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CHAPTER ONE: Introduction

1.1. Voltage-gated ion channels
Ion channels are membrane embedded proteins that mediate fast and selective ion transport
across biological membranes and thereby have diverse physiological functions in a given

cell. Throughout the biological world, these proteins form small, water-filled pores that

allow selective flux of ions along their electrochemical gradient (Terlau and Stühmer, 1998;
Hille, 2001).

Ion-selective pores were originally proposed in the classic experiments of Hodgkin and

Huxley to explain separate components of Na+, K+ and leak currents (Hodgkin and Huxley,

1952). Each channel is selective to conduct a particular class of ions (Na+, K+, Ca2+ and Cl-)
as a response to different stimuli that induce the opening and closing of the pore in a

mechanism called gating. The gating mechanism can be activated by chemicals (ligands),

mechanical deformation of the membrane or by changing the membrane potential voltage.
Thus, ion channels can be grouped according to their ion selectivity and mode of gating into

families. For example, voltage-gated K+ channels are activated by depolarization of the
membrane potential resulting in conformational changes that allow K+ ions to permeate

(Hille, 2001; Armstrong and Hill, 1998). Channels that are activated by voltage and selective

for potassium ions are called Kv channels, likewise, those selective to sodium and calcium
channels are Nav and Cav, respectively (Catterall et al., 2003).

Based on the cloning of genes encoding voltage-gated ion channels, it became clear that the

primary structures of these channels share several structural similarities. The main pore-

forming a-subunit of voltage-gated ion channels (Fig. 1.1) consists functionally of either a

single a-subunit containing four homologous domains (Na+ and Ca2+ channels) or four

distinct a-subunits (K+ channels). The latter may be either a homomeric or heteromeric

tetramer (MacKinnon, 1991). The a-subunit is composed of six highly hydrophobic

transmembrane segments S1-S6. The S5-S6 segments are connected through the
extracellular side of the membrane by a loop that forms the pore, called the P-loop. This

loops is directly involved in the conductance pathway and formation of the selectivity filter.

The a-subunits interact with auxiliary sununits for modulatory effects (Rettig et al., 1994).
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FIGURE 1.1. Schematic representation of the proposed transmembrane topology of voltage gated ion
channels. (A) The a-subunit of K+ channels showing the transmembrane segments (1-6) spanning the cell
membrane. The segment 4 (red color) represents the voltage sensor. In the extracellular region appears the S5-
S6 P-loop link that directly involved in the ion conduction pathway. In the intracelluar region ppears the N and
C termini ends of the polypeptide. The right panel shows top and side views of homo- or heteroteramers of
encircled four-fold a-subunits to form the central ion conduction pathway of a K+ channel. (B) A single a-
subunit polypeptide of 4 homologous domains (I-IV) forming functional pore of Ca2+ and Na+ channels.

To regulate the gating of ion permeation, the structure of voltage-gated ion channels must be
equipped with a charged transmembrane domain suitable to detect membrane potential

changes. This voltage sensor has been identified as a series of highly conserved positively

charged amino acids in the 4th transmembrane segment (S4). Upon depolarization, the sensor
reacts by displacement of these charged residues resulting in a set of conformational changes

in the protein. Finally, this (gating) process leads to opening of the pore resulting in ion
conduction through the channel (Armstrong and Hill, 1998).

When the membrane is depolarized, some voltage-gated ion channels first open and then
enter a non-conducting, ‘inactivated’ state. This inactivation process influences some key

signaling properties of excitable cells, such as action potential duration, shape and firing
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frequency. Inactivation may occur by at least two distinct mechanisms: fast N-type or slow
C-type inactivation (Fig. 1.2). In K+ channels, the N-type inactivation involves a region near

the amino terminus, which forms a tethered inactivation particle that can block the internal

mouth of the channel once it has opened (Hoshi et al., 1990; Zagotta et al., 1990). This “ball
and chain” model mechanism was previously proposed for the fast inactivation of Na+

channels (Armstrong and Bezanilla, 1977). In Na+ channels, a hydrophobic motif of triplet
residues (IFM) in the III-IV linker is crucial to fast inactivation (West et al., 1992). The IFM

motif has been suggested to function as a “latch” that holds the fast inactivation gate shut as

a hinged lid model (Vassilev et al., 1988). In contrast to N-type inactivation, in the C-type
inactivation, rearrangement of the pore rather than motion of a cytoplasmic region of a

channel is likely to play central role.

FIGURE 1.2. Inactivation mechanisms. Ion channels may can be
inactivate from the open state by additional conformational changes
leading to non conducting state. For K+ channel, two inactivation
mechanisms have been identified: a fast N-type and slow C-type of
inactivation. (Adapted from Terlau and Stühmer, 1998).

1.1.1. Voltage-gated K+ channels (VGKCs)
Potassium channels are ubiquitously expressed in excitable and nonexcitable tissues of
organisms from bacteria to humans (Rudy, 1988). In excitable tissues, K+ channels are

involved in diverse physiological functions, such as setting the membrane resting potential
and controlling shape and frequency of action potentials (Rudy, 1988; Hille, 2001).

Furthermore, they take part in muscle contraction, cardiac pacemaking and hormone

secretion (Hille, 2001). In nonexcitable cells, K+ channels play an important role in cell
proliferation, cell volume regulation and lymphocyte differentiation (Lewis and Cahalan,
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1995). As K+ channels play fundamental roles in the regulation of membrane excitability, it
is to be expected that both genetic and acquired diseases involving altered functioning of

neurons, smooth muscle, and cardiac cells could arise subsequent to abnormalities in K+

channel proteins. Genetically linked diseases of the cardiac, neuronal, renal, and metabolic
systems involving members of voltage-gated K+ channels "VGKCs" (see Char-Chang et al.,

2000)

Potassium channels conduct K+ ions across the cell membrane along the electrochemical

gradient at a rate approaching the diffusion limit (up to 100 million ions per second). To
approach this rate, the structure of K+ channels provides excellent solution of temporal

control over the permeation selectivity. Like any ion channel, the amphiphilic character and

the large size of these proteins made them relatively difficult to be solved as three-
dimensional structures by X-ray crystallography or nuclear magnetic resonance (NMR).

Recently, structural data of the pore region of a K+ channel from Streptomyces lividans

(KcsA) have been obtained by X-ray crystallography (Doyle et al., 1998; Fig. 1.3A).

Followed by three-dimentional structures of two potassium channels were elucidated, the

Shaker K+ channel from fruit fly Drosophila melanogaster (Sokolova et al., 2001; Fig. 1.3B)
and calcium-gated potassium channel from the archeon Methanobacterium

thermoautotrophicum (MthK channel; Fig. 1.3C). The first was solved using electron
microscopy (Jiang et al., 2002). Most recently, X-ray crystal structure of the full-length

voltage-gated K+ channel at a resolution of 3.2 Å from theromophilic archaeobacteria

Aeropyrum pernix (KvAP) was determined (Jiang et al., 2003; Fig. 1.3D and E). These
structures have answered many questions concerning basic mechanisms of K+ channel

function such as ion conduction selectivity, gating and voltage sensing (for review;
MacKinnon, 2003).

Potassium channels represent a diverse group of ion channels that coded from around 80
genes. Mutations within a potassium channel gene inducing behavioural and electrical

abnormalities led to the first cloning of a K+ channel from the Drosphila mutant Shaker

(Tempel et al., 1987; Pongs et al., 1988).
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FIGURE 1.3. The three-dimensional structures of potassium channels. A. The KcsA K+ channel: a) Two of the
four subunits from the KcsA pore are shown in the extracellular side on top. Each subunit contains an outer
helix close to the membrane, an inner helix close to the pore, a pore helix (red) and a selectivity filter (gold).
Blue mesh shows electron density for K+ ions and water along the pore. b) Close up view of the selectivity
filter with dehydrated K+ ions. B. The three-D structure of Shaker potassium channel (KscA; a-subunit in blue)
and the T1 domain (red) taken from electron microscopy. C . The open and close gating states of MthK
potassium channel D. A schematic diagram of the KvAP subunit topology is shown with an orange selectivity
filter and an arrow to indicate the ion pathway. The demarcation between the S4–S5 linker and S5 is indicated
by a black line.  E. On the left panel, the structure of the KvAP channel (blue, yellow, cyan and red helical
structures) bound to four Fab fragments (green), viewed down the four-fold axis from the intracellular side. On
the right panel hypothesis for gating charge movements. The conventional model of voltage-dependent gating
by rotations of S4 helices. In the new model, gating charges (red plus signs) could be carried by movements of
the voltage-sensor paddles against the lipid membrane, which in turn could open the pore. (Adapted from
Doyle et al., 1998; Sokolova et al., 2001; Jiang et al., 2002; Jiang et al., 2003).
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Based on their similarity with related genes from Drosophila (Covarrubias et al., 1991),
mammalian voltage-gated potassium channels have been originally grouped into four major

subfamilies termed Shaker (Kv1), Shab (Kv2), Shaw (Kv3), and Shal (Kv4). By the

heteromultimeric assembly of different subtypes derived from the same channel subfamily,
neurons may generate an enormous diversity of potassium channel properties (Shen et al.,

1995). In addition to this, in recent years, an increasing number of pore-forming a-subunits

were identified that do not form functionally active channels themselves (Kv5–Kv6,

Kv8–Kv11), but act to modulate the electrical properties of potassium channel complexes
(for review, see Trimmer and Rhodes). Therefore, it has been a challenge for basic research

to identify and characterize the numerous molecular isoforms of VGKCs, as well as, to
uncover their basic mechanistic properties.

1.1.2. Structural and functional studies on VGKCs
A number of techniques have become available during the last few years for studying ion

channel structure and function. These techniques overcome the scarcity and technical
difficulties of crystal structure studies. These studies give only a snapshot in time of a

dynamic series of molecular motions. The combination of molecular biology and

electrophysiological techniques has been widely used as experimental strategy to study the
correlation between the structure and function of ion channels. Electrophysiology identifies

the biophysical parameters that are inherent to each individual ion channel. On its part, most
information regarding the molecular mechanisms underlying ion channel structure and

function has been derived from site-directed mutagenesis studies (Ishii et al., 1998). Cloned

ion channels, in part genetically modified, are expressed in host cells and characterized by
electro-physiological techniques. By analyzing changes in the currents, induced by certain

mutations of the ion channel protein, conclusions regarding the importance of a given part of
the protein for a certain function can be drawn (Terlau and Stühmer, 1998).

Many expression systems have been developed for this purpose, using oocytes from Xenopus

laevis (Fig. 2.1) have been used as a reliable expression system for several proteins including

ion channels (Gurdon et al., 1971). The large size of Xenopus oocytes allows easy

manipulations like cRNA injections and electrode penetration. In addition, low-noise
recording from macropatches containing a large number of membrane proteins and few

endogeneous channels are clear advantages of using oocytes as an expression system
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(Stühmer, 1992). Nevertheless, the large size of oocytes introduces complications if rapid
changes in membrane potential are required.

Conventional two electrode voltage clamp methods (TEVC) are easily applied to Xenopus

oocytes. Specifically, one intracellular electrode is used to record the actual intracellular

potential (the voltage electrode), and the second electrode (current electrode) is used to pass
current so as to maintain the desired potential. This is achieved using a feedback circuit,

which is the main component of the voltage clamp (Fig. 2.2, Stühmer, 1998).

One approach to study the structural and functional properties of TEVC is using small

peptide toxins with well-defined structures (Miller, 1995; Ranganathan, et al., 1996). These

toxins naturally occur in the venoms of different organisms, such as scorpions, snakes, bees,
spiders and many marine animals. There has also been considerable interest in these toxins

as structural probes, due to the knowledge of their three-dimensional structure. They may be
used to map the functional surface of their respective receptor (Miller, 1995). Alanine

scanning mutagenesis is a reliable technique to identify important residues for toxin binding

(Jacobsen et al., 2000). In this technique, each residue would be substituted into Alanine
once a time and tested against the interacting channel. The binding affinity of the reaction

can be measured by electrophyiological recordings. Changes in the binding affinity
correspond to the neutralized residue.

 Complementary mutagenesis targeting residues in the channel pore has allowed derivation
of models describing shape and dimensions of the receptor in the vestibule of the channel.

This can be achieved using mutant cycle analysis. In its simplest form, exclusive interaction
between two residues can be equally disrupted by mutations of either of the pair. If one is

mutated, then mutation of the other should be without effect. On the other hand, if the two

mutations produce independent effects, then the two mutations should have a simple additive
effect. The mutant cycle analysis was first applied to the toxin interaction with a channel by

Hildago and MacKinnon (1995). A coupling coefficient W is calculated, which is the energy

of interaction between the two residues. The coupling energy (DDG) can be calculated from

W-value and converted into distance between interacting residue pair (Hildago and

MacKinnon, 1995; Schreiber and Fersht, 1995). It was suggested that a pair of residues

showing a change in DDG> 2.1 KJ/mol may be expected to lie within 5 Å of each other
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(Schreiber and Fersht, 1995). Therefore, a model of interaction between toxin-channel pair
can be obtained from mutant cycle analysis combined with the NMR structures of the both

interacting surfaces. From these reliable toxins used intensively to study the structure and

function of VGICs, the toxin peptides from marine cone snails; the conopeptides

1.2. Conopeptides

1.2.1. Cone snails: source of conopeptides

Coral reef ecosystems house an extraordinary diversity of invertebrate species, many of

which use bioactive compounds as a part of defensive or prey capture strategies. In these
diverse habitats, the group of cone snails (genus Conus; Fig. 1.1.A) comprises of around 500

predatory species (Röckel et al., 1995). Their venoms are the tools used by these carnivorous

molluscs to capture prey, defense against predators, deter competitors and for other
biological purposes (Olivera, 1997; Olivera et al., 1990; Olivera et al., 1985).

The spectrum of animals that the genus as a whole can envenomate is abroad, at least 5

phyla, and a wide variety of hunting strategies is used. The cone snail is harpooned with a

disposable hollow tooth, which serves as a hypodermic needle for injecting the venom. This
chitin-harpoon tooth is part of an efficient delivery system consisting of a venom duct, where

venom is synthesized, and a venom bulb (Kohn et al., 1960; Fig. 1.1.B and C). Depending

on the envenomed prey, cone snails are generally divided into three groups. The largest class
are the vermivorous (worm-hunting) species, most of these feed on polychaetes,

hemichordate and echiuroid worms. The second major group is the molluscivorous (snail-
hunting) species that hunt other gastropods. The final and most remarkable group are the

piscivorous (fish-hunting) cone snails, which have venoms that very rapidly immobilize fish

(Olivera et al., 1985; Olivera, 1997; Terlau et al., 1996).

Fish-hunting cone snails can generally be divided into two broad classes: "hook-and-line"
fishing snails, which use their long proboscis to harpoon prey with a disposable harpoon-like

tooth. The other group is the "net-fishing" cone snails, which engulf prey with a large

distensible mouth before stinging (Fig. 1.1.B; Fig. 1.1.D). Among the latter is the geography
cone, Conus geographus, the species most lethal to man (Cruz and White, 1995).
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Rapid evolution of novel venom components has apparently occurred during the radiation of
these molluscs in the last ~50 million years. As a result, every species in this successful

group of molluscs has evolved a distinct complex of venom components corresponding to

interactions with other organisms. In their peptide-rich venom, cone snails use the equivalent
of a combinatorial-library strategy to generate novel pharmacologically active components in

FIGURE 1.4. Cone snails. A. Cone snail shells, each represent a species. In the middle, the biggest shell for
the most fetal Conus geographus (Y). B. The venom delivery system. The venom apparatus in all cone snails
comprises: vb, a venom bulb which pushes the venom out; vd, the venom duct where the venom is actually
made and stored; rs, a radula sac where the harpoon-like teeth are stored; h, harpoon-like teeth; p, pharynx; pr,
proboscis, which is used to deliver the harpoon and venom to the prey. The radula sac (rs) has been shown in
cross-section, to make the harpoons (h) visible. Each harpoon, C, is used only once; in the radula sac they are
found in various stages of assembly. D. A cartoon representing the hook-and-line (top panel) and the net
strategy (bottom panel) of fish-hunting cone snails. Conus magus (™ ) is an example of hook-and-line
piscivores. Species such as Conus geographus (Y) use a net strategy (Adapted from Olivera, 1997).

their venom (Olivera et al., 1985). During this strategy, many peptide sequences are

explored through hypermutation in the evolution of each Conus species. There are an

average of 100 different venom components per species, anticipate total of 50,000 different
pharmacologically active components present in venoms of all living cone snails (Olivera et

A B

D

C

Y

™
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al., 1990). Hence, Conus venom composes a very substantial neuropharmacological resource
for novel compounds.

1.2.2. Conopeptide and conotoxins
The cone snail venom is a highly complex cocktail of peptide components known as

conopeptides. According to their Cys composition, conopetides can be divided into two main
groups: peptides that lack or have only one disulfide cross-link and disulfide-rich

conopeptides. The latter are referred to as conotoxins; the most characteristic and

predominant venom components. In conotoxins, Cys residues may be found at high
frequency with specific patterns in the primary sequence. Each pattern corresponds to

specific disulfide connectivity, which is diagnostic of the gene superfamily that encodes the

peptide. In many cases, such framework pattern can be indicative of the pharmacological
target of the conopeptide (McIntosh et al., 1999, Terlau and Olivera, 2004, see Fig. 1.2).

FIGURE 1.5. Organizational diagram for Conus peptides. Indicating gene superfamilies, disulfide patterns,
and known pharmacological targets. Conus peptides can be divided into two broad classes: the disulfide-rich
conotoxins and nondisulfide-rich peptides. Only the gene superfamilies for the disulfide-rich peptides are
shown. The characteristic patterns of cysteine residues in peptides of each superfamily are shown; the
nomenclature used is based on that proposed by McIntosh et al. (1999) and Olivera et al. (2002). The red lines
surrounded k-conotoxins from different families. (Adapted from Terlau and Olivera, 2004).

Conotoxins are small disulfide-rich conopeptides, usually on the average of 12-30 amino

acids. In contrast, the size range of toxin polypeptides from other venoms is typically 40-80

amino acids. Despite their small size, there is a remarkable interspecific sequence
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divergence, even between homologous conopeptides from closely related Conus species
(Woodword et al., 1990; Olivera et al., 2002). Adding to their variety, conopeptides contain

posttranslationally modified amino acids found at a high frequency in some conopeptide

families (Craig et al., 1999). These include some that are well known and widely distributed
such as hydroxyled proline andO-glycosylated Serine or Threonine, as well as others that are

unusual; 6-Brominated Tryptophan, g-carboxyled glutamate, D-amino acids, and sulfated

Tyrosine (for review, see Craig, 2000).

All conopeptides are initially made as larger precursor, usually 60-90 amino acid residues in
legth (Olivera et al., 1990; Woodword et al., 1990). The mature peptide, which is located at

the C-terminus is excised by proteolytic cleavage. Those peptides with similar arrangements
of Cys residues in the primary sequence of the mature toxin share a highly conserved signal

sequence in the N-terminus. These features define members of a conopeptide gene

superfamily. A relatively small number of gene superfamilies have undergone extensive
proliferation and diversification in the genus Conus to generate the majority of the 50,000

different conopeptides found in the venoms of living Conus today (Olivera, 1997; Fig. 1.2).

Although conotoxins are remarkably diverse in terms of structure and function, these

conopeptides fall into distinct categories. The analysis of mRNA and genes coding Conus

peptides revealed an organization of superfamilies based on conserved sequence elements.

There are probably only 5-10 major conotoxin gene superfamilies that encode over 80% of

all conopeptides (Olivera and Cruz, 2001). Over the genus, superfamilies have differentiated
functionally and structurally into discrete families, each with a defined pharmacological

targeting specificity (Fig. 1.2). For instance, a family of Conus peptides, a-conotoxins,

targets the nicotinic acetylcholine receptor (Hopkins et al., 1995). m-Conotoxins inhibit Na+

channels of muscle membranes leaving Na+ channels of nerve membranes unaffected (Cruz
et al., 1985). w-Conotoxins exhibit high affinity to certain subtypes of Ca2+ channels such as

conotoxin (GVIA) from Conus geographus, which specifically blocks N-type Ca2+ channels

(Olivera et al., 1984). k-contoxins inhibit K+ channels such as k-PVIIA from Conus

purpurascens (Terlau et al., 1996). Among the ligand-gated ion channels that conopeptides

are known to inhibit are nicotinic acetylcholine receptors (McIntosh et al., 1999), N-methyl-
D-aspartate receptors (Olivera et al., 1990) and 5HT3 receptors (England et al., 1998). In

order to achieve a desired physiological end point on injected prey, predator, or competitor,
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an assemblage of conopeptides (from different conotoxin families) act together in a
synergistic fashion to rech this effect (Olivera et al., 1990; Terlau et al., 1996). This ("toxin

cabal") is the equivalent to a combinatorial library strategy for drug delivery in modern

medicine.

Due to diverse venom components, cone snails became specialists in evolving ligands
targeted to both voltage- and ligand-gated ion channel superfamilies with impressive

molecular specificity. In particular, their ability to discriminate between closely related

members of a given ion channel family (McIntosh et al., 1999). Conus peptides have been
used to define specific molecular forms within a large ion channel family and to investigate

the functional biology of a particular ion channel subtype. This specificity displayed by

conopeptides is what makes them of exceptional interest and has led to their widespread use
as research tools in neurobiology. Several pharmacological studies revealed therapeutic

potentials of some conopeptides. An examples is w-MVIIA (generic name ziconotide) from

Conus magus, which is a highly specific for N-type calcium channels and has been through
clinical trials as a drug for intractable pain (for review, Terlau and Olivera, 2004).

1.2.3. Conotoxins targeting VGKCs and dyad hypothesis
Despite the great variability of the Conus peptides characterized until now only relatively

few have been identified that interact with K+ channels. The kappa conotoxins (in red
squares; Fig. 1.5), which have been shown to inhibit voltage-activated K+ channels, are 27-

34 amino acid residues long and contain 3 or 4 disulfide bonds (Craig et al., 1998; Shon et

al., 1998; Fan et al., 2003; Kauferstein et al., 2004). These k-conotoxins are belonging to O,

M, A and I superfamilies.

From I-superfamily, a peptide called k-BtX was characterized from the venom of Conus

betulinus (Fan et al., 2003). This peptide was shown to upmodulate the Ca2+ and voltage-

activated BK currents measured from rat adrenal chromaffin cells and did not affect other
voltage-gated channels. Another member of the I-superfamily designated ViTx from Conus

virgo, was shown to inhibit Kv1.1 and Kv1.3 subtypes, but not Kv1.2 (Kauferstein et al.,
2003). In A-superfamily, the peptide, kA-conotoxin SIVA was identified from the venom of

the fish-hunting cone snail Conus striatus (Craig et al., 1998). Recordings from frog

cutaneus pectoris muscle and principal neurons from frog sympathetic ganglion reveal that
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this peptide induces repetitive activity in these cells. Furthermore, Shaker channels
expressed in Xenopus oocytes are blocked by micromolar concentrations of kA-SIVA.

However, the molecular identity of the vertebrate high-affinity K+ channel target of this

peptide has not yet been identified. The k-conotoxin PVIIA (k-PVIIA) from the venom of

Conus purpurascens was the first conotoxin to be found to interact with a voltage-gated K+

channel (Terlau et al., 1996). k-PVIIA is a 27-residue, belonging to O-superfamily with

three disulfide bonds, which blocks the K+-conductance in oocytes expressing the Shaker K+

channel encoded from Drosophila. No affinity to other K+ channel subtypes, particularly to

those of vertebrate origin has been found (Shon et al., 1998; Terlau et al., 1999). In addition

to conotoxins, Sudarslal and co-workers (2004), isolated 13 amino acid non-disulfide
conopeptide from the venom of Conus monile, designated Mo1659. Electrophysiological

studies on the effect of Mo1659 on measured currents in dorsal root ganglion neurons
suggest that the peptide targets non-inactivating voltage-dependent potassium channels.

Despite the structural divergence of unrelated K+ channel-targeted toxins, a convergent
functional feature has been identified for a variety of toxins, including charybdotoxin from a

scorpion, BgK from a sea anemone, and dendrotoxin from snakes. Although for the different

toxins more than one site has been identified as being important for binding (for scorpion
toxins, see Miller, 1995; Eriksson, et al., 2002; Gao et al., 2003), all these peptides share a

dyad motif of a lysine and a hydrophobic, usually aromatic residue, which plays a key role in
the interaction with the target K+ channel (Stampe et al., 1994; Dauplais et al., 1997; Savarin

et al., 1998; Gilquin et al., 2002; Srinivasan et al., 2002). In particular, there is evidence that

the lysine residue of this functional dyad occludes the K+ channel pore (Miller, 1995;
Eriksson, et al., 2002; Gao et al., 2003). In accordance with this observation, the diverse

peptides which interact with the voltage-gated Kv1 subfamily of K+ channels (such as the
Shaker channel from Drosophila) all seem to contain a functional dyad (Dauplais et

al.,1997; Savarin et al., 1998; Rauer et al., 1999 and Jacobsen et al., 2000; Gilquin et al.,

2002; Srinivasan et al., 2002), which therefore was proposed to be a minimal functional core
for the binding of the toxins to Kv1 channels.

Although structurally unrelated to other known K+ channel blockers, k-PVIIA shares the

common feature of a functional lysine-hydrophobic residue dyad (Jacobsen et al., 2000). The

three dimensional structure of k-PVIIA was elucidated by NMR spectroscopy (Scanlon et
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al., 1997; Savarin et al., 1998). It was predicted that the determinant by which k-conotoxin

PVIIA occludes the pore should include a binding dyad, composed of Lys 7 and Phe 9 or
Phe 23 (Savarin et al., 1998). This prediction was based on the observation that a similar

critical dyad is present in the determinant by which other toxins, even structurally unrelated,

block voltage-gated K+ channels (Dauplais et al., 1997). An alanine walk along the
polypeptide chain of the toxin (Jacobsen et al., 2000) experimentally confirmed this

prediction.

kM-conotoxin RIIIK (kM-RIIIK) is a 24 amino acid peptide from Conus radiatus, which is

structurally similar to m-conotoxin GIIIA, a peptide known to block specifically skeletal

muscle Na+ channels (Fig. 1.6). Ferber and co-workers (2003), showed that kM-RIIIK does

not interact with Na+ channels but inhibits Shaker potassium channels expressed in Xenopus

oocytes. It was demonstrated that kM-RIIIK binds to the pore region of Shaker channels and

the interaction was state-dependent. Furthermore, an introduction of a negative charge at

residue 427 of Shaker channels (K427D) greatly enhanced the affinity of kMRIIIK binding.

FIGURE 1.6. Sequence alignment of kM-RIIIK with other M-
superfamily peptides. O represents 4-hydroxyproline and # an
amidated C-terminal amino acid.

The teleost homolog of Shaker, the trout TSha1 K+ channel, from CNS of Oncorhychus

mykiss, was recently cloned and identified to be the equivalent of mammalian Kv1.2

channels (Nguyen and Jeserich, 1998). In its outer vistibule, TSha1 is equipped with a Glu
residue in an equivalent position to Lys427 of Shaker channel. Functionally, kM-RIIIK was

described to block the TSha1 K+ channel in a state-dependent with an IC50 of 20 nM for the
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closed state and 60 nM at 0 mV for the open state of TSha1 channels. Therefore, TSha1 K+

channels was found to be the highest-affinity target of kM-RIIIK yet identified (Ferber et al.,

2003). Interestingly, the 24-amino acid sequence of kM-RIIIK contains three positively

charged residues but no aromatic side chain (Fig. 1.6). This lack of an important component
of dyad motif raised the question of wether the pharmacophore of kM-RIIIK is organized

around a dyad motif. If not, then what are the structural and functional parameters required

for kM-RIIIK binding to Shaker-type K+ channels?

1.3. Objectives

In this study, we investigated the structural and functional properties of kM-RIIIK

interacting with TSha1 K+ channel in order to identify the pharmacophore of this peptide.

The Xenopus expression system was used to functionally express wild type and mutated

TSha1 K+ channels and to investigate the properties of kM-RIIIK wild type and mutated

forms. Both alanine scanning mutagene and mutant cycle analysis were performed to
identify the pharmacophore model of kM-RIIIK binding to the pore region of TSha1

channel. To investigate how kM-RIIIK binds to K+ channels, the following questions will be

addressed:

‰  What are the key interacting residues (pharmacophore) of kM-RIIIK to block K+

channels?
‰ Does the difference in affinity of kM-RIIIK mutants affect their kinetics of binding?

‰ Does the pharmacophore of kM-RIIIK possess the dyad motif?

‰ Does the kM-RIIIK interact with Kv1.2, the mammalian K+ channel equivalent to TSha1?

‰ Is there a novel docking behavior of kM-RIIIK?
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CHAPTER TWO: Materials and Methods

2.1. Electrophysiological methods
Different electrophysiological techniques can be used according to experiment requirements.
We used the two-electrode voltage clamp technique (TEVC) in combination with the

Xenopus oocyte heterologous expression system. This technique is useful for stable

conditions during long experiments and controlled extracellular composition.

2.1.1. Xenopus oocyte preparations
The Xenopus oocytes, from the South African clawed frog (Fig. 2.1A), are well established

as a reliable heterologous expression system to study ion channels and membrane-bound
proteins (Gurdon et al., 1971). The Xenopus oocytes are relatively large in size (~1 mm

diameter) and contain very few endogenous channels making them a very useful model
system to study heterologously expressed ion channels (Methfessel et al., 1986; Stühmer,

1992; Stühmer and Parekh, 1995). The rapid advance in molecular biology allows successful

heterologous expression of mutated ion channels on the surface of Xenopus oocytes (Ishii et

al., 1998).

2.1.1.1. Xenopus oocyte solution
To obtain a batch of Xenopus oocytes for electrophysiological recording, solutions were used

in two steps of preparation:

 1) Oocyte handling solutions

Skinning solution 200 mM K-aspartate

20 mM KCl

pH 7.4 1 mM MgCl2

(adjusted by NaOH) 10 mM EGTA

10 mM HEPES
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Antibiotics solution 4 mg/l Cefuxorixim / Zinacef 750

100U/ml Penicillin / Streptomycin

Barth Medium 84 mM NaCl

10 mM KCl

pH 7.4 2.5 mM NaHCO3

(adjusted by NaOH) 6.5 mM Ca(NO3)2

0.6 mM CaCl2

7.5 mM Tris-HCl

2% (v/v) Antibiotics solution

Ca2+ free Barth Medium 84 mM NaCl

pH 7.4 10 mM KCl

(adjusted by NaOH) 2.5 mM NaHCO3

7.5 mM Tris-HCl

Collagenase solution 1 mg/ml Collagenase Type 2

200 ml Ca2+-free Barth

Collagenase Type 2 was purchased from Worthington Biochemical Corporation (Lakewood,
NJ, USA), Cefuxorixim/Zinacef 750 by Aventis (Strasbourg, France), and

Penicillin/Streptomycin by Gibco (Invitrogen, NY, USA). All other chemicals used in this

study were purchased from Sigma (MO, USA) and Merck (Darmstadt, Germany) or
otherwise mentioned.

2) Extracellular recording solutions

115 mM NaCl

2.5 mM KCl

1.8 mM CaCl2

Normal Frog Ringer's solution
(NFR)

pH 7.2 (adjusted by NaOH) 10 mM HEPES
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NFR-[K+] (mM) NaCl KCl CaCl2 HEPES: pH 7.2
(adjusted by NaOH)

0 117.5 mM 0 mM 1.8 mM 10 mM

5 112.5 mM 5 mM 1.8 mM 10 mM

10 107.5 mM 10 mM 1.8 mM 10 mM
50 67.5 mM 50 mM 1.8 mM 10 mM

Normal Frog Ringer (NFR pH 5 and 9)

NaCl 115 mM

KCl 2.5 mM

CaCl2 1.8 mM
MES  (for NFR pH 5) 10 mM (adjusted by HCl)

Tris-Base (for NFR pH 9) 10 mM (adjusted by NaOH)

2.1.1.2. Xenopus oocyte handling
Ovarian tissue containing oocytes at different stages of maturation was surgically removed
from female Xenopus laevis specimens under anesthesia (20-30 min in a Tricaine solution at

0 ºC, 2.5 g/l, Fig. 2.1B). The oocytes were extracted from the tissue by partial enzymatic
digestion of the follicular cell layer. The digestion was done under 2-3 hours incubation in

collagenase solution at 17 ºC in shaking incubator (GFL 1083, Burgwedel, Germany). To

inhibit the enzymatic reaction, oocytes were extensively washed in Barth Medium. Oocytes
between stage IV and VI were selected and incubated at 17 ºC in Barth medium in a standing

incubator (Memmert ICP 400, Schwabach, Germany).

Selected oocytes were microinjected with ~50 nl (Drummond Nanoinject, Gauting,

Germany) of solution containing 0.25 mg/ml of cRNA. The original DNA clone of the

Shaker-related K+ channel (TSha1), from CNS of rainbow trout (Oncorhychus mykiss), was

kindly provided by Prof. Dr. G. Jeserich (Osnabrück University, Osnabrück, Germany). The
original DNA clone of Kv1.1, Kv1.5 and Kv1.6 K+ channels were generous gifts of Dr.

Martin Stocker (UCL, London, UK). The Kv1.2 and Kv1.3 were obtained from Prof. S.

Grissmer (University of Ulm, Ulm, Germany). The sodium channel of rat skeletal muscle
(Nav1.4) was a gift from Prof. Gail Mandel (University of Stony Brook, NY, USA). Injected
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(B) Xenopus laevis female

(A) The scheme of Xenopus
oocyte expression
system

oocytes were then incubated at 17 ºC in Barth solution containing penicillin-streptomycin
and cefuxorixim for 1-4 days to allow the expression of the ion channels. Attention was paid

to alternate antibiotics in order to avoid the development of resistance.

FIGURE 2.1. The artificial expression of ion channels on the membrane of Xenopus laevis
oocytes (A) Summary of oocyte preparation for electrophysiol-ogical recordings with two
electrode voltage clamp technique. (B) The source of oocytes, the Xenopus laevis female
with some oocytes. [Modified from Terlau and Stühmer (1998)].

Prior to the electrophysiological measurements, the removal of vitelline membrane that

surrounds the cytoplasmic membrane of the oocyte is an important step for optimal exchange

of solutions. Control experiments had shown that IC50 of kM-RIIIK in the presence of the

vitelline membrane was about 3-4 times higher compared to experiments where this
membrane had been removed. The vitelline membrane was mechanically removed by fine

forceps (No.5, Dumont and Fils, Montignez, Switzerland) after incubating in a hypertonic
skinning solution that allows easy detachment from oocyte (Fig. 2.1A). Finally, the oocyte

was placed in the measuring chamber containing normal frog Ringer’s (NFR) for
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electrophysiological experiment (Fig. 2.1A). Experiments were performed at room
temperature 19-22 ºC.

The conotoxin in this study, kM-conotoxin RIIIK (kM-RIIIK), WT and mutant analogs were

synthesized at the peptide synthesis facility of the University of Utah by the group of Prof.
Jean Rivier (Salk Institute, San Diego, USA) as described previously (Shon et al., 1998).

These conotoxins were properly folded, tested and aliquoted by the group of Prof.

Baldomero Olivera (Salt Lake, Utah, USA).

2.1.2. Two-electrode voltage clamp (TEVC)
The Xenopus laevis oocytes are extensively used for two-electrode voltage clamp recordings

to investigate the electrophysiological properties of heterologous expressed voltage-gated
ion channels (Methfessel et al., 1986; Goldin, 1992; Stühmer and Parekh, 1995; Stühmer,

1998). In TEVC, the whole cell currents of the oocyte were recorded by two inserted

electrodes. During the experiments, one intracellular electrode measures the membrane
potential (voltage electrode), and the second (current electrode) injects sufficient current to

maintain the voltage clamped to the desired value (command potential) using feed back
amplifier circuit (Fig. 2.2). The amount of current that passes through the current electrode is

the measured parameter and it is determined by the discrepancy between the membrane

potential and the command potential.

To limit possible voltage clamp artifacts, the electrodes should be as close as possible to the

center of the oocyte without damaging the cell.  In any case, the oocyte membrane cannot be
considered isopotential on time scale of £ 300 ms, or when the total current is >20 mA

(Baumgartner et al., 1999).

In addition, there is a resistance in series with the membrane (series resistance, Rs) that is

due to the nature of elements that the injected current has to traverse such as the bath,

cytoplasm and the electrodes (Fig. 2.2). When a current flows across the membrane, the Rs
leads to a discrepancy between the measured membrane potential (controlled by the

amplifier) and the "real" potential difference across the membrane. Therefore, the Rs was
manually compensated.
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FIGURE 2.2. Schematic diagram of the main components of the
two-electrode voltage clamp (TEVC). The difference in potential
between the bath and the potential electrode (left), Vm, is compared
to the command potential, Vcomm and determines the amount of
current injected into the oocyte through the current electrode (right).
[Modified from Stühmer (1998)].

2.1.2.1. Instrumentation
Mechanical stability and electrical shielding are crucial for voltage clamp setup. The support

system of the cell, the micromanipulators and the microscope (inverted microscope Zeiss
Axiovert S100, magnification objectives 5X and 10X) were located on an antivibration table.

The complete section of the setup is mechanically separated from the Faraday cage by a

second table. Each individual component was grounded individually in order to obtain
optimal shielding and at the same time avoiding current (ground) loops between the

instruments.

The amplifier used for the voltage clamp recordings was a Turbo TEC-10CX (NPI

Electronic, Tamm, Germany) with electronic built-in series resistance compensation (Rs-
comp). The electrical stimulation of the current was performed through the EPC9 built-in

ITC-16 AD/DA converter, controlled by a Macintosh G4 computer (Apple computer,

Cupertino, CA, USA). The acquisition of data was made using Pulse software (HEKA,
Lambrecht/Pfalz, Germany).
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Extracellular solutions were exchanged through a gravity perfusion system by using a
mechanical valve (Hamilton Deutschland, Darmstadt, Germany), which allows the change of

up to 6 different solutions. The solution level of the recording chamber was maintained

constant through a pressure driven level sensor system (Lorenz, Lindau, Germany).
Lyophilized kM-RIIIK was dissolved in NFR to required final concentration, and applied by

using a Pasteur pipette directly to the bath chamber. These chambers (vol. ~ 650 ml) were

specially designed to allow 3 times wash in of 2 ml toxin volume to minimize toxin waste

and to overcome the perfusion system limitation. The toxin wash in was repeated to insure

the total exchange of the NFR solution with required toxin concentration.

2.1.2.2. Micropipettes and electrodes
Microelectrodes for TEVC recordings were made from borosilicate filament glass capillaries

(Hilgenberg, Malsfeld, Germany). The edges of the glass capillary were cut into appropriate

length and fire rounded in order to improve the junction between the pipette holder in the
head-stage. This procedure also helps to protect the Ag/AgCl coated electrode wire from

scratches produced by the rim of the glass. Capillaries for TEVC microelectrodes were
pulled in two steps to the appropriate length and size in a vertical temperature controlled

pipette puller PIP5 (HEKA, Lambrecht/Pfalz, Germany).

To reduce noise characteristics and potential changes in the capacity of the pipette tips
during solution exchanges, pipettes were coated with the polymer RTV (GE Bayer Silicones,

Bergen, The Netherlands), which is highly hydrophobic and has a low dielectric

characteristic. The fluid silicone layer was applied about 1 mm from the tip of the TEVC
microelectrodes to avoid contact with the oocyte. The polymer was hardened under a hot air

stream avoiding any contact of the polymer with the cell membrane since it can leads to
increases in the holding current during the experiments.

The TEVC pipettes were made from capillary glass containing a thin filament, which ensures

that the electrode filling solution reaches the tip. The back end of the pipette was waxed to
prevent creeping of the filling solution from the pipette to the electrode holder. TEVC

pipettes were filled with 2 M KCl and stored in a closer container under moist environment.
Before use, the tip was broken, under a microscope (Microforge, Narishige, Japan), to

decrease the resistance into the range of 0.5 to 1 MW, which corresponded to a tip diameter
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2-10 mm. The prepared electrodes can be reused for several oocytes as long as they maintain

their low resistance.

The microinjection needles (Drummond 3-000-203-G/X, Broomal, USA, see Fig. 2.1.B)

were pulled using a standard pipette puller (Heka, Lambrecht, Germany). The tips of the

pipettes were broken under a microscope (microfurge, Marishige, Japan) and heat-polished
to avoid oocyte damage. The injection needles were back-filled with mineral oil to allow

precise hydraulic control of the cRNA flow. The cRNA was taken from sterile eppendorf

tube via sterile standard capillary tube to fill the injection needle.

2.1.2.3. TEVC stimulation protocols
The membrane was kept at a holding potential of –100 mV, where the probability of the ion

channels under investigation to be in the closed conformation is almost 1. The pulse interval

between two stimulations was always kept long enough to ensure reequilibration of the
channel states and toxin binding. Current signals were sampled at 250-100 ms (sampling rate

of 4-10 kHz). The signal was low pass filtered with a Bessel filter at a frequency of 1 kHz

(for K+ channels) and 3 kHz (for Nav1.4 Na+ channel). To obtain different parameters for the
characterization of the channel protein and the toxin binding, several stimulation protocols

were generated.

2.1.2.3.1. Single pulse (I-V) protocol
For K+ channels, series pulses ranging from -60 mV to + 60 mV in increments of 20 mV

were applied (Fig. 2.3A). The interpulse interval was 10 sec. The steady state of whole cell
K+ currents at a test pulse of 0 mV were sampled (Fig. 2.3B). For Nav1.4 Na+ channel, series

pulses raning from -60 to +40 mV in increments of 10 mV were applied with 3 s interpulse
intervals. During experiments, several control I-V pulses were taken under NFR washing to

insure steady state current and avoid run up or run down states (in/decrease in current).

However, small run up or run down (less than 10%) were corrected by offline analysis using
Igor pro software (version 4.07 Carbon, Oregon, USA) with special program designed by Dr.

Michael Ferber in our group by using Igor WaveMatrics Software (Lake Oswego, OR,
USA).
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FIGURE 2.3. Single pulse (IV) protocol. A) Starting from holding potential (VH) depolarization pulses

with a duration of 200 ms are applied. B) Current responses of TSha1 K+ channel to the protocol of panel A

at 0 mV test pulse.

2.1.2.3.2. Double pulse (DP) protocol
To measure the kinetics of kM-RIIIK binding to closed channels, we used double pulse

protocol. Two identical voltage steps from the holding potential to 0 mV, separated by an

increase of time intervals (Ti: 0.25-7 s) were used to test of -100 mV the re-equilibration of
binding to closed channels (Fig. 2.4).

FIGURE 2.4. Double pulse protocol. Two identical voltage steps are separated by a variable
interpulse at VH (top). The bottom panel shows the current responses elicited by the double pulse
protocol for 0 mV and Ti= 250 ms.

2.1.2.3.3. Leakage and capacitive current correction
The currents measured during TEVC experiments were subtracted online with a standard P/n
protocol (Heinemann et al., 1995). In a voltage range where voltage dependent channels are
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considered not active, a scaled down version of the pulse protocol was applied n times and
the resulting current was averaged, scaled and subtracted from that elicited by the main test

pulse. A scaling factor of 0.25 was used and 4 to 8 leak responses were averaged to decrease

the noise.

2.2. Molecular Biology
In vitro site-directed mutagenesis is an invaluable technique for studying protein structure-

function relationships. This technique was used to obtain selected point mutations within the

pore region of TSha1 channel for mutant cycle analysis experiments. All methods were
performed following standard procedures (Sambrook et al., 1989; Ishii et al., 1998, Fig. 2.5)

and according to manufacturer protocols when commercial kits were used.

FIGURE 2.5. Schematic representation of the site-directed mutagenesis to produce
cRNA of TSha1 channel with selected mutations.
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2.2.1. Vector ligation
The Shaker-related K+ channel (TSha1), from CNS of rainbow trout Oncorhychus mykiss,

has an open reading frame (ORF) of 1892bp DNA (Nguyen and Jeserich, 1998 and Nguyen
et al, 2000, see Fig. 2.6).

FIGURE 2.6. Schematic representation of the pSGEM vector and TSha1 ORF DNA with
restriction sites, Ampr gene T7 and SP6 polymerase promoters. [Modified from Liman et al.
(1992)].

The vector used throughout this study was pSGEM (3118 bp), a modified version of

pGEMHE, which was a generous gift of Prof. Dr. Michael Hollmann (Bochum University,
Bochum, Germany). To increase the expression in Xenopus oocytes, pSGEM plasmid is

provided with 3' and 5' untranslated regions (UTRs) of a Xenopus b-globin gene (Krieg and
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Melton, 1987). The vector contains a cassette of four restriction sites, including NheI,
upstream the SP6 polymerase promoter that can be used for sense template linearization

(Liman et al, 1992 and Villmann et al, 1997, Fig. 2.6). In pSGEM vector, the T7 polymerase

promotor wihch is used for in vitro transcribtion. The plasmid also contains Ampr gene for
selective culturing of successful transformed vectors.

Both TSha1 DNA and pSGEM vector were fragmented by EcoRI and SalI digestion (Fig.

2.6) and cleaned with a QIAEX II gel extraction kit (Qiagen, Hilden, Germany). In a sterile

tube, 1.5 ml 10 x T4 DNA ligase (New England BioLabs, Beverly, MA, USA) and the DNA

solutions containing the fragments to be ligated were added to a final volume of 15 ml. The

ligation reaction was incubated at 16 ºC overnight.

2.2.2. TSha1 DNA Transformation
The DH5a and XL1-Blue competent bacterial cells were used for transformation. The

DH5a cells (0.2 ml; Gibco, Invitrogen, Karsruhe, Germany) were defrosted on ice, mixed

with 0.5ml pSGEM-TSha1 (4983 bp) ligation mixture and incubated on ice. The mixture tube

was incubated 1 min at 42 ºC for heat shock and re-incubated on ice for 3 min. Next, 800 ml

of LB medium [see the bacterial culture section] was added to the mixture and incubated 35-

45 min with shaking at 37 ºC (Eppendorf Thermomixer, Hamburg, Germany). Before
plating, tube was centrifuged for 5 min at 9000 rpm to precipitate bacterial cells. These cells

were spread on Ampicillin-LB agar plates [see the bacterial culture section] and incubated

overnight at 37 ºC. The XL1-Blue competent cells were used for site-directed mutagenesis
experiment according to the standard procedure from the manufacturer (Stratagene,

Heidelberg, Germany).

2.2.3. Bacterial culture
Once grown in LB agar plates, 10-12 individual colonies were sub-cultured in 4ml (100

mg/ml) Ampicillin-LB broth and incubated overnight at 37 ºC with 220 rpm shaker incubator

(GFL, Burgwebel, Germany). The LB agar plates can be supplemented with 100 mg/ml
Ampicillin (100 mg/ml end concentration; Roche, IN, USA) at 50 ºC after autoclaving the

following components:
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LB Medium LB Agar plates

10 g Bacto-Trypton 10 g Bacto-Trypton (Difco Labs, MI. USA)
5 g Bacto-Yeast Extract 5 g Bacto-Yeast Extract

5 g NaCl 5 g NaCl
1000 ml H2O 14 g Bacto-agarose

1000 ml H2O

2.2.4. Plasmid isolation
From 3 ml LB cultures, the TSha1-pSGEM plasmid constructs were isolated in mini-scaled
preparation using NucleoSpin® mini-preparation kit (Macherey-Nagel GmbH, Düren,

Germany). The isolated plasmid was tested through restriction digestion and visualized by

agarose gel electrophoresis as described below.

2.2.5. Restriction enzyme digestion
In principle, a restriction enzyme that cleaves the construct plasmid to give predicted

fragments is selected. The HindIII enzyme was used to give two predicted fragments, 1176
kb and 3807 kb. Total volume of 15 ml mixture of 1 ml plasmid DNA, 1.5 ml HindIII buffer,

0.1 ml HindIII enzyme (New England BioLabs, Beverly, MA, USA) and d.d.H2O was

incubated for 2 to 6 hrs at 37 ºC for digestion. The digested DNA was verified in agarose gel

electrophoresis as described below.

2.2.6. Agarose gel electrophoresis
Nucleic acids were separated by size and electrical charge on slab agarose gel via submarine

gel electrophoresis. The mesh framework of agarose gel obstacles large electrical changed
particles and allows smaller ones to pass through the gel. Intercalating dye [ethidium

bromide, 1% (v/v)] was used to visualize DNA samples under UV radiation. Molecular size

markers 100bp and 1Kb DNA Ladders (MBI Fermentas, Vilnius, Lithuania) were run
simultaneously in marker lane to estimate the size of the DNA samples. The electrophoresis

tank was filled with 1x TBE buffer and DNA samples were run in 1% agarose gel (SeaKem
LE agarose, BMA, BioWhittaker, Dinmark). The DNA samples of 10-15 ml were mixed with

5 ml loading buffer and loaded into separated lanes. The gel was run for 35 min at (80-120)

mV using standard power supply (Pack P25, Biometra, Göttingen, Germany). Finally, DNA
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bands were visualized and the gel was developed by image Master machine (Amersham,
Pharmacia, Frieburg, Germany). The electrophoresis buffer contents were:

5 X TBE Tris-Base 54 g
pH 8 (adjusted by NaOH) Boric acid 27.5 g

0.5 M EDTA 20 ml

Loading Buffer Glycerin 40 % (v/v)
Bromophenol Blue in H2O 0.25 % (v/v)

2.2.7. Mutagenic primer designand PCR amplification
The mutagenic oligonucleotide primers to be used in the QuickChange“ site-directed

mutagenesis kit must be designed individually according to the desired mutation. The

manufacturers (Stratagene, Heidelberg, Germany) suggestions for designing mutagenic
primers were taken into consideration. Briefly, both sense and antisense mutagenic primers,

between 25 and 45 bases in length, must contain the desired mutation and anneal to the same

sequence on opposite strands of the plasmid. The melting temperature (Tm) of the primers
should be ≥ 78 ºC and the desired mutation should be in the middle of the primer with

~10–15 bases of correct sequence on both sides. Also, the primers optimally should have a

minimum guanine/cytosine (GC) content of 40% and should terminate in one or more C or G
bases. Optimal mutagenic primers were designed using Lasergene Navigator software

(Navigator 1.66, DNASTAR, London, UK). All designed primers were purchased from
Metabion GmbH (Planegg-Martinsried, Munich, Germany). Summary of selected TSha1

mutation and their corresponded sense and antisense primers are shown in Table 2.1.

Polymerase chain reaction (PCR) amplification for the TSha1-pSGEM plasmid as DNA

template was done according to QuickChange“ site-directed mutagenesis protocol. In a

sterile PCR tube, 0.5 ml (10 ng DNA sample), 1.25 ml (10mM) sense primer, 1.25 ml (10mM)

antisense primer, 1 ml (25 mM) dNTPs (Stratagene, Heidelberg, Germany), and 5 ml 10 x

PCR buffer (Stratagene, Heidelberg, Germany) were added to a final volume of 50 ml

d.d.H2O. The mixture was aliquot into sterile PCR tubes and kept on ice. A 1ml (2.5 U/ ml)

PfuTurbo® polymerase (Stratagene, Heidelberg, Germany) was added to each reaction tube.

In the same time, negative control sample was run in same PCR using the same components
without the DNA sample. The PCR conditions were initial step at 95 ºC for 30 s followed by
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16 reaction cycles of denaturation at 95 ºC for 30 s, annealing at 55 ºC for 1 min, and a final
10 min extension at 68 ºC. The PCR was run using Thermocycler machine (T3, Biometra,

Göttingen, Germany). After the amplification, an aliquot of the PCR products were verified

on 1% agarose gel.

2.2.8. Plasmid transformation
Following temperature cycling, the product was treated with 1m l DpnI endonuclease (10

U/ml, Stratagene, Heidelberg, Germany) to digest the parental methylated DNA template and

to select for mutation-containing synthesized DNA. The DpnI-treated plasmid DNA was

then transformed into XL1-Blue supercompetent cells. Briefly, XL1-Blue cells were
defrosted on ice, mixed with 1ml DpnI-treated plasmid and incubated for 30 min on ice. The

mixture tube was incubated 45 s at 42 ºC for heat shock and re-incubated on ice for 2 min.

Next, 500 ml of preheated NZY+ medium (Stratagene, Heidelberg, Germany), was added to

the mixture and incubated for 1 h at 37 ºC with shaking (Eppendorf Thermomixer, Hamburg,

Germany). Following transformation, cells were spread on Ampicillin-LB agar plates (see
cell culture section).

2.2.9. Plasmid isolation and linearization
The mutated plasmid construct was isolated using the same mini-scaled preparation
mentioned in the plasmid isolation section. The concentration and purity of isolated DNA

plasmid was measured using a Biophotometer (Eppendorf, Hamburg, Germany). All
constructs were sequenced using dideoxy chain termination method with dye terminators on

an applied Biosystems 373 DNA sequencer (Applied Biosystems, Weiterstadt, Germany).

Sequencing was performed within the house of Max-Planck Institute for Experimental
Medicine (Göttingen, Germany) by Mr. Fritz Benseler. After sequencing, plasmids with

required mutations were linearized for in vitro transcription. Briefly, 4 mg of DNA were

linearized with 2 ml NheI (New England BioLabs, Beverly, MA, USA), and incubated for 3

hs at 37 ºC. The linearized plasmids were verified in 1% agarose gel electrophoresis as

mentioned above.
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TABLE 2.1. Primer sequences of TSha1 point mutation. The upper primer is the sense and the

lower one is the anti sense of each corresponded mutant.

TSha1 mutation 5'-Primer sequence-3'
E348K ACTTTGCGGAAGCTGATAAGCCCGAATCGCAATTTG

CAAATTGCGATTCGGGCTTATCAGCTTCCGCAAAGT

E348S CTACTTTGCGGAAGCTGATTCGCCCGAATCGCAATTTG

CAAATTGCGATTCGGGCGAATCAGCTTCCGCAAAGTAG

P349K CTTTGCGGAAGCTGATGAGAAGGAATCGCAATTTGAAAGCATCC

GGATGCTTTCAAATTGCGATTCCTTCTCATCAGCTTCCGCAAAG

S351K GAAGCTGATGAGCCCGAAAAGCAATTTGAAAGCATCCCAG

CTGGGATGCTTTCAAATTGCTTTTCGGGCTCATCAGCTTC

E354K GCCCGAATCGCAATTTAAAAGCATCCCAGACGC

GCGTCTGGGATGCTTTTAAATTGCGATTCGGGC

E354Q GCCCGAATCGCAATTTCAAAGCATCCCAGACGC

GCGTCTGGGATGCTTTGAAATTGCGATTCGGGC

S366T TGGTGGGCTGTTGTCACTATGACGACAGTAGG

CCTACTGTCGTCATAGTGACAACAGCCCACCA

M375K CCAATGGTGGTCGGCTTCATGTCACCATACCC

GGGTATGGTGACATGAAGCCGACCACCATTGG

M375L AGTAGGGTATGGTGACTTGGTCCCGACCAC

GTGGTCGGGACCAAGTCACCATACCCTACT

M375I AGTAGGGTATGGTGACATTGTCCCGACCACC

GGTGGTCGGGACAATGTCACCATACCCTACT

V376K AGTAGGGTATGGTGACAAGGTCCCGACCAC

GTGGTCGGGACCTTGTCACCATACCCTACT

V376H GGGTATGGTGACATGCACCCGACCACCATTGG

CCAATGGTGGTCGGGTGCATGTCACCATACCC

V376S GGGTATGGTGACATGAGCCCGACCACCATTGG

CCAATGGTGGTCGGGCTCATGTCACCATACCC

V376T AGGGTATGGTGACATGACCCCGACCACCATTGG

CCAATGGTGGTCGGGGTCATGTCACCATACCCT

V376E GGGTATGGTGACATGGAGCCGACCACCATTGG

CCAATGGTGGTCGGCTCCATGTCACCATACCC
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2.2.10. In vitro transcription
The transcription was performed with the T7 polymerase (Stratagene, Heidelberg, Germany)
to obtain cRNA as described in standard procedure (Krieg and Melton, 1987). Briefly, the

linearized plasmid solution up to 100 ml with DEPC water was mixed with equal volumes of

phenol and chloro-isoamylalcohol. After centrifugation for 3 min at 13200 rpm (Centrifuge

5415D, Eppendorf, Köln, Germany), the upper phase was separated to a second tube and the
lower phase of the first tube was mixed with 100 ml DEPC water and recentrifuged. Next,

the upper phase collected again from the first tube, added to the second tube and the second

tube containing the upper phases was rewashed with equal volume of chloroform-

isoamylalcohol to be purified for precipitation.

The extracted DNA was precipitated for 12 hs at -20 ºC with 0.1 vol. of sodium acetate and 3
vol. of absolute ethanol. Then, the DNA sample was centrifuged for 30 min at 13200 rpm

(Centrifuge 5804R, Eppendorf, Köln, Germany). The precipitated sample was washed with

0.5 ml 70% cold ethanol and recentrifuged for 3 min at 13200 rpm. Finally, the pellet was
dried at room temperature.

The transcription mixture (Table 2.2) was incubated for 1h at 37 ºC. After treatment by 5 ml

DNase for 15 min at 37 ºC, the mixture tube was re-extracted by phenol and chloroform and
precipitated. The concentration and purity of isolated cRNA was measured using a

Biophotometer (Eppendorf, Hamburg, Germany) and stored at -80 ºC to be used.

TABLE 2.2. The transcription mixture was followed:

Vol. ml Material Source
13 Linearized DNA resuspended in DEPC water

5 ATP (10 mM) Amersham Biosciences, Uppsala, Sweden

5 CTP (10 mM) Amersham Biosciences, Uppsala, Sweden

5 UTP (10 mM) Amersham Biosciences, Uppsala, Sweden

2,5 GTP (10 mM) Amersham Biosciences, Uppsala, Sweden

5 CAP (5 mM) Amersham Biosciences, Uppsala, Sweden

10 5 x Transfer buffer Amersham Biosciences, Uppsala, Sweden

2,5 RNasin (100 U) Promega, Madison, WI, USA

2 T7 RNA polymerase (0,4 ml + 1,6 ml dilution buffer) Stratagene, Heidelberg, Germany

50 Total volume
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2.3. Data analysis
Data were expressed statistically as [mean ± standard error (S.E.)] using Excel software

(Microsoft, USA) and Igor pro (version 4.07 Carbon, Oregon, USA). Offline analysis was
performed with a Macintosh G4 computer (Apple, Cupertino, CA, USA), with modified Igor

software programs that were written by our group. Curve fittings and corrections also were
done by Igor pro software. Mutagenic primers design was done utilizing Lasergene

Navigator software (Navigator 1.66, DNASTAR, London, UK). The acquisition of data from

the amplifier was made using Pulse software (HEKA, Lambrecht/Pfalz, Germany). The
student t- test for unpaired-comparison was used to compare two means. The difference is

considered significant when P < 0.05.

The IC50 values for the block charactericstics of toxin block during the electrophysiological

experiments were calculated from the steady state of whole cell currents at a test potential of
0 mV obtained from oocyte expressing Shaker channels.

IC50 = fc / (1-fc) * [T]

Where fc is the fractional current (fc = sample current / control current) and [T] is the toxin

concentration.

For dose response curves, curves are fitted according to:

 g = 100 / {1+ ([T] / IC50)n}

 where g is the relative response, and n represent the Hill coefficient, which represents

cooperativity for the block of the channel by the toxin.

The kinetic parameters of toxin binding to open channels can be obtained by investigating

binding relaxations during partial block conditions (Terlau et al., 1999). The ratio of the

currents under control conditions and in the presence of toxin shows a single exponential
relaxation of the block, a single exponential relaxation of the block was calculated as:



MATERIALS AND METHODS                                                                                                    34

y = yo + A exp (t-1)

where t is the time constant of activation or recovery from inactivation, y indicate the state

probability of the channel from which the current fraction collected. In principle, the toxin

binding to channel pore can be interpreted by a simple bimolecular reaction scheme:

{U} {B}
k on

koff

* [T]

where {U} represents the toxin-free channels and {B} the channels bound to a toxin

molecule. The transition rates are the product of the second order dissociation constant and
the toxin concentration, (kon *[T]) and the dissociation constant koff. From the experimental

parameters t and U, it is possible to evaluate K(O), k
off

(O), k
on

(O) according to the inverse

relationships:

K(O) =
[T]* U(O)

1 - U(O)  ;            koff
(O) =

U(O)

t(O)               ;              kon
(O) =

1 - U(O)

[T]* t(O)

The parameters of toxin binding to the closed state were calculated by performing a similar
analysis for the currents obtained from double pulse protocols, which are used to

characterize the reequilibration of closed channel binding.

For both open and close channels, the resting unblock probabilities, Uo and Uc, depends on

the toxin concentration, [T], following a simple Langmuir isotherm, where the equilibrium
dissociation parameter (KD) is K(O) for open and K(C) for close channels with:

KD = (koff / kon) * [T]

Also, the time constant (t) depends on [T] according to:

t = 1/ (koff +kon *[T])
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The mutant cycle analysis was performed to reveal the interaction between given pairs of
toxin and channel residues (Hildago and MacKinnon, 1995; Schreiber and Fersht, 1995).

Values for the coupling coefficient W were obtained from cycle of channel and toxin

interaction in WT and mutant forms (mut), by using the formula:

W = [(IC50WTchannel:WTtoxin*IC50 mutchannel:muttoxin)/(IC50WTchannel:muttoxin*IC50mutchannel:WTtoxin)].

Unity reflects no interaction, whereas deviation from unity indicates progressively stronger

interactions. The change in coupling energy DDG for a given pair of toxin channel residues

was calculated according to DDG = RT ln W (with R = 8.314 Jmol-1.K-1 and T = 295 K). It

was suggested that a pair of residues showing a change in DDG> 2.1 KJ.mol-1 may be

expected to lie within 5 Å of each other (Schreiber and Fersht, 1995; Rauer et al., 1999).
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CHAPTER THREE: Results

3.1. κM-RIIIK interacting with Shaker-type K+ channels

κM-conotoxin RIIIK blocks Shaker-related potassium channels from the trout Oncorhychus

mykiss (TSha1) with high affinity. We identified the interacting residues of κM-RIIIK

pharmacophore by using the alanine substitution assay. To investigate which part of the toxin is

interacting with which residues at the pore region of the TSha1 channel, a mutant cycle analysis

was performed.

3.1.1. κM-RIIIK specificity interacts with TSha1channels

3.1.1.1. Determining IC50 of open state block

The affinity of κM-RIIIK isoforms was functionally assayed by two-electrode voltage clamp

measurements using Xenopus oocytes expressing the trout TSha1 K+ channel. κM-RIIIK blocks

TSha1 mediated K+ currents with an IC50 of 76  ± 10 nM (n = 9), obtained from measuring

steady state currents. The inhibition of TSha1 K+ conductance is readily reversible when the

recorded chamber was washed with toxin free-NFR as shown in the bottom panel of Fig. 3.1A.

The affinity was confirmed by dose response measurement with an IC50 =70 ± 11 nM (Fig.

3.1B). This value is almost identical to the value from the measurements of the fractional

currents. The Hill coefficient was close to 1, suggesting that the binding of a single toxin

molecule is sufficient to inhibit the TSha1 channel.

3.1.1.2. Interaction at different extracelluar K+ concentrations

Because κM-RIIIK carries a net positive charge at neutral pH (Ferber et al., 2003), we expected

a substantial electrostatic component in the interaction between the toxin and pore region of the

channel. To examine this possibility, we studied the RIIIK block under different extracellular

potassium concentrations, ([K+]o = 0, 2.5, 5, 10 and 50 mM). The affinity of the peptide to

TSha1 channels was calculated from the steady state ratio measurement of control current to

current under toxin condition (see Materials and Methods; Terlau et al., 1999).
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FIGURE 3.1. κM-RIIIK reversibly blocks TSha1-mediated currents. (A) Whole-cell currents recorded from
oocytes expressing TSha1 K+ channels upon depolarization to 0 mV are shown before (control), after addition of 1
µM κM-RIIIK, and after subsequent wash with NFR, indicating the reversibility of the block of the toxin. The
holding potential was -100 mV. The dashed lines correspond to zero current. (B) Dose-response curve for the block
of TSha1 current by κM-RIIIK at a test potential of 0 mV (total number of experiments = 12 with n between 4 and
11 for the different indicated toxin concentrations).

From these ratios, it was possible to calculate the dissociation constant for open state (K(O)) but

also the "on" and "off" rate values. From Table 3.1 and Fig. 3.2, it becomes clear that the

affinity of the toxin weakened exponentialy as [K+]o increases, with K(O) increases from 75 nM

at 0 and 2.5 mM and approaching 870 nM at 50 mM. Examining the effect of different [K+]o on

the kinetics of the κM-RIIIK blockade to TSha1, revealed that the observed change in K(O) is

mainly due to changes in koff
(O). Overall, the dissociation rate varies strongly with the [K+]o, with

an about 5-fold increase at 50 mM. The variation in association rate is small in comparison,

leading to 2.5-fold decrease at 50 mM [K+]o. During the experiments, it was noticed that

increasing the [K+]o to 115 mM by substituting the Na+ ions was not tolerated by the TSha1

channels. This was reflected by tonic increase in leakage current. Therefore, higher

concentrations than 50 mM [K+]o could not be investigated. The fact that the affinity of κM-

RIIIK associated with an increase in the koff
(O) rates indicates a competition between κM-RIIIK

molecules and [K+]o on available carboxylate groups close to the outer surface of the channel

pore. Hence, the binding interaction is partly due to electrostatic forces between toxin and

channel pore residues.

A B
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TABLE 3.1. The effect of κM-RIIIK interaction with TSha1 K+ channels under different
extracelluar K+ concentrations

[K]0

mM
K(O) (0mV)

nM
kon

(O)

µM-1*S-1
koff

(O)

S-1
kon

(O) ratio
([K]0 / 2.5-mM [K]o)

koff
(O) ratio

([K]0 / 2.5-mM [K]o)
n

0  75 ± 16 56 ± 11  4 ± 1 0.6 0.7 4
2.5  76 ± 13 89 ± 11  6 ± 1 1 1 5
5    162 ± 10 90 ± 11  14 ± 3 1 2.3 4
10    219 ± 32   75 ± 9  16 ± 2 0.8 2.7 5
50  871 ± 150   35 ± 13  28 ± 9 0.4 4.7 3

FIGURE 3.2. The effect of external potassium concentration ([K]0) on the binding
affinity of κM-RIIIK to TSha1-channels. The affinity of the interaction is decreasing
(shown here as increasing of relative currents) by increasing the [K]0 indicating that toxin
molecules are blocking the pore region of the channel with dominant electrostatic
interactions.

3.1.2. κM-RIIIK interacts with mammalian Kv1.2

In order to investigate the specificity of the binding of κM-RIIIK to a given voltage-gated K+

channel, the affinity of κM-RIIIK for different mammalian potassium channels of the Kv1

family was performed. It is shown that κM-RIIIK blocks the human Kv1.2 potassium channel,

whereas the other members of the Kv1 family tested are not affected by the peptide. The block

of Kv1.2 currents is state dependent with different steady state affinities and binding kinetics for

the closed and open channel conformation. This section was a contribution by a collaborative

work with Dr. Michael Ferber in the group.
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3.1.2.1. Determining IC50  of open state block of Kv1.2
Ten potassium channel subunits from different families (Kv1.1, Kv1.3, Kv1.4, Kv2.1, Kv3.4,
Kv4.2, Kv10.1 (reag), and Kv11.1 (herg)) were expressed in Xenopus oocytes. None of the

expressed channels showed any sensitivity for kM-RIIIK applied in a concentration of up to 10

mM. However, as already described in Ferber et al. (2003). Shaker K+ channels are blocked by

kM-RIIIK with an IC50 of about 1 mM. In order to establish the pharmacological profile of kM-

RIIIK on mammalian Kv1 channels, the activity of this peptide was tested on human Kv1.2, rat

Kv1.2, rat Kv1.5 and rat Kv1.6 expressed in Xenopus oocytes. The results are shown in Fig. 3.3.
kM-RIIIK at a concentration of 5 mM has no effects on Kv1.5 mediated currents. For Kv1.6

mediated currents, a small reduction (< 10%) is observed which would correspond to an IC50

above 50 mM. In contrast to the low affinity of kM-RIIIK to these channels the same

concentration of kM-RIIIK leads to an almost complete block of human Kv1.2 or rat Kv1.2

mediated currents.

FIGURE 3.3. kM-RIIIK specifically blocks Kv1.2 mediated currents. Whole cell currents
recorded from oocytes expressing Kv1.2, Kv1.5 or Kv1.6 K+ channels evoked by test
potentials to 0, +20 and +40 mV from a holding potential of -100 mV under control
conditions (upper panel) and after addition of 5 mM kM-RIIIK (lower panel). Whereas
Kv1.5 and Kv1.6 mediated currents are almost unaffected by the toxin, Kv1.2 mediated
currents are almost completely blocked.

This inhibition is readily reversible (not shown). The IC50 for human Kv1.2 channels obtained by
measuring the steady state currents at 0 mV during dose response experiments is about 300 nM

(Fig.3.4). The Hill coefficient is about 1 indicating no cooperativity for the block of Kv1.2
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channels by the peptide. The IC50  for rat Kv1.2 channels calculated from fractional currents is

335  ± 78 nM (n = 5). These results establish Kv1.2 as a specific mammalian target of kM-RIIIK.

FIGURE 3.4. Dose–response curve of the block of
Kv1.2 mediated steadystate currents by kM-RIIIK. The
mean steady-state current at 0 mV in the presence of the
toxin is normalized to the control and plotted as a
function of toxin concentration (circles). Values are
shown as mean ± S.D. (n = 6).

3.1.2.2. Inhibition of Kv1.2 mediated currents is state dependent
It had been shown that the block of Shaker and TSha1 mediated currents by kM-RIIIK is state

dependent (Ferber et al., 2003) as seen by different steady-state affinities. The binding kinetics
also differ for the open and closed state of the channels. To test whether the block of Kv1.2

mediated currents by kM-RIIIK is also state dependent, Kv1.2 currents were evoked by

depolarizing pulses to 0, +20 and +40 mV in the absence (Fig. 3.5A, upper traces) and presence

(Fig. 3.5A, lower traces) of 500 nM kM-RIIIK. In the presence of the toxin an apparent slowing

of the activation of the evoked currents is observed. As has been shown earlier (Terlau et al.,
1999; Ferber et al., 2003) this slowing reflects a reequilibration of toxin binding to the open

channels. The ratio of partially blocked Kv1.2 current to unblocked control traces (Itoxin  / Icontrol )
represents the unblock probability (Fig. 3.5B).

The unblock probability increases exponentially from a starting value at the beginning of the
pulse which corresponds to the unblock probability for the closed state of the channels to a new

steady-state value in a voltage dependent manner. This behavior is similar to what had been

originally described for the block of Shaker channels by k-conotoxin PVIIA (Terlau et al., 1999)
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and shows that the properties of kM-RIIIK binding kinetics to open channels can indeed be

investigated by the relaxation of partial block during depolarizing voltage steps. Assuming a

bimolecular reaction the relaxation kinetics and the steady state unblock probability can also be
used to calculate the kinetic parameters of the binding to the open state of the channel (see Terlau

et al., 1999).

FIGURE 3.5. The block of kM-RIIIK of Kv1.2 is state
dependent. (A) Whole cell currents recorded from oocytes
expressing Kv1.2 channels evoked by test potentials to 0,
+20 and +40 mV from a holding potential of -100 mV
under control conditions (upper panel) and after addition of
500 nM kM-RIIIK (lower panel). The dashed lines
correspond to zero current. (B) Current ratios obtained
from the currents in (A ) for the three test potentials
showing a single exponential relaxation of the probability
of the channels to be unblocked.

The relaxation time constant and the steady-state unblock probability were obtained from single

exponential fits of the ratio Itoxin / Icontrol and used to calculate the affinity to the open state as well
as the on- and off-rate. The results from such calculations are shown in Table 3.2. The mean

steady-state affinity calculated from the ratio measurements is 420 nM which is in good

agreement with the results obtained from the dose–response experiments (see above). The slight
difference for the IC50 values obtained with both methods is not significant and within the scatter

of the ratio analysis (Table 3. 2).

A

B
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TABLE 3.2. Summary of KD, kon and koff values for open and close states of human Kv1.2 and TSha1 K+ channels

Open state Close state

K(O) (0 mV)

(nM)

kon
(O)

(mM-1s-1)

koff
(O)

(s-1) n
K (C) (0 mV)

(nM)

kon
(C)

(mM-1s-1)

koff
(C)

(s-1) n

Kv1.2 420 ± 77 43 ± 4 17 ± 2 10   227 ± 68 5.7 ± 1.5 1.07 ± 0.23 5

TSha1*   65 ± 16  88 ± 13   5.2 ± 0.9 4   18 ± 7 16.9 ± 4.0 0.25 ± 0.02 3

* The data for TSha1 are taken from Ferber et al (2003).

A comparison of the open channel binding of kM-RIIIK to TSha1 and Kv1.2 show that the 8-fold

difference in the affinity is due to changes in the on- as well as in the off-rate of toxin binding.

The kon
(O) for the binding of kM-RIIIK to open Kv1.2 channels is reduced 2-fold and the koff

(O) is

increased about 3-fold.

Figure 3.6. shows an example of double pulse stimulations, which were used to characterize the

reequilibration of toxin binding to the closed channel. The evoked currents resulting from
depolarizing pulses to  0 mV show that the activation of the currents under control conditions is

almost identical and independent of the different interpulse intervals (8 ms to 2 s; Fig. 3.6A). In

contrast, the currents evoked by the first pulse in the presence of 500 nM kM-RIIIK activated

slow as shown already in Fig. 3.5, whereas the currents elicited by the second pulse after short
interpulse interval exhibited a faster activation comparable to the one observed under control

conditions. This indicates that the first pulse caused an unblock of the toxin bound to the closed
channel and indicates that within the short time between the two pulses kM-RIIIK did not have

enough time to rebind to the closed channels.

With longer interpulse intervals the activation of the currents measured during the second pulse
became slower indicating rebinding of the toxin to the closed states. From the development of the

apparent slowing of the activation the steady-state affinity to the closed state (K(C)) as well as the

rate constants (kon
(C); koff

(C)) for the binding of kM-RIIIK to the closed state of Kv1.2 channels can

be calculated. The steady-state value (UC) of the unblock probability obtained for long interpulse
intervals is 0.2 (Fig. 3.6B) which corresponds to an IC50 for the closed state of 125 nM. The IC50

obtained for n = 5 are given in Table 3.2. The mean IC50 of kM-RIIIK binding to closed channels

is about 200 nM demonstrating the affinity of the peptide to the closed state is 2-fold higher than
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to the open state at 0 mV. This change in affinity is mainly due to a 17-fold reduction of koff
(C);

whereas the kon
(C)

 is only reduced about 7-fold. These data show that the binding of kM-RIIIK to

the open and closed channel is very different, but also indicate that the interaction of kM-RIIIK

with Kv1.2, Shaker and TSha1 K channels is similar (Ferber et al., 2003; see also Table 3.2).

Compared to the binding of kM-RIIIK to the closed state of TSha1 channels the observed 10-fold

reduction in affinity for Kv1.2 K(C) is due to an about 3-fold reduction in k on
(C)

 and a 4-fold
increase in koff

(C).

FIGURE 3.6. Relaxation of kM-RIIIK binding to closed Kv1.2 channels measured by a
double pulse stimulation. (A ) Superimposed records of responses to double pulse
stimulations before (upper panel) and after the application of 500 nM kM-RIIIK (lower
panel). Each stimulation consisted of a 250 ms conditioning pulse to 0 mV followed by a test
pulse of the same amplitude and duration. The interval between the two pulses ranged from 2
to 8192 ms. Successive stimulations were separated by 45 s at the holding potential of -100
mV. For clarity reasons not all pulses are shown. The dashed lines correspond to zero
current. (B) The amplitude of the second response at the half maximal activation time of the
control normalized to the first response is plotted versus the pulse interval (circles). The solid
line represents a single exponential fit decaying with a time constant (t) of 190 ms to an
unblock probability UC of 0.20.

A

B
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3.2. Alanine scanning mutagenesis
3.2.1. Identification of the residues important for kM-RIIIK
To investigate which amino acids of kM-RIIIK are important for the binding, all amino acids

besides the cysteines have been mutated into an alanine. The affinity of the toxin mutants was
functionally assayed by two-electrode voltage clamp measurements using Xenopus oocytes

expressing the trout TSha1 K+ channel. The results of these assays are shown in Table 3.3.

TABLE 3.3. IC50 Values for TSha1 K+ block of kM-RIIIK and
Analogs. The IC50 values (in nM) of the kM-RIIIK WT and mutants
interactions are given by Mean  values ± SE

kM-RIIIK IC50 n IC50  mutant / IC50 WT

WT           76 ± 10 9 1
L1A       3180 ± 120 6 42
O2A         200 ± 20 4 3
S3A         750 ± 110 6 10
S6A         240 ± 30 4 3
L7A         310 ± 40 6 4
N8A         420 ± 80 3 6
L9A           90 ± 10 3 1

R10A       4220 ± 330 7 56
L11A         970 ± 120 6 13
O13A         510 ± 70 6 7
V14A       1130 ± 170 5 15
O15A         850 ± 110 3 11
O15R       2700 ± 370 4 36
O15K         450 ± 30 4 6
K18A       3900 ± 530 6 52
R19A       1530 ± 240 9 20

K18R/R19K         180 ± 40 7 2
N20A         430 ± 40 3 6
O21A         130 ± 20 3 2
T24A         120 ± 30 3 1

Parallel to our alanine scanning analysis, the structure of kM-RIIIK was solved by Carlomagno

and coworkers at the Max-Planck-Institute for Biophysical Chemistry (Göttingen, Germany)

using nuclear magnetic resonance (NMR) technique (see also Discussion). Figure 3.7 shows the
relative changes in the affinity of  kM-RIIIK mutants and the structure of the peptide. Alanine

scanning mutagenesis revealed three groups of kM-RIIIK residues summarized in Fig. 3.7. For

six amino acids (O2, S6, L7, L9, O21, and T24; green labeled in Fig. 3.7A and B), the alanine
substitution resulted in an IC50 value that was within 5-fold of that of wild-type kM-RIIIK. To
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this relative small change in affinity introduced by tha alanine mutation, we assume that this

group is not directly involved in the binding of the toxin. We note that some substitutions (O2A,
S6A, and L7A) cause a larger change in the IC50 value than others (L9A, O21A, and T24),

indicating that although these residues are not dominant determinants for binding they may

slightly contribute to the interaction with the TSha1 channel.

FIGURE 3.7. The summary of the alanine mutagenesis assay. (A) Bar-diagram shows the affinity of all alanine
mutants and a double mutant analogs of kM-RIIIK compared to the IC50 value of the kM-RIIIK wild-type. (B) The
space-filled model showing the map of the functionally important residues of kM-RIIIK with the three-dimensional
structure. To visualize the different changes in the affinity observed for the corresponding alanine mutants, the
residues are color-coded: red for an alanine substitution that increased the IC50 of kM-RIIIK by ≥ 20-fold (L1, R10,
K18, and R19), yellow for an alanine substitution that affected the affinity by more than 5-fold but by less than 16-
fold (S3, N8, L11, O13, V14, O15, and N20), and green for the rest. The right figure shows the opposite view of the
toxin. The dashed line corresponds to wild-type level.

A second group, where alanine mutations of seven (S3, N8, L11, O13, V14, O15, and N20;
yellow labeled in Fig 3.7A and B) residues exhibited an intermediate behavior, with IC50 values
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more than 5-fold greater but less than 16-fold less than that of wild-type IC50. Interestingly, S3,

L11, O13, V14, O15, and N20 are located on the same side of the molecule (Fig. 3.7B).

Figure 3.8 shows that mutations of four other residues (L1, R10, K18, and R19; red labeled in

Fig. 3.7A and B) resulted in a major reduction of the affinity for TSha1 K+ channels (Table 3.3).
The IC50 values of these analogs are increased by ≥ 20-fold, indicating an important role of these

amino acids in receptor binding. Interestingly, the affinity of the double mutant K18R/R19K for
the TSha1 K+ channel is close to that of the wild type, indicating that the positive charge is

important at both positions, but the specific nature of the side chain is not critical for the

interaction with the TSha1 K+ channel.

FIGURE 3.8. Mutation of residues L1, R10, K18, and R19 results in isoforms of kM-RIIIK with
low affinity for TSha1 channels. Whole-cell currents recorded from oocytes expressing TSha1 K+

channels before and after addition of the kM-RIIIK isoform are shown. Notice the apparent
slowing of activation of the currents in the presence of R10A, K18A, and R19A illustrating the
re-equilibrium of toxin binding to the open state (Terlau et al., 1999). The pulse protocol was
like that described in the legend of Figure 3.1. The vertical bars represent 2mA. The dashed lines
correspond to zero current.

Control 1mM Toxin
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Somewhat surprisingly for a peptide blocking K+ channels, these four critical residues are
distributed at various sites in the molecule (Fig. 3.7B). Furthermore, the structure of kM-RIIIK

does not provide any evidence of the existence of a hydrophobic-positively charged amino acid

dyad, as Leu1, the most important hydrophobic residue for binding, is more than 6 Å from any
positive charge.

3.2.2. Evaluation of additional substitutions for Leu1.
The alanine walk identified Leu1 as the only hydrophobic residue that substantively affects
binding of kM-conotoxin RIIIK to the TSha1 channel. The solution structure determined by

NMR indicates that Leu1 is too far from any positively charged residue to serve as the

hydrophobic component of a dyad (Fig. 3.7B), a conserved motif in otherwise divergent K+

channel-targeted toxins. However, the fact that the N-terminal region (amino acids 1-11) is
flexible leads to some reservations regarding this conclusion. In other toxins, the hydrophobic

component of the dyad is most commonly an aromatic residue, while a lysine plays the role of the
positively charged component; this lysine occludes the extracellular opening of the ion channel

pore. Thus, if Leu1 is part of a functional dyad that forms following a conformational change

upon binding of the receptor, it is reasonable to predict that the substitution of the leucine with an
aromatic amino acid can be well-tolerated and perhaps even leads to an increase in binding

affinity. To test this hypothesis, we evaluated the effect of various substitutions of Leu1 on the
interaction of kM-RIIIK with the TSha1 channel (Table 3.4) by investigating the affinity of

different Leu1 mutats on TSha1 channels, again using two electrode voltage clamp measurements

within the Xenopus expression system.

In contrast to what was predicted on the basis of the dyad hypothesis, both a phenylalanine (the

most common amino acid as the hydrophobic half of the dyad) and a tyrosine substitution for

Leu1 caused a greater apparent decrease in affinity (>100-fold) than the L1A substitution (about
40-fold).
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TABLE 3.4. Mutations of Leu1 affect the affinity of kM-RIIIK for
the TSha1 K+ Channel. The IC50 values (in nM) of the kM-RIIIK WT
and mutants interactions are given by Mean  values ± SE

kM-RIIIK IC50 ± SEM n IC50 mutant/IC50 WT

WT          76 ± 10 9 1
L1A      3180 ± 120 6 42

Ac-L1      7620 ± 380 5 100
L1E    56500 ± 12350 5 745
L1H      5430 ± 400 4 72
L1I      1380 ± 450 5 18

L1M        340 ± 50 5 4
L1K        950 ± 140 4 13
L1R        190 ± 5 4 3
L1F      5260 ± 710 4 69
L1Y    12290 ± 1110 3 162

Unexpectedly, the replacement of Leu with a positively charged amino acid (e.g., the L1R and

L1K mutations) had a weaker effect on the affinity for the TSha1 channel (2- and 12-fold,

respectively) than the L1A mutant. Introducing a negative charge (L1E) or blocking the positive
charge (N-acetylated kM-RIIIK) causes a drastic decrease in affinity (>500- and >100-fold,

respectively).

To test the tolerance of Leu1 position for charge changes, we introduced L1H mutant. The net

charge of the amidazol group of L1H mutant can be switched from negative to positive, by

changing the pH of the NFR from acidic (pH 5) to basic (pH 9) values (pI of His is at pH 7.65).
As seen in Fig. 3.9, L1H mutant at pH 5 (positively charged) caused a decrease in affinity (~ 4-

fold, 360 ± 30, n = 3). While at pH 9, L1H mutant (negatively charged) caused a dramatic
decrease in affinity (~ 440-fold, 33490 ±770, n = 3). These L1H experiments show that for the

affinity of kM-RIIIK to TSha1 channel, substitution of the Leu1 position to positive is more

tolerated than negative charged side chains.

The data in Tables 3.3 and 3.4, and Fig. 3.9, do not support the involvement of Leu1 in a dyad.

These results, together with the structural data that indicate that Leu1 is not close to any

positively charged side chain, allows us to conclude that this leucine does not serve as the
hydrophobic component of a dyad.
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FIGURE 3.9. Changes in the affinity of the mutants of kM-RIIIK at Leu1 position investigated in comparison to the
IC50 value of the kM-RIIIK wild-type. For L1A (gray bar) the IC50 is increased around 40-fold, while capping the
positively charged N-terminus by acetyl group (ACL1; dark gray bar) leads to an increase of the IC50 more than 100-
fold. Substituting Leu1 by the positively charged amino acid (L1R and L1K; dotted bars) resulted in a minor increase
of the IC50 values of 3 and 13, respectively. Also, a minor increase in IC50 values is observed when hydrophobic
residues are introduced (L1M and L1I; vertical-stripped bars). Affecting the charge of the amidazol group of L1H
mutant (diagonal- stripped bars) from negative to positive, by changing the pH of the NFR from acidic to basic
values, leads to increase in the IC50. The most pronounced increase in IC50 value (> 700 folds) is seen by replacement
of L1 with negative charged residue (L1E; black bar). Introducing aromatic residues (Y or F, horizonal-stripped bars)
into L1 caused a increase of IC50 values, around 70 and 160-folds, respectively.

3.2.3. kM-RIIIK mutants affect the binding kinetics
We examined the functional effect of kM-RIIIK mutants on the blocking activity by measuring

the association (kon
(O)) and dissociation (koff

(O)) rates of toxin with TSha1 channels expressed in
Xenopus oocytes, using two electrode voltage clamp. The rate constants were determined from

the time-course of the transition from unblocked to steady state-blocked current ratios on open
state channels at 0 mV potential (see Materials and Methods; Terlau et al., 1999).

Table 3.5 summarizes the kinetic parameters of the binding of 27 mutants of kM-RIIIK

investigated. In nearly all cases, we observed that the major reason for the lower affinities of kM-

RIIIK mutants is manily due to an increase in dissociation rates (up to 80-fold in L1Y) and a
decrease in the association rates (down to 50-fold in AcL1). In surveying the mutants in Table

3.5, we classified residues into three groups according to “on-” and “off”-rate effects, which

reflect primarily intimate interactions with the channel.
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The first group is composed of the important positively charged residues (R10, K18 and R19).
Except for L1A, members of this group showed the biggest reduction in binding affinity

comparing to other alanine mutants; with K(O) reduced 20- to 55- fold to that of the kM-RIIIK

wild-type. This change in affinity is mainly due to 5- to 10- fold reduction in kon
(O), whereas the

koff
(O)

 is only increaced about 3- to 5- fold (see current traces in Fig. 3.8 for comparison). As
expected, the mutant K18R/R19K has a K(O) value close to that of the wild-type, but the double

mutation introduce a 2-fold reduction in kon
(O)  rate, while koff

(O)  rate is almost not affected.

Although the charge was conserved, it seems that the relative bulky side chain of Arg hindered
the association rate.

TABLE 3.5. Summary of Association and dissociation rate constants of kM-RIIIK, kon
(O) and koff

(O),
and the dissociation constant (K(O)) measured at 0 mV on TSha1 K+ channels. Each value represents
the mean ± SE of the number of measurements reported (n).

kM-RIIIK
K(O)

(0mV)
nM

kon
(O)

mM-1*S-1

koff
(O)

S-1

K(O)

ratio
(mut/wt)

kon
(O)

ratio
(mut/wt)

koff
(O)

ratio
(mut/wt)

n

WT         76 ± 13       89 ± 11  6  ± 1 1 1 1 5
L1A    2980  ± 30       81 ± 7 243 ± 23 39 1 40.5 5
O2A       170 ± 20     120 ± 10 20 ± 3 2 1.3 3.3 3
S3A       490 ± 130       47 ± 10 21 ± 5 6 0.5 3.5 3
S6A       240 ± 30       28 ± 6   7 ± 1 3 0.3 1.2 3
L7A       300 ± 40       91 ± 6 27 ± 3 4 1 4.5 6
N8A       320 ± 30       32 ± 1 10 ± 1 4 0.4 1.6 3
L9A         90 ± 10     247 ± 17 22 ± 1 1 2.8 3.7 3

R10A     4200 ± 410       15 ± 3   53 ± 13 55 0.2 3.7 5
L11A       850 ± 120       79 ± 8 64 ± 7 11 0.9 10.7 6
O13A       470 ± 40     119 ± 7 56 ± 6 6 1.3 9.3 5
V14A       830 ± 40       51 ± 3 42 ± 1 11 0.6 7 4
O15A       930 ± 160       91 ± 9 81 ± 7 12 1 13.5 3
K18A     3600 ± 1080         7 ± 1 20 ± 2 47 0.08 3.3 5
R19A     1600 ± 240       20 ± 3 29 ± 5 21 0.2 4.8 7

K18R/R19K         90 ± 10       42 ± 4      4 ± 0.4 1 0.5 0.7 3
N20A       390 ± 20       23 ± 2   9 ± 1 5 0.3 1.5 3
O21A       120 ± 10       56 ± 3      7 ± 0.2 2 0.6 1.2 3
T24A         90 ± 20       56 ± 21   5 ± 1 1 0.6 0.8 3
Ac-L1     7020 ± 1300         2 ± 0.4 10 ± 1 92 0.02 1.7 3
L1F     6000 ± 1230       52 ± 8 322 ± 85 79 0.6 53.7 4
L1Y   10800 ± 460       45 ± 8 480 ± 69 142 0.5 80 3
L1I       890 ± 290         8 ± 1   8 ± 3 12 0.09 1.3 5

L1M       360 ± 40       35 ± 3      12 ±1 5 0.4 2 3
LIR       160 ± 10       70 ± 12      11 ± 2 2 0.8 1.8 4
L1K       890 ± 50       27 ± 7 24 ± 6 12 0.3 4 4
L1H     5550 ± 700         4 ± 1 21 ± 6 73 0.04 3.5 3
L1E   30480 ± 4230       11 ± 1 327 ± 60 401 0.1 54.5 3



RESULTS                                                                                                                                                                  51

The second group comprise mainly from hydrophobic residues located on the middle region of
the toxin (L7, L9, L11, O13, V14 and O15A). These mutants affected the equilibrium block by

major increase in koff
(O) of about 4- to 14- fold, whereas the on-rates are hardly not affected. The

L9A mutant is exceptional for being the only mutant that shows an increase on both rates
resulting in an overall affinity close to wild-type. This might indicate an important role of Leu9 in

the initial binding kinetics. Presumably, Leu9 has a key role on the flexibility of the N-terminus
arm made of the first 11 residues to facilitate the docking of the kM-RIIIK to the pore region of

the channel. This assumption is supported by the effects observed for the L11-O13-V14-O15
region of the toxin for which the binding affinity of the corresponding alanine mutants was

mainly affected by an increase in koff
(O) rates 7- to 14-fold.

The third group is mainly composed of polar residues where the alanine substitution leads to less

effects on both koff
(O) and kon

(O) values comparing to the first two groups. The small increase in K(O)

values ranged from 1- to 6-fold, which is due to an about 1- to 3-fold decreased on rates and

increased off rates. The amino acids belonging to this group are located bordering the first two
groups and they may play indirect role in binding and performing structural support by polar

binding in the toxin peptide.      

Leu1 position shows tight structural requirements for maintenance of blocking activity. We tested

10 mutants on this position to understand the functional effect of Leu1 to binding kinetics of kM-

RIIIK (see above). Neutralizing the side chain of Leu1 by Ala substitution decreased the affinity
of the block 40-fold, which is due to an increase in the koff

(O) of around 40-fold. This profound

effect is clearly seen in the current trace of L1A mutant when compared with that of the WT in

Fig. 3.8.  In contrast to the changed amino acids important for binding, the presence of 1mM L1A

did not result in an apparent slowing of the activation due to the state dependence of the binding.
This indicates the importance of the Leu side chain as the first residue of kM-RIIIK for

contributing in hydrophobic interaction(s) with hydrophobic residues in the pore region of TSha1

channel. Such property is never been represented at least among conotoxins targeting K+

channels characterized up todate.
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 We tested the substitution of Leu1 with other hydrophobic amino acids  (Met or Ile) on the

functional effect of kM-RIIIK binding kinetics. With little effect on the koff
(O), both L1M and L1I

reduced their K(O) values, about 5- to 12- fold, mainly due to decreased on rates, which are about
3- and 10-fold, respectively. Similarly, the substitution of Leu1 with positively charged amino

acids (Arg or Lys) resulted in about 2- to 12- fold reduction in their K(O) values, which is mainly

due to about 2- and 4-fold decrease in off rates, respectively. It is worth to mention that Lys
substitute at the same position (L1K), which can be grossly envisioned as a pseudo-methionine

with a positively charged head resulted koff
(O) close to that of L1M binding but with increased

kon
(O) that is about two times.

On the other hand, replacement of the Leu1 with His or Glu, containing acidic side chain, are not
compatible with toxin binding. Negative charges carried by these substitutes and size differences

largely affected the affinity of toxin binding. Both mutants had on rates that are decreased by

more than 10 times and increased off rates, an effect which was more strikingly for the Glu
substitution (about 55-fold).

The substitution of Leu1 with aromatic amino acids  (Phe or Tyr) resulted in a little effect on

kon
(O) of toxin binding. Both, L1F and L1Y have an about 80- to 140- fold reduction in their K(O)

values, which is mainly due to decreased off rates, about 54- and 80-fold, respectively. This
observation may be correlated with the bulky size of both Phe and Tyr residues.

The results obtained by this kinetic analysis again indicate the importance of the presence of a

positive charge contributed by the free N-terminus to the potency of kM-RIIIK to block K+

channels (see Fig. 3.9). Therefore, we analyzed the functional effect of masking the N-terminus

with Acetyl group. Using ACL1 analog, the equilibrium block was largely decreased, about 90-
fold, mainly manifested by profound, about 50-fold decreased on rate to that of WT. Thus, this

kM-RIIIK analog results in an unusual barrier for binding, by masking the positively charged N-

terminus, which must be overcome before the bound state can be reached.

On the basis of the kinetic analysis of the binding of different Leu substitution, we find that this

position tolerates the existing of positively charged and hydrophobic side chains but the toxin
binding is incompatible with aromatic and acidic side chains or capping the positively charged N-
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terminus. The kinetic data analysis provides a kinetic explanation of different functional effects

of studied kM-RIIIK mutants. The overall results support the importance of positively charged

and hydrophobic residues, mainly Leu1 for the binding affinity of kM-RIIIK to TSha1 K+

channels.

3.2.4. kM-RIIIK mutants do not interact with Nav1.4 sodium channel
kM-conotoxin RIIIK and m-conotoxin GIIIA (m-GIIIA), which is known to selectively block

Nav1.4 channels, have the same cysteine backbone of the class III framework which is different

to the one of k-PVIIA belonging to the O-superfamily of conopeptides (see Fig. 1.5). Despite the

structural similarities between m-GIIIA and kM-RIIIK, the sodium channels Nav1.2, Nav1.4 and

Nav1.5 are not affected by kM-RIIIK (Ferber et al., 2003). To identify if any of kM-RIIIK

mutant inhibits Na+ currents, the activity of these peptides were tested individually on Nav1.4
channels expressed in Xenopus oocytes. The results are shown in Fig. 3.10. None of the kM-

RIIIK analogs tested so far, which are all alanine mutants from L1A-L19A, at a concentration of

10 mM has effects on Nav1.4 mediated currents.

FIGURE 3.10. kM-RIIIK mutants do not block Nav1.4 mediated currents. Whole cell currents
recorded from oocytes expressing Nav1.4 (left panel) and TSha1 K+ channels (right panel). Current
traces of Nav1.4 evoked by depolarization from a holding potential at –100 mV and stepped for 30 ms
to test potentials between –60mV and +40 mV in 10mV increments, under control conditions (upper-
left panel) and after addition of 10mM kM-RIIIK L7A mutant (lower-left panel). Clearly, Nav1.4
mediated currents are almost unaffected by the toxin.. Current traces of TSha1, evoked by
depolarization started from holding potential at –100 mV and stepped for 250 ms to test potentials
between –60mV and +60 mV in 20mV increments (upper-right panel) and after addition of 1mM kM-
RIIIK L7A mutant (lower-right panel). Almost all TSha1-mediated K+ currents were blocked by the
toxin. The dashed lines correspond to zero current.
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Structure-function studies on the m-conotoxins have established that the arginine residue (Arg13

in m-GIIIA) is a critical residue for blocking voltage-gated sodium channels, because the charged

guanidino group of the arginine residue is believed to functionally block the pore (Becker et al.,
1992; French, et al., 1996; Hui et al., 2002). In contrast, kM-RIIIK lack this critical arginine

residue and, instead, contains a hydroxylated proline at the homologous position 15 (Hyp15, see

Fig. 1.6 in introduction) when both toxin sequences aligned according to their Cys arrangement.

In order to investigate the functional importance of Hyp15 of kM-RIIIK on K+ channel binding,

the positively charged residue (O15K and O15R) were introduced and the blocking activity was

measured. The association (kon
(O)) and dissociation (koff

(O)) rates of toxin with TSha1 channels

expressed in Xenopus oocytes, was calculated as described before. In parallel experiments, we
tested the ability of kM-RIIIK O15K and O15R mutants to block Nav1.4 mediated currents.

Both Hyp15 mutants resulted in a reduced affinity to TSha1 channels. The off rates of toxin
binding for O15K and O15R increased about 8- and 20-fold, causing about 6- and 39-fold

decrease in the steady state affinity of O15K and O15R. However, the on rate of O15R is only

reduced about 2.5-fold, while that of O15K is mainly not affected. Interestingly, and in
comparison to kM-RIIIK O15A mutant, the binding affinity was two times higher in favor of

O15K, which is mainly due to almost two times reduction of the koff
(O) value. From their kinetic

rates, the binding affinity favors the positive charge of Lys over neutral Ala substitution at
position 15. Although the charge is conserved in Arg, the bulky size of Arg seems to hinder toxin

association, which causes reduction in the on rate. This observation supports our view that Hyp15

residues may face the conducting pathway of the channel pore.

 When tested on Na+ channels, both kM-RIIIK O15K/R mutants at concentrations of 2, 5 and 10

mM has no effects on Nav1.4 mediated currents (data not shown).
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TABLE 3.6. Summary of Association and dissociation rate constants of kM-RIIIK Hyp15 mutants,
kon

(O) and koff
(O), and the dissociation constant (K(O)) were measured at 0 mV on TSha1 K+ channels. Each

value represents the mean ± SE of the number of measurements reported (n).

kM-RIIIK
K(O)

(0mV)
nM

kon
(O)

mM-1*S-1

koff
(O)

S-1

K(O)

ratio
(mut/wt)

kon
(O)

ratio
(mut/wt)

koff
(O)

ratio
(mut/wt)

n

WT         76 ± 13       89 ± 11  6  ± 1 1 1 1 5
O15A       930 ± 160       91 ± 9 81 ± 7 12 1 13.5 3
O15K       430 ± 20     103 ± 10 45 ± 5 6 1.2 7.5 4
O15R     2940 ± 540       38 ± 7 122 ± 42 39 0.4 20.3 4

Taken together, these data indicate that for kM-RIIIK binding to TSha1 K+ channels, the

substitution of Lys is more tolerated than incorporating a bulky Arg residue or neutralize the
polarity on position 15 of the toxin. This indicates that Hyp15 may face the pore region of TSha1

channel but is not involved in direct electrostatic interactions. Moreover, kM-RIIIK and m-GIIIA

are structurally very similar, but have a very different pharmacological profile. The data obtained

by the Hyp15 mutants indicate that this functional diversity seems to be not bridged between
those closed-related conotoxin families by only single amino acid substitution.

3.3. Mutant cycle analysis
After determining the critical residues important for kM-RIIIK binding, we identified the counter

interacting residues in the pore region of TSha1 K+ channel by means of mutant cycle analysis
(Hildago and MacKinnon, 1995; Schreiber and Fersht, 1995). On the bases of coupling energy

calculations, we could characterize the structural bases and built the model of kM-RIIIK docking

to the TSha1 K+ channel. Performing a mutant cycle analysis requires interaction of both mutant
and wild-type forms of both toxin and channel. Therefore, we constructed selected point mutation

within the pore region of TSha1 channel and investigated the binding of kM-RIIIK WT and

mutants on these channel isoforms.
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3.3.1. TSha1 mutant channels
Based on previous extensive site-directed studies on Shaker K+ channel and homologous
sequences of mammalian Kv1 channel, 15 point-mutations were selected at seven positions

within the P-loop of TSha1 channel (Fig. 3.11). The mutated amino acids, predicted to

interact with the toxin pharmacophore residues, are located in three regions: the turret
region, the pore helix and the bottom of the outer vestibule of the channel, close to the

channel selectivity filter. In the turret region, we focused on the negatively charged residues

Glu348 and Glu354, which are aligned with the important corresponding Shaker residues
Ser421 and Lys427, respectively (MacKinnon and Miller, 1988; MacKinnon et al., 1990;

Ferber et al., 2003). Also, the hydrophobic residue Pro349 (resembles Shaker residue Glu
422) and the polar Ser 351 residues, a conservative residue equivalent to Ser 424 in Shaker

sequence (MacKinnon and Miller, 1989; MacKinnon et al., 1990; Jacobsen et al., 2000). In

the pore helix, the TSha1 residue Ser366 (as Thr439 in Shaker) was selected. While in the
bottom of the vestibule, both Met375 and Val376 were choosen as corresponded to the

important equivalent residues M448 and T449 of Shaker channels, respectively (Shon et al.,
1998; Jacobsen et al., 2000; Ferber et al., 2003). In vitro site-directed mutagenesis was used

to obtain selected point mutations within the pore region of TSha1 channel for mutant cycle

experiments. All methods were performed following standard procedures (Sambrook et al.,
1989; Ishii et al., 1998, see Fig. 2.5).

FIGURE 3.11. The amino acid alignment of the pore region of the Shaker K+ channel (S5-S6 linker) and the
corresponding region of TSha1 K+ channel (Nguyen et al., (2000)). The gray shading indicates conservative
amino aicd sequences.

A number of pore mutations of the TSha1 channel were generated and affinities of kM-

RIIIK WT were measured by two-electrode voltage clamp measurements using Xenopus

oocytes expressing TSha1 mutant channels. The effects of these single amino acid

substitutions on the affinity of kM-RIIIK WT are shown in Table 3.7 and Fig. 3.12.
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Four out of the 15 constructed mutations, in Ser366 and Val376 loci, failed to yield

functional channels, and V376H had low expression and could therefore not be used for

measurement. Some mutations (S351K, E354K, E354Q and M375I) resulted in a decreased
affinity of kM-RIIIK of about ≥ 2-fold. Some other mutation (E348S, E348K, P349K,

M375L and V376T) resulted in a decreased affinity of kM-RIIIK of < 2-fold. In particular,

the affinity of three mutations (V376T, E348S and E348K) is not significantly different

than the wild-type toxin (P = 0.058; 0.169 and 0.239, t-test), respectively. One mutation,

M375K, is not sensitive to kM-RIIIK and therefore was not useful for the cycling analysis.

The whole cell current traces for representative TSha1 K+ currents recorded from oocytes
expressing mutant channels in the absence and presence of kM-RIIIK are shown in Fig.

3.13.

TABLE 3.7. IC50 Values for TSha1 mutant K+

block of kM-RIIIK WT. The IC50 values are given
by mean values ± SE. NF: not functional. LE: low
expression.

kM-RIIIK
IC50

(0 mV)
nM

n

WT        76 ± 10 9
E348S      110 ± 30 4
E348K        50 ± 10 3
P349K      130 ± 20 3
S351K      160 ± 10 4
E354K      490 ± 110 3
E354Q      270 ± 30 4
S366T            NF --
M375K  10730 ± 2460 3
M375L      140 ± 40 3
M375I    1360 ± 70 5
V376T      120 ± 20 3
V376H            LE --
V376S            NF --
V376E            NF --
V376K            NF --
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FIGURE 3.12. Influence of single point mutations in the pore region of TSha1 on kM-RIIIK binding. The
bar diagram shows the affinity of kM-RIIIK to the individual channel mutants normalized to wildtype IC50.
Astrisks represent a non-significant mean value compared to WT.

FIGURE 3.13. Effect of point mutations of pore region of TSha1 channels on
kM-RIIIK binding. Whole-cell currents recorded from oocytes expressing
TSha1 mutant channels before and after addition of the kM-RIIIK WT are
shown. Notice the apparent slowing of activation of the currents in the presence
of toxin illustrating the re-equilibrium of toxin binding to the open state (Terlau
et al., 1999). The pulse protocol was like that described in the legend of Fig.3.1.
The vertical bars represent 2mA. The dashed lines correspond to zero current.
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3.3.2. Determining IC50 and DDG values of the mutant cycle analysis
We performed mutant cycle analysis using the functional TSha1 mutants that showed

sensitivity to kM-RIIIK from Table 3.7. From the toxin mutants available, we used the

residues known to be critical for binding (Leu1, Arg10, Las18 and Arg19). Performing

mutant cycle analysis requires determinations of blocking affinity of all of the following
combinations: WT channel-WT toxin, mutant channel-WT toxin, WT channel-mutant toxin,

and mutant channel-mutant toxin (see Materials and Methods and Schreiber and Fresht,
1995). Therefore, we obtained IC50 values for block of WT TSha1 channels by kM-RIIIK

mutant toxin derivatives L1A, L1I, R10A, K18A, R19A and K18R/R19K from the alanine

scanning mutagenesis (Tables 3.3 and 3.4). The IC50 values of the interacting toxin-channel

pairs are summarized in Table 3.8.

TABLE 3.8. IC50 Values for TSha1 mutant K+ block of kM-RIIIK WT and analogs. The IC50 values (in nM)
are given by Mean  values ± SE, n = number of independent experiments.

kM-RIIIK analogs IC50 [nM]
TSha1 WT L1A L1I R10A K18A R19A K18R  /

R19K
WT 76 ± 10

(9)
3180 ± 120

(6)
1380 ± 450

(5)
4220 ± 330

(7)
3900 ± 530

(6)
1530 ± 240

(9)
180 ± 40

(7)
E348S 110 ± 30

(4)
1920 ± 290

(4)
480 ± 120

(3)
1220 ± 280

(3)
600 ± 100

(3)
820 ± 210

(4)
100 ± 10

(3)
E348K 50 ± 10

(3)
440 ± 110

 (3)
540 ± 100

(4)
770 ± 100

(4)
720 ± 50

(4)
460 ± 60

(4)
150 ± 10

(3)
P349K 130 ± 20

(3)
1740 ± 110

(3)
280 ± 20

(5)
680 ± 100

(3)
3390 ± 100

(3)
200 ± 30

(3)
140 ± 10

(4)
S351K 160 ± 10

(4)
2960 ± 310

(4)
1700 ± 390

(4)
810 ± 40

(3)
1390 ± 350

(3)
770 ± 80

(4)
260 ± 60

(3)
E354K 490 ± 110

(3)
14070 ± 4740

 (3)
1310 ± 100

(3)
1640 ± 300

(3)
2070 ± 220

(3)
740 ± 140

(3)
620 ± 80

(3)
E354Q 270 ± 20

(6)
1660 ± 80

(5)
1400 ± 200

(5)
1700 ± 340

(4)
1870 ± 350

(4)
1550 ± 110

(5)
490 ± 30

(4)
 M375I 1360 ± 70

(5)
11400 ± 1030

(3)
4740 ± 580

(4)
37400 ± 7260

 (3)
35160 ± 7330

 (3)
5910 ± 790

(4)
1420 ± 150

 (3)
V376T 120 ± 20

(3)
3550 ± 220

 (3)
580 ± 180

 (3)
2490 ± 520

(4)
4650 ± 1800

(3)
3990 ± 1070

(3)
310 ± 50

(3)

The IC50 values from Table 3.8. were used to calculate the W -values and obtain the

coupling energies, DDG, between amino acid residues of the toxin and the amino acid

residues within the pore region of TSha1. An example of W  and DDG calculation is

demonstrated in Fig. 3.14 (see Materials and Methods). The summary of DDG values in

KJ/mol are shown in Fig. 3.15. Residues of toxin-channel pairs that yield DDG values

exceeded 2.1 KJ/mol indicate an interaction within 5 Å distance of these amino acids. (for
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review see Rauer et al., 1999).

FIGURE 3.14. Examples for mutant cycles of TSha1 E354 with kM-RIIIK-Arg10 (indicating an
interaction; W = 2.78) and kM-RIIIK-Leu1 (indicating no interaction; W = 1.28). IC50 values are given as
mean ± S.E.. Data are taken from Table 3.10.

In general, TSha1 mutant channels interact to kM-RIIIK analogs with different affinities.

The channel mutant E348K was blocked with reduced potency with WT, L1A and R19A

analogs of the toxin. When the same channel residue is substituted by a polar residue

(E348S; less positive), the channel was preferencially blocked by L1I, R10A, K18A, R19A
and K18R/R19K but less potent by the WT and L1A analogs of kM-RIIIK. This means that

Glu348 sense the charge changes exposed by corresponded toxin residues, including the N-

terminus. For Glu348, this mutant has a strong electrostatic interaction with Arg10, Lys 18
and N-terminus of Leu1 (Fig. 3.15) with DDG values between 3 and 5.6 KJ/mol.

The hydrophobic residue Pro349 when mutated into Lys (P349K), was blocked with high
affinity by kM-RIIIK WT, R19A and K18R/R19K analogs and with less potency with L1I.

In contrast, the affinity of L1A, R10A and K18A to Pro349 is very low. These results show

that Pro249 could interacts with Leu1 residue of the toxin, however, Pro349 position is
close enough to sense the presence of both Arg10 and Arg19 toxin residues. In fact, the

coupling energy of P349K-L1A pair was 2.81 ± 0.16 KJ/mol and increased with preserved

hydrophobicity by interacting with L1I yielding 5.24 ± 0.13 KJ/mol. P349K mutant showed

a high coupling energy when interacted with R10A (5.83 ± 0.34 KJ/mol) and R19A (6.35 ±

0.39 KJ/mol).

The L1A and L1I mutants had a reduced affinity by the polar residue Ser351, when mutated

into Lys, more than 10-fold. In contrast, the positively charged residues R10A, K18A and
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R19A had a higher affinity for S351K, yielded coupling energies ranging from about 4 to 6
KJ/mol. This implies that Ser351 most likely interacts with the positively charged residues

of the toxin pharmacophore.

Interestingly, the data for the negatively charged residue Glu354 (equivalent to Lys427 in

Shaker) indicate that this residue seems to interact with all the critical residues of kM-

RIIIK. When mutated into Lys (E354K), the currents were blocked by L1I, R10A, K18A,

R19A and K18R/R19K mutants with a 2- to 4-fold reduced potency compared to the WT
toxin. When the same channel residue is substituted into a neutral residue (E354Q), the

channel was less sensitive to all interacting toxin analogs except L1A. All together, Glu354
seem to sense the charge changes exposed by corresponding toxin residues, including the

N-terminus (as seen with Glu348). Both channel mutants (E354K; E354Q) seem to sense

the electrostatic interactions with Arg10, Lys18, Arg19 and Leu1 (Fig 3.15) with DDG

values between 3 and 7 KJ/mol.

The other hydrophobic channel residues, Met375 and Val376, which both are located close
to the selectivity filter only seem to be involved in hydrophobic interactions with Leu1,

yielding coupling energy close to 4 KJ/mole with L1I. However, since Arg19 is located

close to Leu1 in the folding structure of the toxin (see Fig. 3.7), Met375 could sense this
residue of the toxin with corresponded D DG ~ 4 kJ/mol. Similarly, L1I-M375L pair

(conserve the hydrophobic residues) was analysis and yielded DDG ~ 3 kJ/mol (data not

shown). In summary, Leu1 may involved in a hydrophobic interaction with a hydropobic

pocket formed by Met375 and Val376, inaddition to Pro349.

These changes in binding energies have been used as the basis for calculating a docking

model of how kM-RIIIK blocks TSha1 channels (see Discussion).
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FIGURE 3.15. Summary of mutant cycle analysis. Coupling energy (DDG ± SE) between TSha1 mutants and
analogs of kM-RIIIK representing important residues for binding (Leu1, Arg10, Lys18 and Arg 19). DDG
values exceeding 2.5 KJ/mol indicate coupling interaction within 5 Å distance (Rauer et al., 1999). L1A
mutant (empty bars), L1I (gray-filled bars), R10A (net-filled bars), K18A (diagonal-stripped bars), R19A
(horizontal-stripped bars) and K18R/R19K (mosaic-filled bars). All numbers represent the means of 3-6
independent determinations. DDG are taken as absolute values.
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3.3.3. Docking orientation of kM-RIIIK interaction with TSha1
According to the docking model, two potential orientations of the peptide within the ion

channel pore are possible. Both models showed a lid which exposed Hyp15 or Hyp13
residues facing the vestibule, close to Val376 (see Fig. 4.4). To identify which one of the

amino acid is facing the Val376 residue in the channel, we performed mutant cycle analysis

using the TSha1 V376T mutant. The IC50 values for these toxin-channel pairs are
summarized in Table 3.9.

TABLE 3.9. Summary of IC50, W and DDG values to identify the toxin
binding orientation.

kM-RIIIK IC50
(nM)

W N DDG
(KJ/mol)

WT 120 ± 20 - 3 -
O13A 1030 ± 210 1.28 6 0.69
O15A 3730 ± 840 2.78 7 2.51

P-Value for compsrison between IC50 means of both mutants is
significant (P=0.0146).

In summary, data indicate that kM-RIIIK docks in a position where Hyp15 shows

interaction with V376T with W = 2.78, and coupling energy DDG = 2.5 KJ/mol, while

V376T interaction with Hyp13A had an W = 1.28, corresponding to a binding energy of

0.69 KJ/mol.

It is clear that kM-RIIIK interacts mainly with the negatively charged and hydrophobic

residues of the external pore region of TSha1 K+ channels. These findings are consistent

with our view on the blocking behavior of kM-RIIIK. The positive charged residues of the

pharmacophore interact with negatively charged residues of the turret region of the ion
channel pore. Furthermore, a hydrophobic pocket, made of Pro349, Met375 and Val376, is

interacting with Leu1. The charged N-terminus is involved in stabilizing the association of

block.
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CHAPTER FOUR: DISCUSSION

In the present work, we described the structural and functional parameters important for the

binding of kM-RIIIK to the pore of TSha1 K+ channels. kM-RIIIK reversibly blocks TSha1

channels in a bimolecular reaction. Both the structural and mutational analysis suggested that,

uniquely among well-characterized K+ channel-targeted toxins, kM-RIIIK blocks voltage-

gated K+ channels with a pharmacophore that is not organized around a lysine-hydrophobic
amino acid dyad motif.

4.1. kM-RIIIK: a peptide blocking K+ channels
4.1.1. kM-RIIIK specificity interacts with the pore TSha1 channels
The conotoxin kM-RIIIK has been described to block the pore region of Shaker-type K+

channels. It was reported that kM-RIIIK has a higher affinity for Shaker channels with a

mutation in the pore region (K427D) than the wild-type channel (Ferber et al., 2003). In the
sequence of the TSha1 channel, the homologous position to Lys427 in Shaker has a Glu

residue. Therefore, we assessed the binding affinity of kM-RIIIK on TSha1 K+ channels

expressed in oocytes using two-electrode voltage clamp technique. We found that kM-RIIIK

binds reversibly to TSha1 K+ channels and inhibits the flow of the ionic current. The binding

of a single kM-RIIIK molecule is sufficient to inhibit the TSha1 channel. The IC50 value of

the block was estimated to be around 70 nM.

4.1.2. kM-RIIIK binding is altered by [K+]o

kM-RIIIK is a basic peptide carrying a net positive charge in aqueous solution of roughly +4

at a neutral pH. As a result, binding of kM-RIIIK should be sensitive to through-space

electrostatic forces, including external potassium concentration, [K+]o. The kinetic analysis
(Table 3.1) revealed that the observed decrease in binding affinity is mainly due to an increase

in toxin dissociation rate. This result indicates that [K+]o ions destabilize the kM-RIIIK

binding, suggesting that the toxin senses the occupancy of an external K+ binding site within

the outer pore region of TSha1 channels. Blocking effects of some peptide toxins on K+

channels are known to depend on [K+]o. For example, the effects of CTX, k-PVIIA and

Maurotoxin are diminished by greater external [K+]o (Anderson et al., 1988; Miller, 1995;
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Terlau et al., 1999; Avdonin et al., 2000). This sensitivity to [K+]o was mainly manifested by
an increase in toxin dissociation rate. K+ channels are thought to contain multiple K+ binding

sites, and the occupancy of K+ in the outermost binding site is considered to accelerate the

toxin dissociation rate (MacKinnon and Miller, 1988).

4.1.3. kM-RIIIK: first conotoxin targeting mammalian Kv1.2
In this study we show that kM-RIIIK blocks the human and rat Kv1.2 channels with an IC50 in

the nanomolar range. The other mammalian members of the Kv1 family tested at a
concentration of 5–10 mM are almost not affected by this peptide. The state dependence of

binding of kM-RIIIK to Kv1.2 channels is similar to what has been reported for the

interaction of this peptide with Shaker and TSha1 channels (Ferber et al., 2003). TSha1 K+

channels from the trout Oncorhychus mykiss are known to be the fish homologue of

mammalian Kv1.2 K+ channel (Nguyen and Jeserich; 1998 and Nguyen et al, 2000).
Therefore, we expected that kM-RIIIK interacts with Kv1.2 K+  channels with a high affinity.

Interestingly, kM-RIIIK has a higher affinity to TSha1 and Kv1.2 than k-PVIIA (unpublished

data). This indicates that different sets of amino-acid residues on the targeted channels and

therefore different structural properties are important parameters for the binding of either kM-

RIIIK or k-PVIIA. Furthermore, our observations suggest that kM-RIIIK might have a

broader spectrum of target channels than k-PVIIA. A previous study had shown that a

mutation in the pore region of Shaker channels (K427D) results in an about 10-fold increase
in the affinity of kM-RIIIK, but has only minor effects on the binding of k-PVIIA (Jacobsen

et al., 2000; Ferber et al., 2003). This indicates a functional importance of this residue for the

binding of kM-RIIIK. Accordingly, the affinity of kM-RIIIK to TSha1, which has a negative

charge at this position (Glu354), is about 50 fold higher than its affinity to Shaker. kM-RIIIK

blocks TSha1 with an IC50 for the closed state of about 20 nM (Ferber et al., 2003). At the

homologous position Kv1.2 shows an uncharged amino acid (Pro359) and the affinity of kM-

RIIIK to Kv1.2 is about 200 nM for the closed state, which is about 5-fold higher than for
Shaker, but about 10-fold less compared to TSha1. This underscores the relevance of this

position in kM-RIIIK binding to its target. According to the structural data available (Doyle et

al., 1998), this residue is located in the outer vestibule of the ion channel pore.
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Recently, a 35 amino acid conotoxin, designated ViTx, has been described that affects Kv1.1
and Kv1.3 but not Kv1.2 K+ channels (Kauferstein et al., 2003). ViTx is structurally not

related to k-PVIIA and kM-RIIIK instead it belongs to the I-superfamily of conopeptides

containing four disulfide bridges. A recently characterized conopeptide from Conus monile,

Mo1659, that belongs to the non-disulfide conopeptide, has been described to block K+

currents from non-inactivating voltage-dependent K+ channels in neurons. Mo1659 has a

unique sequence of 13 residues, which is completely devoid of the common hydrophobic,

aliphatic amino acids, and disulfide bridges. Instead, it has one Arg residue placed in the
center of a cluster of aromatic residues (Sudarslal et al., 2004). Together with the data

presented here, this shows that conopeptides with different structural frameworks target the
same K+ channel family. Furthermore, it indicates that the knowledge about the structural

framework is not enough to predict the molecular target of the channel. Hopefully, the

information about additional toxin and channel properties like charge distribution or the three-
dimensional structure of these molecules will help to predict their targets and will prosper out

the understanding of toxin-channel interaction.

With respect to the binding to close and open states of the channel, kM-RIIIK and k-PVIIA

which both block K+ channels, behave quite similar. Both exhibit a state dependence of the

block (Terlau et al., 1999; Ferber et al., 2003). This indicates that independent of the different
structural frameworks of neurotoxins that block Kv1 K+ channels similar blocking

mechanisms might be employed. Together with similar data of peptide neurotoxins from other

organisms (Avdonin et al., 2000), our observations imply that a state dependence of the block
caused by toxins that bind to the outer mouth of the pore may be a common phenomenon.

The data on conotoxins interacting with K+ channels available at the moment show that cone

snails have evolved different conotoxin families targeting K+ channels. The structural

heterogeneity might be a ‘conopeptide counterpart’ of the known diversity of K+ channels. A
functional role within the predatory behavior of the snails has been so far assigned only to k-

PVIIA (Terlau et al., 1996). k-PVIIA is part of the venom components involved in the very

fast effects induced by the venom, the so-called lightning strike cabal. In how far all these

peptides are important for the fast immobilization of the prey will be a question of future
investigations.
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 Kv1.2 is a channel, which has been identified in a whole variety of neuronal (Coleman et al.,

1999; McKinnon, 1989; Rasband and Trimmer, 2001; Rasband et al., 2001; Stühmer et al.,

1989) and other cell types, like heart muscle (Po et al., 1992, 1993) and smooth muscle
(Albarwani et al., 2003; Davies and Kozlowski, 2001; Kerr et al., 2001). Since kM-RIIIK is

the only conotoxin identified so far to specifically block Kv1.2 K+ channels, this peptide

might be useful as a tool for studying the biophysical properties of these channels as well as

their physiological functions.

4.1.4. kM-RIIIK mutants affect kinetics of binding
The functional effects of kM-RIIIK mutants on the blocking activity were examined by

measuring the kinetic parameters of the toxin binding to TSha1 channels. In nearly all cases,
we observed that the lower affinities of kM-RIIIK mutants is mainly due to an increase in

dissociation rates and a decrease in the association rates.

From Table 3.5, the different kM-RIIIK mutants can be the classified into three groups

according to the effects observed for the changes in the binding kinetics. The first group is
composed of the critical, positively charged, residues (R10, K18 and R19), which showed the

biggest reduction in binding affinity compared to other alanine mutants. Although the charge
was conserved, the mutant K18R/R19K has a K(O) value close to that of the wild-type. This

indicates that the positive charge is important at both positions, but the specific nature of the

side chain is not critical for the interaction as we noticed from the alanine walking
experiments. For an electrostatic interaction, charge alterations should be manifested in

changes of the association rate of the toxin. Indeed, mutations decreasing the net charge of
well-studied scorpion toxins CTX (Park and Miller., 1992; Goldstein et al., 1994) and

Iberiotoxin (Mullmann et al., 1999), decreased the toxin on-rates. Our experiments showed

that the group of the positively charged residues affected the on-rates more than the residues
of other groups. Therefore, it is clear that the functional effect of these residue is

predominated by direct electrostatic interactions.

The second group composed mainly from the hydrophobic residues, which affected the

equilibrium block by major increase in off-rates, an effect also noticed in previous studies on
CTX (Stampe et al., 1992; Stampe et al., 1994). These residues are located on the middle
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region of the toxin and may play an indirect but important rule in binding. This group is
located in the joint region of the the flexibile N-terminus arm formed by the first 11 residues,

which might be important to facilitate the docking of the kM-RIIIK to the pore region of the

channel. The third group is composed mainly from polar residues that are located bordering

the first two groups. These residues had small effect on the binding kinetics and may play
supportive rule by polar binding within the toxin peptide.      

The Leu side chain as the first residue of kM-RIIIK most likely contributes in hydrophobic

interaction(s) with hydrophobic residues in the pore region of TSha1 channel. Such property
has never been represented at least among conotoxins targeting K+ channels characterized up

to date. The Leu1 shows tolerance toward substituting the side chain with positively charged
or another hydrophobic residue, whereas, replacement of the Leu1 with negatively charged

residue or masking the N-terminus charge were not compatible with toxin binding. On the

other hand, the substitution of Leu1 with aromatic amino acids  (Phe or Tyr) resulted in a
reduction of the K(O) values, about 80- to 140- fold. This is mainly due to increased off-rates,

about 54- and 80-fold, respectively, and may be correlated with the bulky size of both Phe and
Tyr residues.

4.1.5. kM-RIIIK mutants do not interact with Nav1.4 sodium channel
Despite the structural similarity, kM-RIIIK and m-GIIIA show no overlap in pharmacological

specificity. Our experiments on kM-RIIIK WT and analogs showed no inhibition to ionic

currents carried by Nav1.4 channels expressed in Xenopus oocytes (Fig. 3.10). These results
are consistent with previous studies that showed no blocking of Nav1.4-mediated currents

by kM-RIIIK WT (Ferber et al., 2003). Structural-functional studies on m-GIIIA identified a

critical residue believed to functionally occlude the external pore region of Nav1.4 channels

(Becker et al., 1992; French, et al., 1996; Hui et al., 2002). In contrast, kM-RIIIK lack this

critical Arg13 residue but, equivalently, has a hydroxylated proline at position 15 (Table 3.6).
We found no functional effect of kM-RIIIK mutants at Hyp15 position, upon introducing

positively charged residue (O15K and O15R), on Nav1.4-mediated currents. Instead, Hyp15

mutants showed different binding affinities toward TSha1-mediated currents, reflected mainly
by increased off rates. Interestingly, the binding affinity was two times bigger for O15K

compared with O15A toxin analog by almost two times but still 6 times less potent than the

kM-RIIIK WT (see Table 3.6).
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4.2. kM-RIIIK: novel structure among conotoxins
4.2.1. Structure of kM-conotoxin RIIIK
The three-dimensional structure of conotoxin kM-RIIIK (Fig. 4.1) was determined by using

NMR spectroscopy by Carlomagno and coworkers at the Max-Planck Institute for

Biophysical Chemistry (Göttingen, Germany).

FIGURE 4.1. Superimposition of the 13 lowest-energy structures of kM-RIIIK.
Residues 1-11 have a high degree of flexibility, while residues 12-24 are well-defined.

The solution conformation of kM-RIIIK differs substantially from that of m-PVIIA, the only

other structurally characterized conotoxin that interacts with the K+ channels. While the two
conotoxins share common binding sites on the Shaker K+ channel (Shon et al., 1998; Ferber et

al., 2003), they dramatically differ in the disulfide bond pattern, secondary structure elements,

and charge distribution. kM-RIIIK is encoded by a gene belonging to the M-superfamily,

while m-PVIIA belongs to the O-superfamily (see Fig. 1.5; Terlau and Olivera, 2004). The

latter superfamily includes w-conotoxins, which are targeted to voltage-gated Ca2+ channels.

4.2.2. Comparison between kM-RIIIK and members of M-superfamily
The most well-characterized member of the M-superfamily is m-conotoxin GIIIA, an

extremely specific blocker of the Nav1.4 voltage gated Na+ channel. The structure of kM-

RIIIK is much more similar to that of m-GIIIA than to that of  k-PVIIA. Clearly, the shared

class III Cys pattern of kM-RIIIK and m-GIIIA is the dominant determinant of the overall

structure. Despite the structural similarity, kM-RIIIK and m-GIIIA show no overlap in

pharmacological specificity at all.
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The overall shape of kM-RIIIK is that of a disk with dimensions of 15X13 Å. The three

dimensional structure of kM-RIIIK (Fig. 4.2, red ribbon) is very similar to that of the Na+

channel blockers m-conotoxins GIIIA and GIIIB (Fig. 4.2, blue ribbon) in the C-terminal

region of residues 12-24 (Lancelin, et al., 1991; Wakamatsu et al., 1992; Hill et al., 1996). On

the other hand, the structure of kM-RIIIK significantly differs from that of m-GIIIA in

residues 1-11. The N-terminal region of m-GIIIA consists of very tight turns (residues 2-5 and

5-8) which position the N-terminal tail in the opposite direction with respect to the C-terminus
(Fig. 4.2B). Conversely, the N-terminal region of kM-RIIIK consists of an extended tail

terminated by Cys4 followed by a wide loop between Cys5 and Leu11. In kM-RIIIK, the N-

terminal tail protrudes into solution almost perpendicular to the flat surface of the peptide and

to the C-terminal end (Fig. 4.2B).

FIGURE4.2. The three-dimensional NMR structures of M superfamily representatives (A) Comparison of the
structures of kM-conotoxin RIIIK (red ribbon), m-contoxin GIIIA (blue ribbon), and y-conotoxin PIIIF (green
ribbon). The N-terminus is on the left side and the C-terminus on the right side for each peptide. The structure of
the three peptides is very similar in the C-terminal part, while the N-terminal part shows conspicuous
differences. (B) Same as panel A after a rotation of 90°. This orientation was chosen to highlight the different
position of the N-terminal tail in the three peptides.

Recently, the three-dimensional structures of two y-conotoxins, y -PIIIE and y-PIIIF,

antagonists of the nicotinic acetylcholine receptor, have been determined in solution by NMR

A

B
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(Fig. 4.2A, B, green ribbon) (Van Wagoner et al., 2003a; Van Wagoner et al., 2003b). The
disulfide bond pattern of these small peptides is homologous to that of both kM-RIIIK and m-

GIIIA, although their natural receptor belongs to a different superfamily, the ligand-gated ion

channels. The fold of the C-terminal part of y-PIIIF is similar to that observed for both kM-

RIIIK and m-GIIIA, with two helical turns involving the last three cysteine residues. However,

the N-terminal part of y-PIIIF differs in structure from both kM-RIIIK and m-GIIIA.

Furthermore, unlike conotoxins kM-RIIIK and m-GIIIA, y-PIIIF has the form of a lens rather

than a disk (Fig. 4.2B).

kM-RIIIK, the Na+ channel blocker m-GIIIA, and the noncompetitive antagonist of nicotinic

acetylcholine receptors y-PIIIF all share a common class III Cys pattern. The structural

features of the three peptides are very similar toward the C-terminus, where all three
conotoxins are folded in two distorted helical turns (Fig. 4.2). However, toward the N-

terminus, the three peptides show substantial differences in both structure and dynamics.
While m-GIIIA and y-PIIIF have a well-defined backbone folded in a series of turns, kM-

RIIIK is highly flexible in the region of residues 1-11. We suggest that the differences in the

three-dimensional form, provided by the structural heterogeneity at the N-terminus, and in the

surface charge distribution are an important determinant of target selectivity.

4.3. Identification of kM-RIIIK pharmacophore
4.3.1. kM-RIIIK pharmacophore is not organized around a dyad motif
The structural divergences between kM-RIIIK and k-PVIIA pose the intriguing question of

whether the mechanism of the K+ channel conductance block of the two toxins significantly
differs. Despite their differences in size, amino acid sequence, structure, and biological origin,

all other well-characterized toxins (e.g., dendrotoxin from snakes and various scorpion and
sea anemone toxins), including k-PVIIA, share a number of convergent features. The key

amino acid determinants for the interaction with the K+ channel are localized on one side of

the toxin surface, and the pharmacophore is formed by a hydrophobic-positively charged

amino acid dyad motif.
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Encouraged by the similarity in the mechanisms of interaction with the K+ channels of
structurally and phylogenetically different peptides, we expected kM-conotoxin RIIIK to fit

in the common framework and to interact with K+ channels by a dyad-based pharmacophore.

Conversely, the structural and mutational analyses described above indicate that kM-RIIIK

does not fit the established paradigm. kM-RIIIK is a relatively flat, disk shaped molecule.

The important amino acid determinants for binding are not clustered on the toxin surface into

a clearly defined pharmacophore (Fig. 3.7). Most importantly, kM-RIIIK does not appear to

have a dyad motif composed of a hydrophobic amino acid and a lysine residue.

Our conclusion that a dyad does not exist is based on two sets of experimental data. First, the

structure shows no hydrophobic residue within 6 Å of a positively charged residue. Second,
we found that substitutions of aromatic residues for Leu1, the functionally most important

hydrophobic amino acid in kM-RIIIK, are tolerated even less than a substitution to Alanine.

Furthermore, and most unexpectedly, substitution of a positive-charged amino acid gave an

affinity close to that of the wild-type peptide. In fact, the Leu1 substitution with the smallest
effect on the affinity of the peptide is an arginine (L1R) and not isoleucine (see Table 3.4).

An affinity similar to that for the L1R substitution was observed for the methionine
substitution (L1M). Since methionine is a smaller residue than arginine and on the other

hand the lysine substitution (L1K) leads to a larger reduction in the affinity of the peptide

than the L1R substitution, it is likely, that a combination of size-dependent hydrophobic and
electrostatic interactions involving the first residue of this peptide, is important for binding

to the channel. Moreover, L1H experiments showed that for the function of the toxin
mutations of the Leu1 are more tolerant to positive than negative charged side chains

demonstrated by the different toxin affinities at different pH. These observations are

consistent with the kinetic analysis that Leu1 position was incompatible with aromatic and
acidic side chains or capping the positively charged N-terminus.

Taken together, all these results are completely inconsistent with Leu1 being the

hydrophobic partner in a dyad. Interestingly, the dyad hypothesis is challenged in a recent

publication by Mouhat et al. (2004), who showed that the K24-Y33 functional dyad of the
scorpion toxin Pi1 is not indispensable for recognition and binding to the voltage-gated

Kv1.2 potassium channel. This conclusion, drawn from the observation of a partial but

specific current reduction after application of the mutant [A24,A33]-Pi1, lacking the
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functional dyad, confirms our results and opens the way to considering different possible
mechanisms for the blockade of K+ channels.

4.3.2. kM-RIIIK pharmacophore is a plannar ring of four residues
The localization of the functionally critical amino acids on the three-dimensional structure of
kM-RIIIK is shown in Fig. 3.7B. The four most important residues (Leu1, Arg10, Lys18,

and Arg19) and the seven residues of medium importance are distributed well across the

whole molecule, as opposed to the commonly found structural motif for K+ channel blockers
that contains a dyad of a positively charged residue and a hydrophobic residue. The

separation of key residues in kM-RIIIK resembles the properties observed for Na+ channel

blocker m-GIIIA more than other K+ channel-targeted toxins. However, all functionally

relevant residues can be localized on a surface of 12 Å X 9 Å (Fig.3.7B, right panel), with

the most important residues (in red) being situated at the edges and the residues of medium
relevance (in yellow) in the middle of the surface. On the opposite side of the peptide

(Fig.3.7B; left panel), no residue seems to be essential for function.

The charge distributions on the surfaces of kM-RIIIK, m-GIIIA, and k-PVIIA are

substantially different. In kM-RIIIK, most of the positive charges are distributed at the edges

of the peptide face containing the functionally essential amino acids (Fig. 4.3A, B). It is

noteworthy that in kM-RIIIK all determinants for binding contain a positive charge, and that

all positively charged residues are necessary for binding. This ring of positive charges could

be used as an anchor for residues of the K+ channel loops. In m-GIIIA and k-PVIIA, the

distribution of both charges and binding determinant residues on the peptide surface is more
homogeneous than in kM-RIIIK. In m-GIIIA, however, a ring of positive charges could be

similarly identified at the height of R19 and R1 (Fig. 4.3C, D). In contrast to the case for

kM-RIIIK, a functionally highly relevant residue in m-GIIIA, R13, sticks out from the

surface defined by this ring and is probably projected into the channel pore.

In kM-RIIIK, no additional positively charged residue sticks out from the surface defined by

the ring of positively charged residues Leu1, Arg10, Lys18, and Arg19. This observation,

together with the fact that kM-RIIIK lacks a functional dyad, does not support the model of a

positively charged side chain occluding the channel pore. On the contrary, the even
distribution of Leu1, Arg10, Lys18, and Arg19 at the edges of the peptide face containing all
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functionally relevant residues suggests that conotoxin kM-RIIIK may block the channel by

covering the pore as a lid.

FIGURE 4.3. Electrostatic surface potential for kM-RIIIK (A and B) and m- GIIIA (C and D). Intense blue and
red regions correspond to charges of 1.0 and -1.0 or greater, respectively. The surface potential was calculated
with the AvgCharge algorithm of MOLMOL 2k•2.

This pharmacophore model represents a novel mechanism of K+ channel block that has not

been found in any other K+ channel-targeted peptide characterized to date. The recent paper
by Mouhat et al. (2004) demonstates the presence of a basic ring in scorpion toxin Pi1 that

might be similar to the one described here, indicating that a similar pharmacophore has been
independently evolved by cone snails and scorpions. Mutation and docking data reveal the

importance of a cooperative electrostatic interaction of the basic residues of this ring in

scorpion toxin Pi1 with side chains of the turret region of the channel.
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These results reinforce our proposition of a different model of peptide channel interaction
that is not centered on a functional dyad. In a recent review of the interaction of several

biodiverse scorpion toxins to K+ channels (Rodriguez et al., 2003), three different binding

modes have been proposed: internal mode, involving residues at the “turret region”, the pore
helix, and the selectivity filter of the channel; intermediate mode, involving residues at the

turret region and the bottom of the vestibule of the channel; and external mode, involving
residues that are distant from the channel selectivity filter. This idea is supported by the

observation that scorpion toxin BmTx3 can block A-type K+ and Herg currents using two

different faces (Huys et al., 2004), suggesting the existence of two different binding modes
(Xu et al., 2003). The pharmacophore model that we propose for the interaction of kM-

RIIIK with the TSha1 K+ channel most likely resembles the intermediate binding mode. The

structure function study reported here is broadly significant because kM-RIIIK is at the

unique intersection between structural similarity and similar target specificity.

We have provided direct evidence that kM-RIIIK and k-PVIIA, which both inhibit the same

K+ channel subtypes, are both structurally divergent and mechanistically dissimilar. In

contrast, kM-RIIIK is structurally highly similar to genetically related conotoxins (i.e., m-

conotoxin GIIIA and y-conotoxin PIIIF), which have a completely different target

specificity (K+ channels, Na+ channels, and Ach receptors). This provides a potential

framework for understanding both molecular convergence and divergence in ion channel-
targeted ligands.

4.4. Mutant cycle analysis
A mutant cycle analysis was used to identify the individual interactions of the residues
important for kM-RIIIK binding with selected amino acids in the pore region of TSha1 K+

channel. From the changes in binding energies, spatial restrains for the interacting surfaces

were calculated to build a model of kM-RIIIK binding to the TSha1 K+ channel.
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4.4.1. TSha1 mutant channels
Based on previous extensive site-directed studies on Shaker K+ channel and homologous

sequences of mammalian Kv1 channel, 15 point-mutations were selected at seven positions
within the P-loop of TSha1 channel in the turret region, the pore helix and the bottom of the

vestibule of the channel (Fig. 3.12). Due to the electrostatic and hydrophobic nature of the

kM-RIIIK-channel interactions, we focused on hydrophobic and negative charged residues as

targets for mutagenesis in the selected regions.

In general, some mutantions (S351K, E354K, E354Q and M375I) resulted in a decreased

affinity of kM-RIIIK of about ≥ 2-fold, whereas, P349K and M375L mutations resulted in a

decreased affinity of kM-RIIIK of < 2-fold. The rest, V376T, E348S and E348K showed no

significant changes in the sensitivity to wild-type toxin. One additional mutation, M375K was
not sensitive to kM-RIIIK and therefore not useful for the cycling analysis. These mutants

also affected the activation kinetics as shown in Fig. 3.14, and further work will address the

functional effect of those mutants on the binding affinity (Fig. 3.13). For the TSha1 mutants

investigated, there is a trend of decreasing the toxin affinity as we scan the loop from the
turret region to the Met375 position, close to the selectivity filter. The toxin showed

substantial decrease in affinity of binding at Val376 position, almost reaching the wild-type
value. This indicates that kM-RIIIK binds to the turret and pore helix regions but most likely

not deep in the vestibule.

In comparison, among the key amino acids that affect the affinity of other Shaker K+ channel
ligands are Lys427 (Glu354 in TSha1), and Thr449 (Val376). In previous work, kM-RIIIK

interacion with a number of mutants of the Shaker potassium channel were assessed (Ferber et

al., 2003). The results for two different amino acid substitutions (K427D, and T449Y) showed

strikingly different effects; T449Y, was found to be much more resistant to kM-RIIIK. In

contrast, the K427D mutant exhibited about a 10-fold greater affinity for the toxin than was
observed for the wild-type Shaker channel. These observations are consistent with our

findings that kM-RIIIK interacts with negative residues in the turret region and that strongly

reduce the binding affinity due to bulky sized residues at position 449 in Shaker channels.
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4.4.2. Determining IC50 and DDG values of the mutant cycle analysis
We performed mutant cycle analysis using the functional TSha1 mutants that showed

sensitivity to kM-RIIIK (see Table 3.7). From the toxin mutants available, we used the

residues, which have been shown to be important for binding. The IC50 values of the
interacting toxin-channel pairs showed variable affinities reflecting the co-operative binding

of several residues contributed from all a-subunits of the channel.

The IC50 values from Table 3.9 were used to calculate the W -values and obtain the coupling

energies, DDG, between amino acid residues of the toxin and the amino acid residues within

the pore region of TSha1. The mutant kM-RIIIK peptides (with single amino acid

substitutions) were tested against eight different mutant TSha1 channel isoforms. The highest

W value scored was for the R10A-E354K  pair of 0.06, which is equivalent to a DDG value of

6.97 KJ/mol. This indicates a strong interaction between Arg10 (toxin) and Glu354 (channel)
residues  (see Fig. 3.15). For the other toxin-ion channel pairs, we observed the following

possible interactions: Glu348 (toxin)-Arg10, Lys18 and N-terminus of Leu1 (Fig. 3.16);

Pro249-Leu1, Lys18 and R10A; Ser351-R10A, K18A and R19A; Glu354-L1I, R10A, K18A,
R19A and K18R/R19K mutants;  Met375-Leu1 and Arg19 and Val376-Leu1. From the DDG-

values, the spatial restrains between the interacting surfaces can be calculated in order to build

the model of kM-RIIIK docking to the TSha1 K+ channel can be obtained (see Rauer et al.,

1999).

4.4.3. The lid docking model of kM-RIIIK-TSha1
Docking calculations have been performed in the lab of Dr. Carlomagno at the Max-Planck-

Institute for Biophysical Chemistry (Göttingen, Germany; Fig. 3.4). The docking model was
derived from experimental mutant cycle data using the three-dimentional structure of the

toxins as a template and the structure of TSha1 channels, which was modified from KcsA
solved structure (Doyle et al., 1998). The docking model shows a novel behavior in which the

toxin blocks as a lid on the outer vestibule of the channel (Fig. 4.4). This lid is anchored by a

positive charged ring formed by Arg10, Lys18 and R19 as three arms, which interact with the
turret region. A fourth arm, started by the Leu1, is perpendicular to the triad ring and formed

electrostatic interactions by the free N-terminus charge. There, Leu1 interact with a
hydrophobic pocket  made of Pro349, M375 and Val376.
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FIGURE 4.4. Close-view of kM-RIIIK-TSha1 docking model obtained from mutant cycle analysis. A) L1 residue of kM-RIIIK interacts with TSha1 vistibule residues:
P349, E350, S351, E354 and V376. The residues E348 and M375 were removed for simplicity. B) R10 residue of kM-RIIIK interacts with TSha1 vistibule residues: P349,
E350, S351, Q352 and E354. E348 was removed for simplicity. C) K18 and R19 residues of kM-RIIIK interact with TSha1 vistibule residues: D347, E348, P349, E350,
S351, Q352 and E354. D) The orientation of kM-RIIIK docking showed O15 residue facing TSha1 vistibule residues: D374, M375 and V376. The selectivity filter of TSha1
K+ channel is represented by G371, Y372 and G373. kM-RIIIK pharmacophore is shown in red color, O15 in cyan and the rest in blue, while the homoteramers of TSha1
pore vestibule are represented by green. 78
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Furthermore, the resulting model allowed the assignments of additional contacts between the
toxin the channel: Arg10 is close to Asp347, Glu350 and Gln352, whereas Leu1 and Lys18

are close to Gln352 in separated monomers. The models were also analyzed to identify

additional contacts detected in the mutant cycle experiments, which could contribute to
better define the structure of the toxin-channel complex. It was found that Hyp15 is close to

Asp374 near the center of the pore.

According to the docking model calculations, two potential orientations of the peptide within

the ion channel pore are possible. The data mutant cycle analysis indicate that kM-RIIIK

docks in a position where Hyp15 faces the Val376 residue of TSha1 channel (Fig. 4.5A).
This orientation was confirmed by landscape population energy calculations performed by

NMR group. Nevertheless, the second orientation cannot be ruled out (Fig. 4.5B).

On the basis of the kinetic analysis of the binding, Hyp15 residue is involved in occluding

the ion channel pore (as curried by equivalent residue Arg13 of m-GIIIA) but still can sense

some electrostatic interactions with the pore region. This observation supports our view of
kM-RIIIK docking in which the Hyp15 residue faces the conducting pathway of the channel

pore but does not occlude the external vestibule of the TSha1 channel. Proline hydroxylation
is the second most common post-translational modification observed in conotoxins (Craig,

2000).

The binding of kM-RIIIK to TSha1 channel is stabilized by electrostatic and hydrophobic

interactions between the toxin and the channel. It is clear that the pharmacophore of kM-

RIIIK is not organized around a dyad motif but possess is a ring of basic residues, which

resemble some scorpion K+ toxins   such as Tc32 (for review, see Mouhat et al., 2004). In
comparison, a docking model of k-PVIIA into the KcsA crystal structure was assessed

(Jacobsen et al., 2000; Moran, 2001). The model of k-PVIIA binding is based on the dyad

model proposed by Duplais et al. (1997). The model assumed that Lys25 of k-PVIIA is in

the vicinity of  Met448  and Phe9 of the toxin can be positioned close to Thr449 of the

adjacent subunit of the channel pore vestibule. In this orientation, Lys7 of k-PVIIA is facing

toward the ion channel pore.
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FIGURE 4.5. Orientation of kM-RIIIK-TSha1 (Lid) docking model obtained from mutant cycle analysis. A)

The most probable orientation of kM-RIIIK interaction to TSha1 vistibule region. This model is built on the

assumption that toxin residue Hyp15 faces the pore region of the channel. B) The less probable (but not rolled

out) orientation of kM-RIIIK interaction to TSha1 vistibule region. This model is built on the assumption that

toxin residue Hyp13 faces the pore region of the channel.

On the other hand, m-GIIIA binds superficially in the pore of Nav1.4 channels as a result of

the summed effects of numerous relatively weak toxin-pore interactions (Li et al., 2001).
Since, the Na+ channel pore is asymmetrical (Chiamvimonvat et al., 1996; Li et al., 1999), m-

CTX most likely binds in a single high-affinity orientation, whereas pore-blocking K+

channel toxins bind in a four-fold off-axis fashion. The pattern of m- GIIIA -Na+ channel

interactions, when interpreted in light of the known three-dimentional toxin structure,

provides the first experimental evidence that the four Na+ channel domains are arranged in a
clockwise configuration when viewed from the extracellular side (Dudley et al., 2000; Li et

al., 2001). The results also suggest that m- GIIIA docks like an inverted pyramid with R13



DISCUSSION                                                                                                                              81

reaching the deep pore region at a tilted angle with respect to the central pore axis. Both
docking models of m-GIIIA  and k-PVIIA differ from that of kM-RIIIK, in the case of the

latter, no occluding residue is needed to block the channel.

In Summary, we were able to identify the model of kM-RIIIK binding to the TSha1 K+

channel. The model shows that the toxin binds on the outer vestibule of the channel by a ring
of three basic residues as a lid. The docking orientation of the model was revealed in which

Hyp15 faces the vestibule of the channel but not occluding the pore. This "lid" model is

novel among K+ channel antagonists.
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CHAPTER FIVE: Summary

Venomous organisms have evolved an amazing variety of polypeptide neurotoxins

interacting with different potassium (K+) channels. Despite the structural divergence of the

peptides interacting with the voltage-gated Kv1 subfamily of K+ channels (such as the
Shaker channel from Drosophila), a convergent functional feature has been identified. All

these peptides seem to share a dyad motif composed of a lysine and a hydrophobic amino
acid residue, usually a phenylalanine or a tyrosine. Neurotoxin peptides from the venomous

cone snails (“conotoxins”) are well-known, highly subtype-selective ligands that interact

with a variety of different voltage-gated and ligand-gated ion channel targets. Recently, kM-

conotoxin RIIIK (kM-RIIIK) was described to block the Shaker K+ channel in a state-

dependent manner. The teleost homologue of Shaker, the trout TSha1 K+ channel, is the
highest-affinity target of kM-RIIIK yet identified. Interestingly, the 24-amino acid sequence

of kM-RIIIK contains three positively charged residues but no aromatic side chain.

In the present study, we described the structural and functional parameters important for the

binding of kM-RIIIK with the TSha1 K+ channels. An extensive mutational analysis was

assessed with the aim to identify the functionally important residues of the toxin. Analogues
of kM-RIIIK containing alanine substitutions at each amino acid position except for the

cysteine’s were used. The affinity of the alanine isoforms was functionally assayed by two-
electrode voltage clamp measurements using Xenopus oocytes expressing TSha1 K+ channel.

It is shown that several mutations affect the affinity and kinetics of kM-RIIIK binding to

TSha1 channels. In contrast, kM-RIIIK analogs did not show binding affinity to Nav1.4. The

mutational analysis indicated that four amino acids (Leu1, Arg10, Lys18, and Arg19), which
are located as a basic ring on the peptide, are essential for K+ channel binding. Following the
hypothesis that Leu1, the major hydrophobic amino acid determinant for binding, serves as
the hydrophobic partner of a dyad motif, we investigated the effect of several mutations of
Leu1 on the biological function of kM-RIIIK. Surprisingly, both the structural and functional

analysis results are clearly indicating that kM-RIIIK lacks the dyad motif found in the other

K+ channel-targeted conopeptides characterized to date. The basic ring of kM-RIIIK

resembles that of the most recently described in some scorpion K+ antagonists.
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A mutant cycle analysis was used to identify the individual interactions of the residues

important for kM-RIIIK binding with selected amino acids in the pore region of TSha1 K+

channel. From the changes in binding energies, spatial restrains for the interacting surfaces

were calculated to build a model for the binding of kM-RIIIK to TSha1 channels. The

docking model revealed a novel type of binding in which the toxin blocks the outer vestibule
of the channel as a lid. This lid is anchored by a positive charged ring formed by Arg10,

Lys18 and R19 as three arms, which interact with the turret region of the ion channel pore.

In the turret region, Glu354 plays an inportant role in the electrostatic interactions with the
triad ring. A fourth arm, composed of the N-terminal part of the peptide, is perpendicular to

the triad ring and forms electrostatic interactions by its free N-terminus charge. There, Leu1
interacts with a hydrophobic pocket made of Pro349, Met375 and Val376. The docking

orientation of the model indicates that Hyp15 faces the vestibule of the channel but is not

occluding the pore. This "lid" model is novel among K+ channel antagonists.

Furthermore, the affinity of kM-RIIIK for different mammalian potassium channels of the

Kv1 family was investigated. It shows that kM-RIIIK is the first conotoxin described to

block human Kv1.2 potassium channels, whereas the other members of the Kv1 family

tested are not affected by the peptide. The binding of kM-RIIIK to Kv1.2 channels is state

dependent with an IC50 for the closed state of about 200 nM and for the open state of about
400 nM at a test potential of 0 mV. The Kv1.2 channel is known to be present in a variety of

neurons, and in heart and smooth muscle. Therefore, kM-RIIIK might be useful as a tool for

studying the biophysical properties of these channels as well as their physiological functions.
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