in (4-1) are the values of average 

height, width, and breadth of an object of the particular class. For example for the 

class “person” Ch, Cw and Cb are respectively 175 cm, 55 cm, and 30 cm, and for the 

class “vehicle” 160 cm, 180 cm, and 400. The features Ch, Cw, and Cb are assigned to 

objects labelled by YOLO detector as belonging to the particular class in order to 

complement 2D information on object bounding boxes and so to give more 

information to distinguish different objects. 

The relationships of the calculated features of object bounding boxes in the 2D image, 

Bh, Bw, and Bd, and the real distance to the image measured by laser scanner in the 

range 0-70 m, are given in Figure 49. Geometrically, by the projective 

transformations, the object bounding box size is expected to get smaller the further 

away the object is, so the inverse of bounding box size is expected to increase as the 

distance increases. Inspection of the data confirms that this is the case and suggests 

that the relationship is approximately linear, which gives a clear motive to use it for 

the dataset used for the training of DisNet. 

Table 11. Correlation between the extracted features with distance 

Attributes Width Height Diagonal 1/Width 1/Height 1/Diagonal 

Distance -0.630 -0.682 -0.693 0.805 0.769 0.953 

Table 11 and Figure 50 also show that the inverse relation of bounding box height, 

width, and diagonal highly correlate with distance, thus the inverse was selected for 

DisNet. 

4.1.2 DisNet architecture and training 

In order to find the appropriate number of hidden layers experiments with various 

numbers of hidden layers (1, 2, 3, 5, and 10) were performed assuming that each 

hidden layer had 100 neurons. Figure 51 (a) shows the accuracy of distance estimation 

over 1000 epochs achieved for the different number of hidden layers. As obvious, 

DisNet with one hidden layer achieves the lowest distance estimation accuracy. It is 

also apparent that there is no significant difference in distance estimation accuracy 
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achieved with 2, 3, 5 and 10 hidden layers.  For this analysis, a reduced dataset was 

used. The networks were trained on the 80% dataset and the estimation accuracy 

reported is on the 10% validation set.  

 

Figure 50. Distance vs inverse and non-inverse bounding box features 

Similar behaviour can also be seen in Figure 51(b) where the Mean Absolute Error 

over 1000 epochs achieved for a different number of hidden layers is shown. As 

obvious, the Mean Absolute Error is most significant for the DisNet with one hidden 

layer, while there is no significant difference in the Error achieved with 2, 3, 5 and 10 

hidden layers.  

 

                                                     (a)          (b) 

Figure 51. (a) Distance Estimation Accuracy and (b) Mean Absolute Error achieved for different 

numbers of hidden layers 
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Even though the smallest values of Mean Absolute Error were achieved for 10 hidden 

layers and the distance accuracy was highest for 10 hidden layers, a trade-off was 

made between the computational time and accuracy/error and finally, DisNet with 3 

hidden layers was chosen. 

After deciding on the network with 3 hidden layers, in order to find the appropriate 

number of neurons for the hidden layers experiments with various numbers of hidden 

neurons were performed. Figure 52(a) shows the accuracy of distance estimation over 

1000 epochs achieved for the different number of neurons per hidden layer. As 

obvious, the distance estimation accuracy achieved with 10 hidden neurons is very 

low, much lower than distance estimation accuracy achieved with 30, 100 and 200 

hidden neurons. The magnified diagram in Figure 52 (b) shows that distance 

estimation accuracy with 30 hidden neurons is lower than with 100 and 200 neurons. 

Bearing in mind that there is no significant difference in distance accuracy estimation 

with 100 and 200 hidden neurons, in order to reduce the complexity of DisNet, 

finally, 100 neurons per hidden layer were chosen. 

 

(a)                                                                    (b) 

Figure 52. Distance Estimation Accuracy achieved for different number of hidden neurons per 

hidden layer in 3-hidden layers neural network DisNet 

The final structure of DisNet having 3 hidden layers with 100 hidden neurons per 

layer is shown in Figure 53. 
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Figure 53. The structure of DisNet used for object distance prediction 

DisNet input layer consists of 6 neurons corresponding to 6 features, parameters of 

output layer consists of only one single neuron. The output of this node is the 

estimated distance between the camera and the object viewed with the camera. 

For training the network the input dataset was firstly randomly split into a training set 

(80% of the data), validation set (10% of the data), and test set (10% of the data). The 

DisNet was trained using the backpropagation method with Adam optimizer [16] to 

minimize the Mean Absolute Error (MAE) loss function for distance estimation give 

in equation 4-2, in which 𝑦𝑖 refer to estimated distance and 𝑦𝑖̂ refer to ground-truth 

distance. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 (4-2) 

Scikit-Learn's GridSearchCV [126] hyperparameters tuning technique was used to 

fine-tune the hyperparameters of our model. The combinations of hyperparameters 

were given to Gridsearch and it evaluates the performance on all possible 

combinations and gave the best configuration of parameters.  To find the best 

combination, the following set of hyperparameters was given: 

• Optimizers = adam [127], rmsprop [128] 

• Weights initializer [129] = glorot_uniform, glorot_normal, he_normal 

• Batch size  = 25, 50, 100 

• learning rate = 0.001, 0.0001, 0.00001 

• Number of layers = 1, 2, 3, 5, 10 
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• Number of hidden units = 10, 30, 100, 200 

• Activation function = relu, elu, selu 

The best combination of parameters was selected for DisNet given by GridSearch 

method of hyperparameters tuning: SELU (Scaled Exponential Linear Unit) activation 

function, batch size of 50, epochs 1000 with early stopping technique, uniform 

weights initialization, and learning rate of 0.001. 

4.1.3. Performance Evaluation 

For the evaluation purpose, the performance of DisNet was measured on the test 

dataset by measuring the Mean Absolute Error (MAE) and Accuracy is computed by 

the equation (4-3). Figure 54, shows that the DisNet, distance estimation is close to 

the actual distance. The DisNet accuracy is measured with the tolerance criteria which 

means the estimation with less than 5 meters error is considered as an accurate 

measurement. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛
∑(|𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑟𝑢𝑒 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑| < 5)

𝑛

𝑖=1

 (4-3) 

 

Figure 54. the distance estimation vs ground truth distance 

Furthermore, for the sake of performance evaluation, some popular neural network 

models were also compared with the DisNet model, trained on the same set of datasets 

as DisNet. The bar diagram in Figure 55, shows the comparison of DisNet with linear 

regression model [130], lasso regression model [131], Gaussian RBF kernel Models 
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[132], and support vector machine with linear kernel [133], respectively. The 

accuracy of each model is shown in Figure 55. The straight lines on top of each bar 

represent error bars and indicate the error or uncertainty in a reported measurement. 

The standard error of the mean (SEM) [134] of each model is 4.25, 4.52, 3.91, 6.24, 

1.90 respectively. The test accuracy of the DisNet model achieves 94.5% and Mean 

Absolute Error loss 1.90 with a 753 training epoch using the early stop method. 

 

Figure 55. Distance accuracy of DisNet vs other models 

The performance of DisNet on unseen data has also been evaluated. The DisNet-based 

system for distance estimation was evaluated on two different scenarios, the railway 

scene, and the road scene. The next section is divided into two sub-sections, namely 

static and dynamic experiments. The static experiments section contains results of the 

railway scene where the SMART ODS system was placed at a fixed position while 

objects were moving. Whereas, in dynamic experiments, the section contains results 

from railway and road scene while both the camera and the objects were moving 

simultaneously. The images recorded in the field tests within the H2020 Shift2Rail 

project SMART [119] were used for railway scene evaluation. The details of SMART 

ODS are given in section 3.1.  
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4.1.3.1. Static Experiments 

The sensor data, which were used for the evaluation of a DisNet-based system for 

object distance estimation, were recorded in the field tests on the straight rail tracks at 

different times of the day and night on the location of the straight rail tracks (Figure 

39 – Section 3.1.2). Monocular RGB cameras, thermal and night vision camera were 

mounted on the static test-stand, together with the laser scanner in the locations which 

resemble their intended locations in the dynamic obstacle detection experiments 

(Figure 39 – Section 3.1.2). During the performed field tests, the members of the 

SMART Consortium imitated potential static obstacles on the rail tracks located on 

different distances from the test-stand.In this section, some results of DisNet on RGB, 

thermal, and night vision images were taken at different weather and illumination 

conditions covering short, mid, and long-range are presented. 

Distance estimation from single RGB camera images 

Some of the results of the DisNet objects (persons) recognition and distance 

estimation from RGB images are given in Figure 56 and Figure 57. The estimated 

distances are also given in Table 12. 

Table 12. Estimated distances from RGB images vs. ground truth 

Figure Object 
Rail Scene 

Ground Truth Distance estimated from DisNet Error 

Figure 56 
Person 1 

100 m 
101.89 m 1.89% 

Person 2 99.44 m 0.6% 

Figure 57 

Person 1 50 m 54.26 m 8.52% 

Person 2 150 m 167.59 m 11.726% 

Person 3 100 m 132.26 m 32.26% 

Person 4 300 m 338.51 m 12.836% 

Figure 58 
Person 1 

835 m 
826.90  m 0.97% 

Person 2 849.57 m 1.74% 
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Figure 56. DisNet estimation of distances to objects in a rail track scene from the RGB camera 

image. Distance estimation of detected persons at 100 m  

 

Figure 57. DisNet estimation of distances to objects in a rail track scene from the RGB camera 

image. Magnified RGB image overlaid with bounding boxes and distance estimation of detected 

persons at 50, 100, 150, and 300 m respectively. 

As evident from Figure 56 and Figure 57, YOLO based object detection in images is 

reliable even though the YOLO detector was used in its original form trained with the 

COCO dataset, without re-training with the images from the SMART field tests. Also, 

it is obvious that achieved distance estimation is satisfactory in spite of the fact that 
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the DisNet database did not contain object boxes from the real rail tracks scenes. This, 

in the first place, means that the objects in real field test scenes were at larger 

distances from the sensors than in the recording tests used for dataset generation. 

Also, the distances of the objects in field tests were outside the laser scanner range (0 

m – 60 m) used for the training of DisNet. However, the difference in the estimation 

of distances of persons at 100 m (Figure 57) indicates the need for overcoming the 

problem of bounding box extraction inaccuracy.  

As per the requirement of long-range obstacle detection for railways, the DisNet 

successfully able to estimate the distance to the distant objects. The results shown in 

Figure 58 prove that DisNet can precisely estimate the distance to the object 

regardless of how far it is from the camera, if it is detected by the object detector.  

 

Figure 58. Object detection and distance estimation in RGB camera image recorded in winter 

(snow) environmental conditions; Ground truth distance: 835 m (0,97 % and 1,74% 

respectively). 

Distance estimation from thermal camera images 

Another advantage of DisNet is that it can work with any type of camera. DisNet 

originally is trained with bounding box features extracted by RGB images. Besides 

RGB camera, the performance was also evaluated on thermal and night vision 

cameras. Some of the results of the DisNet object distance estimation in thermal 
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camera images of the same scenes as in Figure 56 and Figure 57 are given in Figure 

59 and Figure 60. The estimated distances are also given in Table 28. 

Table 13. Estimated distances from thermal image vs. ground truth 

Figure Object 
Rail Scene 

Ground Truth Distance estimated from DisNet Error 

Figure 59 
Person 1 

100 m 
101.06 m 1.06% 

Person 2 100.10 m 0.1% 

Figure 60 

Person 1 50 m 48.36 m 3.28% 

Person 2 150 m 157.02 m 4.68% 

Person 3 100 m 161.02 m 61.02% 

Person 4 500 m 469.94 m 6.012% 

 

 

Figure 59. DisNet estimation of distances to objects in a rail track scene from the thermal images. 

Distance estimation of detected persons at 100 m 



4.1 DisNet: a machine learning-based object-specific distance estimation from a 

single camera  

  

78 

 

 

Figure 60. DisNet estimation of distances to objects in a rail track scene from the thermal images.  

Distance estimation of detected persons at 50, 100, 150 and 500 m respectively 

As obvious from Figure 59 and Figure 60, YOLO based object detection in images is 

reliable in spite of the fact that the YOLO classifier was used in its original form 

based on RGB images from the COCO dataset, without re-training with the thermal 

camera images. Moreover, it is obvious that achieved distance estimation is 

satisfactory in spite of the fact that DisNet database did not contain object bounding 

boxes from the images of rail tracks scenes, both either RGB or thermal camera 

images. Also, it is obvious that long-range object distance estimation (500 m) was 

achieved with satisfactory accuracy in spite of the fact that distances of the objects in 

the field tests were much outside the laser scanner range (0 m – 60 m) used for the 

training of DisNet. However, due to inaccuracy in bounding boxes extraction, there 

are more significant errors in some estimation results, i.e. for 100 m estimation in 

Figure 60. This indicates the need for a method to overcome the problem of 

uncertainty in single cameras object detection. Moreover, the results of object 

detection and distance estimation from two cameras, RGB and thermal show the 

advantages of multiple viewing angles due to different positioning of cameras on the 

test-stand. The multiple perspectives assist to detect the person at 300 m in RGB 

image, which cannot be seen in the thermal image view due to its position behind the 

person at 500 m. Similarly, a person at 500 m can be seen in the thermal image, but 
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not in the RGB image. A machine learning-based method for distance estimation from 

multiple cameras, which overcome the mentioned problems of distance estimation 

from monocular cameras is given in detail in Chapter 5.  

Distance estimation from night vision camera images 

Figure 61 shows the results obtained on the night vision image were two persons 

walking at a 225-meter distance from the camera. Table 14 shows the estimated 

distances from the night vision images and the ground truth.  

Table 14. Estimated distances from Night Vision images vs. ground truth 

Object 
Railway Scene 

Ground Truth Distance estimated by DisNet Error 

Person 1 
225 m 

225.93  m 0.413% 

Person 2 237.23 m 5.435% 

 

Figure 61. DisNet estimation of distances to objects in a rail track scene from the night vision 

images. 

4.1.3.2. Dynamic Experiments 

Railway Scene 

For all dynamic tests of SMART ODS, the OD demonstrator was mounted onto the 

test locomotives. The test length was 120 km, the average speed was 34 km/h and the 

run on the whole length lasted 3.5 h. On the straight rail-tracks sections, between Niš 

Marshalling Yard and station Grdelica, the maximal speed was 80 km/h. 
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Similar to Static experiments, SMART team members mimicked objects (obstacles) 

on two crossings along the route according to previously adopted test protocols. 

During the rest of the test, as the train was in real traffic, accidental objects were 

detected along the route. These objects represented possible obstacles, which could 

cause an accident, for example, a truck crossing the unsecured crossing at the station 

while the train was approaching.   

Some of the results of the DisNet based distance calculation with RGB cameras are 

shown in Figure 62. Figure 62 (a)-(d) show four subsequent frames of the RGB 

camera video in which two persons crossing the track are recognized out of which one 

person is pushing the bike, which also was recognized. The person and the bike were 

recognized though they are not on the same track as the train. As can be seen from 

Figure 62, a person without the bike, who is crossing the rail track, in four subsequent 

frames was recognized at distances 121,74 m, 114,16 m, 86,37 m, and 81,71 m as 

opposed to ground truth distances of 120.12 m, 111.95 m, 83.66 m, and 80.62 m 

respectively. The ground truth distances were calculated using GPS coordinates of the 

train, Google maps GPS coordinates (e.g. crossing), and railway infrastructure 

information (e.g. distance between pillars).  

Table 15. Long-range distance estimation 

Object 
Railway Scene 

Ground Truth Distance estimated by DisNet Error 

Person 

120.12 m 121.74 m 1.34% 

111.95 m 114.16 m 1.97% 

83.66 m 86.37 m 3.23% 

80.62 m 81.71 m 1.35% 

Due to the geometry of the rail tracks in dynamic tests, there were no straight rail 

tracks sections longer than 600 m on which accidental objects could be detected. 

However, Mid- to Long-range results of about 200 m - 600 m were achieved as 

illustrated in Figure 63-66, from RGB, thermal and night vision camera. Static tests 

were performed in November 2018 on the straight rail tracks in the length of about 

1000 m, with the planned (mimicked objects) on the whole length, complementing so 

dynamic tests (a result shown in Figure 57). Due to the positive results achieved in 
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static field tests, similar performance is expected to be achieved in operational 

conditions as well.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 62. Four subsequent frames of the RGB camera video overlaid with the bounding boxes of 

the detected objects as well as with the estimated distances from the locomotive to the objects 

Table 16. Long-range distance estimation for RGB, Thermal and Night Vision Images 

Figure Object 
Rail Scene 

Ground Truth Distance estimated from DisNet Error 

Figure 63 Person 1 272.75 m 245.02 m 10% 

Figure 64 

Person 1 

231.97 m 

253.65 m 8.2% 

Person 2 251.09 m 8.24% 

Figure 65 Person 1 266.69 m 231.42 m ~8.32% 
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Figure Object 
Rail Scene 

Ground Truth Distance estimated from DisNet Error 

Person 2 281.44 m 

Person 3 280.87 m 

Car 4 597.87 m 593.71 m 0.69% 

Figure 66 
Person 155 m 154.96 m 0.025 % 

Truck 202 m 196.34 m 2.8% 

Figure 67 

Person 1 162 m 158.68 m 2.04% 

Person 2 181 m 182.90 m 1.04% 

Person 3 176 m 179.99 m 2.26% 

 

 

Figure 63. Mid-range object detection and distance estimation in on-board RGB camera image; 

Ground truth distance: 272.75 m (error 10%) 
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Figure 64. Mid-range object detection and distance estimation in on-board RGB camera image; 

Ground truth distance: 231.97 m (errors 8.2% and 8.24% respectively) 

 

Figure 65. Mid- to Long-range object detection and distance estimation in on-board RGB camera 

(zoom) image; Ground truth distance: for persons (station middle point) 266.69 m (average error 

8.32%), for the car 597.87 m (error 0,69%) 
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Figure 66. Object detection and distance estimation in onboard thermal camera image recorded 

in the environmental condition of 38°C; Good detection result in spite of low-contrast image; 

Ground truth distance for a person: 155 m (0.025 %) 

 

Figure 67. Mid-range object detection and distance estimation in on-board night vision camera 

image; Ground truth distance: 162 m, 181 m and 176 m opposed to 158.68 m, 182.90 and 179.99 

m respectively. 

Road Scene 

Although the presented DisNet-based method for distance estimation from the 

monocular camera has been originally developed for autonomous obstacle detection 
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in railway applications, it can be applied to road scenes as well. To demonstrate this, 

the presented method was applied to the image of a different resolution than images 

used for the training of DisNet. The images recorded within the project HiSpe3D-

Vision presented in [135] [136] were used to evaluate the performance of the DisNet 

on-road scene. The main goal of HiSpe3D-Vision was to develop a high speed, low 

latency stereo vision-based collision warning system for automotive applications. The 

obstacle detection and distance calculation for collision warning was based on the 

segmentation of the disparity map created from the car-mounted stereo-vision system. 

The result of object detection and distance estimation in a dynamic environment 

(moving car and moving object-obstacle) is shown in Figure 68, where the original 

image is overlaid with the bounding cuboid for the object closest to the car (the person 

on the bike). Distance for this object, as estimated by the HiSpe3D-Vision method, is 

given in the left upper corner of the image in  Figure 68, as well as in Table 17.   

In contrast to the HiSpe3D-Vision method, which detected only the object closest to 

the car, the presented DisNet method recognized different objects in the scene 

recorded by the car-mounted camera: person, bicycle, car, and track. The bounding 

boxes of the recognized objects are overlaid on the image in Figure 68 together with 

distances estimated by DisNet. The objects distance estimation achieved by DisNet 

vs. the distance estimation achieved by the HiSpe3D stereo vision method is given in 

Table 17. 

Table 17. Objects Distances Estimated by DisNet vs. Objects Distances Estimated by HiSpe3D-

Vision method (adapted from [124]) 

Object 

Road Scene 

Distance estimated by HiSpe3D-

Vision [136] 
Distance estimated by DisNet 

Person 6.24 m 6.12  m 

Bicycle - 5.39 m 

Car - 27.64 m 

Truck - 30.25 m 
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Figure 68. Road scene image overlaid with objects recognition and distance estimation results 

achieved by proposed DisNet and by stereo-vision based HiSpe3D method [124] 

As obvious, DisNet outperforms the HiSpe3D-Vision method in a number of different 

objects recognized in the recorded scene. The person distance estimation by both 

methods is comparable.  

Presented results illustrate the reliable estimation of distances from a single RGB, a 

thermal camera, and a night vision camera to objects in static and dynamic railway 

scenes recorded by cameras in various weather and illumination conditions. The 

general nature of the presented distance estimation method is demonstrated by the 

result of distance estimation in a dynamic road scene captured with a different type of 

cameras. This indicates that the presented method can be used for object distance 

estimation from different types of monocular cameras, such as thermal camera and 

night vision camera. 

4.2 YOLO-D:  a deep learning-based object-specific distance estimation 

from a single camera 

In this section, the second method for distance estimation from a single camera has 

been discussed. The method is based on YOLOv3 named as YOLO-D (You Only 

Look Once to estimate distance). Together with object detection, the method also 

predicts the distance to detected object. The main idea behind this method is to 

replace handcrafted features calculation and DisNet as a separate network for distance 

estimation with a direct estimation of distance from YOLOv3 beside object detection. 
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In this section, firstly the modification into the existing YOLOv3 network architecture 

to achieve the task of object detection and distance estimation is presented. Secondly, 

the dataset and training method are discussed. At the end of this section, some 

evaluation results and the advantages and limitations of YOLO-D are also given.  

4.2.1 Modification of YOLOv3 network 

As explained in section 2.3.2., the “You Only Look Once,” or YOLO is a series of 

models that come into different versions namely YOLOv1, YOLOv2, and YOLOv3. 

The end-to-end deep learning models designed for fast object detection, developed 

by Joseph Redmon, et al. and first term in the paper titled “You Only Look Once: 

Unified, Real-Time Object Detection” [70].   

The YOLO is built on a single deep convolution network called DarkNet53 originally 

based on VGG. The proposed method is based on YOLOv3. The primary objective of 

YOLO as an object detection model is to predict the bounding box and classify 

objects. However, the proposed method based on YOLOv3 along with its primary 

objective of object detection also simultaneously estimates the distance to the detected 

objects. Hence the proposed method is named YOLO-D where D refers to distance 

estimation. In this section, the modification into YOLOv3 architecture and changes 

made in the learning process are explained.  

In order to achieve this task, two major changes are made. Firstly one more output 

that is distance is added into the three detection layers of the YOLO architecture. For 

the simplification, the modification into the detection layer is shown in Figure 69. The 

details of YOLO architecture is given in section 2.3.2. 

The purpose of three detection layers is to detect objects of big, medium, and small in 

size. The first, second, and third detection layers are of size 13x13x255, 26x26x255 

and 52x52x255 respectively. The 13x13, 26x26 and 52x52 represent the size of the 

feature map whereas 255 come from the 3 x (4+1+80). ‘3’ is the number of a 

bounding box that each grid cell predicted; ‘4’ represents the coordinates of the 

predicted box: 𝑡x, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ; then the ‘1’ refers to the objectness score, which 

indicates how likely there is an object in that grid cell; and ‘80’ is the number of 

predicted class. However, the number of classes is not fixed it depends on the classes 

on which YOLO is trained. In the default version, the YOLO is trained with the 
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COCO dataset which contains 80 classes. For example in case of two classes to 

predict the size of detection layers will be 21 come from the 3 x (4+1+2). 

Likewise, in case of modification, the sizes of detection layers are changed due to the 

addition of one more output that is distance estimation. The sizes of three detection 

layers are changed to 13x13x24, 26x26x24 and 52x52x24 respectively. The 24 comes 

from 3 x (4+1+1+2) where additional 1 indicated the estimation of the distance to the 

corresponding detected object and 2 is the number of classes to predict.  

 

Figure 69. The graphical representation of YOLO architecture and modification on its final 

detection layers [137] 
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Figure 70. The architecture of modified YOLOv3 (YOLO-D) 

4.2.2 Loss Function 

The second major change to achieve distance estimation from YOLOv3 is made into 

its loss function by adding the distance loss function into the YOLOv3 default loss 

function. The YOLO loss function is a cumulative loss function of localization (errors 

between the predicted bounding box and the ground truth bounding box), confidence 

(likelihood of objectness of the box) and class type. By adding the loss function for 

distance estimation the loss function for YOLO-D will be as given in equation (4-4). 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 + 𝐿𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 + 𝑳𝒐𝒔𝒔𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 (4-4) 

From the understanding of loss function selection during the development of DisNet, 

the Mean Absolute Error function was selected over other loss function due to its 

small loss relative to other loss functions. Similarly, the loss function selection 

process was also conducted for YOLO-D training. Since the distance estimation is a 

regression problem, the selection of loss functions was made between the two famous 

MAE and MSE loss function as given in equation x and y.  

𝑀𝐴𝐸 =
1

𝑛
∑|𝑑𝑖𝑠𝑡𝑖 − 𝑑𝑖𝑠𝑡𝑖̂|

𝑛

𝑖=1

 (4-5) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑑𝑖𝑠𝑡𝑖 − 𝑑𝑖𝑠𝑡𝑖̂)

2
𝑛

𝑖=0

 (4-6) 

Let’s add the distance loss into the YOLO loss function. The total loss function of 

YOLO-D based on MAE based distance loss function is given in equation (4-7) and 

similarly the total loss function by adding the MSE based distance loss function is 

given in equation (4-8).  
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𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 + 𝐿𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 + 𝑳𝒐𝒔𝒔𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝑴𝑨𝑬) 

                  = ∑∑1𝑖,𝑗
𝑜𝑏𝑗

[(𝑡𝑥 − 𝑡𝑥̂)
2 + (𝑡𝑦 − 𝑡𝑦̂)

2
+ (𝑡𝑤 − 𝑡𝑤̂)2+(𝑡ℎ − 𝑡ℎ̂)2]

𝐵

𝑗=0

𝑠2

𝑖=0

+ ∑∑ 1𝑖,𝑗
𝑜𝑏𝑗[− log(𝜎(𝑡𝑜)) − log(1 − 𝜎(𝑡𝑜))]

𝐵

𝑗=0

𝑠2

𝑖=0

+ ∑∑ 1𝑖,𝑗
𝑜𝑏𝑗

[∑ 𝐵𝐶𝐸(𝑦𝑘 ,̂ 𝜎(𝑠𝑘))

𝑐

𝑘=1

]   +

𝐵

𝑗=0

𝑠2

𝑖=0

∑∑1𝑖,𝑗
𝑜𝑏𝑗

|𝑑𝑖𝑠𝑡 − 𝑑𝑖𝑠𝑡̂ |

𝐵

𝑗=0

𝑠2

𝑖=0
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𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 + 𝐿𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 + 𝑳𝒐𝒔𝒔𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝑴𝑺𝑬) 

                        = ∑∑1𝑖,𝑗
𝑜𝑏𝑗

[(𝑡𝑥 − 𝑡𝑥̂)
2 + (𝑡𝑦 − 𝑡𝑦̂)

2
+ (𝑡𝑤 − 𝑡𝑤̂)2+(𝑡ℎ − 𝑡ℎ̂)2]

𝐵

𝑗=0

𝑠2

𝑖=0

+ ∑∑1𝑖,𝑗
𝑜𝑏𝑗[− log(𝜎(𝑡𝑜)) − log(1 − 𝜎(𝑡𝑜))]

𝐵

𝑗=0

𝑠2

𝑖=0

+ ∑∑1𝑖,𝑗
𝑜𝑏𝑗

[∑ 𝐵𝐶𝐸(𝑦𝑘 ,̂ 𝜎(𝑠𝑘))

𝑐

𝑘=1

]

𝐵

𝑗=0

𝑠2

𝑖=0

+∑∑ 1𝑖,𝑗
𝑜𝑏𝑗

(𝑑𝑖𝑠𝑡 − 𝑑𝑖𝑠𝑡̂ )
2

𝐵

𝑗=0

𝑠2

𝑖=0

 

(4-8) 

Both MAE and MSE based loss functions are evaluated for YOLO-D training and 

testing as given in the next sections. 

4.2.3 Dataset preparation 

Before beginning with the training process, firstly the dataset is required to discuss for 

the training of YOLO-D. There are some of the comprehensive datasets available for 

object detection, but none of them serves the specific purpose of this thesis which is 

long-range object detection with distance estimation. Table 18 shows a list of 

available online datasets relevant to object detection. Although the KITTI dataset [90] 

does have short-range distance information, it only covers urban driving scenarios. 



4.2 YOLO-D:  a deep learning-based object-specific distance estimation from a single 

camera  

  

91 

 

While the primary focus of this thesis is long-range object detection and distance 

estimation using a single camera. Hence the proposed LRODD was also utilized.  

The LRODD dataset proposed in this thesis provides all the information required for 

end-to-end training of YOLO-D for object detection and distance estimation, 

including ground truth distance to the annotated bounding box and object class. 

Despite the usefulness of the LRODD dataset, the dataset itself is not enough to train 

YOLO-D for object detection and distance estimation. The dataset provides very few 

data samples for object classes other than person object class. Furthermore, due to a 

few diverse examples, the dataset performance for object detection is not satisfactory. 

However, still, the distance ground truth labelling is beneficial for the distance 

estimation task of YOLO-D. In order to train YOLO-D for a new task of distance 

estimation without losing its performance on object detection, two widely used object 

detection datasets i.e. COCO, KITTI were also used in the training process together 

with LRODD dataset. COCO teaches the network object detection while KITTI and 

LRODD dataset teaches distance estimation and improve object detection for road and 

railway scenes. 

Table 18. List of available datasets related to object detection and distance estimation 

Dataset Annotated Images Distance Range 

COCO ~ 120,000 No distance information 

Pascal VOC ~ 12000 No distance information 

KITTI ~ 7500 0 to ~120 meters 

LRODD ~ 8000 20 to ~ 925 meters 

KITTI Dataset  

In order to combine KITTI and LRODD dataset to train YOLO-D, the KITTI labelled 

dataset was organized in the form of a table in same order as LRODD dataset in a text 

file. Each row of the text file corresponds to one particular image as well as the 

bounding box, class and distance information of the objects in that image. The 

parameters in each row are arranged as follow:  

img_path dist bbox_left bbox_top bbox_right bbox_bottom class_id ……… 

Where, ‘img_path’ is the location of the training image; ‘bbox_left’ and ’bbox_top’ 

are the left top coordinates of the bounding box of the object in the image, while 
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’bbox_right’ and ‘bbox_top’ are the right bottom coordinates; ‘class_id’ refers to 

‘Person’ and ‘Car’ object class; ‘dist’ represents the distance to the object. More than 

one object in an image is also represented in the same row. 

There were 7481 annotated images from KITTI combined with 192 images from the 

LRODD dataset containing multiple objects. In total 7673 annotated images were 

used for the training and testing of YOLO-D. The KITTI and LRODD datasets were 

randomly split into 80% of training, 14% of validation, and 6% of the test dataset, as 

shown in Table 19.  

Table 19. Information about training, validation and test sets for the KITTI and LRODD 

datasets 

Dataset 
Annotated 

images 

Training 

dataset 

Validation 

dataset 

Test 

dataset 

KITTI 7481 5985 1047 449 

LRODD 192 153 27 12 

KITTI + 

LRODD 
7673 6193 1074 461 

4.2.4 Training and testing 

Instead of training the modified YOLO (YOLO-D) from scratch, the weights of the 

network trained from the COCO dataset were loaded. The main concept of transfer 

learning was applied here while training YOLO for distance estimation. The pre-

trained YOLO model with COCO images learned the object detection task. It is 

assumed that the pre-trained YOLO network with COCO dataset has been trained 

quite well for object detection, by training the whole YOLO-D network, the weights 

of the network can modify too soon (lower layers) and too much which can disturb the 

performance of the model on object detection task. The YOLO-D model was trained 

to fine-tune the weights learned from the COCO dataset to work on the targeted 

dataset and also to predict distance.  

Considering the size of our training dataset and the computation capability of the 

processing computer in the lab, a mini-batch gradient descent method was utilized, i.e. 

the total training images are divided into the batch size of 8 and for epoch, 8 images 

are fed into the network to train.  
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The training of our YOLO-D network comprises two training stages. In the first 

training stage, the first 53 convolutional layers (main body of YOLOv3 network 

which is Darknet-53) were frozen, only the last remaining convolutional layers were 

trained. In order to get a stable loss for the first stage, the network was trained by all 

the training images for 50 epochs. In the second training stage, the first 53 layers are 

unfrozen and all the layers are trained for another 50 epochs. During the first training 

stage, the network adapts its weights of last layers, whereas in the second stage whole 

network fine-tune its weights based on weights learned from the first stage. In order to 

avoid over-fitting, the early-stopping method and learning rate reducing method were 

applied. To be specific, during training, when the loss on the validation dataset after 3 

subsequent epochs stops reducing, the learning rate will become 10 times smaller, and 

if the loss doesn’t change for 10 epochs, the training will be stopped. The two stages 

of the training process of YOLO-D on two versions of loss function are shown in 

Figure 71 and Figure 72. 

 

Figure 71. 1st and 2nd training stage of the based on MAE-distance loss function 
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Figure 72. 1st and 2nd training stage of the based on MAE-distance loss function 

From the figures listed above, it is clear that, for the network based on MAE-distance 

loss function, the training loss drops constantly and the training stops at 37 epochs at 

the second stage; while for the network of MSE-distance loss function, the loss is 

relatively significant and unstable and the training stops at 28 epochs at the second 

stage. 

4.2.5 Performance Evaluation 

In this section, the performance on object detection and distance estimation is 

measured separately for the YOLO-D model based on MAE and MSE loss functions. 

The performance of object detection is measured based on the confusion matrix and 

metrics of precision and recall as well as the average precision (AP) [138] of two 

object classes ‘Person’ and ‘Car’. The test dataset images were used for performance 

evaluation. The test dataset of 461 images contains 2159 cars and 326 persons which 

were labelled, as shown in Figure 75. 
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Figure 73. Number of ground-truth labelled cars and persons in the test dataset 

The YOLO-D model trained with MAE loss function detects 1729 cars out of 2159 

and 209 persons out of 326. On the other side MSE based YOLO-D model, detects 

only 1402 cars and 140 persons correctly, as shown in Figure 74. Here, when the 

detected object shares the same label with the ground truth object and the IoU 

(Intersection over Union) is greater than 0.5, the detection would be considered as true 

positive. False-positive refers to the detection whose IoU with ground truth object is 

less than 0.5 or no ground truth object matches that detection. 

 

Figure 74. Detection results of network based on MAE-distance loss 

An example of true positive and false positive during the evaluation process can be 

reviewed in Figure 75. In which the light blue bounding boxes are the ground truth 

bounding box provided by the KITTI dataset, green boxes are true positive predicted 
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bounding boxes, and red box is the false positive prediction that falsely predicts that 

symbol as a person. 

 

Figure 75. An example of true positive and false positive during the evaluation process 

By referring to the method [138] and setting a different threshold for the confidence 

score that we predicted, we got different pairs of precision and recall value and then 

plotted the Precision-Recall (PR) curve of these two classes, as shown in Figure 76 

and Figure 77. 

 

Figure 76. PR curve of car prediction by network-based on MAE and MSE-distance loss 
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Figure 77. PR curve of person prediction by network-based on MAE and MSE distance loss 

Then through calculating the area under the Precision-Recall curves, the average 

precision (AP) for these two classes (car and person) as well as the mean average 

precision (mAP) for these two types of network is measured, as shown in Figure 78. 

 

Figure 78. Average Precision of prediction by network-based on MAE and MSE distance loss 

From Figure 78, it is clear that for the network trained by MAE- distance loss, the 

average precision of car and person achieves 79% and 59% separately and the mean 

average precision is 68.84% for two object classes i.e. Person and Car; while for the 

other type, the average precision of car and person is relatively lower, 63% and 39% 

respectively, and the mAP is 50.98%.  

Additionally, the detection performance was evaluated on LRODD images from the 

test and validation dataset. For the network trained by MAE-distance loss, 67 out of 

the 86 persons could be detected correctly (IoU>=0.5), while for the other, only 39 
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persons could be detected correctly. An example of these two detections at the ground 

truth distance of 320m is shown in Figure 79 and Figure 80, respectively. 

 

Figure 79. Detected objects at 320m by network-based on MAE-distance loss 

 

Figure 80.  Detected objects at 320m by network-based on MSE-distance loss 

From the figures and statistics listed above, the conclusion could be obtained that, the 

object detection performance of the YOLO-D model trained by MAE-distance loss is 

better than that trained by MSE-distance loss.  
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Similarly, the performance of YOLO-D to estimate distance is measured for both 

detection classes. KITTI test dataset and SMART test dataset were separately 

evaluated. Firstly, in the KITTI test dataset, for the network based on MAE-distance 

loss, the average error is 1.12 meters and on the other side, the average error for the 

MSE-based model is 1.25 meters as shown in Table 20. Average error and accuracy 

of YOLO-D for both object classes on KITTI test dataset. The accuracy of the 

network for distance estimation based on MAE-distance loss is 97.5% while for the 

MSE-based is 96.9%. The accuracy of the model is measured with the tolerance 

criteria of 5 meters which means that the distance estimation with an error less than or 

equal to 5 meters is considered as an accurate measurement. 

Table 20. Average error and accuracy of YOLO-D for both object classes on KITTI test dataset 

Modified Network Average Error Accuracy (<=5m) 

Modified YOLOv3 Network based on 

MAE-distance loss 
1.12m 97.5% 

Modified YOLOv3 Network based on 

MSE-distance loss 
1.25m 96.9% 

Similarly, in the LRODD test dataset, the average error between predicted distance 

value and ground truth distance value for the network based on MAE-distance loss is 

10.83 meters, while for the other is 46.03 meters. Since the distance range in the 

LRODD dataset is quite large (from 20 meters to 925 meters) and the evaluation 

dataset size is quite small, therefore the accuracy of predicted distance is not 

calculated as a distance evaluation metric. Instead, the scatter plot of distance between 

the ground truth and predicted value on these two types of model are plotted, as 

shown in Figure 81. 
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Figure 81. Scatter plot of distance on the network based on MAE and MSE distance loss 

In Figure 81, the left plot shows that the estimated values are closer to ground truth 

distance compared to the right plot. It shows that, for long-range distance estimation, 

the performance of network-based on MAE distance loss is better than the network 

based on MSE distance loss function.  

In conclusion, when it comes to the performance of object detection, the network 

trained by MAE-distance loss performs much better than the model trained by MSE-

distance loss. With regard to the performance of distance estimation on the KITTI 

dataset, there is no noticeable difference between these two networks, while for the 

long-range distance in the LRODD dataset, the performance of network-based on 

MAE-distance loss is better than the MSE-based model. 

4.2.5.1 Road Scene 

Some results of test images as well as the ground truth information is shown in the 

following figures 81-83 and tables 21-23: 
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Figure 82. YOLO-D detection result of test image 1 from KITTI dataset 

Table 21. Ground truth and estimated distance test image 1 from KITTI dataset 

 Car1 Car2 Car3 Car4 Car5 Car6 

Estimated 12.42m 21.89m 34.75m 36.18m 44.66m 58.73m 

Ground 

Truth 
12.85m 23.78m 35.79m 37.12m 46.16m 61.98m 

 

 

 

Figure 83. YOLO-D detection result of test image 2 from KITTI dataset 

 

 

 



4.2 YOLO-D:  a deep learning-based object-specific distance estimation from a single 

camera  

  

102 

 

Table 22. Ground truth and estimated distance test image 2 from KITTI dataset 

 Car1 Car2 Car3 

Estimated 9.51m 27.44m 27.66m 

Ground Truth 9.48m 26.36m 28.67m 

 

 

Figure 84. YOLO-D detection result of test image 3 from KITTI dataset 

Table 23. Ground truth and estimated distance test image 3 from KITTI dataset 

 Car1 Car2 Car3 Car4 Person1 

Estimated 4.80m 7.04m 15.38m 28.39m 27.20m 

Ground 

Truth 
5.37m 7.35m 14.45m 26.42m 26.91m 

In addition, the performance of YOLO-D model is compared with DisNet and 

HiSpe3D-Vision method [51] by applying these methods into an image that is totally 

different from our training dataset (i.e., the resolution and color of the image). The 

detection result of HiSpe3D-Vision is shown in the left upper corner of the image in 

Figure 85, which could only detect the distance to the person. The detection from 

YOLO-D is also shown in the form of bounding boxes and overlaid distance above 

the detected objects. The results of DisNet are taken from the Table 17 as shown in 

section 4.1.3. The comparison of distance estimation results among these methods are 

given in Table 24. 
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Figure 85. Objects distance estimated by YOLO-D vs DisNet vs HiSpe3D-Vision method 

Table 24. Comparison of distance estimation among three methods 

Object 
Distance Estimation 

HiSpe3D-Vision DisNet YOLO-D 

Person 6.24 m 6.12 m 8.30 m 

Bicycle - 5.39 m - 

Car - 27.64 m 23.90 m 

Truck - 30.25 m - 

The distance estimated by YOLO-D method is close to the estimation from DisNet. 

Although YOLO-D could not detect the Truck and Bicycle currently, as the training 

dataset does not contain these classes and model was not trained to detect them.  

4.2.5.2 Railway Scene 

Some of the results of the YOLO-D based distance calculation with RGB cameras for 

railway scenarios are shown in Figure 85-87. However, the result of YOLO-D 

distance estimation for thermal and night vision images are not shown here but the 

method is also capable to work for them.  
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Figure 86. YOLO-D detection result of test image 1 from LRODD dataset 

Table 25. Ground truth and estimated distance test image 1 from LRODD dataset 

 Person1 Person2 

Estimated 206.59m 201.47m 

Ground Truth 205m 205m 

 

Figure 87. YOLO-D detection result of test image 2 from LRODD dataset 
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Table 26. Ground truth and estimated distance test image 2 from LRODD dataset 

 Person1 Person2 

Estimated 266.87m 257.79m 

Ground Truth 260m 260m 

 

 

Figure 88: YOLO-D detection result of test image 3 from LRODD dataset 

Table 27: Ground truth and estimated distance test image 3 from LRODD dataset 

 Car 

Estimated Distance 13.7 m 

Ground Truth Distance 14.5 m 
 

4.2.6 Discussion 

In this chapter, two methods to estimate the distance to the detected objects were 

presented. The first method is named DisNet, which is a classical artificial neural 

network-based method that takes as an input hand-crafted features of the detected 

object to estimate the distance to the detected object. In contrast to DisNet, the second 

method named as YOLO-D is a deep learning method that does not require manual 

extraction of features for distance estimation to the detected objects. It works on the 

principle of end-to-end learning, it estimates distance and detects objects in a given 
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input image. It finds itself the relation to change of distance to the object of a specific 

class in an image by investigating the visual features. 

In this chapter, the methodology, concept, and evaluation results of DisNet and 

YOLO-D were explained. Both the methods show promising results for distance 

estimation; however, some limitations and future ideas to improve their performance 

are important to highlight.   

One of the main limitations of both methods is to deal with object occlusion, 

unreliable distance estimation in case of false and imprecise object bounding box 

prediction from the object detection model. Furthermore, the methods were evaluated 

on a limited size dataset, the performance can be improved more with the increase in 

dataset specifically for YOLO-D which as deep learning-based object detection and 

distance estimation network required more data to train in comparison to DisNet. The 

dataset designed explicitly for object detection and distance estimation such as the 

LRODD dataset can fulfill the requirement for the training of YOLO-D. Additionally, 

more object classes can be added to the dataset. 

In the next section and chapters, the problems encounter is addressed and some new 

ideas are presented to overcome such problems.  
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5. A machine learning based distance 

estimation from multiple cameras 

In this chapter, a novel method for distance estimation from multiple cameras to the 

object viewed with these cameras is presented named Multi-DisNet. Multi-DisNet is a 

multilayer neural network, which is used to learn the relationship between the sizes of 

the bounding boxes of the objects in the camera's images and the distance between the 

object and cameras.  

The supervised learning technique was used to train the Multi-DisNet network where 

the input features were manually calculated parameters of the objects bounding boxes 

in the camera's images and desired outputs were ground-truth distances between the 

objects and the cameras. The performance of multi-DisNet was evaluated on images 

of real-world railway scenes. As a proof-of-concept, the results on the fusion of two 

sensors, an RGB and thermal camera mounted on a moving train, in the Multi-DisNet 

distance estimation system are shown. Presented results demonstrate both the good 

performance of the Multi-DisNet system to estimate the mid (up to 200 m) and long-

range (up to 1000 m) object distance and benefit of sensor fusion to overcome the 

problem of not reliable object detection. The Multi-DisNet was presented by Haseeb 

et al. in [120].  

5.1 Multi-DisNet: a machine learning-based robust distance estimation 

from multiple cameras 

The architecture of the Multi-DisNet-based distance estimation system, with the setup 

assuming two cameras mounted horizontally parallel, an RGB camera and a thermal 

camera, is illustrated in Figure 89.  
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Figure 89. The Multi-DisNet-based system for object distance estimation from a multi-camera 

system. 

Each of two synchronized images of the same scene, captured by RGB and thermal 

camera sensors, are inputs to an Object Detector module. Different object detectors 

can be integrated into the system. Independently of the Object Detector type, its 

outputs must be bounding boxes of detected objects in the image. The resulted 

corresponding objects bounding boxes are then processed to calculate the features, 

bounding boxes parameters based on which the trained Multi-DisNet gives as outputs 

the estimated distance of the object to the multi-camera sensors. In the system 

architecture illustrated in Figure 89, an example of the estimation of the distance of a 

person on the rail tracks is shown. 

5.1.1 Feature Extraction 

In total, 755 bounding boxes of objects were manually extracted from recorded 

synchronised RGB and thermal camera images using the VGG Image Annotator tool 

[139]. For each object bounding box extracted from RGB images and for each object 

bounding box extracted from thermal images, a three-dimensional feature vector v 

was calculated: 

𝒗 =  [1/𝐵ℎ𝑖, 1/𝐵𝑤𝑖, 1/𝐵𝑑𝑖], 𝑖 =  𝑟, 𝑡 (5-1) 
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where indexes r and t indicate features extracted from RGB and thermal images 

respectively, and the coordinates of vector v are the following features: 

Height, 𝐵ℎ𝑖=(height of the object bounding box in pixels/image height in pixels) 

Width, 𝐵𝑤𝑖=(width of the object bounding box in pixels/image width in pixels) 

Diagonal, 𝐵𝑑𝑖=(diagonal of the object bounding box in pixels/image diagonal in 

pixels) 

The ratios of bounding box sizes and image size were used as the features so to enable 

the use of the generated dataset for any image resolution. The inverse of features, 

𝐵ℎ𝑖, 𝐵𝑤𝑖 and 𝐵𝑑𝑖 were finally selected as the best features due to their high correlation 

with the desired output (distance to the object). Combining the features extracted from 

both sensor modules, a joint vector, that is a vector of fused data vf of dimensions 6x1 

is obtained. 

vf = [1/Bhr, 1/Bwr, 1/Bdr, 1/Bht, 1/Bwt, 1/Bdt] (5-2) 

5.1.2 Multi-DisNet Architecture 

In order to find the appropriate number of hidden layers and neurons per layer, the 

best configuration of hidden layers and neurons obtained from the GridSearch 

estimator [140] was used for Multi-DisNet architecture. As shown in Figure 90, the 

Multi-DisNet network consists of 6 neurons in the input layer which represents the 

features extracted from bounding boxes, followed by the 3 hidden layers with 150 

neurons in each layer and one neuron in the output layer which represents the distance 

estimation. For this analysis and proof-of-concept, a reduced dataset was used. 

Whereas the dataset was split into 3 sets for training 80%, validation 10%, and testing 

10%.  
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Figure 90. The structure of Multi-DisNet for the estimation of object distance from the multi-

sensory system [120]  

5.1.3 Performance Evaluation 

The Multi-DisNet-based system for object distance estimation was evaluated on 

images recorded in different field tests. As first, testing data of the generated long-

range dataset were processed by Multi-DisNet system and the results on the testing 

dataset are shown in Figure 91. As can be seen, the estimated object distances vary 

slightly around the ground truth distance.  

 

Figure 91. Ground truth vs estimated object distance from testing dataset [120]  
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The error in distance estimation is rather larger with larger distances and the 

calculated mean absolute error (MAE) was 22.76 m and root means square error 

(RMSE) was 34.09 m. These results demonstrate the ability of Multi-DisNet to 

estimate the long-range distance of up to 1000 m with an acceptable error.  

Some of the results of the Multi-DisNet long-range object distance estimation in RGB 

and thermal images are given in Figure 92. The estimated distances to the objects 

(persons) detected in the images are given in Table 28. The object bounding boxes in 

the images were manually extracted so that an ideal object detector, able to extract 

bounding boxes of distant objects of very small size in the images, was assumed. 

  

Figure 92. Manually detected objects in magnified RGB (left) and thermal images (right) from 

the long-range dataset field tests [120] 

Table 28. Estimated distances vs Ground truth. 

Object Ground Truth Multi-DisNet 

Person 1 
925 m 

937.19 m 

Person 2 899.25 m 

 

In order to evaluate performances of the Multi-DisNet system with autonomous object 

bounding boxes extraction, the state-of-the-art computer vision object detector YOLO 

[70] trained with COCO dataset [89] was implemented in the Object Detector module. 

The images from the above described explained field tests were processed by YOLO 

and the resulted in YOLO objects bounding boxes were processed to calculate the 

Multi-DisNet input features, bounding boxes parameters. Based on the input features, 

the trained Multi-DisNet gave as outputs the estimated distances of the objects, 
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persons on the rail tracks, to the camera sensors. It is important to note that images 

processed are those recorded while persons were walking along the rail tracks 

between the points of signalizations done for data set images recording, as explained 

in Section 3.1. Some of the results of the Multi-DisNet object distance estimation in 

RGB and thermal images are given in Figure 93. The estimated distances to the 

objects (persons) detected in the images are given in Table 29. Shown results illustrate 

the longest range achieved by YOLO, about 395 m, as YOLO detector failed to 

produce the object bounding boxes for distances larger than 395 m as the YOLO was 

trained with the COCO dataset, which contains objects only at a short distance to the 

camera. 

  

Figure 93. Object detected in RGB and Thermal images using the YOLO object detector [120] 

Table 29. Estimated distances vs Ground truth 

Object Ground Truth Multi-DisNet 

Person 1 
395 m 

352.86 m 

Person 2 408.25 m 

Further sensor data for the Multi-DisNet evaluation purposes were recorded during 

the dynamic field tests [141]. The RGB and thermal cameras were mounted onto the 

moving locomotive Serbia Cargo type 444 pulling the freight train with 21 wagons on 

the Serbian part of the Pan European Corridor X to Thessaloniki (Greece) in the 

length of 120 km with a maximal train speed of 80 km/h. The cameras were mounted 

into specially designed housing as shown in Figure 94.  
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Figure 94. Vision sensors for obstacle detection integrated into sensors’ housing mounted on the 

frontal profile of a locomotive below the headlights [120] 

The sensors’ housing was vibration isolated to prevent transmitting of vibrations from 

the locomotive onto the cameras as moving vehicle vibration can severely deteriorate 

the quality of acquired images. The vibration isolation system was designed with the 

rubber-metal springs [119] and it was suitable to suppress low-frequency vibrations 

providing almost 94% isolation efficiency for vehicle primary resonant frequency of 

27 Hz. For frequencies above 50 Hz, the isolation efficiency was greater than 98%.  

During the train run, onboard cameras recorded the data of the real-world rail tracks 

scenes in front of the locomotive. Example frames sequence of thermal images is 

shown in Figure 95. As can be seen, the example frames show the scene when a 

person accidentally crossed the rail track while the train was approaching. These 

frames were processed by YOLO object detector for person bounding box extraction. 

The extracted bounding boxes were processed for the extraction of bounding boxes 

parameters, inputs to Multi-DisNet, so that trained Multi-DisNet estimated distances 

to the detected object (person crossing the rail tracks). The distance estimation result 

is given in Table 30. However, as can be seen from Figure 95c, YOLO failed to detect 

object bounding boxes in the thermal camera frame. The cause for object detection 

failure in some of the thermal camera images was low images contrast due to lower 

camera performances influenced with high outside temperature during the dynamic 

SMART 

ODS 
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field test of about 38°C. As the Multi-DisNet assumes input feature vectors of six 

elements where three elements represent features of the object bounding box in the 

thermal image it was necessary to estimate the object bounding box in thermal camera 

based on detected object bounding box in the RGB camera image. This assumption of 

the bounding box in the thermal image was done based on the relationship between 

the sizes of the objects bounding boxes in RGB and thermal images learned from the 

generated dataset. The corresponding object bounding boxes between the cameras 

highly correlate and show a linear relationship, which allows estimation of the 

missing bounding box in one camera as corresponding to the bounding box detected 

in the other camera. The results show how Multi-DisNet addresses the problem of 

object detection module failure to detect an object in one of the camera images. The 

trained Multi-DisNet estimated person distances to the cameras, which were mounted 

on the moving locomotive using the calculated features of originally detected object 

bounding boxes in RGB images and the features of estimated object bounding boxes 

in thermal images, from all subsequent cameras frames. The distance estimation result 

is given in Table 30. For the sake of better understanding of Multi-DisNet distance 

estimation accuracy, the ground truth distance in dynamic experiments was calculated 

offline using the relative GPS position of the train and the approximate GPS position 

of obstacle on Google Maps. 

Table 30. Distance Estimation from Multi-DisNet in the dynamic experiment 

Frames Ground Truth (GPS) Multi-DisNet 

(a) 155 m 160.92 m 

(b) 146 m 141.80 m 

(c) 138 m 135.61 m 
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(a) subsequent synchronized frame 1 

  

(b) subsequent synchronized frame 2 

  

(c) subsequent synchronized frame 3 

Figure 95. Three subsequent synchronized frames of RGB and thermal cameras of the scene with 

a person crossing the rail tracks accidentally, with the YOLO object bounding boxes overlaid. 

YOLO failed to extract the object bounding box in the last thermal camera frame.  
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5.1.3 Discussion 

In this Thesis, a method for long-range obstacle detection from multiple monocular 

cameras is presented. The method is based on a novel multilayer neural network 

named Multi-DisNet that learns the relationship between the distance from the 

multiple cameras to the detected objects and the corresponding sizes of the objects in 

both camera images. The presented work is a part of the research and development of 

a novel integrated onboard obstacle detection system for railway applications. The 

presented system was evaluated for the setup consisting of an RGB and thermal 

camera.   

This Thesis also presents the generation of the first long-range dataset reflecting the 

real-life railway applications, which was necessary for supervised training of the 

Multi-DisNet network to enable learning of the relationship between the sizes of the 

bounding boxes of the detected object in the camera’s images and the distance of the 

object to the cameras. For the calculation of the object bounding boxes parameters, 

the Multi-DisNet distance estimation system assumes an Object Detector able to 

extract object bounding boxes. The evaluation results shown in this Thesis 

demonstrate the performance of the Multi-DisNet to reliably estimate the long-range 

distances in case the object bounding boxes are manually extracted. The system 

achieved long-range object detection of about 1000 m, which is the desired 

performance in applications such as railway applications. However, the evaluation 

results in the case of using the YOLO for automatic object detection demonstrated 

system performance of estimating the distance up to 400 m, as the YOLO object 

detector failed to extract the bounding boxes in long-range images. These results 

indicate the need for improvement of the object detection system module and need of 

training of object detector module with datasets consist of objects at a longer distance 

(small in size) in the future work, so to achieve reliable autonomous long-range 

obstacle detection. Nevertheless, the presented system reflects the novelty in long-

range obstacle detection as current sensor technology in current land transport 

research is able to look some 200 m ahead [14] [142]. However, the required rail 

obstacle detection interfacing with loco control should be able to look ahead up to 

1000 m detecting objects on and near track which may potentially interfere with the 

clearance and ground profile [143]. 
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6.  A machine learning based multiple 

object tracking 

The environmental perception system, which performs object detection and tracking 

task, is the core for autonomous vehicles. Object detection tremendously evolves 

along with the advancement in sensor technology, and with the development of 

classical and machine learning-based algorithms, while multiple object tracking seems 

less developed [144]. Object tracking is essential for many tasks of autonomous 

driving such as obstacle avoidance and intention prediction [145]. It is a critical task 

and it becomes more challenging for situations such as objects at far distance, low 

frame rate video sequence, frequent occlusion, camera vibration or movement, and so 

on.  

Mainly there are four object tracking methods categorized as region-based tracking 

[146], model-based tracking [147], contour-based tracking [148], and feature-based 

tracking [149]. All those methods rely on object detection. In general, tracking utilizes 

the detection information from previous frames to predict the detection in frames 

where detection is missing.  

In [145] a traditional object tracking method based on a monocular camera for 

autonomous vehicles is present. By using the camera model to map pixel position into 

the distance, the distance to the vehicles with respect to the vehicle was measured. 

Further Kalman Filter (EKF) is used to refine distance accuracy and track detected 

vehicles. The results show that the method is capable to track 3D positions with 

sufficient accuracy. 

Relatively modern machine learning-based methods [150] are introduced for object 

tracking based on Recurrent Neural Networks (RNNs) followed by long short-term 
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memory (LSTM) and Gated recurrent units (GRU). The RNN based networks are 

often used for sequential data and thus also applicable for object tracking in video 

sequences. 

6.1 DisNet-RNN Tracker:  robust distance estimation and multiple objects 

tracking from a single camera 

In this Thesis, a novel approach for multiple object tracking and distance estimation 

from an onboard monocular camera, aiming at improvements in the safety and 

security of railways, is presented. The approach is based on deep learning architecture 

using a deep Convolutional Neural Network (CNN) object detection followed by a 

multi hidden-layer Gated Recurrent Neural Network (RNN) referred to as DisNet-

RNN Tracker, which consists of two sub-networks for distance estimation and 

bounding box prediction respectively. The DisNet-RNN Tracker learns and estimates 

the distance between the detected object and the camera sensor, and predicts the 

object bounding box based on sequential input from previous and current detection. 

The presented DisNet-RNN Tracker tracks multiple objects in case where the object 

detection module fails to detect an object. The presented method is evaluated on the 

real-world railway dataset recorded with the onboard Obstacle Detection System 

developed within an H2020 Shift2Rail project SMART - Smart Automation of Rail 

Transport. The presented work has the potential to benefit other applications where 

reliable object detection, tracking, and long-range distance estimation are needed such 

as autonomous cars, transportation, and public security. 

The workflow of DisNet-RNN Tracker based object detection, tracking, and distance 

estimation from a single monocular camera is illustrated in Figure 96. The frames 

captured by an RGB monocular camera are inputs to Object Detector Module. 

Different object detectors, which outputs bounding box and class of detected objects, 

can be integrated into the system. The resulted object bounding boxes from the 

detection module further feed into the Multiple Objects Mapping (MOM) module. 

The object mapping module matches previous object detection results to the current 

detection results for the sake of objects tracking and assigning unique IDs for 

unmatched or newly detected objects. Further, the Features Calculation module 

extracts features of the objects bounding boxes and based on those features DisNet-
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RNN Tracker estimates object distance at the current frame and predicts object 

bounding box in the next frame. In the system architecture in Figure 96, an example 

of the distance estimation and bounding box prediction based on prior detection 

information for a human walking along the rail tracks is shown. 

In this Thesis, the YOLO object classifier [70] trained with the COCO dataset [89] is 

considered as an object detector module, whereas any other state-of-the-art object 

detector can be used. However, no matter which state-of-the-art object detection 

module is used, false detection or unprecise bounding boxes extraction cannot be 

avoided in cases such as object partially or fully occluded, object shadow, change in 

image quality due to illumination and the similarity of object texture or colour with 

the background. This problem is unfavourable for those applications where high 

reliability is demanded such as obstacle detection systems for autonomous vehicles. 

DisNet-RNN Tracker, proposed by Haseeb et al. in [151], aims at reliable overall 

object distance estimation and object tracking in spite of the failure of the 

intermediate object detector module. 

 

Figure 96. DisNet-RNN Tracker based object distance estimation and tracking system from a 

monocular camera [151] 
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6.1.1 Deep Learning Network architecture 

The DisNet-RNN Tracker consists of two independent sub-networks based on 

Recurrent Neural Network (RNN) architecture. The reason to use RNN is that due to 

its unique characteristic of being suitable to work with sequential data and its memory 

cell able to preserve information from inputs provided in previous time moments 

[150]. In the scenario considered in this Thesis, two types of object detection failures 

are possible: the target objects are not detected in some frames, and the bounding 

boxes of some of the detected objects are not accurate. Using the RNN, which has a 

memory of previous inputs, can help to predict the object position and estimate 

distance more reliably. DisNet-RNN Tracker uses the sequential data from previous 

two-time steps to improve the estimation of the object distance at the current time step 

and predicts the position and size of the object bounding box in the next time step.  

Figure 97 shows the DisNet-RNN Tracker architecture. The architecture consists of 

two subnetworks represented with two main blocks one under the other in Figure 97. 

The upper network is used to estimate the object distance named as distance estimator 

and the lower network named as bounding box predictor is used to predict the top left 

corner A, and the bottom right corner B, of the object bounding box. Prediction of 

these two bounding box corners’ points relates to the prediction of the bounding box 

position and size.  

As shown in Figure 97, a three hidden layers network was adopted for the distance 

estimation. A deep recurrent neural network is stacked with Gated Recurrent Unit 

(GRU) layers and the output from the last GRU layer is connected to a fully 

connected output layer to perform final distance estimation. For the bounding box 

prediction, the network consists of a single hidden layer of GRUs with a fully 

connected layer as an output layer. A new loss function in training distance estimator 

network was defined and it is given in (6-1). This loss function calculates losses from 

all distance prediction results from three time-steps and in a similar way, the Mean 

Absolute Error (MAE) loss function for the bounding box predictor network was 

defined given in (6-2). 

𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  
1

3𝑛
∑∑|𝑌𝑖𝑗−𝑡𝑟𝑢𝑒 − 𝑌𝑖𝑗−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|

𝑛

𝑗=1

3

𝑖=1

 (6-1) 
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𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

=  
1

3𝑛
∑∑|𝐴𝑢𝑖𝑗−𝑡𝑟𝑢𝑒 − 𝐴𝑢𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑛

𝑗=1

3

𝑖=1

+ |𝐴𝑣𝑖𝑗−𝑡𝑟𝑢𝑒 − 𝐴𝑣𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

+ |𝐵𝑢𝑖𝑗−𝑡𝑟𝑢𝑒 − 𝐵𝑢𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

+ |𝐵𝑣𝑖𝑗−𝑡𝑟𝑢𝑒 − 𝐵𝑣𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑| 

(6-2) 

where:  

• 𝑛 : training data numbers 

• 𝑌𝑖𝑗−𝑡𝑟𝑢𝑒: the ground truth distance of jth training data at time step i. 

• 𝑌𝑖𝑗−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑- the estimated distance of jth training data at time step i. 

• 𝐴𝑢𝑖𝑗−𝑡𝑟𝑢𝑒, 𝐴𝑣𝑖𝑗−𝑡𝑟𝑢𝑒: the top-left corner coordinates of ground truth object 

bounding box of jth training data at time step i. 

• 𝐵𝑢𝑖𝑗−𝑡𝑟𝑢𝑒, 𝐵𝑣𝑖𝑗−𝑡𝑟𝑢𝑒: the bottom-right corner coordinates of ground truth 

object bounding box of jth training data at time step i. 

• 𝐴𝑢𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝐴𝑣𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑: the top-left corner coordinates of predicted 

object bounding box of jth training data at time step i. 

• 𝐵𝑢𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝐵𝑣𝑖𝑗−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑: the bottom-right corner coordinates of 

predicted truth object bounding box of jth training data at time step i. 
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Figure 97. DisNet-RNN Tracker Architecture consists of two sub-networks namely distance 

estimator on top and bounding box predictor in bottom [151] 

6.1.2 Dataset 

Recurrent Neural Networks requires a sequential dataset that needs to be prepared 

before training DisNet-RNN Tracker. As described earlier, DisNet-RNN Tracker 

consists of two sub independent RNN networks. In order to train and test these 

subnetworks, manually a dataset of the size of 8000 sequential inputs was created 

using images recorded in real-world railways scenarios. Each sample of the dataset 

represents extracted features from three subsequent frames. The annotation tool [14] 

provides the object bounding boxes coordinates, which were labelled together with 

ground truth distance. The ground truth for distance estimation network was recorded 

during the dataset generation using the GPS positioning system which later in the 

offline phase allows calculating the relative distance between train and objects. 

Whereas for bounding box prediction, the manually drawn bounding box on the fourth 

frame is considered as a ground truth as shown in Figure 98.  

 

Figure 98. Dataset generation for bounding box prediction [151] 
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In the next section, it is explained how the features were calculated and the dataset 

was organized to train the DisNet-RNN Tracker, to learn distance estimation and 

bounding box prediction. 

6.1.3 Features selection 

As it is known from the projective transformation, the object’s size in the camera 

image is inversely proportional to the object’s distance from the camera. The distance 

estimator network, trained to learn the relationship between the changes in sizes of the 

objects’ bounding boxes in an image with respect to change in the distances between 

the objects and the camera over time. The dataset for network Distance Estimator, 

organized in the form of a two-dimensional feature matrix 𝑋1 for distance estimation 

is given in (6-4), where each matrix row represents the six features of the feature 

vector 𝒗 of an object at time-steps t, t-1 and t-2 respectively. Vector 𝒗 was calculated 

from manually annotated objects’ bounding boxes for a class label as:  

                𝒗 = [1/𝐵ℎ 1/𝐵𝑤 1/𝐵𝑑 𝐶ℎ 𝐶𝑤 𝐶𝑏] (6-3) 

• 𝐵ℎ: height of the object bounding box in pixels/image height in pixels 

• 𝐵𝑤: Width of the object bounding box in pixels/image width in pixels 

• 𝐵𝑑: diagonal of the object bounding box in pixels/image diagonal in pixels 

• Ch, Cw, and Cb: average height, width and length of each object class in meters 

Ch, Cw, and Cb are defined as unique features that actually represent different classes. 

These features generalize the network to learn distance vs bounding box relation for 

multiple object classes. For example, the predefined features for object class person 

are the average height, width, and breadth of the humans, and similarly, these features 

were predefined for other classes. These features do not have any meaning and 

contribution to distance learning but help to differentiate different object types. 

Similarly feature matrix 𝑋2 was calculated for network Bounding Box Predictor. Each 

row in 𝑋2 matrix represents coordinates of the top left corner A and the bottom right 

corner B of an object bounding box at time-steps t, t-1 and t-2 respectively,  where 

(u,v) are image point coordinates.  
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𝑋1 = [

𝒗𝑡

𝒗𝑡−1

𝒗𝑡−2

] =

[
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𝐵ℎ

⁄
𝑡

1
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1
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1
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⁄
𝑡−1

1
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𝑡−1
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⁄
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1
𝐵𝑑

⁄
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𝐶ℎ 𝐶𝑤 𝐶𝑏

𝐶ℎ 𝐶𝑤 𝐶𝑏

]
 
 
 
 

 (6-4) 

𝑋2 = [

𝒃𝑡

𝒃𝑡−1

𝒃𝑡−2

] = [

𝐴𝑢𝑡
𝐴𝑣𝑡

𝐵𝑢𝑡

𝐴𝑢𝑡−1
𝐴𝑣𝑡−1

𝐵𝑢𝑡−1

𝐴𝑢𝑡−2
𝐴𝑣𝑡−2

𝐵𝑢𝑡−2

    

𝐵𝑣𝑡

𝐵𝑣𝑡−1

𝐵𝑣𝑡−2

] (6-5) 

In order to make DisNet-RNN Tracker more robust as well as to make it also work in 

the situations where an object is detected in one or two subsequent frames and not 

only in three subsequent frames, the dataset shall be augmented and extended with 

modified feature matrices (6-5).  Namely, as mentioned earlier, each row of the matrix 

𝑋1relates to time-steps t, t-1 and t-2. By zero-padding of the first and the second row, 

the modified feature matrices are:  

𝑋1 = [

0
0

1
𝐵ℎ

⁄
𝑡

1
𝐵𝑤

⁄
𝑡

1
𝐵𝑑

⁄
𝑡

   
𝐶ℎ 𝐶𝑤 𝐶𝑏

] 

𝑋1 =

[
 
 
 

0
1

𝐵ℎ
⁄

𝑡

1
𝐵𝑤

⁄
𝑡

1
𝐵𝑑

⁄
𝑡

1
𝐵ℎ

⁄
𝑡−1

1
𝐵𝑤

⁄
𝑡−1

1
𝐵𝑑

⁄
𝑡−1

   𝐶ℎ 𝐶𝑤 𝐶𝑏

𝐶ℎ 𝐶𝑤 𝐶𝑏
]
 
 
 

 

(6-6) 

 

(6-7) 

In the same way, the extended dataset is generated for the feature matrix 𝑋2. Using the 

extended datasets means that the network does not need to wait for an object to be 

detected in three continuous frames in time to predict the distance. 

6.1.4 Training and testing phase 

The dataset generated contains 8000 samples which were randomly split into training 

data 80%, validation data 10% and test data 10%. DisNet-RNN Tracker sub-networks 

were trained with Adam optimizer and with a learning rate of 1e-4. During the 

training, a mini-batch gradient descent algorithm with a minibatch size of 100 and an 

Early Stop technique with 20 tolerant epochs has been used. Finally, after 246 training 

epochs, the mini loss on the test dataset according to equation 6-1 was 1.28. 
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Figure 99. Left: Mean Absolute Error (loss) in distance estimation of DisNet-RNN Tracker for 

detection in 1, 2, and 3 subsequent frames. Right: Distance Accuracy vs Different mean absolute 

error [151] 

Figure 99 illustrates that with the use of more previous detection results, the mean 

square error reduces. This assures that the sequential input data really help in the 

estimation of distance and also shows the performance of a trained model when the 

object is detected in three subsequent frames, two subsequent frames, and only in one 

frame refer as RNN_Seq = 3, 2 and 1 respectively. 

Besides mean absolute error (loss), another measurement parameter, distance 

accuracy 𝐴𝑐𝑐, is defined in equation (6-8). In Figure 99, the accuracy vs mean 

absolute error plots help to understand the advantage of using sequential data. An 

estimation is considered accurate in 𝐴𝑐𝑐𝑗when estimation distance is in the range 

[ 𝑦𝑡𝑟𝑢𝑒−𝑖 - j,  𝑦𝑡𝑟𝑢𝑒−𝑖+ j]. Where j is Mean Absolute Error in the range of 1 to 5. 

𝐴𝑐𝑐𝑗 =
1

𝑛
∑(|𝑦𝑡𝑟𝑢𝑒−𝑖 − 𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑−𝑖| ≤ 𝑗)  

𝑛

𝑖=1

 (6-8) 

From the comparison results Table 31, it is clear that the performance of DisNet-RNN 

Tracker with more sequential input (previous detection results) is more accurate than 

using less sequential input. Similar results for the bounding box prediction network 

were obtained hence not included in this section. 

Table 31. Comparison result of DisNet-RNN Tracker Accuracy at different MAE 

 Acc1 (%) Acc2 (%) Acc3 (%) Acc4 (%) Acc5 (%) MAE (m) 

RNN_Seq =1 43.31 65.16 78.82 87.45 92.89 1.90 

RNN_Seq =2 64.87 84.59 92.82 96.67 98.43 1.07 

RNN_Seq =3 75.45 89.98 94.24 96.74 98.32 0.87 
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6.1.5 Multiple Object Mapping (MOM) 

Another problem needs to be solved before DisNet-RNN Tracker can be used in 

object tracking. The multiple detected objects in the current frame need to be 

associated with the multiple detected objects in previous frames to form sequential 

data (6-6) and (6-7), which is input to DisNet-RNN Tracker. Therefore, a Multiple 

Object Mapping (MOM) module is introduced to perform object association and 

generate sequential feature matrices for DisNet-RNN Tracker. The MOM module 

calculates the Intersection Over Union (IOU) of current detected and previously 

detected objects and based on high correlation associate the objects. The entire 

working of the MOM module is shown in Figure 100. If the objects do not correlate 

then MOM initialises the new tracker for newly detected objects and assigns a unique 

ID. 

 

Figure 100. Multiple Object Mapping based object association of current detected objects and 

previously detected objects  

6.1.6 Evaluation 

The DisNet-RNN Tracker based system for distance estimation and object tracking 

was evaluated on images recorded by an RGB monocular camera mounted on the 

frontal profile of the moving freight train during the field tests within H2020 
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Shift2Rail project SMART. The RGB camera from The Imaging Source [152] 

provides images with the maximum resolution of 2592x1944 at 2 FPS. 

 Figure 101 shows the performance of DisNet-RNN Tracker on six subsequent frames 

from a video of a real-world dynamic railway scene with a truck parked in the rail 

track area (vehicle 3), which is a potential intrusion, and a van (vehicle 4) crossing the 

unsecured crossing while the train is approaching the crossing.  The estimated 

distance to the vehicle objects from the camera (i.e. from the locomotive), object 

class, and tracking ID are shown in the left upper corner of each frame. The 

detection/prediction of the objects is marked by the object bounding boxes. The blue 

and brown coloured bounding boxes represent the prediction results, achieved by 

DisNet-RNN Tracker, whereas the red bounding boxes represent the object detection 

results of the YOLO object detection. As it is evident, the DisNet-RNN Tracker is 

able to track the object (vehicle 3), to predict its bounding box and to estimate the 

distance even in the case object is occluded by the other vehicle (frames 2 and 3) and 

YOLO object detector failed. Moreover, the YOLO object detector failed even in the 

case of a fully visible object (vehicle 3) in frame 6, whereas the proposed DisNet-

RNN Tracker achieved the object bounding box prediction and distance estimation.  

During the train run, the ground truth was also measured using relative GPS positions 

of the objects (from the google maps) and the train (GPS on the train). According to 

the ground truth distance, the van (vehicle 3) and truck (vehicle 4) were 

approximately 45 meters apart. The ground truth distances to the van were measured 

as 135m, 128 m, 123m, 120m, 117m and 108m respectively for six subsequent frames 

shown in Figure 99. Hence, the estimated distance from DisNet-RNN Tracker in 

comparison with the ground truth demonstrates also reliability of the proposed 

method.   
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Figure 101. A real-world scene where truck is parked near rail track and the van crossing the rail 

track while train approaching [151] 

6.1.7 Discussion 

Object tracking and distance estimation are crucial for safety-critical applications such 

as obstacles and track intrusion detection in railways. The use of information from 

previous object detections improves the distance estimation and also enables the 

tracking of objects by prediction of the object’s position in frames in which the object 

detector fails.  

Vehicle 3   180.2 m 

Vehicle 4   134.6 m 
1 2 Vehicle 3   173.7 m 

Vehicle 4   129.1 m 

4 Vehicle 3   166.7 m 

Vehicle 4   119.8 m 
3 Vehicle 3   171.2 m 

Vehicle 4   126.6 m 

5 Vehicle 3   157.7 m 

Vehicle 4   114.4 m 
6 Vehicle 3   153.8 m 

Vehicle 4   106.4 m 
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In this Thesis, DisNet-RNN Tracker consists of two sub-independent networks named 

distance estimator and bounding box predictor is presented. Gated Recurrent Neural 

Network architecture is chosen for object distance estimation and object tracking. By 

using a monocular camera, the presented method can precisely track and estimate the 

distance to the target objects as shown by the evaluation results from a real-world 

railway scenario. However, the proposed object distance estimation system still has 

several limitations such as object occlusion for a longer period introduces an error that 

increases with time. So dependency on prediction results for a longer period is not 

recommended, as the error increases with time until the estimation is corrected by the 

detection.  

Some efforts could be made in the following aspects in order to improve the 

performance and conquer the drawbacks of presented distance estimation and object 

tracking system. Moreover, for the improvement of distance estimation and object 

tracking, the dataset needs to be extended, for long.-range detection and tracking of 

multiple objects.  
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7.  Real-time Performance Evaluation 

The basic need to detect and estimate the distance of various obstacles on the rail 

tracks in real-time is a big challenge. In this chapter, the main development and 

performance characteristics of proposed object detection, tracking, and distance 

estimation methods in real-time are presented. The focus is on vision-based obstacle 

detection system as in the final realization of ODS, vision sensors (cameras) were 

used for mid- and long-range obstacle detection in the operational environment. Real-

time systems (RTS) are defined as hardware and software-based systems that assure 

the system response within the specified time constraints. The required “event-to-

response time”, or in other words, “system response time” depends on many factors. 

For example, in a high-speed machine vision application where the system is 

physically moving fast or the capturing scene is moving fast, many factors such as 

processing time and hardware selection, to be taken into account during the 

development of such systems.  

A challenging machine vision application is a highly bandwidth-demanding 

application which brings a considerable amount of data streams from a vision sensor 

to the processing unit. The obstacle detection system requires a high-bandwidth and 

low latency network to connect all cameras to the central processing unit. Based on 

the nature of the application, during the development of real-time Obstacle Detection 

System (ODS) for rail transport, both challenges were presumed, high-speed and 

high-bandwidth. In the next section, the requirements of the ODS system discussed in 

detail. 

7.1 Requirement Analysis 

The requirements to make SMART ODS real-time grouped in two main categories: 

high processing speed and high bandwidth requirements as listed below.  



7.1 Requirement Analysis 

134 

 

High processing speed: 

1. ODS mounted on a moving freight train running at 80 km/h, which is a 

speed of a conventional freight train. 

2. Train-stopping distance of approximately 700 meters for the above-

mentioned speed according to the regulations.  

3. Moving or continuously changing scene/environment  

High bandwidth: 

1. Mid-range (up to 200 m) and Long-range (up to 1000 m) obstacle 

detection requires high-resolution images to enable distant objects' 

visibility in the image. 

2. Simultaneous data acquisition from multiple vision sensors.  

Based on the factors mentioned above the minimal required response time and 

bandwidth analysis were performed as described in the following sections. 

Minimum requirement approximation: 

In order to estimate the minimum requirement of ODS, let’s assume a freight train 

moving at 80 km/h (22.22 m/s) on a straight rail track. According to railway 

regulations, the stopping distance of the freight train for speed of 80 km/h is about 

700 meters. 

The required event-to-response time 𝑡𝑟𝑒𝑠 (time required by perception module) should 

be less than the data acquisition time  𝑡𝑎𝑐𝑞 , which means the system should be able to 

process the captured data (camera frame) and response before the acquisition of the 

next subsequent frame:  

𝑡𝑟𝑒𝑠 < 𝑡𝑎𝑐𝑞 (7-1) 

𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑡𝑎𝑐𝑞 + 𝑡𝑟𝑒𝑠 (7-2) 

The stopping distance 𝑑𝑠𝑡𝑜𝑝 and stopping time 𝑡𝑠𝑡𝑜𝑝 of the train equipped with ODS 

while running with speed 𝑣 can be calculated as: 

𝑡𝑠𝑡𝑜𝑝 = 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + 𝑡𝑏𝑟𝑎𝑘𝑖𝑛𝑔 + 𝑡𝑑𝑒𝑙𝑎𝑦 (7-3) 

𝑑𝑠𝑡𝑜𝑝 = 𝑣 ∙ 𝑡𝑠𝑡𝑜𝑝 (7-4) 
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Where 𝑡𝑏𝑟𝑎𝑘𝑖𝑛𝑔 refers to the time required to stop the train after the brake engagement 

fully, 𝑡𝑑𝑒𝑙𝑎𝑦 refers as driver reaction time after the ODS system warning and 𝑡𝒑𝒓𝒐𝒄𝒆𝒔𝒔 

can be defined as total processing time, i.e. time required by the hardware and 

software components to deliver output from the moment at which the event occurred.  

However, the braking time 𝑡𝑏𝑟𝑎𝑘𝑖𝑛𝑔 depends on many physical factors of the train 

itself [153]: 

1. the speed of the train at the time when the brakes are engaged; 

2. the deceleration rate available with a full-service brake application, which 

varies according to the coefficient of friction between wheel and rail; 

3. the delay from when the train driver commands the brakes to when they are 

become effective (brake delay time);  

4. the state of the wear of the brake pads and the air pressure available in the 

brake cylinders; 

5. the geography of the track, in particular, the track gradient the train travels 

over from when the brakes commanded to where the front of the train stops; 

6. the mass distribution of the train. 

7.2 Hardware 

A real-time obstacle detection system for operational trains can be challenging to 

implement as a PC computer-based system because of the needed potential for high 

computational cost and algorithm complexity.  

Emerging embedded vision system-based solutions for robotics and security 

applications allow swift processing information and taking appropriate actions. Such 

systems show high performance, high accuracy while requiring low energy 

consumptions. Despite high demanding needs, in work for prototyping the ODS, a PC 

computer-based system was considered for real-time implementation because it was 

sufficient to meet the prototype system requirement. In order to cope with object 

detection and distance estimation as a computationally expensive task, hardware-

specific optimisations of the proposed algorithms were performed, that allow the 

algorithms to run in real-time. The hardware contains three parts: Sensors, Network, 

and Processing Unit which are explained in the next sections. 
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7.2.1 Sensors 

ODS consists of 5 vision sensors including three RGB zooming cameras from the 

Imaging Source, thermal camera from FLIR, night vision sensor consisting of custom-

made night vision lens mounted on a monochrome camera from The Imaging Source 

(section 3.1.1). Some specifications of sensors given below which also considered 

during the selection and designing of the network and processing unit. 

Table 32. Vision Sensors 

Vision Sensor Resolution (Pixels) Frequency (Hz) Size (Megapixels) 

RGB 2592x1944 15 5MP 

Thermal (TH) 640x512 9 0.328MP 

Night Vision (NV) 2592x1944 15 5MP 

7.2.2 Network 

The minimum requirements estimation and selection of the network hardware is 

crucial for applications such as SMART ODS which characterised with the extensive 

size data and high speed. In SMART ODS due to the large size of images, a high 

bandwidth network was needed. As described in Section 3.1, the original network 

setup is based on a gigabit network. However, during sub-system conformance testing 

it was established that a gigabit network is not sufficient to enable real-time sensor 

connection, and consequently, it was decided to increase the network bandwidth to 10 

GB network. This had as a consequence a change of the network switch from 

originally planned ADVANTECH EKI-9512P to NETGEAR XS708T [154]. The 

selected industrial 10GB network switch was chosen to overcome the problem of data 

overflowing and to enable getting the maximum resolution images at high speed. 

The SMART networks receive data about 7 Hz at maximum resolution 

simultaneously from all sensors. However, further the software-based data 

synchronization lower down the data acquisition to 2 Hz. The hardware or software-

based synchronisation is needed to synchronised data captured independently from 

SMART vision sensors at 7 Hz, in order to process the same scene captured by all 

vision sensors. This downsampling of acquired data does not affect the real-time 

performance of SMART ODS and provides enough information. 
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Considering the train speed of 80 km/h, the data acquisition frame rate was set to 7 

FPS (frame per 143 milliseconds) which means that at about every 3 meters travelled 

distance the new data has been captured. Whereas the actual processing is done on 

two frames out of seven captured frames meaning that SMART ODS processes an 

image taken at every 500 milliseconds or in other words at every 11.11 meters 

travelled distance.  

7.2.3 Processing unit 

Machine learning-based algorithms for obstacle detection and distance estimation 

require a high-performance processing unit to enable real-time processing. Because of 

the different sizes in which objects may appear in the image, the large image search 

space is involved in object detection algorithms, which increases the complexity and 

slows down the overall performance of SMART ODS real-time implementation. 

SMART PC-computer based processing unit was used for the real-time obstacle 

detection system prototyping. The processing unit was equipped with INTEL core i9 

CPU and two Nvidia GTX 1080 16 GB GPUs (graphics processing units). Parallel 

GPUs computing enable real-time object detection and distance estimation. 

7.3 Software 

ODS software architecture developed on the Robot Operating System (ROS) [121] 

distribution Kinetic Kame operated on a Linux operating system (Ubuntu 16.04 64-

bit, http://releases.ubuntu.com/16.04/). During developing hardware and software for 

SMART the goal was to achieve high reliability, modularity, redundancy, 

performance, speed and redundancy characteristics for SMART ODS. 

 The ROS works here as middleware that provides the virtual interface between 

different software modules such as data acquisition, object detection, distance 

estimation, visualisation and offline processing modules (Figure 102).  

http://releases.ubuntu.com/16.04/
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Figure 102. Block-diagram of ROS-based software architecture of SMART ODS 

ROS messaging middleware [155] provides an Inter-Process Communication (IPC) or 

shared memory. The IPC mechanism of subscriber/publisher enables 

intercommunication between modules and sub-modules.  

Sensor interface module: The sensor interface module is responsible for providing 

data from sensors to other modules. Each sensor has its own dedicated data 

acquisition interface. Besides providing data from the sensors, the sensor interface 

modules are also responsible for sensor parameters configuration during pre-run test 

and during run. This means it is not needed to completely stop the SMART ODS in 

case changing any sensors parameters, the parameters can be changed while SMART 

ODS is running and train is moving. The user can change the sensors parameters 

using Dynamic Parameters Interface as shown in Figure 2. The user interface interacts 

with dynamic parameters configurator, which further passes user’s configuration 

changes to sensor interface modules. Some of the parameters possible to change are: 

camera FPS, exposure time, field of view, resolution.  

Perception module: the received sensors data after data synchronisation are further 

processed on machine learning and computer vision-based perception module. The 

perception module is the core building block of the whole SMART ODS software 
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framework and it is responsible for processing the raw data from sensors and for 

providing the meaningful information, i.e. rail track detection (ROI), objects 

detection, recognition, tracking and distance estimation.  

Global services module: this module includes data logging module that is capable of 

recording the raw data from sensors, parameters configuration, sensors parameters 

and processed data. The recorded data can be retrieved to analysis the performance of 

SMART ODS for further improvement and development. Further, the global service 

module includes map, which together with GPS sensor input [118], is used to 

visualize real-time position of the train on the map. The map can be set up in offline 

mode that means the pre-saved map can be used if internet service is not available. 

However, the online mapping can also be done when access to internet is possible.  

User interface module: the user interface module includes visualization of all 

processed information from perception module and real-time positioning of the train 

on the map.  The user interface assists and facilitates the driver by providing 

information regarding the obstacles on the rail tracks. The information on the user 

interface is designed to only alert the driver, who is still responsible to make the front-

end decision. Further, the user interface provides the control interface for the 

responsible ODS technician to troubleshoot the problems, configure parameters and 

monitor sub-system modules.  

7.3. Machine learning-based algorithms timing considerations 

Machine learning has a fundamental role in SMRT ODS software development. The 

machine learning algorithms were developed under the Keras API (https://keras.io/) 

running on top of Tensorflow development kit (https://www.tensorflow.org/). The 

Tensorflow is one of the widely used frameworks due to its high performance and 

processing speed in comparison to other available frameworks. Tensorflow based 

machine learning algorithms were optimized in a way to have high processing rate to 

achieve real-time processing. The achieved processing rate of Tensorflow based 

SMART ODS modules run on SMART PC is 8 FPS that means SMART machine 

learning-based perception module is able to process in 125 ms. Referring to equation 

(7-1) in Section 7.1  

𝑡𝑟𝑒𝑠 < 𝑡𝑎𝑐𝑞 (7-5) 

https://keras.io/
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the processing rate should be larger than the data acquisition rate. In case of SMART 

ODS, the data acquisition rate is 7 Hz,  however after data synchronization the data at 

2 Hz are forwarded to processing unit where the SMART perception module is able to 

process at 8 Hz on SMART PC. The processing rate is four times the actual data 

acquisition rate. This shows that the algorithms are highly optimized to perform 

reliably in real-time environment and can perform on higher data acquisition rate as 

well. 

As described in chapter 4, state-of-the-art object detection algorithm YOLO-You 

Only Look Once was chosen as object detector for SMART DisNet-based object 

detection and distance estimation (Figure 48). YOLO uses a single deep-learning 

network for both object classification and object localization in an image, and it is 

considered as real-time fast multi-object detection algorithm with higher accuracy 

rate. 

The DisNet-based algorithm was developed for object detection and distance 

estimation from a monocular camera and can be applied to all three SMART camera 

types, RGB, Thermal and Night Vision camera. As described in Section 4, the results 

of obstacle detection from single-camera are satisfactory, but the results could be 

improved when performing the sensor fusion so that there is interest to process more 

than one camera image at the time. For the purpose of timing consideration, the 

calculation of total processing time when only one sensor (RGB camera) used is 

performed and compared to the total processing time when more than one sensor 

used, 2 (thermal+ RGB camera) and 5 (all 5 SMART vision sensors, 3 RGB, Thermal 

and Night Vision). The sensors’ data acquisition times are given in Table 32 as well 

as in Table 33. The time performance table (Table 33) shows that SMART ODS 

satisfies the minimal requirement approximation. However, the time can be reduced 

more with the better-performing processing unit. 

In Table 33,  𝑓 refers to frequency and 𝑡𝒑𝒓𝒐𝒄𝒆𝒔𝒔 is the total time required by the 

acquisition module and perception module to provide an output in case of a single 

camera, whereas the data synchronization time is considered instead of data 

acquisition time in case of multiple cameras. 
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Table 33. Time performance 

Module Sensor Interface Module 

Perception 

Module 

Total 

Processing 

Time 

 

𝑓𝒑𝒓𝒐𝒄𝒆𝒔𝒔, 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

Sub Module 

Data 

Acquisition 

 

𝑓𝑎𝑐𝑞 , 𝑡𝑎𝑐𝑞 

Data 

Synchronizatio

n 

 

𝑓𝑎𝑐𝑞
́ , 𝑡𝑎𝑐𝑞́  

Object detection, 

tracking and 

distance 

estimation 

𝑓𝑟𝑒𝑠, 𝑡𝑟𝑒𝑠 

RGB Camera 

15 Hz, 66.6 

ms 
- 8 Hz, 125 ms 

5.21 Hz, 191.6 

ms 

RGB + 

Thermal 

Camera 

9 Hz, 111 

ms 
5 Hz, 200 ms 6.5 Hz, 153.8 ms 

2.82 Hz, 353.8 

ms 

All sensors 

7 Hz, 142 

ms 
2 Hz, 500 ms 2.5 Hz, 400 ms 1.11 Hz, 900 ms 

As evident from the time performance table, the total processing time is increasing 

gradually for cases where more than one camera is used in comparison to a single 

camera. The results of performance evaluation of SMART ODS (Section 4) show that 

using one camera at a time gives obstacle detection and distance estimation result that 

meets the requirements of mid- and long-range object detection (with up to  ±10% 

error). Fusing with thermal camera processing results can lead to better performance 

(Section 5) while still enabling real-time processing (Table 33). However, for using 

more than two vision sensors at a time, it is needed to reduce processing time, which 

could be achieved with a processing unit of higher performances. Nevertheless, the 

SMART ODS meets the requirements of real-time by delivering the object detection 

and distance estimation results in a fraction of second.  
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8.  Conclusion and Outlook 

8.1 Conclusion 

This thesis addresses the problem of long-range environmental perception for the 

applications where autonomous obstacle detection is safety-critical such as automated 

vehicles. The particular focus of the thesis is on autonomous obstacle detection for 

railways bearing in mind that long-range obstacle detection is explicitly required due 

to longer braking distances for trains. Following the traditional and state-of-the-art 

approaches for object detection in other applications, the first dataset for long-range 

obstacle detection and distance estimation (LRODD) was generated in this Thesis as 

described in chapter 3. The dataset contains images captured by monocular cameras 

including three RGB cameras set with three different focal lengths to cover the short, 

mid to long-range, a thermal camera and a night vision camera, short-range distance 

information from LiDAR and GPS for positioning of ODS. The images were recorded 

during various static and dynamic experiments conducted within project SMART and 

contain examples of real-world scenarios that a train driver usually faces every day 

including potential obstacles on the rail track or near to the rail track. The recorded 

images, containing potential obstacles, were manually labelled for object bounding 

boxes, object classes and related object ground truth distance, using an annotation tool 

to form a dataset LRODD. Further, the labelled dataset was used in the development 

of algorithms proposed in this thesis. 

In chapter 4, the focus is on monocular camera-based distance estimation to the object 

imaged by the camera. Two different approaches to the estimation of the distance to 

the object using a single monocular camera have been presented. Both approaches 

show the potential of using a single camera to object distance estimation without the 

need for any camera parameters calibration. The first method proposed in chapter 3 is 
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referred to as DisNet, which is an abbreviation for Distance Network, and it is based 

on a neural network which estimates the distance to the object based on the size of the 

object bounding box in the image. DisNet expects to receive an input, containing 

object bounding box and object class, from an object detection module in order to 

estimate the distance to the object. DisNet can work with any object detection module 

which produces the object bounding box and object class. DisNet is a single network 

that works for multiple object classes. However, in some cases, it shows some 

limitations to accurate distance estimation. For example, it tends to wrongly estimate 

the object distance when a false or unprecise bounding box, produced by object 

detection module inputs the DisNet, or objects of the same class appear in different 

sizes in the image which leads to the understanding to consider object at a different 

distance than the actual distance. In the same chapter, the second method named 

YOLO-D, which is derived from the state-of-the-art object detection module You 

Only Look Once (YOLO) and - D is added to represent distance estimation. YOLO is 

a well-known object detector that localises and classifies the objects in an image. In 

YOLO-D, the original YOLO architecture, loss function, and training methods were 

modified so that an additional output was added, which is distance estimation to the 

detected object. Due to the addition of another output, the original loss function was 

also modified to adapt to the changes in the network architecture. In comparison to 

original YOLO, the YOLO-D estimates the distance to the object in the image in 

addition to object localisation and classification. 

Further, for the training of YOLO-D additional information is necessary that is ground 

truth distance to the object in a training image.  That is why YOLO-D was trained in 

this thesis with novel dataset LRODD containing labelled objects and also the 

distance to them. Additionally, a transfer learning approach was applied to train 

YOLO-D further with another state-of-the-art dataset KITTI which also has distance 

information to the objects in order to improve the accuracy distance estimation by 

YOLO-D.  

In comparison to DisNet, YOLO-D is a single end-to-end network that detects an 

object and estimates object distance and works with multiple object classes. Both 

proposed methods in chapter 4 were tested in real-time and real-world applications 

including railway and road scenarios. 
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In chapter 5, a machine learning-based sensor fusion method named Multi-DisNet has 

been proposed to estimate the distance to an object based on the object’s appearance 

in the images captured from two cameras mounted apart from each other. The main 

principle of this method was inspired by the DisNet method. After the simultaneous 

object detection on images captured from both cameras, the size of the corresponding 

object bounding box of the same object in both images is feed to the neural network 

that estimates distance. However, only an object class ‘Person’ was investigated in the 

development of this method. 

In chapter 6, the Recurrent Neural Network-based method of multiple object tracking 

has been presented. The RNN based network architecture tracks and predicts the 

position of the object in the frames where the object detection module fails to identify 

the object or the object is occluded. This method further estimates the distance to the 

object continuously. Additionally, this method also refines the object bounding box 

position and size based on the previous detection results in a current frame. 

In chapter 7, the real-time implementation of the developed algorithms and 

capabilities to use these algorithms in the real-world application was investigated. The 

minimum hardware and software requirements for the obstacle detection system for 

freight trains were also studied considering the physical braking constraints. 

8.2 Outlook 

The proposed methods in this thesis focusing on long-range detection and distance 

estimation shows potential to overcome the limitation of commercial off-the-shelf  

sensors technology to measure long-range distances. The methods shows that distant 

objects can be detected and distance to them can be estimated by processing the high 

resolution image obtained from a single camera.  

Although the results presented in this Thesis show the reliability of the autonomous 

multi-sensor long-range obstacle detection, tracking and distance estimation system, 

there are few open questions are future directions. These are summarized as follows.  

One research question is how the information from the autonomous system will be 

communicated with the driver of the train. An intelligent Human-Computer 

Interaction (HCI) system will be needed, which will need to ensure that it does not 

distract the driver but also it is not ignored. Research and decades of commercial 
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development in aviation, that has advanced the interaction between planes and pilots,  

could guide the development of a successful HCI system for trains. 

As it was mentioned before, the developed obstacle detection and distance estimation 

system could also be applied for short-range detection, not only on autonomous cars 

but also on autonomous robots. In a laboratory setting, DisNet was adjusted to detect 

and estimate the position of household objects, such as cup and glass, and humans 

with very promising results [21]. Further research will be needed to enable the 

employment of DisNet in robotics.  

Furthermore, YOLO-D shows potential to be use as a single neural network that can 

detect object and simultenoulsy estimate distance to it. The performance can be 

improve by further training with large annotated dataset, more classes and ground 

truth distance.  
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DL Deep Learning 
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MSE Mean Square Error 
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RTS Real Time Systems 

YOLO You Only Look Once 
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