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MICHAEL DEUTSCH: A SIMPLER PROOF AND A REFINING OF GODEL'S SECOND
29.9..2007 INCOMPLETENESS THEOREM

We want to replace Godel's symbols 0,1,+,X by a single predicate symbol refering
to the binary representation of natural numbers:

xEy o y has the digit 1 in the xth position in the binary representation
{Counting the positions starts with position "0" fram the righthand side.)

Advantages of the new formulation of the incompleteness theorems:

1. an easy proof of the second incompieteness theorem,

2. very simple axioms which allow also a direct set theoretical interpretation.

The proofs of both incompleteness theorems are also valid for any stronger

system.

SYSTEM M Ay Vxy (Vz (zFx e zEy)} »> x=y)
Az Jz Vu -uEz
Az VxdzVu (uEz = u=x)
Ag VxydzVu (uEz = uEx V uEy)

DEFINITION. 1. Let [ be the domain of hereditary finite sets, that means the sets
generated in the following way:

a) @ is a member of H,

b) with all x,y also {x} and xuy are members of H

2. As one-to-one mapping of H onto N (Gddel numbering) we use the following ¢:
() = 0,

O({x}) = 20(),

{xuy) = P(x)+d(y) if xny=0.

Then we have for all members x,y of K

x€y Hf O(x)Ed(y).

3, A first order formula A is called E-formula iff it does not contain function sym-
bols and at most E as predicate symbol. We call it n-place formula iff it contains
exactly n different variables free. As variables we use 1, H, Iil,... . The number of
lines is called index. Formulas of the type xEy and x«y are calied prime formulas.
4, E-formulas are calied V-bounded iff they are generated from prime formulas and
negated prime formulas by a finite number of the following steps:

a) from A,B to (AANB) or {AVB),

b) from A to dx A,

c) from A to Vx (~xEy V A) (V¥x xEy A ).

5. For any i€l and any variable y we define a V-bounded formula y = i* as follows:
y = 0° = Vu gy —uky

For mEf & m=my V..V m=my we define

y =i =

Yu (=uEy V u=mq° V..V u=mg°) A Ju {(u=m4° A uEy) A..A Ju (u=my° A uEy).
For all m,nEN we write m® = n° instead of Jy (y = m® Ay =j°).

6. if the n-place E-formula B has as distinct free variables xy,..,Xn (ordered
according to growing index), we write B[xy,..,Xp] instead of B. The denotation
B(yq,....¥p) is used for the formula arising from B[x{,...,Xu] by substituting ypy for
Xm {(1sm=n) simultaneously (for all variables yq,....¥pn). For any m with 1=m=n and

any €N the denotation B(Xq,...Xm-1.1*:Xm41s---Xpn) 8 used for the formula
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IXpn(Xm=i® A Bixy,....xp])-
We use analogously repeated replacements, for example for natural numbers iq,ig,ig
and any variables yy,...,yp the denotation B(i1°,i»°,i3°,Y4,...¥n)-

7. The n-place predicate P on N is called semirepresented in M by the E-formula
A iff A is n-place and for all natural numbers iq,...,iq

a) in case of Piy...in the formula A(i1°,...,in°) can be proved in M,

b) the standard interpretation I° on N, which interprets E by E, is a model of
A(i4°,...,ip°) iff Pig..ip.

8. Let AL be the class of predicates on [, which can be generated by -,A from

equations containing only functions on H obtained from A@, Ax {x}, Axy xuy and
Ax4...Xp Xj {1=i=n) by simultaneous substitution.

LEMMA: For all x,yEN with x=y resp. "x=y we can prove in M the formula x°=y°
resp. x°=y°.

PROOF: We have to show that the mentioned formulas are true in any model I of M
on D. We write E for I(E) and Dg for the intersection of all subdomains of D where

the axioms Aq,...,Agq are valid.

Q) 0" designates the x€Dp with Yu —uBx (compare Aq,Ap).

B)Let be i#0 and mEi ® m=mq V..V m=mg . Then i" designates the xEDg with

Yu (uUBx ®» u=mq" V.Vus= my "), compare Ag,A3,A4.

The models (€;H), (E;N) and (EDg) of M are isomorphic ([4], page 131). The
mapping ¢ from (E;N) onto (EDg) with P(i) = i" is an isomorphism.

a) For x=y we have obviously x°=y° in our model I on D, that means

Ju (u=x> Au=y°)

b) For x#y we have to prove -du (u=x" A u=y°) in our model I on D. But the
formula u=x° is valid in I iff I{u}=x" is true, and because of x¥y we have x"#y".

NOTICE: Any closed V-bounded formula which is valid on Dy is also valid on D
because of x€Dg A uBx » u€Dg .

THEOREM 1: Any recursively enumerable predicate on N can be semirepresented by
a Y-bounded formula in M .

PROOF: Let P be an n-place ¢-recursively enumerable predicate on H According to
I8}, page 152, there is an réN and an (n+r+2)-place predicate Q of AL with
Px1..Xp © 3a Vb pga Jeq..3cr Qabeq...opxq..Xy -

The predicate Q can be written

Qabcy...cpxq..Xy @ Jdq..dg Rabcq...cpdq...dgX1...Xp,

where R... Is a conjunction of graphs of the functions A@, Ax {x}, Axy xuy and a
combination by A,V of equations x=y and negated equations x#y. The mentioned
graphs can be represented as follows:

z =0 o  VYu gz €z

z = {x} e XxEz A Vu gz u=x

z =xuy < VYuyegz (UEX V UEY) A Vu yex UEZ A Yu ey uEz

Of course we alsoc have
Vb pea dcq..dop Qab... ¢ Vb peg Joq..Jer Qab.. A Jeq..dc; Qaa... .

if we substitute E for € we get a standard form of all recursively enumerable

it

[}
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predicates on N. If we write everything in bold print we get a semirepresenting
formuia for the predicate. For the requirement 7a) remember that we have a V-
bounded formuia.

We refer now to any Godel numbering of all E-formulas and any Godde!l numbering of
all proofs of E-formulas in M in any consistent and complete first order calculus.
The following predicate B and the function f are for any of these Godel numberings
decidable resp. computable. According to Church's thesis they are recursive. if we
want to prove this without using Church's thesis we have to specify the Goédel
numberings. We don't carry out these tedious details.

DEFINITION:
1. Bac ¢ a is the Gbdel number of an E-formula and
¢ is the Gédel number of a proof in M of the diagonal formula of the
formula belonging to a
The diagonai formula of a one-place E-formula Alx] with the Godel number a is the
formula A{a°). The diagonal formula of an E-formula A that is not one-place is A
itself.
2. Sac » a is the Gddel number of an E-formula and
¢ is the Gédel number of a proof in M of the formula belonging to a
Let Sfx,y] be a Y-bounded formula semirepresenting the predicate S.
3. f{x) is the Godel number of the diagonal formula if x is the Gédel number of a
one-place E-formula. In all other cases we define f(x) = x.
Fry 1oy = f(x).
let F[x,w]} be a V-bounded formula semirepresenting the predicate F.
4. Bix,y] = Vw (F[x,w] > S(w,y))
The formula B is not V-bounded. in the standard model I° on N we have:
Bix,y] is valid in I° iff BI°{x)I*(y)}.
However B is not semirepresented by B !
5. The Godel number of the formuia ~Jy Bix,y] is called b, the Godel number of the
diagonal formuta ~dy B(b°,y) is called d.
6. The Godel number of the formula dx —-x=x is called e.

THEOREM 2 (GODEL'S FIRST INCOMPLETENESS THEOREM FOR M):
If M is consistent, there Is no proof in M of the formula ~Jy B(b®,y) .

However in the standard interpretation I° on B the formula ~Jdy B(b°,y) Is true, that
means -3y Bby.

PROOF: For any proof of -3dy B(b°,y) we get dy Bby. On the other hand the
formula is valid in I° when it is provable, that means dy Bby. (According to {1}
and the proof of the Lemma M is valid in I° if it is consistent.)

-dy Sey means that there is no proof of Jdx —x=x. This is a very naturai formulation
of the consistency of M

Godel's second incompleteness theorem asserts for a special natural choice of the
E-formula S, that also ~Jy S(e°,y) is not provabie in M (if M is consistent}), that
means a formula expressing the consistency in the standard model I° on N In a
natural way,

For the second incompleteness theorem we need a proof in M of

~dy S(e°,y) -+ ~dy B(b,y) .

We show first that there is a proof in M of

~dy S(d°,y) » -dy B(b°,y) .

Argument: Otherwise in a mode! I both ~Jy S(d°,y) and 3y B(b°,y) would be valid.
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Because of the semirepresentation of F by ¥ we have F{b°,d°] in I, because of
dy B(b°,y) therefore dy S(d°,y). Contradiction.

Thus we have to prove in M

-3y S{e°,y) - -dy S(d°,y), or equivalently

dy S(d°,y) = Ty S(e°,y) . ()
Because of the first incompleteness theorem we have

-3y Sey » ~Jy Sdy, or equivalently

dy Sdy - Hy Sey . (**)
To prove (°) we have to show the validity of (°) in any model of M, whereas (°°)
asserts the validity only in the standard model.

We have now to specify partially the formuia S.

in any model I on D tet <x,y> be the member z of D with
HuvVw ((WEz e w=u V w=v) A (WU & w=x) A (WBv e w=x V w=y)).
The function Axy <x,y> is a one-to-ope mapping.
We choose a correct and complete first order calculus where any rule has not more
than two premises. The set H of Gédel numbers of E-formulas being logical axioms
of the calculus is recursive. Then we have a three-place recursive predicate K on
with: Kxyz <
x,¥,Z are Godel numbers of E-formuias and the E-formuwla of z can be obtained from
the E-formulas of x and y by a rule of the calculus .
The set of Gddel numbers of all E-formulas is called G. Let M be any recursive set
of natural numbers.
Spac ¢ Ga A ¢ is a natural number, having in the binary representation for certain
ag,...ak with ag=a exactly in the positions <ag,0>,..,,<a, k> the digit 1 and:
For any i with 0<isk we have Maj or Ha; or there are r,s with
rEi A sEi A Karaga; .
Now we choose V-bounded formulas G[x], Mip], HIpl, K[p1.p2.p] semirepresenting
the predicates G, M, H, K.
z = <X y> is an abbreviation for
Juv (uEz A vEz A Vwypgz (w=u V w=v) A xEu A Vwyp, w=x A xEv A YEv

A VYwypgy (W=x V w=y)) .
Smix,¥] is an abbreviation for
Juv (u = <x,v> A uEy A G[x])

A Vu gy 3pa (u = <p,q> A (M[p] V Hip]

V da1a2p1pautuz (91Eq A q2EQ A ug=<pq,q1> A up=<pq.a2>
A ugEy A upky A Kipq,p2.pD)) .

Sy Is semirepresented by this Y-bounded formula. Special cases:
1. M is the set M° of Godel numbers of the formulas of M Then we have
Spac « Sac. Instead of Sppelx,y] we write S{x,y].
2. M is the set M°° = M°u{d}; as M[p] we choose M°[p] V p = d°, where
M~[p] is semirepresenting the set M°,

THEOREM 3 (GODEL'S SECOND INCOMPLETENESS THEOREM FOR M):
if M is consistent, there is no proof of "y S(e°,y) in M

PROOF: The denotations I,D,Dg are used as in the proof of the Lemma.

But we write now E instead of I°(E) and instead of I(E). For interpreted formulas
we use usual print instead of bold print. On D let 0 be the only z with Yu -uEz. For
all Xq,...,Xp of D lot {xq,..,Xy} be the only z with Vu (UEZ & u=xX4 V...V u=Xp).
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We must show that (°) is valid in I. Because of (°®) Sppee{e°,y) is valid in the
standard model I° on N for some choice of I°(y)=y4. Hence we have on N
dw (<e,w>Eyy A G(e)) {(*)
A Vu (nuEyq V Jpg (u=<p,q> A (M*(p) V p=d A g=0 V H(p)

V daqqzp1P2 (d1Eq A g2Eq A <py,q1>Eyq A <pa,a2>Eyq A K(py,p2,P))))
Because we can start the proof with the formula belonging to d we can add "g=0"

in the formulation.
(*) is valid also in I restricted to Dg for some yq and (because this formula is V-

bounded) also in I on D. Then e and d are denoting the corresponding elements of
Dg. Let Jy S(d°,y) be valid in I on D, hence we have for some v,yg of D

<d,v>Eys A G(d) (*%)
A Yu (7uEyp V Jpg (u=<p,q> A (M°(p) V H(p)
V dayagpip2(a1Eg A agEq A <py,91>Eya A <pp,a2>Eys A K{py,p2,p))))

We want to use the union of yq4 and yp as "proof” for the formula of e, but there is
a small difficulty: In the first "proof" y4 we have d together with 0 as a pair of yq,
but in the second "proof” yo we have d together with v. Therefore we define a
function ¢ from Dy to D by induction.
$(G) = v
P{{Xq,aXn}) = {P(Xq), s Px) }.
For any u,v of Dg we have
ubv iff $(WEP(V) . (°°°)
We change from
y1 = {<d,0>, <aq,1>..,<ak.q,k-1><ek>}
to
y{* = {<d, §(0)>, <a1,§P(1)>,....,<ak_1,9’(k—1)>,<e,:P(k)>}.
Because of {°°*)} we have
w (<e,w>Ey1® A G(e))
A Vu (ouEyq® V 3pg (u=<p,q> A (M°(p) V p=d A g=v V H(p)

V dgqagpip2 (a1Ea A ggEq A <py,q1>Eyq A <pg,a2>Eyq A K(p1,p2,p))))
Let yq be the member of D with
Vu (uEyg e uEyq® V uEya).
Then we get
dw (<e,w>Eyg A G(e))
A Yu (~uByg V Apg (u=<p,q> A (M°(p) V H(p)

V Jajagpipz (a1Eq A agEq A <py,q1>Eyz A <p2.dg>Eyz A K(p1,p2.P)))).
Thus dy S{e*,y} is valid in I on D. Q.e.d.

The incompleteness theorems are valid for any axiom system of the theory of
natural numbers where the predicate E can be defined and the formulas of M can be
proved for this predicate. So we get the original incompleteness thecrems of Godel
very easily.
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