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Abstract

Spurious diapycnal mixing of water masses occurs in ocean circulation
models as an artifact of numerical algorithms used to advect tempera-
ture and salinity. Most of the ocean models used in climate research are
based on geopotential vertical coordinates (z- coordinates), which inter-
sect isopycnal surfaces. The non-alignment of coordinate surfaces with
isopycnals causes spurious diapycnal mixing during horizontal advection
of a water-parcel by high-order upwind transport schemes. The growth
in the potential energy of the system appears without any sources. This
behavior is physically incorrect and leads to an energetic inconsistency
and incorrect water mass transformation. Therefore, spurious diapycnal
mixing in ocean models is one of the reasons that lead to the incorrect
hydrological state of the ocean basins after some integration time. Im-
provements are required which would reduce spurious mixing in ocean
models.

There are several ways that can potentially reduce numerical mixing
and spurious diapycnal mixing in particular. Three of them are considered
in the current work. The first way is the design of more accurate advection
schemes with the intention to achieve a reduction in truncation error which
leads to a decrease in numerical mixing in a system. The second option
is the stabilization of central high-order advection schemes by isoneutral
diffusion. And the last approach is a choice of the right mesh. It is a
question to investigate whether meshes can cause spurious mixing due to
their structure, regularity, and other properties.

The current work deals with the problem of spurious diapycnal mix-
ing. It analyses the stability of numerical implementation of isoneutral
diffusivity on triangular meshes of FESOM2. It proposes a new compact
advection scheme characterized by a reduced truncation error compared
to other finite volume schemes in FESOM2. It shows that the application
of isoneutral diffusion to stabilize central schemes can reduce spurious di-
apycnal mixing in models, however, it requires special tuning for every
initial state of a model. It is also found out that mesh irregularity does
not necessarily imply an enhanced numerical mixing in a system, however,
it might depend on the type of triangles.
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Chapter 1

Introduction

A significant part of our knowledge about the variability of the Earth climate
relies on numerical modeling. Numerical climate models help researchers to
understand the climate of the past and make projections for the future. Ocean
circulation models are one of the main components of Earth climate models.
Ocean significantly contributes to the meridional heat transport, and ocean-
atmosphere interactions provide boundary conditions for atmospheric models
over a large part of the Earth’s surface. Ocean transport processes are very
slow. It takes centuries for water masses to complete the whole circulation
cycle. Ocean has a huge impact on climate, being a part of the planetary
energy cycle (Rahmstorf [2002]), and on biogeochemical cycles, exchanging gases
with the atmosphere. It has a higher heat capacity than atmosphere and land,
influencing climate fluctuations on daily, seasonal, annual, and interannual time
scales (Clark et al. [2002]).

Despite ongoing efforts, the existing climate models demonstrate a wide range
in their projections concerning the behavior of climate trajectories under differ-
ent carbon dioxide increase scenarios (e.g., see Community [2020], Vivek and
et [2019], Karen and Richard [2007]). Moreover, model outputs demonstrate
quite large biases from historical observations which also bring particular uncer-
tainty into their projections. Many possible reasons for such results have been
investigated, and a significant part of these reasons arises from numerical errors.

Numerous modeling groups over the world make significant efforts to improve
the results of the models. Nevertheless, climate models, and particularly global
ocean circulation models, still suffer from insufficient resolution and inaccuracies
coming from parameterizations and numerical assumptions. With the growth of
computer facilities, finer computational meshes become affordable, allowing bet-
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4 CHAPTER 1. INTRODUCTION

ter representation of dynamical processes. However, currently, even the highest
resolution that can be used in models for climate research (about 1/10 degree) is
insufficient for the representation of many processes. Therefore, these processes
are parameterized. The imperfection of numerical methods leads to a lack of
consistency in simulated balances and energy pathways.

One of the problems that researchers face is spurious numerical mixing ac-
companying the simulation of ocean motion of the ocean water masses. Unlike
the atmosphere, the deep ocean is nearly adiabatic, with small background mix-
ing on the level of 10−5 m2/s provided largely by internal-gravity waves through
their nonlinear evolution and final breaking. The spurious mixing caused by the
implementation of numerical operators in ocean models can easily reach values
comparable to background mixing or even exceed them as estimated by Ilicak
et al. [2012] and Megann [2018]. As explained below, spurious numerical mixing
generally occurs when a fluid parcel is advected in ocean models. For numerical
stability or the need for positive-definite solutions for the transported quantities,
advective operators are, as a rule, equipped with build-in numerical dissipation
that depends on the detail of the implementation. Spurious mixing of tempera-
ture and salinity generally implies also spurious mixing of density. The biggest
concern is due to a diapycnal (occurring across isopycnals) component of mixing
which leads to a direct rearrangement of isopycnal surfaces. Spurious isopyc-
nal (along isopycnal surfaces) mixing also has consequences and may affect the
ocean density structure through nonlinearities of the ocean water equation of
state (cabeling and thermobaricity).

Mixing in the ocean is the major source of the deep water masses transfor-
mation. For example, it is well known that the lowest part of the meridional
overturning circulation is driven by mixing that is balanced by slow upwelling of
the deep waters (e.g., Kuhlbrodt et al. [2007]). The fact that numerical mixing in
ocean models can be as high or even sometimes higher than the physical mixing
implies that spurious mixing can strongly affect water mass transformations on
long time scales. That might be one of the reasons for biases developing in these
models over the long integration time. Furthermore, mixing raises the center
of mass and potential energy of the water, so, it cannot happen without exter-
nal sources of energy. Background mixing parameterizations such as IDEMIX
(Olbers and Eden [2013]) aims to take into account this kind of sources as an
important part of the wider idea of energy-consistent modeling. The presence
of spurious mixing also means the loss of energy balance.

Another important aspect of the spurious mixing problem is that it is highly
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sensitive to the intensity of simulated eddy motions (to the grid-scale Reynolds
number) as it was found by Ilicak et al. [2012]. Nowadays resolution in modern
climate models is becoming finer, which allows scientists to perform simulations
that resolve mesoscale eddy motions. Mesoscale eddies are an indispensable
component of ocean dynamics responsible for vertical and horizontal exchanges
in the ocean. Resolving them also means that the simulated eddy kinetic energy
becomes much larger, which also might imply spurious mixing in the deep ocean.
The existing analyses for 1/4 degree global ocean models show that it can indeed
be the case (see, e.g., Ilicak et al. [2012]) but can be controlled in other cases
(Gibson et al. [2018]). It remains to be seen how this behavior will be modified
with finer resolution and in longer simulations.

For the reasons mentioned above, there is a considerable amount of research
aimed at diagnosing spurious mixing and exploring measures to minimize it.
Numerous papers devoted to the analysis of water mass transformation (see e.g.
Xu et al. [2018] and references therein) concentrate on estimates of diapycnal ve-
locities which are produced by both physical and spurious mixing. The difficulty
here lies in the need to compare the diagnosed total diapycnal transport with
the transport which we would have if all mixing were physical. This can be done
in a simplified way (e.g., zonally averaged), as demonstrated by Lee et al. [2002]
and Megann [2018], but is difficult otherwise. Nevertheless, Xu et al. [2018] pre-
sented an example of situations where the presence of spurious mixing is clearly
identifiable. Klingbeil et al. [2014], based on Burchard and Rennau [2008] pro-
pose an approach that estimates the discrete variance decay associated with
the implemented advective operator. These methods provide three-dimensional
maps of spurious mixing, however, they do not distinguish between dia- and
isopycnal directions. Approaches for estimating effective spurious diapycnal dif-
fusivities were proposed in Griffies et al. [2000] based on adiabatic sorting of
water parcels and in Getzlaf et al. [2010] and Hill et al. [2012] based on releasing
passive tracers. The method of Griffies et al. [2000], similarly to Megann [2018],
provides a basin-averaged view on spurious diapycnal mixing, which is not nec-
essarily related to the mixing caused by numerically simulated water parcels (see
Ilicak et al. [2012]). Finally, Ilicak et al. [2012] suggested to consider just the
increase in the so-called reference potential energy (RPE) proposed by Winters
et al. [1995] and also used in Griffies et al. [2000] as a part of their analysis.
Since then, the concept of RPE is used by many model development teams to
identify their spurious mixing (see Ilicak et al. [2012], Petersen et al. [2015],
Mohammadi-Aragh et al. [2015], Gibson et al. [2018], Kärnä et al. [2018]). Its
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advantage is the ease of diagnostics. Once again, it is a global measure, charac-
terizing the entire basin. Ilicak [2016] proposes an extension of this concept to
quantify the spatial distribution of mixing. The concept of RPE will be used in
this work and will be explained in detail in chapter 2.

Ocean modelers are mostly interested in the reduction of diapycnal spurious
mixing because it affects the density structure of the ocean and, thus, the struc-
ture of the entire ocean circulation. It is also well understood that motions in
nearly adiabatic deep ocean happen along isopycnal surfaces: The exchange of
two water parcels along isopycnals does not change gravitational potential en-
ergy and thus does not require extra sources and sinks. One of the main reasons
why the density structure of the deep ocean is not preserved by numerical ocean
dynamics is that their vertical discretization often does not follow isopycnals
coordinate. Most models used for global ocean simulations use geopotential or
z-coordinates in vertical. Although isopycnals have a very small slope angle
across wide regions of the ocean, they still cross z-model level surfaces, and
the angle of crossing can be substantial in frontal areas, e.g. nearby shore in
polar regions. Numerical operators in z-coordinate models are implemented in
horizontal and vertical directions. They are causing numerical errors. There
are two issues, one of which is related to diffusion. One can think of physical
diffusion as a combination of mixing along isopycnals with much smaller mixing
across isopycnals. Because of this difference, even though isopycnals slope at
small angles to the horizontal z-surfaces outside the mixed layer, the approach
of splitting mixing into vertical and horizontal components leads to a spurious
cross-isopycnal component which is not negligible. This problem was recognized
long ago, and Redi [1982] proposed to introduce a diffusivity tensor, which ap-
proaches diffusion in such a way that it occurs along isopycnals with isopycnal
diffusivity Ki and across isopycnals with much smaller diffusivity Kd defined
by physical parameterizations. Numerical implementation of these (rotated or
Redi) diffusivities faced certain problems before Griffies et al. [1998] proposed
a numerical solution based on the variational principle. A recent discussion of
related numerics and stability analysis for quadrilateral meshes has been pre-
sented in Lemarié et al. [2012]. The appearance of models working on triangular
meshes requires to reconsider these analyses. For Finite volumE Sea-ice Ocean
Model (FESOM) the variational implementation was described in Danilov et al.
[2017], however, its stability remained unexplored. Analysis of the stability is
provided in chapter 3.

The second issue is advection. In particular, if the horizontal advection of
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tracers follows a high-order upwind scheme, it, as a rule, causes spurious mix-
ing. Upwind schemes are widely used in ocean circulation models, for example,
Regional Ocean Modeling System (ROMS, see Moore et al. [2011]), Nucleus for
European Modelling of the Ocean (NEMO, see Madec and Team [2016]), MIT
General Circulation Model (MITgcm, see Marshall et al. [1997]). Indeed, in
this case, it can be shown that the numerical advection operator has the main
truncation error of diffusive type (see, e.g., Lemarié et al. [2012]). To stabi-
lize central, or so-called mixed (combination of central and upwind), schemes,
additional methods such as slope or flux limiters are used. In particular, the
flux corrected transport method described by Zalesak [1978] is one of them.
Limiters are applied to ensure that solutions stay positive (in case of concentra-
tions) or monotone. These methods introduce either local mixing or unmixing
(Mohammadi-Aragh et al. [2015]). They are utilized in ocean circulation mod-
els such as Finite volumE Sea-ice Ocean Model (FESOM2, see Danilov et al.
[2017]) or Model for Prediction Across Scales-Ocean (MPAS-O, see Ringler et al.
[2013]). In all cases this mixing will have a cross-isopycnal component which is
fully spurious because continuous operators of advection cannot change tracer
variance, i.e., create mixing. Numerical advection operators are believed to be
the major source of spurious mixing in general circulation ocean models with
z-coordinate models. Therefore, the reduction of spurious mixing is an impor-
tant problem in numerical ocean modeling, which becomes even more significant
with the increase of model resolution. There are several ways of handling this
problem. One is the design of more accurate advection schemes because a re-
duction in truncation error means the reduction of spurious effects due to the
dissipativity of this error (Hill et al. [2012], Mohammadi-Aragh et al. [2015]).
The other approach is the use of high-order centered schemes stabilized with
isopycnal (rotated) diffusion, as advised by Lemarié et al. [2012]. A new advec-
tion scheme with a reduced truncation error is proposed and analyzed compared
to other schemes in chapter 4. The application of isoneutral diffusion is analyzed
in chapter 5.

The last topic considered in this thesis relates to meshes. Regular meshes
and among them the meshes composed of equilateral triangles are expected to
be associated with smaller numerical approximation errors than irregular or
distorted meshes. However, variable-resolution meshes are always distorted to
some degree. Thus, there is a question if the lack of regularity and structure of
meshes can influence numerical mixing in the system and in which way. This is
also investigated in the last section of chapter 5.



8 CHAPTER 1. INTRODUCTION

All the methods described in this thesis were implemented in FESOM version
2. A concise outlook of the model is provided in chapter 2.



Chapter 2

Methods

In this chapter, I give an overview of the required basis which the current work
is founded on. I describe methods used for reducing spurious mixing and its
analysis by researchers. Also, a short description of the model FESOM version
2, used in this work, is provided.

2.1 FESOM2

FESOM2 is a finite-volume sea ice-ocean circulation model. In the model, the
equations of motion, continuity, and tracer balance are integrated with respect
to time. The main principles of FESOM2 are described in this subsection. More
detailed information about FESOM2 can be found in Danilov et al. [2017].

FESOM2 is based on unstructured triangular meshes of variable resolution.
The mesh is defined by a grid of triangles in the horizontal directions and a
system of horizontal levels in the vertical direction which partition the com-
putational domain into triangular prisms. In the horizontal plane, the scalar
discrete variables of FESOM2 are placed at vertices of triangles, discrete hor-
izontal velocities are placed at centroids of triangles. A control volume for
velocities is defined by a triangular prism in the centroid of which this velocity
value is defined. Control volumes of scalars are defined by median-dual prisms.
A median-dual prism for a scalar T is obtained by linking centroids of all the
triangles that have the vertex of T through the mid-edge points. Figure 2.2
shows schematically a control volume for velocities and scalars.

In the vertical direction, the horizontal velocities and scalars are placed in
the mid-layers, and the vertical velocity is at full levels. Horizontal gradients of
scalar quantities are located at the centers of triangles, and vertical gradients
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Figure 2.1: Elements of the triangular mesh: a triangular prism (left) and the
horizontal part of triangular prisms (right).

T4 T3

T5
T1 T2

T7T6

v5

v6

v1

v2

v3

v4

Figure 2.2: Schematic of the median-dual control volumes. Control volume for
scalar T1 in the horizontal plane is the median-dual volume around the respective
vertex shaded with light blue colors. The control volume for velocity in the
horizontal plane is represented by a triangle (indicated by light red colors for
v5). The light purple color is the area where both these control volumes intersect.

are at the vertices and full levels (see Fig.2.3). A triangular prism of the mesh
can therefore be split into six triangular sub-prisms with unique combinations of
discrete values of scalars and their derivatives (see Fig. 2.4). We will need these
sub-prisms to explain the implementation of the isoneutral diffusion operator.
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Figure 2.3: A triangular prism element of the mesh. The scalar values are
located in the middle of the prism edges, the horizontal gradient of the scalars
is placed in the middle of the prism, and their vertical derivatives are in the
prism vertices. Six sub-prisms obtained by splitting the triangular prism by the
mid-plane (drawn) and faces of median-dual scalar control volumes (not shown)
are characterized by triples of scalar value, scalar horizontal gradient, and scalar
vertical gradient.

Figure 2.4: A triangular prism divided into six sub-prisms.

Governing equations

Let us introduce vertical layer thicknesses hk = hk(x, y, z) where k changes from
1 to K, and K is the number of layers. Then the continuity equation integrated
over the vertical extent of the layer is written as

∂thk + ∇h · (uh)k + (wt − wb)k +Wδk = 0. (2.1)
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Here u is horizontal velocity, W is the water flux leaving the ocean at the surface,
wt

k and wb
k denote transport velocities through the top (the superscript t) and

bottom (the superscript b) boundaries of layer k, and ∇h = (∂x, ∂y). Let us
denote an arbitrary tracer as T . The layer-integrated equation for the tracer
will be written as

∂t(hT )k + ∇h · (uhT )k + (wtT t − wbT b)k +WTW δk = ∇ · hkK∇Tk. (2.2)

In this equation ∇ = (∂x, ∂y, ∂z) denotes the 3-dimensional operator, i.e., the
right hand side in (2.2) is the divergence of the flux due to 3-by-3 diffusivity
tensor K which will be described in details in this chapter. The equation for
the surface elevation η (also called the sea surface height (SSH)) is obtained by
summing (2.1) over layers

∂tη + ∇h ·
∑︂

k

hkuk +W = 0. (2.3)

The pressure field in hydrostatic approximation is expressed as

p = pa + gρ0η + ph, ph =
∫︂ 0

z
ρdz (2.4)

where pa is the atmospheric pressure and ρ the deviation of density from its
reference value ρ0, and ph is the hydrostatic pressure due to density variation ρ.

The momentum equation is taken directly, without layer integration, and the
layer index k is omitted. It is written below in a vector-invariant form:

∂tu + ω + f

h
k × uh+

(︂
(w∂zu)t + (w∂zu)b

)︂
/2

+ ∇h

(︂
p/ρ0 + u2/2

)︂
+ gρ∇hZ/ρ0 = Duu + ∂z(ν∂zu),

(2.5)

but also a flux form is available. In this equation gρ∇hZ reflects the fact that
the model layers may deviate from geopotential surfaces. The variable Z stands
for the vertical coordinate z of the midplane of the layer with the thickness h.
The second term of the equation represents the potential vorticity q = (ω+f)/h.

Finally, the set of equations is completed by the equation of state,

ρ = ρ(T, S, z),

with T the potential temperature, S the salinity, and x the depth which replaces
the pressure because of the Boussinesq approximation used in the equations
above.
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ALE

FESOM2 provides three options for the treatment of free-surface. One of them
is the linear free surface where the change in the thickness of the upper layer
due to surface elevation is ignored in the tracer and momentum equations so
that the vertical layers are kept fixed in time, and volumes of the prisms stay
constant throughout the simulations. Two other options represent the full free
surface and use arbitrary Lagrangian-Eulerian (ALE) vertical coordinate (see
Donea and Huerta [2003]) to account for the moving surface, which warrants full
conservation. The full free surface is represented in FESOM2 with two options:
zlevel and zstar. With the zlevel option, only the thickness of the upper layer
is changing with time following the variations in SSH. With the zstar option,
the thicknesses of all the layers are dynamically updated and the change in the
thickness of the fluid column due to the elevation is equally distributed among
all the vertical layers. The zlevel option is slightly more computationally efficient
since only the thickness of the upper layers is updated. However, this option
may impose limitations when the unperturbed thickness of the upper layer is
too small: the thickness of the upper layer may become too close to zero, or
even negative, which is not allowed. For more details see Scholz et al. [2019],
Danilov et al. [2017]. The ALE and full free surface options allow one to get rid
of so called virtual salinity fluxes. When the freshwater is added to the surface,
the thickness of the upper layer is modified according to the thickness equation
2.1 and the salinity in the upper layer is controlled by that change. There is
zero flux of salt, and total salt is conserved. The heat flux is taken into account
through the boundary conditions at the surface in the temperature equation 2.2.

Spatial discretization

First, let us consider the notation. The indices c, e and v enumerate cells, edges,
and vertices respectively. The notation like v(e) will be used to denote the set
of vertices of edge e. The notation e(v) means the set of all the edges coming
out of the vertex v. This rule is applied to all other possible sets c, e and v.

In order to discretize the governing equations in terms of finite volumes, these
equations are integrated over the control volumes. For the velocities it means

Acuc =
∫︂

c
udS,

and similarly for the scalar tracers

AkvTkv =
∫︂

kv
TdS.
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Here Ac is a cell area, and S is a contour. Akv is a horizontal area of a prism for
the vertex v at the layer k. The layer index k is suppressed everywhere where
this causes no ambiguity.

There are three options for the momentum equation in FESOM2. Two of
them have a flux form and another one has a vector-invariant form. Cell-vertex
discretization on triangular meshes has an excessive number of velocity degrees
of freedom (compared to scalar degrees of freedom) which was taken into account
in these options. Implementation of the momentum equation requires a certain
amount of averaging in order to avoid noise which can occur on a grid scale.

• Vertex velocity option. Velocity at a vertex is calculated by averaging
among the velocities defined at the cells which contain the vertex v

Avuvhv =
∑︂
c(v)

uchcAc/3.

Here c(v) is a set of all the prisms containing the vertex v, hc are prism
thickness. c(v) coincides with c(v) in the upper layers, but bottom to-
pography excludes some prisms in deeper layers. Using this averaging the
diversion of horizontal momentum flux is calculated

Ac

(︂
∇ · (huu)

)︂
c

=
∑︂
e(c)

le

(︄∑︂
v(e)

ne · uvhv

)︄(︄∑︂
v(e)

uv/4
)︄
.

Here ne is an external normal at edge e of cell c, le is the length of the
edge e.

• Scalar control volumes. The horizontal part of the momentum flux diver-
gence on scalar control volumes is computed as

Av

(︂
∇ · (huu)

)︂
v

=
∑︂
e(v)

∑︂
c(v)

uchc · necucdec.

For the vertical part, the flux going through the top boundary of the prism
in layer k is

Av(wvut) = wv

∑︂
c(v)

ut
cAc/3.

Here the superscript t indicate the top surface.

• Vector-invariant form. The Coriolis parameter (see (2.5)) has to be defined
on the vertices of a prism because the relative vorticity is defined there(︂

(ω + f)k × (u)
)︂

=
∑︂
v(c)

(ω + f)vk × uc/3.

The kinetic energy in (2.5) is first computed at scalar locations, and then
its horizontal gradient is computed at triangles.
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Transport equation is discretized with high order schemes are used. FESOM2
uses upwind (3rd order), central (4th order), and mixed schemes of 3rd-4th order.
The schemes are based on the estimates of the tracer gradients on an upwind or
central stencil extending beyond the nearest neighbors. This and other advection
schemes are described in more detail and analyzed in chapter 4.

The Gent-McWilliams (GM) parametrization of eddy stirring (Gent and
McWilliams [1990]) is implemented in FESOM2 using the algorithm proposed
by Ferrari et al. [2010]. The GM parametrization is always applied together with
isoneutral diffusion proposed by Redi [1982]. The GM parametrization together
with isoneutral diffusion is important for parametrizing eddy-scale motions and
diapycnal mixing in the ocean. Isoneutral diffusion and its analysis in FESOM2
is one of the key points considered in the current work.

Isoneutral diffusivities

Isoneutral diffusivity directs mixing of temperature, salinity, and other tracers,
caused by unresolved eddies, along isoneutral surfaces in the ocean. It can also
be used for the stabilization of central advection schemes.

An isopycnal is commonly understood as the surface of constant potential
density defined with respect (referenced) to a particular pressure level. The
nonlinearity of the equation of state leads to the fact that this surface deviates
from a locally referenced density surface, which is also called a neutral density
surface and commonly denoted γ, even if the potential density and isoneutral
density coincide at some point. Small and almost energetically neutral exchanges
of fluid particles are expected to occur along neutral surfaces and be isoneutral.

The neutral slope vector is computed as

∇γ = −α∇T + β∇S.

Here T and S are the potential temperature and salinity respectively, α is the
coefficient of thermal expansion and β is the coefficient of haline contraction.
Note that the pressure appears in this equation only through the expansion
and contraction coefficients, and therefore these coefficients depend on local
pressure (depth in the Boussinesq approximation). γ surfaces can be computed
only approximately and this is the reason the language of isopycnal surfaces is
often used to express the physics approximately. In most cases, the notions of
isopycnal and diapycnal directions below have the precise meaning of isoneutral
and dianeutral directions respectively.
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Diffusive flux FT of tracer T is commonly parameterized as being propor-
tional to the gradient of the tracer. Since the flux is a vector, a general connection
between it and another vector ∇T is a diffusivity tensor given by 3 by 3 matrix
K in the standard Cartesian representation,

FT = −K∇T.

Here the minus sign takes care that the flux is down gradient in the simplest
case when K = κI, where I is the identity matrix.

To have the flux vector oriented along the γ surfaces one should write K =
KiP, where Ki is the isoneutral diffusivity and P is a projecting operator that
eliminates components aligned with ∇γ. For the matrix, K this operator is
expressed as

P = I − ∇γ∇γ/|∇γ|2,

or in the component form

Pij = δij − ninj, ni = ∂iγ/|∇γ|,

where i, j ∈ {x, y, z}, and δij is the Kronecker delta. Normally a slope vector in
the direction of ∇γ is used instead of the unit vector ni. This vector is defined
as

s = −∇hγ/∂zγ, ∇h = (∂x, ∂y).

The matrix K in terms of the slope vector s

K = Ki

1 + s2

⎛⎜⎜⎜⎝
1 + s2

y −sxsy sx

−sxsy 1 + s2
x sy

sx sy s2

⎞⎟⎟⎟⎠ , (2.6)

where sx and sy are components of the isoneutral slope vector s, and s is its
magnitude.

We assume that the slope is small which means that the values of the vector
s are also small, |s| ≪ 1. In this case, we can approximate 1+s2 by 1 up to small
errors that are quadratic in small |s|. For the same reason, all quadratic terms
in the matrix can be ignored except for the diagonal s2 term which corresponds
to the vertical diffusion. Thus, the expression above is simplified to

K =

⎛⎜⎜⎜⎝
Ki 0 sxKi

0 Ki syKi

sxKi syKi s2Ki

⎞⎟⎟⎟⎠ ,
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which is referred to as small-angle approximation. Finally, we should add the
physical dianeutral diffusion Kd that is provided by vertical mixing parameter-
ization schemes. The dianeutral direction is very close to the vertical one, so
with sufficient accuracy, this addition affects the lower diagonal term. The over-
all form of the diffusivity tensor (in small-angle approximation) will take the
form:

K =

⎛⎜⎜⎜⎝
Ki 0 sxKi

0 Ki syKi

sxKi syKi s2Ki +Kd

⎞⎟⎟⎟⎠ .

In the mixed layer, the slope vector is no longer small. However, the fluid
motion is diabatic in the mixed layer, and fluid is mixed horizontally across the
isoneutral surfaces. For this reason, we taper the off-diagonal components of the
diffusivity tensor to zero at the locations in and close to the mixed layer. Thus,
Ki becomes the coefficient of horizontal diffusion in regions where tapering is
done. A practical criterion is the magnitude of the slope vector.

There are two important points to consider while implementing the rotation
diffusivity numerically. The first one is that in finite-volume methods the com-
ponents of the slope vector are naturally computed at different locations: α and
β are defined at the center of a scalar cell, horizontal and vertical derivatives
are computed, respectively, at lateral and horizontal faces. The slope vector is
not defined at a single point unless some averaging is made. However, if this
averaging is made, it is not guaranteed that the diffusive operator will lead to
variance decay. The rigorous approach requires using variational calculus, i.e.,
writing a discrete dissipation functional and obtaining discretization by taking
variations (differentiating) of this functional, as first proposed by Griffies et al.
[1998] (see also discussion in Lemarié et al. [2012] and the explanation below).

The second point is the numerical stability of the time integration. Because of
the presence of mixed (horizontal-vertical) derivatives, the explicit time stepping
of the isoneutral diffusion operator faces severe restrictions if the aspect ratio of
a cell is smaller than the slope. In order to avoid this difficulty, the integration
has to be split into explicit and implicit parts. We explored the stability of this
split at triangular meshes where scalars are placed at vertices in chapter 3.

The time integration split, tapering, and other numerical details make the
isoneutral diffusion not truly isoneutral, although the dianeutral component,
introduced by them, is small compared to the horizontal diffusion.
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Analysis of isoneutral diffusion

We consider a diffusion equation

∂T

∂t
= ∇K∇T. (2.7)

Here T is a tracer field (temperature, salinity, etc.). This equation has two
properties.

• Property 1.
If tracer T is the isoneutral density γ, from definitions above (see equation
2.6)

K∇γ = 0. (2.8)

This happens because K is the projection operator which removes compo-
nents aligned with ∇γ.

• Property 2.
We multiply equation (2.7) with T and integrate over volume. The integral
on the right-hand side is integrated by parts assuming no flux conditions
to obtain

∂t

∫︂
T 2/2 dV =

∫︂
T∂iKij∂jT dV = −

∫︂
∂iTKij∂jT dV ≤ 0. (2.9)

The last equality follows from matrix Kij of K being symmetric and posi-
tive if T differs from γ. Here i, j ∈ {x, y, z}.

Let us prove that the matrix K is positive-definite as it is mentioned in the prop-
erty 2. For this, let us consider Sylvester’s criteria which says that a symmetric
matrix is positive-definite when all its leading principal minors are positive. In-
deed, ∆1 = |Kiso| > 0, ∆2 = K2

iso > 0, and ∆3 = K2
iso(s2Kiso + Kd) − s2

xK
3
iso −

s2
yK

3
iso = s2K2

isoKd > 0. Thus, the matrix K is positive-definite.
Properties 1 and 2 must be maintained at a discrete level. The difficulty is

that in the discrete case T , its horizontal derivatives, and its vertical derivatives
lie at different locations and the same concerns the quantities needed to compute
the isoneutral gradient vector defining K.

We introduce the dissipation functional

F(T ) = −1
2

∫︂
∇TK∇TdΩ. (2.10)

As can be seen, the right-hand side of (2.9) is expressible as 2F(T ). One can
also readily see that the right-hand side of (2.7) can be obtained by the calculus
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of variations as the functional derivative

δF = −(1/2)
∫︂

∇δTK∇TdΩ − (1/2)
∫︂

∇TK∇δTdΩ

= −
∫︂

∇δTK∇TdΩ = −
∫︂

∇(δTK∇T )dΩ +
∫︂
δT (∇K∇T )dΩ

=
∫︂
δT (∇K∇T )dΩ (2.11)

Here δT is a small variation of tracer field satisfying boundary conditions. The
first equality in the chain of transformations follows from the symmetry of K,
and the second one is due to our assumption that no flux is coming through
boundaries (fluxes coming to the ocean are associated with vertical (dianeutral)
diffusivity). The chain of transformations implies that the right-hand side of
(2.7) is also a multiplier of δT in the last integrand, i.e., it is the functional
derivative of the dissipation functional,

δF
δT

= ∇(K∇T ). (2.12)

Thus, starting from negative-definite dissipation functional one arrives at the
right-hand side of (2.7). Vice versa, it was shown above that the right-hand side
of (2.7) leads to the variance decay.

The idea of Griffies et al. [1998] exploits this fact. To get a numerical im-
plementation of isoneutral diffusivity that satisfies Property 2, one first needs
to write the dissipation functional (2.10) in the discrete form and obtain the
expression for the right-hand side of discretized (2.7) by performing a discrete
analog of variation computation. Analysis of isoneutral diffusivity, and dissi-
pational functional in particular, on triangular meshes is provided in chapter
3.

2.2 Variance decay and truncation errors

Consider a 1D advection–diffusion equation

∂tT + ∂x(uT ) = ∂xκ∂xT (2.13)

in a domain x ∈ [a, b] assuming periodicity of u and T for simplicity to eliminate
the consideration of boundary effect. In the equation above T is a scalar field
(tracer), u is the advecting velocity and κ is the diffusivity. Integrating this
equation over the domain we easily find that ∂t

∫︁ b
a T dx = 0, i.e. the total

amount of tracer is conserved independently of the presence of diffusion. In
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order to see the effect of diffusion we should consider behavior of variance T 2.
To learn about behavior of the variance, we multiply the equation above with T
and integrate over the interval. After simple manipulations we find:

∂t

∫︂ b

a
T 2 dx = −2

∫︂ b

a
κ(∂xT )2 dx, (2.14)

which means that the variance decay is related only to the diffusion, and not to
the advection. Indeed,

∫︁ b
a T∂x(uT ) dx =

∫︁ b
a ∂x(uT 2/2) dx = 0 (in a more common

case this result is a consequence of impermeability of boundaries). Thus in the
continuous case advection does not create variance decay, i.e. it does not relate
to mixing.

In the discrete case, our approximation of the advection operator always
contains truncation errors. Let us discretize the interval [a, b] with cells of the
size h. The cells will be indexed with n, and it will be assumed that Tn is
the discrete value of T at the center of cell n. Assume for simplicity that u is
constant and positive over the interval. With the first order upwind method,
the following approximation is used

u∂xT |n ≈ u(Tn − Tn−1)/h. (2.15)

In this formula, we assume that the velocity u is positive. We use the Taylor
expansion for Tn−1 around the center of cell n to obtain

Tn−1 = Tn − h∂xT |n + (h2/2)∂xxT |n + O(h3),

i.e.,

u∂xT |n ≈ u(Tn − Tn−1)/h = u∂xT |n − (uh/2)∂xxT |n + O(h2). (2.16)

The leading term in the truncation error is diffusive and will lead to mixing that
is rather high (with κA = uh/2).

Acting in the same way we will find that for the second-order central differ-
ences

u∂xT |n ≈ u(Tn+1 − Tn−1)/(2h) = u∂xT |n + (uh2/6)∂xxxT |n + O(h4). (2.17)

Here the main truncation error is coming with odd derivative, and the leading
error is dispersive. The order of the method here is associated with the power
of h in the leading truncation term.

The difference between the two methods lies in both their order and the type
of their truncation term. This behavior is preserved for higher-order methods.



2.2. VARIANCE DECAY AND TRUNCATION ERRORS 21

For example, the standard third-order upwind method has the truncation error
(uh3/12)∂xxxx (see, e.g., Lemarié et al. [2012]), which is a biharmonic diffusion.
The numerical illustrations for the errors of the fourth-order method are given
in chapter 4.

The type of truncation error is important because a dispersive error does
not lead to variance decay. Take, for example, the case of second-order centered
differences. In this case, the contribution of the error to the variance decay is
proportional to∫︂ b

a
T∂xxxT dx =

∫︂ b

a
∂x(T∂xxT )dx−

∫︂ b

a
∂x(T∂xT )dx = 0.

The integrals above take zero values due to the periodic boundary conditions of
the flux. One will get the same zero result for higher order even methods. There
might be some boundary effects in a general case, but their role is expected to
be small if the domain is large.

This is the reason why one expects that even-order methods do not create
mixing on their own. If velocity is variable, this statement is not necessarily
correct. Nevertheless, it is natural to expect that even-order methods will be
nearly non-dissipative. The drawback of even-order methods is that, because of
dispersion, the numerical propagation speed of perturbations becomes a func-
tion of their wavelength even if u is constant. As a result, oscillations will be
developing around frontal features, leading finally to code instabilities. An even-
order scheme has to be supplemented with an appropriate dissipation which will
suppress oscillations. Thus, in the end, both odd-order schemes with build-in
dissipation and even-order schemes with added dissipation imply some numeri-
cal dissipation, i.e. spurious mixing. The conceptual advantage of an even-order
scheme is that dissipation can be treated independently from advection. In the
3D case, dissipation can be turned along isoneutral surfaces to minimize or even
avoid dianeutral mixing (Lemarié et al. [2012]).

If the order of scheme is increased, the truncation term becomes asymptoti-
cally smaller (assuming that the tracer field is smooth enough), and will either
introduce less dissipation or will need less dissipation to counter dispersion. For
this reason, methods reducing the magnitude of truncation errors are expected
to need less dissipation for stability. Chapter 4 presents a fourth-order compact
scheme developed in the framework of this thesis that has a reduced truncation
error.

The simple analysis above explains the motivation behind particular parts of
this work. There are, however, complications in the practical realization, which
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may partly modify the simple arguments described above. One of the compli-
cations is the discrete time stepping. In FESOM2 advection is implemented
with second-order Adams–Bashforth method. Using the 1D example above and
assuming κ = 0, the procedure of FESOM2 is modeled by

Tm+1
n − Tm

n = −(uτ/h)(TAB2
n+1 − TAB2

n−1 )/2, (2.18)

where m is the time step index, τ is the time step, u = const and

TAB2
n = (3/2 + ϵ)Tm

n − (1/2 + ϵ)Tm−1
n . (2.19)

Here, ϵ is a small parameter (0.1) needed for stability. To proceed, the fields
are expanded around (m,n) point in time and space in a Taylor series, and then
time derivatives are expressed in terms of space derivatives with account for the
order of approximation. As a result, we get a modified equation that shows what
is actually solved. The procedure is called a modified equation method and is
described in many textbooks (see, e.g., Donea and Huerta [2003]). The result
for the case considered is

∂tT + u∂xT = ϵu2τ∂xx − uh2∂xxxT (1/6 + (uτ/h)2(−5/12 − ϵ+ ϵ2)) + O(τ, h)3

(2.20)
The time stepping stabilization through ϵ introduces in the leading order diffu-
sion with the equivalent diffusivity coefficient ϵu2τ , i.e. spurious mixing. Spuri-
ous mixing can be essential in frontal regions where the ocean velocity can reach
1 m/s. Note also that the amplitude of the dispersion term is modified by time
stepping. The combination uτ/h is called the Courant number, which is com-
monly small in ocean applications. For example, FESOM2 in global simulations
on a 1/4 degree mesh is running with τ = 1200 s, giving uτ/h ≤ 0.1. For this
reason, the compensation of dispersive error by time stepping is mostly weak,
and errors of spatial discretization are as a rule dominant.

It should be reminded once again that the analysis above is only valid for
uniform velocity. In realistic application, velocity is variable and depends on
the fields of active tracers such as temperature and salinity. However, it can be
expected that the behavior of advection schemes remains qualitatively similar
to that described above.

2.3 RPE analysis

To estimate spurious mixing in the model, the concept of reference potential
energy (RPE) will be applied in a way how it was described by Winters et al.
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[1995]. RPE is the minimum potential energy of the system obtained by sorting
density without mixing. RPE changes only through dianeutral transport. When
mixing occurs in a model, RPE generally increases with time (Ilicak et al. [2012]).

For calculation RPE all the water parcels in a model have to be sorted in a
way that the heaviest parcels are located at the bottom and the lightest ones -
at the top of a reservoir. The RPE is calculated as an integral by volume over
density-weighted geopotential of the new state of a model with sorted parcels:

RPE = g
∫︂∫︂∫︂

ρ∗zdV. (2.21)

Here ρ∗ stands for density of the state with sorted parcels. It is important
to remember that after this operation when a parcel is placed at another depth
under different pressure, its density will change. This behavior causes additional
problems in the RPE computation for the ocean with the full equation of state,
requiring new sorting after each time a parcel for the next depth is sought.
However, Ilicak et al. [2012] shows that using an isopycnal density instead of in
situ density in this procedure allows one to do sorting only once, for incurring
errors are small. Basically speaking, RPE can be considered as unavailable
potential energy of the system. It would not change with time in models with
switched off explicit dissipation and forcing unless the effects of spurious mixing.
When mixing exists in the system, e.g. from dissipation brought by advection
schemes, RPE will grow.

Hence in an ocean domain with no boundary fluxes of buoyancy, the evolution
of the RPE directly reflects a nonzero dianeutral transport (Ilicak et al. [2012]).
To avoid unnecessary information about RPE due to its small changes, I consider
relative changes of RPE with respect to initial state:

RPE = RPE(t) −RPE(t = 0)
RPE(t = 0) . (2.22)

Following Ilicak et al. [2012] even after adiabatic sorting we avoid diagnosing
local, or isopycnally averaged, diffusivity from the sorted profile due to its noisy
character and because it can be potentially misleading. Exploring the potential
energy of mixing through the RPE analysis is both consistent and relevant to
the global energy of the ocean.





Chapter 3

Isoneutral diffusion on triangular meshes

In deep ocean mixing of water mass properties by eddy motion, up to small di-
aneutral mixing, occurs along isoneutral surfaces. This is taken into account by
the diffusivity tensor K defined above. Numerical implementation of isoneutral
diffusivity is a challenge because it has to satisfy several properties mentioned
above. The existing discrete implementations were formulated and analyzed for
quadrilateral meshes (see, e.g., Griffies et al. [1998], Lemarié et al. [2012]). Addi-
tional analyses are required for triangular meshes. The description of discretiza-
tion appropriate for triangular meshes of FESOM2 was provided in Danilov
et al. [2017]. I worked on the implementation of isoneutral diffusivities in FE-
SOM2 which was then tested in Scholz et al. [2019]. This chapter deals with
the analysis of limitations on the time step required for numerical stability of
isoneutral diffusion. First, it considers a 2D case to explain the procedure, and
then continues with the analysis of 3D discretization of FESOM2.

3.1 2D discretization

The intention of this section is to explain computations using a 2D example. A
fragment of 2D mesh is shown in Fig. 3.1. Indices k and i enumerate mesh cells
in the vertical and horizontal directions respectively. The black dots show the
placement of discrete tracer variables. Using the finite volume method, we can
discretize equation 2.7 as follows

Vk,i∂tTk,i =
∫︂

k,i
∇K∇TdΩ =

∫︂
k,i

(K∇T )ndS. (3.1)

In this equation Vk,i stands for the volume of the cell {k, i} (area in two-
dimensional case); S stands for the surface of the volume Vk,i, and n is the

25
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V ul
k−1,i−1

V dl
k−1,i−1

V ur
k−1,i−1

V dr
k−1,i−1

k + 1, i

k, i− 1 k, i k, i+ 1

k − 1, i

hk− 1
2

i− 1
2

i+ 1
2

di− 1
2

Figure 3.1: Discretization on a quadratic mesh with the step h in the vertical
direction and step d in the horizontal direction. Subvolumes V j

k,i are shown in
purple color in the left upper volume.

outer normal vector to the surface. In two-dimensional case the K matrix will
have the following form

K = Kiso

⎛⎝ 1 s

s s2

⎞⎠. (3.2)

Discrete vertical derivatives of the tracer will be at horizontal faces (edges) of
the cells, i.e at k + 1/2 and so on. Horizontal derivatives will be at i+ 1/2 and
so on. Since K combines vertical and horizontal derivatives, fluxes through the
cell faces in (3.1) on each face will depend on the derivatives defined at other
places. However, there is no immediately straightforward way to average vertical
derivatives to vertical faces and horizontal derivatives to the horizontal faces so
that it will ensure that the discrete variance decays.

First, let us introduce the discrete form of the dissipation functional F :

F = −1
2
∑︂
k,i

∫︂
k,i

∇TK∇TdΩ. (3.3)

Since horizontal and vertical derivatives are defined at different places, Vk,i will
be split in four pieces. Let us use indices u for up, d for down, l for left and r for
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right parts of the volume. Thus, the volume Vk,i will be split into four smaller
volumes each of which takes the fourth part of the volume of Vk,i, denoted as
V ul

k,i, V
ur

k,i , V
dl

k,i, V
dr

k,i as it is shown on the Fig. 3.1.
Using these sub-volumes, we split the integral in (3.3) in four contributions

F = −1
2
∑︂
k,i

4∑︂
j=1

(∇T )j
k,iK

j
k,i(∇T )j

k,iV
j

k,i. (3.4)

Here j is array of indexes from 1 to 4 where 1 stands for the combinations ul, 2
for ur, 3 for dl and 4 for dr. Each of four sub-volumes of Vk,i is characterized
by unique combination of tracer Tk,i, and horizontal and vertical derivatives,
producing a positive contribution to the sum in (3.4) because of the positivity
of the matrix Kj

k,i. The small variation of the tracer now becomes the vector of
perturbations of the discrete values δTi,k. Since (3.4) is a quadratic form in Ti,k,
the variation of (3.4) can be computed as

δF =
∑︂
k,i

δTk,i
∂F
∂Tk,i

. (3.5)

On the other hand, in analogy with (2.11), we write

δF =
∑︂
k,i

δTk,iRk,iVk,i. (3.6)

Here Rk,i is used to represent the right hand side of discrete diffusion equation
(3.1) as

∫︁
k,i ∇K∇TdΩ = Vk,iRk,i. Hence, we will get

Vk,iRk,i = ∂F
∂Tk,i

. (3.7)

Thus, the right hand side of (3.1) is computed by differencing of the discrete
dissipation functional. It can be seen that it ensures discrete variance decay
(Property 2). Indeed,∑︂

i,k

Tk,iVk,iRk,i =
∑︂
k,i

Tk,i
∂F
∂Tk,i

= 2F .

The last equality is once again the consequence of F being a quadratic form in
Ti,k. Property 1 will be ensured if the slope is computed separately in every four
subvolumes by using the same expressions for vertical and horizontal derivatives
as for the tracer.

Let us expand the term (∇T )j
k,iK

j
k,i(∇T )j

k,i in (3.4) using directional deriva-
tives and suppressing indices for briefness

(∇T )j
k,iK

j
k,i(∇T )j

k,i = (∂xT, ∂zT )(Kiso(∂xT + s∂zT ), Kiso(s∂xT + s2∂zT )) =

Kiso((∂xT )2 + 2∂xT∂zTs+ s2(∂zT )2).
(3.8)
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Here Kiso stands for isoneutral diffusivity in the matrix K.
Let us have a closer look at the terms of the equation above. We will be

writing down the contributions coming from the volume Vk,i into the dissipation
functional (3.4). For simplicity of explanations, we will assume that the slope
s is the same for the entire volume Vk,i. This assumption is compatible with
Property 2 but violates Property 1.

Term 1: (∂xT )2Kiso.
The contribution from volume Vki and term 1 differs for the left and right

sub-volumes; all sub-volumes lead to the expression

−
[︄
Vki

2

⎛⎝Tk,i+1 − Tk,i

di+1/2

)︄2

+ Vki

2

(︄
Tk,i − Tk,i−1

di−1/2

)︄2
⎤⎦Kiso

2

Here di is the step in x (horizontal) direction. Therefore, the contribution to
the right hand side according to equation 3.7 becomes

Vk,iRk,i : Kiso

[︄
1

di+1/2
Tx,k,i+1/2 + 1

di−1/2
Tx,k,i−1/2

]︄
1
2Vk,i,

Vk,i+1Rk,i+1 : −Kiso
1

di+1/2
Tx,k,i+1/2Vk,i,

Vk,i−1Rk,i−1 : Kiso
1

di+1/2
Txk,i−1/2Vk,i.

In these formulas, Tx is the shortcut for the discrete x-derivative at locations
given by further subscripts. It is important to note that if Kiso is varying as a
function of x, it should be taken in the same way as Vk,i (with indices k, i).

We can proceed by putting the result as written to the right-hand sides of
three cells {k, i−1}, {k, i} and {k, i+1}. We can also combine the contributions
from the cells {k, i − 1}, {k, i} and {k, i + 1} into the right-hand side of the
equation for Tk,i as follows

Vk,iRk,i : KisoVk,i

2

[︄
1

di+1/2
Tx,k,i+1/2 − 1

di−1/2
Tx,k,i−1/2

]︄

+KisoVk,i+1

2
1

di+1/2
Tx,k,i+1/2 − KisoVk,i−1

2
1

di−1/2
Tx,k,i−1/2 =

Kiso

[︄
Tx,k,i+1/2

2di+1/2

(︂
Vk,i + Vk,i+1

)︂
−
Tx,k,i−1/2

2di−1/2

(︂
Vk,i + Vk,i−1

)︂]︄
.

(3.9)

This equation expresses the result in a flux form. We see the flux entering the
cell {k, i} through its right and left faces. The fluxes are, however, weighted
with volumes of cells on both sides of faces.
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Term2: 2∂xT∂zTsKiso.
The contribution of the cell {k, i} to the F is:

−sVk,iKiso

4

[︄
Tk−1,i − Tk,i

hk−1/2

Tk,i − Tk,i−1

di−1/2
+ Tk−1,i − Tk,i

hk−1/2

Tk,i+1 − Tk,i

di+1/2

+Tk,i − Tk+1,i

hk+1/2

Tk,i − Tk,i−1

di−1/2
+ Tk,i − Tk+1,i

hk+1/2

Tk,i+1 − Tk,i

di+1/2

]︄
.

In this equation hk+1/2, hk−1/2 stand for the distance in the z-direction between
the respective cell centers. Note that here all four sub-volumes contribute dif-
ferently. The slope s is a common multiplier because of our simplification. It is
computed separately for each sub-volume otherwise. As can be seen, five discrete
tracer values are involved, so, that this term will generate five contributions to
the right-hand sides. They are computed by taking derivatives

Vk,iRk,i : sKisoVk,i

4

[︄
1

hk−1/2
Tx,k,i−1/2 − 1

di−1/2
Tz,k−1/2,i

1
hk−1/2

Tx,k,i+1/2 + 1
di+1/2

Tz,k−1/2,i

− 1
hk+1/2

T, xk,i−1/2 − 1
di−1/2

T, zk+1/2,i

− 1
hk+1/2

T, xk,i+1/2 + 1
di+1/2

Tz,k+1/2,i

]︄
,

Vk−1,iRk−1,i : sKisoVk,i

4

[︄
− 1
hk−1/2

Tx,k,i−1/2 − 1
hk−1/2

Tx,k,i+1/2

]︄
,

Vk+1,iRk+1,i : sKisoVk,i

4

[︄
1

hk+1/2
Tx,k,i−1/2 + 1

hk+1/2
Tx,k,i+1/2

]︄
,

Vk,i−1Rk,i−1 : sKisoVk,i

4

[︄
1

di−1/2
Tz,k+1/2,i + 1

di−1/2
Tz,k−1/2,i

]︄
,

Vk,i+1Rk,i+1 : sKisoVk,i

4

[︄
− 1
di+1/2

Tz,k+1/2,i − 1
di+1/2

Tz,k−1/2,i

]︄
.

Here Tz is the shortcut for vertical derivative, and indices point to its location.
Similarly to computations above, the contributions from five cells into Rk,i can
be grouped to reveal that one deals with weighted fluxes through the faces of
the cell {k, i}. I do not write them down here.

Term3: (∂zT )2Kiso.
The contribution of the cell {k, i} to the functional F for the term 3 is

−s2KisoVk,i

4

⎡⎣(︄Tk−1,i − Tk,i

hk−1/2

)︄2

+
(︄
Tk,i − Tk+1,i

hk+1/2

)︄2
⎤⎦.



30 CHAPTER 3. ISONEUTRAL DIFFUSION ON TRIANGULAR MESHES

In terms of variational calculation it will contribute to the term 3 as

Vk,iRk,i : s
2KisoVk,i

2

[︄
1

h2
k−1/2

(︂
Tk−1,i − Tk,i

)︂
− 1
h2

k+1/2

(︂
Tk,i − Tk+1,i

)︂]︄
,

Vk−1,iRk−1,i : −s2KisoVk,i

2
Tk−1,i − Tk,i

h2
k−1/2

,

Vk+1,iRk+1,i : s
2KisoVk,i

2
Tk,i − Tk+1,i

h2
k+1/2

.

Here the derivative abbreviations are skipped because, as it turns out, this term
has to be treated implicitly. For the same reason we have to assemble all the
parts of the term 3 which contribute to Vk,iRk,i together:

Vk,iRk,i : s
2Kiso

h2
k−1/2

(︂
Tk−1,i − Tk,i

)︂[︄Vk,i

2 + Vk−1,i

2

]︄

− s2Kiso

h2
k+1/2

(︂
Tk,i − Tk+1,i

)︂[︄Vk,i

2 + Vk+1,i

2

]︄
.

Now all the terms are considered. The consideration of the 3D case on trian-
gular meshes follows the same procedure. The difference is that each triangular
prism will be split into six sub-prisms and that many triangular prisms con-
tribute to a given scalar point.

Stability analysis

The time stepping of isoneutral diffusion will be analyzed in this section. As
it is common in such studies, our final intention will be to apply the Fourier
analysis. For this reason, I will do some further simplifications. Let us assume
the slope scalar s and isoneutral diffusivity Kiso from the matrix K defined in
3.2 to be constant. The mesh will be considered to be uniform with Vi,k = hd,
where h, d are the vertical and horizontal mesh steps respectively. Traditionally,
the horizontal diffusivity in ocean codes is considered explicitly. Although the
isoneutral diffusion is a replacement for the horizontal diffusion, it needs explicit-
implicit treatment, as demonstrated in Lemarié et al. [2012]. Here I explain why.
Explicit discretization of equation 2.7 in time can be written either as

T n+1
j − T n

j = Kiso∆t[∂x(∂x + s∂z)T n + ∂z(s∂x + s2∂zT
n)], (3.10)

where n is the time step index and the time step length is denoted as ∆t. In
the explicit-implicit form everything concerning the horizontal operator will be
explicit, and vertical term ∂zz will be computed implicitly

T n+1
j − T n

j = Kiso∆t
[︂
(∂x∂x + ∂xs∂z + ∂zs∂x)T n + s2∂z∂zT

n+1
]︂
. (3.11)
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For the analysis let us represent the spatial dependence of tracer T as a Fourier
harmonic

T = T̃ eikx+imz. (3.12)

In the continuous case for such a choice of T , ∂xT = ikT and ∂zT = imT . In
the discrete case considered above, as it can be readily seen, they should be
replaced with ∂xT = (2i/d) sin(kd/2)T and ∂zT = (2i/h) sin(mh/2)T . Further-
more, there will be additional factors related to averaging that is present in the
expressions for fluxes obtained by variational method. For briefness we will omit
them here, but full expressions will be used further in the 3D case. Since in the
discrete case |k| ≤ π/d and |m| ≤ π/h, the difference here will not be large to
change the answer qualitatively. If we insert this representation in equations
(3.10) and (3.11), we will get the relations

T n+1
j − T n

j = Kiso∆t
[︂
(−k2 − 2mks)T n

j −m2s2T n
j

]︂
(3.13)

and
T n+1

j − T n
j = Kiso∆t

[︂
(−k2 − 2mks)T n

j −m2s2T n+1
j

]︂
. (3.14)

For stability analysis I introduce λ = T n+1/T n. In order solutions do not diverge
with time, i.e., for the scheme stability, it should be |λ| ≤ 1. Expressing λ we
will get

λe = 1 −Kiso∆t(k2 + 2mks+m2s2) (3.15)

and
λi = 1 −Kiso∆t(k2 + 2mks)

1 +Kiso∆tm2s2 . (3.16)

Let us start from the explicit case. As it was mentioned before, |λ| has to be
less than 1. This brings us to the following relation

Kiso∆t|k2 + 2mks+m2s2| ≤ 2 ⇒ Kiso∆t
π2

d2 (1 + S)2 ≤ 2, (3.17)

where S = sd/h.
For typical Kiso and d it does not cause severe limitations on time step if S is

small. The limitation on the time step ∆t becomes much stronger if S is large.
For example, if we take d = 10 km, h = 10 m and the slope s = 10−3, then
S = 1. With Kiso = 300m2/s we can evaluate the limiting time step as ∆t ≤ 8
hours. However, if d is larger, or h is smaller, or s is larger, we can get a strong
limitation implying that ∆t gets smaller in S2 times. For instance, with S = 10,
the time step approximately has to be ∆t ≤ 9 min which is already quite small.
With S = 20 it gets really limiting. In reality, the problem will happen earlier,



32 CHAPTER 3. ISONEUTRAL DIFFUSION ON TRIANGULAR MESHES

as diffusion will be combined with advection, and the latter will contribute to
the time step limitation as well.

Now let us go back to the explicit-implicit case. We rewrite λi as

λi = 1 − C(1 + 2S)
1 + CS2 = 1 − C

(1 + S)2

1 + CS2 , (3.18)

where C = Kiso∆tk2 and S = sm
k
. Note that S is different here from the

previous case, yet it has similar sense. The condition |λi| ≤ 1 implies that
C(1 + S)2/(1 +CS2) ≤ 2. Considering the left hand side of this inequality as a
function of S, we find that its extremum is achieved at S = −1 or CS = 1.

Putting S = −1 in (3.18) we see that λ = 1 which means that there are no
limitations in this case. For the other extremum we will get λ = −C. Therefore
we have to require that C = Kiso∆tk2 < 1. We see that in the explicit-implicit
case the limitation does not depend on S (and thus on using ik and im as
spectral symbols of derivatives). If we want to avoid oscillations as well, we
have to require that λ stays positive:

1 − C(1 + 2S) > 0 ⇒ C <
1

1 + 2S if 1 + 2S > 0.

Negative S will not cause any problems, but positive values of S may limit the
admissible time step for a large S. Even this limitation is less strong than the
limitation of the explicit case.

In summary, this implies that isoneutral diffusion has to be treated in an
explicit-implicit way.

3.2 3D discretization on triangular meshes

A 3D mesh used by FESOM2 is based on a triangular surface mesh and a
set of horizontal level surfaces as it was described in chapter 2. Each surface
triangle defines a triangular prism going vertically down to the bottom. It is
cut by the horizontal level surfaces into smaller prisms. A dual set of prisms is
created by first constructing the so-called median-dual cells around each surface
vertex (see Fig. 3.2). Such a cell is formed by connecting centers of triangles
with mid-points at their edges. For a regular surface mesh made of equilateral
triangles, these cells are hexagonal cells of dual mesh. Scalar degrees of freedom
are located in the middle of such dual prisms in the vertical, and under the
vertices in horizontal directions.
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Vertical discretization is therefore similar to the 2D case above. The horizon-
tal discretization needs special treatment. When discussing it, we will be using
a horizontal plane and saying that scalar degrees of freedom are at vertices.

The main aspects of the discretization of isoneutral diffusion are based on
the variational approach on meshes used by FESOM2 (see details in Danilov
et al. [2017]). I implemented this discretization in FESOM2 and complemented
it by the analysis of its numerical stability presented further. Some aspects of
the performance of the isoneutral diffusion implementation are tested in Scholz
et al. [2019].

The vertex placement of scalar degrees of freedom in the horizontal plane
implies that the natural positions of horizontal gradients are at the centers of
triangular prisms. Vertical gradients are therefore located at vertices of triangu-
lar prisms (see Fig.2.3). To have a unique combination of vertical and horizontal
derivative, each triangular prism is split into six sub-prisms cut by the mid-plane
and the faces of a dual prism (see Fig. 2.4).

As the result, the dissipation functional is obtained as a double sum over
triangular prisms and six sub-prisms. The resulting right-hand side of the tracer
equation is, however, obtained in the same way as in the 2D case above by
differentiation of dissipation functional. The expressions are even bulkier than
the expressions for the 2D case above and are not presented here.

The goal of the rest of this section is the time stepping stability analysis for
the 3D discretization of FESOM2.

Let us consider a regular triangular surface mesh consisting of equilateral
triangles. In FESOM2 scalar degrees of freedom are placed at the vertices of a
triangular mesh. As it was mentioned above, the natural location for horizontal
gradients is at centroids of triangles. However, a triangular mesh includes tri-
angles of two different orientations, as shown in Fig.3.2. We will distinguish be-
tween triangles pointing upward (u-triangles) and downward (d-triangles). This
is needed because one type of triangles cannot be obtained from the other type
by translations, and this has to be taken into account in the Fourier analysis. To
carry out such an analysis, we assume that the slope vector s is constant, and
that the mesh is uniform in horizontal and vertical direction. We also assume
for the horizontal part

Tj = T̃ eikxj+ilyj , (3.19)

where j enumerates all vertices of surface mesh, k, l are the zonal and meridional
wavenumbers respectively, and xj, yj are the coordinates of vertex j in the hor-
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izontal plane. The length of the triangle side will be denoted as d. I suppressed
the vertical index in the discussion of the horizontal part. In Fig. 3.2 discrete
tracer values Ti are defined at the nodes of a triangles, and the notation ni stand
for normal vectors.

If one makes calculations on a uniform mesh and with the constant s through
the variational method, they will lead to the standard expressions for fluxes.
Exception is the case of vertical and horizontal averaging in computations of
mixed terms. I therefore start from the continuous expressions

∇K∇T = Kiso

[︂
∂x(∂x+sx∂z)+∂y(∂y +sy∂z)+∂z(sx∂x+sy∂y)+∂zs

2∂z

]︂
T, (3.20)

and replace derivatives with spectral symbols for the discrete case, taking into
account averaging, as explained below.

First, let us consider a d-triangle. Here n1 = (
√

3
2 ,−

1
2), n2 = (0, 1) and

n3 = (−
√

3
2 ,−

1
2) are normal vectors to the sides of the triangle. Using equation

(3.19) and taking into account that the length of the triangle side is d, the tracer
values will take the following form

T1 = T̃ e−ik d
2 +il

√
3

6 d,

T2 = T̃ e−il
√

3
3 d,

T3 = T̃ eik d
2 +il

√
3

6 d

(3.21)

if coordinates are measured from the triangle center. If linear interpolation is
assumed on a triangle, each its vertex contributes to the horizontal gradient of
T as Tjnj/h, where h = d

√
3/2 is the triangle height. Combining these con-

tributions, we will obtain expressions for x and y components of the horizontal
gradient on d triangle in the spectral form (spectral symbols)

Gd
x = 2i

d
sin

(︂kd
2
)︂
eil

√
3

6 d,

Gd
y = 2√

3d
[︂

cos
(︂kd

2
)︂
eil

√
3

6 d − e−il
√

3
3 d
]︂
.

(3.22)

Similarly, we can get the expressions for a u-triangle which are minus complex
conjugate of those for d triangle (3.22).

Gu
x = 2i

d
sin

(︂kd
2
)︂
e−il

√
3

6 d = (−Gd
x)∗;

Gu
y = 2√

3d
[︂

− cos
(︂kd

2
)︂
e−il

√
3

6 d + eil
√

3
3 d
]︂

= (−Gd
y)∗.

(3.23)

The outer derivatives in expression (3.20) are related to the divergence.
Therefore, we have to find the expression for the discrete divergence. In Fig. 3.2
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d− triangle

u− triangle

i

n3 n1

n2
T1 T3

T2

Figure 3.2: The full horizontal stencil of a scalar control volume involving of six
triangles. Neighbouring elements are shown with the dotted lines. The values
of tracers (T1, T2 and T3) are located in the vertices of a triangle. Vectors n1,
n2 and n3 are outer normals to the sides of the triangle.

the hexagon shows the scalar control cell around vertex i. If there is a vector field
u = (u, v) with discrete values defined at the triangle centers, the divergence
will be obtained by summing the contributions from segments of the boundary.
One readily obtains that in the Fourier representation

(∂xu+ ∂yv)i = 1
2[Gd

xu
u +Gu

xu
d +Gd

yv
u +Gu

yv
d].

The vertical component of the gradient of tracer T is defined in the middle points
of levels as

Tz,k−1/2,j = T(k−1),j − Tk,j

h
. (3.24)

For the Fourier analysis the vertical dependence is selected proportional to eimz.
In this case the spectral symbol of the vertical gradient component becomes

Gz = 2i
h

sin mh2 . (3.25)

The vertical contribution to the divergence is −G∗
z = Gz.

We have now all partial derivatives in the Fourier representation and can pro-
ceed with the isoneutral diffusion operator. The diagonal terms of the operator
take the form

∂x∂x = 1
2(Gd

xG
u
x +Gu

xG
d
x) = −Gu

x(Gu
x)∗,

∂y∂y = 1
2(Gd

yG
u
y +Gu

yG
d
y) = −Gu

y(Gu
y)∗,

∂z∂z = 1
2(Gd

zG
u
z +Gu

zG
d
z) = −GzG

∗
zs

2.

(3.26)
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For the mixed derivatives horizontal and spatial averaging has to be taken into
account.

∂x(sx∂z) = 1
2
(︂
Gd

x(sx∂z)u +Gu
x(sx∂z)d

)︂
. (3.27)

Averaging of sx∂z to u-triangle location introduces the factor

fh = 1
3
(︂
e2il

√
3d
6 + e−ik d

2 −ild
√

3
6 + eik d

2 −ild
√

3
6
)︂
, (3.28)

and vertical averaging to mid-layer will introduce the factor

fv = cos(mh/2).

We combine both factors to f = fhfv. Averaging of sx∂z to d-triangle location
will lead to the complex conjugate factor. Same averaging coefficients will appear
in the averaging (sx∂x) to vertex locations and levels. As the result, mixed
derivatives are expressed as follows

∂x(sx∂z) = 1
2
(︂
Gd

xf +Gu
xf

∗
)︂
sxGz,

∂z(sx∂x) = 1
2
(︂
f ∗Gu

x + fGd
x

)︂
sx(−G∗

z).
(3.29)

The expressions involving meridional direction are obtained by exchanging x-
indices with y-indices.

Stability analysis

Knowing from the 2D case that the explicit-implicit time stepping is the most
essential for better stability, I consider this case only. Acting in the same way
as in 2D case above, we get

λi =
1 −Kiso∆t[Gu∗

x G
u
x +Gu∗

y G
u
y + [(Gd

xf +Gu
xf

∗)sx + (Gd
yf +Gu

yf
∗)sy]Gz]

1 +Kiso∆tG∗
zGzs2 .

(3.30)
The structure of this expression is similar to that of two dimensional case, and
stability implies

Kiso∆t
Gu∗

x G
u
x +Gu∗

y G
u
y + [(Gd

xf +Gu
xf

∗)sx + (Gd
yf +Gu

yf
∗)sy]Gz +G∗

zGzs
2

1 +Kiso∆tG∗
zGzs2 ≤ 2.

(3.31)
The combinationGu∗

x G
u
x+Gu∗

y G
u
y is the discrete analog of the horizontal wavenum-

ber squared, and I denote it K2. I also denote S = s|Gz|/K and C = Kiso∆tK2.
The inequality above will be then rewritten as

C
1 + 2bS + S2

1 + CS2 ≤ 2,
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where
b = [(Gd

xf +Gu
xf

∗)sx + (Gd
yf +Gu

yf
∗)sy]/(2sK).

Since f is due to averaging, |f | ≤ 1, and therefore |b| ≤ 1. Indeed, in the absence
of f b is a dot product of two vectors divided on their amplitudes, and f can
only reduce its amplitude. Solving the inequality with respect to C we find

C ≤ 2
1 + 2bS − S2 .

Denominator reaches maximum for S = b which equals 1+b2. To be valid in the
worst case, we must require C ≤ 1. As in the 2D case we see that the limitation
on the time step does not depend on S as would be the case for fully explicit
time stepping. The limitation obtained is only twice worse than the limitation
on purely horizontal diffusion (C ≤ 2). Such limitation is as a rule much less
restrictive than other limitations in ocean codes (see, e.g., Lemarié et al. [2015]).

Once again, one is not necessarily satisfied with formal stability and may
require absence of oscillations, i.e. that λi stays positive. In this case the answer
will be C ≤ 1/max(1 + 2bS, 0 + ϵ). For large S the condition can be essentially
more demanding, yet it is less restrictive than for purely explicit time stepping.

It turns out that for stability analysis the precise form of spectral symbols
for derivatives is not important. However, it is needed to convert the stability
criterion on C into stability criterion on ∆t. For this let us define the maximum
value of K2d2 (we use K2d2 in place of K2 because it is dimensionless). From
the definition of K2 we will get

K2d2 = 4 sin2 kd

2 + 4
3
(︂

cos2 kd

2 − cos kd2 cos ld2 + 1
)︂
.

Maximum value of K2d2 on triangular grid for vertex placement of scalars turns
out to be 16/3, implying that ∆t ≤ 3d2/(16Kiso). The condition on the absence
of oscillations implies ∆t ≤ 1/(KisoK

2(1 + 2bS)). Taking b = 1, the worst
value of |Gz| = 2/h and maximum value of K2, we find ∆t ≤ 3d2/(16Kiso(1 +
√

3sd/h)). This is more limiting if sd/h is large, but even in this case it is less
limiting as the explicit time stepping. For d = 103 m and Kiso = 300 m2/s the
time stepping will be stable for ∆t ≤ 17.4 h, and will show no oscillations for
sd/h = 10 if ∆t ≤ 1 h. Larger values of Kiso or slope can make limitations
stronger, but still unlikely dominant.

3.3 Implementation in FESOM2

The isoneutral diffusivity as described above was implemented in FESOM2.
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For the test, a 20◦ wide channel centered at the latitude 38◦ and having the
depth of 1600 metres was considered. All the forcing and dianeutral vertical
mixing were switched off in the system. The system evolution is only due to
diffusion. The full equation of state is used. The surface mesh obtained by
splitting reqular quadrilaterals with a side 18 km in two triangles was taken.
The vertical resolution is smoothly varying from 10 m to 50 down to 200 m
depth and then is set to 100 m.

Salinity is constant and set to 35 PSU and temperature is set to form with
tilted isotherms, so, the density stratification is due to temperature only. A
passive tracer is set to zero everywhere but for a spherical patch in the middle
of the channel (see Fig. 3.3). Only the equation for passive tracer was integrated.
In this case isopycnals do not change with time, and we can observe diffusion
of the passive tracer. The Fig. 3.3 demonstrates how diffusion ignores slope of
density layers when we switch off the isoneutral diffusion, and how it becomes
aligned with isopycnals with time otherwise.

(a) Initial state

(b) Isoneutral diffusion method is not
applied

(c) Isoneutral diffusion method is applied

Figure 3.3: The passive tracer concentration initially (a) and after 5 years of
integration with isoneutral diffusion (c) and without it (b). White lines indicate
isopycnals.

As we can see from the figure 3.3, change in the system happen only due to
diffusion. Isopycnals are formed by changes in temperature. When isonuetral
diffusion is not applied, diffusion of the passive tracer goes along vertical layers
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ignoring isopycnals while with this method passive tracer diffuses along the
density layers.

3.4 Conclusion

The method described in the current chapter is well known and used in mod-
els working on quadrilateral meshes. Its realization and stability analysis on
rectangular meshes were described by Lemarié et al. [2012]. However, it was
not analysed and fully implemented on triangular meshes. In this chapter I
explained the implementation of isoneutral diffusion on triangular meshes and
made stability analysis to get conditions when it is stable and do not produce
oscillations. As a result, it is proven that the explicit-implicit treatment, same as
on quadrilateral meshes, does not create severe limitations on triangular meshes
of FESOM2, similarly to the conclusion of Lemarié et al. [2012] concerning
quadrilateral meshes.

Also, isoneutral diffusion method was implemented in FESOM2. Numeri-
cal analysis of the method is provided in chapter 5. However, implementation
of biharmonic isoneutral diffusion in FESOM2 did not bring desired effect on
aligning the diffusion of the passive tracer along isoneutral surfaces. With bi-
harmonic isoneutral diffusion I could not reach stable behavior for the passive
tracer diffusion. This case requires further investigations which are not covered
by the current work.





Chapter 4

Numerical advection schemes

This chapter is a compilation of the paper "Comparison of several high-order
advection schemes for vertex-based triangular discretization" written by the au-
thor together with S. Danilov and published in Ocean Dynamics, in 2020 (see
Smolentseva and Danilov [2020]).

4.1 Introduction

The third-order upwind advection schemes are a common choice in many ocean
circulation models, formulated on structured meshes (see, e.g., Lemarié et al.
[2015], Soufflet et al. [2016]). The large-scale unstructured-mesh ocean circula-
tion models MPAS (Ringler et al. [2013]) and FESOM2 (Danilov et al. [2017])
use the unstructured-mesh analogs of this approach, as a rule in a version blend-
ing the third (upwind) and fourth (centered) order estimates, combined with the
FCT (flux corrected transport) procedure. It is believed that the residual bihar-
monic diffusion introduced by the third-order upwind schemes presents a good
compromise between the high accuracy and the need to damp perturbations at
grid scales with unphysical behavior (see, e.g., Soufflet et al. [2016]). A question
is whether there are advection schemes for vertex-based scalars on unstructured
meshes that have a comparable computational cost but introduce even smaller
dissipation in eddy-rich regimes of high-resolution global ocean simulations. We
limit ourselves to the schemes that are sufficiently cheap in the sense that ad-
vection of temperature and salinity takes about or less than 50% of the time
step of full 3D primitive-equation general ocean circulation model.

Our interest in the question is motivated by the development of the new
finite-volume (FV) dynamical core of FESOM2 (Danilov et al. [2017]), which

41
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uses vertex placement of scalar variables, similar to the finite-element FESOM1.4
(Wang et al. [2014]). It turned out that it is rather difficult to propose an in-
expensive FV advection scheme that compares in performance to the Taylor-
Galerkin (TG) scheme of FESOM1.4, augmented with the flux corrected trans-
port (FCT) limiter and using a consistent mass matrix (i.e., the FE FCT method
of Löhner et al. [1987]). In spite of its nominally second order (linear polynomial
representation on triangles), it easily outperforms the standard third and fourth
order FV schemes tested by us (see below). The reason is that the inversion of
consistent mass matrix in the TG method removes the leading spatial disper-
sive error, resulting in an effectively fourth-order method with a rather small
residual term (see, e.g. Donea and Huerta [2003]). The question therefore is
whether similar behavior can be reached in a FV code where mass matrices do
not appear, and even if introduced, would destroy the locality of fluxes at in-
terfaces of control volumes. We propose an elementary solution suitable for the
FV method, which in idealized tests generally shows lower errors than the com-
mon third-fourth order methods, requiring lower computational resources. For
uniform meshes, the idea of the method resembles that of the compact fourth-
order method discussed, for example, in Lemarié et al. [2015] and Shchepetkin
[2015], or in Zerroukat et al. [2006] as related to the parabolic spline method.
For this reason we will refer to the proposed scheme as the compact scheme. Its
description presents the main goal of present work.

We note from the very beginning that because the advecting velocity field in
the ocean varies on the same spatial scale as temperature and salinity, the prac-
tical accuracy of the advection will be only second-order. The search for higher-
order transport algorithms is motivated by the observation that they gener-
ally provide smaller residual errors and spurious mixing (see, e.g., Mohammadi-
Aragh et al. [2015]).

We will discuss the schemes in two dimensions. The unstructured meshes
used in ocean modeling are vertically aligned, so that the vertical dimension
is not different from that on structured meshes. The modifications needed to
extend the descriptions to 3D case are straightforward and consist in adding
fluxes through the top and bottom faces of the respective control volumes. The
transport equation will be taken in a flux form

∂tT + ∇ · (uT ) = 0, (4.1)

where u is the given velocity, and T an arbitrary tracer (like mass fraction if
∇ · u = 0 or like density otherwise). The solution is sought in some domain Γ
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subject to the condition of no flux through its impermeable lateral boundaries.
Initial conditions and the domain will be specified below.

Since the vertex placement of scalar variables on triangular meshes is equiv-
alent to the cell placement of variables on hexagonal meshes if the meshes are
uniform, their FV transport algorithms can be easily shared upon minimal ad-
justments. Several transport algorithms have been proposed recently for the
hexagonal meshes. One group is based on polynomial reconstructions. The sim-
plest choice is the linear upwind reconstruction scheme proposed by Miura [2007],
which has been generalized by Skamarock and Menchaca [2010] to quadratic, cu-
bic and quartic reconstructions, and later by Miura and Skamarock [2013] to a
different variant of quadratic reconstruction based on a wider stencil and show-
ing generally better accuracy. A related third-order scheme based on quadratic
reconstruction has been proposed earlier by Chen et al. [2012]. It differs by
the implementation of upwind fluxes, but essentially relies on the same sten-
cil as Miura and Skamarock [2013]. Another group relies, in essence, on the
standard finite-difference algorithm used to construct the third-order upwind or
fourth-order centered implementation (see, e.g., Webb et al. [1998]). Skamarock
and Gassmann [2011] adapt it to the third/fourth-order scheme on the Voronoi
hexagons, and Miura [2013] discusses its further generalizations. Miura [2013]
also proposes a procedure based on the gradient estimate (see further) which
leads to the equivalent results. FESOM2 prototype implementation in Danilov
[2012] uses the quadratic polynomial reconstruction (third-order) and gradient
estimate schemes (of the third and fourth order) that are analogous to those
of Skamarock and Menchaca [2010] and Skamarock and Gassmann [2011] re-
spectively. The conclusion of Skamarock and Gassmann [2011] same as Danilov
[2012] is that the methods based on the quadratic polynomial reconstruction are
already less numerically efficient than the other group of methods, and do not
demonstrate better accuracy. However, in our present implementation they turn
out to be similarly numerically efficient.

Although these approaches are new to the ocean or atmosphere modeling,
they are well known in computational fluid dynamics, see, e.g., Barth and Freder-
ickson [1990], Ollivier-Gooch and Van Altena [2002] as concerns the polynomial
reconstruction, and Abalakin et al. [2002] as concerns the gradient estimates.
There is extensive literature on high-order unstructured-mesh weighted essen-
tially non-oscillatory schemes (WENO, see, e.g., Dumbser and Käser [2007] and
references therein) which can be very accurate, but are computationally more
demanding than the methods mentioned above, except for the third-order, and
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it remains to be seen how to make them fast enough. For the cell-based tracers
Ye et al. [2019] show that the third-order WENO scheme is an affordable and
robust performer.

Among these methods, the gradient estimate allows obvious generalizations
toward the methods of the fifth and sixth order at a moderate additional cost
(Abalakin et al. [2002]), and we explore below whether this possibility can be
beneficial for ocean models.

The main goal of this work is to describe the compact scheme and compare
its performance to that of the traditional 3rd/4th order algorithms and 5th/6th
order extension of the gradient-based scheme described in Abalakin et al. [2002].
In contrast to the high-order algorithms based on the polynomial reconstruction,
which are expected to preserve their order even on distorted meshes, other algo-
rithms discussed here (including the compact and 5th/6th order schemes) do this
formally only on uniform meshes. Since unstructured meshes used in the ocean
modeling are of variable resolution, a practical question is how the methods re-
lying on the mesh uniformity compared to the reconstruction-based methods on
general non-uniform meshes.

The structure of this work is as follows. In section 4.2 we explain the proposed
compact method, whereas a brief summary of well-known methods based on
polynomial reconstruction and gradient estimates is presented in the Appendix,
including the description of the fifth and sixth order extension. Section 4.3
compares the advection schemes based on a simple 2D test case of a circular
shear flow and the Stommel gyre flow, and also discusses their functioning in
FESOM2. These sections are followed by short discussion and conclusions.

4.2 Elementary considerations

Figure 4.1 shows schematically a control volume around the vertex v1 obtained
by connecting mid-edges with triangle centroids. Its area Sv1 is given by the
sum Sv1 = ∑︁

c∈C(v1) Sc/3, where C(v1) is the set of cells (triangles) containing
v1, and Sc is the cell area. Introducing Ti = (1/Si)

∫︁
Si
TdS where i is the vertex

index and Si is the area of the median-dual control volume associated to the
vertex i, the discrete representation of (4.1) becomes

Si∂tTi +
∑︂

e∈E(i)

∑︂
s∈S(e)

∫︂
ls

(u · nT )sdl = 0, (4.2)
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Figure 4.1: Schematic of the median-dual control volumes. a) For each edge
fluxes are computed through the two segments of boundary (connecting mid-
edge point to cell centroids). Here vi stands for vertices and ci - for the centres
of triangles. b) e12 is an edge coming from the vertex v1 to the vertex v2, and
se12 are two segments of this edge.

where the first summation is over edges e emanating from the vertex i (E(i) is
the set of such edges), the second one is over the segments s connecting mid-
point of the edge e with the centers of cells on both its sides (S(e) is the set
of these segments), and integration is over the segment length. In Fig. 4.1 the
edge with vertices v1, v2 contributes with the flux through segments connecting
its midpoint to c1 and c2, and similarly for other edges. The remaining notation
is the outer normal n to the segment and its length element dl. For a given
velocity the spatial discretization reduces to specifying the estimate of a tracer
being advected through the boundary segments.

Polynomial reconstruction versus gradient estimate

In FV schemes based on field reconstruction, one writes a polynomial recon-
struction around vertex i

Ti = a0 + a1x+ a2y + a3x
2 + a4y

2 + a5xy + ...,

where x, y are the horizontal coordinates in the local reference frame associated
to vertex i, the coefficients an, n =0, 1, 2, ... are found by imposing a strong
constraint

∫︁
Si

T dS = TiSi at vertex i and similar constraints at a sufficient
number of neighboring locations (given by index j), but in a weak sense. The
resultant least square problem

L =
∑︂

j∈N(i)
w2

j |S−1
j

∫︂
Sj

T dS − Tj|2 + λ(S−1
i

∫︂
Si

T dS − Ti) = min
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is solved for the coefficients an, and their values are used to estimate fields and
thus flux leaving the control volume. Here N(i) is a set containing a sufficient
number of neighbor vertices; the weights wj are (commonly) the inverse distances
from vertex i to a neighbor vertex j, and λ is the Lagrange multiplier. In this
polynomial expansion a0 is the tracer value at location i which generally differs
from the area averaged value Ti. The estimates of the fluxes leaving control
volumes should be carried out at properly selected Gaussian quadrature points
at the boundary segments to ensure accuracy. All matrices needed to compute
the coefficients an in terms of Ti and surrounding Tj (for j ∈ N(i)) are computed
in advance and stored. This is the essence of schemes based on high-order
reconstructions as proposed by Barth and Frederickson [1990] and developed
further in many works that followed. Instead of neighboring locations one may
select any additional locations as, for example, in Chen et al. [2012] or Miura and
Skamarock [2013]. Generalizations may rely on several reconstruction stencils
and WENO procedure (see, e.g. Dumbser and Käser [2007]).

On good quality triangular meshes, a vertex has 6 nearest neighbors, which
is sufficient for a quadratic reconstruction (QR). A scheme based on quadratic
reconstruction was implemented in prototype FESOM2 (Danilov [2012]) for
median-dual control volumes. In its standard version, a reconstruction from
the upwind vertex is used, but any combination of upwind and centered ver-
sions is possible. On 3D z-coordinate meshes the number of neighbors might
vary with depth, and quadratic reconstruction is replaced by the linear one when
bottom topography is encountered. In practice it turns out that QR schemes
are nearly same accurate as the third and fourth order schemes based on the
gradient estimate (GE) to be discussed below. This statement is similar to the
conclusion in Skamarock and Gassmann [2011], who proposed a scheme that
can be reformulated in terms of gradient estimates (see Miura [2013]). In early
implementation in FESOM the QR schemes were about twice as expensive as
the GE schemes explained further, which was an argument in favor of the latter.
They are even better now.

A wider stencil is needed for higher-order polynomial reconstructions, and,
although such reconstructions open unlimited possibilities even on strongly dis-
torted meshes (see examples in Dumbser and Käser [2007]), their computational
cost increases, as well as the halo size in parallel implementations. According
to Skamarock and Menchaca [2010], the QR is optimal judged by accuracy per
computational cost in standard tests where the convergence rate is about the
second order.
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The gradient estimate schemes achieve high-order only on uniform meshes,
and stay second-order otherwise. We begin with a 1D simplification to explain
them. Let the velocity u be positive and uniform. Traditionally to estimate
fluxes leaving a control volume around vertex i one needs to estimate the tracer
at i + 1/2 based on Ti and Tj of neighboring control volumes. The procedure
can be cast in terms of gradients.

One first introduces the upwind and downwind estimates

T−
i+1/2 = Ti + (h/2)G−

i+1/2, T+
i+1/2 = Ti+1 − (h/2)G+

i+1/2,

where h is the uniform grid spacing. The simplest high-order choice is to estimate
the gradients G±

i+1/2 as

G−
i+1/2 = (2/3)Gc

i+1/2 + (1/3)Gu
i+1/2, G+

i+1/2 = (2/3)Gc
i+1/2 + (1/3)Gd

i+1/2.

Here Gc
i+1/2 = (Ti+1 −Ti)/h, Gu

i+1/2 = (Ti −Ti−1)/h and Gd
i+1/2 = (Ti+2 −Ti+1)/h

are the centered, upwind and downwind estimates of gradient respectively. Writ-
ing the flux

Fi+1/2 = (1/2)(F−
i+1/2 + F+

i+1/2) + (λ/2)(F−
i+1/2 − F+

i+1/2)sign(u),

one obtains the standard third-order upwind method for λ = 1 (GE3) or the
forth-order centered method for λ = 0 (GE4). Intermediate λ can be used to
reduce dissipation and increase accuracy (λ = 0.15 – 0.25 works well in practice).
One readily sees that the estimates T±

i+1/2 can be rewritten as

T−
i+1/2 = (1/2)(Ti + Ti+1) − (1/6)h2δ2T |i, (4.3)

and
T+

i+1/2 = (1/2)(Ti + Ti+1) − (1/6)h2δ2T |i+1, (4.4)

where δ2 stands for the operator of second derivative. They are the familiar
estimates used to construct the standard third-order finite-difference method.

The advantage of the GE is that it can be generalized to arbitrary triangular
meshes and also to higher orders (see, for example, Abalakin et al. [2002]) by
extending estimates to wider stencils. Consider the arrangement shown in Fig.
4.1 and Fig. 4.2. We denote the vector connecting vertices i and j of edge e in
Fig. 4.2 as xij. For each edge e we store the indices to up-edge (u) and down-
edge triangles (d) that contain the continuation of the edge line. Such storage is
sufficient for the third and fourth order schemes. For the fifth and sixth order one
additionally stores the indices of vertices forming the edges intersected by the
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Figure 4.2: Schematic of the arrangement. Edge e with vertices i and j is
characterized by the edge vector xij. u and d are up- and down-edge triangles,
black circles are points where the continuation of edge e intersects the sides
of u and d triangles, u1, u2 and d1, d2 are the vertices related to these sides.
The gradients on triangles are computed based on three vertex values, and the
gradients at vertices are obtained by averaging over neighboring triangles.

continuation of edge e in u and d triangles (u1, u2 and d1, d2) and the coefficients
to interpolate the vertex gradients at these vertices to the intersection points.
Similarly to the 1D case one writes

Tij = Ti + (1/2)xijGij, Tji = Tj − (1/2)xjiGji.

Here we use pairs ij or ji to indicate up-edge or down-edge reconstructions. The
reconstruction is done to the edge mid-point, because the boundary of control
volume passes through it for median-dual control volumes on triangular meshes.
As an alternative to median-dual control volumes one can use Voronoi polygons
of dual mesh. According to Abalakin et al. [2002] the following estimate for the
gradients can be used

Gij = (1 − β)Gc + βGu + δc(Gu + Gd − 2Gc) + δd(Gj + Gu∗ − 2Gi)

and

Gji = (1 − β)Gc + βGd + δc(Gu + Gd − 2Gc) + δd(Gi + Gd∗ − 2Gj).

In these expressions Gu and Gd are the gradients on triangles u and d, xijGc =
Tj − Ti is the centered estimate, Gi and Gj are the estimate at vertices i and
j, and Gu∗ and Gd∗ are the vertex gradients interpolated to the edge continua-
tion intersection points (see Fig. 4.2). The gradients on triangles are computed



4.2. ELEMENTARY CONSIDERATIONS 49

assuming linear interpolation. The gradients on vertices are computed as area-
weighted averages of the gradients over neighboring triangles, or equivalently, by
applying the divergence theorem. The selection β = 1/3 and δc = δd = 0 leads
to a third/forth-order methods depending on the upwind parameter λ in the
expression for fluxes. Keeping β = 1/3 but taking δc = −1/30 and δd = −2/15
leads to a fifth/sixth order method, once again, depending on the value of the
upwind parameter. On 3D z-coordinate meshes any of or both u and d triangles
can be absent for edges touching boundaries or bottom topography. We replace
u and d gradients by vertex gradients at i and j in this case. Technically, the
fifth/sixth order method adds computations of vertex gradients and increases
the amount of computations needed to estimate fluxes. However logistics re-
lated to the z-coordinate bottom is expensive for the third/fourth order, and
even more so for the fifth/sixth order method. The third/fourth order method
requires an extended halo for triangles, and the fifth/sixth order method needs
additionally an extended halo for vertices including neighbors of neighbors. We
note that if we were only interested in the methods of third or fourth order,
the implementation of Skamarock and Gassmann [2011], based on computing
second-order derivatives, as in (4.3) and (4.4), is the same convenient as opera-
tions on gradients. The results are not equivalent, but similar. The coefficients
and indices to vertices needed to compute the second-order derivatives can be
computed before, but the z−coordinate bottom introduces complications as in
the other case.

The role of mass matrix

It is well-known from the FE literature (see, e.g., Donea and Huerta [2003])
that transport schemes based on linear continuous finite elements become the
fourth order if used with consistent mass matrices on uniform meshes. They
are only second-order if used without them. Since linear continuous FE are
analogous to the vertex-based FV discretization it is natural to ask whether
similar improvement is possible with FV. We begin with a brief summary of the
FE case.

We will use the same notation T for the continuous and discrete representa-
tions. In the case of linear continuous finite elements a scalar field is represented
as T = Tj(t)Nj(x, y) (summation is implied over the repeating indices), where j
is the vertex index, Nj is the linear basis function (equal to one at the location
of vertex j and decaying to zero at neighboring vertices) and Tj(t) is the discrete
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vertex value of tracer field. Substituting this representation in eq. (4.1), then
multiplying with Ni and integrating over the entire area occupied by flow, we
get the matrix formulation

Mij∂tTj + AijTj = 0, (4.5)

where
Mij =

∫︂
NiNjdS

are the components of mass matrix M, and

Aij = −
∫︂

∇ ·NiuNjdS

are the components of the advection matrix A. The boundary conditions of the
zero flux through the lateral boundaries are already taken into account. Since
Ni have a finite support, integration is limited to triangles containing vertex i.
A triangle c containing the vertex i contributes with Sc/6, to the mass matrix
entry Mii and with S/12 to the off-diagonal entries Mij for j that correspond
to other vertices in triangle c. The row sum of entries in the mass matrix
for the row i is therefore the area of the median-dual control volume around
the vertex i. The mass matrix appearing here provides weighting of the time
derivative whereby the time derivative and advection operator are approximated
on the same stencil, which reduces dispersion. It can be readily seen that the
advection operator A corresponds to the centered tracer estimate at mid-edge
as Tij = Tji = (Ti + Tj)/2, where i and j are the indices of edge vertices, in the
FV implementation (4.2).

If we consider, for example, a uniform mesh obtained by splitting quads
regularly and apply the standard von Neumann analysis to (4.5), writing Tj =
T0 exp(−iωt + ikxj + ilyj) where (xj, yj) are the coordinates of the vertex j, ω
is the frequency, and k, l are the wave numbers, the matrix system of equations
(4.5) reduces to a single equation

(−iωM + A)T0 = 0,

with the matrices replaced by respective spectral symbols M and A. For the
mesh formed by splitting quads with side h with SW–NE diagonals, the spectral
symbols are M = (h2/6)(3+cos kh+cos(k+l)h+cos lh), and A = uGx+vGy with
Gx = (ih/3)(2 sin kh − sin lh + sin(k + l)h) and Gy = (ih/3)(2 sin lh − sin kh +
sin(k + l)h). In the continuous case the phase speed is cp = ω/(k · n) = u · n,
where k = (k, l), in any direction n = k/|k|. In the discrete equations this result
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is only recovered for sufficiently small kh, lh. A simple way to see the role of
mass matrix is to do the Taylor expansion in this limit to find that Gx/ik, Gy/il

and M are ≈ h2(1 − h2(k2 + l2 + kl)/6 + O(h4)) for small wavenumbers. Thus,
the inversion of the mass matrix will remove the third-order derivatives present
in Gx and Gy raising the accuracy to the fourth order! This result holds for
other regular meshes (using equilateral or isosceles triangles). For example, on
equilateral meshes, the common factor in the mass matrix and Gx/ik and Gy/il

is approximately 1 − h2(k2 + l2)/6, with h the height of triangle. It will be lost
on general unstructured meshes. However, even in that case the account for the
mass matrix effectively removes a part of dispersive errors.

In practice an approximate inversion of mass matrix is performed. To solve
Ma = b, where a and b are vectors composed of vertex values, one writes

MLap = b + (ML − M)ap−1,

where ML is the diagonal (lumped) approximation to the mass matrix (obtained
by summing row entries and placing the result at the diagonal, i.e., placing the
areas of median-dual control volumes) and does just two iterations (p=1,2) with
a0 = M−1

L b. Further iterations will not change the leading-order error term, as
explained further.

A FV analog of the FE method with consistent mass matrix

If M in (4.5) were replaced with ML, it would be equivalent to (4.2) for the
centered tracer estimate mentioned above. Replacing the time derivative term in
(4.2) with Mij∂tTj and approximately inverting the mass matrix will destroy the
conservation in terms of fluxes leaving control volumes, which is not desirable.
Instead we propose to correct the tracer to be advected with anti-dispersion,
i.e., to advect the discrete tracer field T̃ such that

MT̃ = MLT,

where T̃ and T are vectors with components T̃i and Ti respectively. In matrix
notation the method is

ML∂tT + AT̃ = 0.

Since T̃ = M−1MLT, the method differs from the finite-element one by the
order the operators A and M−1 are applied. These operators commute only if
the advective velocity is uniform, so the proposed method is generally different
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from the FE method. It, however, inherits the main advantage of the consistent
mass matrix in FE: T̃ contains anti-dispersion to the second-order centered
advection. The method can be used, for example, with the second or third order
Adams–Bashforth (AB2 or AB3) time stepping. To obtain the equivalent of the
TG method (i.e., the Lax–Wendroff (LW) method), T̃ij should be taken at a
point offset by −u∆t/2 from the center of a boundary segment in flux estimates
for each segment. Linear interpolation on triangles is used in such cases.

We do approximate inversion as explained above to obtain

T̃ = T + (I − M−1
L M)T + (I − M−1

L M)2T,

where I is the identity matrix. Computations include two cycles over the nearest
neighbors (and two halo exchanges in parallel implementation, but again involv-
ing only the nearest neighbors). Next, we compute fluxes leaving median-dual
control volumes using Tij = (T̃i + T̃j)/2 for the value of the tracer advected
through the two segments of boundary associated to the edge between the ver-
tices i and j for AB2 and AB3, or using the offset for the LW method.

An elementary 1D analysis below explains why the approximate inversion is
sufficient. Further statements are valid on uniform meshes only.

In 1D, the equation connecting T̃i and Ti on an equidistant mesh is

(1/6)(T̃i−1 + 4T̃i + T̃i+1) = Ti,

or, in the Fourier representation,(︄
1 − 1 − cos kh

3

)︄
T̃0 = T0,

where h is the cell size. The index 0 is used for Fourier amplitudes and will be
suppressed further. The iterative procedure implies that instead of the exact
solution T̃ = T/(1− (1− cos kh)/3) one takes the Taylor expansion of the power
leaving two terms in the case of two iterations: T̃ = (1 + (1 − cos kh)/3 +
(1 − cos kh)2/9)T . In the limit of small wavenumbers it becomes T̃ ≈ T (1 +
[(kh)2/6 − (kh)4/72] + (kh)4/36 +O((kh)6)). Here the group of terms in square
brackets comes from the first iteration.

The spectral symbol of advective operator is written as

h−1AT̃ = (iu/h)T̃ sin kh.

Expanding the sine we obtain h−1AT̃ ≈ iukT (1− (kh)4/30) if only one iteration
is made and h−1AT̃ ≈ iukT (1 − (kh)4/180) if the second iteration is done. One
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can readily see that the result after one iteration is identical to the fourth-order
centered differences (see, e.g., Shchepetkin [2015]), and the second iteration
reduces the remaining dispersive error by a factor of 6. Further iterations will
not change the leading error, which is the reason why they are generally not
needed.

Returning to the 1D equation on T̃ one sees an analogy with the so-called
compact fourth-order method (e.g., Shchepetkin [2015], Lemarié et al. [2015]),
and the implementation through parabolic splines as in Zerroukat et al. [2006]).
While in 1D the approximate inversion with two iterations is not cheaper than
direct solution of the three-diagonal system of linear equations, it is the only
practically affordable way in the horizontal plane on unstructured meshes.

We call the method proposed above the compact (fourth-order) method (C4)
because of this analogy with the 1D method and because we always deal with the
nearest vertices. By construction, the method is equivalent to the FE method
with a consistent mass matrix if advection velocity is uniform, so it has the same
order as the FE method. However, it has the flux form (4.2), and thus is locally
and globally conserving. It needs either an FCT limiter or diffusion for stability.
However, it can be generalized to include upwind dissipation.

Write

Tij = T̃i + T̃j

2 = Ti + Tj

2 + T̃i − Ti

2 + T̃j − Tj

2
as a sum of the second-order centered estimate and two corrections. If, instead
of the sum of corrections, we take twice the first correction if the transport is
out of the control volume around vertex i (u · n > 0 for n directed from vertex i)
and twice the second one if u · n < 0, we will get a third-order method. Indeed,
it is easy to see that these corrections do a similar job as the corrections in (4.3)
and (4.4). The final form is

Tiju · n = T̃i + T̃j

2 u · n+ λ|u · n|δTi − δTj

2 , (δTi = T̃i − Ti),

where 0 ≤ λ ≤ 1 is the parameter to blend the orders, giving the C34 scheme.
However, it turns out that already small non-zero λ degrades the extra accuracy
of C4 toward that of the finite-volume scheme GE34 based on the gradient
estimates.

A remark is due on implementation: in FESOM2, the mass matrix is not
assembled. The multiplication of the mass matrix with the vector of the tracer
vertex values is done in a cycle over triangular prisms of the three-dimensional
mesh. This automatically takes into account the difference in the neighborhood
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occurring because of the bottom topography in deep layers. (The bottom topog-
raphy is constant on triangles in FESOM2). Despite the computations implied
by the approximate inversion of the mass matrix, the algorithm turns out to be
noticeably faster than GE34 in realistic 3D applications. First, there is no need
to compute gradients on triangles, and second, there is no up- and down-edge
logistics.

4.3 Results

Preliminary remarks

Our main intention here is to compare C34 and GE56 schemes to the commonly
used GE34 schemes on triangular meshes. Since all these schemes achieve their
accuracy on uniform meshes, an important question is also their performance
on distorted meshes. This comparison will be done with an idealized 2D test
case of the circular shear flow described below. For the compact scheme we also
carry out the Stommel gyre test by Hecht et al. [2000].

The even-order schemes (λ = 0) have only dispersive errors. Simulations with
these schemes were possible in the idealized 2D test below except for the higher
resolutions, where small-scale noise contaminates solutions of some of them.
They need some dissipation in a general case, and FESOM2 relies on the FCT
limiting. We therefore include C4 augmented with the standard FCT procedure
(Zalesak [1979]), to show that the reduction in accuracy is rather moderate.
The simulations showing excessive noise were repeated with small biharmonic
diffusion. The blended schemes combining odd and even-order flux estimates
(with λ depending on applications) can be tuned to be stable without FCT or
explicit diffusion. We include the QR scheme to illustrate that it performs very
closely to GE. We also add the FE TG and FEM-FCT scheme by Löhner et al.
[1987], used in FESOM1.4, which will provide a benchmark we are striving to
achieve. The FV and FE implementation of the FCT limiting differs in their
low-order part. The FV FCT relies on the first-order upwind whereas the FEM-
FCT scheme uses artificial damping, the level of which can be tuned. For FV,
antidiffusive fluxes are computed at edges in a single pass of the procedure
that computes the low-order solution and the difference in fluxes between the
high order and the low order (antidiffusive fluxes). The high-order is either the
compact scheme or the GE4 scheme.

As a second part, we compare the performance of GE34, C34, GE56 and
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QR34 in a 3D baroclinic channel test case run with FESOM2 and either using
λ > 0 or FCT. There are no obvious criteria of accuracy in this test case and we
only illustrate that the level of eddy kinetic energy energy is not very sensitive
to the dissipation in the schemes.

Finally, time stepping methods also contribute to the accuracy. We will be
using AB2 in 3D simulations with FESOM2, and only briefly illustrate the effect
of AB3 or the LW methods in 2D test cases. The AB methods are implemented
by interpolating the advected T as TAB2 = (3/2 + ϵ)T n − (1/2 + ϵ)T n−1 and
TAB3 = (23T n − 16T n−1 + 5T n−2)/12, where n denotes the time step and ϵ is
a small offset needed for stability. We set ϵ = 0.01 in 2D tests and ϵ = 0.1 in
3D simulations. The LW method is used only with C34. It is implemented by
computing TLW at a displaced point as mentioned above.

2D test case

We deal here with an idealized test case, which is only intended to rank the
schemes in terms of their accuracy for smooth perturbations. Different from the
atmospheric community, there is no well-agreed suite of test cases in ocean mod-
eling, except, perhaps, for the Stommel-gyre configuration proposed by Hecht
et al. [2000] (see also Budgell et al. [2007]). We use it here only to demonstrate
the performance of the compact scheme. Because of its boundary layer charac-
ter, this test in reality requires a variable mesh resolving the western boundary
current. As consequence errors depend also on how the resolution varies, the
aspect we were willing to avoid. Most of the atmospheric tests (see examples in
Miura and Skamarock [2013]) are formulated for global spherical geometry and
are of little relevance for ocean models.

The domain is a box with sides Lx = Ly that correspond to 10 degrees at the
equator, taken in plane geometry for simplicity. The velocity field is described
by the stream function

ψ = (2π/τ)(−Rr cos(πr/R)/π + (R/π)2 sin(πr/R)) (4.6)

for r < R = Ly/2 and ψ = R2/π otherwise. Here r is counted from the
center of domain and τ sets the period of rotation at r = R/2. The stream
function corresponds to a circular shear flow with the azimuth velocity uϕ =
(2πr/τ) sin(πr/R) shown in Fig. 4.3a. Triangle-based velocities are obtained
by computing derivatives of ψ on triangles. Such discrete velocities have zero
discrete divergence, i.e., (4.2) is exactly satisfied for T = 1.
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(a) (b) (c)

Figure 4.3: The geometry of 2D experiments: a) the initial tracer distribution
and the shear velocity field with superimposed schematic profile; b) the final
tracer distribution after one full rotation on a 1/6 degree mesh simulated with
the GE56 method; c) the exact solution.

The initial perturbation is taken in a separable form T0 = 0.25(1+cos(4π(r/R−
0.5)))(1 + cos(6(ϕ+π/2))) which facilitates computations of the analytical solu-
tion. Here ϕ is the angular coordinate with respect to the center of the domain,
and perturbation is absent if |r/R−0.5| > 0.25 or |ϕ+π/2| > π/6. The analytical
solution T a(r, ϕ, t) is given by T0(r, ϕ−ωt), where ω = ω(r) = (2π/τ) sin(πr/R).
The integration is carried out for 30 days, which also is the value of τ . The per-
turbation makes one full rotation, but is sheared in the course of rotation, as
shown in Fig. 4.3b, c. The tracer flux trough lateral boundaries is zero because
of the velocity choice.

The deviations between the simulated T and analytical T a
i discrete distribu-

tions in the idealized test case are quantified in L2 and L1 norms. The L2 norm
is computed in a finite-element sense (assuming linear interpolation on trian-
gles) as L2 = (∑︁c

∫︁
(T − T a)2dSc/

∑︁
c Sc)1/2, and L1 = ∑︁

c

∫︁
|T − T a|dSc/

∑︁
c Sc

with summation over cells (triangles). Both norms demonstrate very similar
behavior, so only L2 is discussed further. Note that the discrete representation
of velocity and initial tracer distribution may contribute to such errors as well
as the finite-element sense of computations. We ignore these details here.

We use four meshes for the main set of tests. The first one is made of
equilateral triangles and is referred to as ET. The second one is obtained by
the division of quads in a random (irregular) way (IT). It is characterized by
irregular neighborhood (from 4 to 8 neighbors). The area of its control volumes
varies by a factor of two, so it is anticipated to lead to increased grid-scale
noise. The third one is derived from the ET mesh by smoothly distorting it in
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the zonal direction (DT). The fourth one is unstructured triangular mesh (UT)
where the resolution is varied by a factor of 3 in the meridional direction, with
the resolution at the center coinciding with that of other meshes. The coarser
half of UT mesh is anticipated to lead to increased errors. The IT mesh is also
anticipated to show reduced accuracy because areas of its median-dual control
volumes may differ by a factor of two, triggering grid-scale noise. In contrast,
triangles vary smoothly on the DT mesh and only in one direction, so errors
should be close to ET. Mesh fragments are shown in Fig. 4.4 and Fig. 4.5 where
UT mesh is shown in more details. Note also that the discrete velocity field is
less smooth on UT meshes due to the varying resolution.

(a) ET (b) IT (c) DT

Figure 4.4: Fragments of meshes : a) equilateral mesh (ET), b) irregular mesh
(IT), c) horizontally distorted mesh (DT).

We carried simulations at meshes with the triangle side of 1/6, 1/12 and
1/24 degree. The time step ∆t is 900 s for the resolution of 1/12 degree and
is adjusted proportionally to the resolution considered. For the UT mesh only
simulations on meshes with nominal resolution of 1/6 and 1/12 degree have been
performed.

For convenience, we summarize abbreviations used to denote the schemes:

• Schemes using gradient estimate GExx;

• Compact schemes Cxx;

• Scheme with FCT limiting C4FCT and GE4FCT;

• QR34 scheme based on quadratic polynomial reconstruction.

Here xx stands for the scheme order or combination of orders.
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(a) UT mesh (b) Fragment of UT mesh

Figure 4.5: Unstructured mesh: a) Full mesh with central resolution of 1/6
degree, b) its fragment.

2D circular flow

Sensitivity to time stepping

Errors of advection schemes depend on both temporal and spatial discretizations,
and a question arises on their relative contributions. To assess the errors due
to the temporal discretization, we run the 2D circular flow test with various
time steps ∆t and AB2, AB3, and LW as time stepping methods. The compact
scheme on a 1/6 degree ET mesh was taken for this assessment. The resulting
errors are summarized in the Table 4.1. As can be seen, the errors vary only
slightly with a time step and a time stepping method. We conclude that the
errors are dominated by the contribution from spatial discretization. This is not
surprising because the Courant number C = |u|∆t/h, where h is the side of the
triangle, is less than 0.17 for the largest ∆t. Simulations below are carried out
with the time step ∆t of 1800, 900 and 450 s for the resolutions of 1/6, 1/12
and 1/24 degree, respectively, so the Courant number (< 0.085) is the same.
The time step selected here is about the time step used in large-scale circulation
models with a similar resolution (see, e.g., Lemarié et al. [2015] for limiting
factors). Only AB2 and AB3 methods are used further to illustrate that errors
remain insensitive to the method when a resolution is varied. In these methods,
the tracer field is first AB extrapolated, and then the spatial scheme is applied.
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Table 4.1: The errors of AB2, AB3 and LW time stepping for time steps 450,
900, 1800 and 3600 s on the ET mesh with the resolution of 1/6 degree.

Method ∆t(s) L2 error (·10−2)

C34 +
AB2

450 1.00
900 1.00
1800 0.99
3600 0.96

C34 +
AB3

450 1.01
900 1.01
1800 1.01
3600 1.00

C34 +
LW

450 0.98
900 0.96
1800 0.93
3600 0.91

Accuracy of schemes

Figure 4.6 shows the errors of the tested advection schemes after one complete
rotation. They are also summarized in the Table 4.2. The schemes were run with
λ = 0 and λ = 0.25 (values in the parentheses in Table 4.2). Since the velocity
field varies in space, the measured accuracy is expected to be the second-order.
(The higher order will be seen only for a uniform velocity field, which is of no
interest for the ocean and atmosphere where the velocity varies on the same
scale as temperature and salinity.) As follows from Fig. 4.6, the convergence
indeed stays close to the second order, yet it is systematically lower on IT and
UT meshes for some methods. The size of perturbation chosen here is about
150 km, which corresponds to typical midlatitude eddies in the ocean. The
resolution of 1/6 degree is already sufficient to represent them but is, perhaps,
on the lower end of the resolutions needed. Some high order methods run with
λ = 0 demonstrated unexpectedly high errors, especially on IT and DT meshes
with the resolution 1/24 for GE6 and GE4 methods. This happened due to noise
reflection from the boundaries where no sponge zone was provided, leading to
noise accumulation with time. A small biharmonic diffusion (with the diffusion
coefficient κi = −κ0Si, where κ0 = 16, 4, 1 m2/s for the resolution of 1/6, 1/12
and 1/24 degree, and Si the control volume area) was added for stability in such
cases. It was not needed for ET meshes or in runs with nonzero λ. We also
checked that adding biharmonic diffusion on ET meshes leaves the L2 errors
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nearly the same.
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Table 4.2: L2 errors in the 2D test case. Tests were run with λ = 0 and λ = 0.25
(in parentheses). Runs on the UT mesh were only carried out for two lower
resolutions. Runs with λ = 0 showing tendency to noise were stabilized with
small biharmonic diffusion. The last column shows the convergence of errors
which are calculated taking into account errors of the results on 1/6 and 1/12
resolutions: log2

error1/6
error1/12

.

Method Mesh
type

∆t: 1800,
resolu-
tion: 1/6,
L2 · 10−2

∆t: 900,
resolu-
tion: 1/12,
L2 · 10−3

∆t: 450,
resolu-
tion: 1/24,
L2 · 10−4

Convergence

GE34 +
AB2

ET 1.86 (1.66) 4.2 (4.9) 8.38 (11) 2.15 (1.76)
IT 2.31 (2.00) 7.1 (7.0) 16.00 (17) 1.70 (1.51)
DT 1.88 (1.67) 4.5 (5.1) 14.00 (12) 2.06 (1.71)
UT 2.52 (2.27) 7.1 (7.1) – 1.83 (1.56)

GE34 +
AB3

ET 1.89 4.3 8.38 2.14
IT 2.33 7.1 16.00 1.71
DT 1.92 4.6 14.00 2.06

GE56 +
AB3

ET 1.00 (0.87) 1.6 (1.6) 4.25 (3.73) 2.64 (2.44)
IT 1.65 (1.18) 3.8 (3.3) 15.00 (7.73) 2.12 (1.84)
DT 1.07 (0.91) 1.9 (1.8) 9.00 (5.96) 2.35 (2.34)
UT 1.41 (1.31) 3.1 (3.1) – 2.19 (2.08)

C34 +
AB2

ET 0.99 (1.47) 1.9 (5.2) 4.44 (13) 2.38 (1.50)
IT 1.46 (1.92) 4.2 (8.8) 13.00 (33) 1.8 (1.13)
DT 0.99 (1.46) 2.1 (5.4) 7.46 (17) 2.24 (1.43)
UT 1.47 (1.88) 3.2 (7.2) – 2.20 (1.38)

C34 +
AB3

ET 1.01 1.9 3.96 2.41
IT 1.46 4.2 13.00 1.8
DT 1.00 2.0 7.25 2.32

C4FCT
+ AB2

ET 1.20 2.3 5.81 2.38
IT 1.65 4.5 14.00 1.87
DT 1.22 2.4 7.51 2.35
UT 1.83 4.0 – 2.19

C4FCT
+ AB3

ET 1.28 2.7 6.61 2.25
IT 1.73 4.7 14.00 1.88
DT 1.27 2.8 7.75 2.18

QR34
ET 1.71 (1.60) 3.7 (2.3) 6.52 (12) 2.21 (1.62)
IT 1.72 (1.69) 5.0 (6.4) 13.00 (18) 1.78 (1.40)
DT 1.69 (1.59) 3.7 (5.2) 7.84 (12) 2.19 (1.61)
UT 2.18 (2.05) 5.5 (7.1) – 1.96 (1.53)

FEM
(TG)

ET 0.93 1.5 2.83 2.63
IT 1.21 3.0 6.97 2.01
DT 0.92 1.5 3.49 2.62
UT 1.46 2.8 – 2.38

FEMFCT
(TG)

ET 0.66 1.7 5.96 1.96
IT 1.09 2.6 7.34 2.07
DT 0.66 1.8 5.60 1.87
UT 1.19 2.9 – 2.04
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Indeed, we see that with λ = 0.25 errors of GE34 and GE56 are smaller
than for GE4 and GE6. This happens because the dissipation caused by the
lower order method filters the small-scale noise before it reaches the boundaries.
However, for the C34 method, the L2 errors are higher for λ = 0.25 than for
λ = 0, and the scheme becomes even worse than the GE34 even though it was
essentially more accurate for λ = 0. To see the dependence of L2 errors on
λ, we carried out experiments with different values of λ on the ET mesh with
the resolution of 1/6 degree. As can be seen from Fig. 4.7, the lowest errors
for the C34 method are observed at λ = 0.05 (0.0097) which is close to the
4th order of these methods. Then with the growth of dissipation, the errors
also increase. Meanwhile, for the method GE56 the lowest error is at λ = 0.25
(0.0087). Moreover, the difference between the errors of GE56 for the 5th order
and the 6th order is low: 0.0100 for GE6 and 0.0112 for GE5. For GE56 method
dissipation does not have a big influence on the result. Also, GE56 demonstrates
the lowest errors among these methods. The errors change smoother for GE34
than for C34. Similar behavior was also observed for IT and DT meshes. We can
conclude that the compact methods are more sensitive to dissipation than GE56
and that they show optimal results in a combination with the FCT limiting
instead of high-order upwind dissipation.

Another observation is that the QR34 method does not behave as expected.
By construction of the method, we supposed that its error will be less sensitive
to the type of the mesh than for other methods. However, for the IT mesh with
higher resolutions, the error significantly exceeds errors that we obtain on DT
and ET meshes. Although the difference between errors with the parameter
λ = 0.25 reduces for the resolution 1/24, it still stays essential. The situation
changes with the change of parameter λ and the best results were obtained with
λ = 0.35 which are represented in the Table 4.3. Now we can observe a smaller
difference in the errors, and the behavior becomes close to GE34 with λ = 0.25.
The reason for the loss of accuracy on the IT meshes can be the noise alluded
to above and the presence of vertices that have only four triangle neighbors,
in which case quadratic reconstruction is replaced by a linear one, and grid
structure may be imprinted in solutions through this.

Figure 4.8 demonstrates noise which occurs when we use C34 schemes with
different upwind parameter λ. Even though the amplitude of the error is less
for C4 than for C3, we can see that C4 produces a lot of small-scale noise which
completely disappears in the case of C3. Even small dissipation with λ = 0.05
significantly improves the situation. The scheme with FCT also demonstrates
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Figure 4.7: L2 errors as a function of the parameter λ for GE34, GE56, and C34
(with FCT and without). The experiments were held on the ET mesh with a
resolution of 1/6 degree. The red dots highlight the minimum errors for every
method.

Table 4.3: L2 errors of QR34 method with parameter λ = 0.35.

Mesh type 1/6
L2 · 10−2

1/12
L2 · 10−3

1/24
L2 · 10−3

ET 1.73 6.1 1.5
IT 1.89 7.5 2.2
DT 1.72 6.1 1.5

less small-scale noise. In addition, we can see how FCT cuts the maximums.

The FE TG and FEM-FCT schemes outperform all other FV schemes ex-
plored here in almost all cases. This is partly due to low errors of the TG scheme
with a consistent mass matrix (used as high-order scheme) and partly due to
tuning of the FCT limiter in our implementation of FEM-FCT (we adjust the
admissible bounds with account for the solution from the previous time step and
use a relatively low value of 0.25 for the parameter controlling the dissipation in
the low-order solution, see Löhner et al. [1987], making it not necessarily mono-
tone). The error of FEM-FCT increases nearly two-fold for the lowest resolution
if information about fields on the previous time step is omitted in computations
of admissible bounds, becoming worse than TG, but the TG result is recovered
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(a) C4FCT (b) C3 (c) C34 λ = 0.05 (d) C4

Figure 4.8: Difference between the analytical and numerical solutions for the
compact schemes a) C4FCT, b) C3, c) C34 with λ = 0.05, and d) C4. The
colorbar limits are selected to visualize the noise.

for higher resolutions. The proposed C4 scheme performs worse than TG despite
it being designed using analogy to TG. The errors of C4FCT are always higher
than in the absence of FCT, whereas for FEMFCT we can see even partial im-
provement at the coarsest resolution of 1/6 degree. It should be reminded that
neither TG nor FEM-FCT can be directly transferred to a FV code because of
mass matrices.

The GE56 in this test case shows an approximately two-fold error reduction
with respect to its lower-order counterpart GE34. With upwind dissipation
added, it outperforms C4 and approaches the accuracy of FEM TG.

The errors simulated on the IT and UT meshes are the largest, and the order
of convergence is deteriorated, being generally lower than two. The reason is
the excitation of grid-scale perturbations as a tracer is advected through the
irregular mesh (IT) or additionally through a coarse mesh part (UT). We note
that the loss of accuracy on the IT mesh is partly due to the larger size of
triangles than on the ET mesh. If the side of the triangle is a, the triangle area
on mesh ET is

√
3a2/4 compared to a2/2. Assuming the second-order scaling

we should expect that errors on ET meshes are by a factor
√

3/2 ≈ 0.87 smaller
for the same triangle side. This factor explains most of the error difference for
the coarsest resolution but fails to do so for finer resolutions.

The Stommel gyre test

Since the performance of many unstructured-mesh schemes in the test case by
Hecht et al. [2000] was documented by Budgell et al. [2007], we carried it out
with the new compact scheme proposed here. The test and its parameters are
described in Budgell et al. [2007] and are not repeated here except for mentioning
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Figure 4.9: The final state (left) and error distribution in the Stommel gyre test
for C34 with λ = 0. The colorbar in the right panel is saturated to visualize
small-scale errors behind the tracer and south to it.

that the basin size is 10 by 6.3 thousand kilometers, and the western boundary
current is concentrated within less than 100 km. The mesh resolution (the side
of triangle) in our run follows the scaling h = h0(5 + 4 tanh (x− x∗)/b∗), where
h0 = 10 km, x∗ = 300 km and b∗ = 150 km, x is counted from the western
basin wall. It varies from approximately 10 km to 90 km at the eastern wall,
leading to a mesh with 20847 vertices. Although 10 km is coarser than the finest
resolution used in Budgell et al. [2007], our mesh is twice larger, with generally
better resolved western part of the basin. We used λ = 0 but added a small
harmonic diffusion of 10 m2/s during the first three years of simulations when
the tracer is passing through the boundary layer. Such diffusion can only lead to
a diffusive spreading of about 30 km, which is negligible compared to the size of
initial and final tracer distribution. It is however necessary to eliminate small-
scale wavy perturbations appearing because of leading dispersive error of the
compact scheme. The presence of small elements and relatively high velocities in
the western boundary current limit the admissible time step to 1800 s. Figure 4.9
shows the simulated final state after 1.5×108 s (left) and error distribution (right)
with respect to the semianalytical solution obtained by numerical integration
along streamlines. In the absence of diffusion, the errors behind the tracer spot
would be of smaller scale and higher amplitude, generally increasing the error
norms. The l2, l1 and l∞ errors (defined same as in Hecht et al. [2000] and Budgell
et al. [2007]) are 0.05, 0.07 and 0.055 respectively. The errors at maximum and
minimum are -0.05 and -0.009 respectively. These errors are smaller than the
errors reported in Budgell et al. [2007] except (unsurprisingly) for VELA and
RKDG3 schemes, yet these schemes cannot be adapted to vertex-based finite
volume discretization. The TG scheme explored in Budgell et al. [2007] is the
closest analog to the compact scheme. Its errors in Budgell et al. [2007] are
noticeably larger than for the compact scheme and we suppose that this is the
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consequence of small-scale noise contaminating the TG solution in that study
and, possibly, of the generally lower resolution of the western part of the basin.

3D simulations

To illustrate the performance of C34 and GE56 we simulate a baroclinically
unstable flow and measure the level of eddy kinetic energy and the variance
of eddy vertical velocity. One expects that a scheme with less dissipation and
better accuracy will introduce less damping and will lead to higher eddy kinetic
energy because of more effective conversions from the available potential energy.
A strongly turbulent flow is characterized by a cascade of scalar variance to the
grid scale, which is the reason it cannot be run without dissipation.

The compact scheme and GE56 schemes have been implemented in FESOM2
and tested by simulating an idealized baroclinically unstable flow in a zonally
reentrant channel described in Soufflet et al. [2016]. The channel is 500 by 2000
km in zonal and meridional directions respectively, and 4 km deep. We used an
equilateral mesh with a triangle side of 10 km, and 41 unevenly spaced vertical
levels.

Turbulence is triggered with a small perturbation added to the initial buoy-
ancy distribution. To maintain the instability, the zonal mean buoyancy and
zonal velocity are relaxed to climatology as described in Soufflet et al. [2016],
which keeps isopycnals inclined in the presence of eddies. The applied forcing
would drive a surface-intensified zonal jet flow confined to the central part of the
channel with maximum velocity about 0.2 m/s. The horizontal viscosity is bihar-
monic, with a flow-dependent viscosity coefficient. We are willing to explore the
effect of horizontal scalar advection. Therefore vertical tracer and momentum
advection are computed with the (non-dissipative) 4th-order centered scheme
GE4 same for all the cases. The horizontal momentum advection uses a 2nd-
order centered flux scheme based on scalar control volumes (see Danilov et al.
[2017]). The integration length is 5 years. The first year is discarded, and the
rest is used to compute mean eddy kinetic energy and vertical velocity variance.
The boundary conditions are of zero flux at all the boundaries. In FESOM2
the advection is implemented without operator split, by combining the horizon-
tal and vertical fluxes through the faces of control volumes. The vertical and
horizontal fluxes can rely on different methods. If FCT is used, 3D admissible
bounds are also sought without a directional split.

We present simulations with GE34, GE4FCT, and similar simulations with
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Table 4.4: Mean values of energy and velocities in the test case for 3D.

Method Mean values of EKE
(m2/s2) (·10−3)

RMS of vertical veloci-
ties (·10−8)

C34 1.74 1.81
C4FCT 2.01 1.81
GE34 1.84 1.82
GE4FCT 1.64 1.81
GE56 1.83 1.80
QR34 1.76 1.79

C34, C4FCT, QR34. GE34, C34 and QR34 were run with λ = 0.25. Concerning
GE56, higher λ (≥ 0.5) is needed in order to control the noise in vertical velocity.
Adding FCT allows the schemes to be run with λ = 0. We also tried the compact
fourth-order scheme for vertical tracer advection (see, e.g., Soufflet et al. [2016]),
but found that it leads to noise in vertical velocity if run in a combination with
C34 unless the limiter of the Piecewise Parabolic Method (Colella and Woodward
[1984]) is applied. It works stably in other situations, but there is no apparent
indication that it is better than the 4th-order centered scheme.

The mean values of eddy kinetic energy (EKE) of all the schemes are very
close to each other which can be clearly seen from Table 4.4. Even though we
can see some differences, they are smaller than the EKE variability shown in Fig.
4.10. The variance of vertical velocity in all cases is nearly the same, indicating
that the flow stays in approximately the same dynamical regime. We conclude
that, concerning the effect of explored advection schemes on eddy dynamics, it
is relatively weak. However, it can be observed that the mean value of EKE for
C4FCT is the highest among other methods. GE34 and GE56 also demonstrate
relatively high results and outperform other schemes, including C34. The latter
can be linked to a higher sensitivity of C34 to the upwind parameter λ. The
very similar behavior of the simulations with GE34 and GE56 is at variance with
noticeably higher accuracy (smaller dissipation) of GE56. EKE for GE4FCT is
the lowest. We can observe that, for example, peaks in the results of simulations
using C4FCT are higher than for GE4FCT. However, a small difference in mean
values of EKE together with the fluctuations demonstrates that in our case the
choice of an advection scheme does not impact much on the simulated energy
content. Given this behavior, the choice of the optimal scheme is largely defined
by its computational efficiency, and less so by its accuracy.

Figure 4.11 shows the time it takes to simulate two tracers with different
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Figure 4.10: Basin-mean EKE in simulations with different advective schemes.

schemes in FESOM2 per simulated day on 36 cores of CRAY CS400 in the setup
used here. Although the EKE level simulated with GE56 is one of the highest
(the second after the C4FCT scheme), this scheme is the slowest. We admit that
its implementation is suboptimal as concerns exchanges over the extended halo,
and there is a potential for improvement. However, it will remain more expensive
than GE34 which uses a smaller stencil. The C34 scheme is the fastest one. The
use of FCT is expensive, and for the compact scheme, costs much more than
the scheme proper. Surprisingly, QR34 shows the fastest results after C34. We
note that such numbers should be taken with caution because they depend on
machine, parallelization, and compiler options. Furthermore, they also depend
on implementation detail and may change if, for example, a better algorithm
will be proposing for GE schemes in the vicinity of topography.
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Figure 4.11: Time needed to perform advection, per one simulated day, in full
3D simulations. Its fraction in the total simulations time is shown in percents
above.

4.4 Discussions

The initial motivation of this study was the observation that vertex-based FV
advection methods like GE34 used in FESOM2 are less accurate compared to
the FE TG and FEM FCT methods used in FESOM1.4. The compact method
designed by analogy to the TG method with a consistent mass matrix is more
accurate than the standard GE34 method, but still demonstrates larger errors
than TG despite its conceptual closeness. The extension of GE34 to the higher
order, GE56, approaches the TG method in terms of accuracy, but at a relatively
high computational cost. The advantage of the compact scheme is its computa-
tional efficiency, and disadvantage is the sensitivity of its errors to the presence
of upwind fluxes, meaning that it loses its extra accuracy relative to GE34 for
rather small λ (see Fig. 4.7). This implies that using the upwind version of
the compact scheme can only be recommended if small λ is sufficient to control
noise. We guess that the stronger loss of accuracy, in this case, is related to a less
directed stencil than in the case of GE methods. A natural question is whether
the upwind flux computation proposed here can be improved; it is left for the
future. It also remains to be seen whether the cost of GE56 can be reduced to
approach that of GE34. In our present implementation, the expensive part is
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the processing of different situations on the z-coordinate bottom where a part of
the numerical stencil can be absent. It is more expensive than for GE34 where
it already takes almost half of the computational cost.

From Table 4.2 we can observe that for the methods GE34, C34, and QR34
the order of convergence deteriorates notably for λ = 0.25. Also, convergence
order for these methods is lower on the IT and UT meshes than on the other
meshes. As expected it is the lowest on the IT meshes where areas of scalar
control volumes may vary twofold for two neighbor vertices, and the reduction
in the convergence order is weaker on UT meshes because the areas of control
volumes vary smoothly in this case. In contrast, the convergence order on DT
meshes characterized by smooth distortions of triangles is nearly the same as
on ET meshes which are uniform. This demonstrates that a mesh structure is
an important factor influencing accuracy. Note that the FE methods show a
weaker sensitivity to mesh quality.

In practice, FESOM2 uses FCT limiting in most cases as a mean to warrant
stability of integration on general meshes under realistic forcing. In this case,
using C4 as a high-order scheme instead of GE4 should lead to improved accuracy
and reduced computational cost. However, FCT is computationally expensive,
and a question is whether it can be avoided by adding upwind dissipation in
realistic simulations. The channel simulations here are stable with λ as low as
0.15, but higher dissipation can be needed in realistic ocean simulations. The
optimal practical strategy is a question for future research.

The relatively efficient performance of the QR34 indicates that extending it
to a quadratic-reconstruction WENO scheme might be a good idea for future
work too. A quadratic-reconstruction WENO scheme is already available in
SCHISM (Ye et al. [2019]), showing a much more improved behavior compared
to other versions of advection available in SCHISM. The Stommel gyre test,
applied in several publications (e.g. Budgell et al. [2007]), has been used here
only for the compact scheme to show that its errors are only worse than errors
of schemes based on discontinuous Galerkin or Lagrangian methods explored
in Budgell et al. [2007]. The western boundary layer present in this test needs
to be resolved on the mesh used, which requires variable-resolution meshes and
leads to results that depend on how precisely the resolution is selected. This is
why a simpler configuration has been selected to explore accuracy.

The real motivation for using high-order advection schemes in large-scale
ocean models is the hope that their higher accuracy leads to reduced dissipa-
tion which also implies reduced spurious diapycnal mixing concerning their less
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accurate counterparts. However, a scheme has to be equipped with sufficient
dissipation, and answering how spurious diapycnal mixing is affected is far from
being straightforward, especially on highly variable meshes. This aspect is not
touched in the present study and presents an obvious direction for future studies.

4.5 Conclusions

I describe the compact scheme for the horizontal advection that is based on an
approximate mass-matrix inversion and show that it is performing similarly to
the already known (GE34, QR34) schemes and demonstrates better accuracy
in the limit of small upwind fluxes. I also test the performance of the high-
order GE-based method and demonstrate that augmenting it to GE56 leads to
a substantial reduction in the simulated errors compared to GE34. The improved
accuracy has only a small impact on the simulated EKE levels in the 3D test
runs here. The compact scheme is more numerically efficient that GE and is
recommended instead of GE schemes.



Chapter 5

RPE analysis

In this section, I describe the experiments which were performed with FESOM2
to investigate the extent to which spurious diapycnal mixing can be reduced. All
the experiments were simulating 3D baroclinically unstable flows in channels of
different sizes on meshes of different resolutions.

Advection schemes in ocean models use either explicit or implicit horizontal
diffusion to prevent the accumulation of tracer variance at grid scales. Diffusion
is introduced implicitly in schemes using upwind fluxes, including the schemes
with high-order upwind fluxes. It is also created by limiters such as FCT (flux
corrected transport). Because z-vertical levels cross isopycnal surfaces, any hor-
izontal diffusion will be creating spurious dianeutral mixing in numerical sim-
ulations, seen as spurious water mass transformations. The RPE method (see
chapter 2) allows one to classify the schemes used concerning spurious dissipa-
tion they create, and this is done here for the first time for the schemes used in
FESOM2.

Ocean models routinely use isoneutral diffusion parameterizing mixing due
to unresolved eddies. This diffusion is implemented in the codes with the help of
rotated diffusivities described in chapter 3. Since it will generally create quasi-
horizontal mixing of scalar quantities such as temperature and salinity, the idea
is to study whether it can be used to stabilize advection schemes with centered
flux estimates which have no built-in diffusion and do not create spurious mixing
on their own. This idea is a simplified version of the approach proposed by
Lemarié et al. [2012], and it is explored here for the advection schemes available
in FESOM2. Here and further for the experiments, I consider the scheme based
on gradient estimation of triangles (GE) of 4th (centered), 3rd (upwind), or
mixed 3rd-4th order, which are implemented and used in the FESOM2. The
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notation of the used schemes is:

• GE3 - upwind scheme of the 3rd order,

• GE4 - central scheme of the 4th order,

• GE34 - mixed upwind-central scheme with λ = 0.25,

• GE4 FCT - GE4 scheme with stabilization by FCT,

• GE4 Redi - GE4 scheme with stabilization by isoneutral diffusion.

Finally, it can be assumed that spurious mixing depends on the quality of
meshes, and is sensitive to the deviation of mesh triangles from the equilateral
one. This question is also addressed here. The experiments were considered on
three types of meshes as they were described in chapter 4: ET, QT, DT and IT.

Common to all questions considered here is the use of the RPE method as a
diagnostic tool.

5.1 Setups

In this chapter for the experiments, three initial setups were used. I considered
various channels, initial states of physical properties, and resolution. All these
were needed for testing different approaches and analyzing what can play role
in growth of RPE. First, I wanted to compare the state of FESOM2 to other
models. For this I used Setup1 which was described by Ilicak et al. [2012] and
also used by others (e.g., Kärnä et al. [2018], Petersen et al. [2015], Gibson
et al. [2018]). However, with this setup, it was impossible to assess the use
of isoneutral diffusion because it requires to have changes in density due to
both, temperature and salinity, while in the Setup1 salinity is constant. For this
reason, I used Setup2 described below. Finally, as it will be seen below, different
schemes and meshes can perform differently depending on initial conditions. To
see these differences I used Setup3.

Setup1. I consider a zonally re-entrant basin of 160 km in zonal direction and
500 km in the meridional direction centered at the latitude of 54◦ and with the
depth 1000 m. The stratification is due to temperature only. The stratification
changes from the warm water at the top to the cold water at the bottom, and also
from the warmer water in the north to the colder one in the south (see Fig.5.1).
Salinity is constant and set to 35 PSU. The mesh horizontal resolution is 4 km,
and the vertical spacing is 25 m. The Coriolis parameter f = 1.2 · 10−4s−1. The
full equation of state is used. All forcing and explicit dissipation are switched
off. The duration of the integration is one year.



5.1. SETUPS 75

Figure 5.1: Initial state of the temperature in 3D basin of 160 km wide and 1000
m depth.

Setup2. Let us consider the same channel at the latitude 54◦ with linear
stratification by salinity from 34 PSU at the top to 35 PSU at the bottom of the
channel. Temperature changes from 22◦ at the top to 13◦ at the bottom. The
mesh horizontal resolution is 4km, and vertical spacing is as previously 25 m.
The isopycnals are tilted in the meridional direction, but they now depart from
isothermal surfaces. The initial state is shown in Fig. 5.2, its right two panels
show the temperature distribution with the superimposed initial perturbation.
The full equation of state is used. All forcing and explicit dissipation are switched
off. The duration of the integration is one year.

Setup3. Let us take a bigger 20◦ wide channel at the latitude 38◦ with a
depth of 1600 meters. By salinity, the stratification was made flat in such a
way that the water was changing from 34 PSU at the surface to 35 PSU at the
bottom. The temperature was changing from 25 degrees at the surface to the 6
degrees at the bottom and isotherms had a slope 10−3. Sinusoidal perturbation
was added to the temperature field (see Fig. 5.3). All the forcing and vertical
mixing are switched off in the system. The full equation of state is used. ALE
vertical coordinates condition with the zstar option is used (see details Scholz
et al. [2019]). A QT mesh with 18 km with the horizontal resolution was taken.
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Figure 5.2: Initial state of Setup2. Left to right: the stratification by salinity and
stratification by temperature in the vertical meridional section; stratification by
temperature with imposed initial perturbations in the vertical meridional section
and on the surface.

The vertical resolution varies from 10 m to 50 m until 200 m depth is reached
and then is set to 100 m.

5.2 Assessment of the advection schemes of FESOM2

First of all, to assess the performance of advection schemes in FESOM2, let us
consider the known benchmark initial conditions, first described by Ilicak et al.
[2012] and also appearing in Ilicak [2016], Kärnä et al. [2018], Gibson et al. [2018],
Petersen et al. [2015]. For these experiments Setup1 was used on the QT mesh.
Fig. 5.4 plots the mean RPE of the system over one year. It is seen that over
the first few days RPE dramatically jumps up, then grows over around 120 days,
and then stabilizes or the increase goes very slowly. This behavior happens since
in the beginning the system is extremely unstable, and RPE grows extremely
fast during the first days. Then we can observe the mixing of the water with
different temperatures and constant salinity, the appearance of eddies and decay
of motion in the end. The mean RPE stabilizes at the values between 0.6 · 10−6

and 3.5 · 10−6 for different schemes. These values correspond to the ones in the
range of viscosity 50 m2/s and 20 m2/s of the coastal model by Kärnä et al.
[2018], and to the RPE values of viscosity between 1 m2/s and 5 m2/s of the
MPAS-Ocean model (Petersen et al. [2015]). Unfortunately, I cannot say what is
exact viscosity in my system as in FESOM2 it is implemented in a dynamic way
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Figure 5.3: Initial state of the temperature and salinity in 20◦ 3D basin of 1600
m depth.

and changes in time and space. Nevertheless, I calculated the mean viscosity of
the system at 200 days of the simulations and it stands at an approximate value
of 3 m2/s. Thus, it is possible to say that the output of our model is comparable
to others.

Figure 5.4: Mean RPE value for the integration period over one year of the
different schemes: central GE4, GE4 Redi with isoneutral diffusivityKiso = 1000
m2/s, GE4 FCT and mixed GE34 with the parameter λ = 0.25. Setup1.
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As it was expected, the mixed scheme GE34 and the central scheme with
FCT (GE4 FCT) produce the largest mixing. This effect appears due to dis-
sipation which is brought by both upwind scheme and FCT. Apparently, FCT
creates even more spurious mixing than upwinding. Meanwhile, RPE of the
central scheme stays almost as flat as it is supposed to be because there is no
implicit dissipation involved. RPE of the scheme with isoneutral diffusion, GE4
Redi, is the second smallest after the GE4. Although in the current experi-
ment I expected it to stay similar to the GE4 due to density changes only by
temperature, it still shows some growing values. This expectation goes from
the definition of rotated (isoneutral) diffusion (see chapter 3) because isoneutral
and isothermal surfaces are nearly identical in this case so that the observed
behavior appears from the implementation of the scheme. We should remember
that the vertical part of the GE4 Redi scheme is computed implicitly. Also, to
avoid blow-up of the model when the isopycnals slope becomes too steep (e.g., on
approaching the mixed layer), the isopycnal slope is tapered, which introduces
horizontal diffusion. Furthermore, in my implementation of the isoneutral dif-
fusivity in FESOM2 the slope vector is smoothed over scalar prisms to enhance
model stability.

If we look at Fig. 5.5, we will see that the schemes GE4 and GE4 Redi cause
oscillations due to their instability. This instability occurs because these schemes
either do not have built-in dissipation or have only isoneutral dissipation and
in the described experiments density layers are set only by temperature while
salinity stays constant. Since the GE4 Redi shows less oscillations, it can be
guessed that it comes from the implicit time stepping of the vertical part of
rotated diffusion. If we want to compare the behavior of these schemes better,
we should set density layers in such a way that their density changes due to both
fields, temperature and salinity.

Let us now consider Setup2. With this initial state of the system, one can
see from Fig. 5.6 that the schemes GE34 and GE4 Redi produce more similar
mixing than before. The difference in the produced mixing by GE4 Redi differs
from the mixing produced by the scheme GE4 the way more than in the previous
case. Also, the scheme GE4 Redi does not lead to oscillations anymore, while
the GE4 still does (see Fig. 5.7). This behavior is expected as now the density
layers deviate from isothermal and isohaline surfaces so that there is isoneutral
mixing of both temperature and salinity which stabilizes the scheme.
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(a) GE34 (b) GE4

(c) GE4 Redi

Figure 5.5: Surface temperature after 50, 100 and 200 days of integration of the
system with the different schemes: a)GE34, b) GE4, and c) GE4 Redi.

Comparison of GE4 Redi with other schemes

To avoid noise due to instability in the GE4 Redi scheme, let us further consider a
new set up with stratification induced by both salinity and temperature. Further
Setup3 was used.

Fig. 5.8 demonstrates five cases: isonetral diffusion with Khor = 3000 and
Khor = 500 (GE4 Redi), FCT correction of the GE4 method, mixed upwind-
central scheme GE34 with λ = 0.25 and the pure central scheme GE4. Vertical
parameter Kver = 10−6. As we can see, the largest mixing comes from the
GE34 scheme, and the GE4 is characterized by the least spurious mixing as
expected. To see the behaviour of central scheme with isoneutral diffusion, the
system was integrated for a longer period. From Fig. 5.9 we can see that
RPE grows smoothly. Still, there is a question of why it grows so much for
the isoneutral diffusion. To test the correctness of the implementation, the
ALE condition was switched off and a linear free surface was used instead of
ALE. Also, all the velocities in the system were removed, and small vertical
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Figure 5.6: RPE of the system with the schemes GE34, GE4 Redi, GE4 after
one year of integration. Setup2.

(a) GE4 Redi (b) GE4

Figure 5.7: Surface temperature after 50, 100 and 200 days of integration with
the schemes GE4 Redi and GE4. Density stratification is due to both tempera-
ture and salinity.

mixing with vertical diffusivity Kv = 10−6 m2/s was added. Experiments were
run with the isoneutral diffusion, FCT, and pure central scheme. The scheme
GE4 FCT was used together with the benchmark GE4 to assess the behavior
of isoneutral diffusivity. Fig. 5.10 demonstrates that RPE growth is the same
for all cases. The growth of RPE is only due to the parameter Kv. It means
that the spurious mixing identified above for the scheme GE4 Redi stabilized
with isoneutral diffusivity comes from the presence of motion. In order to see it
better, let us consider the case with different horizontal viscosities. The higher
viscosity, the lower velocity fluctuations in the system, and vice versa. Indeed,
reducing viscosity in two times, we get higher mixing, and making viscosity



5.3. ANALYSIS OF DIFFERENT TYPES OF MESHES 81

Figure 5.8: Mean RPE of the GE based methods in FESOM2 in the 20◦ channel
with QT mesh with resolution of 1/6 degree.

Figure 5.9: Evolution of the mean RPE of the GE based methods in FESOM2
throughout 35 days in the 20◦ channel with QT mesh with resolution of 1/6
degree.

five times higher, we reduce mixing in the system (see Fig. 5.11). However,
this correlation is not linear. It means that with default viscosity, velocity
fluctuations are already moderate; with the increased viscosity, they are still
further reduced but the effect is weaker than the growth in RPE created by
increasing velocity fluctuations for reduced viscosities.

5.3 Analysis of different types of meshes

Triangular meshes can have different triangles on their basis: equilateral, right,
random, and so on. They can be unstructured, irregular, distorted (changing
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Figure 5.10: Mean RPE of the system without velocities. Results are the same
for integration with different schemes.

Figure 5.11: System with ALE zstar conditions, Kiso = 1000.

spatial step in the direction of distortion). Interesting question if the structure
of a mesh can bring unwanted numerical mixing. Sometimes, it is hard to avoid
irregularity in meshes, therefore it is important to know how much spurious
mixing such meshes can cause. As in chapter 4, several meshes will be considered:
ET, IT, DT, and QT (see Fig. 5.12). The experiments were held in the channel
at the 54◦ described above. For the initial state Setup1 was taken. Meshes
resolution was taken 4 km. For QT and IT meshes it means that the catheti
of the triangles are 4 km. For the DT mesh, it means that in the meridional
direction cathetus is 4 km, and in the zonal direction mean length of a cathetus
is 4 km (my DT mesh is distorted only in the longitudinal direction). It is a little
bit harder to compare these meshes to an ET mesh. For this, I considered two
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(a) ET (b) QT

(c) IT (d) DT

Figure 5.12: Fragments of meshes : a) equilateral mesh (ET), b) quadrilateral
mesh (QT), c) irregular mesh (IT), d) horizontally distorted mesh (DT).

types of ET meshes. First, when the height of the equilateral triangle is taken as
4 km, its side is equal to ≈ 4.6 km. Thus, this ET mesh has ≈ 1.15 times more
elements than the QT mesh. Another way to obtain a comparable resolution for
an ET mesh is to take a side in such a way that its area is equal to the area of
the right-angled triangle. Thus, we will get the same number of mesh elements.
However, due to numbers rounding while calculating a side of the equilateral
triangle, the number of the elements of the ET mesh differs slightly from the
QT mesh. When I talk about this kind of ET meshes, I will mention it as ET
mesh with bigger elements because its elements are bigger than triangles of the
ET mesh derived from the first way.

The methods GE4, GE4 Redi and GE34 were taken to see the different
behavior on the different meshes.

The results of the RPE experiments on the different meshes are shown in
Fig. 5.13. As we can see, experiments on the meshes QT, IT and DT show
almost the same amount of spurious mixing in the system. Surprisingly, ET
mesh brings more mixing to the system than other meshes. The reason for
it might be lying in the way of calculating horizontal viscosity in FESOM2.
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(a) GE4 Redi (b) GE34

(c) GE4

Figure 5.13: RPE of three schemes depending on different types of meshes: a)
GE4 Redi scheme, b) GE34 scheme, c) GE4 scheme.

To get this value, harmonic Leith viscosity is calculated and combined with
biharmonic background viscosity. Both of them are scaled to the mesh resolution
and recalculated with every time step. Thus, we cannot talk about a particular
numerical number related to viscosity and have to take into account that it relies
on a mesh resolution. As long as it depends on the area of a mesh element, we
can think that an ET mesh with bigger elements will produce the amount of
mixing which is closer to the QT-type meshes. Another reason can be that before
the initial condition with constant salinity and high instability due to abrupt
temperature change were used. Let us further consider cases with stratification
by both salinity and temperature and less initial instability with the Setup2.

As it was already mentioned, viscosity in FESOM2 is scaled according to the
mesh resolution. Thus, knowing, that area of a triangle of the ET mesh is 1.15
times smaller than the area of a triangle of the QT mesh, we can try to increase
viscosity in 1.15 times for ET mesh. From Fig. 5.14 we can see that RPE with
the ET scheme with increasing of viscosity in 1.15 times is actually lower than
before, however, the difference is not that high and the values of RPE in such
a case are still way larger than ones for the QT and IT meshes. If we want to
get comparable values of RPE for this ET mesh, viscosity has to be increased at
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Figure 5.14: Mean RPE of the scheme GE34 on the different meshes: QT, IT,
ET depending on viscosity (for the ET mesh).

least two times. From Fig. 5.15 it is seen that with enlargement of the element

Figure 5.15: Mean RPE of the scheme GE34 on the different meshes: QT, IT,
ET with bigger elements, ET depending on viscosity (for the ET mesh).

area of the ET mesh, the system produces less mixing. However, the amount of
it is still larger than for the system with QT based meshes. To avoid variable
horizontal viscosity, I considered cases with the viscosity set to 20 m2/s and 200
m2/s. Fig. 5.16 demonstrates that with the growth of viscosity, mixing reduces
for both types of meshes, IT and ET. Also, the difference in the RPE values
for the both meshes decreases. However, RPE calculated on the ET mesh has
never reached the same RPE values derived on the IT mesh. This behavior can
appear due to the way the gradients are calculated in FESOM2. Even though the
constant viscosity is set, because of the different geometry in QT and ET based
meshes, they are calculated differently. Thus, it is not possible to rigorously
solve the problem of comparison of such types of meshes in FESOM2.



86 CHAPTER 5. RPE ANALYSIS

(a) Viscosity 20m2/s (b) Viscosity 200m2/s

Figure 5.16: Mean RPE of the system on ET mesh with bigger elements and IT
mesh with different horizontal viscosity.

5.4 Conclusion

In this chapter, I examined spurious mixing in the model FESOM2 through the
RPE analysis. The following concepts were investigated:

• Whether isoneutral diffusion can lead to the reduction of diapycnal spuri-
ous mixing if used to stabilize central schemes;

• Whether the structure of meshes can influence the amount of mixing.

From the RPE analysis of the GE4 Redi scheme compared to the GE34
and GE4 FCT, we can conclude that, indeed, the GE4 Redi scheme brings less
mixing than others. However, it requires additional conditions for stable work.
Under particular circumstances, the GE4 Redi might outperform other schemes.
Nevertheless, there are also conditions when the GE34 produces similar mixing
or even less than the GE4 Redi. The same thing we can say about the GE4 FCT
though in some cases FCT brings the largest amount of mixing into the system
among other schemes. Also, the performance of the GE4 Redi scheme depends
on the several things one should keep in mind while using it for reduction of
spurious mixing:

• Choice of the value of the isoneutral diffusivity parameter Kiso. The less
this parameter is, the less mixing GE4 Redi produces. However, it also
becomes more unstable because with Kiso = 0 we will get the common
central scheme GE4. Thus, it is important to choose the parameter Kiso

wisely.

• Isoneutral diffusion can perform differently depending on model settings
such as initial state, choice of a mesh, or parameterization.

• It is also important to notice that in the current work harmonic isoneu-
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tral diffusion was used. Biharmonic isoneutral diffusion stays beyond the
scope of the current work and needs an additional analysis of models with
triangular meshes.

Concluding, isoneutral diffusion can help to reduce spurious mixing in ocean
models but it requires particular tuning of a model.

The second conclusion of the current chapter is about the performance of
different meshes. Even though it was expected that IT and DT meshes produce
the largest spurious mixing, the RPE analysis shows that spurious mixing is
not necessarily sensible to distortion and irregularity of the meshes. Moreover,
despite the better accuracy of ET meshes, they do not lead to the reduction of
spurious mixing. As it was seen from the experiments with viscosity, it might
be a possible reason for it. As Ilicak et al. [2012] showed, RPE is sensitive
to the viscosity of a system; we also observe similar behavior in the provided
experiments. We see that changes in viscosity lead to changes in RPE of the
system which have a larger impact on the system mixing than any other change
caused by other actions such as parametrizations, choice of a mesh type, or
diffusion scheme. Thus, a type of a mesh does not have a noticeable influence
on spurious mixing in ocean models.





Chapter 6

Conclusion and Outlook

In the current work, I pursued a goal to investigate ways to reduce spurious
diapycnal mixing in ocean circulation models. Numerical climate models are
important for understanding and exploration of various processes influencing
the ocean and climate behavior. However, unwanted numerical mixing occurring
in these models brings uncertainty to their output. Spurious mixing is created
by numerics whenever we explicitly or implicitly introduce unphysical mixing.
One may hope to reduce it by using more accurate advection schemes and by
replacing the dissipative part with isoneutral diffusion, as well as through the
use of a "good" mesh that locally tends to equilateral triangles or regularly split
squares. These directions were examined.

• Attempting to solve the problem of spurious mixing, the new compact ad-
vection scheme was introduced. The experiments and the analysis showed
that although in a 2D case it and the GE56 reach the highest accuracy,
in 3D case all the schemes lead to only small differences in the EKE. The
compact scheme demonstrates high accuracy and in some cases outper-
forms other schemes. Though the difference in EKE in the 3D case is not
too big, due to the higher numerical efficiency of the compact scheme it is
recommended upon the others.

• Isoneutral diffusion scheme was for the first time analyzed on triangular
meshes for vertex-based finite volume discretization of FESOM2, and es-
timates of stability limits were provided. Isoneutral diffusion scheme was
implemented in FESOM2.

• RPE diagnosis has been applied to explore whether isoneutral diffusion
can help to stabilize advection schemes with no build-in dissipation. It
has been found that the residual dissipation of the isoneutral operator in
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FESOM2 still creates some spurious mixing. Although spurious mixing
can be made lower than for schemes with 3-rd order upwind or FCT, it
is not as small as hoped. Furthermore, additional attention is required in
choosing the isoneutral diffusivity parameter Kiso.

• RPE diagnostics has been also applied to study the effect of mesh type
and quality on spurious mixing. Even though in 2D case it is clear that
the results are more accurate on the meshes with equilateral triangles, in
3D case this type of meshes brought more spurious mixing in the system.
Taking into account dynamically calculated horizontal viscosity depending
on a mesh type, it did not seem to be possible to compare different types
of meshes rigorously. The comparison of irregular, distorted, and normally
organized meshes showed that irregularity and distortion do not bring any
additional spurious mixing into the system.

Concluding, the new compact scheme is recommended to be chosen among
other advection schemes considered in this work. Isoneutral diffusion can be ap-
plied in models with triangular meshes to stabilize advection schemes without
build-in dissipation providing lower spurious mixing under particular circum-
stances than high-order upwind or FCT. The type of meshes does not play a big
role in numerical mixing reduction.

There are still ways to investigate what can influence the reduction of spuri-
ous mixing. One of them is a biharmonic form of isoneutral diffusion. Lemarié
et al. [2012] showed that it reduces spurious mixing on rectangular meshes,
therefore, it has to be analyzed on triangular meshes as well. Another point to
pay attention to is the implementation of a terrain-following coordinate system
at overflow sites that would help to resolve plumes and minimize their spuri-
ous mixing. Further, the coordinates that follow isopycnals in the deep ocean
can be used. With this type of coordinates, advection will be naturally within
the isopycnal layers. In addition, the compact scheme introduced in this work
was not analyzed systematically with the RPE method together with isoneutral
diffusion. The reason is that it is still not included in the released version of
FESOM2 which should be done in the future. It is also important to notice
that the experiments in the current work were held for idealized cases. Analysis
of spurious mixing for real ocean conditions will be another interesting topic
to investigate. There are different processes in ocean circulation models which
can cause unwanted numerical mixing, and it is crucial to see how much the
reduction of spurious diapycnal mixing improves the whole system output.
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