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ABSTRACT

Electronic structure calculations for point defects, interfaces, and
nanostructures of TiO2

Transparent conducting oxides (TCOs) play an important role not only in optoelec-

tronic and photovoltaic devices but also in future transparent electronics. A transpar-

ent conductor arises upon degenerately doping a semiconductor (insulator) so that the

conduction becomes metallic (resistivity ∼ temperature). The extra electrons occupy

the conduction band (CB) states of the host and the conductivity is determined by

the electron optical effective mass. Recently, anatase TiO2 films doped with Nb, i.e.,

Ti1−xNbxO2 (TNO), have attracted a great deal of interest as a promising candidate

for TCO applications because of their low resistivity (∼ 2× 10−4Ωcm) and high opti-

cal transmittance (90 % in the visible light region). A few experimental studies have

been reported for the optical effective mass of electrons as a function of the carrier

concentration in Nb-doped anatase, on the directions which are either orthogonal or

parallel to the tetragonal axis of the crystal.

In this thesis, I have determined the optical effective mass of electrons in Nb-

doped anatase based on band structure calculations. The anisotropy of the crystal

and the nonparabolicity of the bands have both been taken into account. I have

found that in the range concentration which is relevant to transparent conductive

oxide applications, the optical effective mass is determined by several branches of the

conduction band, leading to a complicated dependence on the carrier concentration.

The function for the optical effective mass obtained by our calculations agrees well

with that obtained experimentally. In particular, the strong anisotropy of the optical
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effective mass has already been confirmed [1].

Although Ta-doping of anatase TiO2 appears to be effective as well, this possibility

has been not well explored. I have compared the two dopants, i.e., Nb and Ta, for

doping anatase TiO2. The Ta dopant has a considerably higher solubility and a

lower optical effective mass, thus acquiring more advantages than Nb. Moreover,

my calculations have also explained why a reducing atmosphere is necessary for the

efficient dopant incorporation, without invoking oxygen vacancies as proposed in the

literature. [2]

There is no study on the effects from the quantum confinement of dopants in

anatase nanowires (ANWs). Therefore, I report here the first demonstration on the

role of Nb- and Ta-dopants in ANWs. The pure ANWs cut by keeping the screw

axis of the original bulk structures are consistently lower in energy than the similarly

oriented nanowires in which the screw symmetry is destroyed. [3] Both Nb and

Ta dopants prefer the sub-corner sites of the most stable ANWs. At the highest

symmetry, the band structure of the doped ANW is similar to that of the perfect one.

[4]

The increase of the photocatalytic activity upon mixing rutile and anatase powders

is usually explained by assuming change separation between the two phases. There

are many contradicting theories regarding the particular charge transfer between these

phases. Therefore, another goal of this thesis is to study the electronic properties of

the interface between anatase and rutile phases of TiO2. By calculating the band line-

up of a rutile-anatase interface, I have found that both the conduction band minimum

(CBM) and the valence band maximum (VBM) of the rutile phase are higher than

those of the anatase phase. As a result, electrons are expected to transfer from the

rutile phase to the anatase phase while holes move in the opposite direction. [5]

In my work, the optical electron effective mass is determined from the band struc-

ture of the material, which is in turn calculated by the version of density functional
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theory (DFT) in the generalized gradient approximation (GGA) implemented in the

Vienna Ab Initio Simulation Package (VASP) package. For bulk materials, both the

Perdew-Berke-Enzerhof (PBE) and the screened hybrid functional (HSE06) are used

for the exchange energy. Although the HSE06 functional gives better results com-

pared with the existing experimental measurements for Nb- and Ta-doped anatase

TiO2 bulk materials, similar calculations with HSE06 for nanowires are far more ex-

pensive. Therefore, my calculations for nanowires are carried out only with the pure

GGA-PBE functional. To determine the rutile-anatase interface, I have used the

density functional based tight binding (DFTB) method for the molecular dynamic

simulations, and then relaxed by ab initio calculations with PBE functional at 0K.
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CHAPTER I

Introduction

Titanium dioxide TiO2 has been widely used in industry for the last four decades,

mainly as a white pigment, or for photocatalytic air- and water-purification. It has

been recently found that TiO2 can be used as a transparent conducting oxide (TCO)

material. Because of the higher photocatalytic activity, mixtures of rutile and anatase

TiO2 have also attracted much attention. Moreover, TiO2 can easily be nanostruc-

tured. In fact, nanowires with diameters of only 4 − 5Å could be fabricated. In this

Chaper, I provide some background which is needed for the work on TiO2 presented

throughout this thesis.

1.1 TCO application of TiO2

Optoelectronic and photovoltaic devices such as flat panel displays, light emitting

diodes, or electrochemical solar cells, all require transparent electrodes [6, 7, 8, 9]. To

be used in these devices, the transparent electrodes must have a resistivity of 10−3Ωcm

or less and an average transmittance above 80% in the visible range. This implies that

the materials for the transparent electrodes should have a carrier concentration of the

order of 1020cm−3 or higher and a band gap above 3eV. Since the degenerately doped

wide band gap oxides can achieve these requirements, such transparent conducting

oxides (TCOs) can be used in the optoelectronic and photovoltaic devices.
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Figure 1.1: Reported resistivity of impurity-doped binary compound-based TCO
films from 1972 - present. Squares, triangles, and circles are used for
impurity-doped SnO2, In2O3, and ZnO, respectively. Reproduced from
Ref. [13]

Most of the research activities in developing TCO thin films have been concen-

trated on various types of transition metal oxides [10]. Tin-doped In2O3 (ITO) is

the most widely used TCO nowadays because of its excellent properties and ease

of fabrication [11]. However, due to the high cost and the shortage of indium, new

substitute materials are highly needed. Of the alternatives, SnO2 doped with fluorine

has typically an order of magnitude higher in the resistivity [7]. Much effort has also

been spent on the development of TCOs based on ZnO because of its low resistivity

[12]. On Figure 1.1, the minimum resistivity of TCO films reported during the last

40 years is shown, revealing that while the minimum resistivity of doped ZnO films

is still decreasing, those of doped SnO2 and In2O3 are essentially unchanged during

the last 20 years [13].

Among the transition metal oxides, the ZnO film is more suitable for wide appli-

cations because of its low resistivity. However, it is much more difficult to control

the oxidation of Zn in highly conductive and transparent ZnO TCO films because
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Zn is highly chemically active in an oxidizing atmosphere. [14] Various sputtering

techniques have been developed; however, the problem has not yet been completely

resolved [15]. Consequently, it is highly desired to extend the variety of TCOs. Re-

cently, Nb- or Ta-doped anatase TiO2 has been reported to exhibit low resistivity

(2 × 10−4Ωcm at the room temperature) and high transmittance (95 % in the visi-

ble light region) in epitaxial [16, 17, 18, 19]. Motivated by these results, my thesis

has concentrated on the electronic properties of n-type doped anatase TiO2, the new

promising TCO material which demonstrates extra advantages over ITO and ZnO

to be used as a common antireflection coating and resistant to hydrogen-containing

environments [20, 21].

In a degenerately n-type doped wide band gap semiconductor, the metallic con-

ductivity can arise from a half-filled donor band which is created by the interaction

between the impurities. It is often believed that this is the case of ITO although

the defect band can overlap with the CB. In some cases, the defect band consists of

effective-mass-like states, i.e. the extra electrons essentially fill CB states. While the

ITO has an isotropic s-orbital-dominated conduction band, the case of anatase TiO2

is more complicated. In particular, the conduction band of anatase TiO2 is composed

mainly by anisotropic Ti 3d orbitals. As I have observed, in Nb-doped anatase, these

CB states are partially filled with electrons. Therefore, the balance between increas-

ing carrier concentration and the carrier scattering by ionized donor, which play a

role in determining the optimum conductivity, can also be influenced by the carrier

concentration dependence of a concept called “optical effective mass”.

The conventional effective mass is defined as the curvature, or the 2nd derivative,

of the dispersion curve. If the dispersion curve is ideally parabolic, i.e., there is no

change in the curvature, the effective mass will be constant everywhere. Based on

this simple assumption, recent theoretical calculations in Nb-doped anatase reported

two values for the band-edge effective mass which is independent of the doping con-
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centration. On the transverse direction which is orthogonal to the main axis, the

effective mas is m⊥ = 0.42m0 while on the longitudinal direction which is parallel

to the main axis, m‖ = 4.05m0 [22, 23]. In reality, because the actual CB of Nb-

doped anatase is non-parabolic, the curvature has to depend on the k-wavevector.

In addition, contributions from higher branches of the CB play a role in measuring

the conductivity, as predicted in Refs. [22, 24, 25]. A new concept called “optical

effective mass” is defined here to describe the non-parabolic CB, taking into account

both the anisotropy of the crystal and the nonparabolicity of all the bands up to the

Fermi level. By this definition, the carrier concentration is relevant to the concept

of optical effective mass. From the literature, it has been indicated that the optical

effective mass may be fairly different from, e.g., considerably bigger than, the band

edge effective mass [26].

In consistence with the above discussion, measurements of the optical effective

mass has indicated a strong dependence on the carrier concentration of the optical

effective mass. Over the concentration range of 1020− 1021cm−3, the optical effective

mass increases from 0.2m0 to 0.6m0 along the orthogonal direction and from 0.5m0

to 3.3m0 along the parallel direction[27, 28]. This increase can be interpreted as the

consequence of the non-parabolicity of the lowest CB. In this thesis, I will show that

higher branches of the CB play a significant role in the concentration dependence of

the optical effective mass. Calculations for the optical effective mass of electrons as a

function of the carrier concentration are based on band structure calculations which

take into account both the anisotropy of the crystal and the non-parabolicity of the

bands, for all bands up to the Fermi level, which is relevant to the given concentration

[1].

Besides Nb-, Ta-doping of anatase TiO2 has also been shown to be a viable candi-

date for replacing ITO as a transparent conductor oxide. Because Ta-doped anatase

TiO2 has been not well explored yet [29, 18, 30, 31, 32], a comparison on several as-
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pects of these two dopants is given based on calculations for the electronic structures

of Nb- and Ta-doped anatase. First, the optical effective masses on the orthogo-

nal direction of Ta-doped anatase are found to be similar with that of Nb-doped one

while on the parallel direction, the optical effective mass of Ta-doped anatase is about

60% of that of the Nb-doped anatase [2]. Second, because a high doping concentra-

tion is required for achieving metallic conduction in a TCO, a high solubility for a

given dopant is an important criterion. For the dopant solubility, I have found that

because Ta-substitution of a Ti-atom requires a considerably smaller energy than

Nb-substitution does, Ta has definite advantages over Nb in doping anatase TiO2 for

TCO purposes. Finally, several experiments have shown that large dopant concen-

trations in anatase films can be achieved by applying a reducing atmosphere during

growth [33, 22, 31]. By calculating the defect formation heat as a function of the

oxygen chemical potential, a clear explanation is given in my thesis for the role of

the reducing atmosphere on efficient dopant incorporation, without invoking oxygen

vacancies as a factor in activating the dopant as proposed earlier in the literature

[23].

1.2 TiO2 nanowires and their doping by Nb and Ta

TiO2 is widely studied because of its promising properties and a myriad of appli-

cations. The functionality of titania-based devices can be extended further on two

directions: doping and size reduction to the nanoscale. For example, because of a very

high specific surface area, nanostructures exhibit various advantages for photocatal-

ysis and in electrochemical solar cells, where TiO2 is used as an electron transmitter.

While the first part of my thesis is devoted for the doping of TiO2 from the viewpoint

of TCO applications, the nanostructures of TiO2 are considered in the second part of

my thesis.

TiO2 nanowires can easily be fabricated. Many methods have been used for the
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synthesis of TiO2 nanowires such as vapor phase deposition oxidation of Ti metal [34],

solution chemistry synthesis [35], and template-assisted approach [36]. Recently, Liu

and Yang have synthesized TiO2 nanowires with diameters on the Angstrom scale,

down to a diameter limit of about 4-5 Å.[37] This experimentally accessible size can

also be easily considered by theoretical calculations.

Many interesting properties arise from the small sizes of the nanostructures. For

example, the energy gap of the nanostructures is increased because of the quantum

confinement effect. Because of the small sizes of the nanostructures, sites are not

completely equivalent, so the doping sites also play a role, which will be addressed in

my thesis.

Several structural properties of TiO2 nanowires have been theoretically predicted.

In Ref. [38], Zhang et al. studied the formation energy of TiO2 wires built from

Ti2O4 blocks with tetrahedral coordination of the Ti atoms. They found that the size

and the shape of TiO2 nanowires have important effects on their structural stability

and the energy gap. Iacomino et al. [39] investigated the structures and electronic

properties of anatase wires with different orientations and various surface terminations

as a function of diameter.

A bare TiO2 nanowire of a variety of diameters can be built by cutting the re-

spective bulk crystal along a chosen direction. The choice of the central axis and the

cutting-planes determines the structure and electronic properties of the nanowire. In

Iacomino’s calculation, the [001]-oriented anatase nanowires were cut along a central

axis passing through Ti atoms, resulting in the mirror symmetry but no screw axis in

the wires. However, because Ångstrom-scaled TiO2 nanowires consist of a few atomic

layers, even a small difference in their geometries can have a significant impact on

their stability or the electronic properties. Recently, Aradi et al. [3] have investigated

the relative stability of [001] nanowires with the central axes going through a Ti atom

(with 2-fold axis) and through the interstitial site (with screw axis). It was found
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that the nanowires cut by keeping the screw axis of the original bulk structure are

consistently lower in energy both in rutile and anatase than in the similar oriented

nanowires in which this symmetry is destroyed. It has been also shown that the direct

or indirect nature of the TiO2 wire’s band gap is coupled to the absence or presence

of the screw axis.

There is as yet no study about the effect of quantum confinement of doping in

anatase nanowires. Therefore, my thesis aims to report the first demonstration of the

role of both Nb- and Ta-dopants in anatase nanowires. Taking into account the role of

symmetry, I have investigated the influence of dopants on the structural and electronic

properties of nanowires. Both Nb and Ta dopants prefer the full-coordinated Ti sites.

If the screw symmetry of the doped anatase nanowire is kept, its band structure is

similar to that of the perfect one. [4]

1.3 Charge transfer and the photocatalytic applications of

TiO2

Since Fujishima and Honda [40] published a paper on the photocatalytic water

splitting by TiO2, there have been a large amount of investigations regarding to the

photocatalytic applications of this material. TiO2 was found to be very effective

in decomposing various carbon based on molecules through redox reaction under

illumination by near ultraviolet (above band gap) light. The illumination produces

electron-hole pairs. One of these can catalyse reactions on the surface, while the other

gets trapped in the bulk scavenged by adsorbates or molecules in the environment.

There are many methods to increase the efficiency of the photocatalytic applica-

tion, which depends on the light absorption and on the recombination rate of electron

and holes. One of the methods is to shift the light absorption threshold into the vis-

ible region by doping. Asahi [41] has published the first such paper using nitrogen
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doped TiO2. Another way is the incorporation of metal nanoparticles such as silver

or gold into the TiO2 [42]. Because silver has the Fermi level below the conduction

band of TiO2, the photoexited electron from the conduction band can be effectively

trapped by silver, so the hole can react the surface and catalyse surface reactions.

Yet another strategy is the use of mixed powders of anatase and rutile. The charge

separation between the two phases was proposed to explain the increased catalytic

activity. In fact, due to the different band gaps, the band offsets between anatase

and rutile can see charge transfer across the interface, decreasing the recombination

electrons and holes.

Over the years, a number of experimental papers were given, predicting different

band offsets between anatase and rutile. The first model came from Gesenhues with

the suggestion of hole accumulation in rutile, based on the assumed alignment of the

valence bands [43]. Using the XPS technique, in contrast, Bickley et al. [44] suggested

the so-called “rutile sink” model for the electrons assuming that the conduction band

edge of rutile being lower in energy than that of anatase. This model was also

supported by the work of Kho et al. [45].

In another study, by measuring the ERP spectra under visible illumination, Hurum

et al. [46, 47] established the existence of electron trapping sites which is 0.8 eV below

the conduction band edge of anatase. Nakajima et al. [48] measured the band gap

of TiO2 powder with various rutile phase by photoluminescence excitation (PLE)

spectroscopy. They found that electrons transfer from the higher conduction band

of anatase to the lower one of rutile. Therefore, the recombination of electrons and

holes in rutile is stronger than in anatase phase.

Recently, based on experimental investigations under both UV and visible light

irradiation, Nair et al. [49] suggested a model for explaining the mechanism for

photoactivity of the mixed phase, and supported the “rutile sink”. This is also cor-

roborated by an observation of Scotti et al. [50] based on EPR measurements, where
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in the presence of a large number of electrons has been reported on the rutile side of

the interface. Under the visible light, the radiation is absorbed by rutile phase only,

resulting in excited electrons in its conduction band, these electrons will move to the

anatase conduction band.

As discussed, there are many conflicting experimental reports on the charge trans-

fer mechanism while knowledge of the relative position of the conduction band edges

is the key to understand charge transfer process. Recently, Deak et al. [51] have

calculated the band offset of the bulk crystals between anatase and rutile aligning the

branching point energy (BPE) (or change neutrality level) [52]. They found that the

CB of rutile lies higher than that of anatase by about 0.3−0.4eV. This can, however,

be influenced by the interface between the actual anatase and the rutile. Therefore,

the last aim of this thesis is to investigate the role of interface on the band line-ups

and on the mechanism of charge transfer. I have found that both the conduction

band minimum (CBM) and the valence band maximum (VBM) of the rutile phase

are higher than those of anatase. As a result, electrons are transfered from the rutile

phase to the anatase phase, while holes move in the opposite direction. [5]

1.4 Organization of the manuscript

This thesis is organized in six Chapters. In Chapter 2, I present a brief overview

of the computational methods used in this work, which is the density functional the-

ory (DFT) with GGA-PBE and HSE06 functionals for the exchange and correlation

energies. Brief introductions on the DFTB method and the VASP simulation pack-

ages used for calculations are also discussed in this Chapter. Some background for

calculations of the optical effective mass is also introduced.

The main results are exposed in three subsequent Chapters. Chapter 3 is started

with the investigations on the band structures of pure and Nb-doped anatase TiO2.

The optical effective masses are calculated in both the orthogonal and the parallel
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directions by fitting a polynomial expression to the calculated dispersion relation. For

obtaining the optical effective mass up to the high Fermi level positions in the CB,

the accuracy of the band structure is critical. Local and semilocal approximations

of the DFT (like GGA) are known to underestimate, not only the gap but also the

width of the bands. Therefore, in this chapter, I use the screened hybrid functional

HSE06 which provides the electronic structure of TiO2 in the excellent agreement

with experiment. In the second part of this Chapter, I discuss the formation energy

of Nb and Ta dopants on and the values of optical effective mass, and show that Ta

dopant is a better alternative material than Nb dopant.

In Chapter 4, I review a recent study of the bare TiO2 nanowires cut from their

respective bulk crystals along [001] direction. Then, I discuss the favoured sites of

dopants and the role of symmetry in the band structure of these nanowires. In

nanowire studying, I only carry out the PBE calculations because HSE06 ones are

too expensive .

In Chapter 5, I deal with the particular interface between anatase and rutile. The

interface model is created by DFTB-MD, and the alignment of the average electro-

static potential is calculated with DFT-PBE methods. The result is used to determine

the alignment of the HSE06 electronic structures.

Finally, in Chapter 6, I summarize the results so far and outline the directions for

future work in this field.
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CHAPTER II

Theoretical Methods

Nowadays, density functional theory (DFT) is a standard toolkit to study elec-

tronic properties of materials. The aim of this Chapter is to present this approach for

describing the ground state properties. This Chapter also introduces some approxi-

mations for the exchange-corelation functional. In addition, a brief description of the

self-consistent charge density-functional-based tight-binding (SCC-DFTB) approach

is given. At the end of Chapter, the method for calculating optical effective mass is

illustrated.

2.1 The many-electron problem

To describe the stationary state of a system, in quantum mechanics, we solve the

time-independent Schrödinger equation for the wave function Ψ

ĤΨ = EΨ. (2.1)

Here, the Hamiltonian operator within the Born-Openheimer approximation (fixed

positions of the nuclei) is [53]

Ĥ = T̂ + V̂int + V̂ext + V̂II, (2.2)

11



where T̂ is the kinetic energy of electrons, V̂int, V̂II are the electron - electron, nuclei

- nuclei interactions, respectively, and V̂ext is the potential of nuclei acting on the

electrons.

The total energy of the system E can be determined by the expectation value of

the Hamiltonian,

E =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 = 〈Ĥ〉 = 〈T̂ 〉+ 〈V̂int〉+

∫

drV̂extρ(r) + 〈V̂II〉, (2.3)

where ρ(r) =
∫

dr|Ψ(r)|2 is the density of states (DOS).

To know the electronic properties, we need to solve the Schrödinger equation (2.1).

However, this equation is impossible to solve exactly because of the large number of

variables. For instance, even one TiO2 molecule has 38 electrons, so equation (2.1)

is a partial differential equation of 114 spatial coordinates. Therefore, approximation

methods can be used. The two most common techniques to reduce the many-electron

problem are the Hartree-Fock (HF) theory and the density functional theory (DFT).

The former considers the total energy as a functional of the many-body wave function,

constructed from independent single-particle states as a single Slater determinant.

The single-particle states fulfill the Pauli principle, but are not correlated. The latter

considers the total energy as a functional of the electron density. In the last two

decades, the DFT has been most often used because of its higher efficiency.

2.2 Hohenberg-Kohn theorems

The basis idea of DFT is that any properties of a many body system can be

described by a functional of ground state. A complicated of many body wave function

can be replaced by the electron density ρ(r):

ρ(r1) = N

∫

|Ψ(r1, r2, ..., rN)|2dr2...drN (2.4)
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The formulation of DFT is based on the Hohenberg and Kohn theorems as fol-

low [54]

Theorem 1: “For any system of electrons in an external potential Vext, that poten-

tial is determined uniquely, except for a constant, by the ground state density ρ(r).”

The many body wave-function can be replaced by the electron charge density ρ(r)

within the external potential Vext. Therefore, the total energy can be represented as

a function of the electronic density E[ρ(r)].

Theorem 2: “A universal functional F [ρ(r)] for the energy of density E[ρ(r)]

can be defined for all electron systems. The exact ground state energy is the global

minimum for a given Vext, and the density ρ(r) which minimizes this functional is the

exact ground state density ρ(r).”

If the universal functional F [ρ(r)] = T [ρ(r)] + Vint[ρ(r)] is known, by minimizing

the total energy of the system under the constraint
∫

ρ(r)dr = N , we will find the

exact ground state energy

E = min
{

F [ρ(r)] +

∫

ρ(r)Vextdr+ VII

}

. (2.5)

The Hohenberg-Kohn theorems prove that the exact ground state energy can be

found from the functional F [ρ] but they do not describe in detail about the construc-

tion of this functional.

2.3 Kohn-Sham equation

In order to construct the F [ρ(r)] functional, Kohn and Sham have introduced the

following ”Ansatz” [55]

“The ground state density of the original interacting system is equal to that of some

chosen non-interacting system that is exactly soluble, with all difficult part (exchange

and correlation) included in some approximate functional of the density.”

13



The exact ground state density ρ(r) can be represented by the ground state density

of an auxiliary system ρKS(r) of non-interacting particles given by

ρKS(r) =
N
∑

i=1

|Ψi(r)|2 (2.6)

The auxiliary Hamiltonian contains a kinetic energy term and a local effective

potential acting on electrons

HKS(r) = −
1

2
∇2 + VKS(r). (2.7)

The ground state energy functional in the Kohn Sham approach to the full inter-

acting many-body problem is rewritten in the form

EKS[ρ(r)] = Ts[ρ(r)] + Eext[ρ(r)] + EHatree[ρ(r)] + EII + Exc[ρ(r)], (2.8)

with Eext[ρ(r)] =
∫

ρ(r)Vext(r)dr.

Applying the variational principle for equation (2.8) and Lagrange multipliers

method with the orthogonalization constraint, we get the Kohn-Sham equation for

the single-particles

[

− 1

2
∇2 + VKS(r)

]

ψi(r) = ǫiψi(r), (2.9)

with

VKS(r) = Vext(r)+
δEHartree[ρ(r)]

δρ(r)
+
δExc[ρ(r)]

δρ(r)
= Vext(r)+VHartree(r)+Vxc(r). (2.10)

By solving self-consistently the Kohn-Sham equations for independent particles

(2.9), we can find the exact ground state energy and density of the many body prob-

lem. However, the last term exchange-correlation potential Vxc(r) in equation (2.10)

and its corresponding energy expression Exc[ρ(r)] are unknown.
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2.4 Functionals for exchange and correlation

2.4.1 Local density approximation (LDA)

The simplest approximation for the exchange and correlation is to assume that

the density can be treated locally as a uniform electron gas.

ELDA
xc [ρ(r)] =

∫

ρ(r)ǫxc[ρ(r)]dr, (2.11)

where ρ(r) is the electron density, and ǫxc[ρ(r)] is the exchange and correlation density.

The exchange-corelation potential is given [56]

V LDA
xc [ρ(r)] =

δELDA
xc [ρ(r)]

δρ(r)
= ǫxc[ρ(r)] + ρ(r)

∂ǫ[ρ(r)]

∂ρ(r)
. (2.12)

2.4.2 Generalized gradient approximations (GGAs)

In the generalized gradient approximations (GGAs), the exchange-correlation en-

ergy depends not only on the density but also on its gradient [57]

EGGA
xc =

∫

drρ(r)exc[ρ(r),∇ρ(r), ...] =
∫

drρ(r)ǫhomxc [ρ(r)]Fxc[ρ(r),∇ρ(r), ...].

(2.13)

The exchange energy is well established [58]; however the best choice for Fxc is still

debated. The most commonly Fxc forms were suggested by Becke(B88) [59], Perdew

and Wang (PW91) [58], and Perdew, Burke, and Enzerhof (PBE) [60].

2.4.3 LDA/GGA problems

Despite the successes with standard local and semi-local approximations for the

exchange functional in DFT, there are serious limitations especially for a quantita-

tive description the electronic structure of the strongly correlated systems of d(f)-
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electrons. [61] The LDA/GGA functionals underestimate not only the band gap but

also the width of the valence and conduction bands. [62]. For example, both LDA and

GGA predicted the quasi particle band gap of anatase TiO2 to be 2.14eV at 0K com-

pared with the experimental optical band gap of 3.4eV [63]. The other error is their

inability of predicting localized states in doped semiconductors. These calculations

predicted Nb- and Ta-dop rutile TiO2 to be metal, in contrast to the experimental

observation of a semiconductor with a localized gap state. [64]

Several reasons have been proposed to explain LDA/GGA failure. Recently, Lany

and Zunger [65] have suggested the incorrect behavior of the total energy as a function

of the occupation numbers E(n). The exact function should be linear, however, in

LDA/GGA, the energy is the convex function resulting small band gap and delocalized

dopant states.

One way to overcome the deficiency of ordinary LDA and GGA in case of the

d-state is adding a Hubbard-U term to the energy functional [66]

ELDA+U = ELDA +
∑

m

Um − Jm
2

(

∑

σ

nm,σ − n2
m,σ

)

, (2.14)

where nm,σ is the occupation number of the mth d state, U reflects the strength of

Coulomb interaction between d electrons, and the parameter J adjusts the strength

of the exchange interaction.

This method gave a good qualitative agreement with the experimental data on

Nb-doped rutile TiO2, resulting in a localized gap state, corresponding to a small

polaron on a single Ti site [64]. However, at the same time, doped anatase TiO2

did not show metallic behavior, because the on-site Coulomb correction gave rise

to a localized defect state in that case. [67]. Besides, the value of the Hubbard-

U parameter cannot be determined in a general way, changing the U will change

the electronic properties. [64] It is, therefore, necessary to find a better method to
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overcome these problems.

2.4.4 The hybrid functional screened HSE06

One widely used way to overcome the standard DFT problems is to mix Hartree-

Fock (HF) exchange potential into LDA/GGA functional. It is shown that GGA

exchange gives a convex approximation to E(n) while HF is concave. Therefore, the

combination of them may gives the correct behavior of linear E(n). For example, the

PBE0 hybrid functional [57] based on the PBE functional by Perdew et al. [60] is

mixed with Hartree Fork exchange potential in a ratio a = 1/4

EPBE0
xc = aEHF

x + (1− a)EPBE
x + EPBE

c (2.15)

In TiO2, the PBE0 hybrid functional improves the gap of 3.2 eV but the energy

function of the continuous occupation number is still a concave function. As a result,

the energy eigenvalue decreases upon electron addition. A screening HF exchange

is needed. In the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), [68, 69] the

effect of screening is added to PBE0 with the screening length of 0.2 1/Å.

By using the HSE06 in TiO2, Deák et al. has recently shown the better lattice con-

stants and band structure (reproducing the band gap, changing the width of the con-

duction band and valence band) than Perdew-Burke-Ernzerhof (PBE) approach.[70]

Because HSE06 corrects the linear E(n), a proper description of defect is shown ex-

actly. For example, HSE06 predicted exactly the polaronic states occurring in rutile

while Nb and Ta on Ti site rising to a shallow effective mass like (EMT) donor

state. [70, 32] Therefore, the HSE06 method is employed to calculate the electronic

properties of the Nb- and Ta-doping in anatase, as reported in Chapter 3.
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2.5 Projector augmented waves (PAWs)

As I mentioned above, to investigate the electronic properties of materials, we

solve the Kohn Sham wavefunctions in equation (2.9) by self-consistent method. The

first important thing is to set a trial wavefunction Ψk(r). In a periodic system, the

good initial wavefunction performed plane wave (PW) is a good solution because it

is simple, unbiased, independent of atomic positions.

Ψk(r) =
1√
Ω

∑

G

ũke
(k+G)r (2.16)

where Ω denotes the volume of a unit cell, ũk is a parameter of Fourier expanding of

Bloch function uk.

However, the convergence in description of the atomic core area is low because

of very varying wavefunctions. Several methods have been developed to reduce not

only the basic set size and but also the number of electrons, which are necessary for

simplification. The most widely used method is based on two approximations: (i) the

core electrons are frozen, only valence electrons define the electronic properties, (ii) the

interaction between core and valence electrons can be modeled by a pseudopotential

(PP) [71, 72].

The disadvantage of the pseudopotential is the incapability of restoring the true

(full all electrons) wave function. To keep the true wave function Ψv of valence

electrons, the projector-augmented wave (PAW) method is suggested [73, 74]. This

approach is a generalization of the pseudopotential and linear-augmented-plane-wave

(LAPW). [75] In the PAW methods, the true wave function and the pseudo wave

function Ψ̃v outside the core region (augmentation region) are related by the linear

transformation T̂

|Ψv〉 = T̂ |Ψ̃v〉. (2.17)
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The transformation operator is given by

T̂ = 1 +
∑

R

T̂R, (2.18)

where local contribution T̂R acts only on the atom site R

T̂R|Φ̃v〉 = |Φv〉 − |Φ̃v〉. (2.19)

Note that the true partial wave function Φv is equal to the pseudo partial wave-

function Φ̃v outside core radius rc. Because transformation T̂ is linear, the true wave

function can be obtained from the pseudo wave function by

|Ψv〉 = |Ψ̃v〉+
∑

i

(|Φv〉 − |Φ̃v〉)〈p̃i|Ψ̃v〉, (2.20)

here the projector function p̃i satisfies 〈p̃i|Ψ̃v〉 = δiv.

The charge density ρ(r) is given by three contributions

ρ(r) = ρ̃(r) + ρ1(r)− ρ̃1(r) (2.21)

Here, the first term is the pseudo charge density outside the core region (augmen-

tation region) corresponding to Ψ̃v, the last two terms are charge densities inside the

augmentation region Φv, and the rest one Φ̃v (for detailed, see Ref. [73])

In my works, I used the Vienna ab-initio simulation package (VASP) [76, 77, 74, 78]

because it allows to perform efficient DFT calculations for complex molecular systems

like TiO2. The PAW in VASP gives a good description because of smaller radius cut-

off reconstruction, and more exact valence wavefunction with all nodes in the core

region. The energy cut-off of TiO2 is set to 420eV for the wave function and to 840eV

for the charge density.
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2.6 The density-functional-based tight-binding (DFTB) method

Another approach to determine the electronic structure and electronic properties

of TiO2 is to use a self-consistent charge density-functional-based tight-binding (SCC-

DFTB) method. This method is based on the second-order expansion of the Kohn-

Sham total energy of initial charge density n0 and its small fluctuation δn[79, 80].

E =
[

occ
∑

i

〈Ψi|Ĥ0|Ψi〉
]

+
[

− 1

2

∫

′
∫

n0n
′

0

|r − r′| + Exc[n0]−
∫

Vxc[n0]n0 + Eii

]

+
[1

2

∫

′
∫

( 1

|r − r′| +
δ2Exc

δnδn′

∣

∣

∣

n0

)

δnδn′
]

,

where the first term EBS is the band structure energy, the second term Erep is a short-

range repulsive two-particle interaction. The last term is the electrostatic interaction

accounting for charge fluctuations. At larger distances, this term is neglected, we can

replace by a simple pair-wise potential

1

2

∫

′
∫

( 1

|r − r′| +
δ2Exc

δnδn′

∣

∣

∣

n0

)

δnδn′ =
1

2

∑

αβ

γαβ(Rαβ)∆qα∆qβ, (2.22)

where γαβ(Rαβ) is determined by Coulomb interaction of two pherical charge distri-

butions centered in the atom α and β; ∆qα and ∆qβ are atomic charge fluctuations.

The wave function is expanded to a linear combination of atomic orbitals (LCAO)

for valence electrons

Ψi(r) =
∑

ν

ciνφν(r−Rα) (2.23)

Applying the two-particle approximation, the nonzero Hamiltonian H0 can be

expressed

H0
µν =















εαµ, ifα = β, µ = ν

〈φα
µ|T̂ + V α,β

KS |φβ
u〉, otherwise

, (2.24)
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where V α,β
KS stand for a pair effective potential operating only on the electrons in the

atoms α and β.

Applying variation principle, we have a SCC-DFTB secular equation

∑

ν

cKS
ν (H0

µν − εKSSµν) = 0 (2.25)

where Sµν = 〈φα|φβ〉 represents the overlap between local speudoatomic orbitals.

Introducing a distance-dependent pairwise repulsive potential V αβ
rep (Rαβ), we can

rewrite the total energy

E =
∑

µν

cKS∗
µ cKS

ν H0
µν +

∑

α<β

V αβ
rep (Rαβ) +

1

2

∑

αβ

γαβ(Rαβ)∆qα∆qβ (2.26)

Solving the equation (2.25), we determine eigenstates cKS
ν and then the first term

in equation (2.26). The second term can be found by empirically fitting EDFTB
Elec to the

corresponding total energy EDFT
Elec . The last term describes the role of charge transfer,

the atomic charges are determined self-consistently. The SCC-DFTB calculations

were performed in DFTB+ code [81]. The precomputed matrix elements are held in

Slater-Koster files.

2.7 Optical Effective Mass

Conductivity of a non-degenerate semiconductor

σ =
nee

2τ(εF)

m⋆
(2.27)

where ne is electron concentration, τ is relaxation time and m
⋆ is the effective mass

given by [82]

1

m⋆
=

1

~2

∂2ε(k)

∂k2
(2.28)
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where ε(k) is carrier energy function and k is wave vector in a periodic potential field.

In case of antisotropic band, the effective mass can be theoretically represented

as a tensor with nine components m⋆
ij

1

m⋆
ij

=
1

~2

∂2ε(k)

∂ki∂kj
(2.29)

In an appropriately chosen coordinate system m⋆ becomes diagonal:

1

m⋆
=















1

mxx

0 0

0
1

myy
0

0 0
1

mzz















(2.30)

In anatase TiO2, we have mxx = myy = m⊥ and mzz = m‖ in orthorgonal and

parallel to the main axis, respectively.

In non-degenerated n-type semiconductors, only the CBM is occupied at kT . In

the vicinity of the CBM the ε(k) can be approximated parabolically

ε(k) =
∑

i

~
2k2i
2m⋆

ii

=
~
2k2x

2m⋆
xx

+
~
2k2y

2m⋆
yy

+
~
2k2z

2m⋆
zz

(2.31)

with a constant m⋆
ii

For very high dopant concentrations, the parabolic approximation cannot be ap-

plied andm⋆
ii(k) become k-dependent. In the isotropic relaxation time approximation,

the conductivity becomes

σ = e2
∫

dk

4π3
vkvkτ(ε(k))

(

− ∂f0
∂ε(k)

)

, (2.32)

where the velocity of electron vk = −
1

~

∂ε(k)

∂k
and f0 is the Fermi-Dirac distribution
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in equilibrium. In a metal, the Fermi energy εF is in the CB, and at low temperature

− ∂f0
∂ε(k)

= δ(ε(k)− εF ), (2.33)

Taking this into account and decomposing the volume integral in the k-space into

an energy integral and surface integral along equi-enegetic surface one obtains

σ =
e2τ(εF )

4π3~2

∫

S(εF)

vkdS (2.34)

This can be written to resemble the case of the semiconductor in equation (2.32),

by introducing the so-called optical effective mass:

1

mopt
=

1

4π3~2ne

∫

S(εF)

vkdS (2.35)

with

ne =
1

4π3

∫

dk (2.36)

The name optical effective mass comes from the fact that its value is a function

of the carrier concentration ne because of non-parabolic nature of the energy bands.

If εF is high enough, several branches of the CB are occupied, then

1

mopt
=

1

4π3~2ne

∑

ℓ

∫

Sℓ(εF)

vℓ
k
dSℓ (2.37)

If the Fermi surface S(εℓF) is continuous, the Gauss theory can be applied and

1

mopt
=

1

4π3~2ne

∑

ℓ

∫

V ℓ(εF)

∆εℓ(k)dV ℓ (2.38)

where V ℓ(εF) is a volume inside Fermi surface S
ℓ
εF
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Here, I have summarized some approaches in DFT theory into TiO2 material.

The HSE06 approximation has been used but it demands on the computer resources.

Therefore, it is only suitable for small structure less than about 100 atoms, discussed

in Chapter 3. For TiO2 nanowires calculation in Chapter 4, I have use GGA-PBE

methods, keeping in mind that the findings are underestimated by 30-50%. Chapter 5

deals with a big system about 800 atoms, so SCC-DFTB is the best potential method

for molecular dynamics simulation because of good structural description.
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CHAPTER III

n-type doping of bulk anatase

In this Chapter, I focus on Nb- and Ta-doped anatase TiO2. The dopants Nb and

Ta replace host Ti atoms, release their extra electrons, and transfer them to the host

conduction band minimum. Heavily doped anatase behaves as a metal with high carrier

concentration, and can be used for TCO applications, where the electrical conductiv-

ity is determined by the optical effective mass. The optical effective masses depend

anisotropically on the carrier concentration, partly as a result of the nonparabolicity

and partly because with increasing concentration higher branches of the CB become

occupied. HSE06 which reproduces the width of the bands well gives the concentration

dependence of the optical effective masses also in very good agreement with experi-

ment. By calculating the formation energies, I have shown that Ta is a better dopant

than Nb for TCO applications, because it is more soluble and has a smaller optical

effective mass in the parallel direction. My calculations also explain the role of a

reducing atmosphere in the efficient dopant incorporation.

3.1 Structural properties

Anatase (body centered tetragonal) is one of crystalline modifications of TiO2,

the other two being rutile (tetragonal), and brookite (orthorhombic). The rutile is

the most common natural form of TiO2 while the metastable anatase phase converts
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Figure 3.1: HSE06 48-atom supercell. Ti(blue) and O(yellow) are marked for the
primitive cell while Ti(gray) and O(red) present other repeated cells.

HSE06 Experiment

a (Å) 3.755 3.782
c (Å) 9.561 9.502
u 0.207 0.208

Table 3.1: The HSE06 and experimental structural data of anatase.

to rutile upon heating. In this Chapter, I limit my investigations to anatase phase

and its n-type doping for transparent conductor applications.

The anatase modification consists of two equivalent sublattices, with lattice con-

stants a, c orthogonal and parallel to the crystal axis, respectively. An internal pa-

rameter u describes the relative position of the oxygen atoms. If a titanium atom

of the first sublattice is located at the origin, its two apex oxygen atoms will be

placed at (0, 0,±uc). The first titanium neighbors are located at (±a/2, 0, c/4) or

(0,±a/2,−c/4) and their two oxygen atoms are at (±a/2, 0, c/4±uc) or (0,±a/2,−c/4±

uc), respectively (Figure 3.1).

As I mentioned in the previous Chapters, because of the success of hybrid func-

tional HSE06 in describing the structural and electronic properties of TiO2, I firstly

use this approach to investigate the lattice parameters of anatase. The geometry of

the perfect primitive cell has been optimized using a 8× 8× 8 Monkhorst-Pack (MP

set) [83]. Table 3.1 presents the lattice parameters of the anatase obtained by HSE06
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Ti2O4 (B.C. tetra.) Ti16O32 (tetra.) Ti32O64 (tetra.)
~b1 2π(0, 1

a
, 1
c
) 2π( 1

2a
, 0, 0) 2π( 1

4a
, 1
4a
, 0)

~b2 2π( 1
a
, 0, 1

c
) 2π(0, 1

2a
, 0) 2π( 1

4a
,− 1

4a
, 0)

~b3 2π( 1
a
, 1
a
, 0) 2π(0, 0, 1

c
) 2π(0, 0, 1

c
)

Table 3.2: Reciprocal lattice vectors of unit cell and supercells of anatase.

Figure 3.2: a) The BZ of the primitive (black line), the 48-atoms (blue dashed line)
and 96-atoms (red dotted line) supercells. The letters refer to high sym-
metry points of the primitive BZ. b) The nesting of the BZs shown in the
kz = 0 plane.

and a comparison to experiment [84]. These HSE06 parameters are also used for all

of my calculations in PBE for comparison.

3.2 Electronic properties

To calculate the electronic structure of doped anatase, I constructed many simple

tetragonal supercells (from the body centered tetragonal primitive cell of 6 atoms)

such as 1× 1× 1 supercell (12 atoms),
√
2×

√
2× 1 supercell (24 atoms), 2× 2× 1

supercell (48 atoms - Figure 3.1), 2
√
2× 2

√
2× 1 supercell (96 atoms), and so on. A

dopant is substituted for one Ti-atom of the supercell, therefore increasing the size

of the supercell will decrease the dopant concentration. The Brillouin zones (BZs)

of the primitive cell and the supercells are shown in Figure 3.2. The high symmetry

points in
2π

a
unit are listed in Table 3.3 where their positions are indicated in terms

of the reciprocal lattice vectors defined in Table 3.2.
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coord. Ti2O4 Ti16O32 Ti32O48

0, 0, 0) Γ Γ Γ
(0, 0, 1

2
) Z Z

0, 0, 1) Z 2Γ 2Γ
(1
4
, 0, 0) X M

(3
4
, 0, 0) M 2X 2M

(1
8
, 1
8
, 0) X

(1
4
, 1
4
, 0) M 2Γ

(1
2
, 1
2
, 0) X 2Γ 3Γ

(1
4
, 0, 1) A X M

(1
8
, 1
8
, 1) U X

(1
4
, 1
4
, 1) R M 2Γ

Table 3.3: High symmetry points (
2π

a
unit) in the BZ of primitive cell and supercells

of anatase TiO2

Figure 3.3 shows the band structure of the perfect lattice in the primitive BZ.

By comparing the PBE and HSE06 results, I have found that the CB is consider-

ably broader in the latter, which will lead to smaller effective masses, than those

of Ref. [22]. Note that, in addition to the global minimum of the CB along the

M − Γ−X lines, there is a secondary minimum along the A−Z −R lines. The sec-

ondary minimum is within 0.4 eV in energy from the global one in both calculations.

In supercells, this minimum will fold back into the Γ point of the reduced BZs and

will appear as a low-lying higher branch of the CB.

I modeled doped anatase by 48- or 96-atom supercells with substituting a single

titanium atom by Nb or Ta atom. This corresponds to dopand concentrations of

18.54 and 9.27×1020cm−3. PBE and HSE06 calculations for the self-consistent charge

density ρ(r) are applied with the special k-point sets for the BZ integration described

in Table 3.4. Since the HSE06 total energy is changed less than 0.02 eV/primitive

cell between the 8 × 8 × 8 and the 4 × 4 × 4 set for the primitive cell, and between

the 4× 4× 2 and the 2× 2× 2 set for the 48-atom supercell, the charge densities of

the smaller sets are used to calculate the ε(k) dispersion relation at other k-points
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Figure 3.3: The PBE (a) and HSE06 (b) band structure of anatase in the primitive
BZ. The valence band edges are taken as reference energy, and only the
first four subbands are shown in each band.

for fitting. In case of the HSE06 functional, the required extra k-points have to be

calculated self-consitently with zero weight. The energy of the defective supercells is

minimized with respect to the atomic coordinates till forces are below 0.02 eV/Å.

I present the PBE conduction bands of 48- and 96-atom supercells with one dopant

atom in each, corresponding to a fractions x = 0.063 and 0.031 of the cation sites in

Figure 3.4. The CB of the perfect primitive cell (x = 0.000) is also shown. In the

supercells, the dispersion relation folds back on the reduced BZ, but the degeneracy

at the zone boundaries splits, because the introduction of the dopant reduces the

symmetry from D4h to D2d. Ta-doping seems to change only the band filling, it does

not affect the band dispersion.

In HSE06 calculation, I only calculated the perfect cell and 48-atom supercell with

one dopant atom. Figure 3.5 shows the corresponding conduction bands. From the

HSE06 band structure of Nb-doping, the split between the first and second CBs at
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1× 1× 1 2
√
2× 2

√
2× 1 2× 2× 1

k-set PBE 8× 8× 8 2× 2× 2 4× 4× 2
for ρ(r) HSE06 4× 4× 4 2× 2× 2

k-set PBE 16× 16× 16 12× 12× 12 24× 24× 12
for ε(k) HSE06 16× 16× 16 12× 12× 6

N 6 96 48
x 0.000 0.031 0.063
nD 0.00 9.17× 1020 18.54× 1020

Table 3.4: The Monkhorst Pack sets in the PBE and HSE06 calculations for deter-
mination of the self-consistent charge density ρ(r) and for ε(k), as well as
the total number of atom N, the Nb fraction x per cation site, and the
corresponding doping concentration nD(cm

−3) are given.

Figure 3.4: The PBE conduction band with Nb (left) and Ta (right) fraction of x =
0.000 (black dotted line), 0.031 (red dashed line) and 0.063 (blue solid
line), in the BZs of primitive, the 96-atom and the 48-atom supercell,
respectively. Horizontal lines show the position of Fermi-energy.
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Figure 3.5: The HSE06 CBs with Ta/Nb fraction of x = 0.063 (red solid lines/blue
dashed lines). The HSE06 CB of pure anatase is also represented by black
dotted lines. Horizontal lines show the positions of Fermi-energy.

Z point is 0.10eV and 0.12eV for the second and third CBs at Γ point; while in case

of Ta-doping, the small splits of the first two CBs and of the second-third CBs are

0.02eV and 0.01eV, respectively. Ta-dopant which has a 5d atomic orbital energy,

higher than 4d one of Nb-dopant, does not change the Ti 3d-nature conduction band.

Both PBE and HSE06 band structures of doped anatase are aligned with perfect one.

The alignment can be calculated by equilibrium shifting the average potentials of TiO2

of perfect supercell and of TiO2 which are unperturbed from the dopant. The result

shows that, in HSE06, the CBMs of doped anatase shift down about 0.23-0.25eV with

the perfect CBM.

The Fermi level at these concentrations is quite high above the CB edge, in agree-

ment with the observed Burstein-Moss shifts in the onset of optical absorption [85].

In Nb-doping, for carrier concentrations of ne = 8×1020cm−3 and ne = 16×1020cm−3,

it was observed that the Fermi level is above the CBM by 0.35 eV and 0.46 eV, re-

spectively. Note that, the actual carrier concentration in the experiment was ∼ 83%

of the Nb concentration. My PBE(HSE06) values at ne = 9.27 × 1020cm−3 and

ne = 18.54×1020cm−3, respectively, are 0.35(-) and 0.49(0.58)eV. Despite the virtual

agreement of the PBE values with experiment, the HSE06 value is better, for the

calculations with 17% higher concentrations.
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From equation (2.38), to calculate the optical effective mass, we need to know

the energy function εℓ(k). This function can be found by fitting the band structure.

Using a power expansion with D2d symmetry, I defined the energy function to fit

points of the calculated conduction band as follow

εℓ(k) = aℓ0 + aℓ1(k
2
x + k2y) + aℓ2k

2
z + aℓ3(k

4
x + k4y) + aℓ4k

4
z + aℓ5k

2
xk

2
y

+aℓ6(k
2
xk

2
z + k2yk

2
z) + aℓ7|kz|+ aℓ8|k3z |+ aℓ9(k

2
x + k2y)|kz|.

(3.1)

The last three terms are needed for a good fit of higher bands, and the coefficients

are an order of magnitude smaller than that of the first six (for ℓ = 1, a17,8,9 = 0). The

fitting is performed to an energy higher than the actual Fermi energy but lower than

the minimum of the bands ℓ > 3. The mean square error of resulting fits in all cases

are lower than 0.01eV.

3.3 Optical effective mass

3.3.1 Optical effective mass of Nb-doped anatase

To calculate the optical effective mass, I have two assumptions. First, the carrier

concentration equals the dopant concentration, ne = nD. Hence, I can determine the

Fermi level at any dopant fraction. In the vicinity of a given dopant concentration,

the band structure does not change too much. Therefore, I can extrapolate the value

of the optical effective mass as a function of the carrier concentration at least within

a narrow range by carrying filled for a given concentration.

By calculating from equation (2.38), I show the values of the optical effective mass

as circles in Figures. 3.6. At small concentration, the difference is small between the

PBE and HSE06, but the latter become gradually lower with increasing concentration.

This is due to the wider bands in HSE06 with respect to PBE. Then, I determined the
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Figure 3.6: The carrier concentration dependence of the optical effective mass in the
orthogonal (left) and parallel (right) directions to the main axis. Full,
hatched, and empty circles denote the values calculated from the band
structures of the 48- and 96-atom supercells (with one Nb atom each)
and from the perfect primitive cell, respectively. Lines are extrapolations
based on the PBE (dashed lines) and HSE06 (solid lines) band structures.
Experimental data are represented by diamonds (Ref. [27]) and squares
(Ref. [28]) The empty squares are the multiplied experimental values [28]
by the factor [(m‖ −m⊥)/m⊥]

1/2.

contribution of the optical effective mass of each bands in Figure. 3.7. From this figure,

in the concentration range relevant for the TCO application, I have found that the

increase of mopt is strongly influenced by the contributions of the 2nd and 3rd bands,

not just by the non-parabolicity of the 1st one. The lower values of the former in the

HSE06 case keep the orthogonal effective masses within range of the experimental

data, while the PBE values give an increase of overestimation (Figure 3.7).

The dashed and the solid lines around the last data points in Figure 3.6 repre-

sent the optical effective masses in the parallel direction. PBE predicts a concave

curve while HSE06 a convex one for high concentrations, respectively. Multiplying

the experimental results [28] with a factor of [(m‖ − m⊥)/m⊥]
1/2 gives an excelent

agreement with the calculated masses (except for the lowest concentration, where the

metallic conduction is lost [16].

The optical effective mass in the parallel direction is much higher than that of
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Figure 3.7: Dotted, dashed, and dot-dashed lines are the contributions of the average
optical effective mass for the first, second, and third HSE06 sub-bands,
respectively in the direction orthogonal (left) and parallel (right) to the
main axis.

the orthogonal one, and for large carrier concentration the anisotropy increases even

further. This is mainly due to the steepness increased in the contribution of the first

band (in Figure 3.7, ). I have found, however that ε(k) becomes extremely flat along

the lines parallel to Γ − Z in the Γ − Z − R −X plane (Figure 3.8). Note that the

contribution of the third band diminishes the anisotropy due to the more symmetric

nature of the secondary minimum in the CB.

3.3.2 Comparison of optical effective mass between Nb- and Ta-doped

anatase

In the previous section on Nb-doped anatase, I used the volume integral, the

second derivative of the |kz| term did not contribute to the optical effective mass.

Therefore, the values for parallel mass may be less exact. This is even more so in

the case of Ta. When the dispersion relation has a significant contribution from the

term which have a discontinuous derivative. The Gauss theorem cannot be applied,

equation (2.37) cannot be rewritten into a volume integral of the second derivative

(2.38). In this section, I have calculated the surface integral using finite differences
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Figure 3.8: The PBE ε(k) relation in the Γ−Z−R−X plane of the BZ corresponding
to the 48-atom supercell.

in the perfect anatase unit cell and for both Nb- and Ta-doped cases. Details of

calculation is shown in Appendix A.

Figure 3.9 shows the comparison of the optical effective masses in orthogonal and

parallel directions to the main axis of Nb- and Ta-doped anatase by using surface

integral. Calculating the orthogonal optical effective masses in a range of carrier

concentration from 0 up to 2.2×1021cm−3, I got both Nb-doped and Ta-doped anatase

TiO2, from 0.41m0 to 0.8m0 in PBE, and between 0.4m0 and 0.6m0 in HSE. In the

parallel direction, the optical effective mass of the Nb-doping changes from 4.1m0 to

14.6m0 in PBE and from 3.5m0 to 12.4m0 in HSE06, slightly lower than our previous

volume integral calculation. Testing without the contribution of |kz| term, I found

that the values of parallel optical effective mass of Nb-doped anatase (using surface

integral) absolutely fit with the previous calculated results (using volume integral).

The linear |kz| part becomes significant to reduce the parallel optical effective mass.
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Figure 3.9:
The carrier concentration dependence of the orthogonal effective mass of
Ta- (red) and Nb-doping (blue) in PBE (dashed lines) and HSE (solid
lines) calculation. Full, hatched and empty spheres and squares denote
the values calculated from the band structures of 48- and 96-atom super-
cells (with one Ta/Nb atom each), and from the perfect primitive cell,
respectively. Lines are extrapolations based on band structures.

The parallel optical effective mass of Ta-doping changes linearly from 4.1m0 to

8.1m0 in PBE and 3.5m0 and 7.3m0 in HSE06 as the carrier increases. A small split

between conduction bands in Ta-doping makes a smaller parallel optical effective

mass. Ta-dopant has a better optical effective mass than Nb-one does in anatase.

3.4 Formation energies of substitutional Nb and Ta

To replace a host atom by a dopant, we need an energy to break atomic bonds and

stress lattice. In doped anatase, the formation energy of the defect D (D=NbTi,TaTi)

is calculated as a function of the chemical potentials of bulk TiO2, Ti, and D by the

expression [86]

Ef = Etot(Tin−1,O2n : D)− nµbulk
TiO2

− (µD − µTi), (3.2)
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where Etot is the total energy of the supercell with one dopant each, n= 16 or 32 is

the number of units in the supercells, µbulk
TiO2

is the energy of one unit in the perfect

crystal

The chemical potential µTi and µD depend on the experimental growth conditions,

which can be O-poor, O-rich or any thing in between. The former is connected to the

chemical potential of oxygen by the equilibrium condition

µTi + 2µ0 = µbulk
TiO2

. (3.3)

The limiting values occur in the extreme O-rich case which places a limit on µO

given by µO =
1

2
O2(p,T) and in the extreme O-poor case, when Ti2O3 is formed

instead of TiO2, equation (3.3) becomes

2µTi + 3µ0 = µbulk
Ti2O3

. (3.4)

The total energy of TiO2 and Ti2O3 can also be expressed as















µbulk
TiO2

= µbulk
Ti + µO2(p,T) +∆HTiO2

f ,

µbulk
Ti2O3

= 2µbulk
Ti +

3

2
µO2(p,T) +∆HTi2O3

f ,

(3.5)

where ∆HTiO2

f and ∆HTi2O3

f are the enthalpies of formation.

For dopant, similarly, we need to consider the chemical potential of dopant µD

equilibrium with its dopant oxide by

2µD + 5µ0 = µbulk
D2O5

= 2µbulk
D +

5

2
µO2(p,T) +∆HD2O5

f . (3.6)

The enthalpy of dopant oxides Nb2O5 and Ta2O5 can be calculated by PBE

and HSE06. However, at low temperature, the crystalline bulk phases of both

dopant oxides are not uniquely determined. For Nb2O5, many configurations have
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Table 3.5: Formation energy Ef (eV) of Nb and Ta-doped anatase TiO2

Vxc Structure O-rich Stoichiometric Ti-rich
Ti31NbO64 2.46 1.25 0.62

PBE Ti31TaO64 2.01 0.80 0.16
Ti15NbO32 2.71 1.50 0.87
Ti15TaO32 2.28 1.06 0.43

HSE Ti15NbO32 2.42 1.20 0.57
Ti15TaO32 1.90 0.68 0.05

been observed including P-Nb2O5 (low heating), N-Nb2O5 (rapid heating), R-Nb2O5

(metastable), M-Nb2O5 (medium temperature), H-Nb2O5 (high temperature), T-

Nb2O5, B-Nb2O5 (high-pressure phases) while Nb2O5 is amorphous at low temperature.[87,

88] For Ta2O5, at least the phases of β-Ta2O5 (orthorhombic), δ-Ta2O5 (hexagonal)

have been found. [87, 89, 90, 91] Therefore, instead of being theoretically calculated,

the values of enthalpy ∆Hf are taken by the previous experiment of -19.687eV for

Nb2O5 and of -21.205eV for Ta2O5. [92]. Note that the enthalpy values of both TiO2

and Ti2O3 are also taken from experiment.

Table 3.5 shows the formation energy of Nb- and Ta-doped anatase TiO2 in PBE

and HSE calculations. At a given dopant concentration, the formation energy ob-

tained from the HSE calculation is smaller than the energy obtained from PBE cal-

culation. Moreover, for either the PBE or HSE functionals, the formation energy of

the Ta-doping is smaller than that of Nb-doping. Ta-dopant is more soluble than

Nb-one.

The formation energy in the O-poor condition smaller than in O-rich of ∆HTiO2

f −
1

2
∆HTi2O2

f . Therefore, the reducing atmosphere during growth [33, 22, 31] is necessary

because the formation of Ta- and Nb-oxides is more exothermic than that of TiO2.

In the observation of the Kamisaka et al. [23], there is the heater of formation of Nb-

VO in anatase. The authors assumed that oxygen vacancies are important, so they

concentrated their studies on Nb-VO interactions. In fact, vacancies are not necessary
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for the conductivity, the reducing treatment only improves the dopant incorporation

to Ti sites.

From the comparison between Nb- and Ta-doped anatase, I found that Ta has

the considerably higher solubility and lower optical effective mass of the two dopants.

Therefore, Ta is a better dopant than Nb for TCO applications. Although Ta may

differently affect the crystallization procedure, further experiment with it can be

recommended.
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CHAPTER IV

TiO2 nanowires and their doping by Nb and Ta

This chapter discusses about anatase nanowires and their doping by Nb and Ta.

First, I review the structural and electronic properties of perfect anatase nanowires. It

is shown that the symmetry plays an important role in the stability and characteristics

of the band structure. In the second part, I investigate the most favoured substitutional

dopant positions and the influence of the high symmetry upon the conduction band of

nanowires.

4.1 Anatase TiO2 nanowires

4.1.1 Structural and stability properties

The crystal structure determines the electronic and optical properties of the

nanowires (NWs). Understanding how and why NWs take the form they do is an

important key to develop many nano devices. In this part, I have concentrated on

the model proposed by Liu and Yang [37] for the structure of their experimentally

observed anatase nanowire (ANW) with diameters of 5 Å. Such [001] ANWs were

synthesized by using a nonhydrolytic solution approach. The HRTEM images of such

a wire are shown in Figure 4.1.

Theoretically, models of NWs are generally constructed by cutting the 3D crystal
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Figure 4.1: (B) HRTEM image of a [001] ANW with a diameter of around 4.3 Å
and lattice fringes spaced at about 3.5 Å intervals, corresponding to the
spacing between the (101) planes of anatase TiO2. (C) HRTEM image
of ANWs with the corresponding FFT pattern in the inset. Reproduced
from Ref.[37]

along axis of the NWs. As we know, the symmetry of the bulk anatase crystal can

be decribed by a body-centered tetragonal lattice with a space group symmetry D19
4h-

I41/amd. [93] This nonsymmorphic space group contains 4-fold screw axes parallel

to the z axis going through the interstitial regions of the crystal with atoms at the

corners and edges of the concentric squares around the axes. [3] A rotation by π/4

around the axes followed by a shift of c/4 along the z axis maps the crystal onto

itself (where c is the lattice constant of the Bravais cell in the z direction). Figure 4.2

shows these screw axes and other 2-fold rotation axes going through crystal atoms

without screw symmetry.

Recently, Iacomino et al. have proposed the model of [001] ANWs with {100} side

walls centered around the 2-fold rotation axis.[39]. These NWs have a symmorphic

line group with the point group D2d and lose the screw symmetry of the bulk crystal.

However, by cutting such wires around the screw axis of the bulk crystal, Aradi et al.
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Figure 4.2: View of the anatase bulk crystal from the [001] direction. The squares
mark the 4-fold screw axes while the crosses mark the simple 2-fold ro-
tation axes. The titanium and oxygen atoms are represented by big gray
and small red spheres, respectively.

involved a new model of stoichometric [001] ANWs with point group D4. [3] These

NWs retain the nonsymmorphic character of the bulk space group and have a 4-fold

rotation in their point group. The relaxed geometries without and with screw axis are

shown in Figure 4.3 and Figure 4.4. The numbers in the name of each NW indicate

the numbers of TiO2 units (nTiO2) in the elementary cell of the NW. The NWs A9,

A25, and A49 are identical to those studied by Iacomino et al. while the NWs A16,

A36, and A64 are built by Aradi et al. The smallest nanowire with screw axis A4

spontaneously relaxes to a chain-like structure identical to the one investigated by

Zhang et al.[38]

The thinnest nanowires A4 and A9 do not keep the original anatase structure. The

starting A4 structure of D4 symmetry does not contain fully coordinated Ti atoms

at all, all titanium atoms coordinate to four oxygen atoms while all oxygen atoms

coordinate to two titanium atoms. The starting A9 structure of D2d symmetry has

one 4-fold Ti atom per unit cell.

The formation energy of the NWs can be defined as

ENWs
f =

ENWs
tot − nTiO2

Ebulk
TiO2

nTiO2

(4.1)

with nTiO2
being the number of TiO2 units in the NW.

The formation energies of ANWs are shown in Figure 4.5. {100}-walled NWs
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Figure 4.3: Side and top view of the relaxed [001] ANWs without screw axis built by
Iacomino et al. The side views show two unit cells. Big gray and small
red circles indicate the titanium and oxygen atoms, respectively.

Figure 4.4: Side and top view of relaxed [001] ANWs with screw axis built by Aradi
et al.. The side views two unit cells. Big gray and small red cicles indicate
the titanium and oxygen atoms, respectively. The thinest wire A4 with
screw axis spontaneously relaxes to a chain-like structure identical to the
one investigated by Zhang et al.
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Figure 4.5: Formation energy per TiO2 unit for bare stoichiometric [001] anatase
wires. Black circles and red squares stand for {100}-walled anatase wires
with screw symmetry (point group D4) and plain rotation symmetry
(point group D2d), respectively. Blue triangle marks the anatase wire
with reconstructed {100} side walls. Wires with other side walls than
{100} are indicated by green diamonds (see detail in Ref. [3]).

without and with screw axis in are compared to ones with other side walls. It can

be seen that {100}-faceted wires are more stable than others, and the NWs keeping

the nonsymmorphic characteristics (the screw axis) of the parent crystal are the most

stable. The thinnest NWs which keep the anatase structure are A9 and A16 without

and with screw axis. Simulated HRTEM images clearly show that the nanowire

without the screw axis (A9) gives rise to an apparent mirror symmetry, while the

nanowire with the screw axis (A16) produces an image which resembles a zigzag line

(in Figure 4.6). Clearly, the published previous HRTEM images of Liu and Yang [37]

(Figure 4.1) show a zigzag-like structure without mirror symmetry. This proves that

the more stable screw-symmetric (A16) structure had, in fact, been observed in the

experiment and not the mirror symmetric (A9) one. 1

1This section is in joint authorship with B. Aradi
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Figure 4.6: Simulated HRTEM images based on the relaxed anatase nanowires A9
and A16. Values above the columns indicate the defocus length with
61 nm corresponding to the Scherzer optimum defocus length. In the
pictures with defocus lengths of 61 and 90 nm the Ti (O) atoms are black
(white) and white (black), respectively. Reproduced from Ref.[3]

4.1.2 Electronic properties

Bulk anatase has an indirect band gap with the CBM at the Γ point and the VBM

along the ΓX line (near X point). However, the [001] ANWs have a direct gap at

Γ. The band gaps of the nanowires with screw symmetry (A4, A16, A36, A64) were

predicted higher than without it (A9, A25, A49, A81). [3] Figure 4.7 shows the band

line-up of the ANWs with screw symmetry (A4, A16, A36, A64 columns). The bands

were aligned based on the average electrostatic potential across the cross section.

The band gap decreases with an increasing diameter, as one would expect, due to

the decreasing quantum confinement. Anatase bulk is also included for comparison

(TiO2 column). Due to a practical limitation, I carried out these calculations with

the PBE functional only, keeping in mind that the band gaps are underestimated by

30− 50%.
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Figure 4.7: Band line-up of the pure ANWs (left) and doped-A16 with one dopant
Nb or Ta at sub-corner Ti site in one unit cell (right). Band structure
of perfect anatase bulk (TiO2 column) are included for comparison and
dashed horizontal lines show its HOMO and LUMO.

4.2 Nb- and Ta-doped anatase nanowires

4.2.1 Structural properties

Nb- and Ta-dopant can replace the Ti host atom in anatase nanowires and release

extra electrons to the host conduction band. The most stable pure ANWs were chosen

for doping. The question arises which position is preferred for dopant substitution. In

order to investigate this, I have calculated the formation energies in various positions.

Formation energy is calculated from equation (3.2), divided by the number of dopants

in one cell. Figure 4.8 shows the available sites in A16 and A36 (with screw axis).

The dopant can be placed at the corner of the ANW (having 4 oxygen neighbours,

noted by (1)), at sub-corner or inner site (having 6 oxygen neighbours, noted by (3),(6),

respectively) and at the surface or sub-surface site (having 5 oxygen neighbours, noted

by (2),(4) ,(5), respectively).

Table 4.1 shows the formation energies of the doped A16 and A36 nanowires. The

formation energy strongly depends on the position of the dopant. I have found that
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Figure 4.8: Side and top view of available positions of dopant in A16 and A36
nanowires. Dopant can be placed at the corner (1), surface (2),(4), sub-
corner (3), sub-surface (5), and inner (6) Ti sites.

Figure 4.9: Structure of A163-Ta4 nanowire with the highest symmetry of D4. Big
gray, blue, and small red cicles indicate the titanium, tantalum and oxy-
gen atoms, respectively. Four tantalum atoms substitute four host full-
coordinated titanium atoms (sub-corner (3,3,3,3)) in three unit cells of wire.
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the most favoured site is the sub-corner position while the corner site is the least

attractive for the dopant. The corner site has 4 oxygen atoms only, so replacement

of nominally tetravalent Ti with pentavalent Ta is energetically costly. In contrast, a

titanium at sub-corner site is fully coordinated, and a substitutional Ta will act as a

donor at little energy cost. The formation energy of Ta inner sites is also high because

of the reduced relaxational freedom. Comparing the thicker nanowire (A36) with the

thinner one (A16), solubility increases with thickness, as expected. Assuming that

Nb-dopant has the same behavior as Ta in ANWs, I have also considered Nb-doping

at the most preferable position, the results show that Ta is more soluble than Nb,

which is similar to the bulk doping in anatase.

4.2.2 Band structure

Figure 4.7 shows the band line-up of Nb- and Ta-doped A16. The alignment was

determined by means of the average potential of atoms on cross section far away the

dopant. Similar to doping in bulk anatase, the dopant in the ANW introduces shallow

effective mass-like states, i.e. a shift in the CB edge. For example, I have compared

the conduction bands of Nb- and Ta-doped A16 nanowires (Figure 4.10a). In case

of Ta-doping, Ta substitutes at sub-corner site. The CB is similar to the CB of the

perfect ANW, with small splitting between the first two CB branches. In contrast,

Nb gives a big splitting between the first and second branches. As can be seen, Nb is

also a deeper donor than Ta in the ANW.

To investigate the role of high symmetry in the doped-ANWs, I have doubled the

dopant concentration and investigated different arrangements of the two dopants in

the same cell. In the most favoured arrangement, both dopants are at sub-corner sites

(noted by (33)) having the D2 symmetry. The conduction bands of this arrangement

is shown in Figure 4.10c. There is no splitting between the first two conduction

branches. This effect is similar to bigger wires A36. Testing with two dopants at
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Structure Dopant position Ef/nD Symmetry
A16-Ta1 (1) 1.65 C1

(2) 1.17 C1

(3) 0.95 C1

A163Ta4 (3333) 0.96 D4

A16-Ta2 (11) 1.69 D2

(33) 1.00 D2

A36-Ta1 (1) 1.27 C1

(2) 0.84 C1

(3) 0.53 C1

(4) 0.87 C1

(5) 0.65 C1

(6) 0.80 C1

A36-Ta2 (11) 1.29 D2

(33) 0.55 D2

(35) 0.63 C1

(55) 0.69 C2

(66) 0.90 C2

A16-Nb1 (3) 1.88 C1

A163Nb4 (3333) 1.86 D4

A16-Nb2 (33) 1.90 D2

A36-Nb1 (3) 1.50 C1

A36-Nb2 (33) 1.51 D2

Table 4.1: Formation energy (in eV/number of dopant) and symmetry of Nb-,Ta-
doped anatase wires. Number (i),(ij),or (iiii) indicate the position of 1, 2
or 4 dopants in ANWs, respectively (see Figure 4.8).
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Figure 4.10: The conduction band of doped ANWs. Dopants place at sub-corner Ti
sites. a) One dopant atom replaces Ti atom in one unit cell of A16. b)
Four dopant atoms replace four Ti atoms in three unit cell of A16. c) Two
dopants replace two Ti atoms in one unit cell of A16. d) Two dopants
replace two Ti atoms in one unit cell of A36. The dot, dashed, and solid
lines are the CBs of pure, Nb-doped, Ta-doped ANWs, respectively. The
CBs in a) are aligned by average potential calculation (comparing with
Figure 4.7) while the CBMs in the rest ones b), c), d) are set to zero.

sub-corner sites in the bigger wire A36 (also symmetry D2 ), I have also got the same

effect (Figure 4.10d).

Doping 4 dopant atoms to 3 unit cells of A16 nanowires, I have found that the

doped nanowires have the highest symmetry of D4, dopants replace Ti atoms at the

sub-corner sites (Figure 4.9). The doped nanowires contain 4-fold screw axis parallel

to the z axis. A rotation by π/4 around the axis combining a shift of 3c/4 along

the z axis maps the nanowire onto itself. The CBs of Nb- and Ta-doped A16 wires

are shown in Figure 4.10b. The dispersion relation folds back onto the reduced BZ

and the degeneracy at the zone boundary does not split because the screw axis is
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restored. Therefore, even in doped ANW, the stability is strongly influenced by the

presence of the screw axis. The likely reason is that keeping the symmetry uninvites

the perturbation of the electronic structure.
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CHAPTER V

Rutile/Anatase heterojunction

Mixing anatase and rutile powders gives a higher photocatalytic activity than that

of the pristine phases. This increase is generally attributed to charge separation be-

tween the phases, due to a staggered band line-up. Here, a theory of the band alignment

across the rutile(100)/anatase(100) interface is presented and I conclude that elec-

trons are transfered from rutile to anatase, while holes move in the opposite direction.

5.1 Building the interface

The most stable rutile surface is a (110) surface while the most stable anatase

one is a (101) surface. Computational studies indicated a surface stability order of

(110) > (100) > (011) > (001) for rutile [94, 93], and of (101) > (100) > (001) for

anatase [95]. Therefore, many interfaces can be formed between TiO2 grains. I have

utilized a slab model for the interface between rutile and anatase. Since I used a plane

wave basis (in VASP), the model had to be 3D periodic, containing - besides the rutile

and the anatase layer, also a vacuum layer of appropriate thickness to decouple the

repeated slabs. The vacuum size and the thickness of each slab should be big enough

that the interactions between the nearest surfaces and between the interface with its

nearest surfaces can be eliminated. In general, the necessary thickness of the vacuum

region is ∼ 10 Å, while the thickness of every slab depends on its structure properties.
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To construct a slab model of tractable size, the misfit between the rutile and

anatase surface has to be considered. The area A of the interface is chosen to keep

the conservation of periodicity of both parent slabs. Hence, the length and width of

the simulation box are the least common multiples of the length and width of unit

cells in both phases. Using the near-coincidence-site lattice (NCSL) theory, I could

calculate the area A of the interface satisfying the relationship [96, 97]

A = naaa ×maba ≈ nrar ×mrbr, (5.1)

where na, ma, nr, mr are adjustable parameters. The lattice parameters are taken from

experiment of rutile ar=4.587 Å and br= 2.954 Å, and of anatase aa= 3.782 Å and

ba=9.502 Å, respectively.

In fact, two slabs cannot match perfectly, I have introduced a misfit deformation

into the system (shrinking or stretching the slabs in order to get the same area). The

misfit percentage values along the length and width of the interface are defined as

Mm =
(

1− maaa
mrar

)

100, Mn =
(

1− naaa
nrar

)

100. (5.2)

The stability of the interface can be expressed by the adhesion energy Eadh, which

is defined as the energy needed (per unit area) to reversibly separate the two phases.

Formally, Eadh can be defined as the total energy difference between the slab contain-

ing the interface and two isolated slabs

Eadh =
Einterface − Eslab

a −Eslab
r

A
. (5.3)

Here Einterface is the total energy of the interface system, E
slab
a and Eslab

r are the

total energies of anatase and rutile slabs, respectively.

Recently, Deskins et al. [98] have performed classical force field calculations for

53



Table 5.1: The adhesion energies Eadh of interfaces formed by rutile and anatase sur-
faces. The ar× br, aa× ba,Mm,Mn are the surface sizes and corresponding
to misfit values.

Rutile/Anatase ar × br/aa × ba Mm Mn Eadh

NCSL (%) (%) (J/m2)
r(100)/a(100) (Ref. [98]) 36/14 3.47 -0.68 -2.82
r(110)/a(101) (Ref. [98]) 99/49 0.40 -0.41 -1.71
r(100)/a(100) (My model) 2× 4/3× 1 3.45 -4.14 -1.54

many interfaces between rutile and anatase. They have found the interface between

rutile(100) and anatase(100) to have the highest adhesion energy. Therefore, in this

thesis, I concentrated the band alignment across this interface. According to the

NCSL theory, a rutile[2x4]/anatase[3x1] slab model (i.e. 8 rutile and 3 anatase sur-

face units) of the rutile(100)/anatase(100) inteface will have a misfit of ∼ 4% in both

directions. Such a slab model with layer thicknesses of rutile 13.761 Å and anatase

15.128 Å contains 288 atoms and is still tractable by ab initio calculation. In com-

parison, the slab of Deskins, containing 36 rutile and 14 anatase surface units has

still 3.47% misfit in one direction. The interface between the most stable surface,

rutile(110) and anatase(101) would require even a bigger slab.

Aligning two slabs allows various initial configurations of the interface. I have

constructed the initial configuration to ensure the highest possible degree of the stoi-

chiometry at the interface. The anatase (100) surface is a polar, so I cut the rutile(100)

slab in such a way that its surface because nearly a polar too. This initial configu-

ration (Figure 5.2 - left side) was subjected to simulated annealing , in order to get

a usable model of the actual rutile(100)/anatase(100) interface. The annealing was

carried out by constant volume molecular dynamics (using the DFTB+ code [99]),

i.e. with the outer double layers on both sides of the slab fixed. First, the system (all

together 228 atoms) was heated up to 1000K in the linear ramp of 5ps, held there

for 20ps and the cooked back to 0K with an exponential ramp of 5ps. The resulting

54



Figure 5.1: Diagram of rutile(100)/anatase(100) interfaces DFTB-MD. The system
was heated up to 1000K in the linear ramp of 5ps, held there for 20ps and
the cooked back to 0K with an exponential ramp of 5ps.

Table 5.2: The lattice parameters of anatase and rutile from experiment, NCSL the-
ory (shrinking or stretching the slabs), and optimization

Interface r(100)/a(100) Experiment NSCL theory optimization

Anatase a(Å) 3.782 3.860 3.872
c(Å) 9.502 9.338 9.364

Rutile a(Å) 4.587 4.669 4.682
c(Å) 2.954 2.895 2.904

structure was the extended on both sides by perfect crystalline layers of the same lar-

val size as the slab, so both the rutile and the anatase part were doubled in thickness.

This increased system (all together 576 atoms) was the relaxed at 0K using ab initio

PBE, without any constraint. Table 5.2 presents the average lattice parameters of

the anatase and rutile phase in the optimized interface model.

The final interface rutile(100)/anatase(100) is shown in Figure 5.2 (right side).

The interface picture suggests that there is some disorder at the first rutile layer while

there is no big change in the anatase slab. At the interface, the 5 fold-coordinated

titanium atoms of the anatase surface make bonds with 2 fold-coordinated oxygen

atoms of the rutile surface. There is a strong binding between two slabs, mainly by

tetrahedral TiO4 which have been observed in the UV/Vis diffuse reflectance and

XAFS measurement. [100]
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Figure 5.2: Initial slab model (left) and last optimized interface (right side) between
rutile(100) and anatase(100). Big gray and small red circles indicate the
titanium and oxygen atoms, respectively.
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5.2 Band line-up across rutile(100)/anatase(100)

In oder to determine the band alignment of anatase(100)/rutile(100) interface, I

have used the technique introduced by Van de Walle and Martin [101]. This con-

sists three calculations: interface calculation and two bulk calculations of rutile and

anatase. The interface calculation gives a jump of an average electrostatic potential

across the interface while two bulk calculations locate the band edges with respect to

the respective average electrostatic potential of each phase.

The average potential V̄ (z) in the plane (x, y) parallel to the interface is given by

V̄ (z) =
1

NA

∫

V (r)dxdy, (5.4)

where A is the area of the planes, N is the number of the taken planes.

The jump of average potential across rutile(100)/anatase(100) is shown in Figure

5.3. The layers far from the surfaces and the interface converge to their bulk value.

The potentials of bulk anatase and rutile are matched to the figures to determine

the average potential of each slab. I found the jump ∆V̄ (z) = V̄ (z)rutile − V̄ (z)anatase
= 0.13 eV. Note that from this calculation, the band line-up can be determined

directly from the DOS (Figure 5.4). However, it is difficult to measure and the PBE

calculation gives both the valence band and conduction band on the wrong place.

Since PBE describes the ground state well, I have used the PBE potential jump,

which was calculated from the actual inteface, to align the HES06 bulk band struc-

tures. From the Figure 5.5, I found that the CB-offset is about 0.46 eV, while the

VB-offset is 0.67 eV, with rutile being higher. This result corroborates the generic

value of 0.3 - 0.4 eV obtained earlier without explicity taking into account any inter-

face. [51]. As a result, electrons exited by the light move from the rutile to anatase

phase while holes move in the opposite direction.
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Figure 5.5: Derivation of band lineups: relative position of the average potentials
V̄anatase and V̄rutile and of the anatase and rutile valence and conduction
bands in HSE
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CHAPTER VI

Conclusion

6.1 Work performed

6.1.1 Nb- and Ta-doped anatase for the TCO application

In this thesis, I have performed calculations for the band structures of Nb- and

Ta- doped bulk anatase. My calculations, which are based on the density functional

theory and both the PBE and HSE06 functionals for the exchange energy, show that

these materials are both suitable for the TCO application. In particular, beside the

necessary transparency, highly doped anatase behaves like a metal because Nb- and

Ta-dopants release their extra electrons to the bottom of the conduction band of host

atoms.

A method to calculate the optical effective mass using finite difference technique

is also developed in this thesis. The integral of ∇kε(k) is calculated over the Fermi

surface, using the ε(k) function fitted to the ab initio electronic structure calculated

at the discrete k-points. By determining the Fermi energy from the calculated band

structure, I was able to compute the optical effective mass at different concentrations.

As a result, my HSE06 results agree very well with the experimentally observed

concentration dependence. An analysis on the results reveals that at the relevant

concentrations for the TCO application, the complicated concentration dependence
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of the optical effective mass is a consequence of the population of the secondary

minimum in the CB of anatase.

The optical effective mass determined from my calculations is highly anisotropic,

specifically m‖ ≫ m⊥ for both Ta-doped and Nb-doped anatase. The anisotropy in

the Ta-doped anatase is smaller, roughly a half of that in the Nb-doped anatase. The

solubility of the Ta dopant is higher than that of the Nb dopent, Ta should be the

preferred dopant for the TCO application.

An analysis on the heat of formation is given, clearly explaining the role of a reduc-

ing atmosphere for efficient dopant incorporation. In contrast to earlier assumptions

in the literature, my result indicates that oxygen vacancies play no role in the process

of dopant incorporation.

6.1.2 TiO2 nanowires and Nb- and Ta-doping in anatase wires

My work on TiO2 nanotructures (with B. Aradi) shows that the [001]-anatase

nanowires are stabilized by the presence of a screw axis (nonsymomorphic line group

with point group D4). Such wires doped by Nb and Ta are also investigated. Similar to

the bulk case, The dopants in the anatase nanowires also give their extra electrons to

the bottom of the conduction bands of the nanowires. The most favorable sites for the

dopants are the fully coordinated sub-corner Ti sites because of their low formation

energies. The dopants incorporation into the preferable sites, which are connected to

the symmetry of the doped NWs, clearly explaining that the conduction band of high

symmetric NWs is hardly perturbed by doping.

6.1.3 Band alignment across the anatase(100)/rutile(100) interface

To calculate the band off-set of the anatase/rutile with the highest adhension

energy, I have built a slab model of the interface. The slab model was exposed to

simulated annealing by SCC-DFTB molecular simulations, and then relaxed by ab
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initio calculations with the PBE functional at 0K. From the PBE calculations, I have

determined the jump of the layer-averaged electrostatic potential across a(100)/r(100)

interface. This value was then used to align the band structures of the bulk rutile and

anatase. From my HSE06 calculations, the offset of the anatase was determined to be

0.46 eV, while that of the rutile is higher. Therefore, the electrons excited by light will

move from the rutile to the anatase in a mixtured powder while the holes accumulate

in rutile. Consequently, the electron-hole recombination will be decreased, and the

mixture phase will have a higher photocatalytic activity than the single phases.

6.2 Future development

In Chapter 3, I have shown the important role of n−type doping in the anatase

for the TCO applications. However, p−type doping in TiO2 might also be possible,

thus opening new ways for the transparent electronics. Recently, by using the HSE06

functional, Deák et al. have found that in agreement with experimental results for Al-

doped samples, polaronic hole states (self-trapping of the acceptor hole) occur only in

anatase, while all cation site acceptors have EMT states in rutile. [102] Therefore, in

the next stage, I will start calculations for the optical effective mass of Al-doped rutile

by using the same finite difference techniques used for Nb- and Ti-doped anatase. On

the other hand, various interfaces between the anatase and the rutile phases will

also be investigated. In particular, as discussed in Chapter 5, although the band

alignment of the anatase(100)/rutile(100) interface was found to have the highest

adhesion energy, several other specific interfaces on suitable model can be proposed.

For example, in contrast to the the most reactive surface, the anatase(101)/rutile(110)

interface, which is the most stable surface, can be investigated to clarify the issue of

charge separation.
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APPENDIX A

In doped anatase, an energy function εℓ(k) can be fitted from a given band struc-

ture in the branch ℓ. However, the function may contain a term |kz| (see equation

(3.1)). The first derivative of this term is constant everywhere and discontinuous at

kz = 0 leading to an undefined second derivative of the energy function which deter-

mines the optical effective mass by equation (2.38). For example, at high Ta-dopant

fraction (x = 0.063), three Fermi surfaces Sℓ
εF

given by εℓ(k) = εF contribute to

the optical effective mass (Figure A.1). To determine the optical effective mass, we

can calculate from the surface integral (2.37) and separate it into 2 integrals at the

discontinuous plane kz = 0. The integral in equation (2.37) can be written by

I =

∫

S+

εℓ
F

∇εℓdSℓ +

∫

Sℓ+
0

∇εℓ
∣

∣

∣

k+z =0
dSℓ

0 +

∫

S−
εℓ
F

∇εℓdSℓ +

∫

Sℓ−
0

∇εℓ
∣

∣

∣

k−z =0
dSℓ

0. (A.1)

Introducing nℓ+ = (0, 0,−1) and nℓ− = (0, 0, 1) as normal unit vectors of surfaces

Sℓ+
0 and Sℓ−

0 to the integral, we get

I =

∫

Sℓ
εF

∇εℓdSℓ +

∫

Sℓ+
0

∇εℓ
∣

∣

∣

k+z =0
.nℓ+dkxdky +

∫

Sℓ−
0

∇εℓ
∣

∣

∣

k−z =0
.nℓ−dkxdky. (A.2)
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the lattice parameters of the anatase unit cell.

Expanding two dot products,

∇εℓ
∣

∣

∣

k+z =0
.nℓ+ = (

∂εℓ

∂kx

∣

∣

∣

k+z =0
,
∂εℓ

∂ky

∣

∣

∣

k+z =0
,
∂εℓ

∂kz

∣

∣

∣

k+z =0
)(0, 0,−1) = −a7−a9(k2x+k2y), (A.3)

∇εℓ
∣

∣

∣

k−z =0
.nℓ− = (

∂εℓ

∂kx

∣

∣

∣

k−z =0
,
∂εℓ

∂ky

∣

∣

∣

k−z =0
,
∂εℓ

∂kz

∣

∣

∣

k−z =0
)(0, 0,−1) = −a7−a9(k2x+k2y), (A.4)

we can rewrite the integral in form

I =

∫

S
εℓ
F

∇εℓdS+ 2

∫

Sℓ
0

[−a7 − a9(k
2
x + k2y)]dkxdky. (A.5)

Here, the second part in equation (A.5) presents the contribution of the |kz| term

to the reduction of parallel optical effective mass while the first one can be written as

∫

S
εℓ
F

∇εdS =

∫

Tx
εF

∂ε

∂kx
dkydkz +

∫

T y
εF

∂ε

∂ky
dkzdkx +

∫

T z
εF

∂ε

∂kz
dkxdky, (A.6)
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where T x
εF
, T y

εF
, T z

εF
are projections of Fermi surface SεF into yz-, zx-, and xy-planes,

respectively.

Combining equation (2.37), (A.5) and (A.6), I define the optical effective mass as

1

mopt
=

1

mx
+

1

my
+

1

mz
, (A.7)

with the othogonal optical effective masses

1

mx

=
2

(2π)3~ne

∑

ℓ

∫

Tx
εF

∂εℓ

∂kx
dkydkz,

1

my

=
2

(2π)3~ne

∑

ℓ

∫

T y
εF

∂εℓ

∂ky
dkzdkx, (A.8)

and the parallel one

1

mz
=

2

(2π)3~ne

∑

ℓ

[

∫

T z
εF

∂εℓ

∂kz
dkxdky + 2

∫

Sℓ
0

[−a7 − a9(k
2
x + k2y)]dkxdky

]

. (A.9)

In case of continuous energy function, calculating from equation (A.2), we have

∫

Sℓ+
0

∇εℓ
∣

∣

∣

k+z =0
n+dkxdky +

∫

Sℓ−
0

∇εℓ
∣

∣

∣

k−z =0
n−dkxdky = 0. (A.10)

The parallel term now is formed

1

mz
=

2

(2π)3~ne

∑

ℓ

∫

T z
εF

∂εℓ

∂kz
dkxdky. (A.11)

The optical effective mass calculated by equation (2.38) is now similar to that

done by equation (2.37) in Gauss theory application.
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