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Abstract

The approximate and stochastic computing have been developed, on the one
hand, to address the diminishing gains of technology scaling, and on the other
hand, to exploit the intrinsic error resilience of many applications. They,
indeed, take advantage of the disparity between the level of accuracy required
by the application and that provided by the computing system, for achieving
energy efficiency. As of the most important constitutes of an integrated circuit,
arithmetic units often lie within the critical path of a processing system. They
play a vital role in determining the performance and power consumption of the
computing system.

In the past decade, the design of the approximate arithmetic units has been
in the center of attentions of the VLSI design research community; resulting in a
numerous proposed approximate designs in the literature. In spite of a decade
work on the approximate computing, there are still unresolved challenges faced
by digital designers.

The concept of acceptable quality of the results forms the foundation of
the approximate and stochastic computing. In view of this fact, it is crucially
decisive to have a clear, quantifiable definition of what signifies an acceptable
quality. Indeed, the current metrics most often do not capture the requirements
of a target application, and hence, mislead to sub-optimal design options for
the application. Moreover, non-systematic designs, lack of fair comparisons and
reproducible research have resulted in somewhat limited progresses in the field
of approximate and stochastic computing. Besides, the accuracy requirements
of an application is not a static property and may change across the different
phases of the application. Therefore, it is important to systematically develop
approximate and stochastic computing platforms which offer a variety of output
qualities.

In this dissertation, the aim is to take fundamental steps towards resolving
the aforementioned challenges. Correspondingly, the following contributions are
made in this dissertation. First, to palliate the lack of expressiveness of current
metrics, a new parameterizable metric which correlates more precisely to the
accuracy of the applications is proposed in this dissertation. Afterwards, the
importance of fair comparisons for approximate computing units is underlined
in this work. Subsequently, through generalizing and systematically optimizing
an architectural template for approximate adders, an architecture is proposed
which outperforms its existing counterparts. A conceptual framework for the
systematic design of approximate adders including hybrid and non-equally
segmented approaches is developed next. The framework discriminates the
scenarios where approximate processing does not provide significant benefits
from those where it does; in this latter case, it aids in obtaining optimal
configurations for the adders. Furthermore, in order to address the dynamic
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configuration of the error characteristics, a stochastically-tunable adder is
proposed which reduces the energy-delay product considerably in comparison
with its conventional counterpart. In addition, we develop data-dependent
corrections for truncated multipliers, where the proposed architectures surpass
the existing approximate multipliers in the literature.

The applicability of the proposed methods, and in general approximate
computing units is eventually studied in modern applications. The correlation
between the errors of a single unit and the whole system’s accuracy is also
investigated in the applications.
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Kurzfassung

Die approximative und stochastische Berechnung wurde entwickelt, um einer-
seits die abnehmende Gewinne der Technologieskalierung zu adressieren und um
andererseits die intrinsische Fehlerresistenz vieler Anwendungen auszunutzen.
Sie nutzen den Vorteil der Diskrepanz zwischen der von der Anwendung
geforderten und der vom Rechensystem bereitgestellten Genauigkeit, um eine
Energie-Effizienz zu erzielen. Als einer der wichtigsten Bestandteile einer
integrierten Schaltung liegen Recheneinheiten oft im kritischen Pfad eines Ver-
arbeitungssystems. Sie spielen eine wesentliche Rolle bei der Bestimmung der
Leistung und des Stromverbrauchs des Rechensystems.

Im vergangenen Jahrzehnt stand der Entwurf der approximativen Rechenein-
heiten im Zentrum der Aufmerksamkeit der VLSI-Design-Forschungsgemeinschaft,
was zu zahlreichen Vorschlägen von approximativen Designs in der Literatur
führte. Trotz der Arbeit eines Jahrzehnts mit approximativen Recheneinheiten
gibt es immer noch ungelöste Herausforderungen für digitale Designer.

Das Konzept der akzeptablen Qualität von Ergebnissen bildet die Grundlage
für die approximative und stochastische Berechnung. In Anbetracht dieser Tat-
sache ist es von entscheidender Bedeutung eine klare, quantifizierbare Definition
dessen zu haben, was eine akzeptable Qualität bedeutet. In der Tat erfassen die
aktuellen Messwerte meist nicht die Anforderungen einer Zielanwendung und
verleiten daher zu suboptimalen Designoptionen der Anwendung. Außerdem
haben unsystematische Designs, fehlende faire Vergleiche und reproduzierbare
Forschung eher begrenzte Fortschritte auf dem Gebiet der approximativen
und stochastischen Berechnung nach sich gezogen. Darüber hinaus sind die
Genauigkeitsanforderungen einer Anwendung keine statische Eigenschaft und
können sich über die verschiedenen Phasen der Anwendung ändern. Daher ist es
wichtig, systematisch approximative und stochastische Berechnungsplattformen
zu entwickeln, die eine Vielzahl von Output-Qualitäten bieten.

In dieser Dissertation sollen grundlegende Schritte zur Lösung der oben
genannten Herausforderungen unternommen werden. Dementsprechend werden
die Beiträge dieser Dissertation folgende sein: Erstens, um die mangelnde
Aussagekraft aktueller Messwerte zu lindern, wird ein neuer parametrisierbarer
Messwert in dieser Dissertation vorgeschlagen, der präziser mit der Anwen-
dungsgenauigkeit korreliert. Anschließend wird die Bedeutung fairer Vergleiche
für approximatives Computing in dieser Arbeit hervorgehoben. Darauffolgend
wird durch Verallgemeinerung und systematische Optimierung einer Architek-
turvorlage für approximative Addierer eine Architektur vorgeschlagen, die ihr
existierendes Gegenstück übertrifft. Als Nächstes wird ein konzeptioneller
Rahmen für den systematischen Entwurf von approximativen Addierern ein-
schließlich hybrider und nicht-gleich-segmentierten Ansätzen entwickelt. Die
Rahmenkonstruktion unterscheidet die Szenarien, in denen die approximative
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Verarbeitung keine signifikanten Vorteile bietet, von denen, in denen sie sig-
nifikante Vorteile bietet; im letzteren Fall hilft sie bei der Erlangung optimaler
Konfigurationen für die Addierer.

Weiterhin wird ein stochastisch abstimmbarer Addierer vorgeschlagen, um die
dynamische Konfiguration der Fehlereigenschaften zu berücksichtigen, der das
Energieverzögerungsprodukt im Vergleich zu seinem konventionellen Gegenstück
erheblich reduziert. Zusätzlich entwickeln wir datenabhängige Korrekturen für
abgeschnittene Multiplikatoren, wobei die vorgeschlagenen Architekturen die
bestehenden approximativen Multiplikatoren in der Literatur übertreffen.

Die Anwendbarkeit der vorgeschlagenen Methoden und generell approxi-
mative Recheneinheiten werden schließlich in modernen Anwendungen unter-
sucht. Die Korrelation zwischen den Fehlern einer einzelnen Einheit und der
Genauigkeit des Gesamtsystems wird ebenfalls in den Anwendungen untersucht.
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CHAPTER 1

Introduction and Overview

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Aims and Objectives . . . . . . . . . . . 5

1.3 Dissertation Outline . . . . . . . . . . . . . . . . . 8

Nowadays, a transcendent challenge is growing as the increasing approach to
Artificial Intelligence (AI) requires huge amount of data and complex calcula-
tions. The new systems demand higher performance and more energy efficiency.
General purpose computers and Application-Specific Integrated Circuits (ASICs)
are employed to step up the development of these new technologies. However,
as technology scales down, it is getting increasingly expensive to ensure exact
functionality of digital integrated circuits. The variability of devices and in-
terconnects is increasing dramatically due to intrinsic (e.g., unequal dopant
concentrations) and extrinsic (e.g., temperature) variations. Meanwhile, exact
or high-precision computation is not always necessary. Applications such as
multimedia, machine learning and data mining are inherently error-tolerant
and do not require a perfect accuracy in computation. In addition, some
errors may compensate each other, or their effects on the final result might be
negligible. Therefore, Approximate Computing has emerged as a new technique
to tackle the growing concerns by saving energy consumption and increasing
the performance of a computer system, with an accepted loss of accuracy [1, 2].
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1 Introduction and Overview

1.1 Motivation

As feature size of transistors shrink with the advances in the technology, it
becomes more and more expensive for designers and manufacturers to keep
transistors functioning deterministic, even under normal operating conditions.
The nondeterminism holds back the continuous technology progress, inspired
by the Moor’s law [3], in the past few decades [4].

Moreover, as transistor counts grow exponentially following Moore’s law, the
transistor threshold and supply voltages do not scale proportionately, and the
power consumption of the additional transistors can no longer be alleviated
through circuit-level techniques. As a result, a percentage of transistors of an
integrated circuit cannot be powered-on at the nominal operating voltage to
mitigate a given thermal design power constraint. The powered-off transistors
are called dark silicon [5, 6]. Based on the technological data from ITRS and
Intel, at the 8nm node, the area of dark silicon escalate over 50% of the chip
area [5, 7, 8]. It brings new unprecedented challenges for the design community.
Different design methodologies such as sub/near-threshold design [9–11] and
approximate computing [2, 12–14] have been studied to address this problem.

Many applications such as computer vision, multimedia, and machine learning
do not always require exact and high-precision computations. For instance, the
impact of an extent of errors on the output quality of image, video and audio
processing is imperceptible for humans. One approach is to exploit the ability
of some applications to tolerate errors and deliberately expose the underlying
system to the errors. This approach is a new vision with a radical view of the
design of hardware systems: a plea for the early targeted identification and
development of the faulty properties of hardware during the design phase [1, 2].
By matching the statistical hardware error characteristics to the statistical
processing requirements of the target application, it is possible to achieve an
enormous increase in energy efficiency or performance.

There are two fundamentally different approaches to assess the trade-off
between hardware efficiency and precision: Approximate computing [2] and
stochastic data processing [1]. With approximate computing, the requirements
for an exact implementation of a Boolean function are relaxed; the exact
functionality is replaced by an approximated functionality. The approximated
functionality is chosen so that it can be implemented more effectively. In
contrast, with stochastic data processing, the requirement for correct operation
over the entire operating range is reduced. For example, frequency or voltage
over-scaling are stochastic techniques which result in timing violation of some
paths in the circuit.

Despite the fundamental differences, the key innovation in both approximate
and stochastic data processing is that errors are allowed and are considered
part of the design; the causes and effects of errors differ, however, and therefore
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1.1 Motivation

require different design methods. Indeed, it is even possible to combine methods
from both approaches, which leads to better results in terms of improving
hardware costs as well as accuracy.

1.1.1 Approximate computing:

The idea of approximating a logical functionality is so general that it can
be applied to both software [15] and hardware [16]. The history of approxi-
mate computing dates back to early 1960s, where it was embraced to develop
multiplication and division based on logarithm [17]. In this work, the binary
logarithm is determined approximately from the number itself by simple shifting
and counting. The next remarkable contributions during the next decades
were truncation based approximate designs. In truncated computing units,
some Least Significant Bits (LSBs) are pruned resulting in reduction in the
circuit complexity. At the same time, the truncation generates errors which
appear frequently, albeit when appear they are relatively small. In the case
of multipliers, the truncation is applied to the Partial Products (PPs) which
results in faster and more energy efficient partial product accumulation stage.
Fixed-width multiplier, where the bit-width of input data and the output result
are the same, were studied in [18–20]. The concept of approximate computing,
afterwards, was applied to adders in [21]. The critical path of an adder is
determined by its full carry chain. An exact adder obtains the final carry out
and calculates the final results considering all the input bits. However, in real
applications, due to the fact that the data distribution is not fully uniform,
the effective carry chain of the adder is much shorter for most combinations of
inputs. Therefore, a faster adder is developed with a much shorter carry chain
which approximates the result. In an n-bit approximate adder, the carry is
obtained by its previous k bits where k < n, resulting in a significantly shorter
critical path.

In the past decade, approximate adders and multipliers have been in the
center of researchers’ attention resulting in a plethora of proposed approaches.
The notable designs include the the Error Tolerant Multiplier (ETM) [22],
Broken-Array Multiplier (BAM) [23], the UnderDesigned Multiplier (UDM) [24],
Lower-part OR Adder (LOA) [23], the Equally Segmented Adder (ESA) [25],
the Almost Correct Adder (ACA) [26], the Generic Accuracy-configurable
Adder (GeAr) [27], Error Tolerant Adder type II (ETAII) [28]. Approximate
adders and multipliers have also been generated using evolutionary design
approaches [29–33]. Besides, in recent years, the approximate design of Multiply-
Accumulate Unit (MAC) is gaining significant attentions [34–36]. The MAC

is the core arithmetic computation performed during Neural Network (NN)
inference.

On a closer inspection of approximate arithmetic units, current approaches
use two philosophies for the error: small errors or unlikely errors. In the first
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1 Introduction and Overview

philosophy, approximate units are constructed so that the magnitude of errors
is small even if they occur frequently. This is justified by error masking due to
intrinsic rounding and noise errors, which is why no significant degradation of
the application is to be expected. One example of this group is the LOA [23]. In
the second philosophy, errors are constructed so that they rarely occur, even if
they are large when they appear. The basic principle is based on the property
that an application can survive errors as long as they are rare. An example of
this group is the ETAII [28].

1.1.2 Stochastic computing:

Stochastic processing is a promising approach for designing energy-efficient
embedded hardware systems. It has been emerged to address the problem of
the languishing benefits of technology scaling. Stochastic processing uses the
ability of many applications to tolerate a loss of quality in terms of precision of
results. In stochastic computing, the requirement for correct operation over
the entire operating range is reduced. Traditionally, the aim of the designers
is to ensure correct operation of the hardware under all possible Process
Voltage Temperature (PVT) variations. However, in stochastic computing,
instead of hiding restrictions in hardware implementation behind expensive
guardbands, the causal variability of the hardware is specifically revealed.
Correspondingly, designers can palliate traditional constraints, which leads
to significantly increased processing speed and results in energy benefits [37–
42]. Stochastic techniques can be applied on different levels of abstraction
including transistor and gate level, as well as Register-Transfer Level (RTL)
and architecture level.

The error rate of the error resilient design determines the energy benefits
offered by stochastic computing techniques. For example, when the error rate
rises sharply with voltage/frequency over-scaling, due to confined scalability,
only limited benefits are feasible. In case the error rate increases gradually, the
benefits are considerable [37].

The better-than-worst-case strategy is advocated by the researchers to build
designs which operate correctly under nominal conditions, and effectively
address the challenges of deep sub-micron design [43]. This approach relaxes
design constraints on core components, reduces the effects of physical design
challenges, and correspondingly, creates opportunities to optimize performance
and power characteristics. Razor [44] is an approach to dynamic voltage
scaling, based on dynamic detection and correction of circuit timing errors.
Employing this capability to tolerate timing errors, a Razor design consolidates
self-checking circuits to enable pushing clock frequency and/or supply voltages
beyond nominal worst-case levels. Further strategies of better-than-worst-case
designs have been reviewed in [45].

Recovery-driven design [38] emphasizes that instead of designing and opti-
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mizing hardware systems for correct operations, they should be optimized for a
target error rate. Recovery-driven design is developed based on slack distribu-
tion. By redistributing timing slack from paths which generate infrequent errors
to the critical paths that frequently cause errors, the energy benefits of exploit-
ing error resilience are maximized. As a result, the minimum supply voltage
and consequently power consumption are reduced; or the maximum frequency
and consequently performance are increased for a target error rate [46].

1.2 Research Aims and Objectives

The aim of this dissertation is to identify the problems of the state-of-the-art
and address those problems systematically. As mentioned above, a huge number
of approximate designs have been proposed in the literature. However, they
share a common characteristic: they have been obtained with an ad-hoc and
non-systematic methodology. Although there are some exceptions, a majority of
the designs aim to achieve an improvement (even if marginal) based on different
trade-offs among energy efficiency, silicon area, performance and accuracy.
Besides, the evaluations are not systematic. In the one hand, the evaluations
are carried out using different synthesis tools and technologies; on the other
hand, the metrics employed to quantify the quality of the approximate designs
are not methodical. Indeed, the comparisons are mostly deficient. There is
lack of systematic and fair comparisons. The basic rules for a fair comparison
are often violated in the literature. In a majority of the research works, the
proposed design is compared with sub-optimal designs, and the significant
baseline designs are missing in the comparisons. Furthermore, even though
approximate computing has been proved to be pivotal in the digital Very-Large-
Scale Integration (VLSI) design and has received significant attention in the
past decade, there is still no comprehensive library which can be used as a
reference for comparisons as well as reproducible research.

The aforementioned shortcomings make it difficult to choose a suitable
approximate design for a target application. Accordingly, the main objectives
of this dissertation are described briefly.

A review and evaluation of existing approximate architectures is presented
first in the next chapter. The goal, here, is to classify the approximate adders
and multipliers, and review the characteristics of each class. Afterwards, with
the overview of the existing approximate architecture, the problem of the
state-of-the-art is identified; where fair comparisons of approximate adders
and multipliers are performed. A simultaneous comparison of approximate
architectures and stochastic exact designs is specifically considered which is
believed as a missing point in the existing research works. We believe that
approximate computing and stochastic computing have to be studied together,
and in some scenarios even be combined to achieve the best trade-off between the
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hardware cost and accuracy. In addition, a new metric to quantify the quality
of approximate computing units when employed in more realistic scenarios, is
presented. The new metric quantify the accuracy of an architecture according
to the target application.

A majority of the existing approximate adders have been obtained non-
systematic. In order to address this problem, a systematic approximate adder
is proposed. The proposed adder is designed by optimizing a developed ar-
chitectural template for maximum accuracy. Additionally, a comprehensive
template for approximate adders is presented along with all the error formulas
associated with it. Using the proposed template, various approximate adders
can be developed, where the related formulas to the developed approximate
adder can be derived from the general formulas. Rather than focusing on
approximate computing, the systematic design of inexact adders is expanded
to stochastic computing units. A stochastically-tunable low-error adder is
proposed afterwards, where frequency over-scaling considered as the stochastic
technique to compromise accuracy for energy efficiency.

A data-dependent truncated multiplier is proposed according to the observa-
tions from comparison of multipliers. A template for truncated multipliers is
also developed, where fixed-width multipliers are also considered as part of the
design.

The final goal is to show the applicability of the proposed architectures in
real scenarios, where in multiple case-studies the functionality of the designs
are evaluated.

1.2.1 Publications

The outcome of the research works for this dissertation, including the collabora-
tive works with our research partners is a list of publications including [47–57].
In the following, a complete list of the related publications are itemized.

Journal Articles

1. Ayad Dalloo, Ardalan Najafi∗ and Alberto Garcia-Ortiz, ”Systematic
Design of an Approximate Adder: The Optimized Lower Part Constant-
OR Adder,” in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 8, pp. 1595-1599, Aug. 2018, doi:
10.1109/TVLSI.2018.2822278.
∗ All the authors contributed equally to this manuscript.

2. Ardalan Najafi, Moritz Weißbrich, Guillermo Payá-Vayá and Alberto
Garcia-Ortiz, ”Coherent Design of Hybrid Approximate Adders: Unified
Design Framework and Metrics,” in IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 8, no. 4, pp. 736-745, Dec.
2018, doi: 10.1109/JETCAS.2018.2833284.
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3. Ardalan Najafi and Alberto Garcia-Ortiz, ”Stochastic Mixed-PR: A
Stochastically-Tunable Low-Error Adder,” in IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 67, no. 10, pp. 2144-2148,
Oct. 2020, doi: 10.1109/TCSII.2019.2953617.

4. Wanli Yu, Ardalan Najafi, Yanqiu Huang and Aalberto Garcia-Ortiz,
”Combination of Task Allocation and Approximate Computing for Fog
Architecture based IoT,” in IEEE Internet of Things Journal, doi:
10.1109/JIOT.2020.3040892. (Early Access)

5. Amir Najafi, Ardalan Najafi and Alberto Garcia-Ortiz, ”Stochastic
Wave-Pipelined On-Chip Interconnect,” in IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 67, no. 5, pp. 841-845, May 2020,
doi: 10.1109/TCSII.2020.2984194.

6. Amir Najafi, Lennart Bamberg, Ardalan Najafi and Alberto Garcia-
Ortiz, ”Integer-Value Encoding for Approximate On-Chip Communica-
tion,” in IEEE Access, vol. 7, pp. 179220-179234, 2019, doi: 10.1109/AC-
CESS.2019.2959446.

7. Moritz Weißbrich, Lukas Gerlach, Holger Blume, Ardalan Najafi,
Alberto Garćıa-Ortiz, Guillermo Payá-Vayá, ”FLINT+: A runtime-
configurable emulation-based stochastic timing analysis framework,” in
Integration (Elsevier), Vol. 69, pp. 120-137, 0167-9260, 2019, doi:
10.1016/j.vlsi.2019.01.002.

Conference Proceedings

8. Ardalan Najafi, Moritz Weißbrich, Guillermo Payá Vayá and Alberto
Garcia-Ortiz, ”A fair comparison of adders in stochastic regime,” 2017
27th International Symposium on Power and Timing Modeling, Opti-
mization and Simulation (PATMOS), Thessaloniki, 2017, pp. 1-6, doi:
10.1109/PATMOS.2017.8106990.

9. Wanli Yu, Ardalan Najafi, Yarib Nevarez, Yanqiu Huang and Alberto
Garcia-Ortiz, ”TAAC: Task Allocation Meets Approximate Comput-
ing for Internet of Things,” 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), Sevilla, 2020, pp. 1-5, doi: 10.1109/IS-
CAS45731.2020.9180895.

10. Mingjie Hao, Aardalan Najafi, Alberto Garćıa-Ortiz, Ludwig Karsthof,
Steffen Paul, Jochen Rust, ”Reliability of an Industrial Wireless Com-
munication System using Approximate Units,” 2019 29th International

7



1 Introduction and Overview

Symposium on Power and Timing Modeling, Optimization and Simula-
tion (PATMOS), Rhodes, Greece, 2019, pp. 87-90, doi: 10.1109/PAT-
MOS.2019.8862161.

11. Moritz Weißbrich, Ardalan Najafi, Alberto Garcia-Ortiz, and Guillermo
Paya-Vaya. ”ATE-Accuracy Trade-Offs for Approximate Adders and Mul-
tipliers in Pipelined Processor Datapaths”, Third Workshop on Approxi-
mate Computing, 2019, Bremen, Germany (AxC18, www.lirmm.fr/axc18)

12. Yizhi Chen, Ardalan Najafi, and Alberto Garcia-Ortiz, ”On the Ef-
fects of Data Distribution on Small-error Approximate Adders,” 2020
9th International Conference on Modern Circuits and Systems Technolo-
gies (MOCAST), Bremen, Germany, 2020, pp. 1-4, doi: 10.1109/MO-
CAST49295.2020.9200260.

13. Amir Najafi, Lennart Bamberg, Ardalan Najafi and Alberto Garcia-
Ortiz, ”Misalignment-aware delay modeling of narrow on-chip intercon-
nects considering variability,” 2018 7th International Conference on
Modern Circuits and Systems Technologies (MOCAST), Thessaloniki,
2018, pp. 1-4, doi: 10.1109/MOCAST.2018.8376593.

14. Moritz Weißbrich, Guillermo Payá-Vayá, Lukas Gerlach, Holger Blume,
Ardalan Najafi, and Alberto Garćıa-Ortiz, ”FLINT+: A runtime-
configurable emulation-based stochastic timing analysis framework,” 2017
27th International Symposium on Power and Timing Modeling, Opti-
mization and Simulation (PATMOS), Thessaloniki, 2017, pp. 1-8, doi:
10.1109/PATMOS.2017.8106956.

15. Amir Najafi, Lennart Bamberg, Ardalan Najafi, and Alberto Garcia-
Ortiz, ”Energy modeling of coupled interconnects including intrinsic
misalignment effects,” 2016 26th International Workshop on Power and
Timing Modeling, Optimization and Simulation (PATMOS), Bremen,
2016, pp. 262-267, doi: 10.1109/PATMOS.2016.7833697.

1.3 Dissertation Outline
This dissertation is organized into 7 chapters. The review of the existing
approximate architectures is presented following to the introduction in Chapter
2. The chapter is divided into two main sections where approximate adders and
approximate multipliers are classified and the prominent existing architectures
are highlighted. Fair comparisons of approximate adders and multipliers
are provided in Chapter 3. In this chapter, first, the problems of the state-
of-the-art are discussed. Subsequently, a new metric is proposed for the
evaluation of the accuracy of approximate computing unit considering a target
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application. In Chapter 4, the proposed inaccurate adders are discussed. In
the first Section of this chapter, a low-power optimized approximate adder is
proposed. The proposed adder is designed systematically from a developed
template for small-error approximate adders. In section 4.3, hybrid approximate
adders are discussed based on the proposed unified design framework. A
comprehensive template for approximate adders is proposed in this section.
Afterwards, in section 4.4, the error behaviour of exact adders in stochastic
regime is mathematically analyzed, where accordingly, a stochastic mixed
adder is proposed. Truncated multipliers with data-dependent correction are
subsequently proposed in Chapter 5. A template for truncated multipliers
along with two correction strategies are presented in this chapter. In Chapter
6, the applicability of the proposed approximate architectures are evaluated in
multiple case-studies. Finally, Chapter 7 concludes this dissertation.
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2.1 Introduction
A huge number of approximate computing units have been proposed in the
literature. Although approximate adders have been studied more than other
approximate computing units, the attention of the researchers have been
increasingly attracted to approximate multipliers in the recent years. In this
chapter, the goal is to review the state-of-the-art and different approximation
methodologies. The comparison of the approximate architectures, however, is
left for the next chapter where we discuss the problems in the state-of-the-art.
As a result, here, relevant approximate adders and approximate multipliers are
classified and briefly reviewed. First, in the next section, different approximate
adders with different design strategies are studied. Then, in section 2.3, different
classes of approximate multipliers are investigated.

2.2 Approximate Adders
Addition of two binary numbers is one of the most basic arithmetic circuits
in a digital computer. Adders, as one of the key components of arithmetic
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circuits, have attracted lots of researchers’ attention in the field of approximate
computing. The most basic and fundamental adder architecture is the Ripple-
Carry Adder (RCA). An n-bit RCA is constructed by n Full Adders (FAs), where
the input carry of each full adder is fed by the output carry of the previous full
adder; resulting in a long propagated carry chain. Correspondingly, the delay
and silicon area of the RCA increase proportionally with n (O(n)). Another
basic adder architecture is the Carry Lookahead Adder (CLA). In an n-bit CLA,
there are n units which work in parallel to produce the generate (gi = aibi) and
propagate signals (pi = ai + bi). The generate and propagate signals are then
employed to generate the look-ahead carries. The delay of CLA is logarithmic in
n (O(log(n)) which is much shorter than delay of RCA. However, a CLA requires
a larger Circuit area (O(nlog(n)), resulting in a higher power dissipation.

High speed adders are based on well established parallel-prefix architectures
[58], including Brent-Kung [59], Kogge-Stone [60], Sklansky [61], Han-Carlson
[62], etc. A Parallel-Prefix Adder (PPA) formulates a binary addition using
three stages: pre-processing, prefix-processing and post-processing. The pre-
processing stage computes generate gi and propagate pi signals using bit-wise
operations:

gi = aibi, (2.1)

pi = ai ⊕ bi, (2.2)

where a and b are the inputs, and i denotes the bit position. The prefix-
processing stage exploits the prefix operator, to speed-up carry computation.
The prefix-processing stage is core of the parallel-prefix adders. Since the
prefix operator is associative and idempotent, the individual operations can
be carried out in any order. This has resulted to emergence of diverse existing
parallel-prefix architectures.

The post-processing stage computes the sum bit si as follows:

si = pi ⊕ ci−1 (2.3)

where c−1 = Cin and ci = g
[i:0]

.

Various approximation schemes have been proposed in order to reduce the
critical path and hardware complexity of exact adders. The concept behind all
the approximate adders is to break the carry propagation chain and consequently
perform the addition faster than exact adders. A conventional scheme to cut
the carry propagation chain and reduce the delay of the critical path as well
as the power dissipation is to use approximate full adders to implement the
LSBs of an adder. This class of approximate adders are known as approximate
full adders [16, 23, 63–66]. Another methodology is based on a speculative
operation [21,26,67]. In a speculative adder, each sum bit is calculated using

12



2.2 Approximate Adders

its previous k LSBs, where k is less than n (k<n). Because of the fact that the
carry chain is shorter than n, a speculative adder is faster than a conventional
adder. A segmented adder is composed by several smaller sub-adders working
in parallel [25,27,28,68,69]. Accordingly, the carry propagation chain is reduced
into shorter segments. The segmentation technique is used in [70–74] with a
similar concept. However, the carry input of each sub-adder block is selected
with an altered strategy. Correspondingly, this class of approximate adders is
called speculative carry selection adder. Therefore, the approximate adders are
divided into four categories, which are briefly summarized below.

2.2.1 Approximate Full Adders

In this class of approximate adders, the adder is divided into two sub-adders.
The higher significant sub-adder is an exact adder, while the lower significant
is constructed employing approximate full adders. This class includes a simple
approach of truncation. A truncated adder is an adder which its output LSBs

are replaced with constant bits. In the case where the LSBs are replaced with
constant ones we call it TruncOne and if the LSBs are replaced with constant
zeros, it is called TruncZero in this dissertation. The Lower-part OR Adder
(LOA) [23] is the most well-known design in this class. It divides an n-bit adder
into two sub-adders. While the higher significant sub-adder is an (n− nor)-bit
exact adder, the lower part sub-adder is simply constructed by nor number
of OR gates. To generate the Carry-in signal for the higher significant exact
sub-adder, an extra AND gate is used which ANDs the most significant input
bits of the lower significant sub-adder. The critical path delay of LOA then
depends on the size of the exact sub-adder. The other figures of merit are
also dependent on the exact sub-adder architecture. It is obvious that using
different architectures as the sub-adder in LOA results in different performances
as well as in different silicon areas and/or power consumptions. Fig. 2.1 shows
the topology of a LOA. As can be seen, an n-bit LOA exploits a regular smaller
precise adder that computes the precise values of the (nh − 1) most significant
bits of the result along with OR gates that approximate the nor least significant
result bits by applying bit-wise OR to the respective input bits.

In addition, the approximate XOR/XNOR-based adders proposed in [63] is
also classified as approximate full adders. The approximate adders proposed
in [63] are based on using XOR and XNOR gates with multiplexers implemented
by pass transistors. In the design of the approximate XOR/XNOR-based full
adders, some of the transistors required in the accurate adder design have
been removed to achieve lower logic complexity. In a similar approach, in [16],
several approximate mirror adder designs are proposed by removing some of
the transistors. They reported up to 60% power saving by approximating
LSBs with this approach. In [66] majority logic based approximate full adders
are proposed, and in [65] a proposed majority gate is employed to design an
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(nh -1)-bit Precise Adder
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Fig. 2.1: Hardware architecture of the Lower-part OR Adder (LOA)

accuracy-configurable full adder cell. The above-mentioned designs except LOA,
require customized layout. As a result, for the comparison, LOA is considered
for our evaluations. In addition, the truncated adders are considered as baseline
designs. Since the approximate full adders approximate the LSBs, they generate
frequent errors. However, the errors generated by this class of adders are small
in magnitude.

2.2.2 Speculative Adders

In a speculative adder, each sum bit is calculated using its previous k LSBs,
where k is less than n (k<n). The Almost Correct Adder (ACA) [26], is the
most applicable adder of this class designed based on [21]. The rationale for
ACA design is that the probability of having k − 2 Consecutive propagate bits
is low enough to produce correct results for majority of the input combinations.
However, for large k, the expected improvement in the speed is not achieved
with ACA compared with an exact adder; and with small k, the accuracy does
not correlate with the name of the adder. In addition, the area overhead of
having multiple sub-adders is considerable in comparison with an exact adder.
The ACA design can be seen in Fig. 2.2.

Co
K-bit

Exact adder

ak−1:0

K-bit
Exact adder

bk−1:0

K-bit
Exact adder

a2k−1:kb2k−1:kan−1:n−kbn−1:n−k

sk−1:0s2k−1:ksn−1:n−k

Fig. 2.2: Almost Correct Adder (ACA), k is the number of previous LSBs used
for the calculation of the sum bits.
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2.2.3 Segmented Adders

A segmented adder divides an n-bit adder into a number of smaller sub-adders
which operate in parallel with fixed carry inputs. Let K={k1, k2, . . . , ks} denote
a vector including size of sub-adders, where s is the number of sub-adders. In
Fig. 2.3, a segmented adder divided into s sub-adders is shown, where k1 is the
size of the first (the lowest significant) sub-adder, k2 is the size of the second
sub-adder, and so on.

The Equal Segmentation Adder (ESA) is a type of segmented adders with
equally sized sub-adders, i.e. k1 = k2 = · · · = ks. Conventionally, ESA is
considered as an n-bit adder divided into n−k1

k
equally sized sub-adders in

addition to the lowest significant sub-adder with the size k1 where k is the size
of equal sub-adders and k1 < k. Accordingly, the delay and the area of an ESA

is dependent to the structure of the sub-adders.
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Fig. 2.3: The structure of the Segmented Adder divided into s sub-adders with

arbitrary sizes, where Rx =
x∑
i=1

ki .

ETAII, proposed in [28], is another approximate adder based on segmented
adders. It splits the entire carry propagation path into a number of short paths
and completes the carry propagations in these short paths concurrently. Let us
consider the general case of the ETAII with arbitrary block sizes. As depicted in
Fig. 2.4, the architecture of ETAII is divided into smaller blocks. Each block has
an arbitrary number of bits and, different from ESA, consists of two separate
circuitries - Carry Generator and Sum Generator. As the name implies, the
Carry Generator creates the carry-out signal. It does not take the carry signal
from the previous block. The Sum Generator, however, takes the carry-in signal
from the previous block to generate its sum output bits. Consequently, the
carry propagation only exists between two neighboring blocks instead of lying
along the entire adder structure [28]. Conventionally, ETAII is divided into n−k1

k

equally sized blocks, in addition to the lowest significant block with the size
k1. Although the circuit complexity of ETAII is similar to ESA (due to the fact
that sub-adders in ESA consist both carry and sum generators), considering
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parallel prefix adder as the internal sub-adders, ETAII has one extra stage in
its prefix structure which exacerbates its speed.
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Fig. 2.4: The structure of the ETAII divided into s sub-blocks with arbitrary

sizes, where Rx =
x∑
i=1

ki .

A low latency generic accuracy configurable (GeAr) adder [27] is a general-
ized design which employs the concept of segmented adders. It uses multiple
sub-adder units of equal length to provide a wide-range of accuracy configura-
bility and variable approximation modes. The GeAr provides a higher number
of potential configurations compared to state-of-the-art, and provides a tem-
plate which enabling a high degree of design flexibility and trade-off between
performance and output quality.

The error behaviour of segmented adders is completely different from approx-
imate full adders. The segmented adders, due to the method which they cut
the carry chain, make big infrequent errors.

2.2.4 Speculative Carry Select Adders

A speculative carry select adder is an approximate adder divided into sub-
adders where the carry inputs of the sub-adders are selected with different
methodologies. The speculative carry selection adder (SCSA) [71] is divided
into dn

k
e blocks called ”window”. Each window adder consists of two k-bit

exact adders where the input carry of Adder0 is connected to zero and the
input carry of Adder1 is connected to One. The sum result of each window
adder is selected with a multiplexer which its select input is connected to the
output carry of Adder0 of the previous (lower significant) window adder.

The approximate architecture proposed in [72] uses the generate signals for
carry speculation. Here, the carry selection depends on the propagate signal of
each sub-adder. In case the propagate signal is one, the carry-in of the block is
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the most significant generate signal of the previous block; and if the propagate
signal is zero, the carry-in of the block is the carry-out of the previous carry
generator block.

The Carry Cut-Back Adder (CCBA) [74] is composed of sub-adder blocks
where multiplexers are inserted in order to cut the carry chain to reduce the
critical path delay. The cut multiplexes the real carry with a carry speculated
from a much shorter chain. The decision to cut the chain is taken in the carry
propagate block (PROP) which monitors a group of carry stages and generates
the cut signal if those are all in propagate states. The accuracy of the CCBA
adder depends on how large is the bit-width between the propagate block and
the cut.

The speculative carry select adders usually provide a high accurate results.
However, the high circuit overheads of those adders make them less interesting
than the approximate full adders and segmented adders.

2.3 Approximate Multipliers
Multiplication is the main operation in many signal processing applications.
Multipliers are the most power-hungry units of Arithmetic and Logical Units
(ALUs). In most of the DSP applications, multipliers are part of the critical
path and hence determine the speed of the system. A multiplier consists
of three stages: 1) partial product generation, 2) partial product reduction
(accumulation), 3) a final addition, as shown if Fig. 2.5(b).
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P1,1
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b3 b2 b1 b0
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(a)

A Multiplicant

B Multiplier

Partial Products

Final result
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(b)

Fig. 2.5: (a) The partial product tree, Pi,j = aibj. (b) A 4×4 Wallace multi-
plier.

Considering A and B as the inputs of a multiplier, partial products of the
multiplier Pi,j are the products of the two bits (ai and bi) generated by AND
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gates (i.e. Pi,j = aibj), where i and j are the bit position of inputs a and b,
respectively. Since in binary multiplication bi is in {0, 1}, each row of the
partial product tree can be either 0 or a × 2j which is the shifted version of
input ”a”. Because of this fact, the multiplication sometimes is considered as
the combination of shift and add operations.

The frequently used partial product reduction strategies are the carry-save
adder array, Wallace and Dadda trees [75,76]. A carry save adder array (Fig. 2.6)
employs a row of binary FAs to reduce three numbers to two numbers. The
carry and sum signals produced in each row are fed to the next row of the
FAs. Since the adders which are in a column work in a serial order, the partial
product reduction with carry save adders is relatively slow. The multipliers
using carry save adder array as the partial product reduction stage are called
Array multipliers. The Wallace and Dadda trees [77, 78] employ (3,2) and
(2,2) counters (i.e. Full Adder (FA) and Half Adder (HA), respectively) at each
level of partial product accumulation to achieve required reduction. Dadda
multipliers use a minimal number of FAs and HAs at each level, while in Wallace
trees, the number of operands are reduced at the earliest possibility. In other
words, if there are h dots in a column, dh

3
e FAs are immediately applied to

that column. This results in minimizing the overall delay by making the final
addition as small as possible.
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HA HA HA

FAFA

FA FA

FAFA

a1b0a2b0a3b0 a0b0
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Fig. 2.6: The structure of partial product reduction of a 4×4 unsigned array
multiplier.

The approximate multipliers can be classified in four main classes. The
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approximation in generating the partial products is the first class of approximate
multipliers [24]. Another class of approximate multipliers designs a multiplier by
approximating the partial product tree [22, 23,79–82]. This class of multipliers
include the conventional truncated multipliers. The third class of approximate
multipliers employs approximate blocks for accumulation of the partial products.
In [83], an approximate multiplier with error correction is proposed where
approximate counters are used for the reduction of the partial products. There
are additionally a huge number of designs in the literature where approximate
compressors are employed to accumulate the partial products of the multipliers
[84–90]. Approximate multipliers can also be classified as the units developed
using evolutionary design approaches [29–33].

2.3.1 Approximation in Generating the Partial Products

The most straightforward approach of this class is to utilize smaller approximate
multipliers to construct larger multipliers [24,91] which results in approximated
partial products. In [24], the proposed underdesigned multiplier employs an
approximate 2×2 multiplier. The approximate 2×2 multiplier is designed to
make error only when both the inputs are one (i.e. ”11”). In this case, the
multiplier output is ”111” instead of the precise result of ”1001”, saving one
output bit. Consequently, considering a uniform distribution, where each input
bit has 50% probability to be 0 or 1, the error rate of the 2×2 approximate
multiplier is 1

16
. The error introduced by this approximate multiplier generates

approximate partial products, while the accumulation of the partial products
is still performed precise.

2.3.2 Approximation in the Partial Product Tree

The simplest approach in this methodology is input truncation where k-bit
LSBs of the input operands are pruned. In fact, the multiplication is performed
for the Most Significant Bits (MSBs) of the operands. This approach results in
a relatively high level of inaccuracy. Conventional truncated multipliers are
the eminent architectures of this class of approximate multipliers. A truncated
multiplier (TruncM) pruns the k LSBs (k least significant columns) of the partial
products resulting the k LSBs of the output of the multiplier in constant zeros.
Removing the partial products of a multiplier not only reduces the silicon area
due to the removal of AND gates, but also scales the speed of the multiplier up
as a result of cutting the critical path. Moreover, the area reduction benefits
is twofold since the reduced size partial products require lesser hardware to
be accumulated. Broken-Array Multiplier (BAM) [23] is a type of truncated
multipliers which has a structure similar to an array multiplier. The BAM

omits the Carry-Save Adder (CSA) cells horizontally and vertically which lead
to a smaller and faster circuit while provides inaccurate results. As shown in
Fig. 2.7 the number and position of the omitted cells (that are hatched) depend
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2 Background and Previous Works

on two parameters: Horizontal Break Level (HBL) and Vertical Break Level
(VBL). The BAM technique results in a same accuracy when applied to other
multipliers such as Wallace-tree. The Error-Tolerant Multiplier (ETM) [22]
splits a multiplier into LSBs and MSBs. A control unit checks the product
of the MSBs (using NOR gates). If the product of MSBs is zero, then the
LSBs are multiplied normally. But if the product of the MSBs is nonzero, a
non-multiplication block is used for the the LSBs [22].

Horizontal Break
Level (HBL)

Vertical Break
Level (VBL)

Fig. 2.7: The structure of a 7×7 Broken Array Multiplier (BAM). The hatched
carry-save adders are the omitted cells (Horizontally and/or Verti-
cally).

2.3.3 Approximate Compressors

In the design of a fast multiplier, compressors have been widely used to speed
up the partial product reduction tree and decrease power dissipation [92–97].

Two approximate compressors are proposed in [84] and then used for the
partial product accumulation of a Dadda multiplier. These approximate com-
pressors are designed by simplifying the outputs of the compressor and thereby
decreasing the transistor count of the compressors. In [87], a simple but novel
idea is proposed to design approximate compressors. In addition, an algo-
rithm to exploit the designed approximate compressors in the partial product
reduction stage is presented. The compressors designed in [87] approximate
the arithmetic sum. For most of the input combinations, they compute the
exact value resulting in a low average error. The outputs of the proposed
approximate compressors have the same weight as of the inputs and they do not
produce carry outputs, which is the difference from conventional compressors
where the weight of the carry output is two times the weight of the inputs.
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2.3 Approximate Multipliers

In [98], a new approximate adder cell is proposed. The adder operates on
a set of pre-processed inputs. This input pre-processing is done considering
the interchangeability of the input bits with the same weights. In the input
pre-processing stage, the rule is to swap ai and bi when bi > ai, otherwise the
inputs are kept untouched. By doing so, more 1’s are expected in A and more
0’s are expected in B. As a result, the pre-processed inputs can be calculated
using the following equations:

ȧi = ai + bi,

ḃi = aibi.
(2.4)

The Eq. (2.4) corresponds to the propagate and generate signals used in
a parallel prefix adders. The proposed adder can process data in parallel by
cutting the carry propagation chain. A carry signal is produced in the proposed
adder only by the generate signal (i.e., ai = bi = 1), which based on the
pre-processed inputs, it corresponds to when ḃi = 1. In addition, the produced
carry can only be propagated to the next higher bit. The truth table of the
approximate adder cell is tabulated in Fig. 2.8(a).

(a)

siei
ḃiḃi−1

00 01 10 11

ȧiȧi−1

00 0/0 X X X

01 0/0 1/0 X X

10 1/0 1/1 1/0 0/0

11 1/0 X X 0/0

(b)

ai

bi

ai−1

bi−1

ei

si

Fig. 2.8: (a) Truth table of the approximate adder cell proposed in [98]. ’X’
represents the combinations which are not possible to occur due to
the input pre-processing; (b) approximate adder cell of [98].

The idea of [98] is extended in [99] where besides using the approximate
adder cell of Fig. 2.8(b), to achieve further improvement in area and power
consumption of the multiplier, truncation is applied to the partial products
tree. Depending on the error recovery circuit, the multipliers are called AM1
for the error recovery with OR gates, and AM2 when error recovery circuit
employs OR gates and the approximate adder cell of Fig. 2.8(b). The truncated
version of these adders are called TAM1 and TAM2, respectively.
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2.3.4 Multipliers Derived by Optimization Algorithms

Another approach to design approximate computing units is optimization algo-
rithms such as genetic algorithm [29–33]. EvoApprox library [33] is developed
based on conventional adder and multiplier designs. The method used to
obtain the library follows the the evolutionary approach introduced in [32].
The methodology is a general-purpose approach to develop approximate combi-
national circuits based on a multi-objective Cartesian genetic programming. It
represents candidate circuits as directed acyclic graphs and develops a set of
approximate circuits along a Pareto front by simultaneously optimizing delay,
power consumption and accuracy of the approximate unit.

2.4 Conclusion
In this chapter, relevant approximate adders and multipliers have been reviewed.
An extensive comparison of these architectures are presented in the next chapter.
In general, the appoximate full adders, due to applying the approximation to
the LSBs, generate small errors but with a high probability. Segmented adders,
on the other hand, produce large erros with low probability. In regards to
multipliers, applying approximation in the generating the partial products and
also in the partial product tree by truncation are effective strategies to reduce
the hardware cost. However, the truncation of the partial products results in a
higher accuracy than truncating the inputs operands. The multipliers which
use approximate compressors in their structures provide the higher accuracy
with the cost of higher energy consumption as well as silicon area.

The existing research works optimize an approximate computing unit for
different trade-offs among accuracy, silicon area, energy efficiency and per-
fomrmance. Although in each of those designs marginal improvements might
have been achieved, due to inconsistency in the error analyses and circuit
characterisitcs, it is challenging to choose a proper architecture for a desired
application. In the next chapter, we study the problems in the state-of-the-art
in detail and we discuss our approaches to address those problems.
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3.1 Introduction
The languishing benefits of technology scaling has pushed the designers to look
for new energy efficient strategies. One approach is approximate computing
which has attracted lots of researchers’ attention. A vast amount of time
and resources of the research companies have been dedicated to approximate-
computing-related projects. Correspondingly, a prodigious number of approxi-
mate designs have been proposed in the literature. However, it is still difficult to
choose a suitable approximate design for a target application. Indeed, there are
four fundamental problems which are aimed to be addressed in this dissertation.
These problems are listed below:

1. Systematic design approaches: The existing approximate designs in
the literature share a common characteristic: they have been obtained
with an ad-hoc and non-systematic methodology. Although there are
some exceptions (like GeAr adder which is based on the concept of a

23



3 Identification of Problems in State-of-the-art

template), a majority of the designs aim to achieve an improvement based
on different trade-offs among energy efficiency, silicon area, performance
and accuracy. Our approach, however, is to study the approximate archi-
tectures systematically. Rather than improving any existing architecture
for a target application or for a specific trade-off, we aim to characterize
the error behaviours of the approximate architectures. Afterwards, based
on these understandings, architectural templates are developed. Finally,
optimized architectures can be obtained from the templates. The promis-
ing architectures obtained with our approaches are detailed in Chapter 4
and Chapter 5.

2. Fair comparison: As mentioned above, the interest of stochastic and
approximate processing has resulted in a huge number of publications
and contributions; each work claiming a superior functionality over the
others. The comparisons among the alternatives, however, are not always
systematic and fair. On the one hand, different synthesis tools and
technologies are employed for the evaluations; on the other hand, the
metrics employed to quantify the quality of the approximate designs
are not methodical. There is also lack of systematic studies comparing
approximate and stochastic architectures. Indeed, the comparisons are
mostly deficient. The rules for a fair comparison are often violated in the
literature. For example, the selection of an approximate architecture is
strongly influenced by the timing constraints of the hardware [48]. The
design constraints determine the internal structure of the unit (in case of
adders for example, sequential structure with linear cost, parallel-prefix
structure with a logarithmic cost, etc.), which determines the reduction in
cost achieved by the approximate units. With relaxed timing constraints,
an exact adder is implemented with a ripple-carry structure and an ESA

almost decreases the delay by a factor of two. With more stringent
timing constraints, an exact adder is implemented with a parallel-prefix
architecture, where the delay increases as dlog2(n)e and the use of an
ESA is just marginally reducing the delay. In this case, non-equally
segmented sub-adders may be preferable. The effects of the internal adder
architecture have been studied in [48]; it illustrates the potentials for
non-equally segmented approximate adders which have been disregarded
in the literature. In majority of the research works, the proposed design
is compared with sub-optimal designs, and the significant baseline designs
are missing in the comparisons. For a fair comparison, it is vital to
consider all the best possible counterparts. This simple fact has often
been violated in the literature, and even in the review articles, which
can be misleading for the research community. The aforementioned
shortcomings make it difficult to choose a suitable approximate design
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for a target application. In this chapter, a fair comparison of adders as
well as multipliers are presented and discussed.

3. Reproducible research: Reproducible research is an important factor
to accelerate advances in any research domain. Despite the fact that
approximate computing has received significant attentions, in the digital
VLSI design community, in the past decade, there is still no comprehen-
sive library which can be used as a reference for comparisons as well as
reproducible research. Indeed, lack of the library of a comprehensive
approximate computing unit has slowed down the research in this domain.
In conjunction with this dissertation, we have developed an open-source
repository where the Very high speed integrated circuit Hardware Descrip-
tion Language (VHDL) codes of the approximate computing units and the
golden references are stored. The comparison of approximate computing
units can be accessed there for different figures of merit. In addition, the
users can add their own designs in the repository. This way, not only the
researchers in this domain can access to the code and descriptions of the
existing architectures, but also they can evaluate and compare their own
architectures with the existing ones on the developed platform. Due to
the fact that the architectures are classified and also categorized based on
their entities, the fair comparison is ensured using the developed platform.
Above all, this way the comparisons are reproducible.

4. Metrics: A closer investigation into the variety of approximate units
shows that the current approaches use two philosophies for the error:
a) small errors or b) unlikely errors . In the first philosophy, the errors of
the approximate unit are engineered to be small in magnitude, even if
they are frequent. The rationale is that those errors are masked by the
intrinsic truncation and noise error of the system, and therefore they do
not degrade considerably the quality of the application. Examples of this
philosophy are the LOA [23] and truncated adders and multipliers. In the
second philosophy, the errors are engineered to appear infrequently, even
if they are large when they appear. The rationale is that the application
can overcome errors if they are sporadic. Examples of this philosophy are
the ACA [68], the GeAr [27], the ETAII [28] and the ESA [25].

A key problem when considering simultaneously the two philosophies is
the quantification of the errors. The authors working with the small errors
philosophy tend to prefer error metrics as the standard deviation, or the
mean average error that measure the average magnitude of the errors.
This metric, however, strongly penalizes large infrequent errors. The
authors working with the infrequent error philosophy tend to favor metrics
as the average number of errors which quantify the error probability;
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however, this metric strongly penalizes architectures with small errors.
In a real scenario, the two effects have to be considered in a single metric,
but it is not possible with the current approaches.

In the rest of this chapter, first, a new metric to quantify the quality of
approximate computing units when employed in real applications, is proposed.
Afterwards, fair comparisons for existing approximate adders and multipliers
for different trade-offs are presented and discussed.

3.2 Metrics

The error is defined as the difference between approximate and accurate output
results of the computing unit:

ε = Ỹ − Y, (3.1)

where Ỹ is the approximate (erroneous) output of the unit and Y is the
accurate result. It is a random variable that can be characterized by its
probability density function (i.e. Pr[εj]). However, from the perspective of
an automated design framework, it is more convenient to use an error metric
(a single number) to quantify the importance of the error. Several metrics
have been proposed; among them, the most common ones are the Average
Error (µ), the average number of errors (PE), the Standard Deviation (STD
or σ), the Mean Squared Error (MSE), the Mean Absolute Error (MAE), and
the Mean Relative Absolute Error (MRAE). In the literature (e.g. [100]) the
Error Distance and the Mean Error Distance (MED) are used to evaluate the
arithmetic performance of approximate computing units. These metrics are
actually the absolute error and the MAE, respectively. References [101, 102]
use MED and error rate (similar to PE), while references [103–105] use relative
error metrics. In summary, the most common metrics are defined as follows:

PE = E
[
δ(ε)

]
=
∑
j

Pr[εj] , (3.2)

µ = E
[
ε
]

=
∑
j

εjPr[εj] , (3.3)

σ =
√

E
[
(ε− µ)2

]
=

√∑
j

(εj − µ)2Pr[εj] , (3.4)

MSE = E
[
ε2
]

= µ2 + σ2 , (3.5)

MAE = E
[
|ε|
]

=
∑
j

|εj|Pr[εj] , (3.6)
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MRAE = E
[
|ε|
]

=
∑
j

∣∣εj
yj

∣∣Pr[εj] , (3.7)

where E is the expectation operator. It should be mentioned that it is also
common to employ the normalized version of the previous metrics.
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Fig. 3.1: Error histograms of a low-resolution input, a high-resolution input
and an ANT output.

The metric PE favors the infrequent error philosophy, while Standard Devia-
tion (STD) and Mean Squared Error (MSE) favor the small error philosophy.
The Mean Absolute Error (MAE) is more robust than MSE to the presence
of large errors and it is commonly used as a compromise. However, it is in-
sufficient. Let us consider a typical stochastic approach as the Algorithmic
Noise Tolerance (ANT) approach [106]. In ANT, two versions of an algorithm
are computed; one with a low-cost and low-resolution unit and another one
with a high-resolution approximate processing unit. Then, the two outputs
are compared; if the difference is small, the approximate processing output is
chosen, otherwise the low-resolution one is chosen. After this selection process,
the quality of the system is notably improved. An example is shown in Fig. 3.1,
where the low-resolution signal uses 5 effective bits and the high-resolution
signal is generated with a hybrid adder. The error histogram of the ANT output
shows the quality of the resulting signal. Beside the simplicity of this example,
none of the current metrics can be reliably used to quantify the error-cost of
the high-resolution approximate processing needed by ANT. To illustrate this
fact, Table 3.1 reports the error metrics (PE and MSE) of the signal produced
by three different adders as well as the final signal quality measured as the MSE

at the output of the ANT process. Analyzing only the MSE, ESA-4 should be
the best adder, while analyzing the PE, ETAII-3 is preferable. In fact, a hybrid
adder, whose MSE and PE are worse than the previous examples, provides the
best solution. Accordingly, current metrics are misleading.

The key problem is that the current metrics do not capture the different
behaviors of small and large errors. Low-magnitude errors get added to the final
output and can be quantified with the MSE or STD; high-magnitude errors are
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Table 3.1: Error metrics for approximate adders and resulting output quality
after ANT processing

ANT input ANT output

Adder MSE PE MSE

ESA-4 10.9545 0.4688 7.4330

ETAII-3 14.9666 0.0547 0.8101

Hybrid 19.6405 0.2676 0.7539

detected by ANT and replaced by the low-resolution version of the algorithm.
Thus, they contribute with a factor dependent on the error probability (PE)
but relatively independent of the actual error magnitude. To palliate the lack
of expressiveness of current metrics, we propose a new parameterizable metric
that captures the requirements of stochastic applications, the Saturated Mean
Squared Error (SMSEτ ). Mathematically, it is defined as:

SMSEτ = E
[

min(τ, |ε|)2
]

(3.8)

The parameter τ controls the behavior of the metric; large values of τ produce
a cost similar to the MSE, while small values produce a cost similar to PE. As
shown with more details in Chapter 6, the new metric captures more precisely
the error cost and can be used to explore different approximate units.

In order to evaluate our new metric, we have compared the adders in a
simple image processing algorithm which first calculates the average of the
pixels using approximate adders and then the error probability is calculated
after binarization. In Fig. 3.2, the probability of errors for 14 different 8-bit
adders are shown versus the calculated error metrics. The colors correspond to
different families of adders. The red color is the precise adder, the green ones
are different configurations of ETAII (including the non-equal segmented ones)
and the dark blue ones are ESA adders as the representatives of infrequent
error philosophy, the light blue ones are OLOCA [47] architectures as the
representative of small error philosophy. As can be seen in the figure, our
saturated metric predicts the errors in this algorithm more precisely. There
is an almost linear relationship between quality (probability of errors) and
our saturated metric. The conventional metrics are misleading in some cases.
For instance, in Fig. 3.2(b), the adder marked with ∗ is among the best
configurations with the lowest probability of errors; but, conventional MSE

cannot predict this and misleads to ignore the adder.

In a similar scenario, two images can be multiplied pixel by pixel. Here,
in this example, the Astronaut image is multiplied with a windowed image.
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Fig. 3.2: The error prediction of different metrics in an image processing algo-
rithm. Different colors correspond to different classes of approximate
adders. The star * is used to mark an adder as an example to show
a case where conventional metrics are misleading.

The windowing can be employed to smoothly reduce the amplitude of the
signal as it reaches the edges, removing the effect of the artificial discontinuity
which results from the Fast Fourier transform (FFT). The input images as
well as the resulting images from exact and approximate multipliers are shown
in Fig. 3.3. The approximate multipliers are TruncWM-4, TruncM-8, and
BAM-3. The TruncWM-4 is a truncated Wallace multiplier where the 4 LSBs

of its input operands are pruned; the TruncM-8 is a truncated multiplier where
truncation is applied to the 8 LSBs of its partial products; and BAM-3 is the
Broken Array multiplier where 3 rows (horizontal) and 3 columns (vertical)
of its partial products are removed. As can be seen in Fig. 3.3, the BAM
multiplier outperforms the other multipliers in terms of output image quality,
while the TruncWM is providing the least quality. The quality of output
images are quantified with the Structural Similarity Index Measure (SSIM) as
tabulated in Table 3.2. The multipliers are also compared using MSE and MAE

metrics as well as our proposed metric Saturated Mean Squared Error (SMSE),
tabulated in the Table 3.2. It can be observed that the conventional metrics

Table 3.2: Error metrics for approximate multipliers and resulting output qual-
ity after multiplication of two images

SSIM MSE MAE SMSEτ=256

TruncMW-4 0.845 1.131e6 8.807e2 58.979e3

TruncM-8 0.877 0.261e6 4.477e2 56.741e3

BAM-3 0.927 1.669e6 9.542e2 52.448e3
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(a) (b) (c)

(d) (e) (f)

Fig. 3.3: Comparison of multiplication of (a) the Astronaut image with (b) the
Window image using (c)exact multiplier, (d)input truncated Wallace
multiplier (TruncWM-4), (e)truncated multiplier (TruncM-8), and
(f)Broken array multiplier (BAM-3).

are again misleading in this application. Based on the MSE and MAE metrics,
the TruncM-8 should have the best quality among the compared approximate
multipliers, while as our metric suggests, the BAM-3 is outperforms the other
two approximate architectures in this application (see Table 3.2).

3.3 A Fair Comparison of Approximate Adders
To assess the circuit characteristics and compare the existing approximate
architectures reviewed in Chapter 2, the VHDL description of the adders have
been generated. Different configurations of these adders are synthesized in a
commercial low-power 40nm library, for 16-bit operands. Using back-annotated
simulations, dynamic power dissipation of the adders are evaluated after synthe-
sis. All the adders have been simulated for 107 uniformly distributed random
input patterns. Besides, in order to include the stochastic analysis of exact
adders, frequency over-scaling has been used as the technique to trade-off the
accuracy and hardware cost.

In this section, in order to provide a comprehensive comparison of the adders,
they are compared for different figures of merit as well as different accuracy
metrics. All the adders share the same entity to ensure a fair comparison. As
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discussed in [48], considering the input carry and the output carry ports in the
entity of the adder architectures can considerably impact on the accuracy the
architectures. In this work, input carry port is not considered in the entity of
the adder architectures, while the bit-width of the output of the adders are 17
bits, which considers the output carry. In addition, the adder architectures
are compared for various timing constraint to consider the impact of internal
architectures in the behaviour of the approximate adders.

The approximate adders which are compared in this section are the ESA,
ETAII, LOA, ACA, and GeAr. In addition, the conventional truncated adders
are considered as the baselines for the comparison. TruncZero is a truncated
adder where the pruned LSBs are constant zeros. The TruncOne, on the other
hand, replaces the pruned LSBs of the adder’s output by constant 1’s. The
16-bit approximate adders which are compared in this chapter are configured
as follows: the number of approximated LSBs for LOA and truncated adders
are depicted for nl = 4 to nl = 10; the ESA and ACA adders are configured for
k = 4 to k = 8; the ETAII is configured for k = 4 to k = 8; and finally regarding
the GeAr adder, the set of resultant and previous bits are (2,4),(4,4),(4,8), and
(6,4). Note that, the 16-bit ETAII adder with k = 8 operates like an exact
adder, as a result it is not considered.
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Fig. 3.4: Comparison of the area-optimized approximate adders for their Mean
Absolute Error (MAE) vs. (a)Area-Delay Product (ADP), (b)Power-
Delay Product (PDP), (c)Delay.

The comparison of the aforementioned approximate adders for different error
metrics are shown in Fig. 3.4, Fig. 3.5, Fig. 3.6, and Fig. 3.7. These figures show
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Fig. 3.5: Comparison of the area-optimized approximate adders for their Mean
Squared Error (MSE) vs. (a)Area-Delay Product (ADP), (b)Power-
Delay Product (PDP), (c)Delay.

the comparison of the area-optimized adders (a relaxed timing constraint).

It can be seen that only considering one single figure of merit (either speed,
silicon area, or power consumption) is not sufficient for the comparison. As
can be seen, in the Fig. 3.4 for instance, the ETAII architectures considering
delay and accuracy shows a promising architecture which outperforms the other
architectures for most of its configurations. However, when considering the
silicon area, and power consumption, the ETAII has a worse behaviour that a
truncated adder. This is also valid for only considering silicon area, or power
consumption as the cost metric. Correspondingly, the Power-Delay Product
(PDP) and Area-Delay Product (ADP) represent fair hardware cost metrics to
compare the approximate architectures.

Comparing Fig. 3.4 and Fig. 3.5, it can be observed when the goal is to achieve
energy efficiency (lower PDP), considering MAE, the ACA and ESA architectures
have almost the same characteristics. However, when MSE is considered as the
accuracy metric, the ESA adder performs better than ACA. The other notable
observation is the error rate (PE) of the adders. The small error adders such
as LOA, and truncated adders, due to the approximating of the LSBs, generate
errors frequently. As a result, as can be seen in Fig. 3.7, those adders have
a probability of errors close to one. This is particularly important for the
applications where the number of errors impact on the quality of the results.

It can be concluded that, the selection of metrics is important to choose an
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straints of 0.25ns: (a) Mean Absolute Error (MAE) vs. Area-Delay
Product (ADP), (b) Mean Squared Error vs. Power-Delay Product
(PDP).

approximate architecture for an application. In fact, to show that a proposed
architecture outperforms the others for only one specific metric does not
guarantee that the architecture is indeed a superior architecture. This fact has
been violated in majority of the contributions in the approximate architecture
design domain. In addition, it is important to choose appropriate baselines for
the comparisons. As can be observed in the figures, the truncated adders are
promising architectures which are often disregarded in the literature.

In order to analyze the impact of internal architectures on the behaviour of the
approximate adders, we have synthesized them for various timing constraints.
In Fig. 3.8, the comparison the approximate adders for a stringent timing
constraint of 0.25ns is depicted. Since, changing the timing constraint changes
the netlist of the adders, resulting in different internal architectures, dissimilar
trade-offs are expected to be observed. For example, in Fig. 3.8, the GeAr adder,
for some configurations, outperforms the ETAII; while considering a relaxed
timing constraint (see Fig. 3.4 and Fig. 3.5, ETAII performs better that the
GeAr adder for all the configurations.

For a better understanding of the impact of the design constraints on the
approximate adders’ trade-off, let us consider an application with error tolerance
of MAE < 16. As a result, we choose the the adder architectures which meet
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Fig. 3.9: Comparison of adders with MAE < 16 for different timing con-
straints. The dashed lines are the Power-Delay Product (PDP) of
the adders, while the solid lines illustrate the Area-Delay Product
(ADP) of the adders.

this restriction from Fig. 3.4. These architectures are compared for various
timing constraints in Fig. 3.9. The numbers following the name of the adders
in this figure are their configurations. For the LOA, and truncated adders,
the number is the approximated LSBs; in the case of ETAII, the numbers are
the bit-widths of the sub-modules from most significant module to the least
significant module, from left to right, respectively; and for the GeAr adder,
the left number is the width of the resultant bits and the right number is the
number of previous bits used to calculate the results. Note that, throughout
the whole range of the timing constraints (the whole line for each adder), the
error of the approximate adders are unaltered. As a result, the crossing lines in
the figure indicate that superiority of the architectures in terms of the hardware
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Fig. 3.10: Comparison of approximate adders and stochastic adders. (a) Mean
Absolute Error (MAE) vs. Area-Delay Product (ADP), (b) Mean
Squared Error (MSE) vs. Energy-Delay Product (EDP).

cost is changing. This might affect the trade-off between the accuracy and
hardware cost of approximate adders, and consequently affecting the decision
of choosing an architecture for a specific application.

As a matter of fact, the internal architecture plays an important role in the
behaviour of adders in the stochastic regime. In Fig. 3.10, the comparison of
the approximate adders and stochastic adders are illustrated. The stochastic
adders are exact adders synthesized considering two different timing constraint
and simulated for overscaled frequencies: a relaxed timing constraint (Stoch-
AreaEfficient), and a rigorous timing constraint (Stoch-DelayEfficient). The
Stoch-AreaEfficient adder is realized as a RCA, while the Stoch-DelayEfficient
has a structure very close to parallel-prefix adders.

As observed in the figure, when considering the trade-off between accuracy
and energy efficiency, the approximate adders are better choices than the
stochastic adders. Note that the stochastic adder Stoch-DelayEfficient because
of its abrupt increase in MSE and MAE is not an attractive selection. On the
other hand, when considering the trade-off between accuracy and ADP, even
the Stoch-AreaEfficient is a better selection than a majority of the approximate
adders.
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3.4 A Fair Comparison of Approximate Unsigned
Multipliers

To assess the circuit characteristics and compare the existing approximate
multipliers reviewed in Chapter 2, the VHDL description of the multipliers have
been generated. Different configurations of these multipliers are synthesized
in a commercial low-power 40nm library, for 16-bit operands. Using back-
annotated simulations, dynamic power dissipation of the adders are evaluated
after synthesis. All the multipliers have been simulated for 107 uniformly
distributed random input patterns. Besides, the stochastic frequency-over-
scaled multipliers are included in the comparisons, in order to study the
approximate and stochastic multipliers simultaneously.

In this section, in order to provide a comprehensive comparison of the
unsigned multipliers, they are compared for different figures of merit as well
as different accuracy metrics. All the multipliers share the same entity to
ensure a fair comparison. Accordingly, the bit-width of the product of the
compared multipliers are 32 bit. In addition, similar to the previous section, the
multipliers are compared for various timing constraint to consider the impact
of internal architectures in the behaviour of the approximate multipliers.
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Fig. 3.11: Comparison of the area-optimized approximate multipliers and
stochastic multipliers for their Mean Absolute Error (MAE) vs.
(a)Area-Delay Product (ADP), (b)Energy-Delay Product (EDP),
(c)Delay.
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Fig. 3.12: Comparison of the area-optimized approximate multipliers and
stochastic multipliers for their Mean Squared Error (MSE) vs.
(a)Area-Delay Product (ADP), (b)Energy-Delay Product (EDP),
(c)Delay.

The approximate multipliers which are compared in this section are the
AM1, AM2 proposed in [98], the TAM1, TAM2 proposed in [99], the BAM

[23], input-truncated Wallace multiplier (TruncWM), input-truncated array
multiplier (TruncAM), and automatically generated EvoApprox multipliers [33].
In addition, the conventional truncated multiplier (TruncM) is considered as
the baseline for the comparison. TruncM approximates the multiplication by
pruning the k LSBs from the partial products, while in case of TruncAM and
TruncWM k bits from the LSBs of their input operands are truncated. In
regards to the BAM multiplier, we consider that equally k bits from both the
rows (horizontally) and columns (vertically) of the partial products are pruned.

The 16-bit approximate multipliers which are compared in this chapter
are configured as follows: the number of approximated LSBs for AM1 and
AM2 are from k = 12 to k = 16; the TAM1 and TAM2 are configured for
k = 12 to k = 15; the TruncWM and TruncAM are truncated with k = 2
to k = 8; the TruncM prunes the LSBs from k = 4 to k = 18; the BAM is
horizontally and vertically truncated from k = 1 to k = 6, and finally the
EvoApprox multipliers are the Pareto optimal selections from the EvoApprox
database [33]. In addition, the stochastic multipliers, Stoch-DelayEfficient and
Stoch-AreaEfficient, are included in the comparisons to concurrently analyze
the existing approximate and stochastic multipliers. The Stoch-AreaEfficient
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and the Stoch-DelayEfficient multipliers are exact multipliers synthesized for a
relaxed timing constraint and a rigorous timing constraint, respectively, which
are simulated for over-scaled frequencies.

The comparison of the aforementioned multipliers for different error metrics
are shown in Fig. 3.11, Fig. 3.12, Fig. 3.13, and Fig. 3.14. Note that the
approximate multipliers are area-optimized (synthesized for a relaxed timing
constraint).

Here, similar to the adders’ comparison, it can be observed that, only
considering one single figure of merit is not sufficient for a fair comparison.
For example, considering only the speed of the multipliers, AM1 and TAM1
have the same trade-off, while considering the PDP and ADP, the TAM1
outperforms AM1, as can be seen in Fig. 3.11. The same is valid for AM2 and
TAM2 multipliers. Similarly, as can be seen in Fig. 3.13, when considering the
delay and MRAE trade-off, the AM2 multiplier outperforms the TruncWM,
while considering the silicon area, and power consumption of the multipliers,
the TruncWM is performing better than the AM2. Moreover, the Stoch-
AreaEfficient multiplier, regardless of its abrupt error increment in higher
frequencies, outperforms a majority of the multipliers in Fig. 3.13(b); but when
considering the MAE or MSE, it generates very large errors in the stochastic
regime.

Comparing Fig. 3.11, Fig. 3.12, and Fig. 3.13, it can be observed that, the
TAM1 and TAM2 architectures have significantly higher MAE and MSE than
the truncated multipliers, while their MRAE are comparable with truncWM.
There are also evident differences between the MAE and MRAE of some
EvoApprox multipliers, as can be observed in the figures. It is notable that
considering the error rate (PE), the BAM and AM1 multipliers can be considered
as the superior architectures. Consequently, choosing a right metric is decisive
for the selection of the multipliers for a target application. For a fair general
and comprehensive comparison, it is essential to consider different metrics.
This fact has been repeatedly violated for the comparison of multipliers in the
literature [107]. Such contributions despite being valuable can be misleading
for the research community.

It is also fundamentally important to select right architectures for the com-
parison. For instance, as can be seen in the figures, the TruncM offers the best
accuracy versus hardware cost trade-off. Consequently, it should be chosen as
the baseline for the comparison of the multipliers. However, in majority of the
contributions in the literature, it has been disregarded.

To study the impact of the timing constraint on the behaviour of multipliers,
a selection of the multipliers are compared for different timing constraints in
Fig. 3.15. It can be observed that, unlike the a relaxed timing constraint, the
hardware cost of the selected multipliers are pretty close to each other for more
stringent timing constraints. This observation is specifically more relevant,

40



3.5 Conclusion

1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

3

·10−18

T [ns]

A
D
P

[m
2
s
]

TruncM-14 TruncM-15 TAM1-15
TAM2-15 TruncWM-2 BAM-3

2

2.5

3

3.5

4

4.5

·10−12

P
D
P

[J
]

Fig. 3.15: Comparison of Area-Delay Product (ADP) and Power-Delay Prod-
uct (PDP) of a selection of multipliers for different timing con-
straints. The dashed lines are the PDP of the multipliers, while
the solid lines illustrate the ADP of the multipliers.

when the architectures have similar error behaviour or meet the accuracy
requirements of the application. Note that, the impact of timing constraint on
the multipliers in Fig. 3.15 is less chaotic than what observed for the adders
in Fig. 3.9. The rationale is that the approximation strategy of the compared
multipliers are analogous.

3.5 Conclusion

In this chapter, we have discussed the main deficiencies in the existing research
works and our approaches to address those shortcomings. It has been shown
using practical examples how the conventional metrics can be misleading
in choosing approximate architectures for an application. In response, we
proposed a new parameterizable metric called SMSE. The proposed metric
predicts the output accuracy of the whole application with a higher precision
than the conventional metrics such as MSE or MAE. Subsequently, along with
presenting fair comparisons of approximate adders and approximate multipliers,
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we discussed the prerequisites of a fair comparison. It has been shown that in a
comparison figures of merit, accuracy metrics, timing constraint, and the entity
of the architectures play important roles and must be well defined. Based on
the comparison of approximate adders, it can be seen that the LOA outperforms
the other architectures considering the trade-off between hardware cost and
accuracy. In regards to multipliers, the conventional truncated multiplier
(TruncM) shows the best trade-off among the existing approximate multipliers.
Nonetheless, the LOA and TruncM have been ignored in majority of the research
works. Taking the results of the comparisons into consideration, in the next
chapters, we systematically improve the best existing architectures to obtain
obtimized designs.
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4.1 Introduction
One of the fundamental arithmetic operations in many applications is addition.
The full carry chain of an adder determines its critical path. A precise adder
considers all the input bits to calculate the final carry out signal. Indeed, in
real scenarios, the effective carry chain is much shorter than the full carry chain.
The rationale is that the inputs to the adder are not uniformly distributed.
This property can be exploited to design approximate adders with much shorter
carry chains than that of an exact adder.

The researchers in the field of approximate computing have paid special
attention to adders, one of the key components of arithmetic circuits. In fact,
a surprisingly large number of approximate adders [16,23,25,27,28,68,71,73]
have been proposed in the literature: segmented adders where an n-bit adder is
divided into k-bit sub-adders [25,28,68]; carry select adders in which multiple
sub-modules are used [71, 73], approximate full adders where the full adder
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4 Inaccurate Adders

is approximated [16, 23] and speculative adders which are built upon the
observation that the critical path is rarely activated in traditional adders
[21, 26, 108]. The current situation is such, that even a fair comparison of
approximate adders is a challenging endeavor [48,103]. As mentioned in Chapter
3, a majority of the existing approximate adders, despite their conceptual
differences, share a common characteristic: they have been obtained with an
ad-hoc and non-systematic methodology. A remarkable exception is the Generic
Accuracy Configurable Adder (GeAr) that uses the idea of template [27] but is
not optimal.

In this chapter, the main aim is to tackle the non-systematic approaches of
existing research works. In addition, we study different classes of approximate
adders to understand the error behaviours of them. Correspondingly, first, in
the next section, with generalizing a template based on LOA, we systematically
propose an optimized approximate adder which shows upto 58% lower MSE than
LOA. Note that, as observed in Chapter 3, cosidering the trade-off between MSE

and hardware cost, LOA outperfoms the other existing approximate adders. We
further progress in the third section by developing a template for approximate
adders. The precise error formulas are presented along with the template. The
proposed template covers different classes of approximate adders including
hybrid structures which combine the two error philosophies discussed in the
previous chapter. In the last section of this chapter, we study exact adders
working in the stochastic regime. By developing precise models, we discuss
why those stochastic adders have received less attention in comparison with
the approximate adders. Finally, we propose a mixed adder which works
promising in the stochastic regime and successfully overcomes the problems of
its counterparts.

4.2 Optimized Lower-part Constant-OR Adder

As discussed in Chapter 3, among all the purely combinatorial approximate
adders, the Lower-part OR Adder (LOA) [23] shows the best error versus
hardware-cost trade-off [48,103]. As can be seen in Fig 2.1, LOA [23] divides an
n-bit adder into two sub-adders. While the higher significant sub-adder consists
of an (nh-1)-bit exact adder, the lower part sub-adder is simply constructed by
nl OR gates (bits 0 to n

l
-1). To generate the carry-in signal for the accurate

adder, an extra AND gate is used which combines the adder inputs of bit
position nl (i.e., anl

and bnl
). The key advantage of LOA with respect to other

architectures as Equal Segmentation Adder (ESA) [25], Error Tolerant Adder
(ETAII) [28] or Almost Correct Adder (ACA) [68] is that the approximation
is restricted to the least significant bits and therefore, the magnitude of the
errors is limited.

The goal of this section is to improve LOA systematically. First, we generalize
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4.2 Optimized Lower-part Constant-OR Adder

the LOA architecture in the form of an architectural template; then, studying
all the possible choices to implement that template, we obtain an optimal
architecture for the presented template focusing on Mean Squared Error (MSE).
We call it Optimized Lower-part Constant-OR Adder (OLOCA). The optimized
architecture outperforms all the existing approximate adders when considering
the trade-off between hardware-cost and accuracy. The experimental evidence
reported in this section corroborate this fact.

Following the aforementioned goals, this section is organized as follows:
subsection 4.2.1 describes the structures of the architectural template and
of OLOCA. Afterwards, in subsection 4.2.2, we quantify the advantages of
OLOCA using experimental results; furthermore, the mathematical formulas
developed in next subsection will be validate.

4.2.1 Architecture

To obtain systematically an optimal1 approximate adder, we progress in three
steps. First, we describe the error metrics and hardware-cost quantifying the
quality of the architecture; second, we generalize the architecture of LOA into
a more abstract template; third, we optimize the template, regarding MSE, to
produce OLOCA.

Metrics

To quantify the quality of the approximate architectures, error metrics need to
be considered. The error is defined as the difference between approximate and
accurate output results of the adder, i.e.,

ε = S̃ − S, (4.1)

where S̃ is the approximate (erroneous) output of the adder and S is the
accurate result. The magnitude of the error can be quantified with several
metrics; among them, the most common ones are the Average Error (µ)
(Eq. (3.3)), the STD (Eq. (3.4)), the MSE (Eq. (3.5)), and the MAE (Eq. (3.6)).
It should be mentioned, that it is also common to employ the normalized
version of the previous metrics dividing them by the range of the adder.

Besides the accuracy of the approximate architectures, the hardware efficiency
of them need to evaluated. In the mathematical analysis, we use the unit-
gate model [58] where simple monotonic 2-input gates (AND,OR,NAND,etc.)
have a cost of one in area and delay, and simple non-monotonic 2-input gate
(XOR,XNOR) have a cost of two in area and delay. In the rest of this section,
A and D denote the hardware area and delay, respectively, based on the unit
gate delay. Obviously, in the experimental results, the actual silicon area and
latency of the circuits are reported.

1Throughout this section, ”optimal” refers to ”optimal for the given template”.
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Fig. 4.1: The hardware structure of the general template

General Template Architecture Based on LOA

As discussed before, considering the error versus hardware-cost trade-off, exper-
imental results show that LOA is the best architecture among all the existing
approximate adders [48, 103] considering a uniform distribution. Studying
LOA’s architecture carefully, it can be generalized as Fig. 4.1: the lower sig-
nificant sub-adder can be divided into nl 2-to-1 logic blocks (bits 0 to n

l
-1),

and a single 2-to-2 logic block. This latter block receives the inputs of the
adder in bit position nl to generate the input carry for the exact part using an
AND gate, and its sum signal can be generated inexactly. Finally, the higher
significant sub-adder is an exact adder. Clearly, the architecture of LOA can
be described by taking the proposed general template, putting OR gates in
each bit of the lower significant sub-adder, and replacing the first bit of the
higher significant sub-adder with approximate circuitry of OR AND.

Table 4.1: All the 1-bit addition possibilities: (a) exact results, (b) approxi-
mate outputs.

(a)

bi

0 1

0 0 1
ai

1 1 2

(b)

bi

0 1

0 s̃0i s̃1i
ai

1 s̃2i s̃3i

In principle, any Boolean function with the right size provides a choice for
the blocks. Note that even a constant function equal to one (Cte-1) or zero
(Cte-0) is a valid selection. All the possible choices for 2-to-1 blocks and 2-to-2
blocks are tabulated in Table 4.2 and Table 4.3, respectively. The error values
presented in these tables are calculated with the help of Table 4.1, where
Table 4.1(a) represents the accurate 1-bit additions, and Table 4.1(b) shows
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4.2 Optimized Lower-part Constant-OR Adder

Table 4.2: all possibilities for 2-to-1 blocks

s̃0, s̃1, s̃2, s̃3 HW µ̂ σ̂2 ˆMSE HW Cost

0,0,0,0 Cte-0 −1 1/2 3/2 0 �Pareto point (Cte-0)

0,0,0,1 a.b − 3/4 3/16 3/4 1 �Pareto point (AND)

0,0,1,0 a.b − 3/4 11/16 5/4 1

0,0,1,1 a − 1/2 1/4 1/2 0 �Pareto point (Buffer)

0,1,0,0 a.b − 3/4 11/16 5/4 1

0,1,0,1 b − 1/2 1/4 1/2 0

0,1,1,0 a⊕ b − 1/2 3/4 1 2

0,1,1,1 a+ b − 1/4 3/16 1/4 1 �Pareto point (OR)

1,0,0,0 a+ b − 3/4 19/16 7/4 1

1,0,0,1 a⊕b − 1/2 3/4 1 2

1,0,1,0 b − 1/2 5/4 3/2 0

1,0,1,1 a+ b − 1/4 11/16 3/4 1

1,1,0,0 a − 1/2 5/4 3/2 0

1,1,0,1 a+ b − 1/4 11/16 3/4 1

1,1,1,0 a.b − 1/4 19/16 5/4 1

1,1,1,1 Cte-1 0 1/2 1/2 0 �Pareto point (Cte-1)

the approximate 1-bit additions. As can be seen in Table 4.1(b), s̃0, s̃1, s̃2,
and s̃3 are approximate sums of ”a” and ”b”, where ”ab” are 00,01,10, and
11, respectively. Note that, in the case of 2-to-2 blocks in Table 4.3, the error
values are calculated by considering that the carry bit is constructed with an
AND gate. For different values of average error and hardware cost, the Pareto
points have been marked. In the case of 2-to-2 blocks of Table 4.3, Cte-0 and
AND gate because of their negative average errors are not selected despite of
being Pareto points. Although we have studied all the possibilities, the blocks
with higher error values for the same cost are not considered for the proof.
Correspondingly, for concreteness, the relevant choices for 2-to-1 and 2-to-2
blocks are tabulated in Table 4.4 and Table 4.5, respectively. As mentioned
above, an AND gate is used in all the cases to produce carry input for the upper
part adder. That is why in the name of 2-to-2 blocks are formed as ∗ AND. In
order to have an optimal architecture for the template, the best combination
of blocks from each table should be chosen. For uniform distributed data, each
bit is uncorrelated and the error metrics of the template (T) can be calculated
as a function of the error characteristics of each block. Since the total error,
ε
T
, is the summation of the errors of each block , ε̂i, with the corresponding

47



4 Inaccurate Adders

Table 4.3: all possibilities for 2-to-2 blocks

s̃0, s̃1, s̃2, s̃3 HW µ̂ σ̂2 ˆMSE HW Cost

0,0,0,0 Cte-0 −1/2 1/4 1/2 0

0,0,0,1 a.b − 1/4 11/16 3/4 1

0,0,1,0 a.b − 1/4 3/16 1/4 1

0,0,1,1 a 0 1/2 1/2 0

0,1,0,0 a.b − 1/4 3/16 1/4 1

0,1,0,1 b 0 1/2 1/2 0

0,1,1,0 a⊕ b 0 0 0 2 �Pareto point (XOR)

0,1,1,1 a+ b 1/4 3/16 1/4 1 �Pareto point (OR)

1,0,0,0 a+ b − 1/4 11/16 3/4 1

1,0,0,1 a⊕b 0 1 1 2

1,0,1,0 b 0 1/2 1/2 0 �Pareto point (Buffer)

1,0,1,1 a+ b 1/4 11/16 3/4 1

1,1,0,0 a 0 1/2 1/2 0

1,1,0,1 a+ b 1/4 11/16 3/4 1

1,1,1,0 a.b 1/4 3/16 1/4 1

1,1,1,1 Cte-1 1/2 1/4 1/2 0 �Pareto point (Cte-1)

weight, i.e., ε
T

=
∑nl

i=0 ε̂i2
i, we obtain:

µ
T

=

nl∑
i=0

µ̂i2
i (4.2)

σ2
T

=

nl∑
i=0

σ̂2
i 2

2i , (4.3)

MSE
T

=

nl∑
i=0

σ̂2
i 2

2i +

(
nl∑
i=0

µ̂i2
i

)2

, (4.4)

where µ̂i and σ̂2
i are the average error and the variance of error associated with

the instantiated block in bit position i. The corresponding values are given
in Table 4.4 for bits 0 to nl − 1 and in Table 4.5 for the bit nl, under the
column names µ̂ and σ̂2, respectively. The error of each block ε̂i is calculated
based on Eq.(4.1), where the exact result is tabulated in Table 4.1(a), and the
approximate addition results are obtained using Table 4.1(b). For example,
using this method, we obtained the error metrics for LOA shown in Table 4.6
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4.2 Optimized Lower-part Constant-OR Adder

which agree with the simulation results of [48]. The key question, now, is
whether the particular choices made by LOA are optimal, and if not, which is
the optimal alternative for the selected template. Next subsection addresses
this topic.

Table 4.4: Error metrics and unit gate characteristics of the possibilities for
2-to-1 blocks

µ̂ σ̂2 ˆMSE Â D̂

AND −3/4 3/16 3/4 1 1

OR −1/4 3/16 1/4 1 1

Buffer −1/2 1/4 1/2 0 0

Cte-0 −1 1/2 3/2 0 0

Cte-1 0 1/2 1/2 0 0

Table 4.5: Error metrics and unit gate characteristics of the possibilities for
the 2-to-2 blocks

µ̂ σ̂2 ˆMSE Â D̂

Half-Adder 0 0 0 3 2(1)

OR AND 1/4 3/16 1/4 2 1(1)

Cte-1 AND 1/2 1/4 1/2 1 0(1)

Buffer AND 0 1/2 1/2 1 0(1)

The Optimized Architecture

Depending on the error metrics which are chosen, different optimization results
might be obtained. Illustratively, here, the MSE is chosen as the error metric
because of its relevance in data processing applications. In order to obtain the
optimal architecture out of the general template, all the possible combinations
of 2-to-1 and 2-to-2 logic blocks of Table 4.4 and Table 4.5 need to be evaluated.
Let us proceed firstly intuitively and then more formally.

The errors in the upper bits have a higher weight than in the lower ones (see
Eq. (4.4)). Thus, it is more profitable to expend resources in the 2-to-2 block
than in the lower 2-to-1 blocks. The best 2-to-2 blocks are the OR AND and
Half-adder. Replacing the Half-adder with an OR AND does not improve the
delay and improves the area only marginally; the penalty is a large increase in
the MSE. For this reason, the idea of LOA (to use the OR AND for the 2-to-2
block) is not efficient. Form Table 4.5, it can be observed that the average
error introduced by the 2-to-2 block is zero or positive, while the 2-to-1 blocks
introduce a zero or negative average error. Thus, once the 2-to-2 block is set
to a Half-adder, it is only useful to use blocks with small µ̂ (the Cte-1) or
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(nh-1)-bit Precise Adder

Co

an−1:nlbn−1:nl

Sn−1:nl
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nl

11 1
...

...
ncte

nor

Fig. 4.2: The structure of LOCA; nl = ncte + nor

small σ̂ (the OR). Therefore, the optimal disposition of 2-to-1 blocks should be
OR blocks followed by Cte-1 blocks in the lower bits where the errors are less
relevant. Since the adder is constructed using Cte-1s and OR gates, we call it
Lower-part Constant-OR Adder (LOCA). The structure of LOCA is depicted
in Fig. 4.2 and its error metrics can be expressed as follows:

µ
LOCA

= 2ncte−2 − 2nl−2 , (4.5)

σ2
LOCA

= 22nl−4 +
5

3
22ncte−4 − 1

6
, (4.6)

MAE
LOCA

= 2nl−2 − 2ncte−2 + (4.7)

+
1

3

(
3

4

)nl−ncte
(

2ncte − 1

2ncte

)
, (4.8)

MSE
LOCA

=
1

6
22nl−2nor + 22nl−3 − 22nl−nor−3 − 1

6
(4.9)

To determine the optimal number of OR gates, we can minimize the Eq. (4.9)
versus nor, resulting the optimal value in nor = log2

(
8
3

)
. The closest integer

numbers, nor = 1 and nor = 2, produce the same MSE and are optimal. We
prefer nor = 2 that provides a better STD. We call this architecture Optimized

Table 4.6: Formulas of error metrics, area and delay

LOA OLOCA

µ 1
4

−3
16

2nl

σ2 1
4
4nl − 1

16
53
768

4nl − 1
6

MSE 1
4
4nl 5

48
4nl − 1

6

MAE 3
8
2nl − 3

8
15
64

2nl − 3
4
2−n

l

A (n
h
−1).AFA +AAND +(n

l
+1).AOR (n

h
−1).AFA+AHA+(n

l
−ncte).AOR

D (nh − 1).tc + TAND (nh − 1).tc + TAND
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4.2 Optimized Lower-part Constant-OR Adder

Lower-part Constant-OR Adder (OLOCA). Although remarkable simple, it
outperforms LOA regarding STD, MSE and MAE.

The error metrics, area and delay of LOA and OLOCA are tabulated in
Table 4.6. Those formulas provide a better understanding of the architectures
and make the comparison easier. As can be seen in the table, the average error
of OLOCA is slightly larger than that of LOA’s, while its STD is much smaller.
Hence, the MSE of OLOCA is almost 2.4 times smaller than the MSE of LOA,
which represents a considerable improvement for practical circuits. Regarding
the MAE, LOA has a 1.6 times larger error with respect to OLOCA. Although
OLOCA does not improve the delay over LOA, its silicon area is clearly smaller
(for nl > 2).

It is also possible to obtain the optimal architecture out of the general
template more rigorously. Firstly, let us observe that Eq. (4.4) and Table 4.5
imply that an architecture where the 2-to-2 block is not a Half-Adder has
necessarily a MSE of at least MSE

T
≥ σ̂2

nl
4nl ≥ 3

16
4nl (due to the fact that the

second term of Eq. (4.4) cannot be negative), which is worse than the MSE of
OLOCA (see Table 4.6). Thus, the 2-to-2 block has to be a Half-Adder in the
optimal architecture.

In order to demonstrate that the selection of 2-to-1 blocks of OLOCA is
optimal in terms of MSE for the given template (Fig. 4.1), we can proceed by
induction, using nl as the induction variable. A simple computation of all the
possibilities, using Eq. (4.4), shows that OLOCA is indeed optimal for nl = 1,
nl = 2 and nl = 3. For the case that nl = 1, looking at Table 4.4, it is clear that
the best 2-to-1 block regarding MSE is the OR gate. For the case that nl = 2,
there are 25 possibilities to be considered. Using Eq. (4.4), calculating these 25
possibilities, both the 2-to-1 blocks should be OR gates. Table 4.7 shows the
MSE of the template for all the combinations of relevant 2-to-1 blocks when
nl = 2. In a similar manner, all the possibilities for nl = 3 can be calculated

Table 4.7: Mean Squred Error for all the combinations of relevant 2-to-1 blocks
when nl=2.

block 0

AND OR Buffer Cte-0 Cte-1

AND 6.00 4.00 5.00 7.50 3.50

OR 2.50 1.50 2.00 3.50 1.50

block 1 Buffer 4.25 2.75 3.50 5.50 2.50

Cte-0 9.75 7.25 8.50 11.50 6.50

Cte-1 2.75 2.25 2.50 3.50 2.50

using Eq. (4.4). There are 125 relevant possibilities when nl = 3. Calculating
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4 Inaccurate Adders

all the possibilities, OLOCA is optimal regarding MSE. In the Table 4.8, 25 of
those 125 possibilities are tabulated considering that the 2-to-1 block in bit
position 2 (third block) is an OR gate.

Table 4.8: Mean Squred Error for all the combinations of relevant 2-to-1 blocks
when nl=3, considering block in bit position 2 is an OR gate.

block 0

AND OR Buffer Cte-0 Cte-1

AND 14.50 11.50 13.00 16.50 10.50

OR 9.00 7.00 8.00 10.50 6.50

block 1 Buffer 11.75 9.25 10.50 13.50 8.50

Cte-0 19.25 15.75 17.50 21.50 14.50

Cte-1 8.25 6.75 7.50 9.50 6.50

Let us analyze an architecture with nl = K, assuming the optimality of
OLOCA for an architecture with nl = K − 1. Observe that the total error,
ε
T
, can be decomposed into the independent contributions of the block in bit

position 0, ε̂0 , and the remaining blocks, ε
MSBs

. Since ε
T

= ε
MSBs

+ ε̂0 , the
MSE

T
can be expressed as a function of the statistical characteristics of ε̂0 and

ε
MSBs

; more precisely:

MSE
T

= MSE
MSBs

+ ˆMSE0 + 2µ̂0µMSBs
, (4.10)

where µ
MSBs

and MSE
MSBs

can be calculated using Eq. (4.2) and Eq. (4.4),
respectively, iterating i from 1 to K.

Note that the optimization of the block 0 and the remaining K−1 blocks are
not independent due to the term 2µ̂0µMSBs

. However, if we prove that the block
0 is a Cte-1 in the optimal architecture, then it follows that µ̂0 = 0 and the term
2µ̂0µMSBs

disappears. In this case, the optimization of MSE
MSBs

, consisting
of K − 1 blocks, yields an OLOCA architecture by the induction hypothesis.
Consequently, considering the fact that OLOCA is optimal for nl = 3, it will
be optimal for nl = 4; being optimal for nl = 4, it will be optimal for nl = 5;
and so on.

Let us show that the block in bit position 0 has to be Cte-1 (for K ≥ 3)
in order to have the optimal architecture regarding MSE. Considering all the
possibilities for 2-to-1 blocks of Table 4.4, using Eq. (4.10), the MSE of the
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4.2 Optimized Lower-part Constant-OR Adder

template for the different 2-to-1 blocks can be represented as follows:

MSE
T

=



MSE
MSBs

+ 3
4

+ 2µ
MSBs

(−3
4

) when block 0 is AND

MSE
MSBs

+ 1
4

+ 2µ
MSBs

(−1
4

) when block 0 is OR

MSE
MSBs

+ 1
2

+ 2µ
MSBs

(−1
4

) when block 0 is Buffer

MSE
MSBs

+ 3
2

+ 2µ
MSBs

(−1) when block 0 is Cte-0

MSE
MSBs

+ 1
2

+ 0 when block 0 is Cte-1.

(4.11)

The plot of the equations discarding the common term MSEMSBs, as can be
seen in Fig. 4.3, shows that for µ

MSBs
≤ −1

2
, Cte-1 must be instantiated for the

block in bit position 0 to develop the optimal architecture regarding MSE. As a
side note, observe that for −1

2
≤ µ

MSBs
≤ 1

2
, for example, OR gate must be used

to have the optimal architecture regarding MSE. Note that the alternative of
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Fig. 4.3: The relation between MSET and the µ
MSBs

, depending on the block
in bit position 0.

choosing Cte-1 for the blocks 1 to K−1, which produces MSE
MSBs

=1
6
4K − 2

3

and µ
MSBs

= 0, is sub-optimal. This is due to the fact that the resulting MSE
T
,

which is greater than or equal to MSE
MSBs

, is worst than that of OLOCA.
As a result, at least one of the blocks should not be a Cte-1 in the optimal
architecture. For any of those cases, µ

MSBs
=
∑K−1

i=1 µ̂
i
2i ≤ −1

2
, because each

term in the addition is strictly negative. Now that the optimal architecture
necessarily satisfies µ

MSBs
≤ −1

2
, a Cte-1 is the optimal selection according to

Fig. 4.3 as discussed above. Considering the fact that we know the block 0
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should be Cte-1 for the optimal architecture, we know that:

MSE
T

= MSE
MSBs

+MSE0 + 2µ
MSBs

µ0 = MSE
MSBs

+
1

2
. (4.12)

Therefore, the optimization of MSE
MSBs

results in the optimization of MSE
T
.

Since we already know that OLOCA is optimal regarding MSE for the nl = 3,
we can conclude that it is optimal for the given template regarding MSE for
nl = 4, nl = 5 and so on. This observation concludes the proof.

4.2.2 Experimental Results

To assess the circuit characteristics and evaluate the presented architectures in
the previous subsection, we have generated VHDL description of the adders.
Different configurations of these adders are synthesized in a commercial low-
power 65 nm library, for 16-bit and 8-bit operands. Using back-annotated
simulations, dynamic power dissipation of the adders are evaluated after synthe-
sis for the freq.=1GHz. Ripple Carry Adders (RCA) are used as the sub-adders
of all the approximate adders. All the adders have been simulated for 107

uniformly distributed random input patterns. In this section, each adder’s
name is followed by one number. For ESA and ETAII, this number is the size
of the equal segments. Regarding LOA, and OLOCA the number is the size of
the lower significant sub-adder; i.e. nl.

In order to check the accuracy of the formulas, as well as comparing the
adder architectures, the error versus cost of the adders for different values of
nls are depicted in Fig. 4.4. MAE and MSE versus Area-Delay Product (ADP)
of the 16-bit adders are shown in two graphs. LOCA has been simulated for
different number of constants in each nl case. As can be seen in the graphs,
replacing OR gates with Cte-1s decreases the MAE and MSE values and at
the same time the ADP; the trend continues until the point where 2 OR gates
remain. After that point, the error values start increasing while the cost of
the adder decreases. As a result, the optimal architecture, considering the
error-cost trade-off, is obtained keeping 2 OR gates and place Cte-1s for the
rest of 2-to-1 blocks. This verifies the discussion in the previous section that
the optimal architecture has 2 OR gates. Replacing all the 2-to-1 blocks with
Cte-1s considerably increase the error values. Although, replacing all the 2-to-1
blocks with Cte-1s results in an architecture which is still better that LOA, it
is not the optimal architecture, as shown in the figure. It can also be seen that
the OLOCA and LOA’s formulas (see Table 4.6) perfectly predict the behavior
of the adders for all the nls. Moreover, for all nls, OLOCA outperforms LOA,
both from cost and error points of view; for the same values of errors, OLOCA
improves the cost almost 25% and for the same values of cost, the error values
of OLOCA are almost half of the LOA’s. As an example, a 16-bit OLOCA-8
improves the cost by 13.6%, MAE by 37.4% and MSE by 58% in comparison
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4.2 Optimized Lower-part Constant-OR Adder

with LOA-8.

In order to evaluate OLOCA with another bit-width, we have studied 8-bit
adders as well; the results are tabulated in Table 4.9. The table shows the
accuracy of the presented formulas versus the simulation results, as well as the
superiority of OLOCA over LOA for all the nls. As an example, OLOCA-4
improves MAE by 36.9%, MSE by 58.5% and cost by 7.2% in comparison with
LOA-4.

To show the superiority of OLOCA over all the existing approximate adders,
besides LOA, we consider ESA , ETAII and GeAr. Among the existing combi-
national approximate adders, the above-mentioned architectures have proved to
have the best performance [48, 103] after LOA. Different configurations of the
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Fig. 4.4: Comparison of 16-bit LOA and OLOCA synthesized in a 65nm tech.:
Simulation and formulas results. (a)Mean Absolute Error (MAE)
vs. Area-Delay Product (ADP), (b)Mean Squared Error (MSE) vs.
Area-Delay Product (ADP).
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Table 4.9: Simulation and formulas results for 8-bit adders synthesized in a
commercial 65nm technology

nl=2 nl=3 nl=4 nl=5 nl=6

Sim. Formula Sim. Formula Sim. Formula Sim. Formula Sim. Formula

LOA 1.38 1.38 2.88 2.88 5.87 5.88 11.87 11.88 23.86 23.88
MAE

OLOCA 0.75 0.75 1.78 1.78 3.70 3.70 7.48 7.48 14.96 14.99

LOA 4.00 4.00 16.00 16.00 63.93 64.00 255.90 256.00 1023.39 1024.00
MSE

OLOCA 1.50 1.50 6.53 6.50 26.50 26.50 106.57 106.50 424.95 426.50

LOA 1.99 1.98 3.99 3.99 7.99 8.00 16.00 16.00 31.99 32.00
STD

OLOCA 0.97 0.97 2.06 2.06 4.18 4.18 8.40 8.40 16.79 16.81

ADP LOA 26.82 26.82 19.19 19.50 13.19 13.32 7.95 8.28 3.94 4.38

[zm2s] OLOCA 27.00 27.00 18.89 19.20 12.24 12.36 6.74 7.02 3.05 3.18
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ror (MAE) vs. Area-Delay Product (ADP), (b)Mean Squared Error
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adders have been simulated and the results are depicted in Fig. 4.8. Fig. 4.8(a)
depicts the MAE of the adders versus ADP. Similarly, MSE versus Power-Delay
Product (PDP) of the adder architectures are illustrated in Fig. 4.8(b). Al-
though ESA is hardware-efficient, it is the least accurate adder architecture.
As an example, for the almost same value of ADP, OLOCA-8 improves the
error value by 97% in comparison with ESA-4. OLOCA-8 improves error, ADP
and PDP by 53%, 54.9% and 42.6% compared with ETAII-4, respectively. The
improvements for the MSE are even larger.

4.3 Unified Design Framework and Metrics of
Hybrid Approximate Adders

The selection of an approximate architecture is strongly influenced by the
timing constraints of the hardware [48]. The constraints determine the internal
structure of the unit (sequential structure with linear cost, parallel-prefix
structure with a logarithmic cost, etc.), which determines the reduction in cost
achieved by the approximate units. As mentioned in Chapter 3, when the
timing constraint is relaxed, an exact adder is implemented with a ripple-carry
structure. In such a scenario, an ESA with k = n

2
, reduces the delay by a factor

of two. With more stringent timing constraints, an exact adder is implemented
with a parallel-prefix architecture, where the delay increases as dlog2(n)e. In
this scenario, however, the ESA just marginally reduces the delay. In this case,
non-equally segmented sub-adders may be preferable. The effects of the internal
adder architecture have been studied in [48]; it illustrates the potentials for
non-equally segmented approximate adders which are currently disregarded. A
unified description for approximate adders is still an open problem.

The goal in this section is to provide a conceptual framework for the system-
atic design of approximate adders, including hybrid and non-equally segmented
approaches. Consequently, this section is organized as follows: Firstly, a tem-
plate for approximate adders is developed, including the small-errors and the
infrequent-errors philosophies; it includes a detailed mathematical analysis of
errors. Afterwards, it is described how our design framework automatically
chooses best configurations of the proposed template for given application
constraints. Finally for the validation, an experimental evaluation using a
commercial CMOS technology in presented.

4.3.1 Hardware modeling

As previously mentioned, the existing approximate adders have been proposed
based on two major philosophies: 1) Infrequent errors : Segmented adders where
an n-bit adder is divided into k-bit sub-adders [25, 28,68]. This class of adders
mostly produce big errors with low probability of happening. 2) Small errors :
Approximate full adders where the full adder is approximated [16, 23]. This
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Fig. 4.6: The proposed generic template of approximate adders

group of adders approximate lower bits and hence, produce small errors with
high probability of happening. Since the superiority of approximate adders
depends on the application they are used in, a systematic and unified template
for hybrid solutions, covering a relatively wide range of approximate adders,
are desirable and even required.

At the same time, designers have so far considered segmented adders as
equally segmented. The reason to consider only equal segmentation is to have
the minimum delay and thereupon, an optimal approximate architecture. This
consideration is appropriate when working with area-efficient, slow adders like
RCA. However, working with fast and/or optimal exact adders replaced as
sub-adders, asymmetric and non-equally segmented adders might outperform
the equally-segmented ones. One example is the system reported in Table 3.1.

In order to address the above-mentioned problems, in this section, system-
atically, we propose a unified generic template for approximate adders, which
combines the two error philosophies.

Nomenclature

In this section, each adder’s name is followed by numbers. For ETAII and ESA,
the number is the size of equal segmented sub-adders. For GeAr, the left number
is the number of resultant bits contributing to the final sum, and the right one
is the number of previous bits used for carry prediction. Regarding LOA, it is
the number of OR gates. And finally, for LOCA [47], the numbers indicate the
number of OR gates and constant-1s, from left to right, respectively.

In addition to that, we have a new naming system based on the proposed
template architecture, which will be discussed later in this section.
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The Generic Template of Approximate Adders

The generic template for approximate adders is shown in Fig. 4.6. As can be
seen in the figure, the template is constructed using the two aforementioned
approximation methodologies. An upper part which is constructed using a
segmented adder (the infrequent-errors philosophy) and a lower part composed
of OR gates and constant-1s (the small-errors philosophy). Variable n denotes
the length of operands to be added, while nl and nh represent the bit-width of
the lower and higher parts of the template, respectively.

As depicted in Fig. 4.6, while the lower part is constructed using nor OR
gates as well as ncte constants, the upper part is instantiated by an adder. The
adder can be either exact or approximate. In order to have a range of adders
using the template, we replace the higher-significant part of the template with
a segmented adder. The segmented adder splits the entire carry propagation
path into a number of short paths and completes the carry propagations in
these short paths concurrently. Let K = {ks, ks−1, . . . , k1} denote a vector
including the size of resultant bits of each sub-adder, where s is the number of
its sub-adders, k1 is size of the resultant bits of the first (the lowest significant)
sub-adder, ks is size of the resultant bits of the last (the most significant)
sub-adder, and so on. In addition, P = {ps, ps−1, . . . , p1} represents a vector
including number of previous bits used for carry prediction. The vectors K
and P describe the upper part of the architecture; the ith sub-adder of the
segmented adder which has a size of ki+pi, uses pi previous bits to construct
the input carry for the sub-adder. In order to name each adder developed using
the template, we use the following format:

ks(ps)ks−1(ps−1) . . . k1(p1)|nor , ncte

This way, using the template, not only a wide range of the existing approximate
adders can be developed, but also hybrid and non-equal segmented approximate
adders can be generated.

Table 4.10 tabulates some examples to illustrate how some of the existing
approximate adders are constructed using our template. As can be seen in the
table, different classes of approximate adders can be implemented, changing
variables of the template. Since the GeAr adder can be constructed using our
proposed template, ACA is also in the list of the adders which can be developed
by the template.

In order to obtain the error formulas for the template, we divide the architec-
ture into lower and higher parts. Then, we formulate the error metrics for each
part. Finally, the error metrics of the template can be obtained combining the
error formulas for each part of the template. Let us first introduce a term in
order to make the formulas, presented in the rest of this section more compact:
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Table 4.10: Examples to illustrate how to generate some of the existing ap-
proximate adders using the template, 16-bit adders

Adder ks(ps)ks−1(ps−1) . . . k1(p1)|nor , ncte
Exact adder 16(0)|0, 0
ETAII-4 4(4)4(4)8(0)|0, 0
ETAII-6 6(6)10(0)|0, 0
ESA-4 4(0)4(0)4(0)4(0)|0, 0
GeAr-2,6 2(6)2(6)2(6)2(6)8(0)|0, 0
LOA-8 8(1)|8, 0
LOCA-2,6 8(0)|2, 6

Bi =

 0 if i = 0
i∑

r=1

kr otherwise
(4.13)

In order to have the histogram of the upper part of the template which is a
segmented adder, first, we need to review the Generate and Propagate concepts.
Generate Gj and propagate Pj signals are computed using bit-wise operations:

Pj = aj ⊕ bj , Gj = ajbj . (4.14)

where aj and bj are the primary inputs of the adder corresponding to the bit
position j.

From Fig. 4.6, when pi + ki − pi+1 bits generate a carry signal and the pi+1

bits propagate the carry, the sub-adder subi produces error with the magnitude
−2Bi :

εhi = −2Bi . (4.15)

Given the fact that for uniformly-distributed inputs Pr[Gj] = 1
4

and Pr[Pj] =
1
2
; the probability of error εhi is calculated as follows:

Prhi = Pr
[
εhi
]

=
1

2

(
1− (

1

2
)ki+pi−pi+1

)
(
1

2
)pi+1 (4.16)

=
2ki+pi−pi+1 − 1

2ki+pi+1
.

where Prhi denotes the probability of error εhi , for the uniformly distributed
input vectors, produced by the ith sub-adder for i ∈ {1, 2, . . . , s− 1}.

Replacing Eq. (4.15) and Eq. (4.16) in Eq. (3.5) as well as Eq. (3.6), MSE
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and MAE of the segmented adder of Fig. 4.6 can be expressed as:

MAEh =
s−1∑
i=1

|εhi |Prhi = 2nh−1−ks−ps − 1

2p1+1
, (4.17)

and

MSEh =
s−2∑
i=1

ε2hiPrhi (4.18)

=22n
h
−2ks−ps−1 +

s−1∑
i=1

22Bi−1−pi−1
(
1− 2ki

)
.

Since all the errors have the same sign, the mean error value of the segmented
adder has the same value as its MAE:

µ
h

= −2nh−1−ks−ps +
1

2p1+1
, (4.19)

The metrics presented above, implicitly show the relation between the error
metrics and the higher significant sub-adder variables, (i.e. ks and ps).

Regarding the lower part of the template, for the uniform distributed data,
each bit is uncorrelated and the error metrics can be calculated as a function
of the error characteristics of each block. The total error of the lower part, εl,
is the summation of the errors of each block, εi, with the corresponding weight,
i.e., εl =

∑nl−1
i=0 εi2

i [47]. Given the fact for the blocks used in the lower part of
the template, i.e., OR gate and Cte-1, the error values are µor = −1

4
, σ2

or = 3
16

and µcte1−1 = 0, σ2
cte−1 = 1

2
, the error metrics of the lower part of the template

are as follows:

µ
l

= 2ncte−2 − 2nl−2 , (4.20)

σ2
l

= 22nl−4 +
5

3
22ncte−4 − 1

6
, (4.21)

MAEl = 2nl−2 − 2ncte−2 + (4.22)

+
1

3

(
3

4

)nl−ncte
(

2ncte − 1

2ncte

)
.

The more details of the equations for the lower part of the template can be
found in [47].

Combining the error metrics for the higher and lower part of the template,
the error metrics for the template adder are calculated as follows:

µtemp = 2nl . µ
h

+ µ
l
, (4.23)
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σ2
temp

= 22nl . σ2
h

+ σ2
l
, (4.24)

MAEtemp = 2nl . MAEh + (1− PE
h
).MAEl . (4.25)

In order to have the formulas of the saturated metrics, the understanding
of the histogram of the template is required. The histogram of the lower part
of the template (LOCA) is a bi-modal distribution with mean value of µl and
standard deviation of σl presented in Eq. (4.20) and Eq. (4.21), respectively.
The number of bins (intervals) in the histogram of the upper part of the template
(Segmented adder) is equal to the number of segments. These intervals are
−2Bi , as mentioned earlier in this section, in addition to the one at zero with
Pr0 = 1− PEh. The histogram of the template, as a result, is the repetition
of the lower part histogram at the intervals of the higher part histogram. Let
us consider that there is no overlap in the histogram of the template (which is
true in the practical cases). Hence, the histogram consists of multiple bi-modal
distribution. Applying a threshold between these distributions, the following
formula calculates the precise saturated MSE:

SMSEτ ≈
s−1∑
i=1

Prhi min(τ 2 , (εhi + µl)
2 + σ2

l )

=
s−1∑
i=1

Prhi min(τ 2 , ε2hi + 2εhi .µl +MSEl) .

(4.26)

where s denotes the number of segments in the upper part segmented adder.
Note that this formula is a piecewise linear approximation of the exact error.

It provides a remarkable accuracy for any τ that does not collide with one
of the bi-modal distributions that compose the Probability Density Function
(PDF) of the error. In the unlikely situation that τ hits one of those bi-modal
distributions, the actual error decreases slightly and Eq. (4.26) provides an
upper bound of the error.

The other metrics can be calculated in a similar way. We have precisely
modeled all the metrics, from conventional to saturated ones (SMSE, SMAE,
SSTD), using the histogram of the template. It is part of the developed
framework which will be discussed in the next section with more details.

4.3.2 Design Methodology

In this part, the methodology of our framework is discussed. The proposed
framework discriminates between the scenarios where approximate processing
does not provide significant benefits from those where it does. In the latter
case, it aids in obtaining optimal configurations of the template.

In the first step, using precise error models, the framework finds all the
possible configurations of the template for a given error constraint. As men-
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tioned in the previous subsection, the possible configurations are conventional
approximate adders, new hybrid and/or non-equal segmented adders, truncated
exact adders, etc. The designer can choose between a traditional metric (MSE,
MAE, STD, etc) or the saturated counterpart. In fact, in this step, a given
threshold, based on the target application, needs to be specified. Based on
the definition presented earlier in Chapter 3, large enough thresholds result in
conventional metrics.

In the next step, for a target frequency, the framework sorts the adders
based on their expected silicon area. The sorting process is done based on the
bit-width of the upper part adder, i.e.

∑s
i=1(ki + pi), as well as the length of

the sub-adders, i.e. max(ki + pi)for i ∈ {1, 2, . . . , s}.
Finally, out of several possible architectures which have been sorted, the top

ten architectures are synthesized to determine precisely the figures of merit.
The complete procedure is automatic.

Observe that the current framework does require a precise characterization
of the error (see the equations presented in the previous subsection), but just a
relative rank for the area.

4.3.3 Error philosophies of approximate adders

k1k2k3ks

...

ncte

1 1 1

nlnh

Snl-1:0

Co

anl-1:0an-1:nl bnl-1:0bn-1:nl

Sn-1:nl

...
1 1 1

ncte

anl-1:0an-1:nl bnl-1:0bn-1:nl

nlnh

Co

Snl-1:0Sn-1:nl

nor

(nh-1)-bit Precise Adder

k1k2k3

k2k3

0-(2k1+k2)

2-(k2+1)

1 - 2-(k2+1)

-(2cte+2-1) 2cte-1 0

Fig. 4.7: Architecture and error probability distribution of three illustrative
approximate adders with different approximation philosophies. From
left to right: Error Tolerant Adder (ETA-II), Optimal Lower-part
Constant-OR adder (OLOCA), and Hybrid adder.

The conceptual diagram of Fig. 4.7 is the summary of the presented ar-
chitectures and ideas in this dissertation, in regards to approximate adders.
It illustrates the concept behind the error philosophies of the approximate
adders. The ETAII is shown in this figure as a representative of infrequent error
philosophy. As can be observed from its PDF, ETAII rarely fails to produce
the exact result, but when it does, the magnitude of the error is extremely
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high. The small error philosophy is represented by OLOCA adder. From the
PDF of OLOCA, it can be seen that the adder generates the errors frequently
(with high probability); however, the magnitude of errors are small when they
appear. The hybrid adder, combines the two philosophies and alleviates the
extremes of the philosophies.

4.3.4 Experimental Results

We have structured this subsection in two steps: Firstly, we evaluate the
exactness of the presented error formulas; and secondly, we assess the quality
of the adders designed with our framework.

In order to evaluate the accuracy of the presented error formulas, the simula-
tion and formulas results of 16-bit approximate adders, developed using our
proposed template, are tabulated in Table 4.11. The numbers presented in
the table verify the perfect accuracy of the presented formulas for the generic
template of approximate adders. As a result, using one compact accurate
formula, the error behavior of a wide range of approximate adders can be
modeled.

To assess the circuit characteristics and evaluate the approximate architec-
tures, we have generated VHDL description of the proposed template. Different
configurations of approximate adders ranging from existing to new hybrid
structures are synthesized in a commercial low-power 65 nm library, for 16-bit
operands. Using back-annotated simulations, dynamic power dissipation of the
adders are evaluated after synthesis. All the adders have been simulated for 107

uniformly distributed random input patterns. In addition, we have developed a
framework to distinguish the Pareto optimal architectures for a given accuracy
and hardware quality, based on the presented formulas.

Fig. 4.8 illustrates a comparison of approximate adders generated by the
proposed template. The compared adders are all optimal (area-delay efficient)
architectures. In Fig. 4.8(a), STD of approximate adders versus their Power-
Delay Product (PDP) are depicted. As can be seen in this figure, considering
the trade-off between error and PDP of the adders, OLOCA architectures
outperform all the other adders. Furthermore, hybrid architectures, developed
by the proposed template, perform better than other existing approximate
adders including ETAII, ESA and GeAr. Another notable fact in this figure
is the superiority of non-equal segmented ETAIIs over the equal segmented
ones. As discussed in the previous subsection, since the optimal adders are
instantiated as sub-adders, non-equal segmentation boosts the efficiency of
segmented adders.

On the other hand, Fig. 4.8(b) depicts the Saturated STD (SSTD) of each
adder versus its PDP, applying a relatively small threshold. As can be seen in
the figure, considering the trade-off between error and energy consumption of
the adder architectures, the hybrid architectures developed using the proposed

64



4.3 Unified Design Framework and Metrics of Hybrid Approximate Adders

T
ab

le
4.

11
:

S
im

u
la

ti
on

an
d

F
or

m
u
la

s
re

su
lt

s
fo

r
16

-b
it

ad
d
er

s

µ
M

A
E

σ
S
M
S
E
τ
=
1
6

S
M
A
E
τ
=
6
4

S
S
T
D
τ
=
2
5
6

A
d
d
er

si
m

m
a
th

si
m

m
a
th

si
m

m
a
th

si
m

m
od
el

si
m

m
od
el

si
m

m
od
el

4(
8)

12
(0

)—
0,

0
-7

.5
4

-7
.5

0
7.

54
7.

50
17

5.
57

17
5.

11
0.

47
0.

47
0.

12
0.

12
10

.9
7

10
.9

4

4(
4)

4(
4)

8(
0)

—
0,

0
-1

27
.5

6
-1

27
.5

0
12

7.
56

12
7.

50
69

0.
95

69
0.

78
15

.0
1

15
.0

0
3.

75
3.

75
60

.1
4

60
.1

2

7(
1)

1(
1)

8(
0)

—
0,

0
-1

27
.5

1
-1

27
.5

0
12

7.
51

12
7.

50
18

1.
03

18
1.

02
95

.5
0

95
.5

0
23

.8
8

23
.8

8
12

3.
80

12
3.

81

6(
6)

10
(0

)—
0,

0
-7

.5
4

-7
.5

0
7.

54
7.

50
87

.5
3

87
.3

2
1.

88
1.

87
0.

47
0.

47
21

.8
8

21
.8

3

8(
4)

4(
1)

4(
0)

—
0,

0
-7

.5
0

-7
.5

0
7.

50
7.

50
32

.0
0

32
.0

0
60

.0
7

60
.0

0
4.

51
4.

50
32

.0
0

32
.0

0

8(
0)

8(
0)

—
0,

0
-1

27
.5

4
-1

27
.5

0
12

7.
54

12
7.

50
12

7.
99

12
8.

00
12

7.
50

12
7.

50
31

.8
9

31
.8

8
12

8.
00

12
8.

00

12
(0

)—
2,

2
-3

.0
0

-3
.0

0
3.

70
3.

70
4.

18
4.

18
26

.5
0

26
.5

0
3.

70
3.

70
4.

18
4.

18

7(
1)

5(
0)

—
2,

2
-1

23
.0

2
-1

23
.0

0
12

3.
55

12
2.

83
21

6.
93

21
7.

22
80

.3
1

80
.3

0
17

.8
4

17
.8

4
10

7.
20

10
7.

24

8(
4)

5(
0)

—
2,

1
-5

.5
0

-5
.5

0
5.

78
5.

75
31

.8
2

32
.3

1
10

.4
0

10
.4

0
2.

75
2.

75
31

.6
2

31
.6

1

65



4 Inaccurate Adders

40 60 80 100 120 140

2

4

6

8

10

ESA-8

ETAII-6

ETAII-4

ETA-7117

ETA-8413

GeAr-4,87(1)5(0)—2,2

8(4)5(0)—2,1
8(0)—2,6

12(0)—2,2

PDP [fJ]

lo
g 2

(S
T

D
)

(a) Exact adder

40 60 80 100 120 140
−1

0

1

2

3

4

ESA-8

ETAII-6

ETAII-4

ETA-7117 ETA-8413

GeAr-4,8

7(1)5(0)—2,2

8(4)5(0)—2,1

8(0)—2,6

12(0)—2,2

PDP [fJ]
lo

g
2
(S

S
T

D
τ
=
1
6
)

(b) Exact adder

Fig. 4.8: Simulation results Comparison of 16-bit approximate adders: (a)
Standar Deviation (STD) vs. Power-Delay Product (PDP), (b) Satu-
rated Standard Deviation (SSTD) applying threshold=24 vs. Power-
Delay Product (PDP). In order to keep the graphs readable, ETA-
8413 denotes the configuration: 8(4)4(1)4(0)—0,0 ; and ETA-7117 is:
7(1)1(1)8(0)—0,0.

template outperform the rest of the adders. For the applications whose error
can be modeled using SSTD with a small threshold, OLOCAs are not superior
adders anymore, due to their high probability of errors. The superiority of
adders depends on how stringent the threshold of the SSTD metric is. Our
new error metric helps to understand qualitatively and to quantify numerically
the intrinsic characteristics of the adders. Furthermore, Fig. 4.8 shows that
the optimal solutions cannot be obtained using the standard and conventional
methodologies in most of the cases.

Finally, at the end of this subsection, we evaluate our framework. In an
attempt to assess our framework, we progress in two steps: First, using our
framework, we analyze various 16-bit approximate adders ranging from conven-
tional approximate adders to new architectures developed from our template.
In this step, we show the functionality of our framework, while comparing the
adder architectures. Secondly, in order to show the exactness of our framework,
we synthesize more architectures for a given error constraint. Here, the goal
is to show that the selected architectures by our framework are actually the
optimal architectures for a defined error limit.

Fig. 4.9 depicts a comparison of 16-bit adders developed using our template.
The SMSE of the architectures for four different thresholds have been calculated
using the error models. The applied thresholds range from small, stringent
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thresholds to the one which is large enough to represent conventional MSE. The
silicon area of the architectures have been obtained synthesizing the selected
architectures. Different colors in the figure correspond to different bit-width
of the upper part adder. For example, the TruncZero(13) is a truncated exact
adder, in which the upper part adder is a 13-bit exact adder, and the lower
part bits are constant-1s. As can be seen in Fig. 4.9(a)-(d), for relatively small
timing constraints, when a stringent threshold applied, ETAII architectures
are superior adders due to their low probability of errors. As the threshold
increases, SMSE of ETAII architectures increase and hybrid architectures show
superiority, as illustrated in Fig. 4.9(c). Continuing the threshold increment, the
OLOCA adders tend to be superior architectures, as depicted in Fig. 4.9(d). As
a result, qualitatively, the range of possible thresholds can be divided into three
regions: small, medium and large thresholds. For small thresholds, conventional
ETAIIs; for medium thresholds, hybrid architectures; and for large thresholds
(conventional MSE), OLOCA adders are superior architectures.

The same comparison is shown in Fig. 4.9(e)-(h), carried out with relaxed
timing constraint corresponding to area-efficient implementation of the archi-
tectures. As can be seen in the graphs, regardless of the threshold, there is no
reason to use conventional approximate adders in this scenario. With relaxed
timing constraints, for all the thresholds, truncated exact adders or OLOCA
adders are superior architectures. Accordingly, the framework discriminates
this scenario, where approximate adders do not provide considerable benefits
from the scenarios which they do.

To assess the exactness of our framework, in this step of the experimental
validation, we consider an illustrative error limit and analyze that case in
detail. Then, we generate all the possible architectures which meet the defined
constraint. As an example, we consider a practical value for the error constraint
(SMSEτ ≤ 15). The architectures which meet the above-mentioned constraint
are shown with small red dots in Fig. 4.9. Additionally, the error limit is
marked with green dashed lines in the figure. The number of architectures that
meet the constraint increases, as the threshold is decreased. Because of the fact
that there are many architectures that meet the constraint for small thresholds,
in order to keep the graphs readable, we show the example for larger thresholds:
τ=64 and τ=8192. In addition, we limit the architectures for the case of τ=64,
and we consider only the architectures where the bit-width of their upper-part
adders are 13-bit, as an illustration.

As can be seen in the figure, the architectures which have been chosen by our
framework (marks with light blue border), among all the possible architectures
(red dots), are in fact the optimal ones. In short, Fig. 4.9 not only shows the
functionality of our framework, but also depicts how, in different scenarios,
different approximate adders are superior. A notably important message of
Fig. 4.9 is that not always using approximate adders results in a better design. It
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should be discriminated where approximate adders provide significant benefits
from where they do not. As mentioned, our framework is able to distinguish
these scenarios.

4.4 Stochastic Mixed-PR: A
Stochastically-Tunable Low-Error Adder

Stochastic computing is a technique to trade off energy and quality of a circuit.
Instead of hiding variations under expensive guard-bands, designers have begun
to relax traditional correctness constraints and deliberately expose hardware
variability to higher levels of the computing stack [1]. The considerable power
and performance overheads imposed by worst-case design practices can be
relaxed by scaling up the frequency, i.e. Frequency Over-Scaling (FOS), or
scaling down the operating voltage, i.e. Voltage Over-Scaling (VOS). An over-
scaled design consumes lower power than its worst-case designed counterparts.
At the same time, since the delay of some paths may now be greater than the
clock period under certain conditions, timing violation may occur [1]. Over-
scaling can be considered as a knob to dynamically tune the exactness of the
adder architectures [48]. This technique, however, has not been remarkably
embraced by the researchers. The rationale is that the conventional fast adder
architectures start to make big errors as soon as they enter the stochastic
regime.

Approximate adders, as key components of approximate arithmetic units,
have attracted special attention of the researchers in the past few years. How-
ever, most of the existing architectures fix the level of hardware approximation
statically, and hence, the level of approximation can not be dynamically tuned
based on the application demand.

Nowadays, adaptation plays a major role in approximate processing [109].
In several scenarios, such as general purpose processors, DSP applications with
variable quality signals (SNR), etc., both approximate and exact functionalities
are required [110–112]. Fundamentally, this feature can be obtained in two
ways: 1. by configuring the circuit logic or 2. by applying stochastic techniques.

In the first case, reconfigurability may be obtained by shutting down some
parts of the logic [110] or bit truncation strategies [111]. These techniques use
a control signal to switch between approximate and exact modes dynamically.
However, both techniques are able to switch between an exact mode and
an approximate mode with a fixed approximation level. The system can
also be reconfigurable by adding an error-correction unit to the approximate
architecture [73, 108]. This technique, however, increases the latency, silicon
area and power consumption of the design.

Depending on the application demands for performance, different adder
architectures are preferred. For a relaxed timing constraint, an exact adder is
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Fig. 4.10: The illustrative architectures of the exact adders: (a) Ripple-carry
adder, (b) Parallel-prefix adder (Sklansky), (c) Std-mixed adder, (d)
Mixed-PR adder

implemented with a Ripple-Carry Adder (RCA), Fig. 4.10(a). With stringent
timing constraints, an exact adder is implemented with a Parallel-Prefix Adder
(PPA), Fig. 4.10(b) as an example. For the cases in between, the synthesis tools
implement an exact adder with a mixed adder of PPA and RCA, where the
RCA is used for the MSBs to decrease the number of worst paths. Fig. 4.10(c)
is as an example of the above-mentioned mixed adder. In this section, we
propose the use of a mixed adder with late input MSB arrival time, which allows
embracing the idea of over-scaling for the sake of reconfigurability. Aiming
that, a precise analysis of the error behavior of adders in stochastic regime is
presented in this section.

In the rest of this section, first, in subsection 4.4.1, the stochastic error
behavior of adders are mathematically analyzed. Afterwards, we quantify
the advantages of the proposed mixed adder using experimental results in
subsection 4.4.2. Finally, the mathematical analyses developed in subsection
4.4.1 are validated.
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4.4.1 Stochastic Analysis

Frequency (voltage) over-scaling is a conventional technique to dynamically
trade-off the energy and accuracy of an adder. However, even a slight frequency
(voltage) over-scaling in conventional adders causes large timing errors to occur
and degrades the quality of the adders rapidly. This rapid quality loss under
over-scaling was one of the main reasons to disregard stochastic computing
techniques to dynamically tune the adder architectures.

As discussed in [48] and [40], with over-scaling, RCA fails moderately when
entering the stochastic regime. Unlike that, a pure PPA fails catastrophically
with over-scaling. However, RCA is extremely slow and starts to make errors
at lower frequencies than a PPA. To solve the problem, we propose to use the
mixed adder architecture with late input MSB arrival time, which shows a
gradual increment in error when entering the stochastic regime. Hence, the
proposed adder can be dynamically configured using FOS (VOS) techniques. We
call the mixed adder with late input MSB arrival time, Mixed-PR, while the
conventional mixed adder realized by the synthesis tool is called Std-mixed.

In this subsection, firstly, we introduce the idea of our stochastic analysis
and the nomenclature used in this section. Then, the error characteristics of
RCA in stochastic regime is analyzed. Once the behavior of an over-scaled
RCA is understood, we can justify why our proposed adder can be efficiently
used in the stochastic regime. Subsequently, the error formulas of the proposed
adder are presented mathematically.

Nomenclature and analysis strategy

In order to analyze the error behavior of the adders in the stochastic regime, we
consider the abstract adder depicted in Fig. 4.11, divided into two sub-blocks,
where nl and nh are the bit-width of the blocks Dl and Dh, respectively. Let
us consider the transition of inputs at time 0, and sampling the data at time
T. Correspondingly, a− and b− represent the previous values of inputs a and
b, respectively. In addition, due to the fact that we are analyzing blocks with
late arrival signals, in order to perform our analysis, we have to differentiate
between the logic (ideal) values (e.g. a and a−), and the temporal evolution of

DlDh

cnl CinCout

sn−1 snl
snl−1 s0

bn−1an−1 b0a0
...

bnl−1anl−1bnl

...

......

anl

Fig. 4.11: The template of an adder split into two sub-blocks, used for the
error analysis.
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signal (e.g. a[t] where a[0−]=a− and a[0+]=a). Considering FOS, if we assume
a scenario (clock period) in which Dh is the block that makes errors, with the
information of the signal cnl

[t], we can characterize the stochastic errors of the
adder. As a result, the problem of analyzing the error behavior of the adder of
Fig. 4.11 in the stochastic regime can be split into two parts: 1. to characterize
the temporal evolution of signal cnl

[t], and 2. to calculate the error as the result
of the temporal evolution of signal cnl

[t].
Since the concepts of prefix structures are used often in this section, P,

G and K are used for the terms propagate, generate and kill, respectively.
Traditionally, these terms are defined as pi = ai ⊕ bi, gi = ai.bi and ki = ai.bi,
where i is the bit position. The theory of the parallel prefix architectures, [58],
can be used to accelerate the calculation of carrys using the prefix operator •
defined by:

g
i:m

= g
i:j

+ p
i:j
g
l:m

, p
i:m

= p
i:j
p
l:m

. (4.27)

where i ≥ l ≥ j ≥ m. Using the generate and propagate signals, the carry
signals ci can be computed as follows:

ci = g
i−1:0

+ p
i−1:0

.Cin. (4.28)

In order to develop our error models, we use real delays instead of unit-gate
delays. Therefore, the terms τcc, τcs are used. The notations are defined in
Fig. 4.10. In addition, the error is defined as Eq. (4.1).

In order to develop the error formulas of the adders, let us first consider a
single FA with a late carry input signal. As a result, the temporal evolutions of
S[t] and Cout[t] depend on the temporal evolution of Cin[t] and logical values
of inputs a and b. More precisely, the logical equation of sum bit, si = pi ⊕ ci,
can be rewritten arithmetically, as follows:

si[T ] = pi + ci[T − τcs]− 2pici[T − τcs]
= pi + (−1)pici[T − τcs].

(4.29)

Taking Eq. (4.1) and Eq. (4.29) into consideration, the error corresponding
to each sum bit of an adder is:

εsi [T ] = (−1)pi .

(
ci[T − τcs]− ci

)
.2i, (4.30)

where εsi is the error corresponding to the output at bit position i. In a similar
manner, the following equation models the error of the output carry of an n-bit
adder:

ε
Cout

[T ] = pn−1 .

(
cn−1[T − τcc]− cn−1

)
.2n . (4.31)
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Stochastic error analysis of RCA

In order to analyze the error behavior of RCA in stochastic regime, the blocks of
Fig. 4.11 are instantiated with RCAs. Consequently, Eq. (4.30) and Eq. (4.31)
can be rewritten in respect to node cnl

as follows:

εsi [T ] = (−1)pi .

(
cnl

[T − τcs − (i− nl)τcc]− cnl

)
.2i.pi−1:nl

, (4.32)

εCout
[T ] =

(
cnl

[T − nhτcc]− cnl

)
.2n.pn−1:nl

. (4.33)

For the case where τcc = τcs, Eq. (4.32) and Eq. (4.33) can be combined as
follows:

εrca[T ] =

nh−1∑
i=0

(
pnl+i−1:nl

)
.
(
cnl

[T − (i+ 1)τcc]− cnl
[T − iτcc]

)
.2nl+i . (4.34)

The equations presented above show that to calculate the error of a RCA for
a given clock period, the temporal evolution of cnl

[t] is needed.
In order to analyze the temporal evolution of cnl

[t], let us split the block Dl

of Fig. 4.11 into two sub-blocks in a way that the higher significant sub-block
meets the timing constraints of the specified clock period, while the lower
significant sub-block violates the timing. The value of cnl

[t] is constant ”1” or
”0” over time, if the higher significant sub-block does not propagate the carry.
Correspondingly, the adder does not make any error, due to constant behavior
of signal cnl

[t]. Alternatively, if the higher significant sub-block propagates the
carry, the behavior of the carry out signal of the lower significant sub-block
is copied to the signal cnl

[t]. Consequently, cnl
[t] is just the delayed version of

ci[t].
Let us consider nh = 1, which results in a correspondence between cnl

[t]
of Fig. 4.11 and c1[t] of Fig. 4.10(a). Considering the possible transitions of
the inputs of the first FA, i.e. a0 and b0, the transitions of signal c1[t] can be
found in Table 4.12. Depending on Cin, the probabilities of changes in c1[t] are
different. The probabilities of transitions on c1[t] are tabulated in Table 4.13 for
the scenario in which Cin is constant ”0”, as well as the scenario that Cin is an
uniformly distributed random input (i.e. equals ”0” or ”1” with a probability
of 1/2). In order to generalize the relation between input transitions and the
carry signals, Table 4.14 tabulates the changes on the output carry of the FA
in bit position i, i.e. ci+1[t], depending on the transitions of its inputs, i.e.
ai and bi, and the input carry of the FA, i.e. ci[t]. Considering Table 4.14,
and having c1[t], the possible changes of c2[t] and corresponding probabilities
can be derived. Having the changes of c2[t], the characteristic of the signal
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Table 4.12: possible transitions on c1[t]

Transition of a0,b0 Transition of c1[t] Prob.

k−0 → k0 0 → 0 1/16

k−0 → p0 0 → Cin 1/8

k−0 → g0 0 → 1 1/16

g−0 → k0 1 → 0 1/16

g−0 → p0 1 → Cin 1/8

g−0 → g0 1 → 1 1/16

p−0 → k0 C−
in → 0 1/8

p−0 → p0 C−
in → Cin 1/4

p−0 → g0 C−
in → 1 1/8

Table 4.13: probability of changes on c1[t]

Cin = 0

c1[0] c1[τ ] prob.

0 0 9/16

0 1 3/16

1 0 3/16

1 1 1/16

random Cin

c1[0] c1[τ ] prob.

0 0 1/4

0 1 1/4

1 0 1/4

1 1 1/4

c3[t] can be derived and so on. Let us formulate characterizing of the ci[t]
embracing the information presented in Table 4.13, and Table 4.14. If Pr[C1]
is the prob. column of the table containing the characterization of c1[t], i.e.
Table 4.13, Pr[Ci] for i ∈ {2, n− 1} can be calculated as follows for the case
Cin is uniformly random:

Pr[Ci] = 1
8

[
M

M

]
+ 1

8

[
Pr[Ci−1]

Pr[Ci−1]

]
+ 1

4


Pr[Ci−1]h

0

0

Pr[Ci−1]l

 , (4.35)

where M is a vector with the same size as Pr[Ci−1] which only the first and the
last elements of this vector are one and the rest are zero, i.e. [1 0 0 ... 0 1]T ;
Pr[Ci−1]h and Pr[Ci−1]l are the upper and lower half of the probability column
of the previous table, i.e. ci−1. Note that, the number of changes on a carry bit
is linked to its bit position, and accordingly, the size of the table representing

74



4.4 Stochastic Mixed-PR: A Stochastically-Tunable Low-Error Adder

transition possibilities of a carry bit depends on its bit position. Therefore, the
size of the table for c1, Table 4.13, is 22, the size of the table for c2 is 23 and so
on.

Stochastic error analysis of Mixed-PR adder

Conventionally, when the timing constraints lie between the delay of RCA and
PPA, these two adder structures are mixed, where the lower bits a parallel prefix
structure is realized, and a serial prefix is used for the upper bits. However,
if Dl in Fig. 4.11 is a PPA, the behavior of signal cnl

[t] is different from that
analyzed above. The rationale is that the critical path to node cnl

instead
of being one path as in RCA, are multiple paths because of a parallel prefix
structure. Hence, the transition combinations of signal cnl

[t] that produce errors
are more probable which results in a dramatic increase of error in stochastic
regime [40,48].

Let us analyze mathematically the error behavior of the adder of Fig. 4.11
when instead of RCA, a PPA is instantiated as the upper block (Dh).

Using Eq. (4.1), Eq. (4.29) and Eq. (4.28), we can develop the error formulas
of the Mixed-PR adder in the stochastic regime, considering an Sklansky
architecture, as an instance. Obviously, the general equations Eq. (4.30) and
Eq. (4.31) are also valid here for the PPA. Similar to the RCA, we can write
these equations in respect to the node cnl

:

εsi [T ] = (−1)pi .
(
cnl

[T − τcs − dlog2(i− nl + 1)eτcc]− cnl

)
.2i.p

i−1:nl
, (4.36)

εCout
[T ] =

(
cnl

[T − dlog2(nh + 1)eτcc]− cnl

)
.2n.pn−1:nl

. (4.37)

If we assume that τcs = τcc, and if the size of Dh is a power of 2, Eq. (4.36)

Table 4.14: probability of changes on ci+1[t] for the transitions of input

ai,bi

transition

changes in ci+1[t]
Prob.

t=0 t=τ t=2τ ... t=T

pi
− → pi c−i+1 ci+1 ci+1 ... ci+1

1/4

pi
− → pi c−i ci+1 ci+1 ... ci+1

1/4

pi
− → pi c−i+1 c−i ci ... ci 1/4

pi
− → pi c−i c−i ci ... ci 1/4
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and Eq. (4.37) can be combined as follows:

εmix[T ] =

log2(nh−1)∑
i=0

(
pnl+i−1:nl

)
.(cnl

[T−(i+1)τcc]−cnl
[T−iτcc]).2nl+i . (4.38)

Considering the RCA as an architecture with a serial prefix-processing stage,
Eq. (4.34) and Eq. (4.38) show that decreasing the clock period, the magnitude
of error of each level of the prefix-processing stage corresponds to the first bit
of that level. In other words, as Eq. (4.36)-(4.38) show, the Mixed-PR adder
groups the bits of each level of the prefix-processing stage, and their errors
compensate each other. This fact explains the reason why the error increment
in Mixed-PR adder is gradual in stochastic regime.

4.4.2 Experimental Results

To assess the circuit characteristics and evaluate the architectures presented in
this section, we have generated VHDL description of the adders. The adders
are synthesized in a commercial low-power 65-nm library for 12- and 16-bit
operands. Using back-annotated simulations, dynamic power dissipation of the
adders is evaluated after synthesis. All the adders have been simulated for 107

uniformly distributed random input patterns. In this section, the mixed adders’
name are followed by two numbers. The numbers represent the bit-widths of
the higher significant and the lower significant blocks, respectively.

In order to check the accuracy of the presented models, the mean absolute
error (MAE) versus clock period of the RCA and the Mixed-PR adder are
depicted in Fig. 4.12. The model for 12- and 16-bit adders are compared with
the simulation results. As can be seen in the graph, the behavior of the adders
in the stochastic regime is predicted precisely using the presented models.

In order to evaluate the efficiency of the Mixed-PR adder, we have studied
and compared 12-bit adders for different clock periods. The results are shown
in Fig. 4.13. In this figure, the MAE versus energy-delay product (EDP) as
well as area-delay product (ADP) of the adders are depicted. As illustrated
in this figure, for the same values of error, the Mixed-PR outperforms all the
other architectures from both the EDP and the ADP points of view. As an
example, if an application limits the maximum error to log2(MAE) = 2.5, the
Mixed-PR-84 reduces the EDP and ADP about 40% in comparison with the
conventional mixed adder, i.e. the Std-mixed-48 adder. The Mixed-PR-84 also
reduces the EDP and ADP about 21% and 31%, respectively, in comparison
with the adder of Ref. [111] when k is fixed to the optimal value of 4.

The energy consumption, silicon area, and the maximum clock period for a
given error are reported in Table 4.15. As can be seen in the table, in contrast
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Fig. 4.12: Comparison of the simulation ( s) and the model ( m) results for
the RCA and Mixed-PR for (a) 12-bit adders and (b) 16-bit adders,
synthesized in a 65-nm technology.

to the extreme architectures (i.e. RCA and PPA), our Mixed-PR-84 provides
a promising trade-off; it requires only 147 fJ and achieves an speed of 0.65
ns. Furthermore, regarding the maximum achievable speed for a given MAE
(5 in this example), we observe that Mixed-PR-84 improves the speed by a
factor of 1.75x when entering into the approximate domain. It is the largest
improvement of any other adder. Incidentally, we can note that the performance
of the traditional Std-mixed-48 is very poor in terms of the maximum speed
for a given MAE, which is 0.63 ns versus the 0.37 ns of our adder. Because of
this, stochastic techniques had been rejected until now as a suitable method to
construct inexact adders.

To exemplify the advantages of our approach, let us consider two scenarios.
In the first one, an adder needs to work in exact mode with a clock period of
1.1 ns, while in approximate mode a maximum MAE of 5 is allowed. For this
low-demanding scenario, even the RCA and the adder of Ref. [111] with k=4
will work. They run in exact mode very efficiently (143 fJ), but the maximum
speed in the inexact mode is very limited. The use of a PPA will allow a max
speed of 0.31 ns in the inexact mode, but in the relaxed exact operation as
much as 232 fJ is required. Our approach will operate in exact mode consuming
only 147 fJ (factor 1.6 smaller than the PPA) and allowing a maximum speed in
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Fig. 4.13: 12-bit adders in stochastic regime: comparison of the Mixed-PR
adder with the conventional exact adders generated by the synthesis
tool (SA) as well as the approximate mode of the configurable adder
of Ref. [111], synthesized in a commercial 65nm technology : (a)
Mean Absolute Error (MAE) vs. Energy-Delay Product (EDP), (b)
Mean Absolute Error (MAE) vs. Area-Delay Product (ADP).

the inexact mode of 0.37 ns (factor 2.5 faster than RCA). As a second scenario,
let us consider that the adder needs to work with a period of 0.66 ns in the
exact mode. In this case the RCA approach (and that of Ref. [111]) will not
meet the timing requirements. Our approach still works and provides the same
energy advantages versus PPA, as mentioned above.

In order to show the superiority of the Mixed-PR adder over its conventional
counterpart, i.e. Std-mixed adder, the adders are evaluated in a more realistic
scenario where the inputs have non-uniform distribution. In this case-study, the
adders are used in a two-step image processing algorithm. In the first step, the
Astronaut image is filtered with the average filtering using a 3×3 square kernel.
In the second step, the result of the average filtering is fed to the Sobel filter
to do the edge detection. The results of the process using the exact, Std-mixed
and Mixed-PR adders are shown in Fig. 4.14. As can be seen in the figure,
while the resulting image processed by the use of the Std-mixed is not usable,
the Mixed-PR adder is still working perfectly in a relatively critical frequency.
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4 Inaccurate Adders

4.5 Conclusion

In this chapter, an optimal approximate adder from a developed architectural
template has been proposed. Using experimental results as well as mathematical
analyses, it has been proved that the proposed adder ”Optimized Lower-part
Constant-OR Adder (OLOCA)” improves both the accuracy and hardware-cost
in comparison with the previously reported best architectures. It has been
shown that a 16-bit OLOCA provides a better trade-off between error and
energy efficiency than that of LOA for all the possible configurations. Since,
as discussed in Chapter 3 , LOA is the best existing approximate adder, the
proposed OLOCA outperforms the state-of-the-art.

In addition to OLOCA architecture, a generic template for approximate
adders combining the small-errors and the infrequent-errors philosophies has
been proposed in this chapter. Using the proposed template, different classes
of approximate adders can be developed. This includes hybrid and non-equal
segmented adders which have not been studied before in the literature. The
accurate mathematical analyses of the template have also been presented where
using one compact formula, the error metrics of a wide range of approximate
adders can be calculated. The detailed mathematical analyses enabled us to
develop a framework to find the most suitable adder architecture for a target
application. Using experimental results, it has been shown that for the scenarios
that approximate adders provide considerable benefits, the develop framework
finds an optimal approximate adder. Using extensive experimental analyses,
we considered different threshold for SMSE error metric which correspond to
different application scenarios. It has been shown that, for a relaxed timing
constraint where the approximate architectures are area optimized, the OLOCA
adder is a superior architecture for all the application scenarios. However, when
considering delay optimized architectures, where the internal architectures of
the approximate adders are faster but require more silicon area, the selection
of the adders depend on the threshold of SMSE (i.e. error resiliency of the
applications). In fact, for stringent timing constraints, OLOCA, hybrid, and

Table 4.15: Comparison of Mixed-PR-84 adder with 12-bit adders generated
by the synthesis tool in a commercial 65nm.

Adder Energy [fJ] Area [µm2] T(ε=0) [ns] T(ε=5) [ns]

Mixed-PR-84 147.30 171.72 0.65 0.37

RCA 143.00 108.00 1.09 0.78

Std-mixed-48 151.70 171.72 0.66 0.63

PPA 232.20 182.88 0.32 0.31
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4.5 Conclusion

ETAII architectures are superior classes of adder architectures for large, medium
and small thresholds, respectively.

Finally, in the last section, the use of a mixed adder with late input MSB
arrival time has been proposed. Using detailed mathematical analyses, we
have been shown the reason why conventional exact adders demonstrate a
steep increase of error in stochastic regime resulting in being overlooked by the
researchers. In response, we suggest a stochastically tunable Mixed-PR adder
which shows a gradual decrease in accuracy makes it suitable to use for error
resilient applications. In addition, unlike the existing reconfigurable adders
which switch between two modes (i.e. fixed approximate and exact modes), the
proposed stochastic adder can be configured in multiple modes depending on
the operating frequency and supply voltage.
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Inaccurate Multipliers
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5.1 Introduction
The multiplication of two n-bit numbers results in a 2n-bit product. For the
sake of simplicity, unsigned multipliers are considered in the following. The
inputs of the multipliers are of the form:

A =
n−1∑
i=0

ai2
i ; B =

n−1∑
j=0

bj2
j, (5.1)

and the product of inputs A and B is:

P =
n−1∑
i=0

n−1∑
j=0

aibj2
i+j, (5.2)

83



5 Inaccurate Multipliers

where i and j are the bit position of a and b, respectively. In Eq. (5.2), the
AND of input bits (aibj) are the partial products.

As discussed in Chapter 3, the conventional partial product truncation is
a promising approximation strategy which outperforms most of the recently
proposed designs in the literature. Therefore, in this chapter, first, we study the
concepts of truncated multipliers. Then, constant correction of the truncated
multipliers is discussed. Afterwards, a template for truncated multipliers is
developed where a data-dependent correction is presented. It is shown using
experimental results that the developed multipliers outperform the existing
architectures.

5.2 Truncated Multipliers
The truncated multipliers reduce power consumption as well as silicon area,
and increase the speed of multiplication by removing Kp columns of the partial
products of a multiplier. Fig. 5.1 shows a truncated multiplier. The lower
significant part of the partial products tree is called Lower Significant Partial
product (LSP) where the Kp LSB columns of the partial products are dismissed.
Removing the partial products, not only reduces the area of a multiplier because
of the removed AND gates of partial product generation stage, but also cuts
part of the partial product accumulation stage out, where further improvements
in power consumption reduction is achieved. Obviously, the improvements in
the performance and hardware cost are traded off with the accuracy of the
multiplication result.

Indeed, the error of a truncated multiplier corresponds to the addition of the
removed partial products (i.e. the elements in LSP). Let us define the error as
the difference of the approximate multiplication result and the exact output
result:

ε = P̃ − P, (5.3)

where P̃ is the approximate (erroneous) product and P is the accurate multi-
plication result. Correspondingly, the error of a truncated multiplier can be
formulated as follows:

εtrunc = −
Kp−1∑
i=0

Kp−i−1∑
j=0

aibj2
i+j, (5.4)

where Kp is the number of truncated columns from the partial products of the
multiplier as illustrated in Fig. 5.1. It is worth mentioning that the error of a
truncated multiplier is independent from the bit-width of a multiplier (i.e. n) as
can be seen in Eq. (5.4). For example, an 8-bit multiplier with 4-bit truncation
(Kp = 4) has exactly the same error characteristics as a 16-bit multiplier with
4-bit truncation.
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5.2 Truncated Multipliers

A Multiplicant

B Multiplier

Partial Products

Final result

Kp

Ko

LSP

Fig. 5.1: The dot diagram of an 8×8 truncated multiplier with Kp-bit trun-
cated partial products.

From Eq. (5.4), the maximum error of a truncated multiplier is produced
when all removed partial products are ’1’. As a result, the maximum error of a
truncated multiplier (εtrunc MAX) can be formulated as below:

εtrunc MAX = −
Kp−1∑
i=0

Kp−i−1∑
j=0

2i+j = −(Kp − 1)2Kp − 1, (5.5)

Considering a uniform distribution where the probability of any input bit
(ai or bj) being one is 1/2, the probability of each single partial product (aibj)
to be one is 1/4. Correspondingly, the probability of each element of LSP is 1/4.
Illustratively, the LSP of a truncated multiplier with Kp = 4 is shown in fig.
As a result, taking Eq. (5.4). and Fig. 5.2 into account, the average error of a
truncated multiplier is calculated as follows:

µtrunc = −
Kp−1∑
i=0

Kp−i−1∑
j=0

Pr[aibj]2
i+j

= −1

4

Kp−1∑
i=0

(i+ 1)2i+j

= −(Kp − 1)2Kp−2 − 1

4
,

(5.6)
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5 Inaccurate Multipliers

where Pr[aibi] represents the probability of each partial product which equals
1⁄4 in a uniform distribution, as mentioned above. Since the truncation errors
are always negative, the mean absolute error of a truncated multiplier has the
same magnitude as the average error of the multiplier:

MAEtrunc = (Kp − 1)2Kp−2 +
1

4
, (5.7)

a0b0a1b0a2b0a3b0a4b0a5b0

a0b1a1b1a2b1a3b1a4b1

a0b2a1b2a2b2a3b2

a0b3a1b3a2b3

a0b4a1b4

a0b5 LSP

MC

1/41/41/41/41/41/4
1/41/41/41/41/4

1/41/41/41/4

1/41/41/4

1/41/4

1/4 LSP

MC

Fig. 5.2: (a) The LSP of a truncated multiplier with Kp = 6. (b) The prob-
abilities of the partial products for a uniform distribution where
Pr[aibj] = 1

4
.

5.3 Constant Correction of Truncated Multipliers

The error of a truncated multiplier can be compensated with a constant
correction. The best correction is clearly the summation of the removed partial
products (see Eq. (5.4)). However, the summation of the LSP elements depends
on the input data. In order to compensate the error with one constant, the
additive inverse of the average error of the truncated multiplier results in the
best correction. If C is defined as the correction constant, the mean squared
error of the multiplier is calculated as below:

MSEtrunc = σ2
trunc + (µtrunc + C)2, (5.8)

where σ2
trunc is the variance of the error of the truncated multiplier. In Eq. (5.4),

since all the terms of the right hand of the equation is positive, it can easily be
concluded that the best correction to have the minimum MSE is:

C = −µtrunc. (5.9)
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5.4 Data-dependent Correction of Truncated Multipliers

By substituting Eq. (5.6) in Eq. (5.9), one obtains the constant correction of
the truncated multipliers as:

C = (Kp − 1)2Kp−2 +
1

4
. (5.10)

The correction can be added to the partial products and correspondingly
accumulated in the partial product reduction stage of the multiplier.

The average error of the truncated multipliers can be obtained with a more
general formula as follows:

µtrunc = − 1

2Kp+1

2Kp−1∑
i=0

Kp−1∑
j=0

(i× 2j) mod 2Kp . (5.11)

For the applications in which the input data is not uniform, Eq. (5.11) can
help to find the correction constant.

5.4 Data-dependent Correction of Truncated
Multipliers

In order to achieve a higher accuracy, the error compensation of the truncated
multipliers can be carried out dependent to the input data. Clearly, the most
significant column of LSP has the the largest effect on the error due to its large
weight. Let us call it MC in this section as highlighted in Fig. 5.2. Therefore, the
partial products of the most significant column of LSP can be used for the error
correction. Let us define m as the number of partial products of the MC used
for the data-dependent correction of a truncated multiplier, where m ∈ {1, Kp}.
In addition, we call the data-dependent correction using m partial products,
the m-bit correction. The m-bit correction has 2m different correction biases
depending on particular combinations of the m partial products of the MC used
for the correction. The selection of m is a trade-off between the hardware cost
and accuracy. The higher m clearly results in a more accurate correction, while
increasing the hardware cost. From Fig. 5.2, it can be seen that each partial
product has correlation with its diagonal as well as horizontal neighboring
partial products. This implies the fact that for the m-bit correction, where
m < Kp, the middle partial products are the best selections for the correction
due to the larger embrace of the correlated partial products. Therefore, the
correction with middle m-bit of the MC results in the most accurate error
correction with m partial products.
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5 Inaccurate Multipliers

5.4.1 1-bit Correction

In order to do the error correction of truncated multipliers using only one
partial product, the middle partial product of the MC is employed to estimate
the correction values. Indeed, the correction biases are the summation of LSP
elements for the cases that the middle partial product of MC is ’0’ or the case
where it is ’1’. As an illustration, Fig. 5.3 depicts the probability of the LSP
elements of a truncated multiplier with Kp = 6. The probabilities are shown
for the cases where the correction partial product is ’0’ and ’1’. From the figure,
it can be seen that the partial products which are in diagonal and horizontal
line with the correction partial product are the ones which are correlated with
it, and thereby, their probabilities differ from Fig. 5.2. As can be seen in
the Fig. 5.3, when the correction partial product (i.e. a2b3) is ’0’, the partial
products in its diagonal and horizontal lines have the probability of 1/6 to be
one. The rationale is that the partial products of the diagonal line include
a2 and the partial products of the horizontal line include b3 in their partial
products. Since a2b3 = 0, it can be concluded that probabilities of a2 and
b3 to be one is 1/3 (i.e. Pr[a2] = Pr[b3] = 1/3). Besides, by considering that
another bit of each partial product in the diagonal and horizontal lines has
the probability of 1/2 to be one, by a simple calculation the probability of the
aforementioned partial products is 1/6. In a similar way, when the correction
partial product is ’1’ (i.e. a2b3 = 1), it implies that both a2 and b3 are ’1’, and
considering the above-mentioned descriptions, the probability of the partial
products in the diagonal and horizontal line can easily be calculated and is
equal to 1/2.

1/41/41/41/41/4
1/41/41/41/4

1/41/41/4

0

1/41/4

1/4 LSP

1/6
1/6

1/6

1/61/6

1/41/41/41/41/4
1/41/41/41/4

1/41/41/4

1

1/41/4

1/4 LSP

1/2
1/2

1/2

1/21/2

Fig. 5.3: The probabilities of the LSP elements of a truncated multiplier with
Kp = 6 for a uniform distribution (a)when a2b3 = 0, (b)when a2b3 =
1.

To calculate the biases of a 1-bit correction, similar to the constant correction,
the average value of LSP elements has to be calculated. In order to calculate
the average error of the truncated multiplier the weighted probabilities of the
partial products have to be accumulated. The average error of the truncated
multiplier for a 1-bit correction can be calculated employing the difference of
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5.4 Data-dependent Correction of Truncated Multipliers

the probabilities of Fig.5.3 with the probabilities of Fig. 5.2. From Fig. 5.3(a),
when the correction partial product (for the illustrative example of the figure
a2b3) is ’0’, the average error of a truncated multiplier can be calculated as:

µ1−bit0 ≈ µtrunc +
1

6

Kp−2∑
i=

Kp
2

2i +
1

4
2Kp−1

≈ −(Kp − 1)2Kp−2 +
1

6
2Kp−1 − 1

6
2
Kp/2 + 2Kp−3

≈ −(Kp −
11

6
)2Kp−2,

(5.12)

where µ1−bit0 is the average error of the truncated multiplier when the correction
partial product is ’0’. Note that the above equation has been simplified by
discarding the negligible terms. As discussed before, the correction biases are
the additive zero of the average errors. As a result, the bias for the 1-bit
correction when the correction partial product is ’0’ which we call it bias0 is
calculated as:

bias0 = (Kp −
11

6
)2Kp−2. (5.13)

Similarly, for the case that the correction partial product is ’1’ (Fig. 5.3(b)),
the average error of the truncated multiplier is formulated as below:

µ1−bit1 ≈ µtrunc −
1

2

Kp−2∑
i=

Kp
2

2i − 3

4
2Kp−1

≈ −(Kp − 1)2Kp−2 − 1

2
2Kp−1 +

1

2
2
Kp/2 − 3

4
2Kp−1

≈ −(Kp +
3

2
)2Kp−2,

(5.14)

where µ1−bit1 is the average error of the truncated multiplier when the correction
partial product is ’0’. As a result, the additive zero of µ1−bit1 which we call it
bias1 is calculated as follows:

bias1 = (Kp +
3

2
)2Kp−2, (5.15)
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5 Inaccurate Multipliers

which can be rewritten as:

bias1 = bias0 +
10

3
2Kp−2

≈ bias0 + 2Kp−1 + 2Kp−2.
(5.16)

As discussed above when the correction bit (in the illustrative example of
Fig. 5.3 the partial product a2b3) is zero the bias0 has to be added for the
correction, and when it is ’1’, bias1 has to be added in order to correct the
truncated multiplication results. Eq. (5.16) suggests that for a 1-bit correction,
the bias0 can be added to the partial products of the truncated multiplier,
while the correction partial product should be placed in bit positions Kp − 1
and Kp − 2. Therefore, when it is one, 2Kp−1 + 2Kp−2 is added to bias0 as in
Eq. (5.16). Fig. 5.4 shows a 1-bit correction for a 4-bit truncated multiplier
with Kp = 4 as an illustration.

a3b1

a1b2a1b2a3b2

a2b3

a2b2

1a1b3a3b3

Kp = 4

Fig. 5.4: The partial product tree of a 1-bit corrected truncated multiplier with
4-bit truncation (Kp = 4). The red colored elements in LSP are the
correction biases.

5.4.2 2-bit Correction

In order to compensate the error of a truncated multiplier using 2 partial
products of MC, the middle partial products are employed to estimate the
correction biases. Here, similar to the 1-bit correction, first the probabilities of
LSP elements for the four different values of the correction partial products
are calculated. Then, the average error of the truncated multiplier for each of
these scenarios is calculated. Correspondingly, the correction biases are the
additive zero of the average errors. Since each partial product has correlation
with its diagonally as well as horizontally lined partial products, the probability
of the elements of the LSP can be calculated based on the probabilities of the
correlated partial products of the MC. Each partial product of the LSP has
correlation with two partial products of MC, one in its diagonal line and the
other on its horizontal line. As an instance, in Fig. 5.2, partial product a2b1
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5.4 Data-dependent Correction of Truncated Multipliers

has correlation with a4b1 and a2b3 which are two partial products of the MC.
Table 5.1 tabulates all the possible combinations of the two elements of the
MC column. In this table, aibj is the partial product of the LSP, and the aibx
and aybj are its correlated partial products located on MC. The indices x and y
can be any number in the range 0 to Kp− 1. Using this table, the probabilities
of the LSP elements can be found.

Table 5.1: The resulting probability for the elements of LSP based on the com-
bination of the probabilities of the correlated partial products on the
MC.

Pr[aibx] Pr[aybj] Pr[aibj]

0 0 1/9

0 1 1/3

1 0 1/3

1 1 1

0 1/4 1/6
1/4 0 1/6

1 1/4 1/2
1/4 1 1/2
1/4 1/4 1/4

Fig. 5.5 shows the probabilities of the LSP elements of a truncated multiplier
with Kp = 6 calculated with the help of Table 5.1. Similar to the 1-bit
correction, the average error of the truncated multiplier for a 2-bit correction
can be calculated employing the difference of the probabilities of Fig. 5.5 with
the probabilities of Fig. 5.2. From Fig. 5.5(a), when the correction partial
products (for the illustrative example of the figure a2b3 and a3b2) are ’0’, the
average error of a truncated multiplier can be calculated as:

µ2−bit00 ≈ µtrunc +
1

3

Kp−3∑
i=

Kp
2

2i +
11

36
2Kp−2 +

1

2
2Kp−1

≈ −(Kp − 1)2Kp−2 +
1

3
2Kp−2 − 1

3
2
Kp/2 +

11

36
2Kp−2 + 2Kp−2

≈ −(Kp −
7

3
)2Kp−2,

(5.17)

where µ2−bit00 is the average error of the truncated multiplier when the correction
partial products are both ’0’. The correction bias bias00 which is the additive
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1/41/41/61/41/4
1/41/41/61/4

1/61/60

0

1/41/4

1/4 LSP

1/6
1/6

1/9

1/61/6

1/41/41/61/41/4
1/41/41/61/4

1/61/60

1

1/41/4

1/4 LSP

1/2
1/2

1/3

1/21/2

1/41/41/61/41/4
1/41/41/61/4

1/61/60

1

1/41/4

1/4 LSP

1/2
1/2

1/3

1/21/2

1/41/41/21/41/4
1/41/41/21/4

1/21/21

1

1/41/4

1/4 LSP

1/2
1/2

1

1/21/2

Fig. 5.5: The probabilities of the LSP elements of a truncated multiplier with
Kp = 6 for a uniform distribution (a)when a2b3 = 0 and a3b2 = 0
(b)when a2b3 = 0 and a3b2 = 1 (c)when a2b3 = 1 and a3b2 = 0
(d)when a2b3 = 1 and a3b2 = 1.

zero of the average error is calculated as:

bias00 = (Kp −
7

3
)2Kp−2 ≈ (Kp − 2)2Kp−2. (5.18)

By the same token, for the case that one of the correction partial products is
’1’ (Fig. 5.3(b)(c)), the average error of the truncated multiplier is formulated
as below:

µ2−bit01 ≈ µtrunc −
1

3

Kp−3∑
i=

Kp
2

2i − 1

4
2Kp−2 − 1

2
2Kp−1

≈ −(Kp − 1)2Kp−2 − 1

3
2Kp−2 +

1

3
2
Kp/2 − 1

4
2Kp−2 − 1

2
2Kp−1

≈ −(Kp +
7

12
)2Kp−2,

(5.19)

where µ1−bit01 is the average error of the truncated multiplier when one the
correction partial products is ’0’ and the other one is ’1’. As a result, the
additive zero of µ2−bit01 which we call it bias01 is calculated as follows:

bias01 = (Kp +
7

12
)2Kp−2, (5.20)
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5.4 Data-dependent Correction of Truncated Multipliers

which can be rewritten as:

bias01 = bias00 +
35

12
2Kp−2

≈ bias00 + 2Kp−1 + 2Kp−2.
(5.21)

In addition, when both correction partial products are ’1’ (Fig. 5.3(d)),
the average error of the truncated multiplier is calculated using the following
formula:

µ2−bit11 ≈ µtrunc −
Kp−3∑
i=

Kp
2

2i − 5

4
2Kp−2 − 3

2
2Kp−1

≈ −(Kp − 1)2Kp−2 − 2Kp−2 + 2
Kp/2 − 5

4
2Kp−2 − 3

2
2Kp−1

≈ −(Kp +
17

4
)2Kp−2,

(5.22)

where µ1−bit11 is the average error of the truncated multiplier when both of the
correction partial products are ’1’. The additive zero of µ2−bit11 called bias11
can correspondingly calculated as follows:

bias11 = (Kp +
17

4
)2Kp−2, (5.23)

which relative to bias00 can be rewritten as:

bias11 = bias00 +
79

12
2Kp−2

≈ bias00 + 2× 2Kp−1 + 2× 2Kp−2.
(5.24)

Eq. (5.21) and Eq. (5.24) indicate that to correct a truncated multiplier with
2 bits, besides a constant bias (bias00), the correction partial products should
be placed in their bit positions (i.e. Kp−1) and also be repeated in bit position
Kp − 2. Fig. 5.6 shows a 2-bit correction for a 4-bit truncated multiplier with
Kp = 4 as an illustration.

5.4.3 m-bit Correction

The correction of truncated multipliers can be extended to m-bit correction,
where increasing m increases the hardware cost of the multiplier while the error
behaviour of the multiplier is improved. Consequently, choosing the right m,
depends on the requirements of the application. Fig. 5.7 shows an illustrative
example with probabilities of the LSP elements where correction is carried out
with m = Kp. In a similar way as for 1-bit and 2-bit corrections, first, the
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a3b1 a2b1a2b1

a1b2a1b2a3b2

a2b3

a2b2

1a1b3a3b3

Kp = 4

Fig. 5.6: The partial product tree of a 2-bit corrected truncated multiplier with
4-bit truncation (Kp = 4). The red colored elements in LSP are the
correction biases.

correction is calculated when all the correction partial products are zero (in
the example of Fig. 5.7(a) when all the elements of MC are ’0’). Let us call
this correction bias as bias0. Afterwards, the correction corresponding to each
partial product of MC is calculated. In other words, the average error of the
truncated multiplier when only one element of the MC is ’1’ is calculated. From
Fig. 5.7(b)-(c), it can be seen that regardless of which element is ’1’ the bias
(the average of the LSP elements) remains almost the same. Let us call this
bias1.

From Fig. 5.7, Table 5.1 and earlier discussions, the bias0 which is the
additive zero of the average error in case all the correction bits are zero, can be
calculated by the following formula:

bias0 ≈ µtrunc −
5

36

Kp−2∑
i=Kp−m

(i+ 1 +m−Kp)2
i − 1

4
n2Kp−1 − 1

6
2Kp−2 − 1

12
(Kp −m)2Kp−3

≈ (4Kp − 3m− 3)2Kp−4.

(5.25)

The coefficient of Eq. (5.25) are the difference of the probabilities of the LSP
elements of the truncated multiplier (Fig. 5.2(b)) and the probabilities extracted
from Table 5.1 for the truncated multiplier with correction bits.

Similar to 1-bit and 2-bit corrections, bias1 can be calculated relative to bias0.
By observing the difference of probabilities of LSP elements of the case where
all the correction bits are zero, and the case which only one of the correction
bits is ’1’, the formula for bias1 is be computed as:

bias1 = bias0 + 2KP−1 + 2Kp−2. (5.26)

Eq. (5.26) implies that in order to correct a truncated multiplier with m bit,
besides a constant bias (i.e. bias0), a pair of each correction partial product
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Fig. 5.7: The probabilities of the LSP elements of a truncated multiplier with
Kp = 6 for a uniform distribution (a) when all the elements of MC
are ’0’,(b)-(c) when only one element of MC is ’1’ and the rest are
’0’, (d) when all the elements of MC are ’1’.

need to be placed in bit positions Kp − 1 and Kp − 2 to achieve the best error
compensation.

5.5 A Template for Truncated Multipliers
The main challenge for the design of the data-dependent multipliers after
finding the best compensation is how to efficiently apply the corrections to
hardware. In this section, a template for truncated multipliers is proposed,
where based on the variables of the template, the best correction is found using
the formulas presented in previous sections.

A full-width digital n×n multiplier computes the 2n-bit product as a weighted
sum of the partial products [75, 76]. However, in many signal processing
applications, the data path is of a fixed-width. In these applications, the
precision of 2n bits at the output of multiplier is often more than required. As
a result, a multiplier with less output bits where the accuracy is traded-off with
hardware cost can be used in these applications. An n-bit truncated multiplier
with n-bit output is a widely used design in digital signal processors where the
input and outputs of the data path can be stored in registers with the same
bit-width.

Besides, considering the whole system, rounding the output of the multiplier
or set some output bits to constants, reduces the number of registers at
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multiplier’s output. Moreover, the reduced bit-width when passed to the next
block requires less hardware for computation and communication of the data,
resulting in a twofold improvement in hardware cost and performance. As a
result the template which is introduced here combines the idea of full-width
multipliers which are of interest of approximate computing community and the
fixed-width multipliers where used frequently in signal processing applications.
As a result the template employs two variables. One is the bit-width of removed
partial products (Kp) and the other one is the number of LSBs of the multipliers
output which are pruned or are set to constant (Ko). A conceptual diagram
of the proposed template is depicted in Fig. 5.8. In the figure partial product
tree of a truncated multiplier is illustrated where the LSP of the multiplier is
hatched.

Kp

Ko

Partial Product Tree

Fig. 5.8: The conceptual diagram of the template of the truncated multipliers.
The hatched part is the LSP with Kp the bit-width of the removed
partial products. Ko is the width of output truncation or constant
output.

In order to adapt the correction biases calculated in previous sections to
the proposed template, the formulas need to be modified. Indeed, the output
truncation with Ko bits introduces a rounding error which is added to the
previously calculated formulas. The Kp bits of the multiplier output has already
been truncated due to removing the LSP. Therefore, the additional rounding
error corresponds to the Ko − Kp-bit of bit positions Kp to Ko − 1. Since
the probability of the output bits in these bit positions to be one is 1/2, the
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additional rounding average error can be calculated as:

µrounding = −1

2

Ko−1∑
i=Kp

2i

= 2Kp−12Ko−1.

(5.27)

Since the rounding error and truncation error are independent, the average
error of template is calculated as:

µtemp = µtrunc + µrounding. (5.28)

As discussed earlier, the correction constants are the additive inverse of the
average error of the multiplier. As a result, the rounding error need to be added
to the Eq. (5.25) and Eq. (5.26) to modify the bias corrections and adapting
them for the presented template. In fact, it is enough to add the additional
rounding error to bias0, while the bias1 is determined relative to bias0. The
modified correction biases, as a result, are as follows:

bias0temp = (4Kp − 3m− 3)2Kp−4 + 2Ko−1 − 2Kp−1

= (4Kp − 3m− 11)2Kp−4 + 2Ko−1.
(5.29)

bias1temp = bias0temp + 2KP−1 + 2Kp−2, (5.30)

Let us call the m-bit corrected template multiplier as MultA. Due to the
fact that Ko bits of the LSBs of the MultA output are truncated, the sum
of the correction partial products in bit position Kp − 1 and Kp − 2 are
subsequently pruned. As a result, this rounding error need to be considered as
well. Considering the probability of the output sum of the correction bits as 1/2
(which is almost precise for m > 3), the modified correction biases of MultA
are:

bias0MultA
= (4Kp − 3m− 11)2Kp−4 + 2Ko−1 +

1

2
(2Kp−1 + 2Kp−2)

= (4Kp − 3m− 5)2Kp−4 + 2Ko−1.
(5.31)

bias1MultA
= bias0MultA

+ 2KP−1 + 2Kp−2, (5.32)

As a result the best error correction to the truncated multiplier of the template
architecture is to employ m partial product form MC in LSP, duplicate them in
bit position Kp − 2 and add the constant correction of bias0MultA

to the partial
product tree.

Although MultA introduces an optimal error correction, the fact that the m
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correction partial products of MC need to be duplicated increases the hardware
cost of the corrected multiplier. In consideration of the fact that the duplication
of correction bits, which are in bit position Kp − 1, to bit position Kp − 2 is
indeed corresponds to multiply the correction bits by ’1.5’. In other words,
the weight of the correction partial products need to be ’1.5’. Alternatively,
one can employ the weight of 2 for the correction which correspond to put the
correction bits in one higher bit position (i.e. Kp). However, a modification
to bias0 is required due to the excess 0.5 weight of bias1. Let us call this
alternative design MultB. Thus, the bias1MultA

is formulated as:

bias1MultB
= bias0MultB

+ 2KP , (5.33)

Regarding the bias0 the extra rounding error added in Eq. (5.31) does not
appear in MultB. As a result, the only modification to bias0 of MultB is to
consider the excess 0.5 weight of correction bits. Correspondingly, because the
m correction bits are in bit position KP instead of Kp− 1 and Kp− 2, an extra
correction has already been added which needs to be deducted from Eq. (5.29).
Since the probability of each partial product is 1/4, the aforementioned extra
correction can be calculated by the difference of the weighted sum of the
correction elements when they have the weight of 2 (MultB) with when their
weight is 1.5 (MultA).

µEb
= m(

1

4
)2Kp −m(

1

4
)(2Kp−1 + 2Kp−2) = m.2Kp−4, (5.34)

where µEb
is the extra correction which has already added to MultB due to

the use of correction bits with weight 2 instead of weight 1.5 as in MultB.
Correspondingly, bias1 of multB can be calculated as:

bias0MultB
= (4Kp − 3m− 11)2Kp−4 + 2Ko−1 −m.2Kp−4)

= (4Kp − 4m− 11)2Kp−4 + 2Ko−1.
(5.35)

5.6 Experimental Results

To assess the circuit characteristics and evaluate the architectures presented
in this chapter, we have generated VHDL description of the multipliers. The
architectures are synthesized in a commercial low-power 40-nm library for 16-bit
operands. Using back-annotated simulations, dynamic power dissipation of the
multipliers is evaluated after synthesis in the frequency of 200MHz. All the
multipliers have been simulated for 107 uniformly distributed random input
patterns.

In this section, first, the proposed data-dependent correction strategies are
evaluated considering different number of bits for correction (m-bit correction
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for m ∈ {1, Kp}). Following the evaluation and comparison of the existing
approximate multiplier in Chapter 3, the truncated multiplier shows the best
trade-off between energy consumption and accuracy. Correspondingly, if we
show that the proposed architectures outperform the truncated multiplier for
all the m-bit corrections, they outperform the exiting approximate multipliers
in the literature. As a result, the proposed architectures MultA and MultB are
compared, for different Kp truncation and all the possible m-bit truncation, with
the truncated multiplier. Afterwards, in a more concrete illustration, MultB
with a maximum m (i.e. Kp-correction) and a low m (i.e. 2-bit correction) are
compared with the existing approximate multipliers, as well as two stochastic
exact multipliers. Subsequently, we configure the template to have a fixed-
width multiplier, and the proposed architectures are then compared with the
fixed-width multiplier of [79].

In order to evaluate the proposed architectures, they are compared for 3
different truncations (Kp = 12, Kp = 14, and Kp = 16) with the truncated
multiplier (TruncM). The comparison for mean absolute error is shown in
Fig. 5.9. The Kp for TruncM is changed from 10 to 16 in the figure. The
rationale to choose only 3 different Kp for the proposed architecture is to
keep the figure readable. As can be seen in the figure, both MultA and
MultB outperform the TruncM for all the ”m”s, which means the proposed
architectures even with 1-bit corrections outperform the existing architectures
in the literature. In addition, it can be observed that, as expected, the difference
between MultA and MultB is noticable for larger ¡m¿s, where MultB is slightly
more accurate with the cost of more ADP and PDP. In the case of smaller ’m’ s,
the behaviours of MultA and MultB are marginally different, and the reason is
that the area and power consumption overhead of MultA over MultB reduces
by decreasing the m, while at the same time, the superiority of its accuracy
decreases.

The differences between the proposed multipliers and the truncated multiplier
are highlighted on 3 spots on the Fig. 5.9 as illustration. As can be see in
the figure, MultB reduces the area-delay product by about 15%, for the same
accuracy, in comparison with the TruncM. In another scenario, for the same
power-delay product, the proposed multiplier mitigates the mean absolute error
by 67%, as shown in Fig. 5.9(b). In the same figure, the 18% reduction in the
energy consumption is pointed out for the same MAE.

In Fig. 5.10, a similar comparison for mean squared error is demonstrated.
In the same way, in this graph, the TruncM is shown for Kp from 10 to 16,
while the proposed multipliers are shown for Kp = 12, Kp = 14, and Kp = 16.
Considering the trade-off between the MSE and the hardware cost, it can be
seen that the proposed multipliers perform better than the TrunM. As an
illustration, a scenario where the TruncM and MultA have the same PDP
is highlighted. It can be observed that the MultA with Kp = 14 and 1-bit
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Fig. 5.9: Comparison of Mean Absolute Error (MAE) of the multipliers
vs. their (a)Area-Delay Product (ADP), (b)Power-Delay Product
(PDP), (c)Delay. The Kp of TruncM varies from 10 to 16.
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(PDP), (c)Delay. The Kp of TruncM varies from 10 to 16.
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Fig. 5.11: Comparison of MultB with existing approximate multipliers for
Mean Absolute Error (MAE) vs. (a) Area-Delay Product (ADP),
(b)Energy-Delay Product (EDP), (c)Delay.

correction reduces the mean squared error by 85% in comparison with the
TruncM with Kp = 14.

The comparison of the proposed multipliers with the state-of-the-art is
depicted in Fig. 5.11 and Fig. 5.12 for mean absolute error and mean squared
error, respectively. Due to reason that the difference of MultA and MultB are
hardly observable when depicted in these graphs, only MultB is compared with
the existing multipliers. In both of the graphs, MultB is shown for Kp from 10
to 16. In addition, two divergent m are selected for the MultB to be depicted
in the figures; Kp-bit correction where all the bits of the MC column of LSP
are employed for the correction, and 2-bit correction where two middle partial
products of MC are used for the correction. The TruncM is shown for Kp from
4 to 18, while the BAM multiplier is depicted for horizontally and vertically
truncated from 1 to 8 bits. The truncation for truncated array multiplier and
truncated Wallace multiplier is from 2 bits to 8 bits of the input data. The
AM1, AM2 are shown for 12-bit to 16-bit approximation of their LSBs, while
the TAM1 and TAM2 are shown for 12 to 14 bits. The EvoApprox multipliers
have been taken directly from the library and they are the pareto optimal
selection of their multipliers. Finally, the stochastic multipliers are the exact

101



5 Inaccurate Multipliers

1 2 3 4

·10−18

20

213

226

239

252

ADP [m2s]

M
S
E

(a)

1 2 3 4 5 6 7

·10−21EDP [Js]

(b)

TruncM AM1 EvoApprox TAM1
TAM2 AM2 TruncAM MultB 2-bit
Stoch-DelayEfficient TruncWM BAM MultB Kp-bit
Stoch-AreaEfficient

1 1.5 2 2.5 3 3.5

Delay [ns]

(c)

Fig. 5.12: Comparison of MultB with existing approximate multipliers for
Mean Squared Error (MSE) vs. (a)Area-Delay Product (ADP),
(b)Energy-Delay Product (EDP), (c)Delay.

mutipliers synthesized for a relaxed timing constraint (Stoch-AreaEfficient) and
a relatively stringent timing constraint (Stoch-DelayEfficient).

As discussed in Chapter 3, the comparisons in the literature lack the baseline
design of truncated multiplier. Considering the TruncM as the baseline for
the comparison, Fig. 5.11 compares the proposed multipliers with the state-of-
the-art for mean absolute error. As can be seen in the figure, MultB for both
Kp-bit correction and 2-bit correction outperform the existing architectures. It
is observed that, the TAM2 for the same EDP and ADP, has a considerably
higher MAE in comarison with MultB. The multipliers AM1, AM2, TAM1, and
TAM2 are listed in [107,113] as the best existing approximate multipliers. In
Fig. 5.12 the comparison of the MultB with the existing approximate adders is
illustrated for the mean squared error. Irrespective of TruncM, the automatic
generated multipliers of EvoApprox show the best trade-off, and still different
configurations of MultB outperform the EvoApprox multipliers. As an instance
the MultB with Kp-bit correction when Kp = 16 mitigates the MSE by 93% in
comparison with the EvoApprox multiplier with a similar EDP; and it reduces
the EDP by 47% in comparison with another EvoApprox multiplier with a
similar MSE.
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Fig. 5.13: Comparison of the proposed multipliers with the multiplier of [79] for
Mean Absolute Error (MAE) versus (a)Area-Delay Product (ADP),
(b)Power-Delay Product (PDP), (c)Delay. The Kp-bit and (Kp−1)-
bit, following the name of MultA and MultB, indicate the number of
bits employed for the correction: Kp-bit correction and (KP −1)-bit
correction, respectively.

In order to evaluate the proposed multipliers when Ko is different form Kp,
let us set the Ko = 16 and compare them with the fixed-width multiplier
proposed in [79]. The comparison in shown in Fig. 5.13 and Fig. 5.14 for mean
absolute error and mean squared error, respectively. The multipliers depicted
in both figures are synthesized and simulated for Kp from 10 to 15. In the
case of MultA and MultB, the Kp-bit correction and (Kp − 1)-bit correction
are selected for the comparison. It can be seen in the figures that MultB
when corrected with (Kp − 1)-bit has almost the same behaviour as multiplier
of [79]. MultB with Kp-bit correction outperforms the multiplier of [79] when
Kp = 15 and for the other Kps it has lower error and slightly higher PDP
and ADP. MultA compared with the fixed-width multiplier of [79] has higher
ADP and PDP, while it reduces the MAE and MSE. Obviously, by decreasing
m (the number of bits employed for the correction), the energy efficiency can
be improved with the cost of more error. It is required mentioning that the
multiplier of [79] is a promising design which probably because of being limited
to fixed-width has not gotten deserved attention from the researchers during
the last years.
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Fig. 5.14: Comparison of the proposed multipliers with the multiplier of [79] for
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5.7 Conclusion

In this chapter, a data-dependent correction strategy for truncated multipliers
has been proposed. Based on this methodology, two multipliers have been
developed. Using experimental results, it has been shown that the proposed
multipliers outperform the existing approximate multipliers. The proposed
multipliers mitigate the error by up to 85% in comparison with the baseline
design (i.e. truncated multiplier) for similar hardware cost. Furthermore, for
the similar error, the proposed multipliers reduce the ADP and PDP up to
18%. In addition, a template for truncated multipliers have been presented
in this chapter. The template is proposed based on the fact that by reducing
the bit-width of the output of the multiplier, the overall system performance
is improved. As a result, Kp and Ko have been defined for partial product
truncation and output truncation of the template multiplier. By choosing the
Ko equal to bit-width of the input data, a fixed-width multiplier is configured.
Correspondingly, the proposed multipliers have also been compared with the
fixed-width multiplier of [79]. It has been shown that some configurations of the
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template can result in less error as well as lower hardware cost in comparison
of the multiplier of [79].
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6.1 Introduction
After the quantitative evaluation of different approximate and stochastic units,
in this chapter, we study the relevance of the approximate computing units in
modern applications. The goal of this chapter is to show the applicability of
the approximate computing units in real world applications, rather than just to
evaluate the metrics of the proposed approximate and stochastic architectures.
In order to fulfill this purpose, we study different case studies including a Sobel
filter on an approximate Single Instruction, Multiple Data (SIMD) coprocessor, a
motion estimation, combination of task allocation and approximate computing
for Internet of Things (IoT), and employing approximate computing units for
industrial wireless communication systems.

In the next section, we evaluate the results of a well-known edge detection
algorithm in an approximate SIMD coprocessor, where the hybrid adder archi-

107



6 Error tolerant applications - case studies

tectures selected by the framework proposed in Chapter 4 are employed for the
approximation. The evaluation results presented in this section are the outcome
of a coopertaion with IMS group from university of Hannover, under a German
Research Foundation (DFG) project entitled ”Quantification of the Trade-off
between Energy and Exactness in Computer Vision Processor Architectures
Enhanced with Stochastic Computing Mechanisms”. The evaluation results
presented in this section have been published in an IEEE journal [49].

In section 6.3, a motion estimation algorithm (Egomotion [114]) is used to
evaluate the impact of combination of stochastic communication and approxi-
mate computing techniques. The aim of this study is to understand the error
of the whole system due to the combination of the techniques is additive or
there are errors overlap which increase the potentials for even more gains in
terms of performance and energy efficiency. This work is also the result of
the collaboration with IMS institute from university of Hannover, under the
above-mentioned DFG project.

In section 6.4, the applicability of approximate computing in IoT applications
is studied by combining task allocation and approximate computing. The main
goal is to show what are the gains of considering approximation from the very
beginning in the design flow. The results of this collaborative work carried out
in ITEM.ids group of university of Bremen, have been published in [52,54].

Finally, in section 6.5, the impact of approximate computing on an industrial
wireless communication system is evaluated. The main aim of this work is to
study the relation of the errors of a single approximate unit and the whole
system’s accuracy. The evaluation results presented in this section are the
outcome of a collaboration with ITEM.me group of university of Bremen. The
evaluation results presented in section 6.5 have been partially published in [55].

In the following, each of these case studies are detailed and the impacts of
applying approximation on the results are discussed.

6.2 Approximate SIMD Coprocessor: Sobel filter

Among feature detection algorithms, edge detection is an image processing
technique to find boundaries of objects within an image. Edge detection finds
sharp changes in intensity or color in an image, where a high value indicates a
steep change and a low value corresponds to a trivial change. A well-known
technique for edge detection is a Sobel Operator. The Sobel operator calculates
the first derivative of an image by performing a convolution between an input
image and two kernels. Indeed, two kernels and the convolution operation are
used to detect the edges in the image. One kernel to approximate intensity
change in the x-direction (horizontal) and another kernel to approximate
intensity change at a pixel in the y-direction (vertical).

In this subsection, a case study using different approximate adders in the ALU
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of a single instruction multiple data (SIMD) coprocessor for a microprocessor
without interlocked pipelined stages (MIPS) CPU is presented. The goal of the
case study is to assess the applicability of the proposed design framework in
Chapter 4 in more complex scenarios and not to evaluate the gains achieved
using the approximate adders. Clearly, the gains are not considerable here
since we are changing only one adder in the ALU of a SIMD processor. The
performance enhancement as well as circuit area and power consumption
reduction are evaluated, while executing a Sobel image filtering application.
The Sobel filtering has been chosen as a relatively simple application which
uses addition in its algorithm. In addition, Sobel algorithm is one of the typical
applications used for approximate computing bechmarking listed in [115].

Processor: Approximate SIMD Coprocessor

The underlying processor substructure for this case study is depicted in Fig. 6.1.
To decouple the performance of the SIMD coprocessor from the main MIPS
CPU, the coprocessor resides in an own clock domain. The main MIPS CPU
is used for handling the application control flow, issuing vector instructions
over a clock-domain-crossing FIFO and initiating DMA transfers between the
system main memory and the coprocessor’s local memory, which also crosses
the clock domain boundary.

Main 
Memory

MIPS 
Instr. & 

Data 
Caches

MIPS 
Core

Instr. FIFO

SIMD Coprocessor 
(hMips)

hMips 
Local 

Memory
Register File (16 Vectors)

+/- +/-...

64 Subwords (16-bit), 
Adders/Subtractors 

exchangeable

DMA

Instruction 
Issuing

Coprocessor 
Clock Domain

Fig. 6.1: SIMD coprocessor framework. Components that are not considered
in the case study are grayed out.

For a meaningful evaluation, the coprocessor contains only the necessary
hardware resources required by the executed Sobel filtering application, i.e.,
a register file containing 16 registers with 64 16-bit element subwords each.
Furthermore, each subword ALU is reduced to an exchangeable and config-
urable approximate adder/subtractor and fixed element subword permutation
multiplexers required to calculate the Sobel matrix convolution. The criti-
cal path and thus the performance limitation is located in the approximate
adder/subtractor unit.
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SIMD coprocessor equipped with different approximate adder entities
and parameterizations. The solid lines denote the circuit area, the
dashed lines denote the energy per frame.

Evaluation Flow

For evaluation, the coprocessor ALUs are implemented with different approxi-
mate adder entities, including those identified by our framework. The SIMD
coprocessor is synthesized to ASIC gate-level netlists for coprocessor clock
periods between 3.4 and 4.9 ns, using a TSMC 40 nm low-power standard cell
library. After the circuit area is obtained from synthesis, gate-level netlist-
based timing simulations using annotated parasitics are performed to obtain
the switching activity in the coprocessor for power analysis.

The remaining main MIPS CPU system is simulated functionally and clocked
fast enough to ensure that the coprocessor’s performance is not limited by the
instruction issuing. Moreover, all necessary DMA image transfers are performed
prior to all switching activity and performance measurements. Therefore, the
pure computational performance of the coprocessor is considered, being only a
function of the clock period. For the Sobel filtering application, the performance
ranges between 275 us per 512×512 pixels grayscale image frame for a clock
period of 4.9 ns and 190 us per frame for 3.4 ns. The power consumption of
the coprocessor is converted to an energy budget per image frame using these
performance values.

Evaluation Results

In order to evaluate the adder architectures inside the coprocessor, first we
compare a precise adder, an OLOCA architecture [47], and two conventional
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approximate adders for all the frequencies. This way, the figure is readable
because of choosing limited number of adder architectures. In a separate figure,
using bar graphs, we compare more adder architectures for their error values
as well as their silicon area for three different frequencies.

Fig. 6.2 compares the total coprocessor circuit area and total energy per
frame as a function of the performance for selected adder configurations. This
figure compares a precise adder, a selected adder from our framework, and two
classical approximate adders for the performance ranges between 275 us per
frame and 190 us per frame. The arrows indicate how to find area- and energy-
efficient configurations for a desired performance value or more performant
implementations for given area and energy budget constraints. It can be
seen in the figure that the OLOCA architecture developed using our template
outperforms the existing approximate architectures, from both circuit area and
energy consumption points of view.

The reference precise adder configuration reaches a maximum performance
of 215 us per frame. By inserting approximate adders, the performance can
be boosted by up to 12%. At a fixed performance, the evaluated approximate
adders can reduce the coprocessor circuit area by up to 10% and the energy
dissipation by up to 15%. Given the fact that the precise ALU occupies 12% of
the total coprocessor area and consumes 7% of the total power, the significant
reduction in hardware cost becomes clear. Especially, the energy dissipation in
non-ALU parts of the coprocessor is reduced as well.

Fig. 6.3 depicts the comparison of the total coprocessor circuit area for
three different frequencies as well as the probability of the error of adder
architectures. More adder architectures are compared in this figure: the precise
adder, conventional approximate adders and hybrid adders selected by the
framework. The probability of the error of the adders are shown for a chosen
binarization which corresponds to the threshold (τ = 16) of our new metric.
As can be seen in the figure, considering the error-area trade-off for all the
three frequencies, the selected architectures by the framework outperform the
conventional approximate architectures for the selected application.
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6.3 Motion Estimation: Combining Stochastic
Communication and Approximate
Computation

A less-than-optimal or an approximate result is sufficient for many applica-
tion domains such as computer vision and machine learning. The combined
approximation across all the subsystems has considerable potential. In [116],
the full system approximation and its advantages are compared with a single
subsystem approximation. It presents the trade-off between the quality and
energy efficiency in the context of the overall embedded computing for an
example of a smart camera system. Even though they demonstrate practically
the potential energy saving of the full-system approximation, they have not
analyzed the interaction of subsystems and the resulting error distributions
which is important for decision-making in the architectural level.

In this section, a combined approximation of the computational and commu-
nication subsystems is studied. First, the impact of two system components on
the error in a single system is analyzed, where we show that the error due to
the combined approximation cannot be modeled using simple models and the
principle of superposition. The approach is studied on an Egomotion estimation
which is widely used for autonomous driving applications.

The research works in the field of approximate communication can be roughly
categorized into the lossy compression/decompression [117], dual-voltage approx-
imation [118], and approximate encoding techniques [53]. All these techniques
leverage the intrinsic resilience in computations to improve communication
performance and reduce the energy consumed by interconnects.

One of the promising approximate communication techniques is the memory-
less encoding. An example of this approach is presented in [53]. It uses a
combined integer-value coding (CIV ) technique which is the combination of
Swap-Coding and Inversion-Coding to reduce the integer value deviation of
the received values while signals are transmitted stochastically through the
interconnect.

The Swap-Coding scheme, which is developed for uniform distributed signals,
leverages the physical properties of CMOS links and changes the assignment
of the signals to the wires so that the integer-value deviation is reduced. A
careful swap of the signals to the wires can reduce errors. On the other
hand, there are many real-world applications such as image/video processing,
wireless sensor networks and voice processing in which correlated signals are
transmitted and processed. Inversion-Coding leverages the value locality of
the real-world applications to exchange the probability of the worst-case and
best-case transitions. The combination of these two coding techniques form
the CIV coding technique.
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In this study, we transmit data through the interconnect stochastically
with voltage and frequency over-scaling. To examine our approach, we use
an approximate CIV coding technique along with Conventional transmission
of signals with no coding. Besides, in order to approximate the computing
subsystem, we employ approximate adders, where our goal is to analyze the
impact of different error philosophies (see Fig. 4.7). Correspondingly, the
OLOCA adder from small errors philosophy, the ETAII adder from errors
infrequently, and the Hybrid adder, which combines the two approaches, are
employed for our case study.

Egomotion estimation

Egomotion estimation is a widely used technique that holds great significance
for computer vision applications, robotics, augmented reality and visual si-
multaneous localization and mapping. In this section, SIFT-based Egomotion
estimation has been implemented as a reference application for interpreting
scenes based on the extraction of distinctive image features.

Scale-Space
Keypoint
Extraction

Egomotion
Estimation

Gaussian Pyramid DoG

S
ca

le

Li+1

Li

D

I(x, y)

Fig. 6.4: The general flow of our application. The simplified Scale-Space cre-
ation step is illustrated which consists of Gaussian pyramid creation
and difference of Gaussian (DoG).

SIFT Feature Extraction The purpose of SIFT is to detect distinctive image
keypoints and to generate a unique description, which can be used to identify
features and objects in images independent of their size and orientation, i.e.
scale- and rotation-invariant.

The SIFT algorithm creates a scale space of the original image which is the
consecutive Gaussian convolution of the original image with increasing standard
deviation and downsampling of the resulting images. The scale-space L(x, y, σ)
is defined by convolving the Gaussian kernel G(x, y, σ) with an input image
I(x, y):

L(x, y, σ) = G(x, y, σ) ~ I(x, y, σ), (6.1)
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Left 
Camera 
Images

Right 
Camera 
Images

Previous 
Frame

Current 
Frame

Fig. 6.5: Circular matching of keypoints in a stereo image sequence

where σ is the scale parameter and depends on the total number of pyramid
scales, which are organized in octave. The next octave is derived by the
downscaling of the Gaussian image. Via a pixel subsampling with a factor
of two, the image width and height are halved to obtain higher scales of the
pyramid without an excessive increase of the Gaussian kernel size. After the
Gaussian pyramid construction, a Difference of Gaussian (DoG) pyramid is
formed by subtracting adjacent images within an octave:

D(x, y, σi) = L(x, y, σi+1)− L(x, y, σi). (6.2)

The parameter i is the scale index for the Gaussian-filtered images in one
octave.

Fig. 6.4 shows the flow of our application. It provides a simplified Scale-Space
creation operation for one scale. Li+1 and Li is used to refer to the Gaussian
images L(x, y, σi+1) and L(x, y, σi), respectively, in the rest of this work. Please
note that the imprecise adders are implemented in this stage of the application
when DoG is derived.

To extract key points, in the next step, the algorithm refines the keypoints’
location and assigns orientation to them. This effectively makes the algorithm
rotation invariant. Finally, keypoints descriptor as a final representation of the
image is generated. Using this representation the features can be identified and
keypoints of different images can be matched. A detailed description of the
SIFT algorithm can be found in [119].

Egomotion Estimation Egomotion estimation provides a method to recon-
struct the 3D scene and measure the movement of a stereo camera system
from a sequence of images [120]. This algorithm is based on keypoint and
feature matching. A basic keypoint matching method and circular image frame
matching to find stable keypoints is illustrated in the following.

Brute-Force Matching is the basic keypoint matching method to find similar
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keypoints in different images. The feature descriptors extracted by SIFT from
two images are compared one by one. Because the descriptor is rotation-
invariant and normalized, further processing is not needed. The distance of
two feature indicates the similarity between the two keypoints. Two feature
vectors with the smallest distance are accepted as the most similar. To reduce
false matchings, a position check is used to filter out impossible keypoint pairs,
whose vertical differences are too large to be reasonable for a stereo camera
scene.

To reconstruct the 3D scene, a process called circular matching is used to
trace the same keypoints over time in sequential image frames. First, keypoint
matching is made between left and right images, current and previous images.
As a result, four pairs of matching are created: left current and right current,
left current and left previous, right current and right previous, left previous
and right previous frames. The keypoints that exist in all matchings are valid
matched keypoints. In order to find such keypoints, a circular matching is
created through 4 images (Fig. 6.5). For example, a circular matching starts
from a keypoint in the left previous image. The blue line points to the matched
keypoint in the right previous image. Then, along the red lines, keypoints in
the current image frames are matched. After a complete circular matching
process, valid matched keypoints are found if start and end keypoint in the left
previous image are the same. The 3D position of valid matched keypoints is
computed in each frame by using the horizontal disparity, and the movement of
the same keypoints overtime is generated by their positions in different frames,
which is used to obtain the egomotion of the stereo camera system and thus,
the vertical movement.

Egomotion Estimation Quality Metrics Quantitative quality metrics are
inevitable for the evaluation of computer vision algorithms. Although these
metrics do not necessarily reflect subjective perception, quantitative measures
are required for a quick and automated evaluation of the impact of approximate
and stochastic mechanisms on the application compared to a golden reference.
In the following, the used metrics for egomotion estimation quality evaluation
are introduced, i.e., the rotation angle mean absolute error, RMAE, and the
translation velocity mean relative error, TMRE:

RMAE =
1

N

N∑
i=1

| ~rreference(i)− ~restimated(i)| (6.3)

TMRE =
1

N

N∑
i=1

| ~vreference(i)− ~vestimated(i)

~vreference(i)
|, (6.4)
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where N is the number of frames of the evaluated video sequence, ~r = (rx, ry, rz)
the angular rotation rate per frame around the vehicle axes, and ~v = (vx, vy, vz)
the translation velocity along the vehicle axes. These metrics do not compare
accumulated movements, i.e., trajectory endpoints of estimated and reference
movements, but an averaged error for the estimated movement parameters per
frame of a video sequence. The reason is that an evaluation based on trajectory
endpoints can be misleading because it is dependent on the frame where an error
occurred. In order to evaluate the correlation between the errors of stochastic
communication and approximate computing units, a sequence of images is
transmitted using ideal, conventional and CIV-based communication strategies.
The resulting images are fed to the feature detection algorithm (i.e. SIFT).
Further on, in order to study the effects of computation errors, we approximate
the subtractor unit of the DoG stage of the SIFT. It should be noted that
the goal here is not to show the best approximate unit, but to illustrate the
effects of the combined stochastic communication and approximate computing
strategies. In the rest of this section, we refer to the combination of ideal
communication and exact computation as exact-approach. Besides, Li and Li+1

are the inputs and D is the output of the subtractor unit of the DoG stage, as
defined in Fig. 6.4.

Table 6.1: The effects of communication strategies (ideal, conventional and
CIV-coding) on the input signal of the DoG stage.

Li ErrLi PSNR
Mean , Sigma Mean , Sigma

ideal 3.79e7 , 2.04e7 - -

Conventional 4.77e7 , 1.82e7 -9.71e6 , 2.26e6 52.68

CIV 3.80e7 , 2.04e7 -3.47e4 , 2.26e5 85.46

In order to compare the effects of different communication strategies, Table 6.1
tabulates the distribution of a signal after the Gaussian filtering stage, i.e. on
of the input signals of the DoG stage, as well as the error characteristic of the
input. It can be seen that using the CIV coding, the error at input Li, has a
10-time smaller sigma, while its mean value is also considerably smaller than the
conventional communication strategy (no coding). The resulting changes in the
distribution of Li is important because the errors due to this distribution can
be masked by the selected adder in the next stage of the application. Table 6.1
shows that not only a wise selection of stochastic communication may enhance
the approximation results, but also may open up tremendous potentials for
joint approximation and correspondingly can exploit the most benefits from
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the approximation techniques.
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OLOCA

ETAII

Hybrid adder

Pareto optimal

Fig. 6.6: The effect of combining stochastic communication and approximate
computation on motion estimation. Rotation angle accuracy (RMAE)
versus Area-Delay Product. a) ideal communication, b) conventional
communication, and c) CIV coding communication.

Fig. 6.6 compares the effects of different communication strategies on the
accuracy of the motion estimation application using different approximate
adders. In order to keep the figure readable, only some of the adders are named
in the figure. For the OLOCA adders, from left to right in each figure, OLOCA-
16 to OLOCA-10 are included. The numbers correspond to the lower significant
sub-adder of the OLOCA. The hybrid adders are selected to be optimized for
the CIV coding and to be fair in the comparison, they are the same for all the
three communication strategies. The sub-adders in each adder architecture
are Ripple-Carry adders. As can be seen in this figure, a combination of CIV
communication and Hybrid adder (the marked one with a red circle in the
figure) has the same quality as an exact-approach. This corresponds to a
20% improvement in the speed of the communication subsystem (from time
period of 2.1 ns of the exact to 1.7 ns using stochastic CIV), as well as a 50%
improvement in Area-Delay product (ADP) of the adder architecture (from
7.5e-19 sm2 of exact to 3.7e-19 sm2 of the Hybrid adder) without any accuracy
penalty. As illustrated in this figure, for a tolerable maximum error (the red
dashed line for example), there are different combinations of CIV coding and
approximate adders which can be selected to improve the energy consumption,
performance and silicon area of the system.

Considering the error behavior of ETAII and Hybrid adders, presented in
Chapter 4, in order to model the interaction of the errors of these architectures
with stochastic communication, the Gaussian mixture model needs to be used.
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Table 6.2 compares the accuracy of these adder architectures considering
different communication strategies. An immediate phenomena which can be
noted analyzing the information of Table 6.1 and Table 6.2 is that the noise on
the output of the DoG stage is smaller than its input noise considering exact
computation for both conventional and CIV-based communication. It can be
concluded that the errors at output D cannot be described by uncorrelated
assumptions. The real errors are much better, and the rationale is the correlation
of the input signals. The highly correlated input signals result in masking of
some of the errors of the approximate adder architecture. This effect has not
been considered conventionally in the analysis of the approximate units.

A careful study of Table 6.2 shows that some of the lobes of the ETAII and
hybrid adders are integrated into the neighboring lobes. This phenomenon
happens due to the increase in the sigma of some lobes. In addition to the
information on the table, Fig. 6.6 illustrates that the selection of an optimized
Hybrid adder avoids some of the lobes to appear, resulting in better accuracy.

The combination of approximate computation and stochastic communication
in a single system has been studied in this section. It has been shown that due
to the error masking, combination of approximations provides an untapped
potential to exploit the most benefits from approximate computing. However,
because of the highly correlated signals, the interaction of the errors cannot be
modeled by conventional simple linear models. It has been observed that the
right selection of approximation techniques may provide the same accuracy as
the exact approach. For instance, combining a CIV coding and an optimized
Hybrid architecture, 20% and about 50% performance improvement can be
achieved in communication and computation subsystems, respectively.
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6.4 IoT: Combination of Task Allocation and
Approximate Computing

The emerging IoT technology can provide promising solutions for numerous
present-day society issues, such as intelligent manufacturing, smart cities,
remote healthcare, speech or face recognition, real-time online gaming and au-
tonomous driving [121]. The Internet of Things (IoT) devices are typically small
and battery-operated. Consequently, energy efficiency is always the primary
concern in regards to IoT applications [122,123]. Two promising techniques at
circuit and system levels are approximate computing and energy aware task
allocation, respectively, which can be employed to address the energy efficiency
for the IoT applications. However, the existing task allocation approaches are
designed without considering the aspect of approximate computing. In [52], this
gap is filled and the network lifetime subject to the accuracy requirements of
the applications is maximized. By considering both the approximate computing
and task allocation simultaneously, a non-linear problem is obtained to allocate
the tasks for the fog nodes (FN) and IoT end devices(EN), and to select the
corresponding execution modes (tasks in approximate or exact modes). To
efficiently solve this problem, a centralized Task Allocation algorithm taking the
Approximate Computing into account (TAAC) is proposed in [52] by converting
the non-linear problem into a linear programming problem. As executing the
centralized algorithm is a challenge for the resource limited IoT devices, it is
further extended to an optimal distributed algorithm based on Dantzig-Wolfe
decomposition to solve the problem of tasks distribution and execution modes
selection.

An IoT application is typically composed of a set of dependent computing
tasks which can be represented by Directed Acyclic Graph (DAG) as in [124,125].
The problem of task allocation combining approximate computing is modeled
as partitioning the DAG into two parts: one part is assigned to ED and the
other part will be executed by FN. Meanwhile, ED and FN also need to decide
whether to execute each of the assigned tasks in the exact execution mode
or approximate mode. Taking Fig. 6.7 for example: ED will execute task v1
in exact mode and task v2 in approximate mode; FN will execute task v3 in
approximate mode, task v4 in exact mode and task v5 in approximate mode.
The objective is to maximize the network lifetime by assigning the tasks and
selecting the execution modes for all EDs and FN in each round.

The solution of this problem is out of the scope of this dissertation. The
details regarding the centralized and the distributed TAAC algorithms can
be found in [52]. Indeed, the goal in this section is to show the applicability
of approximate computing in IoT applications. The impact of approximate
computing on the energy saving in IoT devices is discussed in this chapter. We
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Task in exact mode

Task in approximate mode

Fig. 6.7: Diagram of task allocation considering approximate computing.

show that if the errors of approximation are considered from the beginning in
the design flow and the system is optimized considering those errors, significant
improvements can be achieved.

In the following the centralized and distributed TAAC algorithms proposed
in [52] are compared with Weighted scheduling [126], the Exhaustive search
and All-approximate approaches.Weighted scheduling [126] is an optimal task
allocation algorithm for cluster based wireless sensor networks. All the tasks in
weighted scheduling are executed in the exact modes. Exhaustive search runs
the Weighted scheduling [126] for all possible combinations of the execution
modes of tasks and select the best solution among them. All-approximate
considers that all the tasks are executed in the approximate modes and then
runs [126] to get the maximum gain.

The Fog-IoT network is randomly generated in a two-dimensional area of
100×100 m2 with one FN at the center and n randomly distributed EDs.
The parameter values of EDs and FN are taken from the datasheets of Texas
Instruments CC2538 [127] and TMS320C5509A [128], respectively. The pro-
cessing related parameters are fi = 32MHz, fF = 200MHz, Pi = 36.9mW ,
PF = 192 mW . We assume the EDs and FN have the same RF modules
with the bandwidth of 250 Kbps. The communication related parameters
are eot = eor = 3.69 µJ , ttx = trx = 4 µs, PT0 = 59.8 mW , η = 0.05,
Prin = −85 dBm, FR = 2.4 GHz and α = 2. The battery capacities of
EDs are randomly generated from 1 to 5 KJ ; and the battery energy of FN is
randomly generated from 10 to 15 KJ .

The DAG associated with each ED is also randomly generated: the computing
workload of each task in exact mode is within the range of [100, 500] KCCs
(kilo clock cycles) and the communication data on each edge is in the range
of [100, 1000] bits. When the tasks are executed in the approximate modes,
the corresponding energy costs are determined by the energy ratio between
approximate and exact modes, ra/e. We consider the DAGs for all EDs are
the same. The error generated by each task in the approximate mode and the
corresponding coefficient, σ2

k and ck, are randomly distributed within [0, 0.01]

122



6.4 IoT: Combination of Task Allocation and Approximate Computing

and [0.5, 1.5], respectively. The tasks executed in exact modes do not generate
any error and the error limitation for each application is 0.02.

The performance in terms of network lifetime extension and system error
variance as well as the algorithm execution time (algorithm computation
complexity) in Matlab 2017a are investigated by changing three configuration
parameters: a) the energy ratio between approximate and exact modes, ra/e;
b) the number of EDs, n; c) the number of tasks in each DAG, Ki. Table 6.3
illustrates the configurations of the parameters. Note that only one parameter
is changed in each simulation. The reported results in this section correspond
to the average values and the standard deviations of 500 test instances for each
simulation scenario.

Table 6.3: Configurations of the parameters for the simulations.

Configuring

Parameters

Selected values

Default Changing range

Energy ratio, ra/e 0.3 0.9, 0.7, 0.5, 0.3, 0.1

Number of EDs, n 10 5,10,15,20,25,30,35,40

Number of tasks, K 10 5, 10, 15, 20

The first set of simulations investigate the impact of energy ratio between
executing the tasks in approximate and exact modes, ra/e, in terms of network
lifetime increase, system output errors by executing tasks in approximate modes
and the algorithm runtime of the proposed algorithms. The results of extending
the network lifetime are depicted in Fig. 6.8(a). In order to clearly illustrate the
superiority of applying approximate computing, we use the normalized network
lifetime with respect to [126]. Obviously, both centralized and distributed
TAAC algorithms perform the same as Exhaustive search and significantly
extend the network lifetime comparing with [126]. The gains increase from 1.11
to 8.02 when ra/e changes from 0.9 to 0.1. The is because more energy can
be saved by executing the tasks in approximate modes when the ra/e becomes
smaller. Although applying the All-approximate policy prolongs the network
lifetime the longest, the system output errors generated by executing all tasks
in approximate modes greatly exceeds the user pre-defined error threshold 0.2,
as shown in Fig. 6.8(b). In contrast, both centralized and distributed TAAC
algorithms satisfy the error requirements with the Error Tolerance constraint.
Fig. 6.8(c) shows the execution time of the proposed algorithms. Clearly, the
Exhaustive search approach consumes much more time than the others. The
algorithm runtime of all approaches keep stable as ra/e decreases. This is due
to the fact that the computation complexities of proposed algorithms are only
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Fig. 6.8: The impact of the energy ratio between executing the tasks in ap-
proximate and exact modes on (a) extending the network lifetime,
(b) system output quality and (c) execution time of the algorithms
(there are 10 EDs and each application contains 10 tasks).
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affected by the number of EDs and the number of tasks in each DAG. As
distributed TAAC consists of n sub-problems which are executed by each ED in
parallel and one linking problem executed on FN, its execution time is actually
the maximum runtime among the sub-problems plus the runtime of the linking
problem. It can be seen from Fig. 6.8(c) that distributed TAAC requires much
smaller execution time than centralized TAAC. For example, when ra/e equals
0.7, distributed TAAC requires in average only 6.9 × 10−3 second while the
centralized TAAC needs 11.3× 10−3 second. In addition, the overall execution
time of distributed TAAC (termed as Dist-TAAC-all), i.e., the summation of
all n parallel sub-problems, is larger than the centralized TAAC. Therefore,
considering the overall algorithm runtime, we conclude that the centralized
TAAC can be efficiently solved for the scenarios where all the information can
be known in advance. For the other scenarios, distributed TAAC is a better
choice.

The second set of simulations investigate the performances of proposed
algorithms by changing the number of the EDs, n. In Fig. 6.9(a), both
centralized and distributed TAAC algorithms extend the network lifetime
as long as the Exhaustive search as expected. They extend the lifetime by
2.82 times in average with respect to [126]. The gains of normalized network
lifetime slightly change as n increases from 5 to 40. This can be explained
by the fact that the energy ratio between executing the tasks in approximate
and exact modes does not change, while [126] can provide the optimal task
allocation solutions for all tasks in exact modes. With the Error Tolerance
constraint, the proposed algorithms can always make the output errors within
the user pre-defined threshold as illustrated in Fig. 6.9(b). As the computation
complexities of centralized TAAC and the summation of all sub-problems in
distributed TAAC are related with n, the corresponding algorithm runtime
gradually increases when n changes from 5 to 40 as depicted in Fig. 6.9(c).
While the execution time of distributed TAAC is slightly changed, since the
complexities of the parallel problem’s are mainly related with the number of
tasks. Specifically, comparing with the centralized TAAC which requires from
9.8×10−3 to 28.4×10−3 second as n increases from 5 to 40, the execution time
of distributed TAAC only changes in average from 9.0× 10−3 to 11.4× 10−3

second. This phenomenon is consistent with the results in Fig. 6.8(c) of the
first set of simulations.

We further conduct the third set of simulations by changing the number of
tasks in the DAG, K, to evaluate the performances of proposed algorithms.
As depicted in Fig. 6.10(a), the proposed centralized and distributed TAAC
algorithms achieve dramatic normalized network lifetimes with respect to [126]
and provide the same results as the Exhaustive search. When K increases
from 5 to 20, the gains of both centralized and distributed TAAC algorithms
decrease from 2.97 to 2.38 in average. The reason is that the number of
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Fig. 6.9: The impact of number of EDs on (a) extending the network lifetime,
(b) system output quality and (c) execution time of the algorithms
(each application contains 10 tasks, the energy ratio between execut-
ing the tasks in approximate and exact modes is 0.3).
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Fig. 6.10: The impact of number of tasks on (a) extending the network lifetime,
(b) system output quality and (c) execution time of the algorithms
(there are 10 EDs, the energy ratio between executing the tasks in
approximate and exact modes is 0.3).
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tasks executed in approximate modes is limited, in order to meet the output
quality. Consequently, the proportion of saved energy by executing the tasks in
approximate modes becomes smaller when the number of tasks increases. As
the All-approximate policy does not consider the error limits, the normalized
network lifetime it achieves does not change too much, which is consistent
with the results in Fig. 6.9(a). The drawback of All-approximate is that the
generated output error by the approximated tasks exponentially increases as
shown in Fig. 6.10(b), while both centralized and distributed TAAC algorithms
strictly satisfy the requirement of output quality. The results of the impact of
K in terms of the execution time of the algorithms are illustrated in Fig. 6.10(c).
Obviously, the algorithm runtime of Exhaustive search exponentially increases
when K changes from 5 to 20. It is due to the fact that Exhaustive search
considers all of the possible combinations of the execution modes selection of
tasks. In contrast, distributed TAAC requires the smallest execution time. As
the complexity of each sub-problem is related with the number of tasks, the
execution time of distributed TAAC increases from 6.8× 10−3 to 15.3× 10−3

second when K changes from 5 to 20.
To sum up, the network lifetime can be further extended by combing approx-

imate computing. When the approximate computing saves more energy cost
over executing tasks in exact modes, the more profit can be achieved by the
task allocation approaches combining approximate computing.

This work addresses the problem of maximizing the lifetime of fog architecture
based IoT networks by applying both the task allocation and approximate com-
puting techniques. The problem of Task Allocation combining Approximate
Computing (TAAC) is formulated as a non-linear integer optimization problem
through partitioning the tasks for all IoT end devices and fog nodes and select-
ing the corresponding execution modes of all tasks simultaneously. In order
to efficiently solve this problem, we convert the non-linear problem to a linear
programming problem and propose both a centralized and a distributed TAAC
algorithms. By applying the combination of techniques in circuit and system
levels, high energy efficiency can be achieved: the proposed algorithms extend
the network lifetime by 3 times longer than the previous approaches which
only consider task allocation technique. We strongly believe that the future
IoT applications can benefit a lot from this cross-level energy optimization
combining both circuit and system aspects.
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6.5 Industrial Wireless Communication System

Unprecedented challenges to the communication network service are growing
along with the rapidly growing wireless communication. Energy efficiency and
performance are the main concerns in the wireless communication systems,
nowadays, where a huge amount of data need to be transmitted [129]. At
the same time, wireless communications always need to compete with quality
degradation and noise effects (errors) which undermine the signal characteristics
during the transmission. Consequently, several error-resilient components are
employed nowadays at the receivers side, e.g. frame and symbol synchronization,
frequency offset and channel estimation and compensation steps, forward error
correction (FEC), etc. The need for energy efficiency as well as error-resiliency
of wireless communication systems meet the criterion where approximate
computing can be applied.

A key technology of modern wireless communication with high spectral effi-
ciency is given by general or orthogonal frequency division multiplex approaches,
involving the commonly used Fast Fourier Transform (FFT) [130]. Though
this has proven its feasibility for many State-of-the-art wireless solutions, the
requirements of next generation wireless solutions soon will lead to impractical
results when only traditional design approaches are considered. Hence, novel
design ideas and strategies must be explored that will lead to an significant
increase of efficiency, in particular in terms of energy.

In this section, we explore the impact of approximate computing units within
an orthogonal frequency-division multiplexing (OFDM) based industrial wireless
communication scenario. Although the benefit of approximate computing units
has been essentially proven, neither the relationship between the accuracy
of these approximate circuits and the reliability of the baseband wireless
system nor the potential of adopting these various approximate units into
industrial wireless applications has been so far explored. In particular, when
typical industrial applications like close-loop control applications have stringent
reliability requirements (e.g. very low frame error rate requirement), this
exploration becomes essential. Moreover, conventional evaluation metric for
approximate circuits are mostly oriented on single function block. There is a
lack of studies exploring the relationship of these evaluation metrics and the
accuracy of such complex wireless communication system.

In this case study, the sequential 256-point R22SDF FFT [132] and the
IFFT modules in the baseband signal processing are approximated using
approximate adders with different error philosophies, to study the impact
of approximate computing a wireless communication system. The system
architecture where FFTs and IFFTs are employed in depicted in Fig. 6.11.
Each stage of the R22SDF FFT has one butterfly of either type I or type II,
as can be seen in Fig. 6.12 and Fig. 6.13, respectively. More details of the
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Between the Input RAM and the Output RAM is the sequential
signal processing chain. The cipher block with the SPI and the RF
controller are operated in separate frequency domains due to the
peripheral specification [131].

hardware implementation can be found in [131,133].
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Fig. 6.12: Butterfly type I of R22SDF

Since in each FFT stage utilizes four adders in its architecture, the 256-point
fixed-point pipeline FFT in the system has 4 · log2(256) = 32 adder instances.
Due to considering overflow of the output carry bit of the addition, 16-bit input
of a 256 points FFT, has a 24-bit output. All the four exact adders in each
butterfly are replaced by approximate adders. The selected approximate adders
are the OLOCA and the truncated adder (TruncZero) from the “small error”
philosophy, the ETAII [28] which generates “infrequent errors”, and the hybrid
approximate adder introduced in Chapter 4. The impact the aforementioned
approximate adders on FFT (locally) and on the whole system (globally) is
studied. Indeed, the goal is to study the relation between the conventional
metric predictions and the actual performance of the approximated system.

In order to evaluate the approximate adder architectures which are employed
in the system, individually, the Table 6.4 tabulates the error values of the
adders for conventional metrics as well as the saturated error metric discussed
in Chapter 3 (i.e. SMSE). As an illustration, here we compare the 17-bit adders,
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simulated for 107 uniform random inputs. The number following the TruncZero
and OLOCA names are the number of truncated LSBs. The numbers following
the ETAII indicate the bit-widths of the sub-modules of the adder from MSB to
LSB, from left to right. In regards to Hybrid adders, the same naming format
as of Chapter 4 is used here.

The R22SDF FFT implementation with different approximate adder config-
urations have been synthesized and simulated on a Xilinx Artix7-200 FPGA
board. In the meantime, software output reference using the same inputs is
generated by MATLAB using 32-bit floating point presentation. In this work,
20 groups of 256× 16-bit random complex numbers for both weak and strong
white Gaussian noise (SNR = 10dB and 40dB) are generated. In reference
to the software output, the hardware accuracy is quantified using Normalized
Mean Square Error (NMSE). The mean squared error is commonly used as the
quality metric for FFT architectures [134].

NMSE = 10 · log10

1

N

∑
i

(xi − xrefi )2

(xrefi )2
, (6.5)

where N the length of the FFT, xi the i-th hardware output and xrefi the i-th
software reference output.

The results of local FFT accuracy using the aforementioned approximate
adders are tabulated in Table 6.5. The NMSE results (in dB) are shown for
the cases when the FFT receives the input with weak noise (SNR = 10dB)
as well as strong noise (SNR = 40). Note that in the Table 6.5, the ETAII
architectures have fixed bit-widths for LSB sub-blocks, and the bit-width of
the most significant block increases from stage 1 to stage 8. In a similar way,
the most significant block of the hybrid adders is changing by increasing the
bit-width of the adder in each stage. Correspondingly, the x used in the name
of the adders indicates variable bit-width.

The FFTs are also integrated to the OFDM receiver/client. The receiver
with integrated approximate adders are then synthesized and prototyped on
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Table 6.5: Post-synthesis Simulation Results of FFT using approximate adders
(NMSE in dB) and prototype field test results in 3 Setups (LoS with
0.5m and 7.5m distances; and nLoS with 7.5m distance), values are
numbers of lost frames in 26 transmissions.

NMSE LoS nLoS

SNR level 10dB 40dB - - -

Distance - - 0.5m 7.5m 7.5m

Exact -84.7275 -84.5612 0 0 0

TruncZero-4 -74,2141 -73.6997 0 0 0

TruncZero-8 -49.4617 -48.7671 0 0 0

TruncZero-9 -43.2173 -42.8701 0 0 364

TruncZero-10 -37.5275 -37.0682 631 1209 2554

TruncZero-11 -31.7743 -31.1915 all all all

OLOCA-4 -78.1118 -77.3785 0 0 0

OLOCA-8 -52.8504 -52.5409 0 0 2

OLOCA-9 -46.8423 -46.4592 0 60 138

OLOCA-10 -40.5441 -40.3538 0 16 190

OLOCA-11 -34.7817 -34.3575 44185 37526 38681

ETAII(x-3-3) -74.8862 -74.5552 0 0 0

ETAII(x-5-5) -57.0431 -57.1069 0 0 0

ETAII(x-6-6) -47.6561 -47.9418 0 0 0

ETAII(x-4-4-4) -41.6742 -41.8792 1 629 1093

ETAII(x-7-7) -38.3164 -40.2401 6368 16291 32259

Hybrid-x(4)5(0)—2,3 -57.0849 -56.1999 0 0 0

Hybrid-x(4)5(0)—2,4 -49.4440 -48.9199 0 0 0

Hybrid-x(5)6(0)—2,4 -46.6376 -46.6263 0 3 8

Hybrid-x(6)7(0)—2,4 -42.3383 -45.6065 0 3 16

Hybrid-x(4)6(0)—2,4 -42.0923 -42.4949 0 0 0

Hybrid-x(6)7(0)—2,5 -40.3034 -39.4716 6896 9429 13025

Hybrid-x(3)6(0)—2,4 -38.5278 -38.4067 107 571 722

Hybrid-x(2)6(0)—2,4 -34.8894 -34.5372 63210 64601 all

the same FPGA boards. In order to explore the system performance with more
realistic conditions, this FPGA receiver prototype has been used together with
a transmitter (controller) to perform real field tests. In the initial laboratory
tests, three different setups are used: line of sight (LoS) with 0.5 meter, LoS
with 7.5 meter and none LoS with 7.5 meter. In the field tests, task of the

133



6 Error tolerant applications - case studies

controller is to encode, modulate and transmit the random inputs, where 5×216

input frames are fed to the controller and the corresponding Frame Error Rate
(FER) is measured at the client side. Table 6.5 shows the number of the faulty
received frame (frame errors) in every 216 transmissions.

The initial observation from Table 6.5 is that employing approximate com-
puting units significant energy efficiency can be achieved, while it even may
result in no frame loss. As a distinct instance, the Hybrid adder (x(4)6(0)—2,4)
in comparison with an exact adder improves the silicon area and its maximum
delay corresponds to a 16-bit adder which is obviously faster than a 24-bit
adder (i.e. the exact counterpart), while it results in no frame loss. The
analysis of Table 6.5 shows that the selection of approximate units for each
scenario (i.e LoS 0.5m, LoS 7.5m, or nLoS 7.5m) is different. For example,
TruncZero-9 which works well for LoS, does not work for nLoS; ETAII(x-4-4-4)
works promising for LoS 0.5m but makes a huge error in the other cases.

In addition, in some cases small changes in the adder architecture already
result in an abrupt degradation of the output quality. As an instance in LoS
scenarios, TruncZero-9 works without any frame loss. However, for TruncZero-
10, the number of lost frames increases abruptly. Hence, a careful selection of
the approximate units is vital.

Comparing the results from Table 6.5, it can be seen that OLOCA adders
perform better than the conventional truncation. For example, the OLOCA-10
in the nLoS scenario results in 190 lost frames in comparison with 2554 lost
frames for TruncZero-10, which represents a 92% reduction in the frame loss.
In a similar way, the hybrid architectures outperform the ETAII adders. For in-
stance, the corresponding architecture for ETAII(x-5-5) is Hybrid-x(4)5(0)—2,3;
and the corresponding adder for ETAII(x-6-6) is Hybrid-x(5)6(0)—2,4. In both
of the cases, the output quality is almost the same, while the hybrid adders
are faster and smaller. The best ETAII architecture which results in no frame
loss is ETAII(x-6-6) and the best hybrid adder which results in no frame loss is
Hybrid-x(4)6(0)—2,4 as can be seen in the table. Considering the maximum
bit-width (24-bit), the hybrid adder is faster and has a delay corresponding
to 16-bit adder in comparison with ETAII(x-6-6) which has a delay of 18-bit.
Moreover, due to the LSBs truncation, the hybrid adder has smaller silicon area.

As mentioned in Chapter 3, the conventional metrics might be misleading. In
fact, none of the conventional metrics can predict the output quality (number
of lost frames) shown in Table 6.5 with precision. For example, considering
the error metrics of the adders tabulated in Table 6.4, the MAE of Hybrid-
5(4)6(0)—2,4 is higher than ETAII(3-7-7). However, based on the results of
Table 6.5, this hybrid adder results in no frame loss. Considering the MAE,
the Hybrid adder might be discarded which is obviously a wrong prediction.
In summary, there is a non-linear relation and even an uncorrelation between
the system reliability metrics and the conventional metrics used for the design
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Fig. 6.14: The square root of Saturated Mean Squared Error (SMSE) ver-
sus the square root of the Mean Squared Error (MSE), of the
adopted approximate adders. The dashed line differentiate between
the adder architectures which are producing acceptable and non-
acceptable results based of the FER, for 3 different scenarios: (a)
LOS 0.5m, (b) LOS 7.5m, and NLOS 7.5m. The architectures are
divided into four groups depending on the number of lost frames.

of approximate units. In addition, comparing the NMSE of simulations in
Table 6.5 and the field results in the right hand side of Table 6.5, it can be seen
that even using conventional error metrics at the local algorithm level (FFT)
cannot predict the final quality of the system precisely. For example, considering
Table 6.5, Hybrid-x(6)7(0)—2,5 architecture should perform better than Hybrid-
x(3)6(0)—2,4 adder due to the better NMSE metric, while considering the field
test results given in Table 6.5, it results in considerably higher lost frames.
Similarly, ETAII(x-4-4-4) has better NMSE than OLOCA-10, but when used in
the system performs worse that the OLOCA counterpart. Moreover, Table 6.5
indicates a notable fact that the baseband signal processing system has good
resilience so that its accuracy only begins to decrease when the approximation
is fierce. This shows the big optimization potential of the hardware utilization
even though the reliability constraints of industrial application is strict. To
this end, conventional error metrics can be helpful to qualitatively understand
the intrinsic characteristics of different adders but it is not directly related to
the system reliability.

To palliate the aforementioned problem, let us take the combination of a
conventional metric (MSE) and the SMSE metric (see Chapter 3 for more
details) into consideration. We divide the results tabulated in Table 6.5 into
four groups: 1) No Frame loss, 2) Low Frame Loss, 3) Medium Frame Loss, and
4) High Frame Loss as a result of employing different approximate adders. The
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first and the fourth groups are acceptable and non-acceptable architectures,
respectively; while the second and the third groups can be included in either
acceptable or non-acceptable division based on the application constraints.
As depicted in Fig. 6.14, combining MSE and SMSE, a line can be found to
differentiate between acceptable and non-acceptable architectures. However,
the quality of the architectures is still impossible to be quantified using this
technique. The exploration of novel error metrics is indispensable and must be
considered in future works.

6.6 Conclusion
In this chapter, the impact of approximate computing on the whole system’s
accuracy has been for different case studies. In section 6.2, different approximate
adders with different error philosophies have been employed to approximate a
SIMD coprocessor for the purpose of Sobel filtering application. The evaluation
results have shown that using approximate adders, the performance of the
coprocessor has improved by up to 12% in comparison with using exact adders.
In addition, for a given performance, the evaluated approximate adders reduce
the coprocessor silicon area by upto 10% and the energy consumption by upto
15%. These results, once more, prove the potentials of approximate computing
when applied to the error resilience applications. In section 6.3, the combination
of approximate computation and stochastic communication has been studied. It
has been shown that due to the error masking, even more gains can be achieved
by combining different approximation techniques. It has been shown that,
these untapped potentials with right selection of approximation techniques
may provide the same accuracy as the case that only one technique is used.
At the same time, more energy efficiency and performance are gained by the
combination of techniques. In section 6.4, the combination of techniques in
circuit and system level for achieving higher energy efficiency has been presented.
It has been shown that combining approximate computing and task allocation
results in 3 times longer network lifetime than the previous approaches which
only consider task allocation technique. Observing the results of this section,
it can be concluded that there is an enormous untapped potential in the
combination of different energy optimization techniques including approximate
and stochastic computing. Finally, in section 6.5, the impact of approximate
computing on an industrial wireless communication system has been studied.
By analyzing the error behaviour of single approximate computing units, FFTs,
and the whole system, the relation of error between a single component and
the whole system has been explored. The evaluation results conclude that
the exploration of more robust metrics is essential for the correct selection of
approximate units for a target application.
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CHAPTER 7

Conclusion and Future Work

In this work, we have presented a systematic analysis, a design methodology
and a set of optimized hardware architectures to use approximate and stochastic
techniques to improve the performance and the energy efficiency of the most
fundamental arithmetic units, addition and multiplication.

In Chapter 3, a new error metric has been introduced to address the insuffi-
ciency of the existing metrics. The new parameterizable metric captures the
requirements of the approximate and stochastic applications. It has been shown
that, the parameter τ in the proposed metric (i.e. SMSE) can be considered as
a knob to model the errors more accurately in real applications. Moreover, a fair
comparison for approximate adders as well as a fair comparison of approximate
multipliers are presented in this dissertation. The fairness has been ensured
by considering various figures of merit along with different accuracy metrics.
The fair comparison of approximate computing units has shown outstanding
performance of LOA among the approximate adders, and the conventional
truncated multiplier (TruncM) among the approximate multipliers. Those
architectures have been disregarded in many of the research works.

Previous works in the approximate computing domain show limited improve-
ments due to non-systematic methodologies. In this dissertation, however, with
methodical analyses and systematic approaches, four other contributions are
presented.

In Chapter 4, an optimal approximate adder, through generalizing an archi-
tectural template for approximate adders, has been proposed. The proposed
adder Optimized Lower-part OR-Constant Adder (OLOCA) shows considerable
improvement in both error and hardware-cost metrics in comparison with the
previously reported best architectures. The superiority of OLOCA over the
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existing approximate adders has been proved presenting mathematical analysis
and further using experimental results. As an instance, a 16-bit approximate
adder implemented with the OLOCA approach improves the mean squared
error by 58% while reducing the area-delay product by 13.8% at the same
time, in comparison with an approximate adder implemented with the LOA
approach.

Furthermore, a generic template for approximate adders combining the small-
errors and the infrequent-errors philosophies has been proposed. A wide range
of approximate adders, along with new hybrid and non-equal segmented adders,
can be developed using the proposed template. The accurate mathematical
error formulas of the template has been conjointly presented. Consequently,
using one compact formula, the error metrics of a wide range of approximate
adders can be calculated. Using experimental results, it has been shown that
for the scenarios that approximate adders provide considerable benefits, our
framework finds the optimal architectures. Based on the experimental results,
for relaxed timing constraints, the conventional truncated adders and OLOCA are
the superior architectures, and the other existing approximate adders provide
very limited benefits. For stringent timing constraints, OLOCA outperforms
the other approximate adders when considering a large threshold for the SMSE

accuracy metric (corresponding to the conventional MSE metric). For the
applications which their acceptable accuracy can be modeled with medium and
small thresholds (τ in SMSE), however, hybrid and ETAII architectures are
the superior classes of adder architectures, respectively. These results validate
our discussions that the internal architectures of the approximate architectures
have to be considered as part of the analyses of the approximate architectures,
and specially when comparing them.

Using precise stochastic error analyses, the use of a mixed adder with late
input MSB arrival time has been proposed further in Chapter 4. Our stochasti-
cally tunable Mixed-PR adder shows a gradual decrease in accuracy in contrast
to the abrupt accuracy decrease of its conventional counterparts. Moreover,
unlike the existing reconfigurable adders which switch between two modes (i.e.
fixed approximate and exact modes), the proposed adder can be configured
in multiple modes depending on the operating frequency and supply voltage.
Furthermore, using over-scaling techniques, the mixed adder does not require
any additional logic to be configured to the approximate modes. Using exper-
imental results, the superiority of the proposed adder over its conventional
counterparts as well as existing configurable adders has been shown.

As mentioned above, based on the comparison of approximate multipliers,
the conventional truncated multipliers offer the best trade-off between accuracy
and hardware cost. As a result, in this dissertation, we studied the correction
of truncated multipliers. The data-dependent correction methodology has been
proposed in the context of a conceptual template for truncated multipliers.
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Using experimental results, it has been shown that some configurations of the
our corrected approximate multiplier mitigates the MSE by up to 85% compared
to a conventional truncated multiplier with the same PDP.

Future Work

The benefits and challenges of employing approximate computing in modern
applications have been discussed in Chapter 6. Accordingly, the following issues
are still open to be explored.

1. The accuracy metrics which can precisely relate the errors of approximate
computing units to the accuracy of the target application need to be
extensively explored. Indeed, the impact of data distribution should be
considered in the error metrics.

2. Due to the need for quality configurable systems, a systematic design of
optimal reconfigurable multipliers will be considered for our future work.

3. The impact of approximate computing on critical applications such as
medical applications will be studied.
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