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Abstract

Two-dimensional semiconducting monolayers of transition metal dichalcogenides (TMDs)
are of pivotal interest due to their fascinating optical and electronic properties. High optical
yield, the direct band gap, sensitivity to the surrounding material or strain, and the ability to
stack various heterostructures by exfoliation techniques opens up new possibilities for de-
vice concepts. The promising properties originate from the exceptionally strong Coulomb
interaction between charge carriers due to the two-dimensional geometry and weak dielec-
tric screening. It is necessary to analyse the interplay of many-body Coulomb interaction
effects in order to provide a microscopic understanding of the underlying physics.

High densities of excited charge carriers populating the band structure valleys cause strong
renormalizations that are investigated in this thesis for the typical monolayer TMDs MoS,,
MoSe,y, WS, and WSe,. The semiconductor Bloch equations are evaluated, including many-
body Coulomb interaction. Excitation-induced band structure renormalizations cause a
transition from direct to indirect band gaps, which drains carriers from the bright optical
transition to dark states. Thus the advantageous properties of a direct gap semiconductor
vanish with increasing carrier density, which has strong implications for optical applica-
tions such as TMD nanolasers.

Monolayer TMDs are often studied in experiments that involve photoexcitation of charge
carriers, which requires the knowledge of the charge carrier density in order to interpret
the results. Estimating the density from the linear absorption coefficient is a common yet
misleading concept that does not reflect optical non-linearities emerging at elevated pump
power. Here, the evaluation of the population dynamics for a non-equilibrium state pro-
vides insight into the fluence dependence of the photoexcited density, which originates
from the balance between Pauli-blocking and band structure renormalizations as well as
scattering processes that dominate in a different regime.

The stacking of TMD layers to build van der Waals heterostructures has opened a growing
field of research. TMD heterobilayers of type-1I band-alignment exhibit interlayer excitons
(ILX) that are characterized by spatial separation of electron and hole and long lifetimes.
The twist angle between the two layers provides further possibilities to tailor the bilayer
properties. The dependence of the ILX lifetime on the twist angle and the temperature is

analysed in detail, revealing the physics behind indirect Moiré excitons.
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1. Introduction

Semiconductor nanostructures are the core element of modern electronic devices. The urge
for miniaturization in order to build smaller and faster devices such as microchips is a
driving force in scientific research. Lowering the dimensionality from two-dimensional
quantum-wells to zero-dimensional quantum dots and employing techniques to build nano-
structures of different band alignments provide possible ways to tailor the electronic con-
finement for many applications. Layered materials have proven to be a promising new
material class for a manifold of different applications in the two-dimensional limit. They
challenge common semiconductors by offering simple functionalization possibilities, e.g.
building heterostructures, in combination with high optical yield.

Since the first success in exfoliating and analyzing an atomically thin layer of graphene [1] in
2004, the class of two dimensional materials has been vastly expanded and investigated [2].
In 2010, the Nobel Prize in physics was awarded to Geim and Novoselov for their exfoliation
technique and investigation on graphene [1, 3]. This material is the sp? hybridized form of
a carbon crystal. Mechanically stability is given due to the covalent intralayer bond of the
carbon atoms. Graphene forms a honeycomb lattice [4], which is a typical lattice form for 2d
materials. It exhibits a linear dispersion relation near the edges of its hexagonal Brillouin
zone, where two so-called Dirac-cones meet at the K-point, causing a quasi-metallic be-
haviour (no band gap). The bulk crystal of graphene is called graphite, which is a prominent
example for the layered nature of 2d materials. In graphite, the single layers of graphene
are weakly bound by van der Waals-forces. Thus, exfoliation techniques provide a fairly
easy method to prepare samples [1]. Graphene has also been cast into different forms other
than a plain monolayer, e.g. also carbon nanotubes formed by rolled up graphene sheets
have gained interest, as their electronic properties can be varied from metallic to semicon-
ducting. Being a semi-metallic two-dimensional material, the conductance of graphene is
very high. Thus it is often used to contact semiconductor devices. For electronic applica-
tions of graphene, progress has come to devices including quickly chargable batteries [5]
and functional beyond-silicon microchips [6] using carbon nanotube field effect transis-
tors (CNFETS).

The search for other 2d materials with different electronic properties has revealed a vari-
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ety of isolating, (semi)metallic and semiconducting 2d materials [2]. This work focusses on
semiconducting 2d materials, which can be produced by combining distinct transition met-
als such as molybdenum or tungsten with chalcogen atoms such as sulfur, selen or tellur,
giving rise to the name transition metal dichalcogenides (TMDs). Among the most promi-
nent representants of TMDs are MoS,, MoSe,, WS, and WSe,. Though they have been of
interest for years, this interest was limited merely to dry lubricants [7]. Thinned down to a
monolayer, these TMDs show promising optical and electronic properties. The strong op-
tical yield of these layers was first investigated by Mak et al. [8]. In contrast to their bulk
crystal, TMDs exhibit a direct band gap [9] as monolayer. Due to the presence of other band
structure valleys that are energetically close to the K-valley, it is still debated whether these
materials really have a direct gap [10, 11].

Other 2d materials of interest are hexagonal boron nitride (hBN), which is insulating and
thus an ideal buffer material to encapsulate TMD samples [12]. NbSe, [13,14] or ReSe; [15, 16]
are examples for metallic TMDs that show interesting physics in terms of charge density
waves and superconductivity. Also monolayers of non-layered III-IV semiconductors such
as InSe have been synthesized [17]. The layered structure of van der Waals-bound materials
can be utilized to tailor the material properties [2]. By stacking different monolayers on top
of each other, so-called van der Waals heterostructures are built. These heterostructures
are of recent interest as phenonema such as superconductivity [18] and long-lived delocal-
ized electron-hole pairs [19] have been observed.

The direct band gap in the visible spectrum and the high optical yield render TMD monolay-
ers as suitable candidates for optoelectronic device application [20, 21]. Due to their two-
dimensional geometry Coulomb interaction within TMD monolayers is weakly screened.
Thus, TMD monolayers are very susceptible to electric fields and environmental screening
and show prominent features of strongly bound many-particle complexes such as bright
and dark excitons, trions and biexcitons even at room temperature. Many experiments
using TMDs as active material of a device have been performed. Among these devices are
light-emitting diodes (LEDs) [22-25], solar cells [22, 23] or TMD lasers [26-30]. Flexible elec-
tronics have been a field of further experimental interest [31]. Such typical experiments
aim for controlling the properties of the electrons in terms of confinement and carrier sep-
aration. In addition to this, the properties of the TMD monolayers are also shaped by the
presence of photoexcited carriers due to quasi-particle renormalization effects, dephasing,
and the interplay of excitons and unbound carriers [32-36]. Further mechanisms that affect
the electronic and optical properties are dielectric screening from the substrate [37,38] and
strain [39-41] that can lead to a transition from a direct to an indirect band gap. Spin—orbit

coupling also plays a crucial role, as for example with tungsten-based TMD monolayers the



lowest transition is spin-forbidden and therefore dark [42, 43]. On the other hand, the lack
of inversion symmetry within the crystal, gives rise to a new degree of freedom in terms of
spin-valley locking of charge carriers, which opens up the field of valleytronics [44-46].
Considering the magnitude of the Coulomb interaction thatis characteristic for TMD mono-
layers, many-particle effects from excited carriers are strong in these materials. The ques-
tion remains, how renormalization effects due to the presence of excited charge carriers in-
fluence the electronic properties. Existing preliminary work [47] will therefore be expanded
in this thesis in order to shed light on the expected loss of the direct transition under device
conditions.

The various Coulomb bound many-particle complexes exhibit distinct shifts in the presence
of excited charge carriers. In order to gain understanding of the underlying physics, tech-
niques of optical spectroscopy are used [48, 49]. Such techniques involve the photoexcita-
tion of charge carriers, that end up filling the band structure valleys. The density of excited
charge carriers is therefore a decisive parameter for describing many-body effects. As the
interpretation of experiments usually requires comparison with microscopic theories, the
knowledge of the density is essential. The accumulation of density for exciting lasers pulses
of different power is therefore explored in this work.

The stacking of TMD monolayers with different band gaps has recently gained interest
in experimental and theoretical studies [19, 50, 51]. Long-lived interlayer excitons emerge
from heterobilayers with type-1I band-alignment, where the band edges are located in dif-
ferent layers. A rotation between both layers produces a periodic variation of the band gap
that provides an electronic superlattice. This directly influences the properties of interlayer
excitons and provides a design parameter unique to van der Waals heterostructures. Fur-
ther investigation on the angle-dependence of the lifetime is thus of high interest and will

be subject to this work.

Outline of this Thesis

The overarching goal of this thesis is to shed light on the many-body interactions between
excited charge carriers and the optical response of TMD monolayers upon photoexcitation.
Due to the enhanced Coulomb interaction that prevails in TMD monolayers, the interacting
particles are expected to cause significant changes of the optical and electronic properties
of TMDs.

In Chap. (2) the real- and reciprocal-space properties of TMD crystal will be briefly de-

scribed together with the optical properties. Leaving this introductory chapter, the single-
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particle properties of TMD monolayers are subject to Chap. (3). The theory for obtaining
the ground state properties - the band structure - is derived using two approaches of dif-
ferent nature: the tight-binding approximation and the DFT+GW method. Proceeding
from the single-particle properties, the many-particle interactions of excited charge car-
riers are subject of Chap. (4). Using the formalism of non-equilibrium Green’s functions,
the semiconductor Bloch equations are derived. The many-body Coulomb interaction is
described by the screened exchange Coulomb hole-approximation. Consecutive sections
are devoted to screening, carrier scattering and light-matter interaction. In combination
these sections describe the foundation of the theory used throughout this work. Using band
structures obtained from DFT+GW calculations, the optical response of TMD monolayers
to either pump or probe lasers is described by the semiconductor Bloch equations. The re-
sults obtained from this theory are presented in the remaining chapters of this work. In
Chap. (5) basic properties of the exciton eigenvalue problem with and without magnetic
fields are discussed. In the sense of pump and probe experiments, Chap. (6) describes the
density-dependent optical response of monolayer TMDs by probing absorption spectra us-
ing a weak ultrashort laser pulse together with a detailed analysis of the band structure
renormalizations. Subsequently, the power-dependence of the charge carrier density in-
duced by a pump laser is subject to Chap. (7). Finally, Chap. (8) is dedicated to the descrip-
tion of TMD bilayer systems. These host long-lived interlayer excitons whose properties
are shaped by the Moiré periodicity of the twisted layers. The influence of the Moiré super-
lattice on the ground state properties is analyzed. Successively a description of angle- and
temperature-dependent lifetime of interlayer excitons is derived and discussed in detail.
This thesis is concluded in Chap. (9), which also provides future perspectives and possible

expansions of the theory presented.



2. Basic Properties of Transition Metal

Dichalcogenides

TMDs are part of the class of layered 2d materials. Within the atomically thin layers transi-
tion metal atoms and chalcogen atoms are covalently bound, giving rise to a high mechan-
ical stability. The different layers are weakly bound by van der Waals-forces, thus the bulk
crystal is comparable to graphite. Due to the weak van der Waals-bond the neighbouring
layers can be easily removed by using tape or polymer stamps [52]. This has been demon-
strated first for graphene [53]. Though this is a fairly simple method it does not provide
reproducability of the obtained samples in terms of their dimensions. The stacking of dif-
ferent 2d materials is key to the design of new semiconductor devices, forming so-called
van der Waals heterostructures [2]. For bilayers system, that are of recent interest in re-
search [18, 19], the exfoliation technique provides control over the twist angle [54]. Chem-
ical vapor deposition (CVD) [55] or molecular beam epitaxy (MBE) [9] are also commonly
used growth techniques in the synthesis of TMD monolayers.

After preparation of a sample the number of layers deposited has to be determined. This is
often done by Raman spectroscopy, which is sensitive to the eigenmodes of the crystal lat-
tice vibrations [56]. These eigenmodes provide charateristic patterns and shifts for chang-
ing the layer number. TMD monolayers provide interesting optical properties such as an
increased photoluminescence [8] and strongly bound many-particle complexes [57]. The
strong optical yield of a monolayer originates from the direct band gap, which becomes in-
direct when increasing the number of layers [9, 58]. Due to the small height of a monolayer,
the screening of the Coulomb interaction is weak, which gives rise to strongly bound exci-
tons. This chapter shall give a short overview on the crystal structure and optical properties

of TMD monolayers.
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2.1. Crystal and Reciprocal Space Properties of TMDs

As already shortly explained above TMDs consist of transition metals and chalcogen atoms.
These atoms form a quasi 2d lattice with a layer of transition metal atoms in the middle,
which is sandwiched between two layers of chalcogen atoms. Thus the general formula is
MX,, with M = Mo, W, ... and X =S, Se, Te and so on. From the top view a honeycomb
lattice is formed, because the chalgocen atoms align in z-direction (compare Fig. (2.12)).
This is called the 2H phase of the crystal. Also another stable crystal is the 1T phase, where
the chalcogen atoms do not align, which causes a change in the electronic properties from
being a semiconductor to metallic behaviour [59].

a) e transition metal
e chalcogen

MRMRH

o ¢ 4 1 ) »

<

Figure 2.1.: a): Top view of the real space lattice of TMDs forming a honeycomb structure
as described in the main text. The chalcogen atoms extend from the shown zy-plane in z-
direction. The basis vectors a; and a, define a possible choice of the unit cell (grey shaded).
The position vectors of the chalcogen atoms are labeled by 7; 5. b): The reciprocal lattice is
describe by the basis vectors by and b,. The first Brillouin zone (BZ) has a hexagonal shape.
Additionally the points of high symmetry are marked within the first BZ. Symmetries allow
for using a sixth of the full BZ (dotted green line).

Crystal lattices are describe as Bravais lattices, which means that the full crystal is formed
by periodically repeating one unit cell. Each point of a two-dimensional Bravais lattice R
can be reached by a linear combination of the basis vectors R,,, = ua; + va,. In TMDs
these vectors are defined as

1
ai=al 0 ay = % V3| @2.1)
0 0
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The unit cell is thereby defined with a lattice constant of @ ~ 0.3nm (see Tab. (C.3)). Inside

a unit cell one transition metal (M) and two chalcogen atoms (X) are placed at the positions

(2.2)

where ¢ ~ a/2 [60].
For a two-dimensional periodic lattice the reciprocal lattice is defined by the basis vectors

b; and b,. These can be obtained as

as X €, a X e,

b1 =27 b2 =27 (23)

(a; X ag) - e, (a; X ag) - e,

In analogy to the real space lattice all lattice points G of the reciprocal lattice can be reached
by Gjr = hbi+kbs. The unit cell in reciprocal space contains all necessary k points to fully
describe the solid state properties of the crystal. This unit cell is called Brillouin zone (BZ).
Chosing the Wigner-Seitz cell, which contains all points closest to the central reciprocal
lattice point, the BZ takes a hexagonal shape (see Fig. (2.1)). The symmetry of TMDs defines
special BZ points that are marked in Fig. (2.1b). The K-points are the edges of the hexagonal
BZ. Due to the lack of inversion symmetry in the crystal structure of TMDS, the K-points
can be distinguished in K and K'. The M-point is at half of a reciprocal basis vector. These
points are defined as

by +by b,

K 5 M=0 2.4)

Halfway from I" to K the ¥-point is found. Though it is not a point of high symmetry an
additional valley in the band structure appears (see Sec. 3.4), defining the position of 3.
The primed points K’, 3 can be obtained from the non-primed points via rotation by 60 °.
These points will later on define the position of the unique band structure valleys that have
been found in TMDs (see Chap. (3)).

2.2. Optical Properties of TMDs

Commonly used experimental techniques to optically charaterize TMD monolayers are pho-
toluminescence and pump-probe spectroscopy [39, 48, 49, 61-63]. In photoluminescence

the sample is excited with a high energy laser pulse in order to pump charge carriers to the
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Figure 2.2.: Absorption spectrum of a freestanding MoS, monolayer. The three peaks A, B
and C dominate the spectrum beneath the quasiparticle band gap. The spectrum has been
obtained from the theory presented later on in this thesis.

conduction band. After these carriers have relaxed they recombine with holes in the valence
band and emit photons that are spectrally analysed. Photoluminescence is thus sensitive to
occupied optical transitions. Pump-probe experiments provide insight on the carrier dy-
namics. Here a pump laser excites charge carriers to the conduction band that will again
scatter to lower-lying states. A second ultrashort and weak laser pulse, that is delayed to the
pump pulse, is used as a broadband probe to obtain spectral data such as reflectivity, trans-
mittivity or absorption. The dynamics of the optical response can be measured by varying
the delay 7 between the two laser pulses.

The absorption spectra of TMD monolayers provide a rich peak structure, which originate
from the Coulomb bound many-particle complexes [57]. Bright and dark excitons as well as
trions and biexcitons have been observed and identified. A collection of references concern-
ing these many-particle complexes is given here [47, 57, 64—80]. The two most promiment
peaks, labeled A and B exciton, originate from the direct transitions at the K- and K’-valley
of the band structure. At the K- and K'-valley efficient light-matter coupling occurs for
TMDs. The spin-up (down) K- and K'-valleys are energetically separated due to the spin-
orbit interaction that causes a splitting of the valence-band states [81]. This makes the K-
and K'-valley selectively addressable [35, 46] by choosing the respective polarization of the
incident light. Due to the strong Coulomb interaction the binding energies of excitons in
TMDs are on the order of 0.5 eV [47, 57, 64, 73]. The A and B exciton wave function are lo-
calized in the K /K’-valleys. Besides the A and B peaks a third peak is present, the so-called
C-exciton [82]. The C-exciton is higher in energy but comparably strong bound as A and B.

The ring-shaped wave function centered around the I'-point has its maximum between I"
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and M.

The strong Coulomb interaction enables the tuning of the band gap due to the dielectric
environment [37, 83] or strain [41, 84]. An often overlooked fact is that the interaction of
excited charge carriers cause comparably strong shifts within the band structure [33, 85,
86]. Not only the band structure is subject to renormalizations, also the excitons shift and
bleach [32, 34].

In order to gain detailed insight in the many-body effects that occur due to the interaction
of excited charge carriers, this work starts by analysing the single-particle energies of the
TMD monolayer in the ground state. Different methods to obtain the band structure as well

as a general description of the band structure itself are part of the following chapter.






3. Band Structures of TMD Monolayers

In order to calculate many-particle effects of excited carriers it is necessary to know the
ground state properties of the investigated system. These are the band structure of the crys-
tal as well as the corresponding crystal wave functions. For an ab-initio band structure cal-
culation, the state-of-the-art theory to use is the density functional theory (DFT+GW). The
DFT makes use of the Hohenberg Kohn theorems, which state that the electronic ground
state isa unique functional of the electron density. While this approach is numerically feasi-
ble for systems of some tens to hundreds of atoms, it becomes (numerically) very demand-
ing to extend this method to large nanostructures. There are faster approaches available
which are able to describe large structures. In contrast to DFT, these methods need more
approximations which in turn have to be justified for the application on nanostructures.

The first method to be described in this chapter is the tight-binding approximation (TB) that
makes use of the strong localization of the electrons to their host atoms in the crystal. This
method relies on a set of assumptions and approximations that will be explained in the first
part of this chapter. The TB-method can also be utilized for large nanostructures. The sec-
ond method described here uses a DFT calculation as input for a Wannier interpolation. This
method is comparably fast and mathematically similar to the TB-method. Therefore it can
be seen as TB-ansatz with incorporated DFT wave functions which provides an advanta-

geous starting point for many-body calculations of excited carriers.

3.1. Tight-Binding Description of TMD Band Structures

The TB-approximation [87, 88] is a method to describe the band structure of bulk crystals or
nanostructures. The single-particle energies that form the band structure can be calculated
for huge lattices of atoms in periodic supercells. Starting points are isolated atoms with
strongly localized wave functions (that do not have to be known explicitly). These states are
modified by the potential of the atoms on the periodic crystal grid, thereby inducing an in-
teraction between adjacent sites that decreases with increasing distance. This corresponds

to assuming tightly bound electrons and is the origin of the name of the method. The fun-

11



3. Band Structures of TMD Monolayers

damental idea is to solve a single-particle Schrodinger equation where an electron is cast
into the potential landscape of the crystal structure. Hence, Bloch’s theorem is utilized,
stating that wave functions on a periodic lattice of atoms can be written as as the product

of a lattice-site-dependent phase factor and a periodic function wuy(r):

\Ifk(r) = eikr-uk(r), (3.1)
uk(r+R) = Uk<I')

This can be illustrated by the fact that on a periodic lattice the eigenstates and eigenval-
|2 —

ues on different atomic sites must not change, demanding equal probabilities |V (r)
| U (r + R)|?. Wave functions may therefore only differ by a phase factor.

To obtain the ground state band structure, the single-particle Schrédinger equation for the
entire crystal has to be solved. The Hamiltonian of this equation contains the atomic eigen-
value problem and the total potential of all other atoms in the crystal lattice. The TB-wave
function that has to fulfill the Bloch theorem. It is constructed as a Bloch sum of localized

wave functions |R, a’) e.g. atomic orbitals, Wannier functions or other basis states:

k,V> = \/%ZeiklﬂR, I/> with (3.2)
R

k, y><k,y‘ =1 (3.3)

D

k,v

Here v is a combined index, that refers to the atom type, band index, spin, orbital and to
a sublattice site. It is common to use only a subset of orbitals, defined by the electron con-
figuration of the material around the Fermi level. The Schrodinger equation for each band

states:
Hlk,\) = ek, \), (3.4)

where the Hamiltonian can be written as the Hamiltonian of an isolated atom plus the po-

tential of all other atoms in the crystal

H(r) = <—h—2v2 +V(r— R)) + Z V(r—R/). (3.5)

2m
R#R

The wave function |k, A) can be represented by the TB-wave functions defined in Eq. (3.2)
which results in |k, \) = > |k v)(k, vk, \), where the TB-coefficients are defined by
(k,v|k,\) = c)(k).

Due to the fact that the crystal bonding originates from the overlap of the wave functions
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3.1. Tight-Binding Description of TMD Band Structures

the Bloch sums defined in Eq. (3.2) do not necessarily have to be orthogonal on different
lattice sites. There are different ways to overcome this problem, the first is to simply ignore

the non-orthogonality by setting the overlap-matrix

S, = (k,v|k,u) = % > MBRNR VIR, ) =0, + Y MR

R,R/ R£0

0,) (3.6)

to identity or either by performing a so called Lowdin transformation [89]. Here a unitary
transformation matrix is defined in a way that the generalized eigenvalue problem origi-
nating from the non-orthogonal basis is transformed into a standard eigenvalue problem.

Explicitly written the new basis is:
Ik, ) = Su,7 [k, 1) (3.7)

The TB-problem can now be solved by diagonalizing the TB-matrix. In order to do so it is

essential to calculate the matrix elements of H:

(k,v|H|k,pu) = E"(k,vk,v) + % Z e'k(R-R) Z (Rv|[V(R")|R 1) (3.8
R.R’ R"#R

where E" are the energies of the state defined by index v at place R. Exploiting the con-

structed orthonormality the equation is transformed into

HY, = BY + % D e BRYNT (R V|[V(R)|R 1) (3.9)
R,R/ R"#R

While solving the integral (R, 1/| V(R") }R’ , {t), two approximations are common:

i) thetwo-center-approximation [87] (leading to so called Slater-Koster type TB-models)

and
ii) the truncation of neighbouring atoms at a certain distance,

originating from the initial assumption of a rapid decrease of the interaction with increas-
ing distance to the lattice site R. Both approximations take advantage of the fact that the
wave functions of the tightly bound electrons approach zero as fast as the potential itself.
Thus the two-center-approximation takes only integrals into account where one wave func-
tion and the potential are evaluated at the same R sothate.g. R = R” # R/. Integrals with
R # R’ # R” # R are completely neglected and integrals with R = R’ # R” contribute
only a constant value being equivalent to the expectation value of the total potential of all
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3. Band Structures of TMD Monolayers

atoms and are successively set to zero. Applying these approximations one is left with

Hyp =E"+ > e (R, v|V(R)
(R£0)

0, ). (3.10)

Here (R # 0) denotes that the sum is only to be taken to a specific order of neighbour-
ing atoms. The remaining task is to calculate the integral term in Eq. (3.10). The integral
describes the bonding between neighbouring atoms although the overlap of the basis func-
tions has been eliminated. Thus, the potential mediates the bonding of the crystal or in
other word the possibility of an electron to move (or ’hop’) to another lattice site. There-
fore, these are often called hopping parameters or in the sense of the two-center approxi-
mation also Slater-Koster parameters. It should be mentioned that these parameters obey
symmetries of either the crystal or the orbitals. For example s-type orbitals are isotropic,
while p-type orbitals are anti-symmetric f(—x) = —f(z). This leads to the conclusion
that the hopping probability between two neighbouring s-orbitals independent of the direc-
tion whereas p-to-s-hopping changes its sign depending on the orientation of the p-orbital.
The Slater-Koster type models have the advantage that they can be obtained from straight-
forwardly calculating the sum over the chosen order of nearest neighbours of the Bloch fac-
tors Y g e’XBo~R) of Eq. (3.10). Therefore it is easy to describe nanostructures or defects
with this type of model. Nevertheless, one is left with an increasing number of parameters
when taking more orders of neighbouring atoms and orbitals into account.

While it is in general a demanding task to calculate these hopping parameters, one wants

to utilize the numerical advantages of the TB-method at the same time. In a (semi-)empirical

approach, the hopping parameters ¢ = (R, V}V(R) 0, ;1) can be obtained from ab-initio-
calculations by a fitting procedure and saved in e.g. a look-up-table. This way, the TB-
method can be a good starting point for further many-particle calculations.

In summary, one is left with a representation of the Schrodinger equation of a single elec-
tron in the presence of a lattice-periodic potential. As has been shown, the TB-matrix can
be written as an on-site part containing all orbital energies, or eigenenergies of the basis,
and an off-site part that contains hopping matrix elements, thereby mediating the bond-
ing between adjacent atomic sites. Generalizing the approach above, each basis function is
given indices for the atom type i, the lattice site R and the orbital type « (and spin o). In

real space representation the basis reads !R, i, af, a)> and the full TB-matrix becomes:

(k,i,a|H|k,i o) = E"0 1000 + Z e (R, i,a|V(R)|0,7,a'). (.11)
(R£0)
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3.1. Tight-Binding Description of TMD Band Structures

Thus in combination with the representation of state |k, A) the main task is solving the

TB-matrix, obtaining the eigenenergies and the TB-coefficients:

TN ANl 0\ \i,«
0,2,a> Ci = g ¢/ (3.12)

> | E®G 000+ Y e (R, a|V(R)

i o (R£0)

Generally in k-space the TB-Hamiltonian is represented by a N,;,, X N, -matrix for each
k-point. In real-space the size depends on the size of the chosen supercell, thus it would
be a Ngjte - Nopp. X Nite - Nopp.-matrix. The real-space TB-matrix can be represented by

projection operators pointing to the lattice sites:

Hiw' = D ERRi o) (Rl + Y tien Ry a)(R, i o/| (13)
R

(rrr)

For a periodic crystal the eigenenergies depending on k will form the band structure of
the material. Though confinement of electrons due to a potential leads to discrete states,
the band structure is assumed to be continuous for a large crystal. In semiconducting
materials, which are investigated throughout this thesis, energetic regions without states
form, leaving a band gap. The states up to that one highest in energy beneath the band
gap are filled in the ground state, thereby defining the Fermi level. For TMDs the band gap
is about 2 — 3 eV in value. Thus electrons can still be excited into states above the gap, if
enough energy is provided for example by a pump laser pulse. Electrons in a periodic crys-
tal potential form so-called quasi-particles, the Bloch-electrons with crystal momentum k.
Their eigenenergies are represented by the band structure 0. The states }k, ) are called
Bloch states and represent the eigenbasis of the ground state. These will be used frequently
throughout this work for the expansion of the many-body terms into the ground state basis.
In order to gain more insight an example for a simple TB model of a 2d material, the band
structure of graphene, will be discussed briefly. A TB-model for graphene has been pro-
posed by [4]. Graphene is the 2d hybridized form of carbon, forming a honeycomb lattice
due to the sp?-hybrid orbitals. The remaining and empty p. orbitals give rise to the im-
portant bands around the Fermi level. Owing to the shape of the honeycomb lattice, two
sublattices A, B have to be defined, thereby providing two different sets of neighbouring
atoms. The TB-wave function can thus be defined as |k, ) = ca |k, 2p) +cp |k, 2pF). This
definition of two sublattices gives rise to the 2 x 2 TB-matrix for each k point. The on-site
energies are constant and equal for both sublattices and thus set to zero. The off-diagonal

iky

. the % -2 —ik., & ik, .
part takes the simple form of y(k) = €"* V5 +¢"*2v5 (e~ + ¢'*v2 ) from summing over
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3. Band Structures of TMD Monolayers

the nearest neighbours in the exponential functions. The hopping matrix elements¢ = 3eV
are fitted in the sense of the afore-mentioned empirical TB-model. The total matrix to di-

agonalize is:

o o 0 _t'/y(k)
<k,a,V{H|k,a,V> = (—t~(7(k))* 0 ) (3.14)

The band structure plotted on a convenient path throughout the BZ, for example along
I' 4 M — K — T, shows the most remarkable features at the K points of the hexag-
onal BZ. The so called 'Dirac-cones’ form which exhibit a linear dispersion relation for the

electrons. Graphene therefore provides good conductivity and transport properties.

3.1.1. Empirical Tight Binding Models for TMDs

There is a number of publications [26, 60, 90-95] that describe TB-models of TMD mono-
layers. Here two examples for each empirical TB-model shall be shortly discussed. Both use
different approaches for describing the electronic structure of a TMD layer.

The first paper to discuss from Liu et al. [90] aims for a minimal symmetry-based model,
which includes the three bands that are most relevant for optics and - speaking of orbital
character - also mostly disentangled from all other bands. These three bands (one valence
band and two conduction bands) have mainly the character of the transition metal d,2, dyy
and d,2_y2 orbitals. Only in the vicinity of the I"-point in the conduction bands and around
the M-point for the valence band appreciable admixtures of the p-orbitals, stemming from
the chalcogen atoms, are found.

This model also aims for symmetry-based description of the wave functions, thereby per-
formingin the end second best to the DFT-based Wannier interpolation, that will be favored
in this thesis. In order to avoid a costly Wannier construction, this model seems to be the
best alternative in terms of band structure and wave function reproduction with respect to
the number of hopping parameters and TB-matrix size, which is only 3 x 3 for each k-point.
The determination of the hopping parameters is done by making use of the symmetry op-
erations, that are inherent for the crystal symmetry of semiconducting TMDs. The unit cell
of TMDs have a trigonal prismatic structure with the transition metal in the center and
two chalcogenides in the corners of the prism. The associated symmetry group is therefore
Dsy,. The symmetry operations contained in Dy, separates the orbital subset d,2, dyy and

dy2_y2 from the remaining orbital basis. The symmetry operations {E,203,36,)} therefore
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3.1. Tight-Binding Description of TMD Band Structures

dominated the electronic properties of TMDs. Those symmetry operations are the iden-
tity E, two rotations Cs by 27n/3 and 27n/3 + 7/6 respectively as well as three mirror
planes &, perpendicular to the x, y-plane and along two opposed nearest neighbour vec-
tors (e.g. Ry, Rg, c.f. Fig.(x)). Thus all H*#(R) have to be invariant to the named symme-
try operations, which enables the calculation of the matrix elements by applying the matrix
representations of the irreducible representations D(g,,) of the symmetry operations as
H*?(g,R) = D(g,)H*?(R)D'(g,), where g, € {E,2Cs, 30,}. The calculation results in

61a) bands 1] 6b) bands +
bands | bands |
> 4 1 > 4
6] 6]
£ 2 y x J\N"\
= =
15) MoS2 © MoSe2
’ VaVaYd ’ (A
M r ¥ KMKM ' ¥ K MK M ' ¥ KMKM r ¥ K MK
61c) bands 1| o d, | 61 d) bands 1 o d,
bands | o dl, +d, . bands | o d, +d, .
> 4 1 | ' yo! > 4 : ] !
© ¥ ©
?2\/\/\/\ RAW Ta 5'32\/\/\/\
= =
5] WS2 ® WSe2
i J\/\/ 0 N\/
M r ¥ K MKM ' ¥ K MK M ' ¥ KMKM ' ¥ K MK

Figure 3.1.: Groundstate band structures of MoS,, MoSe,, WS,, and WSe, are shown in (a)
- (d) calculated from the model presented in Ref. [90]. The absolute value of the squared
coefficients corresponding to the partition of the orbitals is plotted on the same path on
the right to each band structure.

a3 x 3 Hamiltonian in k-space either for nearest or up to third nearest neighbours, whose
explicit form can be found in Ref. [90]. This model reproduces DFT band structure calcu-
lations of MoS,, MoSe,, MoTe,, WS,, WSes and WTe, by fitting the hopping parameters
H*#(R) to the ab-initio-calculations in GGA and LDA approximation (see the following sec-
tion on DFT). The nearest neighbour model is able to reproduce low energy properties (ef-
fective mass) at both K-valleys, while the model using third nearest neighbours describes
the band structure very well except for k-regions where the chalcogen p-orbitals have small

admixtures. The orbital character of each band is well approximated (see Fig.(3.1)). An ex-
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3. Band Structures of TMD Monolayers

pansion of this model can be found in Ref. [26], where the remaining two orbitals d,, and
dy, have been added using the same symmetry-based approach.

The advantage of this model is the high reproducibility of the underlying DFT calculations.
In order to describe the bands well for all k-points, hoppings up to third nearest neighbours
are be taken into account, which results overall in 19 parameters, that are fixed by fitting to
DFT values. Hoppings between the transition metals atoms up to third nearest neighbours
play an important role in reproducing the band structure [91]. On the other hand it is dif-
ficult to describe chalcogen defects or nanostructures with this type of model, as the real
space interaction between different orbitals and atoms is incorporated in the parameters
obtained from symmetry-based methods.

The second approach to a TB-description of TMD monolayers has been developed by Dias et
al. in Ref. [91]. Most TB-models up to date are listed and compared. An advanced TB-model
of Slater-Koster type is proposed. In their model all six p-orbitals of the top and bottom
chalcogen atoms and the five d-orbitals of the transition metal are used as basis set. The
top p-orbitals and the bottom p-orbitals are cast into symmteric and antisymmetric linear
combinations p® = (p! + p?)/+/2 with respect to the z, y-mirror plane of TMDs in order
to get the Hamiltonian into a block matrix form. The new basis allows for separating the
orbitals with even and odd parity. Nevertheless using a unitary transformation UTHU the
final matrix could be transformed back to the pure p-orbital basis.

Using the straight-forward Slater-Koster method, the proposed model contains second near-
est neighbour hopping between transition metal atoms (M-M) and chalcogen atoms (X-X)
as well as hopping between the two species (M-X). It is stated, that in order to obtain a good
precision for more than two bands (VB, CB) in the electronic band structure within the
Slater-Koster approach, at least the second nearest neighbours of in-plane hopping M-M
and X-X have to be taken into account. The M-X term decays fast with the distance. This is

also most criticized in the models of Slater-Koster type that are discussed in [91].

3.1.2. Application of the TB-Approach to TMD-Nanobubbles

The TB-method provides a good approach to describe nanostructures. Though these do
not exhibit a band structure, the TB treatment of these nanostructures is most suitable
in this chapter of the thesis. The nanostructure to be modelled are nanobubbles made
of MoS, monolayers, that emerge when placing an exfoliated TMD layer on top of a sub-
strate. These bubbles originate from either intercalating molecules or from reducing sur-
face stress. These bubbles range from nm to um scale in diameter while having a nearly
constant height to radius ratio of A/r = 0.175 [96, 97].
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3.1. Tight-Binding Description of TMD Band Structures

It has been shown that these bubbles emit single photons [98] when illuminated. Single
photon sources are one core element for quantum communication applications and there-
fore a field of high interest in research. These emitters have to generate single photons on-
demand with high repetition rate and high indistinguishability of the photons, while the
fabrication should be scalable but also deterministic, when placing them on a substrate.
Beside different approaches [99] for these sources nanostructures formed of TMD mono-
layers can also provide single photon emission. Attempts using prestructured substrates in
order to induce a strain potential to the monolayer have been reported [100-103]. Another
interesting yet simple method has been realized by placing a TMD monolayer on a polymer
film and subsequently pressing an atomic force microscope (AFM) tip into the material to
produce a strain potential [104].

The microscopic origin of this single photon emission lies in the strong localization of elec-
tron and hole states. The goal of this part is to gain further understanding on the formation
of these localized states. The model of such nanobubbles has to reproduce the main effects
occurring in the bubble the first to be strain and the second one a change in the layer cou-
pling and dielectric environment. Strain will induce renormalizations in the band struc-
ture in the order of 100 meV per percent strain, that lowers the conduction band K-valley
while rising the I'-point [47] for tensile strain. The second important effect originating from
the bubble geometry is the change of the band gap due to the change in the dieletric envi-
ronment and the interlayer coupling from a bulk-like type at the edges of the bubble to a
monolayer-type environment in the center. This implies an indirect band gap in the bulk
case, whereas a direct band gap can be found in the central region of the bubble [105].

In order to do so a real-space TB modelis used that shall be modified locally by bond bending
and stretching between the monolayer atoms and the dielectric environment. Strain there-
fore induces alocal potential changing the single-particle properties. The potential induced
by the change in the dielectric environment and the layer coupled varies on a larger scale.
Combining both potentials an effective potential with strong local variations is present. A
symmetry-based model with a minimal orbital basis in which the hopping parameters can
be changed directly, is therefore employed. The bubble geometry itself is described by us-
ing experimental data to generate an initial geometry that is successively relaxed by valence
force field methods with an appropriate potential [96]. The geometry consists of two layers
of TMDs, one containing the bubble and one as fixed substrate layer. In order to describe
these experimentally accessible bubble geometries, the real-space TB-matrix contains as
many rows and columns as atoms are used for the geometry.

In the early stages of the work leading to the publication [96] different TB-models have been

investigated by the author of this thesis before being implemented into a supercell calcu-
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3. Band Structures of TMD Monolayers

lation by Christian Carmesin. The model of choice is published in [96] and the employed
TB-model will be shortly presented in the remaining part of this section.

The TB model uses a minimal basis set of three Mo-orbitals (d,2,ds>_y2+id,y) labeled as
(do,d+2) and next-nearest neighbour Mo-hoppings. The idea behind the transformed ba-
sis set is that the spherical harmonics, which describe the basis states, are invariant un-
der rotation around the z-axis and only change their phase. This phase factor is written as
fm(p) = €™¢, where m is the magnetic quantum number and can be separated from the
remaining hopping integral. The hopping matrix elements are be written using the spher-

ical harmonics as ansatz:
(0, 0|H|B,R) = tos(R)- e ioetiblorm) (3.15)
where the total Hamiltonian is

H = ZeikR<a,0|H}B,R>. (3.16)
R

Here the fact has been exploited, that the phase factor can be separated from the remain-
ing overlap integral, which in turn is used as a fit parameter. The indices o and [ are the
magnetic quantum numbers of the orbitals of atoms at position 0 and R, respectively. In
order to regain the full symmetry of the TMDs, the phase factor is adjusted for the nearest

and next-nearest neighbouring S-atoms. In the end one is left with

67¢Q(¢7w/6)+iﬁ(<p+7r+7r/6)7 lfgp =0, 271‘/3, 471'/3
fasle) =4 , | G17)
eioletm/6)FiBlotn—n/6) " if o = /3,7, 57/3

if R is a nearest neighbour M-atom and

et tibletm) if = 71/6,31/2,57/5
fas) =4 G.18)
e—za(g&+7r)+lﬂ907 Ifgp — 71'/2, 77‘(‘/67 1171'/6

if R is a next-nearest neighbour Mo-atom. The obtained hopping matrix elements from
fitting to a DFT + GW calculation as described in [96] and can be taken from Tab. (C.5).

To account for strain the TB matrix in k-space representation is evaluated at points of high
symmetry, namely K and I". The hopping element responsible for the relative shift between
these valleys (EY, — Ef = —9t() can be identified. This parameter is modified according to

the Harrison rule [106] and thus rescaled by the relative interatomic distance s = (r —a)/a

20



3.2. Density Functional Theory

yielding to(r) = to/(1—s)". Heren) = 11 has been chosen to reproduce experimental band
gaps of Ref. [40]. To account for the band gap shrinkage from changing dielectric environ-
ment (on MoS,-substrate at the edges, nearls freestanding in the center) this shrinkage is
modelled as a height dependent function that has been fitted to DFT data, see supplement
of [96] for further details.

This model enables microscopic understanding of the formation of localized wave func-
tions, that are responsible for single photon emission. The confinement potential origi-
nating from the change in the dielectric environment and the interlayer coupling induces
a repulsive potential, that pushes the wave functions to the periphery of the bubble. For
nanobubbles with a commonly measured aspect ratio of 2/r = 0.175 or larger, the rigidity
of the TMD layer causes wrinkles in order to maintain mostly flat surfaces. At the points,
where these wrinkles meet (again at the periphery of the bubble), locally large strain poten-
tials form and enforce strongly localized wave functions of the electrons and holes. The
main experimental indicator for this localizations mechanism is a redshift of the sharp
emission lines and a broadening of the PL spectra of such bubbles, together with an in-
crease of the PL emission strength. Therefore these localization centers are experimentally
accessible by spatially resolved PL.

3.2. Density Functional Theory

When it comes to calculations of the electronic ground state the state-of-the-art theory
mostly used is the Density Functional Theory (DFT). It aims for calculating the ground state
energy of the Hamiltonian

N

h2v2
H =Y < ) +ZV r;) + Z 4750|rz — (3.19)

i=1

This Hamiltonian describes an interacting many-body system (/N particles) and obtaining
the eigenspectrum and the ground state wave functions requires the solution of the full
Schrédinger equation. The main idea of the DFT method is instead of calculating complex
wave functions all terms in Eq. (3. 19) can be expressed as functional of the ground state
electron density ny(r) = <\110] ZZ L 0(r —1;) ‘ \If0>. This fact is the main statement of the
Hohenberg-Kohn theorem [107]: The energy in the ground state is a unique functional of

the electron density Ey = E[ng(r)]. The density also determines the potential V' (r). Using
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the Ritz variational principle, it follows:
Elng(r)] < (V|H|V), (3.20)

where the energy density functional E[n(r)] = (V|H |¥) is minimized § E[n(r)] = 0 un-
der the condition that the total number of particles is preserved. Therefore the method of
Lagrangian multipliers can be used. Although the exact form of the density functional of

the total energy is not known, it can be separated into the following terms [108]:

Eln(r)] = T[n(r)] + Vin(r)] + Uln(r)], with (3.21)

Tln(r)] = <W\Z%\W> (3.22)

Uln(r)] = 8;0<\11}Zﬁ\\p> (3.23)
it

Vin(r)] = <\I/‘ZV(ri)}\If>, (3.24)

where T is the density functional of the kinetic energy, V is the density functional of the ex-
ternal potential (e.g. crystal potential) and U the density functional of the interaction. U can
be separated further into a Hartree term (classical Coulomb interaction) and the exchange-

correlation functional (terms arising from quantum mechanics):

2 /
Uln(r)] = 8;50 / d’r / dgr’% + V*n(r)]. (3.25)
DFT would be an exact theory solving the many-body problem, given the exact form of the
exchange-correlation functional is known. In order to determine the total energy Kohn
and Sham proposed the use of a non-interacting auxiliary system [108], which is exactly
solvable, in order to aid the calculations. While the electron density uniquely defines an
external potential, different single-particle wave functions can belong to the same density.
Therefore a non-interacting system with the same electron density as the interacting one
is defined. The wave function for this non-interacting many-body problem can be set as a
Slater determinant, which on the other hand reduces the N-particle problem to N effective
single-particle problems. The density is defined as:

n(r) = 30 W) 626)
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which changes the boundary condition from the preservation of the particle number to the

normalization of the wave function:

6\11(j(r) {E[n(r)] - iaj (/ dPr |0, (r)|? — 1>} = 0 (3.27)

J=1

Using the above relations for the density functional the functional derivative can be per-

formed. This gives rise to the following expression:

{ ot / dg/!r—r’! )+ Wg;[( <) ﬂ}\m(r) = &lir). (6.28)

These are the Kohn-Sham equations [109, 110], where the N-particle system has been cast

into N single-particle problems, which are coupled by the exchange-correlation potential.
It is advantageous, that approximations have to be made to the exchange-correlation po-
tential instead of the kinetic energy term as before. In order to solve the Kohn-Sham equa-
tions a self-consistency cycle is used. The initial density is chosen to suit the given problem.
Subsequently the effective single-particle potential is calculated to evaluate the Kohn-Sham
equations. Given the solutions £X° and WX5(r) a new particle density can be calculated and
is used in the following step as the initial density if the deviation from the old particle den-
sity is above a chosen threshold. This cycle is iterated until self-consistency is reached.

Until now only the knowledge of specific form of the exchange-correlation potential hinders
the evaluation of the Kohn-Sham equations. Therefore, the most common approximation
will be explained shortly. The local density approximation (LDA) assumes the exchange-
correlation potential to be of the form of a homogeneous electron gas, where the exact form

is analytically known.

E,[n(r)] = —3%2 (%)1/3/d3rn(r)4/3 (3.29)

Thus the exchange correlation potential depends only on the density atr, giving rise to the
name LDA. In general this approximation can be extended as £, = [d’r B(n(r))n(r)
including a function J giving a certain dependence on the dens1ty that can be modified
to produce better results, while it still has to reproduce the homogeneous electron gas. A
common generalization is the local spin density approximation (LSDA), where both spins
are considered by § = [(n4(r),n (r)). An extension is the generalized gradient approx-
imation (GGA), where 5 = [(n(r), Vn(r)) additionally depends on the gradient of the
density [111]. Hybridized functionals, such as PBE [112] or HSE [113], are most exact and
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3. Band Structures of TMD Monolayers

therefore popular, however computationally more demanding.

3.2.1. GW-Corrections

Though DFT is the state-of-the-art method for electronic structure calculations it suffers
from the so called "band gap problem” [114, 115]. Pure DFT (not using hybrid function-
als) tends to underestimate the band gap of an insulator or a semiconductor. Therefore
corrections are necessary in order to obtain reliable band gaps. In order to improve gen-
eral understanding a small fraction of theory will already be introduced at this point. The
method of Green’s functions, especially the GW-approximation, provides a well-established
description of the carrier interaction [114, 116]. This method and the GW-approximation
will be explained in detail in Chap.(4). The GW self-energy ¥V (see Sec. (4.3.3) is evaluated
in the Kohn-Sham basis using the quasi-particle approximation with quasi-particle ener-
gies taken from the Kohn-Sham solutions wX® = X /h. The correction to the Kohn-Sham
eigenenergies is then performed by a perturbation series of the GW-corrected exchange-

correlation potential. The frequency-dependent GW self-energy in real-space reads
GW / ih / / / 1o piw’
(e w) = T/deg(r,r,w%—w)W(r,r,w)e m, (3.30)
T

where G is the non-interacting Green’s function (see Sec. 4.2.1) and W represents the
screened Coulomb interaction The screening is mediated by the inverse dielectric function
e(r,r’,w) that is mainly determined by the polarization function P(r,r’,w). The polariza-
tion is evaluated in the RPA approximation (see Sec. 4.4).

To evaluate single-particle energies the quasi-particle equation is solved. Governing equa-

tion is the equation of motion for a stationary system
[fw — Hy(r)|G(r, v ,w) — /d3r”2(r,r”,w)G(r", rw) = §r—1), (33)

where G is again the Green’s function of the non-interacting system which is defined by
the equation Hy¢)(r) = %¢%(r). The full Green’s function G can be expressed in the

Lehmann representation

Nl N+1x N-1 N+1%/_
o ZW ;ﬂ;(uzw @)

+ iy - hw —eN7t — iy
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The 1) ! (r) are the amplitudes of the Schrddinger field operators 1 (r) from the projection

onto on the eigenfunction W;’V“(

r)) of the interacting (N + 1) particle system, that can be
understood as the quasi-particle wave functions above and below the chemical potential.
Thus the energies ="' are necessary to add or remove a particle. Inserting the represen-
tation (3.32) into the stationary Dyson equation (3.31) one obtains (for the sake of shortness

the (IV £ 1) has been neglected):

; r/ ! 1/ /
%{[m Ho(r)] /d3 N(r, r”, w)y(r )} = 0(r—r')3.33)
Applying the quasi-particle approximation by multiplying with (hw — ¢;) and taking the
limit limw — ¢;/h leads for the left-hand side to

V3 (') {[ — Hy(r)] /cl3 "S (e, g5 /h)ab; (x ”)} , (3.34)

whereas the right-hand side vanishes to zero. The condition is fulfilled, if the part in the
curly brackets vanishes and the 1% (r’) are not zero for all r’. Therefore, one obtains the

quasi-particle equation

e — Ho(r)];(r) — /d3r”2(r, ' e;/R);(x") = e;u;(r). (3.35)

The quasi-particle equation is formally similar to the Kohn-Sham equations (3.28), which
can be seen by interchanging the integral expression of the self-energy with the exchange-
correlation potential and the eigenenergies and wave functions by the Kohn-Sham results

ek, X5, Often the ¢* are a good approximation to the quasi-particle wave function [117],
therefore assuming v;(r) ~ ¢* leads directly to the fact that the self-energy corrections
are small. Thereby first order perturbation theory is justified, resulting in

6KS+GW ~ 8£(S 4 <¢£(S}EGW(WZKS) - ch‘¢i(8> (336)

(2

This energy correction is calculated self-consistently. Starting by evaluating the Kohn-Sham
eigenfunctions and -energies, the polarization P and the inverse dielectric function !
have to be calculated successively. This provides all input necessary for the evaluation of TV/.
For the correction due to the GW self-energy the term X%V is expanded into Kohn-Sham
Green’s functions G§°, that replace the G. Thus all ingredients for Eq. (3.36) are available
and the corrections of the eigenenergies can be calculated.

The GW-corrected DFT provides band structure with corrected band gaps and quasi-particle
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3. Band Structures of TMD Monolayers

wave functions of the interacting many-particle system in the ground-state and are thus
ideal for evaluation of the excited system. It is time consuming to perform a DFT+GW cal-
culation each time the equations of the excited system are evaluated. This bottleneck can

be overcome by the so-called Wannier interpolation that is described in the next section.

3.2.2. Wannier Interpolation

The Wannier interpolation scheme introduced within the wannier90 framework [118, 119]
uses the freedom of choice for the basis vectors of any matrix diagonalization to obtain max-
imally localized Wannier functions (MLWF) from an ab-initio-calculation. The numerically
demanding many-body calculations are cast in a form, that is mathematically similar to a
TB-calculation. Therefore, a numerical advantage is gained when utilizing ground state ab-
initio-calculations for the many-body theory of excited system, as it is done in this work. At
the same time and even more important is the fact, that the ground state properties are re-
produced with the precision of the ab-initio-methods, which provide material-realistic band
structures and wave functions that are desirable for the matrix elements of the many-body
calculation.

Wannier functions are connected to the Bloch functions by

v
(27)?

IR,\) = / d’ke™ [k, A). (3.37)
BZ

The basis of ab-initio calculation is usually large in the sense that many bands A are included.
For calculations in the spectral region of the optically active bands, such a large basis is not
necessary. For extracting a subset of bands the freedom of choice in the phase factor of
|k, A) can be exploited. Thus |k, A) can be replaced by 3~ U}

Wannier functions with different spatial extend, that nonetheless describe the same man-

k, \) resulting in different

ifold. In the published wannier90 scheme, this unitary transformation U is chosen in
order to minimize the spatial spread of the Wannier functions, resulting in the mentioned
MLWF. However, this is not an ideal choice for many-body calculations. For spin-orbit in-
teraction, which is important in TMDs it is necessary to identify the orbitals, that are in-
volved in the respective bands. Note, that the choice of a subset of bands is not arbitrary.
It has to be made sure that the |k, ) are mostly decoupled from the rest of the bands, to
obtain a complete subset.

To achieve the goals stated above, an initial guess for the matrix U has to be made. The
optically active bands in TMDs are those, which are formed by the three d-orbital d,2, dy,
and dy2_y2 [90]. The number of chosen bands has to be Ny < Ny, In order to obtain nearly
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3.2. Density Functional Theory

pure orbitals, only one step of the minimization process for the MLWF is performed. Thus
the new orbitals will not be pure d-states, but will also have small admixtures, especially
from the p-orbitals from the chalcogen atoms.

The ansatz for the unitary transformation is thus chosen to be the projection on the three

mentioned d-orbitals.

P = (kAg") (3.38)
N

kN) = > PRk \) (3.39)
A=1

The Lowdin transformation (3.7) is used to orthonormalize the new orbitals, where again
the overlap matrix S{» = (k, A|k, \') is calculated. the full transformation defines the
matrix U, that has been introduced in the text above.

/ ~ / /y_ 1
UYN = PY(SYY)2 (3.40)
This allows for the transformation of the Hamiltonian:
oy = uMHOY . (3.41)

Transforming to a real-space grid one obtains the coefficients of the Wannier interpola-
tion. This appears to be mathematically similar to a TB-model, though the hopping matrix
elements are obtained from the Wannier construction described above. The advantage is,
that this Hamiltonian can be calculated for arbitrary k, resulting in single-particle energies
and wave functions of the ground state, which have the same precision as the underlying

ab-initio calculation.

Y = 3Ry (3.42)
R

This way all ground state properties can be calculated on a much finder k-mesh, which is
necessary for convergence in the many-body calculations.

The band structure of the for investigated TMDs extracted by Matle Résner using a Wan-
nier construction and successively plotted using the Wannier interpolation method can be
found in Fig. (3.2).
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3. Band Structures of TMD Monolayers
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Figure 3.2.: Groundstate spin up (red) and spin down (green) band structures of MoS,,
MoSe,y, WS, and WSe, are shown in (a) - (d) calculated using the Wannier interpolation
scheme. The absolute value of the squared coefficients corresponding to the partition of
the orbitals within the spin up bands is plotted on the same path on the right to each band

structure.

3.3. Spin-Orbit Couplingin TMDs

The spin-orbit coupling (SOC) describes the interaction between the magnetic moments of

the electron spin and the orbit momentum of the shell-electrons of the atoms. The degen-

eracy of the SOC-states is lifted due to the lack of inversion symmetry in TMDs [47, 90, 120,
121]. The strength of the SOC is on the order of up several hundred meV. For TMDs the SOC

can be expressed by the Hamiltonian [47, 90]
Hsoc = Mk)LS,

which can be cast into the form

Ak) (L. 0

2 0 L,

Hsoc =
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3.4. General Properties of TMD Band Structures

Here, \(k) is the SOC-constants that is k-dependent in order to reproduce the p-orbital ad-
mixture throughout the BZ. It is inherently assumed, that a three-band model as presented
in Sec. (3.1.1) or (3.2.2) is used. Due to the orthonormality relations of the d-orbitals being
involved the matrix representation of L, reads

0 0 0
L, = 0 0 2 (3.45)
0 —=2¢ 0

The full Hamiltonian describing the ground state band structure including SOC is given by
H = Hgs® Hsoc , (3.46)

where the dimension has doubled. The equations above indicate, that different spins states
are not coupled by the SOC. Only the degeneracy of the band structure is lifted. The SOC
lifts the degeneracy mostly for the valence band K/K’-points which is modeled by chosing a
k-dependent A\(k). This splitting is the main cause of the two exciton peaks A and B [122] as
itacts on K and K’ inversely by lifting K; /K, while lowering K| /K in the valence band.
For the conduction band the situation is more complex as the molybdenum-based TMDs ex-
hibit the lowest transition to be spin-allowed (cl' to £{') whereas for the tungsten-based
TMDs this transition is spin-forbidden (5}{(’T to &:?) [90]. As the K/K' valleys are primar-
ily build of the orbitals 1/+/2( ‘dx2_y2> +i ]dxy>) character they couple to light of different
polarizations. Due to the lifting of the degeneracy these valleys are selectively addressable
by choosing the respective linear polarization (horizontal or vertical) giving rise to a valley
degree of freedom [46, 123].

The explicit form of (k) is chosen to be [90]

)\(k) = )\06( —‘l%>26_(1_k)2. (3.47)

Thus the SOC is dampened with increasing distance to the K-points. The parameter ),
defines the energetic distance between the A and B peak in the spectra. Values can be found
in [90]. For all figures showing the band structure the spin-up bands are plotted in red and
the spin-down bands in green (see e.g. Fig. (3.2)).
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3. Band Structures of TMD Monolayers
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Figure 3.3.: Ground state band structures of MoS,, MoSe,, WS,, and WSe; are presented in
(@) - (d). The difference in the spin-orbit coupling at K /K’ between molybdenum and tung-
sten compounds as well as the sulfide/selenide compounds can be seen. Figure (e) contains
the colormap of the lowest conduction band for MoS, with all important BZ points marked.

3.4. General Properties of TMD Band Structures

In contrast to their bulk counterparts [124] monolayers of TMDs show a direct band gap [9,
63] together with a complex valley structure in reciprocal space [125, 126]. In Fig. (3.3) both
the highest valence an the lowest conduction band in the ground state for MoS,, MoSe,,
WSs, and WSes, on the path I'-X-K-M-K' in the hexagonal BZ as well as a colormap of the
lowest conduction band of MoS; are plotted. The valence bands of all four investigated ma-
terials show three maxima at I, at K and at K'. There is no minimum in the conduction
band at T, but four minima at 3/3’ and K/K’, respectively, see Fig. (3.3). In the mono-
layer case the DFT+GW calculation predict within its accuracy a direct band gap at K and
K’ so that B = & — ef for the sulfides, whereas the selenides appear to be indirect
Eq = €% — el [10, 11]. This intrinsic indirectness is nevertheless on the order of only tens
of meV. The different band gaps of the four materials from ab-initio-calculations are com-
pared to experimental values in Tab. (3.1).

Valence and conduction bands are splitted due to the spin-orbit coupling, explained in
Sec. (3.3). The spin-orbit splitting is larger for the TMDs containing tungsten which origi-

nates from the higher mass of tungsten in comparison with molybdenum. In the conduc-
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3.4. General Properties of TMD Band Structures

tion band at the K-point the spin-orbit splitting changes the order of bands for the tung-
sten compounds which means that in comparison to MoX, the lowest possible transition
in WX is spin-forbidden and therefore dark [42, 43].

(eV) Egat Eerp El();FTJrGW
MoS, 1.89 [56] 2.46 [127] 2.638
1.87 [128]
MoSe, | 1.63 [56] 2.18 [35] 2.355

1.59 [128] 2.10 [126]
WS, 1.90 [49]  2.15[49] 2.775
WSe, | 1.60[48] 2.02[48] 2.360

Table 3.1.: Optical band gaps (A-Exciton) compared to the experimental band gaps and the
band gaps from the DFT+GW-calculations of all four investigated TMD monolayers.

1.0

0.4

T

0.2

T

0.0

Figure 3.4.: Orbital character (|c,|?) of the highest valence band (h, dash-dotted line) and
the lowest conduction band (e, solid line) of monolayer MoS,. The K /K’-point consist of
the d,» in the conduction band whereas I" has a main dyy and d,2_,» character and viceversa
for the valence band. For the ¥-point in the conduction band the orbital character consists
of the in-plane orbitals d,; and dy>_y» whereas for the valence band it consists in equal parts
of in- an out-of-plane (d,2) orbitals.

The band structures in Fig. (3.3) are obtained from a Wannier interpolation (cf. Sec. (3.2.2)),
where originally a DFT calculation on a 12 x 12 x 1 Monkhorst-Pack grid [47] has been used
to create the Wannier construction of the Hamiltonian.

Due to the nature of the Wannier construction, the subspace of the three exctracted bands

contains the d,2, dyy, and d,2_y» orbitals of the transition metal, whereas small admixtures
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3. Band Structures of TMD Monolayers

of the p-orbitals are nevertheless included. The orbital character of the different bands and
valleys is shown in Fig. (3.4). It can clearly be seen, that the in-plane (dyy, dx2_y2) and out-of-
plane (d,2) orbitals are counterparts of each other. They change place when comparing the

valence band to the conduction band allowing for an optically bright transition at K.
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4. Many-Body Theory for TMD Monolayers

As this work aims for analyzing the optical properties of monolayer TMDs under the influ-
ence of excited carriers, it is necessary to discuss the implications of an interacting many-
particle system. Coulomb effects are dominant in monolayer TMDs as they are weakly
screened by the environment. Quasi-particles such as excitons (bound electron-hole pairs)
are therefore strongly bound. The absorption of TMDs is dominated by characteristic peaks
that can be associated with those same exciton states. The absorption spectra are deter-
mined by the polarization dynamics of the layer that can be revealed upon probing with a

laser pulse. The polarization can be expressed via the dipole density:

P(t) — %Z QM al B)ad (). @)

KN

Upon knowledge of this macroscopic polarization it is possible to calculate the optical sus-
ceptibility y, whose imaginary part corresponds to the absorption. Exciting charge carri-
ers from the valence to the conduction band using a pump laser leads to a carrier distri-
bution that, considering a thermalized situation, will occupy states according to a Fermi-
Dirac function of a given density and temperature. The Coulomb interaction between these
charge carriers provides many-body effects such as renormalizations of the single-particle
energies and shifts of the exciton states that will cause drastical change to the optical prop-
erties. In order to evaluate the many-body effects in dependence of the density, a careful
treatment of the Coulomb interaction is necessary.

Moreover the evaluation of the power-dependent total charge carrier density is needed in
order to be able to compare theory and experiment, which requires the knowledge of the
carrier density. Investigating carrier pump processes upon excitation of varying intensity
is of interest as well as the density directly determines the performance of a device. The

carrier density is given by

n = %Z@y(mm)y 4.2)
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4. Many-Body Theory for TMD Monolayers

In the beginning a look on the general crystal Hamiltonian will be given in order to evalu-
ate two decisive quantities, the macroscopic polarization and the carrier density. This fol-
lowed by the time evolution of the single particle density matrix elements. In order to prop-
erly describe interaction effects, the overarching goal of this chapter is to derive the semi-
conductor Bloch equations (SBE) together with an appropriate description of the many-
body Coulomb interaction. The formalism of Green’s functions will be applied, where the
Coulomb interaction will be included in terms of the self-energy. The derivation of the the-
ory presented in this chapter follows Refs. [108, 129-138] and others, whom will be cited
accordingly.

Furthermore the effects of dielectric screening on the single-particle properties will be in-
vestigated using the GdW-method. For the treatment of the absorption spectra the Maxwell
equations will provide the description of the optical environment. Other important effects
mentioned will be the spin-orbit coupling in TMD monolayer and also basic insight into
superconductivity will be given.

To summarize, a model for the optical response of a TMD monolayer embedded in a layered
dielectric material will be presented in this section. Different quantities such as the renor-

malized band structure or the carrier density can be extracted during the calculations.

4.1. General Solid State Hamiltonian

The full Hamiltonian of an interacting many body system contains in principle all kinds of
interaction between all involved charged particles. Interactions between electrons in the
crystal or between electrons and phonons (quantized lattice vibrations) create new quasi-
particles such as polarons. The full Hamiltonian can be expressed as the sum of all con-
tributing Hamiltonians. Starting from the crystal ground-state, carrier-carrier or carrier-

phonon interaction can be included systematically:
H = HO + Hel.—el. + Hel.—phon. + HL]M + ... (4.3)

In this work the single-particle energies of the crystal ground-state H, (band structure),
the electron-electron and electron-hole interaction H,; ., respectively as well as the light-
matter (dipole) interaction H ) between the crystal electrons and an incident electric field
(e.g. an exciting laser pulse) are included in H in order to investigate on the optical prop-
erties of TMD monolayers. The electron-phonon interaction will not be included on a mi-
croscopic level. It will contribute only as a constant intrinsic dephasing and scattering pro-

cesses will be modeled as a relaxation into thermalized carrier distributions.
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4.1. General Solid State Hamiltonian

In terms of the Schrodinger field operators ) the Hamiltonian is given by:

H = H0+HLM+HCoul
= Z / dril(r, ) ho(r)ihs(r)

S / drdi (r, AE(r, )i (r, )

% Z / dr / dr'yl (v, )L (', OV (r — ¥)de () 0s(r ). (44)

The Schrédinger field operators ¢! (r, ¢) (1,(r, t)) create (annihilate) a particle in the state
characterized by {r,t, s}. They obey the fermionic anticommutation relation {A, B} =
AB + BA:

{be)dbiw ) = o =)o
Pl dben) ) = {den) dot )} =0 4.5)

t1=to

As marked by the subscripts at the commutator this relation holds only for the equal time
limit. The single-particle Hamiltonian hy(r) contains the ground-state kinetic energy eigen-
values of electrons within the periodic crystal potential. This is described in terms of the
band structure (see Chap. (3)) including energy shifts due to the interaction with the di-

electric environment. It obeys the eigenvalue equation

hooo(r) = e€,0,(r). (4.6)

For future problems it is useful to expand the field operators into the eigenbasis ¢, (r) of

the single-particle problem.

d(rt) = D a(t)d,(r) (4.7)

v

The ¢, (r) have to fulfill the properties of a complete orthonormal basis set, namely they

have to be orthogonal and provide a resolution of unity, or in other words be complete:

[ o)) = 6 S G )er(r) = 1. @8)
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4. Many-Body Theory for TMD Monolayers

The creation and annihilation operators &\ inherit the fermionic commutation relation
(4.5) of the field operators. The crystal electrons occupy the Bloch states ‘(bl,> in the peri-
odic crystal potential. For the derivations necessary in this work it is most convenient to
divide the index v of the used Bloch state introduced in Chap. (3) into quasi-momentum
index k of the crystal electrons and a band index A resulting in v = {k, A, s}, while the
time dependence will be written explicitly. Thus ¢, (t) = ¢;(¢) and the spin index s will be
dropped from now on as all interactions considered here are spin-diagonal, exceptions will

be labeled. The Hamiltonian in the eigenbasis expansion (see Eq. (4.7)) is given by:

H = Zeﬁa“
+ZA“ t)[dE(r, )2

1 ~ATA A A1A2A3 A
ty D (0 (a (Da (Vi (4.9)
ki..ka,A1... 4

More insight into the derivation of the Coulomb and dipole matrix elements will be given

later.

4.1.1. Statistical Operator and Time-Evolution

In order to gain more information on the full many-body system the density matrix formal-
ism is a commonly used theory. The statistical operator o allows for the calculation of any

observable by tracing it out after multiplication with the statistical operator [nolting]:
(0) = w {@O} . (4.10)

While it is not feasible to calculate the full statistical operator, the single-particle density
matrix (spdm) is obtained by trancing out all other degrees of freedom. The definition of

the spdm is given by
sz\qﬁz Yoi(t)] . 4.11)

All single-particle information on the system are contained, the states |<;Sl(t)> are mixed
with probabilities p;, Y . p; =1
Using the eigenbasis expansion especially the state-diagonal (k = k') matrix elements

of the spdm contain all information on coherences 1) (or microscopic polarizations) and
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4.1. General Solid State Hamiltonian

occupation probabilities f of the system:

D) = (a M)y (1)) (4.12)
fa) = {(at)ap(t)), (4.13)

where the first one is needed to calculate the polarization

Pi) = > (&) (@mad ) = 3 (&) ¥ @14

kAN kAN

and the latter one can be extended to the charge carrier density n* of the respective band

by summing over all k, or the total density by additionally summing over all \:
1 1
no= > fie= ) (el ®a(). (4.15)
A k,\ ‘A k,\

In general time-evolution of the statistical operator can be expressed using the time evolu-
tion operator U (t1, t3). While in the Schrodinger representation the full time dependence
is cast into the wave functions and the operators are time independent, the Dirac or in-
teraction representation states the opposite: the wave functions are time independent and
the operators carry the full time dependence. In the interaction representation the time
dependence of the wave functions is determined by the interaction Hamiltonian while the
operators obey the trivial time dependence of the single-particle Hamiltonian. For the op-
erator it reads:

OP(t) = ULt t)O°Uy(t, to), (4.16)

with Up being the trivial time-evolution operator of the non-interacting part of the Hamil-

tonian H,.

k3

UO (tl, tg) = e *h Ho(t1—t2) 4.17)
For the states one finds

WP () = S(tto)|v(ty)), 4.18)
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4. Many-Body Theory for TMD Monolayers

which directly leads to the Dirac representation of the density matrix
o"(t) = S(to,t)0"S(t t0) (4.19)
with the S-operator being defined by the Hamiltonian containing all interactions Hyy, :

t
R —%fdt’HIm(t’)
S(ty,ts) = Te 4 : (4.20)

To assure the correct ordering of all time arguments the time ordering operator has been
introduced. The operator sorts all expressions afterwards starting with later times to the
left side and proceeding to ¢, on the right side (late goes left’). Exponential functions of
operators are defined as usual by their series expansion.

Using the S-operators to reformulate the expectation value Eq. (4.10) into operator expres-
sions in the interaction representation one obtains

(O@) = {QDS(tO, 00) T[S (0, tD)OD(t)]} , .21)

where it has been used that a product of time evolution operators always develops from the
first time of the left-most operator to the last time of the right-most operator. Regardless
how many infinitely small timesteps are taken, any S-operator can be expressed as multi-

plication of two operators according to (semi-group property):
S(tg,t1> - S(tz,tg)S(tg,tl) . (422)

The time evolution operator formalism as obtained above is useful for obtaining the time
dependence of the system observables for ' = 0 K in an equilibrium state. Further effort
has to be made to describe non-equilibrium states in order to obtain the time evolution or
equations of motion of the density matrix elements. Therefore a short presentation of the

so-called cluster expansion approach will be given in the next section.

4.1.2. Equation of Motion and Cluster Expansion

The dynamics of the matrix elements of ¢ can be obtained by deriving their Heisenberg
equation of motion:

ih=O(t) = [H,0(t), (4.23)
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4.1. General Solid State Hamiltonian

where the brackets denote the commutator [H, O(t)] = HO(t) — O(t)H of the respective
operators. For electron annihilation operators one obtains by using the Hamiltonian in
Eq. (4.9):

d .

iha(t) = epay () + [dE(r, Ol 0

1 Adadada [ ATz A
"‘5 Z Viakoksks GLQ (t)ags (t )ak4< )01 x
K. Ka A

—af" (i (i (Ddex | @20

Exploiting the equation derived above together with

d o iagyan ab( dA,\/
gl e () = <dtT (1) + (@’ (1) g (1) (4.25)

is one way to derive the SBE. The interpretation and derivation of the SBE using the tech-
nique of Green’s functions is part of the next chapters. Obviously for the Coulomb interac-
tion a two particle expectation value occurs. These two-particle expectation values obey an
equation of motion that contains three-particle expectation values and so on. Therefore one
has to deal with a hierarchy problem. An appropriate truncation in order to obtain a closed
set of equations can be obtained e.g. from the Hartree-Fock factorization scheme [108],

where

<aTk)‘1aTk’\2aﬁ§aﬁz> = <a1T</\1ak ><GL;\2ak4>5k1 ks Okea s

< Tf\l ><CLL:\2 CLk3>6k1 k46k2 ks - (4.26)

Another possibility is the so called cluster expansion scheme. Here the remaining correla-
tion functions from the factorization are determined. Thus N-particle expectation values
are factorized into their singlet, doublet, ... contribution according to the number of parti-
cles they involve. Thus the factorization contains all operator averages up to N — 1-particle

expectation values and all possible combinations of N-particle factorizations. The cluster
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4. Many-Body Theory for TMD Monolayers

expansion is schematically given by [139]

(1) = &1) 4.27)
(2) = (1) +2) (4.28)
(3) = (()(1) +(1)d(2) +(3) (4.29)
(4) = ())(1) +(1)(1)d(2) + (1)d(3) +5(2)6(2) +(4)  (4.30)

Here (N) is the N-particle expectation value containing 2N operators. The correlation
functions that are defined by the difference of the full N-particle average and the factoriza-
tion are labeled as 5(N).

4.2. Non-Equilibrium Green's Functions

The method of choice for this work is the method of non-equilibrium Green’s functions
using the Schwinger-Keldysh formalism [135]. In order to do so the general properties of
Green’s functions will be introduced first. The so called Keldysh contour, which has been ex-
plicitly developed for evaluating non-equilibrium situations, is presented afterwards. The
method of Green’s functions is a well-established method to describe excitations of an in-
teracting many-particle system.

4.2.1. Properties of Green's Functions

If one generalizes the expectation values within the spdm to different times one obtains the
so-called greater and lesser Green’s functions G=. These contain the information on the
probability whether to find a particle (or not) at rp and time ¢, with spin s, if beforehand a
particle at r; and time ¢; with spin s; has been added (removed). Therefore these functions

are also called electron and hole propagator. They are defined as:

—ihGy, ,,(r1,t1; o, ty) = <1/122 (r2, t2)1)s, (11, t1)> (4.31)
—ihG3, , (r1,t1; T, t0) = <¢51(I'1,751)¢12(I'27t2)>. (4.32)

Ift; > t then one deals with the electron propagator G~ as first the creation operator is
applied. For ¢, > t; one obtains G, which is also called hole propagator as a particle is

removed first. For further calculations the abbreviation 1 = {r, ¢1, 1} for the indices will
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4.2. Non-Equilibrium Green’s Functions

be used. Especially for the equal time limit these functions reproduce the normal ordered
expectation values of the density matrix, meaning that always:

G=(t,t) = limG=2(t,t+¢) (4.33)

e—0

and also for both propagators the normal order of the operators is restored. Often this is
also written as G=(t,¢"). For equal time and k arguments the propagators resemble the

single-particle expectation values known from the density matrix (cf. Eq. (4.13)):

—ihGEM (7)) = V() (4.34)
—ihGENEET) = (1) (4.35)

The time-ordered Green’s function is defined as:
—ihG(1,2) = (Tlp(1)!(2)]) (4.36)

Here the time ordering operator 7" has been used again to always ensure the correct time
ordering (late goes left’) by rearranging the respective expressions of the operators leading

to:

i) - YOV @ ot 37
_¢T(2)¢(1)’ if to>t

G(1,2) contains for example arbitrary single-particle expectation values as well as the ex-
pectation value of the total energy [140].

By linearly combining the propagators, the retarded and advanced Green’s functions G*/4
are built. They describe the causal (the response of the system follows the excitation) and

the anti-causal (system response before the excitation) response of the system.
GRMA(1,2) = +0(£(t — 1)) [G7(1,2) — G<(1,2)] (4.38)

Furthermore the so called spectral function, which contains information on the excitation

spectrum, is defined as:

A(1,2) = G7(1,2) — G<(1,2) = GR(1,2) — G4(1,2) (4.39)

GRMA(1,2) = +0(£(t —t2) A(1,2). (4.40)
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4. Many-Body Theory for TMD Monolayers

In the simplified picture of quasi-particles each elementary excitation of the system is de-
scribed as a particle. The spectral function has peaks at every quasi-particle eigenenergy.
Each peakis broadened by the lifetime of the respective quasi-particle as will be shown later
on in this work. In the quasi-particle approximation, that assumes a weak interaction, the
energies will be shifted by the real part of the chosen self-energy while the imaginary part
contributes the broadening.

As conclusion of the first section the eigenbasis expansion of the Green’s functions shall be

mentioned here:

G(1,2) = G(ry,ty;ro, 1) = Z Gu, (v1) Gy (t1, t2) By, (T2) (4.41)
G (t, ) = ——<a a2 (t2)) (4.42)
Glf’)q)\g (tl,tz) = —<G/)\l’]L tl CLk t2)> (443)

When obtaining the time evolution of the Green’s functions mentioned here, special care
has to be taken for the time ordering. The next section will provide a derivation of the dy-

namics for the two-time quantities.

4.2.2. Keldysh Contour and Hedin's Equations

For the ground state at 7" = 0 K it is possible to extract the anti-time ordered part S(¢¢, c0)
of Eq. (4.21) as a phase factor by using the theorem of Gell-Mann and Low [141]. This cannot
be done for the non-equilibrium case until a new time-ordering is introduced, the so-called
Keldysh contour. This will be part of the following section.

An external perturbation H.(t), for example controllable charges or fields, shall bring the
system out of equilibrium. They either act as real perturbation (e.g. exciting charges) or as

a probe for testing the system response.
Hqu - HO + HInt. + Hext(t) (444)

In order to evaluate expectation values with the system being perturbed, it is convenient
to change into the interaction or Dirac picture again. In this case the time dependence of

the wave functions U (¢, t2) is obtained from H + Hyy,, while the S-operators contain the
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4.2. Non-Equilibrium Green’s Functions

external perturbation. The S-operators take the form

Se = Tpe i ledrte(s) (4.45)

+o0o 400
with /dz = /dT+— /dT_,
C

where all quantities have been defined on the hereby introduced Keldysh contour C [142,
143]. On this contour the time is split into two branches, the upper and the lower branch,
ranging from Foo to 0o respectively. On the lower branch it is the other way round. This
new time ¢ carries an additional contour index 7 = £1, where +1 is for times on the upper
branch and —1 on the lower branch. Any ¢ on the upper branch is always before times on the
lower branch even if the physical times are not. After each calculation the so-called "physi-
cal limit’ Hey (1) = Hex(t—) has to be performed in order to return to physical times. The
time-ordering operator 7; acts as T for times on the upper branch and as 7' for times on the
lower branch. The advantage gained is the possibility to treat the further calculations for-
mally equivalent to the equilibrium case at 7" = 0 K, while describing the non-equilibrium
system, because the time-ordering is given on C. The expectation value of an operator be-

comes

- |S.0P
(O®), = & [<Sc> @} >, (4.46)

and a phase factor can be separated in analogy to the Gell-Mann and Low theorem [141]. The
Keldysh Green’s function is defined similarly to Sec. (4.2.1)

G(L,2) = ——(D(L)Y(2)),, (4.47)

which represents a matrix according to the Keldysh index. In the physical limit one obtains
for the different Keldysh index combinations of Eq. (4.47):

G(14,2,) = G(1,2)
G(1_,2_) = G(1,2
G(1.,2.) = G<(1,2
G(1_.,2,) = G~(1,2). (4.48)
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4. Many-Body Theory for TMD Monolayers

Further treatment of the Keldysh Green’s functions lead to the fundamental set of equa-
tion [132, 144].

G(LY) = Go(12)+ [ [d1Gy(1.3)26.96(.2 (4.49)
W2 = Va2 + & [avesreawe) (4.50
12 = [& [acayweore .1
Pu2) = [ [aonare2acuy 452)
N(1,2,3) = —ihd(1,2)5(13)

tih / dd / d5 / d6 / ar G 4,6)G(7,5)T(6,7,3) “53)

This closed set of equations yields the (single-particle) Keldysh Green’s function G, the plas-
mon Green’s function W, the self-energy 3, the polarization P and the vertex-function I'.

The most common approximation is the so-called random phase approximation, where

% = 0 is chosen. This leadsto P = GG and ¥ = GW and is also often called
GW-approximation. Note that the choice of approximation has to be consistent for ¥ and
P [145, 146]. These approximations will be explained more detailed in later sections of this
chapter.

In order to regain Green’s functions with real time arguments the Langreth Wilkens theo-
rems [129] are used. For integral expression of the type C'(1,2) = [ d3A(1,3)B(3,2) that

occur frequently in Eq. (4.49) to (4.53) they state:

C%(1,2) = / 43 [AR(1,3)B%(3,2) + A(1,3)B(3,2)] (454
CRA(1,2) = /d3 AMA(1,3)BYA(3,2) (4.55)
To obtain equations of motion for the propagators G< and the retarded (advanced) Green’s

functions G*/A the Langreth Wilkens theorems are applied to Eq. (4.49) in its differential

form

/ 43 [G5(1,3) - 5(13)] G(3.2) = 5(L2). +56)
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4.2. Non-Equilibrium Green’s Functions

The inverse free Green’s function G (1, 2) acts as a differential operator. Explicitely writ-

ten it states

Gl(L2) = {mi—ﬁo@] 5(1.2) “s7)
at,

Using the eigenfunction expansion and all single-particle terms of the full Hamiltonian it

becomes

0
Gy (t1,12) = [8_751 — ayl} O n0(ts — t2) + [dE(t1)],,,, 0(t1 — t2) . (4.58)

Choosing the different possible combinations of Keldysh indices together with the Lan-
greth Wilkens theorems Eq. (4.56) a set of coupled integro-differential equationsis obtained.
These are the so-called Kadanoftf Baym Equations (KBE) [137].

/ds [Go'(1,3) = 2¥(1,3)] G*(3,2) = 6(1,2) (4.59)
/dBGR(1,3) [G5'(3,2) = 2%(3,2)] = 46(1,2) (4.60)
/d3{[G01(1,3) —¥X(1,3)] G<(3,2) = £(1,3)G4(3,2)} = 0 (4.61)

/d3{G<(1,3) [G5'(3,2) — £7%(3,2)] — G*(1,3)2<(3,2)} = O (4.62)

These equations mark the starting point for the derivation of the semiconductor Bloch

equations, which will be shown in the following section.

4.2.3. Semiconductor Bloch Equations

The semiconductor Bloch equations can be derived directly from the KBE [147-149]. They
are the equation of motion for the lesser Green’s function [150], which, if assumed to be
diagonal in the state when expanded with eigenfunctions, corresponds to the occupation
probabilities and the microscopic polarizations as already written in Egs. (4.35) and (4.34).

Taking the sum and the difference of both KBE for the lesser and the retarded Green’s func-
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4. Many-Body Theory for TMD Monolayers

tion one is left with two equations, first for the sum

e ] 6T = () - )G (1.2)

/d3 {Z}(1,3)G<(3,2) + £<(1,3)G*(3,2)
—G=<(1,2)2(3,2) — G¥(1,3)2(3,2) } 4.63)

and secondly for the difference one obtains

0 0 R _ B R
il {6_151 a_tJG (1,2) = 26(t1 — t2) +2Ho(1)G*(1,2)

+/d3 {Z}(1,3)GR(3,2) + G*(1,3)2%(3,2) } .(4.64)

The single-particle Hamiltonian H,(1) contains the single-particle kinetic energy term as
well as the dipole interaction according to Eq. (4.58).

To be more specific: the SBE are equations of motion for state and time-diagonal lesser
Green’s functions. After applying the eigenbasis expansion only Green’s functions diag-
onal in k and in ¢ are kept. As mentioned before, this will lead to the requested physical
quantities ¥V (¢) and f(t). The dipole interaction will be explained later on, for now it
is only important to note that the incident angle of the electric field E(¢) is assumed to be
perpendicular to the monolayer plane. Due to the small thickness of the monolayer it is as-
sumed that dipoles di*' can only arise within the plane. The electric field that will represent
the envelope function of the laser pulse will not carry any band A or momentum index k.
The specific form of the electronic self-energy will be chosen in the next section. The self-
energy contributions Y.< are therefore left variable. Using the eigenfunction expansion one

obtains

O G (1) = (5 — )G (1)

ot
30 (@G @ - G () B

)\//

+Z/dt ZRMN(t GENN (W 1) + o™ (4, )G (1 1)

)\N

GV EOS(E) - GY OSE) G
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4.2. Non-Equilibrium Green’s Functions

for the equation of motion for G}f”w (t). Here, as explained before in Eq. (4.9), the &}, are
the single-particle eigenenergies of Hy(1), E(t) is the electric field and d}}"*" are the dipole
matrix elements.

Eachretarded or advanced Green’s function can be separated into greater and lesser Green’s
functions according to the definition in Eq. (4.38). For the self-energy this is also done. Ad-
ditionally a singular part X2°(1, 2) arises, due to the instantaneous nature of the Coulomb
interaction. This term contains the Hartree-Fock interaction (as will be shown later) and is
written as ¥20(1,2) = XH5(1,2)6(¢; — t,). This is expressed as [147]

SRAL,2) = SHR(1,2)0(t —to) £ 0(t — 1) [27(1,2) — <(1,2)],  (4.66)
GMA(1,2) = 460(£(t1 —t2))[G™(1,2) — G=(1,2)] . (4.67)

Further discussions concerning X%¥(1, 2) are part of the next section. If these definitions

are inserted in Eq. (4.65) one obtains:

S G (1) = (e — )G ()

ot
(@G 1) - G ™ ) B()

)\//

+3 / dt’ { [SHES (1, ¢) + O(t — ) (27 — 2] (¢, 6)GY™ (¢, 1)

)\// s
— G (1, 8) [SPS( 1) + Ot — ) (S5 = 570 (¢, 1)
+ I () [0~ 1) (G =GR (1)
— [0t —t") (G = G (8, )TN (¢ t)} : (4.68)
where .. .]ﬁw (¢',t) shall denote that all functions inside of the brackets carry the same

indices. One can reformulate and summarize further using the new quantities [148]:

a0 = al+ 58N

W) = dVEm + S ()

Here QN (¢) is the Rabi energy. It causes an oscillation of the occupancies f; and f;" and

the polarization of the transition from band A to X, which originates from the light-matter
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4. Many-Body Theory for TMD Monolayers

interaction. Both expressions above already indicate the implications of an excitation to the
system. The Rabi energy dE(t) as well as the single-particle energies £, ° are renormalized
due to the many-body interactions of the involved excited particles. These abbreviations

are used to finally obtain the most general form of the SBE:

gy~ 250 - 20| G 0 - (650 - 6 0) 9 o)

ot
S )

PESWY

=Y / dt’ Z> N R TENa (007 B s (N G TES R ()

)\//

TGN GOSN D) = GV S D) Ge)

Here, further scattering, dephasing and renormalization contributions can be summarized

into the scattering or collision integral S} (¢, ') being defined as

SN (t, 1) = /dt 2> MG ANGENN (W 1) — S (4 G (1)
)\//

FGM LT - G nEP e Y @

Choosing an appropriate form of the self-energy beyond Hartree-Fock and further evalu-
ating Eq. (4.70) will be part of the next chapter.

In the ground state all charge carriers populate the valence band, while the conduction band
is empty due to the band gap of 2 — 3 €V in TMDs. Illuminating a monolayer with a laser
pulse will excite carriers from the valence band states to conduction band states. Thus it is
convenient to analyze the propagators for an excitation from band v to ¢, in other words to
calculate the dynamics of G2, Though this cu-picture seems intuitive, the electron-hole
picture is more convenient for describing pairs of excited carriers or electron-hole plasmas
and will be introduced here.

In a first step explicit band indices indicating conduction (¢) and valence (v) bands are in-
troduced. Transforming into the eh-picture the occupation of the valence band fJ, just as
the occupation of the conduction band fi, equals zero. As long as no electrons have been

excited, no holes will be present. In total one obtains the following relations for a transfor-
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4.2. Non-Equilibrium Green’s Functions

mation into the electron-hole picture:

e

€ = €L (4.71)
gl = —gh (4.72)
G () = G(t) “.73)
Ge(t) = Gy™(t) (4.74)
G () = 1-G"™ (@), (4.75)

where the band gap energy E; of the semiconducting system is contained in the conduction
band values. Only the single-time propagators can be identified by their density matrix
element counterparts, reducing the complexity of the notation. It is:

—ihGE(t) = Ype(t) (4.76)
—ihGEM () = ). 4.77)

Therefore it is appropriate to separate Eq. (4.70) into two equations for each ¢2(¢) and
f2(t). Considering this and using the relations (4.71) to (4.75), the SBE for the microscopic

polarizations ¢2¢(t) is cast into the form
. a ~ e ~ e e €
gy — 285 (0) ~ S 0) - B )~ (1= filo) ~ AL(0) 950
t
=y / dt’ [ oM G () — SN )G 1)
A —00

FCRME TN ) - GRS | @)

where all inter-subband polarizations, for example ¢¢¢', have been neglected. This is due to
the fact that the main focus of this work is on excitons and band-toband transitions, which
are spectrally located around the band gap. Nevertheless, inter-subband transitions exist
but will most likely have a small dipole moment and the transition energies are not in the
spectral region of interest.

Using the same assumptions as above, one obtains as equation of motion of the occupation
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4. Many-Body Theory for TMD Monolayers
probability f(¢):

O R 2 Y 1m (WO HRND)

N £
t
_ th / d¢ |: Elf,)\)\/(t7 t/)GE,X)\(t/’t) . Ei,/\)\/(t’t/)Glf,)\’)\<t/7t)
N s
+GM (4, VSN 1) — GEMN (SN ) | @79)

Both equations (4.78) and (4.79) form a coupled set of equations and provide a microscopic
description of excited semiconductors (in general) [129, 131, 147, 151, 152]. Special features
of TMD monolayers will be implemented into these equations throughout the remaining
chapter.

When aiming for optical properties, one is interested in the frequency dependent absorp-
tion that results from the polarization P(w) = x(w)FE(w), as will be shown later in this
thesis. The SBE provide the polarization not only in linear (P (w)), but also in higher or-
der due to the intrinsic dependencies of ¢ and f.

Concluding this section it shall be mentioned that it is numerically disadvantageous to
evolve a differential equation with large frequencies, which necessitates a high temporal
resolution. To overcome this, high frequencies wy can be cancelled by applying the rotating
frame picture. Therefore (t) = v (t)e™°! is inserted in Eq. (4.78). Carrying out the time
derivative, the SBE reproduce for ¢)(t) but the transition energies e\ + £ — fiw are now
shifted by hwyg. This is used to compensate for the band gap energy.

To move on a straight-forward idea would be to directly calculate the two time functions
that are still appearing. This is in general numerically not feasible [146]. To solve this chal-
lenge the quasi-equilibrium assumption will be applied in the next sections. Having in
mind pump-probe experiments, a strong laser pulse excites carriers that successively re-
lax via carrier-carrier and carrier-phonon interaction. The probe laser is weak and short in

time in order to provide a broadband probe. Due to the weakness of the probe beam the f}

4
» &t
for example after a strong excitation (pump) and before recombination of electrons and

do not change, < f2(t) = 0. This is a valid assumption for a population that is thermalized,

holes set in. The occupation takes the form of a (quasi) Fermi distribution of a finite charge
carrier density:

e (4.80)
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4.3. Self-Energy Contributions

The distribution depends on the single-particle energies &7\, the chemical potential y* and
on the temperature 7', while &k is the Boltzmann constant.

In a quasi-equilibrium regime the two-time Green’s functions only depend on the relative
time 7 = ¢t — ¢’ and therefore a Fourier transformation is performed. The SBE are written
directly in frequency space. All remaining Green’s functions in the scattering terms can be

expressed as

+oo
/ d / : /
GEM(t—t) = / —MGE’M (w)e wt=t) (4.81)
2m
The next section will discuss the choice of the self-energy. In order to gain insight in differ-
ent mechanisms of the renormalizations present, the self-energy of choice will be the static
limit of the GW self-energy, which will result in the so-called screened exchange Coulomb

hole (SXCH) approximation.

4.3. Self-Energy Contributions

The explicit form of the self-energy, especially $:<, will be given in this section. In order to
treat correlation effects such as screening, the choice will be the GW approximation, which
extends beyond the instantaneous Hartree-Fock approximation. This approximation con-

tains the polarization function in RPA approximation and vertex corrections are neglected
6¥(1,2)
0G(4,5)
to (4.53), giving rise to the name: GW-approximation. The resulting terms will be further

as = 0 is assumed. For the self-energy the term ¥ = GW remains from Eq. (4.49)

approximated using the properties of a quasi equilibrium state and the static limit of the
involved frequency dependence. Finally the result will be the screened exchange Coulomb
hole approximation (SXCH).

The Coulomb interaction in general will be treated briefly in the beginning of this chap-
ter, followed by the detailed description of the instantaneous Hartree-Fock part of the self-
energy. The different mechanisms renormalizing the single-particle energies will be dis-

cussed afterwards.

4.3.1. Coulomb Interaction

The bare Coulomb interaction between two charged particles at r and r’ is given by

n1q2 1
2e0 [t — 1|

V(r—r') (4.82)
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4. Many-Body Theory for TMD Monolayers

It is dependent on the inverse distance between the two charges. In momentum space the
Coulomb interaction depends on the transferred momentum of the two charges. In two

dimensions the bare Coulomb potential is given by

gz 1

U2d
4 250 Ja|

(4.83)
Due to the instantaneous nature of the Coulomb interaction, all terms including V'(1, 2)
are defined as V'(1,2) = V(1,2)(t; — t2). The Hamiltonian of the two particle Coulomb

interaction can be written in second quantization as:

1
— E ALA2 3,24 A1 T A2 A
Hyg—a = 3 Vk K — q,k’,k—qak ayr~ Gk/ ak4 a- (4.84)
Ak g

It has been directly employed that for a Coulomb scattering process between two states |k )
and ’k’ > a finite momentum q = k — k' has to be transferred. The momentum conserva-
tion is more generally expressed by dx, —k, ks—ks-

The matrix elements are obtained in the respective eigenbasis of the ground state descrip-

tion of the TMD monolayer. Hence, the matrix element is

Ve = [ @ el OV - ) ()0 ()

= Z <COl k) (Cﬁ k/— ) Cﬁ k/COé k qvaﬂﬁa (4.85)

a,

The possible forms of V,*#* depend on the applied level of approximation as well as on the
ground state screening of a monolayer within a dielectric environment. This will be pre-
sented in sections (4.4.2) to (4.4.4).

The Coulomb interaction does not couple electrons of different spins, therefore the spin
index is omitted unless stated otherwise. Assuming large samples the physical limit is ap-
plied to all sums over carrier momenta k. Assuming a huge crystal implies that the states
are dense in k so A~' 3", becomes (27)2 [ d°k, which is successively discretized for nu-

merical evaluation.

4.3.2. Instantaneous Self-Energy

The instantaneous interaction of excited charge carriers is described by the Hartree-Fock
terms. These provide the classical (Hartree) interaction between charges and the exchange

interaction that both renormalize the single-particle energies. As these interactions occur
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4.3. Self-Energy Contributions

instantaneously in time, effects such as screening, dephasing or scattering are not captured
by the Hartree-Fock approximation. Starting point for the derivation of the Hartree-Fock

terms is the retarded (advanced) self-energy
SRAL2) = 20(1,2) £0(t — ) [7(1,2) — £5(1,2)] , (4.86)

where a singular part 3°(1, 2) occurs that is instantaneous in time. Writing this expression
in terms of Green’s functions one obtains in first order perturbation series of the time-

evolution operators S [145]:

2(1L,2) = SHE()6(t —ta)
— —z’h/d3G(3,3+)V(1,3) +ihG(1,1)V(1,1), (4.87)

which corresponds to the Hartree and the Fock (exchange) Coulomb interaction. The eigen-
function expansion of all involved Green’s functions is applied. These propagators are re-
quested to be diagonal in their state index k = k’, while the band indices A and ) shall still
originate from electron and hole bands. The choice of the remaining band indices is re-
strained. Only index combinations where AN XA\, AAXN X or AAN' X holds are taken into
account as all other matrix elements are small. The ) indicates indices from the opposite
band type as ), for example A\ = h = \ = e. This allows for the separation of Hartree-Fock
terms that contribute to either band structure renormalizations or to renormalizations of
the Rabi energy.

Considering the band structure renormalizations there are only state-diagonal self-energy

matrix elements taken into account, where the band indices are either both electron band
or both hole band indices (SHEAY).

/ . 1 N/ NN " NN
St (1) = —iho(ty — t2)71 Z [GE/A () Vidw " — G () Vi | (4.88)
k/7j\//

A Fourier transformation with respect to the relative time 7 = ¢, —t, is performed. Writing

the Fourier integral, one obtains

, 1 % . N/ SNZANAN
S = g 3| e e
j\lr’k/ s
/ dTei‘”(S(T)Glf/;\H(T)Vlé\élllci/’w : (4.89)
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Considering the delta-function that demands 7 = 0, the evaluation of the integral yields

G<”\ (r = 0), Wthh successively is replaced by its Fourier representation Gy A (r =
= /- +o°O° g‘;’G (w). As a quasi-equilibrium situation is assumed, the Kubo-Martin-

Schwmger [153] relations (KMS) are applied. They directly connect the Green’s functions
with the Fermi function F*"(w) and the spectral function A (w).

GoMw) = = F"w) AYM(w) (4.90)
GyMw) = (1 - F/"w)AY" (w) (4.91)
Evaluating the remaining frequency integral, the KMS occupation functions f"** arise

and the Hartree-Fock term becomes independent of the frequency. As the electron-hole
picture has been used, it has to be taken care that the electrons in the valence band must
not be counted twice in the calculation of the Hartree-Fock terms. The interactions and
resulting renormalizations of these electrons, already present in the ground state, are ac-
counted for in the band structure calculation. Therefore, the hole population will appear as
’f”and not’1 — f" in order to assure vanishing renormalizations from excited carriers in

the zero density limit.
HF,A)\/ o Z )\)\//)\//)\/ /\)\//)\/)\// KMS )\”
Zk — - - [ kk/kl ka/kk/ k/ (4.92)
)\// k/

Writing the band indices explicitly (omitting the KMS superscript, while the occupations

are still to be understood in quasi-equilibrium) one obtains:

HE,hK 1 e he'h'e’ | e’
Ek - _Z [ka’k’k ka’kk’ Fk’
/ kl
hh//hllh/ hh/lh/h/l h//
A E |: kk'k’k V kk’kk’ i| F (4.93)
h/l k/

and

/ 1 " 111 "1 1 1"
s = w3 [ - v R
e//’k/
1 NG / IPNANG !
_A Z [Vlfllc—b’l};’ Vklilllil’?;i| Fh/ 9 (4.94)
B! k!
where it has to be considered that the sign of the expression is depending on the signs of the

associated charge carriers. As it is obtained here, for this work there will be only Coulomb
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matrix elements taken into account, that conserve the number of involved particles, ac-
cording to the choice of band index combinations made above. It has to be noted, that the
exchange terms above do not couple different spins. They have to be read as V¥4, . This
does not hold for the Hartree-type Coulomb matrix elements.

For the interband polarizations the renormalizations of the Rabi energy can be derived in
the same way presented above. Considering the restrictions for the band indices one ob-

tains

1 ! ! /
HF,he 2 Vel he "e
Ek - A klil’l}clk’ 1]1’ (t) : (495)

/ ! !
k’,h' e

In contrast to the terms concerning band structure renormalizations an exchange interac-
tion between two states corresponding to transitions he and h'e’ occurs. This gives rise to
the formation of excitons and is often referred to as’binding term’. At the same time band-
to-band transitions contribute to the Coulomb enhancement of the continuum states.

The Hartree-Fock approximation or the instantaneous part of the retarded self-energy is
the best effective single-particle approximation [108]. On the other hand correlations be-
tween two particles are completely neglected (only single-particle Green’s functions occur
within the Hartree-Fock approximation). It follows directly that no collision, scattering or
dephasing terms can arise from Hartree-Fock.

For the numerical evaluation the band structure renormalization terms given above are
calculated using a self-consistency loop as has been introduced in Sec. (3.2.1). The initial
band structure defines an initial carrier distribution. This renormalizes the band struc-
ture thereby again changing the distribution. This scheme is repeated until a condition e.g.
NS len™ — e| < e for a defined tolerance e is reached.

4.3.3. Static GW-Approximation

The GW self-energy [114, 116, 145] accounts for many-particle correlations beyond the Hartree-
Fock approximation. It contains the Hartree-Fock terms and is the simplest term from the
first order perturbation series of the screened Coulomb interaction . Dephasing, scatter-
ing and screening are described on the level of the random phase approximation (RPA), which
will be discussed later. The GW scheme is used to evaluate the correlation part Eq. (4.70). In
the end, the static limit of the interaction will be applied in order to simplify the GW approx-
imation to the screened exchange Coulomb hole approximation (SXCH). In this limit specific
properties of semiconducting TMDs arise, that will be revealed in the following section.

Starting point for the derivation of the SXCH approximation, or the static limit of GW, is

55



4. Many-Body Theory for TMD Monolayers

the GW self-energy
S(L2) = ihG(L2)W(L,2). (4.96)

Using the Langreth Wilkens theorems as mentioned in Sec. (4.2.2) and the eigenbasis ex-
pansion, one obtains for the greater and lesser self-energies that enter the correlation terms
in Eq. (4.70)

SRUEAR ) = ih Y GENM () W M (¢ 1)
K’ A3, M4

Single-time propagators are needed to evaluated the SBE. Using the generalized Kadanoff-
Baym ansatz (GKBA) the two-time propagators can be approximately cast into a single-time
form. For non-interacting systems, the GKBA is exact. It corresponds to the assumption
of a weak interaction, for which the dominant contributions of the propagators originate

from their time diagonal elements. The maximally retarded form of the GKBA is given by
G (t,¢) = ik (GR M GEMY () — G2 (1) GAY (¢t t)> 4.97)

These terms occur only within the collision integrals. Therefore the constraint ¢ > t" holds,
meaning that the time ¢’ will always be earlier than the time ¢. This originates from the
Heaviside function #(¢ — t’) that limits the integral boundaries. The GKBA simplifies to

G ) = G )G ()
GEM (W, 1) = —ihGEM (#)GENY (1) (4.98)

Using the contraint ¢ > ¢’ in the collision integral, either G® or G* can be written as their

corresponding spectral functions, cf. Eq. (4.40). After using the GKBA, the GW self-energy

becomes
SV ) = ST G )G WA (1)
K A3,
SpUENR ) = 4B YT GEME)GRM (O Wign e (4 ).
K A3,

(4.99)

Moreover the GKBA is applied to the two-time propagators that appear within the collision

integral. More single-time propagators and retarded/advanced Green’s functions therefore
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4.3. Self-Energy Contributions

arise. Sorting them according to their time argument, the collision integral becomes

t
1
(—ih)*~ Y dt’[ G M (G N (YW S (8 1) G (8,8 G (E, 1)
MK A3, L

=G M G ()W (DG (1, 1)GE (. )
GG (WS (1. 1)GE (4, ) G (81

=GR N)GE Il (1. )GE (4G (81
(4.100)

Appendix (B) provides a detailed description of the steps necessary to derive Eq. (4.103) be-
low. Applying the quasi-equilibrium state, all remaining two-time quantities depend on
7 =t — t'. It has to be considered that in this limit the occupations f will be static in time
and correspond to (quasi) Fermi distributions F'. A Fourier transformation is performed.
Afterwards the quasi-particle approximation is used, which states that the retarded Green’s

function is expressed via the retarded self-energy

1

0N R -
hw — " — X

CiMNw) = (4.101)

Due to the limits of the time integral the retarded Green’s functions can be expressed as
spectral functions

Ile}i”\

2 2
(hw — et — ReEi’A) - (ImEi’A>

Aw) = (4.102)

In the quasi-particle approximation the real part of the retarded self-energy renormalizes
the single-particle energies, while the imaginary part provides dephasing. This dephasing
is chosen to be a phenomenological constant ImX3" = ~ to account for carrier-phonon
and carrier-carrier interaction.

The band indices A, A3, Ay will be put into the same form as performed for the Hartree-Fock
matrix elements in Sec. (4.3.2). Only Coulomb matrix elements with the index combina-
tion AN NN, AN N or AAN N will be considered. Furthermore the KMS relations for the

57



4. Many-Body Theory for TMD Monolayers

plasmon propagator IV (see (B.4) - (B.7)) are exploited. In the end the correlation contri-

butions can be summarized as effective energy renormalization A} (w) and as an effective
. . / . .

Coulomb interaction V;E’M (w). Therefore the full frequency-dependent correlation inte-

gral in quasi-particle approximation for a quasi-equilibrium state becomes

St(w) = Y Ap @)k (W) + DAY @l w) + Y Ve (@)l (w).
e/ h'!

h',e’ k'
(4.103)
Here, one identifies
i ! e / e'e’ee o R—1/ 4
¢ A e k' 27T h(,d - hw, - 8}6{’/ - &Jﬁ + 27;’}/
e ! eh'e’h' o, R,—1
—ihl Z / dw’ (1= F& + np(W))VEhel 2ilme (W) w108
A e 2 fiw — hw' — el — el + 2iy R
too " IR NN _
Al (w) = L Z / do' (1 = Fg +np(w) Viddia" 2ilmey ) (W)
« A R K 27T h/w - h/w, - gi — Eﬁl/ + 27/}/
oo / NN _
i / d (1= Fo + np(@))Vildig 2ime e () oo
A ek 27T h(,d - hw, - gil/ - gi + 27/’)/ )
and
e Thel o - _
veff,eh/he'( ) 7 / dw’ (]. — F]i + nB(w/))Vlfﬁ,ﬁﬁ,lemgi;kl/ (w/)
/ / w = VA _— : .
Kk'kk o hw — hw' — £§ — el + 2iy
i eh’he’ o, R,—1
+ih / dw’ (1 = Fie + ns(w) Viddndo 2iImey S () (4.106)
2 hw — hw' — e, — e + 2iy :
—00
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4.3. Self-Energy Contributions

Vef,fj(,he (w) acts as an effective Coulomb interaction that directly influences the binding

term of the SBE. The SBE in the approximations presented above are given by

(1o — el — e = Af(w) — Aklw) +i7) (@)

=D AL (W) = DAY (@) (W)

e’'#e h'#h
+(1-F - FY) (deh Z Vi ( >>
/ / k/

= ) Ve Wk (w) = 0. (4107)
/ /k/

Calculating the SBE with the full frequency dependence is computationally very demand-
ing as the integrals presented above have to be solved for each w [154]. Additionally a static
approximation is performed. The validity of the static approximation will be confirmed
when comparing both theories in Chap. (6).

The basic assumption of the static approximation is that any excitation energy involving
pairs of free quasi-particles, iw — p — e, is small compared to characteristic energies
huw’ occurring in the dielectric function [137, 155]. Each denominator within the correlation
integrals reduces to iw’ and only the w = 0 contribution of the screened Coulomb interac-
tion remains.

The Kramers-Kronig relations are exploited in order to further evaluate the remaining in-

tegrals stating that:

© dw' Im 5;1(w’) .
/P/OOQ—MW:REECI (w)—l. (4.108)

Moreover it is

-0, (4.109)

/OO d_wlmsal(w’)(ng(w’) + %)
oo 2T hw'

which stems from the bosonic occupation np(w)+3 aswellas Im e ' (w) being an odd func-
tions in w. Using both relations (4.108) and (4.109) together, one is left with the following
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4. Many-Body Theory for TMD Monolayers

expressions:
! 1 1 " NN I
A = A ) (§ - Fo ) [WkAljkl?A (w=0) = Viadad’ }
)\N’k/
1 1 \ AV AV
2 ) <§ - B A'> [WAQ?Q (w=0)— VAkAkaka} (4.110)
N K
and
Viaowe'© = (1= F —F) [Weﬁfﬁi, (w=0) - Vi’jfﬁg] . (4.111)

Again ) denotes the opposite band type of \. The screened Coulomb interaction is defined
as Wﬁ;\,ﬁ, (W =0) = Vi Eaexw (@ = 0). If no carriers are present, it follows from
eexc’k_k, = 1 (see Sec. (4.4.1) that the renormalizations vanish to zero. Both terms A and
Veff have become frequency-independent and real. Due to their present form containing
the difference of screened and unscreened Coulomb interaction multiplied by (1/2 — F)
and the binding term replaced by a screened interaction these expressions are referred to as
screened exchange Coulomb hole (SXCH) terms. The terms are iterated self-consistently until

convergence is reached.

4.3.4. Characteristics of SXCH in TMDs

When exploring optical spectra of TMD monolayer characteristic properties of the SXCH
approximation can be exploited in order to obtain additional analytical insight. This deriva-
tion is part of the thesis and has been published in Ref. [156]. Two facts support further
recast of the expressions (4.110) and (4.111). The energy hw occurring in the integral denom-
inators of (4.105) and (4.106) will be on the order of the band gap energy, which is about
2 — 3 eV for TMDs, for the evaluation of optical spectra. Thus it will be approximately
hw ~ & + g". The characteristics of the band structure presented throughout Chap. (3)
providse unique carrier distributions in addition to the valley structure of the bands. Both
arguments will select a distinctive form of the Coulomb interaction depending on the band
index combination given.

The evaluation of the A-terms at frequencies iw ~ &° + " will cause the denominator of

inter-band terms to be for example

€8+ el — ' —ef, — el — 2y = hw' ~ el — 8 — 20y (4.112)
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Thus the integral contributes only for large energies. The imaginary part of the inverse di-
electric function goes to zero for large hw while the real part approaches one for excited
carriers. This leads finally to vanishing correlation contributions for the inter-band (A))
and intra-subband (A # ) ...) terms. The only exception are the intra-band terms, where
A =X =X = X"holds. Here the dielectric function will have non-vanishing contribu-
tions. This leads to the conclusion that for the band structure renormalization the SXCH
approximation will only affect band index-diagonal terms.

Characteristic features of TMD band structures affect the remaining exchange terms Xf.
While all self-energy terms diagonal in A are replaced by the SXCH-expression as written
above, the oft-diagonal parts split into two groups: the inter-band exchange EE’A’_\ and the
intra-subband exchange EK’M,. The intra-subband terms remain as presented in the para-
graph above. The Coulomb matrix elements V, which contain only dielectric screening,
determine these renormalizations.

The inter-band exchange is affected differently. In order to gain understanding of this fact
the total inter-band term is split into a bare exchange term U and a correlation term. The
correlation term is chosen to contain screening from background contributions and from
excited carriers [116] in contrast to the part before, where only the screening from excited

carriers was included in . This results in an expression similar to Eq. (4.105)

UMM 4 i / AU im Vi) (4.113)

~ Y 1 5
ZUA)\ W)= — F>\/ MNele! - = =
k ( ) Azk,: k kk’kk - 27Thw—7iw’+8ﬁ+€ﬁ/+2i’y

In this case the correlation term is sensitive to the screened Coulomb matrix element at en-
ergies larger than the band gap, which prohibits the application of the static limit. While it
is the task of this section to provide a complete theory for interacting charge carriers in op-
tically excited TMD monolayers, it is imperative to quantify the strength of the inter-band
correlations.

The denominator in expression (4.113) provides energies at which the inverse dielectric func-
tion of excited carriers will cause the integral to vanish (cf. the beginning of this section).
Only background screening will contribute to WW. Using the background dielectric matrix
in the RPA approximation (see Sec. (4.4.4)) and band structures from Sec. (3.2.2) together
with a phenomenological quasi-particle broadening of 10 meV provides the requested in-
put to calculate Eq. (4.113). The resulting renormalization with and without correlations is
shown in Fig. (4.1). The calculation containing frequency-dependent background screen-
ing has been performed by Alexander Steinhoff while the bare renormalizations have been

calculated by the author of this thesis.
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Figure 4.1.: Single-particle energy shifts of the conduction band due to the hole population
for freestanding MoS, along the I'-K direction at 7" = 300 K with (solid lines) and without
(dashed lines) correlation contributions according to Eq. (4.113). The results are shown for
increasing charge carrier densites (3 x 10'%/1 x 10'3,3 x 103 cm™2).

While at the K point the correlations yield a correction of about 30% the overall behaviour

of the inter-band renormalizations is already described well by the bare electron-hole ex-
change term. Thereby it is validated that the inter-band renormalizations can be approxi-
mated well by the bare exchange for TMDs:

_ 1 R _
AN
R = 1 > Uderae B (4.114)
k/

Besides the inter-band exchange also the justification for the static limit of the binding
term has to be provided. The static limit is not valid if the condition hw — & — & <
hw' is not true. This is relevant for matrix elements that couple different transitions such
as Wehieah This is important for the chosen three-band model from DFT+GW calcula-
tions as presented in Sec.(3.2.2) when taking into account the higher conduction band. The
named Coulomb matrix elements enhance the C exciton which originates from states be-
tween I' and M (see Chap. (3)). In this area of the BZ the two lowest conduction bands
mostly run parallel without band extrema wherefore no carriers will occupy these states.
Both bands are close enough in energy to justify the static approximation.

In the vicinity of the K point it is possible for carriers to occupy states in the lowest conduc-
tion band, but the energy difference to the second conduction band is large, which thereby
diminishes the correlation term. Populating the upper conduction band is not probable by
typical excitation energies and relaxation times. In conclusion, applying the static limit to
the binding term is valid for any band index combination, because either no population is
present that will cause energy shifts or the energy difference prohibits contributions from

the correlation term.
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4.3. Self-Energy Contributions

Summarizing all the above, the full SBE in SXCH approximation are given in the frequency

domain by
(ﬁw — & — & +17) Ui (w)

+(1-F— R (df;h )+ = Z Whne e /(w)> = 0. (4115

/ lk/

The eftective Coulomb potential arising in the static limit replaces the binding term by a
screened binding term, representing the weaker binding of electrons and holes due to the
screening from excited charge carriers. The renormalized single-particle energies are sum-

marized in &,. They are given by

~A 0, H,A U,A V,A SX A\ CH,\
G = e+ e nA g 2
0\ H,\ 1 Z AN A Z )\)\’/\X
— gk + Ek _'_ Z Ukk/kk/ Fk’ k/kk/
9 k’ SN FEN
interEndX intra- subbandX
§ : A § : /\AA)\ )\A)\A
W k/kk/ Fkl 2A kk/kk/ kklkk/j| . (4.116)
SX CH

The energies contain the screened-exchange interaction (SX) term and the Coulomb-hole
term (CH). The SX term represents the exchange interaction that is screened due to the
presence of excited carriers, while the CH term is the difference of the screened and un-
screened Coulomb potential. The CH term describes the reduction of the single-particle
energies due to the fact that the electrons avoid each other because of their mutual Coulomb
repulsion. The remaining part of the exchange interaction splits into the bare inter-band
exchange and the intra-subband exchange, which experiences screening from the environ-
ment.

Theterm (1 — F(t) — F!(t)) provides the implications of the phase space filling due to the
Pauli exclusion principle and is therefore called Pauli blocking factor. It efficiently reduces
the binding term and shifts the optical transition according to the presence of electrons and
holes. Thus the oscillator strength of optical transitions is reduced with increasing carrier
density (bleaching). Optical gain may occur, if the Pauli blocking factor changes it’s sign
causing the absorption to be negative as well.
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4. Many-Body Theory for TMD Monolayers

4.4. Screening

Applying the RPA [157] on the vertex equation (4.53), the term reduces to the j-functions

and all vertex corrections are neglected.

[**(1,2,3) = —ihd(1,2)0(1,3) (4.117)
Hence, for the polarization equation (4.52) in RPA remains:

PYA(L,2) = ihG(1,2)G(2,1). (4.118)

As before standard methods of Green’s function calculus are applied to obtain the retarded
polarization function. The polarization function enters the Dyson equation of the screened
Coulomb interaction (4.50), acting as a self-energy for the screened Coulomb potential. In
the quasi-particle picture the GW-polarization can be understood as a polarization cloud.
Due to the repulsive nature of the Coulomb potential, carriers of the same charge are re-
pelled, giving rise to the formation of a polarization cloud, that has effectively the opposite
charge. The presence of an electron-hole plasma therefore screens the bare Coulomb inter-
action. The screened interaction is considerably weaker than the bare Coulomb interaction.
For excited semiconductors two contributions to the screening arise that are described sep-
arately. The dielectric background and the excited carriers contribute as P = P, + Pi..
The first term contains all polarizations present in the unexcited semiconductor, while the
second term arises from optically excited electrons and holes or from doping charge carri-
ers into the system. The screening is described by two longitudinal dielectric functions &,
and ey, respectively. By iterating Eq. (4.50), the bare Coulomb interaction is turned into a
screened interaction. The Coulomb matrix elements V%% are expressed in the localized
Wannier function eigenbasis |a> as obtained from the Wannier construction (3.2.2). Thus

the transition metal d-orbital character is dominant.

A1 A2 Az M Y e Y o traBBa

1A2A3A4 1 2 3 4

Vk1k2k3k4 - z : (00671(1) <Cﬁ»k2) Cﬁvk3ca7k4vlk1—k4| ? (4.119)
a,f

Here, the element V takes the role of a dummy interaction, being either U or V for the bare
or background screened Coulomb interaction. In general the term f/qaﬂ = f/qaﬂﬁ"‘ carries a
dependence on the orbitals of the chosen basis. From the Dyson equation of the screened

Coulomb interaction a matrix equation arises [157, 158] for this Coulomb matrix element
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within the eigenbasis.

i = (07 -Pw)

= Y (1-Oerw) oy
v

= ) b0 (w) (4.120)

4.4.1. Plasma Screening

The first subsection is subjected to the plasma screening originating from excited carri-
ers, which stems from the polarization Py, (w). The equation for the plasma screened

Coulomb interaction reads:

WP (w ZsR Lery b () (4.121)

exc,q

Here the matrix elements of the Coulomb interaction screened by the dielectric background
enter the equations. From Eq. (4.121) one can directly identify the definition of the retarded
longitudinal dielectric function:

eRB (W) = Gap — Z Vo (w) PEIS (w) . (4.122)

exc q exc,q

In order to simplify numerical calculations, the goal of this derivation is a macroscopic di-
electric function e%~"(w). Therefore a static (w = 0) Coulomb potential V, is chosen and
the dependence on «, (3 is averaged over all elements. Thereby local-field effects in the di-
electric function are neglected, which is justified for a plasma of excited electrons and holes
that behave like quasi-free carriers [159]. For the retarded polarization function the Lind-

hard formula is obtained:

by A
A - k3 () () et
v a) b Tep o — €x + hw +iy

The energies 7 and occupancies f; are chosen as e, and the corresponding electron and
hole occupancies F}}. These Fermi functions are determined by the temperature as well as
electron and hole chemical potentials in the quasi-equilibrium state. In consistency with
the splitting of the polarization in a background and an excitation part, a splitting of the

self-energy > = 3, + Yy is performed. Xy, contains only renormalization effects due to
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carriers in the ground state that are obtained as will be presented in Sec. (4.4.4). For the
polarization due to excited carriers, interband processes in Eq. (4.123) are neglected. The
dielectric response induced by excited carriers is dominated by intraband processes. The
dielectric function therefore becomes

Fqu—Flj

. (4.124)
el q—ek +hw+w

Excqw) = 1— qug

The static limit is obtained by setting w — 0. The Debye approximation is applied, which
follows directly from the long-wavelength limit ¢ — 0. Thereby the dielectric function
takes the form:

re )\F)\
a0 = 1+ Vg Z Z phes; (4.125)

with effective masses m;, within the valley v, being K, K’, ¥, ¥’ and T'. Material-realistic
static background dielectric functions for TMD monolayers are obtained as will be shown

in the next section.

4.4.2. Wannier Function Continuum Electrostatics

It is important for describing a TMD monolayer in a structured dielectric environment to
take the macroscopic screening into account. Atomically thin material sheets, especially
the 2d materials, consist only of material surface. Thus they are very susceptible to the
dielectric environment. The approach used to model the non-local influence of dielectric
screening on the Coulomb interaction in this work is the Wannier function continuum electro-
statics (WFCE) approach, that has been developed by Malte Rosner and Tim Wehling [158].
Itis used to describe the screening induced by the dielectric environment of the monolayer
in the ground state, while the screening of the excited carriers has been described in the
section before. Therefore, this section focusses on P,(q,w). An introduction to the WFCE
scheme will be given in the following.

When building a many-body theory upon ab-initio-derived quantities the dielectric environ-
ment has to be applied after the ab-initio-calculation has been performed. Therefore Rosner
et al. derived a model, that combines the Wannier function representation of the Coulomb
interaction with continuum medium electrostatic. Dielectric environments such as layered
heterostructures are easily accessible by the WFCE scheme as the model keeps the most im-

portant properties from non-local (macroscopic) screening.
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Recalling the RPA-terms from the introduction of Sec. (4.4) one obtains for the screened

Coulomb potential in frequency space:

_ l / _
V — — a — -1 U 4.126
(q7 w) 1 . UqPR((L CLJ) 8R (q7 (.U) q ( )

with the polarization function Pgr(q, w). Within the WFCE scheme the polarization is split
into two contributions as has been performed above as well. The first term contains screen-
ing from charge fluctuations between a subspace of bands in the energetic region of inter-
est and the second term Py contains screening from all other transitions. This effectively
lowers the bare Coulomb interaction U, inside the monolayer giving rise to the screened
interaction V. In the following the continuum formulation of dielectric screening will be
combined with the Wannier representation of the Coulomb interaction. The continuum

medium description starts from Poisson’s equation in the presence of a dielectric medium:

;tpexxr) — VD)

=V / d’r' [0(r — ') + x(r — )| E(r'), (4.127)

where the external charge density p.,;(r) induces a dielectric displacement field D(r) due
to the emerging polarization P(r) = [d’r'y(r — r')E(r'). The susceptibility x(r — 1)
describes the response of a (homogeneous) material to an external perturbation.

The electric field is defined by the electrostatic potential E(r') = —V®(r’). Separating r in
Eq. (4.127) into components r, z and performing a Fourier transformation gives rise to the
Poisson equation in g-space, where q = q will be used. As solution the dielectric function
is obtained

(I)e:rt (q7 QZ)

: 4128
P(q,q.) (4128)

e(q,q:) =
where the electrostatic potential of the external charge can be linked to the bare Coulomb
potential U%¥(q,q.) = —e®..(q,q.) and V3%(q,q.) = —e®(q,q.) corresponds to the
screened interaction. The superscript "3d’ shall denote, that the Coulomb interaction still
depends on ¢, gy, g..

The dielectric function can also be obtained from ab-initio-calculations. In order to con-
nect the microscopic dielectric function with the dielectric environment, non-localities in
z-direction are neglected by averaging over an effective monolayer thickness. Thus ¢(q, ¢.)

is compressed to £(q) still being of microscopic nature in the z, y-plane. To account for
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macroscopic screening the method of mirror charges is used. An oscillating charge density
located in the central layer, this experiences a mirror charge density at equal distance on
the other side of the interface. The mirrored charge density has a reduced magnitude of
g = ST (4.129)
€ir1 T &
where i labels the specific dielectric slab of the surrounding material. The main idea of
the WFCE method is to perform an eigenvalue decomposition of the ab-initio calculated
Coulomb interaction matrix V3¢(q, z = 0) (for example in the Wannier basis). The leading
eigenvalue, that corresponds to long-wavelength charge density modulations, is corrected
by the modified dielectric function of the continuum model that describes the macroscopic
screening. The long-wavelength part of £(q) is thus modified according to the dielectric
screening.

The obtained and modified dielectric function takes the form:

(q) = exq, z =0)|v)(vi| + ity (aq) (4.130)

Here, £24(q, z = 0) = 1(q) is the modified leading eigenvalue of the decomposition of the

microscopic 3d dielectric matrix, that is evaluated as

71—/}7‘51’[r
}Leff

ei(q) = o / dg.c(q,q:) - (4.131)

ﬂ—/heE

The vectors |v1> are the eigenvectors of the first (leading) eigenvalue. While the leading

2d
rest

eigenvalue itself is modified, the rest of the dielectric matrix £79,,(q) is kept as is. Thus the

2d Coulomb matrix V' depicted the chosen macroscopic screening can be calculated from
*!(q) by

Viq) = Z |vi><vi|5?d’_1(q)l_]i(q) ) (4.132)
The WFCE scheme provides a versatile tool in order to model macroscopic screening in
ab-initio-obtained Coulomb matrix elements without having to perform a numerically de-
manding DFT+GW calculation for each new sample structure. This method will be used

throughout this thesis.
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4.4.3. Intrinsic Screening

The WFCE scheme is applied to gain the material-realistic intrinsic (bare’) Coulomb inter-
action and the screening within the layer. The necessary quantities U; and ; are obtained
by fitting the DFT+GW calculation presented in Sec. (3.2.2). For this three-band model one
is left with two diagonal 3 x 3 matrices U(q) and &(q) representing the solved eigenvalue
problem [36, 160].

Ui(q) 0 0 eilg) 0 0
U(g) = 0 U 0 e(q) = 0 & 0 (4.133)
0 0 Us 0 0 &3

The leading eigenvalue U, (¢) has the specific form [36]

_ 3e? 1
U = .
1(9) 2e0A q(1 4+ vq + 6¢?)

(4.134)

The function ¢, (¢q) contains information on the dielectric structure of the sample. Thereby
the intrinsic dielectric screening eryp(¢) is always contained. This dielectric function de-
scribes the microscopic screening of the layer itself and is also obtained by fitting the ab-
initio-data. It may additionally be modified to depict layered substrates as will be presented

in Sec. (4.4.4). The fitted microscopic screening function is given by [36]

a+q2

a sin(qc)
bgc + q2

STMD(q) +e. (4135)

The fit parameters of both functions are given in Tab. (C.1) and (C.2) in the appendix. Using

the eigenvectors

. 1 +2 . 0
- -1 _ =
Vi = \/g 1 ) Vo = \/6 1 ) V3 \/5 +§II: (4‘136)

the Coulomb matrix modified by the dielectric function can be transformed back into the
Wannier basis o, S with o, 8 € {d,2,dyy,dx2_y2 }. Applying V;(¢) = Ui(q)/ci(q) one obtains

VP = vV (gv' (4.137)
Uy’ = vU(q)v' (4.138)
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The matrix v contains the eigenvectors as columns. The resulting Coulomb interaction V3*
is in the following identified as the material-realistic ground state Coulomb interaction in-
cluding screening from the dielectric environment while UZ” is the bare intrinsic inter-
action. This model scheme can be expanded considering more complex layered dielectric
environments that are present in van der Waals heterostructures or substrate structures
of the sample [161] yielding different V2. This will be shown in the next section, together
with the simple approach of taking h.g — 0 and taking a bare 2d Coulomb matrix element
for U, (q), that will result in the so called Keldysh potential [162, 163]. These different ap-

proaches to be shown next will yield a specific form of €, (¢) that can be inserted above.

4.4.4. Dielectric Screening

Samples made of TMD monolayers mostly come in layered substrate structures, e.g. being
encapsulated in hBN or contacted by graphene. This chapter will give an overview on the
methods used to derive a specific form of the macroscopic screening. Starting point will
be a 2d layer embedded in a 3d environment. While the WFCE scheme embeds the chosen
macroscopic dielectric function in V2, the following parts focus on obtaining the dielectric
functions that describes the leading eigenvalue. Complex dielectric environments also pro-
vide renormalizations of the ground state band structure that have to be post processed on
the ab-initio-results. They are described in the so called GAW-approach that will be shown
here.

Screening of a 2d Layer: Keldysh-Potential

The most significant geometric property of TMD monolayers is their thickness, which is
~ 0.6 nm. The Coulomb interaction in such a layer is better described by assuming a 2d
polarizable sheet in a 3d environment than by a pure 2d Coulomb interaction [162]. Thus in
the following the macroscopic screening of an infinitly thin sheet will be discussed. Starting

point for the electro dynamical description is again Poisson’s equation:

Vid(r) = _p) (4.139)

Er

Here the charge densitiy p can be written as the sum of an external point source and the
induced charge density within the 2d layer:

p(r) = ed(r)+ 0(z)paal(r). (4.140)
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4.4. Screening

The local electric field will induce dipole momenta within the 2d layer, that in turn will po-

larize the layer. The polarization of the layer can thus be expressed as:

Pyy = dipg (4.141)
= 2qEiocal (4.142)
= —ayVio(r),z=0), (4.143)

with ang being the polarizability of the 2d layer. The spatial variation of the polarization is

equal to the carge density
ViPas = —palr), (4.144)
which leads to the following expression for the induced charge density:
Pina(t) = a946(2)Vid(r), 2z =0) (4.145)

After inserting this expression into the Poisson equation and performing a spatial Fourier

transformation one is left with:

F(V*0(r))(k) = k*®(k) (4.146)
eF(O(r))k) = e (4.147)
o F(0(2)Vil(r), 2 =0)) = agak’Pou(ky), (4.148)

with k|| being the momentum in the z, y-plane, which for convenience will be renamed to

q. Here ®5,(q) can be written as:

dk. i
Dog(q) = / o ®(q, k.)e™". (4.149)

The total expression for the Fourier transformed Poisson equation is thus:

1
Fok) = - (e 4+ a24q° P2a(q)) (4.150)
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4. Many-Body Theory for TMD Monolayers

The expression for the 2d charge density can now be obtained by calculating the integral

expression for ®,,(q) as written above:

dk,
Poa(q) = / o P(q, k) (4.151)
1 [dk, 1
= —g/ o E(e—FOéquQ(I)Qd(q)) (4.152)

Solving this integral results in:

(&

(I)Zd(q) = _2€q (1+a2_2adq)

(4.153)

In general the two-dimensionality of the layer causes a momentum-dependency of the di-
electric function:

e 1
P - — 4.154
24(Q) e (4.154)
«
eq) = e+ Q—;q (4.155)
The 2d Coulomb potential takes the form:
e 1
Ve = ——— 4.156
a 2e0 aq + bg? ( )
e? 1 1
= <— — a) (4.157)
2ag0 \q¢  q+3

This is often called ’Keldysh potential’, which describes macroscopically screened Coulomb
interaction within a 2d layer. Here a can be written as the mean value of the dielectric
screening of the upper and lower halfplane dielectric a = (g1 + £2)/2, while b = 27wy,
is the polarizability of the material. For the TMDs investigated in this work, values of sy
can be found in Ref. [164]. The values are for MoSy sy = 0.66 A, for MoSey gy = 0.823 A,
for WS, aog = 0.603 A and finally for WSe; it is apg = 0.718 A.

The g-dependence of the dielectric function is a direct result of embedding a polarizable 2d
material sheet within a 3d environment. The next step would be to assume a finite thickness
of the monolayer. This seems not to be necessary though as there are methods for obtain-
ing a material-realistic description of the Coulomb interaction. Nevertheless, the Keldysh
potential is a useful approximation that depicts the real screening situation of a monolayer
better than a bare 2d Coulomb potential (4.83) as will be shown in Chap. (5).
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4.4. Screening

Substrate Screening

It has been experimentally shown that stacked monolayers do not lie directly on top of
each other [161, 165]. Van der Waals-forces provide a small air or vacuum gap. In exfoli-
ated samples also small particles, air or other impurities can be trapped between two layers.
Annealing cleanses the samples and causes the interlayer gap to shrink to an equilibrium
value. Thereby the dielectric screening changes. Such a gap reduces the screening due to
surrounding material and enlarges the binding energies of Coulomb bound many-particle

complexes (excitons, trions, ...). A model for this macroscopic dielectric screening in the

a) b) c)
€
e=1 e=1 D ™
€=
o €y Ky e €y
e=1 €=
]
c=1 ]
ESiOz 8hBN

Figure 4.2.: Macroscopic screening situation for a) a freestanding monolayer, b) a mono-
layer on top of SiO, substrate including a small vacuum gap, and ¢) a monolayer encapsu-
lated in multiple layers of hBN again leaving a small gap.

sense of continuum electrostatics has been developed by Matthias Florian in Ref. [161]. As
this extends the number of possible scenarios of the dielectric screening, this model has
been implemented and will be explained in this section. The obtained dielectric functions
are applied to the Coulomb interaction using the WFCE scheme presented in Sec (4.4.2).
This has been used in order to model freestanding monolayers, monolayers on top of SiO,
and monolayers encapsulated in hBN as shown in Fig. (4.2). For all calculations presented
throughout this thesis a gap thickness of 0.3 nm has been used.

Using the findings of Sec. (4.4.2) Poisson’s equation (4.127) can be adapted as

Vr/d?’re(r,r’)vr@(r’) = —&. (4.158)

€0

The dielectric function £(r, r') provides non-local screening effects for the charge density
p(r) resulting in the electric potential ®(r). Again the z-dependence of the dielectric func-

tion is neglected and the charge density is located at the center of the TMD layer. Therefore
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4. Many-Body Theory for TMD Monolayers

the Fourier transformation of Eq. (4.158) reads

_pla)i(2)

(07 — q*)®(q, 2) @)

(4.159)
The ansatz for the electric potential has to fulfill the continuity conditions for the interfaces.
Additionally the field has to vanish for x, y — oc. The ansatz is

P( —qlz| —qlz=zj|
d = =0 4 Bje 1* % 4.160
(q,2) FE— E i€ ( )

The first term on the right hand side accounts for the inhomogeneity due to the charge
density within the TMD layer, while the second term represents the homogeneous solutions
of the Poisson equation in each layer. Index j labels the interfaces of the N layers. Thus the
ansatz describes the potential of a 2d charge density that is superimposed with potentials
arising at the interfaces of the different dielectric layers. The continuity condition in z-
direction states that the potential has to be continuous but may have a kink. Therefore the
derivative is allowed to have a sudden jump of the function value. This exploited to fix the

magnitude of the interface charges according to Eq. (4.129).
£;(q)0,®(q,z; —0) = ¢£j41(q)0,P(q, 2 +0) (4.161)

This gives rise to a matrix equation that determines the B; and thereby the macroscopic 2d
dielectric function. It describes the screening within the TMD layer (z = 0) of the layered

structure and is used as modification of the leading eigenvalue in Eq. (3.33):

-1
¢o(q,z = 0) s
ei(lq) = g;(qTZ:O) = emvmp(q ( Z M zie” 1% ) (4.162)

The matrix M and the vector x contain &; and e 9%~ according to Eq. (4.161). The solution
of Eq. (4.162) provides background screening for any vertically stacked layered sub- and
superstrate structure. In this work three different setups are investigated: a freestanding
monolayer, a TMD monolayer on SiO, substrate and a TMD monolayer encapsulated by
hBN. Eq. (4.162) also allows to include the small air gaps, that have been mentioned in the

beginning of the section.
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4.4. Screening

Ground State Renormalizations from Dielectric Environment

By virtue of the changed dielectric situation when applying one of the scenarios explained
beforehand (expect of course for the freestanding monolayer), the ground state single-
particle energies will be renormalized. As explained in Refs. [161, 166, 167] these renormal-
izations can be expressed in the GAW-formalism. The main idea is to calculate the renor-
malizations effects only for the the difference between the unscreened (freestanding) and

the screened (due to the dielectric environment) Coulomb interaction:
AV = VHS _yfree (4.163)

The renormalizations are calculated in SXCH-approximation (see Sec. (4.3.3)). Considering
the ground state the occupations for electrons and holes are f* = 1, f¢ = 0, which directly

leads to renormalizations of the type
1 1
dw,
S = A (5 )
1

These renormalizations provide a shift, which is nearly constant in k, thereby changing
the band gap as presented in Tab. (4.1). This in turn has implications on the dipole matrix

elements (see Sec. (4.6.1)) as well as on the exciton binding energies that will be obtained

later on.
(meV) E[G(,DFT+GW A E}G{,GdW
SiO, enc. hBN
MoS, 2638 -262 -357
MoSe,y 2355 -239 -318
WS, 2775 -280 -390
WSe, 2359 -255 -350

Table 4.1.: Band gaps of monolayer MoSs,MoSe,, WS, and WSe, obtained from the Wan-
nier interpolation together with GAW shifts induced by the macroscopic screening of dif-

ferent substrate geometries.

75



4. Many-Body Theory for TMD Monolayers

4.5. Charge Carrier Scattering

The dynamics of excited carriers induced by pulsed optical excitation in Eq. (4.79) are de-
termined by scattering processes. These scattering processes are described by a collision
integral. Due to carrier-carrier or carrier-phonon scattering processes the excited carriers
experience a change of momentum. Thereby arbitrary initial distributions are able to relax
into a thermodynamic equilibrium state. Commonly the description of the scattering can

be split into two scattering rates [137]:

GRO| = 0RO RS (4165)
A collision between e.g. two carriers in states ]k, A)and ‘k’, \') will change their momenta
and thus the occupation number £ (t). This occurs in two possible ways. Either a carrier is
scattered out of state |k, \) with probability Sy and occupation f)(t) thereby effectively
reducing the occupation or a carrier will be scattered into state ‘k, ) with probability Sy
and occupation 1 — f}(¢) and effectively increase the occupation. For fermions it has to
be considered that already occupied states cannot be filled more than once due to the Pauli
blocking.
Population dynamics in monolayer TMDs have been shown for example in Ref. [127]. For
Chap. (7) it is important that scattering or relaxation can occur in order to describe the
optical excitation of charge carriers and the behaviour of the total charge carrier density
with the exciting pulse strength properly. Nevertheless, the focus of that chapter is on the
steady-state value of the equation system, where £ f(¢) = S4}(¢) = 0 has been reached.
Therefore a microscopic model of scattering processes is not necessary. As consequence

the relaxation time approximation has been used, which will be described in the following.

4.5.1. Relaxation Time Approximation

In the quasi equilibrium state it can be assumed, that the change of the occupation is not
large in between two discretized time steps. The carrier population will finally relax into a
Fermi distribution. Assuming the carrier population to be close to the final Fermi distribu-

tion it can be set:

fat) = FR+0f21). (4.166)
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4.6. Light-Matter Interaction

It shall be noted that the Fermi function F}} depends on the current status of the full sys-
tem. The single-particle energies will be renormalized according to the actual presence of
charge carrier within the band structure valleys. The chemical potential of electrons and
holes will change as well, due to the accumulation of carriers. Inserting the ansatz (4.166)
into Eq. (4.165) one obtains:

%f‘?(t) = (1= B = 0R(0) Sp™ = (R +0R(1)) S (4.167)

scatt.

If the difference between the actual occupation and the Fermi distribution 6 £ () is small,

it is valid to assume equal in and out scattering rates. This allows for writing

d in ou
7 /c® = —0fid(t) (Sﬁ’ + Sy t). (4.168)

scatt.

Identifying <Sﬁm + Sﬁ’m> asaninversetime 7' thatisinaverage needed fora scattering
event between two particles, one is left with the final form of the scattering term in the
relaxation time approximation:

— _—fﬁ(ﬂ - Iy , (4.169)

scatt. TR

d
&fk(t)

Typical relaxation times for TMDs are in the order of 100 fs [127], which has been used

throughout this work for all material constellations.

4.6. Light-Matter Interaction

Optical experiments, for example measuring the absorption, reflectivity or transmittivity,
are performed in the presence of polarizable media, as it is the case for van der Waals het-
erostructures or encapsulated TMDs. Light that propagates through this layered samples
interacts differently with each dielectric slab. Electromagnetic waves propagating through

such a dielectric structure are described by the macroscopic version of Maxwell’s equations:

V-D = piree, (4.170)
V-B = 0, (4.171)
0B
E = —— 4172
V x o ( )
D
VxH = jfree+%—t, (4.173)
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4. Many-Body Theory for TMD Monolayers

where D = ¢yE + P is the displacement field with E being the electric field and P the po-
larization, while H = ;' B — M is the magnetic field in the presence of a magnetization
M with the external magnetic field B. Both P and M describe, how a material reacts on
an incident electric (magnetic) field. This work is focussed on optical properties, thus P
is most important. Here it describes the field, that is induced when dipoles in the system
respond to external electric fields or are created by them. Thus it is described by the density
of dipole moments. The polarization can be written as P = ¢y E, where . is the suscep-
tibility that describes the response by excited charge carriers. Background contributions
are neglected.

The first part of this section will discuss the dipoles, that are induced by exciting carriers
due to a laser pulse. The second part will describe how to calculate the optical absorption,
reflection or transmission in the presence of surrounding dielectric matter, such as an en-

capsulation of the monolayer in hBN, which is often done in experiments.

4.6.1. Semi-classical Dipole Interaction

The interaction between photons and electrons in matter can be described in the sense of
minimal coupling. Here the momentum p is replaced by momentum p + eA(r, t), where
A (r,t) is the vector potential of the magnetic field B(r, ¢) = V x A(r, t). The Hamiltonian
of the light-matter interaction Hyy becomes

(p B qA(I', t>>2

Hy = 57, + q®(r,t) + V(r), (4.174)

with ®(r,t) being the electric potential. In Chap. 5 this Hamiltonian will be expanded in
order to study the effects of magnetic fields interacting with excitons. Further evaluating
the expression above using the Coulomb gauge (VA = 0, ® = 0) only linear coupling of p

to A remains, giving rise to the light-matter interaction Hamiltonian (cf. Eq. (4.9)):
_ q
Hiy = ——pA(r,t) (4.175)
m

The interaction with the light field will cause an oscillating behaviour of the bound charges
around their ions [130]. Due to this fact it is possible to approximate the light matter in-
teraction as an oscillating dipole. Assuming that A is almost constant among the unit cell
of the crystal this oscillation will cause a time-dependent and finite change of the position
operator (r) of the charge density. The time-dependence of this charge displacement is de-
termined by the electric field describing the light pulse, thus the Hamiltonian Hyy can be
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expressed by the scalar potential [131]
Hpy = erE(t). (4.176)

The oscillation will induce a finite momentum <p> From the commutation relation —iii/m.p =
[Ho, r| itis evident that the expectation value of the momentum can be expressed by the ex-
pectation value of the position operator. Using the Bloch states |k, A) for calculating the

expectation value the microscopic transition dipole matrix elements d are introduced
dy = e(k,e|r|k,h). (4.177)
The eigenenergies of H can be used to further evaluate the expression above, leading to

ne _ch (Kelplk )
dpe = N (4.178)

with E¢ being the band gap. Due to the similarity of the momentum and the current opera-
tor j = e/m,p [131] the dipole matrix elements can be expressed using the matrix elements
j2°. These are proportional to the gradient of the ground state Hamiltonian H containing
the band structure as derived in Sec. (3.2.2). The final form of the transition dipole matrix
elements is

he __ € 1 h,a * e, af
a7/5

Here the expansion of the current operator matrix elements into the Bloch states has been
used additionally. As a concluding remark: the gradient of the Hamiltonians Hy can be
derived analytically if the explicit form of the Hamiltonian is known (which is the case for
the Hamiltonians used here). When discretizing the Hamiltonian numerically, especially
for the Monkhorst-Pack grid [168], which is used throughout this thesis, a finite difference
approximation can be derived for smooth functions in k [119].

The dipole determines the strength of an optical transition. Transition are allowed or for-
bidden depending on the symmetries of the involved Bloch states. Furthermore the dipole
is sensitive to the polarization of the electric field. In this thesis the electric field carries a
circular polarization, as circular polarized light couples to the valleys K, K’ in the hexagonal
BZ differently. The envelope function of the laser pulse is describe as a Gaussian function,

as any main frequency of the light has been transformed out using the rotating frame pic-
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ture. Thus the pulse is described as

t—tg \ 2
E(t) = e, Bl =) 4m@ (4.180)
ith L +1 (4.181)
W1 e = —= g = . .
7 \/5 o1 ’

Here, Ej is the field strength, 7 is the full width at half maximum (FWHM) of the Gaussian
(pulse duration) and e, is the vector of left or right circular polarized light. The strength of
the electric field Fy is not accessible in experiments. A more useful quantity is the pump flu-
ence, that gives insight on the amount of energy that is pumped into the system by the laser
pulse. The fluence can be obtained by utilizing the Poynting vector S = E x H. Itis defined
as the energy per pulse area and duration applied to the monolayer, being proportional to

the squared absolute value of the electric field:
S = eoco / dt |E(t)|” (4.182)

The evaluation of this integral yields the relation between field strength £, and fluence S
that will be useful later on in this thesis:
T

_ eCn-en-T - F? 4.183
32In(2) 00T (4.183)

The evaluation of the equation above gives the fluence in meV nm~2. The fluence is a func-
tion of the pulse duration S = S(7). To cast the fluence in common experimental units of
©J cm~2, the conversion factor is 1 x 10'7e, with e being the elementary charge in SI units.

Using uJ cm ™2

will be useful for comparison with experiments where the pump laser de-
fines the density of excited charge carriers. By inverting relation (4.183) the field strength

Ey can be obtained from the fluence S.

4.6.2. Optical Absorption

As it is part of this work to investigate TMD monolayer in layered dielectric environments,
the propagation of the light through this dielectric structure has to be considered. From
Maxwell’s equations one obtains the wave equation for the electric field E(¢) in the pres-
ence of matter. The goal is to obtain an expression for the frequency-dependent absorp-
tion of TMD monolayers. The laser illuminates the TMD monolayer perpendicular to the

monolayer plane. All vector products can thus be expressed by their absolute values. The
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polarization can only extend in lateral direction (cf. Sec. (4.4.4)). The wave equation is given
by

A 1 0? 02

T 29 E(z,t) = _NO@P('% t). (4.184)
The monolayer thickness in z-direction can be expressed as §(z — zg) as it is small compared
to the wavelength. Inserting P = ¢ox.E and performing a Fourier transformation one
finds P(w) = xe(w)E(w). The electric field is effectively reduced by the assumption of

infinitely small expansion in z-direction.

{ 9%  wn?

S | Bew) = —usole - ) B (4185

To solve this equation an ansatz for the electric field and its derivative has to be made.
This ansatz provides the correct continuity condition to connect wave functions and their
derivative at layer interfaces. For each layer the ansatz therefore consists in general of two

waves, one propagating to the top and one to the bottom.
Ei(2) = AjeilF2) 4 pjemhilzm2) (4.186)
The monolayer (and additional air gaps, that are described later on) contribute to the sus-

ceptibility x(w). The susceptibility describes the optical response of a material to an exter-

nal electric field:
—+00
P(t) = / dt'x(t,t"E(t). (4.187)

For the system being in a stationary, or quasi-equilibrium state, the susceptibility reduces

to
t
P(t) = / dt’'x(t —t"E(t), (4.188)

where the convolution theorem is exploited in order to obtain:

P(w) = x(w)E(w) = X(w)=—=—=. (4.189)
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The susceptibility contributes absorptive phenomena by its imaginary part, which reduces
the strength of a propagating wave. Due to the small thickness of a monolayer it is assumed
that it does not provide modulations of the propagating wave other than absorption. The
optically active layered substrate on the other hand will modify the wave, because interfer-
ence effects of the propagating waves between the layer interfaces occur. This interference
effects becomes strong, if the length of the layer and the wavelength are of comparable or-
der of magnitude. The modulation of the wave caused by layered structure is described
by the transfer matrix formalism [130]. Each interface or free propagation path provides a
matrix-multiplication-type equation for the change in transmitted, absorbed and reflected

amplitudes of the respective propagating wave in a way that:

A; A;
= M | Y (4.190)
Bjn B;

Here, the propagating wave is always perpendicular to the layer structure. For the free prop-

agation of a wave in a material layer of length L; with an index of refraction of n; on obtains:

e’ 0
Me; = < 0 it , (4.191)

with ¢; = n;kL; and k = w/c; being the 1d wave vector of the propagating wave. At a

dielectric interface, where the index of refraction changes from n; to n,, the matrix takes

the form:
1 14 Roimtop Bt
M; = 51 n?il ) n?fl ) (4.192)
T T

The propagation of the wave changes due to the different indices of refraction, therefore at
each interface k is changed. After dielectric step the wave propagates through the remain-
ing layer until the next interface is reached, therefore each layer j is in total described as
M ;M. The monolayer itself contributes the complex x(w) that has been described above
as well as a dielectric interface between the substrates to the top and to the bottom. Its

matrix representation is:

nj nj nj
_onj—1 2iY(w) 1+ nj—1 _ 2iY(w)

1\/IML =

1 1 + nj—1 + 21Y (w) 1 — nj—1 + 21Y (w)
5 n; j (4.193)

nj nj nj nj
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Here, it is defined, that Y (w) = 5—“—x(w). The total optical structure is therefore de-

2coeQn;
scribed as a set of matrix multiplications:

Mt = MyMey_1.. . Menv_j o MMM v_jy_, - Me 1My (4.194)

In the end, the absorption is obtained from:

a(w) = 1—|r]? = 2B (4.195)
nr
M21
P = 2 (4.196)
M22
t = M11+M12’T, (4.197)

where the matrix elements of M., are used. In this thesis two halfplanes of dielectric
media to the top and to the bottom of the monolayer are investigated. This enables the
description of a freestanding, an encapsulated monolayer and a monolayer lying on a sub-
strate. The expression for the absorption a(w) Eq. (4.195) can be specified to:

1— ST/SB—QY(UJ)

ro o= (4.198)
1+ /er/ep —2Y (w)

t = 1+ Ver/es +Y(w)+ <1 _ ver/es + Y(w)) r, (4.199)

2 2

where n =~ /¢ has been used. Using this formalism the absorption spectrum «(w) is cal-

culated for typical experimental scenarios. The results are presented in Chap. (6) and (7).

4.7. Summary of the Theory

Closing the theory chapter of this thesis, a short overview of the derived equations will be
given in this section. In summary a theory for calculating the optical properties of pho-
toexcited TMD monolayers in a layered dielectric environment has been presented in the
sections before.

Starting point of each calculation is the generation of the k grid, where the Monkhorst-
Pack [168] routine has been used in order to reduce numerical efforts and for better conver-
gence.

The next step is to calculate the ground state properties of the unexcited TMD monolayer.
Therefore it is necessary to obtain Coulomb matrix elements U, V;, and the band structure

a4 Eﬁdw’k. This necessitates the knowledge of the dielectric environment €, (q) in order
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to calculate Zﬁdw”\. The ground state Hamiltonian H, with eigenvalues £ can in general
be expressed by three commonly used approximations or methods in order to tackle prob-

lems of different complexity or required accuracy:
i) effective mass approximation
i) Tight-Binding parametrizations (see 3.1.1)
iii) interpolation of ab-initio calculated band structures (see 3.2.1 and 3.2.2)

When it is important to regain certain symmetries of the system, here for example the Cs,
of the TMD crystal structure, the band structure has to be post processed enforcing the
named symmetries to avoid numerical inaccuracies. Time reversal symmetry affects the
eigenvectors as ¢(—k) = —c*(k).

Given the band structure the Coulomb matrix elements have to be calculated expanded with
the same basis set (Bloch states). Thereby the expansion coefficients ¢ are introducing.
Intrinsic screening of the layer itself, fitted to ab-initio-results, as well as dielectric environ-

ment have to be accounted for (see Sec. (4.4). Different choices can be made:
) bare 2d Coulomb matrix elements: Uid (see 4.3.1)
ii) Keldysh potential: V(f (see 4.4.4)

iii) material-realistic Coulomb matrix elements from ab-initio methods: Ugﬂ/v;ﬁ (see
4.4.2)

Using the WFCE scheme and its extensions the dielectric environment can be cast onto all
possible choices of Coulomb potentials. Thereby V' emerges from the bare interaction U.
The dielectric environment also induces renormalizations of the ground state band struc-

ture, which are calculated from the GdW-scheme, resulting in

& = et +xiw (4.200)

1
GdW, A 2 : AAA
Ek - _2 ~ Avk)\k/kk/ 5 (4.201)

where AV is obtained from the difference of the Coulomb interaction of a freestanding
layer and the Coulomb interaction screened by the surrounding structure.

The transition dipole matrix elements d}¢ have to be calculated as well, which requires
knowledge of the gradient of the ground state Hamiltonian (see Sec. (4.6.1)). It can be de-

rived by applying standard calculus onto the given Hamiltonian, if the k-dependence is
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known. If the exact form of the Hamiltonian is unknown, the gradient Vy H) has to be cal-
culated numerically.

The SBE are used in different context throughout the remaining part of this thesis. In the
first case a quasi equilibrium state is assumed. The density-dependent renormalized band
structure can be calculated by self-consistently evaluating either the Hartree-Fock terms
in Sec. (4.3.2) or the SXCH-approximation in Sec. (4.3.4). SXCH allows for including ef-
fects such as screening of the interacting charge carriers. For the quasi-equilibrium state
the band structure renormalizations are evaluated using Fermi distributions F}} of a given
density, that are developed together with the band structure itself, until self-consistency is

reached.

= T (43 (4.202)
PO = g S g PSP (138 a0

Together with the dipole and Coulomb matrix elements the renormalized band structure

defines the input for the equation of motion of the microscopic polarizations f¢(t):

d . 1

I K (t) = —ﬁ(éﬁJréi—W) we(t) +

7

hQﬁe(t) (1-F—F), 4209

which can also be cast directly into Fourier space:
(hw — & — &g + i) YRS (w) + Q(w) (L - F — F)) = 0. (4.205)

Here the system is probed by a short and weak probe laser in order to obtain broadband ab-
sorption. The probe pulse is contained in the renormalized Rabi energy Qp¢(t) = dj*E(t)+
Db Wehihe', A constant phenomenological dephasing v has been introduced to ac-
count for broadening due to carrier-carrier or carrier-phonon interaction.

In order to analyze the dynamics of the occupations using the SBE the equation of motion

for the population function fli/ " (¢) has to be calculated as well:

d . 2 e/h + _Fe/h

i = SIm (O Oue) —“()T—Rk (4.206)
d J I~y =€ o € ’ e e

Ewl’;‘e(t) = —%({iﬂk—w—hwdet.) ﬁ(t)+%ﬂ{1 (1— f(t) — fl(t))4.207)

In this case E(t) takes the role of a pump laser rather than the role of a probe laser, thereby

exciting charge carries from the valence band to the conduction band. The laser energy
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4. Many-Body Theory for TMD Monolayers

is detuned to the band gap by fiwge.. The band structure renormalizations therefore have
to be calculated for each time step, which renders a self-consistent evaluation numerically
demanding. Thus a fine time grid has to be used to obtain converged renormalization. In-
stead of a constant dephasing, also a density dependent dephasing I'(n) can be introduced.
For the population function a scattering process using the relaxation time approximation
from Sec. (4.5) with 7 = 100 fs has been introduced.

After having calculated the time evolution of one of the cases presented beforehand the po-
larization of the active layer and the density of excited charge carriers have to be evaluated.

These are given by

1
Plw) = Zg(dﬁe)* he (W) (4.208)
1
- E&sz: 2. (4.209)

The binding energies of the excitons can be obtained by either analysing the evaluated ab-
sorption spectrum (cf. x(w) = P(w)/E(w), a(w) o Im(x(w)) in Sec. (4.6.2)) or evaluating
the exciton eigenvalue problem. The exciton eigenvalue problem is contained in the SBE in

form of the homogeneous Wannier equation

(hw — eff — 5 +i7) + ) Vg (w) = 0. (4.210)
h'e’ k!

The Wannier equation can be solved by diagonalizing the matrix representation of Eq. (4.210)

(€k + €k 51( k/wk Z elil/l}(]ﬁ/ ﬁ/e - EQ ﬁe . (4.211)
h' e K

The eigenvalues of this diagonalization are defined as bound states (below the gap) or the
continuum states (above the gap). The eigenvectors correspond to exciton wave functions
for the bound states.

This chapter presents a consistent theory for calculating the optical properties of photoex-
cited TMD monolayers in differently layered dielectric environments. The static limit of the
GW-approximation has been utilized to treat the many-body Coulomb interaction resulting
in the well-established SXCH-approximation. In this context material-realistic Coulomb
matrix elements originating from ab-initio calculations have been employed. The many-
body effects included will provide a realistic prediction of the excitation process as well as
the optical response. Different mechanisms that lead to band structure renormalizations
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4.7. Summary of the Theory

have been identified and will be analyzed in the following sections as well as the pump-
dependent accumulation of charge carriers. Basic properties of the ground state, excitons
in TMD monolayers, and long-lived interlayer excitons that form in TMD bilayer systems
will be investigated.
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5. Excitonsin TMD Monolayers

The two peaks from the spin-split K- and K'-valley transitions in the hexagonal Brillouin
zone are the most prominent features in the TMD absorption spectrum. Thus the K-valley
excitons A (direct spin-up transition at K) and B (direct spin-down transition at K’) have
been intensly investigated [46, 48, 57, 73, 169]. This chapter shall provide insight in basic
features and descriptions of the absorption spectrum of TMDs comparing different ap-
proaches for the Coulomb interaction and the influence of a magnetic field. Basis of the
calculations presented in the following sections is the exciton eigenproblem described by
the Wannier equation (4.211), which is part of the SBE. The following two sections contain
results that have been obtained jointly with Leon Hetzel and Laura Martens while the author
of this thesis has co-supervised their Bachelor’s thesis. In the first subchapter the compari-
son of the Keldysh-Coulomb-potential [162] derived in Chap. (4.4.4) to the bare 2d Coulomb
potential from Sec. (4.3.1) can be found. The Keldysh potential provides a more realistic de-
scription of a polarizable 2d sheet of a material embedded in a 3d environment rather than
the 2d Coulomb-potential, which in fact reduces the dimensionality. The second subsec-
tion summarizes the results on excitons in a magnetic field [170], which is for low magnetic
fields often used to lift the degeneracy of the valley polarizations [171] but can also be used

to determine the effective mass of the excitons [172].

5.1. Comparison of Keldysh and Coulomb Potential

The eigenvalue for bound electron-hole pairs in TMD monolayers is governed by the equa-

tion
h e he E ehhe he __ n, ) he
k

which contains the transition energies ef! + ¢ as well as the Coulomb interaction V,§s,,
that provides energectially favorable states below the band gap. From Eq. (5.1) the eigenval-

ues E}! are obtained by diagonalizing the corresponding matrix representation. This homo-
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5. Excitons in TMD Monolayers

geneous equation is called Wannier equation and can also be obtained by a Fourier trans-
form of the real-space Schrodinger equation, that describes the relative motion between
electron and hole. The whole equation thus describes a hydrogen-like problem, where the
mass of the hole (positive charge) is comparable to the effective electron mass. One ex-
pects (and obtains) wave functions categorized by their principle (n) and magnetic (m =
—n ...n) quantum numbers, for example the 2s-state corresponds ton = 1 and m = 0.

Applying an effective mass approximation to the band structure, the whole equation re-
duces to a spherical symmetric problem. Perfoming perturbation theory on the Hamilto-
nian atk = Kleads to ep = h?k?/(2m}). The term mj}, is defined as the second derivative

of the energy with respect to the wave number:

2 A
() - Foe 52)
mi ). W2 Okadk

As this is reminiscent of the energy of a free particle with mass mj it is called effective mass

approximation. When using the effective mass approximation, all radial dependence of the
band structure is neglected. Only s-shaped exciton wave functions appear, that are peaked
atk = 0. In order to keep radial dependence, a more elaborate band structure calculation
is beneficial for understanding the underlying physics. Here, the three band model from
Ref. [90] described in Chap. (3) is used.

In principle both A and B exciton, stemming from the different transitions at K and K’ for
spin up and down electrons, can be calculated using Eq. (5.1) with or without the effective
mass approximation as they are Is-excitons. No further information is gained when calcu-
lating the B-exciton (see Sec. (3.3)), whereas the numerical effort is doubled. Therefore it is
omitted in the following.

The Coulomb matrix elements V,§i¢ , are obtained from the expansion of the Coulomb in-
teraction into the Bloch states of the ground state model. In this first part the two different
forms of the Coulomb potential V, will be compared. As a short reminder of the specific

form:

2 2
og €1 VKy_e 1

q q (5.3)

 2e08, g T 2606, q 4 2manaq?

where €, = (g1 + £2)/2 is the average dielectric constant of the top and bottom material
surrounding the TMD and «y, is the 2d polarizability that can be obtained from experi-
ment [164]. The bare 2d Coulomb potential yields the 2d Rydberg-series known from the
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5.1. Comparison of Keldysh and Coulomb Potential

hydrogen atom [129]

Er o= -8 (5.4)

where the ground state is at —4 times the binding energy E of the 3d exciton. The binding
energy of the lowest state (1s) obtained from the bare 2d Coulomb interaction is larger than
the one obtained from the Keldysh potential. Considering the dielectric constant ¢, as fit
parameter the binding energy may be corrected. Nevertheless this is physically not justi-
fied and misleading, as the dielectric environment is artificially changed in order to dimin-
ish the strong Coulomb interaction. The large binding energy obtained from using U2 in
Eq. (5.1) originates from the conservation of the spherical symmetry of the wave function
in 2d. Confinement due to the reduced thickness is therefore accompanied by a decrease in
the Bohr radius and an increase of the binding energy. Obviously the reduction of the di-
mensionality implied in U2? does not reflect realistic physics. The real situation is described
better, if a polarizable 2d material sheet embedded in a 3d environment is accounted for.
The Keldysh-potential contains a dielectric function that itself has a linear dependence on
q due to the Coulomb interaction, which is of long-range nature due to the weak dielec-
tric screening. For short ranged interaction between charge carriers this model is limited
due to the infinitesimally small thickness that has been assumed initially, see derivation of
Eq. (4.157) in Sec. (4.4.4).

Thelinear dependence of the dielectric function e(q) = &, +2mas4q has alarge influence on
the energie tic order of the eigenstates as the s-state is always the energetically highest for
every n, inverting the usual sequence. The ¢-dependence of the dielectric function causes
a stronger screening at short range and weak screening at long range. As the exciton ra-
dius increases with n and |m/|, this directly screens the states with higher m weaker than
the corresponding s-state of the respective n-series. The screening thus behaves inversely
with the exciton radius, leading to stronger binding of the respective states. This can be
understood from analyzing the dielectric environment qualitatively. The electric field be-
tween electron and hole permeates both the monolayer as well as the surrounding material.
Therefore large parts of the electric field are weakly screened by the dielectric. Increasing
the spatial separation between the charges, more of the electric field is in a region where
the screening is reduced [64, 173, 174].

The binding energy of the 2d exciton screened by a Keldysh potential can be derived by mod-

ifying the dielectric constant to be depending on the principle quantum number n [64, 174,

91



5. Excitons in TMD Monolayers

175] while the general (n — 1/2)~2 dependence remains. Thus one obtains:

pet 1

E" = . (5.5)

o™ (n— 1)

32maap i
1 1+ —
+\/ +9n(n—1)—1—3

To this end the dielectric function occuring in the Keldysh potential (cf. Sec. (4.4.4)) that

with ™ = -

5 (5.6)

effectively screens the electron-hole interaction and reduces the binding energy is aver-
aged up to a certain effective bohr radius g to be only ¢g-dependent. It can be shown that
e = ee(n) [174], which leads to the relation shown in Eq. (5.6).

Itis found, that the Keldysh potential is more capable of describing the screening situation
in a material-realistic way [174]. The Keldysh potential also works well, when considering a
complex layered substrate. It has been shown in [161] and Sec. (4.4.4) that a small vacuum
gap in between neighbouring van der Waals-bound layers effectively reduces the dielectric
screening. Thereby the binding energy of the excitons is increased compared to the case of
two layers in direct contact. The dependence of the dielectric function on ¢ therefore devi-
ates from a linear one. Especially for small ¢ the deviation depends strongly on the height
of the vacuum gap. On the other hand the influence of substrate phonons of encapsulated
monolayers counteracts this reduction of the screening by the vacuum gap [62]. These two
effects, the reduction of screening due to an vacuum gap and the influence of substrate
phonons, tend to compensate each other. Therefore the use of the Keldysh potential, e.g.

for the case of encapsulated monolayers, is verified.

5.2. Excitonsina MagneticField

Applying magnetic fields to monolayers of TMDs [44, 170-172, 176, 177] lifts the valley degen-
eracy of o1 polarized light and shifts the spectral peak position. From the dependence of
this energetical shift on the magnetic field strength excitonic properties can be extracted.
The magnetic field will force the electrons within the TMD layer into Landau states. The
Coulomb interaction will cause electrons and holes in these Landau states to form magneto-
excitons. Thus this chapter is subjected to Landau diamagnetism and magneto-excitons in
TMD monolayers.

In order to describe these magneto-excitons it is difficult to start with the full problem but
rather to first evaluate the equations of the electrons and holes in the Landau basis which

is successively used to obtain Coulomb matrix elements. Assuming a magnetic field being
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5.2. Excitons in a Magnetic Field

oriented in z-direction and neglecting further effects from spin-orbit interaction (that are
already included in the ground state basis) and Coulomb interaction, the Hamiltonian in
minimal coupling provides

2 2 P2

e
H =YY .8+
&m

2
i 5.7
o r (5.7

Introducing the magnetic length I? = h/Be withr = o will help to distinguish differ-
ent coupling regimes later on. Formely introducing inter- (a'/a) and intra- (b' /b) Landau
level creation and annihilation operators render the equations mathematically similar to

the harmonic oscillator. One obtains for electrons and holes
e e T 1
H® = hw;|a'a+ 5 (5.8)

H" = hut (b*b+%) , (5.9)

with w¢/" = ¢e/nB/m and g/, = Fe being the cyclotron frequency that defines the classi-
cal rotation of an electron (hole) moving perpendicular to a magnetic field. The eigenvalue
equations of (5.8) and (5.9) provide the Landau levels and the eigenfunctions that will be
used for deriving Coulomb matrix elements. In the second quantization defining the num-

ber operator as » = a'a and 7' = b'b one obtains

1 1
hw? (ﬁ + 5) D, (00) = Ei®,(0e) with Ef = hw (n + 5) (5.10)

1 1
" (ﬁ’ + 5) @, (on) = E"®p(on) with E = hu (n’ + 5) (5.11)

Considering the orbital momentum in Eq. (5.7) the eigenfunctions of an electron will also

depend on the intra-Landau operators

D (5.12)

In order to describe magneto-excitons the Coulomb interaction V (r) is added to Eq. (5.7).
A unitary transformation is used to obtain an equation for the relative electron and hole

coordinater =r, — 1},

2
HY = HE+ HY —V(r) with HY" = ST (p+5Bxr) (5.13)
e/h
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5. Excitons in TMD Monolayers

Using the eigenfunctions (5.12) as basis set for an expansion one obtains the eigenvalue

equation for HMX

H%®,(0) = Ea®u(0) (5.14)
Da(0) =D CanPun(0) - (5.15)

n

Therefore a Wannier equation for the magneto-exciton states E,, and the coefficients c,,

arises

Z [hwc (n + %) Onny — /dZQ@:‘L,n,(g)V(r)CI)nn(g)] Con = Fu Z ConOnn - (5.16)
For the Keldysh potential this equation can only be solved numerically. Due to the nec-
essary evaluation of Laguerre-polynomials within the Coulomb matrix elements V,,,, =
[ d*0®%, ., (0)V (r)®,,(0) this is only possible for a limited number of basis states ®,,,,:.
Eq. (5.16) has strong implications on the absorption spectrum. The higher s-states are split
according to the Landaulevels contained in Eq. (5.16). For increasing magnetic field strength
the higher states shift closer to the band gap due to their smaller binding energy.

The magneto-exciton states exhibit two different regimes of field dependence for increas-
ing magnetic field strength. For low field strength the diamagnetic part dominates causing

a quadratic shift behaviour of the exciton states
A ey 2
Ez, = @@ ). B> (5.17)

The Wannier equation (5.16) has been solved in the effective mass approximation, thus the
reduced mass j occurs. From the induced shift with increasing field strength the radius
Tl = 7/ <r2>nl of the exciton state with quantum numbers n/ can be found from the curva-
ture. For large magnetic fields the exciton states shift linearly, which in turn allows for the
extraction of the effective mass

S = "B (141 -
W 2

The Bohr radii and the effective masses of WSe, for the 1s to 3s states have been compared to
literature values [172] and are in good agreement. The Bohr radius of the 1s state of MoS, is
in good agreement with theoretical values from Ref. [164]. The magnetic length in compar-

ison to the exciton Bohr radius indicates, whether the excitons experience a weak (I > )
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or a strong (I < r,;) magnetic field. The large binding energy of excitons in TMDs causes
weak coupling to magnetic fields for field strength of up to several tens of T. Thus it is exper-
imentally very difficult to measure in the linear regime. For MoS, the 1s state shifts about
10 meV for B = 250 T. The higher lying states provide lower binding energies. Therefore a
reduced magnetic field of 40 T causes a comparable shift of ~ 10 meV for the 2s state.

5.3. Conclusion

Excitons in TMD monolayers have been described by solving the Wannier equation in ef-
fective mass approximation. Basic properties of these excitons have been investigated. The
Keldysh potential provides a more realistic approach for the Coulomb interaction, as it de-
scribes a polarizable 2d sheet in a 3d environment rather than a reduction of the dimen-
sionality. This implies a better description of the exciton states, especially reproducing the
energetical order of the s and p states. Due to their different Bohr radii, higher p-states
are energetically lower than the s-states of the same main quantum number n. Also a non-
hydrogenic Rydberg series of the ns-states originates from the Keldysh description.

Applying magnetic fields to TMD layers does not affect the lowest states much, as they have
alarge binding energies. Strong magnetic fields of hundreds of T (for MoS,) are necessary
to cause a significant shift. Even stronger fields are necessary to change from the diamag-
netic (quadratic shifting behaviour of the exciton state) regime to the linear one. Neverthe-
less the Keldysh potential provides a realistic description that enables the extraction of the
Is to 3s state Bohr radii and masses in WSe, which are in good agreement with literature

values.
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6. Excitation Induced Many-Particle Effects
in TMDs

After discussing the ground state properties of TMDs and also models for excitons in TMDs
(with and without a magnetic field) in Chap. (3) and (5), the many-body theory developed for
TMD monolayers in Chap. (4) is applied to the cases of MoS,, MoSey, WS, and WSe,. This
way access to the optical properties based on material-realistic band structures is granted
and effects of excited charge carriers can thus be described. Moreover, the theory can be
systematically enhanced by including processes such as scattering due to carrier-carrier
Coulomb or carrier-phonon interaction. The focus of this section is on many-body effects
thatare induced due to the interaction of optically excited charge carriers with each other. A
quasi-equilibrium is assumed, leaving the occupation probabilities to be quasi Fermi distri-
butions f}(t) = F, which are self-consistently calculated together with the single-particle
renormalizations. Hence, dynamical processes for charge carrier populations are not dis-
cussed here and left for the following chapter. The optical absorption is obtained as linear
response to an ultrashort and weak probe pulse. The results presented in this chapter have
been published in cooperative work in Ref. [156]. Unless stated otherwise the author of this
thesis performed the numerical calculations presented throughout this chapter. The fig-
ures from [156] have been reprinted with permission.

The presence of a direct band gap in monolayers of TMDs is advantageous for an appli-
cation in optical and electronic devices. An indirect band gap therefore counteracts the
promising electronic properties of TMD monolayers. In contrast to changing the proper-
ties of a monolayer by applying strain [47] or Coulomb engineering [37] due to the dielectric
environment [105], a mostly overlooked fact is, that a transition to an indirect band gap can
also occur when inducing charge carriers via optical excitation or doping into a monolayer
TMD. Considering the strong Coulomb interaction that prevails in optically excited TMD
monolayers, the band structure renormalizations are expected to be strong. Therefore it
is necessary to investigate on the many-body renormalizations that describe the transition
to an indirect band gap - the charge carrier distribution, band-structure renormalizations,

and optical properties in response to a weak optical probe field.
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6. Excitation Induced Many-Particle Effects in TMDs

6.1. Transition from Direct to Indirect Band Gaps

Many-body interactions of excited carriers are known to cause band gap renormalizations.
Due to the strong Coulomb interaction in TMD monolayers the strength of the renormal-
izations is higher in comparison to conventional semiconductors. The d-orbital character
of the bands contributing to the optical transitions additionally cause the momentum de-
pendence of the renormalizations to gain significance. Thus the valleys K and ¥ are shifted
differently as will be pointed out later. Starting point for the investigation are the semicon-

ductor Bloch equations for one electron and one hole band:

%wﬁe(zﬁ) = —% (& + &5 — i) pe(t) + %Qﬁ (1-F—F) (6.1)
where the 1!¢() is the single-particle expectation value of the transition amplitude of the
corresponding electron and hole creation and annihilation operators. Q¢ = d{"E(t) +
T 2w Withée v (t) is the generalized Rabi energy originating from the included light-
matter coupling with the dipole matrix elements d{". E(t) is the envelope of the exciting
laser pulse, which is here in right circular polarization to excite both K/K’-valleys. In the
quasi equilibrium that is assumed throughout this chapter the laser pulse describes a weak
probe pulse, which is resonant with the band gap energy. The screened Coulomb interac-
tion matrix elements Whhe , = e71(|k — K'|)V,&ihe , provide bound states. The interaction
is screened due to both excited carriers, where the plasma screening is treated in the static
Debye approximation (see Eq. (4.125)), and also dielectric screening from the substrate, that
is taken into account by using the WFCE approach described in Sec. (4.4.2) [36, 158]. The
phase space filling term (1 — F¢ — F}") consists of the self-consistently calculated quasi
Fermi distributions of the respective excited charge carriers. All calculations are performed
at a temperature of ' = 300 K. Dephasing processes of the polarization are implemented
via a constant dephasing factor . This accounts for electron-phonon scattering and adds
a finite lifetime for the quasi-particles.

In the sense of pump-probe experiments carriers have been optically excited and succes-
sively relaxed into the band structure valleys. Before recombination sets in, these carri-
ers occupy states according to the Fermi distribution I} of a finite carrier density and
are probed by a weak pulse E(¢). The presence of these excited carriers renormalizes the
band structure &; according to the instantaneous parts of the chosen SXCH self-energy, see

Sec. (4.3.4). The contributions of the renormalized single-particle energies are

G =y + O+ S+ I 4 B 6.2)
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6.1. Transition from Direct to Indirect Band Gaps

where no ground state renormalizations EﬁdW’A are present, as only a freestanding mono-
layer is investigated here. Intra-subband exchange renormalizations ¥}* do not occur, as
only one hole and one electron band are considered. The ground state band structure £ is
renormalized due to Hartree interactions 1" as well as intraband screened exchange inter-
action Zix A intraband Coulomb hole interaction, which is the difference between screenend
and unscreened Coulomb interaction, and the unscreened interband exchange interaction

Y. In detail these terms are given by

~A H,A § : )\X AN
Ek - Z + — kk’/kk’
k’)\’;é)\

M T A
E Widhae fio + 5 A E Wiginae — Vo) - (6.3)

Equation (4.116) allows for distinguishing the mechanisms of the resulting band structure
renormalizations. These renomalizations have been calculated in dependence of the ex-
cited charge carrier density and also for the case of either electron or hole doping. The ef-
fects of the renormalizations in the band structure are shown in Fig. (6.1) for a high density
excited charge carriers of 3.2 x 10'3 cm~2. The quasi-thermal charge carrier distributions,
which are equally important to the renormalizations as they are of the general form V/W - f
(except for the Coulomb hole term) are also shown.

Comparing Fig. (6.1) with Eq. (6.3) is essential in understanding the underlying mecha-
nisms of the renormalizations. The different self-energy terms lead to k-dependent shifts
in the band structure that in general lower the conduction bands and raise the valence
bands. From the momentum dependence of these effects a relative shift between the K-
and the X-valley results, leading finally to an indirect band gap. The shifts originating from
the renormalizations can be seen in the band structures plotted in Fig. (6.1). For elevated
densities shifts of about 500 meV are found.

Within the accuracy and known limitations, DFT+GW calculations predict an intrinsically
indirect band gap at the K-point for MoSe; and WSe; as can be seen from a closer look
on Fig. (6.1b) and (6.1d). This initially drains charge carriers from K to 3. In comparison,
MoS; and WS, show a direct band gap. The indirect band gap from X¢ to K" is energeti-
cally only slightly larger. This leads to almost equal populations in the conduction-band K
and X-valleys. On the other hand, both tungsten-based TMDs have a larger energy differ-
ence between ¥ /3 and K /K’, which leads to small occupancies of the ¥'-valley.

As already mentioned, the different spin-orbit splitting has to be considered for MoS, and

WS,. This results in an intrinsic loss of electrons at K for bright transitions in tungsten-
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Figure 6.1.: The renormalized band structures of MoS,, MoSey, WS,, and WSe, are shown
in (a) - (d). The zero-density band structure as guidance for the changes due to renormal-
izations is shown as grey dashed line. In the bottom row (e) - (h) the thermalized charge
carrier population functions (Fermi distribution) in the lowest conduction and highest va-
lence band are plotted for the respective materials at a density of 3.2 x 10'® cm~2. The high
occupations at both K and X are clearly visible as well as the differences in occupation of
K /K’ and /3. The differences between molybdenum and tungsten compounds as well
as between the sulfides/selenides can also be distinguished. Figure reprinted with permis-
sion from [156].

based compounds.

Comparing the differences in the band structure as explained in Chap. (3), no X-valley ex-
ists in the valence band. This means, that the holes gather solely at K and K’ with small hole
occupancies in the I'-valleys for MoS; and WS,. The I'-point is renormalized more strongly
than the K-point similar to the effects of tensile strain [39, 40], but as the energetical zero
density separation between K and I is large compared to the distance between K and 33,
this is not relevant for the 3-point renormalizations.

In experiments using angular-resolved photoemission spectroscopy (ARPES) [123, 178, 179]
the high occupancies at K and 3 have been directly observed. Band gap and binding-energy
shrinkage on the order of several 100 meV have also been reported in [33], where optical
spectroscopy has been used.

To reveal this relative shift, the quantity Axs(n) = &k (n) — £5(n) is used in the follow-
ing, which is the density-dependent energetical difference between the K-point and the
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6.1. Transition from Direct to Indirect Band Gaps

(meV) E}C;‘,DFT+GW A?{E
free SiO, enc. hBN
MoS, 2638 -14 -13 -13
MoSe, 2355 82 83 84
WSy 2775 -44 -43 -41
WSe, 2359 49 50 51

Table 6.2.: Band gaps of freestanding MoS,,MoSey, WS, and WSe, obtained from the Wan-
nier interpolation together with the zero-density value of Aky on different substrates.
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Figure 6.2.: Energy difference between the K- and X-valley (Aks) for photodoping with
electrons and holes obtained in SXCH approximation plus electron-hole exchange. A clear
trend of X shifting energetically below K (increasing Aksy) is visible for all four materials.
Figure reprinted with permission from [156].

3-point both in the lowest conduction band. Aks(n) is plotted in Fig. (6.2) for a density
ranging from Ocm 2 upto 3.2x 10" cm 2. The zero-density value for Ak, for different sub-
strates can be found in Tab. (6.1). If the X-valley is energetically higher than the K-valley,
Axs: is negative. This means, that the band gap is direct (K°¢-K"). While positive values
of Aks represent an indirect band gap (3¢-K"), the tendency for all four investigated ma-
terials to become (more) indirect semiconductors is clearly visible. This will strongly in-
fluence optical properties as for example the photoluminescence yield or gain, which are
both sensitive to the populations of electrons and holes at the direct band gap [39, 49]. The
consequence is, that for high excitation scenarios, for example when dealing with strong
laser pulses as used for photoluminescence or photoemission spectroscopy pumping reso-
nantly with the band gap, the advantage of a semiconducting material vanishes as carriers
are drawn to the lower lying 3-valley, which is successively more renormalized as more car-

riers are present until the mechanisms saturate. In the next section the main terms in the
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6. Excitation Induced Many-Particle Effects in TMDs

renormalizations, that lead to this transition will be analyzed in detail. First the choice of
the Debye approximation for calculating the screening shall be validated.

To identify the influence of different approximations for the plasma screening e p; (| k—k/|),
the Debye-approximation is compared to a more elaborate theory. First of all the Debye-
approximation is the static limit of the RPA-screening. The full intraband Lindhard screen-

ing (RPA-screening) formula for excited carriers reads:

1 flte = K
elqw) = 1-Vg— o L
Agaﬂ’_q—ai’ + hw + iy

(6.4)

The Debye limit can be obtained by setting w = 0 and letting q — 0. In order to val-
idate the SXCH approximation as derived for TMDs (4.3.4) a comparison to frequency-
dependent GW-calculations performed by Alexander Steinhoff has been done. The GW-
terms are calculated as presented in Sec. (4.3.3). It is numerically demanding to evaluate
these energy shifts and therefore this calculation serves the purpose to validate the Debye-
approximation in the chosen intervall of densities. In Fig. (6.3) the three different approx-
imations are compared. One can clearly see, that the values of A(KX) do not differ much.
Qualitatively the increase in magnitude is well aproximated, comparing Debye and Lind-
hard to the frequency-dependent GW. The zero-crossing marking the point at which the
TMD has become indirect is at smaller densities for GW, while Lindhard and Debye screen-
ing show nearly the same value. Quantitatively all three curves are in good agreement.
Hence, it has been shown, that the plasma screening calculated in Debye approximation is

capable of depicting the correct behaviour of A(K3) both qualitatively and quantitatively.

6.2. Renormalization Mechanisms

Two mechanisms determine the renormalizations of the band structure. On the one hand
the orbital character of the Coulomb matrix elements defines a k-dependent strength of
the shifts and on the other hand the different inter- and intraband contributions of the
self-energy add different Coulomb interaction mechanisms, cf. Eq. (4.116).

Obtained from the Wannier interpolation (see Chap. (3.2.2) or Ref. [47, 90]) the Coulomb

matrix elements obey the following formula:

* *
AN AN _ A N A N aBBa
Vidkoksks = Z(Ca,k1> (Cm@) B ks Cakea Vky ks - (6.5)

a?/B
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Figure 6.3.: Ay in monolayer WS, on SiO, substrate on different levels of approxima-
tion for comparison. The plot shows GW-calculations (solid red line) including dynamical
screening, static Debye-approximation (long-wavelength, dotted green line) and screening
in Lindhard (RPA, dashed blue line). Figure reprintet with permission from [156].

The coefficients ¢, with v = {k, A\, a} therefore represent the weighting of the Wannier

functions identified with d,2, dyy and d,2_y2. Different orbital characters of the involved

Bloch states ‘k, V> in the K- and X-valleys as shown in Fig. (3.4) and (6.4) cause a valley

sensitivity of the resulting energy renormalizations. In Fig. (6.4) the orbital fingerprint’ of
the interaction, defined by CpANY ., = >, 4 <c;\y’k 1) ' (c/’}:k,> *cg’klcgik, for \, ' = {e, h}is

plotted. A bare Coulomb interaction |k; — k’| ! is plotted as guid to the eye for the point of
interest k;. Analyzing Fig. (6.4) it can be seen, that for the intraband Coulomb interaction

(eeee) the most weight of the renormalized Coulomb matrix elements in the conduction

band originates directly from the vicinity of the respective k;-point. Hence, if k; is close

to the X-valley the coefficients contributing most originate from the 3-valley. The same

holds e.g. for K. As there is the same orbital character present the product of the coeffi-

cients reaches its maximum value.

Fortheinterband renormalizations (eheh) most contributions originate from regions rather
far away from the point of interest (k;). This is a direct consequence of the orbital character

in the valence and conduction band as can be seen from comparing Fig. (3.4) to Fig. (6.4).

The coefficients at the same k;-point have opposite character for a transition from the con-

duction to the valence band, thereby reducing their product to vanishing values.

The second main mechanism to the renormalizations is the particular form of the self-

energy terms in Eq. (4.116). First of all the Hartree terms are the ¢ — 0 limit of the back-

ground screened Coulomb interaction V. For low densities these contributions are on the
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6. Excitation Induced Many-Particle Effects in TMDs

Figure 6.4.: Orbital fingerprint CR )\ ., of the Coulomb matrix elements for the K- and the

Y-point in the irreducible part of the BZ. Shown are intraband coefficients for the lowest
conduction band (eeee) and interband coefficients (eheh). The colored dashed lines rep-
resent |K — k'[! (red) and |3 — K’|~! (green) respectively. The colors correspond to the

Cr)\)\’)\)\’

respective Ci 0y -

order of 1 meV and thus small. They rise about one order of magnitude per one order of
magnitude increase in the density.

There are two possible ways to group the remaining terms X", $2°% and £, First
they may be grouped by the involved band indices . Thereby the two categories intraband
contributions (same A for all four coefficients, for example ecee), which includes Zﬁ’SX and
Zf{’CH , and the interband contributions, consisting of Eﬁ’U (different A, for example eheh)
arise. The second way of grouping distinguishes between self-energy terms that contain an
occupation function f or not. In this second case ;" and X** both contain f;} forming
a group, while the Coulomb hole shift ¥3"“*' do not contain contributions from the carrier
population. Either way of grouping is helpful in understanding the mechanisms behind the
momentum-dependent shifts. Subsequently each term will be discussed seperately and put
into context.

The SX- and CH-terms appear as intraband terms, where the electrons (holes) in the con-
duction band (valence band) induce plasma screening. Their exchange interaction never-
theless is of attractive nature and therefore the respective bands are lowered. Recalling the

screened exchange term

1
oS = —ZZWQQ}Q(/ I (6.6)
kl
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80 Figure 6.5: Renormalizations ~ of
60 the conduction band for WS,
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electron-hole exchange, intraband
screened exchange interaction and
Coulomb-hole shifts are separately
shown from top to bottom in
dependence of the charge-carrier
density. Shown are the densities
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The calculation for increasing densities from 1.0 to 3.2 x 10'3 cm~2 can be seen in the mid-
dle panel of Fig. (6.5). The strongest shifts occur in the vicinity of the ¥-point and the K'-
point. Although the overall shifts are small (~ —6 meV at the minimum), the relative shift
between K and ¥ is increased in favor of the ¥-valley. When looking closely at Fig. (6.5) it
can be seen, that this behaviour changes with increasing the density. For low densities up to
3.2 x 10'? cm~2 the K-valley is shifted stronger than 3. This is due to the fact that for this
range of densities the K-valley is occupied more than X, but for increasing densities the
Y.-valley drains more and more carriers (see next paragraph), thereby increasing the shift
in the vicinity of 3. The Coulomb-hole self-energy is also an attractive intraband term and
thus lowering the bands. This can be seen in Fig. (6.5) in the lowest panel. It contains the
difference between the plasma screened (1/)and the intrinsically screened (V') exchange

interaction

1
ACH AN AN
Ek - +ﬂ (Wkk/kk/ - ka/kk’) . (67)
k/
The dependence on the density is only indirectly included in the plasma screening of the
W-term. As this screening gets stronger with increasing density the difference to the un-

screened exchange interaction becomes larger and thus the hole self-energy term. In fact,
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6. Excitation Induced Many-Particle Effects in TMDs

the k-dependence stays constant throughout the increasing charge carrier densities. Even
for small densities this term is much larger in numbers due to the fact that first no occu-
pation function is multiplied with the Coulomb interactions and secondly the unscreened
V is larger than WW. Again the X-valley is shifted more than the K-valley. This holds for
all densities and leads to the above mentioned increased drain of carriers with increasing
charge carrier densities. This is the main source of the change of renormalization strength
in the screened exchange term, giving rise to larger shifts at the X-valley for elevated den-
sities.

The third and remaining term to discuss is the unscreened interband exchange interaction
>y, which reads

1
>\7 I ! !
B = g 2 Ui f (6.8)
k/

This term represents the bare electron hole exchange interaction, it comes with the oppo-
site sign compared with the renormalizations discussed before. Due to its repulsive nature,
it rises the bands. This is shown in Fig. (6.5) in the top panel. As it is unscreened, it is an
order of magnitude larger in numbers than the screened exchange interaction, but still an
order of magnitude smaller than the Coulomb hole shifts. It is important to notice that the
renormalization due to this term come with the occupation of the respective other charge
carrier type. In the renormalization of the conduction band the hole population masks the
Coulomb matrix elements. For the renormalization of the valence band the opposite is the
case. This will be important when considering doping scenarios in the following sections.
As can be concluded from Fig. (6.5), Eﬁ’U shifts the K-valley upwards and also narrows the
K-valley due to the increased shifts near K, thereby changing its effective mass. Not much
shift is observed in the vicinity of the X-valley, hence X" is the main source of the large
relative shift between K and X. To conclude this paragraph, all intra- (SX, CH) and inter-
band (U) self-energy terms and their implications on the band structure are sketched in
Fig.(6.6). In general >3* and X¢* lower the bands, while X rises them. The Coulomb hole
term provides a nearly constant shift throughout the densities, that shifts 3 more than K.
The SX term - depending on the plasma screening and the carrier population - prefers K
over X for low densities and the opposite for high densities. Though small compared to
the CH shift, this term supports the relative shift between K and 3. The unscreened in-
terband exchange mainly shifts K upwards, but does not contribute much in the vicinity
of the ¥-valley, thereby primarily enhancing the relative shift between K and X. All these

effects combined yield a rise in Aks for the investigated TMD monolayers. The 3-valley is

106
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Figure 6.6: Schematic illustrating

2 K the renormalization mechanisms
Py of excited carriers (shaded areas):
; TA&Z\ t / Shown are the band-structure
‘ ¥ renormalization at K and ¥ due
conduction LAk ‘v to intraband screened exchange
band . (SX, red), Coulomb hole (CH, blue)

and interband electron-hole ex-
v change (U, green) shifts, where the

valence /B N2 length of the arrows corresponds

4 band t ., to the strength of the respective

4 <« » term at the chosen k-point. Fig-

% ure reprinted with permission
from [156].

shifted more downwards than the K-valley, which results in a transition from a direct to
an indirect band gap for the intrinsic direct TMDs.

The total amount of the shift for renormalization terms containing an occupation function
is lower due to the fact, that these occupation functions mask the Coulomb matrix elements.
Therefore, it is important to mention the different number of the valleys in the band struc-
ture, cf. Chap.(3.4). In the conduction band there are two valleys K/K’ and ¥/¥’, while
there is only one valley in the valence band at K/K'. Hence, only the values at occupied
k-states contribute to the shift.

Considering doped TMD monolayers, the aforementioned difference in the occupation is
important, as either the electron or the hole population will directly affect the respective
self-energy term by increasing or decreasing it. The renormalizations have also been calcu-
lated for the two cases where there are either only electrons or only holes in the system, in
order to distinguish between the underlying effects. For the two different doping scenari-
ons Aksx(n./n) has been calculated and plotted in Fig. (6.7). For the sake of clarity only the
results of MoS, und WS, are shown. In Fig. (6.7) both species of charge carriers are present,
which is shown for comparison. The curves originating from photodoping are the same as
already shown in Fig. (6.2). It can be seen, that the strong shift of ¥ compared to K still
holds for both doping-scenarios, while the effect is more pronounced for hole-doping (p-
doping). This is due to the fact, that the hole occupation enables the interband self-energy
ZE’U (cf. Eq. (4.116)) to shift K upwards, while the screened exchange interaction EE’SX is
zero, as there are no electrons (f¢ = 0) in the system. This leads to a large positive shift at
K in the conduction band due to the interband electron hole exchange. In electron-doped

(n-doped) materials, the exchange interaction always shifts the band structure to lower en-
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6. Excitation Induced Many-Particle Effects in TMDs

Figure 6.7: Akx(n./,) for the compari- .

son of photodoping (solid lines) with —MoS; p};,ntndopin,g
hole doping (p-doping, dashed lines) and ===MoS,  n — doping

= MoS,

electron doping (n-doping, dotted lines).
The main part of the renormalization for
photodoped systems originates from the
holes within the K"-valley, as the dashed
curve indicates. Figure reprinted with
permission from [156].
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ergies as there is no additional positive shift at K due to the missing holes in the valence
band, which disable the ¥;"¥ term. Therefore, the overall direct-to-indirect effect is weaker
than in the photodoped materials.

The lowering of the ¥-valley may also contribute to superconductivity in TMDs. Super-
conductivity is driven by phonons, which enable a quasi-particle of two electrons (Cooper-
pair), that has bosonic character. This has so far been analyzed for TMDs by DFT calcula-
tions [160, 180], where in the sense of a Lifshitz transition superconductivity is enabled. A
Lifshitz transition is described as the formation of a new ’pocket’ in the Fermi surface of
a material [160, 181]. As soon as both, the K- and X-valley, become populated with elec-
trons [180], the X-valley as well as the K-valley cross the Fermi level forming such pockets.
As this will occur at higher densities for 3, shorter momenta for the Cooper-pairs to form
will be allowed at a certain density and hence the probability for superconductivity to set
in is increased. The relative valley shift thereby determines the onset of superconductivity
in electron-doped TMDs. A comparison of the results obtained in this work to DFT calcula-
tions in LDA and GGA done by Gunnar Schonhoff for the case of n-doped TMDs is shown in
Fig. (6.8). It can be seen that the SXCH plus electron-hole exchange approximation predicts
stronger relative valley shifts at low densities, while the DFT calculations predict stronger
shifts at densities above 5 x 10'3 cm~2. The main reason for this is the screening due to
excited carriers, which is treated differently in DFT. The main part of the shift in the calcu-
lations presented here originates from hole occupations as explained above. The results also
suggest, that a Lifshitz transition in an initially n-doped TMD monolayer could be enforced
by slightly photodoping the system, exploiting the advantages of the strong electron-hole
exchange.
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6.3. Density-Dependent Absorption Spectra

Optical properties of atomically thin TMDs are of great interest especially for optical de-
vice application. The presented theory allows us to investigate the effects of many-particle
renormalizations on the optical spectra. Not only the band structure is renormalized by
many-body Coulomb effects in the formalism of the SBE, but also the light-matter inter-
action, as has been shown in Sec. (4.2.3). This is described in Eq. (6.1) via the coupling
of the interband transition amplitudes ¢2¢ for different carrier momenta k mediated by
the screened Coulomb interaction W4 , within the generalized Rabi energy Q. This
screened Coulomb interaction gives rise to excitonic resonances in the optical response and
is directly influenced by excited carriers in the system. The optical response of the system
is accessible via the macroscopic polarization. To obtain the linear optical susceptibility
the polarization P(t) and the weak optical probe field F/(t) are Fourier transformed, which

results, as shown in Sec. (4.6.2), in:
X(w) = —=—=- 6.9)

From the imaginary part of Eq. (6.9) the absorption coefficient can be calculated subse-
quently. The four investigated materials show absorption spectra as shown in Fig. (6.9a)
to (6.9d). The A- and B-exciton lines are the dominant low-energy peaks. They are sepa-
rated by spin-orbit coupling constant as they stem from the direct optical transitions at
K and K'. In general the excitons show a redshift with increasing carrier density. This is
the result of two competing effects: First the band structure is renormalized due to many-
body renormalizations as derived in Sec. (4.3.4) and discussed in Sec. (6.2). This results in a
shrinkage of the band gap (marked by vertical lines in the plots in Fig. (6.9)). On the other

hand the exciton binding energy decreases due to plasma screening of the Coulomb inter-
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Figure 6.9.: a) - d): Absorption spectra for MoS,, MoSe;, WS, and WSe, versus increas-
ing electron-hole density from bottom to top (ground state, 1.0 x 10'%,3.2 x 10*,1.0 x
10'2,3.2 x 10'2,1.0 x 10'3,3.2 x 10'® cm™2). The spectra are shifted such that the ex-
citon peak positions at zero density agree with experiment due to the fact that the band
gap is over-estimated by GoW,. The vertical lines indicate the quasi-particle band gaps at
(" — &5, direct gap, solid red), X (€ — £, indirect gap, solid blue) and K’ (€}, — &%,
direct gap, dashed red) taken from the renormalized band structures, see Fig. (6.1). For
MoS, and WS, there is a transition to an indirect band gap visible. The binding energies
of the A and B excitons are also dependending on the density are shown in panel e). The
vanishing of excitons is marked by the zero-crossing of the binding energies (E5 < 0)
indicating the excitonic Mott transition. Figure reprinted with permission from [156].

action (see Sec.4.4.1) and the Pauli blocking in the presence of excited carriers, cf. Eq.(6.1).
This is shown in panel Fig. (6.9¢). The binding energy can be obtained by substracting the
optical band gap (exciton position in the spectrum) from the band gap of the material. The
calculated binding energies are listed in Tab. (6.3). The exciton binding energies are in the
range of 0.5 to 0.6 eV, which is in good agreement with literature [35, 47, 164, 182].

For experimental scenarios it is more realistic to investigate TMD monolayers on a sub-

strate, that therefore induces dielectric screening. The many-body renormalizations follow
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Mo0S,(/SiOy)  MoSey(/Si0) WS5(/Si0Os)  WSey(/SiOy)
E# (meV)  588(301) 527(288) 557(268) 508(253)
Eg (meV) 601(312) 543(301) 593(295) 547(283)

Table 6.3.: Results for exicton binding energies of the 1s-state for all four investigated ma-
terials with and without SiO, substrate.

5 : s Figure 6.10: Absorption spectra of WS,
I S on an SiO, substrate at 77 = 300 K. In
1.159 x 102cm 2 principle the spectrum shows the same
— - ‘J features as for the freestanding case ex-

A T blained in the text. The density labels
832 <102em-2||  markthetotal density for bound excitons
and unbound eletrons and holes. Figure

l 0.000 101“ 3| . ) S
WS,/Si0 e reprinted with permission from [156].
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the mechanisms as described in the section before and the excitonic behaviour in the pres-
ence of substrates do not differ much from the case of freestanding TMD monolayers. In
contradiction to the freestanding case, on a substrate the influence of the Coulomb-hole
term is weakened most, as it involves the Coulomb matrix elements V and I, that are both
reduced by environmental screening, as described in Chap. (4.4.4). For example in WS,
the band-gap shift is reduced to 570 meV compared to 940 meV for the freestanding case
and highest calculated density. Nevertheless the difference in energy shift between K and
Y. is almost not affected by environmental screening. This is due to the fact that most of
this relative shift originates from ¥,°, which is not screened by excited carriers and the
environment. In conclusion, environmental screening slows down the direct-to-indirect
transition process slightly due to the influence on the Coulomb hole term.

The effect of the binding-energy reduction due to environmental screening is summarized
in Tab. (6.3). Again as an example for WS, a binding energy of 557 meV is obtained in the
freestanding case while for WS, on SiO, a reduction to 268 meV is found. This is nearly
50% reduction occurs due to the additional screening of the Coulomb interaction W3¢,
by the substrate. This effect has been discussed in literature for TMD monolayers in their
ground state [35, 105, 174, 183-185]. While there is a large binding energy for 2d excitons in
the ground state the Coulomb interaction between both particles is weakened due to the
plasma screening from additional excited carriers. This not only results in a decrease of the
binding energy but also leads to the dissociation of the bound states for a specific density.

This transition to only ionized states is called Mott transition, which happens at the Mott
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density. The Mott density can be determined from the zero-crossing of the exciton bind-
ing energy shown in Fig. (6.9¢). The presented results yield Mott densities around 3 x 10'?
cm~? for MoX, and 1 x 10'2 cm™2 for WX,. In Ref. [36] a slightly lower Mott density has
been found. Therefore it is concluded, that the band-gap shrinkage obtained from a static
calculation should be seen as an upper bound in comparison with frequency-dependent
screening calculations.

In general, excited carriers can be present in the form of an unbound (quasi-free) electron-
hole plasma or the form of bound excitons [36, 186]. Above the Mott transition excitons have
dissociated while below the Mott transition both forms can exist simultaneously. When ex-
citons are present in principle renormalization effects due to their interaction should be
included, but as the contribution of bound excitons to renormalizations and screening is
typically much smaller than contributions from unbound electrons and holes these are ne-
glected in the calculations. In this sense carrier densities are interpreted as ionized frac-
tion of a total electron-hole pair density that includes both phases. According to the results
present in Ref. [36] this effect is illustrated using the example of monolayer WS, on a SiO,
substrate. The results considering the fraction of the density of free carriers to the total
density of charge carriers from Ref. [36] have been fitted in order to rescale the densities of
the excited carriers used for calculating the spectra in Fig. (6.10). The rescaled densities are
shown in the labels of Fig. (6.10) and separately in Fig. (6.11).

The excitons shown in Fig. (6.10) exhibit only a weak line shift up to charge carrier densities
of 1 x 10'? cm™2, since most carriers are bound as excitons at intermediate densities. These
bound carriers contribute negligible many-body renormalizations, thus over a large range
of densities the exciton peak remains constant. Strong redshifts appear between 1 x 10!2
cm~2and 3 x 10'2 cm~2 before excitons dissociate at the Mott density. This behavior is in
good agreement with experiments [34], except for the regime of high excitation, where a
blueshift of the exciton resonance due to exciton-exciton interaction is observed. Exciton-
exciton interaction is neglected in the theory presented in this work. In principle these are
accessible from two-particle Green’s functions.

Fig. (6.11) provides the relative oscillator strength of the A-exciton peak plotted according
to the fraction of excitons and ionized carriers. Rescaling the density to the total density
including both excitons and quasi-free carriers, the red curve in Fig. (6.11) is in support of
the conclusions from the paragraph before. For densities up to 1 x 10'? cm ™ the oscillator
strength remains constant and drops significantly above the Mott density.

In order to extract the oscillator strength from the calculations, the peaks of the A exci-
ton are compared to an oscillator model, where each transition contributes a Lorentzian-

shaped peak to the absorption spectrum. The oscillator strength f; of a specific peak is de-
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fined as the integral over the corresponding Lorentzian. Using the known broadening of
7 = 10 meV in combination with the height of the peak I, obtained from the calculated
absorption spectrum one finds

+oo
2
)
= [d =y, 6.10

o= [ g 10
which reduces the comparison of the oscillator strength to the comparison of the peak heights,
cf. Fig. (6.11).

6.4. Implications on TMD nanolasers

The implications of an indirect band gap, especially with excited carriers being involved,
become clear when investigating TMDs as an active material of a laser device. Different
types of TMD lasers have been presented in literature [26-29] so far. The question arises,
whether TMDs proof to be efficient gain materials.

A laser emits coherent light from stimulated emission of photons, if the active material is
excited so strongly, that optical gain is achieved. The main condition for optical gain is a
population inversion [49] at the direct optical transition. The population inversion is de-
scribed by (1 — F¢ — F), which also corresponds to the Pauli blocking factor. Population
inversion is indicated by negative values of (1 — F)¢ — F}*), which leads to negative absorp-
tion in the spectra. Considering the distribution of excited charge carriers in the conduc-
tion band of a TMD monolayer it is obvious that for elevated charge carrier densities the
electrons fill both the K- and the ¥-valley. Thus it becomes difficult to reach a population
inversion when increasing the density. Due to the growing indirectness with increasing

carrier density even more carriers of the K-valley are drained to the ¥-valley. Thereby the
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direct optical transition at K loses more and more charge carriers and the inversion starts
to decrease.

Therefore a charateristic roll-over behaviour of the peak gain is predicted for MoS,, MoSe,,
WS, and WSe, [30]. This roll-over has been found in model studies done bei Frederik Lo-
hof, that uses input generated from calculations the author of this thesis. These calculations
also show a characteristic roll-over. For MoTe, gain calculations have been reported [187].
As presented in [30] this roll-over is also found in gain spectra calculations that addition-
ally include the line broadening in consistency with the full-frequency dependent GW-self-
energy.

The charateristic gain roll-over originates directly from the band structure renormaliza-
tions that cause a direct-to-indirect transition of the band gap. The excitation regime at

which coherent emission is possible is thereby limited.

6.5. Conclusion

The SBE have been used to analyze single- and two-particle properties of MoSs, MoSes, WS,
and WSe, upon optical excitation of charge carriers as well as under doping of either carrier
species. The optical response has been probed by a weak and short laser pulse, assuming an
excitation of carriers beforehand, that have relaxed into a Fermi distribution. The interplay
of many-particle renormalizations in the presence of excited carriers has been analyzed in
detail. The renormalizations of the band gap and the plasma screening induced reduction
of the exciton binding energy leads to a redshift of the exciton resonances on the order of
100 meV. Bleaching is observed due to phase space filling. In the presence of substrates and
environmental screening effects, that have been employed using the WFCE scheme, these
effects remain strong.

The magnitude of the density-dependent many-body band structure renormalizations orig-
inated from the orbital character of the involved Bloch states from the DFT+GW ground
state calculation and the electron and hole populations in the different band-structure val-
leys. A tendency for a transition from a direct to an indirect band gap of all considered
monolayer TMDs has been found. The bare electron-hole exchange interaction causes a
relative shift between the neighbouring K- and 3-valley. This relative shift implies a loss of
charge carriers from the b K - to the Y-valley, which is more pronounced for the molybdenum-
based compounds, where the energetically lowest interband transition at K is optically
bright due to the spin-orbit interaction. The advantage of a two-dimensional direct gap

semiconductor thus slowly disappears for elevated densities. It is important to take the >3-
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valley into account explicitly when describing the influence of excited carriers. The loss of
carrier from the K- to the ¥-valley is expected to cause a quenching of the PL intensity for
high excitations [39] and to hamper population inversion at the K point, which is crucial
for TMD laser applications [30].

Due to the dependence of the renormalization on the carrier population, electron- or hole-
doping affects the renormalizations of the valence and conduction bands differently. For
hole-doping (p) the direct-to-indirect transition is strong as holes gather only in the va-
lence band K-valley. Thus they enforce a blueshift of the conduction band states at K via
the bare electron-hole exchange. Only the conduction band K-valley is renormalized, as
there is no Y-valley for holes enabling corresponding redshifts. Hole-doping also causes an
enhancement of the vspin-orbit splitting at the valence band K-point by tens of meV, which
stems from different renormalizations of the upper and lower valence band. The relative
valley shift between K and ¥ is weak in the electron-doping regime due to the lack of a hole
population. These conduction band renormalization strongly affect the carrier densities,
at which a Lifshitz transition, that would enable phonon-driven superconductivity, is ex-
pected. A comparison of DFT calculations to the resulting shifts obtained here revealed that
the relative valley shifts in DFT are overestimated at high densities for electron-doping. The
opposite holds at low densities. Thus, to be able to predict critical charge carrier densities
for phonon-driven superconductivity within TMD monolayers, the electron-hole exchange
and plasma screening of electron-electron exchange have to be taken into account explic-
itly. These results suggest that in electron-doped monolayers a photodoping could induce
a Lifshitz transition via electron-hole exchange. This might provide a possibility to induce

superconductivity in two-dimensional materials.
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7. Pump-Induced Charge Carrier Densities

After adressing the optical response and the renormalization of single-particle properties
in detail in Chap. (3), (5), and (6) respectively, the following chapter is devoted to the dy-
namical accumulation of population during optical excitation. Upon optical excitation the
charge carriers occupy the complex valley structure in TMD monolayers forming a vari-
ety of Coulomb-bound many-particle complexes. To obtain a fundamental understand-
ing of the underlying physics and to explore the prospects of TMD monolayers being used
in future optoelectronic devices, experimental techniques such as photoluminescence are
used. [39, 48, 49, 61, 62] These experiments involve the photoexcitation of electron-hole pairs
with energies equal to or larger than the quasi-particle band gap and the subsequent mea-
surement of e.g. reflectivity. For the interpretation of such experiments comparison with
microscopic theories is required, which in turn necessitate the knowledge of the current
density. This quantity is not directly accessible in experiment. The simplest approach to ac-
cess the density is an estimation from the absorption coefficent [34, 64,188, 189] which yields
a reasonable yet linear approximation for low pump intensities. However, the many-body
effects explained in the chapters before are expected to change the absorption coefficient
in a nonlinear way. The question on the microscopical mechanisms shaping the power-
dependence of the density remains to be answered in this chapter.

The SBE are used for a numerical analysis of the total density of photoexcited charge carri-
ersin dependence of the pump fluence. Hence, the changes of the carrier population flf/ h (t)
have to be calculated, while these have been given in the previous chapter. In contrast to the
calcuations of absorption spectra the electric field E(¢) takes the role of a pump laser, whose
intensity is linearly increased. Different spectral positions of the pump laser are expected
toyield different behaviour of the density considering the complex peak structure of the ab-
sorption spectra in Chap. (6). When pumping at the band gap, instant Pauli blocking due
to excited electrons and holes should be a limiting factor for accumulating carriers. For a
pump above the gap Pauli blocking is expected to be insignificant compared to the clearing
of the states by scattering processes. The spectral detuning of the laser to the band gap can
be found in Tab. (7).

Many-body effects originating from the interaction of excited carriers as well as from envi-
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hwger in (meV) | hBN enc. | 405nm | 533nm
MoS, -389 423 -312
MoSe, -351 706 -29
WSy -418 285 -449
WSe,y -379 702 -34

Table 7.2.: Detuning used to pump at the band edge for encapsulated monolayers and with
a laser wavelength of 405nm and 533nm, respectively.

ronmental influences due to dielectric screening are included the same way as described in
Chap. (4) and (6). The carrier density is calculated in detail for fluences of up to 100u] cm 2,
as these are typical experimental values. Larger fluences provide insight in the saturating
behaviour. The results of this chapter are in preparation for publication. All numerical cal-
culations have been performed by the author of this thesis while the results have been inter-
preted in close collaboration with Alexander Steinhoff, Michael Lorke, and Frank Jahnke.
To start with the chapter the microscopical picture of an excitation of charge carriers will

be presented first.

7.1. Microscopical Picture of Charge Carrier Excitationin TMD

Monolayers

In the following a situation is considered, in which a TMD monolayer is successively illumi-
nated by two laser pulses, a pump pulse and a probe pulse. The pump pulse excites charge
carriers from the valence band to the conduction band which subsequently equilibrate and
occupy the valleys of the band structure. [12, 127, 179, 190]. Optical properties are probed by
a second weak and short laser pulse. By variation of the intensity of the pump laser a se-
ries of power-dependent spectra is measured. To be able to interpret these spectra a direct
comparison to theoretical models of the respective experiment is desired. This requires the
knowledge of the total density of excited charge carriers.

For a constant absorbance, the fluence, the pulse duration and the laser repetition rate de-
termine the number of absorbed photons which hereby cause a defined number of electron-
hole pairs. Considering this simple approach the only mechanism limiting the achievable
carrier density is the recombination of electron-hole pairs. In order to exclude recombina-
tion from the analysis, the pulse duration is chosen to be 150 fs. This value corresponds
to typical experimental setups, but is short compared to the time scale of recombination

reported for example in [191, 192]. The assumption of all photoexcited electrons and holes
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Figure 7.1:a) Initial amount of available
states (grey) in a simple 2d picture. The band
edge is marked by a vertical line. b) The laser
pulse (yellow) induces a hot carrier distribu-
tion (red) at the band edge (hwy = E¢). The
present carriers instantly limit the available
states (grey). c) The carriers relax into a
Fermi distribution (blue), the amount of
filled states does not change much. The
system is instantly in the Pauli blocking
regime, when pumping at the band edge.n
d) If the laser is tuned above the band gap
scattering processes (green arrow) empty the
states and make them available for refilling.
Hence in total a higher density compared to
¢) can be reached when pumping above the
band gap. e) Calculated optical absorption
spectra for monolayer MoS, with excitation
densities of 1 x 10"em™2, 1 x 10"5cm™2,
... 1 x 10"%cm~2 as labeled. The spectra
are not shifted in height in order to be able
to identify the change in absorption with
increasing density. The absorption provides
insight into the two-particle density-of-states
combined with optical selection rules due
to the dipole matrix elements. In contrast
to the simplified picture of a) to d) the peak
structure indicates the different and complex
behaviour at different pump positions. The
peaks are phenomenologically broadenend
by the dephasing mechanisms explained in
Sec. (7.4).

a) vy E¢q

»
»

b) ¥y Twy

o
w

I above gap |

e)

=02}

= 2

= I

Zz 0 1

= PR L L

-1000 -500 0 500 1000
hw — Eg in (meV)

JE— 1011.0 Cm-2 1012.5 Cm-2 1014.0 Cm-2
—— 40™M5 o2 10130 g2 10™5 o2
JE— 1012.0 Cm-2 1013.5 Cm-2

119



7. Pump-Induced Charge Carrier Densities

being in a quasi-equilibrium state right before the recombination sets in is therefore valid.
Vice versa all sublinear behaviour of the density has to originate from many-body effects.
In order to elucidate the sequence of microscopic processes occuring during the sample
illumination a schematic description is given in Fig. (7.1). For this purpose a simple 2d pic-
ture is used, see Fig. (7.1a). The pump laser excites a hot carrier distribution corresponding
to its spectral position relative to the quasi-particle band gap Fig. (7.1b). By virtue of carrier-
carrier and carrier-phonon interaction, the excited carriers scatter into unoccupied lower
lying states and cool down to the lattice temperature forming a Fermi distribution. If the
pulse duration is shorter than typical relaxation times the carriers will stay in their initial
state, so that further photoexcitation is forbidden by the Pauli exclusion principle Fig. (7.1c).
If the pulse duration is longer than typical relaxation times, the initially filled states will be
emptied and new carriers can be added by optical excitation, which enables higher exci-
tation densities. The amount of available states is further limited by the spectral position
of the laser relative to the Fermi level of the thermalized carriers, compare Fig. (7.1c) and
(7.1d). Efficient Pauli blocking sets in as soon as pumping takes place close to or even below
the Fermi energy Fig. (7.1c). This is the case if the laser is tuned close to the band gap or if
conduction and valence bands are filled at elevated carrier density. If the laser excites car-
riers in higher bands, scattering processes clear the states thereby enabling a refilling.
While the simplified picture presented above suggests that Pauli blocking is the dominant
mechanism controlling the nonlinear optical response, there are other many-body effects
present. Band-gap renormalization and the reduction of the exciton binding energy pro-
vide cause significant redistribution of states upon pump laser excitation. To bring up a
more realistic picture the density-dependent absorption of monolayer MoS; is shown in
Fig. 7.1e). It is shaped by a material-realistic density-of-states and strong Coulomb inter-
action between electrons and holes, which gives rise to the excitonic resonances A, B and
C [57] that are a characteristic feature of TMD spectra. Due to the combined effect of band-
gap renormalization, screening and Pauli blocking, the A and B excitons undergo a redshift
under strong photoexcitation before they bleach out, as presented in detail in Chap (6). The
resonances completely disappear as soon as the excitation density is increased above the
Mott density. The C-peak remains mainly unaffected from photoexcitation.

Asisevident from Fig. (7.1e) the asorption spectra change drastically with increasing carrier
density. Therefore the wavelength of the pump laser is expected to be decisive for the den-
sity of excited carriers. Two different spectral positions are chosen in order to capture the
different behaviour of the optical absorption upon increasing density. First, each mono-
layers is pumped at it’s corresponding band edge, which is located between A (B) and B (C)

peaks for the tungsten (molybdenum) compounds. Secondly, the monolayers are pumped
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several hundreds of meV above the band gap and the C exciton.For this second case typi-
cal excitation wavelengths of 3.06eV (2.33eV) for the sulfides (selenides) corresponding to

a wavelength of 405nm (533nm) are chosen to compensate for the smaller selenide band

gaps.

7.2. Description of Excited-Carrier Dynamics

In order to calculate the power-dependence of the total charge carrier density the SBE have
been expanded in comparison to Chap. (6). Within the linear regime, the electric field E()
provided a broadband probe that could not cause significant occupation. Hence, E(?) is
used here as a pump laser with increased duration and higher field strength. Thus the dy-
namic of the occupation probability becomes relevant. The occupation defines the total

density of electrons and holes at time ¢ as
1
e h _ E/h
nMt) = = Ek R (7.1)

As main difference to the linear regime presented in Chap (6), fﬁ/h (t) is depending on the
time. As carrier scattering processes determine the equilibration of highly excited carriers
the relaxation time approximation is used (see Sec. (4.5.1)) to describe these processes. The

time-dependence and the influence of many-body effects is described by the population

equation of the SBE:
d e 2 e\x,/he E/h(t) — FE/h
4 () = I [(Q4) Y] — - k| (7.2)

The Rabi energy renormalized by the screened Coulomb interaction is written as ()¢ as be-
fore. The inter-band Coulomb renormalization gives rise to excitonic resonances below the
quasi-particle band gap as well as a redistribution of oscillator strength between band-to-
band transitions. This directly influences the absorption. The Coulomb matrix elements are
screened by the excited electrons and holes. The dielectric function in quasi static approxi-
mation ' (|q|) is used within the long-wavelength limit (cf. Sec. (4.4.1)). The pump fluence
of the pulse is defined as the energy per pulse area and duration applied to the monolayer.

It proportional to the squared absolute value of the electric field (see Sec. (4.6.1)):

S = 2000 / dt B . 73)
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7. Pump-Induced Charge Carrier Densities

For the exciting electric field E(¢) a Gaussian-shaped pulse is considered. To model the
scattering-induced relaxation and cooling of excited carriers the relaxation time approxi-
mation introduced in Sec. (4.5.1) is used. The non-equilibrium carrier population develops
into a Fermi distribution Flf/ " for the respective species of charge carriers on a characteris-
tic timescale 7. The charge carrier densities that can be photoexcited at a specific fluence
is quantified by calculating the steady-state value tli)ngo ne/h(t).

Eq. (7.2) is coupled to the corresponding equation for the microscopic polarizations ¥¢(¢):

m%@”ﬁe“) — (& 42— iT(n) — hwa) G (8) — (1= filt) — ) Qf<, @.9)

In order to describe density-depending dephasing for the microscopic polarization, a func-
tion I'(n) has been introduced, that will be explained in detail in Sec. (7.4). The renormal-
ized single-particle energies &, are obtained as can be found in Sec. (4.3) and Refs. [47, 156,
158]. A detailed descritption follows in the next Sec. (7.3). The detuning between the pump
laser and the band gap of the unexcited TMD monolayer is given by Aw.;. The Pauli exclu-
sion principle enters the theory via the blocking term (1 — fg(t) — ff(¢)). Pauli blocking
blue-shifts the Coulomb-bound states described in 2! due to the filling of states.

7.3. Band Structure Renormalizations

The band structure experiences momentum-dependent renormalizations due to Coulomb
interaction between photoexcited carriers as described in Sec. (6.2). This results in a power-
dependent detuning between the states and the exciting laser pulse, which is an important
mechanism for clearing states. With increasing excitation density, a shrinkage of the band
gap as well as a transition from direct to indirect band gaps are expected. [33, 49, 85, 86, 86,
156, 175, 193-195] The different contributions recalled read

en = e+ Ipt + B 4 5P 4 mPEA 4 mRA (7.5)

In order to describe the optical response of the excitation properly, two conduction bands
are taken into account in addition to the valence band for each spin. These additional bands
provide states in the high energy region to be excited by the pump pulse. The Coulomb in-
teraction between electrons in different conduction bands is included and contributes to
the renormalizations. However, the uppermost conduction band never assembles enough

carriers to contribute to band shifts.
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TMD monolayers are often encapsulated in hexagonal boron nitride (hBN), which has be-
come a standard technique to reduce inhomogeneous contributions to the linewidth, stem-
ming for example from surface wrinkling [12]. For this ground state the Coulomb interac-
tion is screened due the dielectric environment and carriers in the filled valence-band [158].
Therefore a dielectric environment for all four investigated TMDs (MoSs, MoSes, WS,
WSe,) with a dielectric constant of £, = 4.5 corresponding to an index of refraction of
n = 2.15is taken into account. In addition a gap of 0.3 nm between the monolayer and the
surrounding hBN layers is taken into account, reducing the screening [161]. Independent
of the current carrier density the ground state band structure undergoes renormalizations
ZﬁdW’A induced by the dielectric environment (see Sec. (4.4.4)). These shrink the band gap
and thereby shift the spectral position of the exciting laser indirectly. The band-gap shrink-

age from GAW renormalization for different substrates can be found in Tab. (4.1).

7.4. Influence of Excitation-Induced Dephasing

The peak structure of the spectra plotted in Fig. (7.1e) and (7.4) depends on the linewidth of
excitonic peaks and the band-to-band transitions. Here, the width is determined by the de-
phasing function I'(n) that enters the SBE (7.4) and dampens the inter-band polarizations.
Due to carrier scattering processes [196] there is an excitation-induced contribution to the
dephasing [197], rendering I'(n) in general density dependent. A nonlinear dependence of
excited carrier density on the pump fluence is therefore expected. For the low-excitation
regime (small pump fluence), the dominant contribution to dephasing stems from the cou-
pling of charge carriers to phonons. This effect strongly depends on the lattice temperature
and on the TMD material. It has been quantified for the A exciton in Ref. [12] and can be
used to fix the value of I'(n = 0). To model the power-dependent contribution, Ref. [34] pro-
vides data on the density dependent line broadening. There the increase of the A-exciton
linewidth in WS, has been extracted from a pump-probe experiment for carrier densities
up to several 10'2 cm~2. The full dissociation of the excitons into unbound carriers marks
a turning point in the density dependence of excitation-induced dephasing. It can also be
expected that the dephasing rate saturates for large densities due to phase space filling in

the carrier-carrier scattering rates. Therefore a arctan(z) function offers itself to capture
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Figure 7.2.: Plot of the model function used to describe the density dependence of the exci-
tation induced dephasing for MoS,, MoSey, WS, and WSe,. A detailed description of the
model is given in the text.

the dephasing phenomenologically

N — Nprott (s
T(n) = |arctan (2 "Met ) 4T
(n) {arc an ( p ) 2}

—1
% '70(]:-r ) T, (7.6)

where v, is taken from [12] to be 22.5 meV for MoS,, 17.5 meV for MoSe,, 12 meV for WS,
and 16.5 meV for WSe,. The Mott density is approximated as nyso;; = 1 x 103cm™2 [36].
The coefficients n = 1 x 103cm~2and f = 2.5 can be estimated using the data from [34]. It
is assumed that n,,, 7 and f have the same value for all investigated TMD materials. For
MoS,, this yields a maximum dephasing of 56 meV. The results for the density-dependent

dephasing of all materials are presented in Fig. (7.2).

7.5. Charge Carrier Densities in TMDs

The following section contains the numerical results obtained from the theory presented
beforehand. The dependence of the excited-carrier density on the pump fluence as obtained

from the SBE are given in Fig. (7.3). The pump laser provides fluences of up to 1000u] cm 2
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7.5. Charge Carrier Densities in TMDs

with a pulse duration of 150 fs. The relaxation time due to carrier-carrier [127] and carrier-
phonon [190, 198] scattering is taken to be 7,¢j, = 100 fs.

For pump at the band edge, a nonlinear relation between density and fluence is found,
which can be directly understood from the Pauli blocking effect at the band edge. Never-
theless for small fluences the density increases linearly with the pump fluence. This linear
behaviour is the result of the compensation between the Pauli blocking and band-gap renor-
malizations that spectrally shift the band gap away from the pump pulse, thereby opening
up free phase space.

For pumping above the band gap, the linear behaviour extends to 20 ;! for the selenides
and 50 ]! for the sulfides, but it is off different origin. Here, the fast scattering enables a
refilling of the states close to the pump pulse. In all four investigated materials, the density
reaches values of several 10'* cm~2 for fluences of 10001] cm 2. Pumping above the band
gap in general yields excited-carrier densities that are larger than for pumping at the band
gap. This is in agreement with the simplified picture of available phase space discussed
in Fig. (7.1). The largest density that is achievable under the investigated pump conditions
isn ~ 8- 10" cm~2 for above-gap pump in MoS,. For MoS, and WS,, the fluence de-
pendence can be reasonably fit with a linear function up to 50 xJ cm~2, yielding a slope of
2.31 (1.67) - 10'2J ! for MoSy (WS,). For MoSe, (WSe;) the fitting region extends to 20u]
cm~?, yielding a value 0of 4.20 (1.70) - 10*2J ~!. The Mott density for all materials is reached
for fluences below 10yJ cm 2. The two figures (7.4) and (7.5) will provide more insight into
the build-up of the excited-carrier densities. The increase of the density and the renormal-
izations of the different valleys for band-edge pumping is provided in Fig. (7.5). In panels a)
and c) the rise of carrier density in the most important band-structure valleys (K, K’, 33, 32)
is shown. The large densities at 3 /¥ reflect the drain of electrons from the K-valley, that
has been discussed in Sec. (6.2) and (4.3). Though the direct transition at K accumulates
carriers faster, the ¥-valley gathers most carriers after about 0.5 ps. From Fig. (7.5) b) and
d) it can be found that a transition to an indirect band gap takes place within less than 1 ps.
Since the band-structure renormalizations are induced instantaneously, their characteris-
tic time scale is given by the pump pulse duration and the relaxation time of carriers. Thus
renormalizations take place faster than typical radiative recombination times, which are
on the order of picoseconds [192] depending on substrate and temperature [191]. Therefore
a sublinear increase of photoluminescence experiments is to be expected [39].

The absorption spectra in Fig. (7.4) give insight into the two-particle properties of TMD
monolayers including optical selection rules determined by the dipole matrix elements and
phenomenological broadening according to Sec. (7.4). When analyzing Fig. (7.4) a) tod) it is

evident, that the absorption is not only different for increasing density but also provides a
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Figure 7.3.: Charge carrier densities for pump fluences of (0 — 100) ] cm~2 (left plot of each
panel) and (100 — 1000)u] cm™2 (right plot) for a) MoS,, b) MoSe,, ¢) WS, and d) WSe,
encapsulated in hBN. The calculations have been performed for a pump spectrally located
at the band gap of the TMD layer (circles) and for pumping above the band gap (triangles).
Pump energies of 3.06eV (2.33eV) for the sulfides (selenides) have been used. The linear fit
functions for pumping at the band edge mentioned in the main text are plotted as dashed
lines in the left plots. The slope m of the fit functions are given in the respective panels.

complex peak structure in energy. For example for MoS, the absorption decreases around
the A and B peak with increasing density, while it rises for energies above the C peak. A
similar behaviour is found for the other materials. Optical gain is identified which enables a
decrease of the total density during the pump process. This redistribution of optical weight
is a direct result of the interplay between Pauli blocking, renormalizations and scattering.
Each density value presented in Fig. (7.3) thus depends strongly on the history of different
absorption values, before a steady-state value has been reached. Normalized to the laser
spot-size A and the photon energy hv together with the pump power P, which converts the
absorption « to the density n, according to [62] this accumulation can be viewed as

n(t) = A'lhy / dt’ P(t') - a(n(t")) (7.7)
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Figure 7.4.: The density-dependent absorption spectra of a) MoS,, b) MoSe,, ¢) WS, and d)
WSe, encapsulated in hBN and calculated according to the equations of Chap. (6) are given
in this plot. For densities ranging from 1 x 10*cm™2 to 3.61 x 10*cm~2 the redshift and
bleaching of the A and B peaks can be found within the spectra. The C peak bleaches only far
above the Mott density. Spectral weight is shifted to higher energies for increasing density.

Despite the absorption spectra having been calculated in the linear regime with fixed car-
rier populations as presented in Chap. (6), they help clarifying the density accumulation
process. It is possible to estimate «(n) from Fig. (7.4) for a chosen energy in order to cal-
culate Eq. (7.7) taking into account the evolution of the absorption coefficient over time.
One should keep in mind, that the theory presented and evaluated above goes beyond this
simple rate equation picture by providing a momentum-resolved description of the occupa-
tion dynamics in the BZ. Thereby, the optical response in a true non-equilibrium situation

is taken into account via a(w, t), which yields a microscopic understanding of the accumu-
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Figure 7.5.: a),c): Spin-up electron and hole density for MoS, resolved for the different val-
leys in the Brillouin zone when pumping at the band gap. b),d): Band-structure renormal-
izations forthe samevalleys asin a) and c). Here the curves for K/ and ¥/ have been omitted
for better visibility. They show the same overall behaviour as K, and ¥, except for the fact
that 32/ is less renormalized than K. For the spin-down density and renormalizations the
non-primed and primed valleys interchange their role.

lation of carrier density.

While the resulting density dependence shows partially linear behaviour for low fluences,
this nevertheless originates from a compensation of Pauli blocking an band structure renor-
malizations. The band structure renormalization shifts the two-particle density-of-states,
thereby clearing phase space especially for a pump at the band gap. For a pump above the
gap this is still present but small compared to the influence of scattering processes.

7.6. Conclusion

The interplay of processes that occur during photoexcitation of MoS,, MoSe,, WS, and
WSe, monolayers has been analyzed, resulting in the excited-carrier density depending
on the pump fluence. A pump fluence of 1000 cm™~? is necessary to obtain excited-carrier
densities of several 10’ cm ™2 beyond the Mott density.

When pumping at the band edge, the excited carrier instantaneously block the available
phase space (Pauli blocking), thus leading to a nonlinear increase of the carrier density with
the pump fluence. However, band structure renormalizations shift the density-of-states
away from the pump pulse thereby effectively clearing states. Both effects partially compen-
sate each other leading to a linear increase of the density for low fluences up to 5 uuJ cm—2,
while the Mott density for all materials is reached before 10 iJ cm™2. A pump wavelength

above the band gap provides more available phase space for excited carriers, thereby yield-
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ing larger maximum carrier densities and a linear regime of power dependence of up to
50u] cm™2. There, scattering processes provide the main mechanism of clearing states.
While Pauli blocking is a main source of the non-linear dependence between fluence and
carrier density, its effects are balanced by band structure renormalizations, especially for a
pump at the band edge. For pumping above the band gap, scattering processes dominate
and enable a refilling of the states, which results in a linear behaviour of the density with
the fluence. The many-body effects essentially modify and shift the two-particle density-
of-states at the spectral position of the pump laser. However, this effect is weakened by
efficient excitation-induced dephasing that smears out the density-of-states.

During the photoexcitation process, band structure renormalizations are found to cause a
transition from a direct to an indirect band gap (see Sec. (6.1)) on a time scale below typical
exciton recombination times, thereby effectively draining carriers from the direct optical

transition at the K- and K’-valleys to dark states.
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Bilayers

The possibility to arbitrarily stack 2d materials offers an alternative way to tailor the proper-
ties of a semiconducting device [2]. One prominent example for a twisted systems is bilayer
graphene, where there are strong indications for superconductivity when both layers have
a (magic) twist angle of about 1.1 ° [18]. Thus the twist angle is crucial to the materials prop-
erties [199,200]. Itis experimentally accessible during the stacking process of the exfoliated
monolayers [54].

Recently, research focus has shifted towards TMD bilayer systems, as they open up new
fields of tailoring excitonic properties. For heterobilayers of type-II band alignment, the
formation of interlayer excitons (ILX) has been observed [19, 51, 201-204]. Electron and hole
that form these ILX are located in different layers. The ILX exhibit long lifetimes [205, 206],
that originates from the spatial seprartion of electron and hole. The geometry of the bilayer
system, especially the rotation angle between both layers, is a promising tuning knob for
the lifetime of ILX. A periodic change of the band gap originates from the different stacking
orders of the rotated top and bottom TMD layer. ILX can get trapped [207, 208] within the
minima of this periodic potential. Thus this section is dedicated to studies on twisted TMD
bilayers in general and specifically on ILX in twisted TMD heterobilayers.

For the description of the bilayer properties in dependence of the twist angle of the two lay-
ers two approaches will be explored, the first to be a straight-forward ground state calcula-
tion utilizing the TB-method as described in Ref. [209]. In contrast to this the second ap-
proach focusses on describing the properties of ILX. Hence, the relative and center-of-mass
motion of ILX will be separated in the limit of small angles [50]. This enables the descrip-
tion of the ILX as composite quasi-particle moving through a periodic potential landscape.
Due to the necessity to perform a plane wave expansion, either approach will be numeri-
cally demanding for small angles as a large number of expansion coefficients is needed for
convergence. The SBE as presented in Chap. (6) and (7), if applied accordingly in future
research, can provide a new angle to obtain optical properties.

The first part of this section will be subject to the general properties of the Moiré pattern
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8. Interlayer Excitons in Twisted TMD Bilayers

and it’s symmetries in twisted periodic lattices. Together with the TB description of twisted
bilayers the results presented there have been explored in cooperation of Ruven Hiibner
together with Christian Carmesin and the author of this thesis, who both shared the co-
supervision of the Bachelor thesis of R. Hiibner. The second part aims for calculating the
twist angle-dependent lifetime of ILX. All numerical calculations presented in these sec-
tions have been obtain jointly by Matthias Florian, Alexander Steinhoff and the author of
this thesis. The results are in preparation for publication, which will be done in experimen-

tal collaboration with the group of Xiaoqin Li from the University of Texas-Austin.

8.1. Moire Pattern

Figure 8.1.: Moiré periodicity in twisted bilayers (top layer in red, bottom layer in blue) and
Moiré unit cell (black) for two different commensurate twist angles of 3.89 ° (left) and 7.34 °
(right). The size of the Moire cell depends inversly on the twist angle. The points of different
stacking orders have been marked with circles in the left panel.

Stacking two TMD monolayers on top of each other changes the crystal structure and the
symmetries of the system quite drastically. A rotation by the angle 6 of the top (¢) to the
bottom (b) layer with R;; = R(0)R,; and R(6) being the 2d rotation matrix induces a new
periodicity in the structure. This superlattice is described by the basis vectors that con-
nect two neighbouring points at which the stacking order of the two layers’ rotation center
is restored. Following a lattice vector of this supercell, the AA-type (M-M) inital stacking
changes to AB (M-X) and back again to AA. Thus it appears only when both lattices are
commensurate, meaning that the lengths of the lattice vectors have a rational ratio. The

real-space basis of the Moiré superlattice labeled as s is thus defined by m unit cells along
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ayp, 1-direction and n unit cells along a, 4, 1 -direction [210]:

As1 = Map; + napz = mag + naga . (8.1)
The second basis vector a, ; is given by a rotation of 60 °. The angles, where the twisted
lattices are commensurate, are defined by using n and m:

1m? +n?+4nm

cos = ) 8.2
2 m2+n?+nm (8.2)

For commensurate and incommensurate lattices the so called Moiré lattice can be con-
structed, which is plotted for two different angles in Fig (8.1). It defines areas of (approxi-
mate) periodicity and is expressed as [210]:

T osme/27 M T 2sme)2

(8.3)
Along the vector a! + al! (in the middle of the two basis vectors) the stacking order of the
top and bottom layer varies from M-M (aligned molybdenum atoms) to M-X (molybdenum
chalgocen aligned) and finally to the top M being above the chalcogen vacancies back to
M-M stacking. Thereby three special points are defined r,, o = n(al! + al!)/3 that couple
differently to the polarization of the light (see Fig. (8.1)).

For the commensurate case the Moiré basis vectors are identical to those of the superlat-
tice. In k-space the Moiré basis vectors can be constructed by simply taking the difference

between two reciprocal basis vectors of the top and bottom layer [209]
b} =by1 — by, by =b;s—bys. (8.4)

The vectors b /b}! define the Moiré Brillouin zone (MBZ), that changes its size with the
rotation angle 6 and is the pendant to the first Brillouin zone of the monolayer case as it
is periodically repeated in reciprocal-space, if the lattices are commensurate. The MBZ is
plotted in Fig. (8.2). Every lattice site of the reciprocal Moiré lattice vector can be reached
by GM = G; — G,,. While this is true for all reciprocal Moiré vectors, the inverted relation
G; — G, = GM is only valid for the commensurate lattices. Otherwise there exist more
possibilities to construct G;/G;, from by, 1 /by 2. Especially for [m — n| = 1, the super-
lattice and the Moiré lattice are identical. From the considerations of this section it follows
directly, that the momenta of the top and bottom layers are related via k; = R(0)k,.
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| X

Figure 8.2: Construction and vi-
sualization of the Moiré Brilluoin
zone (MBZ, black) from the top
layer (red) and bottom layer (blue)
reciprocal lattice vectors accord-
ingto G, — G, = GM. The
dots mark the lattice points of the
respectively colored lattice. The
points of high symmetry within
the MBZ (v, k, k') will be marked
by the small greek letters cor-
responding to the labels of the
points of high symmetry in the
hexagonal BZ of the honeycomb
lattice.
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8.2. Ground State Description of Twisted Bilayers

In order to describe the electronic properties of twisted bilayers a possible ansatz is the
Tight-Binding method. The work of Amorim et al. provides a straight forward yet gen-
eral model to obtain band structures and coefficients for twisted homo-bilayers, exemplary
shown fora graphene bilayer, thereby reproducing the flattening of bands around the magic
angle, and for a MoS, bilayer. The main goal was to gain basic understanding of the model
and to explore possible extensions for future application of the theory, for example to model
heterobilayers and incommensurate structures, that may arise from different lattice con-
stants of the top and bottom layer, ultimately leading to a possible description of interlayer
excitons. The model for twisted bilayers presented in Ref. [209] will be introduced in the
following.

The presented TB-based model does not account for surface wrinkling or strain from bend-
ing the layers, that occurs naturally in graphene or TMD layers. Nevertheless, effects such as
strain within the layer could be implemented via the Harrison rule (cf. Sec. (3.1.2)). In order
to describe strained nanostructures, where the material extends into the third dimension,
a procedure similar to Ref. [96] has to be performed.

The full Hamiltonian of the twisted bilayer is given by

H=Hr+ Hg+ Hrg+ Hpr. (8.5)
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8.2. Ground State Description of Twisted Bilayers

The Hamiltonians Hy/p contain the isolated monolayer of the top (bottom) layers. Any
model using an orbital basis, such as [91], can be applied to this scheme. Using the Wannier
representation of creation and annihilation operators, one obtains for the Hamiltonian of
the top T" or bottom B layer, respectively:

_ TT/BB fa 5
Hryp = Z Heog (kT/B>CT/B,kT/BCT/B,kT/B ; (8.6)
kT/Bvoévﬁ

with H,5(k) being the Hamiltonian matrix element in k-space. For the interlayer coupling
of a twisted bilayer, both the momenta from the top k; and the bottom k;, layer occur, which

contribute as

Hrs = >0 HiP(ck oo, )
kTka»a7B

The relation (H")" = HTP holds, as the full Hamiltonian is hermitean. The interlayer
coupling only occurs, if the generalized umklapp condition is satisfied [209, 211], therefore

both momenta are coupled as
kr + Gr = kp+Gp. (8.8)
The matrix element H} (k) becomes
HIP(k,Gr,Gp) = HIP(k+ Gp+ Gp)e'CTmee'nms (8.9)

Here the 7;, indicates the position of the basis atoms within the primitive unit cell and
therefore o, 8 denotes the sublattice. A new k-vector has been introduced, that is chosen as
k = k, — Gy, which directly follows from the umklapp condition (8.8). The umklapp con-

dition expands the full Hamiltonian H into plane-waves, which obey the Moiré periodicity
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G = Gr — Gpg. The full Hamiltonian has the properties of a block matrix, with

Hk) — Hp(k) Hr/p(k)
Hpr(k) Hpg(k)
Hrip(k+ Gr/pa) 0
Hpp(k) = 0 Hypp(k + Gry/p2)
Hrp(k+Gp1+ Gr1) Hrplk+ Gpi+ Gra)
HTB(k) = HTB(k + GBQ + GTJ) HTB<k + GB72 + G’T’Q) - (8.10)

The band structure calculated from diagonalizing H (k) is converged, if the bands of inter-
est within the first MBZ are symmetric on a representative path. The number of G from
the PW-expansion controls the convergence as it enables the symmetrization of the bands
by backfolding. At the same time it is a limitation to the calculation as the matrix size is
quadratically increased with Ngu. For a commensurate structure, the number of GM’s is
finite, while for an incommensurate the number is infinite. Therefore the matrix has to be
truncated at a certain order of G*’s. Especially for small angles large matrices arise, that
are numerically demanding. Nevertheless, this model provides band structure results for
arbitrary angles.

The matrix elements of the interlayer interaction V' in real-space are given by
HZITB(RT,ZW RBJ') = <RT,i7 a, t|VB’b(I' — RB,]‘ — TBJ)‘RBJ‘, 6, b> . (811)

Transforming into k-space, one has to pay attention to the interaction not being discrete
on the lattice sites, but continous.

HP(q) = % / drHY (r)e ' (8.12)

In the expression above H'/;(r) will be used as a model function. In the sense of a Slater-
Koster model the interaction between neighbouring orbitals can be expressed as o- or 7-
binding. The projection on the vector connecting the neighbouring orbitals yields the o-
binding part, while the projection on the perpendicular plane yields the 7-binding. Exem-
plary for p-orbitals on obtains from this projection

d2 7“2

HgﬁB(r) = ‘/zzp(f(R)ﬁ + anr(R>ﬁ ) (8.13)
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where d is the distance between the two orbitals in z-direction and » = /22 + y?2 their
lateral distance. It has to be taken care that due to the dependence on a top layer and a
bottom layer orbital a basis transformation has to be performed. This procedure transforms
the pure orbitals into linear combinations of rotated top and bottom orbitals, for example
}pi/b> — 1/v2(|p.)+|p%)). The transformation is unitary and defined by a rotation matrix
R(0) that acts separately on orbitals with different quantum number n.

For the spatial dependence of the Slater-Koster parameter V,,,, and V,,,. the generalized
Harrison rule is applied, resulting in

_R-—d __R—a/V3
Viopo(R) = VO ¢" o and Vopre(R) = VO o7 o . (8.14)

ppo ppm

The equation above is valid for hexagonal lattices. The values of V,,,,, and V},, can be found
in [209] for the presented example material systems of bilayer graphene and bilayer MoSs.
Having defined all necessary quantities above, the full matrix can be solved by diagonalizing

the eigenvalue problem to obtain the single-particle energies of the twisted bilayer system.

8.3. Electronic Properties of Interlayer Excitons

WSe

MoSe, i@

Figure 8.3.: Type-1I band alignment at the K-point of a WSe,/MoSes heterobilayer. For the
lowest transition electrons are excited into the conduction band of MoSe,, while the holes
reside in the valence band of WSes,.

The electronic properties and excitations in twisted bilayer systems shall be described for
small twist angles, in order to obtain an expression for the angle and temperature depen-
dence of the radiative lifetime of ILX. The bilayer system, that serves as an exemplary ge-
ometry, is a WSey/MoSe, bilayer. Interlayer excitons form in this bilayer due to the type-II
band alignment of the K-point transitions (see Fig. (8.3)). The excited electron and the
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Figure 8.4.: The periodic Moiré potential V' is plotted within a Moiré unit cell. It repre-
sents the band gap change that is induced due to the Moiré periodicity defined by the vec-
tors aj? and al!. The variation of the stacking of the top and the bottom layer changes
throughout the Moiré unit cell can be seen from the lattices in the background. In the
center-of-mass description the ILX act as composite particles that move through the po-
tential landscape. Thus they will assemble within the minima of VM.

hole therefore reside in different layers. This causes the lowest optical transition to be
glX — gMoseae | WSk By choosing a specific twist angle the band gap is periodically
modulated across the Moiré unit cell, due to the change in stacking order that originates
from the rotation. This Moiré pattern introduces a periodic potential landscape, in which
ILX get trapped [19, 207, 208].

For small twist angles the Moiré unit cell becomes large compared to the Bohr radius of an
ILX (~ 1 nm). Thus the ILX is described as a composite quasi-particle that moves through
a potential landscape [19]. Thereby it is justified to neglect the relative motion of the ILX.
The electronic properties of the ILX are calculated from the center-of-mass Schrédinger
equation. The center -of-mass coordinate is defined as R = (m.r. + myry)/M, where
M = m, + my, is the mass of the center-of-gravity.

Following the work of Refs. [50] and [19] the Hamiltonian for the center-of-mass motion of
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the ILX has the following form in real-space and momentum space respectively:

h2
h2 2 )
- 2]\3 +> Ve SR (8.16)

GM

VM(R) is the interlayer Moiré potential that arises for commensurate angles in real-space
Moiré superlattices. It originates from the band gap change VM(R) = Eg(R) — (Eg)
when translating the layers and thereby changing the stacking order. Assuming small ro-
tations, each rotated atomic position in the top layer can be identified with a translation in
the MBZ and is thus mapped onto DFT calculations of shifted layers as presented in [50].
This parameterization will be used in the following.

In order to calculate the electronic properties of the ILX, a plane wave (PW)-expansion on
the MBZ with Q, GM € MBZ is performed, leading to the following expression for the wave
function:

) = D |Q+GY v){Q+GY vy)= ) chen|Q+GY V), (817)

Q,GM Q.GM
xly) = x(@)= > chpaue@er, (8.18)
Q,GM
with Y Q+GY uNQ+GM v =1, (8.19)
Q,GM,GM/
a.nd. <Q —+ GM’ V’Ql + GM/’ y> = 6Q+GA{,Q/+GJW/ . (820)

These basis states for the excitation of an electron hole pair can be represented by cre-
ation/annihilation operators. Within the center-of-mass description all momenta are mea-
sured from the K,/ p-valley, as the exciton wave function is centered there. For the ILX
states ‘Q> one obtains:

1 . y
Q) = ﬁZ¢X(k)aI&ﬁHmE/MQaKmk—mh/MQ‘G> (8.21)
k
! 1 |
@QIQ) =1 = > lexPF=1, (8.22)
k

with the exciton wave function ¢ x (k). AWannier equation is used to evaluate ¢ x (k), which

respresents the overlap of the electron (hole) wave function in the bottom (top) layer. The
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exciton Wannier equation is given by

h2k?
Z ok — Vik-w|| x = —Epox . (8.23)
o L 2w

For the dielectrically screened Coulomb potential Vx| the method described in Sec. (4.4.4)
is used, reformulated as presented in Ref. [62]. Throughout the calculations it is assumed,
that the bilayer is encapsulated within hBN substrate. The full exciton state wave function

within the Moiré potential at a certain momentum q is subsequently evaluated as:

(alx) = x(@) =Y chren(aQ+G",v)=cidqqiam . (8.24)
Q}G]M

Exploiting the benefits of the PW-expansion the real-space Moiré potential is expressed as

Fourier series:

Vi) =Y VEeSTR Vi = / d’rV M (r)e TR (8.25)
GM

The latter equation enables the calulation of the Fourier coefficients of the potential matrix

Ve Where the potential itself is given by a mapping on DFT calculations according to

VM(r) ~ Z VjeZGJA " [50]. G}’ represents the first shell of reciprocal Moiré lattice vectors
=1

and V; = V¢ with the parameters V, ¢ given in Tab. (C.4). Due to the Cs symmetry V; 5 5
are equivalent as well as V5 4 6. Additionally V; = V;* holds. The PW-expansion is applied
to the total equation, therefore (8.17) is inserted into (8.16):

h2 12
> |G - B+ YV den|QGY) = 0 6826
Q7G]\/f G]\{/

By multiplying from the right with (Q + G, V} one obtains an eigenvalue problem for

v .
CQ_,’_G]M.

h2Q/2
Z |i M (5Q’,Q+GMCVQ+GM + Z V aM GMICQJrGM M’ = O, (827)
Q,GM Q.GM GM’

which results in the main equation for center-of-mass ILX in a real-space Moiré-potential.
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Eigenvalues and -states can be found from diagonalizing the ILX Wannier equation:

h? 2
m (Q — GM) CVQ_GM(sGM’GM + Z V(I;AM’GM/CVQiGM/ = 0, (828)
GM’

where VC’\;"M’ o’
tion of the Moiré potential.

The energies 56+GM and coefficients CVQ+GM for center-of-mass ILX state ‘Q + GM, 1/>
inside the Moiré potential are obtained from this procedure. The calculated ILX wave func-
tions of the lowest (bound) states are localized at the minima of the Moiré potential. The
dispersion of the ILX exhibits a flattening of the lowest bands with decreasing twist angle,
which occurs due to the simultaneously decreasing size of the MBZ and thereby enhancing

the localization of the ILX in the potential minima.
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Figure 8.5.: a): Dispersion of a center-of-mass exciton for a twist angle of 1 °. The bound ILX
state are nearly flat, while their minimum is always at . b): Dispersion of center-of-mass
interlayer excitons for 3 °. The number of bound states decreases and the lowest state has
a significant curvature. c): Dispersion of center-of-mass interlayer excitons again for 3 °
without the Moiré potential V. The parabolic dispersion of the ILX obey only the Moiré
periodicity.

8.4. Interlayer Exciton Lifetime

The radiative lifetime of an ILX is calculated by utilizing Fermis Golden Rule for a thermal

ensemble [212, 213]. The probability for a transition from an initial ILX state ‘ Xa> to a final
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photon state }q, A) is inversly proportional to the lifetime of the ILX. It is given by
_ 27 :
T[le = f Z ‘<f‘HLM’Z>‘25(€@' - Ef)Ni
if
27
= 722|<q7)\‘HLM|Xa>|25(5q,/\_Ea)Na (8.29)
q,A o«

with Hp s being the light-matter interaction Hamiltonian in minimal coupling derived in
Sec. 4.6.))and @ € {Q+ G v}. The energy conserving §-function defines the transition
energy while N, is the thermal occupation of the ILX states, obey a Boltzmann distribu-
tion [212]. For the occupation the constraint ) ° N, = 1 holds, therefore the occupation is

normalized to one. The photon state

q, )\> of momentum q and polarization A couples to
the ILX state } Xa>, see (8.24). This ILX state is obtained as described before. The resolution
of unity (8.19) is exploited to expand the ILX state in the plane wave basis:

2
it =5 2| D (A Huw @+ G o
) Qv gM GgM/

2
d(eqr — €qu)Nq,.(8.30)

The task is to derive an expression for <q, )\}HLM ] Q+GM, u>. Recalling the light-matter
Hamiltonian from Eq. (4.175) for electrons and holes is the starting point for calculating the

transition matrix element in Eq. (8.30):

(& 3 7 I
Ho = 0 [ Eriiepam)im 83D
e ’
- AR)al, ar ,p” (R —-R/), 8.32
mO RyRZJ/,V’ ( )G/R‘>VaR ’ p ( ) ( )

withp”' (R —R/) = N7' Y ¥R "RIp" () being the momentum operator matrix ele-

ments. Furthermore the normal mode expansion of A (in SI units) is given by [131]

h i —i
A(R) = Z meq,)\ <bq,)\€ QR 4 bT_qM\e q“R) . (8.33)
q,\
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By combining (8.32) and (8.33) the following representation of H ), is obtained:

1 e
H = _—— IR
Lt N my 25ocn qQ Z Z IRy IR, \/_

R,R v, q,\

o Z PR —Rg b (p) (bq7)\€iq\lR + bL7Ae_iq|‘R> . (8.34)
p

In order to obtain the matrix elements <q, )\‘H LM ‘ Q + GM, 1/> the excited exciton wave
function ‘ Q, 1/> (cf. Eq. (8.21)) is expressed by using the Wannier representation of the cre-

ation (annihilation) operators

v 1 —iqR v
g = /_Z ag
N R
1 o
ale = _Nze—“lR aly. (8.35)

Throughout the remaining parts of this section it is assumed that the electron and hole
forming the ILX have been excited at the K-point. As the electron hole exchange between
K, K’ isweak, excitations from both valleys can be described seperately as they are still con-
nected by time-reversal symmetry. Inducing a finite twist angle > 0 °leads to a momen-
tum displacement of the valence and the conduction band Q = (K7 + Gr) — (Kg + Gp).
Thereby the transition from the ILX to the ground state becomes indirect. Using this to-
gether with Egs. (8.35) the ILX state (8.21) is expressed as

Q4GM0) = S
\/_ N &=
w Q-G (FFR/+ L R) aksan|G) (8.36)

In the next step both Eq. (8.34) and (8.36) are combined. The abbreviations k., = KT +k+
ne (Q—GY)andk, = Kp+k—72(Q—G")areused. Considering N~' 3" e*® = § ¢

one obtains

e 1 mo
NH GM = —jve
<q7 | LM‘Q + ) V> mo \/— 2€QCTZ qQ Z ¢X -] q)\(p)
p“ch(p)
X Z 5_p+q\|/2_kv7G35P+QH/2+kv,GT (8.37)

Gr,Gp
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The correspondence between the momentum operator p and the current operator j in min-
imal coupling (see Sec. (4.6.1)) has been used in order to introduce the current operator ma-
trix elements. Though these are depending on the polarization e as has been pointed out
before, the mixing of e _-polarized components of j at K is small, see Ref. [50]. The matrix
elements are thus approximated by their leading Fourier component, which makes them a
constant in real-space. It remains j*,,(p) = D, .. The exciton wave function ¢x (k) repre-
sents the relative electron hole wave function. Due to the separation between relative k and
center-of-mass momenta Q the relative momentum is neglected and therefore not relevant

for the momentum conservation. One is left with

/ h 1
<q,)\‘HLM|Q+G]M’V> = ngcnquD-i-\/sz:ng(k)

X Z 6Q*GM7(KT+GT)*(KB+GB)+QH . (8.38)
GM.Gr,Gp

The terms within the momentum conserving §-functions demand Q— G = (K +Gy) —
(Kp+Gp)+q. Considering the sums over the reciprocal lattice vector GM Gy, Gpthese
are to be read as a general umklapp condition. Due to the choice of small angles, which
causes the MBZ to be much smaller the the BZs of the top and bottom layer, this condition
is ensured for Gp,p. The finite momentum induced by the displacement of the top and
bottom bands therefore has to be left for the photon (Q — G*) = (Kr — K5) + q;. Due
to the steep disperion of photons the first MBZ provides all necessary contributions. The
finite momentum of K — Kp corresponds the x-point of the MBZ. In conclusion only
ILX at the k-point of the first MBZ couple to photon states. It is evident that the twist angle
effectively enlarges the momentum displacement K — K g of the ILX and the photon state.
The probability for radiative decay decreases as the transition becomes indirect.

In Eq. (8.30) the sum over A sums up all polarization contributions of the light giving rise to
the light-cone function [212]. According to the findings of discussing the momenta before,

six light-cones at the r/x/-points appear. Inserting (8.38) into (8.30) one obtains:

g7 Bléx (r = 0)[?| D4 |2 Nt he
1 o X + O RTqpr
TiLx = ﬁ 2e0cn2() Z Z /—qII P ( \/ qH +q2 — EQ,u)

v q),9z 2

2
2 qj

1+ [1- | ———
\/df + ¢

(8.39)
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Figure 8.6.: Schematic representation of the influence of the temperature (left) and the in-
directness of the ILX transition (right). The broadening of the thermal distribution at "/~
causes a redistribution of occupation towards the edges of the BZ. Increasing the twist an-

gle shifts the light-cone away from the y-point to the k-point. The finite momentum be-
tween the K7- and K g-valley causes the ILX to become an indrect exciton.

The sum over the photon momentum q and g, are written as integral and evaluated. The
factor g% = 2 to account for the contribution from the K’-point due to time-reversal sym-
metry. The energy conversion implied in the J-function is transformed to a f-function by
evaluating the g.-integral. This limits the q-integral to the maximum momentum pro-
vided by the light-cone ¢ff = ne/hic, where e = eq, + Ex is determined by the spectral
position of the ILX and n = 2.15is the index of refraction for hBN. The integral is evaluated

in polar coordinates. After further summarization one is left with

_ 47T h|¢X r = 0
1
TiLx T T 2eqcn? Z Nitayv

‘D+C
—q

/ dWT (1 (i) ) - e

The angle-dependence of the lifetime is hidden in the plane wave expansion. For small
angles it becomes numerically demanding as more and more G have to be taken into
account for convergence. The results of evaluating Eq. (8.40) for increasing twist angles
and rising temperatures are plotted in Fig. (8.7). The parametrization for the investigated
WSey/MoSe; bilayer have been taken from Ref. [50] and can be found in Tab. (C.4) in the
appendix.

The lifetime in Fig. (8.7a) is in the order of several nanoseconds, whereas typical radiative

lifetimes of excitons in TMDs are in the picosecond range [192]. With increasing angle the
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8. Interlayer Excitons in Twisted TMD Bilayers
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Figure 8.7.: a): Lifetime 7 of the ILX in a WSey/MoSe; bilayer for twist angles of 0°,0.5°,1°,
2°,3°,4° and 5 ° respectively. The temperature has been increased from 20 K to 300 K as
labeled. b): Same plot as a) but without the Moiré potential. The values of 7 for 0 ° are equal
for both plots.

lifetime increases drastically for low temperatures, e.g. from 2 ° to 3 ° for 20 K it rises from
~ 100 ns to nearly ~ 1000 ns. This strong increase is reduced when rising the temperature.
For a twist angle of 0 ° up to ~ 2 ° the lifetime is increased with increasing temperature,
above ~ 2 ° this behaviour inverts. An increase in temperature broadens the occupation,
while for low temperatures a sharp occupation centered at the dipersion minimum - is
found. Nevertheless, the photon and the ILX couple at x and thus the inverse temperature
dependence for lifetimes above and below 2 ° reflects the sharpness of the thermal distri-
bution. For zero twist angle the radiative lifetime of the thermalized ILX depends linearly
on the temperature [212].

The thermal occupation has its maximum at the MBZ center . The light-cone function
intersects the ILX dispersion at Q-states in the vicinity of  to contribute to the radiative
decay as it intersects the ILX dispersion. From Fig. (8.6) it can be understood that for in-
creasing angles the size of the MBZ increases thereby shifting the light-cone, that is cen-
tered at k, away from the ILX dispersion minimum at . For small angles the MBZ decreases
in size, which has the sideffect of redistributing the occupation Ngq , also to the vincinity
of k. If the MBZ becomes large enough, the dispersion of the ILX states is not negligible,
which effectively drains occupation from « to .

The presence of the Moiré potential decreases the maximum value of the lifetime, as can
be found by comparing Fig. (8.7a) and (8.7b). The curvature of the lifetime changes sign

from low to medium angles, if the Moiré potential is present. The Moiré potential couples
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8.5. Conclusion

different ILX momenta and thereby effectively softens the momentum conservation. Thus
more momenta contribute to the transition from an excited ILX to a photon, which overall

decreases the lifetime.

8.5. Conclusion

In conclusion the twisted bilayers materials provide interesting physics considering the in-
terlayer excitons. A finite twist angle is the origin of a Moiré pattern, that can be described
in terms of the lattice basis vectors as has been shown in the beginning of this chapter. The
periodic Moiré lattice can also be described in terms of reciprocal space, where the MBZ
is found. This MBZ can be constructed from the difference of the top and bottom layer
reciprocal lattice vectors. In order to describe the ground state band structure of twisted
bilayers the TB-method within the Slater-Koster ansatz has been utilized to employ a gen-
eral model. This model introduces an interlayer interaction, that enables hopping between
the layers, while it allows for using existing TB-models of monolayers. Though it has been
tested for bilayers of the same material, it provides a promising perspective for describing
various TMD bilayers. In order to investigate on interlayer excitons that form in bilayers,
the Moiré pattern plays a central role. By inducing a band gap change a periodic potential
traps the excitons. These interlayer excitons exhibit lifetimes of several nanoseconds. The
dependence of the lifetime on the twist angle as well as on the temperature has been calcu-
lated. The lifetime changes up to several orders of magnitude when increasing the angle.
The dependence on lifetime and angle is a combined effect of the broadening of the ILX
occupation for increasing temperatures as well as a change of size of the MBZ when chang-
ing the angle. The latter shifts the light-cone, that selects the bright states, towards or away
from the dispersion minima at the y-point in the center of the MBZ, thereby effectively di-
minishing the occupation. For a finite rotation the ILX transition becomes indirect, which
reduces the probability of radiative decay as the light-cone is shifted away from the maxima

of the occupation.
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9. Conclusion and Outlook

Within this work the optical response of TMD monolayers and bilayers to the photoexcita-
tion of charge carriers has been investigated. As central equation describing the excitations,
the semiconductor Bloch equations have been employed.As a starting point exciton eigen-
value problem has been analyzed in form of a Wannier equation, that is contained in the
semiconductor Bloch equations. Excitons in TMD monolayers exhibit a non-hydrogenic
Rydberg series, due to their two-dimensional polarizable shape, which causes a linear de-
pendence of the dielectric function on the transferred momentum for Coulomb processes.
In response to magnetic fields, the large binding energies of excitons necessitate high field
strength in order to obtain significant shifts.

The description of the many-body interactions of excited carriers is based on the ground
state band structure, which is obtained from DFT+GW calculations that are interpolated on
a discretized k-grid. From these ab-initio-calculation material-realistic Coulomb matrix el-
ements are obtained, which are necessary to describe the dominant Coulomb interaction of
excited charge carriers in TMD monolayers on a material-realistic level. In order to describe
different substrate structures, the Wannier function continuum electrostatics-scheme em-
ploys macroscopic dielectric screening for the Coulomb matrix elements.

For the description of many-body interactions, the formalism of non-equilibrium Green’s
functions has been employed. Correlations have been treated in the GW-approximation,
that results in the well-established screened exchange Coulomb hole-approximation in the
limit of static interaction. Successively, the obtained theoretical description of many-body
correlations has been adapted to the characteristic valley structure in the band structure
of TMD monolayers. It has been found that the interband exchange interaction is best de-
scribed by a bare interaction, while the screened exchange and Coulomb hole terms only
appear for intraband excitations.

In the context of pump-probe experiments the SBE have been utilized in two different ways.
On the one hand, the electric field accounted for a weak ultrashort laser pulse, in order to
probe the absorption spectrum. On the other hand, the electric field has been used as a
strong pump laser to elucidate the power-dependence of the total charge carrier density.

Considering the absorption spectra the optical response of MoS,, MoSe,, WS,, and WSe;
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9. Conclusion and Outlook

monolayers in the presence of excited carriers has been investigated. Before the recom-
bination of electron and hole pairs, the excited carriers occupy the band structure valleys
according to a Fermi distribution of a given density and temperature. Different many-body
effects have been identified among which are Pauli blocking, that causes a blueshift of the
bound states as well as spectral bleaching of the exciton peaks with increasing density. Due
to plasma screening of the excited carriers, the binding energy of the excitons is reduced
until they dissociate at the Mott-density. As most important result band structure renor-
malizations cause a direct-to-indirect transition of the band gap for all considered mono-
layer TMDs. The combination of the orbital character of Bloch states and electron and hole
populations defines the characteristic momentum dependence of the Coulomb interaction
for TMDs. Especially the bare electron hole exchange interaction causes a relative shift be-
tween the K- and the 3-valley that leads to indirect band gaps. For elevated densities, the
advantage of a direct gap semiconductor thus slowly vanishes, as carriers are drained from
the optical bright transition at K to the 3-valley. This has a direct impact on TMD mono-
layers being used as active material of a laser, as the peak gain curves show a characteristic
roll-over behaviour due to the hampering of population inversion. The transition to indi-
rect band gaps is also expected to cause a quenching of the photoluminescence intensity
for high excitations.

Considering the power dependence of the total charge carrier density the monolayer is illu-
minated by laser pulses of different fluences. The assumption of a linear absorption coefhi-
cient does not reflect the presence of strong many-body interactions that prevail in mono-
layer TMDs. It is expected, that the total density increases in a non-linear way with the
fluence. Nevertheless, it has been demonstrated that the density increases linearly for low
fluences up to 5 uJ cm 2 for pumping at the band gap, while a pump above the gap provides
linear increase for fluences up to 50 ] cm~2 (20 uJ cm—2) for the sulfides (selenides). For
a pump at the band gap the effects of Pauli blocking and band structure renormalizations
partially compensate each other. Pauli blocking obstructs phase space, while the renormal-
izations shift the density-of-states away from the pump pulse providing an effective clear-
ing of the states, overall leading to a linear dependence of the density to the fluence. Pump-
ing above the gap, the scattering time of carriers determines whether the density increases
linearly with the fluence or not. Excitation induced dephasing dampens the inter-band po-
larizations by changing the linewidth of the excitonic peaks and band-to-band transitions
in dependence of the density. This has been modeled and parameterized to account for non-
linearities from density-dependent dephasing effects. For fluences up to 1000 ] cm~2 the
increase in the density slows down for all four monolayer TMDs.

Inthelast part TMD heterobilayers of type-II band-alignment, exemplified by a WSez/MoSe;
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bilayer, have been studied. Interlayer excitons, where electron and hole are located in differ-
ent layers, are of high interest in research due to their long lifetime. A Moiré pattern arises
in the bilayer systems, if a finite twist angle between the layers is present. This Moiré pe-
riodicity changes the single-particle properties, by inducing a periodic modulation of the
band gap. For small angles the relative and center-of-mass motion of interlayer excitons
in this Moiré potential have been separated, leaving the interlayer excitons as composite
quasi-particle. The lifetime of interlayer excitons has been successively calculated by uti-
lizing Fermis golden rule to describe the radiative decay of a thermalized ensemble of in-
terlayer excitons. The hereby obtained probability for radiative decay of interlayer excitons
in a WSey/MoSe, bilayer yields lifetimes on the nanosecond scale. This is several orders of
magnitude longer than the lifetime of intralayer excitons, which is on the order of picosec-
onds. The lifetime strongly depends on the twist angle and the temperature. The twist
angle induces a momentum displacement between the conduction and the valence band,
that causes the interlayer exciton transition to become indirect. Thereby the light-cone is
shifted away from the maximum of the occupation, centered in the first Moiré Brillouin
zone. At large twist angles this reduces the probability of radiative decay. Lowering the
temperature narrows the distribution of interlayer excitons, which decreases the occupa-
tion of states within the light-cone and thus increases the lifetime. A temperature increase
causes the opposite. The presence of the Moiré potential opens up possible scattering chan-
nels by coupling interlayer excitons of different momenta, thereby overall decreasing the
lifetime. In the limit of @ = 0 ° the lifetime depends linearly on the temperature. An in-
crease of the twist angle increases the lifetime up to several orders of magnitude.

Concluding this last chapter, future perspectives of this work will be shown. A general
improvement of the semiconductor Bloch equations used here would be the inclusion of
electron-phonon interaction. The calculation of carrier dynamics would directly benefit
from material-realistic scattering processes. From a theoretical point of view it is also of
interest to treat the Coulomb interaction in the frequency-dependent GW-approximation,
thereby obtaining access to the excitation induced dephasing. Other materials such as per-
ovskites exhibit fascinating physical phenomena and could be part of future research. In
order to do so an ab-initio-ground state calculation is a necessary step towards the theo-
retical description of many-body effects within novel materials. Concerning the interlayer
excitons in bilayer systems, it is of interest to derive a comprehensive theory including the
calculation of band structures and absorption spectra. A full microscopical understanding

of the dipole coupling strength of interlayer exciton transitions is desired.
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Appendix






A. Numerical Treatment of the Coulomb

Singularity

When numerically calculating the Coulomb matrix elements, care has to be taken for the
discretized matrix elements where k = k/, as they diverge. This problem can be overcome
by analytically calculating the integral over the respective k-point cell or evaluating this in-
tegral numerically, which is necessary in the presence of screening. Commonly the integral
over the Coulomb matrix and any k-dependent function can be split by adding a zero, which
results in discretized form in:

Z Viw v = Z Viae fie — fx Z Viw Fxw + fx / df{VkRka(' AD)
k/

k#£k’/ k£k/

The remaining integral can be evaluated numerically or in special cases analytically. A fac-
tor Fige = 4k?/(k? + k'?)? to improve the convergence of the integral expression has been
added. For an equidistant grid, like the Monkhorst-Pack grid that has been used here, the
integration over the diverging point at k = k' can be performed directly. If the bare inter-
action is calculated the integral can be solved analytically. Therefore the integral is trans-
formed to polar coordinates and the symmetries of the hexagonal-shape area of one k-cell
are exploited. This hexagon can be divided into twelve pieces, each being a right-angled
triangle. In all of these triangles the relation between the radial component is determined
by the current angle of the double integral. The longest radius is determined by half the
distance between neighbouring k-points, Ay /2. The whole integral has to be normalized
by the total area of the k-point in order to avoid conflicts with the numerical weights wy of

the discretized k-mesh integration. One obtains

x _ Bk
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A. Numerical Treatment of the Coulomb Singularity

This integration can be easily adapted for a linear mesh in a Riemann integration for ex-

ample:

62

Vin o — 12 - 2tanh™ (tan (E>> AN
oWk 8

62

12-0.8814 - A . (A3)
oWk

Note that this works only for the bare interaction. Plasma screening, expressed via an in-
verse dielectric function e ! (q, w) will change the integrand function. The transformation
to polar coordinates is still useful as long as e71(q) = £7'(|q|), but the whole integral has

to be performed numerically.
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B. Derivation of the GW terms

Taking into account only Coulomb matrix elements with the index combinations AN A"\,
AN N or AN X results in a condition for A, A3, \; occuring in Eq. (4.100). This leads to:

t
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(B.1)
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B. Derivation of the GW terms

As praticed before when deriving the SBE, intraband polarizations will be neglected. By
identify the remaining GE’M,(t’) with microscopic polarizations 1 ('), the remaining

functions inside the brackets are summarized:

—U” ()G () Wigdhae* (11) = G (#)Wigdhao® (1 0]GRS (11)GY (1)

— ()G Wigdae * (#,1) = G () Widae “ (1 DG (1 )G (1)

— UG (1) Wiganae " (1) = GG () Wigae ™ (1 ]G ()G (8 1)
— G (G Wiadhad (1:4) = G ()Wigdhad ()G ()G (¢ 1)

— WG Wahad " (4:8) = G (#Wigdad ™ (]G (1 )G (E 1)

— G (G () Wiginae™ (1) = G () Wignae'™ (1 IGR (1 )G (¢ 1)

(B.2)

At this point the quasi-equilibrium properties are exploited, thus a Fourer transformation
with ¢ — w is performed and all functions, that still carry two times, will depend only on
the relative time 7 = ¢ —t'. These are successively replaced by their Fourier representations
(see Eq. (4.81)). The KMS relations (4.90) and (4.91) are employed. The populations do not
carry a frequency dependence. The retarded and advanced Green’s functions, depending
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only on one time argument, are replaced by their corresponding spectral functions.
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(B.3)

The Green’s functions of the greater and lesser screened Coulomb interaction W< are prop-
agators of plasmons. The spectral function of these plasmons is identified as the retarded
inverse dielectric function. Therefore the (bosonic) KMS relations hold and the following
can be found [137, 155, 196]:

Woravais @) = Wiy (@) = 20V5 0, Imey 1y, (W) (B.4)
V1V2V3V4(w) = (1+n3(w))V,,11,21,3,,42zIm5E1 1k4(w) (B.5)

V1y2y3y4(w) = nB(w)VV1V2V3V4QZIm6k1_1k4(w) (B.6)

Wi (@) = Wi, @) (B.7)

The properties (B.4) - (B.7) are employed into (B.3). Additionally a substitution of the colli-
sion integral from dt’ — dr is performed. After regrouping the frequencies in the expo-
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B. Derivation of the GW terms

nential function according to their dependencies inside the integrals, one obtains:
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—+00 —+00 “+oo

Using f o f dtelw=2)t = f dwd(w — w) each & is replaced by w, therefore the cor-

relatlon terms are coupled to the frequency w. The incomplete integral over 7 can be re-
expressed using the Dirac identity, thereby introducing a Cauchy principal value and a §-

function. Furthermore for the sake of shortness Aw = W’ + w” + w"” — @ has been intro-
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duced.
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In the following the quasi-particle approximation is applied, therefore the interaction is
considered weak. The imaginary part of the retarded Green’s functions is defined as spec-
tral function, which enables another possible solution by first determining the retarded
self-energy and successively calculate the spectral function. Here S8 = AM 4 i) is
chosen to be independent of the frequency. In the time and frequency domain one there-

fore obtains:

GRANL—t) = Ot — t))e~#E SN (B.10)
1
R,A _
Gy (w) = o — 202 _ yRA (B.1D
k k

~ 1 1 vy
Apw) = —ImGMNw) = = B.12
k(w) T m k (CL)) T (hw _ 81/:) + 72 ( )

Hence, the imaginary part of the self-energy 'y = ~ determines the quasi-particle broad-
ening, which is here taken to be constant in k and independent of the frequency, while the
real part renormalizes the single-particle energies &) = 0% + AM'

The remaining frequency integrals are successively solved starting from the inner-most in-
tegral over w”’. The Cauchy principle value can be solved using the Kramers-Kronig re-
lations, that translates the imaginary part of a complex function to the real part and vice

versa. For the remaining integral on w” the convolution theorem can be exploited. Here
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B. Derivation of the GW terms

the retarded/advanced Green’s functions in the time domain can be inserted, resulting in
the multiplication of exponential functions. Therefore, the single-particle energies add, as

well as the dephasing . Overall the integrals yield:
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1 i 1
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(B.13)

Therefore, a new spectral function arises, that combines both energy poles. This result is
inserted into Eq. (B.9) to obtain Eq. (4.105) and (4.106) in the main text.
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C. Numerical Parameters

C.1. Ab-initio Fitted Parameters for the Coulomb Interaction

MoS, MoSe, WSy WSe,
vin (nm) | 0.1932 | 0.2232 | 0.2130 | 0.2297
din (nm?) | 0.00395 | - 0.00356 | 0.00720 | 0.00174
Ain (nm?) | 0.08758 | 0.09546 | 0.08818 | 0.09574
Uy in (meV) 810 837 712 715
Us in (meV) 367 376 354 360

Table C.1.: Fitted parameters for the Coulomb interaction, taken from Ref. [36].

C.2. Ab-initio Fitted Parameters for the Microscopic Dielectric

Function
MoS,; | MoSe; | WS, WSe,
ain (1/nm?) | 2383 | 285.6 | 394.7 | 243.0
b 17.836 | 11.635 | 29.931 | 20.764
cin (nm) | 0.5107 | 0.1979 | 0.5440 | 0.5761
hin(nm) | 0.2740 | 0.4298 | 0.1578 | 0.2489
e 5739 | 6.303 | 4.497 | 5.305
) 3.077 | 3.148 | 2.979 | 3.028
£3 2.509 | 2.510 | 2.494 | 2.481

Table C.2.: Fitted parameters for the microscopic dielectric function, taken from Ref. [36].
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C. Numerical Parameters

C.3. TMD Model Parameters

material | ain (nm) | m.in (mg) | myin (mg) | Egin (meV) | Ex in (meV)
MoS, 0.3180 0.46 0.41 2638 1900
MoSe, 0.3320 0.31 0.48 2355 1550
WS, 0.3191 0.31 0.37 2775 2000
WSe, 0.3325 0.29 0.36 2360 1650

Table C.3.: Model parameters for the four different TMD monolayers. Given are the effec-

tive masses of electrons and holes, the band gap from the Wannier interpolation and the

spectral position of the A-exciton.

C.4. Interlayer Exciton Model Parameters

material me in (mo) my in (mg) | apein (nm) | din (nm)
MoS, /WS, 0.42 0.34 0.319 0.615
MoSe;/WSes 0.49 0.35 0.332 0.647
material, stacking | |D.|in (pAnm) | V in (meV) ¢in (°)

MoS,/WS,, AA 0.17/0.04 ><522% 12.4 81.5
MoS,/WS,, AB 0.04/0.10 X522% 1.8 154.5
MoSe;/WSey, AA | 0.22/0.06 ><443% 11.8 79.5
MoSey/WSes, AB | 0.04/0.12 ><443% 1.8 155.2

Table C.4.: Parameters of the two bilayers systems for different stacking order, obtained

from Ref. [50]. Effective masses, lattice constants, the strength of the current operator ma-

trix elements and the parametrization of the Moiré potential are presented above.
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C.5. Nanobubble TB Parameters

€0 -2.17187 €V
€9 -2.07972 eV
to  -0.326583 eV

toxs  0.561734 eV
ty  -0.411327eV

troto  -0.355268 eV
ty  -0.0537226 eV
bag  0.052774 eV
th 0.052774 eV

thory -0.123627€V

C.5. Nanobubble TB Parameters

Table C.5.: TB parameters for the nanobubble model. € denote orbital energies while ¢ and

t’ denote the hopping parameters of the nearest and next-nearest neighbour Mo-atoms, as

presented in [96].
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