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1 General introduction 

1.1 Submarine fans 

1. Introduction 

Submarine fans have been intensively studied for more than three decades (e.g. Normark, 

1970; Walker, 1978; Bouma et al., 1985; Reading and Richards, 1994; Richards et aI, 

1998, Bouma, 2000). Most investigations of submarine fans are motivated by their 

hydrocarbon potential as well as by their potential as recorders of long- and short-term 

climatic changes (Richards et al., 1998; Bouma, 2001). The term, submarine fan, typically 

relates to a modem sediment accumulation exposed at the present sea floor while the tenn, 

turbidite system, is more used for a subsurface occurrence or outcrop. Many earth 

scientists, however, use the terms, submarine fan and turbidite system, interchangeably 

(Bouma, 2000). 

The general architecture and geometry of submarine fans are well known, and several 

depositional models have been developed for their characterization and classification. 

(Richards, et al; 1998; Bouma, 2000; Stow and Mayall, 2000). The key factors controlling 

the fan architecture of most published models are: tectonics, climate, nature of sediment 

input, and sea-level fluctuations (Richards et al., 1998; Bouma, 2000). The tectonics factor 

includes the location of the sediment source relative to the sea, the elevation of the 

mountains, the susceptibility of the rocks to erosion, the shelf width and gradient, and the 

basin morphology. Climate mainly controls the rate and type of weathering in the 

sediment-source area as well as the fluvial transport capability. The nature of the sediment 

input may be a point source, multiple source, or linear source. The sediment distribution 

might vary in terms of grain size, sorting, grain shape, and mineral composition. Sea-level 

fluctuations, either global or regional, are directly dependent on tectonics and/or climate, 

and may influence the timing of sediment transport from land or coastal areas to the 

deepwater basin. 

The key-factors controlling the fan architecture are commonly interdependent. Sediment 

supply, for example, is controlled by a complex interplay of geographic and climatic 

factors, such as: (1) the relief or mountain heights, (2) the size and temporal storage 

capacity of the drainage area, (3) the regional climatic conditions, (4) the amount and 

seasonality of precipitation, and (5) the vegetation cover (Van der Zwan, 2002). 

Stow et al. (1985) and Kolla and Macurda (1988) classified the factors controlling the 

development of submarine systems into two groups. The first group are primary controls 

including: the type of continental margin, the relief and tectonic setting of the hinterland, 

the continental shelf-slope relief, the nature of basinal areas and the basin size, the distance 
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from the source region, the width and the gradients of the shelf-slope, and the type and 

amount of sediment supplied. The second group, which are secondary controls, includes 

the climatic nature and vegetation of the source area, the timing of snowmelt waters, and 

high rainfalls during sea-level changes. 

Bouma (2000) characterizes fan systems based on the key-factors controlling fan 

architecture, i.e., tectonics, climate, nature of sediment input, and sea-level fluctuations, 

into two end-members in terms of the sand/clay ratio, i.e., coarse-grained vs. fine-grained, 

and observes that the coarse-grained, sand-rich complexes are typical for regions in active 

margin setting, characterized by a short continental transport distance, a narrow shelf, and 

a canyon-sourced nonefficient basin transport system that results in a pro grading type of 

fan. Fine-grained, mud-rich complexes are typical for passive margin settings with long 

fluvial transport systems, large delta structures, a wide shelf, and efficient basin transport 

resulting in a bypassing system. 

Richards et al. (1998) classify submarine fans on the basis of (a) volume and grain size 

of available sediment, and (b) nature of the supply system (Fig. 1.1). Based on the grain 

size, they further classify the submarine fans into (i) mud-rich system, (ii) mixed sand-mud 

system, (iii) sand-rich system, and (vi) gravel-rich system. The nature of the supply system 

varies between (i) submarine fan point source, (ii) multiple source ramps and (iii) slope 

apron linear source. The classification of Richards et al. (1998) provides 12 different 

models of submarine fan systems but there is a continuum between these categories. 

The studied fans in this thesis are submarine prolongations of alluvial fans, which 

develop off major wadis. Alluvial fans are masses of sediment deposited at some point 

along a stream where a sharp decrease in gradient occurs. An alluvial fan can be described 

as a depositional response to the expansion of a confined channel flow as it leaves a 

rockhead valley to emerge onto the fan surface (Leeder, 1999). Alluvium is first deposited 

by a large movement of water, such as would occur during a flood, which then becomes 

erosive through the action of smaller streams (Fig. 1.2). The alluvial fans at the western 

coast of the Gulf of Aqaba have submarine prolongations, which are usually larger than the 

subaerial fans themselves. The sizes of the submarine fans in the Gulf of Aqaba, however, 

are small compared to other major submarine fans. 

Characteristic features of submarine fans include slope failure deposits and submarine 

canyons. Gravity failures (slides, slumps, and debris flows) are usually found in the 

proximal areas of the fans where slope gradients are relatively large. The possible causes 

for instability and slope failures in submarine fans are numerous but not well understood. 
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1. Introduction 

Fig. 1.1: Schematic drawing of 9 of the 12 models of Richards et al. (1998). The models 

are classified on the basis of (a) volume and grain size of available sediment, and (b) 

nature of the supply system. The models for a mixed sand-mud system are not shown. The 

Figure is takenji"om Stow and MayaU (2000). 
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Fig. 1.2: Schematic drawing of an 

alluvial fan (taken ji-om Meriam 

Websters online Collegiate Dictionmyj. 

Mechanisms include erOSIOn, sedimentation, earthquake activity, diapirism, sea level 

fluctuations, and wave action (Locat, 2001). In this thesis, we follow the terminology 

originally proposed by Varnes (1958), Dingle (1977) and Shanmugam et al. (1994). A slide 

is a mass or block that moves downslope on a planar slide plane or shear surface and 

shows no internal deformation, whereas a slump is a block that moves downslope on a 

concave-up glide plane or shear surface and undergoes rotation which causes internal 

deformation. In other words, slides represent translational movements and slumps 

represent rotational movements along shear surfaces. An increase in mass disaggregation 

and mixing with water, as a slump moves downslope, can result in the transformation of 

the slump into a debris flow in which sediment is transported as an incoherent, viscous 

mass via plastic flow. If the fluid content further increases, a plastic debris flow may 

evolve into a fluidal turbidity current. Debris flows and turbidity currents may, however, 

directly result from slope failures as well. 

Submarine canyons usually play an impOliant role in the evolution of submarine fans. 

The position and configuration of the canyons are controlled by multiple factors, including 

structural fabric, tectonism, sea-level variations, and sediment supply (Laursen and 

Normark, 2002). Submarine erosion by turbidity currents plays a key role in the formation 

of submarine canyons but other processes, including sediment creep, localized slides and 

slumps, and currents are important in moving sediment downslope and eroding canyon 

walls as well (Shepard, 1981). Several canyons are also carved into the submarine 

prolongations of the alluvial fans in the Gulf of Aqaba, and they seem to play a significant 

role in sediment transport within these fans. 



6 1. Introduction 

Fig. 1.3: Overview map of the Gulf of Aqaba showing the location of the studied fans. 

1.2 Geological setting of the Gulf of Aqaba 

The Red Sea, which runs almost 2000 km from the Mediterranean Sea to the Indian Ocean, 

lies in a fault depression in the Arabian-Nubian shield. At its northern end it bifurcates into 

the Gulf of Suez and the Gulf of Aqaba (Fig. 1.3). The Gulf of Aqaba is bordered to the 
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west by the Sinai Peninsula and to the east by the Arabian mainland. It is known as a 

region of intensive crustal movement. 

Tectonically, the Gulf of Aqaba forms the southern part of the Dead Sea rift (Figs. 1.4, 

1.5). The Dead Sea transform relates to the boundaries of the Arabian and African plates as 

well as to the Sinai Peninsula subplate. On a larger scale, divergence in the Red Sea is 

accommodated by plate convergence in Iraq-Iran (Zagros Mountains) as the Arabian plate 

moves north relative to the African plate (Fig. 1.5, Mechie and El-Isa, 1988). 

African 
plate 

Fig 1.4: Tectonic overview map of the Red Sea and the Dead Sea Transform (modified 

after http://earth.leeds.ac.uk//eb/tectonics/regiona//regional. htm). 

Bayer et al. (1988) concluded that the kinematics of the Red Sea area changed from 

passive rifting with a WSW -ENE extension direction to sinistral shear along a NNE 

direction (Aqaba-Levant transform, Fig. 1.5) in the Late Miocene. The change was 

accompanied by the opening of the Red Sea as a result of the oblique drift of the Arabian 

Plate. This rearrangement led to a stagnation of extension and subsidence in the Gulf of 

Suez, and created a new plate-boundary, the Aqaba-Levant structure (Fig. 1.5). Bayer et al. 

(1988) further concluded that strike-slip movement along the Aqaba-Levant structures 

started at ~ 14 Ma. 
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Fig. 1.5: Regional tectonic map of the Jordan-Dead-Sea Transform (/i-om Mechie and El

isa, 1988). 

Quennell (1958) and Freund et al. (1970) suggested that the strike-slip movement 

occurred in two phases, i.e., one of 60 km, during post-Cretaceous times and another of 45 

km, from the Pliocene onwards. Bartov et al. (1980), on the other hand, suggested a single

phase movement during which a slip of 105 km occurred, beginning in the Middle 

Miocene. The oldest movements along the Dead Sea rift, therefore, are younger than those 

in the Suez basin (Eyal et al., 1981). 

The Gulf of Aqaba is unique for its great depth in proportion to its width. Its maximum 

depth is ~1850 m; the average depth is ~650 m (Morcos, 1970). The Gulf of Aqaba is 160 
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km long, and has a maximum width of 24 km. The tectonic development of the region 

around the Gulf of Aqaba deformed the surrounding coastal areas as well as the areas 

within the Gulf itself, and created faults with main directions in the N-S to NNE-SSW 

(Fig. 1.6, Ben-Avraham et aI., 1979a, Ben-Avraham, 1985; Bayer et aI., 1988). According 

to Garfunkel (1981) and Ben-Avraham et aI. (l979b), the Gulf of Aqaba fonns a 

succession of three deep and elongated NNE-SSW pull-apart basins which are separated by 

shallow sills. The Sinai Peninsula Mountains rise steeply on the western side of the Gulf, 

where they are bound by coastal faults. 

Fig. 1.6: Geological map of the Northern Red Sea/Gulf of Aqaba (Bayer et al., 1988). 
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The rocks of the Sinai Peninsula on the western side of the Gulf of Aqaba (Fig. 1.6) 

consist of Precambrian basement rocks, which are mainly metamorphic and magmatic 

rocks of Late Proterozoic age (Eyal et aI., 1981). The basement rocks are covered in some 

places by up to 1.3 km thick sedimentary rocks (Ben-Avraham et aI., 1979a). The 

sedimentary rocks consist of a lower sandy part of Early Paleozoic age, which is overlain 

by Cretaceous-Eocene sediments made up of marine carbonaceous rocks with some sandy 

portions. The Sinai Mountains are drained by many wadis of different sizes (Geological 

map of Sinai, 1994). The main wadis on the western side of the Gulf are Wadi Watir (Fig 

1.7), Wadi Dahab, and Wadi Kid. 

Fig. 1.7: Aerial photograph of Wadi Watir alluvial fan at the mouth of Wadi Watir on the 

western side of the Gulf of Aqaba (National Geographics). A) Basement and sedimentary 

rocks of the Sinai Mountains, B) Wadi Watir, C) Wadi Watir alluvial fan, D) Gulf Of 

Aqaba. 

Ben-Avraham et al. (1979a; 1979b) reported that the western side of the Gulf is 

characterized by large alluvial fans that extend as submarine cones into which many 

canyons are dissected. The alluvial fans are built at the mouths of major wadis and have 

variable sizes. (Fig. 1.3). Large alluvial fans are formed at the mouths of the two largest 

wadi systems, Wadi Watir and Wadi Dahab (Fig. 1.7). A smaller alluvial fan, the Ras El 

Burka alluvial fan, is found at the mouth of the Wadi Almahash Al AsfaI. The sediment 
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input into the fans results from sporadic rainfalls on the Sinai Peninsula. The rainfalls 

might develop flashfloods in the wadis, which transport large amounts of eroded sediments 

from the rocky deseli of the Sinai Peninsula into the Gulf of Aqaba. 

1.3 Aims of this study 

The aim of this study is to present results of detailed investigations about the origin and 

development of the submarine prolongations of alluvial fans in the Gulf of Aqaba based on 

a dense grid of bathymetric, sediment echosounder, and high-resolution multichannel 

seismic reflection data collected during the R/V Meteor Cruise M44/3 in 1999. 

The study focuses on the investigations of the three major submarine prolongations of 

alluvial fans constructed at the mouths of the wadis (Fig. 1.3, 1.8) which are characterized 

by ephemeral streamflow. These alluvial fans are Ras El Burka alluvial fan (at the mouth 

of Wadi Almahash Alasfal), Wadi Watir alluvial fan (at the mouth of Wadi Watir, Fig. 1.7) 

and Wadi Dahab alluvial fan (at the mouth of Wadi Dahab). 

The primary aims of the investigations are: 

• to plot and analyze detailed bathymetric maps of the submarine prolongations of the 

alluvial fans for the first time. These maps can be used to identify the significant 

morphological features which reflect the evolution of the fans. 

• to study the acoustic and seismic facies in the investigated areas based on the 

Parasound and multi channel seismic data, respectively. The acoustic and seismic 

facies in the study areas can be correlated with results of lithofacies from other areas 

with a similar setting, in order to interpret the depositional processes. A study of the 

lateral and vertical distribution of these facies will also allow to investigate the various 

processes involved in the creation of these facies, i.e., climatic changes, sea-level 

fluctuation, and tectonics, and the geological processes responsible for the origin and 

evolution of the fans. 

• to interpret the mode of initiation and evolution of the canyons dissecting the 

submarine prolongations of alluvial fans in the Gulf of Aqaba based on an integrated 

interpretation of the bathymetric maps and Parasound and seismic data. These data 

were used to develop a model for the canyon initiation and development as well as to 

assess the significance of the canyons for sediment transport in the submarine fans. 
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1.4 Methods 

The main methods used in this thesis are high-resolution reflection seismics, and mapping 

of the seafloor by means of the Hydrosweep bathymetric multibeam system and the 

nalTow-beam Parasound sediment echosounder. The data used in the study were collected 

during RlV Meteor Cruise M44/3 in 1999 (Fig. 1.8, Piitzold et aI., 2000). A total of 1680 

km of multichannel seismic profiles were collected along 89 profiles in the northern Red 

Sea and the Gulf of Aqaba but only the data from the submarine prolongations of the 

alluvial fans have been analyzed for this work. The high-resolution multi channel reflection 

seismic data, combined with Hydrosweep and Parasound data, provide new insights into 

the architecture and development of the submarine prolongation of alluvial fans in the Gulf 

of Aqaba. 

1.4.1 Hydrosweep and Parasound 

During the RlV Meteor Cruise M44/3, the bathymetric data were collected using the Krupp 

Atlas Electronics Hydrosweep system. The Hydrosweep system is a bathymetric 

multibeam system which uses 59 beams with a swath width of 90°, giving a coverage of 2 

times the water depth (Grant and Schreiber, 1990). The system was routinely used during 

the entire cruise. Typical accuracies of the system are 0.25% of water depth, reduced to 1 % 

in areas of steep slopes. The data were processed with the mb-system software package 

which consists of more than 20 programs that manipulate, translate, process, list, or display 

swath-mapped sonar data (Caress and Chayes, 1996). The data were finally gridded with a 

grid-size of 70 m and displayed using the Generic Mapping Tools (GMT) software 

(Wessel and Smith, 1998). 

The Parasound system works both as a low-frequency sediment echosounder and a 

high-frequency narrow beam sounder to determine the water depth. The system propagates 

a primary frequency of 18.0 kHz which is used for the determination of the water depth. 

The primary frequency is superimposed by a secondary frequency between 21.5 kHz and 

23.5 kHz resulting in a differential frequency between 3.5 kHz and 5.5 kHz. Due to the 

parametric effect, the new component is traveling within the emission cone of the original 

high frequency waves which are limited to an angle of only 4° for the equipment used. 

Therefore, the footprint size is much smaller than for conventional systems, and both 

vertical and lateral resolutions are significantly improved. The source signal is a sinusoidal 

wavelet with a duration of 2 periods. Digitizing and recording of the seismograms were 
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done with the software package Paradigm which was developed at the University of 

Bremen (SpieJ3, 1993). 

1.4.2 High-resolution multi-channel reflection seismics 

Multi-channel seismic measurements were carried out with the instrumentation of the 

Department of Earth Sciences, Bremen University. The primary source was a 0.4 1 GI-Gun 

(Generator-Injector Gun; SODERA Inc.) generating a source signal with frequencies of up 

to 3S0 Hz. The GI-Gun was shot every 10 s. Owing to an average ship speed of 4.9 kn, a 

shot distance of ~2S m was thus obtained. A SODERA Inc. S-lS water gun was also shot 

as secondary source on some profiles. The frequency of the watergun ranges from 200 -

1200 Hz. Both guns were operated with an air pressure of ISO bar. 

The data were recorded using a 24-channe1 300 m-long Syntron streamer. A tow-lead of 

40 m and one stretch section of SO m were used resulting in a total streamer length of 390 

m. In order to optimize the frequency response of the streamer in shallow water and at 

large reflection angles, hydrophone groups of only 2 hydrophones at a distance of 0.32 m 

were used. The midpoint distance between individual channels was 12.S m. The streamer 

was equipped with 4 cable-levelers (birds), which kept the streamer at a constant depth of 3 

m. Recording was done by means of a BISON spectra seismograph. This recording unit 

was specially designed for the University of Bremen and allows a continuous operation 

mode to acquire very high-resolution seismic data (sampling with up to 20 kHz). The 

sampling frequency for the survey in the Gulf of Aqaba was set to 8 kHz. The Bison 

Spectra allows online data display (shot gather), online demultiplexing, and storing in 

SEG-Y format. Pre-amplifiers were set to 60 dB, analog filters to 16 Hz (low-cut) and 

2000 Hz (high-cut). The data were stored on a DLT4000 cartridge tape. An outline of the 

seismic system is shown in Fig. l.9. 

The data were processed in a combination of in-house software of Bremen University 

and the public domain package SEISMIC UN*X (Stockwell, 1997). First steps were the set 

up of the geometry and a static correction of the data based on the streamer depth measured 

at the bird positions. Binning of the data was done with a distance of 10 m giving ~10-fold 

CMP-gathers. A velocity analysis was carried out to establish stacking velocities. The 

stacked sections were filtered with a bandpass (SS/110 - 600/800 Hz) and, thereafter, time 

migrated. The time-migrated sections were used for interpretation of the data. 
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Fig. 1.9: Outline of the Bremen high-resolution reflection seismic system as used during 

Meteor-Cruise M44/3. 

1.5 Outline of this study 

This study was realized to understand the major processes during the formation and 

evolution of the submarine prolongations of alluvial fans in the Gulf of Aqaba. The thesis 

consists of three separate manuscripts (chapter 2-4) prepared for submission to peer

reviewed international scientific journals. The following gives a short overview of these 

manuscripts. 

Chapter 2 deals with the interpretation of the bathymetric and sediment echosounder 

profiles which were collected of the submarine prolongations of Ras El Burka, Wadi 

Watir, and Wadi Dahab alluvial fans. The data allowed us to plot detailed bathymetric and 

slope maps of the major submarine prolongations of alluvial fans in the Gulf of Aqaba for 

the first time. Several different echo types were identified and mapped. A detailed analysis 

and interpretation of the bathymetric and echo facies map allow to investigate key 

processes for the formation of the fan. 

Chapter 3 focuses on the evolution of the submarine prolongation of Wadi Watir 

alluvial fan deduced from high-resolution multi-channel seismic reflection data. A detailed 

analysis of the seismic facies helps to understand the growth pattern of Wadi Watir 

submarine fan. Special emphasis is put on the importance of faults and mass wasting 

events during the evolution of the fan. The new results, combined with previously 



16 1. Introduction 

published geological and geophysical data, allow a structural analysis of the submarine 

prolongation of Wadi Watir alluvial fan. 

Chapter 4 deals with the description and interpretation of the origin of the canyons 

which dissect the surface of the submarine prolongations of Wadi Watir and Wadi Dahab 

alluvial fans. The study is based on bathymetric, Parasound, and seismic data, and includes 

the description of the canyons and an analysis of the principal geological processes 

responsible for their formation and evolution. 

Final conclusions are drawn in Chapter 5. Some suggestions for further investigations of 

the submarine prolongations of alluvial fans in the Gulf of Aqaba are also given in the 

chapter. 
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Abstract 

The Gulf of Aqaba is part of the Syrian-African rift system extending some 6000 km from 

Turkey to Mozambique. The Gulf itself forms the northern extension of the Red Sea. 

Periodic flashfloods developing in onshore intennittent stream valleys (so called wadis) 

during the sporadic rainy season transport large amounts of sediments from the rocky 

desert of the Sinai Peninsula into the Gulf of Aqaba. These flashfloods build alluvial fans 

of different sizes. The submarine prolongation of Ras El Burka, Wadi Watir, and Wadi 

Dahab alluvial fans were studied during Meteor Cruise M44/3 using the Hydrosweep 

multibeam bathymetric system and the sediment echo sounder system Parasound. The 

largest submarine fan (Wadi Dahab submarine fan) covers an area ~25 km long and ~8 km 

wide and can be traced down to a water-depth of 1000 m, while Ras El Burka submarine 

fan is much smaller and covers an area of ~ 15 km long and ~ 7 km wide due to a much 

smaller catchment area of the corresponding wadi. Four echo facies types (rugged, 

hyperbolic, bedded, and partially transparent/discontinuously bedded echo facies) were 

recorded in the investigated submarine fans, which differ in character and distribution 

according to the substrate morphology and the type of sediments. Low penetration of the 

Parasound system close to the coast is caused by abundant coarse sandy sediments while 

increasing penetration of the Parasound system with increasing distance to the coast is 

related to an increase of fine-grained sediments. The submarine fans in the Gulf of Aqaba 

can be classified as coarse-grained, sand-rich, point source turbidite systems, which are 

dissected by numerous V-shaped and few U-shaped canyons. Several slumps and slides 

were identified all over the fans. 
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2.1 Introduction 

The Gulf of Aqaba (Fig. 2.1) is the southern, active segment of the Dead Sea rift, which 

accommodates about 105 km of left lateral slip between the Arabian plate and the Sinai 

subplate (Garfunkel et al., 1981). Geologically, the Gulf of Aqaba is part of the complex 

East African Rift System which runs through most of eastern Africa. The Gulf of Aqaba 

varies in width from 15 to 25 km and is ~ 180 km long. The Gulf lies in a pronounced cliff 

between hills rising abruptly to about 600 m above sea level. 

Several studies of the Gulf of Aqaba were canied out, both onshore and offshore. The 

onshore geology and structure of the Gulf of Aqaba has been investigated among others by 

Garfunkel (1970), Freund and Garfunkel (1976), Bartov and Steinitz (1978), Abdel Khalek 

et al. (1993), and Badawy and Horvath (1999). Offshore, geological and geophysical 

studies of the Gulf of Aqaba were carried out by Hall and Ben-A vraham (1978), Ben

Avraham (1985), and Ben-Avraham and Tibor (1993). 

Results of previous studies in the Gulf of Aqaba demonstrate that it is dominated by en

echelon faults which delimit three elongated basins striking NE at 20°-25°. The basins, as 

well as the Gulf itself, have been ascribed to a strike-slip faulting origin. The basin fill 

consists of syntectonic turbidites and pelagic deposits. The basin flanks are built by 

marginal blocks, which are much wider on the western side of the Gulf of Aqaba than on 

the eastern side. The marginal blocks on the west form topographic tenaces in some 

locations. The undulating western coastline is the direct result of alluvial fans building out 

into the Gulf. The fans build submarine cones which are dissected by many canyons. 

Submarine fans are constructional bodies formed by the gradual outbuilding of 

sediments into the deep sea. The sediment source may come from land wadis, river 

estuaries, or other supply systems through submarine canyons (Shepard, 1981; 

Uenzelmann-Neben et al., 1997). Canyons may reach form the shelf or slope where they 

are fed by mass flows, including slides/slumps, debris flows and turbidity currents, which 

erode their way downslope and gradually deposit their bedload as the gradient decreases 

oceanward. The key factors controlling the fan architecture of most published models are 

tectonics, climate, nature of sediment input, and sea level fluctuations (Stow et al., 1985; 

Richards et al.; 1998; Bouma, 2000). 

In this paper, we discuss three of the larger submarine prolongations of alluvial fans into 

the Gulf of Aqaba: Ras El Burka submarine fan, Wadi Watir submarine fan, and Wadi 

Dahab submarine fan (Fig. 2.1), all located off the mouths of major wadis. The fans were 

fed through the wadis with coarse-grained terrestrial deposits mainly obtained from the 
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Red Sea 

Fig. 2.1: Overview map of the study area. Locations of detailed bathymetric maps are 

shown as boxes. 
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erosion of sediment and basement rocks on the Sinai Peninsula during sporadic rainy 

seasons (Ben-Avraham et aI., 1979). The submarine fans were studied using a Hydrosweep 

swath bathymetric system and the digital sediment echosounder system Parasound. 

Reconnaissance data for studying the morphology and the structure of the uppennost 

sediments of the fans in greater detail were collected during R/V Meteor Cruise M44/3 for 

the first time. Particularly we will try to answer the following questions: 

(1) What are the dimensions of the submarine prolongation of alluvial fans in the Gulf 

of Aqaba? (2) Which sediment and facies types occur within the submarine fans and how 

are they distributed? (3) What is the influence of tectonics, climate and sea level 

fluctuations on the fonnation of the submarine fans in the Gulf Aqaba? 

2.2 Geological setting, previous investigations 

From a tectonic view, the Gulf of Aqaba is the southern active segment of the Dead Sea 

rift, which connects the sea-floor spreading axis of the Red Sea in the south with the 

Arabian-Turkish collision zone in the north. It is a fault-controlled depression (Mechie and 

El-Is a, 1988). According to Freund and Garfunkel (1976) and Abdel Khalek et aI. (1993), 

structures in the Gulf of Aqaba can be grouped into: 1) Primary structures caused by deep 

crustal processes, e.g. strike-slip faults (Arabian strike slip fault) and basin margin faults 

which are related to the plate movement striking N-S at a direction of 30°. 2) Secondary 

structures, directly related to, and a direct consequence of, the primary structures, e.g. folds 

developing in the sedimentary cover over deeper fault basement blocks and subsidiary 

faults related to stresses developed by major basement-involved structures. 3) Passive or 

adjustment structures developed as a consequence of, or as an effect of, primary and 

secondary structures, e.g. local crestal faulting of competent beds over the crest of 

anticlinal folds, salt diapirism triggered by basin subsidence and other related factors, 

folding developed in association with strike-slip faulting, as well as detached listric nonnal 

faults developing in pro grading sequences. Studies of the submarine geology and 

topography of the Gulf of Aqaba suggest that the deep and narrow shape of the Gulf is a 

direct reflection of the pattern of the long subparallel faults that bound the margins and its 

internal basins (Ben-Avraham et aI., 1979; Ben-Avraham, 1985). 

The area west of the Gulf of Aqaba, which is part of the Arabo-Nubian massif, consists 

of metamorphic and magmatic rocks of Late Proterozoic age. The detailed stratigraphy of 

the sediments covering this massif on land is well known Garfunkel et aI., 1974; Ben

Abraham et aI.; 1979; Abdel Khalek et aI.; 1993; Ben-Abraham and Tibor, 1993). The ~1.3 
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km thick sections encountered are of pre-Aqaba on gm and partially overlain by 

syntectonic sediments. The pre-tectonic sediments start with Lower Paleozoic continental 

clastics, and are unconformably overlain by the continental sandstones of the Early 

Cretaceous (Nubian Sandstone attains a thickness of up to 600 m). This cycle is succeeded 

by the first marine sediments (carbonate shelf facies, 300-700 m thick) of Late Cretaceous 

up to Middle Eocene age. 

The Gulf of Aqaba can be divided into subaerial and submarine depositional 

environments (Friedman, 1985). The former include fans, dunes, sabkhas, berms, and 

beaches. These environments are dominated by detrital sediments of tenigenous origin. 

The submarine depositional sites include lagoons, reefs, marginal slopes, and basins. A 

special characteristic of submarine sedimentation in the Gulf is the deposition of clastic 

debris of tenigenous origin concunently and side by side with carbonate sedimentation. 

On the western side of the Gulf of Aqaba, the Sinai Mountains, which are bound by coastal 

faults, rise steeply. Large alluvial fans were built in front of these fault scarps, resulting in 

an undulating coastline. The fans extend as submarine cones into the basin, being dissected 

by many canyons of over 150 m depth (Ben-Avraham et aI., 1979). 

A first bathymetric map for the Gulf of Aqaba was prepared by Hall and Ben-Abraham 

(1978) mainly on the basis of a geophysical survey which was conducted aboard R1V 

Ramona in 1976. The Gulf of Aqaba reaches a maximum depth of 1850 m. The interior of 

the gulf is constructed by three deep and elongated basins, striking N20-25°E, which are 

ananged en echelon. Shallow sills separate the basins. The margins of the Gulf are very 

steep. Its eastern side descends abruptly to the deep basins, but on the western side the 

descent may be broken by sloping terraces. The eastern margins attain slopes of 25-30° 

while the western slope has typical slope angles of 7 -16°. 

2.3 Data collection and data processing 

The submarine alluvial fans on the western side of the Gulf of Aqaba were studied during 

R1V Meteor Cruise M44/3 in 1999 by means of the bathymetric multibeam system 

Hydrosweep and the digital Parasound/ParaDigMa sediment echo sounder. 

The Hydrosweep system is a multibeam echosounder operating at a frequency of 15.5 

kHz (Grant and Schreiber, 1990). Depth values are generated for 59 beams with an angular 

coverage of 90° resulting in a swath width of twice the water depth. Typical accuracies of 

the system are 0.25% of water depth reduced to 1 % in areas of steep slopes. The system 

was routinely used during the entire cruise. The locations of the profiles in the central areas 
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of the submarine fans were chosen in order to get complete bathymetric coverage. The data 

were processed with the Multibeam-system software (Caress and Chayes, 1996) and finally 

gridded with a grid-size of 70 m. The data are displayed using the Generic Mapping Tools 

(GMT) software (Wessel and Smith, 1998). 

The Parasound echosounder is a narrow-beam system used for accurate determination 

of water depth, with a sediment echosounding system (subbottom profiler) for 

sedimentological and acoustostratigraphic surveys. With this system two sound waves of 

similar frequencies (here 18 kHz and 22 kHz) are emitted simultaneously, and a signal of 

the difference frequency (i.e. 4 kHz) is generated at sufficiently high primary amplitudes. 

Due to the parametric effect, the new component is traveling within the emission cone of 

the original high frequency waves which are limited to an angle of only 4° for the 

equipment used. Therefore, the footprint size is much smaller than for conventional 

systems, and both vertical and lateral resolutions are significantly improved (Rostek et aI., 

1991; Spiess, 1993). The Parasound sediment echosounder system was used continuously 

during the cruise and the data were collected in digital form with ParaDigMa data 

acquisition system (SpieB, 1993). 

2.4 Results 

2.4.1 Ras El Burka 

Bathymetric data off the Wadi Almahash Al Asfal were collected in an area of20 km by 7 

km. This area covers the extent of the submarine prolongation of Ras El Burka alluvial fan 

except for a 2-6 km wide stripe near the coast (Fig. 2.2a), where no measurements could be 

carried out. The mapped area with water depths ranging from 100 to 950 m can be 

subdivided into a slope and a basin part. 

The slope area extends from the coast to a water depth of ~900 m. It is characterized by 

a rough topography with large slope gradients (Fig. 2.2b), averaging to ~4° with maximum 

values >20°. Three morphological highs were identified close to the coast. The largest lies 

off the mouth of the Wadi Almahasch Al Asfal, while the other two are located ~5 km to 

the north and south, respectively. Seawards of these highs the slope gradient steepens to 

> 15° for water depths between ~ 100 and 400 m. Such a step in the morphology is not 

visible in the northem part of the survey area but bathymetric coverage is incomplete close 

to the coast. Further downslope the slope gradient decreases again in an up to 3 km wide 

area off the Wadi itself while it is narrower to the south and north. Water depths in this 

area range from 400 to 700 m; slope angles are usually less then 4°. Locally, steeper slopes 
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Fig. 2.2: a) Bathymetric map of the submarine prolongation of Ras El Burka alluvial fan. 

Parasound and bathymetric profiles presented in this manuscript are shown as black lines. 

b) Slope angle map of the submarine prolongation of Ras El Burka alluvial fan. 
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are associated with few canyons in this area. A second sharp step in morphology is visible 

at a distance of ~6 km from the coast. Slope gradients steepen to > 15° for water depths 

between 700 and 900 m. This step in morphology is steepest off the mouth of the Wadi. A 

distinct step is also visible in the northern part but it is missing in the southern part. Slope 

gradients in the southern part in water depths between 700 and 900 m are generally less 

than 10°. The slope area is dissected by a few short straight canyons extending from the 

coast to 900 m water depth. The canyons are up to 1.5 km wide and 100 m deep (Fig. 

2.3a). The number of canyons is significantly lower than for the two other submarine fans 

described in this paper. 

The basin area is characterized by a relatively flat sea floor with water depths of ~950 

m. Note that the linear features showing steeper slopes are artifacts caused by the 

processing of the Hydrosweep data. 

2.4.2 Wadi Watir 

The bathymetry of the submarine prolongation of Wadi Watir alluvial fan was surveyed up 

to a distance of ~ 13 km off the coast except for a narrow (generally less than 1.5 km wide) 

area along the coast (Fig. 2Aa). The water depth typically ranges from 100 to 900 m. 

Water depths greater than 900 m were only found in the southeastern part of the survey 

area. There, very steep slope angles (> 12°) occur, marking the border to one of the deep 

basins in the Gulf of Aqaba (Fig. 2Ab). A broad morphological high lies in front of the 

mouth of Wadi Watir; the mouth itself is located at the southern part of this high. This 

morphological high can be traced for about 5 km to the north while the water depth rapidly 

increases south of the mouth of Wadi Watir. The general slope angle off Wadi Watir has a 

relatively constant value of ~4° down to a water depth of ~700 m. Further downslope, the 

slope gradient gradually decreases, but slope angles are still 1 ° - 2° in the distal parts. No 

major steps in the morphology were identified except for the above-mentioned transition to 

the deep basin. 

Though the fan is generally sloping with a relatively constant angle, large slope angles 

(> 1 0°) are widespread in the fan area indicating steep canyon walls. The Wadi Watir 

submarine fan is intensively dissected by canyons (Fig. 2.5c), which are unevenly spaced 

and reveal different dimensions with a maximum width of 1.5 km and a maximum depth of 

BOrn. 
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the submarine prolongation of Wadi Watir alluvial fan. 
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2.4.3 Wadi Dahab 

Bathymetric data off the Wadi Dahab were collected in an ~40 km by lO km wide area 

(Fig. 2.6a). This area covers the extent of the submarine prolongation of Wadi Dahab 

alluvial fan except for a 6 - 8.5 km wide stripe close to the coast. The water depth in the 

mapped area ranges from ~450 to ~1500 m. Most of the fan is characterized by slope 

angles between 10 and 40
• Local steeper slopes are associated with small morphological 

steps and canyons (Fig. 2.6b). The V-shaped canyons in the submarine prolongation Wadi 

Dahab alluvial fan are less deep than in Wadi Watir (Fig. 2.7a). 

2.4.4 Sedimentary structure of the fans 

Sedimentary structures of fans were studied by means of Parasound echograms, which 

define the echo character of the sea floor and sediments. The types and regional 

distribution of reflected echoes are an important basis for the interpretation of depositional 

and erosional processes. The main factors that control the echo characters are surface 

topography, subsurface geometry, and sedimentary texture of the sequence. Highly 

variable and complex surface topography of submarine alluvial fans generally causes 

relatively poor acoustic images as well as abrupt changes in the echo types and their 

regional distributions (Damuth, 1975, 1980; Embley, 1976). 

Following the definition of Damuth (1980) and Loncke et al. (2002), seven distinctive 

echo types were recognized in the study areas, which were grouped into four major classes 

(Tab. 2.1): (1) Rugged echo character; (2) Hyperbolic echo character (regular and irregular 

types); (3) Bedded echo character (uniformly bedded, undulated bedded, and 

discontinuously bedded types); (4) Partially transparent/discontinuously bedded echo 

character. 

(1) The rugged echo character as shown in the middle of the Profile GeoB99-057 (Fig. 

2.5c) is characterized by prolonged bottom echoes with no apparent subbottom reflectors. 

This type is observed along the axes of submarine canyons and valleys, spreading 

downslope into the deep basin. 

(2) The hyperbolic echo is divided into two subclasses. Regular overlapping hyperbolas are 

shown on Profile GeoB99-044 (Fig. 2.5a), while irregular hyperbolic echoes with varying 

vertex elevation are found on Profile GeoB99-068 (Fig. 2. 7b). Both subclasses are 

generally recorded from areas with rough sea-floor morphology and show no subbottom 

penetration. 
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(3) The bedded echo character is divided into three subclasses: 

(3a) The uniformly bedded echo-type is shown on Profile GeoB99-032 (Fig. 2.3c). This 

type is characterized by layered sequences of smooth, distinct, continuous subbottom 

reflectors parallel to the sea floor which can extend over several kilometers. It is widely 

observed in the study area especially in the basins. 

(3b) The undulated bedded echo type is visible at the NE part of Profile GeoB99-069 (Fig. 

2.7 c) which shows wavy bedded reflectors. This echo type is characterized by distinct, 

wavy, continuous reflections associated with intercanyon or moderate sloping areas. 

(3c) The discontinuously bedded echo-type is found at the southern part of Profile 

GeoB99-065 (Fig. 2.7a). This type of facies shows parallel subbottom reflectors, which 

alternate with zones of diffuse or discontinuous subbottom reflections, forming an irregular 

bedding. It is mainly found in areas of moderate slopes. 

( 4) Partially transparent/discontinuously bedded echo type: this definition was chosen 

because profiles parallel and perpendicular to the coast show different echo types. The 

transparent echo type is easily recognizable and is widely observed throughout the study 

area especially close to the coast in profiles perpendicular to the coastline of the Gulf of 

Aqaba (Fig. 2.3c). It is characterized by low reflection amplitudes and low penetration, 

while the previously mentioned discontinuous echo type is mainly found on slopes of the 

profiles parallel to the coast (Figs. 2.3b, 2.7a). 

Tab. 2.1: Description and interpretation of sediment echo-fades identified in the Gulf of 

Aqaba. 

Example Echo-facies Description Interpretation 

Rugged echo-facies It is characterized by indistinct, Rugged echo character is recorded 

very prolonged bottom echoes with from particularly hard sea floor 

no apparent sub bottom reflectors, covered with heterogeneous and 

It is associated frequently with coarse-grained turbidite deposits and 

hyperbolic facies and principally subjected to strong erosional 

observed in the axes of submarine processes (Damuth, 1975), 

canyons and steep slopes, 
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Tab. 2.1 (cant): Description and interpretation of sediment echo-facies identified in the 

Gulf of Aqaba. 

Example Echo-facies 

Hyperbolic echo-facies 

a) Regular overlapping 

hyperbolas 

Description Interpretation 

This echo facies is characterized Hyperbolic echo facies arc recorded 

by regular overlapping hyperbolas on steep slopes and commonly 

or irregular hyperbolic echocs with controlled by basement structures 

varying vertex elevation. Both (Damuth, 1975, 1980). The 

subclasses are generally recorded hyperbolic signature may result from 

from areas with rough sea-floor very coarse sediments, including 

b) Irregular hyperbolic echoes morphology and show no large rafted blocks, probably 

with varying vertex elevation subbottom penetration. deposited by mass wasting processes 

(Damuth, 1975; Jacobi, 1976). 

Bedded echo-facies 

a) Uniforn11y bedded echo

facies 

b) Undulated bedded eeho

facies 

c) Discontinuously bedded 

echo-facies 

Partially transparent/ 

discontinuously bedded 

echo facies 

This type is characterized by The uniforn11y bedded echo type is 

layered sequences of smooth, related to thin turbidites deposited in 

distinct, continuous sub bottom the basins and local depressions. 

reflectors parallel to the sea floor. 

This echo type is characterized by The undulated bedded echo facies 

distinct, 

reflections. 

wavy, continuous probably indicates deforn1ed 

turbidites (e.g. Damuth, 1980). 

This example illustrates parallel This type of the discontinuously 

subbottom reflectors, which bedded eeho-facies indicates coarsc-

alternate with zones of diffuse grained turbiditie materials (Gaullier 

subbottom reflections. and Bellaiche, 1998). 

This example shows distinct This type of the discontinuously 

disrupted subbottom reflectors bedded eeho-facies is caused by 

interruption of the reflectors by 

faults. 

This definition was chosen because This echo facies indicates disturbed 

profiles parallel and perpendicular sediments including slope failure 

to the coast show different echo deposits (Embley, 1976; Guallier and 

types. The transparent echo facies Bellaiche, 1998). This facies mainly 

is characterized by low reflection consists of coarse gravels. 

amplitudes and low penetration, 

while the discontinuously bedded 

echo-facies is described above. 
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2.4.5 Distribution of acoustic facies in the fans 

The distribution of acoustic facies in the studied submarine fans in the Gulf of Aqaba is 

illustrated on Figure 2.8. The facies in the submarine prolongation fans changes sharply or 

transitional, likely depending on the distribution of the grain sizes in the sediments 111 

addition to the morphology of the fan. 

The partially transparent/discontinuously bedded echo facies shows the most 

widespread distribution. It is present off the mouths of the wadis, but it also extends over 

large distances close to and along the coast. Canyons in this facies are mainly found in 

direct vicinity of the wadis. The canyons are characterized by a rugged echo facies. Most 

canyons were identified in the Wadi Watir submarine fan, but several canyons were 

identified in the other fans as well (Fig. 2.8). 

The discontinuously bedded echo facies IS often found next to the partially 

transparent/discontinuously bedded echo facies. It is difficult to distinguish between these 

two facies and the boundaries are not sharp. The southern part of Parasound Profile 

GeoB99-065 (Fig. 2.7a), oriented parallel to the coast, is characterized by discontinuously 

bedded echo-facies; the signal penetration is ~20 m. Several small but no major canyons 

were identified within this facies. 

The undulated bedded echo facies is also recorded in direct proximity to the above

described facies. It is commonly observed on the moderate slopes, e.g. at the northeastern 

part of Para sound Profile GeoB99-069 (Fig. 2.7c) and Parasound Profile GeoB99-044 (Fig. 

2.5a). 

Hyperbolic echo facies was only identified at the southwestern part of Wadi Dahab 

submarine fan. Many slope failures are found in this facies. An example of this facies is 

visible at the northwestern part of Parasound profile GeoB99-068 (Fig. 2.7b). 

The uniformly bedded echo facies is found at greatest distance from the coast in all 

submarine fans. This facies characterizes the basins or areas with very small slope angles. 

Parasound Profile GeoB99-045 (Fig. 2.5b) running perpendicular to the coast of the Gulf 

of Aqaba shows the transition from gentle slope sediments (partially transparent echo 

facies) to the basin deposits with signal penetration of about ~ 15 m. 

2.5 Discussion 

2.5.1 Sediments in the fans 

The analysis of the Parasound profiles allowed to distinguish a number of different echo 

facies in the study area. The variations in reflectivity and penetration express variations in 
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the sedimentary facies. In the following we try to relate the echo facies to specific sediment 

types. Nevertheless, due to the absence of cores in the study areas, the interpretation of the 

echo facies remains speculative. The interpretation of the echo facies is summarized in 

Table 2.1. 

The rugged echo character is observed in the axes of submarine canyons and channels 

and is returned from hard bottoms with coarse-grained heterogeneous turbidites and 

subjected to strong erosional processes (e.g. Damuth, 1975). It is probably deposited by 

energetic gravity-flow processes. 

The hyperbolic echo character is recorded from areas with rough bottom morphology. 

Irregular to regular hyperbolae echo type corresponds to steep slopes, which are generally 

controlled by basement structure (e.g. Damuth, 1975, 1980). The hyperbolic signature may 

result from very coarse sediments, including large rafted blocks, probably deposited by 

mass wasting processes (Damuth, 1975; Jacobi, 1976). Mass wasting events might be 

triggered by earthquakes which frequently occur in this area. 

The partially transparent/discontinuously bedded echo facies is mainly found in areas of 

steep slopes in the central parts of the submarine fans. This echo facies indicates disturbed 

sediments including slope failure deposits (Guallier and Bellaiche, 1998). We assume that 

this facies mainly consists of coarse gravels and sands of unsorted grain sizes, which 

would explain the disrupted pattern of this facies. 

The bedded echo character is widely observed in the basins or areas with a relatively 

flat sea floor. The unifonnly bedded echo type is related to thin turbidites deposited in the 

basins and local depressions, whereas the discontinuously bedded echo type corresponds to 

more coarse grained turbiditic materials (sand and silt) or mass flows. The undulated 

bedded echo facies probably indicates defonned turbidites (e.g. Damuth, 1980). Though 

the bedded echo character generally expresses turbidites, it also might correspond to 

hemipelagic deposits. 

The echo characters interpreted from our Parasound data generally suggest that the 

coarsest material, most likely sand or gravel, accumulate close to the Wadi mouth or in 

high-energy regions, whereas the finer sediments are deposited farther seaward or in the 

lower energy regions. A typical example is Profile GeoB99-032 (Fig. 2.3c) where two 

different echo facies were identified (partially transparent and unifonnly bedded echo 

facies). It is interesting to notice that we also observe differences in reflection amplitude 

within the partially transparent echo facies. The reflection amplitude generally increases 
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with increasing distance to the coast probably indicating a gradual change to finer and 

better sOlied deposits. 

2.5.2 Size and volume of the fans 

It is difficult to estimate the size of the fans. Generally, the fans in the Gulf of Aqaba were 

composed essentially of fine to coarse clastic sandy sediments, gravels and boulders with 

carbonate debris in some places. The partially transparent/discontinuously bedded as well 

as the hyperbolic echo facies clearly reflect these sediments. But these echo facies types 

are also found all over the submarine slope of the Gulf, far away from any wadi and 

submarine fan. The unifonnly bedded echo facies probably consists of an interlayering of 

turbidity deposits and hemipelagic background sedimentation. Some of the turbidites might 

originate in the submarine fans, because the fans accumulate large amounts of sediments, 

which easily become unstable and might result in slope failures and turbidites. Hence, fan 

sediments might be transported over larger distances into the deep basins. 

We decided to define the central fan area from a combination of the facies maps and the 

bathymetric data. The bathymetry shows morphologically elevated areas off the wadis, 

which are probably caused by the increased sediment supply. This is suppOlied by the 

acoustic facies in these areas, which is typically characterized by more or less chaotic 

reflection pattems. The reflection pattems indicate a complex depositional history of 

accumulation, erosion, and mass wasting. These areas are also dissected by numerous 

canyons, which indicate downslope transport processes. However, it is not possible to 

assign precise boundaries of the extent of the submarine fan due to gradual changes in 

facies distribution. 

Our definitions of the central fan areas are shown together with the echo facies in Figure 

2.8. These boundaries result in the following sizes of the fans. The largest fan is Wadi 

Dahab submarine fan, which is about 10 km wide and 27 km long. It can be traced down to 

a water depth of 1000 m. Wadi Watir submarine fan covers an area of 25 x 7 km and 

extends down to 900 m water depth. The smallest submarine fan is Ras El Burka, which is 

7 km wide and 15 km long. 

An estimate of the volume of the fans is even more difficult. We constructed 

bathymetric profiles of the slope in- and outside the fan area (Fig. 2.9). The bathymetric 

profiles of the central fan are relatively similar but the cross sections of the slope north and 

south of the fan differ significantly from each other. The water depth about 5 km off the 

coast south of the fan is almost 200 m shallower than in the north. The cross sections of the 
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Fig. 2.9: Bathymetric profiles of the slope. The location of the profiles is shown in the inset 

map. The dashed profiles are located outside the central fan area; the solid lines cross the 

fan. The profiles inside the fan indicate additional deposits of ~400 m thickness except for 

the profile which crosses the northernmost edge of the fan. The profiles were used to 

estimate the volume of the fan. 

central fan, however, clearly show additional sediment deposits of up to 400 m thickness. 

The difference in morphology of the profiles in- and outside the fan were used to calculate 

its volume, which is ~ 15 km3 for the submarine prolongation of Wadi Watir alluvial fan. 

The error of this estimate is large because of missing bathymetric data close to the coast 

and the uncertainty of the morphology of the slope not affected by additional sediment 

input through a wadi. The volume estimate only includes the sediments of the central fan 

and neglects distal turbidites, which transport fan sediments far into the basins. The 

volume of the distal turbidites might exceed the volume of the central fan itself. A volume 

estimate for the other fans is even more difficult due to larger gaps of the bathymetry close 

to the coast. Rough estimates result in a similar volume for Wadi Dahab submarine fan 

(~15 km3
) and a much smaller volume «5 km3

) for Ras El Burka submarine fan. The 

different sizes and volumes of the fans are a direct result of the different sizes of the 
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catchment areas of the conesponding wadis. The catchment area of Ras El Burka is in the 

range of hundreds of square-kilometers, while Wadi Watir and Wadi Dahab collect 

sediments of catchment areas of ten-thousands of square-kilometers. 

2.5.3 Key processes for the formation of the fans 

Three primary controls on submarine fan development and deep-sea sedimentation can be 

identified: 1) sediment-type and supply, 2) tectonic setting and activity, and 3) sea level 

variations (Ri chards et aI., 1998; Bouma, 2000). These controls are by no means 

independent; for example, tectonic factors play an important role in determining sediment 

supply or local sea level changes (Stow et aI., 1985). Major subcategories of the tectonic 

category include the location of the sediment source relative to the sea, the elevation of the 

mountains, the susceptibility of the rocks to erosion, the shelf width and gradient, and the 

basin morphology. Climate controls the rate and type of weathering in the sediment-source 

area, the precipitation, and the runoff and fluvial transport capability. Sediment type 

includes grain size, sorting, grain shape, and mineral composition, and hence also the 

degree of maturity. Sea level fluctuations, global or regional, are directly dependent on 

tectonics and/or climate. The fluctuations can be large or small, and a sea level change of 

any magnitude is likely to be recorded in the deposits, particularly in fine-grained 

submarine fans. Sea level fluctuations often dictate the timing of sediment transport from 

the land or coastal area to the deep-water basin. Most major submarine fans develop during 

periods of low sea level (Shanmungam and Moiola, 1982). 

In the following we will discuss the importance of the above discussed processes for the 

Gulf of Aqaba: 1) Sediment-type and supply: the catchment areas of the wadis, which 

supply the fans with their sediments from the hinterland of Sinai Peninsula, probably play 

an important role. At the Gulf of Aqaba, infrequent rain falls on catchment areas of up to 

ten-thousands of square kilometers of rocky desert highlands were funneled in wadis and 

develop flashfloods which feed alluvial fans and their submarine prolongations along the 

entire western coast of the Gulf of Aqaba. Ras El Burka submarine fan is by far the 

smallest fan and has the smallest catchment area. In contrast the larger fans of Wadi Dahab 

and Wadi Watir are located off a large wadi system, hence having a larger catchment area. 

The sediment succession in the catchment area is pre tectonic starting with Lower 

Paleozoic continental clastics, conformably overlain by the continental sandstones of the 

Early Cretaceous. This cycle is succeeded by the first marine sediments of Late Cretaceous 

up to Middle Eocene age (Abdel Khalek et aI., 1993). These sediments are easily erodable 
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resulting in large amounts of sediments transported through the wadis out to the narrow 

coastal margins and into the submarine fans. 2) Tectonic setting and activity: the 

continuous tectonics (faulting and folding) and emihquake activity of the Dead Sea Rift 

play an important role on both the sediment type and supply in the gulf by their influence 

on relief, resedimentation processes, and eustatic or local sea level changes. As a result we 

observe many slumps and slides, in addition to the shape and slope gradients that confine 

and control depositional patterns of the submarine fans. 3) Sea level variations: sea level 

fluctuations in the Gulf of Aqaba might have played a role in the fonnation of the 

submarine fans in the gulf during the Pleistocene glacial time. During glacial times the 

climate cooled and became more humid and increased precipitation caused massive influx 

of terrigenous sediment into the fans. The Gulf of Aqaba, however, has no continental 

shelves and coastal plains are very narrow, hence sea level changes are probably not as 

important during fan development as in larger fans (e.g. Amazon or Bengal submarine 

fans). 

Several classification schemes and models for submarine/turbidite systems have been 

published, based on tectonic setting, basin characteristics, grain size, types of gravity flow, 

relative sea level fluctuations, and other factors. Richards et al. (1998) divided submarine 

fans/turbidite systems into twelve classes based on (1) the volume and grain size of 

available sediment, and (2) the nature of the supply system - point source, multiple source 

ramps, or slope apron linear source. Among the various general and specific models are 

two siliciclastic end members that are important guides for many turbidite studies (Bouma, 

2000): i) fine-grained, mud-rich complexes are typical for passive margin settings, with 

long fluvial transport, fed by deltas, wide shelf, efficient basin transport, resulting in a 

bypassing system. ii) coarse-grained, sand-rich complexes are typical for regions in active 

margin setting, characterized by a short continental transport distance, narrow shelf, and a 

canyon-sourced, nonefficient basin transport system that results in a pro grading type of 

fan. According to these classifications, the fans in the Gulf of Aqaba can be classified as 

sand-rich, point source turbidite system. Most of the sediments were supplied by a central 

wadi though some smaller wadis might transport sediments into the fans as well. 

2.6 Conclusions 

• The three studied prolongations of alluvial fans into the Gulf of Aqaba (Wadi Watir, 

Wadi Dahab, and Ras El Burka fan) differ in size and volume according to the 
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catchment area of the wadis which supply the fans with sediments from the hinterland 

of Sinai Peninsula. 

• Acoustically, four groups of echo facies characters were distinguished (rugged, 

hyperbolic, bedded and partially transparent/discontinuously bedded echo facies). All 

echo facies are characteristic for fan sediments except the uniformly bedded echo 

facies which represent the basin deposits. The character and the distribution of the echo 

facies reflect the morphology and the type of the sediments. 

• Clastic sediments (coarse gravels and sands) are the dominant sedimentary composition 

in the submarine fans in the Gulf of Aqaba. The grain size of the clastic deposits 

decreases towards the basins which are filled with turbidite deposits and pelagic 

sediments. The fans in the Gulf of Aqaba can be classified as sand-rich, point source 

turbidite system. 

• The surface of the fans is dissected by numerous V-shape and few U-shape canyons. 

The canyons are up to 1.5 km wide and 130 m deep. 

• The numerous slumps and slides identified on the Parasound profiles are probably 

initiated by a combination of earthquakes, growth faults, oversteepening of the slope 

and subsequent failure, and other submarine processes, i.e. the interaction of deposition 

and erosion. 
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Abstract 

The submarine prolongation of Wadi Watir alluvial fan is fOlmed at the mouth of Wadi 

Watir, which delivers its load from the rocky desert of the Sinai Peninsula to the sea during 

sporadic rainy seasons and periods of humid climate. The submarine fan covers an area of 

~25 km by ~7 km, and can be traced down to a water depth of ~1000 m. The morphology 

and sedimentary structure of this fan have been studied using a Hydrosweep multibeam 

system and high-resolution multi-channel seismic reflection data, which were used to map 

different seismic facies in the fan, ranging from continuous parallel high-amplitude 

reflections to chaotic reflection patterns. Unchannelized sediment transport significantly 

contributes to the buildup of the submarine prolongation resulting in decreasing grain size 

with increasing distance from the coast. Small faults reflect the ongoing tectonic activity. 

Several canyons up to ~ 130 m deep and ~ 1.5 km wide are carved into the fan. Most of the 

canyons are accompanied by graben faults. Large amounts of sediments are transported 

through these canyons to the most distal part of the fan and the basins. Abundant slide and 

slump deposits indicate the importance of mass wasting during the evolution of the 

submarine fan. 
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3.1 Introduction 

Submarine fans may form at any time when sediment gravity flows transport sediments 

across the slope to the basin floor (Posamentier et al., 1991). Such submarine fans are 

called turbidite systems by Mutti and Normark (1991), fan sequences by Feeley et al. 

(1985), and fan-lobes by Bouma et al. (1985). 

The general classification by Richards et al. (1998) of submarine fanJturbidite systems 

is based on grain size and feeder system. The grain size components include mud-rich, 

mud/sand-rich, sand-rich, and gravel-rich. The feeder systems are divided into point

source, multiple-source submarine ramp, and linear-source slope apron. From a possible 

polyaxial system, two grain size systems are selected as end members: mud-rich and sand

rich, both with point-source feeding, but being variable with respect to texture. 

Stelting et al. (2000) stated that the differences between coarse-grained systems and 

fine-grained turbidite systems could be fully appreciated. The principal characteristics of 

the two systems are summarized as follows (Bouma, 2000): Coarse-grained, sand-rich 

turbidite systems typically occur in small basins on continental crust, have short terrestrial 

transpOli distances, narrow shelves, canyon-sources, nonefficient basin transport, 

progradational depositional styles, and decreasing ratios of gravels with increasing 

distances to the sediment pathways. Fine-grained, mud-rich turbidite systems, by contrast, 

are found in large basins on passive margins, have long terrestrial transport distances and 

broad shelves, delta-sources, efficient basin transport resulting in bypassing of a high 

percentage of sands to the outer fan, and spatially variable net-to-gross ratio patterns. 

Another group can be classified as fine-grained, sand-rich turbidite systems as found in the 

west Texas Permian Basin (Carr and Gardener, 2000). 

The submarine prolongation of Wadi Watir alluvial fan (Fig. 3.1) is one of the largest 

elongated submarine fans, which have developed at the western side of the Gulf of Aqaba. 

The fan is located off the mouth of Wadi Watir and extends for about 7 km offshore to 

~ 1 000 m water depth. The surface of the fan is dissected by straight and V -shaped canyons 

(Salem et al., this thesis). Seismic Data in the Gulf of Aqaba are sparse. The only published 

data were collected in 1976 on RlV Ramona (Ben-Avraham et al., 1979). Signals for these 

data were generated by a 4.9 liter (300 cu. in.) airgun resulting in frequencies between 20-

60 Hz, hence not resolving the fine structure of near-surface fan sediments. 

In this paper, we present an interpretation of the seismic facies distribution of the fan 

based on newly collected high-resolution multi-channel seismic data of Wadi Watir 

submarine fan. The aim of this study is to answer the following questions: 1) What types of 
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sediments occur in the fan and how are they distributed? 2) What are the main processes 

during the evolution of the fan? This includes a detailed analysis of the impOliance of 

tectonic activity and mass wasting events. These results, in combination with previously 

published geological and geophysical data, are used for a structural analysis of the 

submarine prolongation of Wadi Watir alluvial fan. 

34° 35° 

29° 

28° 28° 

34° 35° 

Fig. 3.1: Overview map of the Gulf of Aqaba. The location of the study area is shown by 

the box. 
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3.2 Geological setting, previous studies 

The Gulf of Aqaba is the eastel11 extension of the Red Sea (Fig. 3.1). The Red Sea, which 

forms the boundary between the African Plate and the Arabian Plate, bifurcates into two 

branches. The Gulf of Suez follows the main trend of the Red Sea and fonns the boundary 

between the African Plate and the Sinai Subplate. The Gulf of Aqaba, trending N-S and 

being 160 km long, fonns the southel11 part of the 1100 km long Dead Sea Rift that 

separates the Arabian Plate from the Sinai SUbplate and extends up to the collision zone at 

the Taurus-Zagros mountain range (Garfunkel, 1970). The Dead Sea Rift was fonned in 

the Cenozoic by breakup of the once continuous Arabian-African platfonn, which had 

been a tectonic ally stable area since the end of the Precambrian (Ben-A vbraham et aI., 

1979). Geomorphic, geologic, and seismic studies show that the strike slip motion of the 

faults along the Dead Sea rift is still active (Zak and Freund, 1966; Garfunkel, 1970; 

Freund and Garfunkel, 1976; Ben-Menahem et aI., 1976). 

Badawy and Horvath (1999) studied the tectonic evolution of the northel11 Red Sea 

region, and stated that the Gulf of Aqaba can be characterized by a left-lateral 

displacement of about 107 km active since the Middle Miocene. They also concluded that 

the earthquake activity in the Gulf of Aqaba and Gulf of Suez regions is a direct 

consequence of the relative motion between the African Plate, the Arabian Plate, and the 

Sinai Subplate. 

The bathymetric map of the Gulf of Aqaba, which was prepared by Hall and Ben

A vraham (1978), shows that almost no continental shelves are bordering the Gulf of 

Aqaba; coastal plains are absent or very narrow. On the westel11 side of the Gulf of Aqaba, 

the Sinai Mountains rise steeply, generally being delimited by coastal faults. Large alluvial 

fans were built in front of these fault scarps. The fans extend as submarine cones on which 

many canyons are carved. 

Previous seismic studies showed that the marginal slope areas are underlain by coarse

grained stratified sediments (Ben-Abraham et aI., 1979). The individual reflectors are 

undulating, patchy, irregular and rough, often discontinuous, and may cause diffractions. 

Local minor unconfonnities were observed. As a whole, these series resemble the 

morphologically defined alluvial fans. The thickness recorded is 1-1.5 sec, which was the 

maximal penetration of the seismic signals. The observed dips are in part depositional, but 

tectonic warping and faulting is also present. Correlation between seismic profiles is 

difficult due to the great lateral variability (Ben-Avraham et aI., 1979). 
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3.3 Methods 

Seismic data were recorded with the high-resolution multi-channel reflection seIsmIC 

system of Bremen University. A Generator/Injector Gun with a volume of 0.4 I was used 

as primary source. The frequencies of this source range from 50 and 500 Hz with a peak 

value around 150-200 Hz. The data were recorded with a 24-channel 300-m long streamer. 

The midpoint distance between individual channels was 12.5 m. In order to optimize the 

frequency response of the streamer at higher inclination angles in shallow water, 

hydrophone groups of only 2 hydrophones at a distance of ~0.30 m were used. The data 

were processed in a combination of in-house software of Bremen University and the public 

domain package SEISMIC UN*X (Stockwell, 1997). Processing included a static correction 

for streamer variations, binning, spherical divergence correction, velocity-analysis, 

stacking, frequency filtering, and time migration. A bin-distance of 10 m was chosen 

resulting in 10-fold sections. 

The seismic profiling activity was accompanied by bathymetric measurements with a 

Hydrosweep multibeam system operating at a frequency of 15.5 kHz (Grant and Schreiber, 

1990). Depth values are generated for 59 beams with an angular coverage of 90° resulting 

in a coverage of twice the water depth. Typical accuracies of the system are 0.25% of 

water depth reduced to 1 % in areas of steep slopes. The location of the profiles gives a 

complete bathymetric coverage of the central area of Wadi Watir submarine fan (Fig. 3.2). 

The data were processed with the mb-system software package (Caress and Chayes, 1996) 

and finally gridded with a grid-size of 70 m. The data were displayed using the Generic 

Mapping Tools (GMT) software (Wessel and Smith, 1998). 

3.4 Results 

3.4.1 Description of seismic reflection profiles 

A network of26 seismic profiles was collected across the submarine prolongation of Wadi 

Watir alluvial fan. Figure 3.2 only shows the location of profiles presented in this 

manuscript but all collected profiles were used for an analysis of depositional patterns, 

sediment deformation, and faulting and facies distribution in order to study the evolution of 

the submarine fan in space and time. Following, the seismic data are described in detail for 

the different objectives and results are integrated for interpretation of fan depositional 

processes. 
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Fig. 3.2: Bathymetric map of the submarine prolongation of Wadi Watir alluvial fan. The 

black lines show the location of the profiles presented in this manuscript. The location of 

the map is shown in Fig. 3.1. 

3.4.1.1 Seismic reflection profiles running parallel to the coast of the Gulf of Aqaba 

Seismic Line GeoB99-057 running in S-N direction (Fig. 3.3) can be subdivided into three 

parts according to seismic reflection patterns. The first part, which extends from the 

northern end of the profile to CMP 1900, shows an irregular reflection pattern 

characterized by discontinuous hummocky reflectors. Several indications for slumping 

were found in this part of the profile. The second part of the profile reaches from CMP 

1100-1900. It is characterized by low-amplitude reflections and partially transparent 

intervals. The penetration of the seismic energy is with 300 ms two-way traveItine (TWT) 

relatively low compared to the northern and southern parts, which reveal up to 1000 ms 

TWT penetration. The central part of the profile is dissected by deep V-shaped and a single 

U-shaped canyon; the canyons are up to 130 m deep and l.5 km wide. They appear to be 
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Fig. 3.3: Seismic image and interpretation of Line GeoB99-057. The location of the profile 

is shown in Fig. 3.2. 
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Fig. 3.4: Closeup of the central part of Line GeoB99-057. The location of the closeup is 

shown in Fig. 3.3. 
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associated with grab en faults, though the faults cannot be traced to depth (Fig. 3.4). The 

canyons are partially filled with deposits showing a chaotic character, and moderate to 

high-amplitude reflection patterns. This part of the profile represents the central part of the 

submarine fan, which we designate to the cone of the fan. The third part, extending from 

CMP 1100 to the southern end of the profile, shows reflectors which are well stratified but 

disrupted by faults. The locations of the faults were inferred from reflection termination 

and changes in reflector dips (Fig. 3.3). The subparallel reflectors are characterized by 

high-amplitudes and a good continuity, converging towards the basin. Reflector amplitudes 

decrease gradually towards the central part of the fan. 

The second longitudinal seismic reflection Line GeoB99-051 (Fig. 3.5) with a course 

changes in the northern and southern part exhibits a predominance of subparallel, 

undulating, discontinuous reflectors of moderate to high-amplitudes alternating with low 

amplitude to transparent intervals. These reflectors gradually change to a more chaotic 

pattern towards the northwestern and southwestern end of the line. This pattern is clearly 

interrupted by a dense distribution of faults (Fig. 3.6), which results in discontinuity of 

these reflectors especially in the central part of the fan (CMP 1200-2600). In addition, 

numerous V-shaped canyons up to 120 m deep were identified on the seismic image. The 

canyons seem to be related to the above-described faults. 

In summary, discontinuous, undulating, irregular, and rough reflectors characterize the 

profiles parallel to the coast. The seismic pattern of the distal profile differs from the 

character of the upslope profile through average higher reflection amplitudes. An increase 

in amplitude with increasing distance to the coast is also seen on the profiles perpendicular 

to the coast (see below). 

3.4.1.2 Seismic reflection profiles running perpendicular to the coast of the Gulf of 

Aqaba 

Several seismic profiles were shot perpendicular to the coast in the vicinity of the mouth of 

Wadi Watir. All lines show reflectors, which dip towards the basin, but major differences 

were observed between the different profiles. The lines are incised by a few faults; the 

reflectors have generally discontinuous, moderate-amplitudes and a subparallel internal 

structure. 

Seismic Profile GeoB99-045 (Fig. 3.7) is located on the northern side of the 

depositional cone (Fig. 3.2). It shows low to moderate amplitudes. The continuity of the 

reflectors generally enhances towards the basin. The irregular subparallel reflectors, which 
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Fig. 3.5: Seismic image and interpretation of Line GeoB99-0S1. The location of the profile 

is shown in Fig. 3.2. Note that the profile is not straight. 
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Fig. 3.7: Seismic image and interpretation of Line GeoB99-045. The location of the profile 

is shown in Fig. 3.2. 
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incline towards the basin, are intercalated with transparent or low-amplitude chaotic 

reflectors. The southwestem part of the line reveals an inegular surface. 

The seismic reflection Line GeoB99-046 (Fig. 3.8) is located fuliher to the south and 

closer to the center of the fan but still north of the mouth of the wadi. It shows continuous 

to discontinuous reflectors of low to moderate-amplitude at the westem side; amplitudes 

and the continuity increase towards the basin. The reflectors diverge towards the basin and 

are interrupted by faults, which are associated with a wider zone of low reflectivity, 

possibly indicative of a small angle between the fault plane and the strike of the seismic 

line. Some slumps, characterized by a chaotic reflection pattern, are identified on this 

profile. 

The seismic reflection Profile GeoB99-047 (Fig. 3.9) is located close to the mouth of 

the wadi, though it is not located in direct continuation of the wadi, but on a ridge located 

slightly to the north (Fig. 3.2). This profile shows continuous to discontinuous moderate

amplitude reflectors but in some places, groups of moderate to strong reflectors can be 

observed especially towards the basin. The upper reflectors show pinch-out and onlap 

structures. Truncation of the reflectors at the sea floor is found between CM 150 and 200 

upslope of the onlap structure. The reflectors might be truncated due to a recent slide with 

a slide plane now exposed at the sea floor. The transparent zone between CMPs 200 and 

350 about 150 ms beneath the sea floor is probably caused by an older buried slump. The 

base of the slump could not be identified due to interference with the multiple but its 

thickness is at least 200 ms TWT conesponding to 160 m when using a sediment velocity 

of 1600 m/s. Minor indications for faulting were found in this profile. 

The seismic reflection Line GeoB99-048 (Fig. 3.10) also starts very close to the mouth 

of the wadi, but its orientation is NW-SE, hence most of the profile is clearly south of the 

wadi mouth (Fig. 3.2). This profile shows a vertical variation of the reflection pattems, 

which can be used to infer possible lithofacies types. According to the character of the 

reflectors, we can divide it vertically into two units. The lower unit is characterized by 

discontinuous low-amplitude reflections and is separated from the upper unit by a 

conformable surface. In contrast, the upper unit comprises parallel continuous, moderate to 

high-amplitude reflectors at its base, grading vertically into moderate-amplitude reflectors 

with varying continuity. Chaotic sediments can be identified at the northwestem end of the 

profile. The amplitudes are generally higher in the more distal parts of the profile. 

Seismic reflection Profile GeoB99-056 (Fig. 3.11) is located south of the central fan 

area. It shows inegular subparallel to contorted and low to moderate-amplitude reflectors. 
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Fig. 3.8: Seismic image and interpretation of Line GeoB99-046. The location of the profile 

is shown in Fig. 3.2. 



62 

CMP 

3. Growth and development of Wadi Watir submarine fan 

GcoB99-047 
o r--------------------------------------------------------------------------------r6 

W E 

GeoB99-057 

r--------------------------------------------------------------------------------rd W E 

Lo\\'~ to moderate
amplitude reflectors (largo,::: slump) 

Discontinuous. subparallej, 
undulating. high-amplitllde 

reflectors 

o 

Fig. 3.9: Seismic image and intelpretation of Line GeoB99-047. The location of the profile 

is shown in Fig. 3.2. 



3. Growth and development of Wadi Watir submarine fan 

GeoB99-048 
~-----------------------------------------------------------------------------------r2 

NW 

lkm IV~rtical E~ag.': 2.5 ; 
I f 

SE 

GeoB99-051 

o 

o 
N 

~-----------r------------'-------~---.~~~-------.--~--------.-----~------~--~~ 
CMP o 

o o 
o 
N 

o o 
C') 

o 
o 
<t 

o 
o 
.r, 

o o 
'-D 

r-------------------------------------------------------------------------------------r6 
NW 

Chaotic rL'11eclors Discontinuous, subpanll1cl. 
undulating, high-amplitude 

reflectors 
Continuous, parallel. 
l11oderate- to high

amplitude rc:flectors 

SE 

L-----------_r--------------------------~~~--------~--~------_r----------~_r----L~ 
CMP o o o 

o 
N 

o 
o 
re; 

o 
o 
'I) 

o o 
'C 

63 

Fig. 3.10: Seismic image and interpretation of Line GeoB99-048. The location of the 

profile is shown in Fig. 3.2. 
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These reflectors increase in amplitude towards the upper slope. The upper part of the 

profile is composed of moderate amplitude reflectors intercalated with low-amplitude 

(transparent) reflectors. The relative large slope angle at the southeastem side of the profile 

marks the transition to one of the deep basins of the Gulf of Aqaba (Fig. 3.2). This 

transition is accompanied by faults. It is interesting to notice that a large slump block is 

located at the transition between the relative flat sea floor and the steeper slope. The cross

profile GeoB99-051 (Fig. 3.5) indicates that this slump block is related to a canyon located 

south of Line Geob99-056 and not to the transition to the deep basin. 

It is difficult to correlate reflectors between the profiles because large canyons are 

located between them, and the reflection pattems are different on the different profiles. A 

common feature on all profiles, however, is the increasing continuity and amplitude of the 

reflectors towards the basin. 

3.4.2 Definition and distribution of seismic facies 

The seismic survey of the submarine prolongation of Wadi Watir alluvial fan provides a 

relatively clear picture of the growth pattern of the fan and the different seismic reflection 

facies. The seismic data show different types of seismic facies, which were defined using 

parameters such as reflection configuration, amplitude, and external form of each seismic 

sequence. The definition of seismic facies follows the classification by Mitchum et aI. 

(1977) and Piper et al. (1999). The following seismic facies were identified in the study 

area: 

Facies I: Disrupted, discontinuous, low to moderate-amplitude reflections. This facies is 

visible on Fig. 3.7, but also on all others profiles running perpendicular to the coast. This 

facies is predominant in the proximal fan and changes gradually into discontinuous, 

subparallel, undulating, high-amplitude reflections (Facies 2) towards the distal part of the 

fan. 

Facies 2: Discontinuous, subparallel, undulating, high-amplitude reflections. Examples of 

this facies are shown on Figures 3.5 and 3.7. This facies is predominant in the distal part of 

the fan. Discontinuous, subparallel, low-amplitude reflections (Facies 3) are intercalated 

into this facies. 

Facies 3: Discontinuous, subparallel, low-amplitude reflections. An example of this facies 

is the lower unit (LU) in Figure 3.10. This facies can also be identified in the more distal 

parts of the fan on Line GeoB99-051 (Fig. 3.5), where it is intercalated between 

discontinuous, undulating, subparallel, high-amplitude reflectors (Facies 2). 
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Facies 4: Continuous parallel, moderate to high-amplitude reflections. This facies is found 

at the base of the upper unit of Fig. 3.10. The distribution of this facies is small. 

Facies 5: Continuous, subparallel to convergent, high-amplitude reflections. This facies is 

found on the southern flank of the fan (Fig. 3.3). 

Facies 6: Hummocky high-amplitude reflections. This facies characterizes the northern 

flank of the fan (Fig. 3.3). 

Facies 7: Chaotic reflections. Lenses of chaotic reflectors can be found all over the fan, 

especially close to the surface and in areas of steep slopes. They vary in amplitude from 

low-amplitude (Fig. 3.8) to high-amplitude (Fig. 3.10). 

The submarine prolongation of Wadi Watir alluvial fan shows a very complex structure. 

The lateral and vertical changes are very abrupt but we see a general trend of the seismic 

facies as a function of distance from the coast. The proximal fan mainly consists of low to 

moderate-amplitude reflections with a chaotic to wavy geometry. This pattern gradually 

changes to discontinuous, subparallel reflections with moderate-amplitudes in the middle 

part of the fan. Discontinuous, undulating, subparallel, high-amplitude reflectors mainly 

characterize the distal pati of the fan, though areas of low-amplitudes were identified as 

well. A clear change of seismic facies is also seen in a north-south direction parallel to the 

coast (Fig. 3.3, Profile GeoB99-057). The northern flank of the fan is characterized by 

hummocky to chaotic high amplitude reflections, while the southern flank shows 

continuous, subparallel to convergent, high-amplitude reflectors. The middle part of Profile 

GeoB99-057 (Fig. 3.3) making up the central part of the fan is characterized by 

subparallel, moderate-amplitude reflections which are dissected by deep canyons. The fan 

also shows vertical changes, as illustrated in Fig. 3.10, in which low-amplitude reflectors 

with varying continuity of the lower unit are overlain by moderate to high-amplitude 

internal reflectors with a good continuity at the base of the upper unit, which in turn 

gradually change to discontinuous subparallel reflectors with moderate to high-amplitudes 

in the upper part of the upper unit. Such changes, however, cannot be traced over a larger 

area, and therefore illustrate the great complexity of the fan. 

3.5 Discussion 

3.5.1 Seismic facies interpretation of the fan 

Seven seismic facies were recorded in the survey area based on the reflection 

configuration, amplitude, and external form of each seismic package: 1) disrupted, 

discontinuous, low to moderate-amplitude reflections, 2) discontinuous, subparallel, 
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undulating, high-amplitude reflections, 3) discontinuous, subparallel, low-amplitude 

reflections, 4) continuous parallel, moderate to high-amplitude reflections, 5) continuous, 

sub parallel to convergent, high-amplitude reflections, 6) hummocky high-amplitude 

reflections, and 7) chaotic reflections. We attempt to interpret these seismic facies by 

comparing our results with those of sediment deposits with similar depositional settings, 

because of the lack of strati graphic and core data in our study area. 

The most prominent seismic facies in the proximal part of the fan is Facies 1, 

characterized by disrupted, discontinuous, low to moderate-amplitude reflections. We 

interpret this facies as consisting of gravel and coarse sands. Sediments eroded in the rocky 

hinterland of the Sinai Peninsula are transpOlied through the wadis during periodic flash 

floods. The transport energy in the wadis is very high and therefore is able to carry gravel 

and coarse sand to the coast. Once the sediments reach the coast, the transport energy is 

reduced and the coarse sediments are deposited in the proximal part of the fan, covering an 

area of limited spatial extent during a single flooding event. These coarse sediments cause 

the disrupted, discontinuous reflectors. The seismic facies in the proximal parts of the fan 

gradually changes to Facies 2, characterized by discontinuous, subparallel, undulating, 

high-amplitude reflections. The continuity of the seismic reflectors is increased in this 

facies, which we attribute to a fining of the sediments and their more widespread 

deposition. The high amplitudes, however, indicate the predominance of a relatively coarse 

fraction, either exclusively or by a graded bedding within turbiditic sequences. Facies 3, 

characterized by subparallel, low-amplitude reflections, is intercalated in the sediments of 

the distal fan. This facies indicates hemipelagic sedimentation and fine-grained distal 

turbidites (Lab erg and Vorren, 1996), which is supported by previous studies of sediments 

close to the center of the Gulf of Aqaba (Ben-Avraham et aI., 1979). The turbidites develop 

out of the sediments transported through the wadis into the submarine fan, but turbidity 

currents may also result from earthquake induced failures. 

Continuous parallel, moderate to high-amplitude reflections (Facies 4) were only 

identified on seismic Line Geob99-048 (Fig. 3.1 0). The continuous, parallel reflectors 

indicate an undisturbed deposition of sediments, but since undisturbed deposition is an 

exception in Wadi Watir fan, this is probably related to local conditions. Continuous, 

parallel reflectors could also reflect a depositionallobe deposited by a major canyon and 

consisting out of stacked graded beds but we did not find a correlation between continuous 

parallel, moderate to high-amplitude reflections and major canyons. We would expect 

depositionallobes in greater distance to the coast further down the slope because most of 
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our profiles are recorded in areas of relatively large gradients where erOSIOn and not 

deposition is the predominant process in the canyons. 

The southem and north em flanks of the fan differ significantly from each other. The 

southem flank is characterized by continuous, subparallel to convergent, high-amplitude 

reflections (Facies 5), while hummocky high-amplitude reflections (Facies 6) predominate 

the northem flank. These differences are probably caused by the different morphology of 

the flanks. The southem flank of the fan is characterized by relatively low slope angles 

allowing undisturbed sedimentation. The sedimentation rates are increased close to the 

coast as clearly shown by the thickening of units towards the coast on Profile GeoB99-56 

(Fig. 3.11). The northem flank of the fan is characterized by large slope angle of ~5 0 

causing disturbance of the sediments through little slumps and slides. The difference in 

morphology of the slopes might be the result of the regional tectonic setting though 

individual processes remain unclear. 

The chaotic facies (Facies 7) represents slump and slide deposits. Slumps and slides 

have been identified all over the fan (see below). 

The analysis of the seismic facies shows that the bulk of the Wadi Watir submarine fan 

sediments are composed of coarse clastic materials (gravels and sand); fine sediments are 

rare. This indicates that the sediment source is close to the shore, and the distance and time 

of terrestrial transport is relatively short, hence reducing the chance for active 

disintegration of particles. This character enables us to classify this fan under the category 

of coarse-grained, sand-rich submarine systems following the scheme of Richards et al. 

(1998). 

3.5.2 Slides and slumps in the Wadi Watir fan 

The chaotic facies (Facies 7) is found all over the fan, especially close to the sea floor, and 

in areas of steep slopes. We interpret this facies as slope failure deposits, i.e., slides, 

slumps and debris flows. The largest slope failure deposit was found on Profile GeoB99-

047 (Fig. 3.9) with a length of ~1.5 km and a thickness >150 m on this seismic line (see 

results). The sizes of most slope failure deposits, however, are much smaller and their 

thicknesses are significantly less than 100 m. The areal extent cannot be determined 

without 3D control but most slope failures cannot be traced for more than 1 km on the 2D

seismic lines (e.g. Fig 3.8). It is not possible to correlate slope failure deposits between the 

individual profiles. We think that slope failures occur relatively frequent, but the individual 

events are small. 
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The potential causes for instability and slope failures are numerous but not well 

understood. Mechanisms include, among others, erosion, sedimentation, earthquake 

activity, diapirism, sea level fluctuations, and wave action (Locat, 2001). We assume 

sedimentation, erosion and earthquakes as being the most important causes for the slides 

and slumps in the submarine prolongation of Wadi Watir alluvial fan. 

The Gulf of Aqaba is located in a tectonically active area, where frequent small and 

large earthquakes occur (Ambraseys and Melville, 1989). The direct link between 

earthquakes and submarine slope instabilities and/or turbidity CUlTent emplacement has 

been widely described (Prior and Coleman, 1984; Keefer, 1994). Earthquakes have two 

effects on the sediments (Hampton et aI., 1978). First, they induce horizontal and vertical 

acceleration stresses, which produce direct loading on the sediment, and second, they 

induce a potential buildup of fluid pressure in the sediment (Egan and Sangrey, 1978). 

Both factors may cause slope failures in Wadi Watir submarine fan. 

Depositional and erosional processes are important for the generation of mass wasting 

events as well. Sediment supply is provided by few events during rainy seasons, but 

transport of large volume of material during these events may result in rapid loading. Such 

rapidly accumulated sediments associated with a lack of compaction remain relatively 

unstable and submarine slides or slumps may result. Erosion in the fan mainly occurs along 

the deeply incised canyons, where the canyon flanks become subject of failure and mass 

wasting due to oversteepening. 

Sea level fluctuations can also be important for slope instability. Large slope failures of 

continental margins often occur during rising or falling sea level (Weaver et aI., 1998) but 

slides and slumps in Wadi Watir submarine fan are small events probably not related to a 

changing sea level. Due to the absence of a shelf in the Gulf of Aqaba no significant 

amounts of sediments, which possibly could be destabilized, are exposed during sea level 

low stands. Therefore, sea level fluctuations can not play an important role for the 

generation of slope failures in the Gulf of Aqaba. 

It is difficult to estimate the importance of the different causes for instability and slope 

failures from our data alone. The relatively small sizes of slope failure deposits suggest 

that most major mass wasting events are a direct result of the infrequent but rapid sediment 

loading, but a high proportion of mass movements probably result in initiation of 

channelized or unchannelized turbidites, which contribute to the distal, layered units of the 

fan deposits, which are indistinguishable from normal fan sedimentary sequences. 

Earthquakes probably play an important role in triggering the slope failures. 
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3.5.3 Faults and tectonic activity 

Wadi Watir fan is located on the western side of the Gulf of Aqaba, which is the southern 

part of the Dead Sea rift, a plate boundary of the transform type. The Dead Sea rift 

connects the sea floor-spreading center of the Red Sea with the Zagros zone of continental 

collision. 

Abdel Khalek et al. (1993) stated that the area occupied by the Gulf of Aqaba 

underwent several different deformational phases, and mentioned four tectonic stages: 1) 

Aquitainian-Burdigalian phase, 2) Late Middle-Late Miocene Phase, 3) Pliocene Phase, 

and 4) Post Pliocene-Late Holocene Phase. The first three phases were important for the 

initiation of the Gulf of Aqaba, while the opening of the Gulf occulTed in the last phase. 

During the opening of the Gulf, three pull-apart basins developed along its trough and 

normal faults formed along its periphery. Abdel Khalek et al. (1993) also suggested that 

the tectonic environment prevailing during the different stages of Aqaba rifting, was 

caused by a transtensional movement between the Sinai and Arabian Continents. Ben

A vraham (1979) suggested that the faults in the Gulf of Aqaba are the dominant structural 

element being the product of rifting and continental breakup. These faults are pronounced 

as small and large N-S to NNE faults, cutting the Quaternary and older rock units (Abdel 

Khalek et aI., 1993). In addition, faults are locally developed parallel to the still active 

strike-slip faults. 

Several faults have been identified in Wadi Watir submarine fan on the new seismic 

data. The faults are usually infelTed from reflection terminations and dip changes of 

reflectors. A few of the faults might show evidence of repeated movements (Fig. 3.3). 

Faults, which were identified at the flanks of incisions, show very small offsets of a few 

meters and the limited resolution of the seismic data would alternatively associate these 

zones with flexural deformation from beginning mass failures. Several of these vertical 

faults (normal and reverse) seem to be related to form graben and horst systems (Fig. 3.4). 

Since the grid of seismic lines was not collected to study the tectonics of the Gulf of 

Aqaba, their use is limited to identify fault tectonics in particular because the fault 

movements are probably masked by the massive sediment input within the sedimentary 

fan. However, the faults identified on our profiles, may provide some insight into the 

mechanisms of sediment mobilization and remobilization within the fan. 

Numerous submarine canyons incise the surface of the submarine fan, which are up to 

130 m deep and 1.5 km wide. According to Fricke and Landmann (1983), the canyons in 

the Gulf of Aqaba formed during periods of glaciation, and their formation continues via 
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sediment-laden flows, which enter the sea during periodic flash floods. It seems that most 

of the canyons are associated with nonnal faults on both flanks (Figs. 3.4 and 3.6). If the 

faults were related to the regional tectonic setting, their morphological expressions at the 

sea floor, particularly small grabens, would be prefen'ed pathways for the sediment-laden 

streams. Erosion by sediment-laden streams deepens the grab en and the canyon floor is 

therefore the grab en of a pre-defined fault system. Another explanation might be that 

faulting and canyon fonnation are contemporaneous processes due to erosion at the canyon 

floor and slope failures of the canyon walls. In this case the canyons accompanying the 

canyons would not be related to the regional tectonic. A more detailed discussion of the 

interaction of faults in canyons is given in Salem et aI. (this thesis). Regardless of the 

origin of the canyons, they act as major conduits for sediment transport between the 

sub aerial wadis and the distal parts of the submarine prolongations of the alluvial fans. 

3.5.4 Evolution of the fan 

The submarine prolongation of Wadi Watir alluvial fan is mainly characterized by coarse 

sediments, numerous small slides and slumps, and deep canyons. The distribution of the 

seismic facies indicates a close interaction between deposition and erosion. 

The analysis of our new high-resolution multi-chamlel seismic and bathymetric data 

significantly improved the knowledge of depositional and erosional processes during the 

fonnation of the submarine prolongation of Wadi Watir alluvial fan. Our new results in 

combination with previous studies (Ab del Khalek et aI., 1993; Ben-Abraham et aI., 1979) 

allow to draw a picture of the major events during the growth of the submarine fan. 

Beginning in Pleistocene time (Ben-Avraham et aI., 1979), the fan was fed through Wadi 

Watir which delivered its deposits from basement and sedimentary rocks eroded on the 

Sinai Peninsula. The sediments, which were collected in Wadi Watir, mainly consist of 

gravel and coarse sand. Due to short transport distances, the grain sizes were not 

significantly reduced during transportation to the coast. Parts of the sediments were 

deposited on sub aerial alluvial fans, but most sediments entered the sea and built up the 

submarine prolongation of the alluvial fan. 

The sediments of the proximal part of the submarine fan mainly consist of coarse 

gravels and sands. Sediment transport in submarine fans might be channelized or 

unchannelized. Channelized transport traps the sediments in the canyons. Such a 

mechanism results in bypassing of coarser sediments in an energy-efficient mode into the 

distal fan and basins while finer sediments spill over during transport resulting in 
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widespread deposition of the finer sediments from the upper slope down the distal fan. 

Bypassing of coarser sediments is observed for many large deep-sea fans, e.g. Amazon and 

Bengal fan (e.g. Hiscott et aI., 1997; Weber et aI., 2003; Schwenk et aI., 2003). 

Unchannelized flows spread over a larger area and the coarsest sediments were deposited 

first when the transport energy decreases (N Olmark and Piper, 1991). The setting at the 

submarine prolongation of Wadi Watir alluvial fan is different compared to large deep-sea 

submarine fans, i.e. slope angles are larger and transport distances are shorter, but we think 

that the general processes are the same. In principle, we observe two different transport 

mechanisms of equal importance building up slope and fan sediments, i.e. unchannelized 

and channelized transport of terrigenuous material. Unchannelized flow of sediments is 

probably important for the buildup of the proximal fan mainly composed of coarse sand 

and gravel. Accumulation rates from this process decrease with increasing transport 

distance. Finer proportions of the transported sediments may generate turbiditic flows. 

Channelized transport causes bypassing of coarse sediments and bring significant amounts 

of coarse sediment into the deeper fan. In addition, the proportion of fine material from 

channelized and unchannelized turbidites increases, which is consistent with our 

observations that the average grain size decreases with increasing distance to the coast. 

Hemipelagic sediments are intercalated into coarser fan deposits in the distal fan. 

Sedimentation rates slightly increase on the lower slope as illustrated by a thickening of 

sedimentary units on the seismic lines perpendicular to the coast (e.g. Figs 3.8, 3.9) but a 

significant amount of the sediments is deposited on the upper slope. Based on the thickness 

of the seismic units, we estimate that deposition of sediments on the upper slope by 

unchannelized flow make up ~30-40% of the fan sediments. The canyons are the preferred 

pathways for sediment mass flows into the lower fan and the basins. We assume that 

turbidity currents form in the canyons and efficiently transport both fine and coarse 

sediments into the distal part of the fan and in the basins, most likely producing graded 

bedding and associated high reflection amplitudes and significant reflector continuity. 

Small slumps and slides were identified all over the fan. Most of the mass wasting 

events are probably a direct result of the rapid sediment loading. Earthquakes may play an 

important role for the triggering of mass wasting events, although direct indication is 

lacking due to the limited coverage of the seismic data in the region. The key features of 

the submarine prolongation of the Wadi Watir alluvial fan are summarized in Fig. 3.12. 
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Fig. 3.12: Schematic model showing the Pleistocene-Quaternary processes in the 

submarine prolongation o/Wadi Watir alluvial/an. 

The amount of sediments transported through Wadi Watir to the submarine fan is 

basically controlled by climate. The present climate is dry, but occasional heavy rains 

result in flash-floods, which carry sediments to the submarine prolongation of the alluvial 

fan. During glacial times, the climate used to be wetter (Hennan, 1965) and more 

sediments were transported to the fan. Some of the seismic lines indicate a cyclicity of the 

reflectors between stronger and weaker amplitudes, and it might be speculated that they are 

the result of such climatic changes, although stratigraphic and age control through drill 

holes is lacking. Sea level fluctuations probably play only a minor role for sediment 

transport into the submarine fan. No shelf or major coastal plain exists in the Gulf of 

Aqaba and sediment transport from land to the sea is probably not strongly influenced by 

changes in the sea level. 
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3.6 Conclusion 

• Newly collected bathymetric and high-resolution seismic data allowed studying the 

sedimentary structure and evolution of the submarine prolongation of Wadi Watir 

alluvial fan. 

• Wadi Watir fan is built up by sediments, which were eroded in the rocky hinterland of 

the Sinai peninsula and transported through Wadi Watir into the submarine fan during 

periodic flash floods or periods of wetter climate. 

• The fan is mainly composed of coarse gravel and sand. The grain size decreases with 

increasing distance from the coast. The submarine Wadi Watir fan system can be 

characterized as coarse-grained, sand-rich turbidite system. 

• Unchannelized sediment transport significantly contributes to the buildup of the 

submarine prolongation of Wadi Watir alluvial fan. We estimate that deposition of 

sediments on the upper slope by unchannelized flow make up ~30-40% of the fan 

sediments. 

• Numerous V -shaped canyons are the most prominent morphological feature of the fan. 

The canyons are bounded by grab en faults. The canyons are important pathways for 

coarse and fine sediment transported from land into the distal parts of the fan and the 

deep basins in the center of the Gulf. 

• Abundant small slides and slumps were identified in the submarine fan. Most of the 

slides and slumps are a direct result of the infrequent but rapid sediment loading. 

Earthquakes probably play an important role in triggering the slope failures. 
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Abstract 

The submarine prolongations of alluvial fans along the western side of the Gulf of Aqaba 

are dissected by numerous canyons which differ in size and number from fan to fan. 

Bathymetric, Parasound and multi channel seismic reflection profiling data enable us to 

understand the morphology and the origin of these canyons. The canyons are up to ~ 130 m 

deep and ~ 1.5 km wide, and have mainly V -shaped cross-sections with steep slopes; only a 

few canyons reveal an U-shaped cross-section. The canyons are straight without any major 

sinuosity. We postulate that the canyons develop along small depressions, which might be 

of tectonic origin. The depressions became deepened by further erosion during sporadic 

heavy rains or in periods of more humid climate. The combination of tectonics and 

submarine erosional processes plays an important role in the fonnation and evolution of 

the canyons and, therefore, for the evolution of the submarine prolongations of alluvial 

fans in the Gulf of Aqaba. 

4.1 Introduction 

This work aims to study the canyons which dissect the surface of the submarine 

prolongations of alluvial fans in the Gulf of Aqaba (Fig. 4.1). Main focus will be put on the 

processes being responsible for the origin and development of these canyons. We will use 

bathymetric maps of the submarine prolongation of Wadi Watir and Wadi Dahab alluvial 

fans, as well as Parasound and multi channel seismic reflection profiles crossing the 

canyons, to study the significant processes. 
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Previously, the canyons on the fans were mentioned briefly by a few authors, e.g., Ben

Abraham et al. (1979) who stated that the fans are dissected by canyons. The canyons 

reach depths up to 150 m, and widths up to 1.5 km. The canyons usually have V -shaped 

cross-section, but may rarely have flat bottoms. Reches et al. (1987) stated that the canyons 

of the Gulf of Aqaba may have formed during the Late Pleistocene (glacial time), when the 

sea level was 90 to 130 m below the present sea level, but a detailed analysis of the origin 

and development of the canyons has not been canied out until now. 

34° 35° 

34° 35° 

Fig. 4.1: Overview map of the Gulf of Aqaba. The locations of the survey areas are shown 

by black boxes. 
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4.2 Geologic setting of the Gulf of Aqaba 

The Gulf of Aqaba is essentially a branch of the Red Sea (Fig. 4.1), trending N30oE. The 

structure of the Gulf of Aqaba is extremely complex. It is the southern part of the 1100 km 

long Dead Sea rift (Garfunkel, 1970). The Dead Sea rift is a plate boundary of the 

transform type, which connects the Red Sea where sea-floor spreading occurs, with the 

Zagros zone of continental collision. The fault zone is known to have produced several 

relatively large historical earthquakes. However, the historical events are unequally 

distributed along the fault (Klinger et aI., 2000). The history of movement along the Dead 

Sea suggests that two principal phases of movement occulTed. Freund and Garfunkel 

(1976) suggested that the first stage of slip along the Dead Sea occurred in the Early 

Miocene or earlier and that the second stage began in the Late Miocene or in the Pliocene. 

Major parts of the Dead Sea Rift are characterized by prominent morpho-tectonic 

depressions. The present tectonic pattern of the Dead Sea rift and its surroundings has been 

shaped mainly in the Late Tertiary and Quaternary periods (Eyal et aI., 1981). The 

stratigraphy around the Gulf of Aqaba appears to lack sedimentary rocks older than the 

Pliocene, and is essentially bordered by shield rocks (Abdel-Gawad, 1970). 

Ben-Avraham et aI. (1979) stated that submarine prolongations of alluvial fans were 

constructed on the western coast of the Gulf of Aqaba. These fans are dissected by V

shaped steep canyons. Ben-Avraham et aI. (1979) also noted that the analysis of seismic 

profiles in the Gulf of Aqaba appears to be very complicated, reflecting the complex 

tectonics of the region. 

4.3 Methods 

The submarine prolongations of Wadi Watir and Wadi Dahab alluvial fans in the Gulf of 

Aqaba were surveyed by high-resolution reflection seismics and the hydro-acoustic 

systems, Parasound and Hydrosweep, during RlV Meteor Cruise M44/3 in 1999. A GI

Gun (0.4 L) was used as seismic source. The signals were recorded by means of a 300-m

long streamer with 24 channels. The distance between the channels was 12.5 m; each 

channel consisted of only two hydrophones placed at a distance of ~0.30 m. A common 

mid-point (CMP) distance of 10 m was chosen for the processing of the data. Stacking of 

the data was followed by time migration. 

All seismic profiling activities during RlV Meteor Cruise M44/3 included continuous 

operation of a Parasound sediment echosounder and a Hydrosweep swath sounder to 

determine the sea floor morphology as well as to characterize and analyze sediment 



81 4. Influence of tectonics on the origin of canyons 

deposition processes and sediment structures. Both hydro-acoustic data sets were acquired 

digitally. The general purpose of the Hydrosweep system is to survey topographic features 

of the seafloor. A sector of 90° is covered by a swath of 59 pre-fonned beams. Thus, a 

stripe with the width of twice the water depth is mapped perpendicular to the ship track. 

The data were processed with the mb-system software package (Caress and Chayes, 1996) 

and finally gridded with a grid-size of 70 m. The data were displayed using the Generic 

Mapping Tools (GMT) software (Wessel and Smith, 1991). 

The Parasound system surveys the uppermost sedimentary layers of the seafloor. Due to 

the high signal frequency of 4 kHz, the ShOli signal length of two sinusoidal pulses, and the 

narrow beam angle of 4°, a very high vertical and lateral resolution is achieved. An 

optimized succession of generated signals allows the resolution of small horizontal 

variations. The ParaDigma system (SpieJ3, 1993) converts the analog to digital data and 

stores them in a SEG-Y like fOlmat. 

4.4 Results 

Many canyons were identified on the submarine prolongations of Wadi Watir and Wadi 

Dahab alluvial fans by means of bathymetric maps and Parasound and air-gun reflection 

profiles. These canyons are the most prominent features shaping the upper surface of the 

fans. The canyons are generally straight and show no sinuosity although some of them 

show angular curvatures. 

4.4.1 Wadi Watir canyons 

The surface of the submarine prolongation of Wadi Watir alluvial fan (Fig. 4.2) is 

intensively dissected by canyons. The canyons are unevenly spaced and have a radial 

distribution. Some canyons can be traced from close to the coast to the most distal part of 

the mapped area. Other canyons only appear for a short stretch, and disappear where the 

general slope angles get small. Most canyons are V-shaped in cross section; some are up to 

1.5 km wide and 130 m deep as illustrated by Parasound and seismic profiles (Fig 4.3). 

The largest canyon is found directly off the mouth of the present Wadi and runs in a WNE

ESE direction. Only some smaller canyons were identified south of this major canyon, but 

the area north of this canyon is also intensively dissected by a large number of canyons of 

different sizes. 
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Fig. 4.2: Bathymetric map of the central part of the submarine prolongation of Wadi Watir 

alluvial fan. The canyons are shown by black lines. Structural trends are indicated by 

dashed black lines. 

Cross sections of the canyons and sedimentary structures associated with them were 

imaged by Parasound and seismic profiles (Fig. 4.3). The Parasound profile show the V

shaped cross-section of the canyons. The canyons are carved in sediments characterized by 

a discontinuous bedded echo type. Only some short stretches of strong reflectors were 

imaged on the canyon floors. The seismic data (Fig. 4.3) show the deeper structure of the 

canyons and the surrounding sediments. The sediments between the main canyons are 

characterized by sub-parallel low- to moderate-amplitude reflection with varying 

continuity. Some transparent zones indicate the occurrence of slumps and slides. The 

canyons are carved into these sediments. The canyons are partially filled with deposits 

showing a chaotic character, but these canyon fills cannot be traced deeper. Several small 

faults were identified on the seismic profiles, particularly in the central part of the fan. 

Most of the major canyons seem to be bounded by grab en faults. 
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Fig. 4.3: Parasound (top) and seismic (bottom) line Geob99-057. The location of the 

profile is shown in Fig. 4.2. 
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4.4.2 Wadi Dahab canyons 

The surface of the submarine prolongation of Wadi Dahab alluvial fan (Fig. 4.4) is also 

dissected by numerous canyons, but the number and the size of the canyons are smaller 

compared to Wadi Watir. The canyons mainly occur in a relatively small area off the wadi 

mouth resulting in a rough morphology. They are usually characterized by a V-shaped 

cross-section, and are up to 1 km wide and 100 m deep. The canyons can be traced down to 

a water depth of ~950 m. Nothing can be said for the area close to the coast in water depths 

shallower then 400 m due to the missing coverage with profiling data. 
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Fig. 4.4: Bathymetric map of the central part of the submarine prolongation of Wadi 

Dahab alluvial fan. The canyons are shown by black lines. Structural trends are indicated 

by dashed black lines. 
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Fig. 4.5: Parasound (top) and seismic (bottom) line Geob99-065. The location of the 

profile is shown on Fig. 4.4. 
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The Parasound profile (Fig. 4.5) shows that the canyons are carved into sediments 

characterized by a rugged echo type. A single strong reflector can be seen at the base of 

some of the canyons. The seismic profile (Fig. 4.5) mainly shows moderate-amplitude 

reflections with low continuity. The canyons are partially filled with chaotic deposits. The 

major canyon seems to be bounded by a graben fault, but similar structures were not 

imaged for the smaller canyons. A canyon, almost filled with chaotic sediments, was 

identified around CMP 1200 on the seismic profile. 

4.5 Discussion 

4.5.1 Canyon forming processes 

The understanding of the evolution of submarine canyons has advanced to a composite 

origin with various processes operating in sequence or simultaneously (Shepard, 1981; 

May et aI., 1983). Generally, the origin of submarine canyons can be related to river 

incision, subaerial erosion, turbidity currents erosion, structural movements (faulting, 

diapirism, etc.), and biological activities. Laursen and Normark (2002) concluded that the 

position and configuration of submarine canyons are controlled by multiple factors, 

including structural fabric, tectonics, sea level variation, sediment supply, and the 

underlying rock type. 

Multiple factors probably also controlled the formation of the canyons in the Gulf of 

Aqaba, and are closely related to the evolution of the fans themselves. All fans are located 

off major wadis. During sporadic rainy seasons or periods of wetter climate, large amounts 

of sediments were eroded in the hinterland of the Sinai Peninsula and collected in the 

wadis and transported to the coast. These sediments build up the submarine prolongations 

of the alluvial fans. Sediment-laden streams, developing in the wadis, probably play a key

role in the formation of the canyons. 

EI-Asmar (1997) stated that there are at least four major oscillations in the sea level of 

the Gulf of Aqaba forming four climatic periods over the Middle to Late Quaternary age, 

as revealed from the study of the Quaternary isotope stratigraphy and paleoclimate of coral 

reef terraces. These periods are of warm-wet climatic conditions, which would result in 

larger amounts of sediments to be transported into the submarine fans. Sea level 

fluctuations might be visible in the seismic data, which show a cyclic pattern at the 

southern side of Fig. 4.5. This pattern may indicate an alternating stratification between 

coarse and fine sediment deposits. 
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The canyons in the Gulf of Aqaba may be the result of the sea level oscillations 

especially during the unusual conditions that prevailed during the late Wtinn glaciation 

about 11,000 years ago. Sea level is considered to have been 130 m lower worldwide at 

that time; a considerable volume of water went into the fonnation of glacial ice (Gvirtzman 

et aI., 1977), and therefore the base level of erosion was lowered. The climate is considered 

to have been more humid. The net effect of the lower base level and increased precipitation 

was a rejuvenation of the erosive power of running water along the Gulf. 

Our investigations show that the major canyons are bounded by grab en faults (Figs. 4.3 

and 4.5). Two possible scenarios exist for the origin of the faults. 1) The faults might be 

related to the regional tectonics in the Gulf of Aqaba and predates the canyon fonnation. 

The grab ens fonn small depressions (proto-canyons), which are the preferred pathways for 

sediment-laden streams. The erosive power of sediment mass flows and turbidity currents 

deepen the proto-canyons resulting in deep submarine canyon-systems. The location of the 

canyons would therefore be defined by the grab en faults. 2) Depressions are fonned by 

erosive downslope bedload transport of coarse material. Once these depressions exist, they 

are focusing sediment transport subsequently, and canyons evolve through erosion of the 

canyon floor and failures of the flanks. These processes might be accompanied by the 

development faults, which follow the canyon axis. 

An interaction of tectonics and submarine erosion as a cause for the fonnation of 

canyons was previously interpreted for large scale canyons in several areas. For example, a 

tectonic control in the origin and development of a submarine canyon system was assumed 

by Nagel et al. (1986), who described the Ascension Submarine Canyon located along a 

strike-slip continental margin off central California. Liu et al. (1993) showed evidence for 

a combination of submarine erosional and tectonic processes being responsible for the 

origin and evolution of Kaoping Canyon System, southern Taiwan. Also, Monterey 

Canyon was shown to be influenced by the San Gregorio fault zone which diverts the 

canyon axis (McHugh et aI., 1998) in a similar way as described by Algan et al. (2002) for 

the Sakarya Delta in the southern Black Sea shelf. 

The canyons in the submarine prolongations of alluvial fans in our study area are much 

smaller, but at least some of them might have fonned in a similar way, i.e., the locations of 

the canyons are detennined by faults. Grabens and folds, with different sizes and trends, 

are recognized in several areas around the Dead Sea and the Gulf of Aqaba. Abdel Khalek 

et al. (1993) stated that many folds are associated with faults of different trends on the 

western side of the Gulf of Aqaba. These folds principally develop in response to the shear 
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stress associated with adjoining faults. The folds have planar limbs and hinges, which are 

mostly rounded, but may be occasionally sharp. The tight hinges are often crossed by en 

echelon radial fractures. The locations of the wadis are mainly controlled by the tectonics 

(Abdel Khalek et aI., 1993). 

The analysis of our new bathymetric maps of the submarine prolongations of alluvial 

fans reveals structural trends mainly in a NW-SE direction (Fig. 4.2 and 4.4). These trends 

are orientated at a 45° angle to the main strike-slip movement, which is a direction of 

extension in the Gulf of Aqaba (Beyer et aI., 1988). If extension occurs in the fan area, we 

would expect the development of grab en faults, which might guide the submarine canyons. 

A comparison of the structural trends in the fans with the orientation of the canyons show 

that four of the six canyons in Wadi Dahab are located almost perpendicular to the 

structural trends in this fan, which may be supportive for a tectonic control of the location 

of the canyons. Structural trends are more difficult to identify in Wadi Watir due to a 

thicker sediment cover, but tectonic control in this fan seems to be less pronounced. 

Therefore, the distribution of canyons may be a result of several factors; both structural 

lineation and typical radial transport and erosion pattern from sediment transport seems to 

be important. We think that the sediment-laden streams, traveling through the wadis, 

spread over a larger area close to the coast as soon as they are not constrained by the 

wadis. Once the sediments enter the sea, they were preferably transported downslope along 

pre-existing depressions, as e.g. tectonically controlled zones of weakness. A comparison 

with the main structural trends in the region may reveal similarities, which could well 

explain some of the canyon orientations to be controlled by tectonics, whereas others may 

just indicate an orientation along the maximum slope angle. 

It is interesting to note that only very small canyons exist south of the main canyon of 

Wadi Watir, but several large canyons were identified further to the north. Geological 

maps (Geological Maps of Sinai, Arab Republic of Egypt, 1994) show that the area 

directly south of the Wadi is constructed by basement rocks, which are difficult to erode, 

while the nOlihem part is bordered by sedimentary rocks which are more easily erodable. 

Sediment input in the northern submarine fan is therefore probably higher than in the south 

resulting in the uneven distribution of canyons off Wadi Watir. Another reason might be a 

second small wadi located immediately to the north of Wadi Watir. This wadi also delivers 

sediments into the sea, though its catchment area is much smaller. 
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4.5.2 Scenario for the canyon evolution 

The discussion above shows that an interaction of tectonics and submarine erosion is the 

key factor for the evolution of the canyons on the submarine prolongations of the alluvial 

fans. Based on these observations, we postulate the following scenario for the origin and 

evolution of the canyons (Fig. 4.6): 

(1) The still active tectonics, especially faulting activities, might play an important role in 

the origin of the canyons. Due to extension, grab en faults produced small surface 

depressions, which can form proto-canyons. 

(2) Flash floods through major and small wadis during sporadic heavy rains or during 

periods of wetter climate on the Sinai Peninsula transport large amounts of material from 

the catchment area (rocky desert of the Sinai Peninsula) into the Gulf of Aqaba. Sediment

laden streams with high erosion potential originate and develop in subaerial canyons. 

(3) The sediment-laden streams spread over a larger area close to the coast as soon as they 

are not constrained by the wadi. These streams enter the Gulf and accelerate on the steep 

submarine slopes. Their preferred pathways are pre-existing depressions, such as the 

surface expressions of grab en faults, thereby deepening these proto-canyons. Thereafter, 

several processes become important for continued erosion, e.g., sea level fluctuation during 

the Quaternary age. The activity within the incisions increased during the sea level 

low stand of the Late Pleistocene (glacial time). Being the preferred path for subsequent 

sediment discharge, the canyon deepens to the point of oversteepened canyon walls. 

Failures of the canyon walls and/or floors result in sediment slides. 

(4) Besides these processes, the buildup of an upper slope apron allows also a radial pattern 

of sediment transport pathways, following the maximum gradient, to develop and interfere 

with existing canyon systems. 

(5) Sliding/slumping features on the canyon walls, associated with inward oriented normal 

or growth faults, resulted in the widening of the canyons and in the formation ofU-shaped 

canyons. 

4.5.3 Significance of the canyons 

Submarine prolongations of alluvial fans were formed on the western side of the Gulf of 

Aqaba off major wadis. Several submarine canyons, carved into the fan, are their main 

morphological feature. We think that most of the canyons are active otherwise the canyons 

would be filled with sediments in a relatively short period of time. The canyons probably 

play a key-role during the evolution of the submarine fans. 
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Fig. 4.6: Sketch illustrating the origin and development of canyons in submarine 

prolongations of alluvial fans in the Gulf of Aqaba. 
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The fans are constructed by material eroded in the hinterland of the Sinai Peninsula and 

transported through major wadis to the coastline. Parts of the sediments are deposited as 

subaerial alluvial fans but the larger part of the sediments enter the sea. The submarine 

slope angles are relatively large and attain average angles of 16° in the steepest parts but 

the shallower parts usually have average slopes of 7-11 ° (Ben-Avraham et aI., 1979); the 

submarine prolongations of the alluvial fans are therefore unstable. Sediment 

transportation typically occurs along the submarine canyons and as individual slides and 

slumps. Several individual slides and slumps were identified in submarine fans of the Gulf 

of Aqaba, but the size of these mass wasting events is relatively small. The submarine 

canyons provide direct pathways for sediments and patiicle dispersal from the coast to the 

more distal parts of the fans. We are not able to identify any lobes, but we assume that 

relatively coarse material is concentrated at the end of the canyons, though this assumption 

remains speculative without additional data such as sidescan sonar images or sea floor 

samples. Oversteepened canyon walls are also a preferred location for sediment slumps 

and slides. The widening of the canyons by such mass movement is another important 

process for sediment transpOli in the submarine prolongations of alluvial fans. 

In summary, we consider the canyons to play a key role for sediment transport in the 

submarine fans in the Gulf of Aqaba. Sediment transport mainly characterizes the 

evolution of all the fans. The fonnation of the canyons is, therefore, of highest significance 

for the evolution of the submarine prolongations of alluvial fans in the Gulf of Aqaba. 

4.6 Conclusions 

The submarine prolongations of alluvial fans in the Gulf of Aqaba are dissected by 

numerous V-shaped and few U-shaped canyons. The most important factor for the 

initiation and evolution of these canyons is an interaction of tectonics and sedimentary 

processes. Graben faults fonn zones of weakness, which in turn are forming proto

canyons. These proto-canyons are the preferred pathways for subsequent sediment mass 

flows, which develop in the wadis in rainy seasons and enter the sea. The sediment mass 

flows deepen and widen possible proto-canyons, but with the buildup of the sediment fan, 

other transport mechanisms driven by mass flows along maximum slope gradients, cause 

additional canyons to develop, resulting in an overlap of a radial distribution of canyons 

with linear trends of tectonic origin. Oversteepened canyon walls may cause slides/slumps 

and occasionally convert the cross-section of the canyons into an U-shape. The erosional 

power of the sediment-laden streams, developing in the wadis, is highest during periods of 
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wet climate and sea level low stands. The submarine canyons provide direct pathways for 

sediments and particle dispersal from the coast to the more distal parts of the fans, hence 

playing an important role during the evolution of the submarine prolongations of alluvial 

fans in the Gulf of Aqaba. 
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The seismic and hydroacoustic data analyzed in this thesis document the first detailed 

study of the main processes that control the formation of the submarine prolongations of 

alluvial fans in the Gulf of Aqaba. The fans are fed by wadis, which transport eroded 

sediments from the Sinai Peninsula to the coast during sporadic rainy seasons or during 

periods of wetter climate. The confined channel flows expand as they leave the wadis and 

then gradually build the alluvial fans. Most of the sediments, however, enter the sea and 

construct the submarine prolongations of the alluvial fans. The sediments of the submarine 

prolongations of the alluvial fans mainly consist of coarse gravels and sands. The grain 

size decreases with increasing distance from the coast. Unchannelized and channelized 

transport of terrigenuous material is of equal importance for the buildup of the fan. 

Sediments transported by unchannelized flows were mainly deposited at the upper fan, 

while channelized flow brings significant amounts of fine and coarse sediments into the 

deeper fan. The channelized flows travel through several large canyons which are carved 

into the submarine fans. The canyons are formed by the interaction of tectonic and 

submarine erosional processes. Several small slumps and slides were identified all over the 

fan, which are most likely the results of the infrequent, but rapid, sediment loading and 

earthquake activity. 

The main conclusions of this thesis can be summarized as follows: 

(1) Submarine prolongations of alluvial fans in the Gulf of Aqaba are formed at the 

mouths of major wadis which deliver their deposits from eroded basement and 

sedimentary rocks of the Sinai Peninsula into the sea. Newly acquired seismic, 

sediment echosounder, and bathymetric data provided a detailed picture of the 

morphology and sedimentary structures of Wadi Watir, Wadi Dahab, and Ras El 

Burka submarine fans for the first time. 

(2) Bathymetric data show that the fans extend to water depths greater than 1000 m. Slope 

angles in the proximal fans are large exceeding 5°. The varying volumes of the fans 

between <5 km3 and ~ 15 km3 are a direct result of the different sizes of the 

corresponding catchment area. 

(3) Numerous deep canyons constitute the most prominent morphological features of the 

fans. The canyons are mainly characterized by steep V -shaped cross-sections. A few 

isolated canyons have an U-shaped cross-section. The canyons are up to 1.5 km wide 
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and 130 m deep. The courses of the canyons are generally straight, and show no 

significant meanders. The canyons are usually accompanied by faults on both flanks. 

(4) Based on the combined interpretation of bathymetric, Parasound, and high-resolution 

seismic data a model for the canyon initiation and evolution was developed. The 

canyons start to evolve along small pre-existing depressions, which might be of 

tectonic origin. Subsequent sediment mass flows deepen and widen these depressions, 

but with the buildup of the sediment fan, other transport mechanisms driven by mass 

flows along maximum slope gradients cause additional canyons to develop, resulting 

in an overlap of a radial distribution of canyons with linear trends of tectonic origin. 

Oversteepened canyon walls may cause slides/slumps and occasionally convert the V

shaped cross-section of the canyons into an U-shape. 

(5) The Parasound data allowed to identify four echo characters (rugged, hyperbolic, 

bedded, and partially transparent/discontinuously bedded echo characters). All echo 

characters are characteristic of fan sediments, except the uniformly bedded echo type 

which represents the basin deposits. 

(6) The high-resolution seismic reflection data allowed a detailed study of the sedimentary 

structures in the fans. Seven seismic facies were identified: A seismic facies 

characterized by disrupted, discontinuous, low- to moderate-amplitude reflections is 

typical for the proximal part of the fan. The continuity of the seismic reflectors 

gradually increases with increasing distance to the coast. The seismic facies changes to 

subparallel, undulating, high-amplitude reflections in the distal part of the fans. The 

analysis of the echo and seismic facies revealed that the sedimentary deposits of the 

submarine prolongations of alluvial fans in the Gulf of Aqaba essentially consist of 

clastic material, which slightly decreases in grain size towards the basins of the gulf. 

Therefore, the submarine prolongations of alluvial fans in the Gulf of Aqaba can be 

classified as sand-rich, point-source turbidite systems. 

(7) Two different transport mechanisms of equal importance were observed building up 

slope and fan sediments: unchannelized and channelized transport of terrigenuous 

material. Unchannelized flow of sediments is probably important for the buildup of the 

proximal fan mainly composed of coarse sand and gravel. Accumulation rates from 

this process decrease with increasing transport distance. Channelized transport causes 

bypassing and brings significant amounts of fine and coarse sediment into the deeper 

fan. In addition, the proportion of fine material from channelized and unchannelized 
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turbidites increases in the deeper fan, which is consistent with our observations that 

the average grain size decreases with increasing distance to the coast. 

(8) Several slumps and/or slides were identified in the study areas. These deposits 

demonstrate frequent gravitational transport along the steep slopes. The most likely 

reason for slope failures in the fans is the rapid but infrequent sediment loading, which 

also might have caused oversteepening of the slope. Eatihquakes probably acted as the 

main trigger mechanism for the slope failures. 

(9) The growth patterns of the submarine prolongations of alluvial fans in the Gulf of 

Aqaba suggest that deposition is mainly influenced by the rate of erosion of rocks 

from the hinterland and tectonics. The rate of erosion is mainly dependent on the 

climate. Climate used to be wetter during glacial times resulting in an increased 

sediment supply into the fans. Tectonics might control the courses of the canyons, 

which are important for sediment transport into the fan. Eatihquakes are an important 

trigger for slope failures in the fans. Sea-level fluctuations probably have not played a 

major role during fan development because of very nanow coastal plains and the 

absence of a continental shelf. 

5.2 Future perspectives 

The data presented in this thesis are the first results of a detailed analysis of submarine 

prolongations of alluvial fans in the Gulf of Aqaba. Several questions, however, remain 

open. Future studies should include the following aspects: 

(1) Wadi Kid alluvial fan on the southwestern side of the Gulf of Aqaba is the largest 

alluvial fan in the Gulf of Aqaba. A geophysical survey of the submarine prolongation 

of this fan would allow to characterize the tectonic and sedimentary history of this fan. 

A study of the growth patterns of this large submarine fan might shed more light on 

the impact of sea level and climatic fluctuations on sediment input and depositional 

processes in the Gulf of Aqaba. 

(2) The sampling of marine surface sediments and drilling long sediment cores for 

palaeoceanographic studies would provide strati graphic control for the seismic data. 

Cores should be taken from several locations because sedimentary processes might be 

expressed by different types of echo characters. For example, transparent echo 

characters and small hyperbolic echo characters may both represent mass-flow 

deposits and, in turn, some echo types may also indicate different types of sediments 

generated by different kinds of sedimentary processes. The availability of cores would 
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improve the reconstruction of the fan history and the detelmination of distinct growth 

episodes. 

(3) A detailed investigation of the submarine terraces in the Gulf of Aqaba would provide 

infonnation about sea level fluctuations and tectonically-driven uplift/subsidence, 

which might have influenced sediment deposition. A survey with hydroacoustic 

systems close to the coast, on both sides of the Gulf, would be necessary for such an 

approach. 

(4) Deep seismic data and/or earthquake studies would improve our understanding of the 

tectonic evolution of the Gulf of Aqaba. Such data would allow a better assessment of 

the importance of tectonic processes in the evolution of the submarine fans. 

(5) The construction of a detailed structural map of the coastline prepared from aerial 

photos and satellite images would allow a better correlation between the subaerial and 

submarine features in the fans. 
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