
Stefan-Signorini Moving Boundary Problem

Arisen From Thermal Plasma Cutting:

Mathematical Modelling,

Analysis and Numerical Solution

von Arsen Narimanyan

Dissertation

zur Erlangung des Grades eines Doktors der Naturwissenschaften

- Dr.rer.nat. -

Vorgelegt im Fachbereich 3 (Mathematik & Informatik)

der Universität Bremen

12. Juni 2006.



Datum des Promotionskolloquiums: 25.07.2006

Gutachter: Prof. Dr. Alfred Schmidt (Universität Bremen)

Prof. Dr. Gurgen Hakobyan (Staatliche Universität Jerewan, Armenien)



Acknowledgments

I feel most fortunate to have had the opportunity to do my PhD in the University of Bremen

and enjoy the company of wonderful people I have met there.

Completing this doctoral work has been a wonderful and often overwhelming experience. I

have been very privileged to have a smart and supportive supervisor and teacher, namely

Prof. Dr. Alfred Schmidt. He has an ability to cut through reams of numerical PDEs that

I will always admire. With his help I have learned a great deal of numerical analysis and

gained a lot of programming skills. I thank Alfred Schmidt also for his invaluable time that

he provided for discussions.
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Chapter 1

Introduction

1.1 General: the plasma cutting process

There is a wide range of thermal cutting techniques available for the shaping of materials.

One example is the plasma cutting. The origin of plasma-arc process goes back to 1941. In

an effort to improve the joining of light metals for the production of aircraft, a new method

of welding was born that used an electric arc to melt the material and a shield of inert gas

around the electric arc to protect the molten metal from oxidation. Figures 1.11 and 1.22)

give an impression on some typical applications of plasma cutting.

In recent years, plasma cutting of different type of metals has increasingly attracted the

attention of the industry. The use of oxygen as a cutting gas and development of finer

nozzles have allowed plasma devices to offer a very high cutting quality. It is cheaper than

the laser cutting and has an important advantage, namely, by choosing the appropriate

plasma gas, one is able to use the plasma technique for cutting more inert metals. The

cutting of a workpiece occurs as a result of melting/vaporizing the material by an extremely

hot cylindrical plasma beam which burns and melts its way through the material, leaving

a kerf in its wake.

The heat transfer from the plasma jet into the material accounts for most of the phenomena

encountered subsequently: shrinkage, residual stresses, metallurgical changes, mechanical

deformations, chemical modifications, etc.

One of the main problems occurring as a result of heat transfer from the plasma beam to

1Picture is taken from www.torchmate.com/automate/cncdemo.html
2Picture is taken from www.rtgstore.com/art
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2 Chapter 1: Introduction

Figure 1.1: Plasma cutting process

Figure 1.2: Another application of plasma cutting
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the workpiece is the deformations of the cut edges after the material is cut and cooled down.

Due to these deformations, the cut edges are not square any more which makes a lot of

difficulties during the further applications of the metal. On the other hand, the speed of

moving plasma beam can cause a formation of high or low speed drosses, which is another

problem as the removal of the dross is an additional operation that increases the cost of the

cutting. This issue leads to a problem of optimization of parameters entering the process

and could be another aspect for mathematical modelling.

Investigations are needed for the prediction and control of the above mentioned phenomena

concerning the plasma arc cutting process. To get a quantitative description of the process,

one requires a mathematical model for it. Therefore a proper mathematical model has

to be developed which must involve the different physical phenomena occurring in the

workpiece during the cut, i.e. heat conduction, convection and radiation effects, mechanical

deformations, phase transition, etc. The model has then to be numerically simulated, and

the results of the simulations have to be verified by experiments.

1.2 Overview of the work

Our overall goal is to develop a general model including physical and mathematical mod-

elling of thermal plasma cutting, which will serve as an important tool for understanding

the observable problems.

In this work we are mainly involved in the development of a mathematical model describing

the temperature distribution in the workpiece and the evolution of the geometry of the cut-

ting front during the thermal cutting. This is a very important step towards the modelling

of the whole process. The workpiece temperature plays a major role during the cutting as it

later affects material deformations and is responsible for most problems arising in industry.

Let us outline the contents of the chapters. At the beginning of each chapter we have tried

to give a brief introduction on the subject of the chapter in order to make the study more

self-contained.

We start Chapter 2 by giving a brief description on thermal cutting of metals and stating

some industrial problems arising during the cutting. The study then continues with the

discussion of physical modelling of the process.

In Chapter 3 we are concerned with the mathematical modelling of the workpiece. There
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we begin with a development of an one dimensional model. It may happen that the area of

industrial applications for one dimensional models is limited, but this modelling is very use-

ful to understand the main aspects of the problem description and apply them for the cases

of higher dimensions. The main result in Chapter 3 is the establishment of a mathematical

model for higher space-dimensions. At the end of the chapter we review some earlier results

on the modelling of the heat flux density due to the plasma beam and describe a way to

calculate the flux density on the absorbing surface.

In Chapter 4 we develop function spaces that are used in the weak formulation of the cutting

model. Using the main concepts of Lebesgue functional spaces we define spaces commonly

referred to as Soboloev spaces.

Variational formulation of the problem is the subject of Chapter 5. The cutting model

belongs to the subclass of problems which are relatively easy to convert into variational

inequality. We show how the nonlinear Signorini boundary conditions make it possible

to rewrite the heat conduction equation in the form of variational inequality. As for the

problem of determining the geometry of the cutting front, which is described by a Stefan

boundary condition, we introduce the cutting front as a zero level set of a scalar function

which takes care of all topological changes of the moving interface. At the end of the

chapter we formulate the cutting model in its weak form as a coupled system consisting of a

variational inequality (for calculating the temperature field) and a transport equation (for

determining the cutting front).

Chapter 6 deals with the mathematical analysis of the weak model. Besides the nonlinear

Signorini and Stefan boundary conditions occurring in the mathematical model, the time de-

pendent domain of interest (the workpiece) makes essential difficulties for the mathematical

treatment. Here also we begin with the analysis of one dimensional model. Main contribu-

tion of the chapter is the analysis of the coupled system using the principles of the theory

of variational inequalities and analytical results from the study on general Hamilton-Jacobi

equations.

One of the main difficulties to solve the cutting problem numerically is the time dependent

domain. In Chapter 7 we specify a numerical method for the calculation of the numerical

solution of the cutting model based on the modified Stefan-Signorini problem. In order

to overcome the difficulties connected with the time dependent domain, we decouple the

problem at each time step via defining the domain occupied by the workpiece explicitly
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with the help of the level set function from previous time step. The space discretization for

both heat conduction equation and level set equation is implemented by means of Finite

Element Methods. For implementation purposes the software package ALBERTA is used,

which is well suited for the problems in several space dimensions. It is flexible enough to

switch between different dimensions easily, therefore the extension of simulations to the

three dimensional case is relatively easy to implement.

In order to keep our work preferably self-contained, we include three appendicies in our

work, which provide some introductory information on viscosity solution methods, finite

element methods and ALBERTA.



Chapter 2

Problem statement and physical

modelling

Plasma cutting is desirable for many metal cutting and welding applications. It can be

performed on any type of conductive metal - mild steel, aluminium, stainless and carbon

steel are some examples. Unlike other type of cuttings, plasma cutting can be used on any

metal for applications such as stack cutting, bevelling, shape cutting, gouging and piercing.

Plasma cutting can be successfully performed on a variety of material sizes as well; it can be

used to cut anything from thin gauge aluminium to stainless and carbon steel up to several

centimetres, depending upon the power of the cutting machine.

2.1 Device description

Before we start with the description of plasma cutting device, let us try to understand the

meaning of the plasma itself. So, what is a plasma? When we are asked about the three

states of the matter, we normally think of solid, liquid and gas. Consider, for example,

water. The three states of this matter are ice, water and steam. If we add enough energy

to an ice block, it will change from solid ice to liquid water. If we keep on adding more heat

energy, the water vaporises resulting in steam (gas). When substantial heat is added to a

water steam, it will change its phase one more time, namely from gas to plasma, which is

usually called the fourth state of the matter. This last phase change is a result of ionisation,

i.e. creation of free electrons and ions among the gas atoms. The presence of free electrons

6
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as carriers of current makes the plasma electrically high conductive.

The main principles that apply to current conduction through metals also work in the case

of plasma. For instance, we know that if we reduce the cross-section of a metal which

carries the current, the resistance in the metal increases resulting in the heating of the

metal. The same is true for a plasma gas: the more we reduce the cross-section of its flow,

Figure 2.1: Schematic thermal plasma system

the hotter it gets. Thus, the heat source for plasma cutting is a high temperature and

high velocity stream of partially ionized gas. The plasma stream appears as a result of a

current which passes between a cathode and an anode. Due to the current, the plasma gas

(mixture of nitrogen, hydrogen and argon) is heated to high temperatures and the Lorenz

forces propel it down towards the anode in the form of high velocity jet. A schematic of

the plasma cutting device is presented in Figure 2.1. It is mainly composed of a cathode,

nozzle, plasma gas and current source. Here the role of the cathode is overtaken by the
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electrode, while the workpiece acts as an anode. The hot plasma gas passing through the

nozzle generates a high temperature jet, which is then used for cutting or welding purposes.

Typical plasma temperatures are in the range of 10, 000K to 30, 000K and the velocity

of the plasma jet can approach the speed of sound. The plasma forming gas is usually

argon, argon-H2 or nitrogen. Depending on the type of the plasma gas used, material and

thickness of the material, the speed of the cut can vary from 76.2cm/min to 750cm/min.

The cutting gauge does not exceed 1.5cm.

2.2 Thermal cutting process and industrial problems

The essential idea of cutting is to focus a lot of power onto a small area of surface of the

material producing intense surface heating. First the material on the surface melts and

then evaporates. As the vapor is puffed away or the molten metal is removed by the high

speed gas flow, so a hole develops in the material. The characteristics of the plasma jet

highly depend on the used gas type, gas flow rate, arc current, arc voltage, nozzle size and

speed of the torch. For example, if we sufficiently increase the gas flow rate, the velocity

of the plasma jet will be so high that it will be able to remove the molten metal appeared

by the heating, thus resulting in a development of a cut cavity through the workpiece. If

we take a low gas flow rate, then the plasma jet becomes a highly concentrated heat source

which can be effectively used for welding purposes.

As the plasma cutting advances by melting, a characteristic feature is the greater degree

of melting towards the top of the workpiece resulting in top edge rounding and poor edge

squareness. Top edge rounding is a slight rounding of the metal along the top edge of the

cut and is mostly effected by material thickness. It is more apparent in thinner metals. The

poor edge squareness causes additional difficulties on the next step in the manufacturing

process. See Figure 2.2. If the cut piece has to be welded, a high quality cut with square

edges is especially important for the integrity of the weld. One of the characteristics of the

cut is the speed with which the plasma jet moves with respect to the workpiece. This speed

is the main responsible for another problem in industry, namely, dross formation. If the

cutting speed is slightly less than some maximum value (with a speed higher than this value

no cut is possible), an undesirable phenomenon occurs. Some of the molten material does

not leave the workpiece and sticks to the bottom forming the so called high-speed dross

(see Figure 2.2). In some cases it is possible to get rid of the high-speed dross by reducing
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Figure 2.2: Some typical industrial problems

the speed of the cutting. However, if the cutting speed is too slow, the cutting kerf gets

wider and it gets harder for the assisting gas to blow away the molten metal. So, further

reduction in cutting speed below some limit once more leads to dross formation. This is

the so-called low-speed dross. In both cases the removal of dross is an additional operation

which increases the cost of cutting. The problem of dross formation is beyond the subject

of present study. We refer to the work of Nemchinski [36] and references therein for more

detailed discussions.

2.3 Physical modelling

Let us start with a small discussion on physical processes taking place during plasma cutting.

Consider a high-power plasma beam striking a small area of metal surface. Shown in

Figure 2.3 is a schematic illustration of the plasma cutting process. The figure shows the

plasma beam penetrating through the workpiece, the advancing hole and different physical

phenomena taking place in the material.

The first phenomenon we can observe is the absorption of the energy by the material.

The absorption takes place within a thickness usually much less than a millimetre, so

we can consider surface heating only. The temperature of the material surface does not

rise infinitely. Part of the heat input from the plasma beam melts the metal resulting in

solid-liquid phase change in the areas close to the source. When a material melts, latent

heat is absorbed without any further rise in temperature. The second part of the heat is
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transfered into the workpiece by conduction from hotter to colder metal resulting in rise of

the temperature in the material.

Next physical process is due to the fact that the plasma beam pierces through the workpiece

with some constant velocity, while the high velocity gas flow removes the molten material

from the bottom of the cut, or the kerf.

An interesting phenomenon is the so-called solid-solid phase change. Actually, some parts

of the material are heated up to very high temperatures (below the melting temperature

though) forcing the formation of one solid phase (austenite, say), which can be later changed

to another solid phase (pearlite, martensite, etc.) after we cool down the material to rela-

tively low temperatures.

Figure 2.3: Picture of thermal cutting

In addition to high energy radiation generated by plasma, the intense heat of the beam

creates substantial quantities of fumes and smoke from vaporizing metal in the kerf.

In this study we are mainly concerned with the problem of heat transfer and temperature

distribution in the workpiece during the thermal plasma cutting. The problem is solved, if

it is possible at any moment to identify the temperature of every point of the workpiece and

the geometry of the workpiece. To be able to advance with our purposes, several modelling

assumptions have to be made. The assumptions are imposed to overcome the mathematical
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difficulties met from the analysis of the model. As we will see later, even with these kind

of simplifications we are led to a relatively complicated mathematical model needing strong

mathematical tools to analyse it and, finally, solve it by applying some numerical techniques.

Assumptions are made as follows:

1. The workpiece is homogeneous and isotropic.

2. The material parameters (density, heat capacity, conductivity, etc.) of the workpiece

are constant.

3. If the piece is large, then the heat exchange through the surface to surrounding can be

neglected in regard to the heat flow in the material itself. This assumption makes sense

because the heat conductivity of metals is much greater than the heat transmission

through the surface.

4. The plasma beam has a cylindrical shape, and the heat flux from the plasma beam is

emitted only in the normal direction to the surface of the cylinder.

5. The plasma device moves at a constant velocity with respect to the workpiece.

6. The heat flux density emitted by the plasma beam is constant and given;

7. The heat lost by radiation is negligible.

8. The effects of gravity and surface tension are negligible;

9. We neglect the thermal and mechanical effects caused by solid-solid phase changes.

10. We do not consider the side effects caused by the smoke of the vaporizing metal. By

side effects we mean that, for example, the evaporated material does not interfere

with incident plasma beam.



Chapter 3

Mathematical modelling

3.1 Introduction

As it was already mentioned in the previous chapter on physical modelling, the workpiece

temperature plays an important role during the cutting process as it affects the material

deformations. Thus, the effects of externally applied heat source on the temperature distri-

bution of the workpiece become essential. Therefore, the ability to predict the temperature

distribution in the workpiece is the first (and an important) step in the quantitative de-

scription of the cutting process. On the other hand, due to the fact that during the cutting

material removal takes place (the molten material is immediately removed), the domain

occupied by the workpiece changes in time. Therefore, the prediction of the geometry of

the material, as the cutting advances, is another important issue to be investigated.

Having in mind the assumptions formulated in the previous chapter, the heat transfer in

the workpiece and changes in the shape of the material during the plasma cutting can be

modelled by non-stationary partial differential equations together with corresponding initial

and boundary conditions.

The mathematical model should mainly include the

• temperature field analysis in the workpiece,

• effects of cutting on the geometry of the cut pieces,

• investigation of the properties of the material due to the solid-liquid phase change.

Although the present study is done for plasma cutting processes, the developed mathemati-

12
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cal model is rather general and does not depend on the type of cutting. Any cutting process

is a thermal process and involves diverse effects resulting from the heat input on the mate-

rial surface. Important is the amount of energy absorbed by the workpiece which depends

on the thermo-physical properties of the material as well as on the several parameters of

the heat source (strength, moving speed, etc). Changing the appropriate parameters in the

model makes it possible to consider any type of thermal cutting process.

3.2 Literature review

Before we start with the modelling of the workpiece, let us briefly summerize some earlier

works concerning the subject. There is a vast number of scientific publications concerning

different aspects of mathematical modelling of thermal cutting. Here is a short list of related

works.

1. The work of Hafercamp et al. on numerical modelling of thermal plasma cutting, [19],

has been the starting point of present work. A numerical model to calculate the heat

input and temperature distribution into a workpiece due to a plasma arc cut process

is described in the paper.

2. In his pioneering work [40] on mathematical theory of heat distribution during welding

and cutting, Rosenthal outlines the fundamentals of the theory and derives solutions

for linear two- and three-dimensional flow of heat in solids. He discussed point, linear

and plane sources of heat. In the work the quasi-stationary state of the piece is

described, i.e. the state where the temperature has no time dependence any more.

This is reached via the transformation of coordinate system by taking ξ := x− vs (v

is the velocity of the moving source) and application of quasi-stationary assumption.

It has been also shown that despite their apparent dissimilarity, both the welding

and cutting processes may be traced to the same fundamental problem, namely, the

problem of heat distribution due to the motion of heat source and the quasi-stationary

state created thereby.

3. Schulz et al., [47], described the cutting process of the workpiece. The discussions have

been done for a 3D free boundary problem for the motion of one phase boundary. In

their work material is divided into three regions: cut edge, melting front and the rest of
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the material. As a model, the heat conduction equation is written with the boundary

conditions on these regions. The authors gave an ODE approximation for the PDE

problem, which describes the dynamics of the process by means of the position of

the moving boundary, heat content of the workpiece and the surface temperature.

They also presented the variational formulation and solved the equation for the one

dimensional case.

4. In his paper [29] Matsuyama deduced two basic equations; first to estimate the factors

of area generation rate of cut surface, and second, to calculate the influence of the

input heat characteristics on the kerf shapes and the relationship between the cutting

speed and the cut thickness. The basis is the heat conduction equation applied in the

quasi-stationary state.

5. The mathematical model, developed by Shen et al., [48], consists of two steps; before

melting and after melting. The heat equation with corresponding boundary conditions

is written for both steps. In the second step in addition to the conduction in the solid,

the heat conduction in the already melted region is described. The analysis is done

for one spatial dimension.

6. Kim, [27], considered an unsteady heat transfer model that deals with the metal-

cutting process using a continuous Gaussian laser beam. Again the boundary was

divided into three regions and the boundary conditions were written for each part.

The numerical simulations were done using the time dependent boundary element

method.

7. The article of Xi and Kar [56] deals with an one-dimensional heat conduction problem

and investigates the melting rate during laser materials processing. The problem is

solved approximately to obtain a correlation among melt depth, power density and

laser irradiation time. A relationship between the melt depth, power density and an

average melting velocity are expressed by simple analytic formulas.

8. Storti, [53], discussed a fixed domain numerical scheme for ablation problems based

on the enthalpy formulation. He introduced the region where the material has been

removed as a fictitious domain with appropriate material parameters (null specific
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heat and arbitrary conductivity). The resulting model is then developed via two-

phase Stefan problem.

9. In their paper Friedman and Jiang, [16], formulated the melting problem of an one

dimensional slab as a Stefan problem with Signorini boundary conditions at the mov-

ing boundary. Thereby they established existence and uniqueness theorems as well as

studied the regularity and some geometric features of the free boundary.

10. In [55] Bui An Ton considered a Stefan-Signorini problem with set-valued mappings in

bounded domains where he imposed intersecting fixed and free boundary conditions.

This problem arises in the study of heat conduction in melting solids. He proved the

existence of a weak solution of Stefan-Signorini problem and showed the continuity of

the moving interface.

3.3 Mathematical modelling – one dimensional case

We start the mathematical modelling of the cutting process with first considering the one-

dimensional case. Let us imagine that we have a solid slab consisting of one material,

extending from x = 0 to x = L, and having an initial temperature distribution θ0 which is

less than the melting temperature θm. Now we start to heat the slab by concentrating an

amount of heat on the left face x = 0. Let the rate of heat flow per unit area be jabs(t). If

jabs(t) is big enough and if heating continues long enough, then the temperature at x = 0

increases and reaches the melting temperature θm, thus starting the melting process of the

solid slab. During the thermal cutting the molten material has to be immediately removed,

say by being blown away. Therefore, it makes sense to assume here that the liquid material

is removed immediately on formation. It is clear that after some period of time, say at time

instant t, the face of the solid being initially at x = 0, will move forward, to a position

x = s(t). If the temperature is strictly less than θm at the left endpoint of the slab, the

material stops melting; then due to the heat flow (e.g. plasma beam) jabs(t) melting will

resume again, the resulting molten material is immediately removed, etc. The quantities

of interest are the temperature of the solid θ(x, t) and the location of the advancing face

x = s(t) which we call the free boundary.

The mathematical model governing the melting problem described above looks as follows:
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Problem 3.3.1. Find the temperature distribution θ(x, t) in the solid region and the melted

thickness s(t) such that the one-dimensional heat equation is fulfilled

ρcs
∂θ

∂t
=

∂

∂x

(

k
∂θ

∂x

)

, s(t) < x < L, 0 < t < T, (3.1)

where ρ is the density of the slab, cs is the specific heat and k is the heat conductivity of the

material,

with boundary conditions on x = s(t) in the form of inequalities

θ ≤ θm

−k ∂θ
∂x

+ jabs(t) ≥ 0 (3.2)

(θ − θm)

(

k
∂θ

∂x
+ jabs(t)

)

= 0

called the Signorini boundary conditions, and

−k ∂θ
∂x

+ ρLms
′(t) = jabs(t) 0 < t < T (3.3)

named the Stefan boundary condition. Here Lm is the latent heat of melting, equal to

the minimal portion of energy necessary for transforming the bulk of unitary mass of the

substance from the solid state to liquid at the constant melting temperature θm.

Further we assume that the right endpoint of the slab x = L is insulated, i.e. no heat flux

through that endpoint is possible

∂θ

∂x
= 0, x = L, 0 < t < T. (3.4)

As for initial conditions, we set

θ(x, 0) = θ0(x) < θm 0 < x < L, (3.5)

and

s(0) = 0. (3.6)

To understand the background of the boundary conditions (3.2), we consider two different

situations for the point on the boundary:

1. Select all points of the solid boundary, at which θ(x, t) < θm, i.e. the temperature on

the left boundary is less than the melting temperature. This situation corresponds to the

heating phase, namely, the end point of the material absorbs energy coming from the heat



Chapter 3: Mathematical modelling 17

source and completely conducts it into the slab. As a result, the boundary point heats up.

The condition of complete conduction can be written as

−k ∂θ
∂x

+ jabs(t) = 0,

meaning that the heat input from the external source is equal to the heat conducted into

the material.

2. Select all points of the solid boundary such that θ(x, t) = θm, i.e. the temperature on

the left boundary is equal to the melting temperature. This situation corresponds to the

melting phase, namely, the end point of the material is melted and must be removed. The

boundary condition for melting can be expressed as

−k ∂θ
∂x

+ jabs(t) > 0,

meaning that the energy input from the heat source is greater than the amount of heat

conducted. Indeed, this is clear, since part of the heat input is used for melting the material

(latent heat is absorbed) and only a part of it is conducted.

Summing up both situations, we obtain the following conditions on the boundary of the

slab

θ(x, t) < θm ⇒ −k ∂θ
∂x

+ jabs(t) = 0,

θ(x, t) = θm ⇒ −k ∂θ
∂x

+ jabs(t) > 0,

which is nothing else but the Signorini boundary conditions (3.2).

As for the Stefan boundary condition (3.3), it follows from the energy conservation law by

its application to elementary volumes that contain both sides of the boundary at the same

time. More precisely, let us assume that the interface point moves with velocity v, jabs is

the heat flux density absorbed by the slab boundary, and by qc we denote the heat flux

conducted in the solid phase. Latent heat is absorbed at a rate −ρLmv. The heat exchanged

by the interface x = s(t) itself through left endpoint is equal to (jabs − qc). Applying the

energy conservation law, we obtain

jabs − qc = −ρLmv.

This yields (using Fourier’s law, qc = −k ∂θ
∂x , and the identity v = s′(t)) the Stefan condition

on the moving interface

−k∇θ · ν + jabs = ρLmv,

which is exactly the same as the condition (3.3).
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3.4 Mathematical modelling – higher dimensional case

We first state the assumptions that are necessary to consider in order to give sense to our

higher dimensional model.

Let Ω be an open and bounded domain in R
n, n = 2, 3, occupied by the workpiece. The

boundary ∂Ω of the domain is assumed to be piecewise smooth. Let 0 < T < +∞ be

given, denote by θ(x, t) the temperature of the workpiece and I the time interval (0, T ).

The initial temperature distribution of the workpiece is given by θ0(x), which is less than

the melting temperature at all points. For every t ∈ I the domain Ω is assumed to consist

of two non-intersecting parts, namely Ω = Ωs(t) ∪ Ωc(t), where Ωs(t) and Ωc(t) are the

domains occupied by the solid part of the workpiece and cut cavity at a time instant t,

respectively. Let ∂Ωs(t) be the boundary of the time dependent domain Ωs(t) at time t

(free interface) and we assume that ∂Ωs(t) is a Lipschitz curve. By ν we shall denote the

unit outward normal vector of the domain Ωs(t). Let jabs be the heat flux density absorbed

by the interface due to the plasma beam radiation. In addition to the terms defined above

we will use the following notations (alike the one-dimensional case): ρ is the density of the

workpiece, cs is the specific heat, k is the heat conductivity of the material, Lm is the latent

heat of melting, θm is the melting temperature, v ≥ 0 is the velocity of the free interface.

Finally, we denote

ΩT := {(x, t) | x ∈ Ωs(t), t ∈ I}.

With the above mentioned notations and assuming no heat exchange between the workpiece

and the exterior through ∂Ωs(t), the classical mathematical formulation of the problem can

be formulated as follows:

Problem 3.4.1. Find the function θ(x, t) ∈ C
2
1(ΩT )∩C(ΩT ), representing the temperature

of the body, and the piecewise smooth surface ∂Ωs(t) representing the free boundary of the

solid domain Ωs(t) = {x; θ(x, t) < θm} such that the heat conduction equation is fulfilled

ρcs
∂θ

∂t
= ∇ · (k∇θ) in ΩT , (3.7)

with the following boundary conditions on ∂Ωs(t):

θ ≤ θm

jabs − k∇θ · ν ≥ 0 (3.8)

(θ − θm)(jabs − k∇θ · ν) = 0
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called the Signorini boundary conditions and

k∇θ · ν − ρLmv · ν = jabs, (3.9)

named the Stefan boundary condition.

As for the initial conditions, we set

θ(x, 0) = θ0(x) < θm, x ∈ Ω, (3.10)

Ωs(0) = Ω. (3.11)

Like in the one dimensional case, here also we try to interpret the boundary conditions (3.8)

by considering two sets of points on the boundary ∂Ωs(t):

1. All those points x on the boundary, at which

θ(x, t) < θm, (3.12)

i.e. the temperature on some part of the boundary is less than the melting temperature.

Cut edges behind the plasma jet or boundary surface, where no direct heat input takes

place, are two sets of boundary points at which the strict inequality (3.12) is satisfied. At

these points of the material the surface absorbs energy coming from the heat source and

completely conducts it into the workpiece. As a result, surface heating takes place. The

condition of complete conduction can be written as

jabs − k∇θ · ν = 0,

meaning that the heat input from the plasma jet is equal to the heat conducted into the

material.

2. Select all points x on the solid boundary such that

θ(x, t) = θm, (3.13)

i.e. the temperature at the points of boundary is equal to the melting temperature. The

area of the cut edges very close to the plasma jet is a good candidate for being part of the

boundary fulfilling (3.13). On this part of the boundary melting of the material takes place.

The boundary condition for melting can be expressed as

jabs − k∇θ · ν > 0,
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meaning that the energy input from the heat source is greater than the amount of heat

conducted. Indeed, this is clear, since part of the heat input is used for melting the material

(latent heat is absorbed) and only a part of it is conducted.

Summing up both cases, we obtain the following conditions on the boundary of the workpiece

θ(x, t) < θm ⇒ jabs − k∇θ · ν = 0,

θ(x, t) = θm ⇒ jabs − k∇θ · ν > 0,

which yields the Signorini boundary conditions (3.8).

The boundary condition (3.9) is referred to as the Stefan condition and follows from the

energy conservation law by its application to elementary volumes that contain both sides of

the boundary at the same time. More precisely, let us consider an element dγ of interface

that moves with velocity v, and denote by jabs the heat flux (per unit surface) absorbed

by the solid boundary and by qc the heat flux conducted in the solid phase. Latent heat is

absorbed at a rate −ρLmv · νdγ. The heat exchanged by the interface ∂Ωs(t) itself through

dγ is equal to (jabs − qc · ν)dγ. Applying the energy conservation law to the elementary

surface dγ, we obtain

(jabs − qc · ν) dγ = −ρLmv · νdγ.

This yields (dividing both sides by dγ and using Fourier’s law) the Stefan condition on the

moving interface

k∇θ · ν − ρLmv · ν = jabs, (3.14)

which is nothing else but the condition (3.9).

Remark 3.4.1. The heat flux density jabs and v are equal to zero on the part of boundary

where no heat input takes place. Therefore, on that part of boundary we have homogeneous

Neumann conditions.

Remark 3.4.2. The idea behind the Stefan boundary condition is relatively simple; the

total heat flux absorbed by the interface is divided into two parts: one part is conducted and

the other part is used to melt the material.

Note, that both Signorini and Stefan boundary conditions are non linear. At each fixed

instant t there exist two regions: in one region we have heating phase, on the other melting

phase. Moreover, these regions are not prescribed, resulting in a “free boundary problem”.
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Remark 3.4.3. The Problem 3.4.1 could be referred to as an one phase Stefan problem,

although there are some important differences between them. The one-phase Stefan prob-

lem represents a special case of the classical two-phase formulation, with the temperature

being constant in one of the phases, assuming the melting value. Here we have a different

situation. First of all, we can not assume the value of the temperature in the cavity (where

the melt is removed) equal to the melting temperature of the solid, because otherwise the

cut edges will continue to melt and move forward, which does not correspond to the real

situation of plasma cutting. Secondly, in our problem an additional heat source (plasma

beam) is applied on the surface of the moving front and the heat flux at the interface enters

the Stefan boundary condition which is not the case in classical one-phase Stefan problem.

3.5 Heat flux due to the plasma beam

A feature common to most plasma and laser cutting processes is that they occur as a result

of removing the material by melting and/or vaporization as intense laser light or a high-

temperature, partially ionized plasma gas stream interacts with the material surface. The

amount of heat generated by plasma arc or laser beam plays a very important role in the

kinetics of thermal cutting processes. Let us first present some earlier studies on the matter.

In relation to the measurable quantities (current voltage and power) Rosenthal [40] has

made a study of the plasma arc and found that the energy delivered to the workpiece Qw

represents about 65% of the total energy Qt supplied by the arc. We express it in formula

by

Qw = 0.65Qt = 0.65 · constant · V · Ic (3.15)

where V is the voltage drop in arc and Ic is the current intensity. Rosenthal discussed three

types of moving heat sources: point source, line source and plane source. For each type

of heat source he gave the relation between the temperature distribution and the heat Qp

delivered to the workpiece. For example, in the case of a point source the relation obtained

is the following

θ − θ0 =
Qp

2πk
e−λvξ e

−λvr

r
, (3.16)

where ξ = x− vt, 1
2λ = k

ρc and r is the radius of the plasma beam. Note, that this relation

is valid only below θ = θm.
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Arai et al. [2] described two categories of heat flux density measurements: i) indirect, mea-

surements made by calculating heat transfer rates, using fundamental theories together with

measurements of temperature and thermo physical properties, and ii) direct measurements

using heat flux density sensors placed in the thermal field.

In the model of Schulz et al. [47] the heat flux density absorbed at the boundary is propor-

tional to the laser beam intensity I via the absorption coefficient Ap:

jabs = −ApIez · ν, (3.17)

where ez · ν is the angle of incidence of the laser beam and jabs is, as usual, the heat flux

density absorbed by the workpiece. The laser beam intensity I itself is characterized by the

maximum intensity of the beam I0 and the beam radius r:

I = −I0(t)f
(

x− v0t

r

)

(3.18)

where v0 is the speed of feeding (the speed of the moving laser) and f is a given distribution

(0 ≤ f ≤ 1).

Bunting et al. [5] developed a relationship between the power density incident on a material

and the cut speed in terms of the thermal properties of the material. They used the

technique of Rosenthal on moving heat sources and got the relation

je
h

=
2k(θm − θ0)

r2
· 1

I(s)
, (3.19)

where je is the heat flux density emitted from the surface of the heat source, h is the

thickness of the material, s = vr
2α and I(s) has been calculated by authors and could be

expressed by

I(s) =

∫ 1

0
r′dr′

∫ 2π

0
exp(−sr′ cosφ)K0s

(

r
′2 − 2r′ sinφ+ 1

)1/2
dφ, (3.20)

where K0 is the zeroth order modified Bessel function of the second kind, α is the heat

diffusivity and the equation is written in cylindrical coordinates (r′, φ) with dimensionless

r′.

In studying the heat-affected zone during the laser cutting of stainless steel, Sheng et al.

[49] expressed the beam energy Eb(x, y) as a function of spatial coordinates via the beam

intensity I(x, y) of Gaussian type

Eb(x, y) =

∫

I(u, y)
du

v
=

∫

A(u, y)P

πr2v
exp

(

−u
2 + y2

r2

)

du, (3.21)
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where A is the absorptivity and P is the beam power.

In the following we describe a simple technique to calculate the heat flux density on the

absorbing surface.

Figure 3.1: Emitted and absorbed heat flux density

For the calculations it is convenient to discuss the topic not in terms of point source, but

in terms of incremental surface elements. Therefore consider, as illustrated in Figure 3.1,

a small emitting surface of area (length) ds, where the point Q is located. Further, let

us assume that the cylindrical surface of the plasma beam is emitting heat in the radial

direction, i.e. the heat flux density vector at any point of the beam surface has the direction

of the normal to the plasma surface at that point.1

We denote:

je – the heat flux density (the quantity of heat flowing across a unit area) emitted from the

1This assumption is made only for simplicity, the calculations can be also done for other flux density
distributions.
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arbitrary point Q of the surface of the plasma jet, jabs – the heat flux density absorbed at

the point P of the surface of the workpiece due to the emission from Q, r – the radius of

the plasma beam.

Having at our disposal the heat flux density je at the point Q and the radius r of the beam,

our aim is to calculate the heat flux density absorbed at the point P of the workpiece surface

(see Figure 3.1).

Let dq be the rate at which the energy leaves the incremental area ds. Then the average

flux jav
e leaving ds is defined as

jav
e =

dq

ds
, (3.22)

and the flux due to the point Q on the beam surface is defined to be

je = lim
ds→0

dq

ds
. (3.23)

The flux emitted from ds is then completely absorbed (assume the material is a black body)

by the surface of the material, more precisely, by the part of the surface which we denote

by ds′. Then analogously to (3.22), the average heat flux density jav
abs absorbed by ds′ is

jav
abs =

dq

ds′
(3.24)

and owing to (3.23) we obtain

jabs = lim
ds′→0

dq

ds′
= lim

ds′→0

jeds

ds′
(3.25)

For cylindrical heat source we have

ds = r∆ϕ, (3.26)

where ∆ϕ is the incremental angle between the lines connecting points P and P ′ with the

center of the beam (see Figure 3.1).

Now let ds′′ be an element of the spherical surface which we obtain by projecting ds′ normal

to the direction PQ (the direction that the point P makes with the emitting point Q). In

terms of the drawings in Figure 3.1, the flux at the point P due to the energy leaving the

point Q may be determined in terms of energy falling on the element ds′′ of the circular

surface (center at origin, radius R) which passes through P . We then obtain for the surface

element ds′′

ds′′ = ds′ cosψ as ∆ϕ→ 0, (3.27)
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where ψ is the angle between the normal of the workpiece surface at point P and the line

PQ.

Thus, we acquire

ds′ =
ds′′

cosψ
(3.28)

If, for example, the interface is represented via a smooth graph, y = f(x), then we can

express cosψ as

cosψ = − 1
√

x2 + f2(x)
· 1
√

1 + (f ′(x))2
·
(

x

f(x)

)

·
(

f ′(x)

−1

)

, (3.29)

where 1√
x2+f2(x)

(

x
f(x)

)

represents the unit normal vector to the surface ds′′ at point P (x, y)

and 1√
1+(f ′(x))2

(

f ′(x)
−1

)

denotes the unit normal to the graph y = f(x) at point P (x, y).

Inserting the expressions for ds′ from (3.28) and cosψ from (3.29) with ds′′ = R∆ϕ into

(3.25), and taking into account that ds′ → 0 is in fact equivalent to ∆ϕ→ 0, we obtain

jabs = −je · lim
∆ϕ→0

r∆ϕ
R∆ϕ

“√
x2+f2(x)

”−1

·
“√

1+(f ′(x))2
”−1

·(xf ′(x)−f(x))

= −jer
xf ′(x) − f(x)

(x2 + f2(x))
√

1 + (f ′(x))2
.

In general, the expression for cosψ can be written in the form

cosψ = n · νr,

where νr is the unit vector at the point P pointing in the direction of the emitting point Q.

Therefore, for general absorbing surfaces the heat flux on the moving front takes the form

jabs = je
r

dp
· n · νr, (3.30)

where dp is the distance between the point P and the center of plasma beam.
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Definitions and functional analysis

background

In this section we are going to introduce the function spaces that are used in the weak

formulation of the cutting model. Using the main concepts of Lebesgue functional spaces

we will define spaces commonly referred to as Sobolev spaces. The chapter includes only

a small part of the known theory for Sobolev spaces – just enough to establish the weak

formulation of the Stefan-Signorini problem.

4.1 Review of basic functional spaces

4.1.1 Banach spaces and Hilbert spaces

Let (X, d) be a metrical space.

Definition 4.1.1. (Complete spaces)

A sequence (xk)k∈N in X is called a Cauchy sequence if and only if

d(xk, xl) → 0 for k, l → ∞.

We say that (X, d) is a complete metrical space if every Cauchy sequence in X converges to

a limit in X.

26
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Definition 4.1.2. (Banach Spaces)

A normed space which is complete with respect to the induced metric is called a Banach

space.

Definition 4.1.3. (Partial derivatives)

Let u : R
n × R

+ → R be a differentiable function for any n ∈ N. Then we introduce the

following definitions:

uxi
=

∂u

∂xi
:= partial derivatives of u,

∇u = (. . . uxi
. . . ) := the space gradient of u,

u′ = ut =
∂u

∂t
:= the time derivative of u,

∂u

∂ν
= ∇u · ν := partial derivative of u in the direction of ν ∈ R

n,

Dαu =
∂|α|u

∂α1x1∂α2x2...∂αnxn
:= mixed partial derivative of u,

with a multi index α = (α1, ..., αn), αi ∈ Z, αi ≥ 0, |α| = α1 + α2 + ...+ αn.

For the rest of the chapter let n ∈ N and Ω ⊂ R
n be a open and bounded set.

Definition 4.1.4. (Spaces of Continuous Functions)

For any nonnegative integer m we define the spaces of continuous functions

C
m(Ω) := {u : Ω → R; u and all Dαu of orders |α| ≤ m are continuous on Ω}.

We abbreviate C
0(Ω) := C(Ω) and set

C
∞(Ω) :=

∞
⋂

m=0

C
m(Ω).

The norm of a continuous function u is defined as

‖u‖
Cm(Ω) :=

∑

|α|≤m

‖Dαu‖
C0(Ω),

where

‖u‖C0(Ω) := sup
x∈Ω

|u(x)|.
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Definition 4.1.5. (Spaces of continuous functions with compact support)

We denote by C0(Ω) and C
∞
0 (Ω) the subsets of C(Ω) and C

∞(Ω), respectively, elements of

which are functions with compact support in Ω. By support of the function u we mean

supp u := {x ∈ Ω : u(x) 6= 0},

and if supp u ⊂⊂ Ω then we say that u has a compact support in Ω.

Definition 4.1.6. (Spaces of Hölder Continuous Functions)

For 0 < λ ≤ 1 we define C
m,λ(Ω) to be the subspace of C

m(Ω) consisting of those functions

u for which there exists a constant h such that

|Dαu(x) −Dαu(y)| ≤ h|x− y|λ, x, y ∈ Ω,

for 0 ≤ α ≤ m. The functions from the space C
m,λ(Ω) are called Hölder continuous and

Lipschitz continuous for the case λ = 1 and m = 0.

The constant h is called the Hölder constant. The space C
m,λ(Ω) is then a Banach space

with norm given by

‖u‖Cm,λ(Ω) = ‖u‖Cm(Ω) + max
0≤|α|≤m

sup
x,y∈Ω,x 6=y

|Dαu(x) −Dαu(y)|
|x− y|λ .

Definition 4.1.7. (Inner Product Spaces and Hilbert Spaces)

Let X be vector space and (·, ·) the inner product defined on X × X. Then X is called an

inner product space and the norm on this space may be defined as

‖x‖X =
√

(x, x)X, x ∈ X.

If X is complete under this norm, then it is called a Hilbert space.

Denote by X
′ the normed dual of the space X with the norm

‖x′‖X′ = sup
{

|x′(x)| : ‖x‖X ≤ 1
}

.

The following theorem shows that there exists an isometry between a Hilbert space X and

its dual X
′.

Theorem 4.1.1. (Riesz Representation Theorem)

Let X be a Hilbert space. Then any continuous linear functional x′ from the space X
′ can

be uniquely represented as

x′(x) = (y, x) for some y ∈ X.
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In this case

‖x′‖X′ = ‖x‖X

According to the Riesz Representation Theorem, we can identify any Hilbert space with its

normed dual.

4.1.2 Basic concepts of Lebesgue spaces

Let Ω be a Lebesgue-measurable domain in R
n and let p be a positive real number. We

denote by L
p(Ω) the class of all measurable functions, defined on Ω:

L
p(Ω) :=

{

u : ‖u‖Lp(Ω) <∞
}

, (4.1)

where the norm ‖u‖Lp(Ω) is defined in the following way: for 1 ≤ p <∞

‖u‖Lp(Ω) :=





∫

Ω

|u(x)|pdx





1

p

, (4.2)

and for p = ∞ we set

‖u‖L∞(Ω) := ess sup
x∈Ω

{|u(x)|} . (4.3)

The elements of L
p(Ω) are actually equivalence classes of measurable functions satisfying

(4.2) or (4.3), because we can identify all functions in L
p(Ω) which are equal almost every-

where on Ω.

The following theorem gives some useful properties of L
p-spaces over domains with finite

volume. The proof of the theorem may be found in [1].
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Theorem 4.1.2. Assume 1 ≤ p ≤ q ≤ ∞. Then

1. L
p(Ω) is a Banach space.

2. If u ∈ L
q(Ω), then u ∈ L

p(Ω) and

‖u‖Lp(Ω) ≤ (vol(Ω))
( 1

p
− 1

q
) ‖u‖Lq(Ω). (4.4)

3. As a consequence of (4.4) we get a useful embedding result for L
p-spaces, namely

L
q(Ω) ↪→ L

p(Ω). (4.5)

4. If p <∞ then L
p(Ω) is separable.

5. L
p(Ω) is reflexive if and only if 1 < p <∞.

4.2 Sobolev spaces

4.2.1 Weak (generalized) derivatives

The classical definition of derivative contains information about the function only near the

given point. Of special importance is the notion of weak or distributional derivatives which

does not care about point-wise values. Therefore, we will consider derivatives that can be

interpreted as functions in the Lebesgue spaces. We know that point-wise values of func-

tions in Lebesgue spaces are irrelevant and these functions are determined only by their

global behaviour. The weak derivative will be used in the development of the variational

formulation of the cutting model.

Definition 4.2.1. A function u is said to be locally integrable on Ω, if it is defined on Ω

almost everywhere and u ∈ L
1(K) for every compact K lying in the interior of Ω. The

locally integrable function space is denoted by L
1
loc(Ω).

Now we are ready to define the notion of weak derivative.

Definition 4.2.2. The function u ∈ L
1
loc(Ω) possesses a weak derivative, if there exists a

function v ∈ L
1
loc(Ω) such that

∫

Ω

v(x)φ(x)dx = (−1)|α|
∫

Ω

u(x)Dαφ(x)dx for all φ ∈ C
∞
0 (Ω).

We denote the weak derivative of u by Dα
wu and define Dα

wu=v (if such a v exists, of course).
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4.2.2 Introduction to Sobolev spaces

The Sobolev spaces which play an important role in the variational formulation of partial

differential equations are built on the function spaces L
p(Ω) introduced in the previous

section. The idea is to generalize the Lebesgue norms and spaces to include weak derivatives.

Let again Ω be an open subset of R
n.

Definition 4.2.3. Let m be a non-negative integer and 1 ≤ p ≤ ∞. We define the Sobolev

norm ‖ · ‖m,p for any function u ∈ L
1
loc(Ω) in the following form:

‖u‖m,p =





∑

0≤|α|≤m

‖Dα
wu‖p

Lp(Ω)





1

p

if 1 ≤ p <∞, (4.6)

‖u‖m,∞ = max
0≤|α|≤m

‖Dα
wu‖L∞(Ω) if p = ∞, (4.7)

where we assume that the weak derivatives Dα
wu of u exist for all |α| ≤ m.

The Sobolev norm defines a norm on any vector space of functions provided we identify all

functions in the case they are equal almost everywhere in Ω.

Definition 4.2.4. For any positive integer m and 1 ≤ p ≤ ∞ we define the Sobolev spaces

W
m,p(Ω) :=

{

u ∈ L
1
loc : ‖u‖m,p <∞

}

.

Clearly W
0,p(Ω) = L

p(Ω). For the finite element approximation of differential equations the

following space is of great importance:

W
m,p
0 (Ω) ≡ the closure of C

∞
0 (Ω) in the space W

m,p(Ω).

For an arbitrary integer m we get the following obvious chain of embeddings:

W
m,p
0 (Ω) ↪→ W

m,p(Ω) ↪→ L
p(Ω).

The spaces W
m,p(Ω) were first introduced by Sobolev [50], [51].

4.2.3 Some useful properties of Sobolev spaces

In this section we will present, mainly without proofs, some useful properties (useful for our

further considerations) enjoyed by functions from Sobolev spaces. We will provide results

in their general formulations. The special cases used in finite element formulations can be

easily obtained with very simple calculations.

Let again Ω ⊂ R
n be an open, bounded domain with ∂Ω ∈ C

0,1.
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Theorem 4.2.1. The Sobolev space W
m,p(Ω) is a Banach space.

Proof. For the proof we refer to [1]. 2

Theorem 4.2.2. (Sobolev Embedding Theorem)

Assume m, l ∈ N and p, q ∈ [1,∞]. Then the following statements hold:

1. If m ≥ l and m− d
p > l − d

q , then W
m,p(Ω) is continuously embedded in W

l,q(Ω), i.e.

there exists a constant c, such that for all u ∈ W
m,p(Ω)

‖u‖l,q ≤ c · ‖u‖m,p.

The number m− d
p is called the Sobolev number.

2. If m > l and m− d
p > l − d

q , then the embedding is compact.

3. If m− d
p > k + α, then

‖u‖
Ck,α(Ω) ≤ c · ‖u‖m,p ∀u ∈ W

m,p(Ω)

i.e. the space Wm,p(Ω) is continuously embedded in C
k,α(Ω).

Proof. For the proof we refer to [1]. 2

Sobolev functions can not be in general evaluated over lower-dimensional subsets, i.e. sub-

sets having measure equal zero.
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Theorem 4.2.3. (Trace Theorem)

Using the notations of the previous theorem, we assume that m > l and m − d
p > l − d−r

q .

Then there exists a continuous linear embedding γ : W
m,p(Ω) → W

l,q(S), where S is a

smooth (d− r) dimensional sub-manifold of Ω. Thus the estimate

‖γ(u)‖l,q,s ≤ c · ‖u‖m,p ∀u ∈ W
m,p(Ω)

holds.

Proof. The details of the proof one can find in [1]. 2

The embedding operator γ is then called the trace operator. For example, if u ∈ C
∞(Ω),

then the trace operator γ is determined as γ(u) = u.

For our future discussions it is useful to introduce the notation of Sobolev semi-norms.

Definition 4.2.5. Let m be a non-negative integer and u ∈ W
m,p(Ω). We define the Sobolev

semi-norm | · |m,p

|u|m,p =





∑

|α|=m

‖Dα
wu‖p

Lp(Ω)





1

p

if 1 ≤ p <∞, (4.8)

|u|m,∞ = max
|α|=m

‖Dα
wu‖L∞(Ω) if p = ∞. (4.9)

4.3 Spaces of vector-valued functions

Let X be a Banach space, (a, b) an open interval in R and dt the Lebesgue measure over

(a, b).

Definition 4.3.1. A function u : [a, b] → X is called Bochner measurable, if there exists a

sequence of simple functions {uk}k∈N such that

lim
k→∞

uk(t) = u(t) for almost all t ∈ [a, b].

Definition 4.3.2. If additionally

lim
k→∞

b
∫

a

‖u(t) − uk(t)‖Xdt = 0
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then the function u is called Bochner-integrable and the integral

b
∫

a

u(t)dt = lim
k→∞

b
∫

a

uk(t)dt

is said to be the Bochner-integral of u.

Definition 4.3.3. Assume that −∞ < a < b < ∞ and the function u : [a, b] → X is

Bochner-measurable.

1. Define the function space

C(a, b; X) := {u : [a, b] → X continuous} ,

with the norm

‖u‖C(a,b;X) := max
t∈[a,b]

‖u(t)‖X

2. For 1 ≤ p <∞ we define the space of (classes) functions

L
p(a, b; X) :=

{

u : [a, b] → X Bochner-measurable; ‖u‖Lp(a,b;X) <∞
}

with

‖u‖Lp(a,b;X) :=





b
∫

a

‖u(t)‖p
X
dt





1

p

.

3. For p = ∞ the space of almost everywhere over (a, b) bounded functions (classes of

functions) is defined

L
∞(a, b; X) :=

{

u : [a, b] → X Bochner-measurable; ‖u‖L∞(a,b;X) <∞
}

with

‖u‖L∞(a,b;X) := inf
a.a.t

‖u(t)‖X.

Theorem 4.3.1. Let −∞ < a < b < ∞ and X is a Banach space. Then the spaces
(

L
p(a, b; X), ‖ · ‖Lp(a,b;X)

)

and
(

C(a, b; X), ‖ · ‖C(a,b;X)

)

are Banach spaces.

Proof. See details of the proof in [24]. 2

Further we define the weak derivative of a Bochner-integrable function.
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Definition 4.3.4. Let (X, (·, ·)) be a separable Hilbert space, 0 < T <∞ and u ∈ L
1(0, T ; X).

A function v ∈ L
1(0, T ; X) is called the weak derivative of u if

T
∫

0

u(t)ϕ′(t)dt = −
T
∫

0

v(t)ϕ(t)dt ∀ϕ ∈ C
∞
0 (0, T ).

Then we write u′ = v (if such a v exists, of course).

Definition 4.3.5. We call every continuous linear mapping of D((a, b)) (space of distribu-

tions over (a, b)) into X a vectorial distribution over (a, b) with values in a Banach space

X.

Coming back to our problem, we define by θ(t) the function x→ θ(x, t) and let us consider

a bilinear form θ, ϕ→ a(θ, ϕ) defined via

a(θ, ϕ) =

∫

Ωs(t)
∇θ · ∇ϕdx,

which is a continuous, symmetric and coercive form on H
1(Ωs(t)) × H

1(Ωs(t)), where

H
1(Ω) ≡ W

1,2(Ω).

Next, we would like to define the spaces of admissible functions for the Stefan-Signorini

problem. Let V be the functional space defined as follows:

V =

{

θ | θ ∈ L
2
(

0, T ; H1(Ωs(t)
)

, θ′ =
∂θ

∂t
∈ L

2
(

0, T ;
(

H
1(Ωs(t)

)′
)

}

. (4.10)

Provided with the scalar product

(θ, ϕ)V := (θ, ϕ)L2(0,T ;H1(Ωs(t)) + (θ′, ϕ′)
L2(0,T ;(H1(Ωs(t))′), (4.11)

V is a Hilbert space. Here we employed the result of Theorem 3 from [23] pp.166-167, which

states that the spaces L
2
(

0, T ; H1(Ωs(t)
)

and L
2
(

0, T ; L2(Ωs(t)
)

endowed with the scalar

products

(θ, ϕ)L2(0,T ;H1(Ωs(t)) :=

∫ T

0
(θ(t), ϕ(t))H1(Ωs(t)dt

and

(θ, ϕ)L2(0,T ;L2(Ωs(t)) :=

∫ T

0
(θ(t), ϕ(t))L2(Ωs(t)dt

have a Hilbert space structure. The appropriate norm is then defined as

‖u‖V :=





T
∫

0

‖u(t)‖2
H1(Ωs(t)dt+

T
∫

0

‖u′(t)‖2
(H1(Ωs(t))′dt





1

2
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=







T
∫

0

∫

Ωs(t)

|∇u|2dxdt +

T
∫

0

(

sup
v∈H1(Ωs(t))

< u′(t), v >

‖v‖H1(Ωs(t))

)2

dt







1

2

.

Next we define a closed subspace V0 of V in the following form:

V0 =
{

θ | θ ∈ V, θ(0) = θ0, where θ0 is a given function in L
2(Ω)

}

. (4.12)

Recalling that Sobolev functions can not be in general evaluated over lower-dimensional

subsets, i.e. subsets having measure zero, it might look like the condition “θ(0) = θ0” makes

no sense. Fortunately, the following important embedding result makes the definition of the

space V0 meaningful.

Theorem 4.3.2. Any function θ ∈ V is almost everywhere equal to a continuous function

from [0, T ] to L
2(Ωs(t)). Moreover,

L
2
(

0, T ; H1(Ωs(t)
)

∩ H
1
(

0, T ;
(

H
1(Ωs(t)

)′
)

⊂ C
(

0, T ; L2(Ωs(t)
)

, (4.13)

the space C
(

0, T ; L2(Ωs(t)
)

being equipped with the norm of uniform convergence.

Proof. The theorem has been proved by Dautrey and Lions in [24]. 2



Chapter 5

Weak formulation of the problem

5.1 Variational inequalities

In the theory of partial differential equations, the study of variational inequalities occu-

pies a significant position, because of the importance which it assumes for various ques-

tions in mathematical modelling and numerical simulations of several real world problems.

Variational inequalities arise, among other places, in the areas of elasticity, control and

optimization, heat transfer, diffusion, etc.

The first source for the establishment of the theory of variational inequalities was the

paper by Fichera (1964) on the analysis of Signorini problem in the theory of elasticity,

[14]. Later the theory of variational inequalities was successfully developed by J.-L.Lions,

G.Stampacchia and their students, [24],[25], etc. In a series of boundary value problems

the solution has to satisfy some additional physical conditions ordered by the model. A

good representative of such kind of problems is the obstacle problem. In addition to gov-

erning equation and standard boundary conditions, an obstacle constraint is imposed on

the boundary of the domain of interest. Obstacle constraint says that, in addition, the

boundary of the domain must lie above some given obstacle. This leads us to the concept

of variational inequalities.

Mathematically speaking, let X be a Hilbert space, X ′ be the dual of X and let the pairing

between X and X ′ be denoted by 〈·, ·〉. Suppose that a closed and convex set K in X is

given and let a(u, v) be a bilinear continuous form on X. Finally, let the function f be an

element of X ′. We consider

37
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Problem 5.1.1. (Variational Inequality)

Find u ∈ K such that

a(u, v − u) ≥ 〈f, v − u〉, ∀v ∈ K. (5.1)

It is worth to mention that when K ≡ X, the inequality (5.1) turns to be

a(u, v − u) = 〈f, v − u〉, ∀v ∈ K,

which is a variational problem well investigated by Lax and Milgram.

We list some important results concerning the solvability of the variational inequality (5.1):

1. If K is a closed, convex set of X and a(u, v) is coercive, then the Problem 5.1.1 has

a unique solution, [25] and [28].

2. If instead of coercivity we assume that a(u, v) ≥ 0 for v ∈ X, then the set of all

solutions of Problem 5.1.1 is a (possibly empty) closed convex set, [25].

3. If the condition a(u, v) ≥ 0 still holds and K is bounded, then there exists a solution

to the Problem 5.1.1, [25].

4. If K is not bounded, then a necessary and sufficient condition that the solution of

Problem 5.1.1 exists is that there is a constant R > 0 such that a function uR ∈ KR,

where KR = K ∩BR and BR is the closed ball of radius R and center 0 ∈ R
n, satisfies

|uR| < R,

where uR is the solution of (5.1) with a small modification, i.e. in the inequality (5.1)

we just replace K with KR and u with uR. This result is taken from [28].

5.1.1 Signorini problem and variational inequalities

There is a very close connection between variational inequalities and free boundary prob-

lems. Of course, not every free boundary problem allows us to reduce it to variational

inequality. However, a large variety of real world problems dealing with heat transfer, or

almost all obstacle problems can be reformulated into variational inequalities.

Our cutting model belongs to the subclass of problems which are relatively easy to convert

into variational inequality. For our convenience, in the rest of the work we will abbreviate
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the notation for the time dependent solid domain Ωs(t) by writing just Ωt instead and

denoting its boundary by ∂Ωt.

Now we are going to show how the nonlinear Signorini boundary conditions (3.8) make it

possible to rewrite the system (3.7)-(3.11) in the form of variational inequality1. For this

purpose we introduce the set K ⊂ H
1(Ωt) as follows

K =
{

ϕ | ϕ ∈ H
1(Ωt), ϕ ≤ 0 on ∂Ωt

}

, (5.2)

where by writing ’ϕ ≤ 0 on ∂Ωt’ we actually mean γϕ ≤ 0 a.e. on ∂Ωt with γϕ denoting

the trace of the function ϕ on ∂Ωt.

Lemma 5.1.1. The introduced set K is a closed convex nonempty subset of H
1(Ωt).

Proof. The proof of the convexity of K is trivial. If we take a sequence {φn} ⊂ K such that

φn → φ in H
1(Ωt), then

‖γφn − γφ‖L2(∂Ωt) ≤ c · ‖φn − φ‖H1(Ωt) → 0,

where we used the statement of trace theorem 4.2.3 from Chapter 3 on continuous embedding

of H
1(Ωt) into L

2(∂Ωt). From φn ∈ K follows γφn ≤ 0 a.e. on ∂Ωt. Thus, γφ ≤ 0 a.e. on

∂Ωt which means that φ ∈ K and therefore, we obtain that the set K is closed.

From the definition of K it follows immediately that 0 ∈ K (more precisely, H
1
0(Ωt) ⊂ K),

which shows that K is not empty. 2

For the functions θ ∈ V we can define their trace on the lateral boundary Γt := ∂Ωt × I of

Qt := Ωt×I. For every fixed domain Ωt it is known (see [25]) that θ|Γt ∈ L
2(0, T ; H

1

2 (∂Ωt)).

The latter allows us to define closed convex subsets B and B0 in the following way

B = {θ | θ ∈ V, θ(t) ∈ K a.e. in [0, T ]} (5.3)

B0 = {θ | θ ∈ V0, θ(t) ∈ K a.e. in [0, T ]} (5.4)

Let us consider the following variational problem.

Problem 5.1.2. Find θ ∈ B0 such that
∫ T

0

∫

Ωt

θ′(ϕ− θ)dxdt+

∫ T

0

∫

Ωt

∇θ · ∇(ϕ− θ)dxdt ≥
∫ T

0

∫

∂Ωt

jabs(ϕ− θ)dγdt (5.5)

for all ϕ ∈ B, jabs ∈ H
1(Rn) ∩ L

∞(Rn).

1For convenience we consider all material parameters to be equal to one and the melting temperature
θm = 0.
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Lemma 5.1.2. The Problem 5.1.2 is equivalent to the problem (3.7)-(3.8)+(3.10)-(3.11),

i.e heat conduction equation with Signorini boundary conditions.

Proof. First we show that the Problem 5.1.2 implies the Signorini problem (3.7)-(3.8)+(3.10)-

(3.11). Indeed, since θ ∈ B0, it satisfies by definition of B0

θ(x, 0) = θ0(x), (5.6)

and

θ ≤ 0 on ∂Ωt. (5.7)

Now let φ ∈ D(Ωt × (0,∞)). In (5.5) we “formally” take ϕ = θ + φ

∫ T

0

∫

Ωt

θ′φdxdt+

∫ T

0

∫

Ωt

∇θ · ∇φdxdt ≥
∫ T

0

∫

∂Ωt

jabsφdγdt. (5.8)

Taking ϕ = θ − φ yields

−
∫ T

0

∫

Ωt

θ′φdxdt−
∫ T

0

∫

Ωt

∇θ · ∇φdxdt ≥ −
∫ T

0

∫

∂Ωt

jabsφdγdt. (5.9)

Combining inequalities (5.8) and (5.9) and taking into account that due to the compact

support of φ in Ωt the right hand sides of both equations vanish, we obtain

∫ T

0

∫

Ωt

θ′φdxdt+

∫ T

0

∫

Ωt

∇θ · ∇φdxdt = 0, (5.10)

which, after integration by parts, reduces to

∫ T

0

∫

Ωt

(

θ′ − ∆θ
)

φdxdt = 0. (5.11)

Therefore, in the sense of “distributions on Ωt”, θ satisfies the heat equation

∂θ

∂t
− ∆θ = 0 in Ωt × (0, T ). (5.12)

Applying Green’s formula to the left hand side of (5.5), we obtain

∫ T

0

∫

Ωt

(θ′−∆θ)(ϕ−θ)dxdt+
∫ T

0

∫

∂Ωt

∇θ ·ν(ϕ−θ)dγdt ≥
∫ T

0

∫

∂Ωt

jabs(ϕ−θ)dγdt (5.13)

Together with (5.12), the inequality (5.13) yields

∫ T

0

∫

∂Ωt

(jabs −∇θ · ν)(ϕ− θ)dγdt ≤ 0. (5.14)
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Now, let φ be an arbitrary function in K. Then the function ϕ = θ+sφ ∈ K for any positive

s and we are allowed to substitute it into (5.14):

∫ T

0

∫

∂Ωt

(jabs −∇θ · ν)φdγdt ≤ 0, ∀φ ∈ K. (5.15)

Since the convex cone K is dense in L
2
−(∂Ωt) :=

{

v ∈ L
2(∂Ωt), v ≤ 0 a.e. on ∂Ωt

}

, the last

inequality leads to

jabs −∇θ · ν ≥ 0 a.e. on ∂Ωt. (5.16)

If we now “formally” take in (5.5) ϕ = 0 and ϕ = 2θ, we obtain

ϕ = 0 : −
∫ T

0

∫

Ωt

θ′θdxdt−
∫ T

0

∫

Ωt

∇θ · ∇θdxdt ≤ −
∫ T

0

∫

∂Ωt

jabsθdγdt, (5.17)

or equivalently

∫ T

0

∫

Ωt

θ′θdxdt+

∫ T

0

∫

Ωt

∇θ · ∇θdxdt ≥
∫ T

0

∫

∂Ωt

jabsθdγdt. (5.18)

Analogously

ϕ = 2θ :

∫ T

0

∫

Ωt

θ′θdxdt+

∫ T

0

∫

Ωt

∇θ · ∇θdxdt ≤
∫ T

0

∫

∂Ωt

jabsθdγdt. (5.19)

From (5.18) and (5.19) it follows that

∫ T

0

∫

Ωt

θ′θdxdt+

∫ T

0

∫

Ωt

∇θ · ∇θdxdt =

∫ T

0

∫

∂Ωt

jabsθdγdt. (5.20)

Assuming enough regularity on θ, we can perform integration by parts in (5.20) again and

obtain
∫ T

0

∫

Ωt

(

θ′ − ∆θ
)

θdxdt =

∫ T

0

∫

∂Ωt

(jabs −∇θ · ν) θdγdt. (5.21)

The heat equation (3.7) should be fulfilled, thus from (5.21) we deduce

∫ T

0

∫

∂Ωt

(jabs −∇θ · ν) θdγdt = 0. (5.22)

Since θ ≤ 0 on the boundary ∂Ωt and the condition (5.16) is fulfilled, we can state that

θ (jabs −∇θ · ν) = 0 on ∂Ωt, (5.23)

which shows that under some regularity conditions on θ the Problem 5.1.2 implies the

Signorini problem, i.e. heat equation plus Signorini boundary conditions.
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To complete the proof of the lemma, it remains to show that the inequality (5.5) is a

consequence of heat equation together with Signorini boundary constraints. Indeed, we

multiply both sides of the homogeneous heat equation by ϕ − θ and integrate over the

time-space domain (0, T ) × Ωt:

∫ T

0

∫

Ωt

θ′(ϕ− θ)dxdt+

∫ T

0

∫

Ωt

∆θ(ϕ− θ)dxdt = 0.

An integration by parts in the second integral yields

∫ T

0

∫

Ωt

θ′(ϕ− θ)dxdt+

∫ T

0

∫

Ωt

∇θ · ∇(ϕ− θ)dxdt−
∫ T

0

∫

∂Ωt

∇θ · ν(ϕ− θ)dγdt = 0.

Now we make use of the Signorini constraint

jabs −∇θ · ν ≥ 0

and substitute it in above integral equation. We get

∫ T

0

∫

Ωt

θ′(ϕ− θ)dxdt+

∫ T

0

∫

Ωt

∇θ · ∇(ϕ− θ)dxdt ≥
∫ T

0

∫

∂Ωt

jabs(ϕ− θ)dγdt,

which is the desired variational inequality of Problem 5.1.2. The proof of lemma is complete.

2

Another equivalent formulation of the problem can be written in the following way:

Problem 5.1.3. Find θ(t) ∈ K for t ∈ I such that

∫

Ωt

θ′(ϕ− θ)dxdt+

∫

Ωt

∇θ · ∇(ϕ− θ)dx ≥
∫

∂Ωt

jabs(ϕ− θ)dγ (5.24)

for all ϕ ∈ K, θ(0) = θ0.

Remark 5.1.1. The condition on θ′ forcing it to belong to the space L
2
(

(0, T ;
(

H
1(Ωt)

))

seems to be too restrictive. It will be useful to consider a more general weak formulation.

We observe that if θ is a solution of (5.3),(5.4),(5.5) and ϕ ∈ B, then

∫ T

0

∫

Ωt

θ′(ϕ− θ)dxdt +

∫ T

0

∫

Ωt

∇θ · ∇(ϕ− θ)dxdt

=

∫ T

0

∫

Ωt

(ϕ+ θ − ϕ)′(ϕ− θ)dxdt +

∫ T

0

∫

Ωt

∇θ · ∇(ϕ− θ)dxdt
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It follows

∫ T

0

∫

Ωt

ϕ′(ϕ− θ)dxdt +

∫ T

0

∫

Ωt

∇θ · ∇(ϕ− θ)dxdt (5.25)

≥
∫ T

0
(ϕ′ − θ′)(ϕ − θ)dt +

∫ T

0

∫

∂Ωt

jabs(ϕ− θ)dγdt

=
1

2
‖ϕ(T ) − θ(T )‖2 − 1

2
‖ϕ(0) − θ0‖2 +

∫ T

0

∫

∂Ωt

jabs(ϕ− θ)dγdt

Here we used the fact that if a function v belongs to V, then the relation 〈v′, v〉 = 1
2

d
dt‖v‖2

holds, [24]. If we now choose the function ϕ from the space B0, then the term −1
2‖ϕ(0) −

θ0‖2 can be also avoided. Note that in the Problem (5.25) we require only that θ ∈
L

2(0, T ; H1(Ωt)), nothing is said about θ′.

5.2 Level set formulation

The technique we are going to apply for the investigation of the condition (5.30) is the level-

set theory first introduced by Sethian and Osher [38]. Below we present some background

material on the level set approach.

The main idea of level-set method is to embed the evolving front ∂Ωt into a surface, the

level-set surface, which has the property that its zero-level set always yields the desired

moving interface. Thus, in order to find the unknown interface at any time t, we only need

to locate the set for which the level-set surface vanishes (see Figure 5.1). The idea of Osher

and Sethian is that instead of moving the initial front (circular curve left in the figure),

which can do all sorts of weird things, one tries and instead moves the level set surface

(right in the figure). In other words, the level set function expands, rises, falls, and does all

the work. To find out where the front is, one should find the zero level set of the surface

only.

Let Γ0 be an initial interface bounding some open domain Ω0. We wish to investigate and

compute its motion under some velocity field which depends on several quantities. In other

words, at any time instant t we aim to find a closed moving interface Γt in R
n with co-

dimension one, which encloses our domain of interest Ωt. The idea of level-set approach is

to introduce a scalar function (level-set function) φ(x, t), x ∈ R
n, t ∈ R

+, such that at any
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Figure 5.1: Initial curve (left) is embedded into a level-set surface (right).

arbitrary time instant t the zero-level set of φ(x, t) is the desired curve Γt, i.e.

Γt = {x : φ(x, t) = 0}.

Conversely, we can associate with Ωt an auxiliary function φ(x, t), which is Lipschitz con-

tinuous and satisfies the following conditions:















φ(x, t) > 0 in Ωt

φ(x, t) = 0 on Γt

φ(x, t) < 0 in R
n − Ω̄t.

It is clear that moving the interface is equivalent to updating the level set function φ.

What remains is to introduce an equation which will describe the motion of the level-set

surface. For the derivation of this equation we follow the steps given in [34].

To obtain the equation for the level-set function we consider some level-set φ(x, t) = C.

The trajectory x(t) of a particle located on this level-set should satisfy the equation

φ(x(t), t) = C. (5.26)

After differentiating the equation (5.26) we get

φt + x′(t)∇φ = 0. (5.27)
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Finally, denoting by w := x′(t) the particle velocity, we arrive at the level-set equation

φt + w · ∇φ = 0. (5.28)

Usually, the moving interface Γt has a prescribed velocity w, which might be a function of

space variable x, time variable t, mean curvature, normal direction, etc. In our case this

velocity also depends on the gradient of the temperature of the material, but we will address

this issue a bit later.

There are certain advantages why we employ level set theory for our goal to capture the

propagating interface (cutting front). The advantages are:

• Topological changes in the propagating front are handled properly. The position of

the cutting front at time instant t is given by the zero level set of φ. With level set

approach we avoid forcing this set to be a single curve. The curve is allowed to break

(during cutting) or merge (during welding) as the time advances. In both cases the

level set function remains single valued.

• The level set equation is a hyperbolic equation of first order. Therefore, we can apply

all techniques of the theory of conservation laws in order to analyse the equation on

solvability. For obtaining results on existence of unique weak solution, one is free to

employ the concepts of viscosity solutions and method of characteristics. In addition,

the level set equation can be accurately approximated by computational schemes

borrowed from the numerical analysis of hyperbolic equations. For example, level set

method is well adapted to applications of adaptive strategies, which lead to Narrow

band level set methods and Fast marching methods [41].

• Main quantities such as domain, velocity, normal, etc. are easily expressible by level

set function. This is a very important advantage as we will see later in Section 5.2.2.

5.2.1 Distance function

In addition to the level-set equation (5.28) we need an initial condition for φ as well. Taking

into account the fact that the level-set function φ(x, t) is positive for x ∈ Ω, negative for

x /∈ Ω and equal zero on the domain boundary Γ0, it is natural to choose the signed distance

function as a good candidate for the initial value φ(x, t = 0). Thus, the initial condition for
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(5.28) takes the form

φ(x, 0) =















d(x) for x ∈ Ω

0 for x ∈ Γ0

−d(x) for x /∈ Ω

(5.29)

where d(x) is the distance from the point x to the initial curve Γ0. An example of a distance

function for a circle in the square is illustrated in Figure 5.2.

Figure 5.2: Distance Function for Circle

5.2.2 Stefan condition as level-set equation

Let assume at the moment that the temperature distribution θ in the workpiece is given.

The problem of finding the second unknown of the cutting problem, namely the geometry

of the cutting front, can be formulated as follows:
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Problem 5.2.1. Find a family of moving interfaces {∂Ωt}t∈(0,T ) such that

k∇θ · ν − ρLmv · ν = jabs on ∂Ωt (5.30)

∂Ωt|t=0 = ∂Ω0 (5.31)

In order to apply the level-set theory shortly described in the previous section, we suppose

that the moving interface Γt := ∂Ωt, which bounds the domain Ωt occupied by the work-

piece, is built into a level-set function φ(x, t). Now we redefine the terms occurring in the

Stefan condition with the help of the level-set function φ.

The workpiece: the domain Ωt := Ωs(t) is represented as

Ωt = {x; φ(x, t) > 0} .

The cutting interface : the advancing cut front Γt is given by

Γt = {x; φ(x, t) = 0} .

The unit normal: the unit outward normal ν to Γt has the following level-set representa-

tion

ν =
∇φ
|∇φ| .

The heat flux: for the absorbed heat flux jabs we use its expression (3.30) derived in

Section 3.5

jabs = jer · ν · νr = jer
∇φ · νr

|∇φ| .

The velocity of interface: the velocity of the moving interface in the normal direction

can be represented as

v · ν = −
∂φ
∂t

|∇φ| .

Indeed, for two dimensional domain (analogy works for any dimension) the interface is given

by

φ(x, y, t) = 0. (5.32)

By chain rule,
dφ

dt
=
∂φ

∂x
· dx
dt

+
∂φ

∂y
· dy
dt

+
∂φ

∂t
= 0. (5.33)

Using the definitions ∇φ =
(

∂φ
∂x ,

∂φ
∂y

)

and v =
(

dx
dt ,

dy
dt

)

we arrive to

v · ∇φ = −∂φ
∂t

(5.34)



48 Chapter 5: Weak formulation of the problem

But

v · ∇φ = v · ∇φ
|∇φ| |∇φ| = v · ν|∇φ|

Thus

v · ν = −
∂φ
∂t

|∇φ| .

The terms in Stefan condition (5.30) are already defined by their level-set representation.

All that remains is to substitute their expressions in (5.30).

k∇θ · ∇φ
|∇φ| + ρLm

∂φ
∂t

|∇φ| = jer
∇φ · νr

|∇φ| ,

∂φ

∂t
+

1

ρLm
(k∇θ − jerνr) · ∇φ = 0. (5.35)

We can easily see that the last equation is simply the level-set equation with the velocity

of convection equal to

w :=
1

ρLm
(k∇θ − jerνr) . (5.36)

Note, that w is the velocity on the advancing front and is equal to something arbitrary

elsewhere. The crucial point here is that not only the moving interface is embedded in a

higher dimensional level set function, but also the velocity w itself is embedded in a level

set function. Therefore, the velocity w has to be extended to other level sets in such a way

that the new extension velocity matches the given velocity on the moving front itself. The

important point here is that the extension should be done in a continuous manner in order

to avoid a development of any discontinuity of the level set function. One way to construct

an extension velocity is to extrapolate the velocity from the front to the entire domain, [41].

The idea is to define the velocity of every point on the mesh to be equal to the velocity

of the closest point on the moving front (zero level set). For more details on the above

mentioned method we refer to the work of [41] and references therein. In this study one

can find various other approaches concerning the extension velocity as well.

Remark 5.2.1. The velocity of propagating interface depends on the heat flux absorbed by

the material at the cutting front (or emitted by the plasma beam), therefore, such parameters

like the velocity with which the plasma beam advances in the cutting direction and the heat

flux emitted by the beam are of central importance. On the other hand, since the molten

material is removed immediately after it appears, the velocity of the front strongly depends on

temperature distribution, more precisely, on the gradient of the temperature on the interface.
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In the expression of w one can see the dependence of velocity of the interface on several

material parameters which one would naturally expect.

5.3 Weak formulation of Stefan-Signorini problem

Variational inequalities and the theory of level sets lead us to following weak formulation

of the Stefan-Signorini problem (3.7)-(3.11):

Problem 5.3.1. Find the pair (θ(x, t), φ(x, t)) representing the temperature and the moving

interface, respectively, such that

1. θ ∈ B0 and φ ∈ C(Q) with φ(x, 0) = φ0(x) in Ω,

2. θ ≤ θm on ∂Ωt,

3. θ satisfies the inequality

∫ T

0

∫

Ωt

ϕ′(ϕ− θ)dxdt+

∫ T

0

∫

Ωt

∇θ · ∇(ϕ− θ)dxdt (5.37)

≥
∫ T

0

∫

∂Ωt

jabs(ϕ− θ)dγdt+
1

2
‖ϕ(T ) − θ(T )‖2 − 1

2
‖ϕ(0) − θ0‖2,

for all ϕ ∈ B, jabs ∈ H
1(Rn) ∩ L

∞(Rn),

4. φ is the solution of the equation

−
∫

Q

φv′ dxdt +

∫

Q

φv∇ · ω dxdt −
∫

Q

φω · ∇v dxdt =

∫

Ω

φ0v(x, 0) dx (5.38)

for all v ∈ C
1(0, T ;C1

0 (Ωt)) with v(x, T ) = 0,

where ω is the velocity of the zero level-set of φ defined in (5.36) and Q := Ω × I.
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Analysis of the Model

6.1 Existence and uniqueness of classical solution –

one dimensional case

We recall here the one-dimensional model already derived in Section 3.3. Our goal is to find

the temperature distribution θ(x, t) of the solid region and the melted thickness s(t) such

that they satisfy the following conditions:

ρcs
∂θ

∂t
=

∂

∂x

(

k
∂θ

∂x

)

, s(t) < x < L, 0 < t < T, (6.1)

θ ≤ θm

−k ∂θ
∂x

+ jabs(t) ≥ 0 (6.2)

(θ − θm)

(

k
∂θ

∂x
+ jabs(t)

)

= 0

−k ∂θ
∂x

+ ρLms
′(t) = jabs, 0 < t < T, (6.3)

∂θ

∂x
= 0, x = L, 0 < t < T, (6.4)

θ(x, 0) = θ0(x) < θm, 0 < x < L, (6.5)

s(0) = 0. (6.6)

Below we state a result which delivers us a solution of above mentioned model. As usual

all material parameters are set equal to one and the melting temperature is assumed to be

zero.

50
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Theorem 6.1.1. There exists a unique solution of the one-dimensional cutting model (6.1)-

(6.6).

Proof. We provide here the outline of the proof only. The complete proof of this existence

result is a simple consequence of the one done by Friedman and Jiang [16]. In their work

they also studied the regularity and the geometrical features of the free boundary. Later,

Jiang showed the uniqueness of the classical solution.

Step 1. Fix the free boundary s(t) and consider the Signorini problem (6.1)+(6.2)+ (6.4)

+(6.5)+(6.6). Then the following lemma is true:

Lemma 6.1.1. Let s ∈ C
1[0, T ] and s(T ) < L. Then the problem (6.1)+(6.2)+(6.4)-(6.6)

has a unique classical solution θ. Moreover the following estimates hold

0 ≤ ∂θ

∂x
(s(t), t) + jabs ≤ C0, (6.7)

|∂θ
∂x

| ≤ C0, (6.8)

|∂
2θ

∂x2
| + |θ′| ≤ C1, (6.9)

|∂θ
∂x

(x, t1) −
∂θ

∂x
(x, t2)| ≤ C1|t1 − t2|

1

2 , (6.10)

where C0, C1 are constants depending on the data of the problem.

Proof. The proof is illustrated in [16]. 2

Step 2. We denote

XA :=
{

s ∈ C
1[0, T ]; s(0) = 0, 0 ≤ s′(t) ≤ A ∀t ∈ (0, T )

}

where A is a positive constant and T is small enough such that

s(T ) ≤ AT < L

After integration of the equation (3.1) and taking into account that θ solves the Signorini

problem, we obtain

t
∫

0

(

jabs +
∂θ

∂x
(s(t), t)

)

dt =

t
∫

0

jabs(t) +

L
∫

s(t)

θ(x, t)dx−
L
∫

0

θ0(x)dx+

t
∫

0

θ(s(t), t)s′(t)dt.

(6.11)
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Now we take any s ∈ XA and solve the Signorini problem. The existence of the unique

solution follows from Lemma 6.1.1. Set

Hs = s̃

where

s̃(t) =

t
∫

0

jabs(t) +

L
∫

s(t)

θ(x, t)dx−
L
∫

0

θ0(x)dx+

t
∫

0

θ(s(t), t)s′(t)dt. (6.12)

Step 3. We can show that the mapping H has a fixed point in XA, [16]. One starts by

showing that H maps the set XA into itself. Next, one shows that H is a continuous map-

ping. What remains is to use the Shauder’s fixed point theorem and state that the mapping

H has a fixed point in XA.

Step 4. Having in mind the existence of the fixed point of H and using the equations (6.11)

and (6.12) we arrive at

s(t) =

t
∫

0

(

jabs +
∂θ

∂x
(s(t), t)

)

dt.

Finally, the derivation of the last equation with respect to t leads us to

s′(t) = jabs +
∂θ

∂x
(s(t), t),

which is nothing else, but the Stefan condition (3.3). Thus the pair (θ, s) is the solution of

one-dimensional Stefan-Signorini problem (3.1)-(3.6). 2

6.1.1 Regularity of the free boundary

Another important issue is, of course, the regularity of the free boundary s(t). From Stefan

condition (3.3) and the estimate (6.10) of Lemma 6.1.1 it follows that

s(t) ∈ C
3

2 [0, T ].

It can be shown that this regularity of the free boundary is optimal. Indeed, one can prove

that, in general, the following holds:

s(t) /∈ C
1+α for all α >

1

2
.

For the complete proof of this statement we refer to [16].
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6.2 Existence and uniqueness of the weak solution –

higher dimensional case

6.2.1 Higher dimensional model

Let Ω be again a bounded open subset of R
n, n = 2, 3, occupying the workpiece with a

smooth boundary ∂Ω. Let us consider again the mathematical model of the workpiece

derived in Section 3.4.

Problem 6.2.1.

ρcs
∂θ

∂t
= ∇ · (k∇θ) in ΩT , (6.13)

θ ≤ θm

jabs − k∇θ · ν ≥ 0 (6.14)

(θ − θm)(jabs − k∇θ · ν) = 0

k∇θ · ν − ρLmv · ν = jabs, (6.15)

θ(x, 0) = θ0(x) < θm x ∈ Ω (6.16)

Ωs(0) = Ω (6.17)

Our goal in the following sections is to analyse this cutting model using the theory of

variational inequalities and level set method.

6.2.2 The abstract theory of penalty method

Let θ ∈ K be the solution of the variational inequality
∫

Ω
θ′(ϕ− θ)dx+

∫

Ω
∇θ · ∇(ϕ− θ)dx ≥

∫

Ω
f(ϕ− θ)dx (6.18)

for all ϕ ∈ K, some function f and θ(0) = θ0.

The idea behind the penalty method is rather simple. We replace the inequality (6.18)

with a sequence of approximating equations involving a penalty term. This term has the

property that it increases if the solution “moves” far from the convex set K. So, the role of

the penalty term is to force the limit of the sequence of the approximate solutions to belong

to K. To formulate this in mathematical way, we follow the steps in [22].

Let V be a reflexive Banach space, V
′ its dual and assume that the norms in V and V

′ are

strictly convex. Let K be a closed convex subset of V.
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Definition 6.2.1. We call a mapping A : K → V
′ monotone if

〈A(x) −A(y), x− y〉 ≥ 0 for all x, y ∈ K.

The operator A is called strictly monotone if the strict inequality holds, i.e. the equality

holds only when x = y.

Definition 6.2.2. We say that the mapping A : K → V
′ is coercive if the following condi-

tion is satisfied:

〈A(x) −A(x0), x− x0〉
|x− x0|

→ +∞ as |x| → +∞, x ∈ K

for some element x0 ∈ K.

Definition 6.2.3. Any operator β : V → V
′ is called the penalty operator, if it satisfies the

following conditions:

1. operator β fulfils the Lipschitz condition (global or local),

2. β is a monotone operator,

3. K = ker(β) := {u ∈ V | β(u) = 0}.

It is known, [22], that for a given convex set K there exists infinitely many penalty operators.

For a parabolic variational inequality (6.18), the penalty operator β may be introduced via

β = J(I − PK) (6.19)

where J is the duality mapping from V to V
′, i.e. J : V → V

′ and

〈J(v), v〉 = ‖J(v)‖V′‖v‖V ∀v ∈ V.

and the operator PK is the projection operator onto the convex set K, i.e. for any v ∈ V

the projection PKv is the uniquely defined element from K such that

‖v − PKv‖ ≤ ‖v − u‖ ∀u ∈ K.

It is up to verification that the operator defined in (6.19) is a penalty operator.

Now we approximate the variational inequality (6.18) by the following equation which we

call the equation with penalty associated to the Problem (6.18):

(

θ′ε, ϕ
)

+ a (θε, ϕ) +
1

ε
(β(θε), ϕ) = (f, ϕ) ∀ϕ ∈ V. (6.20)
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The equation (6.20) is non-linear. The existence of the solution θε is a result of the theory

of monotone operators studied by several authors, [22],[32], etc. Important is that one can

prove the following result, [24].

Lemma 6.2.1. For ε→ 0 we have that

θε → θ weak in B,

where θ is the solution of the inequality (6.18).

The penalty method which we shortly described will serve as a main tool to prove the

existence of the weak solution of cutting model.

6.2.3 Existence and uniqueness of the weak solution of Signorini problem

In the following we assume that the moving front ∂Ωt and its normal velocity are given. It

means that we fix the function φ(x, t) and consider the problem on a fixed domain Ωt. We

additionally assume that the zero level-set of the function φ(x, t) is a Lipschitz curve, i.e.

the boundary of the domain occupied by the workpiece is a C
0,1-boundary. Then the heat

equation, together with the Signorini boundary conditions and initial condition, determines

the temperature distribution θ. The problem can be formulated as follows.

Problem 6.2.2. Solve the equation

∂θ

∂t
= ∆θ in ΩT . (6.21)

with boundary conditions on ∂Ωt

θ ≤ 0

jabs −∇θ · ν ≥ 0 (6.22)

θ(jabs −∇θ · ν) = 0

and initial condition

θ(x, 0) = θ0(x) < 0, x ∈ Ω. (6.23)

We recall that the Problem 6.2.2 can be rewritten in a form of variational inequality, the

weaker form of which is presented in Section 5.3. The proof of the existence and uniqueness
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of this weak solution is presented below.

Having in disposal the relation

H
1(Ωt) ⊂ L

2(Ωt) ⊂
(

H
1(Ωt)

)′
,

for a fixed t, let us state the following result.

Lemma 6.2.2. Let θ0 ∈ K is given. Then there exists a unique function θ satisfying the

following conditions:

1. θ ∈ L
2
(

0, T ; H1(Ωt)
)

∩ C
(

0, T ; L2(Ωt)
)

,

2. θ(t) ∈ K and θ(t) → θ0 in L
2(Ωt) as t→ 0,

3. θ satisfies the variational inequality

∫ s

0

∫

Ωt

ϕ′(ϕ− θ)dxdt+

∫ s

0

∫

Ωt

∇θ · ∇(ϕ− θ)dxdt

≥
∫ s

0

∫

∂Ωt

jabs(ϕ− θ)dγdt+
1

2
‖ϕ(T ) − θ(T )‖2 − 1

2
‖ϕ(0) − θ0‖2,

for all ϕ ∈ B, jabs ∈ H
1(Rn) ∩ L

∞(Rn) and ∀s ∈ [0, T ].

Proof. For the proof we are going to apply the penalty method first introduced in [24], so

let us first define the penalty operator like in (6.19), i.e.

β(ϕ) = J(ϕ− PKϕ),

where J in our particular case is the identity operator, and we set PKϕ = ϕ−. Here we

used the notations

ϕ+(x) =







ϕ(x) if x ≥ 0

0 if x < 0.

ϕ−(x) =







0 if x > 0

−ϕ(x) if x ≤ 0.

Using the fact that ϕ = ϕ+ − ϕ−, we can write the penalty operator in the form

(β(ϕ), φ) =

∫

∂Ωt

ϕ+φdγ, ϕ, φ ∈ H
1(Ωt). (6.24)
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It is clear that the penalty operator defined in (6.24) is a monotone, bounded and semi-

continuous operator and the equivalences

β(ϕ) = 0 ⇔ ϕ+ = 0 ⇔ ϕ ∈ K.

are satisfied. Let us first prove a basic result.

Lemma 6.2.3. Assume that jabs(·, t) ∈ L
2(∂Ωt) for all t > 0 and there exists a constant

C > 0 such that
∫ t

0
‖jabs‖L2(∂Ωt)dt ≤ C.

For ε > 0 let θε be the penalty approximation to θ. Then

1

ε
θ+
ε are bounded in L

2(0, T ; L2(∂Ωt)). (6.25)

Proof. The associated problem with penalty has the form

∫ t

0

∫

Ωt

θ′εϕdxdτ +

∫ t

0

∫

Ωt

∇θε · ∇ϕdxdτ +
1

ε

∫ t

0

∫

∂Ωt

θ+
ε ϕdγdt

=

∫ t

0

∫

∂Ωt

jabsϕdγdt. (6.26)

Setting ϕ = θ+
ε in (6.26), we obtain

∫ T

0

∫

Ωt

θ′εθ
+
ε dxdτ +

∫ T

0

∫

Ωt

∇θε · ∇θ+
ε dxdτ +

1

ε

∫ T

0

∫

∂Ωt

θ+
ε θ

+
ε dγdt

=

∫ T

0

∫

∂Ωt

jabsθ
+
ε dγdt. (6.27)

It is clear that
∫ T

0

∫

Ωt

∇θε · ∇θ+
ε dxdτ =

∫ T

0

∫

Ωt

∇θ+
ε · ∇θ+

ε dxdτ ≥ 0.

Analogously we get
∫ T

0

∫

Ωt

θ′εθ
+
ε dxdτ ≥ 0.

After dividing both sides of (6.27) by ε, we arrive at

1

ε2

∫ T

0

∫

∂Ωt

(θ+
ε )2dγdt ≤ 1

ε

∫ T

0

∫

∂Ωt

jabsθ
+
ε dγdt

or, what is equivalent

‖1

ε
θ+
ε ‖2

L2(0,T ;L2(∂Ωt))
≤ ‖jabs‖‖

1

ε
θ+
ε ‖L2(0,T ;L2(∂Ωt)). (6.28)
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Thus, by the assumption of the lemma

‖θ+
ε ‖L2(0,T ;L2(∂Ωt)) ≤ εC.

2

Let us return to the equation (6.26). From the theory of evolution equations it is known

that for every ε > 0 the equation (6.26) has a unique solution θε ∈ B. The substitution

ϕ = θε in (6.26) yields

1

2
‖θε(t)‖2

L2(Ωt)
− 1

2
‖θ0‖2

L2(Ωt)
+

∫ t

0

∫

Ωt

∇θε · ∇θεdxdτ +
1

ε

∫ t

0

∫

∂Ωt

θ+
ε θεdγdt

=

∫ t

0

∫

∂Ωt

jabsθεdγdt. (6.29)

It is clear that 0 ∈ K and β(0) = 0. Then, because of the monotonicity of the penalty

operator β, we get

(β(θ), θ) = (β(θ) − β(0), θ − 0) =

∫

∂Ωt

θ+
ε θεdγdt ≥ 0. (6.30)

Using the inequality (6.30) and the fact that

∫

Ωt

∇θε · ∇θεdx ≥ C1‖θε‖2
H1(Ωt)

, (6.31)

we conclude

1

2
‖θε(t)‖2

L2(Ωt)
+ C1

∫ t

0
‖θε‖2

H1(Ωt)
dt ≤

∫ t

0

∫

∂Ωt

jabsθεdγdt +
1

2
‖θ0‖2

L2(Ωt)
,

or

‖θε‖L2(0,T ;H1(Ωt)) + ‖θε‖L∞(0,T ;L2(Ωt)) ≤ C2,

for every ε > 0, C1 being some constant independent on ε. Thus, θε are bounded in

L
2(0, T ; H1(Ωt)) ∩ L

∞(0, T ; L2(Ωt)). Aubin’s theorem implies that we can subtract a sub-

sequence (again denote it by θε) such that

θε → θ weak in L
2(0, T ; H1(Ωt)),

θε → θ weak∗ in L
2(0, T ; L2(Ωt)).
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Hence, β(θ(t)) = 0 almost everywhere which implies that θ(t) ∈ K a.e.

Our next step is to prove that this limit θ fulfils the inequality (6.24). Consider any function

ϕ ∈ B, so ϕ+ = 0. From equation (6.26) we obtain

∫ t

0

∫

Ωt

ϕ′(ϕ− θε)dxdτ +

∫ t

0

∫

Ωt

∇θε · ∇(ϕ− θε)dxdτ +
1

ε

∫ t

0

∫

∂Ωt

(θ+
ε − ϕ+)(ϕ− θε)dγdt

=

∫ t

0

∫

∂Ωt

jabs(ϕ− θε)dγdt +
1

2
‖ϕ(T ) − θ(T )‖2 − 1

2
‖ϕ(0) − θ0‖2. (6.32)

Again using the monotonicity of the penalty operator, we get

∫ t

0

∫

Ωt

ϕ′(ϕ− θε)dxdτ +

∫ t

0

∫

Ωt

∇θε · ∇(ϕ− θε)dxdτ

≥
∫ t

0

∫

∂Ωt

jabs(ϕ− θε)dγdt +
1

2
‖ϕ(T ) − θ(T )‖2 − 1

2
‖ϕ(0) − θ0‖2.

Obviously, our goal now will be to take the limits of both sides of (6.33) as ε→ 0. Let ψ be

any continuous function from C(0, T ) such that ψ(t) ≥ 0 for all t ∈ [0, T ]. The inequality

(6.33) then is equivalent to

∫ T

0
ψ(s)ds

[ ∫ t

0

∫

Ωt

ϕ′ϕdxdτ +

∫ t

0

∫

Ωt

∇θε · ∇ϕdxdτ −
∫ t

0

∫

∂Ωt

jabsϕdγdτ

−
∫ t

0

∫

Ωt

ϕ′θεdxdτ +

∫ t

0

∫

∂Ωt

jabsθεdγdτ

]

≥
∫ T

0
ψ(s)ds

[∫ t

0

∫

Ωt

∇θε · ∇θεdxdτ +
1

2
‖ϕ(T ) − θε(T )‖2

]

−
∫ T

0
ψ(s)

1

2
‖ϕ(0) − θ0‖2ds.

On the other hand

lim inf

∫ T

0
ψ(s)ds

[∫ t

0

∫

Ωt

∇θε · ∇θεdxdτ +
1

2
‖ϕ(T ) − θε(T )‖2

]

≥
∫ T

0
ψ(s)ds

[∫ t

0

∫

Ωt

∇θ · ∇θdxdτ +
1

2
‖ϕ(T ) − θ(T )‖2

]

Finally, taking the limit in (6.33) as ε→ 0, one arrives at the inequality

∫ T

0
ψ(s)ds

∫ t

0

∫

Ωt

ϕ′(ϕ− θ)dxdτ +

∫ t

0

∫

Ωt

∇θ · ∇(ϕ− θ)dxdτ

≥
∫ T

0
ψ(s)

[
∫ t

0

∫

∂Ωt

jabs(ϕ− θ)dγdt+
1

2
‖ϕ(T ) − θ(T )‖2 − 1

2
‖ϕ(0) − θ0‖2

]

ds.

The last inequality is true for any ψ ∈ C(0, T ), therefore the function θ satisfies the varia-

tional inequality (6.24) for almost all t ∈ [0, T ].
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Uniqueness. For the proof of the uniqueness of the solution we will assume that there

exist two different weak solutions of the Problem 6.2.2. The idea is to take the inequality

(6.24), write it for θ1 and test it with ϕ = θ2. Analogously we test the inequality (6.24) for

θ2 with ϕ = θ1 (see Remark 6.2.1). Adding both inequalities together, we obtain

−
∫ t

0

∫

Ωt

(θ2−θ1)′(θ2−θ1)dxdτ−
∫ t

0

∫

Ωt

∇(θ2−θ1) ·∇(θ2−θ1)dxdτ ≥ ‖θ2(T )−θ1(T )‖2 ≥ 0,

or equivalently

−
∫ t

0
‖θ2 − θ1‖2dτ −

∫ t

0

∫

Ωt

(∇(θ2 − θ1))
2dxdτ ≥ 0.

The first term on the left hand side is always non-positive, so the inequality stays still valid

if we throw it away:
∫ t

0

∫

Ωt

(∇(θ2 − θ1))
2dxdτ ≤ 0.

Thus, after applying the condition (6.31), we get θ1 = θ2.

Remark 6.2.1. Let us note that the choice of the test function ϕ = θ1 (or the same for

ϕ = θ2) is not “legal”, because in general θ1 and θ2 will not belong to B where the test

functions live. One can legalise this by taking ϕ “very” close to θ1 (θ2). For the complete

procedure how to implement this we refer to [25].

To prove that the solution θ belongs to the space C
(

0, T ; L2(Ωt)
)

, we define a function θδ

as a solution of the ordinary differential equation

δθ′δ + θδ = θ,

θδ(0) = θ0, δ > 0.

Now we substitute ϕ = θδ in (6.24):1

−δ
∫ t

0
‖θδ‖2dτ +

∫ t

0

∫

Ωt

∇θ · ∇(θδ − θ)dxdτ ≥
∫ t

0

∫

∂Ωt

jabs(θδ − θ)dγdt+
1

2
‖θδ(T )− θ(T )‖2.

Thus

‖θδ(t) − θ(t)‖2 ≤ 2

∫ t

0

∫

Ωt

∇θ · ∇(θδ − θ)dxdτ −
∫ t

0

∫

∂Ωt

jabs(θδ − θ)dγdt.

For δ → 0 the expression on the right hand side tends to zero uniformly with respect to t,

therefore, θδ → θ in L
2(Ωt) uniformly with respect to t ∈ [0, T ]. This is nothing else, but

1It is allowed since θδ ∈ K.
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the condition θ ∈ C
(

0, T ; L2(Ωt)
)

.

To complete the proof of the Lemma 6.2.2, we show now that θ(t) → θ0 as t → 0. Indeed,

if we take in (6.24) any ϕ from the space B0, we obtain

‖ϕ(t)−θ(t)‖2 ≤
∫ t

0

∫

Ωt

ϕ′(ϕ−θ)dxdτ+

∫ t

0

∫

Ωt

∇θ ·∇(ϕ−θ)dxdτ−
∫ t

0

∫

∂Ωt

jabs(ϕ−θ)dγdτ.

The right hand side tends to zero as t→ 0, so θ(t) → ϕ(0) = θ0 for t→ 0. 2

Remark 6.2.2. Using appropriate numerical schemes, one can show that the solution of

the variational inequality (6.18) exists and is unique. Moreover,

θ, θ′ ∈ L
2(0, T ; H1(Ω)) ∩ L

∞(0, T ; L2(Ω)).

For the proof of this result we refer to [18].

6.2.4 Further regularity results

In the previous section we have shown that the solution θ of the evolutionary variational

inequality is a continuous mapping from the time interval [0, T ] to the Sobolev space L
2(Ωt),

i.e.

θ ∈ L
2
(

0, T ; H1(Ωt)
)

∩ C
(

0, T ; L2(Ωt)
)

.

In what follows we will present some further regularity results which are essential for the

next section where we are going to analyse the level-set equation. The point is that for

the proof of the existence and uniqueness of the weak solution of the level-set equation we

need “enough” regularity for the velocity of the zero level-set. To be precise, the velocity w

needs to be an H
1-function in space. As one may remember, this velocity function contains

also the gradient of the temperature, thus we require a H
2-regularity for the temperature

distribution in order to fulfil the condition on w to have an H
1-property.

The regularity properties of the solution of variational inequalities have been studied by

several authors. In their paper [17] Friedman and Kinderlehrer had studied a one phase

Stefan problem by converting it to variational inequality,. A solution to this variational

inequality is then interpreted as a generalized solution to the Stefan problem. Avoiding

the complex discussions of time dependent convex sets K(t) (arising from time dependent
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boundary conditions) by introducing an expedient penalty function, they were able to es-

tablish the existence, uniqueness and L
p-estimates for the solution.

In his book Steinbach discussed the regularity of the solution of evolutionary variational

inequality with respect to time and space. The study of the regularity of the solution

with respect to time involves the approximation of the inequality problem by the Lewy-

Stampacchia bounded penalization method. As for the regularity with respect to space, the

author analysed the problem using the associated penalty problem and exploited a semi-

discretization procedure in time together with the results from the elliptic regularity theory

(Lp-theory). For the complete discussions we refer to [52] and references therein.

Summarizing what has been said above, we include the results, needed for our further

discussions, in the following theorem

Theorem 6.2.1. Let the following assumption on the function jabs be satisfied:

jabs ∈ L
2
(

0, T ; H
1

2 (∂Ωt)
)

.

Let the boundary of the workpiece ∂Ωt be of the class C
1,1 at every time instant t.

Then the solution θ of the variational inequality (6.24) will be such that

θ ∈ H
1,∞
(

0, T ; H1(Ωt)
)

∩ L
2
(

0, T ; H2(Ωt)
)

.

If the function jabs is such that

jabs ∈ L
∞
(

0, T ; H
1

2 (∂Ωt)
)

,

then the solution θ fulfils the regularity condition

θ ∈ H
1,∞
(

0, T ; H1(Ωt)
)

∩ L
∞
(

0, T ; H2(Ωt)
)

.

Proof. This theorem is a simple consequence of a more general result proved in [52]. 2

6.2.5 Existence and uniqueness of the weak solution of level-set equation

In the previous section we discussed the existence and uniqueness result of the weak solution

of Signorini problem assuming the level-set φ, or equivalently the boundary of the domain

∂Ωt, to be known. In this section we suppose that the temperature distribution θ(x, t) in
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the workpiece is given meaning that the convection velocity w = ∇θ− jerνr of the level-set

function φ(x, t) is known. We also assume that θ ∈ H
1,∞

(

0, T ; H1(Ωt)
)

∩L
∞
(

0, T ; H2(Ωt)
)

.

The problem we are going to investigate below is the following

Problem 6.2.3. Find the function φ(x, t) : R
n × (0, T ) → R, n = 2, 3, such that

∂φ

∂t
+ w · ∇φ = 0, (6.33)

with initial condition

φ(x, 0) = φ0(x),

where φ0 is some initial function satisfying

∂Ωt|t=0 = {x ∈ R
n; φ0(x) = 0}.

Remark 6.2.3. We consider the Problem 6.2.3 on the whole space R
n for n = 2, 3. How-

ever, it can occur that one needs to restrict himself to a bounded domain Ω̂. In this case

appropriate boundary conditions must be prescribed on the outer domain boundary. De-

pending on the problem one can enforce Dirichlet or Neumann boundary conditions. The

issue is that in some problems the moving boundary can grow up and finally touch the

domain boundary ∂Ω̂ (independent of how we choose the initial surface). Specification of

either boundary condition will provide an information on the location of intersection points

(Dirichlet boundary condition) and the angle between the free boundary and ∂Ω̂ at those

points (Neumann boundary condition).

In the following section we will use the method of characteristics to obtain the existence

and uniqueness result for the weak solution of the Problem 6.2.3.

6.2.6 Method of characteristics

We recall here the method of characteristics, which will solve the Problem 6.2.3 by converting

the first order partial differential equation into an appropriate system of ordinary differential

equations. Suppose that the characteristic curves corresponding to the given velocity field

w are given by some curves x(s). The family of these parametrized curves x(s) is a solution

of the initial value problem
dx(s)

ds
= w(x(s), s) in R

n, (6.34)

x(0) = x̄. (6.35)
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We note that if x(s) is a characteristic curve, then the level-set function φ(x, t) is constant

along each characteristic. Indeed, if we differentiate φ(x, t) along one of these curves, we

find that

dφ(x(s), s)

ds
=
∂φ(x(s), s)

∂s
+ ∇φ(x(s), s) · x′(s) =

∂φ

∂s
+w · ∇φ = 0.

Therefore, the rate of change of φ along the characteristic is equal to zero confirming that

φ is constant along these characteristics. Assuming that the velocity field w is Lipschitz

continuous, it is known that exactly one characteristic x(s) passes through x̄, i.e. there

exists a unique solution of the equation (6.34) with initial data (6.35).

Unfortunately, in our special problem we do not have enough regularity on temperature

distribution θ in order to get a Lipschitz continuous velocity. Remember, that the velocity

field w contains the gradient of the temperature which is a H
1-function in space dimension.

Thus, the situation tells us to analyse the problem in the contest of weak formulation.

Denote by Φ the closed bounded convex subset of C([0, T ] × R
n) given by

Φ =
{

φ;φ ∈ C([0, T ] × R
n), |φ| ≤ c‖φ0‖C1(Rn) and ‖φ(x, t) − φ(y, s)‖ ≤ δ‖φ0‖C1(Rn)

for |x− y| + |t− s| ≤ δ}

Lemma 6.2.4. Let φ0 be in C
1(Rn) and jabs ∈ H

1(Rn) ∩ L
∞(Rn). Then there exists a

unique solution φ ∈ Φ of the equation

−
∫

Q

φv′ dxdt +

∫

Q

φv∇ · ω dxdt−
∫

Q

φω · ∇v dxdt =

∫

Ω

φ0v(x, 0) dx. (6.36)

Proof. We set ωε = ηε∗ω, where ηε is the Friedrich’s mollifier in the variables (x, t). Thanks

to the properties of a mollifier, we observe that the regularized velocity ωε belongs to the

space C
∞(Rn+1) and, particularly, is Lipschitz continuous.

Now let us consider the following auxiliary problem.

Problem 6.2.4. Find the function φε(x, t) : R
n × (0, T ) → R, n = 2, 3, such that

∂φε

∂t
+ ωε · ∇φε = 0, (6.37)

with initial condition

φε(x, 0) = φ0(x). (6.38)
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Then the system of equations for characteristics is

dx(t)

dt
= ωε(x(t), t) (6.39)

x(0) = x̄. (6.40)

From the theory of ordinary differential equations it is known that the initial value problem

(6.39)-(6.40) has a unique solution x(t) = Xε(x̄, t).

Set

φε(x, t) = φ0(X
−1
ε (x, t)),

then it is easy to verify that the function φε solves (6.37). Further, using the regularity of

φ0 and for |x− y| + |t− s| ≤ δ, one gets

|φε(x, t) − φε(y, s)| = |φ0(x̄) − φ0(ȳ)| ≤ |x̄− ȳ|‖φ0‖C1(Rn).

For t = s = 0 the condition |x− y| + |t− s| ≤ δ becomes |x̄− ȳ| = |x(0) − y(0)| ≤ δ, so we

obtain the estimate

|φε(x, t) − φε(y, s)| ≤ δ‖φ0‖C1(Rn).

Now multiplying the equation (6.37) with a smooth test function v ∈ C
∞
0 ([0, T ] × R

n) and

doing some integration by parts, we get

−
∫

Q

φεv
′ dxdt +

∫

Q

φεv∇ · ωε dxdt −
∫

Q

φεω
ε · ∇v dxdt =

∫

Ω

φ0v(x, 0) dx. (6.41)

The function φε being the classical solution of (6.37) obviously satisfies the integral equation

(6.41).

Now we can take a subsequence of φε, again denoting it by φε, which converges uniformly

to φ. Further, we have that ωε → ω weakly in H
1(Q), thus passing to the limit in (6.41)

implies that φ solves the equation

−
∫

Q

φv′ dxdt +

∫

Q

φv∇ · ω dxdt−
∫

Q

φω · ∇v dxdt =

∫

Ω

φ0v(x, 0) dx, (6.42)

which is obviously the weak formulation of the level-set equation

∂φ

∂t
+ ω · ∇φ = 0, (6.43)

with initial condition

φ(x, 0) = φ0(x).

2
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It is clear that φε ∈ Φ and the sequence φε converges uniformly on compact subsets of

[0, T ] × R
n with φ ∈ Φ.

6.2.7 The coupled system

In this section we are going to discuss on some issues concerning the existence and unique-

ness of the weak solution of the Problem 6.2.1. The coupled system 6.2.1 consists of two

sub-problems: heat equation with Signorini boundary conditions and level set equation.

These two sub-problems are coupled through the temperature entering the expression of

the interface velocity in the weak level set equation and integrals over the unknown inter-

face which occur in the weak formulation of heat equation.

Let (φ̄, θ̄) be in Φ×B and let L be the mapping of Φ×B into the subsets of L
2(Q)×L

2(Q)

defined by

(φ, θ) = L(φ̄, θ̄), (6.44)

where φ is the solution of level-set equation given by Lemma 6.2.4, θ is a solution of

variational inequality given by Lemma 6.2.2. B and Φ are the solution sets for the variational

inequality and level-set equation, respectively. If one would show that the mapping L is

continuous, then, after application of Schauder’s fixed point argument, it is possible to

prove the existence and uniqueness of the solution of the coupled system. This issue is

quite complicated (due to the time dependent domains entering the definition of solution

set B) and beyond the scope of this work. A good reference at this matter is a paper

by Bui An Ton, who considered a similar problem with set-valued mappings in domains

with fixed and free boundaries. In [55] he established the existence of a weak solution to

Stefan-Signorini problem via fixed point technique.

In our study we are mainly interested in the existence of solutions of two above mentioned

sub-problems. The point is that later we are going to treat the problem numerically and

the idea of numerical approximation of the coupled system is to solve each sub-problem

separately by taking the coupling quantities (known) from the previous time step.
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Numerical Results

7.1 Introduction

One of the main difficulties to solve the Stefan-Signorini Problem 5.3.1 numerically is the

time dependent domain Ωt, i.e. at each time instant t, due to the removal of the melt, we

have to solve the equations in different domains. Such kind of problems are typically solved

via two basic methods.

1. Moving mesh approach; in this method the mesh for the space discretization moves with

the domain and has to be updated so that it conforms to the new interface.

2. Fixed domain method ; in this approach there is no need to follow the moving boundary

or to iterate it. The heat equation is solved over a fixed physical domain, which is rather

easier than on a time dependent region. The position of the boundary (second unknown)

can be deduced a posteriori as a feature of the solution. One way to use the fixed domain

method is to introduce an enthalpy or total heat function which is responsible for the latent

heat absorption or liberation at the interface. This function reformulates then the problem

in such a way that the boundary conditions on the moving front are implicitly imbedded in

a new form of the equation.

There are several drawbacks of the methods mentioned above. The moving mesh technique

suffers mainly from difficulties of remeshing, i.e. if the domain changes drastically in time,

we can move the nodes of the mesh together with the domain, but not infinitely long,

at some instant t it is not possible to avoid remeshing, so we will need a new mesh for

Ωt generated by some mesh generator. But mesh generators are not always available, as

67
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the difficulties of creating mesh generators increase with the dimension of the problem and

complexity of the interfaces. On the other hand, for domains that do not change drastically,

we may have to take care about the shape regularity of the moving grids by some smoothing

techniques.

As for the enthalpy method, although it is rather easy to implement, because no remeshing is

required, but this method does not model the cutting process accurately. Since the molten

material is immediately removed after its appearance, we have no liquid phase anymore

which is not the typical situation in most melting problems. This fact makes it difficult to

define the correct enthalpy function.

7.2 Discretization of the cutting model

In this section we present a solution algorithm for the cutting model. For this purpose we

decouple the problem by dividing the whole system into two sub-problems. In the first sub-

problem we assume that the level function is given and solve the variational inequality on a

fixed domain defined by the zero level set. As for the second sub-problem, we solve the weak

level set equation assuming that the velocity of the cutting front (expressed via temperature

field) is known. After we develop and test two separate algorithms, the next step is to

consider the coupled system and establish a corresponding algorithm for the whole model.

The coupled algorithm is then implemented using the Finite Element Toolbox ALBERTA

developed by Schmidt and Siebert. We provide a very brief description of the software in

Appendix C and refer to [46] for details.

7.2.1 Heat equation with Signorini boundary data on a time dependent

domain

In the following section we provide a description of a numerical method for the calculation

of the temperature field θ assuming that the cutting interface ∂Ωt is given and sufficiently

smooth. It means our object of investigation is the heat equation with Signorini boundary

conditions.

We have already shown that the weak form of the heat conduction equation with Signorini

boundary conditions is equivalent to a variational inequality, see Problem 5.1.3. A well

known approach for solving the variational inequality (5.24) is the penalty method described
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in Section 6.2.2. Recall that applying this method means that instead of Problem 5.1.3 one

can consider a family of penalized problems: for ε > 0 find θε ∈ V0 such that

∫

Ωt

θ′εϕdx+

∫

Ωt

∇θε · ∇ϕdx+
1

ε

∫

∂Ωt

θ+
ε ϕdγ =

∫

∂Ωt

jabsϕdγ, for all ϕ ∈ V. (7.1)

Note that the set of test functions is the whole space V contrary to the space defined for

the inequality (5.24).

Time discretization

To solve the penalty equation (7.1), we use a time discretization based on the ϑ-scheme.

Let 0 = t0 < t1 < · · · < tN = T be a subdivision of (0, T ), denote τn+1 = tn+1 − tn. For

0 ≤ ϑ ≤ 1, we are looking for a solution Θn+1 ≈ θ(·, tn+1)
1 such that the semi-discrete

equation

∫

Ωtn

(Θn+1 − Θn)

τn+1
ϕdx + ϑ

∫

Ωtn

∇Θn+1 · ∇ϕdx+ (1 − ϑ)

∫

Ωtn

∇Θn · ∇ϕdx

+
1

ε

∫

∂Ωtn

Θ+(n+1)ϕdγ =

∫

∂Ωtn

jnabsϕdγ (7.2)

is fulfilled.

Notice that integrations are done over the domain Ωt and its boundary ∂Ωt at a time instant

tn, i.e. at an old time step, therefore it is assumed that both the domain and its boundary

are a priori known. This a priori known information on the boundary is provided by the

solution of the level set equation, which is discussed in the next section.

Spatial discretization

For the calculation of the temperature distribution in the workpiece we turn to a finite

element space discretization (triangulation) on the time dependent domain Ωt.

Let

V (Ωt) = {v ∈ H
1(Ωt)}

and

B(Ωt) = {v ∈ V (Ωt)| v ≤ 0 on ∂Ωt}.
1In the following we skip the subscript ε
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Now let {Th} be a family of conforming triangulations of Ω.2 As a finite approximation of

the functional space V we set

Vh = {ϕh ∈ C(Ω̄h,t) : ϕh|T ∈ Pn(T ), ∀T ∈ Th},

where Pn is the space of piecewise polynomials of order n and h is a parameter associated

with the mesh size; with every mesh refinement this parameter is getting smaller and smaller.

Denote by N the dimension of Vh. Further we approximate B by

Bh = {ϕh ∈ Vh| ϕh(P ) ≤ 0 for all Lagrange nodes P ∈ Γh,t}.

The finite dimensional space Bh is a closed convex nonempty subset of Vh and Bh ⊂ B for

any parameter h.

As for the particular problem concerning the time dependent domain, we try to define the

discrete domain Ωh,tn explicitly. This idea was implemented by Bänsch and Schmidt in [4],

where they considered the Navier-Stokes flow in a time dependent liquid domain.

Definition 7.2.1. An element T is called molten, iff T is completely melted, i.e. all x ∈ T

have reached the melting temperature and been removed. An element is called solid, iff it is

not molten.

Define the discrete domain

Ωh,tn =
⋃

T

{T, T is solid}.

An example of a discrete domain is illustrated in Figure 7.1.

With this definition we can run over all mesh elements and mark them either solid or molten

(removed). We formulate this by means of the following algorithm:

7.2.1 Algorithm. (Marking of solid domain)

1. Mark all triangles with positive level function values in all vertices as solid (triangles

not intersected by the interface).

2. Continue by marking as solid all triangles with positive level function value in at least

one vertex and negative level function value in at least one vertex (triangles that have

intersection points with the moving front).

2We refer to Appendix B for the definition of a conforming triangulation.
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Figure 7.1: Solid and molten triangles

3. Mark all the other elements as molten.

This algorithm has a computational complexity that is linear in the number of triangles.

Taking into account the above mentioned definitions, we are able now to formulate the full

discretized problem.

Problem 7.2.1. Take the “interpolant” of θ0 as a discrete initial temperature. Given the

temperature Θn
h (spatial approximation of Θn) and the domain Ωh,tn at time instant tn,

compute the updated temperature Θn+1
h ∈ Vh at time tn+1 according to

1

τn+1

∫

Ωh,tn

Θn+1
h ϕhdx+ ϑ

∫

Ωh,tn

∇Θn+1
h · ∇ϕhdx+

1

ε

∫

∂Ωh,tn

In+1
(

Θ
+(n+1)
h ϕh

)

dγ

=
1

τn+1

∫

Ωh,tn

In+1Θn
hϕhdx− (1 − ϑ)

∫

Ωh,tn

∇In+1Θn
h · ∇ϕhdx+

∫

∂Ωh,tn

jnabsϕhdγ,

where ϕh ∈ Vh and In+1 is the Lagrange interpolation operator.

Applying the Galerkin approximation3 with the Lagrange basis {ϕj}N
j=1 to the equation

(7.3) and rearranging the terms, we obtain a nonlinear system of algebraic equations. If we

3See Appendix B for an introduction to Galerkin’s approach.
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denote by

Θ = (θ1, θ2, . . . , θN )T

the vector of nodal values for θh, then the nonlinear equation for unknown coefficient vector

Θ in matrix form reads

1

τn+1
M
(

Θn+1 − Θn
)

+AΘn+1 +
1

ε
D(Θn+1) = F (n+1), (7.3)

where M = (mij) denotes the mass matrix, A = (aij) is the stiffness matrix, F = (fi) is

the load vector and D(Θn+1) = (di(Θ
n+1)) is the nonlinear part. More precisely,

mij =

∫

Ωh,tn

ϕiϕjdx,

aij =

∫

Ωh,tn

∇ϕi∇ϕjdx,

fi =

∫

∂Ωh,tn

jnabsϕidγ,

di(Θ
n+1) =







θ
+(n+1)
i if the node Pi ∈ ∂Ωh,tn ,

0 otherwise.

Nonlinear solver for the algebraic system

One way to solve the system (7.3) is the nonlinear Gauss-Seidel iteration for which we need

to simplify the structure of mass matrix by employing a suitable numerical integration. A

well known procedure is the so called lumping the mass method, which is equivalent to a

quadrature formula using only the values in vertices. After such an approximation, the

mass matrix M reduces to a diagonal matrix and the application of nonlinear solver is then

easier. In other words, if M = diag(mi) is the lumped mass matrix, then the Gauss-Seidel

equation for i-th coefficients θn+1
i reads

mi

τn+1
θn+1
i + aiiθ

n+1
i + θ

+(n+1)
i ) = F̃i, (7.4)

where

F̃i = Fn+1
i +

mi

τn+1
θn
i −

∑

i6=j

aijθ
n
j .

We observe that for the prescribed sign of the i-th component F̃i the equation (7.4) turns to

a linear equation, since depending on the sign of the right hand side of (7.4) the nonlinear

term θ
+(n+1)
i is equal either to θn+1

i or zero. In both cases the equation is uniquely solvable.
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Numerical example

Taking the domain of interest Ω ⊂ R
2 the unit circle and the time interval [0, T ] = [0, 0.5],

we wish to compute the solution θh of the discretized equation (7.3) assuming that the

evolution of the free boundary is a priori given. In order to introduce a level set function

providing us with known free boundary, we define a new domain Ω̂ ⊂ R
2, which is much

bigger than Ω itself and Ω ⊂ Ω̂. Now we introduce a level set function defined on the new

domain Ω̂ via

φ(x, y, t) = 1 −
√

x2 + y2 + 2t, (x, y) ∈ Ω̂, t ∈ [0, T ]. (7.5)

The zero level set of the function φ describes the evolution of a shrinking circle and will

serve as a moving boundary for the penalty problem. At time t = 0 the level set function

(7.5) is expressed via

φ0(x, y) := φ(x, y, 0) = 1 −
√

x2 + y2,

which is a function owning the unite circle as its zero level set. In this example we can

specify an exact solution in order to investigate the order of convergence of our algorithm.

We select an exact solution defined on Ω̂ and given by

θ(x, y, t) =







−(1 − 2t− x2 − y2)2 if x2 + y2 < 1 − 2t,

0 if otherwise.
(7.6)

Introducing the new domain Ω̂ causes a small ambiguity for the solution of the discrete

penalty Problem (7.3). This problem is defined on the discrete domain Ωh,tn , but not

outside. What we can do is to add a new regularizing term to the penalty equation. The

term takes the form

ε

∫

Ω̂
∇θ · ∇ϕdx,

where ε is a small parameter and can be selected to be the same as the parameter ε

entering the penalty term. Taking Ω̂h to be the discrete counterpart of Ω̂, the modified
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form of discrete equation (7.3) is then expressed via

1

τn+1

∫

Ωh(tn)
Θn+1

h ϕhdx+ ϑ

∫

Ωh(tn)
∇Θn+1

h · ∇ϕhdx+
1

ε

∫

∂Ωh(tn)
In+1Θ

+(n+1)
h ϕhdγ

+ϑε

∫

Ω̂h

∇Θn+1
h · ∇ϕhdx

=
1

τn+1

∫

Ωh(tn)
In+1Θn

hϕhdx− (1 − ϑ)

∫

Ωh(tn)
∇In+1Θn

h · ∇ϕhdx+

∫

∂Ωh(tn)
jnabsϕhdγ

−(1 − ϑ)ε

∫

Ω̂h

∇In+1Θn
h · ∇ϕhdx. (7.7)

The initial data and boundary values are directly computed from (7.6). Dirichlet boundary

conditions are employed for the outer boundary (boundary of Ω̂), since the moving interface

does not touch the fixed boundary. An additional function f representing the right hand

side of the heat equation must be calculated from the given exact solution

f(x, y, t) =







4(3x2 + 3y2 + 2t− 1) if x2 + y2 < 1 − 2t,

0 if otherwise.
(7.8)

The right hand side f does not appear in our model, but this is the price we have to pay

for having a simple exact solution. As for the heat flux density jabs, we use our model

presented earlier in Section 3.

In the first instance, we implement our calculations non-adaptively on different time in-

dependent meshes with equally spaced time steps δt. Table 7.1 illustrates the observed

evolution of the temperature error, where

l is the number of uniform refinements,

h is the length of the grid size, and

Error(θh) is the error between the exact and numerical solutions constructed by calculating

the L
2-norm ‖θ − θh‖ and taking the maximum over all time steps, i.e.

Error(θh) = max
1≤n≤N

‖θ(·, tn) − θn
h‖L2(Ω̂h).

As a penalty parameter we take ε = 10−12. The log-log plot in Figure 7.2 shows the

L
2-norm of the error against the mesh size h. We see that the error is O(h1.97) for linear

elements and O(h2.8) for quadratic elements, which is consistent with the optimal rate

predicted by standard estimates for the linear heat equation. The relatively small difference

in convergence rate can be probably explained by the non-linearity of our problem. It seems

that the penalty operator and the new introduced regularizing term make their influence

on the rate of convergence.
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l h δt Error(θh)
lin. elements

2 3.0 2.0 · 10−2 1.4142

4 1.5 5.0 · 10−3 4.09 · 10−1

6 0.75 1.25 · 10−3 1.76 · 10−1

8 0.375 3.125 · 10−4 6.15 · 10−2

10 0.1875 7.81 · 10−5 1.57 · 10−2

12 0.0936 1.95 · 10−5 4.1 · 10−3

14 0.0469 4.88 · 10−6 1.05 · 10−3

l h δt Error(θh)
quad. elements

2 3.0 2.0 · 10−2 4.91 · 10−1

4 1.5 2.5 · 10−3 2.52 · 10−1

6 0.75 3.125 · 10−4 4.07 · 10−2

8 0.375 3.91 · 10−5 7.81 · 10−3

10 0.1875 4.88 · 10−6 1.36 · 10−3

12 0.0936 6.1 · 10−7 2.21 · 10−4

14 0.0469 7.63 · 10−8 3.42 · 10−5

Table 7.1: Error calculations for several uniform refinements: left for linear elements, right
for quadratic elements
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Figure 7.2: Rates of convergence of variational inequality with a given level set function.

7.2.2 Discretization of the level set equation

Numerical methods for the level-set theory has been extensively developed, especially using

finite difference schemes, [38],[41], [42],[39], etc. Several studies on finite element solutions

have been done by Barth and Sethian, [3]. In their work they described a finite element

algorithm for the solution of the level set equation which involved remeshing. Chessa,

Smolinski and Belytschko, [6], described the interface arising in solidification problems as

a level set function and updated it by a stabilized finite element scheme. In the work of

Ohmori, [37], the interface between two fluids is considered as the zero level set of pseudo-

density function governed by the transport equation, which is then approximated by means

of Lax-Wendroff finite element scheme.
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Viscosity solution of the level set equation

In our considerations we will use the advantages of the theory of viscosity solutions which

is well suited for numerical implementations. The idea, based on [10], is to add a small

viscosity term to the level-set equation (6.33) and consider the approximate problem

Problem 7.2.2. Find the function φε(x, t) : R
n × (0, T ) → R, n = 2, 3, such that

∂φε

∂t
+ w · ∇φε = ε∆φε, (7.9)

φε(x, 0) = φ0(x),

where ε is a positive constant.

The advantage of the method is that equation (7.9) is an initial-value parabolic equation,

which can be shown to have a smooth solution. The viscosity term ε∆φ plays a role of a

regularizer of the level-set equation (6.33). The limit of the smooth solution φε as ε vanishes

provides us with some sort of weak solution of (6.33). For a brief introduction to the method

of vanishing viscosity we refer to Appendix A and references therein.

Now we are able to write down the variational form of (7.9) desired by finite element

approximation. We skip the index ε and write the weak form of (7.9) as

∫

Ω̂

∂φ

∂t
ϕdx+

∫

Ω̂
w · ∇φϕdx+ ε

∫

Ω̂
∇φ · ∇ϕdx = 0, (7.10)

where ϕ is a continuous test function and Ω̂ is a bigger domain which contains the domain

Ω occupied by the workpiece. For example, we can take Ω̂ = R
n.

Time discretization

For the level set field, we use the same mesh as for the temperature field.

Let again 0 = t0 < t1 < · · · < tN = T be a partition of (0, T ), In = (tn−1, tn) and

τn = tn − tn−1. For 0 ≤ ϑ ≤ 1 a time discretization of the level-set equation (6.33) is

performed using the ϑ-scheme. We are looking for a finite element solution Φn+1 ≈ φ(·, tn+1)

such that

∫

Ω̂

Φn+1 − Φn

τn+1
ϕdx+ ϑ

∫

Ω̂
wn+1 · ∇Φn+1ϕdx+ (1 − ϑ)

∫

Ω̂
wn+1 · ∇Φnϕdx+

+ϑε

∫

Ω̂
∇Φn+1 · ∇ϕdx+ (1 − ϑ)ε

∫

Ω̂
∇Φn · ∇ϕdx = 0. (7.11)
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Generally, this scheme is first order accurate except ϑ = 1
2 , where it is second order accurate

in time. Note that for ϑ = 1, one gets the backward (implicit) Euler scheme, for ϑ = 0 the

forward (explicit) Euler scheme is obtained, while for ϑ = 1
2 one gets the Crank-Nicholson

scheme.

Spatial discretization

We again use the method of finite elements on a conforming triangulation of Ω̂. Let {Th} be

a family of proper and shape regular triangulations of the domain Ω̂ and Vh a corresponding

finite element space with piecewise polynomial functions of degree n ≥ 1 on Th. Note that

unlike the finite element space for the variational inequality from the previous chapter, here

Vh is the approximation of the space V (Ω̂), i.e. the space is defined on a time independent

domain Ω̂.

The full discretized problem for the calculation of the geometry of the workpiece is the

following

Problem 7.2.3. Take the “interpolant” of φ0 as a discrete initial level function. Given

the level Φn
h (spatial approximation of Φn) at time instant tn. Compute the updated level

function Φn+1
h ∈ Vh at time tn+1 according to

∫

Ω̂h

Φn+1
h

τn+1
ϕhdx+ ϑ

∫

Ω̂h

wn+1
h · ∇Φn+1

h ϕhdx+ ϑε

∫

Ω̂h

∇Φn+1
h · ∇ϕhdx

=

∫

Ω̂h

Φn
h

τn+1
ϕhdx− (1 − ϑ)

∫

Ω̂h

wn+1
h · ∇Φn

hϕhdx− (1 − ϑ)ε

∫

Ω̂h

∇Φn
h · ∇ϕhdx. (7.12)

Applying the Galerkin approximation to the equation (7.12), we obtain

∑

j

∫

Ω̂
Φn+1

j ϕiϕjdx+ ϑ
∑

j

∫

Ω̂
Φn+1

j wn+1 · ∇ϕjϕidx+ (1 − ϑ)
∑

j

∫

Ω̂
Φn

jw
n+1 · ∇ϕjϕidx+

+ϑε
∑

j

∫

Ω̂
Φn+1

j ∇ϕj · ∇ϕidx+ (1 − ϑ)ε
∑

j

∫

Ω̂
Φn

j ∇ϕj · ∇ϕidx = 0. (7.13)

Equation (7.13) can be reorganized and put in the matrix form

∑

j

(

1

τn+1
mij + ϑεaij + ϑcij

)

Φn+1
j =

∑

j

(

1

τn+1
mij − (1 − ϑ)εaij − (1 − ϑ)cij

)

Φn
j

(7.14)
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where the matrices M = (mij), A = (aij) and C = (cij) are defined as

mij =

∫

Ω̂
ϕiϕjdx,

aij =

∫

Ω̂
∇ϕi∇ϕjdx,

cij =

∫

Ω̂
wn+1 · ∇ϕjϕidx.

Note that the system matrix on the left hand side is not the same as the matrix applied on

the solution from the previous time step standing on the right hand side. Galerkin method

performs well, if the parameter ε is greater or equal to the mesh size h, but if ε << h then

the method can produce an oscillating solution which is not close to the exact solution.

However, if the exact solution happens to be smooth, then the Galerkin approximation

will produce good results even for ε < h (see [21]). To handle the difficulties connected

with ε < h, we either decrease the mesh size h until it is smaller than ε or simply solve a

modified problem with diffusion term h∆φ. The latter produces non-oscillating solutions,

but has the drawback of introducing a great amount of extra diffusion. The most important

disadvantage is that due to the viscosity term the method is at most first order accurate,

i.e. the error is at best O(h).

Solver for the algebraic system

The resulting system (7.14) of algebraic equations is obviously a linear system, therefore,

high efficient linear solvers can be applied successfully. In our examples and applications

we have used the generalized minimal residual (GMRES) method, which is very well suited

to systems with non-symmetric matrices.

Numerical examples

Example 1.

Let us first demonstrate the numerical solution of a level set problem whose exact solution

is known. Let the domain of interest be Ω̂ = [−4, 4]2 and suppose we are given a level set

function

φ(x, y, t) =







cos(π
4 (x2 + y2 + 2t)) − cos π

4 if x2 + y2 + 2t ≤ 4,

−1 − cos π
4 if x2 + y2 + 2t > 4

.
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For t = 0 we obtain

φ0(x, y) =







cos(π
4 (x2 + y2)) − cos π

4 if x2 + y2 ≤ 4,

−1 − cos π
4 if x2 + y2 > 4

.

It is easy to verify that the function φ(x, y, t) satisfies the level set equation

φ′ + w · ∇φ = 0,

where the velocity vector w has the form

w(x, y) =

(

− x

x2 + y2
,− y

x2 + y2

)

, (7.15)

with φ0 serving as a starting function.

Taking into account the fact that














φ0(x, y) > 0 if x2 + y2 < 1,

φ0(x, y) = 0 if x2 + y2 = 1,

φ0(x, y) < 0 if x2 + y2 > 1.

we conclude that the initial function φ0(x, y) is a level function with the circle of radius

r = 1 being its zero level set. Now we are interested in the evolution of this zero level set

which can be explicitly given via

Γ(t) = {x ∈ R
2 : |x| =

√
1 − 2t}.

Obviously, Γ(t) represents the evolution of a shrinking circle at time t.

We test our algorithm with the help of the given exact solution φ(x, y, t) and different

regularizing parameters ε which depend on the grid size h. In Tables 7.2.2 and 7.2.2 we

report the error behaviour after different uniform refinements, where

l is the number of uniform refinements,

h is the length of the grid size, and

Error(φh) is the error between the exact and numerical solutions constructed by calculating

the L2-norm ‖φ− φh‖ and taking the maximum over all time steps, i.e.

Error(φh) = max
1≤n≤N

‖φn − φn
h‖L2(Ω̂h),

EOC := experimental order of convergence defined by the formula:

EOC :=
log(‖u

∗−u1‖
‖u∗−u2‖

)

log(N2

N1
)

,
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where u∗ is the exact solution (it can be also the solution on the finest grid), u1 and u2 are

two approximate solutions of the problem, and N1, N2 are the numbers of elements in the

mesh.

l h Error EOC Error EOC Error EOC Error EOC
ε = h ε = h ε = h2 ε = h2 ε = h3 ε = h3 ε = 10−12 ε = 10−12

2 4.000 3.7712 − 3.7712 - 3.7712 - 3.7712 -

4 2.000 2.5086 0.5881 2.8727 0.3926 3.2257 0.2254 2.0286 0.8946

6 1.000 1.5613 0.6842 1.5613 0.8797 1.5613 1.0469 0.7210 1.4925

8 0.500 0.9023 0.7911 0.6149 1.3444 0.4318 1.8544 0.2023 1.8336

10 0.2500 0.5121 0.8172 0.1927 1.6741 0.0885 2.2868 0.0536 1.9163

12 0.1250 0.2826 0.8577 0.0532 1.8569 0.0184 2.2661 0.0137 1.9682

14 0.0625 0.1517 0.8976 0.0138 1.9467 0.0041 2.1661 0.0035 1.9689

Table 7.2: Convergence rates for ε = h, ε = h2, ε = h3, ε = 10−12 and several uniform
refinements (linear elements).

l h Error EOC Error EOC Error EOC Error EOC
ε = h ε = h ε = h2 ε = h2 ε = h3 ε = h3 ε = 10−12 ε = 10−12

2 4.000 3.1929 − 3.9918 - 4.7206 - 2.5925 -

4 2.000 1.8126 0.8169 2.3412 0.7698 2.7873 0.7602 0.4684 2.4687

6 1.000 1.2286 0.5611 1.2286 0.9303 1.2073 1.2072 0.1181 1.9879

8 0.500 0.7925 0.6325 0.4802 1.3554 0.2769 2.1245 0.0271 2.1238

10 0.2500 0.4769 0.7328 0.1494 1.6846 0.0419 2.7245 0.0050 2.4384

12 0.1250 0.2723 0.8085 0.0411 1.8621 0.0056 2.9036 0.0018 2.1878

14 0.0625 0.1489 0.8709 0.0107 1.9416 0.0007 2.9742 0.0005 1.8481

Table 7.3: Convergence rates for ε = h, ε = h2, ε = h3, ε = 10−12 and several uniform
refinements (quadratic elements).

Example 2.

Next we test our algorithm in the case when the velocity of the transport of the level set

function involves a given temperature field. As a known temperature distribution we take

the one described in the numerical example of Section 7.2.1, i.e.

θ(x, y, t) =







−(1 − 2t− x2 − y2)2 if x2 + y2 < 1 − 2t,

0 if otherwise.
(7.16)

As for the exact solution of level set equation, we take

φ(x, y, t) = 1 −
√

x2 + y2 + 2t. (7.17)
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Figure 7.3: Rates of convergence of level set equation with a given temperature distribution.

Given the functions θ(x, y, t) and φ(x, y, t), we are able to calculate the initial data of

the problem, boundary values, velocity of transport and right hand side of the level set

equation. We do our calculations on Ω̂ = [−3, 3]2 and time interval [0, 0.5]. Uniform meshes

with different grid sizes and time steps are employed. The computation results for linear and

quadratic elements are summarized in Table 7.4. The numerical results for the convergence

l h δt Error(φh)
lin. elements

2 3.0 2.0 · 10−2 1.1880

4 1.5 5.0 · 10−3 3.81 · 10−1

6 0.75 1.25 · 10−3 1.18 · 10−1

8 0.375 3.125 · 10−4 3.47 · 10−2

10 0.1875 7.81 · 10−5 9.63 · 10−3

12 0.0936 1.95 · 10−5 2.61 · 10−3

14 0.0469 4.88 · 10−6 7.13 · 10−4

l h δt Error(φh)
quad. elements

2 3.0 2.0 · 10−2 1.62 · 10−1

4 1.5 2.5 · 10−3 4.31 · 10−2

6 0.75 3.125 · 10−4 1.12 · 10−2

8 0.375 3.91 · 10−5 2.77 · 10−3

10 0.1875 4.88 · 10−6 6.26 · 10−4

12 0.0936 6.1 · 10−7 1.41 · 10−4

14 0.0469 7.63 · 10−8 3.42 · 10−5

Table 7.4: Error calculations for several uniform refinements: left for linear elements, right
for quadratic elements.

rates are demonstrated in Figure 7.3. The optimal rate of O(h2) is observed for quadratic

elements. The numerical rate of convergence with linear elements is included in Figure 7.3

as well. In this case the convergence rate is around O(h1.88) which is suboptimal.
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7.2.3 Coupling of sub-problems

We recall that the weak coupled system consists of variational inequality and level set

equation. The corresponding discrete problem is analogously coupled, on one hand, through

the temperature Θn
h entering the expression of the interface velocity in the weak level set

equation and, on the other hand, via integrals over the domain Ωh,tn , as well as interface

∂Ωh,tn , which occur in the formulation of variational inequality. Assume, we have done

a time discretization of the problem. In order to determine the temperature field Θn+1
h

and the level set Φn+1
h at n + 1-st time step, we calculate first the new temperature Θn+1

h

having in disposal the old value Φn
h of the level set function. With the updated temperature

distribution we are able to compute the interface velocity, plug it into the level set equation

and evaluate the new free boundary ∂Ωh,tn+1
as the zero level set of the new level function

Φn+1
h .

As for the discrete spaces, we employ the same finite element space Vh and triangulation

{Th} for the calculation of both temperature Θn
h and level function Φn

h. This allows us to

save all needed efforts for the administration and optimization of two different meshes. The

disadvantage of solving two sub-problems on the same grid is the impossibility of having an

optimal mesh for both sub-problems simultaneously.

Let us now demonstrate an algorithm, which we implement for the numerical treatment of

the coupled problem.

7.2.2 Algorithm. Cutting Model

Take φ(x, 0) = φ0(x) to be, say, the signed distance to the interface and θ(x, 0) = θ0(x) the

initial temperature distribution of the workpiece.

Step 1. Specify the discrete initial functions Θ0
h and Φ0

h as the Lagrange interpolation of θ0

and φ0, respectively.

Step 2. n = n+ 1.
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Step 3. Given the value Φn
h, calculate the discrete function Θn+1

h via

1

τn+1

∫

Ωh(tn)
Θn+1

h ϕhdx+ ϑ

∫

Ωh(tn)
∇Θn+1

h · ∇ϕhdx+
1

ε

∫

∂Ωh(tn)
In+1Θ

+(n+1)
h ϕhdγ

+ϑε

∫

Ω̂h

∇Θn+1
h · ∇ϕhdx

=
1

τn+1

∫

Ωh(tn)
In+1Θn

hϕhdx− (1 − ϑ)

∫

Ωh(tn)
∇In+1Θn

h · ∇ϕhdx+

∫

∂Ωh(tn)
jnabsϕhdγ

−(1 − ϑ)ε

∫

Ω̂h

∇In+1Θn
h · ∇ϕhdx.

Step 4. Compute the new velocity ωn+1
h of the cutting front with4

ωn+1
h := ∇θn+1

h − jerνr,

where ωn+1
h is the extension velocity from the front ∂Ωh,tn to the entire domain Ω̂h.

Step 5. Calculate the new level function Φn+1
h with

∫

Ω̂h

Φn+1
h

τn+1
ϕhdx+ ϑ

∫

Ω̂h

wn+1
h · ∇Φn+1

h ϕhdx+ ϑε

∫

Ω̂h

∇Φn+1
h · ∇ϕhdx

=

∫

Ω̂h

Φn
h

τn+1
ϕhdx− (1 − ϑ)

∫

Ω̂h

wn+1
h · ∇Φn

hϕhdx− (1 − ϑ)ε

∫

Ω̂h

∇Φn
h · ∇ϕhdx.

Step 6. Set the new domain occupied by the workpiece and its boundary using the updated

level function Φn+1
h :

Ωh,tn+1
=
{

x; Φn+1
h (x, tn+1) > 0

}

,

∂Ωh,tn+1
=
{

x; Φn+1
h (x, tn+1) = 0

}

.

Step 7. If tn < T , then go to Step 2.

Step 8. Stop.

Now we make some important remarks on the steps of the algorithm. In Step 2 we solve

the variational inequality on the fixed domain. Fixed, because we assume the interface

or the zero level set known from the previous time step. The existence of the solution of

variational inequality (5.37) on a fixed domain is proved in Lemma 6.2.2 which makes the

implementation of Step 2 legal. In Step 3 we solve the level set equation with a given velocity

field containing the gradient of the temperature. But the gradient of the temperature is

known from Step 2, therefore, we can employ the Lemma 6.2.4 to ensure the existence and

4The material parameters are set equal to one.



84 Chapter 7: Numerical Results

uniqueness of the weak solution of level set equation. To conclude, our analytical results

obtained earlier in Chapter 6 allow us to start the implementation of Algorithm 7.2.2, with

an aim to show the convergence of numerical schemes.

Some remarks on distance function

For numerical accuracy the level set function must stay well behaved in the sense that,

except for isolated points,

0 < c ≤ ‖∇φ‖ ≤ C

for some constants c and C. In practice, it is desirable for many problems that φ(x, t) be a

signed distance function, i.e.

‖∇φ‖ = 1.

However, the level set function ceases to be an exact distance function even after one

time step. Why this is important? We expressed the quantities like the outer normal to

Ωt and velocity of the interface with the help of the gradient ∇φ. In order to keep the

approximations to those quantities relatively accurate, we wish to avoid having steep or

flat gradients develop in φ. We face the same problem when defining the discrete interface

∂Ωh. For the calculation of ∂Ωh we need the values of the level set function Φh at the two

vertices of edges of triangles bounding the discrete domain. Now, if the gradient ∇Φh is

steep, then values of the function at these two points have the same order of magnitude,

which is not desirable.

This problem was first introduced by Chop in [7], where he showed enormous round-off

errors arising from the flat gradients.

One way to avoid these numerical difficulties is to reinitialize the function Φh to be an exact

distance function from the evolving front ∂Ωt at each time step, [7]. The reinitialization is

the construction of the distance function to the zero level set of a given level set function. To

be more precise, assume a level set function φ̂(x) is given, we want to construct a function

φ(x) such that

φ̂−1(0) = φ−1(0) and ‖∇φ‖ = 1.

There are several methods for reinitialization of Φh. In [54], Sussmann, Smereka and Osher

presented an algorithm for reinitializing the level set function to be an exact signed distance

function from the moving front. The idea behind this method is that given a function Φn
h
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(level set function at time tn) that is not a distance function, one can evolve it into a

function Ψ that is an exact signed distance function and, therefore, has the same zero level

as Φn
h. This is accomplished by iterating the equation

Ψt = S(Ψ0)(1 − |∇Ψ|)

to steady state, where Ψ0 := Φn
h and S denotes the sign function. As in [54], one can smooth

the sign function S by the equation

S(Ψ0) =
Ψ0

√

Ψ2
0 + ε2

.

By using this approach, one approximates the distance function to zero level set of Φn
h

avoiding to explicitly find the zero level of Φn
h.

Another method for construction of signed distances is due to Sethian and Adalsteinsson,

[42]. Again assuming that a function Φn
h is given and does not correspond to the signed

distance function. The idea behind this method is to solve an Eikonal equation

|∇Ψ| = 1

on either side of the front, with Ψ = 0 on the zero level set of Φn
h.

We present a different approach, which can be implemented effectively avoiding any reini-

tialization of level set function. At every time step we can approximate the time dependent

domain Ωt by its discrete counterpart Ωh,t using the Definition 7.2.1 and determine the ex-

act distance function at every mesh point explicitly. Although this approach is expensive,

we have to pay the price since we need the discrete interface for calculations of temperature

field. The Algorithm 7.2.2 should be then modified as follows:

7.2.3 Algorithm. Modified Cutting Model

Take φ0(x) and θ0(x) as in Algorithm 7.2.2.

Step 1. Specify Θ0
h and Φ0

h.

Step 2. n = n+ 1.

Step 3. Calculate the discrete function Θn+1
h .

Step 4. Compute the velocity ωn+1
h .

Step 5. Calculate the new level function Φn+1
h .

Step 6. Set the new domain using Φn+1
h .

Step 7. Compute the exact signed distance function Ψ to the zero level of Φn+1
h .
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l h δt Error(θh) Error(φh) Total/Error

2 3.0 2.0 · 10−2 1.4142 1.2278 2.6421

4 1.5 5.0 · 10−3 4.09 · 10−1 3.79 · 10−1 7.88 · 10−1

6 0.75 1.25 · 10−3 1.76 · 10−1 1.24 · 10−1 3.01 · 10−1

8 0.375 3.125 · 10−4 6.15 · 10−2 3.69 · 10−2 9.85 · 10−2

10 0.1875 7.81 · 10−5 1.56 · 10−2 9.69 · 10−3 2.53 · 10−2

12 0.0936 1.95 · 10−5 4.12 · 10−3 2.63 · 10−3 6.76 · 10−3

14 0.0469 4.88 · 10−6 1.04 · 10−3 7.11 · 10−4 1.75 · 10−3

Table 7.5: Error calculations for cutting model.

Step 8. Set Φn+1
h := Ψ .

Step 9. If tn < T , then go to Step 2.

Step 10. Stop.

Numerical example for the coupled system

In this section we discuss the convergence rate for the Algorithm 7.2.2. We compute the

discrete solution of cutting model (Θh,Φh) for several uniformly refined meshes and equally

spaced time stepsize. Here we present the numerical results for linear elements only. As

an exact solution (θ, φ) for the numerical test we employ the temperature distribution

(7.16) and level set function (7.17), respectively. Like in the case of sub-problems, the

corresponding initial data, boundary values and right hand sides are computed directly

from the given exact solution.

After the implementation of the Algorithm 7.2.2, we again measure the L
2-error between

the exact and computed solutions. Some of the obtained numerical results are shown in

Table 7.5. The log-log plot 7.4 demonstrates results concerning the rate of convergence of

the cutting algorithm. A rate very close to an optimal of O(h2) is observed. Reminding

that the calculations are done for linear finite elements, we can report a convergence rate

O(h1.96) for variational inequality, O(h1.9) for level set equation and O(h1.94) for total error

(see Figure 7.4). An interesting question is how the rate of convergence changes when we

compare the error we make by solving the sub-problems and the error contributions of each

sub-problem in the coupled system. We refer to Figure 7.5 demonstrating this comparison.

As one can see, for very coarse grids there is a small difference between the convergence

rates of coupled problem and decoupled sub-problem for temperature calculation. This
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Figure 7.4: Computed convergence rates for the coupled problem.

problem disappears after a couple of uniform refinements (see Figure 7.5). The situation

with level set equation is fine, the convergence rates for coupled and decoupled algorithms

overlap which is illustrated in the right plot of the figure.

7.3 Adaptive methods

A global or uniform refinement of the mesh may lead to the best reduction of the error per

refinement level, but the amount of new unknowns might be much larger than needed to

reduce the error below the given tolerance. Using local mesh refinement, we hope to do

much better.

The aim of an adaptive method is to compute a numerical solution in such a way that the

error is of a prescribed accuracy and the number of degrees of freedom is as small as pos-

sible. Using adaptive discretization methods, numerical approximation within a prescribed

accuracy can often be gained with only a small portion of work. To be more precise, the

aim is the generation of a mesh which is adapted to the problem such that a given criterion

is fulfilled by the finite element solution on this mesh. As a criterion we may require that

for a given tolerance the estimated error between the exact and discrete solution satisfies

the condition

‖θ − θh‖ ≤ tolerance,

where ‖ · ‖ is some appropriate norm. An optimal mesh resulting from such an adaption
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Figure 7.5: Comparison of convergence rates for coupled and decoupled problems, left: heat,
right: level set.

should be as coarse as possible while meeting the above mentioned criterion. This can save

a lot of computing time and memory requirements.

A standard implementation of adaptive finite element method consists of iterating the pro-

cedure

. . . solve ⇒ estimate ⇒ mark ⇒ refine/coarsen . . .

We briefly discuss each step of the procedure separately.

Solve: At this step we solve a system of equations, linear or non-linear depending on

the model problem under consideration. Multi-grid or Krylov space methods and Newton

method can be efficiently employed for obtaining a solution of the system.

Estimate: Adaptive control of the error between the exact and discrete solutions is built

on local error indicators and global error estimates. The error indicator is a non-negative

real number assigned to each triangle, which has its largest values in the triangles whose

refinement would be most beneficial for reducing the discretization error. An error estimate

can be defined only globally and should be a good approximation of the discretization error

in an appropriate norm. An error indicator is used to guide adaptive remeshing, while an

error estimate can be used as a stopping criterion for the program, or just to give the user

some idea of how accurate is the solution.

Error estimates for discretization are of two forms:

• a priori error estimates;

• a posteriori error estimates.
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An a priori error estimate relates the error between the exact and the approximate solution

to the regularity of the exact solution, while an a posteriori error estimate is a computable

estimate for the error in a suitable norm in terms of the actual numerical solution and data

of the problem. Such an estimate allows to compute the solution with a prescribed error

tolerance.

Mark: Using the information based on local error indicators, a set of triangular elements

are marked for refinement or coarsening.

Refine/coarsen: In this step we implement a suitable refinement or coarsening procedure in

order to refine/coarsen the marked triangles from the previous step. It is worth mentioning

that the issues concerning the interpolation and restriction of degrees of freedom during

mesh refinement and coarsening must be considered as well and appropriate methods should

be used for fitting the finite element functions to a new generated finite element spaces.

7.3.1 Error estimates

For the control of mesh adaption we are going to use an a posteriori error estimate for the

temperature, which can be deduced from appropriate a priori estimate of the error. There-

fore, let us consider the heat conduction equation and state the results on error estimates

obtained by Eriksson and Johnson in [12].

The heat equation is classically described by the following evolution equation plus initial

and boundary conditions (for the sake of simplicity we set all material parameters equal to

one):

θt − ∆θ = f in Ω × (0, T ), (7.18)

where θ = θ(x, t) represents the temperature, t is the time variable, T > 0 is a fixed number,

Ω ⊂ R
n is as usual a bounded domain with a Lipschitz boundary ∂Ω and f = f(x, t)

describes the volume heat sources.

As for the boundary conditions, we impose Dirichlet boundary conditions on the whole

boundary ∂Ω × (0, T ):

θ = 0 on ∂Ω × (0, T ). (7.19)

The cases of other type of boundaries (Neumann, Robin) are treated analogously.

Finally, we assume that the temperature distribution at t = 0 is given via

θ(x, 0) = θ0(x) x ∈ Ω. (7.20)
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A priori error estimates

A priori estimates for the error between continuous and discrete solution can be derived

by i) first proving an approximation result for the solution of the semi-discrete problem

(discretization is done only in space), and ii) then using more or less the standard estimates

for time discretization of systems of ordinary differential equations.

For example, for the backward Euler time discretization and piecewise linear finite element

space over a triangulation T in space, the error estimate reads:

Assuming that θ is smooth enough, we have

max
0≤k≤N

‖θ(tk) − θk
h‖L2(Ω) ≤ c

(

‖θ0 − θ0
h‖L2(Ω) +

(

h(T )4‖θ0‖2
H2(Ω)

+h(T )4
∫ tN

0
‖θ′‖2

H2(Ω)dt+ (∆t)2
∫ tN

0
‖θ′′‖2

L2(Ω)dt

)
1

2

)

.

We observe that the error converges to zero quadratically in h(T ) and linearly in ∆t. For

the Crank-Nicholson scheme, one can get quadratic convergence in ∆t as well, but under

higher regularity assumptions on θ.

A posteriori error estimates

A posteriori error estimates for parabolic problems usually consist of four different types of

terms:

• terms estimating the initial error;

• terms estimating the error from discretization in space;

• terms estimating the error from mesh coarsening between time steps;

• terms estimating the error from discretization in time.

Thus, the total estimate can be split into parts

η0, ηh, ηc, and ητ

estimating these four different error parts.

Eriksson and Johnson [12] proved an a posteriori error estimate for the discontinuous
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Galerkin time discretization of the heat equation. The error estimate for piecewise con-

stant time discretization and piecewise linear discretization in space is given by

‖θ(tN ) − ΘN‖L2(Ω) ≤ ‖θ0 − Θ0‖L2(Ω)

+ max
1≤n≤N

(

(

∑

T∈Tn

C1h
4
T ‖f‖2

L∞(In,L2(T ))

+C2h
3
T ‖[n · ∇Θn]‖2

L∞(In,L2(∂T\∂Ω))

) 1

2

+C3‖Θn − Θn−1‖L2(Ω) + C4

∥

∥

∥
h2

T

[Θn−1]

τn

∥

∥

∥

∗

L2(Ω)

)

,

where Θn is the discrete solution on In := (tn−1, tn), τn = tn− tn−1 is the nth time step size,

[·] denotes jumps over edges or between time intervals. The last term C4‖ . . . ‖∗ is present

only in case of mesh coarsening. The constants Ci depend on the time tN and the size of

the last time step: Ci = Ci(log( tN
τN

)).

This leads to the following error estimator parts:

η0 =

(

∑

T∈T0

‖θ0 − Θ0‖L2(T )

)
1

2

,

ηh =

(

∑

T∈Tn

C1h
4
T ‖f‖L∞(In,L2(T )) + C2h

3
T ‖[n · ∇Θn]‖2

L∞(In,L2(∂T\∂Ω))

)
1

2

,

ηc =

(

∑

T∈Tn

C4

∥

∥

∥
h2

T

[Θn−1]

τn

∥

∥

∥

L2(T )

)
1

2

,

ητ = C3‖Θn − Θn−1‖L2(Ω).

When a bound tol is given for the total error produced in each time step, the widely used

strategy is to allow one fixed portion Γh tol to be produced by the spatial discretization,

and another portion Γτ tol of the error to be produced by the time discretization, with

Γh + Γτ ≤ 1.0. The adaptive procedure now tries to adjust time step sizes and meshes such

that in every time step

ητ ≈ Γτ tol and ηh + ηc ≈ Γh tol .

7.3.2 Adaptive refinement strategies. Equidistribution strategy

Mesh refinement is especially important, being one of the major reasons for using an un-

structured mesh. The philosophy for the implementation should be the changing of meshes
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successively by local refinement or coarsening, based on error estimators or error indicators

which are computed a posteriori from the discrete solution and given data on the current

mesh.

Several adaptive strategies are proposed in the literature that provide us with a criteria

which elements should be marked for refinement. The procedure of any adaptive refinement

strategy is simple: elements where the error estimate is large will be marked for refinement,

while elements with a small estimated error are left unchanged.

Adaptive refinement for elliptic problems

The general outline of an adaptive algorithm for a stationary problem is as follows, [46].

Starting from an initial triangulation T0, we produce a sequence of triangulations Tk, k =

1, 2, . . . , until the estimated error is below the given tolerance:

7.3.1 Algorithm. General adaptive refinement strategy for stationary problems

Start with T0 and error tolerance ε

k := 0

do forever

solve the discrete problem on Tk

compute local error estimate η and local indicators ηT, T ∈ Tk

if η ≤ ε then

stop

else mark elements for refinement or coarsening, according to a marking

strategy

refine mesh Tk, producing Tk+1

k := k + 1

enddo

Since a discrete problem has to be solved in every iteration of this algorithm, the number

of iterations should be as small as possible. Thus, the marking strategy should select not

too few mesh elements for refinement in each cycle. On the other hand, not much more

elements should be selected than is needed to reduce the error below the given tolerance.

In the sequel, we describe only one of the marking strategies which we are going to use for

solving the cutting problem. The strategy is called the equidistribution strategy [12]. Let
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Nk be the number of mesh elements in Tk. If we assume that the error is equidistributed

over all elements, i. e. ηT = ηT ′ for all T, T ′ ∈ Tk, then

η =





∑

T∈Th

η2
T





1/2

=
√

Nk ηT
!
= ε and ηT =

ε√
Nk

.

We can try to reach this equidistribution by refining all elements, where it is disturbed

because the estimated error is larger than ε/
√
Nk. To make the procedure more robust, a

parameter θ ∈ (0, 1), θ ≈ 1, is included in the method.

7.3.2 Algorithm. Equidistribution strategy [12].

Start with parameter θ ∈ (0, 1), θ ≈ 1

for all T in Tk do

if ηT > θε/
√
Nk then mark T for refinement

enddo

If the error η is already near ε, then the choice θ = 1 leads to the selection of only very few

elements for refinement, which results in more iterations of the adaptive process. Thus, θ

should be chosen smaller than 1, for example θ = 0.9.

Although the above mentioned equidistribution strategy is described for refinement pur-

poses, it can also be used to mark mesh elements for coarsening. Actually, elements will

only be coarsened if all neighbour elements which are affected by the coarsening process are

marked for coarsening, too. This makes sure that only elements where the error is small

enough are coarsened. Let us show how strategy works both for refinement and coarsening.

Equidistribution of the tolerated error ε leads to

ηT ≈ ε√
Nk

for all T ∈ T .

If the local error at an element is considerably smaller than this mean value, we may coarsen

the element without producing an error that is too large. If we are able to estimate the

error after coarsening, for example by assuming an asymptotic behaviour like

ηT ≈ c hλ
T , λ > 0 ,

we can calculate a threshold θc ∈ (0, θ) such that the local error after coarsening is still

below θ ε/
√
Nk if it was smaller than θc ε/

√
Nk before. If the error after coarsening gets

larger than this value, the elements would directly be refined again in the next iteration.
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7.3.3 Algorithm. Equidistribution refinement/coarsening strategy

Start with parameters θ ∈ (0, 1), θ ≈ 1, and θc ∈ (0, θ)

for all T in Tk do

if ηT > θ ε/
√
Nk then mark T for refinement

if ηT + ηc,T < θc ε/
√
Nk then mark T for coarsening

enddo

Adaptive refinement for parabolic problems

The adaptive refinement procedures described so far can be extended to time dependent

problems. In time dependent problems the mesh is adapted to the solution in every time

step using a posteriori error estimators. An additional work may be invested to control the

time step sizes adaptively as well. Schmidt and Siebert in [46] suggest an algorithm for the

adaptive control of time step size in parabolic problems.

7.3.4 Algorithm. Time step size control

Take parameters δ1 ∈ (0, 1), δ2 > 1, time step size τold, tolerances tolτ and TOLτ of error

produced by the time discretization.

Step 1. Start with time step size τ := τold.

Step 2. Solve one time step according to Algorithm 7.2.3.

Step 3. Compute ητ .

Step 4. If ητ > TOLτ , then set τ := δ1τ and go to Step 2.

Step 5. If ητ < tolτ , then set τ := δ2τ .

Step 6. End.

For Euler time discretization of the non-homogeneous heat equation with piecewise linear

finite elements, an estimate ητ looks like

ητ := c
(

‖θn+1
h − θn

h‖ + ‖f‖
)

.

For the cutting problem we define

ητ := τ
(

c1‖θn+1
h − θn

h‖L2(Ω̂) + c2‖Φn+1
h − Φn

h‖L2(Ω̂)

)

,

where c1, c2 are given positive parameters. With the help of defined ητ we compute the

change in temperature and level set function in one timestep and use this value for adaptive
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control of time step size.

The above algorithm controls the time step size only, nothing is done for mesh adaption.

There are several possibilities to combine both controls. One possible way would be to do

the step size control with the old mesh, then adapt the mesh and then check the time error

again. We refer to [46] for a time and space adaptive algorithm.

A recursive approach to mesh refinement and coarsening

The crucial problem in the local mesh refinement is the maintenance of the mesh conformity.

One way to solve the problem is nonrecursive. At first an element is divided, what in

general breaks conformity and then conformity is recovered dividing some other elements.

Another, recursive, approach maintains conformity during the whole refinement process

carefully controlling the order in which elements are divided. This approach requires certain

preprocessing to provide for termination of the recursion.

To calculate the numerical solutions, we use the recursive approach, implemented in AL-

BERTA. Moreover, to divide the triangles, the bisection of elements is used. For every

element (triangle), one of its edges is marked as the refinement edge and the element is

refined into two children triangles by cutting its edge at its midpoint.

Definition 7.3.1. A triangle is called compatibly divisible, if its marked edge is also the

marked edge of the triangle that shares that edge.

We start the refinement with some triangle of the mesh. We call this triangle a ”calling

triangle”. Now if we bisect the calling triangle, in most cases we will get nonconformity. To

keep the mesh conforming, we say that the bisection of a triangle is only allowed, when it is

compatibly divisible or it is a boundary triangle, i.e. its marked edge lies on the boundary

of the domain (see Figure 7.6). So, starting with the calling triangle, we check whether

Figure 7.6: Recursive bisection operation. The common edge is the refinement edge for
both triangles.

it is compatibly divisible. If yes, then we bisect it and the neighbour that has the same
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marked edge simultaneously. If the calling triangle is not compatibly divisible, we go to the

neighbouring triangle and proceed as above till we find a compatibly divisible triangle or

we come to a boundary triangle.

Two cases are possible:

Case 1: If on our recursive path we meet a triangle which is compatibly divisible, then after

dividing it by bisection, the corresponding calling triangle of this refined triangle will, for

sure, become compatibly divisible. So we can now bisect it and obtain a new compatibly

divisible calling triangle from the previous step.

Case 2: If during the recursion we come to a boundary triangle, and the edge to be bisected

lies on the boundary, then after a simple bisection of the edge which lies on the boundary

will make the corresponding calling triangle compatibly divisible. It means after a single

bisection of a boundary triangle we are in the Case 1.

Theorem 7.3.1. The described recursive bisection algorithm terminates after a finite time

and the shape regularity for all elements at all levels is preserved.

Proof. See [33] for the proof. 2

Another simple choice (nonrecursive) of bisection of an element is the direct method. As

in the recursive case, here also, if a triangle is compatibly divisible, then we bisect the

triangle and the neighbour simultaneously as a pair. But if a triangle (calling triangle) is

not compatibly divisible, then we do the following: we immediately bisect the neighbour

triangle, after which the calling triangle will become compatibly divisible, and then bisect

the pair. Applying this procedure to all triangular elements of the mesh, we will avoid the

nonconformity of simplicies. For an illustration we refer to Figure 7.7. In the first step we

T
T

T

/

//

Figure 7.7: Nonrecursive bisection of the triangle T . T ′ is the neighbour opposite the first
vertex of T , T ′′ is the neighbour opposite the first vertex of T ′.

bisect the triangle T ′. The triangle T now is compatibly divisible and we bisect it (dashed

line) together with its new neighbour. In the second step we apply the same procedure to

T ′′.
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7.3.5 Algorithm. Nonrecursive algorithm

for all triangles T ∈ Tk do

if T is compatibly divisible then

bisect T together with its neighbour

else bisect the neighbour of T lying on its refinement edge

bisect T and its new neighbour

enddo

The coarsening algorithm is somehow the converse operation of the refinement algorithm.

Here also we are allowed to coarsen triangles only in pairs by removing the vertex which

is located on the common edge. For illustration look at Figure 7.6 in direction from right

to left. Nevertheless, there is a difference between refinement and coarsening algorithms.

During refinement, the bisection of an element can enforce the refinement of the neighbour-

ing element, which need not to be refined. During coarsening, an element is allowed to be

coarsened only if all elements involved in the operation are marked for coarsening.

7.4 Adaptive method for cutting model

There are several possible adaptive procedures that can be applied to cutting model, here

are three of them:

• temperature controlled adaptive refinement;

• level set based adaptive refinement;

• combined adaptivity

In the following we discuss the advantages and drawbacks of each procedure in detail.

Temperature controlled adaptive refinement

The idea of using the temperature controlled adaption is that one adapts the mesh paying

attention only to the discrete temperature θh. At the areas close to the plasma beam big

temperature variations take place, therefore, we expect that the error between the exact

and discrete solutions at these places is relatively big. Consequently, the mesh near the

heat source has to be refined in order to reduce the error.
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The main advantage of such a method is that the number of degrees of freedom are very

small. There is an important drawback of temperature controlled refinement though. The

refinement of cutting interface near the plasma beam leaves the mesh around the moving

front far from the heat source unchanged. For example, the boundary of the workpiece,

where no heat input takes place can not be refined because of the absence of big temperature

variations there. This results in a coarser mesh around the zero level set, which may allow

an increase of the error in the solution of level set equation. We will come back to this issue

in the next section and illustrate the calculation results.

Level set based adaptive refinement

A second way to refine our mesh adaptively, is the level set based adaption. In the algorithms

described in previous sections we have used the approach to solve the initial value partial

differential equation for the level set function φ in the entire computational domain. In this

approach not only the zero level set but also all other level sets are updated. In problems

such as those encountered in image processing (see [41]) this approach is desirable. In the

settings of our problem the behaviour of non-zero level sets is not interesting, since the only

desirable curve for the calculation of the cutting front is the zero level set of φ.

It is intuitively clear (also known from the physical experiments) that the temperature has

big variations when we are close to the cutting front and varies very little far from the

interface. The interface velocity depends on the gradient of the temperature, therefore, the

speed function changes rapidly near the moving front. Thus, adaptive refinement of the

mesh may be desired in the regions close to the zero level curve. As we are highly interested

in the evolution of the zero level set of φ identified with the cutting front, the mesh can be

adaptively refined around its location and coarsened far from the zero level set.

Thus, for a good approximation of the solution we aim to refine only near the front of

interest. We consider elements close to the interface at each time step. A way to implement

it is to choose elements that lie less than some given distance away from the moving front.

There are several advantages of this approach. Refining the mesh only in a neighbourhood

of the zero level set instead of doing the work on the entire computational domain is one of

the main advantages. A fine mesh near the moving interface may be also a proper one for

the variational inequality as big temperature variations take place near the cutting front

only. Therefore, we hope to do better with this approach compared with the temperature
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controlled refinement.

The approach is similar to the Narrow band approach, first introduced by Chop in [7] and

extensively analysed by Adalsteinsson and Sethian, [42]. The difference is that they perform

the computations only near the zero level set, which may require additional attention to

the conditions enforced on the boundaries of the narrow band.

The idea is illustrated in Figures 7.8. We again start with a circle of radius one (black circle

in the middle of each left column picture) and let it shrink according to velocity given by

(7.15). The exact solution shows that the curve vanishes at t = 0.5. The figures present

the computed solution and corresponding adaptively refined mesh at three times t = 0.05,

t = 0.2 and t = 0.35.

Combined adaptivity

Under the term combined adaptivity we understand a method which combines two adaptive

refinement approaches discussed in the previous sections. More precisely, in this method

we

• adaptively refine the mesh inside the solid domain using appropriate a posteriori error

estimates for heat equation, and

• use the level set based adaptive refinement method to create an adaptive mesh near

the moving boundary (zero level set).

It is worth mentioning that the best way to generate an optimal mesh for the cutting problem

is an adaptive method, which uses a posteriori error estimates for both variational inequality

and level set equation. The method can provide a practical criteria to control the adaptive

mesh refinement and construct a stopping condition for the solver. A proper implementation

of this approach requires as well, that instead of solving the problem on the same mesh,

we construct two different meshes for each sub-problem and solve the coupled system by

computing each unknown on its own triangulation with its own error estimator. The toolbox

ALBERTA is able to easily handle the employment of several meshes simultaneously, but

we leave this work for our future studies.
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Figure 7.8: Level sets (left) and corresponding adaptively refined meshes (right)
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7.5 Numerical experiments

7.5.1 Thermal cutting of a workpiece

Finally, let us apply the cutting algorithm on a problem, the exact solution of which is a

priori unknown. As a domain of interest (workpiece to be cut) we take Ω = [−1, 1]2 and

the final time is taken to be T = 1. Let initial temperature θ0(x) be constant equal to the

ambient temperature and as an initial level set function we select the distance function.

The plasma beam is represented via a circle, the center of which is initially located on the

left side of the workpiece at point (−1.3, 0). When the cutting process starts, the plasma

source moves along the x-axis, and the center changes its position at each time step with a

given velocity v. Therefore, we can describe the plasma beam as a circle of constant radius r

centered at (α(t), 0) with α(t) = −1.3+vt. The heat flux density is calculated with the help

of the model developed in Section 3 resulting in appearance of another parameter je which

is responsible for the amount of heat emitted by the plasma source. The non-homogeneous

Dirichlet boundary conditions on the outer boundary are handled in the standard fashion

since the interface does not touch the fixed boundary.

We start our simulations with the following parameter set: je = 4.8, r = 0.2, v = 160,

penalty parameter ε = 10−12 and viscosity parameter being equal to the mesh size. The

parameter set is selected such that we may be able to show a qualitative behaviour of the

system. For quantitative behaviour one should select a material to be cut, corresponding

material parameters and an appropriate plasma gas which will have an influence on the

plasma parameter je. In this case a space and time scaling of the problem should be done

as well.

The initial temperature distribution, domain configuration and mesh are plotted in Figure

7.9. As a refinement technique let us select the different refinement approaches described

in Section 7.4.

We start with temperature controlled adaptive refinement. In Figure 7.10 we only show the

changing mesh. As one can easily see, the elements located near the zero level set and far

from the beam are not refined resulting in error increase in the solution of level set equation.

Now we recompute the solution employing the level set based adaptive refinement. Figure

7.11 illustrates the computation results for different time steps. Left column shows the tem-

perature development in the workpiece. As one can see, the temperature variations are high
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Figure 7.9: Initial temperature, workpiece geometry and computing mesh.

Figure 7.10: Adaptively refined mesh using the temperature controlled refinement. The
important refinement around the zero level set is missing.
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close to the cutting front with almost negligible temperature changes far from the melting

interface. This result verifies one of our modelling assumption, where we consider the heat

input by the plasma beam to have a surface effects only. Pictures in the middle column

demonstrate the evolution of the zero level set representing the workpiece geometry. A very

small rounding of sharp corners of the square workpiece is observed during the simulations,

which appears as a result of the regularization of level set equation via vanishing viscosity

term. The right column of Figure 7.11 illustrates the corresponding mesh generated by

adaptive procedure. Finally, let us solve the problem selecting the combined adaptivity as a

refinement method. Recall that in this case we adapt the mesh inside the solid domain using

the a posteriori error estimates for heat equation described in Section 7.3 and implement

the level set based adaptive refinement close to the zero level set. Figure 7.12 illustrates the

computation results. We only plot the adaptively refined mesh, as it is the most interesting

issue in this case.

7.5.2 Flattening effects

In Section 7.2.3 we have mentioned that in some cases it is impossible to maintain the

numerical accuracy for the level set function φ, because flat and/or steep regions may

develop as the interface moves. This leads to flattening of the level set function: ∇φ may

become very small near the moving front, rendering the computation and contour plotting

at those places inaccurate. With our approach we do not face any flattening problems. In

order to show this, we just take a look at the behaviour of non-zero level sets as well. Let us

start with the test problem considered in Section 7.2.2. There we have a unit circle acting

as a zero level set. Figure 7.13 shows the evolution of the zero level set (red circle) together

with several other level sets (blue circles). As one can see, all of them are behaving well

during the time steps and no flattening effect is observable.

Now let us follow the situation with cutting problem. We repeat the calculations and, like

above, investigate the behaviour of several non-zero level sets of φh. Figure 7.14 shows the

results, which comes to demonstrate the absence of any flattening effect.

7.5.3 Sensitivity to numerical parameters

In the numerical study of cutting problem, determination of the sensitivity of calculated

results to variations or uncertainties in input numerical parameters is crucial to understand-
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Figure 7.11: Cutting of the workpiece. Left: temperature, middle: level set, right: mesh.
As a refinement method, the level set based adaptivity is used.



Chapter 7: Numerical Results 105

Figure 7.12: Adaptively refined mesh for cutting model.
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Figure 7.13: Shrinking level sets, red: zero level set, blue: other level sets.
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Figure 7.14: The behaviour of different non-zero level sets, red: zero level set, blue: other
level sets.



108 Chapter 7: Numerical Results

ing the results and prioritizing the accuracy of calculations. Numerical modelling of cutting

process includes input parameters such as the tolerance for adaptive method for variational

inequality and the level of refinement for the level set based adaptivity. Therefore, we

would like to investigate the sensitivity of calculated workpiece temperature and geometry

to the above mentioned input parameters. Since the numerical parameters are related to

the adaptive refinement methods, the combined adaptivity procedure should be used for

the calculations.

We start by fixing the tolerance and varying the level of refinement for level set equation.

Recall that in level set based refinement we implement the recursive refinement process by

refining all elements that are not far than a given distance from the zero level set and have a

size less than some parameter δ. By the size of the element we mean the length of the longest

edge of the triangle. Our aim is to investigate the sensitivity of the numerical calculations to

this parameter δ. Therefore, we take different values for δ and run the program keeping the

tolerance for variational inequality fixed. The results for δ = 0.004, 0.005, 0.007, 0.008 are

shown in Figure 7.15. The figure shows how the changes in the triangle size parameter affect

the temperature distribution in the material, workpiece geometry and the corresponding

mesh. It is worth mentioning that no essential changes in results are observed by further

variations of δ, but an increase of the parameter δ above some value leads to occurrance of

big errors in the calculations of zero level set.

We continue our experiments by tracing the effect of the parameter tol entering the a poste-

riori error estimate for heat equation. Therefore, we fix the parameter δ and do experiments

with different values of tol. Calculation results for tol = 10−3, 5× 10−3, 10−4, 5 · 10−4 are

plotted in Figure 7.16. As expected, as the parameter tol decreases, the mesh inside the

solid region becomes finer, while the larger values of tol lead to a coarser mesh inside the

workpiece.

7.5.4 Sensitivity to model parameters

The cutting model involves two important parameters representing the heat amount emitted

by the plasma beam and the velocity of the heat source. An interesting question arises,

therefore, how the simulations results change if we vary those parameters, and do they

correspond to the real situation. For the calculations of this section, we employ the level

set based adaptive refinement procedure.
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Figure 7.15: Sensitivity to numerical parameter δ. Simulations results of cutting process
with fixed tolerance and increasing parameter δ = 0.004, 0.005, 0.007, 0.008.
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Figure 7.16: Sensitivity to numerical parameter tol. Simulations results of cutting process
with fixed parameter δ and decreasing parameters tol = 10−3, 5 · 10−3, 10−4, 5 · 10−4.
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First, let us discuss the influence of the emitted heat flux density je. For a fixed velocity

parameter v = 160, we run our program for different heat input parameters starting from

a low value and increasing it subsequently during each further simulation. It is clear that

increasing the heat input on the surface of the material will result in a widening of the

cutting kerf. The bigger is the emitted heat flux density, the greater is the heating area

and, therefore, the wider is the cut cavity. Figure 7.17 verifies our considerations. Starting

with je = 4.0, we then increase its value to 5.8, 6.8 and 8.8. We stop our simulations at

some time instant and illustrate the results for each case in Figure 7.17. The widening effect

is easily observable. Another way to decrease the width of the cutting cavity is to increase

the velocity of the plasma beam. Therefore, we repeat the calculations again with je = 5.8,

but now with plasma device moving with higher velocity v = 240. We compare the results

with the ones obtained earlier for v = 160 and plot them together in Figure 7.18. One can

also observe better cut quality (squareness of edges, narrow band of temperature variation,

etc.) by cutting with high speed plasma beam.

7.5.5 Topological changes

One of the main advantages of level set method is the way it handles complicated interfacial

geometries. Topological changes in the evolving front associated with merging and breaking

of the domain are handled naturally. The position of the melting front at any time t is given

via the zero level set φ(x, t) = 0 of the level set function φ. This zero level set need not

be a single curve. In our problem it breaks at the end of the cutting process resulting in

two separate domains with non-intersecting boundaries. The key fact is that although the

final curve is not a single one anymore, the level set function φ remains single-valued. The

picture in the last row of Figure 7.11 shows the break curves after the cut.
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Figure 7.17: Sensitivity to heat input parameter. Simulations results of cutting process
with fixed velocity and increasing heat input. The cut cavity widening is easily observable.
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Figure 7.18: Sensitivity to velocity parameter. Results of two computations with fixed heat
input and different device velocities. Above: v = 160, below: v = 240.
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Conclusions

Let us now conclude this work with a short presentation of main results and some recom-

mendations for further investigations.

8.1 Summary of the work

The starting point for this study is a real-life problem coming from the steel industry1,

namely, a problem occurring during the plasma cutting of a workpiece. In this study we

have focused our attention on the following main aspects:

• Description of thermal plasma cutting process and physical modelling of different

effects taking place in the workpiece during the cutting.

• Mathematical modelling of the metal piece cut with plasma via Stefan-Signorini mov-

ing boundary approach.

• Reformulation of the classical model into a weak model using the concepts of theories

on variational inequalities and level sets.

• Mathematical analysis of the weak model, establishment of existence and uniqueness

results.

• Convergence of numerical algorithms, numerical results and computer simulations.

1The problem in its real form was stated by colleagues from Bremen Steel Company.

114
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Summarizing, our investigations cover physical and mathematical modelling of the problem,

mathematical analysis of the model and numerical results. The model allows us to get

several qualitative results on the process, but is still open for further modifications.

8.2 Remarks on further developments

Because of the complexity of the cutting process and the wide range of different thermal

effects occurring in the workpiece we could not give exhaustive answers to all problems.

There are a lot of modifications possible and, for sure, desirable for the cutting model. The

natural way to modify and improve any model is to get rid of as many assumptions and

simplifications as possible. We give an outline of few of them.

1. A very important issue interesting for engineers concerning the plasma cutting is, of

course, the deformations taking place on the cutting edge. Besides the temperature,

the residual stresses in the pieces after the cut are another responsible for the defor-

mations resulting in poor edge squareness. Therefore, an additional condition (e.g.,

equations of thermo-elasticity, elasticity, etc.) computing the deformations/stresses in

the resulting pieces should be included in the model. We consider this as an extension

of the model, which has to be done priorly.

2. There are several parameters in the cutting model. An interesting question would

be the optimization of these parameters. In other words, one seeks an optimal set

of parameters entering the model which may strongly influence the whole cutting

process. One way of solving this problem would be to insert the set of parameters

into an optimization problem and try to solve the resulting optimal control problem.

3. We did not consider the solid-solid phase changes in the material occurring during

the heating of the workpiece to melting temperature. This can be included in the

model by adding another condition (system of equations) describing the solid-solid

phase change in the material. Some earlier publications by Schmidt, Boehm, Wolff

and Dachkovski, [11], [44], [45] are a very nice starting point for the modification of

the model in that direction.

4. We have neglected the heat lost by radiation as well as the energy used for chemical

reactions taking place on the cutting surface. While the consideration of the radiation
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of heat from the surface results in modifying the model by imposing appropriate

nonlinear boundary conditions, the situation with chemical reactions on the surface is

more complicated. We refer to [35], for one dimensional model of concrete carbonation,

where the boundary conditions on the interface include the effects of chemical reaction.

5. Last, but not least, we expect better results of numerical simulations as soon as adap-

tive procedures for both variational inequalities and level set equations are applied.

We hope to be able to successfully develop corresponding error estimators and come

out with finer results which will satisfy engineers at the industry dealing with the

problem as well as us, mathematicians, trying to make our small contributions in the

process of solving real-life problems.



Appendix A

Viscosity solution method

The standard classical analysis of the Problem 6.2.3 by the method of characteristics shows

that in general there can be no smooth solution for all times t ≥ 0. The solution of Problem

6.2.3 may be discontinuous with a jump across a characteristic. There is also a lack of an

appropriate notion of solution for which the existence and uniqueness results can be proved.

We are going to utilize another approach known as method of vanishing viscosity. The idea

is to add a viscosity term to the level-set equation (6.33) and consider the approximate

problem:

Problem A.0.1. Find the function φε(x, t) : R
n × (0, T ) → R, n = 2, 3, such that

∂φε

∂t
+ w · ∇φε = ε∆φ, (A.1)

φε(x, 0) = φ0(x),

where ε is a positive constant.

The advantage of the method is that equation (A.1) is an initial-value quasi-linear parabolic

equation, which can be shown to have a smooth solution. The viscosity term ε∆φ plays a

role of a regularizer of the level-set equation (6.33). The limit of the smooth solution φε as

ε vanishes provides us with some sort of weak solution of (6.33).

Crandal, Evans and Lions [10] define a weak solution of (6.33) as follows:

Definition A.0.1. A bounded, uniformly continuous function φ is said to be a viscosity

solution of Problem A.0.1, if for all test functions ϕ ∈ C
∞(Rn × (0, T )) the following holds:

117
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1. If φ− ϕ has a local maximum at a point (x0, t0), then

ϕt(x0, t0) + w(x0, t0)∇ϕ(x0, t0) ≤ 0, (A.2)

and

if φ− ϕ has a local minimum at a point (x0, t0), then

ϕt(x0, t0) + w(x0, t0)∇ϕ(x0, t0) ≥ 0. (A.3)

2. φ satisfies the initial condition

φ = φ0 on R
n × {t = 0}. (A.4)

Remark A.0.1. In the definition no derivatives of the viscosity solution φε appear; every-

thing is written in terms of the smooth function ϕ. Our goal will be to pass from (A.1) to

(6.33) as ε goes to zero by first moving all the derivatives onto the test function in order to

avoid the “ugly” derivatives of the viscosity solution.

Let us check whether the notion of viscosity solution is reasonable in the sense of its con-

sistency with the classical solution. To be proved are the following statements:

1. If φ is a classical solution of level-set equation (6.33), then it is also a viscosity solution,

i.e. any bounded and uniformly continuous function φ ∈ C
1(Rn × [0, T )) which solves

(6.33), satisfies the two inequalities in the above definition.

2. If a viscosity solution φ of (6.33) is differentiable at some point (x0, t0), then it delivers

the same result as the classical level-set equation at the same point.

Proof of 1. Let ϕ be a smooth function and assume that φ−ϕ attains a local maximum at

some point (x0, t0). Then

∇(φ− ϕ)(x0, t0) = 0,

and
∂(φ− ϕ)

∂t
(x0, t0) = 0.

Thus, using the fact that φ solves (6.33), we obtain

∂ϕ

∂t
(x0, t0) +w(x0, t0)∇ϕ(x0, t0) =

∂φ

∂t
(x0, t0) + w(x0, t0)∇φ(x0, t0) = 0.

Analog discussions can be done for the case when φ− ϕ has a local minimum at (x0, t0).

Proof of 2. We will need the following result [13].
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Lemma A.0.1. Assume a function f : R
n → R is continuous and differentiable at some

point x0. Then there exists a function g ∈ C
1(Rn) such that

f(x0) = g(x0) (A.5)

and

f − g has a strict local maximum at x0. (A.6)

Applying the lemma above we obtain that there exists a function ϕ ∈ C
1(Rn × [0, T )) such

that

φ− ϕ has a strict local maximum at (x0, t0). (A.7)

Now denote by Jε the mollifier in x and t and set ϕε := Jεϕ. Then, thanks to the properties

of the mollifier, we get the following uniform convergences near the point x0, t0

ϕε → ϕ, ∇ϕε → ∇ϕ, ∂ϕε

∂t
→ ∂ϕ

∂t
. (A.8)

From (A.7) we obtain

φ− ϕε has a maximum at some point (xε, tε), (A.9)

where the point (xε, tε) converges to (x0, t0) as ε→ 0.

We know that φ is a viscosity solution, therefore, ϕε, being a C∞ function, plays the role of

a test function and must satisfy the inequality introduced in the definition of the viscosity

solution:

ϕε
t (xε, tε) + w(xε, tε)∇ϕε(xε, tε) ≤ 0.

Let ε→ 0 in above. Then (xε, tε) → (x0, t0), and combining this with (A.8) leads to

ϕt(x0, t0) + w(x0, t0)∇ϕ(x0, t0) ≤ 0. (A.10)

Now we use the fact that φ is differentiable at (x0, t0). Together with (A.7) this implies

φt(x0, t0) = ϕ(x0, t0), ∇φ(x0, t0) = ∇ϕ(x0, t0).

The substitution of latter in (A.10) brings us to

φt(x0, t0) + w(x0, t0)∇φ(x0, t0) ≤ 0. (A.11)
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What remains is to repeat the arguments above for a function −φ for which there exists

a smooth function ϕ such that φ − ϕ has a strict minimum at (x0, t0). Implementing the

similar steps as before, we arrive at

φt(x0, t0) + w(x0, t0)∇φ(x0, t0) ≥ 0, (A.12)

which means that φ satisfies the classical level-set equation at the point (x0, t0).

Our next goal is to establish the uniqueness of a viscosity solution of the level set equation.

Let us assume that for x, y, p, q ∈ R
n the Hamiltonian H(p, x) = H(∇φ, x) := w · ∇φ

satisfies the conditions

|H(p, x) −H(q, x)| ≤ C|p− q|, (A.13)

|H(p, x) −H(p, y)| ≤ C|x− y|(1 + |p|). (A.14)

Theorem A.0.1. (Uniqueness of viscosity solution)

Under assumptions (A.13) the viscosity solution of level set equation (6.33) is unique.

Proof. The proof is based on an idea of ”doubling the number of variables” and is accurately

described in the book of Evans, see [13]. 2



Appendix B

Finite element method

The finite element method was first conceived in 1943 in a paper by Courant, but the im-

portance of this contribution was ignored at the time. Then the engineers independently

re-invented the method in the early fifties. Nowadays the whole procedure of the finite

element method is mathematically respectable and it has become the most popular tech-

nique for obtaining numerical solutions of differential equations arising from engineering

problems.

The finite element method can be described in a few words. Suppose that the problem to

be solved is in weak formulation. The idea of finite element method is simple. It starts

by a subdivision of the structure, or the region of physical interest, into smaller pieces.

These pieces must be easy for the computer to record and identify: they may be triangles

or rectangles. Then within each piece the trial functions are given an extremely simple

form–normally they are polynomials of arbitrary degree. Boundary conditions are easier

to impose locally along the edge of a triangle or rectangle, than globally along a more

complicated boundary.

Let us start from the first step: divide the domain into finitely many smaller pieces. These

small pieces are called elements. There are several kinds of elements, which can be used

for the decomposition of the domain and it is not clear whether to subdivide the region

into triangles, rectangles or other types of elements. We will not discuss the advantages

and disadvantages of each type of elements and will subdivide the region of interest into

triangles.

If we decompose the given domain Ω by triangles (see Figure B.1), we will see that the
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union of these triangles will be a polygon Ωh and in general, if ∂Ω is a curved boundary,

then there will be a nonempty region Ω \ Ωh, which will later, of course, contribute to the

error. So one of the main tasks when considering curved boundary, will be to make the

nonempty region as small in area as possible. For simplicity we will consider only polygonal

domains, i.e. the case when Ωh = Ω.

Figure B.1: A triangulation of a domain

Definition B.0.2. T := {T1, ..., TNT
} is called a (conforming) triangulation of Ω, if the

following conditions are fulfilled: (see [8])

1. Ti are open triangles (elements) for 1 ≤ i ≤ NT ;

2. Ti are disjoint, i.e. Ti ∩ Tj = ∅ for i 6= j;

3.
⋃

1≤i≤NT

Ti = Ω;

4. for i 6= j the set Ti ∩ Tj is either

i. empty, or
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ii. a common edge of Ti and Tj, or

iii. a common vertex of Ti and Tj.

Examples of conforming and non-conforming triangles are given in Figure B.2.

Figure B.2: Examples of conforming and non-conforming triangulation.

Let T0 be a triangulation of Ω. If we subdivide a subset of triangles of T0 into sub-triangles

such that the resulting set of triangles is again a triangulation of Ω, then we call this a re-

finement of T0. Let the new triangulation be T1. If we proceed in this way, we can construct

a sequence of triangulations {Tk}k≥0 such that Tk+1 is a refinement of Tk.

Let now T be a conforming triangulation. Our next task is to define a finite element space

Xh. For the moment we know only that Xh is a finite dimensional space of functions defined

over the domain Ω. With the help of Xh we define the space

PT = {vh|T ; vh ∈ Xh} .

The members of this space are the restrictions of the functions vh ∈ Xh to the elements

(triangles ) T ∈ T . It is natural now to obtain some conditions guaranteeing that the

inclusion Xh ⊂ H
1(Ω) holds (if you remember, our goal is to approximate solutions of

problems belonging to the space H
1(Ω)).

Theorem B.0.2. Assume that Xh ⊂ C(Ω) and PT ⊂ H
1(T ) for all T ∈ T . Then

Xh ⊂ H
1(Ω),

Xh0 := {vh ∈ Xh; vh = 0 on ∂Ω} ⊂ H
1
0(Ω)

Having in mind all previous considerations, we summarize the properties of a finite element

space.



124 Appendix B: Finite element method

1. A finite element space is described by the underlying triangulation T of the domain

Ω.

2. For each element T of the triangulation T the space

PT = {vh|T ; vh ∈ Xh}

contains polynomials of certain degree.

3. There exists a canonical basis in the space Xh, whose functions are easy to describe

using the information on local elements.

Remark B.0.2. In general, for our approximations we will use the finite element space Xh0

for solving the second-order problems with homogeneous Dirichlet boundary and the space

Xh if we are solving a second order Neumann problem.

Remark B.0.3. A common way to define the basis functions associated with the degrees of

freedom is to take functions ϕi ∈ P1(T ), i = 1, 2, 3, such that

ϕi(aj) = δij =







1 if i = j

0 if i 6= j

for i, j = 1, 2, 3.

Note, that we can analogously define other finite element spaces using the spaces of higher

degree polynomials. Here we state only a theorem on general Lagrange elements.

Theorem B.0.3. Let the domain Ω ∈ R
d be decomposed into triangles through the trian-

gulation T . Assume that the grid Gk is of order k, it means

Gk :=
⋃

T∈T

Gk(T ) = {aj , j = 1, 2, · · · , N} .

If the values of uh on the grid Gk are known, then using these values we can uniquely

determine a function uh ∈ Xh ⊂ H
1(Ω) with

Xh =
{

uh ∈ C
0(Ω); uh|T ∈ Pk(T ), T ∈ T

}

.

A basis of Xh is given as a collection of functions ϕj ∈ Xh such that

ϕj(ai) = δji, i, j = 1, 2, · · · , N.

where δji is the well known Kronecker delta function.

The basis functions on the given triangulation for linear, quadratic and 4th order finite

elements are visualized in Figures B.3, B.4 and B.5.
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Figure B.3: Mesh and linear basis function.

Figure B.4: Quadratic basis functions.

Figure B.5: 4th order basis functions.
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B.0.1 Galerkin discretization

In the theory of classical solutions it is natural to use approximation procedures which are

based on a point-wise evaluation of functions and differential operators. When dealing with

weak solutions this approach cannot be taken over, because point values of functions in

H
m(Ω) are in general not defined, if m − n

2 ≤ 0 (m and n are the corresponding Sobolev

numbers). The formulation of the original problem as weak problem suggests a different

strategy to convert the infinite dimensional space into a finite dimensional one which then

allows a numerical treatment.

Having in mind the old notations, let us again consider the following problem:

Problem B.0.2. For a given f ∈ X
∗, find u ∈ X such that

a(u, v) = 〈f, v〉 for all v ∈ X.

Then discretization is obtained by replacing X with a finite dimensional subspace Xh. To

get a numerical approximation to the unknown function u, the idea of Galerkin method is

to find uh ∈ Xh such that

a(uh, v) = 〈f, v〉 for all v ∈ Vh, (B.1)

which is a finite dimensional problem.

We introduce a basis {ϕ1, ϕ2, ..., ϕn} of Vh and taking into consideration the fact that (B.1)

is satisfied for any v ∈ Vh, we replace v by basis functions:

a(uh, ϕi) = 〈f, ϕi〉. (B.2)

Now the desired approximate solution uh is represented by means of chosen basis functions:

uh =

n
∑

j=1

Ujϕj . (B.3)

If this expression for uh is now substituted into (B.2), we obtain the following system of

equations:
n
∑

j=1

a(ϕj , ϕi)Uj = 〈f, ϕi〉 for i = 1, . . . , n, (B.4)
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which must be solved for the unknowns U1, U2, · · · , Un. The equation (B.4) permits us to

write it in the form

SU = B (B.5)

with the matrix Sij = a(ϕj , ϕi), vector Bi = 〈f, ϕi〉 and U being the column vector of

coefficients Uj . S is called the stiffness matrix and B is called the load vector.

For a given space Xh, solving the corresponding discrete Problem (B.1) amounts to finding

the coefficients Uj of the expansion (B.3) over the basis functions ϕj , j = 1, 2, ..., n. Thus,

in order to obtain the numerical solution of any second order elliptic problem one has first,

to compute the stiffness matrix S and load vector B for the specific problem, and second,

to solve the algebraic system (B.5).



Appendix C

ALBERTA - An adaptive finite

element toolbox

All proceeding calculations have been done using the finite element toolbox ALBERTA

developed by Siebert and Schmidt, [46]. ALBERTA provides all needed tools for the effi-

cient implementation and adaptive solution of general nonlinear problems in several space

dimensions. It is a library with data structures and functions for adaptive finite element

simulations in one, two and three dimension. Using these data structures, the finite element

toolbox ALBERTA makes possible the usage of such abstract frameworks as finite element

spaces and adaptive strategies, together with hierarchial meshes, routines for mesh adap-

tion, administration of finite element spaces and corresponding degrees of freedom during

mesh modification. Moreover, a wide range of tools for numerical quadrature, stiffness ma-

trix and load vector assemblage, as well as diverse linear solvers for the system of algebraic

equations, like conjugate gradient method, are available and easy to handle.

We ask the reader to consult [46] for the software and detailed documentation.
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[45] A. Schmidt, M. Wolff, M. Böhm Phase transitions and transformation-induced

plasticity of steel in the framework of continuum mechanics,J. Phys. IV, 120, 2004,

145-152.

[46] A. Schmidt and K.G. Siebert Design of adaptive finite element software: The finite

element toolbox ALBERTA, Lecture notes in computational science and engineering,

vol.42, Springer, 2005.



Bibliography 133

[47] W. Schulz, V. Kostrykin, et al. A Free Boundary Problem Related to Laser Beam

Fusion Cutting:ODE Approximaton, Int. J. Heat Mass Transfer, vol.40, no. 12, 1997,

2913-2928.

[48] Z. Shen, S. Zhang, J.Lu, X.Ni Mathematical modelling of laser induced heating and

melting in solids, Optics and laser technology, vol.40, no. 8, 2001, 533-537.

[49] P.S. Sheng and V.S. Joshi Analysis of Heat-affected Zone Formation for Laser

Cutting of Stainless Steel, J. Material Processing Technology, 53, 1995, 879-892.

[50] S.L. Sobolev On a theorem of functional analysis, Mat. Sb., 46, 1938, 471-496.

[51] S.L. Sobolev Some applications of functional analysis in mathematical physics (Rus-

sian), Hauka, Moscow, 1988.

[52] J. Steinbach A Variational Inequality Approach to Free Boundary Problems with
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