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ABSTRACT

Atom interferometers represent a well-proven tool for precision measurements and are used
for a variety of applications ranging from geodesy and inertial navigation to fundamental
questions in physics. State-of-the-art sensors typically operate with laser-cooled atoms, which
exhibit a relatively large spatial and momentum width. The systematic uncertainties associ-
ated with the latter can be overcome by employing Bose-Einstein condensates (BECs). The
sensitivity of an atom interferometer can be enhanced by the interrogation time as well as by
a large momentum separation of the atomic wave packets. Hereby, a small atomic velocity
width is crucial to achieve high-fidelity manipulation.

Within this thesis, the realization of a novel beam splitter for the transfer of large momentum
on an ultra-cold atom cloud is presented. The condensate is generated in a miniaturized
atom-chip based setup and its expansion rate is further reduced by delta-kick collimation.
The beam splitting light field consists of two counterpropagating lattices with orthogonal
polarizations. In such a twin lattice, the efficient combination of double Bragg diffraction with
Bloch oscillations promises to overcome current limitations of large momentum transfer. Bloch
transfer efficiencies of more than 99.9% per photon recoil (ħhk) can be achieved and, thus,
excellent scalability is provided. The symmetry of the twin lattice enables the suppression of
systematic errors. These features allow for the realization of a symmetric Mach-Zehnder-type
geometry, where contrast can be observed up to a maximum splitting of 408ħhk corresponding
to a total transfer of 1632ħhk. To our knowledge, this represents the largest momentum
separation in an atom interferometer reported so far.

A detailed experimental and theoretical study reveals that the current limitations are solely
caused by technical properties of the experiment. In particular, light field distortions arising
due to the diffraction of the laser beam at different apertures cause a dephasing leading to a
contrast decay. The results open up new routes for the miniaturization of inertial quantum
sensors as well as for gravitational wave detectors.

In addition, the combination of an atom-chip trap with an optical dipole trap is investigated,
which serves as a pathfinder experiment for atom interferometry in optical waveguides.
Waveguides allow extending the interrogation time without an increase of the interferometer
region. Optimizing the spatial overlap of both traps as well as the temporal sequence, the
BEC can be transferred into the dipole trap with an efficiency of over 99%. Such a setup
also has applications in future atom-chip experiments featuring two atomic species, whose
interactions can only be controlled in a purely optical trap.
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ZUSAMMENFASSUNG

Atominterferometer bilden ein bewährtes Werkzeug für Präzisionsmessungen. Mögliche An-
wendungsgebiete sind vielfältig und reichen von Geodäsie und Trägheitsnavigation bis hin zu
grundlegenden Fragen der Physik. Modernste Sensoren arbeiten typischerweise mit laserge-
kühlten Atomen, die eine relativ große räumliche Ausdehnung sowie Impulsbreite besitzen.
Die damit verbundenen systematischen Unsicherheiten können mithilfe von Bose-Einstein-
Kondensaten (BECs) überwunden werden. Die Empfindlichkeit eines Atominterferometers
wird abgesehen von der Interrogationszeit durch eine große Impulsseparation der atomaren
Wellenpakete gesteigert. Eine geringe atomare Geschwindigkeitsbreite ist dabei entscheidend
für eine hocheffiziente Manipulation.

Im Rahmen dieser Arbeit wird die Realisierung eines neuartigen Strahlteilers vorgestellt,
mit welchem große Impulse auf eine ultrakalte Atomwolke übertragen werden können. Das
Kondensat wird in einem miniaturisierten Atomchip-basierten Aufbau erzeugt und dessen Ex-
pansionsrate durch Delta-kick-Kollimation weiter reduziert. Das Lichtfeld für die Strahlteilung
besteht aus zwei gegenläufigen Gittern mit orthogonalen Polarisationen. In einem solchen
Zwillingsgitter wird Doppel-Bragg-Beugung effizient mit Bloch-Oszillationen kombiniert. Die-
se Methode erscheint vielversprechend, um die derzeitigen Begrenzungen bei der Übertragung
großer Impulse zu überwinden. Durch das Erreichen von Bloch-Transfereffizienzen von mehr
als 99,9% pro Photonenrückstoß (ħhk) wird eine ausgezeichnete Skalierbarkeit gewährleistet.
Darüber hinaus ermöglicht die Symmetrie des Doppelgitters die Unterdrückung systematischer
Fehler. Diese Eigenschaften erlauben die Realisierung einer symmetrischen Mach-Zehnder-
Geometrie, in der Kontrast bis zu einer maximalen Separation von 408ħhk beobachtet werden
kann. Insgesamt werden dabei 1632ħhk übertragen. Nach unserem Kenntnisstand stellt dies
die größte bisherige Impulstrennung in einem Atominterferometer dar.

Eine detaillierte experimentelle und theoretische Studie zeigt, dass vor allem technische
Eigenschaften des Experiments die derzeitigen Ergebnisse limitieren. Insbesondere Störungen
des Lichtfelds, die durch die Beugung des Laserstrahls an verschiedenen Aperturen entstehen,
führen zu Dephasierung und einem damit verbundenem Kontrastabfall. Die hier erzielten
Ergebnisse eröffnen neue Möglichkeiten für die Miniaturisierung inertialer Quantensensoren
sowie für Gravitationswellendetektoren.

Außerdem wird die Kombination einer Atomchipfalle mit einer optischen Dipolfalle im
Hinblick auf Atominterferometrie in Lichtwellenleitern untersucht. In diesen kann die In-
terrogationszeit verlängert werden, ohne den Interferometerbereich zu vergrößern. Durch
Optimierung der räumlichen Überlagerung beider Fallen sowie der zeitlichen Sequenz kann
das BEC mit einer Effizienz von über 99% in die Dipolfalle geladen werden. Ein solcher
Aufbau soll auch in zukünftigen Atomchip-Experimenten mit zwei verschiedenen Atomsor-
ten verwendet werden. Deren Wechselwirkungen untereinander können nur in einer rein
optischen Falle kontrolliert werden.
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1INTRODUCTION

Precision measurements constitute an essential part of modern-day science, helping us to
gain insight into the most essential aspects of nature. A more accurate knowledge about
fundamental constants and physical variables such as rotations or accelerations leads to a
better understanding of our universe, which is currently described by the theories of general
relativity and quantum mechanics. Today, one of the most sensitive measurement techniques
is based on the interference of electromagnetic waves. A tremendous enhancement of these
interferometers occurred in the aftermath of the invention of the laser in the 1960s, which
allowed to utilize light with unique coherence properties [1].

Fig. 1.1: Merger of two black holes.
Image credit: LIGO/T. Pyle

Ultimately, this led to the development of devices with
unprecedented sensitivity such as the gravitational wave
detector LIGO (Laser Interferometer Gravitational-Wave Ob-
servatory) which is capable of dissolving relative length
changes as small as ∆L/L = 10−23 between two interfe-
rometer arms. To achieve such sensitivities, quantum phe-
nomena are employed, such as squeezing to improve the
performance beyond the quantum shot-noise limit [2]. In
September 2015, following decades of work and improve-
ment, LIGO could, for the first time, directly observe gravi-
tational waves emitted by the merger of two black holes [3]. The discovery was awarded the
Nobel prize in 2017, opening up outstanding opportunities to observe the universe from a
new perspective.

1.1 Atomic quantum sensors

Beginning in the late 1970s, the development in laser technology boosted the field of cold
atom experiments, making it possible to achieve temperatures of few microkelvins and to study
gases with velocities of centimeters per second [4–7]. The application of ultra-cold atoms
significantly contributed to the advancement of atomic clocks [8, 9], which until today serve
as highly precise standards for the definition of time. Cold clouds of atoms also constitute a
highly sensitive test matter wave, perfectly suited for interferometric measurements. Inspired
by the work on neutron interferometers [10, 11], atom interferometry started its advent in
the year 1991 [12–15]. Some of the pioneering experiments employed material slits [12]
or crystalline gratings [13] for the diffraction of atoms, while Bordé and Chu operated
their devices with counterpropagating laser beams [14, 15]. Reversing the roles of light and
matter compared to an optical interferometer, the atomic wave packet is split, redirected,
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2 INTRODUCTION

and brought to interference by the application of laser pulses. Compared to matter gratings,
optical lattices [16, 17] greatly benefit from the ability to adjust their properties like depth
and velocity in an easy manner. Today, light pulses are usually employed instead of stationary
optical lattices since they feature a better control of interaction time and temporal shape [15].

Atom interferometers impressively demonstrate the wave nature of atoms essential to quan-
tum mechanics as well as the coherent superposition of two atomic states over macroscopic
distances. The observed interference phase depends on the evolution of the atomic wave
function, which is determined by the potential probed by the atom. Hereby, the cold atoms
represent an ideal test mass for a variety of forces.

Enormous progress during the past years has led to the development of high-precision
atom interferometers, which are now commonly used as inertial sensors competing with
the sensitivity of classical devices. Compared to macroscopic test masses atoms offer several
advantages like an excellent control and manipulation capability of their velocity and position.
Besides, they do not suffer from manufacturing imperfections or mechanical wear, and their
small spatial extent reduces systematic effects caused by gravity gradients or tidal forces.
Quantum gravimeters are able to measure the local gravitational acceleration with an accuracy
of up to 10−9 g [18–20] and even emerged as commercially available products offering inertial
on-site measurements [21, 22]. Other applications include gyroscopes [23–25] determining,
for example, Earth’s rotation or gradiometers [26, 27], where the differential signal of two
spatially separated experiments is read out. Their extreme sensitivities and drift-free operation
make inertial quantum sensors ideally suited for Earth observation and navigation.

Atom interferometers also represent a promising tool to address and test fundamental topics
in physics [28], searching for deviations from the standard model. Incorporating the interface
between gravity and quantum mechanics, they constitute a complementary way of probing
general relativity by comparing the free-fall rate of different atomic species or isotopes [29–
31]. Other subjects include tests of dark energy theories [32] as well as the examination
of quantum phenomena such as the Aharanov-Bohm effect [33] or a measurement of the
Casimir force [34].

1.1.1 Large momentum transfer

The sensitivity of an atom interferometer typically scales with the enclosed space-time area.
A large effort is therefore made to increase the interrogation time up to several seconds by
realizing atomic fountains in large vacuum structures [35] or by suspending the atoms against
gravity using an optical or magnetic waveguide [36–38]. The progress of developing compact
and robust sensors allows to conduct experiments under microgravity conditions [39–41] or
even in space [42, 43] to achieve unperturbed evolution on large time scales.

The differential momentum between the two interferometer arms is another crucial factor
for enhancing the device’s sensitivity. One strives to develop efficient beam splitters to transfer
multiple photon recoils (n ·ħhk) onto the atomic wave packet. Here, k defines the wave vector.
Large momentum transfer is particularly relevant in the geometry used for measurements
of the fine-structure constant α [44–46]. Since α is derived from the measurement of the
photon recoil energy, its precision scales quadratically with the number of transferred photon
recoils within a beam splitter. Large momentum transfer also increases the sensitivity of
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Figure 1.2: (a) First ( ) and second order ( ) Bragg diffraction between different momentum
states. (b) Raman diffraction involving an internal state change. (c) Mach-Zehnder type atom interfe-
rometer, where the atom cloud is split, redirected and recombined by the application of three laser
pulses separated by a pulse interval T .

inertial sensors [27, 47] and allows to shorten the interrogation region for the improvement
of compact portable devices [19, 48].

Novel areas of application include gravitational wave detection on ground [49–51] and in
space [52, 53], where atom interferometers can contribute to the detection of fascinating
astrophysical phenomena. In these instruments, the wave-packet momentum separation
∆p = nħhk is a key factor to achieve the required precision. Their strain sensitivity covers
the infrasound domain, allowing to bridge the gap around 0.1 − 10Hz between present
ground- and future space-based detectors based on optical interferometry [54]. While current
classical devices only permit the observation of binary systems at the very end of their lifetime,
detection in the infrasound band would enable to observe these sources years before their
coalescence [52, 55]. A sensor consists of two atom interferometers, which are separated
by a long baseline L and operated with common lasers. The propagation of the laser pulses
between both parts is modified in the presence of a gravitational wave generating a differential
phase shift. In case of a symmetric three-pulse sequence as described in Ref. [50] it yields

∆φGW = 2nkhL [cos(ωT )− 1] , (1.1)

where T is the interrogation time, h the strain andω the angular frequency of the gravitational
wave. To reach the extreme sensitivities required for such devices, proposals assume splittings
as large as 1000ħhk [50, 56].

Table 1.1 lists several techniques for reaching large momentum transfer in an atom interfe-
rometer by coherently manipulating the atomic motion with laser pulses. While stimulated
Raman transitions comprise a change of the internal state, the application of Bragg diffraction
solely alters the momentum state of an atom. Each method comes with certain benefits.
Raman pulses impose lower requirements on the atomic momentum distribution and enable
velocity filtering. By contrast, Bragg diffraction allows for higher-order transitions and can
be implemented in the same system as Bloch oscillations, which correspond to an adiabatic
acceleration in an optical lattice. The ability of Bragg diffraction to drive sequential multi-
photon transitions resulted in benchmark experiments demonstrating momentum splittings
of ∆p = 102ħhk in an atom interferometer [57]. In this case, population loss caused by the
limited beam splitter efficiencies lead to a residual atom number of 10% and restricted the
maximum momentum separation [57].
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Method Momentum splitting ∆p

Multiphoton Bragg 24ħhk [71], 102ħhk [57], 90ħhk [47]

Double Bragg 8ħhk [68]

Sequential Raman 6ħhk [72], 4ħhk [24]

Double Raman 8ħhk [66], 4ħhk [67]

Adiabatic Bragg/Raman 10ħhk [73], 30ħhk [74]

Kapitza-Dirac & Bragg 112ħhk [75]∗

Raman/Bragg & Bloch 10ħhk [60], 24ħhk [62], 80ħhk [59]

Dual-lattice Bloch 240ħhk [69]
∗ Three-path contrast interferometer

Table 1.1: Methods for the generation of large momentum transfer along with the maximum separation
achieved in an atom interferometer.

The high transfer efficiencies achievable with Bloch oscillations, therefore, constitute a
promising candidate for a scalable beam splitter. Besides, the method is robust against
intensity and frequency fluctuations, requires less laser power compared to higher-order
Bragg transitions, and even offers the possibility for a faster scaling in acceleration sensitive
measurements [58]. By combining Bragg pulses with Bloch oscillations in a waveguide, fringe
visibility could be demonstrated in an atom interferometer with a momentum separation
of 80ħhk [59]. However, as pointed out already in Ref. [60], a major drawback of Bloch
oscillations constitute light shifts between the different interferometer arms which reduce the
interferometric contrast. This can be overcome by accelerating both arms simultaneously, as
suggested in Ref. [61] and realized in Ref. [62] in a dual-lattice setup with two beams and three
frequency components. Also, during Bragg or Raman beam splitting, diffraction phases [63–65]
arise and have to be accounted for [46]. They can be suppressed along with other systematic
effects in a symmetric geometry formed by double Bragg or Raman diffraction [66–68]. These
symmetric implementations, however, could only demonstrate a splitting of up to 8ħhk at a
contrast below 29%. Very recently, the realization of a symmetric dual-lattice interferometer
was reported that ideally exhibits zero diffraction phase [69]. Hereby, retroreflection of a
beam containing three frequency components forms two independently accelerated optical
lattices, which can form beam splitter, mirror, or recombination pulses via control of the
differential laser phase. In this way, contrast could be observed up to a momentum splitting
of 240ħhk. Proposals also exist for a dual lattice acting as a waveguide, which is able to pull
the two interferometer arms apart, hold them at a given distance and recombine them [70].
Such a sensor would exhibit a high sensitivity while occupying a small volume.

1.1.2 Bose-Einstein condensates

In 1995, the development of laser cooling peaked in the realization of a new state of matter,
where quantum degeneracy is reached in form of a Bose-Einstein condensate (BEC) [76–
78]. Predicted decades earlier by Bose and Einstein [79, 80], the realization of macroscopic
quantum objects allows to investigate quantum mechanics at a new level. In analogy to an
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optical laser, the matter waves are characterized by unique coherence properties allowing to
observe high-contrast interferences fringes over the extent of the condensate [81].

∆φc∆φl ∆φr

φ1(x)

φ2(x)

φ3(x)

Fig. 1.3: The expansion of
an atom cloud in a distorted
wavefront leads to differ-
ent phase shifts across the
cloud.

Up to date, the vast majority of state-of-the-art quantum sen-
sors operate with laser-cooled Alkali atoms. They are typically
manipulated with Raman transitions, which impose less stringent
requirements on the momentum width of the atomic ensemble
and can be exploited for velocity selection [82]. The reluctance to
employ condensed sources is motivated by two major restrictions.
The process of reaching quantum degeneracy with an evaporation
cycle is time-consuming and leads to large atom losses. This results
in a lower atom flux compared to thermal ensembles, which in turn
degrades the sensitivity of an atomic sensor. Recently, however,
there has been large progress concerning the BEC flux. Atom-chip
technologies allow for fast and efficient evaporation enabling high-
flux sources with 105 atoms per second [83] approaching those
of current sensors based on velocity selected laser-cooled atoms.

Another downside arises from the high densities of a BEC, which
lead to significant atomic interactions causing mean-field shifts
in an atom interferometer [84, 85]. These can be mitigated via
tuning the atomic interactions with Feshbach resonances [84] or by waiting a sufficiently long
time after release of the condensate to achieve a conversion of mean-field energy into kinetic
energy. Hereby, it is instrumental to employ a technique called delta-kick collimation [40, 86]
to minimize the duration of free expansion prior to interferometry. It is beneficial to start
with a larger initial expansion to achieve a rapid conversion and alleviation of mean-field
energy. During the collimation via a magnetic or optical lens, kinetic energy is converted
into potential energy and the expansion can be almost stopped resulting in a small final
momentum width.

If these limitations can be overcome, the properties of condensed sources offer a lot of
advantages and potential for matter-wave interferometry:

• Owing to their small momentum width, high beam-splitter efficiencies can be achieved,
reaching an interferometric contrast close to 100% [87, 88]. BECs are particularly
relevant for large momentum transfer via multiphoton Bragg transitions or Bloch
oscillations where they allow for a high-fidelity transfer with low atom losses [57, 59].

• Condensed sources permit lowering the effect of a variety of systematics associated with
the spatial extent and expansion of the atomic ensemble. This includes one of the major
uncertainties in present atom interferometers induced by wavefront aberrations [89,
90], as depicted in Figure 1.3. Similarly, small clouds decrease dephasing due to spatial
variations of the laser intensity [91]. Again, these features are especially crucial for
multiphoton processes, which are more susceptible to dephasing processes [71]. A small
expansion rate also represents a key requirement for reaching ultra-long free evolution
times as anticipated in future space missions [41–43, 52].

• The point-source character of BECs along with a spatially resolved detection allows to
detect spatial features in the interference pattern to reveal more details about phase
shifts or systematic effects [35, 92].
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• The phase sensitivity of an atom interferometer is limited by shot noise, which scales
with the atom number N as 1/

�
N . BECs offer the possibility of exceeding the classical

limit by using squeezed states with a reduced uncertainty [93, 94]

1.2 The QUANTUS collaboration

The work within this thesis is part of the QUANTUS (Quantengase unter Schwerelosigkeit)
project, which aims to develop miniaturized and robust sensors for the application in micro-
gravity environments and, ultimately, in space. Space platforms not only provide ultra-long
interrogation times but also offer a relatively quiet environment undisturbed by seismic
noise. These properties are promising for the realization of ultra-cold atom sensors with
unprecedented sensitivity to test fundamental physics such as the equivalence principle at
a new level or perform inertial measurements for the observation of the Earth [95]. The
absence of gravity allows to realize ultra-shallow traps along with smaller expansion rates of
the atomic ensembles and to study exotic geometries by forming spherical or ellipsoidal shell
condensates [96, 97]. The technologies required for the development of spaceborne sensors
can also be applied to improve the evolution of compact and robust mobile devices operating
in the fields of geodesy, geophysics, and navigation.

The QUANTUS collaboration consists of several generations of experiments, each accom-
panied with significant technological progress advancing the field of ultra-cold gases in
weightlessness. All of these experiments apply an atom chip to produce the magnetic fields
required for BEC generation. Its small size and power consumption make it a crucial ingre-
dient in building compact and efficient devices. In 2007, the first generation QUANTUS-1
created the first Bose-Einstein condensate of 87Rb in the microgravity environment of the
drop tower of Bremen, which features a drop tube of 110 m and a corresponding free fall
duration of 4.7 s. Further pathfinder experiments in microgravity include the application of
delta-kick collimation and atom interferometry with long interrogation times [40] making
use of the spatial coherence properties of the condensate. Lately, the apparatus is exploited
for the investigation of new interferometer topologies on ground [68, 88] which is not only
applicable to subsequent generations but leads to innovative methods for BEC interferometry
in general. Some of these novel techniques will be presented in this thesis.

Further miniaturization allowed the integration of the second generation drop tower
experiment, QUANTUS-2, into a smaller and lighter capsule. The experiment is suitable for
catapult operation to double the microgravity time to 9.4 s. Additionally, the device will be
extended to a dual-species source permitting the simultaneous cooling and manipulation of
87Rb and a potassium isotope. An advanced cooling setup along with an elaborated atom chip
enables an ultra-high atom flux making it the fastest BEC machine in the world [83]. Extensive
drop-tower studies of delta-kick collimation via magnetic lensing could enhance the former
results and achieve effective temperatures of tens of picokelvin [98, 99]. Complementary to
the QUANTUS drop-tower experiments, the PRIMUS project follows a different approach by
employing an optical dipole trap instead of an atom chip for trapping and cooling [100, 101].

The seconds of microgravity time in the drop tower can be extended to few minutes onboard
a sounding rocket as realized within the MAIUS (matter-wave interferometry in microgravity)
missions. After years of development to meet the harsh requirements of a rocket launch
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(a) (b) (c)

Figure 1.4: (a) Drop tower in Bremen (source: [102]). QUANTUS-2 capsule within the drop tower
(b) and image of the QUANTUS-1 atom chip (c), both photographies by H. Müntinga.

along with the subsequent autonomous operation, the first mission MAIUS-1 was successfully
launched in January 2017 [41]. During the six minutes of free fall, the first Bose-Einstein
condensate in space was generated, and a variety of other atom-optics experiments were
demonstrated. Already two successor missions are planned, aiming to perform dual-species
experiments with rubidium and potassium and investigate their interactions in a magnetic as
well as in an optical dipole trap.

In 2018, the CAL (Cold atom laboratory) experiment set off for the ISS to provide the first
continuous platform for ultracold gases in microgravity. The mission comprises the creation
and investigation of degenerate gases as well as ultracold mixtures of 87Rb, 39K, and 41K [42].
As a successor of MAIUS and CAL a joint project between NASA and DLR was initiated in 2016.
The multi-user facility BECCAL is still in the planning phase and will be equipped with different
isotopes (87Rb, 85Rb,39K,40K,41K) to study their interactions and perform dual-species atom
interferometry [43]. Based on the MAIUS design, it will additionally feature high magnetic
fields and shaped optical potentials to address a variety of topics in fundamental physics as
well as inertial sensing.

1.3 Scope of this thesis

The work presented here aims at the development of new methods for the coherent ma-
nipulation of Bose-Einstein condensates with optical lattices, concerning in particular large
momentum transfer. Two major effects typically restrict the transfer of a large number of pho-
ton recoils within an atom interferometer. On the one hand, limited beam splitter efficiencies
lead to significant atom losses as well as spurious ports, lowering the signal-to-noise ratio of
the measurement. Additionally, the accumulation of phases unequal in both interferometer
arms arises due to the prolonged interaction with the light field. They lead to dephasing and
reduction of the interferometric contrast.

Within this thesis, a novel scalable and symmetric beam splitter is investigated, which is
able to overcome the limitations mentioned above and to reach unprecedented momentum
separation in an atom interferometer. The new technique consists of an efficient combination
of double Bragg diffraction and Bloch oscillations for large momentum transfer. Both methods
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can be driven in a relatively simple setup, where a single beam with two frequency components
of orthogonal polarization is retroreflected and forms a twin lattice. A retroreflected geometry
features the advantage of suppressing laser phase noise and wavefront distortions. In case of
a vanishing velocity in beam splitter direction, it directly entails the symmetric diffraction
through a double Bragg process, which automatically doubles the momentum transfer and
has already been implemented successfully in a quantum tiltmeter [68]. Owing to the small
momentum width of the Bose-Einstein condensate, which is further reduced by the method of
delta-kick collimation, efficiencies of 98.8% per ħhk can be realized. Double Bragg diffraction,
however, only serves for the initial beam splitting. Exploiting the twin lattice, the superposition
of two momentum states is simultaneously accelerated utilizing Bloch oscillations, which not
only allows for much larger transfer efficiencies but is also more robust against laser intensity
fluctuations compared to Bragg or Raman diffraction [88, 103]. We call the combination of
both techniques a twin-lattice beam splitter offering excellent scalability by the application of
Bloch oscillations as well as a symmetric geometry for the suppression of systematic effects
such as diffraction phases and AC-Stark shifts caused by laser intensity noise. Based on the
work in Ref. [68], it allows to span a symmetric Mach-Zehnder-type atom interferometer, which
exhibits an increased scaling factor due to the transfer of a multiple of photon momenta.
The scaling of the coherence is investigated statistically. The evaluation reveals that the
contrast is currently not limited fundamentally but by technical features of our device, which
can be overcome rather easily in a dedicated setup. The implementation of the twin-lattice
interferometer, along with the contrast analysis, has been published in Ref. [104].

In addition, an optical dipole trap is studied regarding future atom interferometry experi-
ments in optical waveguides [37, 38]. A waveguide promises to achieve long interrogation
times without increasing the interferometer baseline and is therefore ideally suited for the
integration in miniaturized sensors. Furthermore, future MAIUS and BECCAL missions will
be equipped with a dipole trap that enables to control the atomic interactions with Feshbach
resonances [105]. In dual-species experiments with rubidium and potassium, this is crucial
for an efficient evaporation of potassium [106] and an improved spatial overlap of both
species [107]. It also offers the possibility of transferring the atoms away from the atom chip
to suppress disturbances arising from the chip’s surface or its mass. However, the combination
of an atom chip with a purely optical trap has not been investigated in detail so far. The
presented work includes a first evaluation of loading a Bose-Einstein condensate from a
chip-based trap into a purely optical trap by extending the QUANTUS-1 experiment with a
new laser system far-detuned from resonance. For an efficient transfer, a good spatial overlap,
as well as an optimized sequence, is required.

This thesis starts with an introduction into the theoretical concepts of light-pulse atom
interferometry in chapter 2, where particular emphasis is placed on Bragg diffraction, Bloch
oscillations and the Mach-Zehnder-type interferometer scheme. Chapter 3 gives a short
description of the QUANTUS-1 experiment together with a closer look at the high-power laser
system employed for coherent manipulation of the atomic ensemble via Bragg and Bloch
processes. Precision interferometry requires a well-prepared atomic cloud exhibiting a small
momentum width, offset velocity and insensitivity to magnetic fields. Next to the preparation
sequence, chapter 4 provides a detailed characterization of double Bragg diffraction and
Bloch oscillations in a twin lattice. The chapter is extended by the presentation of some
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interesting techniques for future interferometer geometries. Combining these ingredients
large momentum interferometry in a twin lattice can be realized, which is presented in
chapter 5. Its contrast is analyzed in detail both experimentally and theoretically. Chapter 6
describes the setup and loading of the optical dipole trap within the QUANTUS-1 experiment.
The thesis closes with a summary and outlook in chapter 7.

The results presented in this thesis could only be achieved in a collaborative effort. The
QUANTUS-1 experiment was operated together with M. Gersemann and S. Abend, while the
theoretical simulations concerning atoms in optical lattices were carried out by J.-N. Siemß.
The experiments on the optical dipole trap were performed in collaboration with S. Kanthak.
Within the scope of this thesis, the author is in particular responsible for the optimization
of the large momentum beam splitter and the experimental realization of the twin-lattice
interferometer. All experimental data evaluation was performed by the author.



2ATOM OPTICS AND INTERFEROMETRY

This chapter gives an overview of the theory which is essential for the realization large
momentum atom interferometry in QUANTUS-1. Light pulses, in particular Bragg diffraction,
serve as beam splitters for the atomic wave packet creating a coherent superposition of
different quantum states (sec. 2.1). In addition, momentum transfer is also possible by means
of Bloch oscillations which offer a very efficienct way of manipulating the atomic velocity
(sec. 2.2). Through the combination of beam splitters an interferometer geometry can be
spanned allowing the measurement of inertial forces acting on the atoms (sec. 2.3). Among
the availability of different topologies the Mach-Zehnder inteferometer is widely employed in
atom interferometry consisting in its simplest form of three light pulses.

2.1 Light-pulse manipulation

Light-pulse atom interferometers were first operated with two-photon Raman transitions [15]
coupling two different hyperfine states. This technique is still widely used in atom interfer-
ometry and is especially suitable for thermal atoms from optical molasses due to its lower
requirements on momentum distribution. Compared to Bragg diffraction, Raman transitions
enable the use of short pulses which lead to a reduced velocity selectivity. Additionally, the
existence of two different states allows both a state-selective read-out during detection as
well as a state-selective removal of spurious atoms, a so-called "blow-away". Alternatively,
Bragg transitions can be driven to couple different momentum states [16, 108]. The absence
of an internal state change suppresses systematic effects such as AC Stark shifts and makes
it possible to apply this method to atomic species without hyperfine splitting of the ground
state [109, 110]. In addition, it is possible to drive higher-order transitions and realize Bloch
oscillations in the same laser system.

In the following chapter the tools for light-pulse atom interferometry are introduced starting
with the simple model of a two-level atom in an optical field. This already gives rise to an
important result, namely the so-called Rabi oscillations of the atomic cloud between different
states (sec. 2.1.1). A more profound description does not only include the energy but also the
momentum of the atoms which is changed via the atom-light interaction by means of a two-
photon process (sec. 2.1.2). Bragg diffraction is one example of such a process (sec. 2.1.3),
where the internal state is not changed. In an appropriate setup it can be extended to a
symmetric beam splitter, a technique named double Bragg diffraction, featuring advantages
like the suppression of the laser phases (sec. 2.1.4).

10
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2.1.1 Two-level atom in a light field

We consider a two-level atom having a ground and an excited state, |g〉 and |e〉, with corre-
sponding energies ωg and ωe and energy difference ωeg = ωe −ωg , which couples to an
electromagnetic field E = E0 cos(ωt +φ) (see Fig. 2.1(b)). Neglecting spontaneous emission
the Hamiltonian can be written as the sum of an internal Hamiltonian given by the eigenfunc-
tions |g, e〉 and eigenenergies ωe,g , and an interaction Hamiltonian defined by the light field
[111]

Ĥ = ħhωe |e〉 〈e|+ħhωg |g〉 〈g| − dE. (2.1)

Here, dE is the coupling term between the electromagnetic field E and the atomic dipole
moment d= |e|re, re being the vector from the nucleus to the electron’s position. The time-
dependent Schrödinger equation describes the time evolution of a quantum state, i.e. our
atomic wave function |Ψ(t)〉

iħh
d
dt
|Ψ(t)〉= Ĥ |Ψ(t)〉 . (2.2)

The ansatz for the wave function consists of a linear combination of eigenfunctions, where
the rapidly oscillating terms ωe,g have been factored out to remain with slowly oscillating
coefficients ce,g :

|Ψ(t)〉= ce(t)e
−iωe t |e〉+ cg(t)e

−iωg t |g〉 . (2.3)

We assume that the detuning δ of the laser frequency ω from resonance is much smaller than
the transition frequency

δ = (ω−ωeg)�ωeg , (2.4)

and can therefore apply the rotating wave approximation (RWA), neglecting the rapid os-
cillating terms of order (ωeg +ω) compared to the terms of order δ. By inserting (2.3) into
(2.2), the probability P for an atom to be in state |g〉 or |e〉 can be calculated

Pe = |ce(t)|2 =
1
2

�Ωeg

Ωeff

�2

[1− cos(Ωeff t)], (2.5)

Pg = |cg(t)|2 =
1
2

�Ωeg

Ωeff

�2

[1+ cos(Ωeff t)], (2.6)

where Ωeg and Ωeff represent the Rabi frequencies at resonance (δ = 0) and out of resonance
(δ �= 0), respectively. Ωeg can also be expressed as a function of the light field intensity I in
terms of the saturation intensity Isat for a specific transition and its natural linewidth Γ

Ωeg =
〈e|d · E|g〉
ħh

=

√

√ I[Isat]
2
Γ , (2.7)

Ωeff =
�

δ2 + |Ωeg|2. (2.8)

We observe the well-known behavior of the population probability Pe,g oscillating at the
Rabi frequency. For an nonzero detuning δ the oscillation frequency increases, whereas the
amplitude of the oscillations decreases as depicted in Fig. 2.1(a). For zero detuning we
distinguish two cases which are important for the implementation of an interferometer: A
π-pulse of length t = π/Ωeg will invert the occupation probability corresponding to a mirror
pulse, while a π/2-pulse of duration t = π/2Ωeg creates an equal superposition between both
states, thus establishing a beam splitter.
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Figure 2.1: Rabi oscillations of the probability amplitude Pe (a) in an ideal two-level system (b) for
the resonant case (δ = 0) and for nonzero detuning (δ = 1

2Ωeg). The latter leads to oscillations with
higher frequency and lower amplitude. In case of zero detuning two interaction times are marked.
They correspond to a π/2-pulse acting as a beam splitter and a mirror pulse of duration π/Ωeg.

2.1.2 Two-photon transitions and external degrees of freedom

|i〉

|e〉

|g〉

∆

ω1

ω2

δ

ωeg

Fig. 2.2: Two-photon transition
between states |g〉 and |e〉 via an
intermediate level |i〉. The transi-
tion is detuned by ∆ to suppress
spontaneous emission.

One-photon Rabi oscillations can only be driven if both ex-
cited and ground state have a long lifetime τ (τ > 1/Ωeff).
Otherwise, spontaneous emission will lead to large atom
losses. Single-photon transitions have recently been proposed
and realized in atom interferometry [53, 112]. However, they
are difficult to drive since they require a laser system featuring
a high frequency stability and large laser powers to achieve
sufficiently high Rabi frequencies. Therefore, two-photon
transitions are commonly employed to drive Rabi oscillations
via an intermediate state |i〉, which does not need to have
a long lifetime, since it is only populated virtually. In the
following we generally assume long-lived states and neglect
spontaneous emission.

In the description so far, the external degrees of freedom
have been neglected. In order to take into account the mo-
mentum spread of an atomic cloud the wave packets are rep-
resented as the sum of momentum plane-wave states [111].
For each component, the momentum transfer due to an in-
teraction with the electromagnetic field can be calculated.
At last, the atomic ensemble is given by the integral over all

momentum states
∫

d3p |p〉 〈p|.
The two-photon transitions are driven by two light fields E1 and E2:

E1 = E0,1 cos(ω1 t − k1x),

E2 = E0,2 cos(ω2 t − k2x). (2.9)

The interaction term between atoms and light field can be written using the closure relation:

1 · e±ikx =

∫

d3pe±ikx |p〉 〈p|=
∫

d3p |p±ħhk〉 〈p| . (2.10)
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This simply implies that the absorption or emission of a photon of wave vector k changes the
atom’s total momentum by ħhk. The atomic velocity is altered by the recoil velocity vrec = ħhk/m
associated with the recoil energy of Er = ħhωr = ħhk2/(2m).

The external and internal degrees of freedom are coupled, since an atom can only change
states by absorption or stimulated emission of photons. In a two-photon process an atom
in state |g,p〉 can be transferred via the intermediate state |i〉 to |e, p+ħhk1 −ħhk2〉. The
momentum transfer ħhkeff during this process is given by the difference of both wave vectors
keff ≡ k1 − k2, which is maximized for counterpropagating laser beams, when both wave
vectors point in opposite directions. The energies of these states are shifted by the Doppler
effect and the recoil energy:

E|g,p〉 = ħhωg +
p2

2m
, (2.11)

E|e,p+ħhkeff〉 = ħhωe +
(p+ħhkeff)2

2m
. (2.12)

The detuning of the effective laser frequency ω12 =ω1 −ω2 from the transition is assumed
to be small compared to the two-photon detuning ∆ relative to the intermediate state |i〉 and
equals

δ12 =ω12 −

�

ωeg +
pkeff

m
+
ħhk2

eff

2m

�

= δ−

�

pkeff

m
+
ħhk2

eff

2m

�

. (2.13)

The Hamiltonian for the full three-level system including the external degrees of freedom is
then given by

Ĥ(t) = ħhωe |e〉 〈e|+ħhωg |g〉 〈g|+ħhωi |i〉 〈i|+
p2

2m
− d(E1 + E1). (2.14)

The system can be solved as before by writing the atomic wave-function |Ψ〉 as a linear
combination of eigenfunctions similar as in (2.3) and inserting it into the time-dependent
Schrödinger equation (2.2) [113]. As a result, the population probability for the excited state
is given by

Pe(t) =
1
2

Ω2
12

Ω2
12 + (δ12 −δAC)2

�

1− cos
��

Ω2
12(δ12 −δAC)2 t

��

(2.15)

=
1
2

Ω2
12

Ω2
eff

[1− cos (Ωeff t)] . (2.16)

Where the following quantities have been defined:

Two-photon Rabi frequency:

Ω12 =
Ω∗gi,1Ωei,2

2∆
=
Γ
�

I1[Isat]I2[Isat]
4∆[Γ ]

. (2.17)

The Rabi frequency of a two-photon light field with intensities I1 and I2 and two-photon
detuning∆. It consists of the multiplication of Ωgi,1 and Ωei,2, which are the one-photon
frequencies corresponding to the transitions from |i〉 to |g〉 with light field E1 and from
|i〉 to |e〉 with E2, respectively.



14 ATOM OPTICS AND INTERFEROMETRY

AC-Stark Shift: The interaction between a light field and an atom not only leads to a state
transfer, but also influences the atomic energy structure. In the presence of a light field
with Rabi frequency Ω and detuning ∆ to the transition the eigenenergies experience
a frequency shift of Ω2/(4∆) [114]. In our case, where two light fields act on two
transitions, four contributions have to be taken into account and a differential AC-Stark
shift can be calculated [113]

δAC =

�

|Ωei,1|2

4(∆−ωeg)
+
|Ωei,2|2

4(∆+δ)

�

−
�

|Ωgi,1|2

4(∆)
+

|Ωgi,2|2

4(∆−ωeg −δ)

�

. (2.18)

With a proper choice of intensity ratio I1/I2 and two-photon detuning∆ the differential
AC-Stark shift can be compensated.

Effective Rabi frequency: The effective coupling of this system including a detuning δ12

and an AC-Stark shift δAC is then given by Ωeff =
�

Ω2
12 + (δ12 −δAC)2.

Spontaneous emission

So far, the states were assumed to be of long lifetime and spontaneous emission was neglected.
However, in a real system it can only be suppressed by operating at a larger detuning ∆ from
the intermediate state |i〉 and leads to atom losses during the coherent beam splitting process.
The rate of spontaneous decay depends on the light field intensity I and the detuning ∆
expressed in units of the natural linewidht Γ and saturation intensity Isat.

Psp =
Γ

2
I[Isat]
(2∆[Γ ])2

. (2.19)

Since Eq. (2.19) scales quadratically with ∆, whereas the Rabi frequency in (2.17) exhibits a
linear scaling, spontaneous emission can be suppressed with 1/∆. To keep the Rabi frequency
constant, the laser intensity has to be increased accordingly.

2.1.3 Bragg diffraction

Bragg diffraction was first known as the scattering of electromagnetic radiation from crys-
tals [117, 118]. In atom interferometry, analogously, an atomic beam is diffracted from a
light grating. During the process, the absorption and emission of a photon changes the atom’s
momentum state while the internal state remains constant (Fig. 2.3(a)). Bragg diffraction
represents a special case of the Kapitza-Dirac effect [119]. Diffraction to a single momentum
state is only valid for a thick grating, i.e. relatively long interaction times. For smaller interac-
tion lengths a transition to the Raman-Nath regime takes place, where several momentum
states are populated (Fig. 2.3(b)). In contrast to Raman diffraction, where two phase-locked
lasers are required to couple the different hyperfine states, Bragg diffraction is relatively
simple to implement experimentally, since the frequency difference between two momentum
states lies in the kHz regime and a single laser can be employed.

For Bragg diffraction the results from the previous section 2.1.2 simplify since the atoms
do not change their internal states. The two-photon resonance condition becomes

δ12 = 0 ⇔ δ =
pkeff

m
+
ħhk2

eff

2m
≡ωD +ωeff. (2.20)
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Figure 2.3: (a) Schematic representation of Bragg diffraction. Via a two-photon process with detuning
δ = 4ωr ≡ωeff an atom is transferred to another momentum state receiving 2ħhk. Via a second order
process with δ = 2ωeff and four photons involved (dashed lines) the momentum transfer can be
doubled. (b) Depending on the interaction length τ and the laser intensity I different diffraction
regimes can be defined [115]. Only the Bragg regime features diffraction into a single momentum
state. Elsewhere, losses into other momentum states or spontaneous emission processes occur. Adapted
from [116].

Given that the frequency difference between the two laser beams is very small we can write
k ≡ k1 ≈ k2 and keff ≈ 2ħhk. In a single first-order Bragg process, the kinetic energy of an
atom changes by ωeff ≡ 4ωr = ħhk2

eff/(2m).
Because of the absence of internal state coupling we have setωeg = 0. Since the detuning δ

between both frequencies is typically very small (δ�∆), the differential AC-Stark term δAC

in (2.18) can be neglected. In the resonant case (δ12 = 0), an atom initially in momentum
state |p〉 is transferred to state |p+ 2ħhk〉 with probability

Pp+2ħhk(t) =
1
2
[1− cos(Ω12 t)]. (2.21)

Higher order diffraction

The sensitivity of an atom interferometer can be enhanced by enlarging the momentum
transfer onto the atomic cloud. This can either be done by the application of sequential
first order pulses or by performing higher order diffraction, where multiple photon pairs
are scattered simultaneously as illustrated in Figure 2.3(a). In that case, the transferred
momentum is 2nħhk, n being the order of the diffraction process. The detuning between the
two laser frequencies is adjusted to δ =ωD + n ·ωeff.

Bragg transitions up to the order of n= 12, corresponding to a large momentum transfer
of 24ħhk, have been realized in an atom interferometer [71]. Compared to single diffraction,
the multiphoton process imposes higher demands on laser intensity and is more sensitive
to wave front distortions and phase noise [71]. In the deep Bragg regime, which holds for
long interaction times so that the optical lattice fulfills the condition of a thick grating, it is
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possible to transfer atoms into single higher order state. The effective Rabi frequency of a
process of order n depends on the laser intensity via the two-photon Rabi frequency Ω12 [71]

Ωeff =
Ωn

12

(8ωr)n−1

1
[(n− 1)!]2

. (2.22)

However, operation in this regime requires a very narrow velocity distribution of the atoms.
Furthermore, interaction time in an experiment is limited and desired to be small. For shorter
interaction times one operates in the quasi-Bragg regime featuring a relaxed velocity selectivity.
Here, one has to take into account losses into other diffraction orders, which might result
in much lower diffraction efficiencies. However, when applying smooth envelope functions
along with carefully chosen pulse durations and intensities it is still possible to create beam
splitters with an efficiency close to 100% in the quasi-Bragg regime [120].

Recently, Rabi frequencies for first and higher order Bragg diffraction were calculated in
the Bloch-band picture [65]. Experimential results agreed well with these calculations while
Eq. (2.22) failed for higher intensities. The Bloch-band structure will be explained in sec 2.2.2.

Momentum width and pulse shaping

So far, the calculations did not consider the momentum spread of the atomic cloud. Depending
on the velocity selectivity of a pulse, which increases with its width, parts of the cloud might
not get diffracted (Fig. 2.4(a)). For higher order transitions the requirements on momentum
spread are even stricter. A momentum spread causes a damping of the Rabi oscillations, since
different momentum components of a cloud experience different effective Rabi frequencies.
An extensive numerical discussion about the importance of momentum width for single Bragg
diffraction is given in [87].

It has been shown, that the simple switching on and off of the electromagnetic potential,
a box-shaped pulse, is not the best option for efficient beam splitting of clouds with finite
momentum spread. Better results can be achieved by applying smooth envelope functions
for the laser intensity [120]. In addition, smooth pulse shapes have been shown to suppress
high-frequency phase noise [121] as well as two-photon light shifts in a retroreflective
geometry [122].

The Rabi oscillations in sec. 2.1.1 were calculated for a pulse of rectangular form with
constant field amplitude E0 and duration τ

I(t) =







I0 |t| ≤
τ
2

0 |t|> τ
2

(2.23)

The Fourier transform of such a pulse is given by a sinc function

Ĩ( f ) = I0τ sinc(πτ f ), (2.24)

which determines the probability of an atom with Doppler shift f to be diffracted to another
momentum state. We compare the box-shaped pulse with a Gaussian pulse

I(t) = I0 exp

�

−
t2

2σ2
t

�

, (2.25)
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Figure 2.4: (a) Higher order Bragg process for a cloud with finite momentum width. Due to the
pulse’s velocity selectivity the cloud can not be transferred with 100% efficiency and atoms are lost
to other diffraction orders. (b) Box ( ) and Gaussian-shaped ( ) intensity pulse along with the
corresponding Fourier transform (dashed).

which contains its form in Fourier space

Ĩ( f ) = I0

�
2πσt exp

�

−
f 2

2σ2
f

�

with σ f =
1

2πσt
. (2.26)

Since the velocity distribution of the atom cloud is approximately of Gaussian shape the
Gaussian pulse increases the momentum overlap between pulse and atoms. For equal maxi-
mum intensities and pulse areas, a Gaussian pulse exhibits a broader momentum acceptance
than the central peak of the sinc function of a box pulse. Additionally, a sinc function features
sidebands which might overlap with higher-order momentum states and cause losses into
these states. For pulse shapes with a time-dependent Rabi frequency, the pulse area is defined
via the integral over time. For a π-pulse this yields for example
∫

dtΩ(t) = π. (2.27)

Long pulse durations (1/τ� σv , σv being the momentum width of the atomic ensemble)
can be used in order to spectroscopically analyze the cloud’s momentum. In this way, only a
narrow part of the cloud is selected. By scanning the detuning δ across the cloud, a momentum
profile of the atoms can be obtained. Very short pulse durations will lead to a transition into
the Raman-Nath or Kapitza-Dirac regime corresponding to thin gratings (Fig 2.3(b)). The
small momentum selectivity of these regimes leads to the population of many diffraction
orders [123].

2.1.4 Double Bragg diffraction

Retroreflection is commonly employed in fountains for high-precision atom interferome-
ters [18, 35], since the common beam path leads to a suppression of laser phase noise and
wave-front distortions. At the same time, the mirror serves as inertial reference. In these
experiments, only one pair of counterpropagating beams is resonant due to the Doppler shift.
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Figure 2.5: Via a double Bragg process a cloud with nonzero velocity gets symmetrically diffracted into
two momentum states with opposite velocity. Two counterpropagating lattices with orthogonal linear
polarization are formed by reflecting a beam with two frequency components off a mirror passing a
quarter-wave plate twice. In the energy parabola on the right not only the resonant first order process
but also one of the non-resonant cases is shown.

In case of a vanishing velocity in beam splitter direction or in weightlessness, the atom cloud
can interact with both beam pairs and simultaneous Bragg or Raman transitions with opposite
momentum transfer occur [66, 68]. They intrinsically double the momentum separation in
a beam splitter and lead to the suppression of systematic effects such as the AC-Stark shift
or laser phase noise. Here, we focus on the case without an internal state change, so-called
double Bragg diffraction. First- and second-order double Bragg diffraction was first realized
within the QUANTUS-1 experiment [68] and a more detailed analysis can be found in [124,
125].

A scheme of double Bragg diffraction is depicted in Fig. 2.5. By choosing appropriate
polarizations for the two laser beams, disturbances due to copropagating transitions as well
as standing waves can be suppressed. Incoming polarizations are orthogonal and rotated by
90 degrees after passing a quarter-wave plate twice and being retroreflected from a mirror.

In contrast to single diffraction, Rabi oscillations take place in an effective three-level
system, which ,among other things, leads to a higher velocity selectivity compared to single
diffraction. For double diffraction in the deep Bragg regime, the effective Rabi frequency
system reads Ωeff =

�
2ΩDD =

�
2Ω12/2 [124]. In contrast to single Bragg diffraction, the term

π/2 pulse is now used when an equal superposition of the states |±2ħhk〉 is reached, while a
π pulse corresponds to a population transfer from |−2ħhk〉 to |+2ħhk〉 and vice versa. When we
leave the deep Bragg regime and take non-resonant transitions into account the ideal Rabi
oscillations are modulated. Off-resonant processes induce a fast oscillation with frequency
2ωeff and small amplitude on top of the slow Rabi oscillation as will be experimentally
demonstrated in section 4.2.1. The frequency 2ωeff corresponds to the energy difference
between the off-resonant and the resonant process (Fig. 2.5). The simultaneously resonant
and off-resonant coupling of a momentum state is a new feature of double Bragg diffraction .
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2.2 Optical lattices

Bloch oscillations initially emerged in the context of electrons in a crystal, where the quantum
theory by Bloch and Zener predicted an oscillating instead of a uniform motion in the presence
of a static electric field [126, 127]. The period of these oscillations is given by the lattice
period d and the static electric force F as TB = 2πħh/dF . In natural crystals the time between
scattering events from electrons at lattice defects is much smaller than the Bloch period.
Therefore, Bloch oscillations have not been observed in a bulk crystal so far. A periodic
potential can also be created by interfering two light beams to form a standing wave. Indeed,
cold neutral atoms in an optical lattice exhibit a similar behavior compared to electrons
in a crystal. In 1996, Bloch oscillations of atoms have been observed for the first time in
the groups of Salomon and Raizen [128, 129]. Lately, the realization of more than 28 000
Bloch oscillations has been demonstrated owing to the high coherence of this technique in
combination with an optical cavity [130]. In contrast to solid state systems, the depth and
velocity of an optical lattice can easily be changed and does not suffer from dissipation or
scattering due to defects or particle interactions.

Compared to Bragg or Raman diffraction, Bloch oscillations allow for much higher transfer
efficiencies of 99.97% per ħhk [103] and therefore present a well suitable tool to transfer a
large amount of momentum onto an atomic cloud. Bloch oscillations are frequently used in
recoil measurements [45, 46], to probe gravity [130–132] or for coherent acceleration within
an atom interferometer [60, 62].

After an introduction to the dipole potential (sec. 2.2.1) the band structure of an optical
lattice will be derived following the notation of [129, 133] (sec. 2.2.2). In the presence of a
uniform force this leads to a periodic atomic motion, the so-called Bloch oscillations, which can
also be explained in a quantum optics description (sec. 2.2.3). Atom loss is mainly caused by
two mechanisms, namely interband transitions calculated with the Landau-Zener formalism
and spontaneous emission (sec. 2.2.4). In case of the dipole potential and spontaneous
emission the particular case of a twin lattice is treated, i.e. two identical counterpropagating
lattice with orthogonal polarizations.

2.2.1 Dipole potential

The periodic potential of an optical lattice results from the dipole force, due to the interaction
of the induced atomic dipole moment with the intensity gradient of the light field [134]. The
electric dipol moment d is proportional to the electric field E and depends on its frequency ω
via the complex polarizability α(ω) as d(ω) = α(ω)E. The field shifts the potential energy of
the atomic state proportional to the local laser intensity I(r).

Vdip = −
1
2
〈d · E〉 ∝ −Re[α(ω)] · I(r)

with I(r) =
1
2
ε0c|E|2, (2.28)

where ε0 is the vacuum permittivity and the angular brackets denote the temporale average
over the rapidly oscillating terms. The real part of the polarizability corresponding to the
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in-phase component of the dipole oscillation is therefore responsible for the conservative
dipole force

Fdip(r) = −∇Vdip(r) =
1

2ε0c
Re[α(ω)]∇I(r). (2.29)

In turn, the imaginary part of the polarizability describing the out-of-phase component gives
rise to the scattering or spontaneous emission rate

Psp =
1
ε0cħh

Im[α(ω)]I(r). (2.30)

The polarizability can be derived using a classical oscillator model. One obtains the same
results in a semiclassical approach by treating an atomic two-level system with transition
frequency ωeg and linewidth Γ :

α(ω) = 6πε0c2
Γ/ω2

eg

ω2
eg −ω2 − i(ω3 −ω2

eg)Γ
. (2.31)

Here, Γ ∝ |〈e|d|g〉 |2 can be understood as a damping rate associated with the spontaneous
decay rate of the excited level. Eq. (2.31) only holds in the limit of low saturation, i.e.
neglibible population in the excited state which is reached for large detunings ∆ =ω−ωeg

and low scatterings rates Psp.

|e〉

ω

∆

ω

∆E

|g〉

Fig. 2.6: AC Stark level shifting
due to a red (∆ < 0) or blue
(∆ > 0) detuned optical dipole
potential.

Based on the previous considerations the following expres-
sion for the dipole potential can be derived

Vdip(r) = −
3πc2

2ω3
eg

�

Γ

ωeg −ω
+

Γ

ωeg +ω

�

I(r). (2.32)

Since the laser frequency is typically not too far away from
the atomic resonance (|∆| �ωeg) the rotating wave approx-
imation can be applied, resulting in

Vdip(r) =
3πc2

2ω3

Γ

∆
I(r). (2.33)

Similarly one finds for the scattering rate

Psp(r) =
3πc2

2ħhω3

Γ

∆
I(r) =

Vdip(r)

ħh∆[Γ ]
, (2.34)

which can be rewritten into Eq. (2.19).
The dipole potential corresponds to the AC-Stark or light shift of the ground state introduced

in section 2.1.2, which shifts the energy states of an atom in the presence of a light field
(Fig. 2.6)

Vdip =∆Eg =
ħhΩ2

4∆
=
ħhΓ
8

I[Isat]
∆[Γ ]

. (2.35)

It can be expressed in terms of the saturation intensity Isat and the linewidth Γ using (2.7). Like
the two-photon Rabi frequency, the dipole potential scales with I/∆ allowing the suppression
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of spontaneous emission with 1/∆. For a red detuning (∆< 0) the dipole potential is negative
and leads to an attractive interaction with the atoms, which accumulate in potential minima
where the intensity is at a maximum. For a blue detuning (∆ > 0), atoms are repelled by
high-intensity regions and a potential minimum corresponds to a minimum of the intensity.

An optical lattice in one dimension can either be formed by interfering two laser beams
traveling in opposite direction of same intensity I and wavelength λ or by retroreflecting a
single beam at a mirror. Due to the interference of the amplitudes the dipole potential of the
resulting standing wave increases by a factor of four and has a periodicity of λ/2= π/k

V (x) = V0 cos2(kx) = 4 · Vdip cos2(kx) =
V0

2
(1+ cos(2kx)). (2.36)

The lattice period is usually much smaller than the diameter of a cold atom cloud and
the wavefunction thus occupies more than a hundred of lattice sites [135]. Commonly, the

amplitude V0 of the potential is given in units of the recoil energy Er =
(ħhk)2
2m = ħhωr

V0[Er] = 4 ·
ħhΓ
8

I[Isat]
∆[Γ ]

1
Er
=
Γ

2ωr

I[Isat]
∆[Γ ]

. (2.37)

Twin-lattice potential

In a double diffraction setup, the light field is created by two laser beams with frequencies
ω1,ω2 having orthogonal polarization (see Fig. 2.5). Through retroreflection at a mirror and
passing a quarter-wave plate twice two counterpropagating lattices of orthogonal polarization
are formed. In this setup, two atom clouds can be simultaneously accelerated by means of
Bloch oscillations. Because of the simultaneous transfer in opposite directions, we will call
such a configuration a twin lattice. Assuming equal field amplitudes E1 = E2 ≡ E0 the incident
light field can be described by

E(x , t) = E0 [ε1 cos(ω1 t − k1 x) + ε2 cos(ω2 t − k2 x)] , (2.38)

where the vectors ε1,ε2 indicate the polarization. Their scalar product is zero in case of
orthogonal polarizations and equals 1 for parallel vectors. We now want to take into account
imperfections by assuming that the polarizations of the incident components are no longer
perfectly orthogonal to each other, i.e. ε1 · ε2 �= 0. The polarization error is defined by the
scalar product σpol ≡ |ε1 · ε2|/2. With ∆ω=ω1 −ω2 and k ≡ k1 ≈ k2 the dipole potential
after retroflection and passage of the quarter-wave plate becomes

Vtwin(x , t) = V0 cos2(kx − ∆ω2 t) + V0 cos2(kx + ∆ω2 t)

+ V0

σpol

(1−σpol)

�

2cos(kx + ∆ω2 t) · cos(kx − ∆ω2 t)
�

, (2.39)

where all terms oscillating at twice the laser frequency (2ω1,2,ω1+ω2) have vanished in the
rotating wave approximation. Apart from the ideal twin lattice




∝ cos2(kx ±∆ωt/2)
	

imper-
fect polarizations lead to an additional interference term. For a more intuitive understanding
of the impact of this parasitic contribution, we write the interference term as the sum of a
standing lattice VSt∝ cos2(kx) and a beat term without spatial modulation Vb∝ sin2(∆ω2 t):
�

2cos(kx + ∆ω2 t) · cos(kx − ∆ω2 t)
�

= 2 cos2(kx)− 2 sin2(∆ω2 t)≡ VSt + Vb. (2.40)

We will see later on that the interfence term acts as a standing lattice in terms of momentum
transfer on the atoms.
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2.2.2 Band structure in an optical lattice

The periodicity of an optical lattice V (x + d) = V (x) leads to a band structure of the atomic
energy spectrum. According to the Bloch theorem [136] the corresponding eigenenergies
En(q) and eigenstates |n, q〉 (Bloch states) are labeled by a discrete band index n and a
continuous quasimomentum q. The eigenfunctions Ψ are given as a superposition of plane
waves eiqx with amplitude un,q(x)

Ψn,q(x) = 〈x |n,q〉= eiqxun,q(x). (2.41)

|un,q〉 exhibits the same periodicity as the potential V (x) and satisfies the Schrödinger equation

Ĥq |un,q〉= En(q) |un,q〉 with Ĥq =
(p+ħhq)2

2m
+ V (x) (2.42)

The Bloch states |n,q〉 and eigenenergies En(q) are periodic in q. Due to the periodicity of 2π/d
the quasimomentum q is conventionally restricted to the first Brillouin zone ]−π/d,+π/d].
For an optical lattice these limits can be expressed by the wave vector k corresponding to
]−ħhk,+ħhk] in momentum space.
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Figure 2.7: Band structure of an optical lattice of depth V0 = 1Er and 10Er for the first Brillouin zone
as a function of the quasimomentum q. Band energy En depending on the lattice depth V0 for q = 0
( and ) and q = ±1 ( and ). Adapted from [116].

The band structure in the frame of the optical lattice is depicted in Figure 2.7 for the first
Brillouin zone. A Bose-Einstein condensate [135] or a velocity filtered thermal cloud [129,
133] exhibit a momentum spread much smaller than 2ħhk and the atomic states can therefore
be well represented as discrete points on the energy parabola. For very shallow lattices
(V0 < 1Er) the dispersion relation between band energy En and quasimomentum q is similar
to the momentum-energy parabola of a free particle. With increasing lattice depth the band
structure progressively flattens out starting with the lowest bands and the band gap tends to
become constant across the Brillouin zone.

While the Bloch states are delocalized eigenfunctions, the so-called Wannier functions are
localized at individual lattice sites [137, 138] and might represent are more convenient basis
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especially in the limit of deep lattices. The Wannier functions of a particle at lattice site l in
the nth Bloch band are obtained by integration of the Bloch states over the quasimomentum

ψn,l =

∫ π/d

−π/d
e−iqxlΨn,q(x). (2.43)

2.2.3 Coherent acceleration via Bloch oscillations

In the presence of a constant external force F the stationary Bloch states 〈n,q〉 are no longer
solutions to the Schrödinger equation with the new Hamiltonian

Ĥ =
p2

2m
+ V (x)− F x . (2.44)

The quasi-momentum becomes time-dependent q(t) = q(0) + F t/ħh but the waveform of the
eigenfunction is preserved

Ψ(x , t) = eiq(t)xu(x , t). (2.45)

The time evolution of the spatially periodic function u(x , t) is described by the time-dependent
Schrödinger equation with Hamiltonien Ĥq(t)

iħh
d
dt
|u(t)〉= Ĥq(t) |u(t)〉 . (2.46)

If the adiabatic approximation can be applied

| 〈n,q|
d
dt
|n′,q〉 | � |En(q)− En′(q)|/ħh (n �= n′) (2.47)

the new eigenstate equals the former stationary Bloch state |n, q(t)〉 up to an oscillating phase
factor

|u(t)〉= exp

�

−i

∫ t

0

dτ
En(q(τ))
ħh

�

|n,q(t)〉 . (2.48)

For this approximation to be valid the force F has to be weak enough to prevent population
transfer into higher energy bands. Transitions are most probable when the quasimomentum
reaches the edge of the Brillouin zone (q = ħhk). For the fundamental band n = 0 and a
shallow lattice V0� 10Er the adiabaticity criterion then reads

|F |
λ

2
�
π

8

V 2
0

Er
. (2.49)

Since the quasimomentum increases linearly in time the periodicity of the wave function
Ψ(x , t) corresponds to the time required for the quasimomentum to scan the full Brillouin
zone. The Bloch period is therefore given by

TB =
2πħh
d|F |

. (2.50)
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The mean velocity of a particle in state |n,q(t)〉 depends on q and exhibits the same periodicity
as En(q)

〈v〉n(q) =
1
ħh

dEn(q)
dq

. (2.51)

Due to the uniform evolution of the quasimomentum it oscillates in time around a mean
value of zero. This periodic motion, depicted in Figure 2.8, represents the so-called Bloch
oscillations.

The applied force does not have to be an external one, like gravity, but can also be realized
by introducing a frequency difference ∆ω between the two laser waves, which increases
linearly in time. In the laboratory frame the light field can no longer be treated as a standing
wave, while it is still stationary in an accelerated frame. In the lattice frame, the atoms
experience a constant inertial force

F = −ma = −
m
2k

d
dt
∆ω(t) = −

m
2k
α, (2.52)

where α = d
dt∆ω is the chirp rate of the lattice. For an efficient transfer the rate α has to

fulfill the adiabaticity condition α� Ω2
12.

In the laboratory frame, the atomic velocity in the fundamental band n = 0 linearly increases
during the acceleration of the lattice. The crossing of a Brillouin-zone does not change the
band index of an atom. Atoms in higher bands with energies larger than the potential depth
V0, however, act as nearly free particles. At each boundary of the Brillouin-zone they travel to
the next higher band and are not accelerated in the laboratory frame.
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Figure 2.8: (a) Bloch oscillations of atoms in an optical lattice with V0 = 3Er . In the presence of a
uniform force the quasimomentum q of atoms in the fundamental band increases linearly across the
Brillouin zone leading to an adiabatic acceleration. If the force it too strong, non-adiabatic transitions
into higher bands occur. Adapted from [60]. (b) Bloch oscillations can be interpreted as adiabatic
passages between momentum states. At avoided crossings a momentum transfer of 2ħhk occurs.

Adiabatic-rapid-passage approach

Alternatively, Bloch oscillations can also be described in a quantum-optics approach without
using the concept of a band theory [133]. Here, they correspond to an adiabatic rapid passage
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between momentum states and can be interpreted as sequential Bragg scattering, where the
momentum change of the atom is decribed by absorption of a photon from one beam and
stimulated emission of a photon into the other beam. These two-photon transitions happen at
avoided crossings between the fundamental and first excited band (Fig. 2.8(b)).

As the frequency difference ∆ω of the laser beams increases in time, transitions to
higher momentum states sequentially become resonant for ∆ω = 4(2 j + 1)Er/ħh with
j = 0,1,2, .... At each resonance the atoms gain a momentum of 2ħhk and are accelerated
in direction of the beam with higher frequency. Starting with a vanishing atomic velocity
( j = 0) and ∆ω = 0, atoms are repeatedly transferred from state |p = 2 jħhk, E = 4 j2Er〉 to
|p = 2( j + 1)ħhk, E = 4( j + 1)2Er〉. For a constant chirp rate α the time required for a momen-
tum transfer of 2ħhk brings us again to the Bloch period with a force F = mα/2k

TB =
8Er

ħhα
=

2ħhk
ma

. (2.53)

2.2.4 Transfer efficiency

Landau-Zener theory

To calculate the efficiency of the coherent transfer via Bloch oscillations the Landau-Zener
formalism is applied. For a lossless acceleration the atoms have to stay in the fundamental
band and not perform transitions into bands with higher energy.

The band gap between band n and n+1 decreases with n and is therefore largest between the
fundamental and first excited band. Since the probability for interband transitions decreases
exponentially with the band gap, an atom that has done the first transition will continue to
travel into higher and higher bands and will not be accelerated in the laboratory frame. The
critical point for transitions to other bands is at the ends of the Brillouin zone q = k where
the band gap has its smallest value. The rate for interband transitions between band n and n′

is given by the Landau-Zener formula [126, 133]

η= exp
�

−
π

2α
(Ωnn′

bg )
2
�

, (2.54)

where Ωnn′
bg = (En − En′)/ħh corresponds to the band gap at the edge of the Brillouin zone

(q = k) and α is chirp rate of the lattice.
In the weak binding limit the band gap between fundamental and first band matches the
two-photon Rabi frequency Ω01

bg  Ω12 = V0/2ħh= V0[Er]ωr/2 (see Fig. 2.9). The probability
for atoms to stay in the fundamental band after n crossings of the Brillouin zone can be
written as the survival probability for one oscillation to the power of n

ηLZ =
�

1− exp
�

−
π

8α
(V0[Er]ωr)

2
��n

. (2.55)

For large lattice depths (V0 > 10Er), the first band gap keeps increasing with V0, however,
slower than linearly and Eq. (2.55) underestimates the atomic losses. Furthermore, the lowest
bands become essentially flat so that transitions not only take place at zone boundaries.
Landau-Zener theory, however, is only valid if the initial coupling around q = 0 is negligible
and the Bloch state is close to a plane wave. Therefore, only an effective transfer efficiency
after n oscillations can be specified for high lattice depths.
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Fig. 2.9: Band gap Ω01
bg versus Rabi

frequency Ω12.

Coherent acceleration with Bloch oscillations in the tight-
binding limit is investigated in [139] using numerical simu-
lations. These calculations show that the Bloch state, which
corresponds to the eigenstate of the Hamiltonian without
a force, is not the optimal state exhibiting the highest
transfer efficiency. A better solution is presented by the
Wannier-Bloch state [138], which is the eigenstate of the
evolution operator U = exp

�

−i HTB
ħh

�

. Experimentally, this
state can be prepared by an adiabatic acceleration. Alterna-
tively, similar efficiencies can be reached when introducing
a phase shift to the lattice.

Landau-Zener theory also does not take into account
resonantly enhanced tunneling [116, 140]. In the tilted potential of an accelerated lattice
the tunneling probability is enhanced, when the energy of an atom in one site approximately
equals the excited energy level of a neighboring lattice site. At such resonances a dip in the
transfer efficiency occurs, since the tunneled atom is not accelerated anymore.

In Ref. [61] a calculation for a superposition of two different momentum states, of which
only one is to be accelerated, is performed. In case of a momentum separation of 2ħhk one
has to find a compromise between adiabatically accelerating atoms in the fundamental band
and a non-adiabatic acceleration for atoms in the second excited band. The efficiency is the
product of the probability for an atom to stay in the fundamental band η00 and the probability
for the other atom to move into the third excited band η23

η= η00η23 =
�

1− exp
�

−
π

2α
(Ω01

bg)
2
��

· exp
�

−
π

2α
(Ω23

bg)
2
�

. (2.56)

The best efficiencies can be achieved for small values of acceleration corresponding to large
acceleration durations τacc.
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Figure 2.10: Transfer efficiency in an optical lattice according to the Landau-Zener theory for a transfer
of∆p = 2ħhk and different acceleration durations τacc as a function of the lattice depth V0. Comparison
of (a) acceleration in the fundamental band of a single lattice and (b) acceleration of a superposition
of momentum states 0ħhk and 2 hk. The latter can be interpreted as the influence of a parasitic lattice.

One encounters a similar situation for a retroreflected lattice featuring two counterprop-
agating parts, i.e. a twin lattice, where atoms should be accelerated by one lattice and not



2.2 Optical lattices 27

be disturbed by the other. In Fig. 2.10 the transfer efficiency in a single lattice is plotted for
an atom in the fundamental band compared to a superposition of two atomic momentums
states 0ħhk and 2ħhk. The latter can be interpreted as the effect a parasitic lattice with an
offset velocity of 2 vrec has on the transfer. If the lattice velocity deviates by 4 vrec or more
from the atomic motion its influence is negligible.

Spontaneous emission

In addition to Landau-Zener tunneling to higher bands, losses occur due to spontaneous
emission events. In contrast to Bragg diffraction, they often cannot be neglected during Bloch
oscillations because of larger interaction times τacc with the optical lattice. With a spontaneous
emission rate of Psp the residual fraction of atoms is equal to

ηSp = e−PSpτacc . (2.57)

We evaluate the spontaneous emission rate (2.34) for an atom in a Bloch state of an optical
lattice by taking the average of the potential 〈V (x)〉

PSp =
ωr

∆[Γ ]
〈V (x)〉

Er
=
ωr

∆[Γ ]
V0[Er]〈cos2(kx)〉. (2.58)

In the tight-binding limit (V0� Er) it is valid to assume that atoms are located in a single
lattice well [44]. In case of a red detuned lattice (∆< 0), where atoms are trapped in high
intensity regions, 〈cos2(kx)〉 ≈ 1− 1

2
�

V0[Er ]
and the spontaneous emission rate becomes

PSp,red =
ωr V0[Er]
∆[Γ ]

(1−
1

2
�

V0[Er]
). (2.59)

For a blue detuned lattice (∆> 0), 〈cos2(kx)〉 ≈ 1
2
�

V0[Er ]
resulting in a suppressed sponta-

neous emission since atoms accumulate in regions with minimum intensity

PSp,blue =
1

2
�

V0[Er]

ωr V0[Er]
∆[Γ ]

. (2.60)

Spontaneous emission in a twin lattice

The calculations in the previous section only hold for the spontaneous emission rate in a single
lattice. Here, we will consider the special case of spontaneous scattering in a blue-detuned
twin lattice where additionally the contrapropagating twin as well as the contributions arising
from imperfect polarization have to be taken into account. First, the spontaneous emission
rate for atoms copropagating with one of the twins at a speed of vBEC =

∆ω
2 k is evaluated.

We write the potential Vtwin (Eq. (2.39)) in the rest frame of these atoms by substituting
x → x + ∆ω2k t

Vtwin(x , t) = V0 cos2(kx) + V0 cos2(kx +∆ωt)

+ V0

σpol

(1−σpol)
[2cos(kx +∆ωt) · cos(kx)] . (2.61)
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We use the mean intensity seen by an atom to calculate the average scattering rate. As
detailed in the previous section 2.2.4 one finds for the first term 〈cos2(kx)〉 ≈ 1

2
�

V0[Er ]
. Since

the time scale of the rate ωr
∆[Γ ]Er

(Eq. (2.58)) is typically much slower than the frequencies
within the cosine arguments we can temporally average over the other terms which results
in 〈cos2(kx +∆ωt)〉 = 1

2 and 〈[2 cos(kx +∆ωt) · cos(kx)]〉 = 0. Therefore, we find for an
atom copropagating with one of the twins a total emission rate of

Ptwin =
V0[Er]ωr

∆[Γ ]

�

1

2
�

V0[Er]
+

1
2

�

. (2.62)

In the same manner, the spontaneous emission rate for an atom at rest can be calculated
(vBEC = 0)

P0ħhk =
V0[Er]ωr

∆[Γ ]

�

〈cos2(kx −∆ωt/2)〉+ 〈cos2(kx +∆ωt/2)〉

+
σpol

(1−σpol)
〈2 cos2(kx)− 2 sin2(∆ω/2t)〉

�

=
1
2
+

1
2
+

σpol

(1−σpol)

�

1
�

V0[Er]
− 1

�

. (2.63)

2.3 Atom interferometry

Interferometry with electro-magnetic waves is widely employed in science and industry for
high-precision measurements. Applications range from the early measurement of the speed
of light to prove the existence of an aether [141] up to the recent detection of gravitational
waves [3] utilizing instruments with unprecedented sensitivity. The wave nature of atoms
and in particular the high coherence properties of Bose-Einstein condensates make atom
interferometry a promising tool where the roles of light and matter are reversed compared to
traditional optical interferometers.

t

x

g

|p0〉
|p1〉

+
k

eff

0 T 2 T

π/2 π π/2

Fig. 2.11: Mach-Zehnder interferometer with-
out ( ) and with gravity ( ).

A commonly employed scheme to measure
for example the gravitational acceleration, rep-
resents the so-called Mach-Zehnder-type inter-
ferometer [66, 85, 88] in analogy to its optical
counterpart. Following the notation introduced
in section 2.1.1 the interferometer consists of a
sequence of three pulses, namely a π/2, a π and
another π/2-pulse to split, redirect and recom-
bine the atomic wave packet. The pulses can be
realized either with Bragg or Raman transitions.
The first pulse at t = 0 splits the atomic wave
function to create a coherent superposition of two
different states. In case of Bragg diffraction, the
superposition consists of two momentum states
|p0〉 and |p1〉 separated by two or more photon recoils. During a free evolution time of T the
clouds separate spatially along the interferometer arms. The second pulse at t = T acts as
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mirror reversing the momentum states. Ideally, both trajectories perfectly overlap at t = 2T ,
when a third pulse leads to a coherent recombination of the atomic ensemble to project
the phase information onto the population in each state and create an interference pattern.
The existence of external forces like gravity can break the symmetry of the interferometer
geometry which results in the accumulation of a phase difference after the propagation along
the different trajectories. In Figure 2.11 the atomic trajectories of a Mach-Zehnder are plotted
in a space-time-diagramm with and without the influence of an external acceleration.

2.3.1 Sensitivity to inertial forces

The total phase difference in an atom interferometer can be expressed as the sum of three
contributions [18] arising from the free evolution, the interaction with the light field and the
separation of the wave packets

∆φ =∆φpath +∆φlight +∆φsplit. (2.64)

The first contribution ∆φpath stems from the free evolution between laser pulses and is
described by the classical action given by the Lagrangian 	

Scl =

∫ 2T

0

	 [z(t), ż(t)]dt. (2.65)

As long as Scl� ħh the phase difference between paths A and B then yields

∆φpath = (S
B
cl − SA

cl). (2.66)

This contribution vanishes for a uniform gravitational field (	 = 1
2 mv2 −mgz). To take into

account a linear gravitational gradient γ, the Lagrangian is extended by the term 1
2 mγz2 [18].

The second term ∆φlight emerges due to the interaction with the laser beams. If the atomic
state changes during such an interaction at time ti and position zi , the local laser phase φi =
keffzi −ωeff ti is imprinted on the atomic wave function. For a Mach-Zehnder interferometer
we find

∆φlight = (φ
A
1 −φ

A
2 )− (φ

B
2 −φ

B
3 ). (2.67)

The third contribution, the separation phase ∆φsplit, vanishes if the interferometer closes
properly in space and the wave packets perfectly overlap at the exit ports. Without any
external forces the symmetry of the Mach-Zehnder interferometer leads to a vanishing phase
shift ∆φ = 0. In the presence of a uniform gravitational field the symmetry is broken and the
phase shift yields

∆φgrav = keff gT2 ≈ 2kgT2. (2.68)

This simple formula is already a very good approximation for the phase shift within a gravime-
ter. The sensitivity towards accelerations scales linearly with the momentum separation
nkeff and quadratically with the time T between interferometer pulses. Therefore, the prod-
uct nkeffT

2 is also named scaling factor. In other words, the sensitivity increases with the
space-time area A which is enclosed by the two interferometer trajectories.
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The phase shift in Eq. (2.68) has been derived under the assumption of vanishing pulse du-
rations. For box pulses of duration τ for a π/2-pulse and 2τ for a π-pulse slight modifications
of order τ/T arise [142]

∆φgrav = 2kgT2

�

1+
�

1+
2
π

�

2τ
T
+

2
π

�

2τ
T

�2
�

. (2.69)

Whenever an interferometer encloses a finite spatial area it becomes sensitive to rotations,
which is the well-known Sagnac effect. The sensitivity towards a rotational rate of Ω, caused
e.g. by the rotation of the Earth, reads

∆φrot =
2m
ħh
Ω ·A= 2Ω · (v0 × keff)T

2, (2.70)

where v0 is the initial velocity and A the vector normal to the enclosed area, whose length is
proportional to its size.

The response of an atom interferometer to noise contributions, caused e.g. by laser phase
fluctuations or vibrations, can be calculated using the sensitivity function formalism [142,
143].

Light shifts

For the calculation of the phase from light interactions ∆φlight, additional contributions due
to one- or two-photon lights shifts leading to an offset phase have been neglected. A one-
photon light shift, namely the differential AC-Stark shift δAC (see sec. 2.1.2) is caused by the
differential AC Stark effect between the different states. In case of Raman diffraction it can be
compensated for by choosing an appropriate intensity ratio I1/I2 of the two laser beams. Given
the operation in a single internal state, the AC-Stark shift is intrinsically suppressed in Bragg
diffraction. However, here, one has to consider diffraction phases caused by the coherent
coupling of atoms to unwanted momentum states [63, 64]. Additionally, in retroreflected
geometries two-photon light shifts might arise due to couplings with the off-resonant photon
pair. The impact of these off-resonant transitions has been studied for Raman and Bragg [122,
144]. For the latter, it can be suppressed when using Gaussian shaped pulses instead of
rectangular ones.

2.3.2 Increasing the scaling factor

Through the application of multiphoton processes, i.e. higher nth order processes, the scaling
factor, i.e. the space-time area, can be increased by a factor n. If double diffraction is used for
beam splitting, a symmetric Mach-Zehnder type interferometer is realized (see Fig. 2.12(a)),
where several systematic effects such as diffraction phases ideally cancel out. Compared to
single diffraction the double diffraction scheme intrinsically doubles the momentum transfer
(n= 2) and, thus, the sensitivity towards the gravitational acceleration

∆φ = 4kgT2. (2.71)

Instead of using higher order transitions, the sensitivity can also be increased by using
sequential pulses [68, 125]. Thus, the order n changes during the interferometer. Assuming a



2.3 Atom interferometry 31

t

x

T0

|p0〉
|p1〉 |p2〉

0 T 2 T

π/2 π π/2
(a) (b)

0 T 2 T

π/2 π π/2

τacc

τload τ f

t

x

A

Figure 2.12: Increased scaling factor in different Mach-Zehnder topologies. (a) Symmetric interfero-
meter with first ( ), sequential ( ) and second-order ( ) double diffraction. (b) By inserting
Bloch oscillations with a constant acceleration one not only increases the enclosed space-time area but
also achieves a faster scaling with time T .

double diffraction interferometer, where the sequential pulses are separated by a time T0, the
phase difference yields

∆φ = 8kgT (T − T0). (2.72)

The general formula for an interferometer with N sequential pulses of order n and separated
by T0 [142] yields

∆φ = 2n(N + 1)kgT · (T − N T0). (2.73)

The space-time area of an interferometer can be determined by integration over the tempo-
ral distance ∆x of the two interferometer trajectories A=

∫

∆x(t)dt. In a Mach-Zehnder
configuration, the two paths exhibit a constant velocity difference ∆v. The space-time area
therefore scales with the square of the interrogation time T as∆vT2. In contrast, in a Ramsey-
Bordé interferometer [60, 62] the two trajectories mainly exhibit a constant displacement ∆x
during T resulting in a sensitivity scaling linearly with T . Based on these two commonly used
schemes one can think of an improved scaling towards acceleration with T3 by increasing the
separation with a constant acceleration ∆a by means of Bloch oscillations [58]. Regardless of
an enhanced scaling behavior the addition of multiple Bloch oscillations in an interferometer
will increase the momentum separation and, thus, its sensitivity.

We calculate the phase shift for a symmetric interferometer with Bloch oscillations as
depicted in Figure 2.12(b). After an initial separation via double Bragg diffraction both
clouds are loaded into a copropagating lattice during τload and accelerated by nB Bloch
oscillations over a time τacc. Following a duration τ f which is required for unloading, a
potential free evolution time as well as reloading into the lattice, both momentum states are
decelerated before their velocities are reversed via a double diffraction π-pulse. In the second
interferometer half, the acceleration and deceleration via Bloch oscillations is repeated until
a final π/2 pulses recombines the momentum states for interferometric readout. The phase
shift due to an external acceleration a is given by

∆φ = 2 ·
�

n+ nB ·
τacc +τ f

T

�

2k · aT2. (2.74)
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A constant acceleration rate ∆aB =
4nBħhk
mτacc

between both interferometer arms corresponds to a
constant Bloch period TB = τacc/nB. Therefore, when τacc or T increases, so does the number
of Bloch oscillations. In the limit where τload and τ f are significantly smaller than τacc we
can approximate τacc ≈ T/2 and (2.74) becomes

∆φ = 4k · aT2 +
k · aT3

2TB
, (2.75)

showing an explicit T3-scaling for a constant Bloch period TB.
One can even think about further pushing the scaling by applying a constantly increasing

relative acceleration, which would lead to a phase contribution scaling with T4 [58]. The
maximum adiabatic acceleration rate which can be achieved increases quadratically with
laser power [133]. In case of a twin lattice, the corresponding small initial acceleration and
lattice depth are beneficial to lower the influence of the non-resonant lattice on the atomic
cloud.

2.3.3 Phase readout

The differential interferometer phase ∆φ is read out by analyzing the relative population in
one of the momentum states, e.g. |p1〉 with an additional momentum of 2ħhk.

P|p1〉 = P0 +
A
2

cos(∆φ), (2.76)

where P0 corresponds to the mean value of P|p1〉 and A to the amplitude of the fringe as depicted
in Figure 2.13. In case of a double diffraction interferometer, the signal P|p1〉 is given by the
relative population in the outer momentum states |±2ħhk〉 relative to the total population in
all output ports |−2ħhk〉 , |0ħhk〉 and |+2ħhk〉. The sinusoidal course of the population P|p1〉 for
a linear phase scan is called a "fringe".
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Fig. 2.13: Interferometer fringe with exemplary den-
sity images of the population in two momentum
states and contrast determination C = A/P0.

The interferometric contrast C is an im-
portant property since it directly influcence
the sensitivity of a measurement. For a
given interferometer signal P, the contrast
C is determined by the amplitude A and
mean P0 and can also be expressed by the
minimum Pmin and maximum Pmax values
of P|p1〉

C =
A
P0
=

Pmax − Pmin

Pmax + Pmin
. (2.77)

The phase resolution of a fringe measure-
ment and, thus, the sensitivity of an atom
interferometer is intrinsically limited by the
quantum projection noise [145], also called
shot noise, which originates from the statis-
tical nature of quantum mechanics. Since
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the determination of the atom number N is essentially a Poisson process, the signal-to-noise ra-
tio (SNR) scales with

�
N . For an atom interferometer with contrast C the quantum projection

noise is given by

σqpn =
1

SNR
=

1

C
�

N
. (2.78)

The uncertainty of an acceleration measurement is therefore given by the shot noise σqpn

and the scaling factor nkeffT
2 [18]

∆a =
1

C
�

NnkeffT2
. (2.79)

From this formula it is obvious that the measurement sensitivity will not only gain through
an increase of the scaling factor, but also through the operation with a large number of atoms
and a higher contrast. Apart from shot noise, other intrinsic noise sources might arise from the
beam splitter itself, caused for example by laser intensity fluctuations or from the detection
process.
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I’m old. Not obsolete.

— Terminator

The QUANTUS-1 experiment has been designed to produce and observe Bose-Einstein con-
densates (BECs) for the first time in extended free fall in a microgravity environment. For
the operation in the drop tower facility of Bremen all components required for BEC gener-
ation have been integrated into a capsule with a diameter of 0.6 m and a payload height
of 1.73 m. Apart from miniaturization, the components are characterized by low mass and
power consumption as well as robustness against mechanical stress and thermal fluctuations.
Additionally, the experiment is remotely controllable and can be supplied independently via
batteries.

In 2007, the first BEC in microgravity was successfully created with the QUANTUS-1
experiment [146]. Subsequent studies in the drop tower include the investigation and imple-
mentation of delta-kick collimation as well as atom interferometry with long interrogation
times [40]. On ground, a quantum tiltmeter was demonstrated [68] as well as a gravimeter
with an atomic fountain to prolong the time-of-flight [88]. For the latter, the apparatus has
been equipped with an external high-power fiber laser system, which enables the realiza-
tion of Bloch oscillations. Up to date, the experiment is a reliable source for Bose-Einstein
condensates and produces up to 1.5 · 104 condensed 87Rb atoms in a cycle time of 15 s.

In the following chapter, the different sub-systems including the vacuum chamber, the laser
system, and the control system of the QUANTUS-1 capsule are presented briefly (sec. 3.1).
A detailed description can be found in former work [125, 147–149]. Furthermore, the ex-
perimental sequence for BEC generation and the theory of Bose-Einstein condensation is
introduced (sec. 3.2). A focus is set on the high power laser system employed for interferome-
try along the vertical and horizontal direction to perform gravimetry and symmetric large
momentum transfer, respectively (sec. 3.3).

3.1 QUANTUS-1 capsule

Fig. 3.1 shows the QUANTUS-1 capsule with its seven different segments. The vacuum
chamber is situated in the center of the capsule along with electronics for current control and
photodiodes. The vacuum system stretches across two platforms further above. A constantly
operating ion-getter pump (IGP) and a passive getter keep the pressure below 10−10 mbar.
Apart from the IGP these platforms also house the main control system, current drivers and
electronics. The laser system including its control electronics is installed on the top platform

34
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Current drivers
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Electronics

Ion getter pump

Vaccum system

Electronics

Batteries

Current drivers

Capsule control

Batteries

Figure 3.1: The QUANTUS-1 drop capsule with its seven segments. The main purpose of each section
is written alongside. Trapping, cooling and manipulation of the rubidium atoms takes place in the
vacuum chamber in the center (photography by H. Müntinga).

to allow access for alignment. Below the vacuum chamber precision current drivers for driving
magnetic fields are integrated. To reduce the maintenance effort their supply has recently
been changed from batteries to power-supply units since an independent operation is no
longer necessary. The two lowest sections house the capsule control system, power supply,
and sensor packs for monitoring and are common to every drop-tower capsule.

3.1.1 Vacuum chamber

The ultra-high vacuum (UHV) chamber consists of a six-way cross extended by two tubes at
an angle of 45◦ as illustrated in Figure 3.2(a). At its ends, anti-reflection coated viewports are
integrated. The vacuum system is made of non-magnetic stainless steel to minimize inductivity
and its components are connected via robust copper seals (CF type). It is solely attached to the
platform above to prevent mechanical stress which might lead to leakage. All magnetic coils
as well as optical assemblies are directly fixed to the chamber to guarantee a rigid alignment.
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The largest coil pair, the so-called MOT coils, is connected in anti-Helmholtz configuration
and provides a magnetic field gradient for the magneto-optical trap (MOT) during the initial
cooling phase. The coil pairs in x , y , and z direction are labeled K1, Bias and K2, respectively,
and create homogeneous offset fields. All detection optics are integrated along the x direction.
The axis is shared with two cooling beams which are superposed with the detection light on
polarizing beam splitters (PBS). Together with two other laser beams reflected at an angle
of 45◦ from the chip surface all six beams for 3D cooling are thus provided (see Fig. 3.5).
The interferometer beams are aligned horizontally and vertically, in y and z direction. In the
latter case, the chip serves as retroreflector.

At the bottom of the chamber, an electrical feedthrough supplies the rubidium dispenser
mounted inside the chamber. Around the vacuum chamber, a µ-metal shielding consisting of
seven individual parts is installed which suppresses external magnetic fields by a factor of
roughly 40 [147].

z
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xfeedthroughs

pumps
(a) (b)
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5
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BBias

Figure 3.2: (a) Vacuum chamber with highlighted MOT coils ( ), Bias coils ( ), MOT telescopes
( ) and camera for detection ( ). Horizontal and vertical interferometry accesses are marked by
thick red arrows. The associated optics are not included for clarity. (b) Photograph of the atom chip
with Z-type ( ) and U-type ( ) wire configuration. An offset field can be generated by the Bias
coils.

Atom chip

The main ingredient for fast and efficient BEC production within the QUANTUS-1 experiment
is an atom chip located at the top of the vacuum chamber and aligned horizontally. Compared
to macroscopic coils atom chips exhibit a small size, low power consumption and provide
high spatial confinement of the atomic ensemble [150, 151]. The latter is important for high
collision rates during the evaporation process. Figure 3.2(b) shows the atom chip surface
featuring different structures. The two highlighted ones of U and Z shape are used for the
creation of a quadrupole field and a Ioffe-Pritchard trap [152, 153], respectively. The Z-wire is
additionally used as an antenna for a radio frequency signal required for evaporative cooling
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and magnetic state transfer. The structures are bonded to gold contacts ending in Copper
wires covered in Kapton. On top of the conductive paths a dielectric coating with a reflectance
of roughly 85% for a wavelength of 780 nm serves as a mirror for laser beams employed
for cooling and interferometry. The chip is mounted on a copper structure which acts as a
heatsink and is fixed to a vacuum flange containing an electrical feedthrough with a D-sub-9
connector for the power supply.

To minimize current noise, the atom chip as well as the coils are driven by low-noise current
sources BCSP-7 by HighFinesse. Until october 2018, they have been supplied by a set of
lead-acid batteries. Currently, the chip drivers are powered with customized power supplies
fabricated by HighFinesse, whereas the coil drivers are supplied by commercial power-supply
units (R&S HMP4040). To protect the atom chip from high currents, which might cause serious
damages, fuses and safety electronics are installed in the electronic circuit [125].

Magnetic trap

In the presence of a magnetic field B the energy of an atom with a magnetic dipole moment
is shifted by

U = gµBmF |B|, (3.1)

where g is the Landé factor, µB the Bohr magneton and mF the magnetic quantum number
belonging to the hyperfine state |F〉 [114]. By applying an inhomogeneous magnetic field
which causes a magnetic dipole force F = ∇U atoms can either be trapped in a magnetic
maximum (gF mF < 0) or a magnetic minimum (gF mF > 0). The most simple trap configu-
ration with a magnetic field minimum, the quadrupole trap, can be realized with a pair of
anti-Helmholtz coils. However, it features a vanishing magnetic field in the center which leads
to atom losses due to Majorana spin-flips [154, 155].

A Ioffe-Pritchard trap (IPT), first discussed by Ioffe [152] and later demonstrated by
Pritchard for neutral atoms [153, 156], is broadly used in the field of atom trapping. It
features an axial symmetry and is characterized by a nonzero minimum to suppress Majorana
transitions as well as a harmonic potential in the vicinity of the trap center of the form

V (x , y, z) =
m
2
(ωx x2 +ωy y2 +ωzz2), (3.2)

where ωx ,y,z are the respective trap frequencies.
Magnetic traps can also be generated by wire structures in combination with an external

homogeneous bias field. The magnetic field created by an infinitely thin wire along the x-axis
carrying a current I0 depends on the distance r perpendicular to the wire axis (Fig. 3.3). Its
magnitude, gradient and curvature are given by [157]

B(r) =
µ0

2π
I0

r
, B′(r) = −

µ0

2π
I0

r2
, B′′(r) =

µ0

π

I0

r3
. (3.3)

For small values of r the magnetic field features a strong gradient and curvature beneficial for
a high atomic confinement. The local minimum required for trapping atoms can be created by
an additional homogeneous field By in y direction, perpendicular to the wire axis. At distance
z0 a guide for neutral atoms with zero magnetic field is formed

z0 =
µ0

2π
I0

By
. (3.4)
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Figure 3.3: Composition of the magnetic field used for two-dimensional trapping, generated by a wire
and an external field. Adapted from [150].

Close to the center of this 2D trap the total field can be approximated by a two-dimensional

quadrupole field with gradient B′(z0) = −
µ0
2π

B2
y

I0
. By adding another homogeneous field Bx in

x direction, the trap can be transformed into a Ioffe-Pritchard guide exhibiting a nonzero
minimum.

In case of the QUANTUS-1 atom chip 3D confinement is produced by the U and Z wire in
combination with a uniform field BBias provided by the Bias coils in y direction. The central
wire segment along the x-axis and the bias field produce a two-dimensional quadrupole trap
as stated before. The additional bent components in y direction provide axial confinement,
which is weaker than the confinement in radial direction. In case of the U-shaped wire the
magnetic fields of the two bent wires point in opposite direction and cancel each other. The
resulting 3D quadrupole trap with a vanishing magnetic field in the center is used as a chip
MOT. Since the fields of the bent components of the Z wire add up, the zero minimum vanishes
and a chip-based Ioffe-Pritchard trap is created.

3.1.2 Laser system for cooling, trapping and detection

The laser system for cooling, trapping, and detection is installed in a water-cooled aluminum
block in the top section of the capsule. Robust and compact distributed feedback (DFB) diodes
with a line width of approximately 3 MHz generate the laser light. The laser system consists
of the following four modules which are connected via single-mode polarization-maintaining
(PM) fibers

• A reference laser is stabilized by modulation transfer spectroscopy [160] to the transi-
tion |52S1/2, F = 3〉 → |52P3/2, F ′ = 4〉 of 85Rb.

• A DFB diode, the so-called cooling laser, is amplified by a tapered amplifier (TA)
and provides light for cooling, detection, and pumping of 87Rb. During the MOT
phase, the laser is red-detuned by 23 MHz from resonance. Afterwards, it is used
to optically pump different Zeeman states into |F = 2, mF = 2〉 by using a cycling
transition |F = 2, mF = j〉 → |F = 2, mF = j + 1〉. Finally, the laser is tuned to resonance
for detection. A direct-digital synthesizer (DDS) provides the reference frequency for
the offset lock with the master laser and allows for fast switching between the different
frequencies.
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Figure 3.4: Scheme of the D2 transition of 85Rb and 87Rb including hyperfine structure. All frequencies
are given in MHz [158, 159]. The colored arrows depict the laser frequencies employed in the
experiment. Each color resembles one laser source.

• A so-called repumper laser is stabilized to the reference laser via electronic offset locks
to |F = 1〉 → |F ′ = 2〉 of 87Rb. The laser transfers atoms back to the cooling cycle, which
have been lost to the hyperfine state |F = 1〉.

• Light from the three modules described above is guided to a module for distribution
and switching of the laser light. Within this module, a few mW of the repumping and
cooling light are split off and superimposed with the reference laser on one photodiode
each for frequency stabilization. Another fraction of the cooling light is separated and
coupled into an optical fiber serving both for detection and optical pumping. The rest
of the cooling light is divided into four beams, superimposed with the repumper and
coupled into four fibers. The paths for repumping, cooling, and detection each house
an acousto-optic modulator (AOM) for intensity adjustment. In addition, mechanical
shutters in front of each output can completely block the light.

From the distribution module, five PM fibers, four for cooling and one for detection, are
guided to the vacuum chamber. They are attached to the respective viewports where they
are collimated to a 1/e2 diameter of 16 mm and 10 mm, respectively. The laser frequencies
employed within the QUANTUS-1 experiment are depicted in Fig. 3.4 with respect to the D2

transitions of 85Rb and 87Rb.

Absorption detection

The optics for detection are arranged along the x direction resulting in an image acqui-
sition of the y − z plane. The detection light, resonant to the |52S1/2, F = 2, mF = 2〉 →
|52P3/2, F = 3, mF = 3〉 transition and of σ+ polarization, is collimated via a lens to a 1/e2

diameter of 10 mm and an approximate intensity of 0.25 mW/cm2 (0.15 Isat). The atom’s
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shadow is projected onto a CCD camera (Grasshopper GS3-U3-15S5M-C) by a single imaging
lens with f = 80 mm. The image sensor has a resolution of 1384×1032 pixels with a pixel size
of 6.45µm. The corresponding extent of 6.7 mm in z direction sets a limit to the maximally
observable time-of-flight of the atomic cloud.

During detection, a quantization field of 8 G is generated by the K1 coils parallel to the
detection axis. In each sequence two images are taken with an interval of 200 ms, namely an
atom image Iatom including the shadow of the cloud and a beam image Ibeam in the absence
of any atoms. Both images are corrected by a dark image Idark recorded once a day with all
lasers switched off. The two-dimensional atomic density distribution n is reconstructed via
substracting atom and beam image which allows the elimination of beam distortions such as
interferences.

Beer’s law describes the absorption of an incident beam with intensity I detuned by ∆ from
resonance for a two-level atom with cross-section σ0 [159, 161]

dI
dx
= −nσ0

1
1+ I[Isat] + 4(∆[Γ ])2

I ≡ −nσ(I)I . (3.5)

where Isat is the saturation intensity, Γ the natural linewidth and σ(I) the effective cross
section including saturation correction. The column density ñ(y, z), i.e. the atomic density
integrated perpendicular to the camera, can be extracted from the detected intensities in the
three recorded images

ñ=
1
σ0
(1+ 4(∆[Γ ])2)

�

ln
�

Ibeam

Iatom

�

+
Ibeam − Iatom

Isat

�

. (3.6)

In order to account for the actual response of the atoms, an effective saturation intensity
Ieff
sat = α

∗ Isat is required. The dimensionless parameter α∗ considers corrections caused e.g. by
imperfect polarization of the imaging beam or different Zeeman states.

From the absorption image, parameters such as particle number and size of the atom
cloud are calculated by fitting a suitable function to the integrated column density [125].
Whereas the form of a Bose-Einstein condensate ideally equals an inverted parabola, a thermal
background is of Gaussian shape. A combination of both can be described by a bimodal
distribution. Absolute atom numbers and sizes, however, are prone to errors in context with
magnification and atomic density calculation. Furthermore, atom number fluctuations in the
order of 10-20% occur due to shot-to-shot variations of experimental parameters.

If a beam splitter is applied or an atom interferometer is realized, one does not detect
a single atom cloud but rather different, spatially separated momentum states. In order to
measure the diffraction efficiency, i.e. the relative population between two states, one can fit
two individual Gaussians to determine the absolute atom number in each state. Since the
offset of the Gaussian fit critically depends on the size and position of the selected image
region, it is usually not common for both of these fits. This leads to an uncertainty in the
calculated relative population of both states. Alternatively, it is possible to fit a function
consisting of two Gaussian distributions with identical offset to the absorption image [125],
a so-called double Gaussian fit. This evaluation suffers from less noise compared to two
individual fits.
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3.1.3 Control

The computer installed in the drop capsule enables remote control of the experiment [147].
A PXI system (National Instruments, PXI-1000B) operating with a LabVIEW Real-Time
system controls the experimental sequence and allows for a timing precision on the µs
level. Different digital and analog inputs and outputs are provided by extension cards to
control laser frequencies, electronic switches, and current sources. The radio frequency signals
required for evaporation and magnetic state transfer are controlled via a self-built DDS card
(AD9958). The same type is used to control the AOMs for frequency and intensity shaping of
the interferometry pulses. A timed sequence can be created via a graphical user interface on
an external system and is loaded into the memory of the PXI system via Ethernet.

3.2 Generation of Bose-Einstein condensates

3.2.1 Experimental sequence for BEC generation

In the following, a typical experimental sequence for BEC generation is sketched. It consists
of trapping and cooling thermal rubidium atoms in a magneto-optical trap, transfer to a
chip-based Ioffe-Pritchard trap and final phase transition to a Bose-Einstein condensate via
forced radio-frequency (RF) evaporation. The sequence was optimized in previous work [147,
148] and has only undergone slight modifications since then.

Magneto-optical trap and transfer to chip trap

x

z
yAtom chipDetection &

Pumping

CCD

σ+

σ−

σ−

σ+

σ+

σ+

Figure 3.5: Scheme of the cooling light for the magneto-optical trap in QUANTUS-1 formed by four
laser beams with circular polarization. Two of them are reflected from the atom chip at an angle of
45◦. The detection axis is sketched as well.

A sequence starts with a 3D magneto-optical trap (MOT) [162, 163] which is loaded from
the background gas with 87Rb. During the MOT, dispensers evaporate rubidium to increase
its partial pressure in the chamber. Absorption of the counterpropagating cooling light, red-
detuned with respect to the |F = 2, mF = 2〉 → |F ′ = 3, mF = 3〉 transition, decelerates the
atoms. Two counterpropagating beams in x direction along with two beams reflected from
the atom chip provide cooling in all three dimensions as illustrated in Figure 3.5. Additionally,
a magnetic quadrupole field produced by the anti-Helmholtz coils confines the atoms locally.
During the MOT the repumping laser retrieves atoms relaxed into |F = 1〉 back to the cooling
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cycle. Loading from the background vapor requires a relatively long MOT duration of 10 s
compared to setups with an additional 2D-MOT [83] and results in 2 · 107 atoms at a
temperature of 200µK.

Afterwards, the dispenser is turned off and the trap center is moved closer to the atom chip
by a shift of the magnetic offset fields. A MOT based on the U-wire is formed which features
a smaller trap volume but also a better confinement for better position control compared to
the macroscopic MOT. Due to the small lifetime the trap center is moved shortly afterwards
to the position of the Ioffe-Pritchard trap with about 1 · 107 remaining atoms in the trap.

Optical molasses and state preparation

The minimum temperature TD in a MOT is fundamentally limited by the Doppler limit
TD = ħhΓ/(2kB) with linewidth Γ , which equals 145µK in case of 87Rb [164]. Lower tempera-
tures required for efficient loading of the magnetic trap can be reached through an optical
molasses, also known as polarization gradient cooling [165]. Due to its sensitivity to magnetic
forces, all magnetic fields are switched off and residual fields are compensated with the coil
pairs in x , y , and z direction (K1, Bias, K2). The short molasses phase of 4 ms results in 6 ·106

atoms at a temperature of 20µK.
Up to now, the atomic ensemble is constituted of different hyperfine states. For trapping in

a purely magnetic trap, the atomic ensemble is optically pumped during 0.7 ms into the state
|52S1/2, F = 2, mF = +2〉 which exhibits the highest magnetic moment within the 52S1/2 level.
For the transfer solely the σ+ polarized pumping beam along the x direction is employed.

Evaporation and release trap

IBias fx (Hz) f y (Hz) fz (Hz)

0.36 A 17 47 31

0.6 A 18 131 127

1 A 43 344 343

Table 3.1: Release trap frequencies for
different geometries taken from [125].

Laser cooling does not suffice to reach the required
phase-space density for Bose-Einstein condensation.
The final step towards the phase transition is therefore
achieved via evaporative cooling [166]. Evaporation
takes place in a Ioffe-Pritchard trap produced by the
Z-wire with IZ = 2 A and a bias field. An additional mag-
netic field in x direction IK1 = 1.6 A lifts the trap floor.
The Z-wire serves as an antenna for a radio frequency
fevap, which is resonant to the most energetic atoms
and drives a spin-changing transition. The atomic state
is thereby switched to a high-field seeking one which are expelled from the trap. The fol-
lowing rethermalization requires a high collision rate and results in a reduced temperature.
During the whole evaporation cycle of 1.24 s, fevap is ramped down stepwise from 40 MHz to
1.83 MHz. This evaporation process results in large losses with a final atom number of 25 000
and a condensate fraction of roughly 50%.

After evaporation the trap is adiabatically decompressed to increase its lifetime and decrease
the expansion rate during free evolution. At the same time, fevap is ramped up again to expel
residual thermal atoms. Finally, atoms are transferred to the release trap. Its trap frequency
can be adjusted with the bias current IBias as summarized in Table 3.1. The trap frequencies
are measured via variation of the duration of the release trap (sec. 4.1.1). For a free evolution
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of the condensate, all magnetic fields are switched off except for a weak homogeneous field
in x direction remaining as a quantization axis.

3.2.2 Bose-Einstein condensates

T � TC T > TC T = TC T = 0

→→

→→

→

→

→

→

→

→

λdB

Figure 3.6: Phase transition to a Bose-Einstein condensate. As the temperature decreases, the wave
packets of the bosonic particles begin to spatially overlap resulting in a macroscopic matter wave [167].

Bose-Einstein condensates (BEC) represent a unique state of matter where quantum phe-
nomena can be investigated on macroscopic scales. The statistical appearance, characterized
by a macroscopic occupation of the lower energy state, was already predicted in 1924 by Bose
and Einstein [79, 80]. Experimental demonstration was not done before 1995, when three
groups almost simultaneously achieved condensation in dilute atomic gases for rubidium [76],
sodium [77], and lithium [78]. Following the notation of [164] a brief overview of the theory
of Bose-Einstein condensation is given here.

The phenomenon relies on the wave-particle duality where particles with mass m are
described by the thermal de Broglie wavelength

λdB =

√

√

√ 2πħh2

mkBT
, (3.7)

where kB is the Boltzmann constant. In a vivid picture, quantum effects can be observed when
λdB, which is decreasing with temperature T , becomes comparable to the mean interparticle
spacing n−1/3, depending on the density n [167]. In other words, Bose-Einstein condensation
occurs, when the wave packets of bosonic particles start to spatially overlap and the system can
be described by a single wave function (Fig. 3.6). This is given for a phase-space density of ρ =
nλ3

dB ≥ 2.612. The critical temperature TC for Bose-Einstein condensation is approximately
given by

TC ≈ n2/3 2πħh2

mkB
. (3.8)

Quantum behavior in atomic gases can thus only be observed for low temperatures and
sufficiently high densities.

Non-interacting Bose gas in a harmonic trap

A BEC of dilute atomic gases is usually generated in a trap, which is approximately harmonic
around its center. The simple treatment of a non-interacting Bose gas in a harmonic potential
already yields important properties such as transition temperature and condensate fraction.
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For this purpose, the density of states g(ε) has to be derived. The Bose distribution describes
the mean occupation number in thermodynamic equilibrium depending on the energy ε of a
single-particle state and the chemical potential µ

f (ε) =
1

e(ε−µ)/kBT − 1
. (3.9)

µ corresponds to the energy required to add a particle to the ensemble and it cannot be larger
than the ground state energy ε0 which would result in an unphysical negative occupation. For
an anisotropic harmonic potential according to Eq. (3.2) the density of states g(ε) is given by

g(ε) =
dG(ε)

dε
=

ε2

2ħh3ωxωyωz
. (3.10)

In the limit of a large particle number N (N →∞) we can approximate ε0 ≈ 0 and calculate
the atom number in excited states Nex through integration over the occupation number f (ε)
and the density of states g(ε)

Nex =

∫ ∞

0

f (ε)g(ε)dε. (3.11)

Nex reaches its largest value for µ = 0. Exactly before the phase transition at temperature
TC the total number of particles N is accomodated in excited states. Evalutating the integral
in (3.11) at µ= 0 yields the critical temperature TC

N = Nex(TC ,µ= 0) = ζ(3)
�

kBTC

ħhω̄

�3

kBTC =
ħhω̄N1/3

[ζ(3)]1/3
≈ 0.94ħhω̄N1/3, (3.12)

with the Riemann zeta function ζ(α) =
∑∞

n=1 n−α and the geometric mean of the trap
frequencies ω̄ = (ωxωyωz)1/3. For typical trap frequencies of ω̄ ≈ 2π · 100 Hz and an atom
number of 104 the transition temperature is TC ≈ 100 nK. Below the transition temperature
the number of particles in the condensate N0 is determined solely by the temperature T

N0 = N
�

1−
�

T
TC

��

. (3.13)

The corresponding ground-state wave function, which describes the condensate in an anisotropic
harmonic oscillator is given by

φ0(r) =
1

π3/4(a1a2a3)1/2
e−x2/2a2

x e−y2/2a2
y e−z2/2a2

z with ai =

√

√ ħh
mωi

, (3.14)

where ai is the width of the wave function in one dimension. The condensate’s width ai

changes considerably when taking into account atom-atom interactions as illustrated in the
next section.
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Gross-Pitaevskii equation and Thomas-Fermi approximation

So far, interparticle interactions have been neglected. The interaction strength between two
particles at low energies depends on the scattering length a and is given by g = 4πħh2a

m . A
cloud of alkali vapours is dilute in the sense that particle separations are large compared
to the scattering length a. In this case, the properties of a Bose gas at zero temperature are
described by the Gross-Pitaevskii equation. In a mean-field or Hartree-Fock approximation
we write the total N -particle wave function as the product of normalized single-particle wave
functions

Ψ(r1, r2, ..., rN) =
N
∏

i=1

φ(ri). (3.15)

For an effective interaction gδ(r − r′) between two nearby atoms the Hamiltonian in an
external potential V (r) yields

H =
N
∑

i=1

�

p2
i

2m
+ V (ri)

�

+ g
∑

i< j

δ(ri − rj). (3.16)

Minimization of the mean energy under the condition of a constant particle number, i.e.
∫

|φ(r)|2dr= 1 results in the time-independent Gross-Pitaevskii equation

�

−
ħh2

2m
∇2 + V (r) + U0|ψ(r)|2

�

ψ(r) = µψ(r), (3.17)

where ψ(r) =
�

Nφ(r) is the condensate wave function and n(r) = |ψ(r)|2 is the density of
particles. The Gross-Pitaevskii equation has the same form as the Schrödinger equation, where
the potential is composed of an external contribution V and a non-linear term U0|ψ(r)|2

describing the mean-field potential of the other atoms. The eigenvalue is the chemical potential
µ, which is only equal to the energy per particle for g = 0.

In a harmonic trap with a large number of atoms and repulsive interactions, the kinetic
energy is small compared to the potential one. In the Thomas-Fermi approach, the kinetic
term ħh2

2m∇
2 in (3.17) is neglected. For µ≥ V (r) one receives as solution

n(r) = |ψ(r)|2 = [µ− V (r)]/U0, (3.18)

while ψ = 0 for µ < V (r). The atomic density profile therefore corresponds to an inverted
parabola. Eq. (3.18) describes a uniform gas with density n(r), where the energy µ for adding
a particle to the system is constant over the cloud and is given by the sum of the external
potential V (r) and the interaction term U0n(r). In case of a harmonic potential (3.2) the
cloud size is given by the Thomas-Fermi radius Ri , which is inversely proportional to the trap
frequency ωi

RTF
i =

1
ωi

√

√2µ
m
=

�

15Nħh2a
m2ω2

i

�1/5

with µ=
ħhω̄
2
(15Na)2/5
�

mω̄
ħh

�1/5

. (3.19)
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Free expansion of the BEC

After release from the confining potential, in free fall, mean-field energy is converted into
kinetic energy and the Thomas-Fermi approximation is no longer valid for describing the ex-
pansion of the condensate. The temporal evolution of the condensate is determined by solving
the time-dependent Gross-Pitaevskii equation. This can be done via a scaling approach [168,
169], where the initial size of the ensemble Ri(t = 0) merely increases by a scaling parameter
λi(t)

Ri(t) = Ri(0)λi(t). (3.20)

Hereby, the scaling parameters should satisfy the following differential equations

λ̈i =
ω2

i (0)

λiλxλyλz
−ω2

i (t)λi . (3.21)

If the trap is switched off instantaneously at time t = 0 upon release, ωi(t > 0) = 0 and the
solutions to the differential equations yield

λi(t) =
�

1+ω2
i (0)t

2. (3.22)

Experimental proof of Bose-Einstein condensation can be achieved through its characteristic
shape during free expansion. Anisotropic trap frequencies initially lead to an anisotropic
spatial spread of the cloud, which is inversely proportional to the respective trap frequencies.
During free expansion mean-field energy causes an expansion rate increasing with the trap
frequencies which leads to an inversion of the aspect ratio [76, 77]. In contrast, thermal
atoms spread isotropically.

1D reduced Gross-Pitaevskii model

In the scope of this thesis experimental measurements of Bose-Einstein condensates in an
optical lattice are compared to numerical calculations. These are based on an effective 1D
reduced Gross-Pitaevski model [170, 171] which is derived from the time-dependent 3D
Gross-Pitaevski equation describing the dynamics of the N -particle wave function Ψ(r, t) [164]

iħh
∂

∂ t
Ψ(r, t) =

�

−
ħh2

2m
∇2 + V (r, t) + gN |Ψ(r)|2

�

Ψ(r) (3.23)

with

∫

|Ψ(r)|2dr= 1.

The 1D reduced Gross-Pitaevski model represents a simplified description for Bose-Einstein
condensates in potentials with cylindrical symmetry of the form

V (r) = Vx(x , t) +
1
2

m
�

ω2
y(t)y

2 +ω2
z (t)z

2
�

. (3.24)

Compared to a 3D model it leads to a significant reduction of computation time required for
numerical calculations while still providing a very good agreement with the experimental
data.
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In the following we will consider the potential of an optical lattice created by Gaussian
shaped laser beams travelling along the x direction. In the axial direction the periodic potential
is described as

Vx(t) = V0 cos2(kx +φ(t)). (3.25)

The confinement in the transverse direction is much weaker and given by

V⊥(t) = −A(t)exp

 

−2

�

y2

w2
y(x , t)

+
z2

w2
z(x , t)

�

. (3.26)

Due to the divergence of the beam profile the beam waist wy,z depends on the axial position
x . In a harmonic approximation it is given by the transverse trapping frequencies ωy,z

w2
y,z(t) =

4A
mω2

y,z
. (3.27)

For the variational approach the following separation ansatz for Ψ(r) is chosen

Ψ(x , y, z, t) = φ(x , t)Gηy
(y, t)Gηz

(y, t), (3.28)

where Gi are Gaussian functions with widths η(x , t). Evaluation of the quantum least action
principle results in a set of three coupled equations which can be used to find a numerical
solution for the dynamics of BECs in an optical lattice [171].

3.3 High-power laser system

You find beauty in a well-aligned optical system.

— Fortune cookie.

Fig. 3.7: High power laser system NKT Koheras

BOOSTIK consisting of a narrow linewidth laser
on top of an amplifier with an output power of
10-15 W (image by NKT Photonics [172]).

In the QUANTUS-1 experiment, a commer-
cial frequency-doubled fiber laser system (NKT
Koheras BOOSTIK) serves as a light source
for interferometry. The high power system en-
ables the implementation of higher-order Bragg
diffraction as well as manipulation in an optical
lattice via Bloch oscillations and, thus, offers
a lot of possibilities to explore advanced inter-
ferometer schemes. Additionally, it allows for
the operation at large detunings∆ from atomic
resonance to lower spontaneous emission. The
operation at a center wavelength of 1560 nm,
which is widely used in telecommunication, offers a range of sophisticated commercially
available lasers along with corresponding components such as modulators or switches [173].

The 19-inch rack system contains an Erbium-doped fiber laser (ADJUSTIK E15) with an
output power of 40 mW. It features low phase and frequency noise (3.2µrad/

�
Hz/m @

100 Hz) as well as an ultra-narrow linewidth below 100 Hz and provides a thermal tuning
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range of roughly ±1 nm. It is supplemented by a 10 W fiber amplifier. Due to a malfunction of
the amplifier in august 2017, the system was replaced by another BOOSTIK system consisting
of an ADJUSTIK C15 in combination with a 15 W amplifier. The ADJUSTIK C15 offers the
lowest intensity noise within the product range. Compared to the E15 it exhibits lower output
power (> 10 mW), larger phase noise (36µrad/

�
Hz/m @ 100 Hz) and a broader linewidth,

which is stated to be smaller than 15 kHz. The measurements presented within this thesis
have been obtained with both of these systems.

The 10 W of 1560 nm light, emitted from the Boostik system, are frequency doubled in
a Toptica SHG PRO which houses a bow-tie cavity to resonantly enhance the laser power.
Its length is stabilized via the Pound-Drever-Hall method [174] to ensure large enhance-
ment factors. In combination with a non-linear optic crystal comparably large conversion
efficiencies of 40%-60% can be achieved. Electronics for locking and temperature control
are accommodated in a 19-inch rack (Toptica Sys DC 110). Up to 5 W of 780 nm light is
distributed, coupled into fibers and guided to the experiment (see sec. 3.3.1). At the vacuum
chamber variable optical assemblies ensure a proper adjustment of the collimated laser beams
relative to the atomic ensemble (sec. 3.3.2).

3.3.1 Distribution module

SHG

Telescope

AOM1 AOM2

AOM3

Gravi SD DD SD

(a) (b)
PB-DDS-II

A B

AD9958

A B

Switch Switch

Switch Switch

Combiner

AOM1 AOM2 AOM3

Vertical (Gravi) Horizontal (SD, DD)

Figure 3.8: (a) Distribution module for splitting and coupling the light into four fibers for in-
terferometry along gravity (Gravi) as well as for single diffraction (SD) and double diffraction
(DD) in the horizontal direction. (b) The RF frequencies for the AOMs are either provided by a
PulseBlasterDDS-II-300-AWG or a self-built Analog Device AD9958. Each device features two in-
dependent output channels A and B.

The frequency-doubling stage (SHG) as well as the components for distributing and switching
the light are mounted on a breadboard (Thorlabs Nexus, Fig. 3.8(a)) featuring a high
thermal stability and damping against vibrations. These properties are important for the
stability of the optomechanical components and the cavity lock. After leaving the SHG the
laser beam’s size is reduced via a 4:1 telescope to a diameter of roughly 1 mm. Via half-wave
plates and polarizing beam-splitter (PBS) cubes the light is distributed to three AOMs (AA
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Opto Electronic MT80-A1.5-IR) which diffract light at a base frequency of 80 MHz. The
distribution module offers different possibilities for beam splitting:

• A single AOM generates the light field for beam splitting in the vertical direction
which contains two frequency components with parallel polarization and a power of
approximately 300 mW.

• The other two AOMs serve for manipulation of the atomic clouds along the horizontal
direction.

– For symmetric double diffraction along the y-axis, two frequency components
generated by two independent AOMs are superimposed on a PBS with orthogonal
polarization. The combined beams are coupled into a single fiber with a total
power of up to 1.2 W.

– Two other fiber outputs each provide light with one frequency component for
single diffraction with a power of 100 mW in each fiber.

The laser light is guided to the vacuum chamber via polarization-maintaining single mode
fibers (SuK PMC-850-5,1-NA13-3-APC-700-P). Bi-stable shutter devices (Uniblitz TS6B)
with reflective AlMgF2 coatings can completely block the light in front of each output.
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Figure 3.9: Temporal development of the laser power for (a) a measurement of the total laser power
emitted from the SHG and (b) laser power in front of a fiber output behind a PBS. (c) Laser power in
the fiber parametrized by the RF amplitude of the AOMs. The RF signal is generated either by the
PulseBlasterDDS-II or the AD9958.

To test the stability of the system the laser power is measured for several hours directly
after turning-on. A photodiode is placed behind a mirror situated in between the SHG and the
telescope to estimate the temperal evolution of the total laser power (Fig. 3.9(a)). Another
sensing head is positioned between a PBS and a fiber coupler (Fig. 3.9(b)). Both measurements
show increased fluctuations of up to 8% and 12%, respectively, during the first two hours of
operation. Measurements of the SHG input power indicate that these are mostly caused by
the fiber amplifier and not the SHG. After the warm-up phase, fluctuations do not exceed
the 2% level. The system therefore provides a stable basis for atomic manipulation. All
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critical measurements presented in the next chapters were performed at least two hours after
power-on of the laser system.

Control

The AOMs for controlling the intensity, the relative frequency and phase of the light pulses
can be driven by two different devices (Fig. 3.8(b)). Each source is based on direct digital
synthersizers (DDS) and features two independent channels.

• A pulse generator (PulseBlasterDDS-II-300-AWG, SpinCore) receives its commands
via USB from a small computer inside the capsule. The parameters for the pulse se-
quence are sent via Ethernet from an external computer. The PulseBlaster features a
resolution of 13 ns and can in principle create pulses with arbitrary temporal envelopes.
In its current configuration it provides Box or Gaussian shaped pulses with constant
frequency.

• A self-assembled device (Analog Devices AD9958) controlled via Ethernet allows to
drive linear amplitude and frequency ramps for the implementation of Bloch oscillations.
Its DDS exhibits a sample rate of 250 kHz corresponding to a time resolution of 4µs.

Using MiniCircuits switches controlled via TTL signals it is possible to alternate between
both devices during an experimental sequence. Exemplary fiber output powers for the laser
light employed for horizontal symmetric beam splitting, i.e. the twin lattice, are depicted in
Fig. 3.9(c) for both devices and both channels A and B.

PulseBlaster AD9958 ArbStudio MOGLabs

Amplitude Box, Gaussian Linear ramp Arbitrary

Frequency Constant Linear ramp Arbitrary

Resolution 13 ns 4µs up to 4 ns up to 16 ns

Use Bragg pulses Bloch oscillations Ampl. shaping Freq. shaping

For twin-lattice interferometry

In combination for tanh pulses In the future

Table 3.2: Overview of the different devices which drive the AOMs to control the amplitude and
frequency of the interferometry light.

Since the PulseBlaster does not provide frequency shaping and the AD9958 can only
perform linear ramps at a limited sample rate of 250 kHz two new devices have been combined
to facilitate arbitrary amplitude and frequency shaping. An arbitrary waveform generator
(ArbStudio 1104) with a sample rate of up to 250 MHz modulates the amplitude of any
frequency source via an attenuator (MiniCircuits ZMAS-3). The frequency signal either
originates from the AD9958 or, recently, also from an RF synthesizer (MOGLabs XRF021) having
a sample rate of 65 MHz. A combination of ArbStudio and AD9958 enabled the successful
demonstration of tanh-shaped pulses with linear frequency ramps for high-fidelity atomic
manipulation (sec. 4.4.2). However, the operation is currently limited by the relatively large
response time of the attenuators in the order of 20 − 30µs. Therefore, unless otherwise
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specified, a combination of PulseBlaster and AD9958 has been employed to control the
AOMs. An overview of all devices is given in Table 3.2.

3.3.2 Optical assembly

The optomechanics attached to the vacuum chamber are based on a Thorlabs cage system
providing an easy and flexible solution for mounting optics and aligning the laser beams for
beam splitting. In the experiment, beam splitting can be performed either in horizontal y
direction or vertically along the z-axis.
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Figure 3.10: Optical assembly for beam splitting along the horizontal and vertical direction (a).
In horizontal direction, a retroreflected light field along the y-axis forms the twin lattice to drive
double Bragg diffraction and Bloch oscillations. Different optomechanis enable an alignment of the
beam. At an angle of 6◦ with respect to the y-axis additional optics allow the realization of single
diffraction processes. The optics for gravimetry along the z-axis are mounted at the bottom viewport.
(b) Schematic view of the beam splitting light fields.

Fig. 3.10(a) depicts the optomechanis for horizontal manipulation with double Bragg
diffraction and large momentum transfer in a twin lattice. A pre-collimated fiber collimator
(Thorlabs F810APC-780) expands the beam containing two frequency components with
orthogonal polarization up to a diameter of 7.5 mm. A large beam size is required since the
atoms are falling tranversely through the beam during the interrogation time. On the other
hand, increasing the diameter of the beam also reduces its intensity. With an available power
of up to 1.2 W the current beam size provides sufficiently large lattice depths for atomic
manipulation. Two mounts (Thorlabs ST1XY-A and KC1-T) enable x − z translation and
angular adjustment of the laser beam. An iris diaphragm (CP20S) allows variation of the
aperture between 0.8 mm and 20 mm. After travelling through the vacuum chamber, the beam
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is retroreflected from a dielectric mirror (BB1-E03 mounted in KC1-T) passing a quarter-wave
plate (WPQ10M-780) twice. In this way, an incoming polarization is rotated by 90◦ and two
counterpropagating lattices of orthogonal polarization are generated.

In addition to the optical assembly for symmetric beam splitting described above, compo-
nents were added to enable single diffraction with an angle of rougly 6◦ with respect to the
y-axis. At each side of the vacuum chamber two adjustable right-angle mirror mounts (KCB05)
with half-inch mirrors direct a laser beam onto a square mirror (Newport 07SD520BD.2). The
mounts are aligned in a way, that both beams overlap. The main purpose of this additional
optics is to move the atomic position away from the chip center. The latter is necessary for
vertical beam splitting, where the chip is used as retroreflector. Hereby, defects in the center
of the chip surface distort the beam splitting light field.

The components for vertical beam splitting are fixed below the vacuum chamber below
the viewport. The beam is collimated to a diameter of 3.3 mm (SuK 60FC-4-A15-02) and
can be aligned via two right-angle mirror mounts (Thorlabs KCB1E) in order to guarantee a
reflection at an angle of 90◦ from the chip surface. A polarizing beam splitter (CCM1-PBS252/M)
is integrated in the beam path to clean the polarization. At one port a webcam is installed to
observe and optimize the MOT during BEC generation.

Adjustment

Efficient manipulation via double Bragg diffraction requires a vanishing atomic velocity in
beam direction. In a gravitational field, the beam therefore needs to be aligned horizontally. A
non-horizontal alignment by an angle α leads to a projection of the gravitational acceleration
onto the beam splitter direction and, thus, to a nonzero velocity g ttof · sinα, which increases
with time-of-flight. In contrast to single Bragg diffraction an offset motion in beam splitter
direction can not be compensated by an adjustment of the transition frequency, which is
fixed at ωeff = 15.084 kHz for 87Rb. A proper alignment is achieved via deflecting the beam
with a pentaprism off a liquid surface which serves as inertial reference (Fig. 3.11(a)). A
pentaprism ensures a diffraction angle of 90◦. The beam reflected from the water surface is
then overlapped with the incident beam for horizontal alignment. Afterwards, the mirror is
adjusted in order to achieve perfect retroreflection 3.11(b). This is done by overlapping the
incident and reflected beam.

For beam splitting along the vertical axis, in particular for gravity measurements, a proper
alignment of the beam and the atom chip, serving as mirror and inertial reference, is required.
First, perfect retroreflection is achieved, so that the beam hits the atom chip at an angle of 90◦.
This is done by first overlapping the incoming beam with the beam that has been reflected
from the atom chip via a pentaprism (Fig. 3.11(c)). Then this beam is aligned by means of a
liquid surface via tilting the whole capsule (Fig. 3.11(d)). In the end, the beam runs parallel
to the gravitational acceleration below the horizontally aligned atom chip (Fig. 3.11(e)). The
procedure was first described in [175].
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Figure 3.11: (a-b) Beam alignment for horizontal atomic manipulation. After aligning the collimator
horizontally by means of a water surface, the retroflection mirror is orientated for a perfect overlap
between incoming and reflected beam. (c-e) Alignment of the beam and atom chip for gravimetry
along the vertical direction. First, the beam is reflected perpendicularly from the chip surface (c,d). By
tilting the whole capsule the atom chip can be positioned horizontally (d). Hereby, a liquid surface
serves as reference similar as in (a). Final orientation of atom chip and light field (e).

Polarization

For beam splitting in the horizontal direction two lattices with linear orthogonal polarization
are employed to prevent the generation of standing waves which disturb the momentum
transfer on the atomic ensemble (see sec. 4.3.3). The implementation of perfect orthogonality,
however, is difficult in an experiment, where all optical components might have an influence
on the light field. The experimental quality of polarization is investigated via a polarization
analyzer (SuK SK010PA-VIS/NIR) at different positions along the beam.

The light emitted from the PM fibers features linear polarizations with an extinction ratio
of roughly 30 dB and a relative angle of ∆ = (90± 1)◦ between both frequency components
ω1,ω2. Passing through the vacuum chamber including both vacuum windows, however,
degrades the extinction ratio to roughly 25 dB and rotates both polarizations by approximately
δϕ = −5◦. The quarter-wave plate is adjusted by optimizing the beam splitting efficiency of a
double diffraction process. It reaches its maximum if both components of a two-photon process
have linear polarizations corresponding to a 90◦ rotation of both frequency components. Since
an adjustment requires a detectable difference in transfer efficiency between two different
positions of the quarter-wave plate, this procedure features an uncertainty of roughly 2◦,
resulting in a relative angle of ∆ = (90 ± 3)◦. After passing the vacuum chamber for the
second time, the extinction ratio decreases to 20 dB. The vacuum windows lead to another
rotation by δϕ, keeping the relative angle at ∆ = (90± 3)◦. In consequence, the polarization
of the light fields at the atomic position is not perfect, mainly because of the vacuum windows
and an uncertainty in the position of the quarter-wave plate. This gives rise to standing waves
and effects the transfer efficiency in the twin lattice.
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An in-situ method for the characterization of vacuum windows is presented in Ref. [176].
Hereby, microwave spectroscopy with cold atoms allows to calculate the polarization of the
incident light field. In the experiment, an incident polarization with an extinction ratio of
60 dB exhibited a maximum ellipticity ε = 0.0064 corresponding to an extinction ratio of
15 dB after passing a standard CF63 viewport.

PER = 30dB
∆= (90± 1)◦

PER = 20dB
∆= (90± 3)◦

δϕ = −10◦

PER = 25dB
∆= (90± 1)◦

δϕ = −5◦

PER = 25dB
∆= (90± 3)◦

δϕ = −5◦

λ/4

Figure 3.12: Polarization measurement of the horizontal beam splitting light field. Passing through the
vacuum chamber and the optics leads to a degradation of the linear polarization extinction ratio (PER)
and changes the relative angle ∆ as well as the absolute angle δϕ of the two frequency components
ω1,ω2 within one beam.
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The realization of an interferometer with large momentum transfer requires different methods
which are explained and characterized within this chapter. The interferometry sequence in
QUANTUS-1 starts with a state preparation of the atoms (sec. 4.1) including an optimized
release from the magnetic trap as well as a collimation of the atomic cloud with a magnetic
lens and a transfer to the non-magnetic state.

The retroreflected twin-lattice geometry along with the vanishing horizontal velocity of the
atoms gives rise to symmetric diffraction into opposite momentum states. In section 4.2 the
implementation of the so-called double Bragg diffraction is described and analyzed in detail,
which constitutes the basis of a large momentum transfer interferometer serving to split,
redirect and recombine the atomic wave function. Large accelerations are achieved via Bloch
oscillations allowing for much higher transfer efficiencies than Bragg diffraction (sec. 4.3).
Compared to a single lattice, the transfer in a twin lattice is additionally influenced by non-
resonant contributions, i.e. the contrapropagating lattice as well as interference terms acting
as a standing wave. The chapter closes with the description of some extended diffraction
techniques which might be implemented in future interferometer geometries (sec. 4.4).

4.1 State preparation

The first 15 ms of each sequence are reserved for state preparation of the atomic cloud to
provide an optimal source for atom interferometry. Optimally, the release from the magnetic
trap (sec. 4.1.1) results in a zero offset velocity along the horizontal direction. A non-zero
velocity degrades the symmetry and efficiency of the double diffraction beam splitter. The
release trap also determines the initial mean-field and kinetic energy of the atomic ensemble
(see sec. 3.2.2). Mean-field energy, caused by atomic interactions, leads to unwanted phase
shifts in an atom interferometer [84, 85].

Large initial expansion rates are beneficial for subsequent magnetic lensing, which reduces
the atomic velocity during the conversion of kinetic into potential energy (sec. 4.1.2). A small
momentum width not only leads to higher diffraction efficiencies [87] but also results in a
smaller spatial extent, lowering systematic uncertainies associated with the cloud’s size [91].
During magnetic trapping, release and lensing the atoms occupy the state |F = 2, mF = +2〉.
However, this makes them also susceptible to any parasitic magnetic fields leading to additional
accelerations. To decrease their influence the atoms are transferred to the state |F = 2, mF = 0〉
via an adiabatic rapid passage prior to interferometry (sec. 4.1.3).

55
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4.1.1 Release from magnetic trap
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Figure 4.1: In the final release trap the atomic position and velocity oscillates with the trap duration
ttrap. These dipole oscillations are monitored via the atomic position after a free evolution time of
ttof = 34 ms.

Prior to the release into free fall the atoms are trapped inside a final decompressed trap,
where they undergo dipole oscillations. Depending on the frequency ωx ,y,z and duration
ttrap of the trap, the atoms oscillate around the minimum of the trapping potential. In beam
splitter direction y , the center-of-mass position oscillates around y0 with amplitude Ay,0 as

ytrap(ttrap) = y0 + Ay,0 sin(ωy ttrap +φ0). (4.1)

Differentiating (4.1) gives us the velocity within the trap which is proportional to the trap
frequency ωy

vy(ttrap) = Ay,0ωy cos(ωy ttrap +φ0). (4.2)

After release and a free fall duration of ttof, the atomic position evolves as

y(ttrap, ttof) = ytrap(ttrap) + Ay,0ωy cos(ωy ttrap +φ0)ttof. (4.3)

These dipole oscillations are shown in Figure 4.1 as a function of ttrap. For double Bragg
diffraction a vanishing offset velocity along the beam splitting axis y is important for efficient
and symmetric manipulation. In the absence of any offset motion the lowest center-of-mass
velocity is found for cos(ωy ttrap +φ0) = 0, i.e. at midfringe position.

By fitting a cosine to the measurement data the trap frequencies are determined to be
ωy,z = 2π · (325, 327)Hz. In the current setup, the movement along the third direction x can
not be observed. The trap frequency along the detection axis x has been measured in an ealier
setup and equals ωx = 2π · 43 Hz [125]. The measurements shown above have been realized
for a trap with a bias current of IBias = 1 A (steep trap), which is positioned relatively close to
the atom chip (see Fig. 4.2). Due to its large trap frequencies this trap exhibits high initial
expansion rates as well as a fast conversion of mean-field energy to kinetic energy and is
therefore well suited for magnetic lensing. When changing the bias field the trap center moves
away from the chip. In the presence of gravity, the shallowest trap realizable in QUANTUS-1
features a bias current of IBias = 0.36A and trap frequencies of ωx ,y,z = 2π · (18,46,31)Hz
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Figure 4.2: The release point of the final trap can be moved in the y−z plane by changing the currents
through the Bias coils IBias and the K2 coils IK2. The data points have been obtained for three different
bias currents IBias = 0.36, 0.6,1 A and a scan of IK2 ranging from −5 A to 5 A in steps of 0.5 A.

leading to the lowest expansion rates. During the first 10 ms after release, however, the
expansion in this trap is non-linear due to mean-field driven acceleration [149].

While the Bias coils move the trap center along the z-axis, changing the current of the
K2 offset coils, whose magnetic field points into the z direction, shifts the atomic position
circularly in the y − z plane. This is shown in Figure 4.2 for three different bias currents
IBias = 0.36 A, 0.6 A, and 1 A and a K2 current IK2 ranging from −5A to 5 A. In case of the
shallowest trap (IBias = 0.36A) a change in IK2 shifts the initial BEC position by up to
±300µm in y direction. For the steep trap (IBias = 1A) the possible shift only corresponds
to ∆y = ±100µm. In addition, a higher K2 current leads to higher trap frequencies [177].
Shifting the position of the trap center will be exploited in chapter 6 to optimize the spatial
overlap between magnetic chip trap and optical dipole trap.

4.1.2 Delta-kick collimation
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xxx

Figure 4.3: The phase-space distribution of an atomic cloud in a harmonic trap is initially Gaussian.
The distribution is sheared during free expansion and rotated after delta-kick collimation.

With a technique known as delta-kick collimation (DKC) [178, 179] the expansion rate of an
atomic cloud, in particular the mean-field driven expansion of a BEC, can be reduced. Low
expansion rates are particularly important when it comes to large time-of-flights ttof as in
microgravity environments or large atomic fountains. Here, they are crucial for minimizing the
spatial extent of the atomic cloud in order to obtain sufficient densities at the time of detection
and decrease systematic errors arising due to laser intensity and wavefront inhomogeneities
across the cloud [91]. Additionally, DKC enables larger beam splitting efficiencies and a
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reduction of the time which is required to separate different atomic momentum states for
spatial detection.
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ries of a BEC from a steep
trap without (a) and with
DKC (b).

DKC is performed by switching on the magnetic trap potential
again some time t0 after release of the condensate, which leads
to dipole oscillations. The magnetic trap is switched off shortly
afterwards, when an atom has arrived at the turning point of the
potential where its motion stops. In this way, kinetic energy is
converted into potential energy. Due to the similarity to an optical
lens collimating light, the method is called a magnetic lens. The
condition for optimal lensing reads

ω2τdkc = 1/t0, (4.4)

where ω is the frequency of the harmonic potential, t0 the time
prior to switching the potential on and τdkc the duration of the
lens [178]. For an atomic ensemble with finite spatial and velocity
spread, the velocity after the kick will not be completely zero.

The process is shown in Fig. 4.3, where a cloud of particles with
an initial Gaussian distribution is released from a magnetic trap,
then captured again after an expansion time t0. In phase space, this
corresponds to a shear during free evolution and a rotation for a
duration τdkc towards the position axis. In this way, DKC ideally
minimizes the expansion energy by increasing the spatial spread.
Thus, the phase-space density will be the same as before the kick.

Experimentally, DKC is realized by release from a steep trap (ωx ,y,z = 2π · (43, 325, 327)Hz,
IBias = 1 A) featuring a fast conversion of mean-field into kinetic energy and high expansion
rates. These properties are beneficial to quickly achieve a linear correlation between momen-
tum and position to perform efficient collimation. If the magnetic trap is switched on after
t0 = 5.4 ms for a duration of τdkc = 300µs the expansion rate of the atomic cloud in y and z
direction can be reduced by a factor of roughly 8 corresponding to expansion rates in horizon-
tal and vertical direction ofσvy

= 0.18 mm/s = 0.30ħhk/m andσvz
= 0.26 mm/s = 0.44ħhk/m

(Fig. 4.4 and 4.6). These values are a factor of three below the expansion rates of a cloud
released from the shallow trap in QUANTUS-1. Therefore, higher beam splitting efficiencies
are expected when operating with the delta-kick collimated ensemble [87].
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Fig. 4.5: Position scatter with/without DKC.

Figure 4.5 illustrates the influence of DKC on the
position and velocity scatter of the source. Here,
the position scatter corresponds to the standard
deviation of the center position of an atomic cloud
calculated for a set of 40 data points. A velocity scat-
ter manifests itself in an increasing position scat-
ter with time-of-flight. The position and velocity
scatter in y direction can be significantly reduced
with the application of DKC. This is beneficial for
the beam splitter of the twin-lattice interferometer
which acts along the y direction.
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Figure 4.6: Expansion rates of a cloud released from a steep trap (IBias = 1A, ), a shallow trap
(IBias = 0.36A, ) and a delta-kick collimated ensemble from a steep trap ( ) in y and z direction.

Due to the asymmetry of the elongated atom-chip based potential only the two radial axis,
which have very similar trap frequencies, can efficiently be collimated. In addition, the chip
potential is in general not harmonic, which becomes more relevant for increasing cloud sizes
and time-of-flights. The anisotropies and anharmonicities of the magnetic lens have not been
investigated in detail for QUANTUS-1, however, a thorough analysis has been carried out for
the similar experiment QUANTUS-2 [98, 99].

4.1.3 Magnetic state transfer
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Figure 4.7: State tranfer to the non-magnetic state. (a) Scheme of the radio frequency coupling to the
different Zeeman substates of |F = 2〉 for 87Rb. (b) Density plots of the atomic population for different
end frequencies fend. The magnetic substates were separated via Stern-Gerlach-type deflection and the
absorption images are rotated by 270 degrees.

In order to efficiently capture atoms in a magnetic trap, the atoms are transferred to the state
which is susceptible to magnetic fields |F = 2, mF = +2〉. After release from the magnetic trap
one usually wants to reduce the influence of residual magnetic fields, which might lead to
additional accelerations and phase shifts inside an atom interferometer.

Therefore, the atoms are transferred via an adiabatic rapid passage (ARP) to the non-
magnetic state |F = 2, mF = 0〉. While the linear dependency vanishes in this case, one still
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has to pay attention to higher order contributions which can not be neglected in high precision
experiments. The transfer is achieved via a radio frequency emitted from the atom chip which
couples to the different magnetic substates. As it is swept over the multiple resonances,
population transfer occurs at points of avoided crossings as illustrated in Fig. 4.7(a). For more
details on the implementation of the ARP in QUANTUS-1 see [125, 149, 180].

250µm

mF =
+2 +1 0 -1 -2

Fig. 4.8: The efficiency
of the state transfer into
mF = 0 is on the order of
90-95%.

A typical ARP sequence exhibits a total duration of 9 ms. During
the first 4 ms a homogeneous bias field is ramped up to a value
of 10.5 G in order to lift the degeneracy of the magnetic substates.
The frequency of a radio-frequency pulse of 4 ms duration is then
linearly increased from the start frequency fstart = 7.7MHz to the
end frequency fend coupling to the different magnetic substates.
The final 1 ms is consumed by linearly switching off the bias field.
Fig. 4.7(b) shows the populations in the magnetic substates as
a function of the end frequency fend of the chirp. The different
substates are separated spatially by applying an inhomogeneous
magnetic field to perform Stern-Gerlach-type deflection.

In case of an optimized configuration with fend = 7.732 MHz
around 5-10% of the atoms remain with non-zero magnetic moment,
which result from losses during each avoided crossing (Fig. 4.8). The
variations stem from fluctuations of the radio frequency amplitude
and the magnetic field environment. Without the application of
an inhomogeneous magnetic field, all Zeeman states will spatially
overlap at detection. In an atom interferometer the residual atoms

with nonzero magnetic moment will lead to a slight loss of contrast due to their dephasing.
This can be easily circumvented by applying Stern-Gerlach-type deflection to push these atoms
away from the mF = 0 output ports.

4.2 Double Bragg diffraction

In a twin-lattice interferometer double Bragg processes serve for symmetric beam splitting,
reversion of the atomic velocity and recombination. The use of a Bose-Einstein condensate in
combination with an optimized state preparation by delta-kick collimation and an accurate
laser beam alignment allows for high transfer efficiencies of almost 100% (sec. 4.2.1). The
beam splitter stability of double diffraction is investigated. By choosing appropriate pulse
durations at the cost of a smaller momentum acceptance a high pulse stability can be reached
(sec. 4.2.2). First order double Bragg diffraction features a symmetric momentum transfer of
±2ħhk. The total transfer of 4ħhk can be enlarged by employing either higher order pulses or
by driving successive single Bragg processes (sec. 4.2.3).
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4.2.1 Rabi oscillations
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Figure 4.9: Rabi oscillations for first order double Bragg diffraction. The relative population |p1〉 in
both momentums states |±2ħhk〉 is measured depending on the pulse duration τ for a box (a) and
Gaussian (b) shaped pulse with lattice depths V0 = 1.9 Er and 3 Er , respectively. In case of a Gaussian
pulse the width σt equals τ/8. Given the double diffraction process oscillations occur with frequency
2Ωeff = 2

�
2ΩDD, with modulations at Ωeff and 2ωeff [68]. A Gaussian shaped pulse suppresses the

modulation at 2ωeff. (c) Density plots for double Bragg diffraction and different Gaussian pulse
durations.

The realization of Rabi oscillations, i.e. the measurement of the relative population in |p1〉
(corresponding to the diffraction efficiency) depending on the pulse duration τ, represents a
good way to characterize a beam splitter. For double diffraction, the relative population in
|p1〉 represents the sum of momentum states +2ħhk and −2ħhk normalized to the total atom
number in states 0ħhk and ±2ħhk

P|p1〉 =
N−2ħhk + N+2ħhk

N−2ħhk + N0ħhk + N+2ħhk
. (4.5)

For lower detection noise, the atom number in each state is not calculated individually, but
the diffraction efficiencies P+2ħhk = N+2ħhk/(N0ħhk + N+2ħhk) and P−2ħhk = N−2ħhk/(N0ħhk + N−2ħhk)
are determined via double Gaussian fits (sec. 3.1.2). From this the total diffraction efficiency
is calculated

P|p1〉 =
P+2ħhk + P−2ħhk − 2P+2ħhkP−2ħhk

1− P+2ħhkP−2ħhk
. (4.6)

Fig. 4.9 shows Rabi oscillations for first order double Bragg diffraction for a box (a) and
Gaussian (b) shaped pulse. In Fig. 4.9(c) the corresponding density plots are shown for a
pulse with a Gaussian envelope, which in our setup is defined in a way, that the Gaussian
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width σt equals τ/8. The detuning δ between both laser beams is fixed at frequency ωeff =
2π · 15.084 kHz.

Due to the small momentum spread and offset velocity of the delta-kick collimated cloud,
atoms can be transferred from |0ħhk〉 to |±2ħhk〉 with an efficiency of almost 99%. The finite
momentum width of the ensemble causes a dispersion of the Rabi frequency leading to a
damping of the oscillations. A double diffraction π/2 pulse is defined as the total transfer
from |0ħhk〉 into |±2ħhk〉, whereas a single diffraction π/2 pulse corresponds to the creation of
a superposition in |0ħhk〉 and |2ħhk〉. Therefore, oscillations occur at twice the effective double
diffraction Rabi frequency 2Ωeff, where Ωeff =

�
2ΩDD =

�
2Ω12/2. Measuring this frequency

allows the determination of the lattice depth V0[Er] =
4�
2ωr
Ωeff.

For a box shaped pulse, the first minimum is observed at 2π/(2Ωeff) = 200µs (Fig. 4.9(a)).
From this we can calculateΩeff = 2π·2.5 kHz and V0 = 1.9 Er . However, the relative population
in ±2ħhk at τ = 200µs only drops to 40%, while it falls below 20% at τ ≈ 400µs. This
demonstrates the modulation at Ωeff caused by a nonzero offset momentum p0 and/or
momentum width σv due to the three-level dynamics of double Bragg diffraction [68]. In
addition, high-frequency components with small amplitude and a period of 33µs = 2π/(2ωeff)
are visible on top of the slow Rabi oscillations. They occur due to an off-resonant coupling of
momentum states and can be suppressed by using Gaussian shaped pulses [120, 124]. The
off-resonant processes are sketched in Fig. 2.5. In case of a Gaussian shape the pulse area
and, thus, the Rabi frequency is determined by integration of the laser intensity over time
(see sec. 2.1.3) and the measurement reveals a lattice depth of V0 ≈ 3 Er .
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Fig. 4.10: Measured lattice depths along the
beam profile for different distances from the
atom chip.

Rabi oscillations are also employed to measure
the lattice depth along the beam profile. In case of
double diffraction the atoms fall through the hori-
zontally aligned Gaussian-shaped beam. Therefore,
the Rabi frequency and lattice depth vary depend-
ing on the vertical position of the atoms during
the pulse. The latter can be changed by applying
the pulse at different points in time after release
from the chip trap. In Fig. 4.10 the measured lat-
tice depth is displayed for different vertical dis-
tances from the atom chip corresponding to dif-
ferent time-of-flights ttof before the application of
the Bragg pulse. The minimum ttof before a pulse
equals 14.4 ms given by the time required for mag-
netic lensing and non-magnetic state transfer.

4.2.2 Pulse duration, stability and imperfect polarizations

In terms of pulse durations shorter times are usually more convenient since they lead to a
broader momentum acceptance and thus lessen the requirements on the atomic source. On the
other hand, the frequency width of a pulse should not be too short in order to avoid addressing
other states separated by 2ħhk in momentum space. In Figure 4.11(a) a measurement is shown,
where the relative population in |±2ħhk〉 is recorded for three different Gaussian shaped pulses
with duration τ = 130,200 and 300µs and corresponding Gaussian width σt =

τ
8 . It can
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Figure 4.11: Measurement of the double diffraction first order pulse stability for Gaussian pulses with
different durations τ= 130,200 and 300µs. (a) Repeated measurements of the relative population
in |±2ħhk〉. (b) Overlapping Allan deviation for these pulse durations obtained in separate longterm
measurements. For each pulse duration a different laser intensity is used.

be easily seen that shorter pulse durations lead to an increased beam splitter noise σP|p1〉
.

The stability of a diffraction pulse is important, since temporal changes of the beam splitter
efficiency decrease the interferometric contrast and lead to variations of the interferometer
signal which can mistakenly be interpreted as a phase change.

The longterm stability is analyzed by the Allan deviation [181] which is defined as

σy(t) =

√

√1
2
〈(yn+1 − yn)2〉 (4.7)

for two subsequent data points yn and yn+1. It describes the noise and the possible gain
in stability that can be achieved after integration of the data for a time t. Figure 4.11(b)
illustrates the overlapping Allan deviation calculated with data from separate longterm
measurements. The data confirms the superior stability when applying longer pulse durations.
For pulse lengths of τ = 300µs a beam splitter noise of σP|p1〉

= 0.0025 can be achieved after
an integration time of t = 500s, while the noise increases for τ = 200µs and 130µs by a
factor of roughly 2 and 10, respectively.

The twin lattice light field is generated by superimposing two beams which have a small
path difference. This may lead to a differential phase ∆φlaser = φ1 − φ2 between both
frequency components. Variations in the path difference caused e.g. by thermal fluctuations
will cause ∆φlaser to vary over time. In turn, this will impact the pulse area, since the light
field is modulated at a rate ∆ω (Eq. (2.39)). For first order Bragg diffraction (∆ω=ωeff =
2π · 15.084kHz) the modulation period equals 2π/ωeff = 67µs. As illustrated in Fig. 4.12
fluctuations of the relative phase ∆φlaser will have a severe impact on the pulse area, as long
as the pulse duration is not significantly larger than 67µs. The graph shows Gaussian shaped
pulses with σt = τ/8 modulated with ωeff according to

I(t) = I0 exp
�

− t2

2σ2
t

�

· cos2(ωeff
2 t +∆φlaser). (4.8)

The pulse area of a Gaussian pulse of duration τ = 130µs varies up to 50% depending on the
relative laser phase ∆φlaser. For τ = 200µs and 300µs the variations are only in the order of
5% and <1%, respectively.
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Figure 4.12: Amplitude modulation of a Gaussian pulse of length τ = 130µs and τ = 300µs at
∆ω = 2π · 15 kHz according to (4.8). Notations indicate the corresponding pulse area A0 for different
relative laser phases ∆φ.

For non-ideal polarizations, standing waves arise in the twin-lattice setup. Atoms with 0ħhk
can also be scattered by standing waves into momentum states ±2ħhk. However, this transition
exhibits a detuning of ωeff from resonance. Therefore, longer pulse durations, which lower
the momentum acceptance, also reduce the influence of standing waves.

To sum up, longer pulse durations minimize diffraction by standing waves as well as
fluctuations of the pulse area caused by amplitude modulation in our twin-lattice setup.
In our case, a choice of τ = 300µs leads to stable beam splitting efficiencies, while the
corresponding momentum width of the pulse is still sufficient to transfer more than 99% of
our delta-kicked BEC. The influence of a change of ∆φlaser for parallel incoming polarizations
will be investigated in the next section.
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Fig. 4.13: Diffraction in the vertical direction
(parallel incoming polarizations) in dependence
of the relative laser phase ∆φlaser.

As experimentally confirmed, polarizations in
the twin-lattice setup are not perfect (sec. 3.3.2)
and lead to a standing wave as well as a time-
dependent beating term (Eq. (2.39)). To ex-
amine possible disturbances, the beam split-
ting setup along the vertical direction is used,
where these contributions (VSt and Vb) are not
suppressed due to parallel incoming polariza-
tions. In the vertical direction, their influence is
usually highly suppressed by the Doppler shift
of the gravitationally accelerated atom cloud.
The Doppler shift leads to a high-frequency am-
plitude modulation as well as far off-resonant
standing wave transitions.

A box pulse of duration τ = 50µs and de-
tuning δ = 2π · 15kHz is applied directly after
release where the Doppler shift is close to zero. At the end of the pulse, after 50µs of free
fall, the shift equals ωD = 2π · 0.6kHz. The relative population of the momentum states is
measured as a function of the relative phase ∆φlaser between both frequency components of
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the light field. The latter is adjusted by the AOM. Compared to the horizontal direction, the rel-
ative laser phase for beam splitting along gravity is fixed, since both frequencies components
are generated by a single AOM.

Given the vanishing velocity in beam splitter direction, double diffraction into neighboring
momentum states ±2ħhk occurs as shown in Figure 4.13. The diffraction shows an asymmetry
between +2ħhk and −2ħhk, since the atomic velocity is not completely zero. At the end of the
pulse, gravity has accelerated the atoms up to a velocity of 0.5 mm/s. As opposed to standard
Bragg diffraction, the relative population in the momentum states oscillates with ∆φlaser

because of the standing wave and the amplitude modulation. This ∆φlaser-dependence is the
reason for the instability examined in the previous section. We will see later on, the standing
wave contribution VSt also limits the transfer efficiency with Bloch oscillations (see sec. 4.3.3).

4.2.3 Higher-order double Bragg diffraction

In order to enlarge the momentum transfer with double Bragg diffraction, higher diffraction
orders n can be adressed to achieve a symmetric momentum splitting of n ·4ħhk between both
clouds. The detuning between both laser beams equals δ = n ·ωeff for a pulse of order n. The
requirements on laser intensity increase with higher diffraction orders.
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Fig. 4.14: Transfer efficiency for
higher order and sequential double
Bragg diffraction.

Larger momentum separation can also be achieved by
employing sequential first order pulses, which can be
advantageous when the available laser power is limited.
Starting with double diffraction, each of these sequen-
tial pulses increases the momentum splitting by 4ħhk.
Fig. 4.14 contrasts the efficiencies obtained with first and
higher order double Bragg diffraction as well as with
sequential single Bragg pulses for different momentum
transfer n · 2ħhk. In each case, the efficiency has been
optimized by adjusting the laser power and pulse dura-
tion. For n= 3 (corresponding to 12ħhk) the diffraction
efficiency for higher order double diffraction drastically
decreases to 50% and below. The larger momentum selec-
tivity, the necessity of a vanishing center-of-mass velocity
as well non-resonant transitions makes it even harder
to find suitable parameters for higher-order double Bragg processes compared to single
diffraction. In general, the efficiencies obtained with successive pulses exceed those of higher
order diffraction. Despite the additional time required for each pulse (τ= 300µs), they are
therefore the preferred technique of choice when it comes to larger momentum transfer by
means of double Bragg diffraction.
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4.3 Bloch oscillations

Compared to Bragg or Raman diffraction, Bloch oscillations feature much higher efficiencies
of 99.97% per ħhk [103] allowing to transfer a large number of photon recoils onto the atomic
clouds. Its properties, including transfer efficiencies, loading into the lattice and lattice depth
calibration, are investigated within this section. Due to the larger interaction time and higher
lattice depths compared to Bragg diffraction, spontaneous emission can not be neglected. For
simplicity, part of the following measurements were done along the vertical direction, where
the atoms effectively interact with only one lattice due to the Doppler shift. In addition, a
combination of double Bragg diffraction with Bloch oscillation along the horizontal direction
is presented to establish symmetric large momentum beam splitting. Hereby, double Bragg
diffraction initially lifts the degeneracy between both lattices. The twin-lattice configuration
deviates from acceleration in a single lattice, since the influence of the counterpropagating
lattice as well as contributions from parasitic lattices due to imperfect polarization have to
be taken into account. These disturbances can be reduced by a larger initial separation with
double Bragg diffraction.

4.3.1 Lattice depth measurement
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Figure 4.15: Oscillations between the fundamental and second excited Bloch band induced by a short
lattice pulse for different relative laser intensities I/I0. With a sinusoidal fit function to the data the
oscillation period T can be extracted. T depends on the band gap E2 − E0 which can be related to a
specific lattice depth V0.

The lattice depth can be measured via Rabi oscillations with the double Bragg beam splitter
as detailed in section 4.2.1. An alternative measurement employs a copropagating pulsed
lattice to induce oscillations of the different momentum states.

If a BEC is not adiabatically but suddenly loaded into a comoving optical lattice, several
bands are populated. The BEC can then be desribed as a superposition of Bloch states |n,q〉
with a momentum spectrum composed of peaks separated by momentum 2ħhk [135]. It evolves
in time according to the phase factor exp[−i En(q)

ħh t]. A sudden switch-off of the lattice after
time τ projects the lattice state onto the plane-wave basis. The interference of the phase
factors leads to oscillations of the population of the momentum components as a function
of τ. For shallow lattices only the fundamental and second excited band are significantly
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populated and the oscillation is almost purely sinusoidally. Due to the asymmetry of their
eigenstates, odd bands are not populated by the BEC with its symmetric wavefunction. The
period T of these oscillations depends on the band gap Ω02

bg = (E2 − E0)/ħh as

T =
2π

Ω02
bg

. (4.9)

These oscillations can also be understood in terms of diffraction by a short pulse in the
Kapitza-Dirac regime [182]. In this picture, the band gap is calculated from the respective
Rabi frequency leading us to the same formula with the relation Ω02

bg ≈ Ω12 = V0[Er]ωr/2 for
a quasimomentum q = 0.
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Figure 4.16: Lattice depth measurement. (a) Calculated band gap Ω02
bg between fundamental and

second excited band for different lattice depths V0. The markers indicate the band gaps extracted from
the measurement depicted in Fig. 4.15. (b) The measured lattice depth V0 depends linearly on the
relative laser intensities measured in the fiber. The graph shows the evalutation of two other lattice
depth calibrations performed at positions z closer to the center of the beam with a diameter of 7.5 mm.

To measure the twin lattice depth V0, a superposition of momentum states p0 = ±4ħhk is
created via double Bragg diffraction and a sequential pulse. This separation should sufficiently
minimize the effect of the non-resonant lattice contributions. A short pulse of a copropagating
twin lattice induces oscillations between p0 = ±4ħhk and the neighbouring momentum states
p0±2ħhk corresponding to the population in the second excited Bloch band. These oscillations
are observed for different relative laser intensities I/I0 (Fig. 4.15), where a value of I/I0 = 1
corresponds to a total laser power of 1.06 W coupled into the fiber. Since the atomic position
during the lattice pulse usually does not coincide with the beam center and laser light can be
absorbed by optical elements between fiber and atoms, the actual power seen by the atoms is
significantly less.

A sinusoidal fit to the data yields the period of the oscillations, which are translated into
a band gap with (4.9). Figure 4.16(a) illustrates the relation between band gap and lattice
depth V0 taken from the band structure calculations in sec. 2.2.2. As shown in Fig. 4.16(b)
the relation between lattice depth and the measured relative laser power is linear as expected.
Lattice depths were also measured for other atomic positions closer to the beam center. Due
to the higher local intensity, the measured lattice depths are larger for a specific power within
the fiber.
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4.3.2 Adiabatic loading

In contrast to the lattice calibration measurements, where several bands are populated, one
usually wants to load the BEC into a single Bloch state |n, q〉 of the optical lattice. Similary,
when unloading the atoms from the lattice, only one momentum class should be populated.
This can be achieved by adiabatically increasing and decreasing the laser intensity during
loading and unloading, respectively. When lowering the lattice depth V0 the Wannier function
in momentum space becomes constant over the first Brillouin zone and suppresses the
population of other momentum states separated by multiples of 2ħhk [44]. For an efficient
loading procedure the lattice intensity has to follow an adiabatic ramp such that

| 〈n,q|
∂ Ĥ
∂ t
|0,q〉 | �∆E2(q, t)/ħh, (4.10)

where ∆E = E1 − E0 is the energy difference between the ground and the first excited state.
The left-hand side of (4.10) is always less than dV0

dt . At q = 0 the band gap energy ∆E never
falls below 4Er for any V0 as can be seen in Fig. 2.7. Therefore, the adiabatic criterion can be
satisfied by dV0

dt � 16E2
r /ħh [135]. In case of a lattice depth of 10 Er , for example, the loading

should take significantly longer than 26µs.
Out of technical reasons usually a linear ramp is employed to adiabatically switch on and

off the lattice depth. Since the band gap increases for larger values of V0, adiabaticity is easier
to fulfill and the ramp can be accelerated as the laser intensity increases. Indeed, the actual
ramp in the experiment which is smoothed by the AOM response is a more efficient way to
populate the fundamental Bloch state compared to a linear ramp. A non-adiabatic method for
preparing a BEC in different bands of an optical lattice is presented in [183]. Via an optimized
pulse sequence with a total duration of several tens of microseconds, atoms can be loaded
into a single Bloch state with high efficiencies of more than 99%.
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Fig. 4.17: Efficiency η for adiabatic loading
into the fundamental Bloch band. The effi-
ciency is plotted for different lattice depths
V0 depending on the duration τload.

In order to measure the loading efficiency into the
fundamental band a BEC is loaded into a comoving
lattice with a linear ramp of varying duration τload.
It is held in the lattice for τacc = 1 ms without any
transfer of momentum and then released out of the
lattice again via a linearly decreasing ramp of same
duration τload. In case of a perfect loading efficiency,
all atoms populate the initial momentum state and
have not been transferred to neighboring states after
this sequence. The experiment is performed along
the vertical beam splitter direction and the lattice
acceleration a = α

2k is matched to the gravitational
acceleration g so that the lattice is always comoving
with the atoms.

In Fig. 4.17 the loading behavior is displayed for
three different lattice depths V0. For shallow lattices

< 15 Er , a duration of τload = 100µs is sufficient to efficiently populate the fundamental
Bloch band. As the lattice depths increases, the adiabaticity criterion requires longer durations
τload. In the majority of the performed experiments the lattice depth does not exceed 30 Er

and a duration of τload = 200µs provides adequate efficiencies above 96%.
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4.3.3 Transfer efficiency in a twin lattice

(a) ±2ħhk→±4ħhk (b) ±4ħhk→±6ħhk (c) ±6ħhk→±8ħhk
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Figure 4.18: Transfer efficiency in the twin lattice starting with different initial superpositions of
momentum states ±2ħhk, ±4ħhk and ±6ħhk. Via simultaneous lattice acceleration each cloud receives a
momentum of ±2ħhk to increase the separation by 4ħhk. The efficiency is plotted for different durations
τacc and in dependence of the lattice depth V0. The markers represent experimental measurements
and the lines are theoretical simulations.

As indicated in section 2.2.4 the transfer efficiency in a retroreflected scheme differs from
a single lattice, since one lattice might disturb the acceleration within the other lattice. In
order to measure efficiencies in our twin lattice, first a superposition of symmetric momentum
states separated by ∆p = 4,8,12ħhk is created by performing double Bragg diffraction and
one or two successive Bragg pulses. Then, each cloud in ±2ħhk,±4ħhk or ±6ħhk is accelerated
via Bloch oscillations by ±2ħhk for different durations τacc, which increases the inital momen-
tum splitting by 4ħhk. Fig. 4.19(a) exemplary shows the relative population in the different
momentum states for a transfer of ±2ħhk→ ±4ħhk during τacc = 200µs depending on the
lattice depth V0. For the calculation of the transfer efficiency into the final momentum state
as shown in Fig. 4.18 all loss channels detected on the CCD image are taken into account,
which include momentum states up to ±10ħhk.

As expected from Landau-Zener theory (sec. 2.2.4) the maximal transfer efficiency increases
withτacc. Larger durationsτacc correspond to smaller accelerations which lower the probability
of non-adiabatic interband transitions. At the same time, the efficiency grows with larger
momentum separation ∆p and reaches almost 100% for ∆p = 12ħhk, while for smaller
separations rather distinct maxima can be observed. Hereby, the declining transfer efficiencies
for large lattice depths are mainly caused by losses into the state with 0ħhk. The experimental
data (points) cannot be reproduced by simulations assuming an ideal twin lattice. In these
calculations, no significant difference in the transfer efficiency is observed for different initial
separations∆p = 4, 8, 12ħhk. Furthermore they do not show a significant loss channel into 0ħhk.
Only when imperfect polarizations of the light field are taken into account, the experiments
can be explained.
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Figure 4.19: (a) Relative population in momentum states 0,±2 and±4ħhk for a Bloch transfer±2ħhk→
±4ħhk with duration τacc = 200µs depending on the twin lattice depth V0. (b) Transfer efficiency in a
twin lattice taking into account the double Bragg pulses for a total transfer of 0ħhk→±8ħhk depending
on inital Bragg splitting ∆pinit and lattice duration τacc.

The lines in Fig. 4.18 are the results of numerical calculations carried out by Jan-Niclas
Siemß1. They take into account the twin-lattice potential and include imperfect polarizations
characterized by σpol as detailed in (2.39). The simulations are based on an effective time-
dependent Gross-Pitaevski model [170, 171] as introduced in section 3.2.2. The inital atomic
state is generated by comparing the experimentally measured size and expansion rate of
a lensed Bose-Einstein condensate to 3D Gross-Pitaevski simulations. For the simulations
the release from a harmonic magnetic trap and a harmonic magnetic lensing potential is
taken into account. The initial momentum transfer via double Bragg diffraction is simply
realized by perfect momentum kicks, where the wave packet is multiplied with a phase factor
φDBD =∆p · y .

Through a variation of the polarization error of σpol the simulations are fitted to the
experimental data. An error of σpol = 0.2688 represents the best agreement between theory
and data, which is compatible with experimental measurements of the polarization in the
setup (sec. 3.3.2). While the influence of the beat term Vb is negligible, the interaction with a
standing wave VSt significantly decreases the transfer efficiency in the twin lattice. Fortunately,
this effect can be suppressed by starting Bloch oscillations with a larger inital momentum
splitting, i.e. a larger detuning between atoms and the standing wave. A larger initial splitting,
however, requires more initial Bragg pulses which are accompanied by additional atom losses.
To achieve the most efficient transfer, one therefore has to find a compromise between both
loss channels.

Fig. 4.19(b) sums up the results obtained from Fig. 4.18 and additionally takes into account
the atom losses during the initial splitting through Bragg processes. It plots the total transfer
efficiency for 0ħhk → ±8ħhk for different initial momentum splittings ∆pinit = n · 4ħhk and
different Bloch acceleration durations τacc, where the color coding is the same as in Figure 4.18.
The total transfer duration corresponds to the respective sum of the pulse durations n·τBragg =
n · 300µs and acceleration durations (4-n) ·τacc. For Bragg processes, an average efficiency
of ηBragg = 95% for one double or sequential pulse is assumed, corresponding to 98.8% per
ħhk. For each initial splitting and each duration τacc the maximum efficiency is extracted from

1 Institut für Theoretische Physik & Institut für Quantenoptik, Leibniz Universität Hannover
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Fig. 4.18. The total transfer efficieny is then calculated as the product of the efficiency of each
step. For example, for an initial momentum splitting of ∆pinit = 8ħhk via Bragg diffraction
and lattice durations of τacc = 200µs the efficiency and total duration τ are calculated in the
following way:

η= ηBragg,0→±2ħhk ·ηBragg,±2ħhk→±4ħhk ·ητacc=200µs,±4→±6ħhk ·ητacc=200µs,±6→±8ħhk

= 0.95 · 0.95 · 0.966 · 0.988= 0.861,

τ= 300µs+ 300µs+ 200µs+ 200µs= 1ms.

Fig. 4.19(b) shows that an initial splitting of ∆pinit = 8ħhk yields the highest overall efficiency.
In case of an initial splitting of ∆pinit = 12ħhk, the total efficiency is limited by the Bragg
processes to (95%)3 = 85.7%, while starting Bloch oscillations directly after the first double
Bragg pulse (∆pinit = 4ħhk) is only worthwile if sufficiently long transfer durations are
available in the experimental sequence. Hence, an initial superposition of ±4ħhk is chosen
for starting acceleration in a twin lattice as a compromise between losses due to parasitic
standing waves and the lower efficiency of Bragg diffraction .

4.3.4 Spontaneous emission in a twin lattice
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Figure 4.20: Residual atom number NSp/N0 due to spontaneous emission losses in a twin lattice for
different blue ( ) and red ( ) detunings ∆/(2π) depending on the lattice depth V0. The lines are
theoretical calculations according to Eq. (2.62) and (4.11).

The spontaneous emission rate for an atom copropagating in a blue-detuned twin-lattice
potential has been derived in Eq. (2.62). In case of a red-detuned potential we similarly find

Ptwin,red =
V0[Er]ωr

∆[Γ ]

�

1.5−
1

2
�

V0[Er]

�

. (4.11)

In both cases, the terms due to imperfect polarization do not contribute to the scattering rate
since the temporal average over the interference terms yields zero.

The atom losses due to spontaneous emission are measured for a red and blue detuning
of the twin lattice light. Fig. 4.20 details the results for six different detunings ∆, where the
relative residual atom number is measured in dependence of the lattice depth V0. For the
measurement, the atom clouds are transferred into momentum states ±16ħhk in order to
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exclude the probability of any influences of standing waves. The atom number in ±16ħhk is
then measured repeatedly, yielding the amount of atoms N0 without spontaneous emission
losses. Afterwards, a comoving lattice is linearly ramped up, kept at a constant intensity V0

during τacc and ramped down again during τload. Then, the residual atom number NSp in
±16ħhk is measured. The subsequent time-of-flight is sufficient to separate spontaneously
scattered atoms from the output ports. After a total interaction time of τacc +τload with the
lattice, the atom number decreases with rate Ptwin as

NSp = N0e−Ptwin(τacc+τload). (4.12)

Since the lattice depth during loading and unloading is on average V0/2, the duration for
loading and unloading has been multiplied by a factor 1

2 .
The experimental results confirm that a blue-detuned lattice suppresses spontaneous emis-

sion losses in a twin lattice, in our case by roughly a factor of two. The suppression is lower
than in a single optical lattice due to the influence of the counterpropagating twin. A slight
intensity imbalance between the two laser beams additionally can reduce the suppression of
spontaneous emission losses in a blue detuned lattice [44]. The lines in Fig. 4.20 represent the
theoretical calculations for the applied lattice depth and detuning as described in Eq. (2.62)
and (4.11).

4.3.5 Phase shift
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Fig. 4.21: Bloch transfer efficiency (Bloch
period TB = 10µs) depending on a phase
shift at the start of the acceleration and
Gaussian fit to the data.

After loading the atoms into the lattice, the latter is
accelerated to manipulate the atomic motion. The
corresponding force acting on the lattice leads to a
sudden shift of the local minimum of the lattice po-
tential and induces oscillations of the atoms at the
bottom of the lattice which result in lower transfer
efficiencies [139]. This shift can be mitigated either
by a shift of the lattice position, i.e. a phase shift, or
with an adiabatic acceleration sequence.

A phase shift can be applied via the AOMs on either
one of the frequency components of the light field.
Its influence on the transfer efficiency of Bloch oscil-
lations is illustrated in Figure 4.21 for a transfer of
200ħhk in direction of gravity. With an acceleration
duration of τacc = 1 ms the Bloch period corresponds
to TB = 10µs. The atoms are loaded into a comoving lattice via linearly ramping up the lattice
depth up to 30 Er while the lattice acceleration is matched to the gravitational acceleration. A
phase shift is applied to the lattice after loading and before acceleration. Each data point cor-
responds to an average of 20 measurements. The data clearly shows a significant dependence
of the transfer efficiency on the phase shift. For a phase shift of ±π the transfer efficiency
almost drops to zero. Experimentally, the maximum efficiency is reached for zero phase shift.
A Gaussian fit to the data exhibits a maximum at 0.1 rad where the transfer efficiency is
merely larger by 0.5% compared to the value of 0 rad.
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4.4 Extended diffraction techniques

As a conclusion to the current chapter, the following section comprises the presentation of
some diffraction techniques which exceed the methods of double Bragg diffraction and Bloch
oscillations as described previously. These techniques, which include symmetric beam splitting
along gravity, an adiabatic-rapid-passage pulse and simultaneous beam splitting along two
axes, each come with benefits for the implementation in atomic sensors.

4.4.1 Double diffraction along gravity

ω1ω2 ω3

ω1&ω3

ω1&ω2

atom chip

Fig. 4.22: Double
diffraction scheme
along gravity.

Double diffraction is intrinsically restricted to atoms with zero Doppler
shift. However, when three frequencies are employed, it is possible to
drive symmetric transitions in a cold cloud with a non-vanishing velocity
and double the momentum transfer [62, 67]. In contrast to conven-
tional double diffraction, however, the two simultaneous two-photon
transitions only share one frequency component making the process
not completely symmetric. This scheme is technically more complex
to implement, since most frequency sources only feature two output
ports. Therefore, usually two devices have to be employed which might
complicate a synchronous operation and symmetric intensities for all
three frequencies. Any asynchronisms in time, amplitude or phase of the
frequencies which are not common to both transitions may decrease the
contrast in an interfermeter.

In our setup, double diffraction with three frequencies is realized
along the axis parallel to gravity, where the Doppler shift ωD = keff g ttof

increases linearly with time-of-flight and depends on the gravitational
acceleration g and the time of flight ttof. The atom chip serves as retrore-
flector and inertial reference for the light fields. The three different
frequencies for first order double diffraction equal

ω1, ω2 =ω1 + keff g ttof +ωeff and ω3 =ω1 + keff g ttof −ωeff . (4.13)

Compared to classical double diffraction, this scheme features also some advantages. For
once, the minimum beat frequency equals ∆ω= 2ωeff, i.e. the frequency of the amplitude
modulation, is twice as large as the one in first order double diffraction (see sec. 4.2.2).
Therfore, pulse stability is reached for shorter pulse durations τwhich increase the momentum
acceptance. As illustrated in Fig. 4.23(a), already a pulse with τ = 200 µs delivers a sufficiently
high stability which is not further improved by a larger duration τ= 300 µs.

Furthermore, already few milliseconds after release any influences caused by standing
waves are sufficiently suppressed due to the Doppler shift. As long as the cloud’s velocity
does not approach zero, there is no need to use orthogonal incoming polarizations, which
simplifies the setup. Indeed, our vertical beam splitter setup uses only parallel polarizations.
A dual lattice with orthogonal polarizations would require to insert a quarter-wave plate in
front of the atom chip.

Figure 4.23(b) plots the transfer efficiency for an acceleration via Bloch oscillations of a
superposition of momenta p0 ± 2ħhk by ±2ħhk into p0 ± 4ħhk. Analog to the measurements
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Figure 4.23: (a) Beam splitter stability of a double diffraction pulse along gravity for different pulse
durations. (b) Acceleration with Bloch oscillations by 2ħhk for different durations tacc and two different
initial splittings ∆pinit = 4ħhk and 8ħhk. Theoretical Landau-Zener calculations for a single lattice are
depicted as well (lines).

described in section 4.3.3 the initial separation ∆pinit = 4ħhk is achieved via Bragg diffraction.
Landau-Zener curves are also measured for an initial separation of ∆pinit = 8ħhk. In contrast
to the horizontal twin lattice, the transfer efficiency in this setup is equal for both data series.
The data points agree very well with the Landau-Zener theory for a single optical lattice
(lines in Fig. 4.23(b)). This confirms that the limited efficiencies in Fig. 4.18 only result from
standing waves and are not present in an ideal twin lattice with perfect polarizations.
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Fig. 4.24: Scanning the acceleration of the lat-
tice results in interference fringes and allows
one to obtain the value for local gravity.

Finally, a gravimeter is realized in order to
prove the coherence of this type of beam splitter.
Three first order pulses are applied to span a
symmetric Mach-Zehnder-type interferometer,
which is able to measure the gravitational ac-
celeration. The lattice acceleration α = dω

dt is
scanned in order to obtain fringes. Hereby, the
relative population in the two outer output ports
p1 = p0 ± 2ħhk evolves as

P|p1〉 = 1− cos((keff g −α)T2). (4.14)

Out of technical reasons a constant frequency
chirp throughout the interferometer sequence
can not be applied. To accumulate the same laser
phase imprinted on to the atoms, the frequency
can be changed in the temporal middle between the pulses [116, 177]. The measured fringe
is shown in Fig. 4.24. From the fit to the data the gravitational acceleration is extracted to be
g = (9.986± 0.002)m/s2.
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4.4.2 Adiabatic-rapid-passage Bragg pulse

The combination of Bragg diffraction with an adiabatic rapid passage (ARP) leads to an
efficient technique for transferring large momentum onto a cold atom cloud. In comparison to
conventional box or Gaussian-shaped pulses, this method is more robust against fluctuations
of pulse intensity and detuning and eases the requirements on the velocity spread of the
atomic source. This makes it especially suited for large momentum transfer, where the effect
of laser intensity noise might be increased due to the multitude of atom-light interactions.
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Fig. 4.25: Amplitude and detuning for
an ARP tanh pulse of duration τ [73].

For an ARP pulse the laser intensity has the shape
of a hyperbolic tangent (tanh), while the two-photon
detuning δ(t) is linearly swept through resonance dur-
ing the pulse (Fig. 4.25). This technique can also be
applied to higher order transitions. As in [73] the in-
tensity profile follows

Ω(t) = tanh(8t) tanh[8(1− t)]

for 0< t < τ. (4.15)

δ(t) is linearly swept from −2ωr +δ0 to +2ωr +δ0,
where δ0 is the resonance frequency. Tanh pulses of
300µs duration, transferring 10ħhk with a high effi-
ciency of 99.7% per ħhk could be demonstrated [73].
0.2% per ħhk of these losses were caused by spontaneous emission.

Figure 4.26 contrasts transfer efficiencies achieved in our experiment for a Gaussian pulse
withσt = 35 µs and tanh pulses with two different durations τ = 300µs and τ = 1 ms for first
order and sequential double Bragg diffraction. For first order double diffraction the maximum
transfer efficiencies are similar in all cases, while a tanh pulse achieves a better efficiency for
sequential diffraction. The limited transfer for sequential Gaussian pulses probably results
from an offset velocity due to an imperfect beam splitter alignment. In general, the tanh
pulses exhibit a broader peak structure and therefore a larger acceptance both to fluctuations
in intensity as well as in the detuning. However, these benefits decline with decreasing pulse
duration τ as the adiabaticity of the process is lowered.

Although the beam splitting efficiencies seem promising, the method is not suited for
interferometry with double Bragg diffraction. The adiabatic ramp destroys the symmetry and
simultaneity of the process since the frequency chirp does not address momentum classes
symmetrically. This results in an unequal population of momentum states |+2ħhk〉 and |−2ħhk〉,
making it unsuitable for the use inside an atom interferometer (see inset Fig. 4.26). Symmetric
diffraction would require to sweep the frequency difference in each arm oppositely to each
other, which is impossible in our retroreflex configuration. For a single diffraction process,
though, tanh pulses represent a good technique to improve current transfer efficiencies as
demonstrated for sequential double diffraction. Currently, technical problems such as timing
asymmetries prevent the application together with Bloch oscillations (see sec. 3.3.1).

In addition to the transfer efficiency, it is also important to look at the phase imprinted on
the atoms during such pulses. If the phase of the different velocity components varies by more
than 2π, the contrast in an interferometer vanishes. Whereas the dependence of the phase
shift on velocity is negligible for standard Gaussian pulses, it is of much more importance for
tanh pulses. Since, for example in a Mach-Zehnder interferometer the output phase is the



76 TECHNIQUES FOR INTERFEROMETRY

(a) 0ħhk→±2ħhk (b) 0ħhk→±2ħhk (c) ±2ħhk→±4ħhk
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Figure 4.26: Comparison between a Gaussian pulse of width σt = 35 µs ( ) and two tanh pulses of
duration τ= 300µs ( ) and τ= 1 ms ( ). For these pulses the transfer efficiency is measured for
first order (a,b) as well as sequential (c) double diffraction depending on the relative laser intensity
(a,c) and the detuning from resonance (b). The arrows in (a) mark the data points which correspond
to the absorption images below. These show exemplarily that for first order double diffraction a tanh
pulse ( ) leads to an asymmetric population of momentum states |+2ħhk〉 and |−2ħhk〉, while the
population is symmetric for a Gaussian pulse ( ).

difference of its π and π/2 pulses, a proper choice of pulse parameters can still lead to a high
contrast interferometer, where the phase shifts of each velocity component cancel out [73].

4.4.3 2D beam splitter

The unique beam splitting setup in QUANTUS-1 offers the possibility to combine horizontal
with vertical atomic manipulation and create a 2D beam splitter. Multidimensional atom optic
manipulation has been proposed in [184] to simultaneously probe accelerations and rotations
in three dimensions or suppress parasitic inertial forces in a compact sensor. So far, this has
only been achieved in sequential measurements [185, 186]. Another possible application
represents a state-selective blow-away which can be implemented within our twin-lattice
interferometer.

Spurious atoms in the output ports of an interferometer result in a loss of contrast, since
they generate background noise or even form parasitic interferometers. In contrast to Bragg
transitions, the internal state labeling of Raman diffraction allows a state-selective removal
of residual atoms in a double diffraction scheme [66, 67] or a symmetric composite-pulse
interferometer [24]. In the twin-lattice geometry, the limited efficiency of the initial sequential
double Bragg process leads to residual atoms in momentum states 0ħhk and ±2ħhk. These
atoms can only be addressed selectively via their horizontal momentum. Another Bragg pulse
in horizontal direction, however, would not move these atoms out of the interferometer
region. By employing a combination of vertical and horizontal light fields, instead, it is
possible to address a particular horizontal momentum class and vertically separate it from
the interferometer atoms.

As depicted in Figure 4.27(a,b) the blow-away pulse employs a single frequency component
from each direction with frequencies ω1 = 2π · 10kHz and ω2 = 2π · 155kHz in horizontal
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and vertical direction for a duration of τ = 500µs. The atoms do not receive a particular
momentum but get diffracted into a variety of states. The population in the initial spurious
states is reduced with an efficiency of 90%. Despite of the promising results this technique
was not applied in the twin-lattice interferometers described in the next chapter, since a first
analysis could not demonstrate any improvement on the measured contrast.

250µm

250µm

without blow-away with blow-away

250µm

(a) (b)

(c)

y

z

atom chip

λ/4

mirror

ω1

ω2

Figure 4.27: (a) The combination of two frequency components ω1,ω2 in y and z direction results in
a 2D beam splitter. (b) This type of beam splitter can be used to remove spurious atoms in momentum
states 0ħhk,±2ħhk, which are left over after a large momentum transfer beam splitter. (c) Realization
of nine 2D Bloch oscillations by sweeping both frequencies by +80 kHz and −44 kHz, respectively.

Apart from populating a variety of different momentum states, Figure 4.27(c) also illustrates
an example, where a mainly unidirectional transfer in y − z direction has been achieved
via Bloch oscillations. After a time-of-flight of ttof = 27.5ms the BEC undergoes nine Bloch
oscillations and is diffracted diagonally by sweeping the initial frequencies of f1 = 0 kHz and
f2 = 340 kHz within τacc = 1 ms by +80 kHz and −44 kHz, respectively. The transfer exhibits
a relatively high efficiency of more than 90%.
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TWIN LATTICE

Large momentum transfer in atom interferometry represents one of the key elements to reach
the required sensitivities for gravitational wave detection on ground [49–51] and in space [52,
53]. Additionally, the precision of h/m measurements [44–46] and inertial sensors [19, 25–27,
47] benefits from an increase in momentum separation between the two wave packets in the
interferometer. As detailed in section 1.1.1, the transfer of multiples of photon recoils in an
interferometer has been realized with Bragg [57, 68, 71, 73] or Raman diffraction [24, 66,
72, 74] as well as with Bloch oscillations [69] and a combination of both [59, 60, 62]. While
atom interferometers with multiple light pulses are rather limited by atom loss caused by
non-ideal beam splitter efficiencies, acceleration in a lattice rather suffers from a dephasing
due to light shifts.

The twin-lattice interferometer approaches both of these problems. It is based on a sequen-
tial double Bragg diffraction interferometer [68] extended by the simultaneous acceleration of
both clouds by Bloch oscillations. The high efficiency of Bloch oscillations provides a scalable
setup, while the symmetric manipulation in a retroreflected geometry suppresses systematic
effects such as laser phase noise as well as presumably diffraction phases [68, 69]. Such
a combination was initially proposed in [61]. In Ref. [62] simultaneous acceleration in a
dual lattice was implemented along gravity via superimposing two beams with a total of
three frequency components. This technique is similar to double diffraction along gravity, as
described in section 4.4.1.

The following section starts with a description of the temporal interferometer sequence.
Owing to the large vibrations in the experiment the contrast of the interferometer is analyzed
by statistical means (sec. 5.1). Possible contrast loss mechanisms are investigated in detail
both experimentally as well as with theoretical simulations (sec. 5.2). We will see that the
contrast in the twin-lattice interferometer is mainly limited by technical constraints due
to limited transfer efficiencies and a dephasing arising from light field inhomogeneities. A
preliminary way to overcome the current limitations is to employ a smaller beam size which
reduces the amount of light distortions caused by spurious diffraction (sec. 5.3). The chapter
closes with a presentation of different techniques which seem promising to improve on the
current results in the future (sec. 5.4). The most important results presented in the following,
including the realization and analysis of the twin-lattice geometry to achieve the largest
separation in an atom interferometer so far, have been published in Ref. [104].

78



5.1 Interferometer scheme 79
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Figure 5.1: 3D-scheme of the twin-lattice interferometer. After release from the atom-chip trap and
state preparation the BEC is manipulated by two counterpropagating lattices of orthogonal polarization,
the so-called twin lattice. With the twin lattice, a sequence of double Bragg diffraction and Bloch
oscillations is driven to form a symmetric atom interferometer. Published in [104].

5.1 Interferometer scheme

The total interferometer duration is limited by the size of the detection area. In the QUANTUS-1
experiment, the imaging system provides an observable free fall time of roughly 35 ms.
Afterwards, atomic clouds can not be detected anymore. Given the time required for state
preparation in the beginning and sufficient spatial separation of the momentum states in
the end, a duration of about 12 ms is available for twin-lattice interferometry. During this
time, a Mach-Zehnder-type sequence is driven, where the twin-lattice beam splitter serves for
splitting, redirection and recombination of the BECs. In the following, stability and efficiency,
two important properties of a beam splitter, are analyzed and the interferometer sequence is
explained in detail.

5.1.1 Beam splitter

A twin lattice beam splitter starts with a sequential first order double Bragg process creating
an initial superposition of momentum states ±4ħhk. Each Bragg pulse is of Gaussian shape
and has a width of σt = 37.5µs. The splitting of∆pinit = 8ħhk suppresses non-adiabatic losses
during the following Bloch oscillation sequence as discussed in sec. 4.3.3. Both atom clouds
are loaded into a copropagating lattice during τload = 200µs, where they are accelerated up
to a momentum of ±204ħhk, and then unloaded from the lattice during τload = 200µs. The
sequence of the beam splitter is illustrated in Fig. 5.4(c). The applied twin-lattice depth V0

increases with the maximum momentum separation ∆p in order to compensate for rising
Landau-Zener losses (Fig. 5.4(d)). Up to 1.2 W of laser power are available. For momentum
splittings up to 100ħhk the lattice acceleration is constant over the acceleration duration
τacc = 2ms. Faster accelerations than 100ħhk per 2 ms, however, increase losses at the
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beginning of the acceleration sequence due to the parasitic standing wave in the twin lattice
(sec. 4.3.3). Therefore, a sequence comprising two acceleration steps is applied in these cases.
For ∆p = 128,208,308 and 408ħhk a differential momentum of 12 hk is transferred during
the first 500, 400, 300 and 300µs, respectively, while the residual transfer takes place in the
time that remains of 2 ms. In each step the lattice depth is optimized for low atom losses. In
this way, the losses can be kept sufficiently small making these beam splitters well suitable
for the application within an interferometer.

Fig. 5.2 shows density plots for different realizations of a twin-lattice beam splitter ranging
from a separation of ∆p = 24ħhk up to ∆p = 1008ħhk. The transfer efficiency is calculated
by measuring the atom number in the target momentum class relative to the total atom
number, neglecting spontaneous emission losses, which, for the most part, are not counted
by the detection system. Substracting the losses from the initial Bragg process, the effective
Bloch efficiency equals 99.5% per ħhk for ∆p = 24ħhk, 99.75% per ħhk for ∆p = 128ħhk and
reaches 99.95% per ħhk for ∆p = 408ħhk. The nonconstant transfer efficiency per ħhk partly
results from abandoning the weak-binding limit, where the Landau-Zener formalism is no
longer valid [139]. In addition, the parasitic interference terms of the twin lattice reduce the
efficiency for small splittings ∆p due to the influence of the standing wave.

For the realization of a ∆p = 1008ħhk beam splitter, where the clouds have a differential
velocity of 5.9 mm/s, τacc is increased from 2 ms to 3.5 ms. The relative population in ±504ħhk
amounts to 28%, while the efficiency solely for Bloch oscillations corresponds to η = 99.87%
per ħhk. The efficiency is not limited fundamentally but by the available laser intensity as well
as by the bounded detection size limiting τacc and thereby the adiabaticity of the process. For
large ∆p the atomic clouds seem slightly elongated along the y-axis. This is due to the high
atomic velocity in this direction leading to a significant movement of the atoms during the
100µs duration of image aquisition.

500 µm 24ħhk

48ħhk

88ħhk

208ħhk

308ħhk

408ħhk

1008ħhk

Figure 5.2: Density plots of different twin-lattice beam splitters with separations ranging from ∆p =
24ħhk up to ∆p = 1008ħhk.

Beam splitter stability

Similarly as in section 4.2.2, the stability of the large momentum beam splitter is examined.
Since large momentum transfer involves a multitude of atom-light interactions it is usually
more sensitive to laser intensity fluctuations compared to beam splitters containing only a



5.1 Interferometer scheme 81

single two-photon process. Changing beam splitter efficiencies can decrease the interferometric
contrast and disturb the phase readout. Bloch oscillations present a good choice to provide
stable transfer efficiencies, since they are based on adiabatic transfer, which is more robust
against amplitude fluctuations.

The total diffraction efficiency of the first-order double diffraction beam splitter is measured
via a double Gaussian fit (sec. 4.2.1). Because of the multitude of momentum states, the
efficiency of larger momentum beam splitters can not be evaluated in the same manner.
Instead, it is calculated by measuring the atom number in the final ports as well as the total
atom number in all momentum states with individual Gaussian fits. This method intrinsically
leads to a larger noise due to the absence of a common offset level (see sec. 3.1.2).

To estimate the impact of this detection method, the 4ħhk beam splitter is evaluated both
by measuring the absolute atom numbers in each state individually as well as by a direct
measurement of the relative populations through a double Gaussian fit. Comparing both
evaluations (Fig. 5.3(a)) reveals that the measurement of individual absolute atom numbers
increases the detection noise by almost a factor of ten.

Figure 5.3(b) illustrates the stability of a first-order and a sequential double diffraction
pulse with momentum separation ∆p = 4ħhk and ∆p = 8ħhk as well as of a beam splitter
with additional Bloch oscillations (∆p = 128ħhk). The diffraction efficiency is evaluated with
individual Gaussian fits. In all cases, the beam splitter noise reaches a level below 10−2 after
roughly 103 s of integration time. Surprisingly, the stability of the sequential double Bragg
process (∆p = 8ħhk) is slightly better compared to the first order pulse (∆p = 4ħhk). This
is most likely caused by a better performance of the experiment, since the measurements
were realized at different times. Fluctuating environmental conditions like temperature can
temporarily improve or degrade the experimental performance. Even the ∆p = 128ħhk beam
splitter does not show an increased noise level compared to the ∆p = 4ħhk process, which
is promising for the application in an interferometer. For the latter, a modulation can be
observed, that likely results from the air-conditioning system in the laboratory which exhibits
a period of around 15 minutes.
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Figure 5.3: Stability of the large momentum beam splitter. (a) Comparison of the beam splitter stability
for ∆p = 4ħhk evaluated either by two individual Gaussian fits or one single fit consisting of two
Gaussians with same background. (b) The overlapping Allan deviation of the transfer efficiency for
a beam splitter without (∆p = 4,8ħhk) and with (∆p = 128ħhk) Bloch oscillations. Evaluation in all
cases with individual Gaussian fits.
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5.1.2 Twin-lattice interferometry sequence

The twin-lattice interferometer sequence is depicted in Fig. 5.4, showing the trajectories
during the interferometer (a) as well as the temporal sequence of the light field intensity and
the momentum separation (c). The BEC is released from the magnetic trap with frequencies
ωx ,y,z = 2π · (43,325,327)Hz. DKC of duration τdkc = 0.3ms is performed 5.4ms after
release (sec. 4.1.2). Subsequently, the BEC is transferred to the non-magnetic state by an
adiabatic rapid passage with a total duration of 9 ms (sec. 4.1.3).

(a)

(b)

(c)

(d)

τBraggτload τacc τfree

A

0 1 2 3 4 5 6 7 8 9 10 11 12

T T + δT

δT

ωeff

3ωeff

∆ωmax

Time (ms)

∆ω

−3 −2 −1 0 1 2 3

2

3

z
d
is
ta

n
c
e
(m

m
)

24 h̄k

128 h̄k

208 h̄k

408 h̄k

48 h̄k 250 µm

408 h̄k 250 µm

N0h̄kN−2h̄k N+2h̄k

y distance (mm)

0

10

20

30

V
0
(E

r
)

0 100 200 300 400
0

0.5

1

∆p (h̄k)
N
/
N

0

Figure 5.4: (a) Trajectories of the atom clouds during the twin-lattice interferometer. Distances are
given relative to the center of the atom chip. (b) Interferometer output ports for ∆p = 48ħhk and
∆p = 408ħhk. (c) Temporal sequence of the twin-lattice amplitude A (not to scale) controlled by AOMs
and the frequency difference ∆ω between the lattices. (d) Twin-lattice depth V0 in units of recoil
energy Er and normalized atom number in the output ports for different interferometer realizations.

The interferometer sequence starts with the beam splitter described in section 5.1.1 consist-
ing of a sequential double Bragg diffraction process and an acceleration via Bloch oscillations.
During the following free evolution time of τfree = 200µs the clouds are maximally separated
in momentum by ∆p. Afterwards, both momentum states are loaded into the twin lattice
again and decelerated up to ±4ħhk via Bloch oscillations. A sequential double Bragg π-pulse
inverts the atomic velocity resulting in a symmetric distribution in ∓4ħhk. Both clouds are
then accelerated and after a second free evolution time decelerated again in the twin lattice
before they are finally brought to interference by a last sequential double Bragg pulse. Each
Gaussian pulse has a width of σt = 37.5µs and a duration of τBragg = 300µs, the duration
for acceleration and deceleration correspond to τacc = 2 ms, while the loading and unloading
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times amount to τload = 200µs in all cases. This results in a total interferometer duration of
2T = 12.1 ms. For an interferometer solely based on double Bragg diffraction, the absence of
Bloch oscillations leads to a free evolution time of τfree = 5 ms in each interferometer half.

After the interferometer, τsep = 9ms remain for the different momentum states to sepa-
rate spatially before the output ports are detected via absorption imaging. Two exemplary
interferometer output ports are depicted in Figure 5.4(b). During the interferometer Stern-
Gerlach type deflection is employed to prevent atoms with nonzero magnetic moment from
overlapping with the output ports (sec. 4.1.3). The interferometer signal P depends on the
atom number in the two outer ports N±2ħhk and the inner port N0ħhk

P =
N−2ħhk + N+2ħhk

N−2ħhk + N0ħhk + N+2ħhk
. (5.1)

In the following, a twin lattice interferometer is characterized by its maximum momentum
separation ∆p reached during the free evolution time. Interferometers are realized for sepa-
rations ranging from ∆p = 8ħhk (without Bloch oscillations), up to ∆p = 408ħhk using beam
splitters with 100 Bloch oscillations in each arm.

Figure 5.4(d) depicts the average lattice depth V0 during the Bloch acceleration sequences,
which is optimized for each step in order to minimize Landau-Zener losses. During the 2 ms
of acceleration the atoms are falling through the twin lattice beam along the z-axis. Since
the laser power can only be changed linearly, it is not possible to maintain a constant lattice
depth during these 2 ms. The lattice depth calculation takes into account the vertical beam
profile as measured via Rabi oscillations in section 4.10. Furthermore, the laser intensity
decreases slightly with the applied frequency difference ∆ω, since the AOMs are aligned for
zero detuning ∆ω = 0. For a maximum separation of ∆p = 408ħhk, where the AOMs are
detuned by +100ωeff and −100ωeff, respectively, an intensity reduction of 10% is observed.

The total atom number N = N−2ħhk + N0ħhk + N+2ħhk measured in the output ports is plotted
in the lower part of Fig. 5.4(d) relative to the atom number N0 of the interferometer without
Bloch processes (∆p = 8ħhk). It decreases due to non-adiabatic losses as well as increasing
spontaneous emission rates. In case of the largest interferometer with ∆p = 408ħhk still
35% of the atoms are present in the output ports. For a total transfer of 1600ħhk via Bloch
oscillations this yields an efficiency of 99.93% per ħhk.

5.1.3 Statistical contrast analysis

To calculate the interferometric contrast according to Eq. (2.77) usually a phase scan is
performed to observe fringes, i.e. oscillations of the relative population P in one of the output
ports. Since the QUANTUS-1 experiment lacks any vibrational isolation, the interferometer
phase is strongly perturbed by inertial vibrations in the order of 10−2 m/s2/

�
Hz [116]. They

lead to phase fluctuations of more than 2π from shot-to-shot and prevent the observation
of fringes already for an interferometer with ∆p = 8ħhk. The phase is assumed to change
randomly corresponding to white phase noise.

Therefore, the interference contrast of the twin-lattice interferometers is analyzed statis-
tically [47, 71]. In detail, a timing asymmetry δT is introduced in the second half of the
interferometer as indicated in Fig. 5.4(c) to change the spatial overlap of the BECs at the last
double diffraction pulse. The contrast decreases with larger displacement ∆y = δT∆p/m,
where∆p/m = ħh∆k/m is the relative atomic velocity. This decrease depends on the coherence
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length of the atomic ensemble characterized by the expansion rate σv in beam splitter direc-
tion [187]. Keeping in mind that the underlying signal is a sine function of the interferometer
phase with an amplitude A, the contrast C = 2A for δT = 0 is given by 2

�
2σP , where σP is

the standard deviation of the relative population P[71]. The contrast in dependence of the
asymmetry δT is thus given by the Gaussian function [47]

C(δT ) = 2
�

2σP(δT )e−
1
2∆k2σ2

vδT2
. (5.2)

To calculate the standard deviation σP of the output port fluctuations 40 data points are
recorded for each value of δT . To suppress the effect of possible temporal drifts caused e.g.
by thermal variations in the laboratory, one data point is taken for each uniformly distributed
δT before the measurement is repeated. Additionally, δT is not scanned linearly but in an
alternating way starting with δT = 0 followed by alternating positive and negative values. In
case of the ∆p = 8ħhk-interferometer this implies δT = 0,+40µs,−40µs,+80µs, ..− 240µs.
Fig. 5.5 exemplary depicts the relative population P for a ∆p = 8ħhk-interferometer as a
function of the timing asymmetry δT .
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Fig. 5.5: Interferometer signal P depending
on asymmetry δT for ∆p = 8ħhk.

Large values of δT correspond to an open inter-
ferometer with an insufficient overlap of the atomic
wave functions at the interferometer ports for inter-
ference. From the measured output port fluctuations
at large δT the technical or non-inertial noise in our
interferometer is read out, which stems from fluctu-
ations of the experimental parameters such as laser
intensity. The largest value of σP is expected for
δT = 0, where the interferometer is closed and fully
sensitive to inertial noise. The width of the Gaussian
distribution ħh/(∆pσv) is a measure of the coherence
time during which the signal decays due to insuffi-
cient overlap. It has been shown that the coherence
length remains constant in a free-space interferome-
ter while the wave packet’s size evolves [188]. The

coherence length therefore only depends on the initial momentum distribution.
Figure 5.6(a) shows the experimentally measured fluctuations 2

�
2σP as a function of the

timing asymmetry δT for twin-lattice interferometers with ∆p = 8ħhk to ∆p = 408ħhk. In
all cases, a Gaussian distribution according to (5.2) with four free parameters matches the
data well. The free fit parameters determine the peak contrast, the technical noise, the center
position and the width of the Gaussian distribution.

The peak contrast decreases with increasing number of Bloch oscillations (Fig. 5.6(b)).
A thourough analysis of contrast decay mechanisms is performed in the next section. The
technical noise, produced e.g. by laser intensity fluctuations, is constant for the different
interferometer realizations indicating a stable system over weeks of data aquisition. In addition,
its value of ≈ 0.03 is relatively low (compared e.g. to Ref. [47]). This is also a result of the
stable beam splitter operation (sec. 5.1.1). Since the spatial displacement increases with
δT∆p, the width σδT is inversely proportional to ∆p for a constant spatial coherence length.
This behavior is well reproduced by our data as shown in Fig. 5.6(c) demonstrating that the
manipulation by the twin lattice does not effect the coherence length of the BEC.
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Figure 5.6: (a) Fluctuations 2
�

2σP of the output port population P for twin-lattice interferometers
with different maximum momentum separations ∆p in dependence of the timing asymmetry δT . The
latter determines the spatial displacement at the last double diffraction pulse. A Gaussian bell-shaped
curve is fitted to the data points. 2

�
2σP is approximately equal to the contrast [47, 71]. (b) Peak

contrast and technical noise as well as (c) width σδT and center shift determined by the fit parameters.
Error bars result solely from the fit uncertainties. The line in (c) represents the theoretically expected
width σδT calculated for the expansion rate σv of the delta-kicked BEC.

5.2 Contrast loss mechanisms

As displayed in Fig. 5.6(b) the contrast decays rapidly for small∆p and more slowly for larger
separations. Considering Fig. 5.4 there are essentially three parameters which change between
the different interferometer realizations, namely the residual atom number N/N0, the lattice
depth V0 and the transferred momentum ∆p causing different spatial trajectories. Atom loss
as indicated by the decreasing number N/N0 is a common reason for contrast decay [57].
It reduces the number of coherently oscillating atoms in the output ports compared to an
incoherent background and therefore lowers the signal of the interferometer. However, the
atom number does not reduce as fast with ∆p as the contrast and can therefore not solely
explain its course.

Contrast loss can also be caused by shortcomings of the light field. Its effect may be
influenced by the lattice depth and the atomic trajectories within the lattice beam.

The deviation of the Gaussian beam from a plane wave leads to a Gouy phase shift due to
the dispersion of the wave vector and a wavefront curvature depending on the distance from
the propagation axis of the beam [44]. Both contributions result in a correction of the photon
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momentum k causing a systematic uncertainty. For an ideal Gaussian beam this effect should
be negligible and suppressed in our geometry.

Local distortions of the beam can severely impact the measurement. Lately is has been
shown, that not wavefront distortions but intensity variations arising due to light distortions
contribute dominantly to a change of the photon momentum [189]. Imperfections in the beam
profile may result from parasitic reflections, speckle pattern through scattering at optical
elements or diffraction at apertures and lead to a local intensity gradient which in turn
changes the atomic velocity through the dipole force F = ∂ V/∂ x [44]. Random changes of
the atomic velocity δv, induce random phase shifts keffδvT which lead to a reduction of the
interference contrast. For a Ramsey-Bordé interferometer with time T between π/2 pulses
and a probability distribution P(δv) of the velocity variation it has been demonstrated that
the contrast decays as

C = C0

∫

P(δv) cos(keffδv T )dδv, (5.3)

where C0 corresponds to the contrast without random velocity changes [131, 190].
Random velocity variations δv can also be caused by spontaneous emission, where an atom

absorbs a photon from one of the lattice beams and spontaneously emits a photon in a random
direction. This leads to a random momentum change of up to ±2ħhk in beam splitter direction.
Assuming a momentum acceptance of 2ħhk for the fundamental Bloch band, a spontaneous
emission event leaves approximately half of the atoms trapped in the lattice, while the other
half is lost [131]. The probability distribution of δv for remaining atoms in the lattice has a
width of roughly vrec. However, due to the small spatial extent of the delta-kick collimated
BEC in our case, the vast majority of spontaneously scattered atoms is separated spatially
from the interferometer ports. In the twin-lattice interferometer the average time for an atom
between scattering and detection equals T + τsep = 15.05ms. With an output port extent
of roughly 60µm the gain in velocity has to be smaller than 30µm/15.05ms= 0.34 vrec to
be counted in the port. This implies that the direction of the absorbed and spontaneously
emitted photon has to coincide within an angle of 10◦, which only adds up for rougly 7.5% of
the scattered atoms.

Apart from a random velocity variation the atomic clouds can also experience a momentum
shift δp common for each arm leading to an open interferometer. This induces a common
phase shift δφ = δpx

ħh which imprints a spatial fringe pattern in the output ports [191]. If
the associated fringe spacings are smaller than the atomic cloud, this leads to a contrast
reduction [192]

C =

�

�

�

�

∫

e−
i
ħhδp·x |Ψ(x)|2dx

�

�

�

�

. (5.4)

A large momentum offset in beam splitter direction would be noticeable either through a
shift of the center of the contrast envelope or a change in the measured coherence width.

To conclude the considerations made so far, atom loss and light field distortions represent
the most probable cause for loss of contrast in the twin-lattice interferometer. To support
these assumptions, different experimental studies are performed as detailed in the following
sections 5.2.1 and 5.2.2. Moreover, the contrast loss of the twin-lattice interferometer is
calculated theoretically and compared to the experimental results by simulating both contrast
loss mechanisms (sec. 5.2.3).
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5.2.1 Experimental study of atom loss

In this section, we will investigate the atom loss channels of the interferometer. After an
examination of the transfer efficiencies of each interferometer step, the contrast of a double
Bragg interferometer is compared for different beam splitting efficiencies. At last, the impact
of an acceleration with Bloch oscillations on non-resonant atoms is investigated.

As long as the detected atom number still lies significantly above the detection noise,
atom loss only reduces the contrast if the lost atoms are not separated spatially from the
interferometer output ports. Here, they either lead to a constant offset signal or to a dephased
oscillating signal in case spurious ports should close an interferometer geometry.
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Figure 5.7: Relative atom number observed during the optimization of a specific step of the interfe-
rometer sequence, which either corresponds to a Bragg process (1,2,5,6,...) or a Bloch acceleration
(3,4,8,9). While for optimization of the last pulse solely the pulse itself was applied, in the other cases
all previous steps were performed.

Fig. 5.7 depicts the atom number in the desired momentum states relative to the total number
of detected atoms as measured during the optimization of the interferometer sequence. Each
step either corresponds to one Bragg or Bloch process. Seven Bragg pulses together with
four Bloch accelerations yield a sum of eleven steps. By comparing the atom numbers of
successive steps it is possible to estimate the respective transfer efficiency. The data exhibits
some uncertainty since each data point relies solely on a single measurement. In addition, in
case of larger momentum separations, partially only one of the desired momentum states
can be observed on the camera while the population of the state is assumed to be equal to its
counterpart.

As expected, Fig. 5.7 shows, how each step leads to additional atom losses, which are
slightly higher for a larger amount of transfer. Apart from few exceptions, the relative atom
number does not increase with the next step. This indicates that, once an atom is lost from
the desired momentum state, it mostly does not get back into the interferometer ports, where
it would cause dephasing. The impact of Bloch oscillations on these spurious atoms will be
investigated further down.
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Contrast for different beam splitting efficiencies
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Fig. 5.8: 8ħhk interferometer contrast with
solely Gaussian or partially Tanh pulses.

In case of the sequential double Bragg interferometer
(∆p = 8ħhk) the contrast is measured for two realiza-
tions with different pulse efficiencies and otherwise
equal parameters. The ∆p = 8ħhk interferometer ex-
plained in sec. 5.1 is compared to an interferometer,
where the sequential Bragg processes are realized
via tanh shaped pulses with a frequency ramp and a
length of 300µs (sec. 4.4.2). The application of these
adiabatic-rapid-passage pulses for sequential Bragg
processes leads to an augmentation of the respective
transfer efficiencies from roughly 95% to 98%. Fig-
ure 5.8 depicts the contrast envelopes for these two
interferometers where either solely Gaussian pulses
are applied or where sequential processes are realized

via tanh shaped pulses. The measured contrast amounts to 70.6% and 88.6%, respectively.
This result indicates that limited beam splitting efficiencies represent a major cause for a
non-ideal contrast in case of the 8ħhk double Bragg interferometer. They lead to a background
of atoms in the interferometer ports, which does not oscillate with the interferometer phase.

Impact of Bloch oscillations on spurious atoms
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Figure 5.9: Off-resonant coupling during Bloch acceleration. A transfer sequence from ±4ħhk into
±14ħhk via Bloch oscillations (τload = 200µs,τacc = 1ms) is driven. The graphs depict the relative
atom number of atoms for initial off-resonant momentum states±6ħhk (a) and±8ħhk (b) in dependence
of the lattice depth V0.

The addition of Bloch oscillations to the interferometer sequence increases the number of loss
channels. In the following, it shall be examined whether atoms lost from the interferometer
states can be coupled back into the interferometer output ports via Bloch oscillations. In the
experiment, the BEC is prepared in a superposition of momentum states ±6ħhk or ±8ħhk. Then,
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an off-resonant Bloch sequence is driven with τload = 200µs and of duration τacc = 1 ms. The
frequency sweep corresponds to an acceleration of atoms from ±4ħhk into ±14ħhk. Depending
on the applied lattice depth, the Bloch sequence affects the prepared momentum states and
changes their velocity. Figure 5.9 plots the final relative population in all relevant momentum
states.

The measurement indicates that the majority of off-resonant atoms is not "picked up" and
accelerated via Bloch oscillations but rather scattered into neighboring momentum states via
first and second-order Bragg diffraction. During the Bloch sequence the frequency difference
of the twin lattice is swept from δ = 4ωeff to δ = 14ωeff. For an initial atomic distribution in
±6ħhk (Fig. 5.9(a)) atoms are mainly diffracted via a first-order Bragg process from ±6ħhk
into ±4ħhk exhibiting a resonance frequency of δ = 5ωeff. Other possible mechanisms include
the first-order process ±6ħhk↔±8ħhk (7ωeff) and second-order diffraction ±6ħhk↔±2ħhk
(4ωeff). The latter becomes important for larger lattice depths and happens already during the
loading phase at the beginning of the Bloch sequence where the frequency difference equals
4ωeff. In case of an initial distribution in ±8ħhk (Fig. 5.9(b)), similarly, the following first-
and second-order Bragg transitions are most likely: ±8ħhk↔±6ħhk (7ωeff), ±6ħhk↔±4ħhk
(5ωeff) and ±8ħhk↔±4ħhk (6ωeff). In both cases, a fraction of roughly 10% ends up in the
states ±14ħhk where these atoms would cause a dephasing.

To sum up, Bloch oscillations do not significantly increase the number of possible offset
atoms, which are present in the interferometer output port without contributing to the
coherently oscillating signal. Off-resonant Bloch oscillations rather induce additional Bragg
scattering when crossing the respective resonances. This results in a variety of loss channels of
which the great majority is expected to be spatially separated from the interferometer ports.

5.2.2 Experimental study of light field

To study the impact of the light field, the twin-lattice beam is examined with a beam profiling
camera in order to detect local intensity fluctuations. Furthermore, the influence of an iris
diaphragm as well as the lattice depth and duration on the contrast is investigated.

Insertion of an iris

Without iris With iris

C = 0.43± 0.03 C = 0.52± 0.03

C = 0.42± 0.03 C = 0.53± 0.04

Table 5.1: Interferometric contrast
(∆p = 24ħhk) with and without the
insertion of an iris into the beam
path. Two measurements have been per-
formed for each case.

In order to ensure sufficient laser intensities at the
atomic position the center of the beam is only at a dis-
tance of about 3 mm away from the atom chip. Due to
the relatively large beam diameter of 7.5 mm the beam
gets clipped at the atom chip, which can be observed
when examining the beam with an infrared viewer be-
hind the chamber. To avoid clipping, an iris diaphragm
is inserted into the beam path directly behind the col-
limator for all interferometer realizations described
above.

The effect of the iris on the contrast is observed
by realizing an interferometer with ∆p = 24ħhk and
2T = 7.05 ms. The contrast is measured statistically in each case twice with and without the
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insertion of an iris into the beam path. Table 5.1 sums up the results. The measurement has
been performed at an earlier stage, where the parameters for Bragg and Bloch oscillation were
not fully optimized leading to a lower interferometric contrast. The other parameters equal
τBragg = 150µs,τload = 100µs,τacc = 800µs and τfree = 1 ms. The experimental data shows
an increase of the interferometric contrast by roughly 20% when inserting an additional
aperture into the beam path. As anticipated, the distortions caused by the clipping of the
beam at the atom chip lead to a loss of coherence. This can be mitigated by reducing the
aperture at the beginning of the beam path to prevent any cut-off by successive elements.

Distortion on the beam profile

In order to get a better understanding of the observed contrast loss, the beam profile of the
twin lattice light is examined carefully with a beam imaging camera (WinCam D, DataRay

Inc.). Figure 5.10 shows images of the beam directly behind the collimator (a) and after
passing through the vacuum chamber without (c) and with (d) the insertion of an iris into
the beam path. To reduce the optical power on the beam cam, which saturates at intensities
of µW/cm2, a neutral density filter is inserted into the beam path. For each image a vertical
and a horizontal cross section through the center of the beam is shown, to which a Gaussian
distribution is fitted.

Already the beam profile directly behind the collimator deviates from a perfect Gaussian
form and features intensity fluctuations in the order of 10%. These distortions can be caused
by the optical elements involved in the beam imaging, namely the optical fiber, the collimator,
the neutral density filter and the camera itself. The profile could neither be improved by a
change of the fiber nor by a tilt of the collimator, which should exclude any position dependent
effects. It is assumed that the distortions are a property of this type of collimators. However,
it is not possible to exclude any impacts of the image acquisition, since another beam cam
could not be tested.

The beam image without an iris shows distinct fringes running parallel to the atom chip
resulting from diffraction at the edge of the chip. They can also be distinguished well in the
cross section of the beam along the z-axis. The magnitude of the ripples is in the order of
10-15% of the maximal intensity. While the insertion of an iris suppresses diffraction at the
chip’s edge, the iris itself leads to a diffraction pattern and intensity modulation. Although
the measured interference contrast can be improved by adding an iris into the beam path, a
remaining influence of the light field on the contrast is very likely.

For the three beam images in Fig 5.10 the intensity inhomogeneity, also called roughness, is
calculated relative to the Gaussian fit to the cross section. Let h( j, k) be the measured intensity
at pixel number j, k in x and z direction, respectively. Assuming a vertical cross section
through the beam, i.e. j = const., and a Gaussian fit g j(k) the uniformity u is calculated by
the normalized root mean square (rms) deviation

uj =

√

√

√

√

1
N

N
∑

k=1

�

h( j, k)− g j(k)

g j(k)

�2

. (5.5)

The rms value for the inhomogeneity is calculated around the center of the beam in x and z
direction.
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Figure 5.10: Twin lattice beam with a diameter of 7.5 mm imaged with a beam camera directly behind
the collimator (a) and after passing through the vacuum chamber without (c) and with (d) an iris
inserted into the beam path. The graphs on the right and bottom of the beam image show cross sections
through the beam center ( ) as indicated by the red dashed lines. The blue lines ( ) in (a,c,d)
resemble a Gaussian fit to the data. (b) Trajectories for ∆p = 24ħhk ( ) and ∆p = 208ħhk ( )
relative to the beam.
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The beam which is imaged directly behind the collimator, features a roughness of 0.06 rms.
This value increases after propagation through the vacuum chamber. In case of an iris the
roughness caused by the diffraction pattern amounts to 0.11 rms in both directions. Without
an additional aperture the inhomogeneity along the horizontal direction only corresponds
to 0.08 rms, while along the vertical direction this values equals 0.11 rms. However, if one
only considers the upper half of the beam, where the distortions due to the atom chip are
strongest, the vertical roughness amounts to 0.14 rms.

Impact of lattice depth and duration

The impact of the light field and its distortions can be tuned via its intensity V0 and the inter-
action duration with the lattice. Therefore, these parameters have been varied to investigate
the contrast loss in combination with the light field.
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Figure 5.11: Influence of the lattice on the interference contrast. (a) Measured contrast for interfer-
ometers with ∆p = 24ħhk and 48ħhk as a function of the acceleration duration τacc. For each series
the free evolution time τfree is fixed at 0.2 ms or 1.2 ms, respectively. (b) Contrast for a ∆p = 12ħhk
interferometer, solely based on double Bragg diffraction, where a comoving lattice of depth V0 is
applied during free evolution and an interferometer with ∆p = 24ħhk where the lattice depth during
Bloch oscillations is varied.

The measurements described in the following have been realized with an arbitrary waveform
generator (ArbStudio 1104, see sec. 3.3.1), which enables the use of tanh pulses but features
a temporal delay. These properties lead to larger contrast for interferometers relying solely
on double diffraction, where a small timing delay is insignificant, whereas they decrease the
measured interference amplitude for interferometers using Bloch oscillations.

In Fig. 5.11(a) the contrast is plotted in dependence of the acceleration duration τacc for
∆p = 24ħhk and 48ħhk. For interferometers with ∆p = 24ħhk and free evolution times of
τfree = 0.2ms and 1.2 ms, respectively, the contrast decreases with τacc. Furthermore the
contrast is almost the same for an equal interferometer duration 2T , which is the case for
2τacc+τfree = const. In case of∆p = 48ħhk this effect seems to be saturated and no significant
influence on the contrast can be observed.

Additionally, the influence of the lattice depth is investigated as depicted in Fig. 5.11(b). In
case of ∆p = 24ħhk an increase of the lattice depth during Bloch oscillations from 3 Er to 4 Er

or 6.7 Er reduces the contrast by 40% or 50%, respectively. A similar behavior is observed
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when atoms in an interferometer only involving Bragg pulses (∆p = 12ħhk) are exposed to a
comoving lattice which features zero momentum transfer and is switched on for 2.6 ms during
free evolution time. A comoving lattice of depth V0 = 4.6 Er leads to a contrast reduction of
34%. In these experiments, the lattice depth was kept sufficiently low to not induce atom
loss due to transitions into other momentum states. In that way, the contrast should only be
affected by the light field and its distortions.

5.2.3 Simulations

The observed contrast loss with increasing ∆p is calculated taking into account two main
mechanisms, namely atom loss and light field distortions, as identified by the previously
described experimental studies. The simulations only rely on two experimentally determined
parameters: The lattice depth V0 during Bloch oscillations and the relative atom number
N/N0 in the interferometer output ports (Fig. 5.4(d)). Both of these parameters depend on
the momentum transfer ∆p. Within our model, the contrast decay is solely caused by two
effects:

• Losses during the Bloch oscillation sequences caused by non-adiabatic transitions which
reduce the number of atoms contributing to the interferometer signal.

• Light distortions of the twin-lattice beam resulting in decoherence and dephasing.

Atom loss model

This section contains our description about possible atom loss channels and how they impact
the contrast. We express the contrast as the minimum and maximum values of the relative
population P (Eq. (2.77))

C =
Pmax − Pmin

Pmax + Pmin
. (5.6)

In a simple picture, the total number of atoms in the interferometer output ports N = NSig+Nbg

consists of a signal NSig, which coherently oscillates with the interferometer phase ∆φ, and a
background or offset Nbg of atoms exhibiting no oscillations at all. For an equal distribution of
Nbg among the ports the extreme values for the relative population P can then be written as

Pmin =
Nbg/2

N
and Pmax =

NSig + Nbg/2

N
. (5.7)

This can be inserted into (5.6):

C =
NSig

Nbg + NSig
=

N − Nbg

N
. (5.8)

In order to arrive at a relatively simple formula for the contrast C as a function of the
experimental parameters the following assumptions are made:

(i) In principle, the spontaneous scattering rate depends on the relative velocity between an
atom and the lattice. It has been calculated for an atom copropagating in one of the twins and
for an atom at rest (sec. 2.2.4). The latter represents one possible loss channel. In case of our
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twin lattice (σpol = 0.2688, see sec. 2.2.1) both values only deviate on the few percent level.
Additionally, as explained in the beginning of this section, the vast majority of spontaneously
scattered atoms is spatially separated from the output ports and does not contribute to the
measured number N . Therefore, we approximate that spontaneous emission equally removes
atoms from Nbg and NSig with rate Ptwin and, hence, has no impact on the contrast. The initial
atom number N0 detected in the output ports of the sequential double Bragg interferometer
(∆p = 8ħhk) decreases solely due to spontaneous emission as

NSp(∆p) = N0 · e−Ptwin(V0)·τ , (5.9)

as shown in Fig. 5.13(c). While Ptwin varies with ∆p because of different lattice depths V0,
the Bloch acceleration duration τ is equal in all interferometers depicted in Fig. 5.6.

(ii) The contrast of the sequential double Bragg interferometer C(∆p = 8ħhk) = 0.706±
0.022 solely originates from the limited beam splitter efficiencies as affirmed by experimental
measurements (Fig. 5.8). Non-ideal efficiencies lead to a background of atoms Nbg and a
reduction of the signal NSig. With N(8ħhk) = N0 Eq. (5.8) can be rephrased to express the
background atom number

Nbg(8ħhk) = (1− C(8ħhk))N0. (5.10)

Previous phase sensitive measurements [68] confirm that the double Bragg interferometer
does not feature any significant parasitic interferometers which would lead to a spurious
signal with a dephased oscillation. Since each interferometer is based on the same double
Bragg processes we assume that the backgound Nbg(8ħhk) is present in all interferometer
realizations. For larger ∆p it is only reduced by spontaneous emission with rate Ptwin as

Nbg(∆p) = Nbg(8ħhk)e−Ptwin(V0)·τ = (1− C(8ħhk))NSp(∆p), (5.11)

where (5.9) and (5.10) have been used.
(iii) With the addition of Bloch oscillations, Landau-Zener losses reduce the signal NSig but

the lost atoms do not couple back into the output ports because of their spatial separation
(sec. 5.2.1). Since we assume that background atoms are not accelerated by the lattice, Nbg is
not influenced. In this way, the reduction in NSig lowers the contrast.

With these assumptions at hand, the contrast in (5.8) for any ∆p can be expressed in the
following way

Closs(∆p) =
N(∆p)− Nbg(∆p)

N(∆p)
= 1−

1− C(8ħhk)
N(∆p)/NSp(∆p)

. (5.12)

It solely depends on the experimentally measured contrast C(8ħhk) and number N(∆p) as
well as on the calculated spontaneous emission losses NSp(∆p).

Light field model

As detailed in the beginning of this section local intensity variations of the twin-lattice beam
may reduce the contrast as they lead to local dipole forces resulting in additional momenta
δp [44, 131, 190, 193]. These forces depend on the exact trajectory of an atom and, thus,
deviate between the different interferometer arms as well as across an atom cloud. The
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Figure 5.12: (a) Scheme for the simulated light field distortions. A Gaussian shaped beam is diffracted
at a sharp edge. (b) Vertical intensity profile of the simulated beam.

influence of this effect in our experiment is gauged via calculating the contrast for a simulated
intensity profile featuring spatial variations. The simulations have been carried out by Jan-
Niclas Siemß1.

In the experiment, light field distortions arise mainly due to diffraction at the iris and the
atom chip. Therefore, for our simulations we use a Gaussian shaped beam that has been
diffracted at a sharp edge of an opaque screen [194] giving rise to a normalized intensity
distribution I(x , y, z)/I0 (Fig. 5.12). The resulting dipole potential of the beam is scaled by the
lattice depth V0(∆p) employed for the different interferometer realizations in the experiment.
For a certain trajectory s, i.e. an interferometer arm, the additional momentum in direction
j = x , y, z is calculated by integrating the dipole force along s during the interferometer
duration t = [0,2T]

pj,s =

∫ 2T

0

V0

I0

∂

∂ j
I (x(t), y(t), z(t))dt . (5.13)

In this way, the differential momentum δpj = pj,arm1 − pj,arm2 between both interferometer
arms can be determined. The trajectories, i.e. x(t), y(t), z(t), are depicted in Figure 5.4(a)
for different momentum separation ∆p. δpj implicates a phase difference δϕ j = δpj · j/ħh
which affects the contrast as in [192]

C =

�

�

�

�

∫∫∫

|Ψend(x , y, z, t = 2T )|2 e−
i
ħh (δpx ·x+δpy ·y+δpz ·z)dxdydz

�

�

�

�

. (5.14)

Hereby, |Ψend(x , y, z, t = 2T )|2 describes the density distribution of the interferometer output
ports in momentum states 0ħhk,±2ħhk at the end of the interferometer and the integral
is evaluated over the positions in the output ports. Their size is given by experimental
measurements which do not indicate any deformation of the cloud caused by the light field
within our detection resolution. Therefore, |Ψend(x , y, z, t = 2T )|2 is given by a Thomas-Fermi
distribution.

In addition to the considerations mentioned above, we take into account the spatial ex-
tent of the atomic wave packet. According to the initial spatial distribution of the cloud

1 Institut für Theoretische Physik & Institut für Quantenoptik, Leibniz Universität Hannover
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|Ψinit(xi , yi , zi , t = 0)|2 at the beginning of the interferometer slightly different single-particle
trajectories x(t), y(t), z(t) arise. For each of these trajectories the differential momentum
δpj = δpj(xi , yi , zi) can be calculated according to (5.13) which in turn leads to different
contrast values C(xi , yi , zi) in Eq. (5.14). Finally, the contrast value Clight(∆p) for one inter-
ferometer realization is obtained by averaging over these values weighted with the initial
density distribution |Ψinit(xi , yi , zi , t = 0)|2.

Comparison with experiment
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Figure 5.13: (a) Experimentally measured contrast in comparison to the calculated results. The
simulated contrast is the product of a contrast decay arising through atom losses and the effect of
a distorted Gaussian beam with inhomogeneities of 9% V0. (b,c) The measured lattice depth V0 and
relative atom number N/N0 serve as input parameters for the simulations. Additionally, the residual
atom number NSp due to spontaneous emission is taken into account.

To compare the simulations with the experiment, the result of both models is multiplied
C(∆p) = Closs(∆p) · Clight(∆p). In order to match the experiment results the contrast decay
Clight(∆p) due to distortions has to be increased. Comparing the intensity variations of the
simple model of a clipped Gaussian beam I(x , y, z) with the light field of the lattice beam
depicted in section 5.2.2 already indicates that the model underestimates the observed
distortions. The simulated beam features inhomogeneities merely in the order of 1%, while
they correspond to roughly 10% in the experiment, where diffraction not only occurs at a
single edge but at different apertures. The simulated intensity profile I(x , y, z)/I0 is fixed for
the given assumption of a Gaussian beam which is cut off a sharp edge. Therefore, the dipole
potential is scaled up by a factor of 9 in order to increase the distortions to an absolute value
of 9% V0. In case of a perfect Gaussian beam, an increase of the lattice depth has a vanishing
effect on the contrast.

As depicted in Figure 5.13 the simulated contrast is in very good agreement with the
measured contrast values. The contrast drop for ∆p = 408ħhk results both from the increase
in the applied lattice depth as well as from the significantly lower measured atom number
compared to ∆p = 308ħhk. Based on our calculations we assume that the limited transfer
efficiency as well as light distortions in the order of 9% V0 currently represent the main
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limitations in our experiment. Both of these limits are of technical nature and it is possible
to overcome them in a dedicated setup. A decrease of the intensity fluctuations to a level of
0.5% for example, would maintain a contrast of Clight = 0.9 up to∆p = 408ħhk. The following
section 5.3 illustrates a first demonstration, how a larger contrast can be achieved with a
smaller beam diameter which decreases the amount of light distortions.

5.3 Small beam interferometer
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Figure 5.14: (a) Beam with a diameter of 3.3 mm imaged with a beam camera after passing through
the vacuum chamber. (b) Trajectories for ∆p = 24ħhk ( ), ∆p = 208ħhk ( ) and ∆p = 408ħhk
( ) relative to the beam.

As we have seen so far, the light field presents the main reason for a limited contrast, mainly
caused by the atom chip itself or an additional aperture intended to prevent clipping at the
chip. However, the proximity of the chip to the atom interferometer can not be changed easily.
In order to avoid the cut-off at the chip, the beam center would have to be positioned much
below the interferometer region. This would lead to significantly lower laser intensities at the
atomic trajectories preventing large accelerations in the lattice.

In order to confirm that distortions are mainly responsible for the loss of contrast, the
1/e2 beam diameter is reduced from 7.5 mm to 3.3 mm by changing the fiber collimator.
The beam profile behind the chamber with the new collimator (SuK, 60FC-4-A15-02) is
depicted in Fig. 5.14. In contrast to the previous configuration, the beam does not feature any
diffraction patterns after passing through the vacuum chamber. However, the beam profile
also deviates from a perfect Gaussian form, which is mainly a property of the collimator itself.
In this new configuration different twin-lattice interferometers similar to the ones described
in section 5.1.2 are realized.

To reduce the interferometer region, the lattice duration is initially set to τacc = 1ms
and the loading times to τload = 150µs which results in a total duration of 2T = 7.7ms.
Furthermore, the interferometer is not initiated directly after the adiabatic rapid passage but
with a delay of 2 ms time-of-flight. This increases the proximity to the beam’s center and, thus,
the laser intensity at the beginning of the interferometer which otherwise would be too low.

In this way, twin-lattice interferometers with ∆p = 8, 24, 88, 128 and 208ħhk are realized.
Larger momentum separations are not possible within the limited time of τacc = 1 ms due to
the available laser power. Accelerations up to momentum splittings of 308 and 408ħhk are
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therefore performed with τacc = 2 ms. The total interferometer time of 2T = 11.7 ms together
with the 2 ms delay reduces the remaining time for the atomic clouds to separate spatially
after the last interferometer pulse to 7.4 ms. Due to the small spatial width of the delta-kicked
BEC the interferometer ports are still sufficiently isolated for a spatial detection. The large
intensity gradient of the small beam represents a challenge for the implementation of these
interferometers, since the lattice depth changes significantly during free fall. Especially in
case of smaller momentum splittings excessive lattice depths cause atom losses due to the
interaction with standing waves. To compensate for the strongly changing lattice depth, the
laser intensity is not constant during one acceleration sequence but linearly ramped during
τacc. The ramp is optimized for highest transfer efficiency.
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Figure 5.15: Results and parameters for the twin-lattice interferometer realized with a beam diameter
of ∅beam = 3.3 mm in dependence of the momentum separation ∆p. (a) Contrast and technical noise
extracted from the Gaussian fit parameters. For comparison the results from the data series with
∅beam = 7.5 mm (sec. 5.1.3) are plotted as well. (b) Width σδT and center shift. (c) Average applied
lattice depth V0 during Bloch oscillations and (d) normalized atom number in output ports. Up to
∆p = 208ħhk the interferometer time equals 2T = 7.7 ms. For ∆p = 308ħhk and 408ħhk the duration is
increased to 2T = 11.7 ms.

The results from the statistical contrast analysis, the utilized lattice depth V0 as well as
the normalized atom number N/N0 in the interferometer ports are presented in Fig. 5.15.
The amount of data taken to evaluate the contrast of these interferometers is slightly lower
compared to the data series with ∅beam = 7.5 mm which leads to a larger uncertainty in the
fit parameters. The relative atom numbers during the optimization of each step are depicted
in Fig. 5.16. Since the available acceleration time τacc is twice as large for ∆p = 308ħhk and
∆p = 408ħhk compared to interferometers with smaller momentum splitting, the respective
atom numbers are larger than for ∆p = 128ħhk and ∆p = 208ħhk.

In general, the contrast values obtained with a twin-lattice beam of 3.3 mm diameter are
larger than the ones measured in the first data series (sec. 5.1.3). This confirms the assumption
of light field distortions being mainly responsible for the observed contrast loss. However,
there are other mechanisms to consider: Already the ∆p = 8ħhk interferometer exhibits a
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contrast 20% higher than measured in the first series. Since the diffraction efficiencies in
this case were not larger compared to the first series, this might be explained by a lower
interrogation time T . Also, an influence of the superior light field can not be excluded. For
small momentum separations up to 208ħhk it has to be noted that the acceleration durations
were only equal to τacc = 1ms. In section 5.2.2 it could be observed that for ∆p = 24ħhk a
bisection of τacc increases the contrast by roughly 75%. However, this effect saturated already
for ∆p = 48ħhk.

Smaller interrogation durations are not sufficient to explain the increase in contrast ob-
served with a beam diameter of 3.3 mm. This confirms that light field distortions are mainly
responsible for an increasing constrast loss with ∆p. A small beam, that does not get clipped
at apertures or the atom chip, increases the interference contrast despite its strong intensity
gradients. The results presented in this section are only a first study to demonstrate the ability
to increase the contrast in our setup and enable the realization of interferometers with even
larger momentum separation. The large intensity gradient and small interrogation area of
the 3.3 mm beam, however, do not present ideal conditions for further improvements. In the
next section possible improvements are introduced which might pave the way for momentum
splittings in the order of 1000ħhk.
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Figure 5.16: Relative atom number observed at a specific step during the optimization of the interfe-
rometer sequence. A step either corresponds to a Bragg process (1,2,5,6,...) or a Bloch acceleration
(3,4,8,9).

5.4 Future improvements for large momentum interferometry

Currently, the performance of the twin-lattice interferometer is restricted by distortions of
the light field as well as limited transfer efficiencies. In the following, some ideas will be
presented to overcome the current limitations and increase the possible momentum transfer.

The combination of the twin-lattice interferometer with the atomic fountain as developed
within QUANTUS-1 [88, 116] seems promising. The fountain employs a vertical lattice which
is retroreflected from the atom chip. Via a combination of Bloch oscillations in a single lattice
and double Bragg diffraction, an atomic cloud falling towards the ground can be launched up
again to enlarge the time-of-flight by roughly a factor of three. The small velocity around the
fountain’s apex is particularly useful for a horizontal beam since it increases the available
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interrogation time within the beam or allows for the use of a smaller beam diameter. Longer
interferometer times can be used to increase the duration and thereby the adiabaticity of the
Bloch processes to reach even larger momentum separations. In the current setup, however,
the implementation of a fountain leads to a momentum broadening caused by defects on the
atom chip [116]. The broadening can only be minimized but not fully avoided by changing the
beam’s position relative to the chip. It diminishes the efficiency of double Bragg diffraction as
well as the coherence of the beam splitting. The combination of a twin-lattice interferometer
with the fountain therefore already revealed a vanishing contrast for ∆p = 88ħhk. In a
setup with a decent retroreflection mirror for the vertical light field, however, the launch
mechanism should not affect the interferometric contrast but instead offer several advantages
as mentioned above.

5.4.1 Atom loss

Spontaneous emission An atomic fraction of 18% is lost due to spontaneous scattering
in case of the ∆p = 408ħhk interferometer. Spontaneous emission losses lead to a decrease
of the signal-to-noise ratio (SNR) which scales with

�
N . If the SNR becomes smaller than

the detection noise, it is not possible to detect a signal anymore. The application of a larger
detuning∆ represents the only way to decrease the scattering rate Ptwin which scales inversely
proportional with the square of ∆. Since the lattice depth V0 is inversely proportional to ∆
the laser intensity has to be increased for larger ∆ in order to maintain a sufficiently large
lattice depth.

Bragg beam splitting efficiency The efficiency for sequential Bragg pulses can be increased
by employing an adiabatic rapid passage with a tanh-shaped intensity envelope as detailed in
section 4.4.2. However, it is not possible to apply this method to the symmetric double Bragg
beam splitter. Here, only a proper alignment of the twin-lattice beam in horizontal direction
along with an atom source exhibiting a small momentum distribution and offset velocity can
improve on the efficiency, which already reaches very good values of 98.8% per ħhk.

Transfer efficiency during Bloch oscillations The Bloch state does not represent the
optimal solution for high transfer efficiencies with Bloch oscillations [139]. Better survival
probabilities can be achieved by preparing the atoms in a Wannier-Bloch state [138], which
can be experimentally achieved by adiabatically switching on and off the acceleration instead
of applying a uniform force. A sudden switch-on of the acceleration leads to a sudden shift of
the position of the potential minimum and induces oscillations of the atoms in the lattice.
These can be suppressed by an adiabatic turning-on. For a lattice depth of V0 = 50 Er and a
Bloch period of TB = 10µs already a linearly increasing acceleration for few tens of µs before
and after the constant acceleration significantly increases the efficiency [139]. A similar effect
can be achieved by introducing a phase shift as tested in sec. 4.3.5.

An adiabatically increasing lattice acceleration is in particular important for the twin-lattice
configuration, where for small separations ∆p large lattice depths and forces increase the
losses caused by parasitic standing waves (sec. 4.3.3). Furthermore, a constantly increasing
acceleration leads to an even faster scaling of the space-time area enclosed by the interfero-
meter trajectories proportional to T4 [58]. Currently, a non-linear frequency change cannot
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be implemented technically, which is why the acceleration sequence at times had to be split
into parts of different absolute acceleration. New devices such as the RF synthesizer MOGLabs
XRF021 should in principle open up the possibility of applying arbitrary frequency ramps.

5.4.2 Light field

Beam shaping The beam itself presents a major limitation for the realization of twin-
lattice interferometers with large momentum transfer. Large beam diameters require high
laser powers and might lead to clipping at various apertures or the atom chip. In contrast, a
small beam restricts the available interferometer region, where sufficiently large lattice depths
can be reached, and thus limits the interferometer duration. Furthermore, large intensity
gradients of Gaussian beams impede an efficient acceleration since they make it difficult to
properly adjust the lattice depth. In the current setup, intensity inhomogeneities across the
delta-kick collimated cloud are negligible but might become important when using smaller
beam sizes or larger clouds.

A top-hat beam features a uniform intensity distribution in the central part as well as a
relatively sharp cut-off at the edges. Both of these properties are beneficial for interferometry.
However, the creation of the uniform intensity profile involving a multitude of optical elements
might lead to inhomogeneities of the laser phase and therefore has to be investigated carefully.
In a retroreflected scheme the requirements on the phase homogeneity can be relaxed and
only the relative phase arising due to the propagation between atom cloud and mirror has to
be considered.

In Ref. [195] a top-hat beam is examined regarding its intensity and phase profile as
well as its application as a beam splitter for atoms. Calculations show that the relative phase
inhomogeneities for a propagated ideal top-hat beam, which is expressed as a sum of Laguerre-
Gauss modes, are sufficiently low with values well below 1 mrad in the central part of the
beam. Experimentally, the beam shaping is done via an assembly of aspheric optics fabricated
by the Asphericon Company. Beam shaping is also possible with a simple apodizing filter [46]
or via spatial light modulators [196]. However, these suffer either from a significant loss of
laser intensity or a bulky setup including potential drifts and limited peak intensities. In [195]
the application of the top-hat beam in combination with a source of laser-cooled atoms led
to significantly enhanced Rabi oscillations as well as a larger interferometric contrast. In
this case, the advantages of the top-hat beam mainly arise because of the large cloud size
compared to the Gaussian beam waist leading to a varying Rabi frequency across the cloud.
However, the operation of an interferometer with laser-cooled atoms and an interrogation
time of 2T = 294 ms at a contrast of 35% demonstrates that the top-hat beam can be applied
in highly sensitive atom interferometric measurements.

Optical cavity Using an optical cavity provides another option to improve on the beam
quality and overcome dephasing caused by the optical lattice [130, 197]. Because of its
resonant enhancement, it requires only a small amount of input power. Moreover, a cavity
offers spatial filtering of the interferometer beam to suppress wavefront distortions as well as
an intrinsic alignment of the beams. On the downside, the operation requires atoms to stay in
the relatively small cavity mode volume.
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AC-Stark compensation Residual imperfections of the lattice beam can be compensated
by employing an absolute light shift compensation [47, 193]. Intensity gradients lead to
dipole forces since the energy of an atomic state is shifted proportional to the local laser
intensity, and induce an additional phase shift which can vary across the cloud and between
the interferometer arms leading to a contrast reduction. To suppress this effect a contribution
with opposite single-photon detuning ∆ can be added to the lattice beam. Being out of
resonance it does not drive any transitions, but passes through the same optics as the beam for
interferometry and therefore features equal distortions. By adjusting the relative intensities of
the red- and blue-detuned beam the light shift of both parts can cancel each other out [47].
The second frequency contribution can be established by a second laser or modulation with
an electro-optical modulator.
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An important lever for increasing the sensitivity of an atom interferometer is the interrogation
time. In a Mach-Zehnder-type geometry, the scale factor increases quadratically with the
duration T between beam splitter and mirror pulse. Seconds of interrogation time can be
realized in large atomic fountains [35, 47], under microgravity conditions [39–41] or even
in space [42]. Alternatively, atoms can be suspended against gravity in optical lattices [130,
131, 190] or in an optical or magnetic waveguide [36–38]. These techniques are in partic-
ular promising for the construction of compact inertial sensors for mobile applications on
ground. While the twin-lattice interferometer does not provide sufficient confinement for the
suspension against gravity, it already constitutes a type of guided interferometer. Here, the
atoms spend the majority of the interrogation time in a lattice, contrary to typical light-pulse
interferometers which exhibit a negligible beam splitter duration. With an increase of the
lattice depth one could create an optical lattice acting simultaneously as a guide and a beam
splitter as proposed in [70]. An increase in laser power entails the use of a larger detuning to
keep spontaneous emission losses at a sufficiently low level.

In this chapter, a step towards atom interferometry in an optical waveguide is realized
within QUANTUS-1, namely the generation and loading of a far-detuned optical dipole trap.
While atom-chip traps feature steep gradients and allow for fast and efficient evaporation,
a dipole trap provides a more harmonic potential which is beneficial for the realization of
delta-kick collimation via optical lensing [86]. Additionally, it offers the possibility to steer the
atomic interactions by an external magnetic field via Feshbach resonances [105] and to trap
different hyperfine levels enabling the realization of a magnetometer inside the trap [198].
At the same time, loading an optical dipole trap from an atom chip within QUANTUS-1,
serves as a testbed for the future MAIUS-2/3 missions [41, 199]. In these missions atom
interferometry with rubidium and potassium is to be performed during a parabolic flight
on a sounding rocket. The two species will first be trapped and cooled with an atom chip,
before they are transferred to an optical dipole trap. In comparison to a magnetic trap, the
corresponding possibility to tune the atomic interactions via Feshbach resonances allows not
only for efficient evaporation of potassium via sympathetic cooling [106] but also for a better
spatial overlap of both species [107]. The latter is important since a displacement between
both clouds represents a main source for systematic uncertainties in a dual-species atom
interferometer. Additionally, both species can be optically lensed with the dipole beam.

This chapter starts with the theoretical concepts for optical dipole trapping in a single
red-detuned focused beam (sec. 6.1). It is followed by a short description of the setup and
integration of the dipole trap into the QUANTUS-1 experiment (sec. 6.2). Finally, in section 6.3
the loading procedure from the chip trap into the dipole trap is investigated in detail as well
as properties of the dipole trap such as lifetime, trap frequencies and expansion rates.
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6.1 Optical dipole traps with far-detuned light

A dipole trap is based on the atomic dipole interaction with the laser light field. The dipole
potential Vdip and scattering rate PSp have already been introduced in section 2.2.1

Vdip(r) =
3πc2

2ω3
0

Γ

∆
I(r), PSp =

Γ

∆

Vdip(r)

ħh
. (6.1)

They depend on the resonance frequency ω0, the line width Γ , detuning ∆ and intensity I . In
the following we will consider a far-detuned light field, where radiation pressure caused by
photon scattering is negligible compared to the dipole force [134].

In case of a red-detuned light field the dipole force points in direction of higher intensity and
the focus of a single laser beam represents an easy implementation for a three-dimensional
optical dipole trap. The focused beam trap was first proposed by Ashkin in 1978 [5] and
could be realized experimentally in 1986 with sodium atoms [200]. Since trap depths are in
the microkelvin range, the atoms have to be precooled by means of a magneto-optical trap.
The intensity distribution of a focused Gaussian beam with a total power P propagating along
the y direction depends on the distance r =

�

x2 + y2 from the center as

I(r, y) =
2P

πw2(y)
exp

�

−2
r2

w2(y)

�

, (6.2)

where the beam waist w(y) given by the 1/e2 radius can be calculated with the minimum
waist w0 and the Rayleigh length yR = πw2
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Close to the trap center the optical potential of a focused Gaussian beam can be approximated
by a harmonic oscillator as illustrated in Fig. 6.1(a)

Vdip(r, z)≈ V0
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This is valid for an atomic cloud with a thermal energy kB T significantly smaller than the
potential depth V0, whose spatial extent in radial and axial direction is small compared to
the beam waist and the Rayleigh length. The trap depth is commonly expressed in units of
temperature Vdip/kB, where kB is the Boltzmann constant. To efficiently load atoms into the
dipole trap, their temperature should be about an order of magnitude smaller than V0/kB. In
the harmonic approximation, the trap frequencies in radial and axial direction are given by
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. (6.5)

The ratio between radial and axial confinement follows

ωr
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=
�
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√2π
λ

yR. (6.6)
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Figure 6.1: (a) Potential of a dipole trap Vdip along the radial direction compared to the harmonic ap-
proximation Vharm calculated for the following parameters: P = 200 mW, w0 = 25µm and λ= 1064 nm.
(b) Sum of dipole and gravitational potential V = Vdip + Vgrav along the z-axis for three different laser
powers.

Since usually yR� w0 the trap is highly anisotropic and exhibits a much larger confinement
in radial than in axial direction. For typical parameters the radial trap frequencies exceed
the axial ones by two orders of magnitude. To suspend the atoms against gravity, the trap is
therefore commonly aligned horizontally. In the presence of an external gravitational field
along the z-axis the atoms are subject to a total potential [201]

V = Vdip + Vgrav with Vgrav = mgz. (6.7)

In consequence, the potential exhibits a tilt which reduces the effective trap depth as depicted
in Fig. 6.1(b). Additionally, the position of the potential minimum is slightly shifted along the
y-axis by 2g/ω2

r , the so-called gravitational sag.
The focused single-beam trap with its weak axial confinement is easy to implement exper-

imentally, but might not be the best choice for trapping atoms. Alternatively, dipole traps
can be generated by retroreflecting the beam to create a standing wave offering very strong
confinement in axial direction [134]. Another possibility represent crossed-beam traps which
also overcome the very low trap frequencies in the axial direction of a single beam trap.
Overlapping two beams with orthogonal polarizations and equal waist under an angle of
90◦ generates a trap with almost isotropic confiment. These traps are well suited to perform
evaporative cooling, since they exhibit higher collision rates for rethermalization [134]. To
achieve a larger trapping volume, the intersection angle can chosen to be smaller than 90◦.

6.2 Experimental setup

In this section, a short description of the optical dipole system for QUANTUS-1 is given. Since
the system simultaneously serves as a testbed for the MAIUS mission, some components
have been designed for the application on a sounding rocket featuring a high mechanical
and thermal stability as well as a compact volume. More information on the optical setup as
well as a charactization and environmental tests performed by Simon Kanthak can be found
in [202]. A wavelength of λ = 1064nm is chosen for dipole trapping which constitutes a
compromise between sufficiently low scattering rates and sufficiently high trap depths given
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that the optical power available aboard a sounding rocket is restricted. Furthermore, the
wavelength choice permits to employ the same optics as for 780 nm laser light.

Laser and distribution

NPRO

Isolator

Distribution

(Switch & AOM)

y

z

x

collimator
& mount

translation

plano concave lens
( f = −50mm)

plano convex lens
( f = 75 mm)

100 mm

(b)(a)

Figure 6.2: Dipole trap setup in QUANTUS-1. (a) The light emitted from the NPRO laser passes an
isolator is guided to the distribution module via an optical fiber. The module houses a switch and an
AOM to control the laser intensity. (b) Optical assembly for alignment of the dipole beam.

Whereas a micro-integrated laser module (MILAS) developed by the Ferdinand Braun Institut
is employed during the MAIUS mission, the ground testbed is operated with a nonplanar ring
oscillator (NPRO) Nd:YAG laser. Both devices have similar properties and exhibit an output
power of 550 mW at 1064 nm. The laser is mounted on a breadboard together with an optical
isolator to prevent back-coupling of the light (Fig. 6.2(a)). The emitted light is coupled into a
polarization-maintaining fiber and guided to the distribution module. The module contains
a fiber coupled optical switch (LEONI) with two output ports which is used as an optical
shutter exhibiting an extinction of -88 dB and a rise-and-fall time of roughly 5 ms [202]. The
second port offers the possibility of monitoring the power of the dipol laser. Additionally,
a fiber-coupled AOM (Gooch & Housgo) is used to control and shape the amplitude of the
dipole beam. The AOM is fed with a 150 MHz signal generated by a DDS. Its amplitude is
modulated via an attenuator (MiniCircuits ZMAS-3) which is controlled by an arbitrary
waveform generator (ArbStudio 1104). This allows the realization of linear ramps or a
sinusoidal signal required for the determination of trap frequencies. The limited response time
of 20µs associated with the attenuator is not critical in case of the dipole trap, where typical
switching times lie in the millisecond range. From the distribution module, the light is guided
to the viewports of the vacuum chamber via a 10 m long single mode fiber (Thorlabs).

Optomechanical assembly

The optomechanis required for the optical dipole trap are installed along the y-axis replacing
the optical assembly used for beam splitting along the horizontal axis with the twin lattice.
The anti-reflection coating of the vacuum windows also provides transmission for the near-
infrared spectrum. Similar to the interferometry components, the optical dipole system is
based on a cage system (Thorlabs) as depicted in Figure 6.2(b). The 1064 nm light is emitted
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from a fiber collimator (SuK) featuring a small beam diameter of 675µm. The collimator is
mounted in a kinematic mount to adjust its angle. The beam is focused to a waist of 25µm
by passing a plano concave and a plano convex lens with focal lengths of f = −50mm and
f = 75mm, respectively. Both lenses are mounted in a lens tube with a variable distance of
roughly 100mm to determine the size of the beam waist. The focus position of the dipole
beam along its propagation axis can be adjusted by moving the lens tube along the y direction.
The focus position in x and z direction is adapted with a translation mount.

The dipole beam is measured with a beam profiling camera to determine its waist and
focus position [202]. While the focus is at the expected position, the beam waist is slightly
larger than specified exhibiting a value of w0 ≈ 35µm. This is caused by deviation of the
dipole beam from a perfect Gaussian beam characterized by a beam quality factor of M2 �= 1.

6.3 Characterization of the dipole trap in QUANTUS-1

fx (Hz) f y (Hz) fz (Hz)

Chip trap 17 47 31

ODT, w0 = 25µm 638 6.1 638

ODT, w0 = 35µm 326 2.2 326

Table 6.1: Trap frequencies of the shallow chip
release trap compared to the dipole trap (ODT)
with P = 200 mW for the specified and measured
waist, w0 = 25µm and w0 = 35µm, respectively.

In this section, the experimental realization
of a dipole trap in QUANTUS-1 is described.
First, the atoms have to be efficiently loaded
into the dipole trap, while atom loss and heat-
ing is to be minimized. In case of loading from
a MOT, this step can be optimized by varying
several parameters such as cooling light in-
tensity and detuning as well as dipole trap
depth and alignment, which has been stud-
ied in detail [203, 204]. In our configuration,
the depth of the dipole trap does not suffice
to load atoms from a MOT. Instead, a Bose-

Einstein condensate is transferred to the dipole trap which at the same time allows to profit
from the fast evaporation on the atom chip. Overlapping the focus of the dipole trap with a
waist of 25µm with the BEC having about the same size represents a challenge and requires
precise alignment. The transfer is further impeded by the different aspect ratios, i.e. the mode
mismatch of both traps possibly which might lead to atom loss and heating [167]. Table 6.1
compares the trap frequencies of the shallow release trap with the ones of the dipole trap. The
latter have been calculated for an optical power of 200 mW, a specified waist of w0 = 25µm
and a Rayleigh length of yR = 1.85 mm. Table 6.1 additionally shows values for the measured
waist of w0 = 35µm, corresponding to a Rayleigh length of yR = 3.6 mm which deviate from
the specified ones by roughly a factor of two. In both cases, the dipole trap frequencies in
radial and axial direction differ by two orders of magnitude. While the atom chip features a
weak axis along the x direction, the dipole trap exhibits a weak confinement along the y-axis.

In addition to the loading procedure, this section comprises a characterization of the dipole
trap which includes measurements of expansion rates, lifetime as well as trap frequencies.
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6.3.1 Spatial overlap of dipole and magnetic trap

One possible way to achieve a spatial overlap between a condensed cloud and a focused
dipole beam is to image both positions on a CCD camera [205]. Given that the BEC is in the
focal plane of the camera, the focus of the dipole beam can be adjusted by minimizing its
size so it overlaps with the camera focus. This procedure has already been implemented to
transfer an atom cloud from a chip trap to a dipole trap [206, 207]. Due to the absence of a
detection system along the y-axis another procedure is performed within QUANTUS-1, which
is depicted in Figure 6.3.

100µm

y
z

250µm 100µm 100µm

(a) (b) (c) (d)

Figure 6.3: Alignment of the dipole beam. (a) Initially, a near resonant 780 nm beam is overlapped
with the atomic cloud by maximizing spontaneous emission visible as a halo next to the cloud. (b)
Focusing this beam leaves a trace of low atomic density in a large non-condensed cloud. (c) After
alignment of the focused 780 nm beam the 1064 nm dipole laser is attached to the optics and already
a significant amount of atoms can be optically trapped. (d) Further adjustment of the position of the
dipole beam and the magnetic trap leads to a transfer efficiency of almost 100%.

First, the 1064 nm light is replaced with 780 nm laser light resonant to the D2 line of
87Rb. The bandwidth of the utilized optics is sufficiently broad to be employed with both
wavelengths. The lens is removed and the collimated 780 nm beam is aligned horizontally
by deflecting it via a pentaprism from a water surface analog to the procedure described in
section 3.3.2. The overlap with the atomic cloud is optimized by maximizing spontaneous
emission scattering with the translation mount. Hereby, light pulses with a power of 2.5 mW
and a duration of 500µs are applied. Absorption from the beam and subsequent isotropic
spontaneous emission lead to the formation of a halo next to the original cloud (Fig. 6.3(a)).
To prevent any damage from laser induced heating to the atom chip, the BEC is released from
the shallow chip trap (IBias = 0.36 A, ωx ,y,z = 17, 47, 31 Hz) which exhibits a larger distance
from the chip surface, namely 700µm, compared to steeper traps (Fig. 4.2). The resonant
laser pulse is applied after a time-of-flight of 6 ms leading to an additional distance of 180µm
from the atom chip. A larger distance between chip and dipole trap also avoids clipping of
the dipole beam which would lead to a serious degradation of the beam quality.

Subsequently, the lens is inserted into the optical assembly to achieve a more precise
alignment, and the focused 780 nm beam is again overlapped with the BEC by means of
spontaneous emission. The vertical position of the focused beam can be monitored well by
employing a resonant laser pulse to a large atom cloud, where its position corresponds to a trail
of lower atomic density caused by spontaneously scattered atoms (Fig. 6.3(b)). A large cloud
extent is achieved, when evaporative cooling is not performed and non-condensed atoms are
released from the chip-based Ioffe-Pritchard trap (see sec. 3.2.1). The high temperatures of
these non-condensed atoms, however, do enable trapping with the dipole trap configuration.
Therefore, the vertical position of the dipole trap is moved to the position of the shallow
release trap at a distance of 700µm from the chip surface.
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At this point, the 1064 nm laser light is connected to the fiber collimator. Without any
further alignment, already a fraction of atoms can be trapped optically (Fig. 6.3(c)). For an
adiabatic loading the power of the dipole beam is ramped from 0 mW to 260 mW within
tramp = 10 ms. The power is constant for another 20 ms, of which the last todt = 7 ms constitute
a pure dipole trap without any magnetic trap present (see Fig. 6.4). Atoms, which are not
held in the dipole trap can therefore be detected a few hundred of micrometers below the
optically trapped cloud. Further adjustment of the beam position in x and z direction along
with a slight adjustment of the location of the chip trap via the K2 coils allows for a transfer
efficiency close to 100% from the magnetic into the dipole trap (Fig. 6.3(d)). The loading
efficiency can be further increased by adjusting the durations of the ramp of the dipole laser
power as well as the temporal overlap with the magnetic trap which will be investigated in
the next section.

todt
tramp

ttofttrap

magnetic release trap

dipole trap
detection

Figure 6.4: Temporal sequence of loading into the dipole trap and subsequent time-of-flight.

6.3.2 Optimization of dipole trap loading
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Figure 6.5: Optimization of the transfer between chip trap and dipole trap. The relative number of
optically trapped atoms is recorded for various temporal overlaps ttrap of the optical and magnetic
release trap (a) as well as for different ramp durations tramp of the dipole power (b). In all cases
ttof = 6ms and todt = 18ms.

Apart from the spatial overlap between dipole trap and chip trap, the loading efficiency
depends on additional parameters such as temporal overlap of both traps and the trap depth.
For a more adiabatic loading into the dipole trap and to minimize heating, the laser power,
corresponding to the trap depth, is linearly ramped up at the beginning of the magnetic release
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trap during tramp as schematically depicted in Figure 6.4. Hereby, a fully adiabatic transfer
from the magnetic potential into the dipole potential is hindered by the mode mismatch of both
traps. Dipole and release trap are then simultaneously operated for a few more milliseconds
before the chip trap is switched off. The total duration of the release trap corresponds to ttrap.
The dipole trap is kept on for a duration todt to separate the trap volume from atoms that
have not been trapped optically. Its total duration therefore equals ttrap + todt

Figure 6.5 illustrates the gain in loading efficiency by increasing the temporal overlap
between both traps ttrap as well as the ramp duration tramp. In all cases, the dipole trap is
operated for a time todt = 18ms after switching off the magnetic release trap. The atom
number is measured after a time-of-flight of ttof = 6ms. Figure 6.5(a) depicts the relative
number of optically trapped atoms for three different ramp durations tramp = 15 ms, 32 ms,
and 100 ms in dependence of the temporal overlap of release and dipole trap scaling with ttrap.
For values of ttrap smaller than 100 ms a longer overlap between magnetic and dipole trap
increases the trapped atom number. For ttrap > 100 ms and a given ramp duration an increase
of the temporal overlap does not lead to a gain in transfer efficiency. A dependence on the
phase of the oscillation in the release trap, which results in slightly different center-of-mass
positions and velocities (see sec. 4.1.1) can not be observed.

In Figure 6.5(b) the ramp duration tramp is variied for constant durations ttrap = 41 ms,
103 ms, and 205 ms. In general, longer ramps are beneficial since they lead to a more adiabatic
transfer. The loading efficiency increases with tramp and reaches 100% for durations tramp �
90 ms. For the following measurements, unless stated otherwise, a trap duration of ttrap =
103ms together with a ramping time of tramp = 90 ms is employed.
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Fig. 6.6: Relative number of optically trapped
atoms depending on the applied laser power.
ttrap = 100 ms, tramp = 90ms, todt = 18ms,
ttof = 6ms. A power dependence of N ∝ P3/2

can be recognized.

The loading efficiency is additionally recorded
for different laser intensities, corresponding to
different trap depths and frequencies of the
dipole trap according to (6.5). As depicted in Fig-
ure 6.6, for small laser intensities (P < 50mW)
the trap depth is not sufficient to capture atoms
and suspend them against gravity. For 50 mW<
P <150 mW the trapped atom number increases
with the laser power as atoms with higher en-
ergy can be loaded into the dipole trap. In this
region, the trapped atom number shows a power
dependence of P3/2 as in [208], which can be
theoretically derived by assuming a Maxwell ve-
locity distribution for the atoms. For laser pow-
ers above 200 mW the loading efficiency reaches
100%.

6.3.3 Expansion rates

The width of a thermal atomic cloud with an initial size of σ0 at release from a trap evolves
during free evolution with time ttof as [167]

σ(t) =
�

σ2
0 +σ2

v t2
tof. (6.8)
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Figure 6.7: Expansion of an optically trapped atomic ensemble (todt = 100ms). (a) Density images
for different time-of-flights ttof. (b) Atomic size in horizontal and vertical direction determined by the
Gaussian width of the cloud. Velocity widths are calculated via Eq. (6.8).

The velocity width σv,i along each dimension i is a measure for the effective temperature in
this direction

kB Ti = mσ2
v,i , (6.9)

where m is the atomic mass and kB the Boltzmann constant. In case of a partly condensed
cloud of atoms the temperature can be obtained by fitting a bimodal distribution to the
column density and evaluating the Gaussian width σ of the thermal part in order to extract
the temperature of the atomic cloud.

Figure 6.7(a) shows absorption images taken at different time-of-flights ttof after a dipole
trap duration of todt = 100ms. The shape of the atomic cloud impedes fitting a bimodal
distribution to the column density and might be the result of a non-perfect transfer from
chip trap to dipole trap which leads to additional atomic motions. Instead, the cloud’s size is
extracted by a Gaussian fit to the whole ensemble. For this fit, the fraction of atoms which
has already started spreading along the waveguide during the 100 ms of optical trapping is
neglected. The Gaussian widths in y and z direction,σy andσz , are displayed in Figure 6.7(b).
Directly after release, the cloud is elongated in y direction due to the low trap frequencies
along this axis. After a few milliseconds of time-of-flight, however, σz becomes larger than
σy . A changing aspect ratio represents an indicator for a condensed cloud and results from
the conversion of mean-field energy to kinetic energy. A fit to the data according to (6.8)
allows to calculate the respective velocity widths and yields values of σvy

= 3.0mm/s and
σvz
= 10.7 mm/s corresponding to effective temperatures of Ty = 94nK and Tz = 1.19µK.

Compared to the shallow magnetic trap, the cloud released from the dipole trap exhibits
larger expansion rates. Heating occurs from a non-adiabatic transfer from the chip trap into
the dipole trap which is impeded by the mode mismatch of both traps. The atoms spread along
the y-axis due to the weak confinement in this direction and have not yet reached equilibrium.
In z direction, higher trap frequencies additionally lead to larger mean-field energy which is
converted into kinetic energy. Still, it is possible to load a Bose-Einstein condensate from a
chip trap into a dipole trap and obtain effective 1D-temperatures in the nK regime.
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6.3.4 Lifetime
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Figure 6.8: Measuring of the lifetime in the dipole trap compared to the chip trap.

The lifetime of atoms in a trap is limited by collisions causing atoms to the escape the trap. In
general, the atom number decay can be expressed by the following equation [134]

dN
dt
= −αN(t)− β
∫

V
n2(r, t)d3r − γ
∫

V
n3(r, t)d3r. (6.10)

Density-independent loss mechanisms are described by the single-particle coefficient α which
accounts for collisions with the background gas in the vacuum chamber. At a pressure of
3 ·10−9 mbar one expects a 1/e lifetime of roughly τ = 1/α≈ 1 s [134]. Since the QUANTUS-1
experiment exhibits a pressure in the order of 10−11 mbar the measured lifetime should be
significantly larger. The coefficient α also comprises photon scattering which can be neglected
in a far-detuned trap as well as external heating processes, caused e.g. by laser intensity
noise. Two-body losses characterized by β are relevant if the atoms are not in their absolute
ground state and include hyperfine-changing collisions. During this process the atoms gain
kinetic energy expelling the atoms from the trap. Changes of the hyperfine state from |F = 2〉
to |F = 1〉 can be prohibited by preparing the atoms in the outermost Zeeman sublevels
|F = 2, mF = ±2〉 due to conservation of angular momentum [209]. Therefore, two-body
losses can be neglected in our case. Interactions between three atoms become relevant in case
of high densities. In this case, a molecule is formed out of two particles, while the third atom
absorbs the released energy and all three atoms are lost from the trap. Due to the coherence
properties of Bose-Einstein condensates the rate of three-body recombinations given by γ is
predicted to be a factor of 6 lower compared to thermal atoms [210, 211].

The lifetime in the optical dipole trap is examined by measuring the atom number for holding
times up to todt = 20s. For comparison, Fig. 6.8 additionally shows a lifetime measurement
in the magnetic release trap. The safety protocol for the atom chip prevents exceedingly
long currents and limits the maximum duration in the release trap to ttrap = 2.4 s. Both, the
data points obtained with the magnetic trap as well as the data associated with the dipole
trap for durations todt > 1s, follow an exponential behavior and can be fitted with a single
exponential function indicating solely density independent loss mechanisms

N(t) = N0e−t/τ. (6.11)

In case of the magnetic trap the fit yields a lifetime of τ = (11.0± 1.0) s, limited primarily
by the vacuum quality of the experiment. In the dipole trap, high initial densities causing
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three-body collisions lead to a more rapid atom number decay for small durations todt ≤ 1 s.
For todt > 1 s, however, the dominant loss process is given by collisions with the background
vapor and the single exponential fit agrees very well with the data indicating a lifetime of
τ= (10.8± 0.5) s very similar to the one of the magnetic trap.
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Figure 6.9: Density plots of the atomic cloud in the dipole trap for different durations todt = 0...10 s.
With increasing time todt the cloud starts spreading along the axial direction exhibiting a weak
confinement. The asymmetric spreading is probably caused by a slight tilt of the dipole trap.

Figure 6.9 shows the density plots corresponding to the lifetime measurement for durations
ranging from todt = 0 s to 10 s. While the atom cloud released from the magnetic trap exhibits
similar dimensions in y and z direction, the focused single beam trap is highly anisotropic.
Atoms with highest energy are able to overcome the weak confinement in axial direction.
They start spreading along the y direction with increasing holding time, while the atom
cloud maintains its extent in radial direction. The spread is not symmetric but atoms mainly
propagate in one direction, which might indicate a slight tilt of the dipole beam towards
gravity. For small todt the high densities of the atomic cloud lead to a diffraction of the
detection light causing an interference pattern.

6.3.5 Trap frequencies

Trap frequencies are an important property of a trapping potential and determine the motion
of atoms inside the trap. They can be measured via a parametric heating technique where the
dipole laser power is modulated sinusoidally with a relative amplitude β � 1 and a frequency
ωmod [212]. The corresponding equation of motion yields

ẍ +ω2
trap [1+ β cos(ωmod t)] x = 0 , (6.12)

where ωtrap is the oscillator’s resonance frequency, i.e. the trap frequency of the dipole poten-
tial [213]. If the modulation frequency matches twice the trap frequency or a subharmonic
ωmod =

2ωtrap

n , n being an integer, the atoms are resonantly driven which increases their
temperature and leads to trap losses. Due to the damping of the resonances with increasing n
usually only two resonances are observable, namely ωmod = 2ωtrap and ωmod =ωtrap.

For this purpose, the atoms are first loaded into the dipole trap using the common protocol
with tramp = 90 ms and ttrap = 103 ms described in section 6.3.2. After a dipole trap duration
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Figure 6.10: Determination of the trap frequencies in the optical dipole trap via parametric driving.
The laser power of 210 mW is modulated at a frequency of ωmod and a modulation amplitude of β
during tmod. The position of the resonances is determined via Lorentzian fits.

of todt = 10ms the laser power is modulated during tmod by changing the amplitude of the
AOM. The atomic population is monitored as the modulation frequency ωmod is scanned over
the values of the trap frequency. To determine the radial frequencies of our dipole trap the laser
power is modulated by ±14% for a duration of 200 ms. The chosen modulation amplitude
represents a compromise between a clearly visible signal at parametric resonances and low
atom losses in between. However, even at modulation frequencies far off resonance an overall
atom loss occurs caused by heating and an escape of atoms with the highest energy from
the trap. This process can even be utilized as a technique for evaporative cooling [208, 214].
Parametric resonances are determined via Lorentzian fits and can be observed at frequencies
of 191 Hz, 324 Hz and 427 Hz. For the observation of the axial frequencies in the regime of
several Hz the duration tmod is increased to 1 s with a reduced modulation amplitude of ±6%.
The most prominent resonance is positioned at ωmod = 2π · 3.5 Hz. Other dips can be found
at 1.5 Hz, 2.4 Hz and 5.2 Hz. Given the low signal-to-noise ratio the determination of those
positions is not definite. The relatively long modulation duration of 1 s results in atom losses
due to the limited lifetime as well as in a spatial spread of the atom cloud making it more
difficult to measure the axial trap frequencies.

The measurement can be interpreted in the following way: It reveals a radial trap frequency
of fr ≈ 200Hz with a resonance at twice the value at 2 fr ≈ 420Hz. In case of the axial
direction, the dip at ωmod = 2π · 3.5 Hz corresponds to the second harmonic of the axial trap
frequency, while the resonance can be observed at ωmod = 2π · 1.5Hz. These values would
correspond to a beam waist of roughly w0 ≈ 40µm at a power of P = 200 mW which is only
slighty larger than the waist measured with the beam profiling camera. Additionally, another
resonance for the radial trap frequency at fr ≈ 320Hz can be identified which might be
connected with the small dips at f y = 2.4 Hz and 5.2 Hz for the frequency in axial direction.
These could in principle be explained by another waist of w0 ≈ 35µm originating from an
astigmatism of the dipole beam.

The measured trap frequencies are in reasonable agreement with the ones calculated from
the measured beam waist and laser power (Table 6.1). The measurement of slightly lower
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trap frequencies than expected can have several reasons. First of all, the optical power of the
dipole beam is measured directly at the fiber output. Subsequent optics such as telescopes,
lenses and vacuum windows degrade the laser power by a few percent. Anharmonics of the
trapping potential also shift the resonances to lower frequencies [208]. The local beam waist
also has a large effect. If the atomic position does not match the beam’s focus by a distance of
1 mm due to insufficient alignment, the waist w(y) already increases from 35µm to 40µm.

6.3.6 Dipole trapping depending on the evaporation sequence
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Figure 6.11: Atom number as a function of the final frequency of the evaporation fevap,end for a release
from the chip trap and the dipole trap, respectively. In case of the chip trap, the atom number is
composed of a Thomas-Fermi and a Gaussian part. The effective temperatures in y and z direction is
calculated from the expansion rates (Table 6.2) for three different frequencies fevap,end = 1.89 MHz,
2 MHz and 2.1 MHz.

The sequence for evaporative cooling influences the number of atoms in the final release trap
and their kinetic energy. In the following it will be investigated, how this affects the transfer
into the dipole trap. So far, the dipole trap has been loaded after evaporation down to a
frequency of fevap,end = 1.89 MHz. This yields a condensed atomic fraction of more than 50%
after release from the chip trap. For higher frequencies fevap,end, less atoms are expelled from
the trap and the atomic ensemble exhibits a higher temperature. For fevap,end = 1.95 MHz the
condensed fraction, which is determined by a Thomas-Fermi fit, drops to zero. At the same
time, the number of thermal atoms, calculated with a Gaussian distribution, significantly
increases with fevap,end (Fig. 6.11). Their temperature also rises from few nK to more than
100 nK. The temperature is calculated from the velocity width of the Gaussian part of a
bimodal distribution via time-of-flight measurements (Table 6.2).

The higher overall atom number allows to increase the number of atoms transferred to the
dipole trap. When fevap,end is increased from 1.89 MHz to 2 MHz the optically trapped atom
number is approximately doubled, while the corresponding expansion rates do not rise by a
significant amount. At the same time, the transfer efficiency decreases from 100% to 25%
due to the higher temperature and larger spatial extent of the atom cloud which prohibits
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fevap,end 1.89 MHz 2 Mhz 2.1 MHz

Chip trap σvy
(mm/s) 0.84± 0.01 3.12± 0.01 4.19± 0.02

σvz
(mm/s) 0.70± 0.02 2.57± 0.03 3.33± 0.04

Dipole trap σvy
(mm/s) 2.70± 0.06 2.70± 0.06 2.88± 0.09

σvz
(mm/s) 10.0± 0.2 10.9± 0.06 11.56± 0.06

Table 6.2: Velocity width σv in y and z direction for a release from the atom chip trap and the dipole
trap for different evaporation end frequencies fevap,end.

loading all atoms into the dipole trap. A further augmentation of fevap,end does not lead to a
higher atom number, since the optical trap depth is not sufficient for higher energetic atoms.
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7.1 Summary

Within the scope of this thesis, the coherent manipulation of Bose-Einstein condensates with
optical lattices was studied in a compact atom-chip experiment. The main achievements are
the development of a large momentum transfer beam splitter and the realization of a so-called
twin-lattice interferometer with a wave-packet separation of up to 408ħhk. This represents the
largest momentum splitting in an interferometer reported so far. In detail, the main results
cover the following topics:

Large momentum transfer beam splitter
Combining double Bragg diffraction with Bloch oscillations in a twin-lattice config-
uration allows for a symmetric and scalable beam splitter for the transfer of many
photon recoils onto an atom cloud. The twin lattice is built in an elegant way by simply
retroreflecting a single beam containing two frequency components with orthogonal
polarization. The double Bragg process serves for the initial creation of a superposition
of symmetric momentum states as well as for the redirection and recombination in the
interferometer. A delta-kicked collimated ensemble with a velocity width of 0.03ħhk
together with a well-aligned beam enabled high beam splitting efficiencies of 98.8%
per ħhk. The pulse stability was studied in dependence on the pulse duration. Applying a
duration of τ = 300µs, the noise caused by amplitude fluctuations could be suppressed,
and high stability was reached.

Going beyond the standard Landau-Zener calculations, the Bloch transfer efficiency was
investigated in an extension of the non-ideal twin lattice. For small initial momentum
splittings, additional atom losses occur. The reproduction of the experimental data with
theoretical simulations confirmed that the interaction with parasitic standing waves
causes these losses. Standing waves originate from imperfect polarizations arising, for
example, from the vacuum windows and cannot be fully suppressed in the current
setup. An initial splitting of 8ħhk by sequential double Bragg diffraction was chosen as a
trade-off between losses caused by parasitic lattices and lower Bragg efficiencies. In
that way, Bloch transfer efficiencies in the order of 99.9% could be achieved, and the
favorable scaling behavior allowed for a beam splitter with a separation of 1008ħhk. In
our setup, spontaneous emission losses can be suppressed by a factor of two due to the
blue detuning of the lattice laser.

117
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Twin-lattice interferometer and contrast analysis
Utilizing the large momentum beam splitter, a Mach-Zehnder-type atom interferometer
was formed, whose symmetry promises the suppression of systematic errors encountered
in current devices. Since both interferometer arms are manipulated by the same light
fields, diffraction phases should be suppressed at least as good as in Ref. [69], where
only one frequency component is common to both arms. The interferometric contrast
was evaluated for different scalings via a statistical method. It decreases from 70% for
an 8ħhk interferometer to 5% for the realization with the largest momentum splitting of
408ħhk. This value corresponds to the quadruple of the splitting achieved in Ref. [57]
and almost the double of the recent result of Ref. [69]. The observed contrast decay was
studied in detail. In combination with simulations, a very good understanding could be
achieved. The loss of contrast is mainly caused by two mechanisms, namely atom loss
as well as local intensity variations caused by diffraction of the laser beam at different
apertures. The effect of atom loss can approximately be expressed by a relatively simple
formula relying only on two experimental parameters. Hereby, non-adiabatic losses
during Bloch oscillations reduce the interferometer signal. To gauge the second effect,
the contrast was calculated for the experimental trajectories in a modeled distorted
light field giving rise to dephasing. The current limitations are of technical nature and
can probably be easily solved in a dedicated setup. Compared to previous schemes,
the twin-lattice interferometer features more scalability marked by low atom number
and contrast loss. This opens up exciting perspectives for its implementation in future
sensors.

Loading an atom-chip BEC into an optical dipole trap
The setup was extended with a far-detuned 1064 nm laser system to generate an
optical dipole trap. After spatially overlapping dipole and chip trap, the Bose-Einstein
condensate could be efficiently loaded into the optical trap. With a temporal overlap of
roughly 100 ms a transfer efficiency close to unity was reached. The observed lifetime of
11 s is similar to the one in the magnetic trap, and the measured trap frequencies agree
with the calculations based on the experimental parameters. The successful operation
of a dipole trap within the QUANTUS-1 apparatus is encouraging for its integration in
future experiments.

7.2 Perspectives for QUANTUS-1

7.2.1 Maximizing the momentum separation

The large momentum beam splitter presented in this thesis represents a promising tool for
the implementation in a variety of experiments. Apart from gravitational wave detection
possible application areas include compact devices, such as atomic gyroscopes [23–25],
gravimeters [19, 48], quantum tiltmeters [68, 215] or gravity gradiometers [27] possibly in
planned spaceborne instruments [26, 216]. These devices, in which laser power and free-
fall distance are often constrained, can benefit from the twin-lattice technique to efficiently
transfer momentum and maximize their sensitivity.
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Ongoing work within the QUANTUS-1 apparatus strives for further improvements on the
current results. Since light field distortions presently constitute the main limitation, current
investigations include the application of a top-hat beam [195] offering a homogeneous
intensity profile. Its benefits include a constant lattice depth throughout the interferometer as
well as a relatively sharp cutoff at the edges of the beam to minimize clipping at different
apertures. Additionally, the installation of a camera with a larger CCD chip is planned to
increase the detection size. This might open up the possibility to augment the interferometer
region for larger interrogation times and move it away from the atom chip to reduce distortions
arising from clipping at the chip.

At the same time, technological development is made in the field of controlling the RF
frequency of the AOMs. The possibility of driving arbitrary intensity and frequency ramps
enables the realization of more efficient transfer sequences for Bloch oscillations. Currently, a
parasitic standing wave impedes the momentum transfer for small initial separations between
both wave packets. An adiabatically increasing acceleration rate exhibiting a small initial
acceleration and lattice depth is expected to reduce the corresponding atom loss [58] and is,
in general, more suited for the transfer of many photon recoils in a deep lattice [139]. Such a
sequence will be realized by combining the amplitude curve of an arbitrary waveform generator
(ArbStudio 1104) with the frequency sweep of an RF synthesizer (MOGLabs XRF021). Atom
losses will be further reduced by utilizing a new laser system detuned ∆ = 2π · 300GHz
from resonance suppressing spontaneous emission by a factor of 3 compared to the currently
used system exhibiting a detuning of ∆ = 2π · 100GHz. Future enhancements might also
include an AC-Stark compensation [47, 193] to suppress the effect of residual local intensity
inhomogeneities.

7.2.2 Optical dipole potentials

Apart from forming optical traps for atoms, a dipole potential can also be used to generate
an optical lens to reduce the atomic expansion rate. While the magnetic lens already yields
very good results for our condensate, an optical lens or a combination of both may have
some benefit. First, it gives access to the weak axis parallel to the central wire of the chip,
which is hardly manipulated with the magnetic lens. Besides, it might solve the problem of
the anharmonicity of the chip trap perpendicular to its surface, leading to deformations of
the atomic density profile as observed in Ref. [98, 99]. Recently, a new 1064 nm laser system
has been added to the experiment and the first studies of optical lensing seem promising.

The optics associated with the new dipole laser system also allow for the implementation
of a waveguide [37] for the investigation of atom interferometry in a compact volume. In
particular, one has to study possible dephasing mechanisms in the guide arising, for example,
through mechanical instability or intensity fluctuations. An interesting approach is proposed
in Ref. [70], where a lattice simultaneously serves as a beam splitter and guide. In detail, one
would use two optical lattice waveguides to separate the interferometer arms, then sustain
both arms in a single common lattice, and finally recombine the arms using both lattices
again. Apart from inertial measurements, the proximity of the atom chip to the waveguide
within QUANTUS-1 offers the possibility of measuring short-ranged forces such as predicted
by certain models for dark energy [32] or the Casimir-Polder force [34]. On the other hand,
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waveguides also offer the possibility to move the interferometer region away from the atom
chip to suppress systematic effects related to its surface or mass distribution.

A lot of interesting applications arise when one uses painted potentials to create a variety
of geometries. These can be created with acousto-optic deflectors (AODs), allowing for
rapid modulation. While slow movements of the dipole beam induce heating, atoms are not
capable of following oscillations faster than the trap frequency and will only experience a
time-averaged potential [217]. In this way, arbitrary and potentially dynamic potentials for
trapping cold atoms can be created, such as toroids or ring lattices. The latter are interesting
due to their periodic boundary conditions and the ability to realize vortices.

7.3 Application in future devices

The studies presented within this thesis do not solely have the purpose of advancing the
QUANTUS-1 experiment but are equally important for future quantum sensors on ground or
in space. The areas of applications for these devices are broad and range from tests of the
Equivalence Principle to Earth observation up to gravitational wave detection. The following
paragraphs comprise a selection of planned instruments.

7.3.1 Gravitational wave antenna

One particular field of application for the twin-lattice beam splitter is the planned hybrid atom-
laser interferometer MIGA (Matter wave-laser based Interferometer Gravitation Antenna), a
demonstrator for the measurement of space-time strain in the infrasound [49]. Apart from
MIGA, there exist proposals for other ground-based instruments [51, 218, 219], which will
complement each other in the detection of infrasound gravitational waves and the research
on gravitation. MIGA will be installed 500 m underground in an environment characterized
by very low noise and seismic disturbances. In the first realization, the detector consists of
a set of three atom interferometers interrogated by the light field of an ultra-stable optical
cavity. The corresponding high beam quality will eliminate the most severe error encountered
in our twin-lattice interferometer caused by light field distortions. Variations of the strain
inside the cavity, induced by a gravitational wave, modify the optical phase. It is linked to
the phase of the atom interferometers through the interaction during the interferometer
pulses. Apart from the application of an optical cavity, the instrument will rely on standard,
well-proven techniques including laser-cooled rubidium atoms, two-photon Bragg diffraction,
and shot-noise limited sensitivity. For a resonator length of L = 200 m, an interrogation time
of 2T = 500ms, Bragg diffraction of order n= 1 and 106 laser-cooled atoms, the expected
peak strain sensitivity will be 2 · 10−13/

�
Hz at 2 Hz.

Newtonian noise, caused by fluctuations of the terrestrial gravity field, is considered to
be a limiting noise source at low frequencies for the next generation of gravitational-wave
detectors. A future device, which is built of two orthogonal arms interrogated by the same laser,
will therefore consist of an array of atomic gradiometers to reduce the effect of this particular
noise source [56]. Since gravitational wave signals and Newtonian noise are characterized by
different length scales along the detector’s size, it is possible to distinguish between them
when using a network of sensors. Assuming an ambitious configuration with 80 gradiometers,
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Figure 7.1: Scheme of a gravitational wave detector with two horizontal arms, which is maximally
sensitive to a wave traveling in the vertical direction. Shown is an exemplary interferometer geometry
with three loops, three vertical launches and five beam-splitting pulses for the suppression of noise
sources. Adapted from [50]

a total arm length of L = 16.3km, an interrogation time of 2T = 0.6 s, large momentum
transfer of order n = 1000 and an atom flux of 1012/s strain sensitivities below 1 ·10−19/

�
Hz

in the 0.3−3 Hz frequency domain are accessible along with a peak sensitivity of 3·10−23/
�

Hz
at 2 Hz. Applying our twin-lattice beam splitter in a dedicated setup, the required momentum
separation of 2000ħhk seems to be in reach.

Ref. [50] elaborates on interferometer schemes for the use in terrestrial detectors, making
particular use of our symmetric twin-lattice beam splitter. In a multi-loop sequence, where
symmetric beam splitting is combined with vertical relaunches to fold the interferometer
geometry, some noise sources are suppressed (Fig. 7.1). In particular, this geometry is insen-
sitive to the initial position and velocity of the atomic cloud, causing spurious phase terms
due to the Sagnac effect. Therefore, it eases the requirements on the atomic expansion rate
which, otherwise, would require energy levels of femtokelvins.

7.3.2 Very large baseline atom interferometer (VLBAI)

Another testbed for new beam-splitting techniques constitutes the VLBAI which is currently
being installed in the HITec building in Hannover (Fig. 7.2). Its 10 m baseline allows for an
extended free-fall time aiming at high-precision tests of the equivalence principle employing
mixtures of ytterbium and rubidium [221]. Apart from the implementation of a fountain
mode, large momentum beam splitters represent one factor for increasing the sensitivity in
an advanced setup. At the same time, the device can be used for highly accurate absolute
gravimetry, gradiometry or exploring methods for gravitational wave detection. To suppress
spurious noise sources such as vibrations and magnetic field gradients, the instrument is
equipped with a seismic attenuation system as well as a ten-meter long magnetic shield
making it possible to perform outstanding measurements.

The combination of large momentum transfer with long interrogation times allows to
create atomic superpositions over macroscopic distances and, in this way, search for the
quantum-to-classical transition of an object. Motivated amongst others by the search for
compatibility between quantum theory and general relativity, the question arises, whether
quantum mechanics loses its validity beyond a specific mass or complexity of the test ob-
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ject [222]. To address this question, interference experiments with matter-waves play an
essential role. In these experiments, it is crucial to shield the system from dephasing and
decoherence stemming from technical or other non-fundamental sources.

Fig. 7.2: Scheme of the VL-
BAI [220].

A measure for the macroscopicity of a specific superpo-
sition state was developed in Ref. [223]. It rates the super-
position according to its ability to rule out possible modifi-
cations of quantum mechanics, which comprise a violation
of the superposition principle on macroscopic scales. If an
experiment does not reveal physics ’beyond the Schrödinger
equation’, a certain parameter region can be ruled out. The
larger the excluded region, the more macroscopic the ex-
periment. The macroscopicity µ can be quantified by the
largest excluded coherence time parameter τ of a reference
particle such as an electron: µ = log10(
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1s). For interference
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where f is the measured fraction of the expected inter-
ference contrast, m the mass of the test particle, me the
electron mass and t the period during which coherence is
maintained. The largest macroscopicity values with grades
of about 12 have been achieved by interfering molecules
with masses above 10 000 amu [224] or in atom interfer-
ometers with long interrogation times of T = 1.04s [47]. In
comparison, proposed interference experiments with nanospheres would achieve a rate of 20,
while the spatial superposition of a cat along 10 cm would show a score of 57.

Eq. (7.1) does not consider the wave packet separation since the latter does not impact the
maximally excluded time parameter. Given the lower contrast, the value µ calculated for the
90ħhk interferometer in Ref. [47] therefore falls below the one of the 2ħhk realization, although
a large atomic wave packet separation of 54 cm could be demonstrated. However, a higher
wave packet separation allows excluding another dimension of the parameter region, namely
the critical length scale ħh/σq [223], where σq is the standard deviation of the momentum
variable. It is therefore also crucial for ruling out possible modifications.

7.3.3 Missions in space

By developing and investigating new beam splitting techniques as well as by studying the
interplay between atom chip and optical dipole trap, the QUANTUS-1 experiment serves as a
testbed for quantum sensors onboard future space missions. The twin-lattice beam splitter, in
particular, is suitable for the implementation in microgravity environments, since it requires a
vanishing velocity in beam splitter direction.

The outcomes achieved with the QUANTUS-1 and QUANTUS-2 experiments directly impact
the strategies for the MAIUS sounding rocket missions. After the successful launch of MAIUS-1,
the successors MAIUS-2 and MAIUS-3 aim to perform dual-species experiments with rubidium
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Figure 7.3: (Left) BECCAL apparatus housed in a standardized rack system for the ISS. The payload con-
sists of three subsystems, namely the physics package, the laser system, and the control electronics [43].
(Right) Future quantum sensors will likely be installed onboard satellites, mapping, for example, Earth’s
gravity field [26, 216]. The picture shows the twin satellites of the mission GRACE [225], which
performed detailed measurements of Earth’s gravity field anomalies (source: [226]).

and potassium [41, 199]. Besides, an optical dipole trap will be added in MAIUS-3 to study
hybrid or purely optical traps. Dipole traps allow for tuning the interactions between the
different atomic species and enable a transfer away from the chip to suppress systematic
effects associated with its surface and mass.

The BECCAL project relies on the expertise of the QUANTUS consortium together with
JPL/NASA to build and operate miniaturized quantum sensors [43]. A panel of experts in
the field of ultra-cold atoms has gathered a variety of possible experiments to be performed
on the ISS. Among others, these experiments include dual-species atom interferometry with
extended interrogation times as well as strongly interacting atoms and molecules. Furthermore,
degenerate gases shall be investigated in different trapping geometries such as blue box
potentials or shell-like geometries, which are inaccessible in ground-based setups.

While the ISS already allows for a variety of intriguing experiments in extended free fall, the
vibrational noise on the space station sets a limit for high precision measurements. Therefore,
proposals take one step further and exploit the superior microgravity conditions on satellites.
With this, benefits may also arise from highly elliptic orbits, which induce significant variations
of the gravitational potential. Besides, a configuration based on two or more satellites provides
large relative distances, undisturbed by atmosphere, which can be exploited to increase the
sensitivity of gravitational wave detectors. The goal of the STE-QUEST mission, which was
selected for a phase A study in ESA’s Cosmic Vision Programme, was to perform high-precision
tests of general relativity using atomic clocks and matter-wave interferometry [227, 228].
The proposed measurements include a test of the gravitational redshift of the sun and moon
as well as dual-species interferometry with 87Rb and 85Rb to probe the universality of free
fall at a targeted level of 10−15. Although STE-QUEST was finally not selected, the study
provides significant scientific knowledge and experience for future satellite missions. Hereby,
the fields of application are versatile, ranging from gravity gradiometry to map the Earth’s
gravity field [26, 216] up to gravitational wave detection [52, 53]. Several fundamental
topics are addressed within the mission "Space Atomic Gravity Explorer" (SAGE) [229]. The
proposal envisages a multi-satellite configuration to house atomic clocks and interferometers
based on ultracold strontium atoms. In addition to the topics mentioned above, the multi-
purpose mission aims for the investigation of dark matter and fundamental aspects of quantum
mechanics such as quantum correlations and Bell inequalities.
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AOM Acousto-optical modulator

AOD Acousto-optical deflector

ARP Adiabatic rapid passage

BEC Bose-Einstein condensate

BECCAL Bose-Einstein condensate and cold atom lab

CAL Cold atom laboratory

CCD Charge-coupled device

DDS Direct-digital synthesizer

DLR Deutsches Zentrum für Luft- und Raumfahrt

DFB Distributed feedback

ESA European Space Agency

HITec Hanover Institute of Technology

IGP Ion-getter pump

IPT Ioffe-Pritchard trap

ISS International space station

JPL Jet Propulsion Laboratory

LIGO Laser interferometer gravitational-wave observatory

MIGA Matter wave-laser based Interferometer Gravitation Antenna

MAIUS Materiewelleninterferometrie unter Schwerelosigkeit

MILAS Micro-integrated laser module

MOT Magneto-optical trap

NPRO Nonplanar ring oscillator

NASA National Aeronautics and Space Administration

PM Polarization-maintaining
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PBS Polarizing beam splitter

PER Polarization extinction ratio

PRIMUS Präzisionsinterferometrie mit Materiewellen unter Schwerelosigkeit

PXI PCI Extensions for Instrumentation

QUANTUS Quantengase unter Schwerelosigkeit

RF Radio frequency

rms Root mean square

RWA Rotating wave approximation

SAGE Space Atomic Gravity Explorer

SHG Second harmonic generation

SNR Signal-to-noise ratio

STE-QUEST Spacetime explorer and quantum equivalence principle space test

TA Tapered amplifier

TTL Transistor–transistor logic

UHV Ultra-high vacuum

URL Uniform resource locator

VLBAI Very large baseline atom interferometer



LIST OF CONSTANTS

Fundamental physical constants (CODATA 2018 recommended value) [230].

Symbol Quantity Value Unit

c Speed of light in vacuum 299 792 458 m s−1

h Planck constant h= 2πħh 6.626 07015 · 10−34 J Hz−1

e Elementary charge 1.602176 634 · 10−19 C

µ0 Vacuum magnetic permeability 4π× 1.000 000000 55(15) N A−2

ε0 Vacuum electric permittivity 1/µ0c2 8.854 1878128(13)× 10−12 F m−1

µB Bohr magneton 9.274010 0783(28)× 10−24 J T−1

aB Bohr radius 5.291772 10903(80)× 10−11 m

kB Boltzmann constant 1.380649× 10−23 J K−1

u Atomic mass unit 1.660539 06660(50)× 10−27 kg

Rubidium 87 D2 line data [159].

Symbol Quantity Value Unit

m Atomic mass 1.443160 648(72)× 10−25 kg

ω Frequency 2π · 384.2304844685(62) THz

λ Wavelength (vacuum) 780.241 209 686(13) nm

l Wave number 12 816.549 389 93(21) cm−1

τ Lifetime 26.2348(77) ns

Γ Natural line width (FWHM) 2π · 6.0666(18) MHz

vrec Recoil velocity 5.8845 mm s−1

ωr Recoil energy 2π · 3.7710 kHz

Tr Recoil temperature 361.96 nK

TD Doppler temperature 145.57 µK

Isat Saturation intensity 1.669 33(35) mW cm−2
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