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GODEL'S INCOMPLETENESS THEOREMS
WITH CONCATENATION INSTEAD OF ADDITION AND MULTIPLICATION

by Michael Deutsch (Nov. 22nd 2007)

In [6] we have replaced the axiom system of Gddel with its use of 0,1,+,x by a
simple system which uses as its only free variable the following predicate E:

xEy < y has the digit 1 in the xth position in the binary representation

(Counting the positions starts with position "0" from the righthand side.)
Nearer at hand than E is the use of the concatenation v° = Axy xy (for the usual
binary representations) and the two binary successor functions
fg° = Ax x0 and f{* = Ax x1.

We exclude 0 from the natural numbers because otherwise the concatenation
function would not be associative. For example (10)0 would be 100, but 1{00)
would be 10, if we identify 0...0 as usual with 0. The set of natural numbers without
0 is called Ny. Like in [6] we do not use an induction scheme in the axiom

system.

Notice, we use the usual binary representation, not the representation of f4}.

"V means "either...or" . if we use it several times like in the first axiom, we mean
that exactly one case is true.

Because of optical reasons we write x0 instead of fg(x) in the axiom system. But in

fact 0 is not a variable, The free variables of the axiom systems are 1, v and fo.
where 1 is a individual variable, v is a two~place function variable and fg is a one~
place function variable. Therefore, the cases in Ao, Az, A4 that appear to be special
cases for 0 are necessary.

AXIOM SYSTEM M":

A1 Vx (x=1 ¥ Ju x=u0 V¥ 3u x=ut)

Az Vxyz (xz2=yzVzx=2zy VX0 =y0 > x = y)
Az Vxy (xy # X A x0 # x)

As  Vxyz x(yz) = (xy)z A Vxy x(y0) = (xy)0

As Vxyab (xy = ab - yENDb V bENDy)

xENDy is meaning x=y V dz y=zx.
In this case we call x an end of y. Please notice that the single end of 1000 (in
binary representation) is 1000 itself and the only ends of 1001 are 1 and 1001.

DEFINITION.
1. A first order formula B is called C-formula (concatenation formula) iff it contains

as free variables only individual variables and v and fg.
We write xy sometimes instead of v(x,y) and f4(x) instead of v(x,1).

If we talk about variables we mean from now on only individual variables different
from 1. As variables we use |, il, il{,.... . The number of strokes is called index. A C-
formula is calied n-place iff it contains exactly n different variables free.

2. If the n-place C-formula B has as distinct free variables xq,...,x, (ordered

according to growing index), we write B[xq,...,Xp] instead of B. The denotation
B(T4,...,Tp) Is used for the formula arising from Bfxy,...,xp)} by substituting Ty, for
Xm (1=m=n) simultaneously (for any terms Ty,...,Tq).

3. A term which can be generated from 1 by a finite number of transitions from T
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to fi(T) (i=0,1) is called binary representation. For any n of ¥y we have exactly one

binary representation n®.
4. In any model I on D the interpretations of 1, fg, v (in bold letters) are denoted

by 1, fg, v (in usual letters). Instead of u(x,1) we write sometimes f1(x). Let I* be
the standard model on Ny and 1°, f3°, v° the interpretations of 1, fg, v by I°*. We
write also f1°(x) instead of v°(x,1°), and xy for v°(x,y} resp. v(x,y). For interpreted

formulas we use usual print instead of bold print.
5. The n-place predicate P on Ny is called semirepresented in M" by the C-formula

A iff A is n-place and for all patural numbers Hyvenin
(a) in case of Pij..in the formula A(iy",...,in°) can be proved in M,
{b) the standard interpretation I° on My is a model of A(i1°,...,in") iff Piq..ip .

8. A C-formula is called Y-bounded iff it is generated from equations and negated
equations by a finite number of the following steps:

a) from A,B to (AAB) or (AVB),

b) from A to Ix A,

c) from A to Vx (=xENDy V A), also written Vx XENDy A-

LEMMA 1. In M the following formulas are provable:
1. Vxy xy + 1

2. Vxy xy + y
3. Vxyz (xy = fg(z) » Ju (y=fpg(u) A xu = 2))

4. Vxyz (xy = z1 > y=1 A x=z V Ju (y=t1 A xu = z))

PROOCF.
We prove the validity of the formulas in any model I on D.
1. According to Ay we have

y=1 ¥V du y=fg(u) ¥ Ju y=f{(u).
With A4 we get
xy = fij{(u) for a certain u and i=0 or i=1, hence with A4 the proposition.

2. Let be xy =y, thus
Xy = x{xy), thus with Ay

Xy = (xx}y, thus with Ao

X = xx , contradiction to Ag.

3. Let be xy = fp(z). With Aq we get

y=1 V¥ Ju y=fg(u) ¥ Ju y=fq(u) , thus with A and Aj
y=fg(u) for some u, thus with Ay

Xy = fo(xu),
thus with Ap
Xu =z,

4. Let be xy = z1.
In case of y=1 we have with Ap

X=Z.
In case of y = ul we have with Ay
Xy = (xu)1, thus with Ap

XU = z.

In case of y = fg(u) we have with Ay

xy = fg{xu).
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Contradiction to Aq.

LEMMA 2.

1. For any x,y of Ny with x=y resp. x=y the formulas x°=y°® resp. -x°=y°® are
provable in M".

2. In any model I on D of the axioms we write Dg for the intersection of all
subdomains of D containing 1 and for any x also fg(x) and f4(x).

Then all axioms are valid on Dq. The restriction of I to Dy is isomorphic to the
standard model I* on Ny. A closed Y-bounded formula is valid for I on D, if it is
valid for the restriction of I to Dy,

PROOF.

1. We have to prove the validity of the formulas in any model I on D. For x=y the
proposition is evident. For x#y the assumption x*=y* leads to a contradiction
because of the first two axioms.

2. For the restriction of I to Dg the following second order axiom is valid:

Ag VM (M1 A Vx(Mx - Mfg(x) A Mf4(x)) - Vx Mx).

Furthermore we use the following axiom instead of A

Ao* Vxy (fi(x) = fily) » x=y) i=0,1
We show first that the axiom system {A1,A2*,A6} is monomorphic by defining an
isomorphism ¢ relative to 1,fg.f1 from the standard interpretation I* on Ny to the
interpretation I restricted to Dy. Let

o(1°) =1
d(fo°(x)) = fo(P(x))
b(F17(x) = f1(D(x)) .

Because of the definition we have just to show that ¢ is a one-to-one mapping
onto Dg.

1) By induction on x we show

x#Fy = O0)FP(y).
a) For x=1° and y=fi°(u) for some u and 0<i<1 we have ¢(x)=1 and

B(y) = §i(9(u)), thus O(y)#1 using Ay.

b) Let x=f;°(u) for some u and x#y. For y=1° compare a). Now let y=fk°(v) for some
v and some k with 0<k=1. Because of x¥y we have itk or i=k A u#v.

For i+k we get ¢(x)#d(y) with Aq.

For i=k A u#v we assume @(x)=0{y). With As>* we get §(u)=¢(v), hence with the

induction hypothesis u=v. Contradiction.
2) Because of Ag the set of values of ¢ is Dy.

3) Because of A4 the values of the function v are in Dg if the arguments belong to
Dg. ¢ is also an isomorphism from I° on Ny to I restricted to Dy relative to v, that
means: For any x,y of B

B(o°(xy)) = v(B(x),B(y)).
This is easily shown by induction on y.
Therefore the axioms are also valid for the restriction of I to Dg.

4) We prove for any x of D by induction on z:
2€Dg A xENDz > xEDg.

a) For z=1 we get the proposition with Lemma 1.1.
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b) Induction step from z to fi(z) for i=0,1.

For xENDf{(z) we get x=fj{z) (thus X€EDg) or

yx = fi(z) for some v,

For i=0 we have x=fg(u) for some u according to Lemma 1.3 and

yu = z, because of the induction hypothesis UEDq and therefore x€Dg.
For i=1 we get with Lemma 1.4

=1 A y=z , thus xeDg or

X = ul for some u and

yu=2z2,

thus because of the induction hypothesis u€Dg and therefore x€Dg.

DEFINITION.
1) We write x instead of xqy..X, resp. x{,...,Xp.

2) Let be NgR the set of natural numbers of Ny, having only the digit 1 in the

binary representation (series of strokes).
3) A predicate on My belongs to RE" iff it can be generated from equations and

negated equations by a finte number of the following steps:

a) the composition of predicates with A or V,

b) the use of an unbounded F-quantifier,

¢) the use of a bounded V-quantifier, that means the transition from Q to

Pox <« Va aenpep Qxa

where

XEND*y < x=y V dz y=0°(z,x),

d) permutation or identification of variables.

In the equations and negated equations function terms are permitted only if they
consist just of variables, 1°, fp°and v°.

ABBREVIATIONS.

xBEGy forx=yVdzxz=y {x is a beginning of y)
10 for fg(1)

100 for fo(fg{1))

101 for f4(fg(1))

T100BEGz for z=1 V z=10 V 11BEGz V 101BEGz

SRz for 1ENDz A Vu ygnpz 3v (z=vu A 1ENDv) (z is a series of strokes)
xPWy for xBEGy V xENDy V duv y = uxv {x is part of y)

<X, y> for fo(x)fgly)
For the corresponding abbreviations in an arbitrary model I on D we choose usual
letters instead of bold letters. if I is the standard model I° on Ny, we add

sometimes the symbol ° in order to distinguish two models.

THEOREM 1.
Every recursively enumerable predicate on Nggr is semirepresented by a V-bounded

formula in M.

PROOF.

We have to show that the graph of any primitive recursive function on Ngp belongs
to RE". The demand 5(a) in the definition ahead of Lemma 1 is a consequence of
5(b} according to Lemma 2.2 because we use V-bounded formulas.

We omit here the symbol °.
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1) y=1 belongs to RE".
2) The graph of the successor function on Ngr has on Ny the representation
SRx Ay = f1(x).
3) The graph of Axq..xn X on Ngr has on Ny the representation
SRx1 A..A SRxpy A y=x .
4) The graph of f(x)= h{g1(x),....gk(x)) on NgR has the representation
z = f(X) ® Jyq1..¥m (2 = h(y1,0¥m) A Y1 = 81(X) A Y = gmi(X)) -
5) Let f(x,1) = g(x), f{xy") = h(x,y,f(x,¥)) on Ngp.
The graph of f has on Ny the representation
z=f(X,y) =
Jda (100<y,z>BEGa
A Yb pENDa (7100BEGH
V Jed (100<c¢,d>BEGD
A (c=1 A d=g(X)

VIduvw (e=f1(u) A d=h(x,u,v} A WENDb A 100<u,v>BEGw)))))
ll_>ll:
We choose a = 100<y,f(x,y)>100<y-1,f(x,y-1>100...100<2,f(x,2)>100<1,f(x,1)> .
II<_II: = -
We show by induction on the length of the binary representation of b
bENDa A 100<p,q>BEGb > SRp A SRq A g=f(x,p) .
Let
bENDa A 100<p,g>BEG). (*)
Then there are c,d with 100<c,d>BEGb, hence c=p and d=q.
Q) For the shortest b with (*) we have
c=1 A d=g(xX), hence d=f(x,1).
B) Induction step:
For ¢=1 we get again d=g{x). Otherwise we have for some u,v,w
c=fy{u) A d=h(x,u,v) A wENDb A 100<u,v>BEGwW .
Because of 100<u,v>BEGw we have w¥b. According to the induction hypothesis we
have
SRu A SRv A v=f(x,u)}.
Thus we get
SRc A SRd A d=f(x,c). g.e.d.

For the proof of Goédel's two incompleteness theorems we assume any
Gédelnumbering of the C-formulas with Gddelhumbers in Ngr. Furthermore we

define a Godeinumbering of all proofs of C-formulas from a set U of C-formutas.

We choose a correct and complete first order calculus where any rule has not more
than two premises and where the following two predicates H and K are recursive:

H is the set of Gddelnumbers of C-formulas beeing logical axioms of the calculus.
Kxyz o

x,y,z are Godelnumbers of C-formulas and the C-formula of z is gained from the C-
formulas of x and y by a rule of the calculus,

Let G be the set of Gédelnumbers of C-formulas.

Proofs of C-formulas in (from) a set U of C-formuias are finite series Cq,...,Ck of

C-formulas where for any i with i=i<k:
Ci € U, or C; is a logical axiom, or there are r,s with 1<r,s<i~1, such that C; is

gained from C; and C4 by a rule of the calculus.
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As Gédelnumber of the proof C1...,Cx we choose the natural numbar
100f0°(ak)100f0°{ak,_1)100 .............. 100fg° (a4)1,
where ay,...,a are the Godelnumbers of C4,....Cx in Ngp.

The following predicates S,F are decidable and therefore recursive according to
Church's thesis. If we want to prove this without using Church's thesis, we have to
specify the Godelnumbering of the C-formulas. We omit these details,

Let M be the set of Gédelnumbers of C-formulas belonging to U.

DEFINITION.
1) Spyac < a is the Goédelnumber of a C-formula and

¢ is the Godeinumber of a proof in U of the formula belonging to a
We use this predicate only for a recursive M.
In case of U=M", we write Sac instead of Spac.

Let S[x,yibe a Y-bounded formuta semirepresenting the predicate S. (Because the
Gadelnumbers of a proof do not belong to Ngp we tan not use Theorem 1 for

getting such a formula. But later on we will define this formula.)
2) Bac ea is the Gédelnumber of a C-formuta and
¢ is the Godelnumber of a proof in M" of the diagonal formuia of a
The diagonal formula of a one-place C-formula Alx] with the Godelnumber a is the
formula A{a°). The diagonal formula of any other formula is the formula itself.
3) if x is the Godelnumber of a one-place C-formula, let f(x) be the Godelnumber
of the diagonal formula. Otherwise we choose f(x)=x.
Fxy e y = f(x).
Let Flx,w] be a V-bounded formula semirepresenting the predicate F.
4) Bix,y] = Yw (Flx,w] » S(w,y)) '
The formula B is not VY-bounded. But in the standard model I° on N we have;
Bix,y] is valid for I° iff BI°(x)I°(y).
However, we have not a semirepresentation.
5) We call b the Godelnumber of the formula -3y Bjx,y] and d the Gédelnumber of
the diagonai formuta ~3y B(b®,y} .
6) We call e the G&delnumber of the formula 3x ~x=x .

THEOREM 2 (GODEL'S FIRST INCOMPLETENESS THEOREM FOR M ):
If M is consistent, there is no proof in M of the formula =3y B(b®,y).
However, in the standard model I° on Ny the formula ~Jy B(b°,y) is valid, i.e.

=dy Bby.

PROOF. For any proof of ~dy B(b®,y) we get Jy Bby. But the formula is true in I°
when it is provable, i.e ~dy Bby. (According to [1) and Lemma 2.2 M" is valid in I°
if it Is consistent.)

=3y Sey means that there is no proof of 3x —x=x.. This is a very natural formulation
of the consistency of M".

Gddel's second incompleteness theorem asserts for a natural choice of the C-
formula § that also -3y S(e°,y) is not provable in M" (if M' is consistent), that
means a formula expressing the consistency in the standard model on My in a

natural way. For the second incompleteness theorem we need a proof in M of
~dy S(ev,y) - -Jy B(b,y) .

We first show that there is a proof in M" of

~dy S(d°,y) -» -3dy B(b°,y) .
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For otherwise we would have in a model T both =dy S(d°,y) and Iy B(b°,y) .
Because of the semirepresentation of E by ¥ we have F(b°,d°) in I, because of
dy B(b°,y) therefore dy S(d°,y). Contradiction.

Thus we have to prove in M

~dy S(et,y) > 3y S(dLy) , e

Jy S(d°.y) = Ty S(e°,y) . (*)
Because of the First Incompleteness Theorem we have ~dy Sey » -3y Sdy, i.e,
dy Sdy -» Ty Sey . (°°)

To prove (°) we have so show the validity of (°) in any model of M", whereas (°°)
asserts the validity only in the standard model.

LEMMA 3. If I is the standard modei I° on N4, we have:
Smac e Ga A 100fg(a)BEGe
A ¥b penpe Jupg (~100BEGH

V b =100fg(u)t A (Mu V Hu)

V b =100fg(u)100fg(p)g

A (Mu V Hu
\' 3VW(100f0(v)PW100f0(p)q A 100fg(w)PW100fg(plg A Kwvu)))

PROOF.
"»": Because of Spjac we have

¢ = 100fg(aK )100fg(ak.1)100.............. 100fg(aq)1, where
8g,...,a¢ Is a series of Godelnumbers of C-formulas with ax=a and for 0<isk:
ajEM, or Ha;, or there are r,s with 1<r,s<i-1 and Karaga;.
The proposition is verified easily.
Il<_ll:
Let
bENDc A 100BEGbD. (1)
Then there are u,p,q with
b =100fg(u)1 A (Mu V Hu)
V b =100fg(u)100fy(p)q
A (Mu VvV Hu vV 3VW(100§0(V)PW100f0(p)q A 100fo(w)PW100fp(p)g A Kwvu))
By induction on the fength (number of digits) of b we show
Smub. (2)
a@) For the shortest b with (1) we have
b =100fg{u)1 A (Mu V Hu),
thus (2).
B) Induction step: We have b =100fp(u)100fg(p)g and
Mu V Hu v Elvw(100f0(v)PW100f0(p)q A 100fg(w)PW100fg(p)g A Kwwvu) .
With the induction hypothesis we get the proposition.

LEMMA 4. In M the following formulas are provable:
1. Vabed (ab = cd » aBEGc A dENDb V cBEGa A bENDd)
2. Yab ab # 100

PROOF. We show that the formulas are valid in any mode! of M by using As.

1. a) Let ab=cd A dENDbD.
For b=d we get with Ap a=c, thus aBEGe,

For b#¥d we get for a certain u
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b=ud, thus
aud = cd, hence with Ao

au = ¢, thus again aBEGc.
b) Let ab=cd A ~dENDb, thus according to Ag

bENDd A b#d, thus for some u
d = ub, thus
ab = cub, thus with Ay

a = ¢cu, thus cBEGa.
2. With ab = fg{fg(1)) we get for some u

b = fg{u), thus
au = fg(1), thus for some v
av = 1, contradicting Lemma 1.1.

L]

LEMMA 5. In M" the following formula is provable:
bENDy4y» A 100BEGb

= bENDy> V dp (b=pys A pENDy; A 100BEGp)

PROOF. We show the validity of the formula in any mode! of M".
Case 1: Let b=yqys.

We choose p=yy and show 100BEGp:
Because of 100BEGy- y2 and Lemma 4.2 we have for some v
100V = yqys.

With Lemma 4.1 we get
1.1 100BEGy4 A yoENDv or

1.2 y4BEG100 A VENDys.

Case 1.1: 100BEGp is evident.
Case 1.2: According to Lemma 4.2 we have y1=100, thus again 100BEGp.

Case 2: Let ub = yqy».

According to Lemma 4.1 we get
UBEGyy A yoENDb V y4{BEGU A bENDys .

For bENDyo the proposition is proved. Therefore we can assume
UBEGy{ A b=pys for some p.

Because of 100BEGb and Lemma 4.2 we have
pyn = 100w.

Like in case 1 we get
100BEGp.
With ub=yyy5 and b=py, we get also

upys = yqyo, thus with Ap
up = yq, thus
PENDy1. g.e.d.

Now we choose Y-bounded formulas G, M, H, K semirepresenting the predicates G,
M, H, K (compare Theorem 1).



M. Deutsch, 22.11.07 9

Smix.y1 = G(x) A 100f(x)BEGY
A Yb penpy Jupg (~100BEGD
V b =100fg(u)1 A (M(u) V H(u))
V b =100fg(u)100fg(p)q
A (M(u) V H{u)
A E|vw(100f0(v)PW100f0(p)q A 100fg{w)PW100fg(p)g A K(w,v,u))))

According to Lemma 3 the predicate Spac is semirepresented by the Y-bounded
formula Sp[x,y] . Special cases:

1) M is the set M° of Goédelnumbers of the formulas of M. Then we have
Smac e Sac. Instead of Syo{x,y] we write S[x,v1.

2) M is the set M*° = M u{d}; as M[p] we chose M°Ipl V p = d°, where the
V-bounded formula M°[p] is semirepresenting the set M°.

THEOREM 3 (GODEL'S SECOND INCOMPLETENESS THEOREM FOR MY
if M is consistent, there is no proof of ady S(e®,y) in M .

PROOF. The denotations I,D,Dg are used as in Lemma 2.2

We have to show the validity of (°) for I. Because of (**) we have Sppeo{e®,y) In
the standard model I° on My for a certain choice of I°(y), therefore also for the
restriction of I to Dy with a certain choice of I{y)=yq {compare Lemma 2.2),
therefore also for I on D, because the formula is V-bounded. Furthermore we
assume the validity of S(d°,y) in I for a certain choice of I(y)=ya.

Let y3 = yyy2.

Proposition: S(e°,y) is valid in I for I{y)=y3. Obviously e is Gddelnumber of a C-
formula, and we have 100fg(e° )BEGyqyo because of 100fg(e” )BEGy+.

Therefore we have just to prove for any b with bENDy{ys A 100BEGb for some

u,p,q:
b =100fg(u)1 A (M°(u) V H(u)) (1)
V b =100fg(u)100fg(p)q (2)

AM (UWVH(uV HVW(TOOfO(v)Pwmf}fQ{p)q A 100fg(w)PW100fa(plg A K(w,v,u)))
According to Lemma 5 we have one of the following two cases:
1) bENDyo
2) b=pys A pENDyy A 100BEGp for some p.
In the first case we get (1)V(2) from the validity of S(d°,y) in I for I(y)=ys.
In the second case we get from the validity of Spe-{e®,y) in I for I{y}=y4 some
r,s,t with
p =180fg(t)1 A (M°(t) V t=d® V H(t)) or
p =100fg(t)100fg(r)s A (M°(t) V t=d° V H(t)
v 5‘vw(100f0(v)PW100f0(r)s A 100fg(w)PW100fg(r)s A K{w,v,u)))
For u = t we get (2) because of b=pys, using in case of t=d° again the validity of
3(d°,y} in I for I(y)=ys.
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