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Abstract 
Targeted environmental and ecosystem management remain crucial in control of dengue. But 

providing detailed environmental information on a large scale to effectively target dengue control 

efforts remains a challenge. In this paper we present the design and implementation of a pipeline to 

detect potential dengue vector breeding sites from geotagged images to create highly detailed 

container density maps at unprecedented scale. We implement the approach using Google Street 

View images which have the advantage of broad coverage and of being somewhat historical so that 

the data can be aligned with other types of data for analysis. Containers comprising eight of the most 

common breeding sites are detected in the images using convolutional neural network transfer 

learning. Over a test set of images the object recognition algorithm has an accuracy of 0.91 in terms 

of F-score. Container density counts are generated and displayed on a decision support dashboard. 
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Extensive analyses of the approach is carried out over three provinces in Thailand. Results show that 

the container density counts agree well with manual container counts, with larval survey data, and 

with dengue case data. To delineate conditions under which the density counts are indicative of risk, a 

number of factors affecting agreement with larval survey and dengue case data are analyzed. We 

conclude that creation of container density maps from geotagged images is a promising approach to 

providing detailed risk maps at large scale. Ultimately, we intended to include our newly proposed 

index in the identification of dengue high-risk areas in Thailand. 

 

Introduction 

Dengue is considered one of the most important mosquito-borne viral diseases in the world. 

During the past five decades, the incidence of dengue has increased 30-fold, with a recent study 

estimating global incidence at 390 million cases per year [1]. Dengue is now considered endemic in 

more than 100 countries, with more than two thirds of the burden found in Asia. Even in Europe, an 

outbreak on Madeira that began in 2012 resulted in over 2,000 cases, with imported cases from 

travelers to Madeira detected in 13 other European countries [2]. 

The Aedes aegypti and Aedes albopictus mosquitoes are the primary vectors of dengue and 

are additionally responsible for the spread of chikungunya, Zika fever, and yellow fever [3]. The 

Aedes mosquitoes have adapted to human habitats and breed in relatively small containers that can 

hold water such as ceramic jars, old tires, flower pots, and buckets. Studies of the dispersal of Aedes 

aegypti and Aedes albopictus indicate that the mosquitoes are capable of active dispersal over only 

short ranges [4] [5] [6]. The combination of small scale breeding sites and low level of mobility of the 

vector results in highly localized sites of disease transmission with dengue exhibiting substantial 

geographic variability [7] which makes accurate disease risk mapping a significant challenge. 

One dengue vaccine (CYD-TDV or Dengvaxia) has now been registered in several countries. 

But with about 60% effectiveness and lack of approval for use in children under 9 years old, it does 

not provide an effective line of defense [8]. Since there is also no curative treatment for dengue, 

targeted environmental and ecosystem management continue to be crucial in controlling the disease. 
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Two primary approaches have been taken to providing environmental data for dengue risk 

mapping and prediction. The first is to use remote sensing [9] or proxies [10] to assess local 

environmental conditions [11]. These approaches do not provide the detailed information about 

breeding sites needed to help guide intervention. A second approach is to carry out manual surveys in 

which containers with water or containers with water and larvae are counted. Results are then 

reported in terms of numbers of containers of different types or in terms of larval indices: Breteau 

Index, House Index, and Container Index [12] [13]. This can provide sufficient resolution, but is not 

scalable due to its labor-intensive nature. Thus, there is a need for an approach that can provide 

information on potential breeding sites at sufficiently high resolution and that is scalable to cover 

major cities and provinces, the scale needed to support control efforts. 

In this study, we address this problem by using convolutional neural networks (CNN) to 

detect a variety of types of breeding site container types in geotagged images and use the container 

counts to create risk maps. While our architecture can accommodate geotagged images from a wide 

variety of sources, in this study we use Google Street View (GSV) images due to the extensive 

geographic coverage and the historical nature of much of the image data, which allows it to be 

temporally aligned with larval survey data and dengue incidence data for evaluation. Extensive 

evaluation of the approach is carried out over three provinces in Thailand: Bangkok, Krabi, and 

Nakhon Si Thammarat. Our evaluation shows that the object recognition network can accurately 

recognize several of the most important types of containers in Thailand. We further show that simple 

multi-linear models using container density values provide good predictions of Breteau index values 

and provide weak to moderate quality predictions of dengue incidence. This is the first study to 

present results validating breeding site counts from image analysis against such data.  

 

Related Work  

In their review of dengue risk mapping modeling tools, Louis et al. [14] showed that social 

predictors such as education level, occupational status, and income are often used as proxies to assess 

local environmental conditions and hygiene, which are normally difficult to assess directly. Housing 

conditions are often used as a proxy to assess type and amount of mosquito breeding sites. Access to 
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running water has also been found to be a risk factor for dengue since residents in such areas tend to 

store water in ground-level containers [15] [16]. Chang et al. [17] used satellite imagery from Google 

Earth to create a base map to which they added information about indices of larval infestation, 

locations of tire dumps, cemeteries, large areas of standing water, and locations of homes of dengue 

cases, all of which were collected manually. They found the resulting system allowed public health 

workers to prioritize control strategies and target interventions to highest risk areas. 

A number of researchers have developed applications for reporting or detecting mosquito 

breeding sites, as well as other information related to dengue outbreaks. Agrawal et al. [18] use a 

support vector machine and scale-invariant feature transform (SIFT) generated features to classify 

individual images as being breeding sites or not. Their approach relies on users to take photos of 

individual sites. On a test set of 78 images they achieved a binary classification accuracy of 82%. 

Mehra et al. [19] present a technique for identifying stagnant water bodies in images. Using an 

ensemble of naive Bayes classifiers and boosting they achieve a binary classification accuracy of 

90%. Quadri et al. [20] present TargetZika, a smartphone application for citizens to report breeding 

sites using photos and descriptions. They provide no automated classification of the photos but rather 

rely on users to label them from a menu. They use the data to produce risk maps but do not validate 

them. Mosquito Alert [21] is a similar smartphone application that allows users to report breeding 

sites and mosquitos with photos and descriptions. It uses crowdsourcing to identify photos. Reports 

are displayed on a map on the Mosquito Alert website. 

Some researchers have manually extracted features from GSV data for environmental 

monitoring purposes. Rundle et al. [22] manually extracted features from street view data to audit 

neighborhood environments and compared the results to field audits. They found a high level of 

concordance for features that are not temporally variable. Rousselet et al. [23] manually extracted 

species occurrence data for the pine processionary moth from GSV images and compared the results 

to field data. The two were found to be highly similar. 

Runge et al. [24] made use of the scene recognition convolutional neural net of Zhou et al. 

[25] to label GSV images and assembled them into maps to find scenic routes for autonomous vehicle 

navigation. Although their application differs from ours, their pipeline and the structure of their 
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feature maps are similar to those in this study. Since we are interested in obtaining counts of numbers 

of breeding sites in a given region, in this study we make use of object detection networks. Recently, 

region proposal methods have yielded the highest performance in object detection [26]. Region 

proposal methods first hypothesize regions that may contain objects of interest and then use CNNs to 

identify objects in those regions. Girshick [27] introduced Fast Region-based Convolutional Neural 

Networks (Fast R-CNN) which reduced the running time of the detection network, making the region 

proposal computation the bottleneck. Recently, Ren et al. [28] introduced Faster R-CNN, which 

greatly improves the computational efficiency. By sharing convolutional features between the 

regional proposal and detection networks, they reduce the computational cost of region proposal to 

near zero and achieve a frame rate of 5 frames per second on a GPU. 

 

Methods 

We describe details of the three main components of our pipeline to detect and map 

containers in geotagged images, namely image retrieval, object detection, and data visualization.  

Data Collection Process 

The region from which to retrieve images is defined using a GeoJSON file (Figure 1 (left)). The first 

step is to generate points within the region from which to retrieve the GSV images. This is done by 

obtaining the polylines of each road from the Openstreetmap Overpass API [29] (Figure 1 (middle)) 

and then plotting points along the roads at 50 meter increments (Figure 1 (right)). A distance of 50 

meters gives complete image coverage without overlap. 
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Figure 1. GeoJSON (left), road polylines (middle), and generated points along roads (right). 

Map data (left, middle) © Mapbox, © OpenStreetMap; map data (right) © 2018 Google, Krabi. 

 

With the points defined, images are downloaded using the GSV API [30]. Since the API does 

not support retrieving the entire 360-degree scene as one image, five images are retrieved 72 degrees 

apart and at a field of view (FOV) of 75 and a pitch of -15 degrees (Figure 2). Each image has 

resolution 640 × 500 pixels. In addition, the metadata for each image is retrieved, consisting of the 

geo-coordinate and the year and month the image was taken.  

 

Figure 2. Example of a set of retrieved images from Google Street View 

 © 2018 Google, Chatuchak, Bangkok 

 

Container Detection 

Dengue vector breeding sites consist of open containers of varying size that can contain water. The 

frequency of occurrence and the suitability of containers as breeding sites varies, with ceramic 

containers generally more suitable than plastic containers. While the importance of particular types of 

containers as breeding sites varies from country to country and even among geographic regions in a 

country [31], analysis of the research literature [32] [33] [34] [35] as well as publications of the 

Ministry of Public Health of Thailand [36] [37] revealed six container types that were consistently 

important across regions.  These are large ceramic jars, buckets, old tires, potted plants, bins, and 

bowls, as shown in Figure 3.  This list was confirmed through consultation with local entomologists. 

In general, large ceramic jars are the most important container type [36] [32], being commonly used 

to store water near homes, particularly in rural areas.  
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Figure 3. Common dengue vector breeding sites in Thailand (from left to right): large jar, bucket, old 
tire, potted plant, bin, ceramic bowl. 

 

Smaller containers such as bottles and cans are also possible breeding sites but are too small to detect 

in GSV images with high accuracy. While some areas such as construction sites, garbage dumps, and 

empty lots are commonly considered potential breeding sites [13] [38], they are considered so 

because they tend to house open containers and are not the focus of this study. They can be detected 

using scene recognition techniques [25], like those used in the work of Runge et al. [24]. 

Finding containers in GSV images falls into the class of problems know of as object 

detection. We do this using Faster R-CNN of Ren et al. [28] which has state-of-the-art runtime 

performance. To implement the Faster R-CNN network, we use TensorFlow which includes a number 

of architectural variations on Faster R-CNN that trade accuracy for speed and memory usage [39]. 

We use the architecture of Faster R-CNN with ResNet-101 which has close to the highest accuracy on 

the Microsoft COCO object detection dataset [40] yet still excellent runtime performance (2-3 times 

as fast on our dataset as the highest accuracy Faster R-CNN with Inception and ResNet). Performing 

object detection on the close to 1 million images for the province of Nakhon Si Thammarat in 

Thailand took 95 hours of processing time on a PC with a 3.6GHz i7-7700 processor, 32 GB RAM, 

and a 1080 Ti graphics card.  

Faster R-CNN includes the object categories bucket, potted plant, and bowl, but does not 

include object categories for large jar, bin, and old tire. We thus used transfer learning to detect these 

categories [41]. This was done by replacing the entire output layer of Faster R-CNN with our desired 

set of object categories, three of which were new and the remainder of which had been in the original 

Faster R-CNN, as shown in Figure 4. This network was then trained with the training data for all 

categories. Since a large variety of container types can be potential breeding sites, in addition to these 



Technical Report, University of Bremen, Germany, 2019 
PrePrint of “Large Scale Detailed Mapping of Dengue Vector Breeding Sites Using Street View Images” containing further figures 

 

8 
 

six categories, we added categories for misc short open container and misc long open container using 

existing categories in Faster R-CNN, resulting in a total of eight categories. 

 

 

Figure 4. Performing transfer learning on pre-trained model by replacing output layer with 
new target classes. 

 

A training set of five thousand images was assembled from the COCO dataset [42], GSV images 

from Bangkok, and Google image search on Thai language strings describing the container types. All 

containers in the images were manually annotated with bounding boxes and container type labels by 

using the LabelImg [43] tool. Since each image can contain more than one container object, the 

collected images contained a total 8,653 containers: 2,318 old tires, 1,110 large jars, 1,385 buckets, 

2,758 potted plants, 135 bins and 947 bowls. Distinguishing a discarded old tire from a tire attached 

to a vehicle is difficult, so we solved this problem by adding vehicle as an object category and 

eliminating tires that have bounding boxes that substantially overlap with the bounding box of a 

vehicle. The dataset was randomly split into 90% for training and 10% for testing. Figure 5 shows 

examples of detected containers in GSV images using the network resulting from transfer learning. 
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Figure 5. Examples of detected containers in Google street view images by using Faster R-CNN with 

new transferred categories. Original images © 2018 Google, Chatuchak, Bangkok 

 

Data Visualization Dashboard 

 

The dashboard, shown in Figure 6, provides visualization of the various data relevant to 

dengue risk, including container density, dengue incidence, Breteau index, population demographics, 

rainfall, and temperature. The data is displayed in terms of choropleth maps and graphs using 

MapBox JS [32]. The maps are created by using a GeoJSON file as input and then applying a data-

driven styling approach. Three charts are visible on the right side of the dashboard. The first chart 

displays statistics for the entire province while the other two charts display statistics for the selected 

sub-district. Users can filter the data to display only a certain year or season. Similarly, users can 

filter containers to display data for only certain types of containers. Each map has an additional 

mouse hover overlay where the exact value of the variable is shown.  
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Figure 6. Information visualization dashboard.  The choropleth map displays container densities for all 
sub-districts in Nakhon Si Thammarat province. The top chart on the right shows relative percentages of 

container types in the whole province. The second and third charts show statistics for the selected sub-district, 
in this case Krung Ching. When hovering over a subdistrict the data for the subdistrict is displayed.  Map data © 

Mapbox, © OpenStreetMap. 

 

 

Results and Discussion 

 

In this section, we evaluate the accuracy and value of container counts obtained from our 

automated analysis of GSV images by carrying out four types of analyses. We first evaluate the 

accuracy of the object recognition technique in detecting containers in GSV images. We then present 

detailed statistics on container counts over three provinces in Thailand: Bangkok, Krabi, and Nakhon 

Si Thammarat. Subsequently, we evaluate the correspondence between container density counts and 

Breteau index values from manual surveys in Nakhon Si Thammarat. Finally, we evaluate the 

correspondence between container density counts and dengue incidence over the three provinces. 

Krabi province was chosen because it consistently has one of the highest dengue incidences in 
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Thailand. Nakhon Si Thammarat was chosen because it has the greatest availability of manual larval 

survey data. Bangkok was chosen because, as the most urbanized and highly populated area of 

Thailand, it provides a contrasting environment to the other two provinces.  

 

Evaluation of object recognition 

We use two metrics to evaluate container detection: (1) detection of containers, grouping all 

eight types together, and (2) detection along with categorization into one of the eight types. For the 

measurement of object recognition accuracy, we use the standard approach of determining the 

agreement between each detection bounding box with ground truth boxes in an image by calculating 

area of intersection over union (IoU). An IoU value of 0.5 or greater is considered to be a true 

positive [44]. An undetected object is counted as a false negative and a falsely detected object is 

counted as a false positive. Table 1 shows the performance on the test set which was a randomly 

selected 10% of the entire dataset. The results for container detection are shown in the last column: 

precision is 0.90, recall is 0.92, and the F-score is 0.91. Results for the detection along with 

classification are shown in the remaining columns. The highest F-scores are achieved for potted plant 

(0.91) and old tire (0.92). The bin category has a high precision but low recall because bins and 

buckets are very similar in shape so that some bins are wrongly tagged as buckets; this also lowers the 

precision of the bucket category.  

Table 1.  Object recognition accuracy at 0.5 recognition confidence threshold for each category of container 
and grouping all container types. The average precision is calculated from the precision/recall curve as the 

average overall recall levels. 

 

 
Bin Ceramic 

Bowl 
Bucket Large 

Jar 
Misc short 

open 
Potted 
Plant 

Old 
Tire 

Misc long 
open 

All container 
types 

Precision 1.00 0.78 0.83 0.94 0.76 0.89 0.92 0.79 0.90 
Recall 0.23 0.89 0.94 0.82 0.91 0.94 0.93 0.86 0.92 
F-score 0.37 0.83 0.88 0.88 0.83 0.91 0.92 0.82 0.91 
Average 
Precision 0.42 0.51 0.86 0.71 0.46 0.75 0.81 0.63 - 
 



Technical Report, University of Bremen, Germany, 2019 
PrePrint of “Large Scale Detailed Mapping of Dengue Vector Breeding Sites Using Street View Images” containing further figures 

 

12 
 

Analysis of Container Counts 

 Our software was used to retrieve GSV images from Bangkok (790,450 images), Nakhon Si 

Thammarat (958,027 images) and Krabi provinces (386,819 images) at every 50 meters and to detect 

all containers in those images. Details are shown in Tables A.1 - A.3 in the Appendix. Image 

coverage of the three provinces varied considerably. Bangkok had the best image coverage at a mean 

of 77.06% of total area over all districts, followed by Nakhon Si Thammarat at 8.40%, and Krabi at 

7.31%. Due to the limited availability of accurate shapefiles for Bangkok, we were not able to gather 

GSV images for Phra Khanong district and for nine sub-districts in other districts.  These were left 

out of the calculations of density values so as not to bias the values down. Image coverage also varied 

considerably over the districts of each province. Bangkok had 100% image coverage for 21 out of 49 

districts and a low of 15.45% for one district. In Nakhon Si Thammarat the coverage ranged from 

19.7% to 2.4% and in Krabi from 11.36% to 5.15%. A total of 298,391 containers were identified in 

Bangkok, 84,609 in Nakhon Si Thammarat, and 30,025 in Krabi. Container density also varied 

considerably. Bangkok had the highest container density (containers/km2 image area) over districts 

(Mean = 358.90, Standard variation (SD) = 119.79), followed by Nakhon Si Thammarat (Mean = 

98.71, SD = 32.56), and then Krabi (Mean = 84.76, SD = 24.87). The highest container density of 

729.75 was found in Din Daeng district of Bangkok. Container density per population was markedly 

more uniform across the three provinces but showed considerable variation among districts within the 

provinces. Krabi had the highest density by population (Mean = 7.12, SD = 2.90), followed by 

Bangkok (Mean = 5.30, SD = 3.19) and Nakhon Si Thammarat (Mean = 5.20, SD = 1.64). The 

highest density by population was found in Khanna Yao district of Bangkok at 17.71 containers per 

100 population. As would be expected, the number of containers is well correlated with population in 

Nakhon Si Thammarat (r(23)=0.804, p < 0.001) and moderately in Bangkok (r(49) = 0.654, p < 

0.001). For Krabi there are too few districts to compute a meaningful correlation.  

Among the eight detected categories of containers, potted plants and buckets account for the 

vast majority in all three provinces. In the highly urbanized area of Bangkok, potted plants account 

for 51.84% of containers and buckets for 29.96%. In the more rural provinces, the proportion is 

reversed. In Nakhon Si Thammarat, buckets and potted plants account for 45.14% and 32.08%, 
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respectively and in Krabi they account for 52.27% and 27.56%, respectively. Figure 7 shows the 

variation of relative proportions of container types over all sub-districts of the three provinces. 

Bangkok had the least variation in prevalence of container types while Nakhon Si Thammarat had the 

highest. For example, in Sichon district of Nakhon Si Thammarat, bins accounted for 23.03% of all 

detected containers, and in Tham Phannara districts, old tiers accounted for 21.48%.  

To validate the container counts from GSV images, we compared them with counts from 

manual surveys. Chumsri et al. [45] conducted a study in five sub-districts of Lansaka district of 

Nakhon Si Thammarat in which they gathered indoor and outdoor container counts and larval counts 

in the wet and dry seasons of 2015. Our GSV images were taken during the dry season of 2016, so we 

compare our counts to their outdoor dry season counts. Since the absolute container counts from the 

two studies are not comparable due to different sampling techniques, we compare the relative counts 

over the five sub-districts in each study by normalizing by the highest count in each study. The result 

is shown in Figure 8. The relative counts over four of the sub-districts have strong agreement but the 

counts disagree for Khao Kaeo sub-district. Table A.5 shows the analysis of our container counts 

from GSV images over the five sub-districts. Our analysis shows that Khao Kaeo has the lowest 

coverage of GSV images at only 1.39% and a container count of 24, compared to Khun Thale: 

11.71% with 446 containers, Thadi: 7.20% with 445 containers, Lansaka: 3.39% with 246 containers, 

and Kamlon: 2.82% with 318 containers. The low GSV image coverage would account for the 

relatively low container count from GSV images.   
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Figure 7. Distribution of relative prevalence of five most common container types (bin, bucket, jar, potted 

plant, tire) over sub-districts of Bangkok, Nakhon Si Thammarat and Krabi provinces. Kernel density 

estimation was applied to smooth the values. 

 

 

Figure 8. The relative numbers of containers in Lansaka District, Nakhon Si Thammarat from analysis of GSV 
images and from manual surveys [45]. Values are shown relative to the highest count over the sub-districts for 

each study.  
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Comparison with larval survey data 

Container counts are useful to the extent that they are indicative of potential for vector 

abundance. We evaluated this by comparing container density values (containers/km2 land area) 

derived from GSV images with data from manual larval surveys. We carried out this comparison for 

the province of Nakhon Si Thammarat, which was chosen because, among provinces in Thailand, it 

has the highest number of manual surveys in recent years and is consistently one of provinces with 

the highest incidence of dengue cases. Container density values were generated by retrieving 958,027 

GSV images from Nakhon Si Thammarat province and running them through the convolutional 

neural net for object recognition. Analysis of the metadata showed that the vast majority of images 

were taken in 2016.  

We obtained seven years (2011 - 2017) of village-level larval survey data for Nakhon Si 

Thammarat from the Ministry of Public Health of Thailand. The larvae were manually identified by 

the village health volunteers who walked door-to-door and checked whether the larvae were present 

in containers within or around the houses surveyed. The data from each survey was reported using 

three indices: Container Index (percentage of water-holding containers infested with larvae or pupae), 

House Index (percentage of houses infested with larvae and/or pupae), and Breteau Index (number of 

positive containers per 100 houses inspected). We use the Breteau Index (BI) for comparison since it 

is conceptually closest among these to our measure of container density and is considered the most 

useful of the three indices in estimating the Aedes density at a location [46].  

To be meaningful, comparison of container density values and BI values should be done with 

data collected at roughly the same time. To maximize the amount of manual survey data, we used BI 

data from a 3-year time window: 2015 - 2017. This is justified by the fact that while the location or 

presence of individual containers changes over time, the total number (absent major intervention 

efforts) is quite stable. We excluded outliers from container density counts and BI values by using a 

cutoff of μ ± σ, which left a total of 53 sub-districts for which we had container density counts and 

average BI values. The first row of Table 2 shows the number of containers of each type over the 53 

sub-districts. Detailed statistics are provided in Table A.4 in the Appendix.  
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 Table 2. Description of detected containers used in comparison with larval surveys for entire year, dengue 
season and non-dengue season. 
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Table 3. Description of Breteau Index data used in analyses: number of surveys per sub-district (N), mean value of BI, and SD. District numbers shaded green are those 29 
used in dengue season analysis. 
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A complicating factor in our analysis is that the larval surveys were carried out at the village 

level. Producing corresponding container density counts would require reliable village shapefiles, 

which are not available in Thailand. Since shapefiles are available for sub-districts, we carried out the 

comparative analysis at the sub-district level. As shown in Table 3, the BI for each sub-district was 

approximated by taking the average of the BI values of all villages in that sub-district.  

An initial straightforward approach to evaluating the agreement between container density 

and BI is to compute an overall container density by summing the numbers of containers of the eight 

different types. Computing the correlation between this and BI over 53 sub-districts for the entire year 

yields a Pearson correlation of 0.3416 (p = 0.0123) as shown in Figure 9A. This weak correlation is 

not surprising since we are measuring the relation between container density and BI during some 

months when there is little or no rain; thus few larvae in the counted containers. We would expect the 

correlation to naturally be low during the dry season and higher during the rainy season. To test this 

we separately measured the correlation with BI values collected during the wet dengue season, which 

in Nakhon Si Thammarat is June - November [47], and the remaining months, the non-dengue season. 

For the dengue season, this left 29 sub-districts with BI data and for the non-dengue season this left 

45 sub-districts. Rows two and three in Table 2 show the numbers of containers of each type for the 

dengue and non-dengue seasons, respectively. Over the dengue season, the Pearson correlation is 

moderately strong 0.5242 (p = 0.0035), as shown in Figure 9B, while over the non-dengue season the 

Pearson correlation is a weak 0.1631 (p = 0.2844), as shown in Figure 9C.  
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  (A)    (B)    (C) 

 

      (D)    (E)     (F) 

Figure 9. Correlation between container density by land area and BI for (A) entire year, (B) dengue 
season, and (C) non-dengue season, and predicted vs actual values of BI for multivariate linear regression 

model for (D) entire year, and (E) dengue season, and (F) non-dengue season. The solid line is a linear trendline 
which is an indication of the linear (Pearson) correlation between the two variables. 

     Vector abundance in a given area depends on container density as well as container productivity, 

with productivity often varying greatly among container types [48] [49] [45]. Thus, a more precise 

relation between container counts and BI can potentially be obtained by analyzing the relationship 

using the disaggregated counts of the various container types. We created multiple linear regression 

models with container densities for the eight types of containers as the independent variables and BI 

as the dependent variable. Evaluation of the fitted linear model shows a moderately strong Pearson 

correlation with the BI values of 0.5766 (p < 0.0001) for entire year, 0.5421 (p = 0.0001) for the non-

dengue season, and a significantly high Pearson correlation of 0.8210 (p < 0.0001) for the dengue 



Technical Report, University of Bremen, Germany, 2019 
PrePrint of “Large Scale Detailed Mapping of Dengue Vector Breeding Sites Using Street View Images” containing further figures 

 

20 
 

season, as shown in Figures 9D, 9E, and 9F, respectively. The standardized beta coefficients for the 

dengue season model, shown in Table 4, indicate that potted plants and large jars are the most 

important types of containers in predicting BI values within the 29 sub-districts. Interestingly, these 

are not the most prevalent types of containers in the sub-districts. The most prevalent are buckets 

(47.46%), potted plants (28.42%), and tires (10.53%). Large jars represent only 2.31% of the detected 

breeding sites.  This result conforms to results from previous entomological studies of the dengue 

vector in Thailand which found that potted plants and large jars are two of the most important 

breeding site types. The Ministry of Public Health [36] reports that among larval surveys carried out 

throughout the country, 70.82% of Aedes aegypti larvae are found in large jars. In a study of Aedes 

aegypti breeding sites in Kamphaeng Phet, Thailand, Koenradt et al. [32] found earthenware jars to be 

responsible for 33.1% of pupae production.  A study of dengue vector breeding sites in Nakhon Si 

Thammarat found that the number of positive containers was higher in earthen containers (e.g., potted 

plants and large jars) than in plastic ones [50]. This analysis demonstrates the value of our data driven 

approach in identifying important container types, which is recognized as being essential in effective 

dengue control [51]. 

Table 4. Absolute standardized coefficients and p-values from linear regression for dengue season. The largest 
absolute values are the most important variables in the regression model. 

 

           To understand conditions under which the linear regression models fit well and under which they 

do not, we carried out an analysis of the model residuals over the sub-districts using the symmetric 

mean absolute percentage error (SMAPE) which has the advantage of being independent of 

magnitude of the values being estimated. This was applied to the single value for each sub-district so 

that the value of n is just 1 and the formula becomes (|F - A| ) / ( |F| + |A| ), where A is actual value 

and F is the predicted value; thus for clarity we use the term symmetric absolute percentage error 

(SAPE). Figures 10 A.1 and A.2 show the SAPE values for the entire year using a gradient color 
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scheme and thresholding, respectively. Figures 10 B.1 and B.2 similarly show the SAPE values for 

only the dengue season using gradient color scheme and thresholding. Since the results are quite 

similar, we will restrict our discussion to the entire year, using the thresholded colormap which most 

clearly displays the areas where the models are accurate or inaccurate. The map uses 25% and 75% 

quantile threshold values to categorize sub-districts into three classes: good fit (dark green), average 

fit (yellow), and poor fit (dark red). In the figure we can observe some amount of clustering of 

regions of good fit and poor fit.  

The solid circle delineates a cluster of six sub-districts where the model fit is poor. Four of 

the sub-districts are in Bang Khan district and the other two are in Thung Yai district, which are 

mountainous areas. A previous study by Preechaporn et al. [33] examining the effect of topography 

on key breeding sites in Nakhon Si Thammarat found that in these mountainous areas the key 

containers for Aedes aegypti were preserved areca jars and for Aedes albopictus were metal boxes. 

These two container types are not detected by our object recognition software.  

The oval delineates another cluster of four sub-districts where model fit is poor. These sub-

districts (Tha Rai, Mueang district; Khun Thale, Lan Saka district; Na Phru and Na San, Phra Phrom 

district) are urban areas with high population density. A plausible explanation is that in such urban 

areas, indoor containers represent a large proportion of breeding sites which cannot be detected in the 

GSV images. In urban environments, Aedes aegypti is more prominent than Aedes albopictus and the 

former prefer indoor breeding sites [52] [53].  In a study of the effect of urbanization on the presence 

of Aedes aegypti and Aedes albopictus in Chiang Mai, Thailand, Tsuda et al. [54] found a larger 

number of mosquito larvae indoors than outdoors in their urban study area and the reverse in their rural 

study area. 

The dashed circle in the figure delineates a cluster of sub-districts, mostly in Cha-Uat district, 

where the model fit is good. A previous study of the ecology of Aedes mosquitos in Kreang sub-district 

of Cha-Uat district [55] found plastic buckets to be the most common breeding sites. Our analyses show 

plastic buckets to be the most prevalent containers in Cha-Uat district (51.73%) as shown in Table A.2. 
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(A) Map displaying residuals for sub-districts for entire year     

  

                                   (A.1)                                                                  (A.2)                     

(B) Map displaying residuals for sub-districts for Dengue Season 

 

                                          (B.1)                                    (B.2)                                

Figure 10. Choropleth maps of SAPE values for the multivariate linear models for (A) entire year, and 
(B) dengue season. Where (1) is the gradient colormap of SMAPE values, and (2) is the thresholded colormap 

using the 25% and 75% quantiles as threshold values. Map data © Mapbox, © OpenStreetMap 
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 Figure 11 shows a scatter plot of the SAPE of the model predictions for the sub-districts versus the BI 

values. The same thresholded color coding is used as in the map in Figure 10A.2. The values follow a 

polynomial distribution. Many of the high errors occur for low values of BI, which correspond to very 

low absolute errors. Accuracy tends to be good toward the middle range of BI values. It then becomes 

worse for the higher BI values. Two of these points, shown in red, correspond to two of the districts 

with high population density discussed above.  

 

          Figure 11. Scatter plot of SAPE residual values of sub-district predictions versus Breteau index 

Comparison with dengue cases 

 To evaluate the value of the container counts obtained from GSV images for dengue risk 

mapping, we compared the container density counts with dengue incidence in the three provinces. 

Dengue case data was obtained from the Ministry of Public Health of Thailand [56]. The number of 

dengue cases was initially recorded at local hospitals with Form 506 and accumulated at the Bureau 

of Epidemiology (BoE) for further collation and analysis [57]. A dengue case is defined according to 

the definitions established by the BoE [58]. The cases are classified into three levels: suspected, 

probable and confirmed. While only confirmed cases are mandatorily reported, Report 506 also 

includes suspected and probable cases. We made use of all cases identified and reported by the local 

health officers. The dengue incidence rate over time for the three provinces is shown in Figure 12. 

For the analysis we used the average incidence rate (cases/10,000 population) in each sub-district of 

Nakhon Si Thammarat, Krabi, and Bangkok over the same 3-year period 2015 - 2017 as for the BI 
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data. The average was taken in order to smooth the data. Table 5 provides descriptive statistics for 

these average values. 

 

Table 5.  Description of time-averaged dengue incidence rate over the period of analysis (2015-2017). 

Province (# of sub-districts 
included in this study) 

Dengue cases per 10,000 population (in a sub-district) (2015-2017 average) 

Min Q1 Median Mean Q3 Max 

Nakhon Si Thammarat (167) 7.142 31.455 44.545 46.222 60.084 112.281 

Krabi (47) 9.298 23.223 39.344 56.163 70.141 202.802 

Bangkok (159) 20.81 56.93 70.73 76.04 89.11 244.97 

 

  

Figure 12. Time series of dengue incidence rate for Bangkok, Krabi, and Nakhon Si Thammarat provinces. 

 A multivariate linear regression was performed over all sub-districts in each province, using 

container density as a function of population (containers/100 population) for each container type as 

independent variables and dengue incidence rate as the dependent variable.  As shown in Figure 13, 

the model was weakly predictive for Bangkok (R-squared = 0.123, p < 0.001) and for Nakhon Si 
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Thammarat (R-squared = 0.1779, p < 0.001) and moderately predictive for Krabi (R-squared = 

0.4616, p < 0.001).  

 

    (A)         (B)                     (C) 

Figure 13. Scatter plots of predicted vs actual values of dengue incidence for multivariate linear regression 
models for (A) Bangkok, (B) Nakhon Si Thammarat, and (C) Krabi for the period 2015 - 2017. 

 

Table 6 shows the standardized coefficients for the eight container types for each province. 

For Bangkok the most important containers are potted plants and large jars; for Krabi they are potted 

plants and misc short open containers; and for Nakhon Si Thammarat they are large jars and potted 

plants. The result for Nakhon Si Thammarat is similar to the results of the linear regression with BI, 

which showed the most important containers to be potted plants and large jars (Table 4). 
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Table 6. Absolute standardized coefficients and p-values from Linear regression in predicting dengue cases in 
each province e.g., the features with the most beta are the important variables in the regression model. 

 

Figure 14 shows scatterplots of the model residuals versus dengue incidence rate for the three 

provinces. The plots show that the linear models predict dengue incidence best in the mid range of 

incidence. The high SAPE residuals for low values of dengue incidence represent only small absolute 

errors. The high SAPE residuals for high values of dengue incidence represent the fact that container 

counts provide a measure of the degree to which the environment can support proliferation of the 

vector but are not in and of themselves predictive of dengue outbreaks.  
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    (A)       (B)      (C) 

Figure 14. Scatterplots of SAPE residual values of district predictions versus dengue incidence for (A) Bangkok, (B) Nakhon Si Thammarat, (C) Krabi. Points 

are colored using the 25% and 75% quantiles as threshold values. 
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 Conclusions 

We presented a pipeline to detect and map containers using images from Google Street View. The 

central component in this pipeline is the Faster R-CNN object recognition network from which we 

used five existing object categories from the COCO dataset and used transfer learning to train an 

additional three. Evaluation on a test set of images yielded an F-score accuracy of 0.91 for the 

problem of detecting any of eight types of containers. While the eight object categories in the network 

cover a number of the most important container types for the dengue vector in Thailand, there are 

some notable missing types. Cement tanks are known to be important breeding sites throughout 

Thailand [34] [35] .  These were not included in the network because they are not in the COCO 

dataset and images to use for transfer learning are not readily available. In addition, numerous other 

container types are important breeding sites regionally. For example, one study in Nakhon Si 

Thammarat [33] found Aedes aegypti larvae mostly in preserved areca jars in mangrove and 

mountainous areas, and Aedes albopictus larvae mostly in preserved areca jars in mangrove areas and 

in metal boxes in mountainous areas. Such container types could also be added to produce a more 

comprehensive catalog of containers. Finally, very small containers such as cans and bottles are 

difficult to recognize in GSV images. This could be partially addressed by using scene recognition 

techniques [25] to detect areas such as garbage dumps that have high concentrations of such 

containers.  

  Despite these limitations of container coverage, a simple multi-linear regression model 

relating densities of the eight container types with Breteau Index values for 29 sub-districts in 

Nakhon Si Thammarat province of Thailand yields an R-squared value of 0.674 during the dengue 

season. While this result is highly encouraging, the study area is yet small. A larger study over a 

diversity of types of geographic regions would help to further validate these results. A similar multi-

linear regression model relating container densities to dengue incidence at the sub-district level in 

Bangkok, Nakhon Si Thammarat, and Krabi yields less strong results. The best predictive accuracy is 

attained for Krabi, with an R-squared of 0.462. This weaker result is not surprising since numerous 

other factors influence the incidence of dengue such as rainfall, temperature, and population 
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demographics. In ongoing work, we are constructing predictive models of dengue using these factors 

and the container densities in order to understand and quantify the added value of the container 

density data in dengue prediction. We expect that container densities will help to account for spatial 

variation in dengue incidence, which is an aspect that is not yet well addressed in the work on dengue 

predictive models. Incorporation of container densities in the models will also permit evaluation of 

alternative control strategies since dengue control consists largely of elimination of breeding sites.  

  While GSV data is an excellent data source for evaluating the potential usefulness of the 

approach presented in this study, it has a number of limitations that make it less ideal for supporting 

practical control efforts. These limitations concern mostly temporal and spatial data coverage. As 

mentioned earlier, GSV data is updated only at infrequent intervals. While we expect container 

densities to not vary much over time for large areas, targeting control efforts requires high spatial 

resolution of risk maps and predictive models. Thus the lack of recent updates becomes more of an 

issue as we move to higher spatial resolution. In terms of the spatial coverage, GSV images cover 

only areas along roads and so do not cover areas such as empty lots and back yards. These limitations 

can be addressed through the use of existing tools for gathering geotagged images. These include 

smartphone applications like Mapillary (www.mapillary.com) or Open Street Cam 

(openstreetcam.org) for producing street view types of images and drones to gather high-resolution 

images. We plan on experimenting with these data sources.  
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Appendix 

Table A.1 Areas, image coverage, population, containers data in district level in Bangkok, Thailand 

 

District Name Area 
(km2) 

Area of 
GSV 

images 
(km2) 

GSV image 
coverage (%) Population Number of containers 

Containers 
per km2 

land 

Containers 
per km2 
image 
area 

Containers 
per 100 
persons 

 Relative proportions of container types (%) 

 Jar Bucket Potted plant Tire Bin Bowl 
Misc 
short 
open 

Misc 
long 
open 

Phra Nakhon 5.53 5.53 100.00                               52,522                          2,527  456.96 456.96 4.81  0.87 20.14 61.06 4.00 6.61 3.44 2.89 0.99 
Dusit 11.69 5.86 50.13                               98,450                            1,158  99.06 197.61 1.18  0.86 25.22 54.40 6.65 8.98 2.07 1.73 0.09 
Nong Chok 248.15 38.33 15.45                             167,844                          7,432  29.95 193.90 4.43  2.27 36.05 40.76 9.08 10.71 0.63 0.40 0.09 
Bang Rak 4.14 4.14 100.00                               47,308                           1,956  472.46 472.46 4.13  0.82 24.23 54.70 7.31 6.44 3.48 2.30 0.72 
Bang Khen 42.28 39.62 93.71                             190,828                         14,879  351.92 375.54 7.80  1.76 29.18 51.51 5.56 10.36 0.87 0.57 0.19 
Bang Kapi 28.47 28.47 100.00                             148,392                         14,832  520.97 520.97 10.00  1.21 29.79 54.15 5.05 7.69 1.05 0.84 0.21 
Pathum Wan 8.29 8.29 100.00                               49,594                            2,118  255.49 255.49 4.27  0.85 21.44 56.19 9.87 6.09 2.55 2.27 0.76 
Pom Prap Sattruphai 2.58 2.58 100.00                               47,450                           1,637  634.50 634.50 3.45  0.73 22.97 55.96 10.75 3.67 2.81 2.81 0.31 
Min Buri 63.07 27.75 44.00                               141,214                          9,736  154.37 350.85 6.89  2.32 34.81 46.57 6.70 8.19 0.72 0.58 0.12 
Lat Krabang 132.70 40.63 30.62                              171,933                           5,617  42.33 138.25 3.27  2.62 41.32 34.02 14.69 5.70 0.69 0.84 0.12 
Yannawa 12.90 11.54 89.46                               79,574                          2,700  209.30 233.97 3.39  1.26 26.78 52.11 7.89 9.04 1.67 1.04 0.22 
Samphanthawong 1.44 1.44 100.00                               24,785                              683  474.31 474.31 2.76  0.44 23.87 52.42 7.17 8.49 3.66 2.93 1.02 
Phaya Thai 9.51 9.51 100.00                                72,102                          2,904  305.36 305.36 4.03  0.79 21.38 57.58 7.33 9.30 1.72 1.31 0.59 
Thon Buri 8.73 8.73 100.00                               111,027                           3,018  345.70 345.70 2.72  1.52 27.87 54.74 6.46 4.71 2.75 1.62 0.33 
Bangkok Yai 6.50 4.19 64.46                               67,887                           1,249  192.15 298.09 1.84  1.76 21.78 63.89 4.32 4.72 1.84 1.04 0.64 
Huai Khwang 16.84 16.84 100.00                                 81,190                           7,147  424.41 424.41 8.80  1.12 25.44 54.36 7.68 9.21 1.01 0.87 0.32 
Khlong San 6.16 5.36 87.01                                73,871                            1,881  305.36 350.93 2.55  1.91 27.11 54.44 6.91 5.53 2.82 1.12 0.16 
Taling Chan 36.92 20.80 56.34                             105,289                          3,473  94.07 166.97 3.30  1.44 28.07 53.21 8.41 7.08 0.92 0.75 0.12 
Bangkok Noi 12.72 11.33 89.07                               112,581                           3,819  300.24 337.07 3.39  1.28 24.51 58.68 5.92 7.54 0.86 1.00 0.21 
Bang Khun Thian 126.04 30.72 24.37                             179,768                          7,264  57.63 236.46 4.04  1.98 35.35 44.34 7.90 8.40 0.98 0.81 0.23 
Phasi Charoen 19.79 13.46 68.01                             259,418                          5,968  301.57 443.39 2.30  1.93 31.60 52.83 6.07 5.19 1.42 0.72 0.23 
Nong Khaem 37.35 22.42 60.03                             155,229                          8,745  234.14 390.05 5.63  3.18 31.23 51.39 6.21 6.38 0.88 0.59 0.14 
Rat Burana 12.72 8.74 68.71                               83,248                          2,862  225.00 327.46 3.44  1.82 31.62 49.58 6.81 8.00 1.05 0.87 0.24 
Bang Phlat 12.18 12.18 100.00                                93,771                          3,356  275.43 275.43 3.58  2.09 24.52 57.24 6.62 6.91 1.19 1.22 0.21 
Din Daeng 8.74 8.74 100.00                             123,966                          6,378  729.75 729.75 5.14  1.22 29.18 49.80 5.97 10.44 1.96 1.11 0.31 
Bung Kum 24.16 24.16 100.00                            285,225                         10,934  452.57 452.57 3.83   1.60 30.34 54.35 5.51 6.68 0.95 0.42 0.15 
Sa Thon 7.49 7.49 100.00                               80,497                           3,145  419.89 419.89 3.91  1.02 22.48 59.46 7.50 5.98 1.97 1.21 0.38 
Bang Su 13.30 9.34 70.23                              126,136                          2,935  220.68 314.28 2.33  1.26 29.37 52.98 5.83 8.89 0.99 0.55 0.14 
Chatuchak 33.71 33.71 100.00                              158,130                         12,732  377.69 377.69 8.05  1.40 25.79 55.59 7.29 7.46 1.33 0.95 0.20 
Bang Kho Laem 8.58 6.89 80.30                               90,377                          2,847  331.99 413.07 3.15  0.84 25.50 53.95 7.20 9.45 1.62 1.12 0.32 
Prawet 55.42 31.97 57.69                             294,501                          6,967  125.70 217.93 2.37  2.01 31.62 47.06 6.42 11.31 0.79 0.66 0.13 
Khlong Toei 13.66 11.53 84.41                             188,739                           3,018  220.94 261.65 1.60  1.03 20.74 57.42 6.63 10.11 1.42 2.12 0.53 
Suan Luang 24.88 24.88 100.00                              121,740                          8,607  345.94 345.94 7.06  1.23 29.60 53.90 5.47 7.95 0.90 0.74 0.22 
Chom Thong 23.90 16.26 68.03                             208,214                           8,126  339.97 499.65 3.90  1.26 32.21 53.45 5.69 5.33 1.00 0.90 0.18 
Don Mueang 37.89 33.59 88.65                             168,896                         13,360  352.61 397.71 7.91  2.65 30.15 53.69 4.72 7.19 0.91 0.53 0.16 
Rat Thewi 7.40 7.40 100.00                               72,436                          2,264  306.04 306.04 3.13  0.80 23.10 51.72 9.36 7.20 4.02 3.00 0.80 
Lat Phrao 21.95 21.95 100.00                              121,000                         12,643  575.99 575.99 10.45  1.51 24.57 60.56 4.82 7.06 0.66 0.59 0.21 
Wattana 13.41 13.41 100.00                               84,528                           4,271  318.49 318.49 5.05  0.87 24.21 54.17 5.94 10.87 1.86 1.42 0.66 
Bang Khae 49.42 19.35 39.15                               52,378                           6,214  125.75 321.21 11.86  2.46 32.97 50.05 6.29 6.40 0.82 0.77 0.23 
Lak Si 23.40 23.40 100.00                             105,588                         10,072  430.35 329.69 9.54  2.04 27.11 55.82 5.37 7.80 0.91 0.78 0.16 
Sai Mai 45.03 25.30 56.18                            200,374                          10,717  238.00 423.54 5.35  3.44 30.61 49.44 5.57 9.50 0.76 0.50 0.18 
Khanna Yao 26.19 26.19 100.00                               49,575                          8,780  335.19 333.74 17.71  1.66 30.72 51.99 5.25 9.00 0.71 0.51 0.16 
Saphan Sung 28.96 22.86 78.94                               94,982                          7,990  275.90 349.52 8.41  2.25 26.90 60.32 5.09 4.35 0.59 0.36 0.15 
Wang Thong Lang 17.62 17.62 100.00                              112,849                          8,948  507.80 507.80 7.93  1.30 32.80 46.67 7.15 10.27 1.02 0.61 0.18 
Khlong Sam Wa 124.05 37.86 30.52                             189,507                           10,116  81.54 267.20 5.34  2.49 36.47 46.24 7.13 6.45 0.64 0.51 0.07 
Bang Na 19.54 5.75 29.43                               92,023                           1,554  79.51 270.37 1.69  1.29 32.82 44.14 9.91 9.72 0.97 0.71 0.45 
Thawi Watthana 53.40 25.33 47.43                               77,890                          4,207  78.79 166.10 5.40  2.21 30.45 44.69 11.31 10.27 0.40 0.52 0.14 
Thung Khu 33.99 13.28 39.07                               66,430                          5,037  148.21 379.20 7.58  1.03 34.70 50.47 5.06 7.43 0.66 0.48 0.18 
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District Name Area 
(km2) 

Area of 
GSV 

images 
(km2) 

GSV image 
coverage (%) Population Number of containers 

Containers 
per km2 

land 

Containers 
per km2 
image 
area 

Containers 
per 100 
persons 

 Relative proportions of container types (%) 

 Jar Bucket Potted plant Tire Bin Bowl 
Misc 
short 
open 

Misc 
long 
open 

Bang Bon 36.99 23.84 64.45                              107,136                          9,568  258.66 401.38 8.93  1.71 40.41 44.25 6.28 5.43 1.00 0.77 0.14 

Summary Total: 
 1,619.78 

Total:  
870.56 

mean: 77.06 
median: 88.65 

SD: 26.14 

Total: 
 5,888,392 

Total:  
298,391 

mean: 
294.70 

median: 
301.57 

SD: 
159.46 

mean: 
358.90 

median: 
345.94 

SD: 
119.79 

mean: 
5.30 

median: 
4.13 

SD: 3.19 

 Relative propotion over entire province (%): 

 

1.78 29.96 51.84 6.47 7.82 1.09 0.81 0.22 
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Table A.2 Areas, image coverage, population, containers data in district level in Nakhon Si Thammarat, Thailand 

District Name Area 
(km2) 

Area of 
GSV 

images 
(km2) 

GSV image 
coverage (%) Population Number of 

containers 
Containers 

per km2 land 

Containers per 
km2 image 

area 

Containers 
per 100 

population 

 Relative proportions of container types (%) 

 Jar Bucket Potted 
plant Tire Bin Bowl 

Misc 
short 
open 

Misc 
long 
open 

Mueang Nakhon Si Thammarat 564.61 111.50 19.70 271330 19915 35.27 178.62 7.34  1.78 41.91 36.77 6.30 11.77 0.57 0.81 0.10 
Phrom Khiri 250.10 18.51 7.40 37513 2099 8.39 113.38 5.60  0.52 39.40 39.45 5.72 13.91 0.57 0.33 0.10 
Lan Saka 349.54 15.24 4.40 40900 1479 4.23 97.02 3.62  2.10 46.79 31.58 5.07 13.79 0.34 0.27 0.07 
Chawang 439.50 27.65 6.30 67293 3650 8.30 132.01 5.42  1.81 44.03 32.49 6.30 13.89 0.41 1.04 0.03 
Phipun 501.18 11.86 2.40 29226 1812 3.62 152.74 6.20  1.77 51.27 32.62 6.07 6.40 0.72 0.77 0.39 
Chian Yai 326.05 32.86 10.10 43457 2276 6.98 69.25 5.24  4.66 39.02 34.18 10.76 10.24 0.40 0.66 0.09 
Cha-uat 760.30 53.01 7.00 86507 5335 7.02 100.65 6.17  1.61 51.73 27.39 9.99 7.48 0.88 0.81 0.11 
Tha Sala 424.03 54.22 12.80 113067 4347 10.25 80.18 3.84  1.29 42.44 34.55 9.71 10.77 0.51 0.62 0.12 
Thung Song 922.19 66.13 7.20 160724 8138 8.82 123.05 5.06  1.09 44.25 31.13 10.72 11.53 0.53 0.71 0.05 
Na Bon 210.68 15.23 7.20 26934 1986 9.43 130.42 7.37  0.96 58.61 21.25 8.61 9.62 0.35 0.60 0.00 
Thung Yai 609.19 47.75 7.80 74317 5781 9.49 121.06 7.78  1.35 65.91 19.49 5.09 6.87 0.42 0.86 0.02 
Pak Phanang 537.92 73.37 13.60 130160 6546 12.17 89.22 5.03  6.29 45.88 30.78 8.62 6.94 0.75 0.63 0.12 
Ron Phibun 435.26 24.65 5.70 82031 1501 3.45 60.90 1.83  3.60 27.85 43.84 13.26 10.26 0.73 0.33 0.13 
Sichon 698.17 50.94 7.30 88611 3052 4.37 59.92 3.44  2.92 28.21 33.91 10.94 23.03 0.43 0.46 0.10 
Khanom 315.83 24.28 7.70 30393 2364 7.49 97.35 7.78  2.33 55.54 26.90 7.19 7.28 0.38 0.34 0.04 
Hua Sai 442.98 44.31 10.00 66503 2881 6.50 65.03 4.33  4.37 48.14 32.87 8.82 4.30 0.62 0.80 0.07 
Bang Khan 475.96 29.72 6.20 46914 1875 3.94 63.09 4.00  7.25 38.93 36.48 12.96 3.36 0.16 0.59 0.27 
Tham Phannara 179.00 10.15 5.70 19177 889 4.97 87.62 4.64  2.02 41.17 26.32 21.48 8.10 0.67 0.22 0.00 
Chulabhorn 233.58 16.14 6.90 31584 2231 9.55 138.20 7.06  1.08 37.38 29.54 18.69 12.01 0.54 0.76 0.00 
Phra Phrom 151.07 29.95 19.80 43588 2880 19.06 96.15 6.61  2.95 48.19 30.21 10.35 7.26 0.35 0.59 0.10 
Nopphitam 732.73 18.68 2.50 33320 1293 1.76 69.22 3.88  2.17 33.02 34.42 9.44 18.95 1.39 0.54 0.08 
Chang Klang 276.62 10.90 3.90 29909 839 3.03 76.97 2.81  1.55 61.98 25.15 5.24 4.53 0.60 0.95 0.00 
Chaloem Phra Kiet 183.34 21.09 11.50 31572 1440 7.85 68.29 4.56  6.53 33.33 36.94 18.26 3.47 0.76 0.56 0.14 

Summary Total: 
10,019.83 

Total: 
808.14 

mean: 8.40 
median: 7.20 

SD: 4.57 

Total: 
1,585,030 

Total: 
84,609 

mean: 8.52 
median: 7.49 

SD: 6.91 

mean: 98.71 
median: 96.15 

SD: 32.56 

mean: 5.20 
median: 5.06 

SD: 1.64 

 Relative proportion over entire province (%): 

 
2.44 45.14 32.08 8.78 10.21 0.56 0.70 0.09 
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Table A.3 Areas, image coverage, population, containers data in district level in Krabi, Thailand 

District Name Area 
(km2) 

Area of 
image 
(km2) 

image 
coverage (%) Population Number of 

containers 
Containers per 

km2 land 
Containers per 
km2 image area 

Containers per 
100 population 

 Relative proportions of container types (%) 

 Jar Bucket Potted plant Tire Bin Bowl 
Misc 
short 
open 

Misc 
long 
open 

Mueang Krabi 887.13 52.48 5.92 118288 2597 2.93 49.48 2.20  3.20 46.17 34.39 10.47 3.97 0.69 0.85 0.27 
Khao Phanom 861.73 44.41 5.15 54956 3367 3.91 75.81 6.13  4.34 47.46 30.35 8.64 8.32 0.12 0.71 0.06 
Ko Lanta 249.33 18.85 7.56 34337 1471 5.90 78.03 4.28  1.70 61.52 24.81 6.59 3.20 0.61 1.43 0.14 
Khlong Thom 1132.32 70.66 6.24 76798 5339 4.72 75.56 6.95  2.53 53.81 25.75 10.62 5.84 0.49 0.82 0.13 
Ao Luek 801.07 58.98 7.36 56138 5587 6.97 94.73 9.95  3.11 48.31 26.69 9.68 10.90 0.34 0.84 0.13 
Plai Phraya 536.93 42.75 7.96 38578 2803 5.22 65.57 7.27  4.50 49.30 30.07 6.35 8.46 0.36 0.71 0.25 
Lam Thap 285.40 19.75 6.92 24202 2367 8.29 119.83 9.78  2.83 47.36 31.77 8.37 8.45 0.55 0.51 0.17 
Nuea Khlong 479.82 54.53 11.36 62634 6494 13.53 119.09 10.37  1.45 60.32 23.61 7.13 5.99 0.48 0.95 0.08 

Summary Total: 
5,233.73 

Total: 
362.41 

mean: 7.31 
median: 7.14 

SD: 1.88 

Total: 
465,931 Total: 30,025 

mean: 6.43 
median: 5.56 

SD: 3.33 

mean: 84.76 
median: 76.92 

SD: 24.87 

mean: 7.12 
median: 7.11 

SD: 2.90 

 Relative proportion over entire province (%): 

 
2.83 52.27 27.56 8.68 7.25 0.43 0.84 0.14 
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Table A.4 Statistic of detected breeding sites corresponding to sub-districts where BI values were collected during dengue season. 

District Name Subdistrict Name Area 
(km2) 

Area 
of 

image 
(km2) 

image 
coverage 

(%) 
Population 

Number 
of 

containers 

Containers 
per km2 

land 

Containers 
per km2 image 

area 

Breeding 
site per 100 
population 

 Relative proportion of BS types (%) 

 Jar Bucket Potted 
plant Tire Bin Bowl 

Misc 
short 
open 

Misc 
long 
open 

Mueang Nakhon Si Thammarat Kamphaeng Sao 31.00 4.49 14.47 9559 865 27.90 192.65 9.05  0.12 56.65 21.73 4.86 15.84 0.23 0.46 0.12 
Mueang Nakhon Si Thammarat Chai Montri 14.87 3.78 25.42 6544 658 44.25 174.07 10.06  1.06 65.81 20.67 5.17 6.84 0.00 0.46 0.00 
Mueang Nakhon Si Thammarat Mamuang Song Ton 7.89 2.10 26.64 5013 313 39.67 149.05 6.24  5.11 27.80 40.58 8.31 17.57 0.64 0.00 0.00 
Chawang Na Wae 36.61 3.23 8.83 7372 472 12.89 146.13 6.40  1.69 51.48 30.93 7.63 6.14 0.42 1.69 0.00 
Chawang Huai Prik 66.31 3.23 4.87 6512 434 6.55 134.37 6.66  1.84 52.76 26.27 6.45 11.06 0.23 1.38 0.00 
Chawang Na Khliang 19.94 1.16 5.82 2845 278 13.94 239.66 9.77  2.16 39.21 27.70 6.12 23.38 0.00 1.44 0.00 
Phipun Kathun 121.62 3.62 2.98 5540 483 3.97 133.43 8.72  2.07 49.28 33.13 6.63 5.38 2.28 0.83 0.41 
Cha-uat Cha-Uat 72.46 8.24 11.37 12683 639 8.82 77.55 5.04  2.19 51.49 31.30 7.20 5.79 0.78 1.10 0.16 
Cha-uat Tha Pracha 27.56 3.71 13.46 7227 426 15.46 114.82 5.89  1.88 30.52 30.52 7.28 26.29 1.64 1.64 0.23 
Cha-uat Wang Ang 126.69 3.73 2.95 10304 531 4.19 142.36 5.15  0.56 33.52 27.50 21.28 14.31 1.13 1.69 0.00 
Cha-uat Ban Tun 82.70 6.57 7.95 7133 340 4.11 51.75 4.77  2.65 50.00 35.88 9.41 1.18 0.29 0.59 0.00 
Cha-uat Khon Hat 60.45 5.27 8.72 5908 423 7.00 80.27 7.16  1.89 63.36 24.82 6.86 0.71 1.18 0.95 0.24 
Cha-uat Ko Khan 42.53 3.52 8.28 8989 153 3.60 43.47 1.70  0.00 33.33 29.41 26.14 9.80 1.31 0.00 0.00 
Cha-uat Khuan Nong Hong 39.78 5.36 13.48 7327 766 19.26 142.91 10.45  1.96 42.69 26.24 17.10 10.57 0.78 0.65 0.00 
Cha-uat Khao Phra Thong 53.88 2.78 5.17 8152 153 2.84 55.04 1.88  0.00 33.33 29.41 26.14 9.80 1.31 0.00 0.00 
Thung Song Nong Hong 27.05 3.04 11.25 11010 470 17.38 154.61 4.27  0.64 34.89 27.23 12.34 23.83 0.43 0.64 0.00 
Thung Song Khao Ro 88.96 7.02 7.89 10575 244 2.74 34.76 2.31  2.05 18.85 65.16 10.66 2.87 0.00 0.41 0.00 
Thung Song Thi Wang 79.99 5.40 6.75 13912 723 9.04 133.89 5.20  0.55 65.42 20.06 10.37 2.90 0.14 0.55 0.00 
Thung Song Na Pho 30.89 4.45 14.42 6304 621 20.10 139.55 9.85  1.61 31.56 28.50 12.24 24.80 0.64 0.64 0.00 
Na Bon Kaeo Saen 68.30 6.73 9.85 7125 504 7.38 74.89 7.07  0.60 47.02 26.98 13.29 10.52 0.99 0.60 0.00 
Thung Yai Thung Sang 63.14 7.05 11.16 5620 510 8.08 72.34 9.07  1.57 41.76 24.51 4.71 25.10 0.78 1.57 0.00 
Thung Yai Kurae 84.83 5.97 7.04 8142 757 8.92 126.80 9.30  1.45 73.98 18.49 3.30 1.98 0.26 0.53 0.00 
Thung Yai Krung Yan 115.96 7.27 6.27 10583 903 7.79 124.21 8.53  2.10 73.53 18.05 2.33 2.88 0.44 0.66 0.00 
Bang Khan Bang Khan 158.87 9.90 6.23 13973 433 2.73 43.74 3.10  8.78 28.87 43.42 13.16 4.85 0.23 0.69 0.00 
Bang Khan Ban Lamnao 168.00 8.85 5.27 16284 918 5.46 103.73 5.64  6.10 49.46 31.05 9.80 2.61 0.11 0.54 0.33 
Bang Khan Wang Hin 76.25 6.28 8.24 9002 327 4.29 52.07 3.63  4.89 26.30 39.76 23.24 4.59 0.31 0.61 0.31 
Bang Khan Ban Nikhom 72.84 4.69 6.44 7655 197 2.70 42.00 2.57  13.20 32.99 41.12 10.15 1.52 0.00 0.51 0.51 
Chulabhorn Thung Pho 74.07 6.50 8.78 9776 919 12.41 141.38 9.40  1.09 42.00 26.22 13.60 15.78 0.44 0.87 0.00 
Chulabhorn Na Mo Bun 59.54 3.89 6.53 7146 527 8.85 135.48 7.37  1.14 36.05 30.55 21.25 9.49 0.76 0.76 0.00 

Summary 

  

Total: 
1,972.98 

Total: 
147.83 

mean: 9.54 
median: 

8.24 
SD: 5.53 

Total: 
248,215 

Total: 
14,987 

mean: 
11.46 

med: 8.08 
SD: 10.46 

mean: 112.31 
med: 126.80 

SD: 50.98 

mean: 6.42 
med: 6.40 

SD: 2.69 

 
Relative proportion over 29 sub-districts (%): 

  

 

2.31 47.46 28.42 10.53 9.81 0.59 0.81 0.07 
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Table A.5 Container statistics for Lansaka district of Nakhon Si Thammarat. 

District 
Name 

Subdistrict 
Name 

Area 
(km2) 

Area of 
image 
(km2) 

Image 
coverage (%) Population Number of 

containers 
Containers per 

km2 land 

Containers per 
km2 image 

area 

Containers 
per 100 pop 

 Relative proportion of container types (%) 

 
Jar Bucket Potted 

plant Tire Bin Bowl 
Misc 
short 
open 

Misc 
long 
open 

Lan Saka Khao Kaeo 86.48 1.20 1.39 7620 24 0.28 20.00 0.31  0.00 45.83 37.50 4.17 12.50 0.00 0.00 0.00 
Lan Saka Kamlon 96.43 2.72 2.82 9125 318 3.30 116.91 3.48  1.89 46.23 37.11 3.46 10.06 0.63 0.31 0.31 
Lan Saka Tha Di 35.49 2.56 7.21 7974 445 12.54 173.83 5.58  0.90 52.58 28.09 4.27 13.71 0.22 0.22 0.00 
Lan Saka Khun Thale 51.88 6.07 11.70 10296 446 8.60 73.48 4.33  3.59 47.76 30.04 8.74 8.97 0.45 0.45 0.00 
Lan Saka Lan Saka 79.27 2.69 3.39 5885 246 3.10 91.45 4.18  2.03 35.37 32.93 2.03 27.64 0.00 0.00 0.00 

Summary   Total: 349.54 Total: 15.24 
mean: 5.30 

median: 3.39 
SD: 4.17 

Total:  
40,900 

Total:  
1,479 

mean: 5.56 
median: 3.30 

SD: 4.92 

mean: 95.13 
median: 91.45 

SD: 56.56 

mean: 3.58 
median: 4.18 

SD: 1.98 

 Relative proportion over entire district (%): 

 
2.10 46.79 31.58 5.07 13.79 0.34 0.27 0.07 

 


