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Abstract

Black holes are nowadays widely accepted as the most likely explanation of a wide range of
astrophysical phenomena from X-ray sources within our galaxy to powerfully radiating galactic
cores billions of light-years away from us. The arguments that lead us to the conclusion that
black holes of various masses indeed reside in such locations come from the observations in
the electromagnetic spectrum and, since recently, also from gravitational-wave detections.

In this thesis, I first take the reader on a brief guided tour of the essential physics of black
holes and the accretion of matter onto them that leads to the observed electromagnetic signal.
Then, I explore the possibility of deepening the understanding of these topics with analytical
methods in the appended papers.

The topics of the papers go as follows. In Witzany and Lämmerzahl [291], we have re-
expressed exact relativistic equations of motion in general stationary space-times in a “pseudo-
Newtonian” form, a form ready to be implemented in common Newtonian hydrodynamics codes
while recovering all the essential properties of the evolution near a black hole. In Markakis
et al. [163], we have explored various forms of equations of relativistic fluids and magnetized
plasmas in curved space-time, deriving actions and Hamiltonians for fluid stream-lines, and
corresponding conservation laws (such as the relativistic Kelvin theorem). In Witzany [288], I
have investigated whether one can use deeper geometrical properties of spinning black-hole
fields to derive new conservation laws that could be used to constrain numerical simulations.
The conclusion is that only weak conservation laws of the character of a differential constraint
can be found. In the fourth paper, Witzany and Jefremov [289], we have found new closed
solutions for idealized equilibria of fluids near black holes. These represent a considerable
expansion of the set of closed-form prescriptions with which numerical simulations of accretion
disks can be initialized.

Last but not least, one of the chapters of the thesis is dedicated to my research on the
so-called spin-curvature coupling, which is experienced by rapidly rotating astrophysical
objects in curved space-time. My work on these topics greatly improves the understanding of
the Hamiltonian formalism that captures this coupling, and the results are likely to become
important for gravitational-wave modelling.
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Preface

General theory of relativity, or Einstein gravity, published over a hundred years ago [82],
is currently the leading theory of gravity. It is not that other theories fulfilling basic self-
consistency conditions do not exist – a famous example of a self-consistent relativistic theory
of gravity formulated even before Einstein was given by Nordström [197]. It is also not that
Einstein gravity, or in more general the whole current “standard" set of laws, would not be under
scrutiny due to observation and experiment – for example the problem of “missing mass” in the
rotation curves of galaxies and the specific details of its phenomenology invite speculation as
to whether a modified gravitational law is at play [177, 166].

What is it then that keeps General relativity (GR) reigning on the throne of gravity? The
most convincing argument is that the paradigm of GR has an absolutely behemoth body of
observational data behind it, obtained in a variety context and over many scales. Another
argument is that Einstein gravity is in many senses of the word robust; it comes out uniquely
from a set of theoretical requirements and heuristics. Consequently, if a theory attempts to add
modified dynamics on top of GR, it might address a particular issue in a given context, but it
will typically create an unwanted problem in a different one.

Consider the example of galactic rotation curves, that is, the average velocity of matter in
the galaxy as a function of distance from the center as observed from its Doppler redshift. If we
assume for a moment that the source of gravitation is a roughly spherical cloud of matter (as
would be the case of e.g. bulge-dominated galaxies), then the rotational velocity v as a function
of radius r should fulfill

v =

√
GM(r)

r
,

where M(r) is the mass enclosed within a radius r, and G Newton’s gravitational constant.
However, it has long been observed that if we estimate M(r) from the amount of glow coming
from stars and hot gas visible in the galaxy, and use it to estimate the rotation velocity, we
get a wildly inconsistent estimate for v(r) in the galactic outskirts (see Fig. 1). This suggests
that there is an additional, invisible component of M(r) known as dark matter (see [30] for a
historical review).
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Fig. 1 Examples of mass models and rotation curves for individual galaxies taken from Mc-
Gaugh et al. [166]. The black points with error bars are the observed rotation curves v(r), and
the solid blue line is the prediction based on the distribution of luminous matter.

However, a number of peculiar correlations can be observed between the observed rotation
curve and the one predicted from luminous matter [84, 276, 174, 175, 166]. Let us formulate
them in terms of an all-encompassing relation between the radial acceleration (a = v2/r)
predicted by the distribution of luminous mass aL as compared to the observed one aobs

aobs =
aL

1− exp(−
√

aL/a0)
, (1)

where a0 is a small acceleration constants. Relations like these have already been proposed
for a long time [174–176] but they have recently been fit over 153 galaxies of various
composition, mass, size, and morphology to yield a0 = 1.20 ± 0.02(intrinsic fit scatter) ±
0.24(extrinsic modelling systematics)×10−11ms−2 [166]. From this, we can deduce that in-
dependent of the size, composition, or shape of a galaxy, at distances r ≫

√
GML/a0, where

ML is the luminous mass concentrated in the center of the galaxy, the dark matter halo density
will behave as

ρDM ≈
√

GMa0

r2 . (2)

However, the real density of dark matter (if dark matter is real) must have an eventual cut off,
since this formula integrated to infinity corresponds to an infinitely heavy dark matter halo.

The remarkable scaling (1), of course, suggests the possibility that the phenomenon of
dark matter is not linked to any invisible matter but rather a modified theory of gravitation
that produces such dynamics sourced only by the luminous mass of the galaxies, as has been
famously proposed in 1983 by Milgrom [174, 175, 176]. The basic idea is, quite naturally, that
a new, somewhat arbitrary degree of freedom ρDM(r) chosen to fit the data is just a redundant
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Fig. 2 X-ray image (pink) of the Bullet cluster by Chandra observatory superimposed over a
visible light image (galaxies) by Hubble and Magellanic telescope, with matter distribution
calculated from gravitational lensing (blue) [59, 58]. Credit: Chandra X-ray observatory

“fudge factor”, and one should instead postulate a different field equation for the Newtonian
potential Φ(r).

However, from the point of view of a relativist, this argument does not make so much sense.
In an attempt to eliminate an independent and tunable degree of freedom ρDM by modifying
gravity, one always ends up including at least one new independent and tunable degree of
freedom in the gravity sector itself. This can be seen from the fact that the Einstein equations do
not allow modifications without either adding more derivatives, adding new fields, or violating
the conservation of stress-energy [153, 154]. More precisely formulated results of a similar
nature come from the considerations of the initial value problem for metric gravity [139, 99].
This is a part of the aforementioned robustness of relativity.

Nevertheless, even though the new degree of freedom is a proper degree of freedom, its
dynamics can be still set so as to reproduce the relation (1) automatically. Hence many modified
relativistic gravities reproducing relations such as (1) were formulated [27, 297, 178, 71, 38,
117]. However, they typically require much more than a single new degree of freedom along
with a number of freely tunable parameters or even functions. Additionally, they will often be
plagued with various instabilities and pathologies (as could be expected from the diverging
mass of the effective dark matter halo (2)).

But still, the strongest hits to the program of explaining dark matter by modified gravity
come simply from observations on scales larger than galaxies [30, 85]. Clusters of galaxies do
not obey the phenomenology (1), and modified gravities almost always need some amount of
dark matter to explain the observations. The power spectrum of the small anisotropies in the
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cosmic microwave background also generally require that some degree of freedom behaves
essentially as dark matter particles before the cosmological epoch of recombination, and this
same fraction of dark matter is consistent with recent cosmological expansion and currently
observable large scale structure.

Another, less obvious constraint comes from the recent detection of the merger of neutron
stars by the LIGO/Virgo gravitational wave detectors and the follow-up observations of the
corresponding electromagnetic signal [5, 4]. This observation is important because many
modified gravities predict that gravitational waves will propagate through space at a different
speed than light. The fact that we observed the gamma-ray signal traveling for ∼ 107 light-years
with a few-second lag after the gravitational-wave merger signal puts very strong constraints
on the difference between the speed of light and gravity and thus also on modified gravitational
theories [83, 19, 64, 231].

If this is not enough to convince the reader, we may consider the particularly suggestive
example of the Bullet cluster, where two galaxy clusters were observed after a relatively recent
(on cosmological scales) merger that occurred 150 million years ago [59, 58]. As can be seen
in Fig. 2, the gravitational lensing reconstructs the effective gravitating mass of the clusters as
clearly separated from the source of X-rays, a feature that suggests the additional gravitating
degree of freedom of the modified gravity must be only weakly coupled to the ordinary baryonic
mass.

Last but not least, let me also mention a very recently published result testing the so-called
strong equivalence principle. The strong equivalence principle states that even a strongly
gravitating object such as a neutron star or a black hole will follow an orbit that is independent
of its composition [198]. Quite surprisingly, almost every modification of GR will violate this
principle and by observing orbits of compact astrophysical bodies, we are also able to separate
the wheat from chaff. In a recent report, Archibald et al. [15] presented the results of 5 years
of observations of a hierarchical stellar triple consisting of a central pulsar and a white-dwarf
binary orbiting it. Their observations improve the existing upper bound on the violations of the
strong equivalence principle in the strong field by 3 orders of magnitude and by on order of
magnitude as compared to the weak-field Solar-system tests.

As a result of all of these observations, essentially all major modified-gravity alternatives to
dark matter have been eliminated – and relativity reigns once again. The exposition of the last
few pages was not meant as any exhaustive review of which arguments are in favor of Einstein’s
gravity and which perhaps suggest there are some flaws. Instead, it is supposed to underline the
size of the communities approaching the problem from different sides, and the sheer richness
of physics and contexts through which we learn about gravity in this day and time.
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Chapter 1

Black hole fields

The first exact solution of Einstein’s gravitational equations was found by Karl Schwarzschild
[235] only two months after the publication of the definitive paper on Einstein’s general
relativity [82], all this while Schwarzschild was stationed at the Russian front as a soldier
during the First World War. Quite surprisingly, Schwarzschild’s solution was also the first black
hole solution. Specifically, it represents the gravitational field of a non-rotating isolated black
hole. This fact was recognized neither by Schwarzschild nor by anyone else at that period.
Nevertheless, as time progressed, both theoretical relativists and astrophysicists came to a solid
and well established understanding of the properties and inevitability of formation of black
holes in nature (see the summary of Israel [123] for a historical review).

Black holes are characterized as massive, compact, dark objects with a special boundary at a
radius1 ∼ 1M−2M delineating the edge of the region of outer communication. This boundary
is called the event horizon.

Unlike many popularly held intuitions of this boundary as some kind of “surface”, the event
horizon is not locally discernible from any ordinary vacuum region of space-time. In particular,
an observer falling into the black hole will not experience passing through the event horizon
as any special event. However, once this boundary is passed, any message the unfortunate
infalling observer tries to send into the external universe will never reach its destination and
will stay within the black hole. On the other hand, from the point of view of a second, external
observer watching the infall from afar, the image of the infalling body will freeze upon reaching
the horizon, and exponentially quickly dim and redden in the process.

However, the event horizon is not the only feature of a black hole, and key astrophysical
observations come from interactions of matter and radiation with its gravitational field well

1In this dissertation and unless stated differently, I will consistently use geometrized G = c = 1 units, where G
is Newton’s gravitational constant, and c the speed of light. M as a length in geometrized units would be GM/c2

in terms of SI units
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Fig. 1.1 A picture of a jet emerging from the galactic nucleus in the Messier 87 galaxy obtained
by combining UV, blue, green, and IR light. The yellow color corresponds to light from stars,
whereas the blueish-white color to synchrotron radiation coming from the jet. The jet is about
500 000 light-years (∼ 150kpc) long and thus much larger than the host galaxy itself. Credit:
NASA and The Hubble Heritage Team.

above it. Before we can discuss such issues, we need to examine the black hole field in more
detail. Furthermore, we need to identify the astrophysical contexts where black holes appear. I
will start with the latter in the upcoming section, and then work my way to the former in the
rest of the sections of this chapter.

1.1 Black holes in space

Astrophysical black holes are formed through different evolutionary channels which means
that they are characterized by a vast range of mass scales and locations. The first black holes
formed early after the last scattering of photons with ionized matter after the Big Bang. These
black holes then acted as focal points of matter halos in the early universe and hierarchically
merged to finally form the so-called supermassive black holes that we nowadays observe in
centers of most galaxies (see [90] for a review). The masses of supermassive black holes are in
the range ∼ 106 −1010M⊙, where M⊙ = 2×1030kg is the solar mass.



1.1 Black holes in space 3

The presence of supermassive black holes in the core of a galaxy often leads to a high
electromagnetic activity in a wide spectrum from radio to X-ray, and the overall luminosity
of such cores often outshines the galaxy by many orders of magnitude. Galactic cores of
such overwhelming power are called Active galactic nuclei, commonly abbreviated as AGN,
and their luminosity is assumed to be sourced by relativistic accretion of the surrounding
matter onto the central black hole. A somewhat enigmatic feature of many AGN are powerful,
and surprisingly collimated outflows of matter leaving the center at relativistic speeds – the
so-called relativistic jets (see fig. 1.1).2 In return, the radiation of the AGN and the jet act
on the surrounding matter itself, and the galaxy tends to evolve with the AGN in a correlated
manner [136].

Inactive galactic nuclei are also common, and specifically some of the supermassive black
holes in our cosmic vicinity are inactive or of a low electromagnetic activity. An important
example of such an inactive galactic black hole is the one in the center of our galaxy, the Milky
Way. It powers the compact radio source in the Sagittarius constellation known as Sgr A∗ by
very slow accretion of matter [187].

The case of our galactic center is also important because individual stars orbiting it can be
resolved in detail (this is not possible in the case of other galactic cores), and we can determine
the central black hole mass from its gravitational influence on the orbits as ≈ 4×106M⊙ and
the distance as3 ≈ 8kpc [100]. There are many more supermassive black holes with good mass
estimates, but the case of the black hole in Sgr A∗ is the most watertight mass measurement for
a supermassive black hole we have to date.

Another important class of black holes formed only later in cosmic history as remnants
of burnt-out stars with mass at least M ≳ 10M⊙. When such a star goes through its entire
evolution, gradually converting various elements in its interior by nuclear fusion and radiating
the heat away, it will eventually run out of nuclear fuel and lack pressure in the core to support
itself against gravitation. The violent process that ensues as the star consequently contracts and
expands in one last explosion is called a core-collapse supernova. In some cases the leftover
remnant is a neutron star and in others a black hole. It is currently not clear what is the exact
critical mass of the progenitor of a given composition to form a black hole, but generally it
seems that the mass of the progenitor star has to be ≳ 25M⊙ for a a very good chance of black
hole formation [114, 179].

The estimates of the masses of this population of black holes obtained from electromagnetic
radiation is in the range ∼ 2−20M⊙ [264], and this is why they are called stellar-mass black

2Relativistic jets are jets emerging at relativistic speeds from accreting black holes. “Normal” jets emerge from
a number of other astrophysical objects at non-relativistic speeds. These two classes of jets seem to have different
launching mechanisms, and it is thus important to draw a distinction between them in nomenclature.

3A parsec (pc) is ∼ 3.1×1016m or 3.2 light-years, which puts Sgr A∗ about 26 thousand light-years away.
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Fig. 1.2 A comparison of the masses of stellar-mass black holes and neutron stars as estimated
from gravitational-wave observations with masses of black holes and neutron stars as estimated
from orbital dynamics in X-ray binaries. The gray arrows indicate an observed merger. Credit:
LIGO-Virgo/Frank Elavsky/Northwestern University

holes. They can be observed as parts of X-ray binaries, that is, binaries of black holes or neutron
stars and main-sequence stars that produce strong radiation in the X-ray as well as other bands.
The radiation in X-ray binaries comes from the black hole or neutron star accreting matter from
the stellar companion.

The matter for the accretion is released either as a stellar wind when the secondary is a
heavy M∗ ≳ 10M⊙ (O,B) star on an orbit of a similar size as that of Mercury in the Solar
system (∼ 109 km), or as direct Roche-lobe overflow when the star is lighter, M∗ ≲ 10M⊙

(spectral type A and higher), and on a tighter orbit.4 These two types of X-ray binaries classified
by the mass of the stellar companion are known as high-mass and low-mass X-ray binaries
respectively, and it is this gross classification that tends to influence many of their spectral and
variability properties [150]. X-ray binaries have a rich observational phenomenology, there
are quasi-periodic oscillations appearing in their luminosity with curious properties [278], and
the entire system tends to go through a cycle of states of varying luminosities and spectral
characteristics [87].

4It is not that other combinations of orbital separations and companion types cannot exist. If a light star is
on a wider orbit, it just does not release matter to fall on the black hole, and it is thus essentially impossible
for us to identify its companion as a black hole. If a heavy star is on a tighter orbit around a black hole, it will
get either stripped of its outer shells, or completely tidally disrupted, which would be classified as a different
phenomenon than an X-ray binary. One last note is that X-ray binaries with companions in the range ∼ 1−10M⊙
are uncommon, this is likely also a consequence of evolutionary and selection effects [150].
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Another important venue of observing black holes are gravitational waves. These emerge
from binary systems if the orbit is so close that the binary components reach at least mildly
relativistic speeds relative to each other. Consequently, only binaries made of compact objects
such as neutron stars or black holes can produce appreciable amounts of gravitational waves
before colliding or getting tidally disrupted. The gravitational waves then carry angular
momentum and energy away from the system, the orbit slowly decays, and the two objects
eventually collide and merge. The gradual decay of the orbit is called a gravitational-wave
inspiral. After generations of work, the gravitational-wave community finally succeeded in
detecting the inspiral of two black holes in 2015. This first detection was achieved by the LIGO
Scientific collaboration [8], and since then a number of other observations were accomplished
also in tandem with the European Virgo detector [8, 6, 7, 9, 11, 10, 5].

The M ∼ 10− 80M⊙ mass estimates obtained from the gravitational-wave observations
could seem in tension with the electromagnetic estimates 2−20M⊙ (see fig. 1.2). However,
all the black-hole mass estimates from X-ray binaries come from binaries within our galaxy,
whereas all of the gravitational-wave signals detected so far are extra-galactic binaries composed
of two black holes. One of the likely explanations of the dichotomy between the two populations
is the relatively high abundance of heavier elements (metallicity) in our galaxy, which leads
to higher mass-loss during the lives of stars and lower masses of the consequent black hole
remnants [161, 3].

Last but not least, there is an intriguing gap in the mass range 102 − 105M⊙ in the ob-
served black hole distribution. Naturally, understanding whether and in which numbers such
intermediate-mass black holes exist should clarify the history of growth supermassive black
holes. This is because they could be understood as a progenitor of a supermassive black hole, or
its early-universe sibling that was “left behind” in terms of mass-accretion. There is currently
circumstantial evidence that intermediate-mass black holes exist in the centers of some stellar
clusters and dwarf galaxies (see [60, 134] for more possible locations).

Now that I have covered the basic spectrum of astrophysical black holes, let me proceed to
the theoretical description of black hole fields.

1.2 The Kerr metric

For this section and for the rest of the dissertation in general, I assume that the reader is
acquainted with the basics of General-relativity theory at least on the level of an introductory
course (for textbooks, see e.g. [48, 283, 181]). Namely, I assume that the reader knows the
Schwarzschild solution and its basic properties and that they are comfortable with terms such
as the space-time metric gµν , stress-energy tensor T µν , four-velocity uµ and others.
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As for notation, I will use the geometric G = c = 1 units if not stated otherwise, and the
(−+++) signature of the metric. Einstein summation is assumed, and Greek letters µ,ν ,κ...

as subscript or superscript indices run from 0 to 3 and signify coordinate components of a tensor.
Partial derivatives are denoted by an index preceded by a coma, and covariant derivatives by an
index preceded by a semi-colon.

The gravitational fields of astrophysical black holes that are not in the process of a gravitational-
wave inspiral or merger are well approximated by the Kerr metric [129]. The Kerr metric
with parameters M,a represents an uncharged, spinning, isolated, and stationary black hole of
mass M and angular momentum J = aM. In Boyer Linquist coordinates t ∈ R,ϕ ∈ [0,2π),r ∈
(0,∞),ϑ ∈ (0,π) the metric reads [43]

ds2 =−
(

1− 2Mr
Σ

)
dt2 +

Σ

∆
dr2 +Σdϑ

2 + sin2
ϑ

(
r2 +a2 +

2Mra2 sin2
ϑ

Σ

)
dϕ

2

− 4Mrasin2
ϑ

Σ
dtdϕ ,

(1.1)

where Σ ≡ r2+a2 cos2ϑ and ∆ ≡ r2−2Mr+a2. The Kerr metric components are independent
of ϕ, t, which makes ξ µ = δ

µ

t and ηµ = δ
µ

ϕ its Killing vectors (see subsection 1.4.2 for more
details). The discrete symmetries of the Kerr metric are the reflection ϑ → π−ϑ , and the time-
rotation reversals, which are obtained by combining any two of the following three transforms
a →−a, t →−t, and ϕ → 2π−ϕ . One last geometric property of the Kerr metric which is
often called a “hidden symmetry” is the existence of Killing and Killing-Yano tensors; this
property is discussed in section 1.4.

The metric has coordinate singularities at ∆ = 0, which are the positions of the event
horizons of the black hole. The outermost event horizon is placed at rH = M+

√
M2 −a2; the

structure of the metric at smaller radii is not important for astrophysical purposes because no
observer in the external universe will receive any information from that region. Other physically
relevant radii are discussed in the upcoming sections.

The horizons vanish whenever a2 > M2 and the space-time then contains a naked ring
singularity. These so-called “over-extremal” Kerr space-times are generally conjectured as
unreachable by physical processes. The limit a2 → M2 is called the extremal black hole, and
the spin a =±M is called the maximal spin; this limit is often used in idealized mathematical
computations because it conveniently simplifies many problems.

There are many more properties of the Kerr metric that can be discussed in great detail,
and for that and references to previous literature I refer the reader to the books of Griffiths and
Podolský [102] and Stephani et al. [254].
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The inverse metric can be computed using the fact that it has a 2×2 matrix in the t −ϕ

sector, and otherwise it is diagonal. The inverse metric coefficients then read

grr =
1

grr
, gϑϑ =

1
gϑϑ

, (1.2)

gtt =−
gϕϕ

ρ2 , gϕϕ =−gtt

ρ2 , (1.3)

gtϕ =
gtϕ

ρ2 , (1.4)

where ρ2 ≡ (gtϕ)
2 −gttgϕϕ = ∆sin2

ϑ is minus the determinant of the t −ϕ part of the metric.
I write these general formulas for inversion here because they apply generally to any stationary
and axisymmetric metric in a quasi-diagonal form. For the Kerr metric we obtain explicitly

grr =
∆

Σ
, gϑϑ =

1
Σ
, (1.5)

gtt =−(r2 +a2)2 −a2∆sin2
ϑ

∆Σ
, gϕϕ =

∆−a2 sin2
ϑ

∆Σsin2
ϑ

, (1.6)

gtϕ =−2Mra
∆Σ

. (1.7)

1.3 Dragging effects

The geometry in Einstein equations couples to the whole stress-energy tensor T µν . In particular,
in the frame of coordinate observers, the stress-energy tensor has the mass-energy density T 00,
the fluxes of mass-energy T 0i, and the internal stresses T i j. Hence, if an object has matter
currents in loops that can be characterized by a total angular momentum J, it should leave
specific imprints in the surrounding gravitational field. One such effect is frame dragging,
which, informally stated, is the “forcing” of nearby matter to co-rotate with the body purely by
gravitational effects. This results, for instance, in the precession of the orbital plane of particles
near such rotating objects, as was historically found by Thirring [267, 268] and Lense and
Thirring [148].

The analogy of such effects to the forces an electric current exerts on nearby charged
particles also leads to the term gravitomagnetism for frame dragging.5 I will now discuss these
effects in the Kerr space-time and generally any stationary and axisymmetric space-time.

5In fact, gravitoelectric and gravitomagnetic effects are not sufficient to characterize gravity. Another set of
effects that has no analogy in electromagnetism would be called “topogravitic”, and they can be identified, e.g., by
the Bel decomposition [28].
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1.3.1 Zero angular momentum observers

Let us assume a stationary axisymmetric space-time and coordinates where the metric attains a
quasi-diagonal form similar to (1.1). Now let us place a set of observers into this space-time
whose covariant four-velocity uµ has the only non-zero component ut . In particular, the specific
angular momentum of the particle uϕ is zero, so we call this family zero-angular-momentum
observers (ZAMOs). Then we have

ut =− 1√
−gtt . (1.8)

However, after raising the index to obtain the physical (contravariant) four-velocity uµ ≡
dxµ/dτ , we obtain the non-zero components

ut =
√

−gtt , uϕ =− gtϕ
√
−gtt . (1.9)

Specifically, these observers will appear to move with an angular frequency ω = uϕ/ut =

gtϕ/gtt =−gtϕ/gϕϕ with respect to coordinate time t.
In the Kerr metric the coordinate time t is the time measured by the set of observers at

spatial infinity that are asymptotically inertial and see the black hole as non-moving (“static
observers”). These static observers will see the ZAMOs rotating with the frequency ω . This
frequency is thus also often called the dragging frequency.

1.3.2 Possible circular motions and the ergosphere

Let us use the same assumptions about the space-time as in the last subsection and investigate
the general circular orbit with non-zero four-velocity components ut ,uϕ . Let us furthermore
define the angular frequency of these orbits as measured by static observers Ω≡ dϕ/dt = uϕ/ut .
Then we obtain from the normalization of four-velocity uµuµ =−1

ut =
1√

gtt +2gtϕΩ+gϕϕΩ2
. (1.10)

When ut becomes imaginary, it means that there is no physical observer (or massive particle)
that can move at the given angular frequency Ω at that point. This occurs for the two frequencies
Ω+,Ω− given as

Ω± = ω ±
√

ω2 − gtt

gϕϕ

. (1.11)
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Fig. 1.3 The range of possible angular rotation frequencies of massive test particles near a Kerr
black holes delineated by Ω± along with the angular rotation frequency of ZAMO observers ω .
The particles underneath the curve Ωc =−gtϕ/gtt have negative energy with respect to infinity
and allow for energy extraction. The plot is in the equatorial plane (ϑ = π/2) and the spin
parameter is taken as a = 0.9M.

I plotted the maximal and minimal possible angular frequencies Ω± along with the dragging
frequency ω in the equatorial plane ϑ = π/2 of the Kerr space-time as function of radius in fig.
1.3. We can see in this figure that an important effect happens at the radius r = 2M; the lowest
possible frequency of motion Ω− crosses zero and all time-like orbits will thus necessarily
be rotating with some non-zero angular frequency at smaller radii. The spatial region where
this phenomenon occurs is called the ergosphere and is given by the condition gtt > 0. In
Boyer-Lindquist coordinates, the surface of the ergosphere is found at the radii

rE = M+
√

M2 −a2 cos2ϑ . (1.12)

We can see that the ergosphere, for a ̸= 0, is above the horizon in the equatorial plane and
touches it at the poles ϑ = 0,π. It may seem that the metric is degenerate on the surface of
the ergosphere because gtt = 0, but this is not necessarily true; the metric becomes degenerate
only when the t −ϕ determinant ρ2 = ∆sin2

ϑ becomes zero. An important property of the
ergosphere in the Kerr space-time is that there are physical particles inside it that have negative
specific energy, −ut < 0. This happens under the condition

Ω <− gtt

gtϕ
. (1.13)
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A closer comparison with Ω± shows that this condition can be fulfilled by physical particles
only within the ergosphere. The region of negative energy orbits is also shown in fig. 1.3.

Another feature that we observe in fig. 1.3 is that as we approach the horizon, all the
frequencies ω,Ω+,Ω− meet at a value that is called the horizon rotation frequency, which
reads

ΩH =
a

2M(M+
√

M2 −a2)
. (1.14)

Even though the horizon frequency is “only” the frequency of circular photon orbits on the
horizon, it is also often loosely considered to be the angular frequency at which the horizon
itself is rotating. This viewpoint comes from Newtonian analogies based on observations of
the behavior of various matter fields near the horizon, and it is notably summarized by the
so-called Membrane paradigm [159, 270, 160, 271].

1.3.3 Penrose, Blandford, Znajek, and energy extraction

The ergosphere causes the particles to co-rotate with the black hole and it is interesting to ask
whether this effect can be exploited by some physical process to extract rotational energy from
the black hole field. This would have obvious counterparts in other branches of physics, where
matter can approach a heavy rotating object, get spun through friction or some other coupling
with its surface, and leave with additional kinetic energy. Of course, the question is what should
the “surface” and the “friction” be in the case of black holes.

The first example of a mechanism extracting energy from black holes was considered by
Penrose [209]. In Penrose’s example, a particle is falling into the spinning black hole, decays
into two smaller particles inside the ergosphere and one particle escapes while the other falls
into the black hole. The total energy balance in the ergosphere is then allowed to be such that
the escaping particle has a larger energy than the original particle coming from infinity, and the
particle infalling into the black hole has negative energy. In other words, energy was extracted
from the black hole.

Various other energy-extraction mechanisms including continuum processes have been
considered since, and the general pattern is very much the same as in the Penrose process: One
can extract energy from the black hole if a non-linear (momentum-exchanging) process occurs
in the ergosphere (see Ref. [146] for details). Going back to the analogy with rotating objects
discussed in the beginning of this subsection, the “surface” that needs to be made contact with
is the ergosphere (not the horizon), and the “friction” is momentum transfer.

Furthermore, Christodoulou [57] showed that it is impossible to reduce the mass-energy
of the black hole beyond a certain irreducible mass Mir by such mechanisms, the formula for
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which reads

M2
ir =

1
2

M2

(
1+

√
1− a2

M2

)
. (1.15)

In particular, we see that if the black hole has the maximal spin a = M, the maximal energy
one can extract through a Penrose process is about 29% of the original black hole mass.

In the context of black-hole astrophysics, a prominent version of such a process was
proposed by Blandford and Znajek [40] (see also Ruffini and Wilson [224]), and I will now
discuss it because of its somewhat controversial role in black hole astrophysics (see [135] for a
clear historical review and further references).

In the original version of the Blandford-Znajek (BZ) mechanism, the vacuum near the black
hole was assumed to break down due to the presence of very strong magnetic fields supported
by external currents. Specifically, the estimate was that the magnetic fields need to be

B ≳ 20
( a

M

)3/4 M
M⊙

T , (1.16)

where M⊙ is the solar mass and T is the unit of magnetic field strength Tesla. When such
magnetic fields are imposed near the black hole horizon, a positron-electron cascade occurs and
the coupled system of the electromagnetic field and the thin, but highly conductive electron-
positron medium form a specific dynamical system. Within certain bounds of applicability,
the particles can be assumed to quickly react to Lorentz forces on the bulk of the plasma,
and rearrange so that the Lorentz forces are essentially immediately canceled. The resulting
idealized system is called force-free electrodynamics.

The salient feature of force-free electrodynamics is that, unlike in vacuum electrodynamics,
its solutions do not need to be non-stationary or non-axisymmetric (with eimϕ and eiκt factors)
in order to carry angular momentum and energy away from the black hole. This is because
angular momentum and energy can be implicitly carried by the charged particles supporting
the field, or they can be transferred through the magnetic field lines being anchored in a passive
sink such as an external accretion disk. Blandford & Znajek were then able to show that
the force-free electrodynamics has solutions with Poynting fluxes of electromagnetic energy
pointing out of the Kerr black hole horizon. In other words, they found astrophysical means of
extracting energy from rotating black holes.

However, even though magnetic fields of sufficient strengths to create a positron-electron
cascade are not thought to be uncommon near black holes, it is often misunderstood what is
the real significance of the positron-electron plasma in the BZ process. The BZ process as we
talk about it here, and as the majority of the astrophysics community does, is the mechanism in
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which energy is extracted from the rotation of the black hole by a force-free magnetosphere.
The medium that supports this magnetosphere can be either the ordinary proton-electron plasma
provided by the surrounding accretion disk, or the positron-electron plasma from the broken
vacuum – or a mix of both. Then, the energy extracted from the black hole can either enter into
a nearby accretion disk through a closed field-line (a line anchored in the disk), or it can escape
to infinity as a wind of either positron-electron or proton-electron composition traveling along
an open field line. Since lines near the equator will be terminated in the disk and open field
lines will occur mostly along the rotation axes, the BZ process naturally gives rise to a polar
outflow of plasma – a relativistic jet.

On the other hand, this should be contrasted with the proposal of Blandford and Payne
[39] that the energy for jets is provided simply by the kinetic and potential energy of the
accretion disk near the black hole. There, the medium supporting the outflow is naturally the
proton-electron plasma of the accretion disk and none of the power of the jet comes from the
black hole spin. However, these jets are non-relativistic, their gamma factor is γ ≲ 2. They
can be launched from black holes even at zero spin [229], and they will emerge even from
obviously non-relativistic sources such as young stellar objects [14].

Let us now return to relativistic jets. Numerical simulations of accretion disks have shown
that the mechanism of launching relativistic jets from black holes is most probably of the BZ
type (with no need for a positron-electron cascade). Magneto-hydrodynamics simulations show
that Poynting fluxes are often positive through some parts of the horizon, and in special cases
rotational energy is indubitably extracted from the black hole [168]. Furthermore, the structure
of the magnetic fields near the rotation axes of the black hole generically exhibit the same
qualitative structure as the “split magnetic monopole” field that is the basis of the argumentation
of Blandford & Znajek. Last but not least, the BZ formula for jet power Pjet ∝ a2 holds, at
least for small spins [167, 261] and there are some indications that this correlation also holds
observationally for the so-called ballistic jets emerging from accreting stellar-mass black holes
[188, 249] (see, however, the challenge of these results in [225] and the response in [165]).

For higher spins, the Pjet ∝ a2 law receives higher-order corrections and becomes largely
sensitive on the disk geometry, becoming particularly steep for geometrically thick disks
[167, 261]. This is the basis of the proposal of Tchekhovskoy et al. [261] that the observed
distinction between the so-called radio-loud and radio-quiet active galactic nuclei is due to
differences in the spin parameter of their central black holes. Another ingredient in this proposal
is the existence of the so-called magnetically-arrested disks that arise when the black hole is
allowed to accumulate large amount of magnetic flux in the accretion process (see subsection
2.2.5 for more details).
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In these states, the accretion disk is pushed back by magnetic pressure and allowed to drip
only small inflows into the black hole. Additionally, there is a massive outflow that can, for
near-extremal spins, return more mass-energy than was in the inflow [262]. In other words, the
magnetically regulated mass inflow mediates a pure energy extraction from the black hole, and
this energy output is carried by a jet. This idea was, in fact, motivated by a series of previous
observations suggesting jets that carry a mass-energy outflow comparable or larger than the
matter-inflow estimate [221, 97, 219, 89, 172], and this disproportion was later also confirmed
in recent observational studies of active galactic nuclei [98, 195].

In summary, it seems that observations force us to consider Penrose-like processes in
modeling jet formation rather than allowing us to speculate about them, and the current models
give rise to the extraction of rotational energy of the black hole through the dynamics of strongly
magnetized matter. The development of this field might become particularly exciting due to
the fact that the IceCube collaboration very recently recorded a cosmic neutrino arriving from
the direction of a temporarily flaring galactic jet, thus promising a new era of multimessenger
study of these enigmatic ouflows [1, 2].

1.4 Geodesics near spinning black holes

It can be argued that the nature of a given solution to the Einstein equations has not been
understood until one has studied the structure of its geodesics, the orbits of free structureless
test particles steered only by the gravitational field. This is equally true for the Kerr space-time.
Let us consider the Lagrangian of a time-like geodesic parametrized by proper time τ

L =
1
2

mgµν(xκ)ẋµ ẋν , (1.17)

where ẋµ ≡ uµ ≡ dxµ/dτ . This Lagrangian corresponds to four space-time degrees of freedom
xµ and it thus requires four integrals of motion in involution to be fully integrated. One such
integral is the four-velocity normalization uµuµ = −1, and another two correspond to the
symmetry of the Kerr metric with respect to translations in coordinate time t and ϕ-rotations.
The corresponding integrals of motion are

−E =
∂L
∂ ṫ

= mgtν ẋν = mut , (1.18)

L =
∂L
∂ ϕ̇

= mgϕν ẋν = muϕ , (1.19)
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Fig. 1.4 Three visualizations of a generic geodesic near a Kerr black hole with spin a = 0.9M.
The first two images are representations of the orbit with Boyer-Lindquist coordinates r,ϑ ,ϕ
identified with spherical coordinates in flat space, first at a general and the second at a “bird
view” angle. The third image is a projection of the orbit into the r sinϑ ,r cosϑ plane. The axes
are in units of M, and the gray and black circle are the photon sphere and horizon respectively.
We see that the orbital plane of this particular geodesic shifts by almost a third of a full
angle with every pericenter passage, and that the photon sphere plays the role of an ultimate
limit for non-plunging particles. The orbit was computed with the help of the KerrGeodesics
Mathematica package [286].
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where we define the total energy (that includes an additional m rest mass contribution) so that it
is positive.

Nevertheless, there are no other obvious integrals of motion of this Lagrangian. By counting
the degrees of freedom, we see that geodesic motion in axisymmetric and stationary fields
is not globally integrable and will have parts of phase space that are chaotic. This is in fact
the generic case, as can be demonstrated by numerous examples in static and axisymmetric
space-times [240, 241, 256, 292].

Nevertheless, the Kerr space-time is remarkable in the fact that the geodesics equation is
fully integrable in its field. I will show this via the separability of the Hamilton-Jacobi equation
as was done by Carter [49]. Then I will discuss the so-called “hidden symmetry” behind
this integrability, and also the astrophysically important sub-class of circular geodesics in the
equatorial plane. One particular issue that I will not discuss in detail are null geodesics and
lensing effects, for that purpose I refer the readers to [211], [101] or [56].

1.4.1 Separability of Hamilton-Jacobi equation

The Hamiltonian for a geodesic obtained by a Legendre transform from (1.17) reads

H =
1

2m
gµν pµ pν , (1.20)

where pµ = muµ is canonically conjugate to xµ . The on-shell value of the Hamiltonian is −m/2
for all massive particles due to the four-velocity normalization. The respective Hamilton-Jacobi
equation for the action S(τ,xκ) reads

∂S
∂τ

=
1

2m
gµνS,µS,ν . (1.21)

We now assume the action to be separable in Boyer-Lindquist coordinates as S =−mτ/2−
Et +Lϕ +Sr(r)+Sϑ (ϑ) and the resulting equations separate as

(S′ϑ )
2 +

(
L

sinϑ
−aE sinϑ

)2

−m2a2 cos2
ϑ =

−∆(S′r)
2 +

1
∆

(
(r2 +a2)E −aL

)2 −m2r2 .

(1.22)

Now, the left-hand side of equation (1.22) is only a function of ϑ and the right-hand side only
a function of r. This suggests, that both sides must be equal to a constant K independent of r
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and ϑ and we obtain the r and ϑ parts of the action as one-dimensional indefinite integrals

Sr =±
∫ 1

∆

√
[(r2 +a2)E −aL]2 −∆(K +m2r2)dr , (1.23)

Sϑ =±
∫ √

K +m2a2 cos2ϑ −
(

L
sinϑ

−aE sinϑ

)2

dϑ , (1.24)

where the signs of the integrals must be chosen according to the current sign of ṙ, ϑ̇ respectively.
More importantly, however, the separable solution of the Hamilton-Jacobi equation also

leads to the complete separability of the geodesic equation in the form

dr
dλ

=± 1
m

√
[(r2 +a2)E −aL]2 −∆(K +m2r2) , (1.25)

dϑ

dλ
=± 1

m

√
K +m2a2 cos2ϑ −

(
L

sinϑ
−aE sinϑ

)2

, (1.26)

dτ

dλ
= r2 +a2 cos2

ϑ , (1.27)

dt
dλ

=
1
m

[
r2 +a2

∆

[
(r2 +a2)E −aL

]
+asinϑ

(
L

sinϑ
−aE sinϑ

)]
, (1.28)

dϕ

dλ
=

1
m

[
a
∆

[
(r2 +a2)E −aL

]
+

1
sinϑ

(
L

sinϑ
−aE sinϑ

)]
, (1.29)

where a solution in terms of quadratures is obtained hierarchically first by solving for r(λ ),ϑ(λ )

and then for τ(λ ), t(λ ),ϕ(λ ). The parameter λ is called the Mino parameter [180] and the
constant K the Carter constant [49].

A large number of other results on Kerr geodesics were summarized by Chandrasekhar [56]
and O’Neill [203]. In particular, the full set of analytically computable properties of bound
geodesics in Kerr space-time was given by Fujita and Hikida [95]. Another notable result are
the analytical formulas for the large family of the so-called Plebański-Demianski black-hole
space-times generalizing the Kerr black hole given by Hackmann and Lämmerzahl [106] (see
therein for further references).

The interpretation of the Carter constant is elucidated by considering

K = p2
ϑ +

(
L

sinϑ
−aE sinϑ

)2

−m2a2 cos2
ϑ . (1.30)

Specifically in the case a = 0, the expression for the Carter constant is exactly the same as the
Newtonian expression for angular momentum squared.
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Any physical initial condition xµ , pν will have an associated K,L,E and the corresponding
geodesic can be given by the formal solutions above.

It should be noted that many of our intuitions about orbits in gravitational fields as obtained
from studying e.g. the Newtonian two-body problem or even geodesics in Schwarzschild
space-time are broken in the Kerr field. Orbits in the Kerr field are generically non-planar
(apart from equatorial orbits), they generically never close, and the observational signal coming
from them will be triperiodic with generally incommensurate periods in the r,ϑ ,ϕ degrees of
freedom (see [78] for examples). An illustration of this fact is given in Figure 1.4.

1.4.2 The hidden symmetry

A metric symmetry such as axisymmetry or stationarity can be expressed without reference to
any set of coordinates by the fact that there exists a vector field ξ µ such that

Lξ gµν = ξµ;ν +ξν ;µ = 0 , (1.31)

where Lξ is a Lie derivative with respect to ξ , a well-defined derivative that compares the
values of a tensor along the flow of ξ µ (see e.g. [115]). The vector field ξ µ is then called a
Killing vector field and the equation ξ(µ;ν) = 0 the Killing equation. It is then easy to show
that ξµuµ is an integral of geodesic motion.

In the case of axisymmetry and stationarity expressed in terms of translations with respect
to coordinates t and ϕ , the Killing vector fields are ξ

µ

(ϕ)
= δ

µ

ϕ ,ξ
µ

(t) = δ
µ

t , the Killing equations
reduce to the criterion that gµν ,ϕ = 0,gµν ,t = 0, and the associated integrals of geodesic motion
are simply ut = −E/m, uϕ = L/m. This provides a link between Killing vectors and the
discussion in the beginning of this section.

However, let us consider the following: what kind of condition would be fulfilled by a
symmetric tensor Kµν such that Kµνuµuν , a quadratic function of velocity, is an integral of
geodesic motion? By direct computation we get

d
dτ

(Kµνuµuν) = Kµν ;κuµuνuκ +2Kµνaµuν . (1.32)

The four-acceleration aµ vanishes for geodesics, so we only need the first term to vanish. If we
want the term to vanish for any choice of uµ , the gradient Kµν ;κ must reduce to zero under any
such symmetric contraction and we thus obtain

K(µν ;κ)cycl.
≡ Kµν ;κ +Kκµ;ν +Kνκ;µ = 0 . (1.33)
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The equation (1.33) could be considered as a generalized Killing equation and the tensor
fulfilling such a conditions is called a Killing or Stäckel-Killing tensor [246]. I will use the term
Stäckel-Killing tensor to make it more distinct from the Killing-Yano tensor to be introduced
later.

The expression (1.30) essentially gives the form of the Stäckel-Killing tensor in Kerr
space-time since it is quadratic in momenta/velocities (the velocity-independent term must
be multiplied by −gµνuµuµ to be assimilated into an expression of the form Kµνuµuν ). The
Killing tensor in Kerr space-time was first investigated by Walker and Penrose [284], and the
mechanism by which an integral of motion Kµνuµuν appears as a separation constant in the
geodesic Hamilton-Jacobi equation was given by Woodhouse [294].

Let us now investigate another question. Suppose that we want to know under which
conditions there is a tensor Ỹµν such that L̃µ ≡ Ỹµνuν is parallel-transported along geodesics.
We obtain

D
dτ

(Ỹµνuν) = Ỹµν ;κuνuκ + Ỹµνaν . (1.34)

The second term vanishes automatically and the first term vanishes when Ỹµν ;κ + Ỹµκ;ν = 0.
Now, one of the defining properties of parallel transport is that the product of two parallel-
transported vectors does not change. Thus, the tensor defines two new integrals of motion
L̃κ L̃κ = ỸµκỸ κ

ν uµuν and uκ L̃κ = Ỹµνuµuν .
In other words, the symmetric part Ỹ(µν) is a Stäckel-Killing tensor, and the square ỸµκỸ κ

ν

is a Stäckel-Killing tensor as well. I will call a tensor with such properties a generalized
Killing-Yano tensor. If we want the generalized Killing-Yano tensor to generate only a single
Stäckel-Killing tensor in this way, we have to require that it is either a “partially null” product
of the form Ỹµν = lµnν , lµ lµ = 0, or totally antisymmetric, Ỹ(µν) = 0. Antisymmetric tensors
Y(µν) = 0 with likewise antisymmetric gradients Yµ(ν ;κ) = 0 are called Killing-Yano tensors.

Let us now consider whether a generalized Killing-Yano tensor could exist in Kerr space-
time. There is already a sufficient number of integrals of motion in Kerr space-time if we
already have a single Stäckel-Killing tensor, and we know that the motion is non-degenerate.
One of the two Stäckel-Killing tensors Ỹ(µν),ỸµκỸ κ

ν must thus generate a dependent constant
of motion or it must be in the restricted forms given above. It was shown by Floyd [91]
(and reported by Penrose [210]) that there is a (non-generalized) Killing-Yano tensor in Kerr
space-time whose components are compactly expressed as

Yµνdxµ ∧dxν = acosϑdr∧ (dt −asin2
ϑdϕ)+ r sinϑdϑ ∧ ((r2 +a2)dϕ −adt) , (1.35)
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where ∧ stands for the antisymmetric tensor product. We see that this tensor is independent
of the parameter M and it thus indicates a background, gravity-independent structure of the
Kerr space-time. Apart from the separability of the geodesic equations, all fundamental wave
equations for free quantum particles with half-integer and integer spin are also separable
[50, 265, 266, 277, 205, 55, 127] and this can be also linked to the existence of the Stäckel-
Killing and Killing-Yano tensors [51, 52, 272, 126]. This vast range of miraculous results in
the Kerr geometry is dubbed its “hidden symmetry”.

A particular family of the generalized Killing-Yano tensors is given as

Ỹµν = αgµν +βYµν , (1.36)

where α,β are some constants. The Stäckel-Killing tensor Ỹ(µν) is just the metric and the
associated integral of motion is proportional to four-velocity normalization,. Then, ỸµκỸ κ

ν

will give the various forms of the non-trivial Killing tensor as they appear in the literature.
Quite satisfyingly, the “basic” Killing tensor obtained by the square at α = 0 corresponds to an
integral of motion identical to the separation constant (1.30).

There is a huge body of other fascinating and deep mathematical results on the hidden
symmetry and integrability, especially when the number of space-time dimensions is higher
than 4. For details of these topics, I refer the reader to the exhaustive reviews given in the PhD
thesis of Kubizňák [138], and by Frolov et al. [94].

1.4.3 Circular orbits

Circular orbits in the equatorial plane represent a family of nested trajectories that do not
intersect and have only a stationary shear amongst themselves. Indeed, the dragging effects
of the Kerr black hole lead to a torque that forces any bound geodesic to oscillate around the
equatorial plane and its average ϑ position will always be π/2. Hence, circular orbits in the
equatorial plane of the Kerr space-time play an important role in a number of astrophysical
settings.

Let us consider the solution of the Hamilton-Jacobi equation discussed in subsection 1.4.1
and set ϑ = π/2 along with the requirement pϑ = S′

ϑ
= 0. From that we obtain K = (L−aE)2.

The set of geodesics fulfilling K = (L− aE)2 are thus bound to the equator and oscillating
between a radial pericenter and apocenter. For the orbit to be circular, we have to also require
pr = S′r = 0 to obtain

0 =
[
(r2 +a2)E −aL

]2 −∆
[
(L−aE)2 +m2r2] . (1.37)
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This expression boils down to a cubic equation of the form

0 = (E2 −m2)r3 +2Mm2r2 −
[
L2 −a2(E2 −m2)

]
r+2M(L−aE)2 . (1.38)

However, this equation will generally have three roots, two physical and one unphysical. The
two physical roots corresponds to the turning points (pericentra and apocentra) of the non-
circular orbits mentioned above. If we want to obtain a circular orbit, we must require that the
cubic equation above has a double root (the pericenter is at the same point as the apocenter),
which leads to [25, 56]

Ec(r) = m
r3/2 −2Mr1/2 ±aM1/2
√

r3 −3Mr2 ±2aM1/2r3/2
, (1.39)

Lc(r) = m
±M1/2(r2 ∓2aM1/2r1/2 +a2)√

r3 −3Mr2 ±2aM1/2r3/2
, (1.40)

where the upper sign will always refer to the co-rotating circular orbits and the lower sign to
the counter-rotating circular orbits.

For astrophysical purposes, it is also useful to express the orbital angular frequency as
recorded by observers at infinity Ω = dϕ/dt, which reduces to the impressively simple form

Ωc(r) =
±M1/2

r3/2 ±aM1/2 . (1.41)

Formulas for the small oscillations of the circular orbits about their equilibria (epicyclic
frequencies) can be found in [25].

I will only note that unlike in the case of a non-rotating black hole, the frequency of the
“vertical” oscillation around the equatorial plane does not match the orbital frequency Ω when
a ̸= 0. This can be intuitively understood from the fact that, unlike in the Schwarzschild case,
the orbital plane of any non-equatorial particle is precessing due to frame dragging, and the
frequency of this precession is proportional exactly to the difference between the orbital and
vertical-oscillation frequency.
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Let us now list some special circular orbits and discuss their meaning (see also [13])

rph = 2M
[
1+ cos

(
arccos

a
M

)]
, (1.42)

rmb = 2M−a+2M
√

M−a , (1.43)

rms = 3M+Z2 −
√

(3M−Z1)(3M+Z1 +2Z2) , (1.44)

Z1 = M+(M−a2)1/3
[
(M+a)1/3 +(M−a)1/3

]
, (1.45)

Z2 =
√

3a2 +Z2
1 . (1.46)

The radius rph is the radius where both the energy and angular momentum distributions (1.39)
and (1.40) diverge. Consequently, only photons (massless particles) can move on such a
circular orbit. This exact radius is also important away form the equatorial plane, it defines the
so-called photon sphere where (marginally stable) light-rays keep orbiting for an infinite time.
Additionally, the photon sphere plays an important role in distinguishing light-rays that escape
to infinity from those plunging in the black hole, and is thus the key element in computing the
black hole shadow [211, 101].

Next, the radius rmb is the point at which the circular geodesic has energy E = m. Since
E = m is also the energy of particles at rest at infinity, this circular orbit will start spiraling out
to infinity upon a small perturbation directed outwards from the black hole. On the other hand,
if we have non-relativistic particles approaching from infinity (E ≈ m), they can be captured by
the black hole only if they have angular momentum L < Lmb ≡ L(rmb).

Last but not least, the marginally stable orbit at rms is at the location of the minimum of
the energy and angular momentum distributions, dEc/dr = dLc/dr = 0. Also, it is the divisor
between stable and unstable circular orbits. The stable orbits at r > rms will oscillate around
their original position upon small perturbation, whereas the unstable orbits, located at r < rms,
will start to either spiral out into a highly eccentric orbit or start plunging into the black hole.
The marginally stable orbit is also often called the innermost stable circular orbit (ISCO).

To further illustrate the significance of the marginally stable orbit, consider a particle that is
adiabatically loosing energy and angular momentum, which forces it to very slowly descend
towards the black hole through almost circular orbits. Any loss of angular momentum and
energy at any r > rms can be compensated by the particle descending on a slightly lower orbit.
However, once rms and thus also the minimum of energy and angular momentum is reached,
there is nowhere to descend in the space of circular orbits and the particle suddenly switches to
a rapid plunge into the black hole. This is why the ISCO is important not only in accretion disk
physics but also, for instance, in gravitational-wave inspirals.
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Table 1.1 A list of orbital parameters of circular orbits. The quantities are given in terms
of the central mass M. They can be converted into SI units by considering [M]LSI = 4.4×
1011(M/M⊙)m2s−1, [M]rSI = 1.5×103(M/M⊙)m, [M]tSI = 4.9×10−6(M/M⊙)s, where M⊙
is the solar mass.

Orbit L/m[M] E/m−1 r[M] Ω[M−1]

a = 0 Marg. stable 3.5 -5.7% 6 6.8×10−2

a = 0 Marg. bound 4 0% 4 1.2×10−1

a = 1 Marg. stable 1.2 -42% 1 5×10−1

a = 1 Marg. bound 2 0% 1 5×10−1

Earth vs. Sun 1.0×104 −3.7×10−10 1.0×108 1.6×10−13

Let me finish this subsection by listing a few important radii, orbital energies, and angular
momenta and frequencies in Table 1.1. This provides a basic orientation in the orbital scales of
the black hole problem.

1.4.4 Non-geodesic corrections to the motion

Free test structureless particles will move on geodesics in a given space-time. However, this is
certainly not exactly true for the motion of real bodies. Real bodies have a finite size, and they
back-react on the gravitational field itself. In principle, this would mean that we should evolve
the whole continuum of the object orbiting the black hole along with the full set of dynamical
Einstein equations, and the analysis given so far in this section would be rendered essentially
irrelevant. Fortunately enough, there is a formalism that allows us to approximate the motion
of real physical bodies as particle-like motion, and the geodesic motion is the “zeroth-order”
approximation in that sense. In the upcoming paragraphs, I briefly discuss how higher-order
corrections in this scheme can be in principle obtained.

It turns out that in relativity the problems of sourcing gravity and the equations of motion are
coupled. This is because the non-linear Einstein equations automatically require that the source
fulfills equations of motion given by the conservation of the stress-energy tensor T µν

;ν = 0.
Hence, both the problem of gravitational back-reaction and finite-size corrections have to be, in
some sense, considered at the same time.

In linear field theories such as classical electrodynamics, a source of non-zero density ρ

within a region of finite extent viewed from the outside can be mathematically replaced by a
singular distribution at a single point xµ

0 . This new singular source could be called a “multipolar
particle” and it is defined so that it carries the same set of multipolar moments as the original
finite source. Specifically, when the source is spherically symmetric, its external field will be
the same as the field of a monopole, “structureless” source, and it can be treated as such in



1.4 Geodesics near spinning black holes 23

many computations. A small charge asymmetry between two halves of the source will then
lead to an electric dipole, and overall current loops to a magnetic dipole. With an increasing
number of such multipoles included in our computations, we are able to describe the external
field of the body with increasing accuracy.

An interesting question is whether and how this can be extended to general relativity, which
is endowed with strong non-linearity. The problem turns out to be rather complex, but direct
analogies of the multipolar particle from linear field theories were successfully found and
investigated notably by Mathisson [164], Papapetrou [208], and Dixon [74]. In that case,
a matter source in the form of a continuous stress-energy tensor T µν(xκ) is replaced by a
distributional tensor concentrated around some representative xµ

0 (τ). Then, following the
conservation of stress-energy T µν

;ν = 0, the so-called Mathisson-Papapetrou-Dixon equations
for the motion of the representative particle are uniquely derived (see also [251]).

These multipolar equations carry the information about the finite size of the body along a
single particle-like world-line, and by taking a sufficient number of multipoles into account, we
get a good approximation of the finite-size effects on the motion. Nevertheless, the gravitational
back-reaction does not necessarily simplify with this singular replacement. This is because the
singular source carries a singular gravitational perturbation, and that becomes troublesome in
the non-linear theory. Fortunately, it turns out that there is a procedure, well-defined to at least
second perturbative order, that allows to compute the gravitational perturbation and identify the
effective nonsingular metric in which the representative particle is moving (see [216]).

A context in which these techniques become strongly relevant are the slow gravitational-
wave inspirals of neutron stars or stellar-mass black holes into supermassive black holes. In that
case, both the gravitational back-reaction of the small, stellar-mass objects and the finite-size
effects on the orbit are small enough so that a perturbative description of the kind described
above is appropriate (see [213, 23] for reviews). In contrast, a full numerical simulation of
the Einstein equations would have difficulties to maintain the desired accuracy for the entire
lengthy inspiral, and post-Newtonian methods (expansions in v ≪ 1, where v is the velocity of
the orbiting object) would struggle with the large eccentricities and general orientations of the
rotation axes of the bodies.

The first and most important correction entering into such inspirals due to the finite size of
the bodies is the effect of the “gravitomagnetic dipole”, or the so-called spin-curvature coupling.
This is an exclusively relativistic effect that occurs due to a gravitomagnetic interaction of
a rotating body with its gravitational background. There are many technical issues to be
considered when introducing the spin-curvature coupling (see [63]), but one particularly simple
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form of the resulting equations of motion reads [143]

D2xµ

0
dτ

=− 1
2m

Rµ

νκλ
ẋν

0 Sκλ , (1.47)

DSκλ

dτ
= 0 , (1.48)

where Rµ

νκλ
is the Riemann curvature tensor, Sκλ is the angular-momentum (“spin”) tensor

of the body, and xµ

0 (τ) is the representative world-line of the “particle”. D/dτ is the covariant
time derivative along xµ

0 (τ), and the Riemann curvature tensor is also evaluated along xµ

0 (τ).
This spin-curvature term in the equations of motion of bodies near black holes, along with

the gravitational self-force corrections, lead to equations of motion that are not analytically
solvable and generally even chaotic [157]. On the other hand, gravitational-wave inspirals of
the type mentioned above are expected to be detectable by the upcoming space-based detector
LISA. Currently, considerable effort is being invested in developing efficient models that will
meet the needs of the LISA detector [151]. These and related questions are discussed in detail
in Chapter 3.



Chapter 2

Basic dynamics of black-hole accretion

In popular context, black holes are often depicted as the ultimate sinks, mercilessly sucking in
anything in their surroundings. This, as we have partially seen already in the last section, is a
mistaken intuition. Black holes behave as any Newtonian mass attracting with a simple M/r2

force from afar, which leads to the absolutely same orbits of celestial bodies around them as for
any other object – unless the angular momentum of the bodies is very low and the orbit reaches
within a very small distance from the black hole (cf. Table 1.1).

Furthermore, the fact that the black holes are extremely compact suggests that they are
even more disappointing accretors, since particles randomly occurring near the black hole
end up interacting only with a very small effective cross-section. For comparison, the Sun
sweeping through a field of matter would hit and potentially accrete everything within its radius
of ∼ 105km. On the other hand, a black hole of the same mass has an event horizon of at most
the size of ∼ 3km and can thus be naively estimated to “hit” ∼ 109 fewer particles as it sweeps
through the same field of matter!

In this chapter, I will show that, in the end, black holes are not as disappointing accretors
as these naive discussions might suggest. In fact, black-hole accretion leads to the most
energetic stationary sources of radiation in the Universe. I get to this conclusion step by step,
by considering various physics that enter the accretion process. Readers who are interested in
this topic beyond the brief overview in this chapter are referred to the textbook of Frank et al.
[92], or to the technical summaries of Abramowicz and Fragile [13] and Yuan and Narayan
[296].
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Fig. 2.1 Sketch of stream deflection in Hoyle-Lyttleton accretion. The streams crossing behind
the black hole will average their momenta and form a new stream that can sometimes be
accreted. Taken from [80].

2.1 Bondi, Hoyle, Lyttleton, and Eddington: gathering mass
from afar

2.1.1 Sweeping through a field of dust

Let us make the estimate of the accretion by a black hole flying through some dilute matter
field more precise by following the historical model of Hoyle and Lyttleton [119] (see [80] for
a review). Let us assume that the black hole is non-spinning, a = 0, and moving through a field
with density ρ∞ at non-relativistic speed v∞. The ∞ subscripts signify that these quantities are
actually defined asymptotically far away from the black hole, because the local fields will, of
course, be modified by the presence of the gravitating source.

Now, we can compute the amount of directly accreted matter by noticing that the angular
momentum is given by L = mζ∞v∞, where ζ∞ is the asymptotic impact parameter of the matter
element. Since v∞ is non-relativistic, we have E/m ≈ 1 and we see that the black hole will
directly accrete all matter with an impact parameter smaller than ζmb = Lmb/(mv∞), where Lmb

is the angular momentum of the marginally bound orbit fulfilling Lmb/m= 4M for non-spinning
black holes. The “direct” accretion rate can thus be given as

Ṁdirect = πζ
2
mbρ∞v∞ =

16πM2ρ∞

v∞

. (2.1)

However, Hoyle and Lyttleton [119] argued that as the gravitating mass deflects matter, it will
induce stream crossings behind the black hole that will quickly average out their momentum by
collisions so that a new coherent stream emerges (see fig. 2.1).

Then, a part of these reprocessed streams will have too little velocity to escape the black
hole and will fall back as part of an almost purely radial accretion flow from behind the black
hole. The Newtonian analysis yields that by this process all elements with an impact parameter
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smaller than ζHL = 2M/v2
∞ will be accreted, and the Hoyle-Lyttleton accretion rate is

ṀHL =
4πM2ρ∞

v3
∞

. (2.2)

For non-relativistic v∞, the Hoyle-Lyttleton impact parameter and accretion rate will be of many
orders of magnitude larger than the “direct” accretion estimate we come to when ignoring inter-
particle collisions. Relativistic corrections will be important when the velocity v∞ becomes so
small that ζHL ∼ ζmb. However, in realistic situations other effects will always dominate the
relativistic contribution, as we are about to discuss.

2.1.2 Regulating inflow by a pressure barrier

As the black hole slows down to v∞ → 0, both the direct and Hoyle-Lyttleon accretion rates
diverge. This lead Bondi [42] to set v∞ = 0 but to also ask about the influence of pressure,
which was neglected in the previous analysis. To illustrate this point in a relativistic setting,
consider the accretion of dust of some non-zero ρ∞ onto a non-spinning black hole.

This field is completely spherically symmetric and so will be the inflow, angular momentum
is zero, and the specific energy E/m = −ut = 1 is conserved during the infall. From four-
velocity normalization uµuµ =−1 in the Schwarzschild metric we then obtain

ur =−
√

2M
r

. (2.3)

On the other hand, if we impose the matter conservation equation (ρuµ);µ = 0 along with
stationarity, we get

Ṁ = 4πr2
ρur = 4π

√
2Mr3/2

ρ = const. (2.4)

Obviously, if we have ρ∞ nonzero, then ρ at any finite radius as well as Ṁ diverge.
However, as the matter starts accelerating towards the black hole in a real physical situation,

it starts increasing in density, and eventually builds up a large pressure. This pressure build-up
(and specifically the pressure gradient) acts as a barrier against the gravitational acceleration,
essentially halts the fluid from proceeding to the black hole, and cures the density divergence
by allowing the velocity to only have a Ṁ/(4πρ∞r2) tail.

On the other hand, once the matter passes through a so-called sonic point at a critical
radius rs = 2M/v2

s∞, it is clear of the pressure barrier and starts essentially free-streaming into
the black hole. One could then write the accretion rate formula as ṀB ≈ 4π

√
2Mr3/2

s ρ(rs).
However, in terms of asymptotic quantities and for a monatomic ideal gas at non-relativistic
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temperatures it can be written as

ṀB =
4πM2ρ∞

v3
s∞

, (2.5)

where vs∞ is the sound speed of the gas at infinity.
The treatment of Bondi [42] was only Newtonian, but an analogous computation by Michel

[173] in the Schwarzschild space-time yields the same result as long as vs∞ is non-relativistic
(which is a very fair astrophysical assumption). By a number of ad-hoc arguments and examples,
it can be shown [274, 80] that an approximate formula for the Bondi-Hoyle-Lyttleton accretion
of a black hole moving through a pressurized medium reads

ṀBHL ≈ 4πM2ρ∞

(v2
∞ + v2

s∞)
3/2 . (2.6)

Formulas such as (2.5) and (2.6) are one of ingredients in estimating accretion rates onto
galactic black holes from their galactic enviroment. The sonic-point radius rs = 2M/v2

s∞ is
also called the Bondi radius, and it serves as a criterion for the resolution in cosmological
numerical simulations; if the grid has several points within rs, it will simulate the regulation
of the accretion by the sonic barrier on its own, but if not, it will overestimate the accretion,
and one must instead switch to the Bondi-Hoyle-Lyttleton formula (2.6) to model the sub-grid
physics (e.g., [72]).

2.1.3 Blowing gas away by radiation

Nevertheless, the formula (2.6) does not yet include all the important effects that play a role
in the accretion process. This is because in the process of accretion, the gas will heat up and
radiate. This can, in principle, enhance the accretion because it drains internal energy from
the gas and thus also the pressure. However, the effect of opposite nature that will be typically
more important is the fact that the escaping radiation will exert a pressure on the infalling
particles. This radiation pressure accelerates the exposed matter element as

aµ =
1
h

κ f µ , (2.7)

where f µ is the radiation energy flux, κ is the opacity of the material affected, and h =

1+O(kBT/m) is the enthalpy per unit rest mass (kB is the Boltzmann constant). I assume
non-relativistic temperatures so that h ≈ 1.

For a spherically symmetric source of radiation, the radial flux will be f r = λ (r)/(4πr2),
where λ (r) is the total luminosity leaving through r. If, in the far field, we neglect the absorption
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of the luminosity by the medium, we have λ (r)→ λ∞ = const., and we see that the matter is
subject to the total acceleration

d2r
dt2 =

1
r2

(
κλ∞

4π
−M

)
=−M

r2

(
1− λ∞

λE

)
, (2.8)

λE ≡ 4πM
κ

. (2.9)

The luminosity λE at which the acceleration changes sign is called the Eddington luminosity
or the Eddington limit. We see that when the far-field luminosity of a source is below the
Eddington luminosity, then accretion of matter is possible. On the other hand, sources radiating
above Eddington luminosity will, at least in spherically symmetric situations, blow away
far-away gas and stop the matter supply for accretion.

We can now use the far-field behavior (2.8) to build a rough estimate of an equilibrium
accretion rate of a compact body at rest in a large, asymptotically homogeneous cloud of
matter. We can assume that the escaping luminosity is some fixed fraction of the mass-energy
accreted on the center in the form of gas λ∞ = ηṀ, where η is called the efficiency of the
accretion process. Now, we also see that, at least in the far field, the “effective attracting mass”
is M(1−λ∞/λE). We assume that this far-field mass will also play the role of the mass in the
Bondi formula (2.5) up to a dimensionless factor γ ∼ 1, which is set to be constant for now.
Then, we obtain the model

Ṁ =
4πγρ∞M2

v3
s∞

(
1− ηṀ

λE

)2

. (2.10)

The point is, of course, that this model is essentially just a parametrization if we allow η ,γ to be
functions of other variables such as Ṁ,ρ∞,vs∞ or κ . However, one expects γ ≈ 1 if λ (r)≈ λ∞

throughout the flow. Of course, this is true only if most radiation is deposited very close to the
black hole and the effects of absorption and radiation in the rest of the matter approximately
cancel out. On the other hand, the independence of η on other conditions will be fulfilled only
in a special “dust-geometric” limit, where the radiated energy per particles is only dependent
on the geometry of the flow near the black hole and not, in particular, on any of its internal
properties such as density or temperature.

Let us now invert (2.10) for Ṁ, we obtain

Ṁeq =
λE

[
8πηγρ∞M2 +λEv3

s∞ −
√

λEv3
s∞(16πηγρ∞M2 +λEv3

s∞)
]

8πη2γρ∞M2 . (2.11)
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This is a rather unwieldy expression, but I show it because it has an elegant limit as vs∞ → 0

lim
vs∞→0

Ṁeq ≡ ṀE =
λE

η
. (2.12)

The accretion rate ṀE is often called the Eddington accretion rate because it is the rate at which
the source radiates at exactly the Eddington limit. Since the typical accreted media are rather
cold and dilute, and since the model above already makes a number of other approximation,
models of galactic black hole growth often take ṀE as their estimate for cosmological evolution
along with η ∼ 10% obtained from the standard accretion disk model (see subsection 2.2.1).

Nonetheless, such models of growth apply only if their two foundational assumptions
hold: that γ and η are universal constants. In the vs∞ → 0 limit, the dependence on γ will be
unimportant as long as η and γ are non-zero. On the other hand, the variations in η will be
crucial in deriving the limit vs∞ → 0.

Specifically, as will be discussed in section 2.2.3, the efficiency of the radiation process
generally drops when Ṁ ≪ 10λE, as well as when Ṁ ≳ 10λE. In the specific case of low supplies
of gas and very small accretion rates Ṁ ≪ 10λE, the Eddington luminosity is by far not reached,
the limit vs∞ → 0 is not physically valid, and one resorts to the Bondi formula (2.5). In the case
of high gas supply and thus Ṁ ≳ 10λE, the Eddington luminosity is approximately reached,
and the formula Ṁ = λE/η(Ṁ) approximately holds. However, since η = η(Ṁ)< ηStandard,
this can possibly lead to much higher accretion rates than the standard estimates.

Nonetheless, the “hardest” case is the intermediate Ṁ ≲ 10λE which corresponds to radia-
tion at some significant fraction of the Eddington luminosity that is, however, not too close to
unity. In that case models such as (2.11) must be used to estimate the accretion rate.

2.1.4 The issue of high redshift gigants

Thus, if one uses the Eddington accretion rate (2.12) along with a constant efficiency η ∼
10%, this is by no means consistent. But still, this is what some of the simplest models of
cosmological black hole growth do. I have included this discussion because exactly these
simple growth models come into problems when faced with observations of “too massive”
black holes from the early universe (see e.g. [243, 70] and references therein, and [281] for a
brief review).

This is because if we assume the efficiency to be simply constant, then the logarithmic time
derivative of the black hole mass is at most ṀE/M = 4π/(ηκ) and the mass e-folding time is
at least τe = ηκ/(4π)∼ 4.5×107 years, where I inserted the opacity of fully ionized hydrogen
and η = 10%. When we compare this with the fact that some of the supermassive black holes
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at redshifts z ≳ 6 (≲ 109 years after the Big Bang) have mass estimates as high as M ∼ 109M⊙,
and in some recent shocking examples even ∼ 1010M⊙ [295, 269], then we extrapolate the
black hole masses to a value M0 in the interval 104M⊙ ≲ M0 ≲ 107M⊙ early in the reionization
era. This is at odds with the usual picture in ΛCDM cosmology, where structure formation
starts hierarchically from the matter fractured into very small dark matter halos that grow larger
only later through mergers; the estimated mass of such early halos constrains the mechanisms
by which such massive black hole seeds can form [124].

There are many proposals to resolve this issue, including special scenarios in which such a
direct formation of a seed black hole with mass M0 ≳ 105M⊙ truly occurs in the early universe
(see [147, 125] and references therein). Another proposal is, however, that the seed masses
of black holes are much smaller, and that there is a brief period of super-critical1 accretion
that accounts for their large mass growth [281, 88, 282, 122, 72]. Nevertheless, the early
estimates of the 1010M⊙ quasars [295, 269] are still challenging and they may be resolved as
our observations penetrate deeper into the high-redshift sky. In the meantime, we should study
the accretion process to the best of our knowledge and prepare accurate theoretical predictions
to be tested in the future.

2.2 Spin up the matter: accretion disks

When the gas a has a small net angular momentum L with respect to the black hole, this will in
principle not show in the far-field Bondi formula. This is because L = mrvϕ , where vϕ is the
projection of linear (not angular) velocity into the azimuthal direction, and as we take r → ∞ at
L constant, we get vϕ → 0. Another way to see this is that the centrifugal acceleration in the far
field is L2/r3 and thus it is a sub-leading contribution to the far-field matter attraction.

On the other hand, as we have discussed in section 2.1, the radial velocity of the gas has to
have a leading-order tail vr ∼ Ṁ/(4πρ∞r2) implying an acceleration of the fluid elements with
a tail

ar
B ∼ Ṁ2

8π2ρ2
∞r5 . (2.13)

1Super-critical accretion is sometimes unfortunately coined as “super-Eddington” accretion, because it sur-
passes λE/η with a standard-disk value for η . Nevertheless, it should be understood that the Eddington luminosity
is not generally breached by super-critical accretion.
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The location at which ar
B ∼ L2/r3 then reads

r =
Ṁ

2
√

2πρ∞L
. (2.14)

The competition of the Bondi solution with the centrifugal effects will thus start very early on.
Nevertheless, if the angular momentum of the gas is L < Lmb and if it smoothly vanishes

around the rotation axes, then by studying e.g. dust flows, one can see that the effects of angular
momentum do not really influence the qualitative structure of the flow. To my knowledge, there
are no analytical solutions of the angular-momentum-modified Bondi accretion, so I will now
discuss the numerical results of perfect-fluid simulations by Proga and Begelman [217].

The numerical solutions of Proga & Begelman show that as long as L < Lmb, the accretion
rate will fulfill Ṁ ≈ ṀB. Then again, whenever L > Lmb, a particle infalling from infinity will
never plunge into the black hole and this shows also in a hydrodynamical simulation; any
matter with L ≳ Lmb will become a part of a thick disk essentially eternally orbiting the black
hole. Then, this disk will block the path of other infalling elements and accretion will only be
possible through a funnel along the rotation axes. The accretion rate can then be expressed as

Ṁ ≈ ṀB
Ωf

4π
, (2.15)

where Ωf is the solid angle over which the funnel opens and ṀB is the Bondi accretion rate
given in (2.5). Furthermore, in the case when most of the mass has L ≫ Lmb, then Ωf is
approximated simply by integrated over the range of angles around the poles at which the
matter coming from infinity has L < Lmb.

Comparing these conclusions with typical angular momenta in astrophysical systems (see
Table 1.1) would lead to a rather bleak bleak prospect for the Bondi formula and astrophysical
accretion onto black holes in general. The total angular momentum in an isolated system will
always stay constant, but there is one loophole. In principle, there can be a process that passes
angular momentum from one fluid element to another, letting most of the matter accrete while
a small fraction of the mass acquires high angular momentum and is pushed outside of the
system. The central goal of the theory of accretion disks is to precisely capture and characterize
such mechanisms.

In principle, if the matter carries a strong magnetic field whose energy density is larger
than the binding-energy density ∼ ρM/r, then the anisotropic Maxwell stress ∼∼ BrBϕ could
act exactly as the desired angular-momentum transport mechanism, and the accretion would
become quasi-spherical again [34, 33]. However, the sign of Br cannot be uniform throughout
the flow, because otherwise magnetic monopoles would be implied, and the Maxwell torques
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cannot be assumed to act in a consistent manner. It thus seems inevitable that we need to
investigate specific, non-spherical geometries of the flow. The first such model I will discuss it
the so-called thin disk.

2.2.1 The thin disk energy budget

When the streams with non-zero L in a Bondi-like inflow reach close to the black hole, they
will eventually brake due to the centrifugal barrier and start orbiting the black hole, which will
cause stream crossings. In the process of these crossings, the total angular momentum will be
conserved, but the flow will eventually collapse into an almost circular motion restricted to a
region close to a preferred plane that is aligned with its average angular momentum. In other
words – a differentially rotating disk is formed.

Let us now estimate the height of such a disk under the assumption that the height itself is
is not large. We choose a set of cylindrical coordinates R,z,ϕ so that R is the distance from the
axis of rotation of the disk, ϕ the azimuthal angle aligned with the rotation axis, and z = 0 in the
center of the disk. The z-component of the Euler equation under the assumption of negligible
vertical velocities then reads

az = gzµ
P,µ
hρ

, (2.16)

where az is the four-acceleration az = z̈+Γz
µνuµuν , P is the pressure, h the enthalpy per unit

mass, and ρ the rest mass density of the fluid. Let us now assume that the pressure is at a
maximum Pc(r) in the center of the disk and that the disk is approximately axisymmetric. Then
we can write P(R,z) = Pc(R)(1− z2/H(R)2) , where H is the height of the disk. Plugging this
expression into (2.16) along with similar assumption for h and ρ and the requirement of a
stationary near-circular flow, we obtain the height estimate

sinϑd ≈
H(R)

R
≈

√
2RPc

Mhcρc(ut
c)

2 , (2.17)

where I again assume a non-rotating black hole, the “c” subscript denotes quantities evaluated
at the center of the disk and ϑd is the angle to which the disk subtends in spherical coordinates.

Now, P/(hρ) is proportional to the temperature of the gas T divided by particle mass mp,
and M/(2R) is approximately the specific binding energy of the orbital element. We then see
that the angular extent of the disk will scale as

√
T/Tv where Tv ≡ mpM/(2kBR) is the so-

called virial temperature, the temperature at which the internal energy of the gas approximately
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matches the binding energy. Consequently, we see that whenever disk height is H/R ≳ 1, the
gas will be weakly bound to the black hole and this can in principle lead to strong outflows.

Let us, however, assume that the temperature of the gas is in fact much smaller than the
virial temperature, and that the angular extent of the disk is thus small. This would be called a
thin disk assumption, and we see that it is identical to the assumption that the disk is cold. Let
me now pass to the “average” formalism as defined rigorously e.g. by Page and Thorne [206],
where the disk is assumed to be almost perfectly axisymmetric, and all quantities are expressed
in terms of quantities averaged over z and ϕ .

Let us also investigate what will the thin-disk assumption imply for the rotation profile.
The radial Euler equation will have a ∼ M/R2 gravitational, L2/R3 centrifugal, and P,R/(hρ)

term. Assuming that the radial variability length-scale of P(R) goes as R (in other words, P(R)
is a power-law ∼ 1/Rα with α ∼ O(1)), we see that the deviations of the angular momentum
profile L(R) from a Keplerian law ∼

√
Mr (or the relativistic geodesic formula eq. (1.40)),

will be also small whenever T ≪ Tv. In summary, a thin disk will also have a rotation curve
close to geodesic, or in astrophysical parlance, the rotation profile of a thin disk will be almost
Keplerian.

Then again, we see that this will work only up to the innermost stable circular orbit, because,
as discussed in subsection 1.4.3, at smaller radii, the various small perturbations would cause the
almost geodesic fluid elements to either plunge into the black hole or spiral out. In consequence,
beyond the ISCO the disk must be either truncated, or thin-disk assumptions must be violated
and the disk significantly pressure-supported – as it turns out, either can be the case in accretion
disk models.

So the picture we have here so far is a thin structure eternally rotating around the center
almost like a geodesic – something like Saturn’s rings of rocks and ice, but in fact made
of a thermalized continuum. Let us now assume that somehow there is a stationary flow of
matter through the disk towards the center that, nevertheless, is so small that it only negligibly
interferes with the almost circular rotation of the disk. By integrating the continuity equation
(ρuµ);µ = 0 we come to the relation between the radial velocity and accretion rate (restricting
for now to Schwarzschild space-time)

uR =
Ṁ

2πΣ(R)R
, (2.18)

where Σ is the surface density of the disk (volume density integrated over the z-extent of the
disk). If we want the radial flow velocity not to interfere with the Keplerian rotation profile, we
require ur ≪ 1 and this will ultimately impose bounds on the range of accretion rates Ṁ for
which our approximations are valid.
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Now comes the central piece of the model – the actual mechanism by which the material
transfers angular matter to outer layers. Before we do that, I would like to briefly comment
on a slightly paradoxical feature of the result. By assuming a strictly stationary situation,
independent of the nature of the angular-momentum transfer, there must be an infinite train
of elements passing the angular momentum all the way to infinity. In the stationary accretion
disk models, this has an even more dazzling property, that at every radius, every element is
receiving angular momentum passed from a lower radius, adding some on top, and passing it
along. As a result, the local flux of angular momentum per particle through a radius R will
diverge as we approach infinity, even though this pathology will not be strictly visible in the
solution itself. This can be ameliorated only by embedding the disk into a more complex,
usually non-stationary solution.

Nevertheless, let us ignore this issue for the moment and postulate that angular momentum
is transferred through some set of anisotropic stresses in the rest-frame of the fluid. This can
be modeled as some sort of viscous coupling between the layers. In a stationary situation, the
viscous stress energy tensor of a standard Newtonian fluid2 is an addition on top the usual
perfect-fluid tensor given as [145]

Tµν |visc. =−µσµν −ζ Θhµν , (2.19)

hµν ≡ gµν +uµuν , (2.20)

Θ ≡ uµ

;µ , (2.21)

σµν ≡ u(κ;λ )h
κ
µhλ

ν −
1
3

Θhµν , (2.22)

where Θ the fluid expansion, σµν the shearing rate inside the fluid, and µ,ζ are effective
viscosity coefficients. The expansion Θ will be zero in the almost stationary and circularized
flow, but the shearing rate has the components [237]

σµϕ = σϕµ =
1
2
(ut)3(g2

tϕ −gttgϕϕ)∂µΩ , (2.23)

σµt = σtµ =−Ωσµϕ , (2.24)

where Ω = dϕ/dt is the angular frequency of the fluid and the second identity comes from the
orthogonalization of the shear with respect to the four-velocity. An important point to consider
is that once a rotation profile is assumed, the shearing rate is uniquely determined. For instance,

2“Newtonian fluid” does not mean in this particular context a “non-relativistic fluid” but rather, as is standard
in fluid mechanics, a fluid that has a viscosity following exactly the linear laws stated in the text.
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in Schwarzschild space-time the Keplerian profile yields

σ
R
ϕ(R,z = 0) =−3

√
M(R−2M)2

4R(R−3M)3/2 . (2.25)

The quantities T R
ϕ |visc.= −µσR

ϕ and −T R
t |visc.= −ΩµσR

ϕ can be shown to be the flux of
angular momentum and energy through the R = const. surface. We now see that for near-
Keplerian rotation profiles the flux of energy and angular momentum will always go outwards.
Transporting angular momentum outside is exactly what we wanted to do, but accretion is in
fact an overall flux of mass-energy inwards. For that, we need to add the stress-energy tensor
of the bulk3 of the gas itself

T µν |bulk = ρhuµuν +Pgµν . (2.26)

However, in the case of the thin disk assumptions we obtain effectively T µν

bulk ≈ ρuµuν . The
fluxes of energy and angular momentum −T R

t |bulk=−ρuRut and T R
ϕ |bulk= ρuRuϕ can then be

related due to four-velocity normalization (neglecting urur) as

−T R
t |bulk = ΩT R

ϕ |bulk −
ρuR

ut . (2.27)

In other words, there is an additional rest-mass contribution as compared to the relation
−T R

t |visc. = ΩT R
ϕ |visc. that will allow a balance in which mass-energy flows in, while angular

momentum is flowing out.
Now, the only thing left to consider is some sort of cooling of the gas of the disk. This is

because the viscous processes will not only transfer orbital energy from element to element,
but also heat the gas in its rest frame at a rate [145]

δQ
δτ

= µσ
µν

σµν , (2.28)

a rate that must be matched by radiative cooling if the disk is to stay thin.
The radiation can be modeled by a simple stress tensor

T µν |rad. = 2u(µ f ν) , (2.29)

3The “bulk” stress energy tensor is defined as the part of the stress-energy tensor that is diagonal in the averaged
frame of the particles of the gas. Nevertheless, the division into the viscous and the bulk parts (2.19) and (2.26)
has a degree of conventionality to itself, as can be seen e.g. from the differences of the division as defined by
Landau and Lifshitz [145] and Eckart [79]. In our case of small thermal motions the two definitions give the same
results.
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where f µ , f µuµ = 0, is the radiation flux in the rest frame of the gas. This flux will provide not
only a drain for the internal energy of the gas, but will also marginally carry away the orbital
energy and angular momentum −ut ,uϕ . The last assumption that we make is that the flux of
radiation is purely vertical, i.e. its only non-zero components will be f z. This corresponds to
the situation where in the co-rotating of the fluid, the radiation flux is purely space-like and
it is conventionally identified only as the part leaving the disk. The time-like component can
be absorbed into the internal energy density co-rotating with the fluid, and the radial direction
transfers energy into other parts of the disk and can thus be absorbed into the matter-energy
flux vr.

Under these assumptions and approximations, the total evolution equations T µν

;ν = 0 and
the mass-conservation (ρuµ);µ = 0 were solved by Novikov and Thorne [199] (see also the
careful and general treatment of Page and Thorne [206]) to give an unambiguous expression for
T r

ϕ |visc.(R) and f z(R) that has to be necessarily fulfilled for the stationary balance to hold. The
full relativistic expressions given e.g. in [206] are somewhat cumbersome, but let me at least
give the Newtonian formulas that provide good qualitative and quantitative approximations4

[242]

f z =
3

8π
Ṁ

GM
R3

(
1−
√

Rms

R

)
, (2.30)

T r
ϕ |visc. =

Ṁ
4πH

(
1−
√

Rms

R

)
. (2.31)

The overall luminosity of the disk then is λ = ηṀ, where the efficiency η is then simple the
binding energy of the last stable orbit η = 1−E(Rms)/m.

I have not discussed the effect of the spin of the black hole so far, but it suffices to say that
as long as the overall angular momentum of the disk is aligned with the rotation axis of the
black hole, then all of the qualitative statements above are also valid with generally small local
corrections due to the deformation of the black hole field. However, the global efficiency will
then be η = 1−E(Rms(a),a)/m. Specifically, this will make the radiative efficiency of the
accretion process vary between 6% for a non-spinning black hole, and 42% for the extremally
spinning case. There is no overly mysterious effect behind that; the spin just lets the Keplerian

4It is sometimes stated that this stress-radiation budget was first computed by Shakura and Sunyaev [242] in
the Newtonian case and later generalized to relativity by Novikov and Thorne [199]. This is obviously not correct,
as Shakura and Sunyaev cite the lectures of Novikov and Thorne in their paper. However, one thing Shakura &
Sunyaev certainly deserve credit for, is the concrete model built from the α-prescription as discussed later in
subsection 2.2.2.
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disk move deeper into the gravitational well before it looses stability, and thus it has the chance
to radiate more.

This and related effects is one of the only ways the spin is estimated from electromagnetic
observations of black holes. Obviously, these are no deeply fundamental estimates, as they can
all be easily thrown off by a disk that is allowed to extend to smaller radii by pressure support
rather than the spin-deformed geometry.

2.2.2 Turbulent black box – the α parameter

However, let us return to the general discussion of the thin disk. We now see that if there is a
mechanism which provides the necessary torques between the layers to establish a stationary
accretion rate Ṁ, and if radiation is so efficient that it will essentially immediately drain all the
internal energy away from the disk, the luminous profile of the disk is uniquely determined by
(2.30). However, the problem is that 1) we do not know if such torques are possible, and 2)
what is the spectrum of the disk at every point. We thus do not know if such objects exist in
nature and even if we did, we would not know how to recognize them by their overall spectrum.

Let us start with the discussion of the anisotropic stresses. The molecular viscosity is not
sufficiently large to drive the accretion process in astrophysical situations of interest. However,
the system of fluid equations we have discussed can be understood as a Reynolds-averaged
model, that is, a time- and/or space-averaged form of the equations yielding a split into
average velocities uµ and turbulent fluctuations δuµ . The term T µν |visc. is then equal to the
mean quadratic fluctuations ⟨ρδuµδuν⟩ which, in return can be modeled by the Boussinesq
eddy-viscosity hypothesis

⟨ρδuµ
δuν⟩=−µtσ

µν +
2
3

κthµν , (2.32)

where µt is a “turbulent dynamical viscosity” and κt the density of turbulent kinetic energy (see
e.g. [214] for more details). The turbulent kinetic energy can be absorbed into the definition of
the pressure of the fluid and is assumed to be small in the spirit of the thin-disk approximation.
The term µtσ

µν , however, adds exactly the viscous-type interaction between the layers of the
fluid we have discussed in subsection 2.2.1.

That is all nice, but how does one actually determine µt? By observing the dimensionality of
the factors in equation (2.32), we see that we need µt to be consisted of a matter density, a typical
velocity of the fluctuations vt, and a length scale l, µt ∝ ρvtl. The length-scale l, in particular,
is the typical size of the turbulent eddies. Shakura and Sunyaev [242] famously argued that the
size of the eddies (assuming fully developed, approximately isotropic turbulence), will be of
the order of magnitude of the height of the disk. Then, they argued, the turbulent velocities
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cannot be supersonic, otherwise the perfect-fluid approximation is essentially broken and a new
hot state of the fluid emerges where vt < vs. At low pressures we have vs ≈

√
P/ρ and we see

from formula (2.17) that H ∝ vs/Ω. Finally, we can then parametrize the turbulent viscosity as

µt = α
ρv2

s
Ω

= α
P
Ω
, (2.33)

where α is a free parameter that is generally non-constant and roughly between zero and one.
For purposes of closure of the model and the ability to give predictions, one usually sets α as
constant. We now see that the energy budget for the thin disk (2.31) dictates

αP
Ω

σ
R
ϕ = T r

ϕ |visc. =
Ṁ

4πH

(
1−
√

Rms

R

)
, (2.34)

and that P(R) is then explicitly expressible from this formula. Next, we assume state equations
such as

P = Pgas +Prad. =
ρkBT

mp
+

4
3

σT 4 , (2.35)

where σ is the Steffen-Boltzman constant and we assume that the radiation is in perfect thermal
equilibrium with the gas in the disk (an optically thick disk). The radiation energy density is
then ε = σT 4 which, on the other hand, is related to an estimate of the flux leaving the surface
of the disk as

4
3

ε

κΣ
= f z =

3
8π

Ṁ
GM
R3

(
1−
√

Rms

R

)
, (2.36)

where κ is the effective opacity of the material that can in principle be temperature dependent.
The solution of these equations will give us the complete set of quantities T (R),Σ(R),ur(R),H(R)
and others, parametrized only by the constants Ṁ and α . Hence, a complete observational
prediction for the appearance of the disk can be given5. The resulting set of formulas either in
the Newtonian [242] or relativistic treatment [199] are nowadays called the standard accretion
disk model.
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Fig. 2.2 A schematic comparison of the standard thin-disk model and the space of true physical
solutions. The thin disk yields a good approximation of the height of the disk and its general
properties in an intermediate regime Ṁ ∼ 0.1Ṁcrit but misrepresents the features of the disk at
both higher and lower accretion rates. The theoretical uncertainty in such statements is reflected
in the non-zero width of the curve.

2.2.3 Breaking the standard disk and growing thick

To a reader previously unexposed to the thin disk model presented in the last subsection, it might
be somewhat confusing as to what is its real physical meaning. We have first only computed
the energy budget without solving for any internal thermodynamics (essentially setting them
to zero), and later found the internal thermodynamics that fit the budget. Specifically, we did
not really allow the internal physics of the gas and radiation to have any proper dynamics and
back-reaction on the disk, only evaluating them indirectly.

The way to understand the thin-disk solution is as a perturbative solution around an inert
pressure-less non-accreting disk under the assumption that the inert pressure-less disk exists as
a limiting point of an analytical family of solutions of the full set of dynamical equations. If
such a family of solutions exists, the first order correction away from the inert disk must be
the thin disk. Nevertheless, the question still is whether such an analytical family of physical
solutions truly exists.

5There is a number of other details that come into the modeling of the disk atmosphere and the true spectrum
of radiation that comes from it, as was already discussed by Shakura and Sunyaev [242]. I assume these effects
are hidden in the effective opacity κ .
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Before discussing the results in the literature that attempt to find such solution families, let
us first list the effects that need to be included in the full set of dynamical equations and that
would “break” the thin disk at second perturbative order:

• The radiation must be first produced in order for the disk to cool (in other words, the ther-
mal radiation equilibrium must be first reached). This comes about as Bremsstrahlung in
Coulombic collisions or as synchrotron radiation created mainly by electrons accelerated
by magnetic fields in the disk. The rate of collisions is ∝ ρT 3/2 and both of these factors
drop at low accretion rates in the standard disk. This decrease of cooling is felt by the
heavy, hard-to-accelerate ions more than the electrons.

• Radiation must be able to leave the disk for cooling. The escape time is ∝ κΣ. When
the accretion rate rises, it will naturally increase the immediate density of the disk Σ.
However, it will also increase opacity κ due to a temperature increase in the disk. As a
result, radiation may become trapped in the gas of the disk for a considerable time.

• Vertical pressure gradients will cause the disk to be of non-zero thickness and the
velocities at different heights might be different. The radial pressure gradient will change
the balance of forces and take the rotation curve away from a Keplerian profile even in
the center of the disk. The inner radius of the disk will not be at Rms.

• The non-zero ur will also change the rotation curve. Additionally, the flow may take
leftover internal energy and other properties of the flow with it, sometimes even all the
way into the black hole interior. This is called advection.

We see that there is a large number of effects in question and some of them, such as radiative
cooling and radiation trapping show opposite trends with Ṁ; when Ṁ is low, radiation produc-
tion drops, when Ṁ is high, radiation is not able to leave the disk. Then, as it turns out, there
is an intermediate value of the accretion rate where these two effects are in a good balance to
create a state approximately fulfilling the thin-disk assumptions. This is illustrated in fig. 2.2.

The relevant scale for comparison in the “intermediateness” is called the critical accretion
rate Ṁcrit. Let us ask what is the combination of constants characterizing the local properties
of the flow that give a physical quantity of the dimension of a mass accretion rate. It should
involve opacity κ , and the mass of the black hole M. The only combination giving the correct
behaviour is M/κ times some dimensionless factor. We see that this accretion rate is in fact
proportional to the Eddington luminosity (2.9) and one can thus conventionally define the
critical accretion rate as a multiple thereof.6 In this text I follow the conventions of Yuan and

6Let me pass to SI units for a moment to make this argument clearer. We have [G] = m3kg−1s−2, [M] = kg,
[κ] = kg−1m2, [c] = m s−1. We know that M always appears along with a G in the equations. Then the only way
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Narayan [296] by defining the critical accretion rate to be equal to the rate at which a process
with radiative efficiency 10% radiates at Eddington luminosity

Ṁcrit =
λE

0.1
=

40πM
κ

. (2.37)

This critical rate and variants thereof are sometimes called the “Eddington” rate. However, the
relevance of Ṁcrit is for the near field accretion physics, and it is only by coincidence that it is
within an order of magnitude or so from a quantity that is relevant in the far field.

Whenever the accretion rate in the disk is Ṁ ≲ Ṁcrit but not Ṁ ≪ Ṁcrit, the radiation
production and release is both at sufficient rates for the thin-disk equations to be approximately
true.

However, when Ṁ ≳ Ṁcrit, the accretion disk becomes optically thick and traps the radiation
until a part of the thermal energy is advected along the flow and eventually even into the black
hole. This super-critical disk is thus thick, extended beyond the last stable orbit, and less
radiatively efficient than the thin disk. First numerical solutions to the disk equations in this
case were found by Abramowicz et al. [12] in a Newtonian treatment. Abramowicz also coined
the term “slim disks” for these disks. A relativistic treatment of the slim disks was then given by
Beloborodov [29]. A number of more recent references along with properties of the solutions
for a range of parameters can be found in [228].

It is possible to construct super-critical accretion disks that surpass the Eddington luminosity.
However, the luminosity from these sources does not escape isotropically, so it is an open
question how the far-field matter inflow will be regulated. This is especially true in the case
when source of the matter itself is anisotropic, such as in Roche-lobe overflow from an orbiting
star companion to the black hole, or from an outright tidal disruption of a star that approached
the black hole. In tidal disruptions, the accretion disk formed in its aftermath is, in fact, expected
to surpass Eddington luminosity for a certain time, and this could explain some enigmatic
ultraluminous X-ray events [204, 229].

On the other hand, whenever Ṁ ≪ Ṁcrit, the ability of the disk to produce radiation to
cool itself is quenched by the low densities and thus low collision rates. However, the lighter
electrons will be accelerated by the magnetic fields in the disk and this will lead them to
produce sufficient amounts of synchrotron radiation for cooling. Then again, not so the ions
and that leads to a two-temperature ion-electron gas and a characteristic spectral signature.

Furthermore, since only a small part of the initial energy of the gas is radiated away, the
bulk of the gas will have enough energy to launch significant amounts of matter particles to

an accretion rate ∼ kg s−1 can be assembled from these quantities is ∼ GM/(κc). The Eddington luminosity, on
the other hand, is ∼ GMc/κ .
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Fig. 2.3 A sketch of a meridional section of a warped disk. Taken from Bardeen and Petterson
[26].

infinity in the form of a wind from the disk surface. This means that the formal accretion rate
inside the disk Ṁ becomes a function of R, but also that jets will easily find matter for their
formation. Similar to the slim disks, the overall lack of radiative cooling leads to a smaller η

and a thick geometry of the disk extending beyond the ISCO.
Early ideas in the direction of these dilute hot disks were presented by Ichimaru [120] and

Rees et al. [222] to be left largely neglected until their rediscovery in a series of papers by
Narayan and Yi [190, 192, 191]. Recent references and discussion can be found in [296].

In summary, there is no limit in which the solutions of the equations converge to the inert
non-accreting disk, and the foundational assumption of the validity of the standard accretion
disk is thus broken. This conclusion is largely unsatisfactory to a theorist. On the other hand,
the standard accretion disk model proves to be effective in modeling a part of the observed
spectrum of accreting sources, and seems to be a reasonable approximation to full numerical
solutions of the disk equations in the intermediate Ṁ ≲ Ṁcrit regime, at least at somewhat larger
radii [202]. Nevertheless, in any other regime the disk is thick and, in that mode, there are no
analytical constructions as complete and self-contained as the standard thin disk.

One last point that I would like to mention before the end of this subsection is the issue of
a disk whose angular momentum is misaligned with the spin of the black hole. Even though
some correlation between the angular momentum of the infalling matter and the black hole spin
is to be expected, it is only reasonable to assume that there will always be some misalignment
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between the two [132, 131]. Then, whenever the matter of the disk spirals in under a general
angle, the gravito-magnetism will cause the local orbital plane of the matter to precess with a
frequency ≈ 2Macosϑd/r3, where ϑd is the local inclination of the disk with respect to the
black-hole rotation axis [287]. Since this frequency is differential, the local orbital planes of
the matter dephase, and the disk gets “warped” into an intricate non-planar shape (see fig. 2.3).

This effect on the disk was studied for the first time by Bardeen and Petterson [26], who
also gave a simple analytical estimate for the properties of the disk in the spirit of Shakura and
Sunyaev [242]. However, a more careful analysis by Papaloizou and Pringle [207] showed that
the interaction of viscous torques and the non-stationary, non-axisymmetric dynamics of such
disks must lead to highly complex behavior not covered by the model of Bardeen and Petterson
[26] unless the viscosity is strong and the thickness of the disk small. (Other references and
discussion of the analytical equations can be found in [273].)

For example, in other regimes when the disk is thick or viscous torques not very large,
the warping of the disk may cause it to have sudden break or completely tear apart in the
inner regions (see [194, 193] for references). The sensitivity of the models to the precise
dynamics of the internal stresses mean that an α-like prescription is inadequate and one must
model the “internal” turbulence directly. Since a trustworthy physical model resolving a highly
non-stationary disk up to turbulent scales requires considerable computational power, this line
of research has been pursued only very recently [152].

2.2.4 So what is the value of α?

The turbulent transport in the thin accretion disk was estimated essentially by dimensional anal-
ysis and its precise dynamics were hidden in the parameter α . The values of α obtained from
observational estimates are usually α ∼ 0.1−0.4 [133], which corresponds to very strongly
developed turbulence. However, the Keplerian hydrodynamical flows have dL/dR > 0, which
are flows that were known to generally stabilize against turbulence [260, 22]. Furthermore,
observations of accretion disks near white dwarfs showed that the parameter α had to vary
between states of the disk [244] and the theory with α = const. is thus useless for dynamical
analyses of the accretion disk.

This conundrum is now believed to be resolved by the realization that any differentially
rotating conductive plasma is subject to the so-called magneto-rotational instability (MRI). The
MRI was first studied by Velikhov [279] and Chandrasekhar [54], but it was rediscovered in
the context of accretion disks by Balbus and Hawley [20] (see [21] for an excellent review).

The instability can be characterized as follows. A weak magnetic-field perturbation is
frozen into the elements of the conductive plasma, and this introduces an essentially elastic
coupling between them. Then, due to the differential rotation of the disk, the distance between
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the elements grows and the coupling attempts tries to draw them closer together. However, this
elastic effect ends up acting exactly in the opposite way: The element on a higher orbit that lags
behind is pulled in the positive ϕ direction, obtains extra angular momentum, moves to a higher
orbit, and slows down even further. In contrast, the element on the lower orbit is pulled in the
negative ϕ direction, looses angular momentum, moves to a lower orbit, and speeds up even
more. The result is a runaway process that mixes the fluid layers and amplifies magnetic fields.

Let me now just list some of the essential properties of the MRI. When the plasma is
infinitely conductive, the instability can be triggered by infinitely small magnetic fields, even
though the wavelength of the fastest-growing disturbance is proportional to B. As a result,
magnetic fields in highly conductive disks arise naturally without the need of strong external
input.

However, in the case of finite conductivity the MRI needs to be triggered by a finite magnetic
field, the magnetic fields dissipate, and some sort of dynamo action must thus be established
to keep the MRI in effect. This seems to be possible only if an overall vertical (Bz or FRϕ )
magnetic field is present [21] (however, see also the recent results of Guseva et al. [103]). On
the other hand, when the magnetic pressure B2 is larger than the thermodynamic pressure P,
the instability is suppressed.

In the case of only partially ionized disks farther from the perfectly conductive state, such
as would be the case of galactic molecular discs or protostellar discs, the instability can also
occur under the assumption that the collisions between the ions and neutrals are sufficiently
frequent [35]. Furthermore, the MRI occurs even in rarefied plasmas where the hydrodynamic
approximation is no longer valid [141].

The significance of MRI is mainly to provide a driving for the turbulent cascade and the
magnetic dynamo action; the direct angular-momentum transport by MRI will typically be
sub-leading. Thus, to deduce the value of α , one needs to either construct a full theory of
turbulence in compressible magnetized plasmas, or to use direct numerical simulations at
sufficient resolution.

Nevertheless, in the case of turbulence in the compressible magnetized plasma accessible
to our direct observations, the solar wind, the fundamental modeling has proven to be highly
complex and was able to yield correct predictions only after considerable phenomenological
feedback (e.g., [45]). Thus, most astrophysical studies of α and turbulence in accretion disks in
general are based on direct numerical simulations (but see also the terrestrial analogue models
using liquid metals [248, 247, 236, 104]).
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2.2.5 Numerical simulations of magnetized accretion disks

Nevertheless, one problem that universally arises in such simulations is the fact that the effective
α parameter is computed to be in the ranges α ∼ 0.01−0.02, and order of magnitude below
the observation fits [133, 112, 137]. The theoretical estimates are obtained either in a local
“shearing box” simulation or a global simulation.

The shearing box is a clever trick, where the dynamics of a small column from the disk
in the range R ∈ (R0,R0 +∆R),ϕ ∈ (ϕ0,ϕ0 +∆ϕ) is mimicked by identifying the angular
boundaries (R,ϕ0)↔ (R,ϕ0 +∆ϕ) (in other words, periodic boundary conditions are imposed
in the angular direction), and a “differentially rotating” identification at the radial boundaries
(R0,ϕ)↔ (R0 +∆R,ϕ −Ω′∆Rt), where Ω′ = dΩ/dR is the gradient of angular velocity. As
a result, shearing-box simulations can resolve the smallest turbulent scales at reasonable
computational cost. Then again, these simulations are unable to predict various cumulative
and global effects in the disk, such as the evolution of the strength of the magnetic fields or
the rotation curve of the gas, because these enter the model essentially as external boundary
conditions [245].

On the other hand, global simulations could in principle act as universal predictors; just
input the physical model, run a full simulation, and get the correct output. Of course, life is not
as easy. The proper modeling of the MRI length-scales requires that lMRI ∼ B/(

√
ρΩ) is well

resolved [112, 113], where, however, we would like to keep the initial B as small as possible so
that the magnetic fields develop spontaneously.

Furthermore, another consistency criterion should be applied: If a simulation already
captures the required physics, its results should not change by increasing resolution. This is
called convergence, and it at least doubles the computational budget if checked consistently. An
additional version of convergence would be the dependence on initial conditions: If we have
no real physical motivation for different choices of initial conditions of our simulations, then
we should explore the entire range and compare the resulting predictions. If the predictions
do not match across initial conditions, our model is obviously unpredictive. Many numerical
simulations to date fail to fulfill some of the above-listed criteria [112, 245, 113].

For example, the physically motivated initial condition would be to evolve an accretion disk
by injecting matter in a Bondi-like scenario from far away, and let it spontaneously establish the
quasi-stationary accretion disk. However, the typical time for a fluid element starting from R at
Keplerian velocity to spiral onto the black hole is given by the (turbulent-)viscous time-scale
tvisc = ρR2/µt =

√
MR/(αv2

s ). If we compare this with the fact that we need to resolve the
orbital time-scale near the black hole Torb ∼ 10M with a time step about ∆t ∼ 0.1M, we would
require astronomically long simulations to track the evolution of the gas from any radius R ≫ M
(vs ∼ 10−7 −10−5 for gases infalling from afar).
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To date, there is probably no simulation that would see turbulent transport act over scales
larger than a few tens of M (see [189, 230] for t = 200000M simulations). Instead, one usually
starts with various Ansätze for the initial conditions, such as a torus of matter near the black
hole. It is currently not clear what the imprints of such a choice will be on the simulation
results, but by the comparison of scales, it is reasonable to assume that local physics of the
accretion flow are well captured by such simulations.

Related question to the initial conditions of the gas distribution are the initial geometry
of the magnetic field. These will generally “wash out” by the influence of the MRI up to one
property: the overall magnetic flux carried by the matter. This will, in general, accumulate on
the black hole during the accretion process and can lead to a state of the accretion disk known as
a magnetically arrested disk (MAD) [186, 121, 261, 262, 189, 169, 230]. Once the black hole
accumulates a magnetic flux through its horizon ΦBH ∼ 50−60

√
ṀM, the magnetic pressure

at the horizon is sufficient to stop the flow and push it to larger radii. Accretion then occurs only
through slow, thin streams of matter, and the black hole produces powerful Blandford-Znajek
jets that can extract even more mass-energy than was present in the inflow (see discussion
in Subsec. 1.3.3). It is not far-fetched that a significant fraction of accretion disks in active
galactic nuclei are in the MAD state but it is exactly our uncertainty in physical input (initial
conditions) that limits the predictivity of such results [186, 230].

One last note to the general discussion of global simulations and the “α-parameter conun-
drum” is the fact that it is easy to model thick disks either at strongly sub-critical or strongly
super-critical accretion rates. In these modes the direct simulation approach seems to yield
results generally consistent with observations [182, 184, 183, 229, 226]. In other words, it
may be that once we obtain reliable simulations for accretion disks in the intermediate regime
and compare directly with observations rather than looking at some effective values of α , the
discrepancy disappears because the standard thin disk was simply a bad model [233, 234]. How-
ever, a sufficiently fundamental treatment of the strong radiation processes in the intermediate
regime is out of reach of current simulations.

Before ending this section, let me now give an example of a current state of the art numerical
study of accretion disks by describing the recent work of Ryan et al. [226]. In doing so, I hope
to illustrate the scale of complexity of realistic simulations, and I pick the study of Ryan et al.
[226] mostly because of its advanced physical modeling and recency.

The study aims to model the supermassive black hole in the center of the M87 galaxy in the
Virgo cluster. The M87 black hole is at a distance of ≈ 17Mpc [36] and it is estimated to be of
the mass ≈ 3−6×109M⊙ [96, 285]. This makes it, along with the black hole in the center of
our galaxy, Sgr A∗, one of the two black holes with a shadow just (or barely) large enough to be
observed by terrestrial very long baseline interferometry [76, 155]. The black hole is accreting
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in a sub-critical, radiatively inefficient regime, has a powerful jet extending over thousands
of light years, which, consequently, makes it observable in essentially all electromagnetic
bands (see fig. 1.1 in the first chapter). However, the electromagnetic spectrum is not currently
understood (but see [183]), and the aim of Ryan et al. [226] was to explain that spectrum by a
first-principle computation.7

To do so, Ryan et al. implemented non-trivial electron thermodynamics [223], separate
prescriptions for ion and electron heating and cooling (including radiation production and ab-
sorption) [255, 118], frequency-dependent radiation transport, and radiation-force back-reaction
on the plasma [227]. The radiation transport, in particular, introduces large computational costs
as it is realized by tracking a probabilistic evolution of ∼ 107 representative “superphotons”
[77].

Even under an axisymmetric idealization, every run of these simulations then cost about
1000 CPU hours (which was, obviously, broken up by parallelization). The authors then ran
many simulations for four different scenarios for the M87 black hole parameters varying the
accretion rate until they matched the 230 GHz radio flux of M87 as obtained by Doeleman et al.
[76]. The black hole parameters in these scenarios were the mass M = 3.3× 109M⊙; 6.9×
109M⊙ along with spin a = 0.5M; 0.9375M. Ultimately, the combination M = 6.2×109M⊙

with a = 0.9375M was favored by comparison with the observed spectra and image sizes.
However, the limited set of simulations did not probe the MAD states and this is also probably
the reason it failed to reproduce the power of the M87 jet.

This underlines the character of numerical simulations in general; complex physics without
strong assumptions can be implemented, but ultimately assumptions on another end must
be done because of the computations costs. Analytical methods, with their own kinds of
simplifications, should interact with this field in a mutually constructive manner, looking out
for the blind spots and providing insights for the numerics.

On this note, I would like to conclude the introductory part of the thesis, and pass to my
original published investigations, which I briefly comment upon in the next chapter before the
papers themselves are presented.

7By “first principle” computation I mean a computation that provides a full solution of the dynamical equations
without any ad-hoc parameters characterizing the dynamical state and the geometry of the solution such as the
α parameter. Nevertheless, there always will free parameters that correspond to true physical input, such as the
black hole mass and spin M,a, accretion rate Ṁ, overall magnetization and angular momentum of the infalling
matter, and others. Furthermore, the model of Ryan et al. [226] contains implicit or explicit assumptions about
how various microscopic process yield closed-form macroscopic dynamics of the fluid.



Chapter 3

Hamiltonians and canonical coordinates
for spinning particles in curved
space-time

Disclaimer: Sections 3.1 to 3.5 of this chapter are a close adaptation of the following
preprint(short ref.: [293]):
Witzany, V., Steinhoff, J., & Lukes-Gerakopoulos, G. (2018). Hamiltonians and canonical
coordinates for spinning particles in curved space-time. Preprint at arXiv:1808.06582. (In
review at Physical Review D.)
This preprint was not allowed to be appended to the the thesis due to the rules of the University
of Bremen. (Section 3.6 is a presentation of new, independent results.)

Statement of contributions to original preprint: I have written the majority of the text,
derived all of the original theoretical results in the paper, written the code for the numerical
simulations, and prepared the plots. Jan Steinhoff provided me with critical knowledge needed
to derive the canonical coordinates presented in the paper, and helped me understand many
issues in the formalism. Georgios Lukes-Gerakopoulos found and classified chaotic layers in
the Poincaré surfaces of section. All authors were engaged in recomputing and checking the
theoretical results, providing references to literature, and forming the discussion and explana-
tions given in the original preprint.

As was already discussed to a large extent in subsection 1.4.4, the dynamics of real astrophysical
objects deviate from geodesics due to finite-size effects and gravitational back-reaction, and
these effects can be modeled by multipole-particles.

https://arxiv.org/abs/1808.06582
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The multipolar Mathisson-Papapetrou-Dixon equations such as (1.47) and (1.48) were
originally stated “as is”, without reference to a variational principle. In the paper Witzany et al.
[293], we have investigated how the Mathisson-Papapetrou-Dixon equations in the pole-dipole
approximation can be cast in a Hamiltonian formalism in various approaches and contexts. This
may seem as a formality, but connecting the equations to the powerful Hamiltonian framework
allows to implement them in a variety of theoretical settings even beyond the gravitational-wave
inspirals mentioned in subsection 1.4.4.

One of the main issues that accompany the Mathisson-Papapetrou-Dixon equations from
their very beginning is the choice of the point inside the body at which the representative
“particle” is placed. This choice can be uniquely fixed by requiring a so-called supplementary
spin condition along with the fundamental Mathisson-Papapetrou-Dixon equation.

In [293] we found Hamiltonians for all commonly employed “comoving” supplementary
spin conditions, that is, conditions that only use the local dynamical state of the body and no
background tensors in their statement. Additionally, we constructed canonical coordinates for
the phase space of the problem. We used these coordinates to integrate the equations with high
efficiency and accuracy for the case of a spinning particle moving in the equatorial plane of
the Schwarzschild space-time; we found the motion to be weakly chaotic. Apart from a minor
contribution to the picture of non-integrability of the Mathisson-Papapetrou-Dixon equations
near black holes, the paper represents a major leap in the understanding of their Hamiltonian
form, and it unlocks the path to many future applications both in analytical theory and numerics.
I restate these results in the following Chapter.

In section 3.2 I review the so-called Mathisson-Papapetrou-Dixon (MPD) equations under
various supplementary conditions. Then, I proceed to the Hamiltonian formalism in section
3.3, where I present the Poisson brackets and various sets of variables that can be used during
the evolution, and Hamiltonians for all the usual “comoving” supplementary conditions both
in proper-time and coordinate-time parametrizations. Next, in section 3.4, I also give a set of
canonical coordinates covering the spin tensor, which is useful for the numerical integration of
the MPD equations. Finally, in section 3.5, I demonstrate the power of the new coordinates and
Hamiltonian formalism by numerically studying spinning particles moving in the equatorial
plane of a Schwarzschild black hole. A new development of this formalism that was not given
in [293] is the formulation of a Hamilton-Jacobi problem along with a perturbative solution in
Kerr space-time as given in section 3.6.

In Appendix A at the end of the thesis I provide context to the presented results and details
of the derivations mentioned in this chapter.
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My convention for the Riemann tensor Rµ

ναβ
is such that 2aµ;[αβ ] = Rν
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aµ , or explicitly Rµ
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. An additional convention contrasting with the

rest of this thesis is that covariant time derivatives D/dτ are now denoted by a simple overdot.

3.1 Importance of spin-curvature coupling for gravitational
waves

The gravitational-wave detections made by the terrestrial detectors LIGO and Virgo were in the
∼10-100 Hz frequency band and always corresponded to inspiraling binaries of comparable
mass. Upcoming space-based missions such as LISA should be able to probe the gravitational-
wave spectrum in lower frequency ranges than the terrestrial detectors, approximately ∼
10−4 −10−1 Hz. Consequently, LISA will ideally allow to study the dynamics of many other
types of sources of gravitational radiation [151]. One such class of sources are the so-called
extreme-mass-ratio inspirals (EMRIs); during these stellar-mass compact objects spiral into
massive black holes, which have masses at least five orders of magnitude higher than the solar
mass [18].

Independent of the ratio of masses between the components of the system, neither the
primary nor the secondary objects of the binary can be modeled as point particles in a sufficiently
accurate treatment of the inspiral – effects of the finite size of both of the bodies must be taken
into account. This is clear when both of the components of the binary are of comparable size
and mass, but in the case of EMRIs we need to provide a somewhat more careful argumentation.

Let us denote the mass of the primary massive black hole by M, and the mass of the
secondary, stellar-mass object as m. Then the mass ratio in EMRIs is approximately q≡m/M ∼
10−4 −10−7 and, as partially discussed in section 1.4.4, one can describe the gravitational field
of the secondary as a perturbation of the gravitational field of the primary. As a result, the
secondary is conventionally described as moving on the original unperturbed background while
being subject to a self-force whose relative size with respect to the Christoffel-connection terms
is of the order O(q) (see [213, 23] for recent reviews and references).

Let us now consider the effects of the finite size of the secondary component of the binary. If
the secondary is rotating at relativistic rates, a matter element near its surface will feel a relative
acceleration with respect to the center of mass proportional to the speed of the surface v, the
radius of the object r, and the local space-time curvature R. Under the assumption of a balance
of forces inside the body, this results in a “spin force” ∼ mvrR acting on its center of mass.
Additionally, let us assume that the binary orbital separation is within a few horizon radii of the
primary, and that the secondary is either a maximally spinning black hole, a few-millisecond
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pulsar, or a few-second pulsar. For the maximally rotating black hole we obtain vrR ∼ 1q/M
and for the millisecond and few second pulsar we get, under the canonical assumption of
r ∼ 10km, vrR ∼ 10−1q/M,10−4q/M respectively. When we consider that the Christoffel
symbol terms in the equations of motion scale as ∼ 1/M, we see that the relative size of the
acceleration caused by the spin-force is then generally O(q), the same as the gravitational
self-force.

The influence of the self-force and the spin-force on the orbit will thus scale as O(q). It is
clear that it would be close to impossible to distinguish such a perturbed orbit from a geodesic
when using observables collected over just a few orbital cycles. Nevertheless, the orbit will
only decay over O(1/q) full periods, and the small deviations amount to secular effects in the
phase of the orbit. The final orbital phase φf can then be schematically written as a sum of
terms of the form [116]

φ f = φ
(1)
avg O(q−1) (3.1)

+φ
(1)
osc +φ

(2)
avg +φspin O(1) (3.2)

+φ
(2)
osc +φ

(3)
avg +φquad O(q) (3.3)

+ ... O(q2) , (3.4)

where “avg” and “osc” denote respectively contributions from the averaged dissipative, and
oscillating dissipative and conservative parts of the self-force computed from the metric
perturbations of order (n) in the mass ratio. Now we see that at the contribution of the spin
force appears at the same order as the first-order conservative piece of the self-force. Both the
O(q−1) and the O(1) terms must eventually be taken into account if sub-radian precision is to
be achieved in the EMRI wave-form modeling.

Let me also briefly discuss the higher-order corrections to the motion. The O(q) terms in
the phase contain the contribution of the next-to-leading effect of the finite size of the secondary,
the quadrupolar coupling. Specifically, this will include the spin-induced quadrupole that scales
as ∼ S2 for neutron stars and black holes [108, 144, 250], where S ∼ mrv is called the spin
magnitude. Tidal deformation of the body also formally appears in the quadrupole; however, the
magnitude of the tidal deformation itself is proportional to the local curvature, which makes the
tidal effects enter the equations of motion at relative order O(q4) [67, 32, 252]. Consequently,
these effects enter the phase only at O(q3) for conservative effects and perhaps at O(q2) if the
dissipative tidal effects contribute to the orbital decay time.

In summary, we see that the spin-curvature coupling considered at least to linear order
is a necessary piece of any EMRI model. Additionally, the spin-curvature coupling plays an
important role in the post-Newtonian (weak-field and slow-motion) description of binaries of
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comparable mass [37, 232]; the current state-of-the-art models include conservative effects of
the spin to fourth post-Newtonian order [149]. Nevertheless, it is also desirable to build unified
models that capture the inspiral dynamics of the whole range of mass ratios from extreme to
comparable.

One challenging problem in the intermediate mass-ratio range is an inspiral of a neutron
star into a relatively heavy stellar mass black hole, which implies q ≲ 0.1. Inspirals in this
regime are relatively difficult to capture in full numerical relativity simulations because of the
relatively large number of cycles before the final merger. On the other hand, in the perturbative
EMRI-like approach the convergence can be questioned because of the relatively large size of
q. One of the goals of the so-called effective-one-body (EOB) models [46, 41, 185, 47, 69] is
to interpolate through this gap.

The central piece of the EOB models are Hamiltonians coupling a representative “test
particle” to an effective curved dynamical background. The dynamics of this effective test
particle then encode the dynamics of the real binary. One of the flavours of the EOB models
uses a Hamiltonian for a spinning test particle [24, 41] coupled to a curved background, and
this means that it captures the spin-force in the EMRI limit automatically (see also the progress
of the other EOB flavor in Refs. [68, 111, 128, 31]). Hence, exploring simplified or alternative
Hamiltonians for spinning particles appears to be crucial in this context as well.

3.2 The MPD equations

The equations of motion of massive bodies in a gravitational field are among the most basic
topics in Newtonian mechanics, and a surprisingly difficult problem in general relativity.
However, by assuming that the stress-energy tensor is replaced by some distributional equivalent,
and by imposing the covariant conservation of the stress-energy tensor, we obtain the general-
relativistic equations of motion in the celebrated MPD form. The MPD equations to pole-dipole
order read [164, 208, 74]

Ṗµ =−1
2

Rµ

νκλ
ẋνSκλ , (3.5a)

Ṡκλ = Pκ ẋλ −Pλ ẋκ , (3.5b)

where xµ(τ) is the position of some representative point from within the rotating body, Sκλ the
spin tensor, and Pµ the momentum (flux of stress-energy) of the body. Here τ is the proper
time, ẋµ ẋµ =−1. However, it is noteworthy that the MPD equations are invariant under affine
reparametrizations of the world-line, at least to pole-dipole order.
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The relation between ẋν and Pν is not fully determined and has to be derived from an
additional relation, the supplementary spin condition. A supplementary spin condition is usually
given in the form SµνVν = 0, where Vν is some time-like direction. The physical interpretation
of this supplementary condition is that V ν is the observer frame in which the momenta of the
stress-energy tensor Pµ and Sνκ are computed. The position of the referential world-line xµ(τ)

is then the center of mass of the spinning body in this frame [63].
The MPD equations as given here do not include the contributions from the quadrupole

and higher-order mass moments of the body. One reason why studying this system has far-
reaching consequences is the fact that the pole-dipole equations are universal, i.e., independent
of the internal structure of the body. Among other effects, and as already mentioned in the
previous section, one expects the rotation to flatten the body and thus to produce a structure-
dependent quadrupole moment that scales as S2. The character of the pole-dipole equations is
thus inherently perturbative and one often resorts to various expansions in powers of S in the
description.

Some identities useful independent of the supplementary condition read

ẋ(µ Ṡνκ)cycl. = 0 , (3.6)

Pµ = mẋµ + ẋγ Ṡγµ , (3.7)

m ≡−Pµ ẋµ . (3.8)

A number of other useful identities along with a short historical review of the MPD equations
can be found in Ref. [238].

Let me also define the spin vector sµ , the spin magnitude S, and a mass-like quantity M as

sµ ≡− 1
2
√
−V αVα

ε
µνκλVνSκλ =− 1√

−V αVα

⋆SµνVν , (3.9)

S ≡
√

Sκλ Sκλ

2
=
√

sµsµ , (3.10)

M ≡
√

−PαPα , (3.11)

where ⋆Sµν = εµνκλ Sκλ/2 is the dual spin tensor. It is important to remember that the definition
of sµ will be different whenever a different supplementary condition is chosen. Now we see
that Sκλ sλ = 0 and it is possible to build a projector on the sub-space orthogonal to Vµ ,sν as

hµ

ν =
1
S2 SµκSνκ =

(
δ

µ

ν +
V µVν

(−V αVα)
− sµsν

S2

)
. (3.12)



3.2 The MPD equations 55

It should also be noted that this projector is of zeroth order in the spin, even though higher
powers of the spin magnitude and the spin tensor were used in its definition.

Now, the question is which supplementary spin condition should be used to close the system
of MPD equations. However, all observer frames in relativity are equivalent and there is no
strict criterion for this choice. Hence, in the rest of this section, I will review the various
commonly employed choices for the supplementary spin conditions and the aesthetic and
practical advantages they offer.

3.2.1 The KS condition

Eq. (3.7) indicates that the momentum Pµ can be generally linearly independent of the time
derivative of the referential position ẋµ . Kyrian and Semerák [143] (KS) asked the question
which supplementary condition eliminates this linear independence and makes the two propor-
tional, Pµ = mẋµ , and found that this holds when we assume the existence of a time-like vector
wµ such that Sµνwν = 0 and ẇν = 0. We also set wαwα =−1 for simplicity of the resulting
expressions. The MPD equations then simplify into the form

Pµ = mẋµ , (3.13a)

ṁ = 0 , (3.13b)

ẍµ =− 1
2m

Rµ

νκλ
ẋνSκλ , (3.13c)

Ṡκλ = 0 . (3.13d)

This is probably the simplest and most elegant form of the MPD equations one can acquire.
This form of the MPD equations can in fact be generated by a large set of other supplementary
conditions, which is discussed in Appendix A.1.

In terms of variables that need to be evolved during a numerical integration, the system
of equations (3.13) is characterized by a phase space (xµ , ẋν ,Sκλ ). An important point is to
realize that once an initial condition with some vanishing direction of the spin tensor is chosen,
Sµνwν |τ=τ0 = 0, then the equations of motion (3.13) will evolve with two vanishing directions.
The first of these directions is proportional to wµ , and the second one is proportional to sµ . We
can always choose the time-like direction to fulfill ẇµ = 0. In other words, once the initial
condition is set up with a degenerate spin tensor, the set of equations (3.13) can be evolved “as
is” without further reference to the auxiliary vector wµ .
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Nonetheless, the equations of motion can also be re-expressed using wν and sµ as

ẍµ =
1
m
⋆Rµ

νκλ
ẋνsκwλ , (3.14a)

ẇκ = ṡλ = 0 , (3.14b)

where ⋆Rµνκλ ≡ Rµνγδ ε
γδ

κλ
/2. In this case the phase space is (xµ , ẋν ,sλ ,wκ), i.e., it consists

of the coordinate position, its first time derivative, the spin vector, and the auxiliary time-like
vector wλ .

3.2.2 The MP condition

Another supplementary spin condition proposed independently by various authors [93, 164,
212] is Sµν ẋν = 0. I call it here the Mathisson-Pirani (MP) spin condition due to the pioneering
works using this condition in the context of curved space-time [164, 212]. In the context of flat
space-time, it is often called the Frenkel spin condition due to the earlier work of Frenkel [93].
The physical interpretation of this spin condition is that the multipole momenta are chosen in a
frame in which the center of mass itself is at rest.

Under this supplementary condition, the MPD equations are simply the equations (3.5)
with the substitution of the following relation in place of ẋµ [62]

ẋµ =
1
m

Pν

(
δ

µ

ν − 1
S2 SµκSνκ

)
= Pν

(
δ

µ

ν −hµ

ν

)
. (3.15)

Once again, in this representation the phase space needed for numerical evolution is (xµ ,Pν ,Sκλ ),
the identical variables as for the KS condition. Another interesting fact is that in this repre-
sentation it is sufficient to choose the initial data with the spin tensor having some degenerate
time-like direction, and the relation (3.15) will always make the four-velocity fulfill Sκλ ẋλ = 0.

Another representation of the phase space can be obtained through the spin vector and
higher order time derivatives of the position:

...x µ = f µ(xν , ẋλ , ẍκ ,sγ) , (3.16)

ṡλ = sν ẍν ẋλ , (3.17)

where f µ is derived in Appendix A.2 and its explicit form is given in equation (A.9). In other
words, the phase space in this approach consists of (xµ , ẋν , ẍκ ,sλ ). When one compares these
variables with that of the KS condition, it can be seen that even though no auxiliary wλ is
evolved, there is, nevertheless, additional data stored and evolved in the acceleration vector ẍλ .
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A recent discussion of this degeneracy of the MP supplementary condition was given by Costa
et al. [62].

3.2.3 The TD condition

The Tulczyjew-Dixon supplementary spin condition [275, 75], also sometimes referred to as
the “covariant” supplementary spin condition, is given as SµνPν = 0. Its physical interpretation
is clear: it corresponds to a frame in which the fluxes of energy-momentum vanish.

The TD conditions results in MPD equations of motion that are closed by substituting for
ẋµ as [81, 200]

ẋµ =
m

M 2

(
Pµ +

2SµνRνγκλ PγSκλ

4M 2 +Rχηωξ SχηSωξ

)
, (3.18)

where M is now an integral of motion, Ṁ = 0. The other mass m is not conserved during the
evolution, and it can be easily expressed as a function of Pµ ,Sκλ ,Rαβγδ from ẋµ ẋµ =−1 as

m =
A M 2

√
A 2M 2 −BS2

, (3.19)

A = 4M 2 +Rαβγδ Sαβ Sγδ , (3.20)

B = 4hκηRκιλ µPιSλ µRηνωπPνSωπ . (3.21)

The phase space is then again expressible as (xµ ,Pν ,Sκλ ).
However, we will now see that the TD condition in fact eliminates some degrees of freedom

as compared to the KS and MP conditions. Once again, there is the possibility to transform to a
spin vector which leads to [cf. 257]

Ṗµ =
1

M
⋆Rµ

νκλ
ẋνsκPλ , (3.22)

ṡµ =
1

M 3⋆Rγνκλ sγ ẋνsκPλ Pµ , (3.23)

where we use the substitution (3.18) whenever ẋν appears. This set of equations is non-linear
and complicated, but the phase space now consists only of (xµ ,Pν ,sκ), which is one vector
less as compared to the KS and MP conditions and also probably the most economic set of
variables possible for the MPD system.
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3.2.4 The CP and NW conditions

All of the previously stated supplementary conditions only used the “internal” state of the body
in choosing the frame in which the averaging is done (even though this somehow implicitly
refers to the background curvature), or at least some “comoving” structure in the case of the
KS condition. The Corinaldesi-Papapetrou (CP) [61] and Newton-Wigner (NW) [218, 196]
conditions, on the other hand, employ an external time-like vector field ξ µ(xν). The conditions
read

Sµν

(
ξν +α

Pν

M

)
= 0 , (3.24)

where α = 0 corresponds to the CP and α = 1 to the NW condition.
The physical meaning of the CP condition is clear; it foliates the worldtube of the body by

a “lab frame” ξ nu, and computes the center of mass and all the other quantities in such a frame.
In this sense, the world-line it describes is closest to a point of view of an observer registering
the orbit from infinity, at least if ξ µ is chosen to correspond to a time-foliation established by
such observers. On the other hand, the Newton-Wigner condition has no clear interpretation
and was chosen for purely technical reason.

The convenience of these supplementary conditions lies in the fact that one can recast the
evolution for the spin tensor in terms of a tetrad basis SAB = eA

µeB
νSµν , and by choosing e0

µ = ξµ

one can eliminate three of the six independent spin-tensor components S0I, I = 1,2,3 as

S0I =− α

M +αP0
PJSJI , J = 1,2,3 . (3.25)

The equations of motion for the spin tensor are then obtained with the use of (3.6) as

Ṡµν = 2Sκ[µ ẋν ] (M ξκ;λ −αRκ̂λγδ Sγδ/2)ẋλ

(M ξχ +αPχ)ẋχ
, (3.26)

where the notation κ̂ in the curvature tensor denoted the part orthogonal to the momentum Pν .
The relation between momentum and velocity then attains the following implicit form

mẋµ =Pµ − (Sκµ +Sκω ẋω ẋµ)
(M ξκ;λ −αRκ̂λγδ Sγδ/2)ẋλ

(M ξχ +αPχ)ẋχ
. (3.27)

This equation cannot be explicitly inverted into a ẋµ(Pν) or Pν(ẋµ) formula in the general case,
and the CP/NW condition often does not yield a set of evolution equations in strictly closed
form.



3.2 The MPD equations 59

Nonetheless, it is possible to iterate the momentum-velocity relation by starting from
ẋµ = Pµ/m+O(S) to obtain results of higher and higher precision with respect to powers of S.
The first iteration leads to

mẋµ =Pµ −
(

Sκµ +
1

m2 SκωPωPµ

)
ξκ;λ Pλ

(mξχ +αPχ)Pχ
+O(S2) . (3.28)

Equations such as the one above inserted into the MPD equations along with the assumption
that (3.25) is exactly true at all times lead to closed-form evolution equations with the phase
space (xµ ,Pν ,SIJ).

Again, by counting the variables, we see that the NW and CP conditions lead to systems
with the same “minimal” number of degrees of freedom as the TD+MPD equations. One other
reason the NW condition received heightened attention in the recent years is the fact that it
is possible to formulate it as a Hamiltonian system with the canonical SO(3) commutation
relations for the spin vector [110, 24, 280].

3.2.5 Equivalence of the supplementary conditions

It is obvious that it should be possible to transform the descriptions induced by various supple-
mentary conditions into each other by shifting the world-line xµ(τ) to a different representative
point inside the body and transforming the quantities Pµ ,Sµν . Details of such procedures were
given for instance by Kyrian and Semerák [143] and Vines et al. [280]. These transformations
are truncated at spin-squared order. Alternatively, the different supplementary conditions can
be understood as describing bodies with the same internal angular momenta, but different
quadrupole momenta (see [280]). In practice, this leads to a rather fast divergence of equivalent
evolutions under various supplementary conditions [143].

There is another way equivalence between the KS, MP, and TD conditions can be established,
at least to linear order in spin and for a short time. Take any initial data (xµ

0 ,P
ν
0 ,S

κλ
0 ) such that

Sκλ
0 P0λ = 0. Then it is obvious from the discussion of the previous subsections that this data

can be used to evolve the system of MPD equations under either the KS,MP, or TD equations.
Furthermore, we will have initially ẋµ = Pµ/m+O(S2) and also ẍµ =−Rµ

νκλ
ẋνSκλ/(2m)+

O(S2), Ṡκλ = O(S2). Hence, on this subclass of initial data and for short times, the KS,MP,
and TD conditions are also approximately equivalent. Then again, on longer time scales the
evolutions under different supplementary conditions will accumulate differences that cause
O(S) differences even at the level of equations of motion. Furthermore, in the case of the
NW/CP conditions and for general ξ µ such an equivalence cannot be reached even at linear
order in spin and for any time period.
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3.3 Hamiltonians for spinning particles

3.3.1 Poisson brackets

Before we can discuss Hamiltonians, we need to set up the stage in the form of a phase space
endowed with a symplectic structure, postulated here through a Poisson bracket. Consider the
set of non-zero Poisson brackets for the phase-space coordinates xµ ,Pν ,Sγκ

{xµ ,Pν}= δ
µ

ν , (3.29a)

{Pµ ,Pν}=−1
2

Rµνκλ Sκλ , (3.29b)

{Sµν ,Pκ}=−Γ
µ

λκ
Sλν −Γ

ν

λκ
Sµλ , (3.29c)

{Sµν ,Sκλ}= gµκSνλ −gµλ Sνκ +gνλ Sµκ −gνκSµλ . (3.29d)

This set of brackets arises in many models for spinning-particle dynamics [142, 86, 259, 130,
24, 220, 66] and I present our own motivation from field theory in Appendix A.3. Furthermore,
it is easy to prove that the Poisson brackets follow from the generic effective action used in
Refs. [253, 250, 280] (see Appendix A.5).

The Poisson brackets (3.29) can be partially canonicalized by choosing an orthonormal
tetrad eA

µ , eA
µeµB = ηAB (= Minkowski metric), and adopting a set of variables [86, 259, 130]

SAB = SµνeA
µeB

ν , (3.30)

pµ = Pµ +
1
2

eνA;µeν
BSAB = Pµ − 1

2
ΓνκµSνκ . (3.31)

Under this change of variables the only non-zero brackets read

{xµ , pν}= δ
µ

ν , (3.32a)

{SAB,SCD}= η
ACSBD −η

ADSBC +η
BDSAC −η

BCSAD . (3.32b)

In this coordinate basis it is clear that SAB and its commutation relations are a representation
of the generators of the Lorentz group. Additionally, we see that 2S2 = SABSAB = SµνSµν and
2(S∗)2 ≡ SABSCDεABCD = SµνSκλ εµνκλ are Casimir elements of this algebra. That is, the spin
magnitudes S,S∗ commute with all the phase-space coordinates and will always be integrals of
motion independent of the Hamiltonian.

However, if we compare with the MPD equations (3.5), we see that

d
dτ

(S2) = Sµν Ṡµν = 2SµνPµ ẋν . (3.33)
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In other words, for conditions such as NW/CP that have Ṡ ̸= 0, the herein presented bracket
will either not have any corresponding Hamiltonian, or the Hamiltonian dynamics will describe
the NW/CP+MPD system indirectly through some deformed (non-MPD) set of variables.

3.3.2 Hamilton’s equations of motion

We have now prepared everything needed in order to study the equations of motion for a general
Hamiltonian H = H(xµ ,Pν ,Sκλ ) with the Poisson brackets (3.29). We obtain

dxµ

dλ
=

∂H
∂Pµ

, (3.34a)

dPν

dλ
+

∂H
∂xν

− ∂H
∂Sµκ

(Γ
µ

νγSγκ +Γ
κ
νγSµγ) =−1

2
Rνωλ χ

∂H
∂Pω

Sλ χ , (3.34b)

dSγκ

dλ
+Γ

γ

νλ

∂H
∂Pν

Sλκ +Γ
κ

νλ

∂H
∂Pν

Sγλ =

∂H
∂Sµν

(gγµSκν −gγνSκµ +gκνSγµ −gκµSγν) ,

(3.34c)

where λ is some parameter along the trajectory. These equations cannot be expected to make
any sense on the full phase space, but only on the part where some supplementary condition
SµνVν = 0 holds.

By comparison with equations (3.5), the equations (3.34) will be the MPD equations when
the following equalities are fulfilled

∂H
∂Sµν

(gγµSκν +perm.)∼= Pκ ∂H
∂Pγ

−Pγ ∂H
∂Pκ

, (3.35)

∂H
∂xν

− ∂H
∂Sµκ

(Γ
µ

νγSγκ +Γ
κ
νγSµγ)∼=−Γ

α

βν

∂H
∂Pβ

Pα , (3.36)

where ∼= means that the equalities need to hold only on a certain “on-shell” part of the phase
space where conditions such as SµνVν = 0 hold. The fact that the equalities are ∼= makes them
impractical to solve directly and we resort to heuristic approaches.

3.3.3 Hamiltonian for KS condition

Khriplovich [130], inspired by field theory on curved background, postulated the following
Hamiltonian for semi-classical spinning particles which is supposed to be used along the
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Poisson brackets (3.29) (see also d’Ambrosi et al. [66])

HKS =
1

2m
gµνPµPν

∼=−m
2
. (3.37)

However, at the time of the publication of this Hamiltonian it was not clear what is the relation
of the generated set of equations with the MPD equations. Nevertheless, we can now compare
the generated equations of motion (3.34) with those corresponding to the relatively recently
discovered KS supplementary spin condition (3.13) to see that the two sets of equation agree.

In other words, the Hamiltonian (3.37) generates the MPD equations of motion under the
KS spin condition. The only condition that needs to be met by the initial condition apart
from four-velocity normalization is for Sµν to have some vanishing time-like direction wν ,
Sµνwν = 0.

3.3.4 Hamiltonian for TD condition

The basis of our heuristic approach is to first reproduce the momentum-velocity relation under
the TD condition and see whether this is sufficient to determine the correct Hamiltonian. We
take the velocity-momentum relation (3.18) and combine it with equation (3.34a) to obtain

∂H
∂Pν

∼=
m

M 2

(
Pν +

2SνµRµγκλ PγSκλ

4M 2 +Rχηωξ SχηSωξ

)
. (3.38)

Now let us assume that the equations of motion hold under the on-shell conditions M =
√
−PαPα , SµνPν = 0 where M is now some chosen constant independent of phase-space

coordinates. Then the following holds

∂

∂Pω

[
(gµνPµPν +M 2)F

]∼= 2FPω , (3.39)

∂

∂Pω

(
GµSµνPν

)∼= GµSµω , (3.40)

where F,Gµ are arbitrary functions of the phase-space coordinates xκ ,Pλ ,Sγδ . By choosing
appropriate F,Gµ , we are able to reproduce all the terms on the right hand side of (3.38) and
thus obtain the Hamiltonian

HTD =
m

2M 2

[(
gµν −

4SνγRµ

γκλ
Sκλ

4M 2 +Rχηωξ SχηSωξ

)
PµPν +M 2

]
∼= 0 , (3.41)
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where we substitute the expression (3.19) for m. A straight-forward computation of Hamilton’s
equations of motion then shows that they agree with the MPD equations of motion under the
TD supplementary condition.

An interesting result discussed in Appendix A.4 is that the Hamiltonian (for a different time
parametrization, λ ̸= τ) can be obtained by applying SµνPν = 0 as a Hamiltonian constraint of
the Khriplovich Hamiltonian (3.37). However, this procedure does not seem to work for any
other supplementary condition.

3.3.5 Hamiltonian for MP condition

Similarly to the heuristic approach of the previous subsection, we are now trying to derive a
Hamiltonian that generates the MP momentum-velocity relation (3.15)

∂H
∂Pµ

∼=
1
m

Pν

(
δ

µ

ν − 1
S2 SµκSνκ

)
. (3.42)

We can compose it from the single on-shell condition PµPν(gµν −SµκSν
κ/S2) =−m2 similarly

to the previous section (m is now a fixed number independent of the phase-space variables) to
obtain

HMP =
1

2m

(
gµν − 1

S2 SµκSν
κ

)
PµPν

∼=−m
2
. (3.43)

Once again, the computation of the equations of motion shows that they are identical to the
MPD equations under the MP condition.

3.3.6 Hamiltonians for CP and NW conditions?

Let us now attempt to reproduce the linearized NW/CP momentum-velocity relation (3.28)

m
∂H
∂Pµ

= Pµ −
(

Sκµ +
1

m2 SκωPωPµ

)
ξκ;λ Pλ

(mξχ +αPχ)Pχ
. (3.44)

We use the on-shell condition PµPµ =−m2 +O(S2) and Sκµ(αPµ/m+ξµ) = 0 to build the
unique Hamiltonian that reproduces the relation above

HNW/CP? =
1

2m
gµνPµPν −

1
α

ξκ;λ Pλ

(mξχ +αPχ)Pχ
Sκµ

(
α

Pµ

m
+ξµ

)
. (3.45)
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However, the computation of Hamilton’s equations related to this Hamiltonian show that they
are not a set of MPD equations of the form (3.5). It is thus probably possible to cast the
NW/CP+MPD system into Hamiltonian form only through a more sophisticated set of variables
such as in Refs. [110, 215, 24, 280].

3.3.7 Coordinate-time parametrization

All of the Hamiltonians derived in the previous subsections generate motion parametrized by
proper time τ . It is possible to generalize them to any time parametrization λ with dλ/dτ an
arbitrary function of any variables by exploiting the fact that the Hamiltonians have a constant
value for any trajectory. We can then get the new λ -Hamiltonians as

Hλ =

(
dλ

dτ

)−1

(Hτ −H0) . (3.46)

The constant H0 is −m/2 for the KS and MP Hamiltonians (3.37) and (3.43), and 0 for the TD
Hamiltonian (3.41). These Hamiltonians evolve the full set of variables xµ ,Pν ,Sγκ .

Alternatively, it is also possible to use the component of “non-covariant” momentum pt

from eq. (3.31) expressed as a function of the other variables to generate the equations of
motion parametrized by coordinate time t. To show this in the simplest possible way, we pass
to the coordinates pµ ,SAB defined in equations (3.30) and (3.31). We compute

dpi

dt
=−∂H

∂xi

(
∂H
∂ pt

)−1

=−∂ (−pt)

∂xi

⏐⏐⏐
H=const.

, (3.47)

dxi

dt
=

∂H
∂ pi

(
∂H
∂ pt

)−1

=
∂ (−pt)

∂ pi

⏐⏐⏐
H=const.

, (3.48)

dSAB

dt
= {SAB,SCD} ∂H

∂SCD

(
∂H
∂ pt

)−1

= {SAB,SCD}∂ (−pt)

∂SCD

⏐⏐⏐
H=const.

,

(3.49)

where we have used the implicit function theorem. In other words, for any phase-space function
F(xi,Pi,SAB)

dF
dt

= {F,−pt

⏐⏐⏐
H=const.

} . (3.50)
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We now list the respective Hamiltonians Ht = −pt |H=const. for the KS, TD, and MP spin
conditions, given here in terms of the phase-space coordinates Pµ ,Sκλ

HtKS =−Piω
i +
√

α2m2 + γ i jPiPj +
1
2

ΓνκtSνκ , (3.51)

ω
i ≡−gti

gtt , α ≡ 1√
−gtt , γ

i j =−gi j

gtt +ω
i
ω

j , (3.52)

HtTD =−Piω̃
i +
√

α̃2M 2 + γ̃ i jPiPj +
1
2

ΓνκtSνκ , (3.53)

g̃µν ≡ gµν +
4Sγ(νRµ)

γκλ
Sκλ

4M 2 +Rχηωξ SχηSωξ
, (3.54)

ω̃
i ≡− g̃ti

g̃tt , α̃ ≡ 1√
−g̃tt , γ̃

i j =− g̃i j

g̃tt + ω̃
i
ω̃

j , (3.55)

HtMP =−Piω̄
i +
√

ᾱ2m2 + γ̄ i jPiPj +
1
2

ΓνκtSνκ , (3.56)

ḡµν ≡ gµν − 1
S2 SµκSν

κ , (3.57)

ω̄
i ≡− ḡti

ḡtt , ᾱ ≡ 1√
−ḡtt , γ̄

i j =− ḡi j

ḡtt + ω̄
i
ω̄

j , (3.58)

where we have chosen roots of pt corresponding to particles traveling forward in time.
Now the reduced set of variables, to be evolved by the spatial part of the Poisson brackets

(3.29) and the Hamiltonians above, is xi,Pj,Sµκ . Alternatively, one can rewrite the Hamiltonians
using the variables xi, p j,SAB and use the spatial part of the brackets (3.32).

3.4 Canonical coordinates for numerical integration

In this section I discuss further details about the structure of the phase space. Constraints
such as the supplementary spind conditions define sub-manifolds in this phase space, and the
correct way to “project” the Poisson brackets on this sub-manifold is called the Dirac constraint
procedure [73, 109]. On the other hand, independent of whether the Poisson bracket has or has
not been “projected”, we know that we can always construct local coordinates on the phase
space that put the bracket into canonical form. These two topics are discussed in the upcoming
two subsections in respective order.
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3.4.1 Importance of canonical coordinates and Dirac brackets

Let us assume that we have a set of constraints Φa = 0, where a,b are some labelling indices,
and that the constraint algebra Cab = {Φa,Φb} with Cab is a non-degenerate matrix with an
inverse C−1

ab . Then it is possible to define a new constrained Poisson bracket [73, 109]

{A,B}′ = {A,B}−{A,Φa}C−1
ab {Φ

b,B} . (3.59)

The bracket {,}′ is often called the Dirac or Dirac-Poisson bracket. If we have a Hamiltonian
that fulfills {Φa,H} ∼= 0, then the equations of motion generated by {,}′ and H are the same as
with {,} and H. The bracket-constraining procedure was originally devised for the purposes of
canonical quantization. Nonetheless, it is also useful for classical Hamiltonian dynamics.

When we want to study the evolution of a classical Hamiltonian system at high accuracy
over a large number of periods (such as would be the case of EMRIs), it is highly advantageous
to use symplectic integration [see e.g. 107]. Most symplectic integrators require that the
equations are formulated in terms of pairs of canonical coordinates, i.e. a colection of phase-
space coordinates χ i,πi, with i some labelling index, such that {χ i,π j}= δ i

j (however, there
do exist symplectic integrators for special classes of systems that require no such coordinates
[171, 170]).

The importance of the constrained bracket {,}′ in these considerations can be twofold. First,
it may be easier to find canonical coordinates for {,}′ rather than {,}. Second, the constraints
Φa = 0 are only integrals of motion with respect to the dynamical system evolved by the
unconstrained bracket {,}, and they cannot be forced to be zero during integration, otherwise
the advantageous properties of the symplectic algorithm are broken. On the other hand, in the
case of the bracket {,}′, the constraints Φa commute with any phase-space variable. In return,
they are effectively promoted to a “phase-space identity” and can be used to reduce the number
of variables in a numerical integrator symplectic with respect to {,}′.

For instance, Barausse et al. [24] applied the NW supplementary spin condition as a
constraint to the bracket (3.32) (along with brackets and constraints for auxilliary variables) to
obtain, at least at linear order in spin, a simplified bracket for the reduced number of variables
pµ ,xν ,SIJ (see subsection 3.2.4). This system was then easy to cover by approximate canonical
coordinates and thus to study by symplectic integration [158].

Concerning the possibility to reduce the variables in the case of other supplementary
conditions, the TD condition SµνPν = 0 applied as a constraint leads to a very complicated
Dirac bracket that mixes the spin and momentum degrees of freedom. As a result, it is very
difficult to find the canonical coordinate basis for the TD-constrained bracket.
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Then again, as discussed in subsections 3.2.1 and 3.2.2, the KS and MP condition in fact
do not allow to reduce the number of evolved variables to the same extent as the TD and
NW/CP conditions. A closer inspection shows that the KS and MP conditions cannot even be
formulated as a constraint on the phase space pµ ,xν ,SAB, and the Poisson bracket will thus
always be (3.32). Hence, for the purposes of the TD, KS, and MP conditions we have decided
to find the canonical coordinates covering the full phase-space pµ ,xν ,SAB for the unconstrained
bracket (3.32).

3.4.2 Canonical coordinates on the spin sector

The pµ ,xν part of the phase-space coordinates is already canonical, so we are looking for
canonical coordinates covering the spin tensor SAB. To find the canonical coordinates, we
mimic the procedure of Tessmer et al. [263] by expressing SAB as a simple constant tensor SÂB̂

in some “body-fixed frame” plus a Lorentz transformation ΛA
Â

into the “background frame”
eA

µ . The parameters of the transformation, when chosen appropriately, then turn out to be
canonically conjugate pairs of coordinates.

The details of the procedure are described in Appendix A.5, and I only summarize here the
resulting coordinates

A = S12 −
√

(S12)2 +(S23)2 +(S31)2 , (3.60a)

B =
√
(S12)2 +(S23)2 +(S31)2 −S , (3.60b)

φ = arctan
(

S31

S23

)
, (3.60c)

ψ = arctan
(

S31

S23

)
− arccos

(
S03

√
C
)
, (3.60d)

C =
(S12)2 +(S23)2 +(S31)2

[(S13)2 +(S23)2] [(S01)2 +(S02)2 +(S03)2]
. (3.60e)

Even though the construction in Appendix A.5 provides the derivation of these coordinates, one
may simply compute their Poisson brackets directly. The brackets then are {φ ,A}= {ψ,B}= 1
and 0 otherwise.
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The inverse transformations from the canonical coordinates to the spin tensor read

S01 = D [Acos(2φ −ψ)+(A+2B+2S)cosψ] , (3.61a)

S02 = D [Asin(2φ −ψ)+(A+2B+2S)sinψ] , (3.61b)

S03 =−2DE cos(φ −ψ) , (3.61c)

S12 = A+B+S , (3.61d)

S23 =−E cosφ , (3.61e)

S31 = E sinφ , (3.61f)

D =−
√

B(B+2S)
2(B+S)

, (3.61g)

E =
√
−A(A+2B+2S) . (3.61h)

The coordinates cover the space of general antisymmetric tensors with a degenerate time-
like direction and a closer consideration reveals a number of similarities with hyperspherical
coordinates in R4.

The canonical coordinates have singularities at B = 0 and A = 0,−2(B+S), which have
the character similar to those of the singularities at r = 0 and cos(ϑ) = 1,−1 in spherical
coordinates in R3. As a result, the physical coordinate ranges then are B ∈ (0,∞) and A ∈
(−2(B+S),0). The coordinates φ ,ψ are simple angular coordinates similar to the azimuthal
angle ϕ in spherical coordinates in R3, and they both run in the [0,2π) interval. More details
about the coordinate singularities are discussed in Appendix A.5.

One last remark I would like to draw attention to is that the coordinates φ ,ψ are dimen-
sionless and have finite limits as S → 0, whereas A,B have the dimension of the spin and
should generally go to zero when S → 0. However, if we keep a ≡ A/S,b ≡ B/S finite, then
the evolution of the coordinates a,b,φ ,ψ can be used to track the evolution of a “test spin”, i.e.
an intrinsic spin of the particle that is transported along the trajectory while not exerting any
back-reaction on the orbit itself.

There is a special limiting case when A,B can remain finite while S → 0, and that corre-
sponds to the body-fixed frame being infinitely boosted with respect to the background frame
and the vanishing direction of the spin tensor becoming light-like. This particular limit may be
useful for the description of massless particles with spin but we consider it to be physically
meaningless for the current context of massive bodies.
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3.5 Special planar motion

I will now present the results of a small showcase study we conducted in [293] that allows
to demonstrate the power and character of the canonical coordinates. We considered motion
in the equatorial plane of the Schwarzschild space-time under the KS condition. Then we
required that both the four-velocity and the spin tensor are initially vanishing in the ϑ direction,
Sµϑ = 0,= ϑ̇ = 0. One can then easily compute that

d2ϑ

dτ2 = 0 , (3.62)

dSµϑ

dτ
= 0 . (3.63)

In other words, the conditions Sµϑ = 0, ϑ̇ = 0 are satisfied throughout the motion.
A similar system restricted to the equatorial plane can be formulated by requiring Pϑ =

Sµϑ = 0 also for the MP and TD conditions, and, furthermore, the background could be
generalized to the Kerr space-time. However, we chose to study the special planar problem
only in the KS incarnation and in the Schwarzschild space-time because of its simplicity.

It should also be noted that this system is more general than the motion of a particle with the
spin vector aligned in a normal direction to the equatorial plane; such motion can be acquired
from the system described below by setting B = 0. However, for B ̸= 0 the motion is different
from the aligned-spin case. The spin vector undergoes nutations and exerts non-uniform torques
on the orbit that, nonetheless, never push the worldline out of the equatorial plane.

3.5.1 The Hamiltonian

For our computations, we chose the coordinate-aligned tetrad in the usual Schwarzschild
coordinates t,ϕ,r,ϑ : e0

µ =
√
−gttδ

t
µ , e1

µ =
√gϕϕδ

ϕ

µ , e2
µ =

√
grrδ

r
µ , e3

µ =
√

gϑϑ δ ϑ
µ . The choice

of the tetrad and even the order of the legs are important for the final form of the Hamiltonian
and the physical interpretation of the quantities appearing in it. However, the choice of the
tetrad never matters for the real physical evolution of the KS, TD, or MP conditions (unlike in
the case of the NW/CP condition where the choice ∼ ξ µ ∼ eµ

0 is crucial [140]).
The condition Sϑ µ = 0 then means either A = 0 or A =−2(B+S) for S12 > 0 and S12 < 0

respectively. Here we chose S12 > 0, and φ thus becomes a redundant coordinate (see more
details in Appendix A.5). In a typical right-hand-oriented interpretation and for an orbit with
positive ϕ̇ , this corresponds to a spin vector counter-aligned to the orbital angular-momentum
vector.
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Finally, the Hamiltonian (3.37) expressed in canonical coordinates in the case of the special
planar motion reads

HSP =
1

2m

[
−1

1−2M/r

(
pt −

M
√

B(B+2S)sinψ

r2

)2

(3.64)

+

(
1− 2M

r

)
p2

r +
1
r2

(
pϕ −

√
1− 2M

r
(B+S)

)2]
.

The system has two obvious integrals of motion pϕ , pt , since the coordinates t,ϕ are cyclic.
However, it should be noted that the orbital angular momentum and energy will generally vary
during the evolution since they relate to the phase-space coordinates as

ut =
1
m

(
pt −

M
√

B(B+2S)sinψ

r2

)
, (3.65)

uϕ =
1
m

(
pϕ − r5/2(B+S)√

r−2M

)
. (3.66)

3.5.2 Poincaré surfaces of section

We constructed the special planar problem so that only two degrees of freedom become dynami-
cally important, r, pr, and ψ,B. Since the trajectory is also constrained by four-velocity normal-
ization, all the phase-space trajectories of a given pϕ , pt are then confined to a 3-dimensional
hypersurface. We made a natural Poincaré surface of section through this hypersurface by
sampling this set of trajectories and recording the phase-space variables every time ψ finishes
a 2π cycle. Thanks to this construction, we obtained well-defined 2D Poincaré surface of
section, whereas in the general case the surface of section becomes higher-dimensional and
new methods need to be employed for visualization [see 157].

We integrated the trajectories using the 6-th order Gauss collocation scheme with a
fixed-point iteration of the collocation points [see, e.g., 107]. Additionally, we exploited
the parametrization invariance of the trajectory by using a time parameter λ such that

dλ

dτ
=

r2
0

r(r−2M)

S√
B(B+2S)+ ε

, (3.67)

where ε,r0 are constants we set to 10−4,10M respectively. This effective time-stepping does
not spoil the symplecticity of the integrator because the respective equations of motion can be
generated by a Hamiltonian of the form (3.46).
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Fig. 3.1 Poincaré surfaces of section for the special planar problem at pt/m =−0.97, pϕ/m =
3.7M created by snapshots after every 2π-cycle in the spin-angle ψ . The left column corre-
sponds to S/m = 0.05M and the right column to S/m = 0.1M. The outer parts of the nested
sections correspond to small B/S whereas the inner parts to growing B/S. The left column
features a smaller number of orbits because the “outer” orbits are not bound and plunging into
the black hole.
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Fig. 3.2 Detail of a Poincaré surface of section of a single chaotic trajectory at pt/m =
−0.97, pϕ/m = 3.7M,S/m = 0.05M (compare with left column of fig. 3.1). The trajectory
was integrated over ∼ 105 spin cycles (∼ 104 orbital cycles). For more than a half of that time
the orbit would stay in the “darker” fractal layer around the resonance to be later released into
the general separatrix chaos.

With this theoretical construction in place and by using a standard single-thread computation
in C++, we were able to integrate through 104 spin cycles within minutes at a relative error
less than 10−12 in the four-velocity normalization. Of course, such efficiency and long-
term accuracy would hardly be possible without the canonical coordinates and geometrical
integration. This is an important point of the present section.

Generally speaking, the dimensionless parameter S/(Mm) can be understood as a pertur-
bation strength non-linearly coupling two exactly integrable systems, the geodesic motion in
Schwarzschild space-time, and the parallel transport of the “test spin” on top of that geodesic.
As such, the dependence of the phase portrait of the special planar problem on the particle
spin should have the same characteristics as any weakly non-integrable system [e.g. 16]: The
originally smooth phase-space foliation by regular oscillations of the trajectories should now
feature occasional “breaks” in the form of resonances and thin chaotic layers.

In order to show and demonstrate the presence of such structures, we probed values of
pt , pϕ so that phase-space trajectories in the studied congruence are near unstable circular
orbits in the original geodesic flow. This is because the neighboring phase space also contains
the “homoclinic” infinite whirl-zoom orbits that are well known to act as “seeds of chaos” in
perturbed black hole space-times [see, e.g., 240, 241, 256, 292]. However, as can be seen from
equations (3.65) and (3.66), the variations of S also have the unfortunate effect of shifting the
meaning of pt , pϕ , and this easily pushes us into the phase-space regions of orbits plunging
into the black hole.
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As already discussed in section 3.1, we should be already imposing self-force effects along
with the spin-force even for the smallest values of S/(mM) in a self-consistent physical model.
Thus, it does not make sense to study the influence of the spin beyond perturbation-like values
and we chose to study only S/(mM)≤ 0.1.

In addition, the ratio B/S is equal to γ − 1, where γ is the usual gamma factor of the
Lorentz boost from the body-fixed frame to the background frame (see Appendix A.5). The
unconstrained nature of the KS condition allows this γ to be arbitrary, but we believe that if it
becomes too large, the world-line becomes shifted outside of the interior of the real physical
body, and the system of equations instead obtains the character of some sort of perturbed
geodesic-deviation equation. Hence, we only allow B/S ≲ 5 in our initial conditions.

I show two Poincaré surfaces of section in the relevant ranges in fig. 3.1. In these sections,
we were able to find resonances corresponding to ratios as low as 1 : 1 or 1 : 2 in the spin-orbital
frequencies. Additionally, small chaotic layers can be found near the saddle points of the
resonant chains (see fig. 3.2).

As we went to smaller values of S/(mM)≲ 0.01, the resonances became extremely thin, and
most of the chaotic structure had to be disqualified based on the criterion B/S ≲ 5. If we were
to ignore the B/S criterion and allowed B/S ≳ 10, we could find chaos up to S/(mM)∼ 10−3.

3.5.3 Comparison with previous results

Let me now briefly compare these results with the study of Lukes-Gerakopoulos et al. [157],
who studied the chaotization of general orbits of spinning particles in Kerr space-time while
using the NW-condition Hamiltonian of Barausse et al. [24]. The motion of non-planar orbits
with general spin orientations leads to richer dynamics, as an additional degree of freedom
enters the interactions. Consequently, Lukes-Gerakopoulos et al. found chaotic motion in the
phase space until S/(mM) = 10−3.

At face value, it might not be obvious whether our findings are in tension or in agreement
with those of Lukes-Gerakopoulos et al. [157]. As discussed in subsection 3.2.4, the NW
condition constrains one more degree of freedom than the KS condition. Consequently, an
analogous special planar motion Pϑ = ẋϑ = Sµϑ = 0 would in fact have only a single active
degree of freedom under the NW condition and would thus be integrable at any value of spin.
Additionally, even the non-planar motion under the NW Hamiltonian of Barausse et al. [24] is
integrable to linear order in S in Schwarzschild space-time, at least under the right choice of
ξ µ [140].

In this sense, our study added a result to this chain of research by showing that the KS+MPD
system is not integrable in Schwarzschild space-time even in the planar case. Hence, one should
be cautious in issuing general statements about the (non)-integrability and chaos in MPD
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equations near black holes, because such statements seem to be dependent on the context and
approximations made.

It is difficult to study weakly chaotic systems in a systematic manner, but it would be
interesting to see whether we can identify for each supplementary condition to which perturba-
tion order the non-integrability corresponds. For instance, if the system is non-integrable at
linear-in-spin order, then the resonant layers should grow as ∼

√
S/(mM). On the other hand,

if it is integrable to that order and integrability is broken only at quadratic order, the resonances
should grow as ∼ S/(mM). A well designed survey of these properties could help clarify the
questions of integrability and non-integrability for spinning particles near black holes, and I
suggest this as a possibility for future studies.

3.6 Hamilton-Jacobi equation for spinning particles

Having a set of canonical coordinates in hand, it is possible to formulate a Hamilton-Jacobi
equation. We simply need to postulate an action W (xµ ,ψ,φ), insert its gradients in place of the
respective momenta in any of the Hamiltonians (3.37), (3.41) or (3.43), and solve the resulting
partial differential equation. In this section, I present how to do so perturbatively in the Kerr
space-time.

3.6.1 Perturbative problem

Let us now compute the first perturbation to the Hamilton-Jacobi equation for an action
W (r, t,ϕ,ϑ ,ψ,φ) corresponding to either the Hamiltonian (3.37) or (3.41). Note that the
action is also dependent on the coordinates φ ,ψ , and A = W,φ ,B = W,ψ . The spin-tensor
components are then given functions of these variables as given in equations (3.61).

The zeroth iteration of the Hamilton-Jacobi equation neglects all spin-dependent terms and
we obtain

gµνW (0)
,µ W (0)

,ν =−1 , (3.68)

which is just the geodesic problem with the well-known solution by Carter [49] presented in
section 1.4.

Let us now iterate the Hamilton Jacobi equation with a new action that is assumed to fulfill
W (1) =W (0)+O(Sα) with some α > 0. If we then allow only for the lowest-order correction
to the Hamilton-Jacobi equation coming either from the TD Hamiltonian (3.41) or the KS
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Hamiltonian (3.37), we obtain

gµνW (1)
,µ W (1)

,ν − eAκeκ
B;νSABW (0),ν =−1 (3.69)

Now it appears that the choice of the tetrad eµ

A and thus also implicitly the orientation of the
canonical coordinates on the spin tensor will be crucial to the separability of the problem.

3.6.2 Adapted tetrad

Let us construct a special “geodesic-adapted" tetrad which turns out to be identical to that of
Marck [162]. We take a geodesic congruence uµ

c =W(0),µ with Carter constant Kc, azimuthal
specific angular momentum Lc and specific energy Ec. The zeroth leg of the tetrad is then
defined as the geodesic four-velocity eµ

0 = ucµ , the third leg as e3
µ = Yµνuν

c /
√

Kc, where Yµν is
the Killing-Yano tensor in the Kerr metric, and the two other legs read

e1
µ =

1√
K(2)

c +K2
c

(
Kµν +Kcgµν

)
uν

c , (3.70)

e2
µ =

1√
K(3)

c − (K(2)
c )2/Kc

(
Kµν −

K(2)
c

Kc
gµν

)
Y ν

κuκ
c , (3.71)

K(2)
c = KµνKν

κuµ
c uκ

c , (3.72)

K(3)
c = KµνKν

κKκ
γ uµ

c uγ
c . (3.73)

(3.74)

Thanks to this construction a number of projections of the spin connection components into
the four-velocity vanish as e0

µ;νuµ
c = e3

µ;νuµ
c = 0.The only nonzero components of eAκeκ

B;νW (0),ν

then are e1κeκ
2;νW (0),ν = −e2κeκ

1;νW (0),ν and one can obtain with the strong assistance of
computer algebra

e1κeκ
2;νW (0),ν =

√
Kc

Σ

(Ec(r2 +a2)−aLc

r2 +Kc
−a

Lc −aEc sin2
ϑ

Kc −a2 cos2ϑ
+

2a(Lc −aEc)

Kc

)
. (3.75)

It should be noted that the original formula of Marck [162] for the same quantity contains a
mistake.
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3.6.3 Separable solution

When we insert the adapted tetrad into equation (3.69) we see that it does not contain any
reference to ψ,φ , and A,B are thus constants of motion in the perturbed problem.

By assuming a separable action W (1) = Esot +Lsoϕ +φB+ψA+Wr(r)+Wϑ (ϑ) we then
obtain

(W ′
ϑ )

2 =Kso −
(

Lso

sinϑ
−aEso sinϑ

)2

−a2 cos2
ϑ (3.76)

−2aS12√Kc
Lc −aEc sin2

ϑ

Kc −a2 cos2ϑ
,

∆(W ′
r )

2 =−Kso +
1
∆

(
Eso(r2 +a2)−aLso

)2 − r2 (3.77)

−2S12√Kc
Ec(r2 +a2)−aLc

r2 +Kc
,

where Kso is a separation constant similar to the Carter constant and S12 = A+B+ S. The
spin-orbital integrals of motion Kso,Eso,Lso have to be chosen as equal to their background
congruence counter-parts Kc,Ec,Lc only up to O(S) corrections. Furthermore, these corrections
can be chosen as free functions of constants of motion.

Let us compare the integrals of motion with the now non-constant orbital functions defined
as

Eo ≡−ut (3.78)

Lo ≡ uϕ (3.79)

Ko ≡ (uϑ )
2 −
(

Lo

sinϑ
−aEo sinϑ

)2

+a2 cos2
ϑ . (3.80)

Recall that uµ =W,µ − eAκeκ
B;µSAB/2. The true integrals of motion of the spin-orbital system

can then be related to the orbital functions defined above as

Eso = Eo +
1
2

ΓABtSAB , (3.81)

Lso = Lo −
1
2

ΓABϕSAB , (3.82)

Kso = Ko − eAκeκ
B;ϑ uϑ SAB +

(
Lo

sinϑ
−aEo sinϑ

)(
ΓABϕ

sinϑ
+asinϑΓABt

)
SAB

−a
√

Kc
Lc −aEc sin2

ϑ

Kc −a2 cos2ϑ
S12 ,

(3.83)
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where we have used the fact that the tetrad is independent of t,ϕ and ΓABκ ≡ Γµνκeµ

Aeν
B. We

have also discarded O(S2) terms.
We can now see that the four-velocity will mostly be O(S) close to the geodesic velocity

with orbital parameters Ko,Eo,Lo. However, at turning points or for planar and purely radial
orbits, the spin effects induce an O(

√
S) deviation from the geodesic four-velocity. This is only

an artifact of the non-smoothness of the coordinates xµ , pµ for the description of the trajectory
around turning points; in action-angle coordinates the O(

√
S) shifts should transform to O(S)

corrections.

3.6.4 Integration of orbits

The equations for the (r,ϑ) orbital shape in Mino time read

dr
dλ

= ∆

(
W ′

r −
1
2

eAκeκ
B;rS

AB
)
, (3.84a)

dϑ

dλ
=W ′

ϑ − 1
2

eAκeκ
B;ϑ SAB . (3.84b)

These are not separable, which can be easily see e.g. from the appearance of terms involving
sin(ψ) or cos(ψ) in SAB. However, already at this level we see that the system reduces to two
first-order non-linear differential equations which, due to the Darboux theorem, cannot be
chaotic.

We can rewrite the equations as

dr
dλ

= R̄(r)− 1
2

δγr , (3.85)

dϑ

dλ
= Θ̄(ϑ)− 1

2
δγϑ , (3.86)

γµ ≡ eAκeκ
B;µSAB , (3.87)

R̄(r)≡ ∆W ′
r +

∫ 2π

0
∫

γr/W ′
ϑ

dϑdψ

2π
∫

1/W ′
ϑ

dϑ
, (3.88)

Θ̄(ϑ)≡W ′
ϑ +

∫ 2π

0
∫

γϑ/(∆W ′
r )drdψ

2π
∫

1/(∆W ′
r )dr

, (3.89)

δγr ≡ γr −
∫ 2π

0
∫

γr/W ′
ϑ

dϑdψ

2π
∫

1/W ′
ϑ

dϑ
, (3.90)

δγϑ ≡ γϑ −
∫ 2π

0
∫

γϑ/(∆W ′
r )drdψ

2π
∫

1/(∆W ′
r )dr

, (3.91)
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where the integration bounds in the definition of R̄ and Θ̄ are between the zeros of W ′
ϑ
,W ′

r

respectively.
Now consider a transformation to a set of deformed local coordinates given as r̃ = r +

SR̄χr(r,ϑ), ϑ̃ = ϑ +SΘ̄χϑ (r,ϑ) such that

χr,rR̄+χr,ϑ Θ̄ =
1

2SR̄
δγr , (3.92)

χϑ ,rR̄+χϑ ,ϑ Θ̄ =
1

2SΘ̄
δγϑ . (3.93)

Then it is easy show that up to O(S2) terms the equations of motion transform into

dr̃
dλ

= R̄(r̃) , (3.94)

dϑ̃

dλ
= Θ̄(ϑ̃) , (3.95)

(3.96)

To obtain the real orbital shape, we must integrate χr,χϑ . For that we notice that the left-hand
sides of equations (3.92) and (3.93) can be rewritten with d/dλ and at the given order of
approximation we obtain

dχr

dλ
=

1
2SR̄(r̃)

δγr(r̃, ϑ̃) , , (3.97)

dχϑ

dλ
=

1
2SΘ̄(ϑ̃)

δγϑ (r̃, ϑ̃) , (3.98)

If we have a quasi-periodic trajectory, then by averaging and by the construction of δγµ we see
that the long-term secular growth of the shift functions χµ will be zero. If we then set χµ = 0
initially, we see that the average of χµ will also be zero, and the coordinates r,ϑ and r̃, ϑ̃ stay
close at all times.

I hope that I have convinced the dear reader of the power of the Hamiltonian approach to
spinning particles. On the other hand, I believe that it is also clear that more work needs to be
done to fully exhaust its potential. On this note, I would like to pass to the next Chapter, where
the other works of my PhD are introduced and commented upon.



Chapter 4

Context and results of the appended
papers

I now provide a few comments to the appended papers that might serve as an “extended
introduction” for readers not strictly acquainted with the respective sub-fields. To facilitate the
reading of the thesis, I also summarized the most important results. Additionally, each section
has a Statement of contribution to paper at the very end, where I specify the contributions of
the individual authors. These comments are slightly less formal, and the reader is expected to
read the papers for more complete discussion and lists of references.

I append the four published papers as downloaded from the respective journal websites.
The fifth paper that I wrote during my PhD and which is currently in review was not allowed to
be appended due to the rules of the University of Bremen. The kind reader can find the preprint
at arXiv:1808.06582, and its results restated in Chapter 3.

4.1 Pseudo-Newtonian Equations for Evolution of Particles
and Fluids in Stationary Space-times

Full reference (short ref.: [291]): Witzany, V., & Lämmerzahl, C. (2017). Pseudo-Newtonian
Equations for Evolution of Particles and Fluids in Stationary Space-times. The Astrophysical
Journal, 841(2), 105. Preprint at arXiv:1601.01034.

A preliminary advertisement of our work was given in the proceedings [290].

Context: Consider the Bondi flow discussed in subsection 2.1.2. We see that the key inter-
actions happen at the Bondi radius rB = 2M/vs∞, where the speed of sound in the faraway

https://arxiv.org/abs/1808.06582
https://arxiv.org/abs/1601.01034
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gas is realistically vs∞ ≪ 1, and the relativistic corrections to the Newtonian picture come
with a characteristic length-scale rg = 2M. Considering all the other approximations such as
spherical symmetry, stationarity, and perfect-fluid evolution, it is only natural to absolutely
ignore relativistic corrections to the far-field regulation of accretion.

Let us now approach the black hole a little bit closer and examine the formulas for the
Keplerian rotation in the Newtonian and relativistic case (assuming non-spinning black hole)

ΩNewt. =

√
M
r3 , ΩRel. =

√
M
r3 , (4.1)

LNewt. = m
√

Mr , LRel. = m

√
Mr

1−3M/r
, (4.2)

ENewt. = m
(

1− M
2r

)
, ERel. = m

1−2M/r√
1−3M/r

, (4.3)

(4.4)

where I have tentatively included the rest-mass term into the Newtonian expression for energy.
Of course, there is the issue of identifying the Schwarzschild radius r with the flat Euclidean
radius, but as long as we allow for that identification, we see that the rotation frequencies in a
Keplerian disk are absolutely identical in the Newtonian and relativistic case. On the other hand,
the angular-momentum and the binding energy at the inner edge of the disk at rms = 6M would
be predicted by the Newtonian formulas with a relative error of 40% and 10% respectively.

Considering the systematic errors common in astronomy and astrophysics, this would not
necessarily be a major issue for first-approximation models (especially the binding energy
defining the overall luminosity of the disk is almost correct). However, the bigger issue with
the Newtonian gravity is that the circular orbits are stable up to the very point r = 0 and the
disk will simply not have an inner edge at r = 6M. Nevertheless, it is easy to write simple
Newtonian potentials that will have circular orbits becoming unstable at 6M. These are the
so-called pseudo-Newtonian potentials, and they were used in some important accretion studies
such as that of Proga and Begelman [217] and Abramowicz et al. [12] mentioned in the previous
chapter. Our study Witzany and Lämmerzahl [291] explores this topic in a somewhat more
systematic manner.

Summary of results: We gave a universal prescription for a pseudo-Newtonian potential in
any given stationary space-time. This prescription exactly reproduces all the orbital shapes in
the given space-time, albeit under a different time parametrization – all that without beforehand
knowledge of the structure of the orbits. The prescription yields closed and highly useful
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formulas in static space-times, such as the Schwarzschild space-time, but in the general
stationary space-times such as Kerr with a ̸= 0, the gravitomagnetic terms in the metric make
the formalism complicated.

Statement of contributions to paper: I derived the entire theoretical formalism, researched
the literature, created the plots, and wrote the majority of the text of the paper. Claus Läm-
merzahl wrote parts of the Introduction of the paper, and was responsible for critical revisions
of the writing, explanations, and organization of the paper.

4.2 Conservation laws and evolution schemes in geodesic,
hydrodynamic, and magnetohydrodynamic flows

Full reference (short ref.: [163]): Markakis, C., Uryū, K., Gourgoulhon, E., Nicolas, J. P.,
Andersson, N., Pouri, A., & Witzany, V. (2017). Conservation laws and evolution schemes in
geodesic, hydrodynamic, and magnetohydrodynamic flows. Physical Review D, 96(6), 064019.
Preprint at arXiv:1612.09308.

Context: The geometrical approach to fluid equations is a fascinating topic already on the
level of Newtonian mechanics. For instance, an elegant result of this approach is Kelvin’s
circulation theorem that states that when we choose any co-moving loop within a perfect
fluid, then the integrated projection of the velocity of the fluid on the loop will never change.
The investigation of these topics in relativistic fluid and magnetofluid dynamics is of high
importance to their analytical theory and computer simulations. In astrophysics, this is relevant
both for the magnetized plasma in accretion-disk physics, but also for the dense environment of
magnetized neutron stars.

The purpose of our paper with Markakis et al. [163] was to generalize such theorems to
relativistic hydrodynamics and magneto-hydrodynamics, or to even find non-trivial extensions
not obvious outside of the relativistic formalism.

Summary of results: The main result of the paper is casting the dynamics of an ideally
conductive magneto-fluid in a variational principle along its stream-lines. This allows a version
of the Kelvin theorem valid for magnetofluids to be naturally derived from the respective
Hamiltonian theory and its Poincaré invariants. Other results include re-expressing the stream-
lines as geodesics in Finsler metrics, and constructing the equations of magnetofluids in a
“comoving” hyperbolic form.

https://arxiv.org/abs/1612.09308
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Statement of contributions to paper: The major part of the writing and theoretical deriva-
tions are due to the other authors of Markakis et al. [163]. My direct contributions, in partic-
ular, were to sections B.5 on the generalization of the Carter constant in fluids, section C.1
on Hamiltonians for fluid streamlines, section D.7 on the Bekenstein-Oron formulation of
magneto-hydrodynamics, and Appendix C on Hamiltonians for various parametrizations of the
streamlines.

4.3 Exploiting the hidden symmetry of spinning black holes:
conservation laws and numerical tests

Full reference (short ref.: [288]): Witzany, V. (2017). Exploiting the hidden symmetry of
spinning black holes: conservation laws and numerical tests. Monthly Notices of the Royal
Astronomical Society, 473(2), 2434-2440. Preprint at arXiv:1709.03330.

Context: Current astrophysical simulations are built with only the axi-symmetry and station-
arity of the Kerr metric in mind. In particular, the hidden symmetry of the Kerr space-time
(discussed in subsection 1.4.2) is left completely unused in modern numerical computations. In
Witzany [288], my aim was to investigate whether this can be changed. In principle, if there
were identities and additional “hidden” conservation laws that could be used on top of usual
conservation of mass-energy and angular-momentum fluxes, we would potentially obtain a
great tool both for theoretical and numerical computations.

Summary of results: I showed that any continuum that can be understood as an ensemble
of particles with occasional collisions will not conserve its sum of Carter constants. In other
words, it is unlikely that a hidden conservation law for general, nonlinearly interacting matter
fields will exist. Despite this no-go result, I found expressions that can be understood as
“weak” conservation laws, and I demonstrated that they can be, in principle, used to test
numerical simulations beyond what can be achieved with commonly employed checks of
angular-momentum and energy conservation.

Statement of contributions to paper: As the single author, I have full credit for every aspect
of the paper.

https://arxiv.org/abs/1709.03330
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4.4 New closed analytical solutions for geometrically thick
fluid tori around black holes

Full reference (short ref.: [289]): Witzany, V., & Jefremov, P. (2018). New closed analytical
solutions for geometrically thick fluid tori around black holes – Numerical evolution and the
onset of the magneto-rotational instability. Astronomy & Astrophysics, 614, A75. Preprint at
arXiv:1711.09241.

Context: As discussed in subsection 2.2.5, numerical simulations of accretion disks are
typically initialized by fluid tori in equilibrium around the black holes. The point of having
the tori in equilibrium is that if the state is in fact very far from equilibrium, its evolution will
be very abrupt and the simulations would require very careful and computationally expensive
treatment to be convergent (see subsection 2.2.5). In Witzany and Jefremov [289], we have
summarized our efforts of finding new closed formulas for such initial conditions.

Summary of results: The tori we have found considerably widen the landscape of closed
formulas that can be used in accretion-disk simulations. As a showcase study, we have also
implemented the tori in the publicly available general-relativistic magneto-hydrodynamics code
HARM, and evolved them numerically. We documented the onset of the magneto-rotational
instability, accretion from the torus, and various other properties. The results of our simulations
are not of direct physical importance, but the irregular dependence of certain aspects of the
accretion flow on the initial data challenge the predictivity of current numerical studies.

Statement of contributions to paper: I researched the relevant literature, wrote the majority
of the text of the paper, implemented the initial conditions in the HARM code, and ran the
simulations on the ZARM computer clusters. The analytical derivations, analysis and discussion
of the simulation results, and preparation of the plots were joint efforts with Pavel Jefremov.

https://arxiv.org/abs/1711.09241
https://arxiv.org/abs/1711.09241
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Appendix A

Derivations for Hamiltonians for spinning
particles

A.1 The generalized KS conditions

The sole condition that we need to be fulfilled for Ṡκλ = 0 to hold is that Ṡµνwν = 0 for some
time-like wν . From equation (3.6) projected into wν we then get

wν ẋν Ṡκλ = 0 . (A.1)

Since the product of any two time-like vectors is non-zero, we then get simply Ṡκλ = 0. The
supplementary condition can thus be of the form Sµνwν = mµ with

Sµν ẇν = ṁµ , (A.2)

because then we will have Ṡµνwν = 0. The meaning of mµ is the mass dipole moment in the
frame wµ . In other words, whenever mµ ̸= 0, xµ(τ) does not describe the center of mass in the
wµ frame but a slightly shifted position.

In the case when mµ = 0, we get that ẇν must lay in the degenerate directions of the spin
tensor, ẇν = αwν +β sν with α,β arbitrary functions of any variables [239]. Nonetheless,
we may generally set mµ ̸= 0 and then the only condition on the evolution is Eq. (A.2). One
particular option is ẇµ = ṁµ = 0.

However, it should be noted that only the initial choices of wµ ,mν matter. This can be
seen from the fact that if the equations of motion are expressed in terms of Sµν , we need no
reference to ẇµ , ṁν as long as equation (A.2) is satisfied.
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In conclusion, once we allow for mµ ̸= 0, the initial conditions for Sµν are completely
unconstrained. The study of d’Ambrosi et al. [65] can be understood as conducted exactly in
the mµ ̸= 0 generalized KS condition.

One last remark is that the vector mµ represents a mass dipole in the frame wµ , and by
setting its dynamics to fulfill different evolution equations than in Eq. (A.2), we can in fact
obtain other supplementary conditions [201].

A.2 The expression for ...x µ under MP condition

Take equations (3.5) and (3.7) to obtain

(mẋµ + ẋγ Ṡγµ )̇ =−1
2

Rµ

νκλ
ẋνSκλ . (A.3)

Now use Sµν ẋν = 0 along with its time-derivatives and the fact that ẋγ ẍγ = 0, ẋγ Ṗγ = 0 to
obtain [212]

mẍµ − ...x γSγµ =−1
2

Rµ

νκλ
ẋνSκλ . (A.4)

We now contract the expression above with Sνµ/S2 and partially re-express the result using the
spin vector sλ to obtain

...x κ

(
δ

ν
κ + ẋκ ẋν − sκsν

S2

)
=

m
S2 ẍµSν

µ +
1

2S2 Rµλκγ ẋλ SνµSκγ . (A.5)

In other words, we now have the expression for the jerk
...x ν on the subspace orthogonal to

sλ , ẋκ . The projection of the jerk into velocity can be computed from the second derivative
of four-velocity normalization as

...x µ ẋµ =−ẍµ ẍµ . For the projection of the jerk into the spin
vector, we use the Fermi-transport property ṡµ =−ṡν ẋν ẋµ to express ṡν ẍν = 0. This allows us
rewrite the projection as

sµ ...x µ =
D
dτ

(sµ ẍµ) . (A.6)

Hence, let us project Eq. (A.4) into sµ to obtain

sµ ẍµ =− 1
2m

Rµνκλ sµ ẋνSκλ . (A.7)

We now see that the time-derivative of ẍµsµ can be completely expressed by known functions
of xµ , ẋν , ẍκ ,sλ .
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From that, it is now easy to compose the complete prescription for the jerk only in terms of
the variables ẋµ , ẍλ ,sγ as

...x ν =
1
S2

(
mẍµ −⋆Rµλκγ ẋλ sκ ẋγ

)
ε

νµστ ẋσ sτ + ẍκ ẍκ ẋν (A.8)

+
1

mS2

(
⋆Rµλκγ;σ sµ ẋλ sκ ẋγ ẋσ +2⋆Rµλκγsµsκ ẋ(λ ẍγ)

)
sν .

A.3 Field-theoretic motivation for Poisson brackets

Let us assume a fixed 3+1 split of space-time which consists of a family of non-intersecting
spatial hypersurfaces Σt (we will suppress the t in the following) with coordinates xi and
induced metric di j, volume element dΣ =

√
d d3x. This means that our time parametrization is

fixed and what we expect to find is not strictly the parametrization-invariant Poisson bracket
(3.29), but rather a constrained bracket with new terms in the temporal sector [see 110, 109, for
more details].

We can now take a Lagrangian density L = L̃
√
−g (L̃ is the Lagrangian scalar) and

obtain a Hamiltonian density using the usual Legendre transformation

πa =
∂L

∂ (∂tφ a)
, → ∂tφa = f (πb,φ

b, ...) , (A.9)

H (πb,φ
b, ...) =

∂L

∂ (∂tφ a)
∂tφ

a −L , (A.10)

where φ a stands for a generic collection of fields. Note that πa is a density on Σ (not in the
whole space-time). In the following we will always assume that all the fields and momenta
vanish smoothly at the boundary of Σ (spatial infinity).

This system of fields and momentum densities then has the non-zero local Poisson brackets
(meaningful only when evaluated for fields at the same t)

{φ
a(xi, t),πb(yi, t)}= δ

a
b δ

(3)(xi − yi) , (A.11)
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where we can generate brackets for gradients by commuting the gradient with the bracket. It
can be shown that this generates a Poisson bracket for functionals

A(t)[π,φ ] =
∫

A (πa,πa,i,φ ,φ
a
,i,x

i, t)d3x , (A.12)

B(t)[π,φ ] =
∫

B(πa,πa,i,φ ,φ
a
,i,x

i, t)d3x , (A.13)

{A(t),B(t)}=
∫

δA

δφ a
δB

δπa
− δB

δφ a
δA

δπa
d3x , (A.14)

where A ,B are densities on Σ and δF/δ f is the variational derivative

δF

δ f
=

∂F

∂ f
− ∂

∂xi
∂F

∂ ( f,i)
, (A.15)

where we have assumed that F is dependent only on f and its first-order gradients (for higher
order gradients we get a series of analogous terms of varying sign).

A.3.1 Total momentum

Let us now define a particular momentum quantity Πµ that will play an analogous role as the
covariant momentum Pµ

Πµ(t)≡−
∫

Σ

T ν
µnνdΣ , (A.16)

where nν is the unit normal to Σ.
For this expression, we choose the canonical stress-energy tensor generated by diffeomor-

phism invariance rather than the Hilbert stress-energy tensor

T ν
µ =

∂L̃

∂ (φ a
,ν)

φ
a
;µ −δ

ν
µ L̃ . (A.17)

The momentum can then be rewritten as

Πµ(t) =−
∫

πaφ
a
;µ −δ

t
µL d3x . (A.18)

Namely, we have

Πt =−
∫

H + γ
a
tbπaφ

bd3x , (A.19)

where γa
µb are some connection coefficients for the covariant derivative of the fields φ a,

φ a
;µ = φ a

,µ + γa
µbφ b.
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We require that (φ aπa),µ = (φ aπa);µ and the validity of the Leibniz rule, which leads us to
the definition of the pseudo-covariant derivative of πa as πa;µ = πa,µ − γb

µaπb. This convention
is at odds with the usual convention for the covariant gradient of a density; its intuitive meaning
is that πa;µ is rather some kind of “total density variation” of πa.

Since {φ a(xi, t),H (yi, t)}= ∂tφ(xi, t)δ (3)(xi − yi) then we get

{φ
a(xi, t),Πt}=−φ

a
,t − γ

a
tbφ

b =−φ
a
;t(x

i, t) . (A.20)

For the spatial part we obtain similarly

{φ
a(x j, t),Πi}=−

∫
{φ

a,πbφ
b
;i}d3x =−φ

a
;i(x

j, t) . (A.21)

For the momenta we obtain analogously

{πa(xi, t),Πµ}=−πa,µ + γ
b
µaπb =−πa;µ(xi, t) . (A.22)

That is, at least for functions of fields and momenta which do not involve their gradients,
{·,Πµ} is minus the covariant gradient operator.

A.3.2 Mutual momentum brackets

We start by computing the bracket {Πµ ,Πν}. First we compute

{Πi,Πt}=
∫∫

{πc(φ
c
,i + γ

c
idφ

d),H + γ
a
tbπaφ

b}d3xd3y (A.23)

=−2
∫

πc;[iφ
c
;t]d

3x .

The spatial brackets then yield

{Πi,Π j}=
∫∫

{πc(φ
c
,i + γ

c
idφ

d),πa(φ
a
,i + γ

a
idφ

b)}d3xd3y (A.24)

=−2
∫

πc;[iφ
c
; j]d

3x .

In summary {Πµ ,Πν}=−2
∫

πc[;µφ c
;ν ]d

3x. On the other hand, in the brackets (3.29) we have

{Pµ ,Pν}=−Rαβ µνSαβ/2.
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We try to simplify the brackets further, starting with {Πi,Π j}. To do that we reexpress

πc;iφ
c
; j = (πcφ

c
; j),i −πcφ

c
| ji , (A.25)

φ
c
| ji ≡ φ

c
, ji + γ

c
ibφ

b
, j + γ

c
jbφ

b
,i + γ

c
jb,iφ

b + γ
c
jbγ

b
iaφ

a (A.26)

= φ
c
; ji −Γ

k
jiφ

c
,k ,

Although φ c
|i j is missing a part to be fully covariant with respect to the background space-time,

its antisymmetric part is in fact covariant and yields

φ
c
| ji −φ

c
|i j = Rc

b jiφ
b . (A.27)

We then assume that the field vanishes at the boundaries of Σ and obtain

{Πi,Π j}=
∫

πc; jφ
c
;i −πc;iφ

c
; jd

3x =−
∫

Ra
bi jπaφ

bd3x . (A.28)

For the {Πt ,Πi} bracket we can use a similar trick but some of the gradients will be with
respect to t and do not integrate out to boundary terms. As a result, we obtain

{Πi,Πt}=−
∫

Ra
bitπaφ

bd3x+
∫
(πcφ

c
;i),td

3x . (A.29)

In summary

{Πµ ,Πν}=−
∫

Ra
bµνπaφ

bd3x+δ
t
µ

dΠν

dt
−δ

t
ν

dΠµ

dt
. (A.30)

This is an exact relation for an arbitrary collection of fields vanishing at infinity and an arbitrary
3+1 split. Note that for a single scalar field the first term vanishes and we probably cannot
get anything resembling the Poisson brackets (3.29). In the next Section we briefly describe a
formal expansion of this relation.

A.3.3 “Monopole” approximation

Let us assume that the fields φ a,πb are non-vanishing only over a small volume as compared
to the variability length of the curvature. Then we can expand the integral from the {Πµ ,Πν}
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bracket as
∫

Ra
bµνπaφ

bd3x =Ra
bµν(x

i
W, t)

∫
πaφ

bd3x (A.31)

+Ra
bµν ;k(x

i
W, t)

∫
Xk

πaφ
bd3x

+ ... ,

where xi
W is some referential point inside the volume where the fields are non-vanishing, and

the vector field Xk(xi,xi
W, t) can be constructed, e.g., as the gradient of Synge’s world function

around xi
W [258]. If we take only the first term of this expansion, we obtain

{Πµ(t),Πν(t)}=− 1
2

Ra
bµν(x

i
W, t)S b

a (A.32)

+δ
t
µ

dΠν

dt
−δ

t
ν

dΠµ

dt
+ ... ,

S b
a ≡2

∫
πaφ

bd3x , (A.33)

where the spin tensor SAB corresponds to the antisymmetric part of S b
a drawn into tetrad

components.

A.3.4 {S b
a ,Πµ} bracket

Let us first compute the spatial part,

{S b
a ,Πi}=−2

∫∫
{πaφ

b,πcφ
c
;i}d3xd3y (A.34)

=−2
∫

πaφ
b
;i +πa;iφ

bd3x

=−2
∫
(πaφ

b),i + γ
b
idπaφ

d − γ
c
iaπcφ

bd3x .

The temporal part reads

{S b
a ,Πt}=−2

∫∫
{πaφ

b,H + γ
c
tdπcφ

d}d3xd3y (A.35)

=−2
∫
(πaφ

b),t + γ
b
tdπaφ

d − γ
c
taπcφ

bd3x .

The first term in the last line can be rewritten as dS b
a /dt.
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Assuming again a leading-order expansion of the integrals we obtain

{S b
a ,Πµ}=−γ

b
µdS

d
a + γ

c
µaS

b
c +δ

t
µ

dS b
a

dt
+ ... . (A.36)

This is in good correspondence to the respective Poisson bracket in (3.29).

A.3.5 {S b
a ,S d

c } bracket

{S b
a ,S d

c }=
∫∫

{πaφ
b,πcφ

d}d3xd3y = δ
b

c S d
a −δ

d
a S b

c . (A.37)

The corresponding Poisson bracket in (3.29) contains additional terms that follow once we
anti-symmetrize S b

a .

A.3.6 The world-line coordinate

The representative point for the “monopole” approximation defined above can be constructed
as

xi
W ≡

∫
xi f (φ aπa)d3x∫
f (φ aπa)d3x

(A.38)

With f an arbitrary differentiable, positive definite function of its argument. Then we can
compute

{x j
W,Πi}=−

∫
x j f ′(φ aπa)(φ

aπa),id3x∫
f (φ aπa)d3x

+

∫
x j f (φ aπa)d3x∫

f (φ aπa)d3x

∫
f ′(φ aπa)(φ

aπa),id3x∫
f (φ aπa)d3x

(A.39)

=

∫
(x j),i f (φ aπa)d3x∫

f (φ aπa)d3x
= δ

j
i .

That is, this is exactly the canonically conjugate coordinate we are looking for.
Quite naturally, the time coordinate tW is just t. In principle, we can then write the

commutation relation in a unified form that emphasizes the similarity with the other brackets
and thus the terms coming from the time-parametrization constraint

{xµ

W,Πν}= δ
µ

ν −δ
t
ν

dxµ

W
dt

. (A.40)

A.3.7 Discussion of field-theoretic motivation of Poisson bracket

A peculiar feature of the derivation given above is that the spin structure of the brackets comes
from the internal field structure already in a monopole, rather than a pole-dipole approximation.
However, for instance a perfect fluid can be described only by a set of scalar fields and would
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not generate these “spin dynamics”. Hence, the present derivation of the Poisson brackets
is not a fundamental reasoning as to why such a set of brackets should apply to the motion
of compact astrophysical objects. We thus understand the procedure given in this Appendix
merely as one of the possible motivations for the Poisson brackets (3.29). The procedure above
also provides an interesting field-theoretic background for the spinor and vector-based models
of classical particles with spin [53, 44, 17, 105, 220].

When I tried to derive brackets for higher-order multipoles, the attempt broke down as
inelegant non-covariant terms started mixing into the expressions. I am convinced that for a
generalization of the procedure above to higher multipoles, a more careful construction of the
multipolar expansion must be given. Namely, definitions of “vector-like” quantities such as Πµ

are not covariant even with respect to coordinate changes on Σ and covariant definitions with
similar properties must be found.

A.4 Constraining the Khriplovich Hamiltonian

A.4.1 Constraint theory

Let me first recapitulate some elements of Dirac-Bergmann constraint theory as presented for
example by Dirac [73], Hanson et al. [109].

Let Φa = 0 be a set of constraints on phase space we want to impose on the system, with a
some index labeling the constraints. Let us further assume that the matrix Cab ≡ {Φa,Φb} is
non-degenerate and we can thus find an inverse matrix C−1

ab . The goal is to find a Hamiltonian
H ′ which fulfills {Φa,H ′}= Φ̇a ∼= 0, where ∼= denotes an equality which is fulfilled under the
condition that all the constraints Φa = 0 hold. Such a Hamiltonian can be obtained from the
original one as

H ′ = H −{H,Φa}C−1
ab Φ

b . (A.41)

In the herein considered case we will be imposing the constraints of the form SµνVν = 0. By
counting the components of the constraint, we might be tempted to state that there are a total of
4 constraints imposed on the system. However, two components of the constraint are satisfied
trivially due to the identities SµνVνVµ = 0 and SµνVν⋆SµκV κ = 0. As a consequence, the
matrix Cµλ ≡ {SµνVν ,SλκVκ} will be degenerate on subspaces corresponding to these trivial
constraints. However, it can be easily seen that if we find any pseudo-inverse C†

µλ
, then the

following Hamiltonian will conserve the non-trivial parts of the constraint and thus also the
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whole set SµνVν = 0

H ′ = H −{H,SµνVν}C†
µλ

SλκVκ . (A.42)

The last remark to this procedure is that in the following we never constrain the Poisson algebra;
in other words, the Poisson brackets are always those given in (3.29). More details about this
topic are discussed in the main text in Section 3.4.

A.4.2 Obtaining the TD Hamiltonian

The first constraint that I apply to the Hamiltonian (3.37) is SµνPν = 0. The constraint algebra
yields

{SµνPν ,Sκλ Pλ} ∼=−M̃ 2Sµκ , (A.43)

M̃ 2 ≡−gµνPµPν +
1
4

Rµνκλ SµνSκλ . (A.44)

The pseudo-inverse of Sµκ on the constrained phase space is −Sνµ/S2 (cf. eq. (3.12)). The last
bracket that needs to be evaluated is

{HKS,Sκλ Pλ} ∼=
1

2m
RµνγχSκµPνSγχ . (A.45)

The constrained Hamiltonian then reads

HTD =
1

2µ
gµνPµPν +{HKS,Sκλ Pλ}

1
M̃ 2S2

SµκSµνPν

=
1

2µ

(
gµν +

1
M̃ 2

Rµ

χξ ζ
SχνSξ ζ

)
PµPν ,

(A.46)

where it is possible to apply ∼= equalities for expressions multiplied by the constraint SµνPν

without changing the resulting equations of motion. I also changed the notation m → µ because
as we will see, the meaning of the parameter µ is different from the definition (3.8). This
Hamiltonian generates the equations of motion parametrized by some parameter λ which does
not need to be equal to proper time τ . The equations of motion read
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x′µ ∼=
1
µ

(
gµν +

1
2M̃ 2

Rν

χξ ζ
SχµSξ ζ

)
Pν , (A.47)

P′µ ∼=−1
2

Rµ

νκλ
x′νSκλ , (A.48)

S′µν ∼= Pµx′ν −Pνx′ν , (A.49)

where we denote the derivatives D/dλ by primes. By comparing the equations above with
the MPD equations of motion under the TD supplementary condition (3.18) we see that the
parameter λ fulfills

dλ

dτ
=

µm
M 2 , (A.50)

where we have to substitute Eq. (3.19) for m. Another way to characterize the parametrization
under the condition that PαPα = −M 2 = −µ2 is that it holds that Pαx′α/M = −1. This is
exactly the parametrization introduced by Dixon [75] and vouched for by Ehlers and Rudolph
[81] (see also [156]). The Hamiltonian for world-lines parametrized by proper time is discussed
in the main text in Subsection 3.3.4. One should compare the above-given constraint procedure
with the analogous constraint procedure in the vector-variable model of Ramírez and Deriglazov
[220].

A.4.3 Other attempts

I also attempted to use the MP momentum-velocity relation (3.15) and thus to apply the
constraint Sµν(δ κ

ν +Sκλ Sλν/S2)Pν = 0. The problem is, however, that once the spin tensor
is degenerate, the identity Sµν(δ κ

ν + Sκλ Sλν/S2) = 0 holds automatically and has no time
derivative under the Kriplovich Hamiltonian. In other words, the MP condition expressed
in terms of momenta is satisfied by any degenerate spin tensor and it cannot be used in the
constraint procedure.

The Corinaldesi-Papapetrou condition Sµνξν = 0, where ξ ν(xµ) is now some fixed vector
field, can be applied as a constraint to yield the Hamiltonian

H =
1

2m
gµνPµPν +

1
mξ 2 ξν ;γPγSνκ

ξκ . (A.51)
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Yielding the equations of motion

x′′µ =− 1
2m

Rµ

νκλ
x′νSκλ − 1

ξ 2 ξν ;γx′γSνκ
ξ

;µ
κ , (A.52)

S′νκ =− 1
ξ 2 ξλ ;γx′γ(Sλν

ξ
κ −Sκλ

ξ
ν) . (A.53)

Nevertheless, this set of equations are not the MPD equations under the Corinaldesi-Papapetrou
condition.

A.5 Construction of canonical coordinates

Le us now consider the effective action for spinning bodies given by Steinhoff and Schäfer
[253]:

S =
∫

pµ ẋµ +
1
2

SABΩ
AB −Hdτ , (A.54)

where ΩAB ≡ ΛA
Â

dΛBÂ

dτ
and ΛA

Â
are the components of the “body-fixed frame” with respect to

the background tetrad eA
µ . The body-fixed frame is defined by the property that the spin tensor

is constant in it, SÂB̂ = const., and ΛA
Â

thus in fact carry the dynamical state of the spin tensor
along with gauge degrees of freedom.

I further assume here, unlike in Refs. [253, 250, 280], that the Hamiltonian H is only a
function of the gauge-independent pµ ,xν ,SAB. It is then easy to show that the equations of
motion following from δS = 0, where pµ ,xν ,ΛA

Â
,SAB are varied independently, imply

d f
dτ

= { f ,H} , (A.55)

where f is any function of pµ ,xν ,SAB and the bracket is given as in Eq. (3.32). In this sense,
our Hamiltonian-based approach can be understood, up to the discarding of the ΛA

Â
variables,

as equivalent to the action-based approach of Refs. [253, 250, 280].
We now realize that if the term SABΩAB/2 can be transformed into the form ∑i ρiχ̇

i with
ρi,χ

i some dynamical variables, then ρi,χ
i are the desired pairs of canonically conjugate

coordinates on the phase space. To do so, I mimicked the approach presented in Tessmer et al.
[263] and re-expressed

1
2

SABΩ
AB =

1
2

SÂB̂Λ
Â

A Λ
B̂

B Ω
AB =

1
2

SÂB̂Λ
Â

A
dΛAB̂

dτ
. (A.56)
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In other words, we are now looking at the dynamics of the spin tensor purely from the
perspective of a Lorentz transformation ΛA

Â
from the body-fixed frame into the referential

tetrad.
Let me now choose the spin tensor in the body-fixed frame to have one degenerate time-like

direction and one non-degenerate space-like direction; conventionally S1̂2̂ = −S2̂1̂ = S and
other components zero. Note that this assumes that the spin tensor will eventually fulfill a
supplementary spin conditions of the form SµνVν = 0; non-degenerate spin tensors will thus
not be possible to express in terms of the coordinates that we give in the following paragraphs.

To facilitate an intuitive discussion, let us further identify the legs ΛA
1̂
,ΛB

2̂
,ΛC

3̂
with the

x,y,z-axes in Cartesian coordinates, and the ΛD
0̂

with the time axis. Then, by finding the dual
of the spatial part of the spin tensor, we see that it is a vector of magnitude S pointing purely in
the z-direction.

In this picture, the spin tensor is invariant with respect to rotations around the z-axis, and
with respect to boosts in the z direction. Out of the total 6 parameters of a general Lorentz
transform ΛA

Â
, 2 will be gauge degrees of freedom of the body-fixed tetrad. In order to not mix

the gauge degrees of freedom and the true dynamical degrees of freedom, we parametrize the
general Lorentz transform as

Λ = R(α, n⃗z)B(vz, n⃗z)B(u, n⃗ψ)R(−θ , n⃗φ ) , (A.57)

where R(ζ , n⃗) stands for a rotation by angle ζ around n⃗, and B(v, n⃗) a boost in the n⃗ direction.
The variables α,vz,u,ψ,θ ,φ are then generally time-dependent parameters of the transforma-
tion, and the vectors n⃗ψ , n⃗φ are given as

n⃗ψ = (−sinψ,cosψ,0) , (A.58)

n⃗φ = (−sinφ ,cosφ ,0) . (A.59)

When the dust settles, this transformation yields

1
2

SABΩ
AB = SΛ

1̂
A

dΛA2̂

dτ
(A.60)

=−Sα̇ +S
cosθ −1√

1−u2
φ̇ +S

(
1√

1−u2
−1
)

ψ̇ .

The −Sα̇ term is a total time derivative and so it will not contribute to the equations of motion.
From the other terms we see that we have two canonical momenta A and B conjugate to φ and
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ψ respectively defined through the parameters of the Lorentz transformation as

A = S
cosθ −1√

1−u2
, (A.61)

B = S
(

1√
1−u2

−1
)
. (A.62)

Expressions for these coordinates in terms of the components of the spin tensor are given
in Chapter 3 in equation (3.60). The expressions for the spin tensor components in terms of
A,B,φ ,ψ are then similarly given in equation (3.61).

A.5.1 Coordinate singularities and the special-planar Hamiltonian

To facilitate the discussion of the singularities and their treatment, let us consider a simple
example that should be familiar to every physics student. Imagine a particle moving along
x = 0 and y = 0 in Cartesian coordinates in Euclidean space, and make the usual transform to
spherical coordinates r,ϑ ,ϕ . In principle, the coordinate ϕ = arctan(x/y) is not defined, and
we are at ϑ = 0 or ϑ = π depending on the sign of z. By a limiting procedure x → 0,y → 0,
we are able to obtain any value between 0 and 2π for ϕ at the pole.

On the other hand, it is clear to us from the point of view of the more fundamental Cartesian
coordinates that nothing is wrong, as the value of ϕ is of no consequence for them at ϑ = 0.
Similarly, ϕ̇ is not defined at the pole, and by taking the azimuthal angular momentum along
with ϑ to zero, we obtain any value for ϕ̇ between −∞ and +∞; again, this is of no physical
consequence and evolving ϕ is redundant.

The singularity at the pole of spatial spherical coordinates discussed above is similar to
the singularity of the canonical coordinates for the spin tensor at SA3 = 0. By inspecting the
transformation laws (3.60) we see that the coordinate φ =−arctan(S23/S31) is undefined and
we are either at A = 0 or A =−2(B+S) depending on the sign of S12.

When A = 0 (S12 > 0), we see from the parametrization of the spin tensor (3.61) that the
value of φ will in fact be of no consequence to the spin tensor. These conclusions can then be
easily applied to an evolution that fulfills SA3 = const.= 0 to reduce the number of variables
we need to evolve.

On the other hand, when A = −2(B + S) (S12 < 0), the situations is somewhat more
complicated. If we have an evolution that keeps SA3 = const.= 0, we will also have ṠA3 = 0.
This, however, leads only to Ȧ =−2Ḃ, and it is in fact the combination 2φ −ψ that uniquely
parametrizes the spin tensor. For practical purposes, it then useful to define new canonical
coordinates D ≡ A/2−B,E ≡ A/2+B,δ ≡ 2φ −ψ,ε ≡ 2φ +ψ so that D,δ and E,ε are
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conjugate respectively. The equation ṠA3 = 0 with S12 < 0 leads to Ė = 0 and the redundance
of the coordinate ε .

In the case of the special planar problem presented in sec. 3.5, we chose S12 > 0 for
simplicity. A trick that can be eventually used to avoid the redefinitions of coordinates is simply
to permute the definition of the tetrad elements 1 ↔ 2, which will lead to a change of the
physical meaning of the sign of S12.

Another coordinate singularity is at SA0 = 0 which unambiguously leads to B = 0 and ψ

undefined. Once again, we see in (3.61) that the value of ψ is inconsequential in that case. An
interesting fact is that if we have an evolution such that SA0 = const.= 0, then the coordinates
A,φ reduce just to the canonical coordinates for the SO(3) Poisson algebra [e.g. 158].
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Abstract

Pseudo-Newtonian potentials are a tool often used in theoretical astrophysics to capture some key features of a
black hole space-time in a Newtonian framework. As a result, one can use Newtonian numerical codes, and
Newtonian formalism, in general, in an effective description of important astrophysical processes such as accretion
onto black holes. In this paper, we develop a general pseudo-Newtonian formalism, which pertains to the motion of
particles, light, and fluids in stationary space-times. In return, we are able to assess the applicability of the pseudo-
Newtonian scheme. The simplest and most elegant formulas are obtained in space-times without gravitomagnetic
effects, such as the Schwarzschild rather than the Kerr space-time; the quantitative errors are smallest for motion
with low binding energy. Included is a ready-to-use set of fluid equations in Schwarzschild space-time in Cartesian
and radial coordinates.

Key words: accretion, accretion disks – black hole physics – gravitation – methods: analytical –
methods: numerical

1. Introduction

Until now, all gravity related observations couldbe fully
described within general relativity (GR). There is no single
gravitational phenomenon that is in contradiction to GR.
Within GR, the gravitational field is given by the Einstein field
equations which are highly complicated and can be solved
exactly only for a few highly symmetric configurations. Even
for the two body system, no exact solution can be found,
contrary to the situation in Newtonian gravity. In order to cope
with more complicated situations, various analytic approx-
imation schemes have been developed.

The earliest and most prominent approximation scheme, used
already by Einstein for the first computation of the perihelion
shift of Mercury, is the post-Newtonian approach (see,e.g.,
Blanchet 2006). This approach is essentially characterized as a
formal expansion of the field equations and the equations of
motion in terms of orders of the “slowness” of the system v/c,
where v is some characteristic velocity of the system. A
second prominent approximation scheme is the post-Minkowski
approach, which is a weak field approximation expanding in
terms of deviations from the flat space-time background andis
applicable to any velocity of the constituents of the systems.

However, for bound motion, such as the case of binary stars,
the deviation from the flat background and the typical velocity
of the objects are intimately related. In the case of a test body in
a circular orbit of theradial Schwarzschild coordinate rc around
a Schwarzschild black hole, the test body’s velocity is

= ( )v c GM c r2
c and the deviation from the flat background

at rc can be expanded in terms of ( )GM c r2
c . Hence, a post-

Minkowski expansion naturally leads to a post-Newtonian one
and vice versa (see, e.g., Sasaki & Tagoshi 2003). Thus, both
the post-Newtonian and the post-Minkowski expansion
schemes applied to bound motion are weak-field approxima-
tions and are not suited to describe bound motion in the very
vicinity of a black hole, or more generally, in the strong gravity
regime.

Nevertheless, astrophysicists often have to describe, e.g., an
accretion diskextending in terms of its inner radius up to the
innermost stable circular orbit (ISCO) =r GM c6ISCO

2 of the
black hole, or even the photon sphere =r GM c3ps

2 (see, e.g.,
Abramowicz & Fragile 2013). It is obvious that only an
extremely careful and laborious post-Newtonian or post-
Minkowski expansion would provide a satisfactory description
of the motion in the very vicinity of the black hole. On the
other hand, the outer radius of the accretion disk often extends
up to hundreds of GM c2, where relativistic effects become
completely negligible.
In other words, the largest part of the accretion process is

governed by Newtonian physics and only in the very last few
percents of accretion the behavior of the accreted matter as a
test field on a strongly curved general-relativistic background
becomes important. However, these last stages are essential for
the global structure of a steady accretion disk, because of the
instability of the diskbeyond the ISCO and the precise
energetics near the black hole determining the amount of
energy radiated away during the accretion process.
Hence, to model accretion on a black hole, we would ideally

like a dynamical description,which is mostly Newtonian but
reproduces some of the characteristic features of motion near
the black hole. Precisely this kind of model was given first by
Paczyńsky & Wiita (1980) by placing the fully Newtonian
accretion diskinto a non-physical gravitational field with the
potential

F = -
-

( )GM

r GM c2
. 1PW 2

Obviously, this potential very quickly obtains the Newtonian
asymptotics ~-GM r as r GM c2 but a quick computa-
tion of its Laplacian shows that it would have to be generated
by infinite densities of negative matter. On the other hand, it
has an ISCO at =r GM c6 2 with specific binding energy

= -Ẽ 1 8 9 . Since these are the same values of the
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coordinate radius and of the binding energy of the ISCO as in
the Schwarzschild space-time, this so-called Paczyński–Wiita
potential can be used as an effective model of the static black
hole field (see Abramowicz 2009 for a review of other
properties).

Since the publication of the Paczyński–Wiita potential, the
approach of reproducing some of the characteristic features of a
selected class of orbits within an ad hoc Newtonian framework
has been called the “pseudo-Newtonian” (pN) approach (see
the Introduction of Tejeda & Rosswog 2013 or Artemova et al.
1996 for a review).

Even though pN potentials have been proposed for over 35
years (Paczyński & Wiita 1980; Nowak & Wagoner 1991;
Artemova et al. 1996; Semerák & Karas 1999; Mukhopadhyay
2002; Mukhopadhyay & Misra 2003; Chakrabarti & Mondal
2006; Ghosh & Mukhopadhyay 2007; Wegg 2012; Tejeda &
Rosswog 2013; Ghosh et al. 2014; Sarkar et al. 2014; Tejeda &
Rosswog 2014; Witzany et al. 2015), until recently, the
potentials were not able to accurately reproduce properties of
general orbits or to accurately describe the field of a rapidly
spinning black hole. However, Tejeda & Rosswog (2013,
2014) proposed a class of generalized (velocity-dependent) pN
potentials accurately describing the motion of quite general
test-particles in the Schwarzschild and generally any spheri-
cally symmetric space-time (the same result on spherically
symmetric space-times was almost simultaneously given by
Sarkar et al. 2014). The pattern in the formulation is
remarkably simple, the pN Lagrangians of Tejeda & Rosswog
(2013, 2014) andSarkar et al. (2014) canall be given within a
single formula

J J j
= +

+
+

⎛
⎝⎜

⎞
⎠⎟

˙
( )

˙ ˙
( ) ( ) ( )L

r

f r f r
f r

1

2

sin 1

2
, 2

2

2

2 2 2

where = - =( )f r g g1tt rr and j Jt r, , , are Schwarzschild-like
spherical coordinates. The key step in the derivation of these pN
Lagrangians always seems to be the assumption that the specific
energy of the test particle-ut is approximately 1. Additionally, all
the derivations have been done for massive particles. As a result,
these Lagrangians give exactly the position of the ISCO, the
marginally bound (- =u 1t ) circular orbit, the formal angular
momentum distribution over circular orbits and a general
quantitative agreement with the exact relativistic case.

However, this pattern does not include spinning black holes,
i.e., the Kerr metric. For the Kerr space-time, a number of
proposals exist, usually fitting the potential by the behavior of
some set of orbits or by “reading off” a potential from the
equations of motion or the metric (Semerák & Karas 1999;
Mukhopadhyay 2002; Mukhopadhyay &Misra 2003; Chakrabarti
& Mondal 2006; Ghosh & Mukhopadhyay 2007).

The only proposal for a pN description of spinning black
holes,whichsome how follows the line of reasoning of Tejeda
& Rosswog (2013), is that of Ghosh et al. (2014), where the
authors derived a generalized pN potential for test-particles in
the equatorial plane of a slowly spinning Kerr black hole by
utilizing a “low-energy limit” in one of the steps of the
derivation. The restriction of the particles in the equatorial
plane seems to mainlyplay the role of convenience during the
derivation but the limit on spin of the black hole is set because
of emergent singular behavior of important circular orbits,
namely the marginally bound and marginally stable orbit (see
Section 6.4 for more details).

Even though the development of pN potentials is oriented
toward magneto-hydrodynamics of a plasma near a black hole,
none of the papers (Tejeda & Rosswog 2013, 2014; Ghosh
et al. 2014; Sarkar et al. 2014) have discussed the applicability
of their framework in this context.
To conclude our discussion, we give a set of questions

thathave not been addressed so far in the literature.Are the
new velocity-dependent potentials also applicable for null
geodesics, i.e., computations of gravitational lensing or black
hole shadows? How does this formalism implement additional
forces such as electromagnetism? Is it correct to use these
Newtonian-like Lagrangians (2) along with non-modified
Newtonian fluid dynamics,as was done e.g., by Bonnerot
et al. (2016)? Is there a deeper pattern in the way the
Lagrangians are formulated and can we perhaps extrapolate it
to highly spinning black holes and off-equatorial particles near
them? This paper partially resolves these questions.
In Section 2,we derive a general pN Hamiltonian valid in

any stationary space-time and specify the exact relationship the
corresponding trajectories have withrelativistic geodesics in
the original space-time. In Section 3,we focus on its properties
in the most elegant and simple case of static space-times, and,
in Section 4, we show that the herein presented Hamiltonian
encompasses all the recently published velocity-dependent pN
potentials (2).
As far as concerns new applications of this work, Section 5

gives also a pN Hamiltonian for charged particles and derives
pN fluid equations in static space-times. Section 6 then
discusses the properties of the pN Hamiltonian for spinning
black holes.

2. pN Hamiltonian

We use the = =G c 1 geometrized units and the -+++
signature of the metric. Space-time coordinates are labeled by
Greek letters, spatial coordinates by roman letters. At certain
instants, we will switch to SI units and indicate so.

2.1. Flat Space-time

Consider the Lagrangian and respective Hamiltonian of the
motion of a test particle in flat space-time in Cartesian
coordinates

h= mn
m n ( )L u u

1

2
, 3

h= mn
m n ( )H u u

1

2
, 4

where tºm mu dx d is the four-velocity of the particle and uμ is
canonically conjugate to mx . This description gives the
trajectory as parametrized by proper time τ rather than the
time in the laboratory frame =t x0. However, since both the
Lagrangian and Hamiltonian have the same on-shell value

= = -H L 1 2 for any massive particle, we can obtain a
Hamiltonian for trajectories parametrized by time in the
laboratory frame instead of proper time

å= - = + ( ) ( )H u u1 , 5t t
i

i
2

where we have used the well-known fact that one can use
minus the conjugate momentum of a coordinate as a new
Hamiltonian to reparametrize the motion via that given

2
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coordinate (see, e.g., Guckenheimer & Holmes 1983). How-
ever, we can also use a “pN” Hamiltonian of the form

= -( )H u 1 2tpN
2 to obtain

å= ( ) ( )H u
1

2
. 6

i
ipN

2

This Hamiltonian formally resembles the Hamiltonian of a free
Newtonian particle and will give the correct motion of particles
parametrized, however, by a pseudo-time t̃ given as

= -
¶

¶
=

¶ -
¶

= -˜
( ) ( )du

dt

H

x
u

u

x
u

du

dt
, 7i

i t
t

i t
ipN

=
¶

¶
= -

¶ -
¶

= -˜
( ) ( )dx

dt

H

u
u

u

u
u

dx

dt
. 8

i

i t
t

i
t

i
pN

Thus, we can conclude that this pseudo-time t̃ is related to the
lab time on a particle-to-particle basis as = -˜ ( )dt dt ut (for
particles traveling forward in time, -ut is positive and has the
meaning of specific energy of the particle). There is, however, a
very important distinction between a truly Newtonian evolution
of particles and this pN Ansatz; in Newtonian physics, the time
parameter corresponding to t̃ is a globally valid lab-frame time
coordinate; here, the parameter t̃ is valid only as a parameter
along a single trajectory and cannot be directly tied to a global
time coordinate.

2.2. General Stationary Space-time

The point of this whole paper is to exploit the formal Ansatz
discussed in the last subsection in the following way. We find a
Hamiltonian reproducing exactly the coordinate shapes of
relativistic orbits thathas a formally Newton-like form, albeit
reparametrizing the orbits by some trajectory-specific pseudo-
time. Then, we postulate this Ansatz Hamiltonian as a new pN
Hamiltonian to be used in fully Newtonian calculations, where
the pseudo-time t̃ is elevated to a globally valid time
coordinate. This means that for every relativistic geodesic in
the original space-time we will have some pN trajectory of
identical coordinate shape, even though with a scrambled and
rescaled time.

Consider a general stationary space-time with the metric mng
and a set of coordinates in which the metric is stationary with
respect to the coordinate =t x0. This condition usually
specifies the coordinate t uniquely but otherwise our computa-
tions are covariant with respect to arbitrary coordinate
transformations on the spatial hypersurface (coordinates x i).
We can then, analogously to the derivations above, find that the
motion of particles parametrized by t will be given by the
Hamiltonian

w w k

=-

= - - +( ) ( ) ( )
H u

u u g u u g , 9

t t

i
i

i
i

ij
i j

2 00

where w º g gi i0 00, and we have also introduced the constant
κ to account for both massive k = 1 and massless particles
k = 0. We can now again define a pN Hamiltonian

= -( )H u 1 2tpN
2 to obtain


k

w w= - - + + -
⎛
⎝⎜

⎞
⎠⎟ ( )

( )
H

g

g
u u

g
u u

1

2

1

2
1 ,

10

ij

i j
i

i
i

ipN 00 00

where  w k= - +( ) ( )u g u u gi
i

ij
i j

2 00. By an identical deri-
vation as in (7) and(8), we obtain that this Hamiltonian
generates trajectory evolution reparametrized by a pseudo-time
t̃ such that = -˜ ( )dt dt ut . We now postulate this pN
Hamiltonian as an effective Hamiltonian for Newtonian
computations.
As can be verified by direct computation, the Hamiltonian

(10) seamlessly reduces to the Hamiltonian (6) in flat regions
of the space-time. Furthermore, if we switch to SI units
and use the weak-field metric d= + F( )g c1 2ij ij 2 , =g00

- - F( )c1 2 2 , we obtain the Hamiltonian (10) to linear order
in -c 2 as

å k= +
F

+ F +
F⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ( )H

c
u

c

1

2
1

4 2
, 11

i
ipN 2

2
2

2

where we have shifted the Hamiltonian by a dynamically
unimportant constant. In the case of massless particles (k = 0),
we obtain the well-known equations for the deviation of a light-
ray in a gravitational field. For massive particles (k = 1), the
zeroth order in c1 2 gives simply the Newtonian Hamiltonian
of a particle in a gravitational field, and the first c1 2 order
gives a post-Newtonian correction of first order. This gives us
the confidence to call the Hamiltonian (10) a pN one.
We would like to use this opportunity to stress again that the

idea of post-Newtonian and pN descriptions is very different
and the example above is probably the only point where a
connection can be made. The post-Newtonian approximation is
an iterative scheme reducing the error of computation at every
order, whereas the pN Hamiltonian is in a sense always “exact”
with the reservation that it introduces a time-reparametrization
as detailed in (7) and (8) (we discuss the implications in the
next paragraph).

2.3. Deviations from Relativity

The conclusion of this section so far is that, provided that we
give the same initial momenta ui as in the exact relativistic case,
we are able to reproduce the exact shapes of relativistic
trajectories via a fully Newtonian framework and the
Hamiltonian (10). Two things will be different, however, and
both stem from the fact that the Newtonian trajectory is
reparametrized with respect to the relativistic one.
First, the coordinate velocities at the same points of the

trajectory will be different in the relativistic and the pN case
due to the different time parametrization. Consider the
following example: we want to compare whether we obtain
the same orbit in the relativistic and pN description. Hence, we
choose a coordinate point x i and a coordinate velocity v i as
initial conditions for our comparison. Then, we evolve a
particle with an initial condition =dx dt vi i in the relativistic
case, and =˜dx dt vi i in the pN case. It is obvious that by this
procedure we will obtain a particle on a different coordinate
orbit in each case.
In this sense, the initial velocities leading to the same

coordinate orbits are rescaled in the pN case by the total
specific energy -ut. On the other hand, the correspondence
between the relativistic and pN case in terms of initial momenta
and coordinate positions u x,i i is always exact.
The second deviation of the pN case with respect to the

relativistic one can be best illustrated on circular orbits. As
follows from the previous discussion, if there is a set of circular
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orbits in the relativistic space-time with some (canonical)
angular momentum distribution, then this set of circular orbits
along with theangular momentum distribution will be exactly
reproduced in the pN description. However, the coordinate
frequencies of these circular orbits will be deformed as

j j
W = = - = - W˜ ( )d

dt
u

d

dt
u , 12t tpN

where WpN is the frequency along the orbit in the pN case, Ω
the original relativistic angular frequency, and j some angular
coordinate.

The relative error in the frequency hW can then be easily
derived as

h º
W - W

W
= - + º -W ( ) ( )u1 , 13t

pN

where we have defined a new quantity  as the specific binding
energy of the particle. (I.e., in an asymptotically flat space-time,
 will be positive if the particle is bound and will represent the
energy per unit mass needed to transport the particle to
infinity.)

Other important deviations we obtain are thedifferent
energies of the particles. Since the Hamiltonian (10) is
conserved and reduces to Newtonian energy in weak fields, it
is also natural to interpret it as a pN specific energy. In the
convention we choose, HpN is zero for a particle at rest in a flat
part of the space-time and as such it is equal to minus the pN
binding energy = - = -( )H u 1 2tpN pN

2 . Then, we can
easily derive that the relative error of the specific binding
energy will be equal to

 



h º

-
= - ( )

2
. 14

pN

For instance, in the case of the Schwarzschild space-time, the
tightest bound circular orbit (with maximal  ) is the ISCO with
 = - »1 8 9 0.06. For example, in the Schwarzschild
space-time, the maximal error in binding energy and angular
orbital frequency of circular orbits as predicted by the pN
Hamiltonian (10) will be 3% and 6% respectively.

2.4. Massless Particles

We would also like to point out that in the special case of
massless particles (k = 0), the Hamiltonian (10) can reproduce
trajectories parametrized exactly by coordinate time t.

The trick enabling us to do this lies in two facts. First,
the shape of a null geodesic is completely insensitive to the
rescalings of four-velocity lm mu u , where λ is some
constant. Second, if a vector mv satisfies four-velocity normal-
ization for a massless particle =mn

m ng v v 0, so does another
vector l=m mu v .

As a result, we can always take an initial condition for the
trajectory of a massless particle and rescale it so that = -u 1t
and thus =˜dt dt. Since ut is an integral of motion in stationary
space-times, this property will be true along the whole
trajectory and we will simply have = ˜t t .

3. Static Space-times

We now investigate the pN Hamiltonian from the previous
section in the class of metrics for which w= =g 0i i0 .
Considered along with the assumption of stationarity with

respect to the time coordinate =t x0, this class of space-times
is easily recognized as static space-times.
For these, Equation (10) gives (we use the fact that in static

metrics =g g100
00)

k
= - - +( ) ( )H g g u u g

1

2 2
1 . 15ij

i jpN 00 00

In the case of static space-times, it is easy to execute a
Legendre transform of the Hamiltonian (15) (this is not
possible to do in closed form for a general w ¹ 0i ). We first
obtain the relationship between momenta and pN velocities

º = +˙ ˜ ( )x dx dt dx dt 1i i :

=
¶
¶

= -˙ ( )x
H

u
g g u , 16i

i

ij
i00

= - ˙ ( )u
g

g
x , 17i

ij j

00

where we have used the fact that thanks to = =g g 0i
i

0
0 the

matrix gij is the inverse of g ij. It is then easy to see that the
resulting Lagrangian = -˙L u x Hi

i reads

k
= - + +˙ ˙ ( ) ( )L

g

g
x x g

1

2 2
1 . 18

ij i j
pN

00
00

It is also obvious from (17) that

t
= - = -˜ ( ) ( )dx

dt
u

dx

dt
g

dx

d
, 19

i

t

i i

00

a fact we will use extensively in the analysis of fluid equations
in Section 5.

3.1. Geometrical Interpretation of Equations of Motion

The equations of motion corresponding to Lagrangian (18)
can be put in a very elegant form

g
k

= - -˙ ˙ ( )x x x
g

g
g¨

2
, 20k

jl
k j l

ik

k00 00,

where g jl
k are the Christoffel symbols corresponding to the

three-dimensional Riemannian metric º -s g gij ij 00 known
also as the optical or Fermat metric (see e.g., Abramowicz et al.
1988)

g = + -( ) ( )s s s s
1

2
, 21jl

k ki
ij l il j jl i, , ,

where = -s g gij ij 00 is the inverse of sij. In other words, the
motion of a relativistic massive particle (k = 1) in a static
space-time can be, upon reparametrization, formulated as the
motion of a geodesic in curved three-dimensional space in a
potential field, and the motion of light (k = 0) corresponds
simply to the motion of a geodesic in that deformed space.
This notion has already been explored by Abramowicz et al.

(1997) where the authors arrive atthe same conclusion through
fitting the Binet formula of a Newtonian particle in curved
space so as to yield the same orbit shapes as in Schwarzschild
space-time. Our work clarifies the general possibility of this
“shape reproduction” of orbits via the language of
reparametrization.
We would like to point out the fact that even in the case of

massive particles it is possible to describe their motion on the
spatial hyperslice as a geodesic of a Riemannian metric. This
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metric is known as the Jacobi metric and it is energy dependent.
The derivation of the Jacobi metric in static space-times and
relation to previous results in the literature are discussed in
Appendix A.

3.2. pN Potentials

Let us now interpret the Lagrangian (18) strictly as a
Lagrangian of a Newtonian particle moving in Euclidean space.
A part of the Lagrangian then must be the specific kinetic
energy of the particle and the rest is a particular pseudo-
gravitational potential. However, the Fermat metric sij is
generally not flat and we cannot interpret ˙ ˙s x x 2ij

i j as the
specific kinetic energy of a particle in the flat Euclidean space
of Newtonian physics.As a consequence, a part of sij must be
absorbed into the potential, thus forming a “generalized,”
velocity-dependent gravitational potential.

The first step in identifying this velocity-dependent pN
gravitational potential FpN is to interpret the coordinates in
which we are working as some set of coordinates in Euclidean
space. Then, using the Euclidean metric dij in these coordinates,
we obtain the split of the Lagrangian as

= - F˙ ˙ ( ˙ ) ( )L d x x x x
1

2
, , 22ij

i j i i
pN pN

k
F = - + - -( ) ( ) ˙ ˙ ( )g s d x x

2
1

1

2
. 23ij ij

i j
pN 00

The part -s dij ij is then the “non-flat deviation” of the Fermat
metric inducing the extra effects that cannot be captured in a
simple velocity-independent potential.

In the case of an asymptotically flat space-time the pseudo-
gravitational potential FpN goes asymptotically to zero if

 -g 100 and = - s g g dij ij ij00 . (An explicit example of dij
and FpN for the Schwarzschild space-time is given in
Section 4.)

4. Spherically Symmetric Space-times

The most prominent example to demonstrate the results of
the last section is the Schwarzschild metric. The formula for the
pN Lagrangian (18) applied to the Schwarzschild space-time
expressed in Schwarzschild coordinates J jt r, , , gives

J j J
k=

-
+

+
-

+
⎛
⎝⎜

⎞
⎠⎟

˙
( )

( ˙ ˙ )

( )
L

r

M r

r

M r

M

r

1

2 1 2

sin

1 2
,

24

TR

2

2

2 2 2 2

which for k = 1 coincides with the Lagrangian derived from
the equations of motion in the Schwarzschild space-time
by Tejeda & Rosswog (2013). (The k = 0 case, giving exact
light-rays, is onlyproposed here.) Similarly, one obtains the
same formula as in Tejeda & Rosswog (2014) andSarkar et al.
(2014; Equation (2)) once applying formula (18), k = 1 to
spherically symmetric space-times.

4.1. Extracting pN Potentials

To obtain the pN potential FpN from the Lagrangian (24), we
must first identify the “natural metric” dij. In the case of the
Schwarzschild space-time in Schwarzschild coordinates, this
“natural metric” is of course the Euclidean metric in spherical

coordinates J jr, , , i.e.,

J= = =JJ jj ( )d d r d r1, , sin . 25rr
2 2 2

This way the Tejeda–Rosswog Lagrangian reorganizes as
follows (compare to Equations (22), (23), and (25))

J j J= + + - F( ˙ ( ˙ ˙ )) ( )L r r
1

2
sin , 26TR

2 2 2 2 2
pNS

where

k

j J J

F =- -
-

-

+
-

+

( )
( ) ˙

( ˙ ˙ ) ( )

M

r

M r M

r M
r

M

r M
r

2

2
2

2
sin . 27

pNS 2
2

2 2 2 2

This is also in concordance with the results in Tejeda &
Rosswog (2013).
However, we would also like to demonstrate that this “split”

of the Lagrangian is not unique. Consider for instance the
Schwarzschild metric expressed using the isotropic radius R for
which = +( )r R M R1 2 2

= -
-

+
+ + + W⎜ ⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝

⎞
⎠ ( ) ( )ds dt

M

R
dR R d

1

1
1

2
, 28

M

R
M

R

2 2

2

2

2
4

2 2 2

where J J jW º +d d dsin2 2 2 2. From the perspective of these
coordinates, the “natural flat metric” is

J= = =JJ jj ( )d d R d R1, , sin , 29RR
2 2 2

which, in return, leads to the reorganization of the Tejeda–
Rosswog Lagrangian as

J j J= + + - F( ˙ ( ˙ ˙ )) ( )L R R
1

2
sin , 30TR

2 2 2 2 2
pNI

where

k

j J J

F = -
+

+
-

+
- + +

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( ) ( ˙ ( ˙ ˙ ))
( )

MR

M R

R M R

M R
R R

4

2

16 2

2
1 sin .

31

pNI 2

4 2

6
2 2 2 2 2

Hence, the split into a “usual Newtonian kinetic energy” and
the “pN potential” is conventional and relies heavily on what
we think is the “natural flat metric” or the “natural Newtonian
interpretation of coordinates” in the curved space-time.
Furthermore, the pN potentials cannot be simply combined
with other external potentials because they are subject to the
full nonlinearity of relativistic source superposition.
Nevertheless, as already mentioned, the pN Lagrangian (18)

is, as a whole, in fact invariant with respect to transformations
of the spatial coordinates (not with respect to transformations
involving the time coordinate). In other words, the whole
Lagrangian LpN is uniquely defined by the choice of the time
coordinate and we will obtain covariantly the same physical
behavior no matter which coordinate system or formal
reorganization of the terms we use.
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5. Charged Particles and Perfect Fluids

Since the development of a pN description is ultimately
aimed at modeling a fluid in an accretion process, we now take
the first steps toward a formulation of pN magneto-
hydrodynamics.

To do that, we first generalize the pN Hamiltonian to charged
particles in electromagnetic fields in Section 5.1. Then, in
Section 5.2, we proceed to give hydrodynamic equations for a
perfect fluid in the pN gravitational field. The inclusion of all
the relevant physics to ultimately give a set of equations for,
e.g., pN radiative magneto-hydrodynamics near a black hole is
out of the scope of the current paper.

5.1. Charged Particle Motion

The relativistic Hamiltonian of the trajectory of a charged
particle with specific charge q in an electromagnetic field mA
reads

p p= - -t
mn

m m n n( )( ) ( )H g qA qA
1

2
, 32EM

where p = +m m mu qA is canonically conjugate to mx . Analogously
to Section 2, we invert the expression for the constant value of the
Hamiltonian k= -tH 2EM to get a Hamiltonian of an electro-
geodesic parametrized by coordinate time

p

w w k

=-

= - - + +( ) ( ) ( )
H

u u g u u g qA , 33

t t

i
i

i
i

ij
i j

EM

2 00
0

with the important substitution p= -u qAi i i.
Now it is easy to postulate the pN electromagnetic

Hamiltonian HpNEM as

p
º

- ( )H
1

2
, 34t

pNEM

2

where we again have to assume the stationarity of the space-
time metric mng with respect to =t x0, but also stationarity of
the electromagnetic potential Aμ because we would have
problems with relating the t-dependence to the pseudo-time
t̃ -dependence of the field. We can formulate this assumption
differently to make its gauge-dependence clear; we assume that
the Maxwell tensor mnF is time-independent and we choose a
gauge such that Aμ is also globally time-independent.

The Hamiltonian (34) will, similarly to the Hamiltonian HpN

in Equation (10), reproduce exact electrogeodesics parame-
trized by a new pseudo-time p= -˜dt dt t. Nevertheless, we do
not give the explicit expression for HpNEM in the general case
because they are very long and can be easily evaluated using
(33) and (34).

The only case in which HpNEM reduces to an elegant
expression with an easy Legendre transform is the case where
the space-time is static and the A0 component of the
electromagnetic field vanishes. That is, for charged particle
motion in static space-times with static magnetic fields, we
obtain the pN Hamiltonian

p p
k

= - - - - +( )( ) ( )
( )

H g g qA qA g
1

2 2
1 ,

35

ij
i i j jpNEM 00 00

and the respective Lagrangian LpNEM reads

k
= - + + +˙ ˙ ( ) ˙ ( )L

g

g
x x g qA x

1

2 2
1 . 36

ij i j
j

j
pNEM

00
00

That is, at least in this special case of static magnetic fields and
static space-times, the charged particle dynamics can be
obtained along the lines of the usual minimal coupling.

5.2. Perfect-fluid Equations

It is possible to derive pN fluid equations from first
principles by starting from the Boltzmann equation governing
the motion of particles on pN trajectories, and then finding its
zeroth and first moment to obtain the continuity and Euler
equation. We have tried this approach but it does not yield
equations thatfit well with their corresponding relativistic
counterparts.
Hence, we adopt an ad hoc approach where the relevant

equations are derived as a “pseudo-Newtonization” of the exact
relativistic equations. Furthermore, we restrict ourselves only to
the case of static metrics, because, as mentioned in Sections 2.2
and 5.1, it is impossible to invert the pN equations of motion so
as to feature explicitly the velocities rather than canonical
momenta in the general case.
Consider the relativistic particle-conservation equation in

coordinate time t

= -
-

- + -[( ) ( ) ] ( )dn

dt

n

u g
w u g u g , 37

t
i t

i
t

t
rel

, ,

where =w dx dti i is the coordinate velocity, nisthe particle-
number density, and = ¶ ¶ + ¶ ¶dn dt n t n x wi iisthe material
derivative with respect to t. We will now need the following
identity

- = ( )w u g v d , 38i t i

where = ˜v dx dti i and = - ( )d g gdet ij 00. We can then
reparametrize the continity equation using pseudo-time t̃ to
obtain theexact particle-conservation equation as

= - +˜ [( ) ( ) ] ( )dn

dt

n

d
v d u d . 39i

i t t
rel

, ,

The term ~( )u dt t, is a special-relativistic term, which
survives in flat space-time and spoils our otherwise very
Newtonian form of the particle-conservation equation. Let us
write it out explicitly:

- = -
¶
¶

( ) ( )n

d
u d

n

u

g

g

v

t
v , 40t t

t

ij
i

j
,

00

which, in SI units, attains a factor of -c 2 relative to the other
terms. If we then assume the velocities of the fluid and their
variability are non-relativistic in the pN frame v c v c, 1t, ,
we can neglect this term. The assumption that ˜dx dti is small is
to leading order equivalent to the assumption that dx dti is
small so this criterion can also begiven in terms of the usual
coordinate velocities.
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Thus, we postulate the approximate, pN particle-conserva-
tion equation as

= -˜ ( ) ( )dn

dt

n

d
v d . 41i

i
pN

,

This pN equation will have a conserved particle number of the
form




ò= =( ) ˜ ( )n x d d x
d

dt
, 0. 42i 3

Let us now consider the exact relativistic Euler equation in
coordinate time in static space-times (see, e.g., Tejeda et al.
2017 for the case of a general metric)

e

=- G + G

-
+

-

( )

( ) ( ) ( ) ( )

d x

dt
w w

u P
P g P g w

1
, 43

i
i

jk
i j k

t j
ij

t
i

2

2
rel

00

2 , ,
00

where ε is the total energy density in the gasand Pis the
pressure. We can again reparametrize this equation by t̃ to
obtain

e

=- G - G +

-
+

+

˜ ( )

( ) [( ) ] ( )

d x

dt
u v v

g

g
v v

P
g P g P u v

1
. 44

i
i

t jk
i j k k k i

j
ij

t t
i

2

2
rel

00
2 00,

00

00
2

, ,

With the use of = - -( )u g v v g gt ij
i j2

00 00 we can re-express
the gravitational terms as

g

- G - G +

= - -

( )

( )

u v v
g

g
v v

s g v v
1

2
. 45

i
t jk

i j k k k i

ij
j jk

i j k

00
2 00,

00

00,

As expected, the gravitational part of the acceleration of the
fluid element is exactly equal to the acceleration of a pN
particle (20).

Since the gravitational part of (44) is already pseudo-
Newtonized, let us examine the hydrodynamic part. We assume
(1) that the gas does not reach relativistic temperatures, in SI
units k T mcB

2,and (2) that the gas does not reach
relativistic velocities in the pN frame, in SI units v c2 2.
Furthermore, we can estimate ~P P ct k, , s,where cs is the local
sound speed (which is smaller than the speed of light). Hence,
if we neglect terms from Equation (44) thatare small in this
approximation, we obtain the pN Euler equation as

g

r

=- -

-

˜
( ) ( )

d x

dt
s g v v

g P g

1

2

1
. 46

i
ij

j jk
i j k

j
ij

2

2
pN

00,

00
2

,

We can see that this Euler equation converges to the Newtonian
limit automatically in the weak field without any additional
special-relativistic terms. Additionally, it will reproduce most
of the strong-field effects of its exact relativistic counter-
part (44).

To conclude, by using the reparametrization method and
making assumptions that are reasonable for astrophysical

applications, one is able to obtain a full set of pN fluid
equations, which are pN in the sense of automatically reducing
to Newtonian equations in flat regions of space-time.
However, one must keep in mind the more subtle

approximation introduced by the time-reparametrization. By
evolving the elements of the fluid from some t̃0 to some

d+˜ ˜t t0 ,we are in fact evolving each element by d d= - ˜t u tt .
This means that the elements in the pN evolution fall slightly
out of sync as compared with the exact relativistic situation.
This relative error does not show up in a single step but
accumulates at a rate that is proportional to the relative
differences of -ut between neighboring elements and also to
the strength with which they interact.
Hence, for the validity of the pN fluid evolution, we also

have to require that the length scale of the-ut variability is at
all times much larger than the hydrodynamic interactionlength
scale


( ) ( )u

u

P

P
. 47t i

t

i, ,

In SI units and the weak-field limit, this criterion is to leading
order in -c 1

+ F ⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

c
v

P

P

1 1

2
, 48

i

i

2
2

,

,

which is a criterion fulfilled in most physical applications.
For illustration and further applications, we have computed

the pN Euler and particle-conservation equations explicitly in
the Schwarzschild space-time in the usual radial Schwarzschild
coordinates and Cartesian isotropic coordinates and include
them in Appendix B. The Cartesian isotropic coordinates,
based on the isotropic rather than the usual Schwarzschild
radius, correspond to a pN metric, which is isotropic at every
space-time point. This set of coordinates could be useful in
numerical schemes such as smoothed-particle hydrodynamics,
because the smoothing kernel of the particles can be entirely
isotropic thereas long as the smoothing length is much shorter
than the curvature scale of the space-time (compare,e.g., with
Laguna et al. 1993).
Of course, simply weighing the order of magnitude of the

terms in the relativistic Euler and particle-conservation
equations is not sufficient to fully asses the applicability of
the set of pN fluid equations. However, the full investigation
and testing of this set of equations by either numerical or
analytical means is out of the scope of the current paper.
Hence, one should understand Equations (41) and (46) as a
proposal of which theusefulness can be shown by future work.
On the other hand, we are confident that this set of equations
will result in better results than naively implementing the
gravitational accelerations (20) into Newtonian hydrodynamics
without any other modification.
Namely, in situations where densities and pressures are high

enough to steer the motion of the fluid elements far away from
free test-particle motion, we expect the additional strong-field
coupling to the hydrodynamical degrees of freedom to become
very important. For instance in the case of the circularized
perfect-fluid equilibria in Schwarzschild space-time known as
Polish doughnuts (Abramowicz et al. 1978), a simple
computation shows that, up to some rescalings of density and
angular momentum, our structural equations will yield the same
structures of the doughnuts as the exact relativistic equations.
If, however, we omit the ( )g gij

00
2 factor in the pressure term in
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the Euler equation, one obtains radically different solutions
such as equilibria extending to the horizon while being held by
finite pressure gradients. Thus, including the strong-field factor
in the pressure term is absolutely necessary for a good
description of highly pressurized flows near the horizon.

6. The Kerr Space-time

One of the most interesting goals in formulating pN
frameworks is a satisfactory description of motion in the Kerr
space-time at high values of the spin parameter a. By giving a
useful description of highly spinning black holes one would
extend the applicability of the pN framework to the vast
majority of astrophysical black holes.

The pN Hamiltonian given in Section 2 will describe the
motion in the Kerr space-time almost perfectly, and will lag
with respect to the exact relativistic case only for large binding
energy  = + u1 t. However, giving a full description of
motion of a fluid near a Kerr black hole has some difficulties as
already described in Section 5.2 and is thus out of the scope of
the current paper. Hence, we will demonstrate the properties of
the pN Hamiltonian in the Kerr space-time only on the motion
of individual massive test particles and specifically on circular
orbits and their close oscillations.

In Boyer–Lindquist coordinates J jt r, , , , we have the non-
zero inverse metric components of the Kerr metric (e.g.,
Weinberg 1972; Misner et al. 1973; Griffiths & Podolský 2009)



J
J

=-
DS

=
D
S

=
S

=
D -
DS

=
DS

JJ

jj

j ( )

g

g g

g
a

g
Mra

,

,
1

,

sin

sin
,

2
, 49

tt

rr

t

2 2

2

where JS = +r a cos2 2 2 , D = - +r Mr a22 2, and  =
J+ - D( )r a a sin2 2 2 2 2 . The corresponding pN Hamiltonian

(10) for massive particles k = 1 then reads





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J

w w
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where w º = -jg g Mra2t tt and


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

w
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= + D + D +
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+
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j J j
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⎞
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r
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The Hamiltonian (50) is formally very complicated. On the
other hand, as described in Section 2 and particularly
Section 2.3, HpNK provides

1. an angular momentum distribution over circular orbits
exactly equal to the Kerr case,

2. absolutely exact behavior of the marginally bound
( = =H 0, 0pNK ) circular orbit as compared to the

Kerr case including both the radius and rotation
frequency, and

3. an easily tractable upper error estimate for all bound
circular orbits based on the binding energy of the ISCO
and (14) and (13).

We will now discuss the errors induced to circular orbits and
close oscillations around them. Furthermore, we will compare
our Hamiltonian with the Lagrangian of Ghosh et al. (2014)
and offer a few remarks.

6.1. Circular Orbits

The condition for a circular orbit is ¶ ¶ =H r 0pNK with
= =Ju u 0r , J p= 2 and some jr u, to be determined. As

described in Section 2, this condition will be fulfilled for
exactly same pairs of jr u, for HpNK as for the exact relativistic
case of a Kerr black hole. Hence, the formal angular
momentum distribution j ( )u rc over circular orbits is the same
in both cases and reads (Bardeen et al. 1972)

=
 +

- 
j

( ) ( ) ( )u r
M r aM r a

r Mr aM r

2

3 2
, 52Kc

1 2 2 1 2 1 2 2

3 2 1 2 3 2

where the upper sign will always refer to the co-rotating
circular orbits and the lower sign to the counter-rotating
circular orbits.
Using the formula for the pN Hamiltonian (10) and the

definition of binding energy discussed in Section 2.3, we can
find the expression for pN binding energy in terms of the
original relativistic one as   = - 2pN

2 . That means that
bound circular orbits will always have a lower energy in the pN
case and, since the efficiency of accretion disks is estimated by
the binding energy of the ISCO, the accretion disks in the pN
fields will generally have lower efficiency than the ones in the
corresponding relativistic space-times.
Also, since we know that all time rates such as the rotation

frequency along a circular orbit will be rescaled by the factor
-ut in the pN case and that- Î ( )u 0, 1t for bound orbits, then
the pN rotation frequencies of bound circular orbits will always
be smaller than in the exact Kerr case. On the other hand, from
the marginally bound orbit inwardto the black hole, we have
unbound orbits,- >u 1t , and there the pN frequencies will be
higher than in the exact Kerr case.
Furthermore, as we approach the photon sphere, the energy

of circular orbits diverges and both the time and energy scales
become vastly different from the relativistic case. Hence, for
accretion diskmodeling, we must cut off the dynamics
somewhere between the radius of the marginally bound orbit
and the photon orbit.
Let us now give a few more explicit expressions for the

behavior of the circular orbits. The specific binding energy Kc
of circular orbits in the relativistic case reads

 = -
- 

- 
( ) ( )r

r Mr aM

r Mr aM r
1

2

3 2
. 53Kc

3 2 1 2 1 2

3 2 1 2 3 2

On the other hand, the specific binding energy pNKc of circular
orbits in the pN case yields

 = -
- 

- 

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )r

r Mr aM

r Mr aM r

1

2
1

2

3 2
. 54pNKc

3 2 1 2 1 2 2

3 2 1 2 3 2
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The position of the marginally bound circular orbit is given
by solving  = = 0Kc pNKc , which gives

= - + -( ) ( )r M a M M a2 2 . 55Kmb

As already stated in Section 2.3, for the circular orbit of radius
rKmb, the correspondence between the pN and relativistic case
is perfect both in energy and frequency.

The angular rotation frequency jW º d dtKc of circular
orbits in the relativistic case reads

W =



( ) ( )r
M

r aM
. 56Kc

1 2

3 2 1 2

In the pN case,we just have the analogous angular rotation
frequency given as jW º = - W˜ ( )d dt 1pNKc Kc Kc, which
gives

W =
 - 

 - 
( ) ( )

( )
( )

r
M r Mr aM

r aM r Mr aM r

2

3 2
.

57

pNKc

1 2 3 2 1 2 1 2

3 2 1 2 3 2 1 2 3 2

Using the expressions above, we can easily plot the
properties of the circular orbits in both models for a black
hole with any spin a and compare them.

6.2. Innermost Stable Circular Orbit

The most important estimate of accretion disk behavior
comes from studying the properties of the ISCO. For instance,
the binding energy of the ISCO is equal to the efficiency of the
accretion process in a radiatively efficient thin accretion
disk(Abramowicz & Fragile 2013). In other cases, the orbital
frequency of the ISCO is proposed to distinguish between
black hole candidates and neutron stars (Psaltis 2008). Also, as
has already been mentioned, the binding energy of the ISCO
gives an upper error estimate for various deviations of the pN
description from the relativistic case and can thus serve as an
overall indicator of the applicability of the pN Hamiltonian (50).

The radius of the ISCO is (Bardeen et al. 1972)

= + - - + +[ ( )( ) ] ( )r M Z Z Z Z3 2 4 2 , 58ISCO 2 1 1 2

= - - + +( )[( ) ( )] ( )Z a M a M a M1 1 1 , 591
2 2 2 2 2 2

= + + ( )Z a M Z3 1 . 602
2 2

1
2

It is quite obvious that the substitution of rISCO into the
expressions for energy or frequency gives very complicated
formulas. Hence, we only compare the relations  ( )aISCO in
Figure 1 and the angular frequencies of the ISCO in Figure 2.

As we go to higher spins of the black hole, the relativistic
binding energy ISCO grows and thus also the relative errors in
the pN values of binding energy and frequency of circular
orbits. For instance, if we want the relative error of the binding
energy of the ISCO to be less than 10% in the pN model, we
can only use the Hamiltonian (50) for spins <a M0.96 , which
is a reasonable bound. However, if we set the tolerance in the
relative error of ISCO binding energy to 5%, we can only use
the pN Hamiltonian for spins <a M0.68 , which is rather
restrictive. Either way, it is not very reasonable to use the pN
Hamiltonian all the way up to the extremal a=M black holes
because there we have the relativistic ISCO binding energy
 = - »1 1 3 0.42ISCO , and thus the relative error of the
binding energy of the ISCO about 21%.

6.3. Small Perturbations of Circular Orbits

Let d d dJ d Jr u u, , ,r be small deviations from a circular orbit.
At the point of reflectional symmetry J p= 2 all the first

J¶ ¶ derivatives of the Hamiltonian vanish. Additionally for
=Ju 0, the first ¶ ¶ Ju derivatives are also zero. Hence, the

linearized equations of motion for the small deviations
decouple into two sectors corresponding to the purely radial
(epicyclic) and purely vertical oscillations around the circular
orbit. The equations for the purely radial oscillations in matrix
form read

d
d

d
d

-
=

¶

¶
¶

¶

⎜ ⎟ ⎜ ⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

˙
˙ ( )u

r
u
r

0

0
. 61

H

r

H

u

r r

r

2
pNK

2

2
pNK

2

Because we are considering perturbations around ur=0, the
diagonal terms corresponding to first ¶ ¶ur derivatives of the
Hamiltonian are also zero. The solution for d du r,r is an
oscillating solution with a frequency

w =
¶

¶

¶

¶

⎛
⎝⎜

⎞
⎠⎟ ( )H

u

H

r
, 62r

r
pNK

2
pNK

2

2
pNK

2

1 2

where the expression is evaluated at J p= = =Ju u2, r

=j j ( )u u r0, c . Similarly, for the purely vertical oscillations,

Figure 1. Specific binding energy of the ISCO ISCO in the Kerr space-time
(dashed) and the pseudo-Newtonian counterpart (full line).

Figure 2. Angular rotation frequencyWISCO of the ISCO in the Kerr space-time
(dashed) and the pseudo-Newtonian counterpart (full line). The frequency is
given in units of -M 1 ( - -G M c1 1 3 in SI units) so that the result is scalable with
respect to the mass of the black hole.
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we obtain the vertical oscillation frequency

w
J

=
¶

¶

¶

¶
J

J

⎛
⎝⎜
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⎠⎟ ( )H

u

H
. 63pNK

2
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2

2
pNK

2

1 2

Expressions (62) and (63) along with the substitution of ju c

from Equation (52) give the pN oscillation frequencies as
cumbersome analytical expressions.

Nevertheless, we can find a workaround by considering that
the pN Hamiltonian HpNK is equal to = - =( )H u 1 2tpNK

2

-( )H 1 2t
2 , where Ht is the Hamiltonian generating exact

relativistic motion parametrized by coordinate time. The
frequencies are thus given as

w w= -
¶
¶

¶
¶
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u
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u , 65t

t t
tpNK

2

2

2

2

1 2

where w wJ,r are the exact oscillation frequencies in Kerr
space-time. However, these are well known (see, e.g.,
Abramowicz & Fragile 2013)

w = W - + -- - - ( )rM ar M a r1 6 8 3 , 66r Kc
1 3 2 1 2 2 2

w = W - +J
- - ( )ar M a r1 4 3 . 67Kc

3 2 1 2 2 2

As a result, we see that once again the relative difference
between the relativistic and pN frequencies will be equal to the
binding energy of the circular orbit

h
w w

w
º

-
=wa

a a

a
( ), 68

pNK

pNK
c

where a J= r, . This means, in particular, that the maximum
error in the oscillation frequencies will be once again given by
the binding energy of the ISCO as given in Figure 1. Hence, the
pN model is useful in a similar range as discussed in the previous
Section 6.2 even for accretion models where the diskoscillations
are relevant. For illustration, we plot the oscillation frequencies
for a number of values of the spin parameter in Figure 3.

6.4. Remarks on the Ghosh–Sarkar–Bhadra Lagrangian

Ghosh et al. (2014) derived a Lagrangian (the GSB
Lagrangian) for the motion of test particles in the equatorial
plane, which naturally offers itself for comparison with the
herein presented Hamiltonian (50). We point out the differ-
ences of the approach of Ghosh et al. (2014) and a few non-
trivial facts about the GSB Lagrangian.

Instead of covariant velocity components ui, the GSB
Lagrangian is constructed by a series of Ansatzes using the
contravariant (canonically non-conjugate) components u i. As a
consequence, the dynamics are restricted only to the equatorial
plane (the pseudo-Kerr Hamiltonian (50) presented in this
paper applies to any ϑ) and it seems that there is no simple
characterization of the GSB Lagrangian in terms of reparame-
trized geodesics.

The Ghosh–Sarkar–Bhadra Lagrangian reads

gj
j

gj

=
- +

-
D

+ D

+ -

⎛
⎝⎜

⎞
⎠⎟( ) ( ˙ )
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( ˙ )
( )

L
r M

r r M
r r

M

r

1

2 2 1

2

1 ,

69

GSB 2

3
2 2 2

where g = -( )Ma r M2 2 . It is interesting that the GSB
Lagrangian (69) has an impractical Hamiltonian counterpart,
whereas the herein presented pseudo-Kerr Hamiltonian (50)
has a Lagrangian counterpart complicated beyond usefulness.
Complications associated with either the forward or backward
Legendre transform seem to be a general feature of
Lagrangians and Hamiltonians modeling the gravitomagnetic
effects in the Kerr space-time.
The GSB Lagrangian has certain problems with the angular

momentum distribution of circular orbits connected to the
singularities of the effective potential. For the angular momenta
of circular orbits lGSBc it holds that

l =
-  -

=
- +

- - - +

=
+ + -

- - - +

( )
( ) ( )( )
( )[ ( ) ]

( ) ( )( ) ( )

Q Q R

Q
a rM Mar r a

a r r M r r M r a

R
M r a r r a a r

a r r M r r M r a

4

2
,

4 6

2 3
,

3 2

2 3
. 70

GSBc

2

3 2 2

2 2 2

2 2 3 2 2

2 2 2

What was not clearly stated or shown in the original paper is
the fact that this angular momentum distribution has a
singularity at a radius rs given by

- - - + =( ) ( )( ) ( )a r M r M r a2 3 0, 712
s s s

2 2

for which the solution varies quite uniformly from =r M3s for
a=0 to »r M3.1s for a=M.
Even though the authors state that the marginally bound

( = 0) circular orbit exists up to »a M0.7 and that the
potential is thus useful up to such values, there is a possible
issue with the marginally bound orbit; the angular momentum
distribution (70) crosses the singularity (71) before reaching the
radius of the marginally bound orbit already for a M0.45 .
Among other things, this means that the Keplerian circular
orbits have a “singular pause” before reaching the marginally
bound orbit and the matter density of a stationary accretion
diskwould almost certainly exhibit non-physical behavior at
the singular =r rs.
Hence, the GSB Lagrangian should be considered as useful

only for r M3.1 , and if the marginally bound orbit is
important in the given model, only a M0.45 should be
considered. The point where even the ISCO collides with this
singularity is »a M0.7 (which is the reason why Ghosh et al.
2014were not able to find the ISCO beyond that spin). Among
other things, this means that for a near-Keplerian accretion disk
near a black hole with spin »a M0.7 the singularity (71) is
very near its edge and exotic effects might ensue. Thus, it
seems commendable to use the Lagrangian (69) only for spins
well below »a M0.7 .
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7. Conclusion

We have developed and studied a generalized pN formalism
appropriate for particles, light, and fluids in stationary space-
times. In the case of static, spherically symmetric space-times,
our formalism coincides with previous results in the literature
(Tejeda & Rosswog 2013, 2014; Sarkar et al. 2014). In general
static space-times (without gravitomagnetic terms in the
metric), this formalism has elegant geometric interpretations
and allows for the full explicit development of fluid equations,
which can be understood as a particular kinematic limit of the
fully relativistic equations. Additionally, we have included

electromagnetic fields influencing the motion in the case of
particles with charge.
As already stated in Section 5.2, the presented pN fluid

equations should be further investigated by comparing their
numerical and analytical solutions with relativistic counterparts
so that their proper applicability is fully understood. The
undeniable point of our analysis is that a naive implementation
of the pN acceleration of individual particles into a Newtonian
code necessarily neglects further coupling of the strong
gravitational field to the hydrodynamical degrees of freedom
and may lead to pathological behavior of the fluid near the
black hole horizon.

Figure 3. Comparison of vertical (left) and radial (right) oscillation frequencies of perturbed circular orbits between the exact Kerr values (dashed) and the values
obtained with the pseudo-Newtonian Hamiltonian (50) (full). The r plot ranges are fixed for all plots while the ω-ranges are individually adjusted and only values up to
the ISCO are plotted. It is not entirely obvious that the highest relative errors between the frequencies is always in the left-most part of the individual plots (at the
ISCO) but we have verified this fact both by analytical and numerical means.
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The herein presented pN framework is exceptional in its
clear and direct derivation from the space-time that we want to
mimic. As a result, we have obtained explicit bounds on the
various errors our pN formalism introduces. The general
conclusion is that the various relative errors in this description
grow linearly with the specific binding energy of the motion in
question.

This has consequences for the applicability of Newtonian
numerical codes used along with the pN equations of motion.
We have derived that, for stationary structures near non-
rotating black holes, we can expect the result of a pN
computation to be accurate within a few percent of relative
error in temporal and energetic quantities, and this error then
nonlinearly grows with the spin of the black hole up to a few
tens of percent.

One particular shortcoming of the formalism is the fact that in
space-times thatare stationary but not static (with dragging or
gravitomagnetic terms in the metric), it is not possible to express
particle Lagrangians in a closed form and we are constrained
to Hamiltonian formalism. Similarly, the corresponding fluid
equations would be expressed in some set of canonical momenta
rather than velocities, which is incompatible with common
numerical codes. This means that pN fluid evolution near a
spinning black hole probably has to be approached in a different
manner.

It is easy to include electromagnetic terms into the pN Euler
Equation (46), albeit only in the non-physical case when (1) the
fluid is composed exclusively of charged particles of a single
value of charge and the current thus proportional to the velocity
of the fluid, and (2) the currents in the fluid have no backreaction
to the static, externally imposed fields. In the actuallly physically
relevant case of a quasi-neutral fluid with the current deviating
from the velocity and back-reacting to the electromagnetic field,
the equations become very complicated, and the separation of
strong-field, “kinematically non-relativistic,” and Newtonian
terms becomemuch more subtle. Hence, we leave the question
of pN magneto-hydrodynamics as a possibility for future work.

We would like to thank Emilio Tejeda, Oldřich Semerák, and
Volker Perlick for useful discussions on the preliminary versions
of the paper. We would also like to thank the anonymous
reviewer for many useful remarks on the paper. V.W. is grateful
for support from grants GAUK-2000314 and SVV-260211 and a
PhD grant of the German Research Foundation within its
Research Training Group 1620 Models of Gravity.

Appendix A
Jacobi Metric in Static Space-times

It is a well-known result in the theory of classical mechanics
that for a time-independent Lagrangian given in the form

= -˙ ˙ ( ) ( )L d x x V x
1

2
, 72ij

i j

one can define an energy-dependent metric called the Jacobi
metric as

= -( ) ( )j E V d , 73ij ij

where = +˙ ˙E d x x V2ij
i j is the energy integral of motion.

Then, if >E V , the trajectories corresponding to the
Lagrangian (72) on a fixed hypersurface =E const. will be,
up to a reparametrization, geodesics corresponding to the

metric jij (see, e.g., Pettini 2007 for more details). Hence,
following this pattern, we identify sij as the analogy of dij,
k +( )g 1 200 as -V , and the value of the Hamiltonian

= = -˜ (( ) )E H u 1 2tpN
2 as the energy integral. When the

dust settles, we obtain the Jacobi metric

k
= -

+( ) ( )j
u g g

g2
. 74ij

t ij
2

00

00

To summarize, on constant ut (Ẽ) hypersurfaces and in static
space-times, the full four-dimensional geodesics can always be
described as three-dimensional geodesics on the spatial
hypersurface with the Jacobi metric (74). This result has
recently beengiven by Gibbons (2015) by considering the
action of a geodesic in static space-times; the formalism here
provides a connection between the result of Gibbons (2015)
and the usual notion of the Jacobi metric known from classical
mechanics.

Appendix B
Evolution Equations for a Perfect Fluid near a Black Hole

in Various Coordinates

B.1. Cartesian Isotropic Coordinates

The most simple Cartesian-like expression of the Schwarzschild
metric is given by a transformation to the isotropic radial
coordinate = +( ) ( )r M R R2 42 (introduced already in Section
4.1, for a thorough discussion of the coordinates, see Misner et al.
1973) and then transforming to a set of coordinates ( ) ( ) ( )x x x, ,1 2 3

J j= ( )( )x R sin cos , 751

J j= ( )( )x R sin sin , 762

J= ( )( )x R cos , 773

å=
=

( ) ( )( )R x . 78
i

i

1

3
2

The metric then takes the form

å= -
-
+

+
+

=

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )( )ds
R M

R M
dt

R M

R
dx

2

2

2

16
. 79

i

i2
2

2
4

4
1

3
2

An important property of the isotropic coordinates is that they
regularize the spatial part of the metric at the horizon, while
preserving the = =g g 0i

i
0

0 structure of the metric essential to
the elegance of the pN formalism. Other sets of “horizon-
penetrating” coordinates, which make even the temporal part of
the metric regular at the horizon exist (see, for example, Font
et al. 1998), but they necessarily violate the = =g g 0i

i
0

0

condition. That is, the pN metric ºs g gij ij 00 will always be
singular at the horizon and the singularity can only be
“softened” by a set of coordinates such as the isotropic ones.
Either way, we know from the discussion in Section 2.3 that

circularized motion at the location of the photon orbit will
always have very large errors as compared to the exact
relativistic case, so we should beware ofextending the
simulation up to there for circularized flows. On the other
hand, circular motion at the marginally bound orbit is expected
to exactly reproduce the relativistic features. Thus, we
recommend to cut off a simulation of an accretion flow
somewhere between the marginally bound circular orbit
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=  = +( )r M R M4 3 2 2 2mb mb and the photon sphere
=  = +( )r M R M3 2 3 2ps ps .
The pN metric = -( )( ) ( )( )s g gi j i j 00 obtains the form

d=
+

-
( )

( ) ( )( )( )s
R M

R R M

2

16 2
, 80i j ij

6

4 2

where dij is the Cronecker delta. The pN Christoffel symbols
corresponding to this metric then have thesimple form
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We can thus easily express the respective pN equations of
motion for a single particle (20) as
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The factor figuring in the particle-conservation equation then is
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and the particle-conservation equation reads
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which corresponds to a conserved total particle number of the
form
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The Euler equation for a fluid differs from the single-particle
acceleration only by the r-P g gj

ij
, 00

2 term and thus takes the
form
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B.2. Schwarzschild Radial Coordinates

In Schwarzschild coordinates j Jr, , the non-zero components
of the metric sij read
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From that, we compute the non-zero coefficients g jk
i as
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The corresponding gravitational accelerations of individual
particles are then easy to find by direct computation or in
Tejeda & Rosswog (2013).
The volume density factor is J= -( )d r M rsin 1 22

and the particle-conservation equation reads
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which corresponds to a conserved total particle number
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The Euler equations in Schwarzschild coordinates then read
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Following the pattern of this Appendix, one should be able to
derive the fluid equations in any set of coordinates.
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Conservation laws and evolution schemes in geodesic, hydrodynamic,
and magnetohydrodynamic flows
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Carter and Lichnerowicz have established that barotropic fluid flows are conformally geodesic and obey
Hamilton’s principle. This variational approach can accommodate neutral, or charged and poorly
conducting, fluids. We show that, unlike what has been previously thought, this approach can also
accommodate perfectly conducting magnetofluids, via the Bekenstein-Oron description of ideal mag-
netohydrodynamics. When Noether symmetries associated with Killing vectors or tensors are present in
geodesic flows, they lead to constants of motion polynomial in the momenta. We generalize these concepts
to hydrodynamic flows. Moreover, the Hamiltonian descriptions of ideal magnetohydrodynamics allow
one to cast the evolution equations into a hyperbolic form useful for evolving rotating or binary compact
objects with magnetic fields in numerical general relativity. In this framework, Ertel’s potential vorticity
theorem for baroclinic fluids arises as a special case of a conservation law valid for any Hamiltonian
system. Moreover, conserved circulation laws, such as those of Kelvin, Alfvén and Bekenstein-Oron,
emerge simply as special cases of the Poincaré-Cartan integral invariant of Hamiltonian systems. We use
this approach to obtain an extension of Kelvin’s theorem to baroclinic (nonisentropic) fluids, based on a
temperature-dependent time parameter. We further extend this result to perfectly or poorly conducting
baroclinic magnetoflows. Finally, in the barotropic case, such magnetoflows are shown to also be geodesic,
albeit in a Finsler (rather than Riemann) space.

DOI: 10.1103/PhysRevD.96.064019

I. INTRODUCTION

A wide variety of compact stellar objects where general
relativistic effects are important is currently known. Black
holes and neutron stars are involved in many astrophysical
phenomena, including binary mergers and gamma ray
bursts, which have observable imprints in the electromag-
netic and gravitational wave spectrum. Many of these
phenomena can be explained by means of general relativ-
istic hydrodynamics. In addition, there is a growing number
of observed phenomena where electromagnetic effects play
a major role. These include observations of accretion disks
around black holes [1], jets in active galactic nuclei or
microquasars [2,3], gamma ray bursts, hypernovae, pulsars

[4] and magnetars [5–9]. Magnetohydrodynamics (MHD)
provides a macroscopic continuum approximation to
studying such phenomena. General relativistic magneto-
hydrodynamics (GRMHD) originates in the works of
Lichnerowicz [10] and is a rapidly developing field of
modern astrophysics [4,11,12]. Departures from MHD are
discussed in [13–15] and references therein. Compact
objects such as magnetars or the differentially rotating
supramassive remnants of binary neutron-star mergers can
have magnetic fields of the order of 1015–1017 G which can
affect the dynamics and stability [16] of these objects. A
fully relativistic description of magnetized neutron stars is
thus desirable.
In this article, we develop a geometric treatment of ideal

GRMHD. To this aim, we use Cartan’s exterior calculus,
relying on the nature of the electromagnetic field as a
2-form and the well-known formulation of Maxwell’s
equations by means of the exterior derivative operator.
We also employ the formulation of hydrodynamics in terms
of the fluid vorticity 2-form, following Synge [17] and
Lichnerowicz [18]. This enables us to formulate GRMHD
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entirely in terms of exterior forms. Such an approach is
not only elegant and fully covariant, but also simplifies
some calculations which are tedious in the component
approach. In addition, we obtain particlelike Lagrangian
and Hamiltonian descriptions of ideal MHD, in Newtonian
and relativistic contexts, with several theoretical and
practical advantages. For example, schemes for evolution
in numerical relativity are straightforward to obtain, and
conserved quantities whose origin seems ad hoc in the
component approach, emerge immediately as Noether-
related quantities in this canonical approach.
In particular, Synge and Lichnerowicz have shown

that barotropic-fluid flows may be described via simple
variational principles as geodesic flows in a manifold
conformally related to the spacetime manifold. Arnol’d
described the nonrelativistic Euler equation as the geo-
desic equation on the group of volume-preserving dif-
feomorphisms [19]. This allowed him to apply geometric
and group-theoretical methods to the study of this equation,
and to develop the now called Arnol’d stability method
[20–26].
Carter [27] has used this powerful canonical approach to

efficiently derive conservation laws for neutral or charged
poorly conducting fluids in general relativity. Markakis [28]
has obtained an Euler-Lagrange and a Hamiltonian descrip-
tion of a barotropic fluid valid in Newtonian gravity as well
as 3þ 1 general relativity. In this article, we extend Carter’s
framework to perfectly conducting fluids with the aid of the
Bekenstein-Oron (BO) formulation of ideal MHD [29–31].
In the canonical approach, conserved circulation integrals,
such as those of Alfvén, Kelvin and Bekenstein-Oron,
emerge simply as special cases of the Poincaré-Cartan
integral invariant of Hamiltonian systems. We further show
that the BO description can describe an arbitrary ideal MHD
flow without loss of generality and allows one to cast the
ideal MHD equations into a circulation-preserving hyper-
bolic form, which may be useful in numerical simulations of
oscillating stars or radiating binaries with magnetic fields in
numerical relativity. We generalize the Synge-Lichnerowicz
result to perfectly conducting magnetofluids by showing that
ideal MHD flows can be described as geodesic flows in a
Finsler space.
Finally, Kelvin’s circulation theorem has been thought to

hold only for barotropic flows. It has been thought not to
hold for baroclinic (nonisentropic) flows, except in a weak
form (i.e. if the circulation is initially computed along
rings of constant temperature or specific entropy [32]).
However, using a temperature-dependent time parameter,
we obtain a Hamiltonian action principle describing invis-
cid baroclinic flows within Carter’s framework. Moreover,
a Poincaré-Cartan integral invariant exists if and only if a
system is Hamiltonian. We thus infer that, contrary to
common belief, a generalization of Kelvin’s theorem to
baroclinic flows does exist in the strong form (i.e. the
circulation can be initially computed along an arbitrary

fluid ring). Remarkably, this result can be further extended
to perfectly or poorly conducting baroclinic magnetoflows.
Symmetries and conservation laws are very useful

because they can provide valuable insight of complicated
(magneto)hydrodynamic phenomena; the relevant con-
served quantities can be extremely useful in constructing
initial data in numerical relativity, or significantly simplify
solving for the motion. The examples considered below are
applicable, among others, to the mathematical study and
numerical simulation of fluid motions in rotating or binary
relativistic stars [33–42] and their magnetospheres [43,44],
neutron-star or black-hole accretion rings [27,45–47] and
cosmological dynamics [48–56].

II. CLASSICAL DYNAMICS IN
COVARIANT LANGUAGE

A. Notation

We consider a spacetime ðM; gÞ, i.e. a four-dimensional
real manifold M endowed with a Lorentzian metric g of
signature ð−þþþÞ. We assume that M is orientable, so
that we have at our disposal the Levi-Civita tensor ϵ (also
called volume element) associated with the metric g. Let ∇
be the covariant derivative associated with g: ∇g ¼ 0 and
∇ϵ ¼ 0. The star operator ⋆ denotes the Hodge dual of a
differential form. For example, the Hodge dual of the
1-form ω is a 3-form denoted by ⋆ω:

⋆ωαβγ ≔ ϵαβγδω
δ: ð2:1Þ

Similarly, the Hodge dual of the 2-form Ω is a 2-form
denoted by ⋆Ω:

⋆Ωαβ ≔
1

2
ϵαβγδΩγδ: ð2:2Þ

More details on these definitions may be found e.g. in
Appendix B of Ref. [57].
We shall often use an index-free notation, denoting

vectors and tensors on M by boldface symbols. As in
[27], given a linear form ω, we denote by ω⃗ the vector
associated to it by the metric tensor:

ω ≕ gðω⃗; Þ: ð2:3Þ

In a given vector basis ðeαÞ, the components of g, ω⃗ and ω
are gαβ, ωα ¼ gαβωβ and ωα ¼ gαβωβ respectively.
Given a vector v⃗ and a tensor T of type ð0; nÞ (n ≥ 1), i.e.

a n-linear form (a linear form for n ¼ 1, a bilinear form for
n ¼ 2, etc.), we denote by v⃗ · T (respectively, T · v⃗) the
(n − 1)-linear form obtained by setting the first (respec-
tively last) argument of T to v⃗:

v⃗ · T ≔ Tðv⃗; ;…; Þ ð2:4aÞ

T · v⃗ ≔ Tð ;…; ; v⃗Þ: ð2:4bÞ
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Thanks to the above conventions, we may write the scalar
product of two vectors u⃗ and v⃗ as

gðu⃗; v⃗Þ ¼ u⃗ · v ¼ u · v⃗: ð2:5Þ

We denote by ∇· the covariant divergence, with contraction
taken on the adjacent index. For instance, for a tensor field
T⃗ of type (2,0), ∇ · T⃗ is the vector field defined by

∇ · T⃗ ≔ ∇βTβαeα; ð2:6Þ

where feαg is the vector basis with respect to which the
components ∇γTαβ of ∇T⃗ are taken. [Note that the
convention for the divergence does not follow the rule
for the contraction with a vector: in (2.4a) the contraction is
performed on the first index.]
We use greek letters α; β; γ; δ;… for abstract and

μ; ν; κ; λ;… for concrete spacetime indices. We also use
roman letters a; b; c;… for abstract and i; j; k;… for
concrete spatial indices. We use geometrized Heaviside-
Lorentz units throughout the paper. We use ∇α or ∂α to
denote the (Eulerian) covariant or partial derivative com-
patible with a curved or flat metric respectively, and ∂=∂xα

to denote the (Lagrangian) partial derivative of a function
fðx; vÞwith respect to x for fixed v. We make extensive use
of Lie and exterior derivatives: for a pedagogical intro-
duction to using these concepts in relativistic hydrody-
namics, the reader is referred to [58,59].

B. Hamiltonian flows

It is often thought that continuum systems necessarily
require an infinite dimensional manifold for their descrip-
tion, and one often resorts to a classical field-theory
approach, based on an action integral over a Lagrangian
density in a spacetime 4-volume. This complicates the
derivation of conservation laws from symmetries of the
action—one of the main reasons for using an action
functional in the first place. In many cases, however, the
very definition of a perfect fluid allows one to treat each
fluid element as an individual particle interacting with other
fluid elements through pressure terms (in addition to
electromagnetic or gravitational field terms). If the pressure
terms are derivable from a potential, then a particlelike
action principle can be found. This approach has been
utilized by Carter [27] to derive particlelike conservation
laws for neutral perfect fluids and for charged poorly
conducting fluids. Here, we review Carter’s framework
and extend it to baroclinic fluids and perfectly conducting
magnetofluids.

1. Lagrangian dynamics

The results derived in this section will apply to any
classical motion obeying a Lagrangian variation principle.
That is, for any particular (particle, fluid or magneto-fluid)

flow, there exists a Lagrangian function Lðx; vÞ of the
spacetime coordinates xα and canonical 4-velocity vα,
evaluated at xαðλÞ and vαðλÞ where λ ∈ R is a canonical
time parameter (which need not necessarily coincide
with proper time τ) in terms of which the (not necessarily
unit) vector

vα ¼ dxα

dλ
ð2:7Þ

is defined. The equations of the (particle or fluid-element)
worldlines xαðλÞ can be obtained from the action functional

S ¼
Z

λ2

λ1

Lðx; vÞdλ: ð2:8Þ

Extremizing the action keeping the endpoints fixed yields
the Euler-Lagrange equations of motion

dpα

dλ
¼ ∂L

∂xα
ð2:9aÞ

pα ¼
∂L
∂vα

ð2:9bÞ

where pα is the canonical momentum 1-form conjugate to
xα. In the context of fluid theory, it is preferable to write the
above equations in the (Eulerian) covariant form [27]

£v⃗pα ¼ ∇αL

or, in exterior calculus notation,

£v⃗p ¼ dL; ð2:10Þ

where £v⃗ is the Lie derivative along the vector v⃗ and d is the
exterior derivative [58–60]. The canonical momentum one-
form p ¼ pμdxμ is also known as the tautological one-
form, the Liouville one-form, the Poincaré one-form the
symplectic potential or simply the canonical one-form [61].
Using the definition of the Lie derivative and the chain rule,
the above equation1 can be expressed as

£v⃗pα −∇αL ≔ vβ
∂pα

∂xβ
þ pβ

∂vβ

∂xα
−
�
∂L
∂xα

þ ∂L
∂vβ

∂vβ

∂xα

�

¼ dpα

dλ
−

∂L
∂xα

þ
�
pβ −

∂L
∂vβ

�
∂vβ
∂xα

: ð2:11Þ

1In Eq. (2.9b), the Lagrangian L and canonical momentum p
are regarded functions of the time parameter λ, through x⃗ðλÞ and
v⃗ðλÞ, and characterize a single fluid element. In Eq. (2.10), the
Lagrangian and canonical momentum are regarded functions on
spacetime through x⃗ and v⃗ðxÞ. They amount to the Lagrangian
and canonical momentum of the fluid element located at x⃗, and
changing the argument x⃗ generally changes the fluid element
which L and p refer to.
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This quantity vanishes if and only if the Euler-Lagrange
Eq. (2.9) are satisfied; the latter are thus equivalent to the
covariant Eq. (2.10).

2. Hamiltonian dynamics

The Legendre transformation

H ¼ vαpα − L ð2:12Þ

defines the super-HamiltonianHðx; pÞ. Then, the equations
of motion take the form of Hamilton’s equations

dpα

dλ
¼ −

∂H
∂xα

ð2:13aÞ

dxα

dλ
¼ ∂H

∂pα
: ð2:13bÞ

The above equations can be written covariantly as [27]

vβð∇βpα −∇αpβÞ ¼ −∇αH

or, in exterior calculus notation,

v⃗ · dp ¼ −dH: ð2:14Þ

One may obtain Eq. (2.14) using the Cartan identity

£v⃗pα ¼ vβð∇βpα −∇αpβÞ þ∇αðvβpβÞ

or

£v⃗p ¼ v⃗ · dpþ dðv⃗ · pÞ ð2:15Þ

and the Legendre transformation (2.12) to write the
covariant Euler-Lagrange Eq. (2.10) as

£v⃗p − dL ¼ v⃗ · dpþ dH ¼ 0: ð2:16Þ

Alternatively, one may prove the equivalence of
Eq. (2.14) to the Hamilton Eq. (2.13a) by proceeding
analogously to Eq. (2.11), that is, by using the chain rule
to rewrite the (Eulerian) covariant derivative ∇αH ¼
∂H=∂xα þ ∂pβ=∂xα∂H=∂pβ in terms of (Lagrangian) par-
tial derivatives.

C. Conservation laws

1. Poincaré-Cartan integral invariant

The 2-form

Ωαβ ≔ ∇βpα −∇αpβ

or, equivalently,

Ω ≔ dp ¼ dpμ ∧ dxμ ð2:17Þ

is the canonical symplectic form, also known as the
Poincaré two-form [61]. Its physical content depends on
the action (2.8). In Sec. III it will be shown that, if the
action describes a perfect fluid, then Ω is Khalatnikov’s
canonical vorticity tensor; if the action describes a purely
magnetic field, then Ω is the Faraday tensor. Nevertheless,
the results of Sec. II apply to any generic Hamiltonian flow;
no assumptions on the physical content of the action (2.8)
will be made prior to Sec. III.
Taking the exterior derivative of (2.10), commuting the

exterior derivative dwith the Lie derivative £v⃗ and using the
identity d2 ¼ 0, we immediately deduce that the canonical
symplectic form (2.17) is advected by the flow:

£v⃗Ω ¼ 0: ð2:18Þ

The above equation also follows directly from the Hamilton
Eq. (2.14) and the Cartan identity

£v⃗Ω ¼ v⃗ · dΩþ dðv⃗ ·ΩÞ: ð2:19Þ

The conservation Eq. (2.18) is tied to an important
integral invariant: Consider2 the family Ψλ of diffeomor-
phisms generated by canonical velocity v⃗, with Ψ−1

λ its
inverse. Let c be a ring in the flow, bounding a 2-surface S;
let cλ ¼ ΨλðcÞ be the family of rings dragged along by the
flow, bounding the 2-surfaces Sλ ¼ ΨλðSÞ. That is, each
point of Sλ is obtained by moving each point of S an affine
time λ along the flow through that point. The closed line
integral of p around Cλ can then be written as

I ≔
I
cλ

p ¼
Z
Sλ

Ω ¼
Z
S
Ψ−1

λ Ω ð2:20Þ

where we used the Stokes theorem [relating the circulation
integral

H
cλ
pαdxα with the integral

R
Sλ
Ωαβdxαð1Þdx

β
ð2Þ of Ω

on Sλ, where dxαð1Þ and dxβð2Þ are infinitesimal vectors

tangent to Sλ spanning the tangent space at each point]
and the diffeomorphism invariance of an integral [i.e. the
identity

R
ΨλðSÞΨλΩ ¼ R

S Ω, with Ω replaced by Ψ−1
λ Ω,

cf. Eq. (A.81) in [60]]. Eq. (2.18) implies that the above
integral is conserved:

dI
dλ

¼
Z
S

d
dλ

ðΨ−1
λ ΩÞ ¼

Z
S
£v⃗Ω ¼ 0: ð2:21Þ

The closed line integral (2.20) is known in analytical
dynamics as the Poincaré-Cartan integral invariant asso-
ciated with Hamiltonian systems [62–64]. Its existence

2This derivation follows and generalizes Friedman&Stergioulas’
[60] proof of conservation of circulation.
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emerges from the Hamiltonian structure of Eq. (2.14). In
particular, a dynamical system possesses a Poincaré-Cartan
integral invariant if and only if it is Hamiltonian [65].
Although this result is well known in analytical dynam-

ics, to our knowledge, its applicability to (magneto)hydro-
dynamics was only recognized by Carter [27] Some
classical mechanics texts mention that the integral (2.20)
corresponds to a conserved circulation in phase space,
analogous to Kelvin’s circulation integral in a barotropic
fluid. In fact, this is more than a mere analogy, albeit in the
converse direction: Kelvin’s circulation equals the integral
(2.20) if the Lagrangian is chosen to be that of a perfect
barotropic fluid element, Eq. (3.20) [27,66]. Similarly,
Alfvén’s magnetic flux theorem, and the generalizations
of Kelvin’s theorem to poorly [27] or perfectly conducting
[29–31] magnetofluids, emerge also as special cases
of the Poincaré-Cartan integral invariant (2.20). This will
be shown in Sec. III by constructing the appropriate
Lagrangians.

2. Irrotational flows

In general, a flow will be called irrotational if and only if
the canonical vorticity 2-form vanishes:

Ω ¼ dp ¼ 0: ð2:22Þ

Then, if the domain D is simply connected, the Poincaré
lemma implies the local existence of a single-valued scalar
field S such that

p ¼ dS ð2:23Þ

or, equivalently,

pα ¼ ∇αS:

The invariance of the Poincaré-Cartan integral (2.20)
guarantees that initially irrotational flows remain irrota-
tional.3 This is very useful when solving the Cauchy
problem with irrotational initial data (cf. [66] for a 3þ 1
evolution scheme exploiting this property in barotropic
fluids). For an irrotational flow, substituting Eq. (2.23) into
the equations of motion (2.10), (2.14), we find that the latter
have first integrals:

£v⃗S − L ¼ 0 ð2:24Þ

H ¼ 0 ð2:25Þ

respectively. In general, a system with constant H is called
uniformly canonical. This is the case for irrotational flow,

and, more generally, for a perfect fluid that is homentropic
or barotropic, as will be shown below.
We note that the above first integrals hold throughout the

flow. Indeed, taking the exterior derivative of the above
equations and commuting the operator d with £v leads back
to the equations of motion (2.10), (2.14). In the above
integrals, we have dropped an additive integration constant
by absorbing it into the definition of the potential S. Note
that Eq. (2.24) follows directly from Eq. (2.25) with the aid
of Eqs. (2.12) and (2.23) and the definition of the Lie
derivative.
Equations (2.24) and (2.25) were derived for an irrota-

tional flow. More generally, the same equations can be
shown to hold for helicity-free flows which are represent-
able in the Clebsch form p ¼ dS þ αdβ. This follows by
substituting the latter expression into the equations of
motion (2.10), (2.14) and using the fact that the Clebsch
potentials α, β are advected by the flow, that is
£v⃗α ¼ 0, £v⃗β ¼ 0.

3. Poincaré two-form

Let uα ¼ vαð−vβvβÞ−1=2 be the unit vector along vα. In
light of Eq. (2.14), we can decompose the 2-form (2.17)
into “electric” and “magnetic” parts with respect to uα as

Ωαβ ¼ ð−vβvβÞ−1=2ðuα∇βH − uβ∇αHÞ þ uδϵδαβγωγ

or

Ω ¼ ð−v⃗ · vÞ−1=2u ∧ dH þ ⋆ðu ∧ ωÞ ð2:26aÞ

⋆Ω ¼ ð−v⃗ · vÞ−1=2⋆ðu ∧ dHÞ − u ∧ ω; ð2:26bÞ

where

ωα ≔
1

2
uδϵδαβγΩβγ ¼ uδ⋆Ωδα

or

ω ≔ u⃗ · ⋆Ω: ð2:27Þ

From the antisymmetry properties of ϵ it follows that

u⃗ · dH ¼ 0; u⃗ · ω ¼ 0 ð2:28Þ

and that the scalar invariants of the 2-form Ω are

1

2
ΩαβΩαβ ¼ ωαωα − ð−vβvβÞ−1∇αH∇αH ð2:29Þ

1

2
ð⋆ΩαβÞΩαβ ¼ ð−vβvβÞ−1=2ωα∇αH: ð2:30Þ

By the definition (2.17), Ω is an exact 2-form. Because
d2 ¼ 0, any exact 2-form is also closed:

3In the context of barotropic fluids, this is known as
Helmholtz’s third theorem, which is a corollary of Kelvin’s
circulation theorem.
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dΩ ¼ 0 ⇔ ∇αð⋆ΩαβÞ ¼ 0: ð2:31Þ

Given a scalar field ϕðxÞ onM, one can construct an exact
1-form

l ¼ dϕ ð2:32Þ

which is also, by virtue of the identity d2 ¼ 0, closed:

dl ¼ 0 ⇔ ∇αlβ −∇βlα ¼ 0: ð2:33Þ

Given a closed 2-form Ω and a closed 1-form l, one can
construct a current jα ≔ lβ⋆Ωβα, or

j ≔ ⃗l · ⋆Ω; ð2:34Þ

which, by virtue of Eqs. (2.31) and (2.33), is conserved:

∇αjα ¼ ∇αð∇βϕ⋆ΩβαÞ ¼ 0: ð2:35Þ

This conservation law implies a corresponding global
conservation of the integrated flux of jα across a
hypersurface.
An infinite number of (not necessarily independent)

conservation laws stem from Eq. (2.35) since, in general,
ϕðxÞ can be any differentiable function of the coordinates.
For example, in a chart fxμg ¼ ft; xig, if ϕ is chosen to be
the spatial coordinate x1, the above equation reduces to the
x1 component of Eq. (2.31). If ϕ coincides with coordinate
time t, Eq. (3.49) yields a spatial constraint equation. Other
combinations of the coordinates give different projections
Eq. (2.31). Choosing ϕ to be the super-Hamiltonian H
gives rise to a conserved current

jα ≔ ∇βH⋆Ωβα: ð2:36Þ

This conservation law holds for any Hamiltonian system
with a Poincaré 2-form Ω. For a baroclinic fluid, described
by Eq. (3.41) below, the time component of this current is
the potential vorticity, as shown in Sec. III. The corre-
sponding conservation law, known as Ertel’s theorem
[67,68], arises simply as a special case of Eq. (2.36).
As mentioned earlier, a system with spatially constant

super-Hamiltonian H is uniformly canonical. If the uni-
formity condition dH ¼ 0 holds on an initial hypersurface,
then Eq. (2.28) guarantees that the condition is preserved in
time. For such systems, Eqs. (2.26) and (2.31) yield the
conservation law

d⋆ðu ∧ ωÞ ¼ 0 ⇔ ∇αðuαωβ − uβωαÞ ¼ 0: ð2:37Þ

In 3þ 1 dimensions, this equation is the curl of Eq. (2.18).
Helmholtz’s vorticity transport equation [68] and Alfven’s
magnetic field transport equation [69] are special cases of
this general conservation law.

4. Generalized helicity

Equations (2.17), (2.31) and (2.30) imply that, for
uniformly canonical systems, the generalized helicity
current

h ≔ p⃗ · ⋆Ω ð2:38Þ

is conserved:

∇αhα ¼
1

2
Ωαβ⋆Ωβα ¼ ωα∇αH ¼ 0: ð2:39Þ

This conservation law also implies a corresponding global
conservation of the integrated flux of hα across a hyper-
surface. Specific examples are given in Sec. III [70–72].

5. Noether’s theorem

Noether’s theorem states that each continuous symmetry
of the action implies a quantity conserved by the motion. In
particular, the generalized Noether theorem may be stated
as follows [73]. Consider the ε family of infinitesimal
coordinate transformations

x⃗ → x⃗ε ¼ x⃗þ εk⃗ðx; vÞ ð2:40Þ

generated by the vector field k⃗ðx; vÞ, which can depend on
position and velocity, for a small parameter ε. If these
transformations leave the action (2.8) unchanged or,
equivalently, change the Lagrangian Lðx; vÞ by a total
derivative of some scalar KðxÞ,

L → Lε ¼ L − ε
dK
dλ

; ð2:41Þ

then the quantity

Cðx; vÞ ¼ ∂L
∂vα

kα þ K ð2:42Þ

is a constant of motion:

dC
dλ

¼ £v⃗C ¼ 0: ð2:43Þ

If k⃗ depends on velocity, then the family (2.40) of
transformations is not generally considered a family of
diffeomorphisms. It is, however, a generalized symmetry
of the action and Noether related to an invariant of the
form (2.42).
Conversely, the inverse Noether theorem [73] may be

stated as follows: if the quantity Cðx; vÞ is a constant of
motion, then the ε family of infinitesimal transformations

generated by the vector field k⃗ðx; vÞ, obtained by solving
the linear system
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∂
2L

∂vα∂vβ
kβ ¼ ∂C

∂vα
; ð2:44Þ

is a generalized symmetry of the action.
In the Hamiltonian picture, a scalar quantity Cðx; pÞ,

which does not explicitly depend on the time parameter λ, is
conserved if it commutes with the super-Hamiltonian, in
the sense of a vanishing Poisson bracket:

dC
dλ

¼ £v⃗C ¼ fC; Hg≡ ∂C
∂xγ

∂H
∂pγ

−
∂C
∂pγ

∂H
∂xγ

¼ 0: ð2:45Þ

Conserved quantities polynomial in the momenta are
associated with Killing vectors or tensors and are
Noether related to symmetries of the action, as discussed
below. The super-Hamiltonian H does not explicitly
depend on the affine parameter λ and is itself a constant
of motion, in agreement with Eq. (2.28) (this symmetry is
Noether related to the metric tensor being a Killing tensor,
as discussed in Sec. III).
For barotropic fluids, Eqs. (2.42) and (2.43) or (2.45)

give rise to Bernoulli’s law, as shown in the next section.

III. EXAMPLES OF HAMILTONIAN FLOWS

A. Perfect fluids

We assume that a part D ⊂ M of spacetime is occupied
by a perfect fluid, characterized by the energy-momentum
tensor

Tfl ¼ ðϵþ pÞu ⊗ uþ pg; ð3:1Þ

where ϵ is the proper energy density, p is the fluid pressure
and uα ¼ dxα=dτ is the fluid 4-velocity. Moreover, we
neglect effects of viscosity or heat conduction and we
assume that the fluid is a simple fluid, that is, all
thermodynamic quantities depend only on the entropy
density s and proper baryon number density n. In particular,

ϵ ¼ ϵðs; nÞ: ð3:2Þ

The above relation is called the equation of state (EOS) of
the fluid. The temperature T and the baryon chemical
potential μ are then defined by

T ≔
∂ϵ

∂s
and μ ≔

∂ϵ

∂n
: ð3:3Þ

Then, the first law of thermodynamics can be written as

dϵ ¼ μdnþ Tds: ð3:4Þ

As a consequence, p is a function of ðs; nÞ entirely
determined by (3.2):

p ¼ −ϵþ Tsþ μn: ð3:5Þ

Let us introduce the specific enthalpy,

h ≔
ϵþ p
ρ

¼ gþ TS; ð3:6Þ

where ρ is the rest-mass density

ρ ≔ mn; ð3:7Þ

g is the specific Gibbs free energy

g ≔
μ

m
; ð3:8Þ

m ¼ 1.66 × 10−27 kg is the baryon rest mass, and S is the
specific entropy, or entropy per particle:

S ≔
s
ρ
: ð3:9Þ

The second equality in (3.6) is an immediate consequence
of (3.5). From Eqs. (3.4)–(3.9), we obtain the thermody-
namic relations

dϵ ¼ hdρþ ρTdS; dp ¼ ρðdh − TdSÞ: ð3:10Þ

A simple perfect fluid is barotropic if the energy density
depends only on the pressure, ϵ ¼ ϵðpÞ. This is the case for
a cold or a homentropic fluid.
With the aid of Eqs. (3.4)–(3.10), the divergence of the

fluid energy-momentum tensor (3.1) can be decomposed as

∇⃗ · Tfl ¼ hu½∇ · ðρu⃗Þ� þ ρ½u⃗ · dðhuÞ − TdS�: ð3:11Þ

Conservation of rest mass

∇ · ðρu⃗Þ ¼ 0; ð3:12Þ

and the vanishing of (3.11) yield the relativistic Euler
equation for baroclinic fluids, in the canonical form:

£u⃗ðhuÞ þ dh ¼ u⃗ · dðhuÞ ¼ TdS ð3:13Þ

where the first equality follows from the Cartan identity
(2.15) and the normalization condition

gαβuαuβ ¼ −1: ð3:14Þ

For barotropic fluids, the Euler Eq. (3.13) simplifies to

£u⃗ðhuÞ þ dh ¼ u⃗ · dðhuÞ ¼ 0: ð3:15Þ

Equation (3.15) was obtained in special relativity by Synge
(1937) [17] and in general relativity by Lichnerowicz
(1941) [18]. The extension (3.13) to baroclinic (nonisen-
tropic) fluids was obtained by Taub (1959) [74] (see also
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[27,58,75]). Both of these relativistic hydrodynamic equa-
tions are canonical and can be described within the
framework of Sec. II, which provides a very efficient
approach to the derivation of conservation laws.

B. Barotropic flows

1. Hamilton’s principle for a barotropic-fluid element

The Euler Eq. (3.15) for a barotropic fluid is readily in
the canonical form (2.14). Thus, a particle variational
principle in the form described in Sec. II can be found.
Indeed the motions of fluid elements in a barotropic fluid
are conformally geodesic, that is, they are geodesics of a
manifold with metric h2gαβ [17,18,76]. This follows from
the fact that Eq. (3.15) is the Euler-Lagrange equation of
the action functional

S ¼ −
Z

τ2

τ1

hdτ ¼ −
Z

τ2

τ1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβ

dxα

dτ
dxβ

dτ

r
dτ: ð3:16Þ

The Lagrangian

Lðx; uÞ ¼ −h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβuαuβ

q
ð3:17Þ

is associated with the canonical momentum 1-form

p ¼ hu; ð3:18Þ

and the canonical vorticity 2-form

Ω ¼ dðhuÞ: ð3:19Þ

On shell, the condition (3.14) is satisfied, and the
Lagrangian (3.17) takes the value L ¼ −h. Carter [27]
introduced a slightly modified Lagrangian

Lðx; uÞ ¼ 1

2
hgαβuαuβ −

1

2
h; ð3:20Þ

that is associated with the same equations of motion and
has the same on-shell value, but its action is not repar-
ametrization invariant. Thus, if one wishes, for instance,
to use reparametrization invariance to replace proper time τ
by coordinate time t, in order to obtain a constrained
Hamiltonian via 3þ 1 decomposition, as done in [66], then
the action (3.16) is the appropriate starting point. If, on the
other hand, one is interested in a super-Hamiltonian that
describes the dynamics in a 4-dimensional spacetime, then
Carter’s Lagrangian (3.20) is more suitable. Substituting
the latter into the Legendre transformation (2.12) yields the
super-Hamiltonian

Hðx; pÞ ¼ 1

2h
gαβpαpβ þ

1

2
h ð3:21Þ

which vanishes on shell [when Eq. (3.14) holds].
Substituting Eqs. (3.18) and (3.21) into the Hamilton
Eq. (2.14) yields the barotropic Euler Eq. (3.15).

2. Conservation of circulation in barotropic flows

For this system, Eq. (2.18) yields a relativistic gener-
alization of Helmholtz’s vorticity conservation equation:

£u⃗dðhuÞ ¼ 0 ð3:22Þ

and the Poincaré-Cartan integral invariant (2.20)–(2.21)
gives rise a relativistic generalization of Kelvin circulation
theorem: the circulation along a fluid ring cτ dragged along
by the flow is conserved:

d
dτ

I
cτ

hu ¼ 0: ð3:23Þ

Conservation of circulation for the nonrelativistic Euler
equations was discovered by Cauchy (1815) [77,78] and
independently rediscovered by Kelvin (1869) [79]. The
extension of this theorem to relativistic barotropic fluids
was obtained by Lichnerowicz and [80] Taub [74]. The most
interesting feature of the above conservation law is that its
derivation does not depend on the spacetime metric or
spacetime symmetries. Thus, it is exact in time-dependent
spacetimes, with gravitational waves carrying energy and
angular momentum away from a system. Oscillating stars
and radiating binaries, if modeled as barotropic fluids with
no viscosity or dissipation other than gravitational waves,
exactly conserve circulation [60].

3. Fluid helicity

Since the super-Hamiltonian (3.21) is constant, the
system is uniformly canonical, and helicity is conserved.
If we substitute Eq. (3.18) into Eq. (2.38), then Eqs. (2.27)
and (2.39) imply that the fluid helicity current [27,81,82]

hfl ≔ hu⃗ · ⋆Ω ¼ hω ð3:24Þ

is conserved:

∇αðhuβ⋆ΩβαÞ ¼ ∇βðhωβÞ ¼ 0: ð3:25Þ

This implies a corresponding global conservation of the
integrated flux of hαem across a spatial hypersurface. In a
chart ft; xig, the volume integral of the time component

of h⃗fl:

htfl ≔ h⃗fl · ∇t ¼ hωt ¼ hui⋆Ωit ¼ −hωiui=ut ð3:26Þ

is the relativistic generalization of Moffat’s fluid helicity
[32,71,72]. The last equality follows from Eq. (2.28). If the
vorticity ωi has sufficient decay, then the total volume
integral of the above quantity is conserved by the flow.

CHARALAMPOS MARKAKIS et al. PHYSICAL REVIEW D 96, 064019 (2017)

064019-8



4. Killing vector fields and Bernoulli’s law

If there exists a vector field kαðxÞ, that generates a family
of diffeomorphisms (2.40) leaving the Langrangian (3.17)
unchanged, then Noether’s theorem implies the existence of
a streamline invariant linear in the momenta, given by
Eq. (2.42) (with K set to zero):

Eðx; pÞ ¼ kαpα ¼ huαkα: ð3:27Þ

As stated by Eq. (2.43), this quantity is conserved along a
streamline (i.e. the trajectory of a fluid element):

dE
dτ

¼ £u⃗E ¼ u⃗ · ∇E ¼ 0: ð3:28Þ

The above statement is a generalization of Bernoulli’s law
to relativistic barotropic fluids. In light of the above, each
Bernoulli-type conservation law is Noether related to a
continuous symmetry of the flow.
Given the super-Hamiltonian (3.21), one may directly

verify when a quantity of the form (3.27) is conserved by
computing the Poisson bracket (2.45):

dE
dτ

¼ fE; Hg ¼ 1

h
pαpβ∇αkβ − kγ∇γh

¼ 1

2h
uαuβ£k⃗ðh2gαβÞ ð3:29Þ

which vanishes for all timelike streamlines if and only if

£k⃗ðh2gÞ ¼ 0: ð3:30Þ

That is, the necessary and sufficient condition for E to be a

streamline invariant is that k⃗ be a Killing vector of a
manifold with metric h2g. This result is intuitive given the
fact that, as mentioned earlier, the fluid streamlines are
geodesics of this conformal metric, cf. Eq. (3.16). We
remark that the vanishing of both £k⃗g and £k⃗h, as indicated
by the first line of Eq. (3.29), is a sufficient but not
necessary condition for E to be conserved.
When the pressure vanishes, i.e. when h ¼ 1, the

condition (3.30) reduces to the Killing equation
∇ðαkβÞ ¼ 0, which is Noether related to the existence of
conserved quantities linear in the momenta for geodesic
motion [83–85].
As an example, let us consider a helically symmetric,

rigidly rotating fluid equilibrium, such as a rigidly rotating
star (that may be triaxially deformed [86]), or a tidally
locked binary on circular orbits. The flow field may then be
written as

u⃗ ¼ utk⃗; ð3:31Þ

where

k⃗ ¼ ⃗tþ Ωφ⃗ ð3:32Þ
is a helical Killing vector field which Lie derives the metric:
£k⃗g ¼ 0. Here, Ω is the rotation frequency, ⃗t ¼ ∂t is the
generator of time translations and φ⃗ ¼ ∂φ is the generator
of rotations about the rotation axis.
Let us assume that the fluid configuration is helically

symmetric, that is, the Lie derivatives of all fluid variables
(such as ρ, h, u) along k⃗ vanish. Since, by virtue of
Eq. (3.30), the system is stationary in a rotating frame,
Noether’s theorem guarantees that the energy in a rotating
frame, given by Eq. (3.27):

E ¼ kαpα ¼ pt þ Ωpφ ð3:33Þ

is conserved along streamlines.
In general, this quantity can differ from one streamline to

the next. However, a stronger result follows from Eq. (3.31)
and the Cartan identity (2.15), which allow one to write the
Euler Eq. (3.15) as

k⃗ · dp ¼ £k⃗p − dðk⃗ · pÞ ¼ 0: ð3:34Þ

Because £k⃗p ¼ 0, the first integral (3.27) of the Euler
equation is constant throughout the fluid:

∇E ¼ 0: ð3:35Þ

This stronger conservation law is a relativistic generaliza-
tion of von Zeipel’s law [60]. The energy (3.27) is also a
first integral to the Euler equation if a helically symmetric
system is irrotational [57,87–94]. Such first integrals are
valuable for solving for obtaining fluid equilibria via the
self-consistent field method [95]. Generalizations of these
first integrals have been used to construct equilibria for
spinning [96–99] or eccentric [100,101] compact binaries
in numerical relativity.

5. Killing tensor fields and the Carter constant

Geodesic motion of test particles in Kerr (or Kerr-de
Sitter) spacetimes is known to admit a fourth constant of
motion (in addition to energy, angular momentum, and
four-velocity magnitude), known as the Carter constant,
which is quadratic in the momenta and is Noether related to
the existence of a Killing tensor field [83].
To our knowledge, the concept of a Killing tensor for

fluid flows has not been defined before, but the framework
outlined Sec. II provides the means to do so. Consider a
tensor field KαβðxÞ associated with a streamline invariant
quadratic in the momenta,

E ¼ Kαβpαpβ þ K; ð3:36Þ

where the scalar KðxÞ is a function of position. This
invariant can be considered a special case of the invariant
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(2.42) and follows from the generalized Noether theorem,
with kαðx; pÞ ¼ KαβðxÞpβ being the generator of the
symmetry transformations [102]. For the barotropic fluid
super-Hamiltonian (3.21), the Poisson bracket (2.45) is

fE; Hg ¼ ðh2∇γKαβ þ 2hgαβKγδ∇δh − gαβ∇γKÞuαuβuγ:
ð3:37Þ

The above bracket vanishes for all timelike streamlines if
and only if

h2∇ðγKαβÞ þ 2hgðαβKγÞδ∇δh − gðαβ∇γÞK ¼ 0: ð3:38Þ

That is, the quantity (3.36) is conserved along streamlines if
and only if K is a Killing tensor of the conformal
metric h2g.
In the case of a reducible Killing tensor of the form

Kαβ ¼ kαkβ, where kα is a Killing vector satisfying
Eq. (3.30), the condition (3.38) is automatically satisfied
while K again vanishes.
When the pressure vanishes, h ¼ 1, the scalar K must

vanish and the above condition reduces to the Killing
equation∇ðαKβγÞ ¼ 0, which is the necessary and sufficient
condition Kαβpαpβ being conserved along a geodesic of
gαβ. This is the condition satisfied by the Killing tensor in
the Kerr spacetime, which is Noether related to the Carter
constant [83,84]. In light of this, Eqs. (3.36)–(3.38) gen-
eralize the concept of a Carter constant to test fluids in Kerr
spacetime. Note, however, that the fluid configuration must
satisfy a generalized symmetry (in particular, the Hamilton-
Jacobi equation describing the flow [66] must be separable
in Boyer-Lindquist coordinates) in order for this constant
to exist.
A geodesic flow can be described by the super-

Hamiltonian H ¼ 1
2
gαβpαpβ, with pα ¼ uα, which is con-

served by virtue of the normalization condition (3.14). This
conserved quantity arises from gαβ being covariantly
constant and thus a Killing tensor, and is Noether related
to the super-Hamiltonian being independent of the affine
parameter τ. For barotropic flow, however, gαβ is not a
Killing tensor, as it does not satisfy the condition (3.38)
except in the geodesic limit. (If gαβ were a Killing tensor,
then gαβpαpβ ¼ −h2 would be a streamline constant, but
this is not true unless h ¼ 1.) However, Kαβ ¼ gαβ=h is a
Killing tensor, since it satisfies the condition (3.38)
provided that K ¼ h. The quadratic streamline constant
(3.36) associated with this Killing tensor is simply the
super-Hamiltonian (3.21).

C. Baroclinic flows

1. Hamilton’s principle for a baroclinic-fluid element

The possibility of expressing the equations of baroclinic
(nonisentropic) fluid flows in canonical form has been

demonstrated by Carter [27]. An intuitively simple action
principle (different from but equivalent to Carter’s) may be
obtained as follows.
A free test particle of rest mass m, moving along a

geodesic of spacetime, extremizes the action S ¼
−m

R
τ2
τ1
dτ [103]. For barotropic flows, as indicated by

Eq. (3.16), the pressure force on a fluid element can be
accounted for by replacing rest mass by the specific
enthalpy hm. For baroclinic flows, in light of Eqs. (3.6),
(3.8) and (3.10), the natural generalization is to replace rest
mass in the above action by the chemical potential μ ¼ gm
or, equivalently, the specific Gibbs free energy g (the rest
mass can be dropped without affecting the equations of
motion). Upon inspection, it becomes immediately clear
that Eq. (3.13) is indeed the Euler-Lagrange equation of the
action functional

S ¼ −
Z

τ2

τ1

gdτ ¼ −
Z

λ2

λ1

�
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβ

dxα

dλ
dxβ

dλ

r
− S

�
dλ

ð3:39Þ

provided that the (nonaffine) canonical time parameter

λðτÞ ≔
Z

τ
Tðτ0Þdτ0 ð3:40Þ

is used to parametrize the action. Note that entropy breaks
time-parametrization invariance: unlike the barotropic-fluid
action (3.16), the baroclinic fluid action (3.39) is not
parametrization invariant. Consequently, parameter choices
other than (3.40), such as proper time τ or coordinate time t,
lead to incorrect equations of motion. The Lagrangian

Lðx; vÞ ¼ −h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβvαvβ

q
þ S ð3:41Þ

is associated, by virtue of Eqs. (2.7) and (2.9b), with the
canonical velocity and canonical momentum

vα ¼ dxα

dλ
¼ 1

T
dxα

dτ
¼ 1

T
uα ð3:42aÞ

pα ¼
∂L
∂vα

¼ Thvα ¼ huα: ð3:42bÞ

On shell, by virtue of Eq. (3.14), one has vαvα ¼ −T−2 and
the Lagrangian takes the value L ¼ −g=T ¼ −h=T þ S
and, by virtue of Eq. (2.12), the super-Hamiltonian takes
the value H ¼ −S. Then, the Euler-Lagrange Eq. (2.10)
becomes

£u⃗=TðhuÞ ¼ dðS − h=TÞ ð3:43Þ

and the Hamilton Eq. (2.14) becomes
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u⃗
T
· dðhuÞ ¼ dS: ð3:44Þ

Both of these equations are equivalent expressions of the
relativistic Euler Eq. (3.13) for baroclinic fluids.
Carter [27] introduced a different Lagrangian analogous

to Eq. (3.20)

Lðx; vÞ ¼ 1

2
Thgαβvαvβ −

1

2

�
g
T
− S

�
; ð3:45Þ

that is associated with the same canonical velocity and
momentum (3.42), has the same on-shell value as our
Lagrangian (3.41), and leads to the same equation of
motion (3.43). The Legendre transformation (2.12) yields
the super-Hamiltonian

Hðx; pÞ ¼ 1

2Th
gαβpαpβ þ

h
2T

− S; ð3:46Þ

which has the same on-shell value and leads to the
canonical equation of motion (3.44).

2. Conservation of circulation in baroclinic flows

The canonical momentum and canonical vorticity are
given by the same expressions (3.18) and (3.19) as for
barotropic flows. However, the vorticity is no longer Lie
dragged by the fluid four-velocity u⃗: the exterior derivative
of Eq. (3.13) reads

£u⃗dðhuÞ ¼ dT ∧ dS: ð3:47Þ
Thus, the circulation around a fluid ring cτ ¼ ΨτðcÞ
dragged along by the flow (where Ψτ is the family of
diffeomorphisms generated by fluid four-velocity u⃗) is not
generally conserved:

d
dτ

I
cτ

hu ¼ d
dτ

Z
Sτ

dðhuÞ

¼
Z
S
£u⃗dðhuÞ ¼

Z
S
dT ∧ dS: ð3:48Þ

Hence, Kelvin’s theorem has been commonly thought to
not hold for baroclinic flows, except in a weaker form: the
circulation computed initially along a fluid ring of constant
temperature or specific entropy is conserved [32,104].
In lieu of a conserved circulation law, one may introduce

the potential vorticity, defined in general relativity by
selecting the scalar field in Eq. (2.34), or the negative
Hamiltonian in Eq. (2.36), to coincide with specific entropy
S (i.e. setting l ¼ dS), to obtain a flux conservation law of
the form (3.49):

∇αð∇βS⋆ΩβαÞ ¼ 0: ð3:49Þ
Using the continuity equation, this law can also be written
in terms of a Lie derivative along fluid velocity and, as

mentioned earlier, it is the relativistic generalization of
Ertel’s theorem obtained by Friedman [104] (see also
Katz [105]).
Here, we take a different route, and show that Carter’s

framework [106] implies the existence of a strong circu-
lation law. We have just shown above that an inviscid
baroclinic fluid is a Hamiltonian system and, as such, must
possess a Poincaré-Cartan integral invariant. Indeed, the
exterior derivative of Eq. (3.43) implies that the canonical
vorticity (3.19) is Lie-dragged by the canonical fluid
velocity (2.7):

£u⃗=TdðhuÞ ¼ 0 ð3:50Þ

as dictated by Eq. (2.18). Hence, the circulation around a
fluid ring cλ ¼ ΨλðcÞ, obtained by moving each point of c a
canonical time λ [cf. Eq. (3.40)] along the flow through that
point, is indeed conserved:

d
dλ

I
cλ

hu ¼ d
dλ

Z
Sλ

dðhuÞ ¼
Z
S
£u⃗=TdðhuÞ ¼ 0 ð3:51Þ

as dictated by Eqs. (2.20)–(2.21). Here, the circulation can
be initially computed along an arbitrary fluid ring c. Thus,
unlike the previous weak form, this circulation theorem is a
strong form of Kelvin’s theorem, applicable to baroclinic
fluids.
It will be shown below that this circulation theorem can

be further extended to barotropic or baroclinic, perfectly or
poorly conducting, magnetofluids. These (new and old)
circulation theorems are again special cases of the
Poincaré-Cartan integral invariant (2.20). The fluid helicity,
on the other hand, is not conserved for baroclinic fluids, as
these systems are not uniformly canonical.

D. Ideal magnetoflows

1. Maxwell equations

Consider an electromagnetic field in M, described by
the electromagnetic 2-form F, known as the Faraday
tensor, satisfying the Maxwell equations which, in natural
Heaviside-Lorentz units, read ∇αð⋆FαβÞ ¼ 0, ∇αFαβ ¼
Jβ or

dF ¼ 0 ð3:52aÞ

d⋆F ¼ ⋆J; ð3:52bÞ

where ⋆F is the 2-form Hodge dual of F, namely
⋆Fαβ ≔ 1

2
ϵαβγδFγδ, and ⋆J is the 3-form Hodge dual of

the 1-form J associated with the electric 4-current J⃗,
namely ⋆Jαβγ ≔ ϵαβγδJδ.
The electric 4-current may be decomposed as J⃗ ¼ eu⃗þ ⃗j

where e ¼ −u · J⃗ is the proper charge density, eu⃗ is the
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convection current and ⃗j is the conduction current, satisfy-
ing u · ⃗j ¼ 0. For an isotropically conducting medium,
Ohm’s law can be written as

j ¼ σE ð3:53Þ

where σ is the conductivity of the medium and E is the
electric field measured by an observer comoving with the
fluid, given by Eq. (3.60) below. In the perfect conductivity
limit, σ → ∞, the electric field vanishes,E → 0. In the poor
conductivity limit, σ → 0, the conduction current van-
ishes, j → 0.

2. Magnetohydrodynamic Euler equation

The relativistic MHD-Euler equation can be obtained
from the conservation law of energy-momentum,

∇ · ðTfl þ TemÞ ¼ 0; ð3:54Þ

where Tem is the energy-momentum tensor of the electro-
magnetic field:

Tem
αβ ¼ FγαF

γ
β −

1

4
FγδFγδgαβ: ð3:55Þ

This tensor is trace-free: gαβTem
αβ ¼ 0. Taking the divergence

of Eq. (3.55) and using the Maxwell Eqs. (3.52), one
obtains the well-known relation

∇ · Tem ¼ −F · J⃗: ð3:56Þ

Substituting Eqs. (3.11) and (3.56) into the conservation
law (3.54) yields the MHD-Euler equation for baroclinic
magnetofluids:

u⃗ · dðhuÞ ¼ TdSþ 1

ρ
F · J⃗: ð3:57Þ

As shown in Ref. [57], the specific form (3.57) is
well adapted to the cases where the spacetime exhibits
some symmetries. Projecting the MHD-Euler equation
along u⃗ yields T£u⃗S ¼ 1

ρE · J⃗. The right-hand side of
this equation, which represents Joule heating, vanishes in
the limit of perfect conductivity, whence the flow is
adiabatic:

£u⃗S ¼ u⃗ · ∇S ¼ 0: ð3:58Þ

For barotropic magnetofluids, the above equation simpli-
fies to

u⃗ · dðhuÞ ¼ 1

ρ
F · J⃗: ð3:59Þ

In the absence of pressure and currents (h → 1 and J → 0),
this equation reduces to the geodesic equation, u⃗ · du ¼ 0,
as expected.

3. Perfectly conducting magnetoflows

The electric field 1-form E and the magnetic field vector
B⃗ measured in the fluid rest frame, by an observer of
4-velocity u⃗, are given in terms of F by

E ¼ −u⃗ · F; B ¼ u⃗ · ⋆F ð3:60Þ

and satisfy

E · u⃗ ¼ 0; B · u⃗ ¼ 0: ð3:61Þ

Equivalently, we can decompose F into electric and
magnetic parts with respect to the rest frame defined by
the vector u⃗, as

F ¼ u ∧ Eþ ⋆ðu ∧ BÞ ð3:62aÞ

⋆F ¼ ⋆ðu ∧ EÞ − u ∧ B: ð3:62bÞ

The scalar invariants of the field are given by

1

2
FαβFαβ ¼ B⃗ · B − E⃗ · E ð3:63Þ

1

2
ð⋆FαβÞFαβ ¼ B⃗ · E: ð3:64Þ

In ideal MHD, one assumes that the fluid occupying the
part D ⊂ M of spacetime is a perfect conductor. By this,
we mean that the observers comoving with the fluid
measure a vanishing electric field. By virtue of Ohm’s
law (3.53), this expresses the infinite conductivity con-
dition. From (3.60), this condition amounts to

E ¼ F · u⃗ ¼ 0: ð3:65Þ

The electromagnetic field then reduces to

F ¼ ⋆ðu ∧ BÞ ð3:66aÞ

⋆F ¼ −u ∧ B ð3:66bÞ

and the Maxwell Eq. (3.52) simplifies to

d⋆ðu ∧ BÞ ¼ 0 ⇔ ∇αðuαBβ − uβBαÞ ¼ 0: ð3:67Þ

This equation is a special case of Eq. (2.37), for reasons that
will become clear below. In ideal MHD, one only has to
evolve the magnetic field Eq. (3.67). The current has no
dynamical degrees of freedom and is merely defined in
terms of the magnetic field via Eq. (3.66a) and the Maxwell
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Eq. (3.52b). One then evolves the MHD-Euler Eq. (3.57)
after evaluating the Lorentz force term in its right-
hand side.
Alternatively, by writing F in terms of the electromag-

netic potential 1-form A,

F ¼ dA; ð3:68Þ

one automatically satisfies the Maxwell Eq. (3.52). The
perfect conductivity condition (3.65) is then used to evolve
the electromagnetic potential [107,108]:

u · dA ¼ 0 ⇔ uαð∇αAβ −∇βAαÞ ¼ 0: ð3:69Þ

In 3þ 1 dimensions, Eq. (3.67) is the curl of Eq. (3.69), as
shown in Sec. III D 11.

4. Action of a magnetic field frozen
into the flow

A magnetic field frozen into the fluid, as defined by the
perfect conductivity condition (3.65), is characterized by
the action functional

S ¼
Z

τ2

τ1

Aα
dxα

dτ
dτ ð3:70Þ

where the electromagnetic potential A is considered a
function of x only. From the Lagrangian [27]

Lðx; uÞ ¼ uαAα ð3:71Þ

we finds that the canonical momentum 1-form (2.9b) is the
electromagnetic potential

pα ¼
∂L
∂uα

¼ Aα ð3:72Þ

and the canonical vorticity 2-form (2.17) is simply the
Faraday tensor

F ¼ dA: ð3:73Þ

Because the super-Hamiltonian (2.12) vanishes,

H ¼ 0; ð3:74Þ

the canonical equation of motion (2.14) takes the form of
the perfect conductivity condition (3.69).

5. Alfvén’s theorem: Conservation of magnetic flux

If we express the Lie derivative of F along u⃗ via the
Cartan identity,

£u⃗F ¼ u⃗ · dFþ dðu⃗ · FÞ; ð3:75Þ

and take into account the Maxwell Eq. (3.52a) and the
perfect conductivity condition (3.65), we get

£u⃗F ¼ 0: ð3:76Þ

This result, which also follows from Eq. (2.18), is the
geometrical expression of Alfvén’s magnetic flux theorem:
the magnetic flux through a fluid ring cτ dragged along by
the flow is conserved

d
dτ

I
cτ

A ¼ d
dτ

Z
Sτ

F ¼
Z
S
£u⃗F ¼ 0: ð3:77Þ

This follows directly from Eq. (2.21) for the Lagrangian
(3.71) and is therefore simply a special case of the Poincaré-
Cartan integral invariant (2.20). Intuitively, Alfvén’s theorem
is a consequence of perfect conductivity. If one attempts to
change themagnetic field and thus the magnetic flux through
the ring cτ of fluid, then, in accordance with Lenz’s law,
induced currents will generate a compensatory magnetic
field in an attempt to cancel the change of flux. In the limit of
perfect conductivity, this cancellation is perfect and the flux
is exactly conserved.

6. Magnetic helicity

Since the super-Hamiltonian (3.74) is constant, the
system is uniformly canonical, and the magnetic helicity,

hem ≔ A⃗ · ⋆F; ð3:78Þ

obtained by substituting Eqs. (3.72) and (3.73) into (2.38),
is conserved

∇αhαem ¼ 0 ð3:79Þ

by virtue of Eq. (2.39). This implies a corresponding global
conservation of the integrated flux of hαem across a spatial
hypersurface, which amounts to the relativistic generaliza-
tion of Woltjer’s magnetic helicity [32,70,72].

7. Einstein-Maxwell-Euler spacetimes

The classical action describing an Einstein-Maxwell-
Euler spacetime ðM; gÞ, coupled with a perfect fluid
carrying an electric current, is given by [60]

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−ϵþ 1

16π
R −

1

4
FαβFαβ þ AαJα

�
;

ð3:80Þ

where R is the Ricci scalar. By writing F in terms of a
1-form potential A, Eq. (3.68), one satisfies the Maxwell
Eq. (3.52). Varying the action with respect to the metric g
yields the Einstein equations, varying with respect to
the electromagnetic 4-potential A yields the Maxwell
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Eq. (3.52b), and varying with respect to the fluid variables
yields the MHD Euler Eq. (3.57).
Instead of imposing the perfect MHD condition after

varying the action, one may incorporate it into the action.
This can be done by replacing the action (3.80) with

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−ϵþ 1

16π
R −

1

2
BαBα

þ aα∇βðBαuβ − BβuαÞ
�

ð3:81Þ

where the 1-form a is a Lagrange multiplier used to enforce
the flux freezing condition (3.67). In writing the action
functional above, we have taken into account Eq. (3.63) in
order to evaluate the magnetic energy term. This action
functional differs by a surface term from that of
Bekenstein-Oron [29] which, in our notation, reads

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−ϵþ 1

16π
R −

1

2
BαBα þ bαFαβuβ

�
:

Here, the Lagrange multiplier b is used to enforce the
perfect conductivity condition (3.65) and is shown to be
the curl of a as indicated by Eq. (3.85) below. Our action
(3.81) closely resembles the nonrelativistic action of
Bekenstein-Oron [29], which is a more natural starting
point and simplifies the discussion below. Variation of
the action (3.81) with respect to the multiplier a yields
the Maxwell Eq. (3.67), while variation with respect to the
magnetic field B and integration by parts yields the
equation

u⃗ · da ¼ −B: ð3:82Þ

The multiplier a may thus be thought of as an auxiliary
field, with B the electric part of the 2-form

f ¼ da ð3:83Þ

[compare Eq. (3.82) with (3.60)]. Note that the above
equation automatically satisfies the orthogonality condition
(3.61). Comparing Eqs. (3.82) and (3.60), we infer that the
Faraday tensor F must be related to the 2-form f via a
relation ⋆F ¼ −f þ w where w is some 2-form satisfying
u⃗ · w ¼ 0. Since w has no electric part, it can be written in
terms of its magnetic part, b ¼ u⃗ · ⋆w, as w ¼ ⋆ðu ∧ bÞ.
Taking Eq. (3.66b) into account, we infer that

f ¼ ⋆ð−Fþ u ∧ bÞ ¼ u ∧ Bþ ⋆ðu ∧ bÞ: ð3:84Þ

That is, the 2-form (3.83) has an electric part given by
Eq. (3.82) and a magnetic part given by the 1-form

b ¼ u · ⋆da: ð3:85Þ

As pointed out by Bekenstein and Oron [29], the theory has
a Uð1Þ × Uð1Þ symmetry, since the observable field B
remains invariant under gauge transformations A → Aþ
dΛ and a → aþ dλ.
Taking the exterior derivative of Eq. (3.84) yields the

Maxwell Eq. (3.52b), with the Faraday tensor given by
Eq. (3.66a) and the current “defined” by

Jα ¼ ∇βðuαbβ − uβbαÞ ð3:86Þ

or

J ¼ ⋆d⋆ðu ∧ bÞ: ð3:87Þ

This expression has been obtained in [29] via a lengthy
route and will be referred to as the Bekenstein-Oron
current. Note that the above expression automatically
satisfies the continuity equation

∇ · J⃗ ¼ −⋆d⋆J ¼ 0 ð3:88Þ

regardless of any assumption about u and b. Physically,
the above equation expresses the conservation of electric
charge. The operator ⋆d⋆ is the codifferential and has been
expressed as the divergence taken with the ∇ connection.
For convenience, let us introduce an auxiliary vector q⃗ and
an auxiliary 1-form η defined by

qα ≔ bα=ρ; ηα ≔ Fαβqβ

or

q⃗ ≔ b⃗=ρ; η ≔ F · q⃗: ð3:89Þ

One may then use the continuity Eq. (3.12) to write the
Bekenstein-Oron current (3.87) as

J⃗ ¼ £q⃗ðρu⃗Þ þ ρu⃗ð∇ · q⃗Þ: ð3:90Þ

This expression can be used to write the Lorentz force term
in (3.104b) as

1

ρ
F · J⃗ ¼ 1

ρ
F · £q⃗ðρu⃗Þ ¼ −u⃗ · dη: ð3:91Þ

The last equality follows from projecting the Cartan
identity, £q⃗F ¼ q⃗ · dFþ dðq⃗ · FÞ, along the vector ρu⃗
and using Eq. (3.65). By virtue of the above equality,
the MHD-Euler Eq. (3.57) takes the canonical form

£u⃗ðhuþ ηÞ þ dh ¼ u⃗ · dðhuþ ηÞ ¼ TdS ð3:92Þ

which is valid for baroclinic magnetofluids. For barotropic
magnetofluids, the above equation simplifies to
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£u⃗ðhuþ ηÞ þ dh ¼ u⃗ · dðhuþ ηÞ ¼ 0: ð3:93Þ

The last equality was obtained by Bekenstein et al. [29,31].
The tensor or vector calculus-based derivations in

Ref. [29,31] did not clarify the generality of this approach.
In particular, one may question whether the Bekenstein-
Oron ansatz (3.87) for the current is generic enough to
accommodate any given ideal MHD flow. This question
boils down to whether Eq. (3.82) can be solved for any
given magnetofluid configuration with magnetic field B
and 4-velocity u⃗. The answer may be obtained by using the
Cartan identity to write Eq. (3.82) as £u⃗a − dðu⃗ · aÞ ¼ −B
and using the gauge freedom in a to set u⃗ · a ¼ 0 (this
gauge condition can be shown to be preserved by the flow if
satisfied initially). The resulting differential equation,
£u⃗a ¼ −B, is always solvable along the integral curves
of u⃗. We have thus shown that no loss of generality is
entailed in the Bekenstein-Oron description of ideal MHD
flows. For perfectly conductingmagnetofluids, the Einstein-
Maxwell-Euler action (3.80) may always be replaced by the
action (3.81), and theMHD-Euler Eq. (3.57) may always be
replaced by Eq. (3.92).

8. Hamilton’s principle for a barotropic
magnetofluid element

Carter [27] has allowed the possibility that the perfect
fluid be charged. His approach is valid for poorly con-
ducting fluids, but has been considered inapplicable to
conducting magnetofluids [30]. Nevertheless, it is shown
below that Carter’s framework can in fact accommodate
perfectly conducting fluids in the context of Bekenstein-
Oron magnetohydrodynamics. For a barotropic, perfectly
conducting magnetofluid, we generalize the action (3.16)
as follows:

S ¼
Z

τ2

τ1

�
−h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβ

dxα

dτ
dxβ

dτ

r
þ ηα

dxα

dτ

�
dτ ð3:94Þ

with Lagrangian

Lðx; uÞ ¼ −h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβuαuβ

q
þ ηαuα ð3:95Þ

and with η given by Eq. (3.89). The canonical velocity and
momentum of a magnetofluid element are given by

uα ¼ dxα

dτ
ð3:96aÞ

pα ¼
∂L
∂uα

¼ huα þ ηα: ð3:96bÞ

Alternatively, one may introduce a Lagrangian which
generalizes that of Carter, Eq. (3.20):

Lðx; uÞ ¼ 1

2
hgαβuαuβ −

1

2
hþ ηαuα: ð3:97Þ

The associated Hamiltonian,

Hðx; πÞ ¼ 1

2h
gαβðpα − ηαÞðpβ − ηβÞ þ

1

2
h; ð3:98Þ

vanishes on shell, so the Hamilton Eq. (2.14) yields
the MHD-Euler equation in the Bekenstein-Oron form,
Eq. (3.93).

9. Conservation of circulation in
barotropic magnetoflows

The canonical momentum 1-form of a barotropic ideal
magnetofluid element is given by Eq. (3.96b). Then, the
Poincaré 2-form (2.17) amounts to the canonical vorticity
2-form:

Ω ¼ dðhuþ ηÞ: ð3:99Þ

Then, the Cartan identity, combined with Eq. (3.92) and the
identity d2 ¼ 0, yields

£u⃗Ω ¼ 0: ð3:100Þ

This equation implies that the canonical vorticity of a
barotropic, perfectly conducting magnetofluid is preserved
by the flow. This leads to a generalization of Kelvin’s
theorem to magnetized fluids.
Indeed, for the system (3.94), the Poincaré-Cartan

theorem (2.21) implies that the circulation through a ring
cτ dragged along by the flow is conserved:

d
dτ

I
cτ

ðhuþ ηÞ ¼ 0: ð3:101Þ

This law follows directly from Eq. (3.100) and was first
obtained by Bekenstein and Oron [29,30]. It is a gener-
alization of the relativistic Kelvin circulation theorem
(3.48) (which is recovered in the nonmagnetic limit
η ¼ 0) to ideal MHD. The most interesting feature of this
conservation law is that it is exact in time-dependent
spacetimes, with gravitational and electromagnetic waves
carrying energy and angular momentum away from a
system. In particular, oscillating stars and radiating bina-
ries, if modeled as barotropic magnetofluids with no
viscosity, resistivity or other dissipation, exactly conserve
circulation.

10. Ideal magnetofluid helicity

Since the super-Hamiltonian (3.98) is constant (zero), the
system is uniformly canonical, and helicity is conserved:
Substituting Eq. (3.96b) into Eq. (2.38) yields the magneto-
lfuid helicity
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hmfl ≔ ðhu⃗þ ηÞ · ⋆Ω ð3:102Þ

which, by virtue of Eq. (2.39), is conserved:

∇α½ðhuβ þ ηαÞ⋆Ωβα� ¼ 0: ð3:103Þ

This implies a corresponding global conservation of the
integrated flux of hαmfl across a spatial hypersurface. One
may proceed analogously to Eq. (3.26) to obtain a con-
served volume integral, which amounts to the generaliza-
tion of Moffat’s fluid helicity [32,71,72] to ideal GRMHD.

11. A canonical evolution scheme for ideal MHD

In binary neutron-star inspiral, the temperature is
much lower than the Fermi temperature, and heat con-
duction, viscosity and resistivity can be neglected [60]. The
fluid may then be approximated as barotropic, adiabatic,
inviscid and perfectly conducting. In general relativity,
such fluids are described by the ideal MHD Eqs. (3.69)
and (3.59):

uαð∇αAβ −∇βAαÞ ¼ 0 ð3:104aÞ

uα½∇αðhuβÞ −∇βðhuαÞ� ¼
1

ρ
FβαJα; ð3:104bÞ

coupled to the continuity Eq. (3.12). One can evolve
Eq. (3.69) for the electromagnetic potential and compute
the Faraday tensor via Eq. (3.68). In ideal MHD, as
mentioned earlier, the current lacks dynamical degrees of
freedom and is merely defined in terms of the electromag-
netic potential via the Maxwell Eq. (3.52b). One then
evolves the MHD-Euler Eq. (3.104b) after evaluating the
Lorentz force term in its right-hand side.
In a chart ft; xig, the above system can be written in

3þ 1 hyperbolic form4 as

∂tAi − ∂iAt þ υjð∂jAi − ∂iAjÞ ¼ 0 ð3:105aÞ

∂tπi − ∂iπt þ υjð∂jπi − ∂iπjÞ ¼ fi ð3:105bÞ

where υi ¼ ui=ut ¼ dxi=dt is the fluid velocity measured
in local coordinates, πα ¼ huα denotes a (noncanonical)
momentum 1-form and fα ¼ ðρutÞ−1FαβJβ denotes the
Lorentz force per particle. The curl of the evolution
Eq. (3.105a) is an evolution equation for the magnetic
field. In particular, the exterior derivatives of the system
(3.105) yield an evolution system for the spatial parts of the
2-forms F ¼ dA and W ¼ dπ. In flux-conservative form,
this system reads:

∂tFjk þ ∂iðδiljkυmFmlÞ ¼ 0 ð3:106aÞ

∂tWjk þ ∂i½δiljkðυmWml − flÞ� ¼ 0 ð3:106bÞ

where δiljk ¼ ϵjknϵ
iln ¼ δijδ

l
k − δikδ

l
j is the generalized

Kronecker delta. Eq. (3.106a) is an evolution equation,
equivalent5 to Eq. (3.67), for the magnetic field. Numerical
evolution of the latter typically requires techniques such as
hyperbolic divergence cleaning or constrained transport to
avoid error accumulation from a finite magnetic divergence
[109]. Such numerical schemes can also be applied to
evolving the system (3.106) [as well as the system (3.110)
below]. Etienne et al. [107,108] have performed GRMHD
simulations that directly evolve the electromagnetic poten-
tial A by means of Eq. (3.105a) [or Eq. (3.109a)]. The
magnetic field is then computed from the curl of the vector
potential and has zero divergence by construction. This
numerical scheme can also be applied to evolving the
system (3.109) below, which is based on the Bekenstein-
Oron formulation.
Equations (3.104)–(3.106) constitute the usual formu-

lation of ideal MHD for barotropic magnetofluids. As
shown earlier, the Bekenstein-Oron description of ideal
MHD allows one to replace the MHD-Euler Eq. (3.59) by
the system of Eqs. (3.82) and (3.93), namely

uαð∇αAβ −∇βAαÞ ¼ 0 ð3:107aÞ

uαð∇αaβ −∇βaαÞ ¼ −Bβ ð3:107bÞ

uαð∇αpβ −∇βpαÞ ¼ 0 ð3:107cÞ

where

p ¼ huþ η ð3:108Þ

is the canonical momentum 1-form of a magnetofluid
element, as shown in the next section.
In a chart ft; xig, the above system can be written in

3þ 1 canonical hyperbolic form as

∂tAi − ∂iAt þ υjð∂jAi − ∂iAjÞ ¼ 0 ð3:109aÞ

∂tai − ∂iat þ υjð∂jai − ∂iajÞ ¼ −Bi ð3:109bÞ

∂tpi − ∂ipt þ υjð∂jpi − ∂ipjÞ ¼ 0. ð3:109cÞ

This system may be evolved analogously to the system
(3.104). One evolves the first equation for A and computes
the magnetic field B ¼ u⃗ · ⋆dA. With this source, one
evolves the second equation for a and computes the

4The four-momenta fAt; Aig and fπt; πig can be expressed in
terms of quantities normal or tangent to a t ¼ constant hyper-
surface in a manner described in Ref. [66].

5Unlike Eq. (3.67) which contains the metric and its con-
nection, Eq. (3.106a) contains no such dependence, yet both
equations are equivalent and exact in curved spacetime.
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auxiliary field b ¼ u⃗ · ⋆da. Finally, one solves the last
equation of the above system, taking Eqs. (3.89) and
(3.108) into account, to evolve the hydromagnetic flow.
The spatial exterior derivatives of the system (3.109)

yield an evolution system for the spatial parts of the 2-
forms (3.73), (3.83) and (3.99). In flux-conservative form,
this system reads

∂tFjk þ ∂iðδiljkυmFmlÞ ¼ 0 ð3:110aÞ

∂tfjk þ ∂i½δiljkðυmfml þ BlÞ� ¼ 0 ð3:110bÞ

∂tΩjk þ ∂iðδiljkυmΩmlÞ ¼ 0. ð3:110cÞ

As mentioned above, the numerical schemes developed for
the systems (3.105) or (3.106) can also be applied to
evolving the systems (3.109) or (3.110). Note that these
systems were obtained from equations involving only
exterior derivatives, and thus do not involve the spacetime
metric or its connection. Thus, these systems are indepen-
dent of gravity theory and they can be shown to be valid as
written6 even in the Newtonian limit. This is generally true
for equations of motion written in Euler-Lagrange or in
Hamiltonian form, cf. [66] for details. For nonmagnetic
fluids, Eq. (3.109c) was obtained from a 3þ 1 constrained
Hamiltonian formulation of the Euler equation in Ref. [66],
where it was shown to be strongly hyperbolic. Other
strongly hyperbolic formulations of the relativistic Euler
equation include the Valencia formulation [11] and the
symmetric hyperbolic Fraudendiner-Walton formulation
[110–113]. The hyperbolicity of the evolution system
(3.109) is the subject of future work. A notable feature
of the canonical evolution system (3.107) is that it
manifestly preserves magnetic flux and circulation, owing
to its symplecic structure. Equation (3.109a) can also be
obtained from a constrained Hamiltonian. Symplectic
evolution schemes based on the Hamiltonians of
Eqs. (3.109a) and (3.109c) are expected to numerically
preserve such properties. Moreover, if the system admits a
Noether symmetry, this canonical form quickly gives rise to
first integrals as discussed below.

12. Magnetars with helical symmetry

As an example, let us consider a helically symmetric
rigidly rotating system, such as a rigidly rotating magnetar
triaxially deformed by its off-axis frozen magnetic field.
The flow field may then be written in the form of Eq. (3.31).
Let us assume that all observable fields (such as h, u, B,
F, g) are helically symmetric, that is, their Lie derivatives

along the helical Killing vector k⃗, given by Eq. (3.32),
vanish.
Using gauge freedom, one can always find a gauge class

for which the electromagnetic potential A inherits the
Killing symmetries of F ¼ dA [57,114–116]. Then, using
Eq. (3.31) and the Cartan identity, £k⃗A ¼ k⃗ · dAþ
dðk⃗ · AÞ ¼ 0, we find that Eq. (3.107a) has the first integral

A · k⃗ ¼ At þ ΩAφ ¼ constant: ð3:111Þ

Similarly, using £k⃗a ¼ k⃗ · daþ dðk⃗ · aÞ and imposing the

gauge condition k⃗ · a ¼ 0 allows one to write Eq. (3.107b)
as £k⃗a ¼ −B=ut. This equation has the simple solution

a ¼ −Bt=ut; ð3:112Þ

where the scalar field t satisfies tα∇αt ¼ 1, so that
£k⃗t ¼ ð∂t þ Ω∂φÞt ¼ 1. Note that the auxiliary fields a
and b ¼ u⃗ · ⋆da are not observable and need not satisfy
helical symmetry (cf. Appendix B). Finally, Eq. (3.31) and
the Cartan identity allow one to write Eq. (3.107c) in the
form of Eq. (3.34), which has the first integral

p · k⃗þ f ¼ −h=ut þ f ¼ constant: ð3:113Þ

The first integrals (3.111) and (3.113) are consequences of
stationarity in an inertial (Ω ¼ 0) or rotating (Ω > 0) frame
and, like Eq. (3.35), can be considered generalizations of
von Zeipel’s law to relativistic magnetoflows. The scalar f
is such that df ¼ −£k⃗p or, by virtue of Eq. (3.108),

df ¼ −£k⃗η: ð3:114Þ

The right-hand side of this equation is proportional to the
Lorentz force. One way to see this is to act with £k on
Eq. (3.89),7

η ¼ dA · b⃗=ρ ¼ ðB2=ρÞu − da · B⃗=ρ; ð3:115Þ

and use Eq. (3.112), yielding

£k⃗η ¼ dðB=utÞ · B⃗=ρ: ð3:116Þ

Equation (3.114) then implies that the Lorentz force
must be the gradient of a scalar potential f in order for
helically symmetric corotating configurations solutions to
exist. This equation is subject to the integrability condition

d£k⃗η ¼ −d2f ¼ 0; ð3:117Þ
6With −pt replaced by the constrained Hamiltonian Hðpi; xjÞ,

and similarly for −At and −at, Eqs. (3.109) are formally valid in
both 3þ 1 general relativity and in Newtonian gravity [66].

7Note that, on shell, the fields η, A and b⃗ are independent of u⃗,
whereas B⃗ depends on u⃗ via Eq. (3.60).
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which constitutes a restriction on the magnetic field B on
which η depends. By virtue of Eq. (3.116), the above
condition becomes

dðB=utÞ ∧ dðB=ρÞ ¼ 0: ð3:118Þ

For corotating helically symmetric magnetoflows, the
system of nonlinear partial differential Eq. (3.107) has
been reduced to the system of algebraic Eqs. (3.111)–
(3.113) and the partial differential Eq. (3.114). The
Newtonian analogue of Eq. (3.117) has been considered
in Ref. [117]. A full description of a triaxial magnetar
requires specifying boundary (or junction) conditions at the
stellar surface for the electromagnetic field, as well as an
induced surface current (associated with the fact that the
condition (3.111) applies inside the star but not in the
vacuum outside the surface). This is beyond the scope of
this paper and a subject of future work.

13. Hamilton’s principle for a baroclinic
magnetofluid element

For a baroclinic, perfectly conducting magnetofluid, we
consider the action

S ¼
Z

λ2

λ1

�
−h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβ

dxα

dλ
dxβ

dλ

r
þ ηα

dxα

dλ
þ S

�
dλ ð3:119Þ

with η given by Eq. (3.89). Like its nonmagnetic limit
(3.39), the above functional is parametrized in terms of
canonical time λ, cf. Eq. (3.40). The Lagrangian of a
magnetofluid element

Lðx; vÞ ¼ −h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβvαvβ

q
þ ηαvα þ S ð3:120Þ

is associated with a canonical velocity and canonical
momentum

vα ¼ dxα

dλ
¼ 1

T
dxα

dτ
¼ 1

T
uα ð3:121aÞ

pα ¼
∂L
∂vα

¼ Thvα þ ηα ¼ huα þ ηα: ð3:121bÞ

On-shell, by virtue of Eqs. (3.14), (3.65) and (3.89), the
Lagrangian takes the value L ¼ −g=T ¼ −h=T þ S and,
by virtue of Eq. (2.12), the super-Hamiltonian takes
the value H ¼ −S. The Euler-Lagrange Eq. (2.10) thus
becomes

£u⃗=Tðhuþ ηÞ ¼ dðS − h=TÞ ð3:122Þ

and the Hamilton Eq. (2.14) becomes

u⃗
T
· dðhuþ ηÞ ¼ dS: ð3:123Þ

These equations are related via the Cartan identity and are
equivalent expressions of the MHD-Euler Eq. (3.92).
Alternatively, one may generalize Carter’s Lagrangian

(3.45) to perfectly conducting baroclinic magnetofluids: the
resulting Lagrangian

Lðx; vÞ ¼ 1

2
Thgαβvαvβ þ ηαvα −

1

2

�
g
T
− S

�
ð3:124Þ

is associated with the same canonical velocity and
momentum (3.96) and leads also to the equation of motion
(3.122). The Legendre transformation (2.12) yields the
super-Hamiltonian

Hðx; pÞ ¼ 1

2Th
gαβðpα − ηαÞðpβ − ηβÞ þ

h
2T

− S; ð3:125Þ

which leads to the canonical equation of motion (3.123).
Note that the 1-form η, defined by Eq. (3.89) or (3.115), is
consider independent of the four-velocity u⃗.

14. Conservation of circulation in
baroclinic magnetoflows

Like their nonmagnetic counterparts, baroclinic magne-
toflows do not Lie drag the vorticity (3.99): the exterior
derivative of Eq. (3.92) reads

£u⃗dðhuþ ηÞ ¼ dT ∧ dS: ð3:126Þ

Thus, as in Eq. (3.48), the circulation around a magneto-
fluid ring dragged along by the flow is not generally
conserved, except in a weak sense, i.e. for rings of constant
specific entropy or temperature.
Nevertheless, like their nonmagnetic counterparts, ideal

baroclinic magnetoflows are Lie dragged by the canonical
fluid velocity (3.96a):

£u⃗=Tdðhuþ ηÞ ¼ 0 ð3:127Þ

as dictated by Eq. (3.122), and this leads to a strong
conservation law. In particular, the circulation around a
magnetofluid ring cλ ¼ ΨλðcÞ, obtained by moving each
point of c a thermal time λ [cf. Eq. (3.40)] along the flow
through that point, is indeed conserved:

d
dλ

I
cλ

huþ η ¼ d
dλ

Z
Sλ

dðhuþ ηÞ

¼
Z
S
£u⃗=Tdðhuþ ηÞ ¼ 0. ð3:128Þ

Here, the circulation can be initially computed along an
arbitrary fluid ring c. This conservation of circulation law
generalizes the Bekenstein-Oron law (3.101) to baroclinic
magnetofluids. The conserved circulation is the Poincaré-
Cartan integral invariant of the Hamiltonian system
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described by the action (3.119). Although it has not
appeared in the literature before, it is a special case of
Eqs. (2.20) and (2.21), like all circulation integrals pre-
sented earlier.
A very similar conservation of circulation law can be

obtained for a poorly conducting fluid, simply by replacing
ηα with eAα, where e is the net charge per fluid element, in
the action (3.119) and all equations that follow from it
(cf. [27] for poorly conducting barotropic fluids). Although
conservation of circulation holds in the limits of infinite or
zero conductivity, we have not been able to obtain such a
law for finite conductivity. This may be attributed to the fact
that, for finite conductivity, the MHD-Euler Eq. (3.57) does
not follow from a Hamiltonian and, equivalently, does not
possess a Poincaré-Cartan integral invariant.

E. The geometry of barotropic flows

1. Hydrodynamic flows as geodesics in a Riemann space

In Riemann geometry, the line element is given by the
quadratic expression

dS2 ¼ −γαβðxÞdxαdxβ: ð3:129Þ

where γαβðxÞ is a Lorentzian metric on a Riemannian
manifoldM. The distance between two points (or events) 1
and 2 is then given by the integral

S ¼ −
Z

2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γαβðxÞdxαdxβ

q
¼ −

Z
τ2

τ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γαβðxÞ_xα _xβ

q
dτ

ð3:130Þ

where _xα ¼ dxα=dτ is the velocity. This functional is
independent of the parameter τ.
It was demonstrated above that if a perfect fluid is

barotropic, then the motion of a fluid element is confor-
mally geodesic. In particular, Synge [17] and Lichnerowicz
[18] have shown that the motions of fluid elements in a
barotropic fluid are geodesics of a manifoldM with metric

γαβðxÞ ¼ hðxÞ2gαβðxÞ ð3:131Þ

conformally related to the spacetime metric gαβðxÞ. As
shown earlier, such fluid motions can indeed be obtained
from the action (3.16), which represents the arc length
(3.130) between two events, and is independent of the
parameter τ.

2. Magnetohydrodynamic flows as geodesics
in a Finsler space

One may think that the above result of Synge and
Lichnerowicz ceases to apply in MHD, due to the highly
complicated nature of the MHD-Euler Eq. (3.57).
Surprisingly, however, the above results can be extended

to magnetofluids that are barotropic and perfectly con-
ducting. Such flows are described by the action (3.94),
which is independent of the parameter τ, and are geodesic
in a Finsler (rather than Riemann) space [118–120]. In
particular, in the context of Finsler spaces, Eq. (3.94) has
similarities with the Randers metric [121,122].
As pointed out by Chern [118], Finsler geometry is

simply Riemann geometry without the quadratic restriction
(3.129). In Finsler geometry, the line element is replaced by
the general expression

dS ¼ Lðx; dxÞ; ð3:132Þ
where L∶ R2 → R is an arbitrary function that can be
identified with the Lagrangian. Then, the distance between
two points is given by

S ¼
Z

2

1

Lðx; dxÞ ¼
Z

τ2

τ1

Lðx; _xÞdτ ð3:133Þ

where the last equality holds if and only if the function
Lðx; _xÞ is homogeneous of degree 1 in the velocity
_xα ¼ dxα=dτ:

Lðx; κ _xÞ ¼ κLðx; _xÞ ∀ κ > 0: ð3:134Þ

Lagrangians with this homogeneity property give rise to a
parametrization-independent action functional, and lay at
the foundation of Finsler geometry.
The Lagrangian in the perfect magnetofluid action

functional (3.94) satisfies the above homogeneity property
and can thus be expressed in the form of arc length in a
Finsler space. To show this explicitly, we proceed as
follows. Following Chern [118], we consider the projec-
tivized tangent bundle PT M (i.e. the bundle of line
elements) of the manifold M. All geometric quantities
constructed from the Lagrangian L are homogeneous of
degree zero in _xα and thus naturally live on PT M,
although L itself does not. Let fxμg be local coordinates
onM. Express tangent vectors as _xμ∂μ so that fxμ; _xμg can
be used as local coordinates of T M and, with _xμ

homogeneous, as local coordinates on PT M. Euler’s
theorem of homogeneous functions (c.f. Appendix A)
can be used to show that

Lðx; _xÞ ¼ ∂L
∂_xα|{z}
pα

_xα ¼ −
�1
2

∂
2L2

∂_xα∂_xβ|fflfflfflffl{zfflfflfflffl}
−γαβ

_xα _xβ
	
1=2

: ð3:135Þ

The Hessian

γαβðx; _xÞ ≔ −
1

2

∂
2L2

∂_xα∂_xβ
ð3:136Þ

plays the role of a metric on PT M. This is a metric in a
Finsler (rather than Riemann) space, as it depends on
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velocity in addition to position. A Finslerian metric is
homogeneous of degree zero in the velocity:

γαβðx; κ _xÞ ¼ γαβðx; _xÞ ∀ κ > 0; ð3:137Þ

as implied by Eqs. (3.134) and (3.136). That is, the
Finslerian metric γαβðx; _xÞ depends on the direction, but
not magnitude, of the velocity _xα. The line element (3.132)
can then be written as

dS2 ¼ −γαβðx; _xÞdxαdxβ; ð3:138Þ

and the functional (3.133) becomes

S ¼ −
Z

2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γαβðx; _xÞdxαdxβ

q

¼ −
Z

τ2

τ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γαβðx; _xÞ_xα _xβ

q
dτ: ð3:139Þ

For our particular application, substituting the ideal
MHD Lagrangian (3.95) into the definition (3.136) yields

γαβðx; _xÞ ¼ h2gαβ − ηαηβ − hðηαuβ þ ηβuαÞ
− hqαβηγuγ; ð3:140Þ

where uα ¼ _xαð−gβγ _xβ _xγÞ−1=2 is the unit vector along _xα,
qαβ ¼ gαβ þ uαuβ is the projection tensor orthogonal to that
vector, and gαβ is the Riemannian metric in the spacetime
M. As required by the homogeneity condition (3.137), the
expression (3.140) gives a metric that depends on the
direction, but not the magnitude, of the velocity.
Equation (3.140) may be compactly written as γαβ ¼
−pαpβ − hqαβpγuγ where pα ¼ huα þ ηα. On shell, we
have uα ¼ _xα and, by virtue of Eqs. (3.65) and (3.89),
ηαuα ¼ 0, i.e. the last term in Eq. (3.140) vanishes. The
Finsler metric γαβ plays the role of an effective metric felt
by a magnetofluid element. Note that the 1-form ηα, defined
by Eq. (3.89) or (3.115), is consider independent of _xα.
Therefore, the Lagrangian is linear in the velocity _xα and
the relevant Finsler space is of the Randers type [121,122].
With the aid of Eqs. (3.135) and (3.140), the action

functional (3.94) takes the form of the length (3.139). This
functional is independent of τ and represents the arc length
between events 1 and 2. That is, the motions of fluid
elements in a barotropic, perfectly conducting flow are
geodesics in a Finsler space with metric given by
Eq. (3.140).
The geodesic equation is obtained by minimizing the

functional (3.139) and using Eqs. (A7)–(A10). This yields

d2xλ

dτ2
þ Γλ

μν
dxμ

dτ
dxν

dτ
¼ 0; ð3:141Þ

where

Γλ
μν ≔

1

2
γλκ

�
∂γκμ
∂xν

þ ∂γκν
∂xμ

−
∂γμν
∂xκ

�
ð3:142Þ

denote the Finslerian Christoffel symbols [119]. Although
the above equations are identical to those of Riemannian
geometry, the transformation law of the symbols Γλ

μν is
more complicated since it involves the Cartan torsion
tensor:

Cαβγ ≔
1

2

∂γαβ
∂_xγ

¼ 3h

ð−gϵζ _xϵ _xζÞ1=2
qðαβqγÞδηδ: ð3:143Þ

By extending the notion of a metric in M to allow
for Finsler geometry, the problem of ideal MHD becomes
one of pure geometry. We note that the geometry of the
spacetime M remains Riemannian: no deviation from
general relativity has been assumed. In the limit ηα → 0,
the Cartan torsion tensor vanishes, the geometry of M
also becomes Riemannian, and we recover the Synge-
Lichnerowicz result on barotropic fluids.
We note that a similar approach may be used for poorly

conducting fluids, by replacing ηα with eAα in the equations
above, where e is the net charge per fluid element [27].
Furthermore, with the replacements h → 1, ηα → eAα, we
recover the motion of a charged particle under the influence
of an electromagnetic field in curved spacetime [121,123–
126]. We note, however, that for baroclinic fluids, the
action is not parametrization invariant, and thus cannot be
described within Riemann or Finsler geometry.

IV. DISCUSSION

We have illustrated that barotropic flows and magneto-
flows without viscosity, resistivity or other dissipation can
be described via simple variational principles. These action
principles can be written in terms of a Lagrangian density
integrated over spacetime, as done traditionally for fluids,
or in terms of a particlelike Lagrangian integrated over a
proper-time or affine parameter. The latter approach paves
the way for deriving simple Lagrangian and Hamiltonian
descriptions of ideal MHD, in Newtonian and relativistic
contexts. These descriptions are as valuable for fluids as
they have been for classical mechanics and carry the same
advantages over approaches focused on the equation-of-
motion level.
For instance, certain conserved quantities‡ whose origin

seems ad hoc when obtained by tedious algebraic manipu-
lation of the equations of motion—emerge directly from the
action in this geometric canonical approach. In particular,
when the ideal MHD Lagrangians (3.71) and (3.120) admit
continuous symmetries, Noether’s theorem immediately
yields the associated quantity conserved along streamlines
[76]. As shown by Carter and Lichnerowicz, the relativistic
hydrodynamics and magnetohydrodynamics are most nat-
urally expressed in the language of differential forms.
Cartan’s identity can then be used to simplify calculations
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tremendously compared to the usual tensor or vector
calculus, as demonstrated above. This approach to MHD
is not yet very widely known, but this has been changing in
recent years, and it is being used to obtain new results
[8,127–136]. For stationary and irrotational or corotating
magnetoflows, Cartan’s identity implies that these quan-
tities, given by Eqs. (3.111) and (3.113), are constant
throughout the fluid. These equations represent relativistic,
magnetized generalizations of Bernoulli’s principle and
provide a way to construct equilibrium solutions via
iterative methods [95,137]. Such results can be extended
to the case of generalized Noether symmetries generated by
Killing tensors (cf. [76] for details) and applied to the
theory of black-hole accretion rings [27,47].
Several theoretical insights arise from this formulation.

The symplectic geometry of phase space gives rise to
various circulation theorems that stem from the Poincaré-
Cartan integral invariant. The symplectic structure of the
perfect MHD equations can be exploited in numerical
simulations that use smoothed-particle hydrodynamic
methods [138]. For instance, symplectic or time-symmetric
methods can be used to conserve phase-space volume,
circulation, and energy.
Geometric considerations have led to deeper under-

standing of magnetic phenomena in fluids in curved
spacetime. Exploring the similarities of geodesic motion
to hydrodynamic and magnetohydrodynamic motion,
Lasota et al. [139] generalized the Penrose process [140]
from point particles to fluid particles and jets. Moreover,
the Finsler geometry described by the metric (3.140) allows
one to represent ideal MHD flows as purely geodesic flows
with no loss of generality. A notable feature of both pictures
is that they are exact in time-dependent spacetimes, with
gravitational and electromagnetic waves carrying energy
and angular momentum away from the system. Although
such geometrical insights have been sometimes used to
construct first integrals for nonmagnetized initial data
[137], they have not so far been used for magnetized initial
data or for evolving hydrodynamic and magnetohydrody-
namic flows in numerical general relativity. The integrals
(3.111), (3.113) and the evolution system (3.107) provide
avenues for exploiting such geometric properties in the
future.
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APPENDIX A: FINSLER GEOMETRY AND
EULER’S THEOREM

The homogeneity property (3.134) plays a fundamental
role in Finsler geometry. This property gives rise to many
important relations by means of Euler’s homogeneous
function theorem: Consider a function Zðx; vÞ that is
positively homogeneous of degree r with respect to vα,
that is,

Zðx; κvÞ ¼ κrZðx; vÞ ∀ κ > 0: ðA1Þ

Differentiating with respect to κ and setting κ ¼ 1 yields

vα
∂Zðx; vÞ
∂vα

¼ rZðx; vÞ: ðA2Þ

This is the mathematical statement of Euler’s theorem.
Applying the above theorem to the case of the Lagrangian
(3.134) yields

_xα
∂Lðx; _xÞ
∂_xα

¼ Lðx; _xÞ: ðA3Þ

Differentiating this expression with respect to _xα yields

_xα
∂
2Lðx; _xÞ
∂_xα∂_xβ

¼ 0: ðA4Þ

Then, differentiating the relation

1

2

∂L2ðx; _xÞ
∂_xα

¼ Lðx; _xÞ ∂Lðx; _xÞ
∂_xα

ðA5Þ

with respect to _xβ, contracting with _xα _xβ and using
Eqs. (A3) and (A4) yields

L2ðx; _xÞ ¼ 1

2

∂
2L2ðx; _xÞ
∂_xα∂_xβ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
−γαβ

_xα _xβ: ðA6Þ

Equations (A3) and (A6) reproduce (3.135). From
Eqs. (3.134) and (A6) we infer that the metric γαβðx; _xÞ
is homogeneous of degree zero in the velocity, Eq. (3.137).
Then, applying Euler’s theorem (A2) for γαβ with r ¼ 0

yields
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_xγCαβγ ¼ 0; ðA7Þ

where

Cαβγ ≔
1

2

∂γαβ
∂_xγ

¼ 1

4

∂
3L2

∂_xα∂_xβ∂_xγ
ðA8Þ

is the Cartan torsion tensor. The last equality, which
follows from Eq. (3.136), implies that the above tensor
is fully symmetric. From the above definition we infer that
Cαβγ is homogeneous of degree r ¼ −1 in the velocity.
Then, Euler’s theorem (A2) yields

_xδCαβγδ ¼ −Cαβγ; ðA9Þ

where

Cαβγδðx; _xÞ ¼
∂Cαβγðx; _xÞ

∂_xδ
: ðA10Þ

The geodesic equation in Finsler space can be obtained
with the same variational methods as in a Riemann space,
with additional use of Eqs. (A7)–(A10). Finsler geometry
reduces to Riemann geometry if and only if the Cartan
torsion tensor and its derivatives vanish, whence the metric
γαβ is independent of velocity [119].

APPENDIX B: BECKENSTEIN-ORON CURRENT
WITH ONE SYMMETRY

Assuming that the system obeys a Killing symmetry, i.e.

that there exists a vector field k⃗ such that

£k⃗ g ¼ 0; £k⃗u ¼ 0; £k⃗ j ¼ 0; ðB1Þ

£k⃗F ¼ 0; £k⃗h ¼ 0; £k⃗ρ ¼ 0; ðB2Þ

a natural question is whether or not one can impose the
same symmetry on the auxiliary quantities a and b. First,
note that

£k⃗b ¼ £k⃗ðu⃗ · ⋆daÞ ðB3Þ

¼ u⃗ · £k⃗ð⋆daÞ ðB4Þ

¼ u⃗ · ⋆£k⃗ðdaÞ ðsince k⃗ is KillingÞ ðB5Þ

¼ u⃗ · ⋆dð£k⃗aÞ ðsince d and £k⃗ commuteÞ: ðB6Þ

In addition, using Eq. (3.84), as well as the symmetries
(B1), (B2),

£k⃗da ¼ £k⃗½u ∧ Bþ ⋆ðu ∧ bÞ� ¼ ⋆ðu ∧ £k⃗bÞ: ðB7Þ

We have therefore that

£k⃗b ¼ 0 ⇔ £k⃗da ¼ 0 ⇔ £k⃗a closed ðB8Þ

and of course £k⃗a ¼ 0 implies £k⃗b ¼ 0. So in effect,
assuming that the auxiliary quantities a and b satisfy the
same symmetry as the physical quantities is equivalent to
assuming merely £k⃗a ¼ 0. If on the other hand we are ready
to sacrifice £k⃗a ¼ 0 and to assume only that £k⃗b ¼ 0, we
must still impose that £k⃗a is closed.
We first notice that £k⃗a ¼ 0 is not systematically

compatible with the gauge condition u⃗ · a ¼ 0. Indeed,

let us consider the case where u⃗ and k⃗ are parallel, i.e.

u⃗ ¼ fk⃗: ðB9Þ

The question is whether we can impose consistently the
three equations

u⃗ · a ¼ 0; ðB10Þ

£u⃗a ¼ −B; ðB11Þ

£k⃗a ¼ 0: ðB12Þ

Using the Cartan identity, we have

−B ¼ £u⃗a ¼ f£k⃗aþ ðk⃗ · aÞdf ¼ ðk⃗ · aÞdf ¼ 0 ðB13Þ

since u⃗ · a ¼ 0 implies k⃗ · a ¼ 0. This is in general
inconsistent.
Giving up the gauge condition u⃗ · a ¼ 0 does not

improve things. Let us put ϕ ¼ u⃗ · a and still assume that

u⃗ and k⃗ are colinear. Now we have £u⃗a ¼ u⃗ · daþ dðu⃗ · aÞ
and instead of (B10)–(B12) we must consider

u⃗ · a ¼ ϕ; ðB14Þ

£u⃗a ¼ −Bþ dϕ; ðB15Þ

£k⃗a ¼ 0: ðB16Þ

Then

£u⃗a ¼ ϕdðlog fÞ ¼ −Bþ dϕ; ðB17Þ

i.e.

B ¼ ϕd

�
log





ϕf





�
: ðB18Þ

This forces the magnetic field B to be exact modulo
multiplication by a scalar function, which is not a generic
property. Indeed consider the 1-form on R4
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α ¼ −ydxþ xdy ðB19Þ

whose divergence vanishes. Can we find a globally defined
smooth function ψ such that ψα be closed? This amounts to

2ψ þ x∂xψ þ y∂yψ ¼ 0; ðB20Þ

which imposes that ψ be homogeneous of degree −2 and
contradicts the fact that ψ be globally defined and smooth.
We conclude that we cannot in all generality assume that

the auxiliary fields a and b satisfy the same symmetry as the
physical quantities.

APPENDIX C: FLUID SUPER-HAMILTONIANS

The canonical form of the Euler Eq. (3.13) involves only
the thermodynamic variables T, S, h. We thus assert that the
super-Hamiltonian for this equation has the general form

H ¼ Hðh; S; T; NÞ; ðC1Þ

where N ≔ gαβpαpβ is the norm of the (generally non-
normalized) canonical momenta pα, whose nature is to be
determined. Furthermore, we assume that the Hamiltonian
generates a reparametrization with respect to the proper
time of the fluid which we denote by a parameter
dλ ¼ dτ=A, where A is some function of the variables
involved.
Computing Hamilton’s equations and comparing them

with the Euler equation we deduce that we are on shell only
if pα ¼ huα and thus N ¼ −h2. Additionally, the following
equalities must be satisfied by the Hamiltonian on shell in
order to reproduce the Euler equation:

∂H
∂T

¼ 0 ðC2Þ

∂H
∂h

¼ 2h
∂H
∂N

ðC3Þ

∂H
∂S

¼ −T
∂H
∂h

− 2Th
∂H
∂N

ðC4Þ

A ¼ 2h
∂H
∂N

: ðC5Þ

One way to satisfy this set of constraints on the form of the
Hamiltonian is via the expression

H ¼ C0ðSÞ
2Th

ðgαβpαpβ þ h2Þ − CðSÞ; ðC6Þ

where CðSÞ is an arbitrary function of the specific entropy
with C0ðSÞ ≠ 0 for S ≥ 0. The on-shell value of the con-
served super-Hamiltonian is then −CðSÞ and the canonical
time parameter λ satisfies dλ ¼ Tdτ=C0. Carter’s baroclinic
Hamiltonian (3.125) is obtained simply by setting
CðSÞ ¼ S.
For barotropic fluids one can use a similar approach to

obtain a set of Hamiltonians of the form

H ¼ −
DðhÞ
2h

ðgαβpαpβ þ h2Þ ðC7Þ

where DðhÞ is an arbitrary function of h, and the
parametrization corresponding to this Hamiltonian is
dλ ¼ dτ=D. The transition between the Hamiltonians
(C6) and (C7) for baroclinic and barotropic fluids depends
on the form of temperature expressed as a function of
entropy and enthalpy T ¼ Tðh; SÞ.
For baroclinic magnetofluids, we see from Eq. (3.93)

that the streamlines of a perfectly conducting fluid behave
as if under the influence of a vector potential η. We thus
assume that there is a canonical momentum pα such that
the Hamiltonian depends only on the normalization N ¼
gαβðpα − καÞðpβ − κβÞwith κα some vector. In that case, we
obtain the on-shell values pα ¼ huα þ ηα; κα ¼ ηα N ¼
−h2 and the same set of constraints as in (C2)–(C5). This
means that one class of super-Hamiltonians which repro-
duce the ideal MHD-Euler Eq. (3.93) is

H ¼ C0ðSÞ
2Th

½gαβðpα − ηαÞðpβ − ηβÞ þ h2� − CðSÞ; ðC8Þ

where the on-shell value of the super-Hamiltonian is
again −CðSÞ and the canonical time parameter λ satisfies
dλ ¼ Tdτ=C0.
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Vojtěch Witzany‹

ZARM, University of Bremen, Am Fallturm 2, D-28359 Bremen, Germany

Accepted 2017 September 25. Received 2017 August 29; in original form 2017 July 24

ABSTRACT
The Kerr black hole is stationary and axisymmetric, which leads to conservation of energy and
azimuthal angular momentum along the orbits of free test particles in its vicinity, but also to
conservation laws for the evolution of continuum matter fields. However, the Kerr space–time
possesses an additional ‘hidden symmetry’, which exhibits itself in an unexpected conserved
quantity along geodesics known as the Carter constant. We investigate the possibility of using
this hidden symmetry to obtain conservation laws and other identities that could be used to
test astrophysical simulations of the evolution of matter fields near spinning black holes. After
deriving such identities, we set up a simple numerical toy model on which we demonstrate
how they can detect the violations of evolution equations in a numerical simulation. Even
though one of the expressions we derive is in the form of a conservation law, we end up
recommending an equivalent but simpler expression that is not in the form of a conservation
law for practical implementation.

Key words: accretion, accretion discs – black hole physics – methods: analytical – methods:
numerical.

1 IN T RO D U C T I O N

The observational properties of black holes in systems of vari-
ous scales from X-ray binaries to active galactic nuclei are com-
puted from the behaviour of various test matter fields evolving in
the Kerr space–time, the general-relativistic field of an isolated
spinning black hole. For instance, in the case of accretion on to
black holes, the consensus has gradually emerged that one needs
to include radiation, single-species hydrodynamics and magnetic
fields, but also possibly multispecies hydrodynamics or even non-
Maxwellian rarefied plasma dynamics to reproduce all the features
of a real accretion process in a computer simulation (Abramowicz &
Fragile 2013; Blaes 2014).

With the increased complexity and additional layers of physics
involved in such computer simulations, the question is how to test
either for implementation mistakes or for inherent errors of the nu-
merical evolution schemes. One particular way to do this is to see
whether the codes reproduce the behaviour of analytical solutions
to the dynamical equations (De Villiers & Hawley 2003; Gammie
et al. 2003). However, there is only a very small set of solutions
against which one can carry out such tests and they will typically
probe only a subset of the implemented physics. Another approach,
pursued for instance in Markakis et al. (2016) or Vojtěch (2017),
is to find new conservation laws coming from the structure of the
equations involved. We focus here on the latter approach, and specif-

� E-mail: witzany@zarm.uni-bremen.de

ically on formulating a conservation law or a similar expression that
should be applicable to the evolution of any test matter field on the
Kerr background, thus encompassing any possible model of the
accretion process.

To do so, we investigate the possibility of a conservation law
coming from the so-called ‘hidden symmetry’ of the Kerr field. The
Kerr space–time is stationary and axisymmetric, which implies the
conservation of orbital energy and azimuthal angular momentum
along free test particle trajectories. The symmetries also lead to
energy and angular moment currents that are conserved for any
continuum test matter field evolving on the Kerr background.

This, however, is not a full list of conservation laws in Kerr
space–time; a nowadays classical analysis of Carter (1968) showed
that there is an additional integral of motion for the free test particle
motion, currently known as the Carter constant. The Carter constant
is a square of an angular-momentum-like vector dragged along the
trajectory and it cannot be linked to any explicit symmetry of the
Kerr space–time, only to particular geometric properties of the Kerr
metric such as the existence of a so-called Killing-Yano (KY) tensor
(Walker & Penrose 1970; Floyd 1973). The existence of the KY
tensor and other geometric structures in the Kerr space–time is
exactly what is informally referred to as the ‘hidden symmetry’.

One would expect a conservation law of a scalar quantity along
single-particle trajectories to always have a direct counterpart in
conservation laws for the evolution of continuum matter fields.
However, in the case of the Carter constant and the hidden symmetry,
no conservation law for the evolution of general matter fields was
known until now. An intuitive reason for this was given by Grant
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& Flanagan (2015), who demonstrated that the sum of the Carter
constants of a set of particles is not conserved once we allow for
elastic collisions.

We find a loophole to this argument in Section 3 by studying
instead the conservation of the sum of the angular-momentum-like
vectors associated with the Carter constant, and obtain a conserved
current indirectly associated with this conserved sum. None the less,
the resulting KY conservation law turns out to have a smaller poten-
tial for the detection of computation error than conservation laws
coming from explicit symmetries. As a side product of our investi-
gation, we realize that there exists an infinite family of conservation
laws with properties similar to the KY conservation law, each of
which provides a different ‘basis’ in probing a possible violation
of the equations of motion. Hence, this investigation could be in
fact understood as a probe into this family of conservation laws by
studying one representative member.

To assess more precisely the applicability of the KY conservation
law, we devise a simple numerical demonstration in Section 4. We
construct an analytical model of matter infalling into a black hole
with a small unphysical acceleration in the direction of the merid-
ional plane and numerically gauge several options of detecting such
an acceleration from data given on a finite grid. Even though the KY
conservation law can detect violations of the equations of motion
undetectable by conventional means, we end up recommending an
alternative method of detection based on the KY tensor that is not
in the strict form of a conservation law but is much less demanding
in terms of implementation and computational power.

2 U S UA L C O N S E RVAT I O N L AW S

We use the G = c = 1 geometrized units and the −+++ signature of
the metric. We also assume that we have a 3+1 split of coordinates,
where xi are the coordinates on the spatial hypersurface and t a
temporal coordinate.

2.1 Conservation of stress-energy

We assume a general violation of the equations of motion that shows
itself as a non-conservation of the stress-energy tensor T μ

ν;μ = rν ,
where rν is some small non-physical residue induced either by an
implementation mistake or numerical error. This equation can then
be written as

1√−g

(
T μ

ν

√−g
)

,μ
+ 1

2
gαβ,νT

αβ = rν . (1)

Upon integration over a spatial volume V with a surface S from time
t0 to t1 and the application of the divergence theorem, we obtain
[∫

V

T t
ν

√−g d3x

]t1

t0

+
∫ t1

t0

∫

S

T i
ν

√−g d2Sidt

+
∫ t1

t0

∫

V

1

2
gαβ,νT

αβ
√−g d3x dt =

∫ t1

t0

∫

V

rν

√−g d3x dt, (2)

where d2Si is the coordinate surface element. It is now possible
to apply the integrated form of equations of motion to test for the
presence of a residual on the right-hand side. However, this formula
(with rν = 0) is often used directly in the construction of the so-
called conservative numerical schemes (such as e.g. HARM, written
by Gammie et al. 2003), and testing the code against the integral
identities (2) should indicate only coding mistakes, or computational
errors that are already well understood. On the other hand, for non-
conservative schemes such as that of De Villiers & Hawley (2003),

equation (2) can serve as an indirect test of the validity of the
evolution.

2.2 Conservation from explicit symmetries

If the metric is independent of a coordinate xν̂ (such as time t or
azimuthal angle ϕ), we have gαβ,ν̂ = 0 and equation (2) simplifies
as
[∫

V

T t
ν̂

√−g d3x

]t1

t0

+
∫ t1

t0

∫

S

T i
ν̂

√−g d2Sidt

=
∫ t1

t0

∫

V

rν̂

√−g d3x dt . (3)

This makes the integral test much more powerful because one then
needs to integrate only over a domain of dimension 3 to test for
violations in a space–time volume of dimension 4.

One particular demonstration of this power is to set the surface
S outside of an isolated system (so that T i

ν̂ vanishes on S at all
times), and we then get a quantity

∫
T t

ν̂

√−g d3x that should be
conserved at all times. This means that the noise coming from the
numerical integration of the left-hand side of equation (2) becomes
entirely independent of the time interval [t0, t1], and we are able
to search for an arbitrarily small average value of rν̂ by letting its
effect accumulate over very large times.

A routinely implemented example is the conservation of
total azimuthal angular momentum

∫
T t

ϕ

√−g d3x or energy∫
T t

t

√−g d3x carried by an isolated matter field evolving in a sta-
tionary and axisymmetric space–time. The inherent noise from the
computation of total energy or angular momentum contained in the
system is independent of the elapsed simulation time and one thus
obtains a robust handle on cumulative error.

3 K Y C O N SERVATIO N LAW

Let us now turn our attention to the geometrical formulation of
explicit symmetry. The fact that the metric does not change along
a certain direction ξμ can be expressed by the fact that this vector
fulfils the so-called Killing equation

ξμ;ν + ξν;μ ≡ 2ξ(μ;ν) = 0. (4)

In the set of coordinates where xν̂ is the symmetry coordinate, the
corresponding Killing vector has the components ξμ = δ

μ
ν̂ .

In this language, the integral of geodesic motion is written as
uμξμ

d(uμξμ)

dτ
= uμ

;κu
κξμ + uμuκξμ;κ = 0, (5)

where the first term vanishes due to the geodesic equation and
the second term vanishes due to the Killing equation. The conser-
vation law for continuum fields (3) can then be understood as a
consequence of the fact that Tμνξν is a conserved (divergenceless)
current

1√−g
(T μνξν

√−g),μ = (T μνξν);μ = T μν
;μξν + T μνξν;μ = 0. (6)

One particular generalization of the Killing equation that is no
longer connected to any explicit symmetry of the metric is the
antisymmetric KY tensor of rank two Yμν = −Yνμ, which fulfils a
direct generalization of the Killing equation of the form Yμ(ν; κ) = 0.
One consequence of the existence of such a tensor is that geodesics
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parallel-transport a vector Lν = uμYμν along their motion

D

dτ
(Lν) = uμ

;κu
κYμν + uμYμν;κu

κ = 0, (7)

where the first term again vanishes due to the geodesic equation
and the second term vanishes due to the property Yμ(ν; κ) = 0. The
most important consequence is that LκLκ is then an integral of
motion. In the case of the Kerr space–time, there exists a Killing-
Yano tensor such that Lκ represents a generalization of the angular
momentum vector; LκLκ can then be understood as a generalized
specific angular momentum squared and is known as the Carter
constant (Floyd 1973; Penrose 1973).

Our aim is to find a conserved current jμ, jμ
;μ = 0 associated

with the hidden symmetry of the Kerr space–time so that we can
obtain formulas similar to (3).

3.1 Physical motivation and statement of conservation law

We now show the link between the integrals of free test particle
motion and conservation laws for continuum fields. Furthermore,
we clarify why certain integrals of motion have simple conservation-
law counterparts while others do not.

One could naively think that it is sufficient to find a conserva-
tion law fulfilled for a cloud of free-streaming particles due to the
conservation laws along individual trajectories, and a conservation
law for general continuum fields will then always follow. However,
we demonstrate that such conservation laws can be spoiled already
in the simple case of a cloud of free-streaming particles that are
allowed to undergo an occasional elastic collision.

Let p
μ
(i) be the momenta of the particles where i is an index

that runs over all the particles, we can then write that in an elastic
collision
∑

i

p
′μ
(i) −

∑

i

p
μ
(i) = 0, (8)

where the primed and unprimed quantities always signify quantities
right after and before the collision, respectively.

As a consequence, we can contract the momentum conservation
(8) with the KY tensor to see that the sums of vectors associated
with KY tensors are always trivially conserved
∑

i

(Yμκp
′μ
(i)) −

∑

i

(Yμκp
μ
(i)) = 0. (9)

Similarly, if we contract (8) with a Killing vector ξμ, we see that the
sum of ξμp

μ
(i) is conserved in collisions. However, as was noticed

also by Grant & Flanagan (2015), if we try to see what happens to
the sum of the quadratic Carter constants C(i) ≡ Kμνp

μ
(i)p

ν
(i), Kμν ≡

YμκY
κ
ν , in momentum exchanges, we obtain

∑

i

C ′
(i) −

∑

i

C(i) =
∑

i

∑

j �=i

Kμνp
μ
(i)p

ν
(j ) −

∑

i

∑

j �=i

Kμνp
′μ
(i)p

′ν
(j ).

(10)

By Einstein equivalence principle, every scattering process will
be locally ignorant of the privileged directions of the background
space–time and thus also the existence of Kμν . Therefore, any scat-
tering process will produce a non-zero right-hand side of (10) and
will change the value of the sum of Carter constants.

We will now quickly sketch why these results lead to the fact that
collisions will not spoil the divergence-free properties of tensors
such as ρuμuνξ ν or ρuμuνYνκ , whereas ρuμuνuλKνλ becomes non-
conserved once collisions are included.

Let us assume for simplicity that the collisions are such that
particles are not annihilated or created, and that the particle rest
mass stays the same at all times. We can then write a distributional or
‘skeletonized’ total tensor ρuνLκ using the worldlines of individual
particles x

μ
(i)(τ ) as (see e.g. Trautman 2002)

ρuνLκ = 1√−g

∑

i

mi

∫ ∞

−∞
uν

(i)L
κ
(i)δ

(4)
(
xμ − x

μ
(i)(τ )

)
dτ , (11)

uν
(i) = uν

(i)(τ ) = dxν
(i)

dτ
, Lκ

(i) = Lκ
(i)(τ ) = dxλ

(i)

dτ
Y κ

λ

(
x

μ
(i)(τ )

)
, (12)

where ρuνLκ obviously integrates out only into a function of xμ.
Using the identity

dxν

dτ

[
δ(4)

(
xμ − x

μ
(i)(τ )

)]
,ν

= − d

dτ
δ(4)

(
xμ − x

μ
(i)(τ )

)
, (13)

we then obtain

(ρuνLκ );ν = 1√−g

∑

i

mi

∫ ∞

−∞

DLκ
(i)

dτ
δ(4)

(
xμ − x

μ
(i)(τ )

)
dτ. (14)

Now let us recall that during the free-streaming of the particle, we
have DLκ

(i)/dτ = 0, and during a collision, the vector Lκ
(i) jumps to

another vector Lκ′
(i) = Lκ

(i) + 
κ
col(i). We thus have

DLκ
(i)

dτ
=

∑

col


κ
col(i)δ(τ − τcol(i)) , (15)

where τ col(i) is the value of the proper time at which the collision
happens. The expression for (ρuνLκ ); ν then reduces to

(ρuνLκ );ν = 1√−g

∑

col

δ(4)(xμ − x
μ
col)

(∑

i

mi

κ
col(i)

)
, (16)

where x
μ
col = x

μ
(i)(τcol(i)) for every particle (i) taking part in the given

collision. We can now see that the sum in the round brackets in (16)
corresponds to equation (9) computed at every given collision, and
we thus obtain

(ρuνLκ );ν = 0. (17)

If we applied this procedure to ρuμKκλuκuλ, we would obtain
(ρuμKκλuκuλ); μ equal to an expression analogous to the right-hand
side of (16), which would, however, not vanish due to the non-
conservation of the sum of Carter constants in collisions. We can
thus see that the current ρuμKκλuκuλ conserved for non-collisional
dust cannot be generalized in the case of fully general matter fields.

On the other hand, considering that for dust we have Tμν =ρuμuν ,
we can write ρuμLκ = T μνY κ

ν and the fully general counterpart
of (17) can then be alternatively derived using T μν

;μ = 0 and the
properties of the KY tensor

(T μνY κ
ν );μ = T μν

;μYνκ + T μνY κ
ν ;μ = 0. (18)

Hence, equation (18) could in some sense be understood as the
‘hidden conservation law’, which follows from the parallel trans-
port of Lκ along free test particle motion. Nevertheless, it has the
flaw that it is not in the form of a divergence of a vector or a totally
antisymmetric tensor, and will thus have no simple integral coun-
terparts. For that reason, we create a current form by a divergence
with respect to the dangling index κ , jμ ≡ (T μνY κ

ν );κ = T μν;κYνκ ,
to obtain

(T μν;κYνκ );μ = (T μνY κ
ν );κμ = (T μνY κ

ν );μκ

= (T μν
;μYνκ + T μνY κ

ν ;μ);κ = 0, (19)

where we have used the fact that one can swap the order of diver-
gences in all indices of a tensor.
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That is, we come to the final conclusion that a conserved current
linked to the non-trivial conservation laws along geodesics or the
‘hidden symmetry’ is jμ = Tμν; κYνκ .

3.2 Generating tensor for ky current

One can easily show that the current jμ can be (under the assumption
of T μν

;μ = 0) also rewritten as a divergence of an antisymmetric
tensor jμ = Fμν

;ν , where

Fμν = 2T κ[μY ν]
κ . (20)

Both jμ
;μ = 0 and jμ = Fμν

;ν are fulfilled due to the properties of the
KY tensor and the equations of motion for Tμν . Hence, a violation
of either is an indication of improper evolution as is shown in more
detail in the next Subsection.

On the other hand, this also points towards a general method of
generating a large amount of alternative conserved currents with
properties similar to jμ either from general tensors or from KY ten-
sors of higher rank; we discuss this possibility in Appendix A. It is
not clear what is the usefulness or proper meaning of the whole class
of conserved currents and tensors presented in Appendix A, but we
restrict ourselves here only to the study of the current jμ = Tμν; κYνκ

as a representative member and leave a deeper investigation of the
general class as a possibility for future works.

3.3 Integral forms of ky conservation law

Under the assumption T μ
ν;μ = rν , the KY conservation law modifies

as Fμν
;ν = jμ − rαY

μα, jμ
;μ = (rνY

νμ);μ. If we then integrate over
the same ranges as in (3), we obtain
[∫

V

j t
√−g d3x

]t1

t0

+
∫ t1

t0

∫

S

j i
√−g d2Sidt

=
[∫

V

rνY
tν

√−g d3x

]t1

t0

+
∫ t1

t0

∫

S

rνY
iν

√−g d2Sidt . (21)

In other words, the KY conservation law is weaker in nature than
those coming from explicit symmetries because the dimension of
the integration region on the left-hand side of (21) is the same as the
region in which the residue is detected (the right-hand side). The
reason why it is still worthwhile to consider this conservation law is
that it will probe components of rν , which are not in the direction of
the symmetries of the space–time. Indeed, in the Kerr space–time
with non-zero spin, the KY tensor is a non-degenerate matrix and
by a convenient choice of integration intervals we can, in principle,
detect any component of the residue rν .

It is also useful to consider the integral form of Fμν
;ν = jμ −

rαY
μα integrated either over a spatial volume V at a fixed time t = t0

or over a spatial surface S from t0 to t1 to yield

∫

S

F ti
√−g d2Si

∣∣∣∣∣∣
t=t0

−
∫

V

j t
√−g d3x

∣∣∣∣∣∣
t=t0

= −
∫

V

rνY
tν

√−g d3x

∣∣∣∣∣∣
t=t0

, (22)

[∫

S

F ti
√−g d2Si

]t1

t0

−
∫ t1

t0

∫

S

j i
√−g d2Sidt

= −
∫ t1

t0

∫

S

rνY
iν

√−g d2Sidt . (23)

The identities (22) and (23) can be combined with (21) as conve-
nient.

In the following, we will also use the integral form of the ‘KY-
projected equations of motion’ (T μνY κ

ν );μ = rνY κ
ν , which reads

[∫

V

T tνY κ
ν

√−g d3x

]t1

t0

+
∫ t1

t0

∫

S

T iνY κ
ν

√−g d2Sidt

+
∫ t1

t0

∫

V

�κ
μλT

μνY λ
ν

√−g d3x dt =
∫ t1

t0

∫

V

rνYνκ

√−g d3x dt .

(24)

4 D E M O N S T R AT I O N IN K E R R SPAC E – T I M E

The Kerr metric in Boyer-Lindquist coordinates t, ϕ, r, ϑ reads

ds2 = −
(

1 − 2Mr

�

)
dt2 + �



dr2 + �dϑ2

+ sin2ϑ

(
r2 + a2 + 2Mra2 sin2ϑ

�

)
dϕ2

− 4Mra sin2ϑ

�
dtdϕ, (25)

where M, a are the mass and the spin of the black hole, respectively,
� = r2 + a2cos 2ϑ and 
 = r2 − 2Mr + a2. The components of
the Killing-Yano tensor then read (Floyd 1973)

Yrt = −Ytr = a cos ϑ ,

Yrϕ = −Yϕr = −a2 cos ϑ sin2ϑ,

Yϑϕ = −Yϕϑ = (r2 + a2)r sin ϑ,

Yϑt = −Ytϑ = −ar sin ϑ,

Ytϕ = −Yϕt = Yrϑ = −Yϑr = 0. (26)

The Killing-Yano tensor is independent of M and it is invertible
for a �= 0. An important property is that all the components Yμν

are antisymmetric with respect to a reflection about the equatorial
plane ϑ → π − ϑ .

4.1 Dust flow

Let us now construct an analytical accretion toy model with a
parametrized non-physical deviation; this model will be used to
study the applicability of the KY conservation law in the next Sub-
section. We set up a field of dust Tμν = ρuμuν that is infalling into
a Kerr black hole with a mass density ρ and the four-velocity

uϕ = uϑ = 0, (27)

ut = −1, (28)

ur = −
√

2Mr(r2 + a2)



+ ε, (29)

where when the dimensionless constant ε = 0 then the velocity
field fulfils the geodesic equation aμ = 0 but violates it for ε �= 0
by introducing two non-zero components of acceleration

aϑ = −ε
2a2 sin ϑ cos ϑ

√
2Mr(r2 + a2)

�2
+ O(ε2) , (30)

ar = −ε

(√
2Mr(r2 + a2)

�

)

r

+ O(ε2). (31)
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Since the velocity field is purely radial, the continuity equation
(ρuμ); μ = 0 has the simple solution

ρ = − Ṁ(ϑ)

2π
ur

, (32)

where Ṁ(ϑ) is an arbitrary positive function of ϑ , which represents
the dust accretion rate through a ϑ = const. layer.

This flow is parametrized by the arbitrary function Ṁ(ϑ) and the
deviation parameter ε. Since the continuity equation is fulfilled, we
obtain that the residue vector is T μ

ν;μ = rν = ρaν .

4.2 Integral test

The three ‘usual’ conservation laws we would check in this situa-
tion are conservation of mass (ρuμ); μ = 0, conservation of angu-
lar momentum (T μ

ϕ);μ = 0 and conservation of energy (T μ
t );μ = 0.

However, it is easy to verify that the example has been constructed
so as to automatically fulfil these conservation laws while violating
the evolution equations in the ‘blind spots’ of these tests.

We will now compare the detection of a non-zero ε by the equal-
ities (2), which was obtained from a direct integration of the equa-
tions of motion, (24), which was obtained from the KY-projected
equations of motion, and (22), which was obtained from the KY
conservation law.

As for the implementation of (2), we choose the ν = r component
for our purposes, take the volume V as the volume between r0 and
r1, and obtain under the assumption of automatic stationarity and
axisymmetry
[ ∫

0π
ρ(ur )2
 sin ϑ dϑ

]r1

r0

− 1

2

∫ r1

r0

∫

0π
gαβ,rρuαuβ� sin ϑ dϑ dr

=
∫ r1

r0

∫

0π
ρar 
 sin ϑ dϑ dr. (33)

To implement (24), we must choose a component that detects the
non-zero acceleration in the meridional plane. A quick glance at the
non-zero components of the KY tensor (26) shows that we can detect
the meridional acceleration only through the κ = t, ϕ components
of (24). Here, we choose the κ = t component and obtain similarly
to (33)
[ ∫

0π
ρurL

t
 sin ϑ dϑ

]r1

r0

+ 1

2

∫ r1

r0

∫

0π
�t

μλρuμLλ� sin ϑ dϑ dr

=
∫ r1

r0

∫

0π
ρ(arY t

r + aϑY t
ϑ ) � sin ϑ dϑ dr. (34)

Finally, we implement (22) with the volume between r = r0 and
r = r1 in place of V to obtain
[ ∫

0π
F tr� sin ϑ dϑ

]r1

r0

−
∫ r1

r0

∫

0π
j t� sin ϑ dϑ dr

=
∫ r1

r0

∫

0π
ρ(arY t

r + aϑY t
ϑ ) � sin ϑ dϑ dr. (35)

In all the cases, we have to exclude the black hole from the inte-
gration region because its central singularity acts as a sink where
conservation laws are violated.

The integrals on the left-hand sides of (33), (34) and (35) should
in every case detect deviations (non-zero right-hand sides) that are
of order O(ε) and correspond to quantities integrated over the same
coordinate ranges. Furthermore, the integration regions and compo-

Figure 1. The detection value of the non-physical perturbation εd as de-
tected by the integrated equations of motion (33) as a function of grid spacing
h. The integration bounds [r0, r1] are taken as [3M, 6M] and various values
of spin were used.

nents in (34) and (35) were chosen such that they have the identical
projections of rν on the right-hand sides.

There is one very important difference between (34) and (35) as
compared to (33), and that is the response of these integrals to terms
symmetric or antisymmetric with respect to reflection about the
equatorial plane. Due to the reflection antisymmetry of Yμν and the
reflectionally symmetric integration region, the KY-based expres-
sions (34) and (35) measure the reflectionally antisymmetric part
of ρaμ, and (33) the symmetric part. Since we have constructed aμ

as reflectionally symmetric, we need to introduce reflection asym-
metry in ρ for the KY tests (34) and (35) to yield non-trivial re-
sults. We do so by choosing the angular mass influx from (32) as
Ṁ(ϑ) = 1 + cos ϑ .

The numerical demonstration of these tests now consists of a
detection of a non-zero ε when the dust stress-energy tensor is given
to us in terms of double-precision numbers on a finite grid. The grid
is constructed in Boyer-Lindquist coordinates r, ϑ with spacing
δr = h, δϑ = h/r, where h is some given length constant. The left-
hand sides of (33), (34) and (35) are then evaluated using numerical
integration. To evaluate the integral of jt we must, however, compute
the gradients of the stress-energy tensor by numerical differentiation
and only after that perform numerical integration on the finite grid.

We numerically approximate the gradient by the symmetric dif-
ference f ′(x) = [f (x + h) − f (x − h)]/2h + O(h3) and the in-
tegrals via the trapezoidal rule

∫
f (x)dx = h(f0/2 + f1 + . . . +

fn−1 + fn/2) + O(h2) in given coordinates. We perform all the
computations at double precision and define the ‘base-noise’ σ 0 as
the numerically computed value of the left-hand sides at ε = 0. We
then define the detection value εd of ε as the value for which the
left-hand evaluates as 10σ 0.

4.3 Results

In Figs 1, 2 and 3, we plot the dependence of εd on h for various
values of the spin parameter a for (33), (34) and (35), respectively.

The results are largely independent of a since the relative sizes
of the terms in (33), (34) and (35) stay constant, to linear order in a,
independently of the value of spin. When ε = 1, then the deviation
of our model velocity from the physical one is of orders of the
speed of light, so it is reasonable to require that the numerical test
definitely detects ε � 1. We see in Fig. 3 that the test based on the
KY conservation law is noisier due to numerical differentiation and
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Figure 2. The detection value of the non-physical perturbation εd as de-
tected by the KY-projected equations of motion (34) as a function of grid
spacing h. Same integration bounds and values of spin as in Fig. 1 are used
and the scaling and ranges of axes are also identical to Fig. 1.

Figure 3. The detection value of the non-physical perturbation εd as de-
tected by the KY conservation law (35) as a function of grid spacing h. Same
integration bounds and values of spin as in Fig. 1 are used and the scaling
and ranges of axes are also identical to Fig. 1.

requires h � 0.05M to detect perturbations within ε � 1. On the
other hand, the tests (33) and (34) are free of the noise coming from
numerical differentiation and detect ε � 1 already for much larger
grid spacings. None the less, once the step is h � 0.05M, the KY
conservation law yields comparable results to the (33) and (34).

5 D I S C U S S I O N A N D C O N C L U D I N G R E M A R K S

Even though checking for the conservation of the KY current
jμ = Tμν; κYνκ can detect violations of the equations of motion
that are not detectable by checking for the conservation of particle
number, energy or azimuthal angular momentum, it does so at a
requirement of rather fine grid spacing (h � 0.05M) and at a test-
ing power ‘only’ comparable to checking the integrated version of
the equations of motion T μν

;μ = 0 or the ‘KY-projected equations of
motion’ (T μνY κ

ν );μ = 0.
In our example, the KY conservation law as well as the KY

projected equations of motion provided information about the re-
flectionally antisymmetric part of the non-physical perturbation,
while the integrated equation of motion provided information about
the symmetric part. Since it will be a general pattern that the KY
tests provide information independent of the one obtained by the

plain coordinate form of the equations of motion, it is advisable to
use at least one of the two in a ‘testing toolkit’ when investigating
the validity of numerical evolutions. Clearly, the integrated version
of KY-projected equations of motion is preferable amongst the two
because it does not require the evaluation of either spatial or tem-
poral gradients of matter variables and thus avoids any difficulties
with implementation or excessive requirements on grid spacing.

Nevertheless, we must admit that the exploitation of the hidden
symmetry bears less powerful results than we hoped for. A KY
conservation law is possible to formulate and link to the properties
of geodesic motion, but it turns out to be only a weak one and, albeit a
possibly privileged specimen, a member of a larger class of similarly
weak conservation laws which have no longer anything to do with
the hidden symmetry. In principle, even the KY-projected equation
of motion (T μνY κ

ν );μ = 0 can be considered only as a simpler and
more elegant member of a general class of identities (T μνX κ

ν );μ −
T μνX κ

ν ;μ = 0 for arbitrary Xμν . On the other hand, the fact that our
results are connected to more general mathematical structures does
not lessen any of the statements given in the paragraphs above.

In upcoming works, we plan to use the hidden symmetry of
the Kerr space–time in a different manner. Specifically, we plan to
investigate analytical solutions of fluid flows, already hinted upon in
Markakis et al. (2016), that share or generalize the hidden symmetry
of the Kerr background.
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APPENDI X A : C ONSERVATI ON LAW S FRO M
G E N E R A L T E N S O R S

Consider an arbitrary tensor Xμν and a tensor analogous to Fμν ,

F̃ μν = 2T κ[μXν]
κ . (A1)

We then see that independent of the properties of Xμν , the following
current will be conserved

j̃ μ = F̃ μν
;ν = T μν;κXκν + T κμXν

κ;ν − T κνXμ
κ;ν . (A2)
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As for the testing power of j̃ μ
;μ = 0, we obtain analogously to (21)

the detection of T μν
;μ = rν as

[∫

V

j̃ t
√−g d3x

]t1

t0

+
∫ t1

t0

∫

S

j̃ i
√−g d2Sidt

=
[∫

V

rνX
tν

√−g d3x

]t1

t0

+
∫ t1

t0

∫

S

rνX
iν

√−g d2Sidt . (A3)

If we investigate under which conditions the last two terms in (A2)
vanish so that a form j̃ μ = T μν;κXκν similar to the KY conservation
law is obtained, we get

Xμ(ν;κ) = gμ(νX
λ
κ);λ. (A4)

If Xμν were additionally antisymmetric, then the fulfilment of condi-
tion (A4) would make it a so-called conformal KY tensor (of which
the usual KY tensors are a subclass with Xλ

κ;λ = 0). This suggest
that the currents j̃ μ derived from KY or conformal KY tensors may
play a privileged role as compared to those derived from general
tensors. A full investigation of whether this is true is out of the scope
of this paper.

Similarly, it is possible to generate conserved antisymmetric ten-
sors j̃ μ1...μn−1 , j̃

μ1...μn−1
;μn−1 = 0 from any tensor Xμ1...μn . We show the

resulting formulas only for j̃ μ1 ...μn−1 generated from KY tensors.
A KY tensor of arbitrary rank is defined as a totally antisymmet-

ric tensor Yμν. . . κ = Y[μν. . . κ] whose gradient is also antisymmetric

Yμν. . . κ; γ = −Yμν. . . γ ; κ . The tensor analogous to Fμν is then, for a
KY tensor of rank n, defined as

Fμ1...μn = n

n − 1
Y [μ1...μn−1

α T μn]α. (A5)

Using the properties of the Killing-Yano tensor and T μν
;ν = 0, we

then obtain

jμ1...μn−1 = Fμ1...μn
;μn

= Y
[μ1...μn−2

αβ T μn−1]α;β . (A6)

It is easy to see that by construction j
μ1...μn−1

;μn−1 = 0. Since the tensors
Fμ1...μn and jμ1...μn−1 are totally antisymmetric, integral formulas
analogous to the ones in Subsection 3.3 will apply to them.

Some astrophysically relevant space–times admit KY tensors of
higher rank (Howarth & Collinson 2000), but these generate redun-
dant conserved quantities for free test particle motion and are thus
expected to generate linearly dependent variants of the conservation
laws presented in the main text. Of broader theoretical interest is the
fact that non-redundant KY tensors of higher rank arise for higher
dimensional spinning black holes (Krtouš et al. 2007) and there the
formulas above will probably give independent conservation laws.
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ABSTRACT

Context. When a black hole is accreting well below the Eddington rate, a geometrically thick, radiatively inefficient state of the
accretion disk is established. There is a limited number of closed-form physical solutions for geometrically thick (nonselfgravitating)
toroidal equilibria of perfect fluids orbiting a spinning black hole, and these are predominantly used as initial conditions for simulations
of accretion in the aforementioned mode. However, different initial configurations might lead to different results and thus observational
predictions drawn from such simulations.
Aims. We aim to expand the known equilibria by a number of closed multiparametric solutions with various possibilities of rotation
curves and geometric shapes. Then, we ask whether choosing these as initial conditions influences the onset of accretion and the
asymptotic state of the disk.
Methods. We have investigated a set of examples from the derived solutions in detail; we analytically estimate the growth of the
magneto-rotational instability (MRI) from their rotation curves and evolve the analytically obtained tori using the 2D magneto-
hydrodynamical code HARM. Properties of the evolutions are then studied through the mass, energy, and angular-momentum accretion
rates.
Results. The rotation curve has a decisive role in the numerical onset of accretion in accordance with our analytical MRI estimates:
in the first few orbital periods, the average accretion rate is linearly proportional to the initial MRI rate in the toroids. The final state
obtained from any initial condition within the studied class after an evolution of ten or more orbital periods is mostly qualitatively
identical and the quantitative properties vary within a single order of magnitude. The average values of the energy of the accreted fluid
have an irregular dependency on initial data, and in some cases fluid with energies many times its rest mass is systematically accreted.

Key words. accretion, accretion disks – black hole physics – magnetohydrodynamics (MHD) – methods: analytical –
methods: numerical

1. Introduction

Accretion of matter onto black holes can lead to the release of
large amounts of radiation and is responsible for some of the
most energetic phenomena in the Universe such as X-ray binaries
or active galactic nuclei. When the accretion rate on a black hole
is sufficiently high while radial convection of internal energy
sufficiently low, the accretion disk surrounding the black hole
reaches a state which is well described by the so-called thin
disk model (Shakura & Sunyaev 1973; Novikov & Thorne 1973;
Abramowicz & Fragile 2013). However, when the accretion rate
drops well below the so-called Eddington accretion rate ṀEdd =
1.39 × 1018(M/M�)g s−1, as is believed to be, for example, the
case for the black hole in our Galactic center, the accretion
disk enters a rather different mode that is characterized as geo-
metrically thick, optically thin, “hot” in the sense that thermal
energies are nonnegligible as compared to gravitational binding
energies, and radiatively inefficient. This also implies that the
energy losses from the disk are dominated by either direct advec-
tion through the horizon or outflows (see Yuan & Narayan 2014,
and references therein).

Amongst other things, this means that the radiatively inef-
ficient disk can be, to a first approximation, modeled as a

magneto-hydrodynamic (MHD) fluid without radiation back-
reaction (see e.g., Dexter et al. 2009). A more accurate model,
however, requires the inclusion of radiative cooling and heating,
and the partially two-temperature nature of the fluid in this accre-
tion mode, see for example Ryan et al. (2017) and references
therein. Consequently, a number of global general-relativistic
MHD studies were conducted showing that the MRI-driven tur-
bulence (Balbus & Hawley 1991, 1998) provides the angular
momentum transport in the disk, and many features predicted by
analytical or semi-analytical models emerge with only a small
amount of additional ad-hoc input (see e.g., De Villiers et al.
2003; McKinney & Gammie 2004; Narayan et al. 2012).

For simulations of this type of accretion disks one usu-
ally uses initial conditions which are in a smooth equilibrium
state. If such equilibria are to be given completely in closed
form, then they are predominantly either the fluid tori with con-
stant specific angular momentum ` ≡ −uϕ/ut of Kozłowski et al.
(1978); Abramowicz et al. (1978), or with constant `∗ ≡ uϕut of
Fishbone & Moncrief (1976).

However, the angular momentum or angular velocity distri-
butions play a decisive role in the onset of various instabilities.
The MRI growth rate is proportional to the angular veloc-
ity gradient, and another notable instability, the centrifugal or
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Rayleigh–Taylor1 instability, has a growth rate proportional to
the gradient of angular momentum.

Another case where the angular momentum distribution was
formerly believed to make a crucial difference is the gravitational
runaway instability as studied for example by Font & Daigne
(2002); Daigne & Font (2004). In the particular model chosen
by the authors of the aforementioned study, the mass param-
eter of the black hole space-time was allowed to dynamically
grow by the amount of accreted matter, possibly leading to an
accretion runaway. Then, they found that if specific angular
momentum grew with radius, the runaway instability was sup-
pressed, whereas for the ` = const. tori it caused the accretion
disk to be fully accreted on orbital time-scales. This instabil-
ity was later shown to disappear when full self-gravity of the
torus is accounted for (Montero et al. 2010; Rezzolla et al. 2010;
Mewes et al. 2016). However, the study of Font & Daigne (2002);
Daigne & Font (2004) demonstrates that the precise shape of
the angular momentum distribution can often have a critical
influence on the evolution obtained within a given model.

Is it possible that we are missing new dynamical effects or
different states of the accretion disks in our simulations because
we are restricting ourselves only to a limited number of initial
conditions? To answer this question, a variety of closed form
solutions corresponding to different gradients of either ` or Ω in
the initial fluid configurations would be useful.

We present such solutions in this paper in Sect. 2, and
demonstrate how these lead, at least in principle, to differences
in numerical simulation results in Sect. 3 by implementing and
evolving our solutions in the HARM 2D code (Gammie et al.
2003; Noble et al. 2006). A reader looking for an explicit recipe
for the construction of the tori will find all the needed formu-
las in Appendix B. Of interest is also the essentially unknown
fact that the fully general solutions for the toroidal equilib-
ria in static space-times (e.g., in the Schwarzschild space-time)
are expressible in closed form, which we briefly describe in
Sect. 2.2.

2. Analytical solutions for fluid tori near black holes

We use the G = c = 1 geometrized units and the −+++ sig-
nature of the space-time metric. A comma before an index
defines a partial derivative with respect to the appropriate coor-
dinate, whereas a preceding semi-colon a covariant derivative
with respect to the coordinate.

2.1. Basic equations

The plasma orbiting the black hole is modeled by ideal MHD
where molecular dissipation, electric resistivity, self-gravitation,
and radiative or nonequilibrium effects are neglected in the
dynamics. As a result, the system is governed by the set of
equations (cf. Anile 1989)
(
T µ

ν

)
;µ

=
(
T µ

ν(m) + T µ
ν(f)

)
;µ

= 0 , (1)

(µuµ);µ = 0 , (2)
(uµbν − uνbµ);ν = 0 , (3)

T µν
(m) ≡ b2uµuν +

b2

2
gµν − bµbν , (4)

1 In many contexts the “Rayleigh–Taylor instability” is used exclu-
sively for the instability of interfaces of fluids with different densities.
Here, we have used the word as also applying to the similar effect in
continuous media (see e.g., Gourgouliatos & Komissarov 2018).

T µν
(f) ≡ wuµuν + Pgµν , (5)

where uµ is the fluid four-velocity, µ its rest-mass density, w
its enthalpy density, and P its pressure. The vector bµ is the
magnetic field vector in the rest frame of the fluid.

We place the magneto-fluid into an axially symmetric and
stationary space-time with the metric

ds2 = gttdt2 + 2gtϕdtdϕ + gϕϕdϕ2 + grrdr2 + gϑϑdϑ2. (6)

Some useful symbols we use are the rotation fre-
quency of zero-angular-momentum observers (ZAMOs),
ω ≡ gtϕ/gtt = −gtϕ/gϕϕ; the potential whose gradient generates
the acceleration of ZAMOs, Φ(Z) ≡ − ln(−gtt)/2; minus the
determinant of the t-ϕ part of the metric, ρ2 ≡ g2

tϕ − gttgϕϕ; and
a radius-like quantity R ≡ √−gttgϕϕ.

Now let us assume that all the properties of the magneto-
fluid are axisymmetric and stationary, the flow is purely cir-
cular, ur = uϑ = 0, and that the magnetic field is purely
toroidal, br = bϑ = 0. Then the Faraday Eq. (3) and the particle-
conservation Eq. (2) are trivially fulfilled and we need to solve
only the momentum balance equation (relativistic Euler Eq. (1)).

The magnetic part of this equation can under the given
assumptions be simplified as

(
T µ

ν(m)

)
;µ

=
(b2ρ2),ν

2ρ2 . (7)

This expression was first derived by Komissarov (2006), but we
provide, in our view, a more direct and clear rederivation in
Appendix A.

There are many different ways how to rewrite the fluid part
of the Euler equation, one of them is the form which can be
attributed to Fishbone & Moncrief (1976)

(
T µ

ν(f)

)
;µ

= w
[
− ln(R),νV2 + ω,νRV

√
1 + V2 + Φ(Z),ν

]

+ P,ν , (8)

where V ≡ uϕ/
√
gϕϕ is the linear velocity of the fluid as

measured in the ZAMO frame.
However, one of the best known forms of the fluid part of the

Euler equation for circular equilibria is due to Kozłowski et al.
(1978); Abramowicz et al. (1978) and reads

(
T µ

ν(f)

)
;µ

=w

[
− ln(ut),ν +

`

1 −Ω`
Ω,ν

]
+ P,ν , (9)

where ` ≡ −uϕ/ut and Ω = uϕ/ut. In all of the
Eqs. (7), (8) and (9) the nontrivial components are of course
only those with ν = r, ϑ. We provide brief descriptions of the
derivations of the expressions Eq. (8) and (9) in Appendix A.

2.2. Static space-times

In static space-times (gtϕ = 0) the full Euler equation using
Eq. (7) and (8) simplifies as

− ln(R),νV2 = −P,ν

w
− P̃,ν

w̃
− Φ(Z),ν , (10)

where we have introduced the notation P̃ ≡ b2ρ2, w̃ ≡ 2wρ2.
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Let us now further assume that the configuration of the
fluid fulfills the barotropic2 condition of coincident surfaces
of constant pressure and enthalpy P = P(w) and the “magne-
totropic” condition of coincident constant P̃ and w̃, P̃ = P̃(w̃)
(see Komissarov 2006). Then the right-hand side of Eq. (10) is a
coordinate gradient, and the same must be true also for the left-
hand side. Thus we conclude that under the given conditions we
necessarily have V = V(R) and the general solution of the Euler
equation reads.

W(w(r, ϑ)) + W̃(w̃(r, ϑ)) = −Φ(c)(R(r, ϑ)) − Φ(Z)(r, ϑ) , (11)

where we have defined the effective potentials

W(w) ≡
∫

P′(w)
w

dw , (12)

W̃(w̃) ≡
∫

P̃′(w̃)
w̃

dw̃ , (13)

Φ(c)(R) ≡ −
∫

V(R)2

R dR , (14)

and where the potentials are determined only up to integra-
tion constants. The functions W and W̃ can be understood as
thermodynamic and magneto-thermodynamic effective poten-
tials respectively, Φc has clearly the meaning of a centrifugal
potential, and Φ(Z) is, in the currently discussed case of static
space-times, the gravitational potential experienced by static
observers.

General solutions for the toroidal equilibria can then be
constructed by
1. Prescribing arbitrary distributions P(w), P̃(w̃) ( e.g., as an

“enthalpic polytrope” P = Kwγ, P̃ = K̃w̃κ, see Komissarov
2006; Wielgus et al. 2015) and an equally arbitrary rotation
profile V(R);

2. Analytically integrating the potentials from Eq. (12)–(14);
3. Solving Eq. (11) for w(r, ϑ);
4. Using b2 = P̃(2ρ2w(r, ϑ))/ρ2 and the relation bµuµ = 0 to

determine bt, bϕ;
5. Postulating an equation of state such as the ideal-gas

w = µ + 5µkBT/(2m), where T is the temperature and m
the particle mass, to derive the density and entropy field
from fundamental thermodynamic relations and the function
P(w).

The results presented in this section are probably not origi-
nal, even though it is hard to find their explicit statement in
the literature. They can be, however, seen as easily obtain-
able consequences of the results of either Abramowicz (1971)
or Fishbone & Moncrief (1976) when restricted to static space-
times.

Nonetheless, we find it important to state these results explic-
itly because there is a number of studies that construct tori
in static space-times and use somewhat complicated numeri-
cal methods tailored for stationary space-times, even though
the above-stated general closed solution is available (e.g.,
Daigne & Font 2004; Narayan et al. 2012; Penna et al. 2013).

2 The fluid fulfilling the condition P = P(w) is called barotropic by
Kozłowski et al. (1978); Abramowicz et al. (1978), while other authors
would rather call a fluid where the conditions P = P(µ) is fulfilled
barotropic (see e.g., Tooper 1965). Both conditions coincide in flows
with constant entropy per particle and in the Newtonian limit.

2.3. Stationary space-times

We see above that the form of the Euler equation coming from
Eq. (8) can be used to construct the entirely general barotropic
and magnetotropic solutions in static space-times. Furthermore,
Fishbone & Moncrief (1976) used this form even in the case
of stationary space-times to obtain equilibria with constant `∗.
However, we found it much more fruitful to use Eq. (9) in the
general gtϕ , 0 stationary space-times.

We obtain the Euler equation under the assumption of
barotropicity and magnetotropicity as

− ln(ut),ν +
`

1 −Ω`
Ω,ν = −W,ν − W̃,ν. (15)

Once again, this equation quickly leads to an integrability
requirement that either Ω,µ = 0 or ` = `(Ω). This result is known
as the relativistic von Zeipel theorem (Abramowicz 1971).

However, finding closed analytical solutions is more compli-
cated than in the static case; if we postulate the function `(Ω),
we obtain

W + W̃ = −L(Ω) − 1
2

ln(−gtt − 2gtϕΩ − gϕϕΩ2) , (16)

where we have used the fact that ut = (−gtt − 2gtϕΩ− gϕϕΩ2)−1/2

and we define L(Ω) analogously to the potentials Eq. (12)–(14),

L(Ω) ≡
∫

`(Ω)
1 −Ω`(Ω)

dΩ . (17)

In other words, the thermodynamic and magneto-
thermodynamic potentials are specified by this procedure
not only as functions of coordinates but also of an as-of-yet
unspecified function Ω = Ω(r, ϑ).

To obtain Ω(r, ϑ) from the postulated `(Ω) and thus find the
full explicit solution, one has to use the relation

Ω =
uϕ

ut =
`gϕϕ − gtϕ

`gtϕ − gtt , (18)

which leads to the equation for Ω

(`gtϕ − gtt)Ω − `gϕϕ + gtϕ = 0 . (19)

In general, this equation has to be solved numerically,
see examples for nonmagnetized tori in Chakrabarti (1985),
Daigne & Font (2004), Qian et al. (2009), Penna et al. (2013), and
also more recent examples for magnetized tori in Wielgus et al.
(2015), Gimeno-Soler & Font (2017). Nevertheless, if we instead
want to obtain Ω(r, ϑ) as a closed analytical expression, we must
impose some constraints on the form of `(Ω). For instance, if Ω
is to be a root of a polynomial equation of order n, it is easy to
see that necessarily ` = P(n−1)(Ω)/P(n−1)(Ω), where P(k)(x) are
some polynomials of order k.

We have chosen here to focus on the general form of `(Ω)
which leads to the expression for Ω as a root of a quadratic
equation (n = 2)

` =
`0 + λΩ

1 + κ`0Ω
, (20)

where `0, κ, λ are some constants.
We chose this particular form of the parametrization of

`(Ω) because the case κ = 0, λ = 0 corresponds to the well-
known ` = const. = `0 Polish donuts of Kozłowski et al. (1978);
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Table 1. Simulation parameters.

Variable Value

Black hole spin a 0.9375 M
Resolution 512 × 512
Inner radius of toroid 5 M
Outer radius of toroid 12 M
Horizon radius rH M +

√
M2 − a2

Inner boundary of simulation 0.98 rH
Outer boundary of simulation 40 M

Table 2. Initial condition parameters.

κ `0 [M] κ `0 [M]

–1.11 2.5889 0.15 3.2606
–1. 2.6418 0.26 3.32871

–0.9 2.69052 0.36 3.39239
–0.79 2.74492 0.47 3.46449
–0.69 2.79522 0.57 3.53203
–0.58 2.85157 0.68 3.60865
–0.48 2.90383 0.78 3.68053
–0.37 2.96253 0.89 3.76223
–0.27 3.0171 0.99 3.83902
–0.16 3.07854 1.1 3.92644
–0.06 3.13577 1.2 4.00877
0.05 3.20034 1.31 4.10268

Notes. Parameters for tori with an isobaric contour passing through r =
5 M, 12 M while λ = 0.

Abramowicz et al. (1978), and, on the other hand, κ = 1, λ = 0
corresponds to `∗ ≡ uϕut = const. = `0 of Fishbone & Moncrief
(1976). The other choices of κ, λ, however, represent a continu-
ous class connecting and extending these two particular solution
families.

The expressions for Ω and the thermodynamic potential as
functions of coordinates corresponding to Eq. (20) are given in
Appendix B; examples of the obtained rotation curves and den-
sity profiles are discussed in the next section. In particular, it is
shown that in Kerr space-time the choice λ = 0, `0 > 0 and a
small κ > 0 generically leads to ` growing with radius, whereas
κ < 0 to an angular momentum falling of with radius.

Even more specifically, we will see in the next section that
κ < 0 leads to very thick tori with strongly nonKeplerian rotation
profiles. However, since the solutions themselves do not have any
direct physical meaning, and since they are used only as initial
conditions for an MHD evolution that completely changes their
character, we do not exclude any choice of parameters, save per-
haps for those leading to outright pathological tori. In return,
this allows us to potentially discover new states and behaviors of
accretion disks.

3. Numerical simulations

Because the solutions presented in the previous section are in
closed form, it is easy to set them up as initial conditions for
the evolution in Kerr space-time in existing numerical codes and
see whether they bring any variations in the properties of the
accretion disks that evolve from them. Hence, we implemented

our initial conditions in the 2D HARM code of Gammie et al.
(2003); Noble et al. (2006) and conducted the numerical study
in a “standard HARM set-up”, as described for example in
McKinney & Gammie (2004).

We placed the tori with various choices of the solution
parameters near a Kerr black hole with spin a = 0.9375M,
perturbed them with a small poloidal magnetic field with
P/b2 = 100 at the pressure maximum of the torus, and evolved
the tori for a time period of 3000 M with a 512 × 512 resolu-
tion. As indicated already in Balbus & Hawley (1991, 1998),
long-term MHD turbulence requires at least some magnetic field
threading the disk vertically and this is the reason why the weak
poloidal field is included in the initial conditions. Toroidal fields
also trigger the MRI, but on their own they eventually decay (see
also Wielgus et al. 2015; Fragile & Sądowski 2017). We have
thus decided not to include a toroidal component of the mag-
netic field in the initial conditions (P̃ = 0) and leave the study of
its effects to other works.

What follows is a description of some of the properties of
the chosen initial conditions and a discussion of the simulation
results. We used the default HARM outputs of energy, angular
momentum, and rest-mass accretion rates to diagnose the evo-
lutions. The parameters of the simulation are summarized in
Table 1.

3.1. Properties of initial conditions

Our main target was to investigate the properties of the tori with
the angular-momentum relation Eq. (20) in dependence on the
various values of the parameter κ. We set λ = 0 and determine `0
by requiring that the toroids have their inner and outer edge at r =
5 M and r = 12 M in Boyer–Lindquist coordinates respectively.

The thermodynamic relations were then determined by set-
ting up the gas as initially isentropic, nonmagnetized (P̃ = 0),
and having a polytropic equation of state P = Kµγ, where µ is
mass density and we set γ = 13/9 to roughly mimic an ideal-
gas mixture of relativistic electrons and mostly nonrelativistic
ions. Furthermore, we used the HARM convention K = µ

1−γ
c ,

where µc is the density of the toroid at the pressure maximum
(see Appendix B).

We constructed 24 such initial conditions with κ in the inter-
val [−1.11, 1.31]; a summary of the resulting parameters is given
in Table 2, and the properties of the initial conditions can be
inspected in Figs. 1–4.

We know from the analysis of von-Zeipel radii by
Abramowicz et al. (1978); Kozłowski et al. (1978) that the
` = const. toroids in the Kerr space-time will have an angular
velocity along the equator falling off with radius, at least as long
as we are above the photon orbit. Since κ = 0, λ = 0 corresponds
to the ` = `0 = const. tori, we can then assume that for moderate
magnitudes of κ our solutions will also have an angular velocity
fall-off, at least if we are far away from the photon sphere. This
expectation is fulfilled in the case of our tori, as can be seen on
a few examples in Fig. 1.

Furthermore, by examining the angular momentum relation
Eq. (20) at λ = 0, `0 > 0,Ω > 0 and by assuming that angular
velocity is falling off with radius, we conclude that κ > 0 means
angular momentum growing with radius, and a small κ < 0
(such that the expression Eq. (20) does not become singular) an
angular momentum fall-off. This is demonstrated in Fig. 2.

As for the dependence of the vertical structure of the toroid
on the parameter κ, that seems to be impossible to character-
ize by any simple analytical argument. We can only offer the
observation that the angular momentum distribution is such that
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Fig. 1. Profile of the angular velocity Ω inside the tori along the equa-
torial plane for different values of the parameter κ. In this and all the
following graphs we assume λ = 0 and `0 is determined by the constraint
that the torus has its inner and outer edge at r = 5 M and r = 12 M
respectively.
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Fig. 2. Profile of specific angular momentum ` inside the tori along the
equatorial plane for different values of the parameter κ.
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Fig. 3. Vertical extent z = r cosϑ of the tori as a function of the
parameter κ.

for κ & 1 the rotation curve in the equatorial plane is closer to
Keplerian values and thus the disk should be closer to the canon-
ical “thin disk” also in the vertical structure. This can be seen
to hold in Figs. 3 and 4. The κ & 1 (λ = 0) disks are thus the
ones closest to the state assumed to arise from long-term MHD
simulations and, as such, could be preferred as initial conditions
in astrophysical studies.

Last but not least, the HARM convention K = µ
1−γ
c

leads to the specific enthalpy h ≡ w/µ to be equal to
h = (2γ − 1)/(γ − 1) = 4.25 at the pressure maximum of every
torus. This fact leads to the relativistic Bernoulli parameter
B ≡ −hut being much larger than one at the pressure max-
ima of the tori, a property common to hot accretion flows
(Narayan & Yi 1994, 1995). The values of the Bernoulli param-
eter at the pressure maxima of the tori as a function of κ are
plotted in Fig. 5.

3.2. Simulation results

The general scenario of the evolution of any of our tori is up
to some intermittent episodes (see Sect. 3.3) qualitatively equiv-
alent to the default HARM simulation with the `∗ = const. tori
as described for example in McKinney & Gammie (2004). We
see the onset of the MRI and a rapid transition to turbulence
throughout the disk starting from the inner edge. In parallel, the
inner edge extends all the way toward the black hole, forming
a plunging region, and the accretion disk reaches a quasi-steady
state with a magnetically dominated corona layer above it, and a
nearly evacuated magnetized funnel around the poles.

The simulation time t = 3000 M is about ten orbital periods
of the pressure maxima and it is sufficient to see the estab-
lishment of these quasi-stationary structures. However, it is not
enough to see the ultimate fate of the disk in terms of the accu-
mulation of magnetic flux around the black hole and a possible
transition to a magnetically arrested disk, or the spreading of the
disk to large radii through angular momentum exchange (for a
long simulation see Narayan et al. 2012).

The mathematical analysis of Balbus & Hawley (1991)
showed that the MRI grows with a rate which is dependent both
on the wave vector of the disturbance and the local angular-
velocity gradients in the fluid. To obtain a single numerical
estimate of some kind of “typical strength” of the MRI for each
torus, we have chosen to use the growth rate of the fastest-
growing MRI mode (maximum of the MRI growth rate in the
perturbation wave-vector space) Im(ωmax) evaluated at the loca-
tion of the pressure maxima of the tori. Gammie (2004) showed
that the rate of the fastest growing mode can be computed as
half the shear rate in the case of relativistic Keplerian disks,
−ω2

max = σ2/2 and, even though this result has not been rigor-
ously proven to apply to general relativistic flows, we have used
it here as our estimate (for definition and computation of shear
rates in Kerr space-times see e.g., Semerák 1998).

The resulting MRI growth-rate estimates are given in Fig. 6,
where we see that by variation of κ we get an MRI e-folding
time from 10 M to about 20 M. As can be seen on a few selected
examples of accretion rates in Fig. 7, this leads to the first wave
of matter arriving at the black hole at around 100–200 M. This
certainly does not mean that the MRI needs approximately ten
e-folds to take effect because this time also includes the inspiral
time required for the matter released by the instability to arrive
to the black hole horizon. In fact, the waves arrive within a few
tens of M away from each other, which suggests that matter is
released from the tori within approximately five e-folding times
of the MRI.
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Fig. 4. Meridional sections of the density of the tori for different values of κ. The progression goes from geometrically very thick tori with large
pressure gradients at their inner edge up to thinner toroids with a cusp (vanishing pressure gradient) gradually forming at their inner radius.
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Fig. 5. Relativistic Bernoulli parameter B ≡ −hut at the pressure max-
ima of the tori (B > 1 corresponds to matter with enough energy to
escape to infinity) as a function of the parameter κ. In our case the ther-
modynamic properties are chosen such that h = 4.25 at the pressure
maxima of the toroids, so the behavior of Bc is due to the fact that the
maxima are getting farther from the black hole with growing κ.
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Fig. 6. Growth rates of the fastest-growing MRI mode Im(ωmax) eval-
uated at the position of the pressure maxima of the tori plotted as a
function of the parameter κ.
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Fig. 7. Some examples of the numerically obtained mass accretion rate
Ṁ/M as a function of time. The height of the first peak of the accretion
rate is correlated with κ, but the late evolutions are harder to relate to
the parameters of the initial conditions.

This observation is further documented in Fig. 8, where we
see that the average accretion rates over the first 500 M of evo-
lution are correlated with the initial MRI estimates. This may be
explained by noticing from Fig. 7 that the “first accretion waves”
arrive earlier from the tori with higher shear (smaller κ), but
also that these waves bring larger amounts of matter with them.
However, we also see that the correlation starts to be broken for
the most shearing tori (with largest MRI growth rates), which is
probably because they are already entering the nonlinear mode
of evolution in the chosen averaging interval.

Furthermore, if we try to see whether the accretion rates
in the last 1000 M of our evolution are correlated to the initial
Im(ωmax), we see in the second part of Fig. 8 that there is no
tangible correlation. This is because by that time the tori have
evolved to the quasi-stationary “asymptotic3” states where their
relation to the properties of initial conditions has mostly been
washed out, perhaps up to the energy and angular-momentum
content. For further details see the next subsection.

3.3. Advected specific energy and nominal efficiency

We also computed the “nominal efficiency” η̃ ≡ 1 − 〈Ė/Ṁ〉 as
was done in McKinney & Gammie (2004) but we found negative
efficiencies for all of our tori at late times. This is not a mistake
3 Meaning that they then evolve on timescales much longer than the
orbital time.
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Fig. 8. Numerically obtained accretion rates of rest mass
〈
Ṁ/M

〉
, energy

〈
Ė/E

〉
and angular momentum

〈
L̇/L

〉
averaged over the evolution time

intervals [0, 1000 M] and [2000 M, 3000 M] as a function of the initial MRI growth rate estimate Im(ωmax). We note that a lower negative value of
Ṁ, Ė, L̇ corresponds to a higher loss rate of the quantity from the torus and thus a higher accretion rate. The displayed values correspond to the
parameter κ in the interval [−1, 1.31].
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Fig. 9. Accreted specific energy Ė/Ṁ as a function of time for chosen
values of the parameter κ.

but, as will be seen from the following, a robust property of this
type of simulations with an analytical underpinning. Hence, we
must warn against the usage of η̃ as any sort of efficiency of
the accretion process. Let us now discuss the arguments which
explain this phenomenon.

The total energy in the disk is defined as

E(t) = −
∫

V
T t

t
√−g d3x =

∫
Bµut √−g − P

√−g d3x + Em ,

(21)

where V is the spatial volume, and Em is the energy in the mag-
netic fields (initially almost zero). The total rest mass M is, on
the other hand, defined as

M(t) =

∫

V
µut √−g d3x . (22)

The expression µut √−g is just the coordinate mass den-
sity, so for instance

∫
Bµut √−gd3x/

∫
µut √−gd3x is simply the

mass-averaged Bernoulli parameter.
Thus, we can see that the ratio E/M corresponds to the aver-

age Bernoulli parameter with contributions to energy from the

internal stress in the gas, and the magnetic-field energy. A simi-
lar argument leads us to the realization that Ė/Ṁ is the average
Bernoulli parameter of the accreted fluid elements plus similar
terms. However, since we start with a toroid with most of its ele-
ments having B > 1 (see Fig. 5), we should not strictly expect
the advection dominated flow to accrete exclusively the portion
of the matter withB < 1 and spit the rest out in an outflow. Thus,
even when ignoring the pressure and magnetic contribution to
energy, we should not be surprised by Ė/Ṁ > 1.

The simulation of McKinney & Gammie (2004) did not find
the average 〈Ė/Ṁ〉 to be larger than 1 but we believe that this is
only thanks to the fact that their simulation halted at t = 2000M.
In contrast, we found that for times t > 2000M the irregular
advection mechanism is able to push even the high-energy fluid
elements into the black hole. This is demonstrated in Fig. 9,
where we see that Ė/Ṁ undergoes erratic “build-ups” whose ori-
gin seems to be linked with the behavior of the magnetic fields
and the coronal layer (see Fig. 10).

Specifically, visual inspection of the plots of the strength of
magnetic fields reveals that the build-ups in 〈Ė/Ṁ〉 are asso-
ciated with the coronal layer slowly raising all the way to the
axis and filling the polar funnel; the abrupt drop in accreted spe-
cific energy is then associated with a sudden evacuation of the
axis region and the reemergence of the funnel. This of course
suggests that what is accreted in the “super-energetic” periods
is mostly the magnetically dominated matter from the coronal
region around the poles. On the other hand, it also suggests
that this phenomenon might be associated with the strictly axi-
symmetric structure of the simulation and that it would not be
reproduced in a 3D simulation. Alternatively, it could be caused
by the small topological defect which is introduced in HARM
to regularize the coordinate singularity at the axis (see Gammie
et al. 2003).

One thing which is clear to us is the fact that this super-
energetic accretion cannot be easily related to any parameter of
the initial conditions, as we show in Fig. 11. All the properties
of the initial conditions vary as smooth, typically monotonous
functions of the parameter κ, so if the late 〈Ė/Ṁ〉 is to depend on
any simple property of the initial conditions, it should be obvious
from its dependence on κ. Even though the late average 〈Ė/Ṁ〉
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Fig. 10. Snapshots of the structure of the magnetic fields for different tori evolutions plotted in Boyer–Lindquist coordinates. The color indicates
log(b2/b2

max), where b2
max is the maximal strength of the magnetic field in the respective image, the black circle is the interior of the black hole, and

the right equatorial edge of the image is at r = 12M. The first two images on the left are snapshots for the κ = −0.48 torus before and after the
first Ė/Ṁ peak, at t = 1200 M and t = 1700 M respectively (c.f. Fig. 9). The other two images on the right are snapshots for the “Ė/Ṁ-quiescent”
κ = 1.2 torus at t = 1200 M and t = 1700 M respectively. It appears that the behavior of Ė/Ṁ is linked with the evolution of the coronal layer.
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Fig. 11. Accreted specific energy Ė/Ṁ averaged over the interval t ∈
[2000 M, 3000 M] as a function of κ. The vertical axis has its origin at
1, which means that all our flows return a negative nominal efficiency
at late simulation times.

can be recognized in Fig. 11 as a continuous function of κ in
certain regions, the sampling is not sufficient to understand the
structure any further. The only other observation, inferred from
Figs. 2 and 11, is that the extremely high values of specific energy
seem to be associated with initial rotation curves which are very
far away from a Keplerian profile.

We believe that this dependence of 〈Ė/Ṁ〉 on initial condi-
tions should be studied in more detail in future works. Addition-
ally, a more careful study should separate Ė/Ṁ from the actually

accreted Bernoulli parameter because the former involves a sig-
nificant, or even dominant contribution of the energy of the
magnetic field at late evolution times. However, implementing
and running diagnostics that would allow us to make such a
distinction and shed more light on this numerically observed
phenomenon is beyond the scope of the current paper.

4. Conclusions

We presented generalizations of the known closed-form analyt-
ical solutions of geometrically thick fluid tori near black holes;
our solutions are easy to construct and implement in numerical
codes. Unlike the previously known solution families, our family
provides a rich spectrum of possibilities for the rotation curve
and geometrical shapes even if parameters such as the inner and
outer radii are constrained. In particular, our κ & 1 disks have
semi-Keplerian rotation profiles and could thus be preferred for
initial conditions of astrophysical simulations rather than the
` = const. (Abramowicz et al. 1978; Kozłowski et al. 1978) or
`∗ = const. (Fishbone & Moncrief 1976) tori.

The MRI growth rates for different tori from our new
class have different magnitudes and the tori exhibit different
numerical evolutions accordingly. Namely, the average normal-
ized accretion rate 〈Ṁ/M〉 over the first 500 M of the simulation
(three or more orbital periods) turns out to be linearly propor-
tional to the growth rate of the fastest-growing MRI mode at the
pressure maximum of the torus.

On the other hand, the asymptotic states of the accretion
disk which are achieved for an evolution time &2000 M do not
exhibit any correlation of accretion rates with the initial MRI
growth rates. Additionally, all of the asymptotic accretion disks
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tend to have the same qualitative disk-corona-funnel structure as
described by for example McKinney & Gammie (2004) and the
normalized accretion rates of their angular momentum, energy
and mass vary within a single order of magnitude.

Nevertheless, we see that the disks vary quite wildly in the
specific energy of the fluid they accrete; for particular choices of
initial conditions and at the most extreme periods, the energy of
the accreted elements approaches ten times their rest mass. This
seems to be connected with the behavior of the strongly mag-
netized coronal layer because the extreme accretion episodes are
associated with the corona pushing into the funnel, sometimes
even up to the point of the short disappearance of the evacuated
region. This behavior, however, appeared only for initial condi-
tions far away from a Keplerian rotation profile. Further insights
into this question should be obtained by future studies which
should also involve more realistic matter models for the disk and
better diagnostics ran during the simulation.
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Appendix A: Deriving various forms of Euler
equation

A.1. Simplifying
(
T µ

ν(m)

)
;µ

Omitting terms which are zero due to the stationarity and
axisymmetry of all quantities, the circularity of velocity field,
and toroidality of magnetic field, we obtain

(
T µ

ν(m)

)
;µ

= b2aν +
(b2),ν

2
− bν;µbµ . (A.1)

Let us now rewrite the aν and bν;µbµ terms as

uν;µuµ =
1
2
g
αβ
,νuαuβ , (A.2)

bν;µbµ =
1
2
g
αβ
,νbαbβ . (A.3)

We then obtain

(
T µ

ν(m)

)
;µ

= −b2

2
g
αβ
,ν

(
−uαuβ +

bαbβ
b2

)
+

(b2),ν
2

. (A.4)

We now realize that uµ and bµ/
√

b2 are two normalized
orthogonal vectors exclusively in the t − ϕ direction and we thus
have

uαuβ
uµuµ

+
bαbβ
bµbµ

= −uαuβ +
bαbβ
b2 = gαβ|(ϕt) , (A.5)

where gαβ|(ϕt) is the ϕ, t-restriction of the metric (that is, grr |(ϕt) =
gθθ|(ϕt) = 0 but otherwise the same as the metric). We then see
that the magnetic part of the structural equations reads

(
T µ

ν(m)

)
;µ

= −b2

2
g
αβ
,νgαβ|(ϕt) +

(b2),ν
2

. (A.6)

We now compute

g
αβ
,νgαβ|(ϕt) = (gαβ|(ϕt)),ν gαβ|(ϕt) = −gαβ|(ϕt)(gαβ|(ϕt)),ν

= −Tr
[
g|−1

(ϕt)(g|(ϕt)),ν
]

= −ρ
2
,ν

ρ2 ,
(A.7)

where in the last step we have used the formula for the derivative
of a determinant of a matrix, and we denote ρ2 ≡ −Det

(
g|(ϕt)

)
=

g2
tϕ − gttgϕϕ . Using (A.7) we then obtain that the magnetic part

of the stress-energy tensor can be written as

(T µ(m)
ν );µ =

(ρ2b2),ν
2ρ2 . (A.8)

A.2. Simplifying
(
T µ

ν(f)

)
;µ

Under the symmetry assumptions and circularity of the flow we
obtain
(
T µ

ν(f)

)
;µ

= waν + P,ν . (A.9)

Let us now briefly derive the two possible forms of aν useful for
the construction of analytical solutions.

A.2.1. Fishbone-Moncrief form of acceleration

The Fishbone-Moncrief form is obtained by expressing the
acceleration in terms of the velocity in the ZAMO frame. The
linear velocity of the flow in the ZAMO frame is V = uϕ/

√
gϕϕ,

and the four-velocity components of the circular flow are given
as

uϕ =
√
gϕϕV , (A.10)

ut = −
√

1 + V2

−gtt − ω
√
gϕϕV , (A.11)

These expressions are then directly substituted into the four-
acceleration aν = g

αβ
,νuαuβ/2 to obtain

aν =
1
2

(
gtt

,νu
2
t + 2gtϕ

,νutuϕ + g
ϕϕ
,νu2

ϕ

)

= − ln(R),νV2 + ω,νRV
√

1 + V2 + Φ(Z),ν .

(A.12)

A.2.2. “Polish-donut” form of acceleration

The Polish-donut form of acceleration is derived by realizing that
the acceleration can be rewritten as

uν;µuµ =
1
2
g
αβ
,νuαuβ =

1
2

[
(gαβuαuβ),ν + 2uαuα,ν

]

= uαuα,ν = utut
,ν + uϕuϕ,ν .

(A.13)

We now use the four-velocity normalization to express ut =
−(1 + uϕuϕ)/ut and obtain

aν = −ut
,ν

ut +
ut
,ν

ut uϕuϕ + uϕuϕ,ν = − ln(ut),ν + uϕut
(

uϕ

ut

)

,ν

.

(A.14)

The last step is to use the four-velocity normalization to obtain
the identity utut = −1/(1−Ω`) and thus uϕut = `/(1−Ω`) which
leads to Eq. (9).

Appendix B: Construction of tori

When we postulate ` = (`0 + λΩ)/(1 + κ`0Ω), we obtain the
angular rotation frequency for κ , 1 as

Ω =
A−

√
A2 + 4(`0gϕϕ − gtϕ)(λgtϕ − κ`0gtt)

2(λgtϕ − κ`0gtt)
A = gtt + λgϕϕ − `0g

tϕ(1 + κ)
(B.1)

When we have ` = `0 (such as when κ = λ = 0), the formerly
quadratic equation for Ω in Eq. (19) becomes linear and the
quadratic root (B.1) has a formal singularity. In that case we can
either take an appropriate limit or directly substitute into Eq. (18)
to obtain

Ω =
`0g

ϕϕ − gtϕ

`0gtϕ − gtt . (B.2)

The function L(Ω) from Eq. (17) is easily integrated as (for a
general choice of parameters)

L = − 1
2

ln
[
1 + (κ − 1)`0Ω − λΩ2

]

− `0(1 + κ)
2C ln

[C − `0(1 − κ) − 2λΩ

C + `0(1 − κ) + 2λΩ

]
,

C =

√
`2

0(κ − 1)2 + 4λ .

(B.3)
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There are degeneracies in the parametrization when we allow for
λ , 0 and we thus recommend to set λ = 0 for most practical
purposes. Then the function L simplifies as

L =
1

κ − 1
ln [1 + (κ − 1)`0Ω] . (B.4)

The final expression for the thermodynamic potentials (for λ =
0) then reads

W + W̃ = − ln
[
[1 + (κ − 1)`0Ω]1/(κ−1)

]

− ln
[√
−gtt − 2gtϕΩ − gϕϕΩ2

]
,

(B.5)

where we of course need to substitute the λ = 0 version of (B.1)
to obtain a purely coordinate-dependent expression.

The expressions for mass and enthalpy density of an isen-
tropic, nonmagnetized, and polytropic fluid P = Kµγ read
(cf. Rezzolla & Zanotti 2013)

µ =

[
γ − 1
Kγ

(
exp[W −Ws] − 1

)]1/(γ−1)

, (B.6)

w = µ exp[W −Ws] = µ +
Kγ
γ − 1

µγ . (B.7)

where Ws is the value of W at the surface of the torus (conven-
tionally the inner edge).

The dynamical properties of the polytropic gas are invari-
ant with respect to K (see e.g., Rezzolla & Zanotti 2013), so the
choice of K is somewhat arbitrary. We choose K in the same way
as the original HARM code and that is so that

µ

µc
=

[
γ − 1
γ

(
exp[W −Ws] − 1

)]1/(γ−1)

, (B.8)

where µc is the maximum density4 in the torus (i.e., at the
pressure maximum). This leads immediately to K = µ

1−γ
c .

However, as was mentioned in the main text and can be
seen from (B.6) and (B.7), the choice of K does influence
the absolute values of specific enthalpy h = w/µ through-
out the fluid. Hence, some of the important physical char-
acteristics of the toroids such as their total specific energy
E/M or total specific angular momentum L/M depend on
the value of K even at fixed spatial extent and rotation
curves!

If we then fix κ (and λ = 0), and we want to confine the torus
between some rin and rout, we must numerically solve the fol-
lowing equation for `0 using either well-known algorithms or
software such as Mathematica or Matlab

W(r = rin, θ = π/2; κ, `0) −W(r = rout, θ = π/2; κ, `0) = 0 .

The parameters which we obtained in the case of rin = 5M, rout =
12M are given in Table 2.

4 In the HARM code, one actually stores and evolves the dimensionless
µ/µc instead of µ.
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