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Abstract

The advances in biotechnology allow the use of genetically modified plants in
agriculture. Whereas in the EU, this is still limited to experimental sowing, it
is already practised commercially in Argentinia, Canada, China and the USA.
The dispersal resulting from such cultivation holds risks that are difficult to as-
sess. In the joint research project “Generische Erfassung und Extrapolation der
Rapsausbreitung” (Generic analysis and extrapolation of oilseed rape disper-
sal, GenEERA) funded by the Bundesministerium für Bildung und Forschung
(Federal Ministry of Education and Research, BMBF) the hybridisation and
dispersal of canola and its wild relatives is investigated exemplarily. In this
context the situation of canola cultivation, described by the mean field size
and the mean minimum distance between canola fields, is of particular in-
terest, especially since canola fields are potential sources of the transfer of
new genes to non-modified or related plants. The aim of this work, which is
part of the GenEERA project, is the identification of canola cultivation areas
in northern Germany in the studied period from 1995 to 2002. The sizes of
the fields and the investigation area pose requirements on the satellite data
best met the LANDSAT Thematic Mapper (TM)/Enhanced Thematic Map-
per+ (ETM+) and the Indian Remote Sensing Satellite (IRS) Linear Imaging
Self Scanner/3 (LISS/3) sensors which allow to detect the individual fields.
Complete coverage of the investigation area requires about 12 TM/ETM+ im-
ages. Considering the period of 7 years, and although only 47 images could be
obtained for this study due to cloud cover, the amount of data to be processed
is very large (14 GB). Therefore one focus of this work is the autonomous
processing of the satellite data.

The processing of the data is performed in several steps: The first process-
ing step is the georectification, assigning map positions to the satellite pixels.
The georectification is done by a passpoint correlation. An even more accurate
assignment is necessary between the pixels of different satellite images in order
to allow an automated selection of training data sets from overlapping images.
This is accomplished in an additional correction step, based on the correlation
of image clips. The next processing step is the identification of clouds and
their shadows. Opaque clouds can be identified by their brightness and low
top temperature. The cloud shadows are identified by looking for dark patches
near clouds that are located in the opposite direction of the sun azimuth an-
gle. Thin clouds are identified based on the haze optimized transform (HOT)
method which had to be adapted in order to compensate for the high albedo
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iv ABSTRACT

of flowering canola. The effect of thin clouds can be compensated to some
extent by a histogram-based method. The third processing step, the classifi-
cation, is performed by the Mahalanobis distance classifier (MDC) because it
only requires training data for one single surface type. Since the MDC is not
as accurate as the commonly used maximum likelyhood classifier (MLC), its
accuracy is enhanced by a segmentation of the MDC result used to identify
single wrongly identified pixels and to perform region growing to include pixels
missed by the MDC.

The resulting segments are approximated by rectangles of equal orientation
and area which allow a vectorised data representation and a simple evaluation
of the field distances and several other parameters of interest for the dispersal
of canola pollen. Furthermore, the results are used to produce statistics of the
complete investigation area allowing to investigate derived parameters on the
situation of canola cultivation in northern Germany. The results of the clas-
sification are compared to validation data, i.e., edges and positions of known
canola fields and agricultural statistics for 1995 and 1999. This validation
showed that the total acreage of canola is identified with 70 to 90% accuracy,
whereas larger fields are identified more accurately because of the lower ratio
of border to inner field pixels. The accuracy also depends on the strength of
the flowering of canola, which causes overestimation of the field size due to the
high brightness of the flowers.

The methods presented in this work show that an automated classification
based on a large number of satellite images with good accuracy is possible.
The georectification and the cloud identification can easily be adapted to the
classification of other agricultural crops, like e.g, maize or cereals. However,
the actual classification of these crops might require to select satellite images
from different acquisition times and to adapt the classification algorithm.



Zusammenfassung

Der biotechnologische Fortschritt hat den Einsatz von gentechnisch modifi-
zierten Pflanzen in der Landwirtschaft ermöglicht. In der EU beschränkt sich
der Anbau zur Zeit noch auf experimentelle Aussaaten, in Argentinien, Chi-
na, Kanada und den USA wird er jedoch bereits kommerziell betrieben. Die
damit verbundene Freisetzung von gentechnisch modifizierten Pflanzen birgt
allerdings auch schwer abzuschätzende Risiken. Im vom Bundesministerium
für Bildung und Forschung (BMBF) geförderten Verbundprojekt „Generische
Erfassungs- und Extrapolationsmethoden der Rapsausbreitung“ (GenEERA)
wurden die Hybridisierungs- und Ausbreitungsdynamik von Raps und ver-
wandten Wildarten exemplarisch untersucht. Hierzu ist die Anbausituation
von Raps, beschrieben durch die Anbaudichte, mittlere Feldgröße und den mi-
nimalen Abstand zwischen den Feldern von besonderem Interesse, da Rapsfel-
der potentielle Quellen für den Transfer von neuen genetischen Eigenschaften
zu nicht modifiziertem Raps oder zu verwandten Pflanzen darstellen.

Ziel dieser Arbeit, die im Rahmen eines Teilprojektes von GenEERA an-
gefertigt wurde, ist daher die Identifizierung und Charakterisierung der Raps-
anbauflächen in Norddeutschland mit Satellitendaten im Zeitraum von 1995
bis 2002. Die Identifikation von Rapsfeldern stellt Mindestanforderungen an
die Auflösung und Abdeckung der Satellitendaten. Diese werden am besten
von den Daten der LANDSAT Thematic Mapper (TM)/Enhanced Thema-
tic Mapper+ (ETM+) und der Indian Remote Sensing Satellite (IRS) Linear
Imaging Self Scanner/3 (LISS/3) Sensoren erfüllt, da sie eine Identifikation
einzelner Felder ermöglichen. Allerdings erfordert die räumliche Abdeckung
des Untersuchungsgebietes mindestens 12 TM-Bilder. Zieht man den Unter-
suchungszeitraum von sieben Jahren in Betracht, so ergibt sich, obwohl die
Anzahl der verfügbaren Daten auf 47 Bilder beschränkt war, eine sehr große
Datenmenge (14 GB). Ein Schwerpunkt dieser Arbeit ist daher die möglichst
automatische Verarbeitung der Satellitendaten.

Der erste Verarbeitungsschritt ist die Georektifizierung, die einzelnen Pi-
xeln im Satellitenbilder mittels einer Passpunktskorrektur Koordinaten auf
einer Landkarte zuordnet. Eine genauere Zuordnung ist zwischen Pixeln aus
unterschiedlichen Satellitenbildern notwendig, um eine automatische Auswahl
von Trainingsdatensätzen aus überlappenden Satellitenbildern zu ermöglichen.
Dies wird durch eine Korrektur der Georektifizierung mittels einer Bildkor-
relation erreicht. Der nächste Verarbeitungschritt ist die Identifizierung von
Wolken und deren Schatten. Undurchsichtige Wolken können durch ihre große
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Albedo in den sichtbaren Wellenlängen und die geringe Temperatur an ihrer
Obergrenze identifiziert werden. Wolkenschatten werden zunächst über dunkle
Flecken in der Nähe von Wolken im Satellitenbild erkannt; als weiteres dient die
Tatsache, daß solche dunklen Flecken in der entgegengesetzten Richtung zum
Sonnenazimuthwinkel der Wolke liegen. Dünne Wolken werden durch die ha-
ze optimized transform (HOT) Methode identifiziert, welche allerdings an die
hohe Albedo von blühendem Raps angepasst werden muß. Der Einfluss dün-
ner Wolken konnte durch den Einsatz eines Histogrammvergleiches teilweise
korrigiert werden. Der dritte Verarbeitungschritt, die Klassifikation, wird mit-
tels des Mahalanobis distance classifier (MDC) durchgeführt, da dieser nur
den Trainingsdatensatz für einen einzigen Oberflächentyp benötigt. Allerdings
erreicht der MDC nicht die Genauigkeit des üblicherweise verwendeten ma-
ximum likelyhood classifier (MLC) durch die Segmentierung des MDC Er-
gebnisses kompensiert, indem einzelne falsch klassifizierte Pixel entfernt und
Pixel am Rand von Segmenten durch ein Region-Growing Verfahren auf ihre
Zugehörigkeit zum Segment bzw. zum Feld überprüft werden.

Die Ergebnisse der Segmentierung werden durch Rechtecke mit gleicher
Größe und Orientierung angenähert, was eine einfache Vektordarstellung der
Klassifikation erlaubt, es aber auch ermöglicht, Parameter, die für die Ausbrei-
tung von Rapspollen von Bedeutung sind (z.B. die Entfernungen zwischen den
Feldern), einfach zu ermitteln. Des Weiteren wurden die Ergebnisse genutzt,
um Statistiken für die abgeleiteten Parameter zu erstellen, welche die Anbau-
situation von Raps in Norddeutschland charakterisieren. Die Ergebnisse der
Klassifikation wurden mit verschiedenen Validierungsdatensätzen verglichen,
so z.B. mit den Rändern und Positionen von bekannten Rapsfeldern, und mit
den Agrarstatistiken von 1995 und 1999. Diese Validierung ergab, dass die
Gesamtanbaufläche von Raps mit einer Genauigkeit von 70 bis 90% erfasst
werden konnte. Die Genauigkeit hängt dabei von der Größe und Struktur der
Rapsfelder ab, da eine höhere Zahl von Randpixeln eine größere Unsicherheit
für die Klassifikation bedeutet. Außerdem hängt die Genauigkeit von der Stär-
ke der Rapsblüte ab, da die hohe Albedo der Rapsblüten eine Überschätzung
der Anbaufläche zur Folge hat.

Die in dieser Arbeit vorgestellten Methoden zeigen, dass eine überwie-
gend automatische Klassifikation einer großen Anzahl von Satellitendaten mit
guter Genauigkeit möglich ist. Die vorgestellten Verfahren zur Georektifizie-
rung und Wolkenerkennung können problemlos auf die Klassifikation anderer
Ackerfrüchte übertragen werden. Die Übertragung der eigentliche Klassifikati-
on könnte die Auswahl anderer Satellitendaten und die Anpassung des Klas-
sifikationsalgorithmus erfordern.
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Chapter 1

Introduction

Satellite-based remote sensing is a valuable tool to obtain various geophysical
and biological parameters over large areas of the earth surface. In contrast to
ground-based sampling, which is usually based on spot measurements, remote
sensing is able to cover large areas rapidely. Moreover, depending on size and
location of the investigation area, ground-based methods are frequently too
time-consuming, too costly or for other reasons not possible to perform.

A good example for the advantages of satellite based remote sensing is
the monitoring of the deforestation in the tropical rainforest in South America
(Short, 2003), which is an important issue in the protection of biodiversity and
would not be possible without the aid of satellite data. Another example is
the measurement of global photosynthetically active radiation (PAR) (Ganapol
et al., 1998; Myneni et al., 1997; Asrar, 1989; Alados et al., 1996). The PAR
indicates the carbon dioxide assimilation by plants and algae, which is an
important parameter for the greenhouse effect and is impossible to obtain
from ground-based measurements.

1.1 Surface Type Identification

An important application field of remote sensing techniques is the identification
of different ground surface types. These can either be different plant commu-
nities (e.g., coniferous forests (Hansen et al., 2001), grasslands (Tucker, 1985)
or man-made structures (e.g., industrial or agricultural areas). Especially the
identification of areas used for the cultivation of agricultural or horticultural
plants is of interest. Such techniques may be employed to improve yield pre-
dictions (Allen, 1990; Bellow and Ozga, 1991; Genovese, 2004) or to efficiently
control agricultural aid spending (Leo, 2004). Besides these commercial and
administrative applications of surface type identification, the characteristics of
crop cultivation is also used to investigate influences of crops on the surround-
ing fauna and flora. For instance, Wright (1994) used LANDSAT Thematic
Mapper images to investigate poisoning of roe deer by oilseed rape in Scotland
by identifying rape seed fields near to forests, i.e., habitats of deer.

1



2 CHAPTER 1. INTRODUCTION

1.2 GenEERA

The subject of this thesis too, is the influence of oilseed rape/canola1 (Brassica
napus) on surrounding ecosystems. Here, the influence of genetically mod-
ified (GM) canola on wild vegetation and on non-modified canola is to be
investigated. Although remote sensing is a valuable tool to estimate the culti-
vation characteristics of agricultural crops, it does not allow to investigate the
influences directly. Therefore, further information on pollen dispersal, meteo-
rology, botany, agriculture and geography is necessary.

Consequently, this study is part of a interdisciplinary joint research project
“Generische Erfassung und Extrapolation der Rapsausbreitung” (Generic anal-
ysis and extrapolation of oilseed rape dispersal, GenEERA) funded by the
Bundesministerium für Bildung und Forschung (Federal Ministry of Educa-
tion and Research, BMBF). GenEERA investigates the potential of GM canola
with conventional canola crops, feral canola populations and potential hybridi-
sation partners. The aims of GenEERA are necessary in order to understand
the background of the various parameters obtained in this study. Therefore, a
short outline of GenEERA is given here.

The type of potential influences and hazards caused by GM plants depends
on the added genetic properties. The modification to canola already used for
commercial cultivation is a resistance against acetolactate synthase-inhibiting
herbicides (Rieger et al., 2002). A herbicide resistance allows the GM plant
to survive the application of a specific herbicide. The herbicide kills all or
the majority of other plants and lets the modified plant mostly unharmed.
Therefore, the GM plant can grow on the field without weedy competitors
which increases the yield for this crop. There are two worries concerning the
herbicide resistance:

Contamination: A large number of consumers prefer food produced from
non-modified plants, thus the non-modified crop has an economical ad-
vantage. Thus, the breeding of modified and non-modified plants is an
economical threat to the farmers growing conventional plants if the new
gene moves to their seeds. Moreover, the new gene is usually patented
and the farmer can be forced to pay licence fees for their crops. There al-
ready has been a precedent-setting in Canada (Simon, 2004; Schimmeck,
2002).

Hybridisation: The herbicide resistance may be transferred to the feral rel-
atives (see below) of the plant. This is important for the canola cul-
tivation in Europe since a number of interbreeding partners are native
in Europe, e.g., field mustard (Brassica rapa), Indian mustard (Brassica
juncea) and wild radish (Raphanus raphanistrum). A more complete list
of interbreeding partners can be found in Breckling et al. (2003). The

1Canola are special breeds of rapeseed. Originally, Canola is a trademark for edible oil
from oilseed rape (CANadian Oil – Low Acid). Canola is the most common rape breed
today and since the name is less ambiguous than “rape” it will be used here instead.
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Figure 1.1: Pollen transfer distance investigated with genetically modified canola. Shown
is the percentage of herbicide-resistant individuals in seeds from non-resistant canola
plotted over the distance to a field with cultivated herbicide-resistant canola (adapted
from Rieger et al., 2002). Note the hardly visible point at 4500 m, which is the maximum
distance found in this study.

hybridisation2 is especially important since the majority of relatives of
canola are common weeds, which are the original target of the herbicide,
i.e., these weeds might acquire a herbicide-resistance as an unwanted
side-effect.

Consequently, the main problems can arise from the transfer of the new
gene to non-modified canola and to the interbreeding partners of canola. There-
fore, an important parameter is the distance by which canola pollen is trans-
ported. Recently, Rieger et al. (2002) investigated the distribution of canola
pollen. The results displayed in Figure 1.1 show that the pollen is transported
to a distance of up to 4.5 km. Further information on the transport range of
canola pollen can be found in Breckling et al. (2003). In combination with
information on the cultivation characteristics obtained from the satellite data,
like e.g., the mean field distances, this information can be used to quantify the
gene flow from modified to unmodified canola for different regions.

The estimation of hybridisation can be supported by satellite data. The po-
tential gene flow from canola to turnip rape (Brassica rapa) and wild cabbage
(Brassica oleracea) has been estimated by Davenport et al. (2000) and Wilkin-
son et al. (2000), using a LANDSAT TM (TM) and a Indian Remote Sensing
Satellite (IRS))/ Linear Imaging Self Scanner/3 (LISS/3) image to identified
canola fields nearby riverbanks and in coastal regions, potential habitats of

2Hybridisation is the process of interbreeding plants of two different species.
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Figure 1.2: Volunteer plant in a wheat field located south of Bremen (adapted from
Menzel et al., 2003).

these two interbreeding partners. The study of Davenport et al. (2000) only
covers two interbreeding partners and one principal type of habitat. But since
the interbreeding partners are also growing in other habitats, it is necessary to
extend this study to other interbreeding partners and habitats. In GenEERA,
the satellite data are used for a comparison with botanical population maps
of various interbreeding partners.

Moreover, hybridisation depends on the flowering date of the different
plants. Since the flowering period of agriculturally cultivated canola usually
does not overlap with that of many potential interbreeding partners, a number
of hybridisations are unlikely to occur. Nonetheless, interbreeding is still pos-
sible since wild growing canola is flowering outside of the main flowering period
(see Schlink, 1994). Therefore, potential locations of wild growing canola, like
grass stripes along roads, railroads, sand pits or building lots, also have to be
identify (see Menzel et al., 2003). A particular case of “wild” growing canola
are volunteer canola plants3 on agricultural fields which are quite common,
since canola seeds can remain in the ground for several years before germinat-
ing (see Schlink, 1994). They generally appear in cereal fields (see Figure 1.2).
The number of volunteer canola plants on a field depends on the cultivation
frequency of canola. Therefore it is important to investigate also the frequency
of canola cultivation in the crop rotation cycle.

The appraisal of the different types of dispersal requires a number of pa-

3Generally, a volunteer plant is one that grows in unexpected places. In the context of
this work, a volunteer plant is a canola plant that is growing within a field of other crops,
e.g., cereals.
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rameters, e.g., prevailing winds or seed persistence in the ground.

1.3 Parameters Retrievable with Satellite Re-

mote Sensing

Satellite remote sensing can provide the area contiguously covered with canola
plants. The identification is limited to populations of sufficient extent. The
minimum size thereby depends on the sensor’s spatial resolution, the typical
spatial resolution being metres to hundreds of metres. Thus, it is not possible
to identify single or small colonies of plants. This limits the use of remote
sensing to the identification of agriculturally cultivated canola, i.e., canola
fields. This is sufficient since the majority of canola plants are cultivated plants.
Considering the mechanism of dispersal described above, the information about
canola fields should be used to derive the following parameters:

Cultivation density: The cultivation density is the fraction of area covered
by canola fields, i.e., it is a direct measure for the number of plants
present in a region. This parameter is obviously linked to the pollen
density or to the seed dispersal.

Mean Minimum distance between canola fields: The minimum distance
is important for estimating the probability of pollen transfer between dif-
ferent fields. This is the most important parameter for the gene transfer
from modified to conventional canola plants.

Mean field size: The field size gives information on the characteristics of
cultivation in the investigation area. The spreading of pollen and seed
outside canola fields is more likely in regions with a large number of small
fields than in regions with fewer large fields.

Length of field borders: The length of field borders describes the contact
region between cultivated canola and the surrounding vegetation, i.e.,
the direct neighbourhood of potential interbreeding partners.

Frequency of canola cultivation: Canola is usually cultivated within a crop
rotation cycle. The frequency of canola cultivation is important for the
appearance of volunteer plants.
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1.4 Basics of Land Surface Remote Sensing

This section gives a brief overview of the physical properties of radiation and its
interaction with the sensor, the surface and the atmosphere, mainly focused on
reflection properties of plants and scattering of clouds for visible and infrared
radiation.

1.4.1 Electromagnetic Radiation

Remote Sensing is the measurement of object properties with a distant sensor.
This is true for many physical measuring techniques, but in general, the term
remote sensing refers to satellite and aircraft based methods. In most cases, the
sensors detect electromagnetic radiation reflected or emitted by the observed
object. Therefore the interaction of the surface and the atmosphere with elec-
tromagnetic radiation is important to understand the physical principles of
remote sensing.

The whole spectrum of electromagnetic radiation is divided into the sub-
ranges x-rays, ultraviolet, visible light, infrared, microwaves and radiowaves.
The parts of the electromagnetic spectrum mainly used in this study are visible
(VIS, 0.4–0.7 µm), near infrared (NIR, 0.7–1.1 µm) and middle infrared (MIR,
1.1–5.0 µm). The source of this radiation is the sun. The radiation emitted by
the sun can be described by Planck’s blackbody equation for a blackbody with
a temperature of about 5,900 K. The wavelength with the strongest emission
can be calculated from Wien’s displacement law and is 0.49 µm, corresponding
to the colour green (Schowengerdt, 1997; Elachi, 1987).

Another part of the spectrum used in this study is the thermal infrared
(TIR, 8–14 µm ). The earth surface, which has a typical temperature of 300 K
emits mainly at these wavelengths, with a maximum at 9.66 µm. Additionally,
since the majority of earth surface types have a very low albedo in the TIR,
they can be considered black bodies. Thus, the measured radiation intensity
can be directly converted into temperatures. This is useful to identify clouds
that have a lower temperature than the surface in mid-latitudes in the non-
winter seasons.

The satellite sensor measures radiation reflected or emitted by the earth
surface. The sensor usually has a number of channels, where each channel
integrates the energy of the radiation over a defined range of wavelength called
band and a defined viewing angle range called instantaneous field of view
(IFOV). The area corresponding to this viewing angle and IFOV on the earth
surface is called a pixel and all pixels constitute a satellite image like the one
in Figure 3.3 (p. 46).

Reflectance Properties of the Earth Surface

The reflectance properties of earth surfaces are described by the bidirectional
scattering coefficient which depends on the illumination direction, viewing an-
gle and wavelength (Asrar, 1989, Chapter 4). In satellite remote sensing the
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Figure 1.3: Typical reflectances in dependence of wavelength for vegetation, soil and
water. These distinct spectra allow an easy discrimination of these surface types (from
Lillesand, 2000).

bidirectional scattering coefficient is replaced by a reflectivity σi or albedo for
each individual channel i. The angular dependence of the reflectivity can be
neglected for a satellite image since the viewing angles of the multispectral
sensors only cover a small range (±7.2 ◦ for LANDSAT TM, Kramer, 1996)
and the sun direction is constant for a single image because it is acquired in a
very short period (< 2 min).

The satellite measurements are only useful to distinguish different surface
types if these have different reflectances in some channels. For instance, the
surface types water, bare soil, sand and vegetation, can easily be distinguished
since their reflectances are very unique for the various wavelengths in the
visible (VIS), near infrared (NIR) and middle infrared (MIR) (see Figure 1.3).

The reflectance of plants depend on a large number of parameters, e.g.,
growth stage, water content and health state. Especially, photosynthesis is
a complicated process (Hall and Rao, 1999) influenced by the plant species,
temperature, time of day or even past illumination conditions (Hall and Rao,
1999; Gates et al., 1965).

Therefore, it is not possible to obtain a “spectral signature” of plants as it
is possible for minerals (Vincent, 1997; Asrar, 1989; Price, 1994). Identification
of plant types with remote sensing is thus generally based on the reflectance of
plants that grew under comparable conditions, i.e., sample spectra generally
have to be obtained from the satellite data itself (Lillesand, 2000).

Nonetheless, it still has to be discussed if the different crops are distin-
guishable in the satellite data.
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Figure 1.4: Leaf structures for two of the three basic photosynthesis apparatuses. Left:
Cross section of a hellebore leaf displayed exemplarily for C3 plants. Right: Similar cross
section for maize as an example for C4 plants.(adapted from Schopfer and Brennicke,
1999).

Plant Leaf Reflectance

There are three different mechanisms that are mainly responsible for the re-
flectance properties of plant leaves:

Absorption by leaf pigments: The absorption of light by plants in the
VIS results mostly from photosynthesis. There are a number of pig-
ments involved in photosynthesis, mostly chlorophyll-a, chlorophyll-b
and carotenoids (Zwiggelaar, 1998; Blackburn, 1998), which are respon-
sible for converting water (H2O) and carbondioxide (CO2) to carbonhy-
drates with the aid of a photon with the energy hν. Simplified, photo-
synthesis can be described by:

6CO2 + 6H2O
hν−−−−−−−−→

photosynthesis
C6H12O6 + 3H2O + 6O2

Since only photons in the VIS have enough energy for these processes,
these pigments mostly absorb in this part of the spectrum (Hall and Rao,
1999). In the VIS, the leaf pigments responsible for the photosynthesis
are the main source of variation in the reflectance. The leaf pigmentation
can be different depending on the type of photosynthesis and the plant
species (Gates et al., 1965; Blackburn, 1998, 1999). Nonetheless, the leaf
pigmentation is not sufficient to distinguish different plants from each
other since they are too similar (Gitelson and Merzlyak, 1997).

Scattering by leaf structure: The incoming radiation is scattered by the
leaf structures, e.g., cell walls, air-water interfaces, chloroplasts and mi-
tochondria, since they have sizes in the dimension of the wavelength
(Zwiggelaar, 1998; Lillesand, 2000; Sims and Gamon, 2002; Gates et al.,
1965). Because of the high absorption in the VIS and MIR this is most
important for the NIR radiation. Thus, plants have a high reflectance in
the NIR which depends on the leaf internal structure. An example for
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two different structures is given in Figure 1.4. Since the cell structure can
be different for the various plants, these wavelengths pose a possibility
to distinguish different species.

Water absorption: Plant leaves predominantly consist of water and thus
the absoption of water is important. Additionally, proteins, cellulose
and lignin show increased absorption for wavelength longer than 2 µm
(Asrar, 1989).

The above discussion showed that the reflectance properties of leaves poten-
tially allow a discrimination of plants. Nonetheless, field crops are usually quite
similar plants concerning the cell structure and photosynthesis, e.g., canola and
wheat both are plants with a C3 type of photosynthesis (Hall and Rao, 1999;
Schopfer and Brennicke, 1999) and are likely to have similar pigmentation and
VIS reflectances. This is probably also true for the cell structures and the
water content and would result in similar NIR and MIR reflectances.

Therefore, the spectral properties of leaves are not distinct enough do sep-
arate the different plant. This has been investigated and confirmed by Zwigge-
laar (1998), who tried to distinguish weeds from crops by their leaf reflectance.

Plant Cover Reflection

The above discussion only takes the releflectance properties of plant leaves into
account. Since light is scattered within the plant cover depending on the leaf
density, leaf form or leaf angular distribution (Asrar, 1989), the plant cover
reflectance properties therefore can give further indication on the crop grown
on the field.

NIR Radiation: The wavelength range with the strongest influence of scat-
tering by the plant cover density and structure is the NIR. The internal
leaf structure scatters this radiation (see above). Therefore, the reflectance
propeties of the plant cover depend on the leaf density. In dense and high
vegetatation covers VIS is frequently scattered by the leaf and other plant
structures. This results in a diffuse reflection of the complete plant cover,
which therefore appears bright.

In thin vegetation, the scattering is much weaker and due to the high trans-
mitans of leafes for this radiation, a larger part of radiation is then absorbed
by the underlying surface, which has a low reflectance for these wavelengths
(see Figure 1.3).

Therefore, thicker vegetation cover appears brighter in the NIR as thin
ones, this feature is especially valuable to identify canola, since it is a quick
and high growing crop.

VIS Radiation: The absorption of plant covers for the VIS reflectances is
very high. Therefore, scatterig and consequently, the density of vegetation
cover is not important for this spectral range. Nonetheless, for crops only
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covering parts the underlying soil, the reflectance will allow to distinguish
these crops from acreage with a closed vegetation cover because of the high
VIS soil reflectance.

MIR Radiation: Similarly, the MIR is also absorbed strongly, predomi-
nently by water, but also by lignin and cellulose. This absorption depends on
the amount of water present in vegetation and therefore reflects the amount
of vegetation present.

Canola flowering

The above discussion is limited to the reflectance properties of green leaves.
Especially for canola, another part of the plant becomes important for the
reflectance: The petals of the flowering plant. The flowering is responsible for
a change of reflectance for the plant cover and the reflectance for green and
red is increased. This can be seen on the titlepage of this work. Obviously,
these changes in reflectance ease the identification of canola fields.

Nonetheless, the flowering is only observalble in a short period from end of
April to beginning of May and it is not guaranteed to have satellite data avail-
able from that period. Moreover, the flowering of canola is not homogeneous
and can change from field to field and also within fields. Thus, the flowering is
not a reliable parameter for the identification of canola fields, especially when
performed over a large area in which canola fields with different phenological
stages (i.e., strong flowering, weak flowering and non-flowering) are present.

Conclusion

The measurement of reflectances in the VIS, NIR and MIR probably allows
to distinguish different agricultural crops. Nonetheless, this has to be tested
with real satellite data since the spectral properties are unknown for the crops
and also depends on a large number of parameters. Probably, all three types
of radiation are necessary to identify canola, where VIS allows to distinguish
vegetated from non-vegetated areas, the NIR allows to identify different types
of vegetation and MIR allows to distinguish plant cover from water bodies.

Flowering of canola makes the reflectance properties of canola more unique
but also increases the variations of spectral properties for all canola fields.

1.4.2 Atmospheric Influences

Satellite-based remote sensing measure radiation transmitted by the atmo-
sphere. Therefore, this section will give a short overview over the physical
processes influencing VIS, NIR and MIR radiation on its way from the ground
to the satellite.
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Gaseous absorption and emission

The atmosphere consists mainly of oxygen, nitrogen, water vapor and carbon
dioxide. These gases absorb radiation in dependence of their molecular struc-
ture. In the optical wavelength range, absorption is predominantly caused by
electronical and vibrational transitions of the molecules quantum states which
have discrete energy levels (Asrar, 1989). The width and strength of the ab-
sorption lines depend on temperature, pressure and molecule density profiles in
the atmosphere. Oxygen, nitrogen and carbon dioxide are horizontally homo-
geneously distributed and contribute a constant factor to the radiation received
by the sensor. This is not the case for water vapor which is highly variable in
the atmosphere.

Scattering

Two different types of scattering do occur in the atmosphere: Rayleigh and
Mie scattering (Schowengerdt, 1997).

Rayleigh Scattering occurs with particles much smaller than the radiation
wavelength. In the optical and infrared part of the spectrum, these are
the air molecules. The intensity of Rayleigh scattering varies as λ−4.
Therefore, radiation of shorter wavelengths are scattered more strongly
than longer wavelengths. Since the atmospheric composition is mostly
constant, the Rayleigh scattering does not show much variation for dif-
ferent weather situations.

Mie-Scattering occurs with particles in the dimension of the wavelength. In
the atmosphere such particels are ice crystals, small water droplets or
dust(Asrar, 1989). Usually these particles are called aerosols, although
this term is sometimes used only for non-water particles. The Mie scat-
tering is constant over a longer range of wavelengths, which is the reason
why clouds appear white. Nonetheless, Mie scattering is stronger for
shorter wavelength, i.e., it decreases from VIS over NIR to MIR. The
high concentration of aerosols can be found in clouds and thus clouds
have also the greatest influence on the measurements of the satellite sen-
sor.

Conclusion

The most important scattering process is Mie scattering since it has a stronger
influence on the radiation than the Rayleigh scattering and depends on the
highly variable aerosol density. Considering the absorption of gases, the most
important gas is water vapor since it is distributed inhomogeneously and
strongly depends on the weather situation.
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1.5 Objectives and Outline of this Thesis

1.5.1 Objectives and Requirements

The aim of this work is the identification of agricultural fields used for canola
cultivation in northern Germany for the period of 1995 to 2002. The results of
this investigation give an overview of the cultivation characteristics in different
types of landscape, which is necessaty to estimate the potential dispersal of
GM canola seeds or pollen.

This aim poses a major difficulty since the fields to be identified are small
compared to the investigation area. The investigation area is too large to
be covered by a single image from a sensor that allows to identify individual
fields. Therefore, it is necessary to process a large number of satellite images.
However, the preprocessing and classification of satellite data can be labour
intensive: The atmospheric conditions are different for different images and
the spectral reflectances are usually also different (see Cihlar et al., 2000). An
automatic scheme needs to adapt to the different conditions.

Therefore, the main focus of this work is to automate the processing of
data to the greatest possible extent.

1.5.2 Outline

This section gives a short overview on the structure of the thesis and briefly
describes the content of the different chapters. The focus of this work lies on
Chapters 3 and 4 since they describe general methods for the georectification,
cloud-/cloud-shadow/haze detection and classification.

Chapter 2 – Data selection and Description: This chapter gives an over-
view of satellite data usable to identify agricultural crops and the most
appropriate sensors to identify canola fields in northern Germany. Ad-
ditionally, an overview of the sensor and the validation data is given.

Chapter 3 – Preprocessing: This chapter describes the preprocessing ap-
plied to the satellite images to allow a classification and mapping of the
classification result: The satellite data is to be projected to a map (Geo-
rectification) and clouds are identified and corrected, if possible. The
methods have been selected, optimised and automated to allow a mostly
autonomous preprocessing.

Chapter 4 – Classification: In this chapter, the agricultural crops culti-
vated in northern Germany will be examined for their separability by
multispectral sensors for an exemplary region. Based on this exami-
nation, an appropriate classification algorithm is selected and used to
classify the remaining regions. Also described are the methods applied
to obtain field information from the pixel-based classification.
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Chapter 5 – Results: The various results of the classification are presented,
with a main focus on the parameters important for the dispersal of GM
canola. The presentation is followed by a validation with known canola
fields and a comparison with agricultural statistics available for 1995
and 1999. The chapter is closed with a discussion of error sources for the
classification.

Chapter 6 – Summary and Outlook: This chapter gives a final appraisal
of the results of this study and on the methods applied for preprocessing
and classification. Moreover, possible approaches for improvements of
these methods are suggested and the applicability of these methods for
other plants is discussed.
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Chapter 2

Data Selection and Description

In this chapter, a description of the selection and technical properties of the
appropriate satellite data will be presented. There are a number of space-borne
remote sensing sensors available that are capable of distinguishing different
crops and it is necessary to identify those most suitable for the canola acreage
detection in Northern Germany. Subsequently, the most suitable sensors is
described in detail.

Besides the satellite data, ground gathered data are also needed in order to
identify training data sets for the classification and to validate the classification
results. The available ground gathered data is described at the end of this
chapter.

2.1 Requirements for Satellite Data

The objective of this project is to obtain statistics for the cultivation of canola
in Northern Germany as a base for gene flow estimation between different
canola fields and wild growing canola plants or akin plants like wild cabbage
(Brassica oleracea), wild mustard (Sinapis arvensis) and turnip rape (Brassica
rapa).

Turnip rape and mustard are also cultivated as forage or green manure. To
estimate the gene flow from one field to another or from field to wild growing
plants, some cultivation characteristics are required (see Section 1.2 (p. 3)).

The number of sensors can be restricted by these requirements to sensors
with a spatial resolution below 1 km, since this resolution is far too coarse for
the detection of typical fields in the investigation area. Table 2.1 lists the avail-
able sensors potentially suitable for agricultural crop detection. Two additional
sensors, the Haute Résolution Visible (HRV) and High Resolution Visible - In-
frared (HRVIR) on Système Pour l’Observation de la Terre (SPOT) 3 and
4 are not listed, because their characteristics are similar to those of the Ad-
vanced Spaceborne Thermal Emisssion and Radiation Radiometer (ASTER)
which will be discussed instead. Moreover, there is only one synthetic aper-
ture radar (SAR) sensor listed, the European Remote Sensing Satellite-SAR
(ERS-SAR), since the other SAR-Systems, e.g., the Japanese Earth Resource

15
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Table 2.1: List of sensors usable for crop identification. “Resolution” always applies to
the spatial resolution of the multispectral data (in case there is also a panchromatic band
present like for IKONOS and ETM+). “Coverage” refers to the number of necessary
frames to cover the entire study area. The price per frame is the average price for a
complete frame in July 2001. The information has been compiled from Kramer (1996);
Space Imaging Eurasia (2003); Eurimage (2001); Euromap (2001).

Sensor MODIS TM/ETM LISS/3 ERS SAR ASTER IKONOS

AQUA/ LAND- IRS AQUA/
Satellite

TERRA SAT 5/7 1C/1D
ERS 1/2

TERRA
IKONOS

resolution 23.5× 12.5×
[m×m]

500× 500 30 × 30
23.5 12.5

15 × 15 4 × 4

frame width

[km]
2330 183 142 102 70 12

frames needed

for coverage
1 10 16 24 46 160

repeat

cycle [days]
16 16 24-25 35 4-16 3-25

available

since year
1999 1972 1995 1991 1999 2000

price per

frame e
0 1000 2700 800 55 1,728

price for

coverage e
0 10,000 43,200 30,000 2,530 276,480

Satellite-SAR (JERS-SAR) are similar in resolution, frequency and coverage
to the ERS-SAR. Also not listed are panchromatic sensors, which usually have
a better spatial resolution, but only one channel; however this type of sensor
will be discussed later.

For this study, the sensors have to comply with the following requirements:

1. The spatial resolution has to be fine enough to detect most of the fields
in the investigated area, since too coarse a resolution will lead to errors
at the field boundaries and therefore to inaccuracies in the determined
field sizes.

2. The spatial coverage must be large enough to cover most of the study
area.

3. The sensor has to be appropriate to discriminate the spectral properties
of canola plant covers from those of other plants.

4. Historic data must be available for an evaluation of canola cultivation
over at least the past 5 years.
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5. Since there is only a limited period of the year when canola can be
discriminated from other field crops, the revisit time has to be short
and the frame width wide enough to ensure several coverages of the area
during this period. This is important for optical sensors because the
investigation area is frequently covered by clouds.

6. As satellite data can be quite expensive, especially high resolution data,
the price has also be taken in account, too.

The following sections will discuss the important sensor characteristics and
conclude which sensors are most suitable.

2.1.1 Spatial Resolution and Coverage

High resolution sensors like IKONOS and LANDSAT usually have small frame
size and longer revisit times, and sensors with lower resolution like the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) have better coverage.
The spatial resolution is necessary to detect small fields (≈ 2 ha)1 on the ground
and a good coverage is important to get data for the complete area. There-
fore it is necessary to find the best tradeoff between the minimum field size
detectable and the maximum coverable area (see Table 2.1).

Minimum resolution

The common field size in different regions varies from less than 2 ha in central
Europe to more than 350 ha in the Midwest of North America (Colwell, 1983,
Chapter 21). The study area is the northern part of Germany. Here, the field
size ranges from less than two hectare in the West to large fields with 200 ha
in the East.

The sensor has to be capable to detect smaller fields also, in Northern
Germany down to a minimum size of 2 ha. There have been some studies
on sub-pixel methods that derive the acreage for a certain crop by using the
spectral properties of different surface types for the calculation of the crop
fraction within one pixel (Gross and Schott, 1998; Kerkes and Baum, 2002).
This would allow to use sensors with a coarser resolution. However, since the
size of individual fields is of special interest in this study and sub-pixel methods
only deliver the total acreage of the canola within one pixel, these methods are
not applicable for this study. Therefore, the spatial resolution of the sensor
has to be fine enough to separate different fields. The available sensors have
spatial resolutions ranging from 1 m (IKONOS) to 500 m (MODIS).

As an example for the effects of spatial resolution on the identification
of field sizes, a comparison of an aerial photograph with TM and simulated
MODIS images is shown in Figure 2.1. In the region displayed, the fields are

1The field sizes in this thesis are not stated in the SI-Unit m2 but rather in ha since this
is the common Unit used in agriculture in Germany. The relations between square metres,
square kilometres and hectare is: 1 ha=10,000 m2=0.01 km2.
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Figure 2.1: Comparison between an aerial photograph (left), TM (middle) and simulated MODIS data (right) west of Delmenhorst, near Bremen.
The MODIS image was simulated by using TM data. These images demonstrate the impact of different sensor resolutions on the discrimination
of agricultural fields. The field boundaries can easily be distinguished in the aerial photograph and also in the TM data, but not in the simulated
MODIS data. The satellite images are displayed in false colour representation with near infrared, shortwave infrared and red as red, green and
blue. This channel combination allows to distinguish between different crop types. The spatial resolution is one meter for the photograph, 30 m
for the TM and 500 m for MODIS. The black grid lines on the aerial photograph indicates the spatial resolution of the TM data. Note that the
images were acquired in different years and the field crops in the satellite images are not related with the field crops in the aerial photograph.
Original data: LANDSAT ETM+ c©ESA, 2001. Distributed by Eurimage.
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Figure 2.2: TM coverage for the study area (left). The numbers on the left represent
the rows and the numbers on top and bottom the path numbers. The map shows the
contours of the investigated federal states (Bundesländer): Niedersachsen, Bremen,
Schleswig-Holstein, Mecklenburg-Vorpommern, Brandenburg and Berlin. The right fig-
ure shows an example for the TM, LISS/3 and IKONOS frame sizes.

small compared to the typical field size of other regions in the study area. The
aerial photograph has a resolution of one meter. For better comparison, the
resolution of the TM sensor is indicated by the black grid lines in the aerial
photograph. In the TM data, the different fields can be separated from each
other. The only problematic field is the small one directly above the highway
in the right part of the image, but as the small field just below the farm can be
easily identified, this is a problem of the grown crop in that year and not due
to the sensor resolution. Nonetheless, fields of similar size can be identified
and the resolution of TM data is therefore sufficient to detect the majority
of fields. This is also true for the LISS/3 with comparable 23.5 m resolution,
but not for MODIS: the right image in Figure 2.1 shows that the resolution
is not sufficient to detect single fields. The MODIS resolution of 500 m was
simulated by averaging the TM pixels with a resolution of 30 m. MODIS has
two higher resolved channels with 250 m resolution, but this resolution is also
too coarse to detect smaller fields, which can be seen in Figure 2.1.

The aerial photograph gives an idea about the resolution of IKONOS, which
is 4 m for the multispectral bands, such that with classification, IKONOS would
lead to the best results. The resolution of ASTER is 15 m and would also yield
good results.

The conclusion is that with the exception of MODIS, all sensors listed
in Table 2.1 are suitable to detect individual fields in the investigation area.
Obviously, the finer the resolution, the more accurate are the results (Colwell,
1983, Chapter 21).
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Frame coverage

The investigated area has a size of about 600 km by 500 km. A large frame
size covering this area completely is desirable since only one frame needs to
be processed. This is even more important for optical sensors because the
investigation area is frequently hampered by clouds.

In Table 2.1 the sensors frame width and the frames needed for a complete
coverage are listed. The widest frames, 2330 km, are provided by MODIS.
Consequently, a single frame would be sufficient to cover the whole area. Higher
resolved data have smaller frame sizes. The widest here is TM with 183 km,
thus it is capable of covering the whole area with 10 frames (see Figure 2.2).
In the same figure the frame sizes of LISS/3 and IKONOS are also displayed.
Since the LISS/3 frame is only 143 km wide, 16 frames are necessary for one
complete coverage. IKONOS has the smallest frame with a width of 12 km
and would thus require about 160 frames.

Consequently, the best coverage is provided by MODIS, but TM and LISS/3
also have good coverage. ASTER and ERS-SAR frames are smaller and would
need a greater number of frames. The frame size of IKONOS is far too small
for the postulated coverage.

2.1.2 Spectral Information

The wavelength range used by the sensor is important because canola and the
other surface types must be distinguishable in the satellite data. Sensors with
spatial resolutions smaller than 1 km can be divided into three types:

• Multispectral sensors that have several bands in the visible and infrared
spectral range.

• Panchromatic sensors that use the complete range of the visible and near
infrared in order to achieve better spatial resolution.

• SAR that actively emits microwaves (i.e., wavelengths in the cm range)
and records the backscattered signal.

In the following sections the spectral interactions for the different sensors
will be discussed.

Multispectral sensors

As the name suggests, multispectral sensors have several bands in the spec-
tral range of the VIS, NIR and MIR. For multispectral sensors, the range of
wavelengths for all bands is usually from 0.4 to 2.2 µm. As discussed in Sec-
tion 1.4.1 (p. 8) the reflectivity of plants in these spectral ranges depend on
the pigmentation, cell and canopy structure of the plants. These parameters
depend on the crop type cultivated on a field

All these parameters differ usually for different crop types and influence
the reflectivity of the multispectral channels differently. Agricultural plants
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Figure 2.3: ETM+ panchromatic and multispectral data. Left: True colour image of
channels 3 (red), 2 (green) and 1 (blue) with 30 m resolution. Middle: False colour
image channels 4 (NIR), 5 (MIR) and 3 (red). Right: Panchromatic data image with
a spatial resolution of 15 m. The displayed region is in the south-east of Bremen. The
image was acquired on April 3, 2002. Different crops can be easily discriminated in the
false-colour image: orange-red is canola and turquoise bare soil, respectively. This is not
possible for the panchromatic image. Original data: LANDSAT ETM+ c©ESA, 2002.
Distributed by Eurimage.

are generally cultivated in mono-cultures, therefore the leaf structure and the
plant cover structure are mostly homogeneous over the area of a field and are
useful parameters to distinguishing agricultural crops.

Adding up these properties, multispectral sensors have a good potential to
discriminate different crop types. This has been confirmed in studies by Wright
(1985, 1994); Davenport et al. (2000) who successfully detected canola by using
the red, NIR and MIR channels of TM and LISS/3. All listed multispectral
sensors have these channels and are therefore suitable for the detection of
canola.

Panchromatic sensors

The spectral range of panchromatic sensors is similar to those of the multispec-
tral sensors, but these sensors integrate over a broader spectral range. This
allows to improve the spatial resolution. In Figure 2.3 a comparison of multi-
spectral and panchromatic data from ETM+ is shown. Here it is demonstrated
that different crops can be distinguished in the multispectral images. This is
only partly true for the panchromatic image, e.g., in the multispectral image
the canola fields can easily be recognised by their orange-red colour in the
false-colour image, whereas in the panchromatic image both fields appear in
light-grey, which is also the case for other fields, e.g., the turquoise field (bare
soil) on the left side of the false colour image. Therefore, it is difficult to
distinguish canola from other surface types without the use of additional mul-
tispectral information. However, panchromatic data can be used to improve
the spatial accuracy of multispectral classifications, which has been shown by
Müschen et al. (2001).
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Synthetic Aperture Radar

SAR can acquire data at day and night and also through clouds, which is
a great advantage for the temporal coverage. The interaction of microwaves
with plant cover can be found in Lillesand (2000). Because of the noise in
SAR data, a pixel based classification is not possible. This problem can be
circumvented by using the field boundaries from ground surveys and maps
as shown by Michelson et al. (2000), who used ERS-SAR data to fill cloud-
related gaps in TM data and for crop type classification, which worked well
for different agricultural crops, also for canola. Such field boundary data are
usually not available, especially for larger areas. This difficulty was overcome
by Lopès et al. (1999) by overlaying four SAR frames from the same year to
reduce the speckle noise.

Concluding on the spectral information, multispectral sensors provide the
best ability for the distinguishing different field crops with one single image.
SAR sensors may be an alternative but require accurate maps or multiple im-
ages, which would increase costs for data and algorithm development. Panchro-
matic data can be used to improve the spatial resolution of multispectral data
(Müschen et al., 2001), but is not suitable for the discrimination of crops with-
out additional information from multispectral sensors.

2.1.3 Temporal Requirements

In addition to the spatial coverage, the temporal coverage is also of impor-
tance. The sensor must have acquired data in the relevant period and the
data have to be available from a data archive. Moreover, the frequency of data
acquisition, which depends on the revisit time and the frame width (see Sec-
tion 2.1, p. 16), must be taken into account. The revisit time can be shortened
by using overlapping frames or by multiple sensors, e.g., there are two IRS
satellites available since the end of 1997, and LANDSAT 5 and 7 were both
operational from end of 1999 to early 2002.

Temporal coverage

Investigation of canola cultivation over the past years is one of the main ob-
jectives of this project because the crop on a field is usually changed every
year. This is called crop rotation and is necessary since each crop needs dif-
ferent types of nutrients. The order of planted crops depends on the soil and
on the field crops the farmer wishes to cultivate. Gene flow from genetically
modified to the unmodified canola is possible by seed from previous years,
since canola seed can persist for up to ten years in the ground and still be
germinable (Cramer, 1990). Hence, to estimate the probability for a genet-
ically modified canola plant to grow in a field of non-modified plants, it is
necessary to get information on the repeat times for canola cultivation in the
crop rotation cycle for different regions. Table 2.2 shows a list of common crop
rotation cycles in northern Germany. The longest repeat time for canola is
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four years. Thus, the observing time span for the satellite data should be at
least four years. Table 2.1 shows the dates since when different satellite data
are available. The sensors available for the required time span from 1997 to
2001 are TM, ERS-SAR and LISS/3. Newer sensors like MODIS, ASTER and
IKONOS, launched in 1999, could be useful to fill gaps in later periods.

Temporal resolution

In addition to the spectral separability that is described above, the develop-
ment stages of the different agricultural plants are equally important to identify
different crops . An overview of agricultural crops and their acreage is shown in
Table 2.3. The main crops grown in Northern Germany are winter wheat, rye
and winter sown canola. Obviously, the plant cover of a field has to be dense
enough to be detectable by the sensor and the spectral signature of canola has
to be distinguishable from other field crops by the sensor at that time.

There are two types of canola cultivation, winter-sown and spring-sown
canola. Actually, winter-sown canola is sown in late summer. The plants grow
vegetatively and flower the next spring. Since winter-sown canola brings higher
yields for northern Germany, only 2.8 % of canola cultivation is spring-sown
canola (Cramer, 1990). Mostly it is used when the winter-sown canola has been
damaged by frost or drought. Hence, this work concentrates on winter-sown
canola.

Figure 2.4 displays the period between sowing and harvesting of different
types of agricultural crops in Belgium. Since Belgium is a neighbouring country
with a comparable climate, these periods are also valid for Northern Germany.
Figure 2.4 shows that most crops are sown in early May. This gives a good
chance to distinguish these plants from winter-sown canola with satellite data
acquired before or soon after sowing, since the plant cover in that time is
sparse or non-existent. The remaining plants, wheat, barley and winter sown
canola, have to be distinguished by their spectral properties since they have
a similar cultivation period and it is necessary to consider the development of
winter-sown canola in detail. The development of the plants is depending on
the local climate and will be discussed for Northern Germany only.

Table 2.2: Common crop rotation cycles used in canola cultivation in Germany listed in
order of frequency, (Cramer, 1990).

canola → wheat → rye
canola → wheat
canola → wheat → peas
canola → wheat → oat → barley
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Table 2.3: Acreage of main agricultural crops for the federal states Niedersachsen (NS),
Schleswig-Holstein (SH), Mecklenburg-Vorpommern (MV) and Brandenburg (BB) for
2001. The acreage of summer canola also includes the turnip rape acreage, Source:
Saaten-Union GmbH, Isernhagen HB.

Crop Acreage [1000ha]

Federal winter winter sugar summer spring summer

State wheat
rye

canola beet
oat

wheat
peas

barley canola

NS 384.5 155.6 73.8 115.0 23.3 50.9 7.0 97.4 4.5

SH 193.0 33.5 89.0 13.3 9.0 1.7 1.9 12.8 0.3

MV 294.7 111.0 203.8 27.9 12.0 2.5 13.7 12.8 4.3

BB 128.4 253.2 95.3 11.3 15.8 3.1 24.0 9.7 4.3

Total

acreage
1000.6 553.3 461.9 167.5 60.1 58.2 46.6 135.3 13.4

Figure 2.4: Period from sowing to harvesting from different field crops in Belgium,
adapted from Blaes et al. (2001).
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Figure 2.5: Difference between blooming (left clip) and not flowering (right clip) canola
fields as seen by the satellite sensor; Both images display clips from the frame 196/023
in true colour representation of the TM/ETM+ channels 3, 2 and 1; the left image was
acquired on May 10, 2000 and the right on April 3, 2002. The image clip displays the
region South of Bremen. Original data: LANDSAT TM c©ESA, 2000 and LANDSAT
ETM+ c©ESA, 2002. Distributed by Eurimage.

The development stages of winter-sown canola. Winter-sown canola
is sown in late august and starts germinating soon afterwards. It grows until
the end of the vegetation period in November, and continues growing at the
beginning of the next vegetation period in March. The blooming period starts
in late April or May and lasts for two to three weeks. At the end of July winter-
sown canola starts to mature and is harvested at the beginning of August. The
dates stated above depend on the weather conditions and can shift by as much
as 10 days in either direction (Cramer, 1990).

Best times for detection. At the end of the vegetation period in November,
the canola coverage of the soil is dense enough to be detected by satellite
sensors. Problematic in that period is turnip rape, a close relative to canola
that is sown as green manure and as a fodder plant. Turnip rape might be
indistinguishable from canola, in fact, even at the ground they are difficult to
distinguish. The discrimination of these plants is possible after the beginning
of the vegetation period because canola grows higher than turnip rape. The
best time for the detection of canola is the blooming phase when the fields
appear in bright yellow in the true colour image (see Figure 2.5).

Taking all this into account, the best time for detecting winter-sown canola
from satellite is in the period from early April to June, especially because of
the blooming in May. Non blooming canola fields are detectable in that period
due to the fast growth causing a higher plant cover in comparison to other
agricultural crops. Data taken at the end of the vegetation period and during
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wintertime might lead to confusion with turnip rape.

2.1.4 Costs of Satellite Data

The costs depend on the sensor, preprocessing applied by the data provider
and years of the acquisition. The prices for images of satellite data are difficult
to compare because of various discount options (primarily for TM-data).

Prices for Data of Different Sensors

In Table 2.1 (p. 16), the prices for data from different sensors are displayed.
The price for TM data is an estimated average, since there are various dis-
counting regulations (Eurimage, 2001).

IKONOS data are not ordered by frame, but rather by covered square
kilometres. In July 2001 the price per square kilometre was e 12, with a
minimum order of e 3000 for one image (Space Imaging Eurasia, 2003).

The data for the remaining sensors do not have complicated discount op-
tions and the prices in Table 2.1 are the exact prices. Comparing the prices
necessary for a complete coverage, the most cost-effective sensor would be
MODIS, because its data are free. Also quite inexpensive are ASTER and
TM. The most costly data would be IKONOS data with more than a quarter
million of Euro for a complete coverage of the investigation area.

Satellite data providers offer the satellite data on different processing lev-
els. For a surcharge, the providers offer some further processing like passpoint
or terrain correction or an atmospheric correction (see Section 3.1.3 (p. 39)).
Further processing would increase the costs per frame, for example the sur-
charge for a pass point and terrain correction for TM data would be e 450 per
frame at Eurimage (Eurimage, 2001).

Ordering of passpoints or atmospheric corrected data would increase costs
by about 50 % for Landsat data and therefore diminish the number of afford-
able frames by one third.

2.1.5 Conclusions

Summing up the qualities of sensors listed above, the following conclusion can
be drawn:

• The best temporal and spatial coverage is provided by MODIS. A major
drawback is the coarse resolution of 0.5 to 1.1 km that makes it impossible
to detect smaller fields in the study area. There have been some studies
on sub-pixel classification, but these cannot provide information on the
size distribution of small fields.

• IKONOS has the best spatial resolution currently available for space-
borne sensors, but the number of needed frames and the resulting costs
are too large. This is also true for airborne sensors, which have not been
discussed here in detail.
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• Most suitable from the technical point of view are TM and LISS/3 data.
Taking into account the lower number of frames necessary and the lower
cost, TM is preferable over LISS/3, although the latter is useful to fill
gaps.

• ERS-SAR images have the advantage of being independent of cloud
cover. The disadvantages are that a pixel based classification is not
possible mainly resulting from the strong noise in the data (Michelson
et al., 2000). With additional maps for the field boundaries a per field
classification would be possible but this information was not available for
this study. Another possibility is the use of multiple frames for the same
region (Lopès et al., 1999), which would however increase the costs.

The selection of satellite data was done with search tools of satellite data
providers like Eurimage and Euromap that provide quicklooks of the data,
because the majority of the frames were cloud-covered during the period in
question. Among the frames with little cloud cover over the study area, the
ones with the date closest to the canola blooming where purchased. In Fig-
ure 2.6 the selected frames are shown. A total of 46 frames was purchased. An
additional LISS/3 frame was bought for the region around Bremen in 1999.
For validation, it was necessary to acquire two additional frames: one LISS/3
frame from 2002 for the comparison of the two sensors and another TM frame
to evaluate images from early April.

2.2 Data Description

The appropriate sensors from the above discussion have been identified as
TM/ETM+ and LISS/3. The characteristics of these sensors not listed in
Table Section 2.1 (p. 16) are discussed here in detail. Another sensor, IKONOS
is not used for the classification, but since its high spatial resolution is useful
to investigate the influence of the resolution on the classification result, it will
be discussed briefly.

Additionally the various ground survey data available for this study are
presented. These data are essential for the selection of training data sets and
the validation of the classification results. Described are also the cultivation
statistics that are used for further validation of the classification results.

2.2.1 Satellite Data

All sensors discussed here are multispectral sensors that measure the radiance
in the VIS, NIR and MIR part of the electromagnetic spectrum. All sensors
orbit the earth on satellites with a near polar and sun synchronous orbit in
order to obtain constant illumination conditions.
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Figure 2.7: Sketch of the LANDSAT 7 satellite (from Irish, 2000).

TM and ETM+

TM and ETM+ are mounted on the LANDSAT satellites. The first TM sensor
was launched with the LANDSAT 4 satellite in March 1972. The successor on
LANDSAT 5 was launched in March 1984. Since December 1999 an improved
version, the ETM+ is available on LANDSAT 7. Currently, LANDSAT 5
and LANDSAT 7 are operational2. Both satellites orbit the earth at a height
of 705 km. The orbit inclination is 98.1◦ and the period is 99 Min. The current
equator crossing time is 10:45 local time (Kramer, 1996).

TM has seven channels ranging from VIS to thermal infrared (TIR) (see
Table 2.4 and Figure 2.7). The spatial resolution is 30 m for all channels except
channel six which has a resolution of 60 m (see Table 2.4).

ETM+ has the same six channels as TM, plus an additional panchromatic
channel with a spatial resolution of 15 m. Figure 2.7 shows a sketch of the
LANDSAT 7 satellite. The positions of the TM wavelength range for differ-
ent channels overlaid over a generalised reflectance spectrum of plant cover
is shown in Figure 2.8. From the discussion in Section 1.4.1 (p. 8) and this
figure it can be seen that TM covers most of the useful wavelength to gather
information on plants and other land surface types.

2There have been some problems with ETM+ in March 2003 and it is to be seen if this
can be fixed (see U.S. Geological Survey, 2003a).
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Table 2.4: Spectral range and spatial resolution for the discussed sensors. ETM+ and
IKONOS have an additional panchromatic channel with a spatial resolution of 15 m for
ETM+ and 1 m for IKONOS, respectively (from Kramer, 1996).

satel- spectral

lite response
blue green red NIR MIR MIR TIR

TM/ETM+

channel no.
1 2 3 4 5 7 6

LS 5
wavelength 0.45- 0.52- 0.63- 0.76- 1.55- 2.08- 10.40-

range [µm] 0.52 0.60 0.69 0.90 1.75 2.35 12.50
LS 7

spatial

resolution [m]
30 30 30 30 30 30 60

LISS/III

channel no.
2 3 4 5

IRS 1C
wavelength 0.52- 0.62- 0.77- 1.55-

range [µm] 0.59 0.68 0.86 1.70
IRS 1D

spatial

resolution [m]
23.5 23.5 23.5 70.8

IKONOS

channel no.
1 2 3 4

IKO-
wavelength 0.44- 0.51- 0.63- 0.75-

range µm 0.52 0.59 0.68 0.85
NOS

spatial

resolution [m]
4 4 4 4
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Figure 2.8: Spectral range of the TM channels 1 to 5 and 7, adapted from (Elachi,
1987, Chapter 3).

LISS/3

LISS/3 is mounted on the IRS satellites 1C and 1D. IRS 1C was launched
in December 1995 and 1D in September 1997. The inclination of the orbit is
97.5◦ and the orbit period is 101 min for both satellites. The orbit height is
817 km for IRS 1C. IRS 1D is on an elliptical orbit resulting from unexpected
behaviour during the satellite launch and has a height of 736 km in the perigee
and a height of 825 km in the apogee.

The LISS/3 sensor has two VIS channels, one NIR channel and one MIR
channel. The first three channels have a resolution of 23.5 m and the MIR
has a lower resolution of 70.8 m (see Table 2.4). The LISS/3 channels are
comparable with the TM channels 2 to 5 and could therefore be used as a
replacement for TM if no TM data are available.

Sensor Calibration

Satellite sensors convert the incoming radiance for a single pixel into a dig-
ital number (digital number (DN)) qcal. In order to compare the measure-
ments from different sensors, especially TM and ETM+, it is necessary to
convert these values into physical values like radiance or reflectance (see Sec-
tion 1.4.1 (p. 7)).
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Depending on the binary digits used, the detected radiance is quantised into
a number of radiance levels. TM and ETM+ use 8 bits per pixel and channel
and thus 255 radiance levels3. LISS/3 only uses 7 bits per pixel. Therefore,
only 126 radiance levels are available.

The original radiance Li measured by the sensor for channel i can be de-
termined using the gain gi and the bias bi which are stored in the header file
of the satellite data or are available through the Internet (Irish, 2000, Chapter
Calibration). Note that TM is not calibrated for the radiance at the sensor but
rather for the surface radiance assuming the American Standard Atmosphere
(Irish, 2000, Chapter Calibration).

Li = giqcal + bi (2.1)

Since the sensor is calibrated for surface radiances in clear sky conditions, i.e.,
the atmospheric effect for a clear sky has been taken into account. Assuming a
clear sky, the radiance can therefore be converted into the surface reflectance
ρs by applying:

ρs =
πLid

2

Lsun cos θsun
(2.2)

where d is the sun-earth distance in astronomical units, θsun the sun zenith
angle during acquisition time and Lsun the mean solar irradiance. These pa-
rameters are available from (Irish, 2000, Chapter Calibration). For LISS/3 the
radiances and reflectances can be determined similarly (Kalyanaraman et al.,
1995).

The above procedure is only applicable for a dry, cloud free atmosphere.
Therefore an atmospheric correction is usually necessary (Song et al., 2001;
Moran et al., 1992). This will be discussed in Section 3.2 (p. 60).

Channel 6 of the sensors TM and ETM+ measures the TIR radiation of
the earth and can be used to determine the surface temperature. This is
useful to distinguish the colder clouds from the warmer earth surface (see
Section 3.2.1 (p. 62)). The surface temperature Ts can be determined using
the following empirical relation (Irish, 2000, Chapter Calibration):

Ts =
k2

ln( k1

L6
+ 1)

(2.3)

with

k1 = 666.9 W/(m2srµm)

k2 = 1282.71 K

for ETM+ and

k1 = 607.76 W/(m2srµm)

k2 = 1260.56K

3The first level in the data is reserved for “no data”.
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for TM. This equation is not valid for all surface types since it assumes
the surface emissivity for this wavelength to be approximately 1 (see Section
1.4.1 (p. 7)). This is not true, e.g., for water which has an emissivity of about
0.95 for this wavelength. Therefore the temperature is underestimated, if the
above formula is employed (see Section 3.2.1 (p. 62)).

2.2.2 Ground Surface Gathered Data

Since the spectral signatures (see Section 1.4.1 (p. 7)) of canola fields and other
surface types are unknown, it is important to have information on the location
of canola cultivation from ground based sources. In this study two types of
ground data are available:

• Ground survey data, where the position of single fields were recorded.

• Agricultural statistics, which give information on the total acreage in a
certain area.

Ground Survey Data

There are five different sets of ground survey data available in this study:

• The agricultural mapping for the region of the Quillow River (Northern
Brandenburg).

• The ground survey results for the mapping of canola interbreeding part-
ners in the surrounding area of Bremen.

• The results from interrogations of a seed producing company on the fields
used for canola seed production South of Bremen.

• The archived information on agricultural experiments with different agri-
cultural crops on an experimental farm near Braunschweig.

• The Global Positioning System (GPS) based mapping of canola fields in
2001 in the surrounding area of Bremen.

The type of ground survey data necessary in this study is the location of
canola fields in different regions of the study area. In principle it is sufficient
to know the position of one point inside or near the borders of a field and
the agricultural plants grown there. Accurate information on the field edges,
e.g., corner coordinates or complete edges, are of advantage, since it permits
to compare the size of the field with the classification result.
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Agricultural Crop Mapping in Quillow

A detailed data set is provided by the Leibniz-Zentrum für Agrarlandschafts-
und Landnutzungsforschung (Leibniz-Center for Agricultural Landscape and
Land Use Research, ZALF) in Müncheberg. The data set is available for
the years 1999, 2000 and 2001 and covers an area of 24,200 ha in the North
of Brandenburg, 945 fields were mapped for this survey. Figure 2.9 shows
these fields for the year 2001 with the type of cultivated plants highlighted
in different colours. The field boundaries were determined by the use of a
GPS receiver in 1999 and the cultivated plants were updated each year by
interviewing the owner of the field in question. Some of the field boundaries
changed with the years. This results in inaccuracies for 2000 and 2001 but
most of the boundaries remained unchanged.

Mapping of Canola Interbreeding Partners

Another ground survey was performed by the ecology division of the Zen-
trum für Umweltforschung und Umwelttechnologie (Centre for Environmental
Research and Environmental Technology, UFT) for the years 2001 and 2002.
The main purpose of the survey was the mapping of wild growing canola and its
interbreeding partners. Besides the species and the location of the plant, the
type of habitat was recorded. The types of habitat also included agricultural
fields and the crop grown on that field. In 2001 this data set contains 273
different fields of which 132 were canola. In 2002 there were 552 different
fields of which 289 were canola fields.

Mapping of Canola Fields by GPS

Additionally canola fields were visited during blooming and the corner coor-
dinates for 5 fields were mapped with a GPS receiver. Additional fields were
mapped by two corner points of a border line and the field orientation in respect
to North. 12 further fields were mapped with this method. The orientation
was determined with a magnetic compass.

After the first classification test 21 classified fields were visited in order to
verify the classification.

Experimental Cultivation

The Biologische Bundesanstalt für Land- und Forstwirtschaft (Federal Biolog-
ical Research Centre for Agriculture and Forestry, BBA) operates an exper-
imental farm in Sickte near Braunschweig. This farm performs agricultural
experiments on its fields. The experiments and the crop grown were archived
and provided information of canola cultivation on eight fields, including the
corner coordinates for the yeas 1995 to 2001.
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Figure 2.9: Agricultural crop mapping in the region of Quillow performed by the ZALF in Müncheberg. The different colours indicate the different
crops grown in that region in 2001. The background is a true colour image from ETM+ acquired May 13, 2001. Original data: LANDSAT
ETM+ c©ESA, 2001. Distributed by Eurimage..
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Interview with a Seed Producer

In order to obtain historical data, a seed producer, the Deutsche Saatveredelung
(German Seed Refinement, DSV), Lippstadt-Bremen, was interviewed for the
fields used for seed production. The interrogation yielded the coordinates for
16 canola fields, 1 in 1999 and 2 in 2000, five in 2001 and eight in 2002.

2.2.3 Agricultural Statistics

The agricultural statistics for Germany is collected every year (see (Statistis-
ches Bundesamt Deutschland, 2002)). It is not suitable for the validation of
the results, since the study area only covers a part of Germany. Every 8 years
a more detailed statistics is published: the Kreisstatistik (County Statistics)
which is based on 10.000 sample interrogations of farmers from different coun-
ties. This statistic gives extrapolated information on the total acreage and
yield for every county in Germany for various agricultural crops (Statistisches
Bundesamt Deutschland, 2002). It was last collected in 1999 and can be used
to validate the classification of 1999.

A more accurate and more frequently collected statistics is the Gemein-
destatistik (Township Statistics) of Schleswig-Holstein. It is collected every
four years, last in 1999 and 1995, and can be used for validation. Like the
county statistic, it is based on interrogation of farmers and contains the in-
formation on the statistically estimated total acreage of the different crops for
each township in Schleswig-Holstein.
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Preprocessing

Satellite data have to be prepared in order to extract information on the surface
type. The mapping of the pixels available from the satellite data themself is
not accurate enough to produce maps of the identified canola pixels that met
the requirements of this study. Therefore, the mapping of has to be improved.
This is especially important to allow a comparison of these identified fields
with validation data from the ground.

Moreover, optical satellite data are influenced by the atmosphere, clouds
in particularly. Therefore the atmospheric influences on the satellite data are
discussed, and procedures to identify and, if possible, to compensate the effects
of cloud aerosols in the images are presented.

3.1 Geocoding and Image Registration

Image registration, also named geocoding, is the assignment of satellite data
to the corresponding regions (pixels) on the earth surface. High resolution
satellite images like TM and LISS/3 data are usually geocoded by the satellite
provider using information on the orbit and the sensor attitude. However,
this type of geocoding with a typical accuracy of 300 to 1 km (see Section
3.1.2, p. 39) is not accurate enough to identify individual fields in different
satellite images, which is necessary for the selection of training data sets (see
Section 4.4.1, p. 126).

Therefore an additional correction using passpoints is necessary. The pass-
point correction gives sufficient accuracy to generate maps containing the clas-
sification results, but it is less accurate than the sensors resolution.

Since classification and cloud masking algorithms require to identify corre-
sponding pixels in different satellite images (see Section 3.2, p. 60 and Section
4.1.2, p. 89), which is not available through the passpoint correction, addi-
tional processing step has to be applied. These algorithms do not need an
accurate map projection but rather an image-to-image registration. This aim
is achieved by combining the passpoint correction and a correlation method
between images of the same or overlapping frames.

37
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3.1.1 Sources of Image Distortions

High resolution spaceborne sensors acquire surface data over a large distance
on a spherical surface. The sensor continuously measures with a scanning
mirror that reflects the light coming from the earth surface to the detector.
The sensor scans the field of view (FOV), i.e., the angular range scanned by
the sensor. One single data point (pixel) represents the integrated radiation
over the instantaneous field of view (IFOV). For most high resolution sensors,
the scanning speed of the mirror is adapted to achieve a constant pixel size
on the surface (Schowengerdt, 1997, Chapter 3). With the knowledge on the
viewing direction and position of the satellite, it is possible to determine the
location of the pixels on the surface. Inaccuracies of these parameters will
result in errors of the pixel localization.

The following influences have to be taken into account (for a more detailed
list and description see Colwell (1983, Chapter 21)):

• Changes of the satellite altitude resulting from variations of the earth
gravity field lead to scale distortions. Furthermore, the changing attitude
influences the IFOV location on the ground.

• The earth rotation beneath the sensor shifts scanlines gradually westward
during acquisition.

• The variation of the scanning rate due to imperfections in the scanning
mechanism leads to pixel distortion within one scanline.

• Variations in surface elevation cause a misplacement of pixels unless ac-
curate elevation information is available, i.e., a digital elevation model
(DEM).

These influences can be compensated if accurate information on the sensor
state and satellite position during acquisition are available. This is true for
most high resolution sensors and this information is more accurate for re-
cent sensors like ETM+. With additional information of an earth ellipsoid,
the satellite data can be projected on a map. The georectification with this
sensor and satellite information is called geometric correction. E.g., the accu-
racy achieved for ETM+ data is specified by the National Aeronautics and
Space Administration (NASA) to be lower than 250 m (U.S. Geological Sur-
vey, 2003b) for regions at sea level. This is valid for most parts of Northern
Germany.

Another possibility for image rectification is the passpoint or ground control
point (GCP) correction. It is based on the identification of corresponding
points in the satellite data and on a reference map. These pairs of points
are used to find a mathematical transformation between their coordinates in
the image and on the map. With the passpoint correction earth rotation and
earth curvature can be compensated. The varying orbital altitude and attitude
can be compensated if these parameters are not changing rapidly with time.



3.1. GEOCODING AND IMAGE REGISTRATION 39

However, inaccuracies on a small scale, caused by variations in scan speed
cannot be corrected by this method. For instance, the IFOV of TM is 47 µrad
and an error of 1 mrad would lead to an error of 800 m on the ground, or 26
pixels, respectively1. Therefore, a passpoint correction is only useful if these
small scale inaccuracies have been corrected by a geometrical correction.

3.1.2 Geometrically Corrected Data

In this study, path-oriented satellite data is used, which implies that the stored
data are still organized in scan lines. This was necessary to minimize errors
caused by resampling. The information necessary for the georectification of
the path-oriented data is included in the header file of the satellite data. The
required parameters are the centre coordinates (xc, yc) and the rotation angle α,
between the direction of scanlines and the east direction. With the following
equation the image-based coordinates (x, y) can be transformed into map-
based coordinates (x′, y′):

(

x′

y′

)

=

(

cos(α) sin(α)

− sin(α) cos(α)

)(

(x − xc)sp

(y − yc)sp

)

+

(

x′

c

y′

c

)

(3.1)

sp is the sampling distance or pixel size of the sensor, (x′

c, y
′

c) the centre coor-
dinates in the satellite image in map-based coordinates and (xc, yc) the centre
coordinate for the image-based coordinates. The data can be resampled to
the desired map projection. The international map projection universal trans-
verse Mercator (UTM) is used in this study (UTM Zone 32 and 33 North)2.
The resampling algorithm was the nearest neighbour method (Lillesand, 2000).
Figure 3.1 shows the results of this transformation for of an ETM+ and a TM
Image. For a comparison, the satellite data is overlaid with a geographical
information system (GIS) road map of Schleswig-Holstein. It visualises that
the accuracy of the TM data with an offset of 20 pixels is not accurate enough.
The mapping of the ETM+ data has a much better accuracy, but still shows
deviations of 6 pixels or 180 m. Therefore, a correction with passpoints is
necessary for both sensors.

3.1.3 Passpoint Correction

Since the geometric correction is not accurate enough, it has to be improved by
using additional information for geolocating the satellite data. The most com-
mon method is the use of passpoints, also called GCPs, to find a mathematical

1The pixel size is not exactly the size resulting from the IFOV since the pixels overlap
(Richards, 1986, Chapter 1).

2The official map coordinate system in Germany is Gauss-Krüger but since it is divided
into five stripes and UTM only in two it is not suitable for the mapping of the complete
area.
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Figure 3.1: Example for the accuracy of geometric correction by the satellite provider.
The clips show the bay of Eckernförde in Schleswig-Holstein. Top: Geometrically cor-
rected TM image clip as provided by Eurimage, overlaid with a road map with 30 m
resolution, generated from the ATKIS data set by the Ecology Centre at the University
of Kiel. Bottom: Corresponding image clip for geometrically corrected ETM+ data.
Original data: LANDSAT TM c©ESA, 2000 and LANDSAT ETM+ c©ESA, 2001. Dis-
tributed by Eurimage.



3.1. GEOCODING AND IMAGE REGISTRATION 41

transformation f to assign the map coordinates (x′, y′) to the corresponding
image coordinates (x, y):

(x′, y′) = f(x, y) (3.2)

To identify corresponding pixels in different satellite images, the map coordi-
nates have to be transformed back and therefore, the reverse transformation g
is also required:

(x, y) = g(x′, y′). (3.3)

The accuracy of this transformation depends on the map and sensor informa-
tion available. The best transformation, usually called orthorectification, can
be obtained using a DEM, accurate information on the scanning geometry and
GCPs. A DEM was not available and since Northern Germany is mostly flat,
an empirical approach using a polynomial approximation is chosen.

The polynomial transformation is based on fitting a polynomial of nth
order on the base of the chosen GCPs. Since this transformation is not directly
related to the imaging system or the shape of the earth surface, it is necessary
to validate the results of such a transformation for the sensor in question. A
general polynomial transformation f from image-based coordinates to map-
based coordinates has the following form Schowengerdt (1997, Chapter 7):

x′ =

n∑

i=0

n−i∑

j=1

aijx
iyj (3.4)

y′ =

n∑

i=0

n−i∑

j=1

bijx
iyj. (3.5)

The corresponding reverse transformation g can be obtained by exchanging
the coordinates (x′, y′) and (x, y).

Higher order transformations need a larger number of GCPs since the num-
ber of required coefficients is higher. Moreover, resulting from the non-linear
terms, the transformation might lead to errors in regions only sparsely covered
with GCPs or at the border of the image. Transformations with n > 2 are
therefore rarely used for high resolution data with small frame sizes, assuming
that the relatively small distortion in these data can be approximated by a
quadratic transformation3. This can be justified by the relatively small area
covered and the scanning geometry (Schowengerdt, 1997, Chapter 8).

First order or affine transformations can be applied to linear distortions
like rotation, shear, scale and translation (see Figure 3.2). A second order
transformation can also correct quadratic distortions in the data, which can
result from the earth curvature and the scanning geometry. Since the data are
already geometrically corrected for these effects, it has to be investigated which
types of geometric distortions remain in these images, and the transformations
have to be tested to find the most suitable one for TM and LISS/3 images.

3Transformations with n > 2 are generally used for lower resolution sensors with a larger
coverage and a stronger dependency on the earth curvature.
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Therefore, the following paragraph will introduce quadratic and affine trans-
formations and the mathematical background to obtain their coefficients. Ad-
ditionally, another transformation is presented performing only scaling, trans-
lation and rotation but not a shearing. This is justified if the geometric cor-
rection of the provider accounts for the remaining distortions. Besides the
image distortion, the identification of GCPs is a time consuming task and the
number of GCPs can be limited due to lack of suitable surface features.

Quadratic Transformation

The quadratic transformation can be obtained from equations (3.4) and (3.5)
as a matrix equation

x′ = Wa (3.6)
y′ = Wb (3.7)

where W is a matrix

W =









1 x1 y1 x1y1 x1
2 y1

2

1 x2 y2 x1y1 x2
1 y2

1
...

...
...

...
...

...
1 xM yM xMyM xM

2 yM
2









(3.8)

a, b are the coefficient vectors and x′, y′ the coordinate vectors of the GCPs

a =













a00

a10

a01

a11

a20

a02













b =













b00

b10

b01

b11

b20

b02













x′ =









x′

1

x′

2
...

x′

M









y′ =









y′

1

y′

2
...

y′

M









.

The coefficients aij and bij are obtained by solving these equations with the
corresponding coordinate pairs of the chosen GCPs.

The number of GCPs should be higher than the number of coefficients
since some coordinates might be inaccurate and W might not be regular if
some rows are linearly dependent, e.g., if all GCPs are placed on one line.
Thus W is not a square matrix and does not have an exact solution for the
vectors a and b. an approximated solution is necessary. This is achieved by
minimizing the errors of predicted and actual positions:

εx = Wa − x′ (3.9)

εy = Wb − y′ (3.10)
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εx and εy are the vectors of the differences of the map coordinates. Thus the
minimum of the norm of these vectors has to be calculated

min[|εx|] = min[
√

(Wa − x′)(Wa − x′)] (3.11)

min[|εy|] = min[
√

(Wa − y′)(Wa − y′)] (3.12)

which is the least square solution for the equations (3.6) and (3.7). This least
square solution is calculated using the singular value decomposition (SVD)
which is most suitable to solve these types of equation (Press et al., 1992,
Chapter 15). A detailed description of the SVD can be found in Press et al.
(1992, Chapter 3).

The quality of a transformation depends on the number, distribution and
accuracy of the selected GCPs. This is more important for higher order poly-
nomials, but also has effects on the quadratic transformation. Therefore, a less
sensitive transformation would be advantageous.

Affine Transformation

An affine transformation is a a polynomial transformation with n = 1. The
affine equation can be noted in matrix form, analogously to the equations (3.6)
and (3.7) by modifying the matrix W and corresponding coefficient vectors a,
b:

W =









1 x1 y1

1 x2 y2

...
...

...
1 xM yM









a =






a00

a10

a01




 b =






b00

b10

b01






The solution of this equation is also obtained by using the SVD. To get a
better understanding of the affine transformation, it can be written as follows:

(

x′

y′

)

=

(

a00

b00

)

+

(

a10 a01

b10 b01

)(

x

y

)

(3.13)

From this equation, the influence of the different coefficients aij could be iden-
tified as different image transformations: The coefficients a00 and b00 describe a
simple translation, and the remaining coefficients are responsible for a shifting,
rotation, scaling and shearing of the image. Three of these transformations
are sketched in Figure 3.2. Since only these transformations are applied, the
affine transform is less sensitive to the distribution and the errors of the GCPs.
Thus, the number of GCPs can be limited and an error of a single GCPs is
less relevant.

The scale-rotate-translate (SRT)-Transformation

Assuming the shear has been compensated by the geometric correction, it
is possible to neglect it in the transfromation. By omitting the shear, the
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Figure 3.2: Example for the results of an affine transform.

transformation equation is equal to the original transformation of the satellite
data in equation (3.1):

(

x′

y′

)

=

(

cos(α) sin(α)

− sin(α) cos(α)

)(

(x − xc)sp

(y − yc)sp

)

+

(

x′

c

y′

c

)

A comparison of the parameters with the affine transformation in equation
(3.13) allows to assign the affine coefficients to the rotation angle, translation
and scale:

c1 = a10 = b01 = sp cos(α) (3.14)
c2 = −b10 = a01 = sp sin(α) (3.15)

a00 = xc − x′

csp cos(α) − y′

csp sin(α) (3.16)

b00 = yc + x′

csp sin(α) − y′

csp cos(α) (3.17)

With the new parameters c1 and c2, it is possible to obtain a new transforma-
tion that only scales, rotates and translates the image. This SRT transforma-
tion has the following form:

x′ = a00 + c1x + c2y (3.18)

y′ = b00 − c2x + c1y (3.19)

Since equations (3.18) and (3.19) are not independent, a new set of linear
equations is necessary. This can be obtained by combining equation (3.6) and
(3.7), which leads to a new matrix equation:

z′ = Wc (3.20)

with the new matrix W and vector z:
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W =



















1 x1 y1 0

1 x2 y2 0
...

...
...

...
1 xM yM 0

0 y1 −x1 1

0 y2 −x2 1
...

...
...

...
0 yM −xM 1



















z′ =



















x′

1

x′

2
...

x′

M

y′

1

y′

2
...

y′

M



















c =








a0

c1

c2

b0








This equation can also be solved using the SVD. The advantage of this
transformation is that it only corrects for translational, rotational and scale
effects and therefore is less sensitive to errors than the usual affine transfor-
mation. Since the remaining distortion in the image is unknown, the three
transformations presented above have to be evaluated by using example satel-
lite images and testing sets of GCPs. This evaluation will be shown after the
description of the reference maps and the methods to determine GCPs are
presented.

Reference maps

The selection of passpoints requires accurate reference maps. Since the investi-
gation area is quite large, these maps have to be available in digital form to per-
mit an accurate localization of surface features and still be manageable. The
most accurate map for the investigation area, the Amtliches Topographisch-
Kartographisches Informationssystem (Authoritative Topographic Cartographic
Information System) (ATKIS) map providing an accuracy of ±3 m which is suf-
ficient for the selection of GCPs. However, the price of e 15 per km2 is too
high to obtain this dataset for the complete investigation area.

Nonetheless, the ATKIS data set for Schleswig-Holstein is available at the
Ecology Centre at the University of Kiel and can be used to review the geolo-
cation in that area. The licensing rules prohibited the direct use of this data
set, so the ecological institute provided a derived raster map with the spatial
resolution of TM (30 m) and LISS/3 (25 m).

For the rest of the investigation area, an inexpensive, but less accurate
alternative are the Top Karten that are available at the land survey office of
each federal state in Germany. The price for a map amount to e 40 per state
and were obtained for all states in question. The accuracy for these maps is
indicated with ±5 m, but tests with a GPS-Receiver, which has an accuracy
of 6 m, showed differences of about 40 m. Since only the Top Karten were
available for the complete investigation area, these were used to select the
GCPs.
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Figure 3.3: GCP selection, top left: clip of Helgoland from a TM image (196/022; May
9, 2000) with the chosen GCP at the old harbour, top right: corresponding clip and
GCP from the Top Karten Schleswig-Holstein, bottom: a GCP selected in the vicinity
of Schleswig. Original data: LANDSAT TM c©ESA, 2000. Distributed by Eurimage.

Selection of passpoints

GCPs must be identifiable with surface features in the satellite data. These
are generally jetties, highway intersections, railroad crossings or bridges. In
the densely populated region of Northern Germany, these are quite numerous,
although the sensor resolution limits the usable roads to those broader than
Bundesstraßen (interstate routes). The coordinates of these characteristics
were extracted from the Top Karten. Figure 3.3 shows a jetty and a highway
intersection that were selected as GCPs. The whole image has to be georecti-
fied, so the GCPs had to be distributed uniformly over the image. Figure 3.3
shows an example of GCP selections for Frame 196/022 (Schleswig-Holstein).
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GCP selection is usually performed recursively. After the transformation is
calculated, the transformation is used to determine new map coordinates from
the satellite coordinates of GCPs. If the discrepancy between original and
calculated GCP map coordinates exceeds a maximum distance, these points
are either removed or verified with the map. This new set of GCPs is used to
calculate a new transformation until all GCPs are within a postulated range.

This procedure is time-consuming and only applicable with few images.
Since a minimum of 14 GCPs are selected for every of the fifty available images,
the total number of GCPs amounts to more than 700. Therefore the recursive
method is not practicable, since it is too time consuming, and the correction of
GCPs with the map is omitted. The GCPs that do not match the postulated
distances are removed. First, the GCP with the maximum root mean square
(RMS) error for the quadratic transformation is removed. Afterwards, the
transformation is recalculated and the GCP with the maximum RMS error
for the remaining GCPsis removed. This is repeated until all remaining GCP
have a RMS error lower than 75 m. If the number of remaining GCP is lower
than 14, new GCPs have to be chosen manually. This method is performed
using the quadratic transformation only, to obtain the same set of GCPs for
all transformations.

Evaluating of the Transformations

With these restrictions for the selection of GCPs, it is necessary to identify the
most suitable of the presented transformations. Because of the large number
of images, a representative area is chosen, which has to supply most of the
properties that can cause errors in the georectification by GCPs, e.g., the
changing elevation or lack of usable surface features. The federal state of
Schleswig-Holstein is chosen as testing area. For the following reasons, the
state of Schleswig-Holstein is the best region for this purpose:

1. The most accurate map, the ATKIS road map is only available for
Schleswig-Holstein and can be used to evaluate the accuracy of the trans-
formation derived from the Top Karten based GCPs.

2. Schleswig-Holstein is surrounded by the North and the Baltic Sea, and
is therefore lacking surface features at the border regions of the satellite
image.

3. The terrain in Schleswig-Holstein covers the full range of height varia-
tions of the complete investigation area in a relatively small region. The
regions in the West are very close to sea level, whereas the regions in the
South-East have elevations up to 168 m.

4. Images for both LANDSAT Sensors, TM and ETM+ are available for
this region and since the georectification has been improved for ETM+,
this allows to investigate the differences of these sensors.
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Figure 3.4: Selection of GCPs for one complete image registration, TM image, frame
196/022 acquired on May 9, 2000. The white marks represent the chosen GCPs for this
image. Original data: LANDSAT TM c©ESA, 2000. Distributed by Eurimage.

Two different frames are available for this region, frame 196/0224 and frame
195/022 (see figure 2.6). Since frame 196/022 covers the larger area of Schleswig-
Holstein, it will be used. The selected GCPs for this frame are displayed in
Figure 3.4. They are evenly distributed over the whole land area and GCPs
were used for all images of this frame, where the satellite coordinates had to
be adapted for every image. Due to cloud cover, not all of these GCPs have
been usable for all images. To evaluate the three transformations, they have
been applied to all images and GCP sets from that frame.

Three different methods have been applied to compare the transformations:

• Comparison of the determined transformation coefficients.

• Comparison of predicted and actual position of the GCPs.

• Visual comparison of the resampled image with the digital road map
from the ATKIS data.

4Frames are always noted as path/row and images as path/row;date.
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Comparison of the Coefficients. The distortions of the images can be
estimated by comparing the coefficients for the different transformations, e.g.,
small values for the quadratic coefficient a20 would indicate that there is only a
weak quadratic distortion in x-direction. Moreover if all quadratic and bilinear
terms are close to zero, the quadratic transformation would give similar results
to the affine transformation and the latter would be sufficient to describe the
geometric distortions in the image.

In order to determine the influence of the coefficients, it is necessary to
perform a sensitivity estimation. The impact of variations on the coefficients
∆aij and ∆bij, on the variation ∆εx and ∆εy of the calculated map coordinates
can be estimated by using the equations (3.9) and (3.10).

∆εx = ∆a00
︸ ︷︷ ︸

∆εa00

+ ∆a10x
︸ ︷︷ ︸

∆εa10

+ ∆a01y
︸ ︷︷ ︸

∆εa00

+ ∆a11xy
︸ ︷︷ ︸

∆εa11

+ ∆a20x
2

︸ ︷︷ ︸

∆εa20

+ ∆a02y
2

︸ ︷︷ ︸

∆εa02

(3.21)

∆εy = ∆b00
︸︷︷︸

∆εb00

+ ∆b10x
︸ ︷︷ ︸

∆εb10

+ ∆b01y
︸ ︷︷ ︸

∆εb01

+ ∆b11xy
︸ ︷︷ ︸

∆εb11

+ ∆b20x
2

︸ ︷︷ ︸

∆εb20

+ ∆b02y
2

︸ ︷︷ ︸

∆εb02

(3.22)

Assuming the error is only resulting from one of the coefficients, ∆εaij
and

∆εaij
can be estimated as:

∆a00 = ∆εx ∆a10 = ∆εx

xm
∆a11 =

∆εx

xmym

∆a20 =
∆εx

x2
m

. . . (3.23)

∆b00 = ∆εy ∆b10 = ∆εy

xm
∆b11 =

∆εy

xmym
∆a20 =

∆εy

x2
m

. . . (3.24)

xm and ym are the maximum values for the image coordinates. Since the
transformation can be assumed to be most accurate at the centre of the image,
a realistic estimation is given by using the halved values of the image width:
xm = 3460 pixel and the halved height ym = 2980 pixel for a TM/ETM+
image.

A significant deviation for the geocoding of a satellite image is the pixel size
sp, at least for a GCP correction, since surface features can only be identified if
they are larger than the spatial resolution. Therefore, the minimum expected
errors are ∆εx = ∆εy = 30 m.

These assumptions are used to calculate the resulting deviations necessary
to result in a deviation of one pixel. The resulting values for a TM image
are listed in Table 3.1. It can be seen that the higher order terms are more
sensitive to errors in the coefficients since their values are much smaller.

This sensitivity estimation can be compared to the calculated coefficients
of the transformations for the frame 196/022. Table 3.2 shows the results
of the different transformations divided by the corresponding deviation from
Table 3.1. These values indicate the resulting deviation in pixel size. It can
be seen that:

• The quadratic and bilinear coefficients for all images are very small. Only
three values exceed the ratio of coefficient and sensitivity by more than
one.
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Table 3.1: Estimation of the coefficient variations under the assumptions of a resulting
transformation variation of one pixel (30 m for TM) and the maximum values for the
satellite coordinates, i.e. the halved width (xm = 3460 pixel) and the halved height
(ym = 2980 pixel) of a TM/ETM+ image.

∆a00[m] ∆a10[m] ∆a01[m] ∆a11 [m] ∆a20 [m] ∆a02 [m]

30 0.009 0.010 2.9E-6 2.5E-6 3.4E-6

∆b00[m] ∆b10 [m] ∆a01[m] ∆b11 [m] ∆b20 [m] ∆b02 [m]

30 0.010 0.009 2.9E-6 3.4E-6 2.5E-6

• The situation of the linear terms is similar to the two polynomial trans-
formations. The difference between quadratic and affine transformation
is less than two pixels. The difference between SRT and quadratic trans-
formation is slightly larger, which is caused by a remaining shear in the
TM data. A possible cause for this shear is the variation of elevation
in Schleswig-Holstein. This could be verified by using additional frames
from other regions, but since elevation is also present in other frames,
the affine transformation is more suitable than the SRT transformation.

• The constant coefficients are mostly within the sensors resolution. There
is an exception for the SRT-transformation in 1998. But since the centre
of rotation can be chosen freely, this does not lead to errors in the co-
ordinate transformation, which was verified by comparing the registered
images.

Summing up these results, affine and quadratic transformation leads to very
similar results with just one to two pixels difference, even for the border regions
of the image.

Comparison of predicted and original GCP-positions The above dis-
cussion only compares the results of the different transformations. Thus it is
necessary to evaluate the transformation accuracy by using the original GCPs.
This is done by comparing the original GCP map-coordinates with the coor-
dinates predicted by the transformations. Table 3.3 shows the obtained devi-

ations. The deviations are noted as RMS-error for εi =
√

ε2
x,i + ε2

y,i by using

the corresponding components of εx and εy from equations (3.9) and (3.10).
The mean ε̄ of this deviation has the size of about one pixel size for the

affine and quadratic transformations. The mean for the SRT-transformation is
larger, but still in the range of the doubled pixel size. More important for the
quality of the transformation is the maximum error εmax, which is lowest for the
quadratic transformation, but only slightly larger for the affine transformation.
The largest maximum errors are resulting from the SRT-transformation which
exceeds 130 m in two cases.
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Table 3.2: Resulting coefficients for the different transformations divided by the esti-
mated coefficient variation for a deviation of one pixel (see Table 3.1). The quadratic
and the bilinear coefficients are mostly smaller than one pixel and the linear terms for
the affine and quadratic transformation have deviations of about two pixels.

trans- ratio of coefficients
year

formation a00

∆a00

a10

∆a10

a01

∆a01

a11

∆a11

a20

∆a20

a02

∆a02

n=2 728 3236 -713 0.4 0.3 -0.8
2001 n=1 728 3237 -715

SRT 728 3238 -715

n=2 870 3236 -717 0.4 0.0 -0.8
2000 n=1 871 3236 -719

SRT 873 3237 -720

n=2 92 3236 -715 0.1 0.1 0.6
1998 n=1 91 3236 -713

SRT -637 3236 -716

n=2 621 3243 -711 -0.1 2.3 0.2
1995 n=1 623 3239 -711

SRT 623 3239 -711
b00

∆b00
b10

∆b10
b02

∆b02
b11

∆b11
b20

∆b20
b02

∆b02

n=2 6990 -716 -3236 0.4 0.4 -1.4
2001 n=1 6991 -715 -3238

SRT 6989 -715 -3238

n=2 6721 -725 -3234 0.6 1.0 0.3
2000 n=1 6718 -722 -3237

SRT 6715 -720 -3237

n=2 6659 -717 -3238 -1.6 1.0 0.4
1998 n=1 6659 -717 -3239

SRT 5002 -716 -3237

n=2 7025 -712 -3239 1.0 0.2 0.3
1995 n=1 7026 -712 -3239

SRT 7023 -711 -3239

The error of the transformation can also be estimated by the quantity of
GCPs with a large deviation of predicted and GCP map position. As maximum
deviation 75 m, i.e, or two and a half TM pixel, have been chosen. Except for
the year 2000, this quantity of GCPs is the same for the affine and quadratic
transformation. For both transformations, there is mostly only one GCP which



52 CHAPTER 3. PREPROCESSING

Table 3.3: Statistic, showing the RMS-errors εi between predicted and actual map
position comparing the different transformations. ε̄ is the mean and δε the standard
deviation of all coordinate RMS-errors. Also displayed is the number n of available
GCPs, the number nε>75m of ε larger than 75 m and the maximum deviation εmax.

trans-
sensor year

formation
ε̄ [m] δε [m] εmax [m] n nε>75 m

n=2 31.1 13 67.0 20 0
ETM+ 2001 n=1 31.1 12 72.1 20 0

SRT 33.6 12 89.0 20 1

n=2 31.5 15 72.4 19 0
TM 2000 n=1 33.3 15 97.5 19 1

SRT 50.9 17 139.2 19 1

n=2 26.3 13 55.7 16 0
TM 1998 n=1 28.0 14 59.4 16 0

SRT 52.1 15 87.7 16 2

n=2 33.0 16 100 19 1
TM 1995 n=1 33.6 12 112 19 1

SRT 41.5 15 137.1 19 1

exceeds 75 m. For the SRT-transformation, there are one or two GCPs with
this characteristics. The comparison of the statistics also shows that the affine
and the quadratic transformation yields very similar results, which confirm the
results of the coefficient comparison.

Validation with the ATKIS road-map Apart from the direct comparison
of the transformation with the selected GCPs, it is necessary to compare the
results of the image-to-map transformation with an additional digital map
since the transformations are adjusted to the GCPs and not to the map itself,
i.e., the transformation might be optimized for the coordinates of the chosen
GCPs, but not necessarily give a correct transformation for the map itself.

Since the ATKIS road map was transformed to a geocoded raster image, the
satellite image has to be converted to this format. Therefore, the satellite image
was resampled using the nearest neighbour method (Schowengerdt, 1997). An
example of a resampled map-based image is shown in figure 3.5 for the image
196/022; May 7, 2000. The image was geocoded to UTM coordinates in zone 32
for the northern hemisphere. A detailed description of this coordinate system
can be found in Snyder (1984, Chapter 8).

The image is too large to recognize different small scale features in the
shown representation Figure 3.6 shows four image clips from different regions of
this image. The clips are displayed in false colour representation using channels
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Figure 3.5: Example for a geocoded TM image. The image was acquired on May 9,
2000. The map system is UTM Zone 32 North and the left axis shows the northing and
the lower axis the easting values. The easting and northing values are noted in Meters.
Original data: LANDSAT TM c©ESA, 2000. Distributed by Eurimage.

3, 4 and 5 of the TM sensor. This representation allows to distinguish different
field crops and therefore allows to identify roads with a width smaller than the
size of a pixel since the field borders also indicate these roads. Roads broader
than the pixel size appear in blue or green in Figure 3.6, which can be seen in
the original clips on the left. The roads from the ATKIS road map are overlaid
as white lines in the other clips. These comparisons indicate a good agreement
with the clips 1 and 4 for all transformations. The results for the clips 2 and 3
show a deviation of about one to two pixel for the polynomial transformation,
whereas the result for the SRT-transformation shows larger deviations with
about the size of four pixels. These results correspond well to the previously
discussed deviation obtained by evaluating the GCPs. Moreover, the difference
between affine and quadratic transformations are minimal.

Conclusion The TM images can be geocoded by all of the three transfor-
mations with an accuracy acceptable for this study. The affine and quadratic
transformations are produce mostly identical results, thus it is not necessary
to use the quadratic transformation to correct the remaining distortions in
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Figure 3.6: Validation of the polynomial transformation with the
ATKIS street map. The clips are taken from different parts of a
TM image (196/022; May 7, 2000) to show the quality of the
different transformations. In the left column, the original images
are displayed as a false colour image with the channels 4, 5 and 3.
The second, third and right-most columns show the result of the
GCP correction using 2nd order polynomials, 1st, and SRT trans-

formations, respectively. The different positions of the clips are shown on the right map.

The correction using the polynomials for n = 1 and n = 2 yields very similar results,

whereas the SRT-Method shows larger differences for the eastern side of the satellite

image. Original data: LANDSAT TM c©ESA, 2000. Distributed by Eurimage.
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the satellite image. Furthermore, the affine transformation is less sensitive to
small errors in the coordinates of the selected GCPs.

The SRT-transformation shows a higher deviation for the obtained map
coordinates. This indicates that there is still a shear in the geometrically cor-
rected data, which might be induced by the elevation in the eastern regions
of Schleswig-Holstein. This could be evaluated by using an additional DEM
which was not available for this study. Therefore, the most suitable trans-
formation is the affine transformation which is therefore used to obtain the
coordinate transformation for the remaining data.

3.1.4 Image-to-Image Registration

The classification algorithm and the atmospheric correction require the iden-
tification of corresponding pixels in different images. These images originate
either from equal or overlapping frames. If the image-to-map transformations
f1 and f2 for both images are at least as accurate as the pixel size, corre-
sponding pixels can be identified by using these transformations. The map
coordinates (x′

1, y
′

1) and (x′

2, y
′

2) of two corresponding pixels should be in the
range of the sensor’s spatial resolution, and thus corresponding pixels can be
identified by using the image-to-map transformations and the image coordi-
nates (x1, y1) and (x2, y2):

(x′

1, y
′

1) = f1(x1, y1) ≈ f2(x2, y2) = (x′

2, y
′

2) (3.25)

Unfortunately, the image-to-map transformations are not accurate enough for
this relation. Hence, an additional method has to be applied to adjust the
transformation.

As discussed in section 3.1.3 the remaining location errors in the images
are quite small compared to the size of the image. Therefore, most of these
deviations can be compensated for smaller regions by a simple translation.
Assuming (so, to) to be the optimal translation vector, the registration of the
second image to the map coordinates of the first can be expressed by

(x′

1, y
′

1) = f2(x2, y2) + (so, to) = (x′

2 + so, y
′

2 + to) (3.26)

Therefore a method is necessary to calculate the translations for different parts
of the image.

As stated above, the accuracy for the GCP-based image-to-map transfor-
mations is about 75 m, which equals 2.5 TM pixels. An error in applying both
transformations can result in an overall deviation of about 150 m or five pixel.
Although this is not sufficient for the identification of corresponding pixels,
the transformations are accurate enough to identify corresponding regions or
image clips in both images. With the above assumption that the local devi-
ation of the image clips is merely a shift, the vector (so, to) can have values
ranging from -5 to 5 pixels in x and y direction.
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Figure 3.7: Comparison of original (top) and Sobel/Gradient (bottom) filtered clips of
the images 196/022; May 9, 2000 (left) and 196/022; May 2, 2001 (right). Top: False
colour images of channels 4, 5 and 3. Nearly all agricultural crops have changed from
2000 to 2001, which is indicated by the different colours. Bottom: False colour repre-
sentation of the Sobel filtered radiance for the same image clips. The field boundaries
are clearly visible. Some field boundaries have changed in between the years, but the
majority remains unchanged. The displayed region is located south of the city of Eck-
ernförde. Original data: LANDSAT TM c©ESA, 2000 and LANDSAT ETM+ c©ESA,
2001. Distributed by Eurimage.

Gradient/Sobel Filtered Images

In order to identify the solution for (so, to), it is necessary to quantify how well
two images match. This requires the images to be comparable.

The satellite images used in this study are acquired in different years and
the agricultural crops have changed most likely in between the years due to
crop rotation (see Section 2.1.3 (p. 22)). This is demonstrated in Figure 3.7 by
different colours in the upper image clips, which indicate the changes of crops
cultivated on the field from 2000 to 2001. Therefore, the reflectance of similar
fields usually changed in between the years and makes it difficult to compare
the original images directly for agricultural regions.

Unlike the surface types of different fields, the field borders are seldom
changed. The field borders can be determined by a gradient filter (Castleman,
1996). The lower clips in Figure 3.7 show a gradient image, calculated by
applying the Sobel operator5 to the radiance of each of the three channels. The
results obtained for the three channels are displayed using the same false colour

5A Sobel operator is only one type of several possible gradient operator, nonetheless,
here, the term gradient image is used synonymously with the term sobel-filtered image.
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representation as in the original image clips. All field boundaries are clearly
visible. The different colours of the edges indicate that all three channels have
to be used in order to identify the borders of all fields with different crops.

The comparison of the gradient images clips in 3.7 shows that the majority
of edge shapes remained unchanged in between 2000 and 2001. But since
the colours of the edges are different for equal edges, it is necessary to use
the gradients of all channels. Therefore the mean G of the three gradients
for channels 3, 4 and 5 is calculated for each pixel. This provides coordinate
dependent gradient images for each image.

Correlation of Image Clips

Two gradient images from different years, like the ones displayed above, can
be compared directly. A commonly used method to judge the quality of image
matching automatically is the correlation method (Schowengerdt, 1997). This
method uses the correlation coefficient γ which describes the degree of linear
dependency between two data sets. In image processing, correlation is usually
applied to corresponding image values, where higher correlation indicates bet-
ter matching. In this case the mean gradients G1(x

′, y′) and G2(x
′ + s, y′ + t)

with the translation (s, t) are used as data sets:

γ(s, t) =

∑

x′

∑

y′

[G1(x
′, y′) − Ḡ1][G2(x

′ − s, y′ − t) − Ḡ2]

√∑

x′

∑

y′

[G1(x′, y′) − Ḡ1]2
∑

x′

∑

y′

[G2(x′, y′) − Ḡ2]2
(3.27)

The highest value for the correlation γ(so, to) indicates the best solution for
the shifting vector (Gonzalez and Wintz, 1987, Chapter 8).

Complete Frame Registration

The above described correction by a translation cannot be applied to the com-
plete satellite image since the distortions cannot be described for the complete
image. Nonetheless, the correction by a translation can be applied to correct
smaller clips of the image. In order to register a complete frame, it is necessary
to identify different shifting vectors for different regions of the image. In each
of these regions it is necessary to identify image clips in both images, which
allow to apply the correlation of the gradient images.

A simple solution is to partition the image according to the shortest dis-
tance to a GCP. This divides the image into as many regions as there are
GCPs. This method is suitable because:

• The surface features selected as GCPs are the same for all images and
allow to identify corresponding regions.

• The region in the vicinity of a GCP is structured, which is also necessary
for the selection of GCPs.
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• The image can be divided into at least 14 regions with different shifting
vectors. This is sufficient if the different shifting vectors from neighbour-
ing regions do not change by more than one pixel.

• The correlation is not possible in cloud-covered image clips, which is also
valid for the selection of the GCPs. Therefore, regions with a GCP are
usually cloud free or only partly cloud-covered.

• The selected region must be present in both images; This is true if corre-
sponding GCPs appear in both images. This is important for overlapping
frames, where only the overlapping region is present in both images.

With this method, the image is divided into a number of regions that de-
pends on the number of selected GCPs. For each GCP, the following steps are
performed:

1. GCPs are identified that are present in both images.

2. An image clip of 50×50 pixels with the corresponding GCP in the centre
of the clip is selected in the first image.

3. A second clip with the doubled size is selected in the second image.

4. The mean gradients G1 and G2 are calculated with the Sobel operator
for both clips.

5. The region is compared to the cloud cover dataset for both images. If
clouds are present, the corresponding values for G1 and G2 are set to 0
for cloudy pixels in both clips.

6. Equation (3.27) is calculated for s and t ranging from -15 to 15 in steps
of one for the gradients of the clips. In order to use only steep edges and
mask out clouded regions, only pixels with G > 0.75(max(G)−min(G))+
min(G) are used.

7. The combination of s and t with the highest value for γ(s, t) is selected
as shifting vector.

This is applied to all GCPs of the second image and the results of each image
are a list of shifting vectors (si, ti) where i is the number of the corresponding
GCP. The identification of corresponding pixels is obtained by adding the
calculated shift (si, ti) for the nearest GCP i to the image coordinates (x2, y2)
in equation (3.25).

Since map coordinates are not necessary for the processing of the images,
the back transformation g2 and the results of the shifting vector are used to
identify corresponding pixels in two different satellite images with the following
equation:

(x2, y2) = g2(f1(x1, y1) − (si, ti)) (3.28)
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Figure 3.8: Results of the correlation method for the complete image 196/022; July
7, 2000 (see Figure 3.4). Displayed are the components of the shifting vector, s (left)
and t (right) and the GCPs with their numbers. The image is registered to the image
196/022; May 11, 2001. GCP 3 is not used since it is outside the image acquired in
2001.

Results for the Image-to-Image-Registration

The correlation method is applied to all images available in this study. Each
image is registered to the image of the same frame of the year 2001. This is
necessary to build an invariant map (see 3.2). The results of the correlation is
used to assign a shifting vector to every pixel in the image.

The result of this assignment is shown in Figure 3.8 which displays both
components of the shifting vectors for the TM image 196/022;2000. It is corre-
lated to the image from 2001 of the same frame. The shifts calculated for the
different images are always smaller than two pixels. Additionally, the regions
that belong to different shifts are homogeneously distributed. The maximum
deviation found by applying the correlation method to the other images of the
same frame is 2 pixel. Thus, the correlation method allows to identify corre-
sponding or at least neighbouring pixels in different satellite images originating
from the same frame.

An important application of the image-to-image correction is the compar-
ison of training data of overlapping frames (see Section 4.4.1, p. 125). An
example of the translation calculated for overlapping images is displayed in
Figure 3.9. The corrected image originates from the frame 195/022 which is
adjacent to the frame 196/022. Both images are from the year 2001. The
frames overlap only in the lower left corner of the image 195/022 and thus
only some GCPs are used. Similar to the shifting vector of images from the
same frames, the deviation of the shifting vector in the case of overlapping is
also small. However, the absolute value is higher than expected though since
only a deviation of five pixels was expected.

The results of the image-to-image registration shown in the Figures 3.8 and
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Figure 3.9: Result of the correlation method for neighbouring frames. The shifting vector
is displayed for the image 195/022, May 11, 2001). It is registered to the adjacent on
the left frame (196/022, May 11, 2001).

3.9 are expedient and demonstrate that the method is working correctly. In
order to show the results of this registration directly, figure 3.10 shows a mosaic
composed of two different TM images. The squares are alternately displaying
the data and gradients from both years where the coordinates have been de-
termined by the image-to-image registration. The year 2001 is represented by
blue squares and 1995 by green squares. It can be seen that the images match
very well at the transitions edges from one square to the next one for both the
original and the gradient image.

3.2 Atmospheric Influences

As discussed in Section 1.4.2 (p. 10) the radiation reflected by the surface is
modified by scattering and absorption of gases and aerosols in the atmosphere.
Moreover, the incoming sunlight is to some extend directly reflected to the
sensor by aerosols in the atmosphere which can be seen as clouds and haze
in the satellite images. These effects of the atmosphere have to be taken into
account for an accurate interpretation of satellite images.

Applications that are based on knowledge of the surface reflectivity re-
quire an accurate correction of atmospheric influences (Thome, 2001; Moran
et al., 2001, 1992; Zhao et al., 2000; Du et al., 2002; Wrigley et al., 1992; Hall
et al., 1991). Although there are various automatic correction algorithms avail-
able (Richter, 1997), these corrections require information on the atmospheric
composition, e.g, information on temperature, humidity or liquid/ice water
content. This information is not available from the image to be classified and
has to be obtained from alternative sources like, e.g, radiosonde measurement.

Fortunately, the classification of surface types do not require such a cor-
rection, if the training data sets (see Section 4.1.2, p. 89) are taken from the
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Figure 3.10: Mosaic of channel 4 of TM from the years 2001 (blue) and 1995 (green)
for the original (left) and the sobel filtered data (right). The clips are from the frame
196/022 with GCP 19 (see Figure 3.4) at the centre. Both, original and filtered mo-
saic show a smooth transitions of the structures from the rectangles of the different
images. Original data: LANDSAT TM c©ESA, 1995 and LANDSAT ETM+ c©ESA,
2001. Distributed by Eurimage.

image to be classified (Song et al., 2001). This procedure compensates for all
atmospheric influences that are constant regarding the complete image, i.e.,
Rayleigh-scattering and absorption by homogeneously distributed gases like
oxygen or carbon dioxide (Liang et al., 2001, 2002). The remaining influences
in optical remote sensing are scattered by aerosols and molecular absorption
by variable gases like ozone or water vapour.

Ozone mainly absorbs radiation of shorter wavelengths (0.4 to 0.7 µm) (As-
rar, 1989) and thus affects the TM channels 1 to 3. The first two channels
are not used for the classification of canola (see Section 4, p. 87) but since the
third channel is influenced, the classification algorithm can generate incorrect
results if ozone is not homogeneously distributed in the satellite image. Fortu-
nately, the frame sizes of TM and LISS are quite small and ozone only shows
small day-to-day variations (Tanré et al., 1992) which implies also a spatial
homogeneous distribution.

The third channel is necessary and may be affected by ozone (Asrar, 1989).
According to Tanré et al. (1992); Forster (1984) ozone is homogeneously dis-
tributed in comparison to the size of a AVHRR image and since this has five
times the size of a TM image, this is also valid for TM and LISS/3.

Absorption by water vapour affects the NIR and MIR wavelengths and
therefore the channels 4,5 and 7 of TM (Asrar, 1989). Channels 4 and 5
are used for the classification and therefore the classification may be affected.
The variations of the water vapour concentration are on a much larger scale
than the sensor resolution and most images were acquired during fair weather
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conditions in which the water vapour is distributed homogeneously. Therefore
the correction or water vapour influences is generally not necessary although
it might affect the classification if the training data sets are located far from
the region to be classified or in cloudy regions. These special cases will be
discussed in Section 4.2.3 (p. 116).

Ozone and water vapour are usually distributed homogeneously compared
to the size of a TM or LISS/3 image. Still, it is possible that these gases
change within one image and impede a correct classification. Apart from the
concentration of the gases, the influence on the classification also depends on
the classification method and the surface type to be observed. In this study,
no misclassification was found that could be linked to variations of ozone.
Nonetheless, it might be necessary to correct the influence of ozone absorption
for a different set of satellite data or the classification of other plants. In this
case, it is possible to use information on ozone concentration, that are available
through additional sensors like Global Ozone Monitoring Experiment (GOME)
or Scanning Imaging Absorption Scatterometer for Atmospheric Cartography
(SCIAMACHY) or climatology data (Erbertseder et al., 1999; Ouaidrari and
Vermote, 1999).

Water vapour definitely has an influence on the classification, but variations
on the small scale of the satellite data are linked to the formation of clouds
(Richter and Lüdeker, 1999) and can therefore be corrected with the cloud
algorithm.

In contrast to the gaseous components of the atmosphere, aerosols can
be distributed very inhomogeneously and have a larger effect on the measured
radiance than the gaseous components of the atmosphere. Therefore they have
to be discussed in detail.

3.2.1 Influence of Aerosol Scattering on Satellite Images

Aerosols are suspended droplets or particles that can scatter or absorb incom-
ing sunlight or light reflected by the surface. Clouds and cloud shadows are the
most obvious influences of aerosol scattering on optical remote sensing data.
The aerosols responsible for clouds are water droplets or ice crystals, which are
the most common aerosols in the atmosphere. Another aerosol is dust which
is rarely observed with the necessary concentration to affect the classification
in central Europe, but has to be taken into account for arid regions.

The simplest way to take clouds into account is to use only cloud free
images. This is not possible because the number of available images in the
period suitable for canola detection is limited (see Section 2.1.3, p. 22). Besides
small or thin clouds often are not visible in the preview image (quicklook) used
to select and order the suitable full resolution images from the satellite data
provider. Therefore a number of partly cloud-covered images have to be used
as well and it is necessary to identify clouds in the images.

This can be dealt with by masking out partly cloud covered regions com-
pletely, but more desirable is an accurate cloud identification since it allows to
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Figure 3.11: Example for a clouded image (frame 196/022; May 4, 1998). The image
clips on the right side of the figure show an enlargement of two different region (marked
by the red rectangles). The upper clip shows a number of cumulus clouds and their
shadows and the lower clip a hazy region. Original data: LANDSAT TM c©ESA, 1998.
Distributed by Eurimage.

use the satellite images more efficiently.
Figure 3.11 shows an example of a partly cloud-covered TM image 196/022;

May 4, 2000. The two image clips on the right side illustrate the effects
of different clouds. Since the influence on the classification depends on the
type of cloud influence, it is convenient to distinguish three classes of cloud
influences: thick clouds, cloud shadows and haze. These three classes have the
following characteristics and effects on a surface type classification:

Clouds: Here, clouds are layers of aerosols, that are opaque, thus it is not
possible to get information from the earth surface underneath (see the
upper right clip in Figure 3.11). This has no effect on the classification
itself since the spectral signature of clouds is quite distinct from that of
canola and other plant covers. Nonetheless, it is necessary to get obtain
the size of the area that is not accessible by the sensor since there might
be some canola in these areas.

Cloud Shadow: Cloud shadows are directly related to clouds, since clouds
scatter a large part of sunlight on its way to the surface (see the upper
right clip in Figure 3.11). A classification in shaded areas is still possible,
but requires a different set of training data sets or an adaption of the
known training data sets. Regarding a whole image, the parts of shaded
areas can be neglected and the improvement with such an adaption is
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not worth the effort. Therefore cloud shadows will be treated similarly to
clouds as regions, where classification is not possible. Along with clouds,
their extent still has to be measured.

Haze: Haze refers to thin clouds that are mostly transparent (see the lower
right clip in Figure 3.11). Usually haze in TM images results from high
clouds or mist. The influence of haze depends on the wavelength: the
shorter the wavelength, the stronger is the influence on the signal received
by the satellite sensor. A simple method to minimize the influence of
haze is to use only the bands with longer wavelength. However, even
for longer wavelengths, there is still some influence left that can affect
the classification results, which will be discussed in detail in Section
3.2.4 (p. 71). Therefore, haze has to be detected and quantified for the
detection of canola, even for a single image classification.

Consequently, the image classification requires methods to identify these three
classes. The following sections describe the methods used to identify cloud-
covered and shaded regions in the images and build masks for cloud-covered
and shaded pixels in the satellite data. These masked pixels are not used for
a classification. Besides these masked out pixels another mask is created for
pixels that are haze-covered. These pixels are still used for the classification
but the effect of the haze is quantified and considered for the classification.
The method used to quantify this effects is presented here. Its correction is
discussed later in Section 4.2.3 (p. 116).

3.2.2 Cloud Detection

The properties that allow to identify clouds with multispectral sensors are the
high reflectivity in the VIS, NIR and MIR part of the spectrum and the low
cloud top temperature (Mölders et al., 1995). These properties allow to build
two kinds of masks, a bright mask which is constructed from the bright pixel
and a cold mask which is derived from the cold pixels in a satellite image. A
combination of these two masks can delineate clouds.

Bright Mask

Clouds have a height reflectivity in the VIS, MIR and NIR part of the spec-
trum, since the cloud particles, i.e., ice crystals and small water drops, strongly
scatter light at these wavelengths. Thick clouds scatter the main part of the
radiation back into space and appear bright in the satellite image. Since the
scattering is mainly Mie-scattering (see Section 1.4.2, p. 11) the amount of
scattered light is independent of the wavelength. This is illustrated in the left
two image clips in figure 3.12. The white colour of clouds in both clips demon-
strates the high reflectivity of the clouds for all channels at these wavelength.
Therefore a first criterion for a clouded pixel is the brightness. Channels 3
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Figure 3.12: Example for the effect of cloud cover in different channels. Left: true colour
image clip of the channels 1 (blue), 2 (green) and 3 (red). Middle: false colour image
clip of the channels 4 (NIR), 5 (MIR) and 7 (MIR). right: channel 6 (TIR). The two clips
on the left illustrate the higher sensitivity to clouds for the shorter wavelength. The right
clip demonstrates the possibility to detect cold surfaces by using the thermal infrared
channel of the TM sensor. Original data: LANDSAT TM c©ESA, 2001. Distributed by
Eurimage.

Figure 3.13: Example for the cloud detection. Top left: original cloud-covered clip of
a TM frame (196/022;2001) from Eastern Germany near the Baltic Sea. Top right:
mask of all pixels brighter than the thresholds for channel 3 and 4 of TM. Bottom left:
cold mask derived from the TIR band of TM by masking out all pixels colder than the
temperature threshold. Bottom right: final cloud mask created from Bright and Cold
mask. Note that neighbouring pixels in a distance of 150 m (5 pixel) are also declared
as cloud-covered, bright or cold pixels. Original data: LANDSAT ETM+ c©ESA, 2001.
Distributed by Eurimage.
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(red) and 4 (NIR) are selected to identify bright pixels; each pixel that ex-
ceeds a certain radiance in both of these channels is added to the bright mask.
The upper right clip in figure 3.13 shows the result for this bright mask. This
clip, also contains other bright objects such as industrial areas with concrete.
Other surface types that exceed the threshold are sand at beaches or sand
pits. Thus another physical property of clouds is necessary for an unambigu-
ous identification.

Cold Mask

Clouds are usually higher (about 2000 m for fair weather conditions) than the
earth surface. In fair weather conditions the temperature for the atmosphere
decreases by about 0.7 K every 100 m. Therefore the top of these clouds is
about 14 K colder than the surface temperature. The temperature of the sur-
face and at the cloud top can be measured by using the TIR channel of the
TM sensor (see Section 1.4.1, p. 6). The right clip in Figure 3.12 shows the
thermal channel of a TM image. Colder regions appear darker than warmer
ones. Thus, clouds appear black in this clip and the TIR channel of TM can
be used to construct the cold mask. An example for the cold mask is displayed
in the lower right clip in figure 3.13.

As stated in Section 1.4.1 (p. 6) the emissivity in the TIR is usually about
0.98 to 1.0 for the surfaces in the study area. An exception are water surfaces
which can have an emissivity of 0.95 and below. This can result in an under-
estimation of the temperature and thus to a misclassification of water pixels.
Therefore, the cold mask is also not sufficient to identify clouds on its own and
only a combination of cold and bright masks allows to identify cloud-covered
regions unambiguously.

Bright and Cold Thresholds

The thresholds for these masks have to be determined since they depend on the
season and the geographical region. Stowe et al. (1991); Di Vittorio (2002);
Saunders and Kriebel (1988) used a statistical approach to determine these
thresholds automatically. Since the images used in this study are obtained
in fair weather conditions in the time span from spring to early summer and
from the same geographical region, it is not necessary to adapt the thresholding
values for different satellite images. Therefore these values are determined by
visual inspection of 8 partly cloud-covered satellite images.

Every pixel with a radiance in the red channel of more than 50.73 W/(m2srµm)
and a radiance in the NIR channel of more than 129.30 W/(m2srµm) is added
to the bright mask. The cold mask consists of pixels with colder tempera-
ture than 283.85 K. The temperature is determined with the TIR channel and
equation (2.3) in Section 2.2.1 (p. 31).

In order to mask out the thinner borders of the cloud and to take the lower
spatial resolution of the thermal infrared channel (see Table 2.4 (p. 30) into
account, pixels that are next to cloud-covered pixels are also added to the cloud
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mask. This is necessary since the high reflectivity of the clouds can overshine
neighbouring pixels (see Section 1.4.2, p. 11). Thus, all pixels that are in the
range of 150 m (5 pixels for TM) from a cloud-covered pixel are also declared
cloud-covered.

Cloud Mask

The final cloud mask is the combination of both masks. Each pixel that is
present in both, the cold and the bright masks is added to the cloud mask.
The lower right clip in Figure 3.13 shows an example of the cloud detection
with this method. It illustrates that all larger clouds in this image are identified
by the thresholding method. There are some smaller clouds and some cloud
borders that could not be detected. This is caused by the lower resolution of the
TIR band of TM, that averages the temperature over four regular TM pixels,
and by clouds that can be categorized as haze. These clouds are detected with
the haze detection scheme described later.

3.2.3 Cloud Shadow Detection

The determination of the cloud shadows is not possible with a simple thresh-
olding method. Nonetheless, thresholds are necessary to identify regions that
are probably cloud shadows. Similar to the cloud mask, these regions are also
delineated with two attributes. These are used to construct two further masks,
the dark and the water mask. Similar to the method used by Simpson and
Stitt (1998) for AVHRR images these two masks can be used to calculate the
projection from sunlight of clouds on the surface, i.e. cloud shadows.

Dark Mask

Cloud shadows are dark, which is also a result of the strong scattering of
light by clouds. The direct sunlight is scattered by the cloud and does not
reach the surface. The light reflected from shaded regions originates from
indirect sunlight scattered in the atmosphere. Therefore, all pixels having low
brightness are added to the dark mask (see below). An Example for the dark
mask is given in the upper left clip of figure 3.14. This dark mask still includes
a number of regions that are not shaded but are dark themselves. These regions
are dark water surfaces as seen in the upper right of this clip or dark woods,
mainly coniferous woodland, as visible in the lower left of this clip.

Water Mask

Since dark waters cover large areas of the satellite images, these surfaces have
to be identified. The water surfaces can easily be detected by the normalised
difference vegetation index (NDVI) (Asrar, 1989, p. 120). Actually, the pur-
pose of the NDVI is to quantify the photosynthesis with satellite data. But
since water has the lowest NDVI of all surface types in a satellite image, it
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Figure 3.14: Determination of the cloud shadow mask. Top left: original image as
displayed in Figure 3.13. Top right: dark mask (blue) including all pixels darker than
the threshold in channel 3. Bottom left: the water mask; all pixels with an NDVI
below the threshold. Bottom right: Final cloud and cloud shadow mask; created from
the determined azimuth angle and the calculated shifting vector d between cloud and
initial cloud shadow mask. Original data: LANDSAT TM c©ESA, 2001. Distributed by
Eurimage.

is perfectly suitable to identify water surfaces. The NDVI is the normalized
ratio of red and NIR radiance. Practically, the NDVI is sensor dependent and
the NDVI for TM can be calculated with the radiances Ich3 and Ich4 of the
channels 3 and 4:

NDVITM =
Ich4 − Ich3

Ich4 + Ich3
(3.29)

In oder to produce a water mask, all pixels with an NDVI below a threshhold
are added to a water mask. The lower left clip in Figure 3.14 shows such a
water mask.

Dark and Water Thresholds

As for the bright and cold masks, the dark and water thresholds are also deter-
mined by visual inspection of the 8 images used for the determination of the
cloud threshhold. Each pixel that has a NIR radiance below 23.70 W/(m2srµm)
is assigned to the dark mask. Pixels with a NDVITM smaller than -0.4 are as-
signed to the water mask.
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Figure 3.15: Sketch of the illumination conditions for clouds and the underlying surface.
The position of the cloud shadow depends on the incident angle of the sunlight. Left:
the distance of the cloud shadow from the cloud position depends on the sun declination
and the height of the cloud top. Middle: the direction of the cloud shadow depends
on the sun azimuth angle. The shape of the shadow is depending on the horizontal
shape of the cloud and to a lesser extent on the vertical structure. Right: Sketch of
the determination of the cloud shadow distance d. The cloud mask (yellow) is shifted
pixelwise in the direction of the sun azimuth angle ϕ on the dark mask (black) until the
number of coincident pixels (marked by the blue crosses) reaches a maximum.

Shadow Mask

The dark and water mask are used to determine an initial shadow mask by
removing the water pixels from the dark mask. This initial shadow mask still
includes other dark surface types, mostly coniferous forests. These remaining
surface types can not easily be distinguished from cloud shadows by their
spectral properties.

To separate these surface types, the cloud mask can be used, since every
cloud shadow depends on a cloud and the incoming sun light. The two left
sketches in Figure 3.15 illustrate the interrelation of sun, cloud and cloud
shadow. The cloud shadows are a projection of the horizontal cloud shapes
(see Figure 3.15) in the direction of the sun azimuth ϕ. Likewise, it can be
seen, that the distance d between cloud and cloud shadow depends on the sun
elevation Θ and the cloud top altitude hCT. For a plane earth surface this
altitude can be calculated by:

hCT = d tanΘ (3.30)

The position of the clouds are known from the cloud mask discussed above.
The sun azimuth and declination are available from in the header information
of the satellite data. Merely the information on cloud top height has to be
determined. This information can be obtained by comparing the cloud mask
and the shadow mask. Since the shapes of the cloud shadows are a projection
of the horizontal cloud shapes (Simpson et al., 2000). For nadir looking sensors
that have a small FOV, the shadow mask is primarily a cloud mask shifted in
the direction of the sun azimuth angle. Wen et al. (2001) used this to generate
a cloud shadow mask for a single TM image by determining d through visual
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inspection.
In this study, an automated solution is required; The distance d can be

determined by shifting the cloud mask over the dark mask in the direction of
the sun azimuth and counting the number of coincident pixels between these
masks. The right sketch in Figure 3.15 shows the principle of this method. The
cloud mask (yellow pixels) is shifted pixelwise in the direction ϕ. For each shift,
the number of coincidences of the shifted cloud mask (the blue grating) and
the shadow mask is counted. Coincidences are marked by blue crosses within
the pixels. The shift that yields most coincidences between shifted cloud mask
and shadow mask is the approximate distance between cloud and cloud shadow
since the cloud height is not equal for all clouds.

This method results in a cloud top height that is an average for all clouds.
This assumption is only applicable for a mostly constant cloud top height for
all clouds. More distinct values can be obtained by applying this method
to parts of the image or to single clouds but these improvements require to
solve a number of problems, e.g., the differences of cloud and cloud shadow
shape resulting from the variation of cloud top hight (see Figure 3.15) and the
overlapping of cloud shadows and other dark surfaces. Therefore and since the
shifting of the complete image gives satisfying results, this was not performed.

The final cloud shadow mask is determined by shifting the cloud mask d
pixels in the direction ϕ. The lower right clip in Figure 3.14 shows the result of
the cloud and cloud shadow detection. It can be seen that the shift d estimated
with this method is correct.

Conclusion

The above described methods allow to identify cloud-covered and shaded re-
gions for fair weather conditions. Nonetheless, there are still errors in the
detection as can be seen in Figure 3.14. These errors are:

1. Smaller clouds are not detected. For instance, the smaller clouds in the
upper left part of the clips in figure 3.14 are not identified.

2. The borders of the clouds are not always identified correctly. Even with
the 5 pixel border added to each clouded pixel, there are still some re-
maining cloud pixels (see upper right cloud in figure 3.14).

3. The shadow borders are not identified correctly since the cloud shadows
are usually larger than the clouds. The reason for this are the thinner
borders of the clouds that have a stronger influence on the shadow than
on the clouds6.

6The radiation is scattered by aerosol particels in all directions and this radiation is
missing at the surface; Only a smaller part of the scattered radiation is reflected to the
satellite. Thus thin clouds have a stronger influence on the effect from cloud shadows than
on the effect from clouds.
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The reasons for these errors are the lower resolution of the thermal infrared
channel and the influence of thin clouds on the cloud shadows. Thus the
detection of thin clouds will provide a method to correct these errors and will
be described below.

3.2.4 Haze Detection

Physically, the difference between clouds and haze results mainly from the
amount of scattering. Haze is transparent and the underlying surface is still
visible. Therefore, this surface can be classified if the effect of haze on the
radiation reflected from the surface can be compensated, i.e., the haze is thin
enough. Thus the pixels in a satellite image can be divided into three classes:

• Clear: Pixels that can be classified without any adaptation of the clas-
sification algorithm since they are only slightly affected by aerosol scat-
tering.

• Hazy: Pixels that can be classified with an adaption of the classification
algorithm to the scattering.

• Cloud-covered: Pixels that have to be excluded from a classification since
the effect of aerosol scattering is too strong for a reasonable classification.

These three types of pixels require different treatment in order to be classified.
Therefore, the haze algorithm has to accomplish the following tasks:

• hazy regions have to be identified in order to decide if a correction is
necessary or possible.

• The influence of the haze has to be quantified in order to adapt the
classification algorithm to different extents of haze influence.

Since haze is present in most multispectral satellite images, there have been
a number of approaches to identify and correct the influence of haze in these
images. The most common method is the dark object subtraction (DOS)
method (Schowengerdt, 1997; Liang et al., 2001; Holben et al., 1992). The DOS
requires dark surfaces, i.e., dark woods or deep waters. Since these types of
surfaces are limited in a satellite image, the DOS method can only be applied
to large areas with homogeneously distributed aerosols. This is usually not
the case as visible in figure 3.11. Most other haze correction algorithms, e.g.,
the pseudo-invariant features (PIF) method (Du et al., 2002), have a similar
drawback, since they are based on special surfaces which showinvariant spectral
properties and are also limited in an image. Therefore these methods are
usually only suitable for the radiometric correction for the effects of constantly
distributed aerosols in satellite images (Richter, 1996). In this study, the
radiometric correction is not of importance (see Section 3.2, p. 60). What
is required is the detection and correction of relative differences within one
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image resulting from heterogeneously distributed haze. Thus, a pixelwise haze
detection algorithm is required.

Recently, Zhang et al. (2002b) developed a new haze detection algorithm,
the HOT method which allows this type of quantification. The method has
already been applied successfully in various contexts (Zhang et al., 2002a;
Guindon and Zhang, 2002; Cihlar et al., 2003).

The Basic Concept of the HOT Method

Zhang et al. (2002b) used a radiative transfer model (Moderate Resolution
Transmittance (MODTRAN)) to simulate the measurement of the TM chan-
nels 1 and 3 for various surface types. The surface reflectances were obtained
from independent measurements by an airborne spectrometer. These surface
types are representative for landscapes in Canada and also typical for most
areas of northern Germany. Figure 3.16 shows the result from these calcula-
tions; the results of the different surface types are displayed as capital letters.
It can be seen that the various surface types are located on one line. Zhang
et al. (2002b) named this line the clear line (CL).

The effects of haze have been modeled by including clouds of different
optical depth τ into the model calculations. These results are also displayed
in Figure 3.16 indicated by numbers adjacent to the letters. These numbers
form branches spreading from the CL. It can be seen that the perpendicular
displacement is constant for a certain optical thickness. According to Zhang
et al. (2002b) the influence of haze can be quantified by this displacement that
can be calculated by the following formula:

HOT = qch1 sin Θ − qch3 cos Θ. (3.31)

Here, Θ is the angle between the clear line and the abscissa, and qch1 and qch2

the original DN values for the TM channels 1 and 3, respectively (see Section
2.2.1, p. 31).

Unfortunately, the above equation is only valid if the CL is a line through
the origin, which is not the case as obvious from figure 3.16. Thus equation
(3.31) is not applicable in this context and the interception with the ordinate,
qch3,0, has to be taken into account. Therefore a corrected HOT value, HOTc,
can be defined by transforming equation (3.31) to:

HOTc = qch1 sin Θ − (qch3 − qch3,0) cosΘ (3.32)

This modification can simply be interpreted as a shift of the CL to the origin of
the diagram in figure 3.16. Since the different sensors have different calibration
coefficients, the use of the DN values is not meaningful. Comparable results
for the different sensors can be obtained by using the radiances instead of the
DN of channel 1 and 3, thus the HOT value HOTcc used in this study has the
following form:

HOTcc = Ich1 sin Θ − (Ich3 − Ich3,0) cos Θ. (3.33)
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Figure 3.16: Schematic diagram of the simulation results performed by Zhang et al.
(2002b) for various surface types and haze conditions. The axes show the simulated DN
values qch1 and qch3 for the TM Channels 1 and 3 (see Section 2.2.1, p. 31). Under clear
conditions, the various surface types (indicated by the capital letters) are located on the
Clear Line named Clear-sky Vector in this diagram. The optical depth of the clouds has
been varied between 0 and 6.7 in 18 equal steps (indicated by the numbers adjacent to
the capital letters) at a wavelength of 0.55 µm (adapted from Zhang et al., 2002b).

Application to Satellite Data

The theoretically determined relation between the CL and the radiance of the
various surface types has to be verified with real satellite data, mainly since
the model results are only based on a limited number of surface types. In addi-
tion, this is necessary since there are possibly other effects of the atmospheric
constituents on the radiation such as the modelled aerosol scattering. Zhang
et al. (2002b) performed this for various TM images in Canada. They selected
haze-free regions in these images and calculated the correlation γ between both
channels. This correlation was at least 0.87 but generally above 0.9. This con-
firms that the radiances for channels 1 and 3 are linearly dependent for the
majority of surface types and are thus located on the CL.

Another result from these calculations was that Θ is not constant for all
images but varies from image to image. Therefore, this parameter has to be
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adapted for every image. This done by selecting haze and cloud-free regions
in the images and using these cloud-free pixels to obtain the CL and Θ with a
linear regression.

As stated above, the HOTcc value also depends on Ich3,0. This was not
taken into account by Zhang et al. (2002b), yet results from calculations in
this study (see below) show that this is mandatory.

Since the surface types in northern Germany might differ from the ones
in Canada, the HOT method has to be validated for this study. Figure 3.17
shows three scatterplots for the radiance of channels 1 and 3 of all pixels
from a mostly haze and cloud-free TM image. The upper diagram in Fig-
ure 3.17 shows a scatterplot for all pixels of the image 196/023; May 11, 2001.
The majority of pixels show the expected linear dependency for the radiances.
Nonetheless, there is a branch in this diagram that is not in agreement with
the CL. Therefore, at least one surface type is not located on the CL. This
surface type can be identified as flowering canola by anticipating the results of
the canola classification in Section 4 (p. 87) which is also confirmed by the data
shown in Figure 3.19. In this figure pixels of canola fields have negative HOT
values where regions with negative HOT values can be identified as flowering
canola fields. Further proof is given in the two lower diagrams of figure 3.17, in
which the canola pixels are separated from the pixels with other surface types
with the aid of the algorithm. The left diagram shows the canola pixels and
the right one the non-canola pixels. From these diagrams it is clear that the
branch in the upper diagram results from flowering canola.

The influence of flowering canola has to be taken into account for the
selection of the training data set. Pixels of flowering canola have to be excluded
from the determination of the CL, since the canola pixels influence the linear
regression. This is be done by applying the canola classification on the training
regions for the HOT method which is possible since the classification of canola
is reliable in clear sky regions.

Selection of Training Data Sets

Zhang et al. (2002b) simply used haze and cloud free regions in the image
that were selected by visual inspection. Figure 3.18 shows two examples of
rectangles that are used to calculate the parameters for the CL. Similarly,
rectangular cloud-free regions are selected for all images available in this study.

Since flowering canola does not satisfy the CL condition, pixels from this
surface type have to be excluded from the training data set. This is accom-
plished by the classification algorithm described in Section 4 (p. 87), which
can be applied to clear sky regions without problems.

The parameters Θ, Ich3,0 and the correlation coefficient γ are calculated for
all images with a linear regression between the radiance of channel 1 and 3
for all non-canola pixels in the cloud-free rectangles. Table 3.4 displays the
range for the determined parameters. The correlation is always higher than
0.9, which is higher than the correlations calculated by Zhang et al. (2002b).
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Figure 3.17: Scatterplots for the mostly cloud free image 196/023; May 11, 2001. Note
that the number of pixels is displayed on a logarithmic scale. Top: Scatterplot of the
radiances Ich1 and Ich3 for all pixels; observe the small branch pointing upward of the
scatter cloud. Bottom left: Scatterplot for the radiances of all pixels that have been
identified as canola (see Section 4, p. 87). Bottom Right: Scatterplot for the radiances of
all remaining pixels. The lines display the pixels of equal HOT values; HOT= 0.0 for the
CL, HOT=3.5 for the haze-covered HOT threshold and HOT=9.8 for the cloud-covered
threshold. Note that the CL (HOT=0) displayed in all plots is calculated excluding the
canola pixels.
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Figure 3.18: Example for the training data set selection for the HOT method. The blue
rectangles represent the areas chosen to determine the CL. Left: image 193/023; May
13, 2001. Right: image 194/023; May 12, 1999. Original data: LANDSAT TM c©ESA,
1999 and LANDSAT ETM+ c©ESA, 2001. Distributed by Eurimage.

Important for the comparability of the haze detection in different images
is the error of the HOT value caused by neglecting Ich3,0. If Ich3,0 is constant
for all images, the results of the original method by Zhang et al. (2002b) can
be compared since the error for the HOT value is constant for all images. As
obvious from Table 3.4, the value of Ich3,0 shows a large range, which can result
in an error of about 25 and as the threshold chosen for the identification of
haze and cloud-cover is merely 3.2 and 9.8 (see below), this parameter has to
be taken into account.

Table 3.4: The minimum and maximum value for angle Θ and interception, Ich3,0, of
the CL with the ordinate and for the HOT method. Also displayed are the values for
the correlation coefficient γ. Note the large range for Ich3,0.

Min Max

Θ 54.2◦ 60.3◦

Ich3,0 −55.1 −29.3

γ 0.91 0.98

The remaining parameter, the angle Θ shows a variation that is comparable
to the results from Zhang et al. (2002b). According to them this variation is
the result of scattering from aerosols, which are distributed homogeneously
in the image. Also likely is the influence of the gaseous absorption of water
vapour and ozone. In particular ozone may have an effect on the angle Θ since
it mainly absorbs radiation measured by Channel 3 of TM but this requires
further investigation.
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Result of the HOT Method

With these adjustments of the training data set and equation (3.33), the HOT
value can be calculated for the available data. Figure 3.19 shows an example
for the application of the HOT method. Displayed are images of the HOT value
(top), the true colour composite (bottom left) and the false colour composite
(bottom right) of a hazy region for the clip near Braunschweig.

The HOT value in the upper image allows to identify cloud and hazy re-
gions and to quantify the modification of the signal by aerosol scattering. For
instance, the cloud-covered region on the left of the clip can be identified by
HOT values above 9.8. The thinner fringe regions of this cloud and the thinner
clouds at the bottom of the clip shows, that the HOT values can be identified
if they are in the range of 3.5 to 9.8. Note that the HOT method is capable of
detecting haze-cover that is barely visible in the true colour composite, e.g.,
the vertical thin cloud at the bottom of the clip, whose extension to the centre
of the clip is only visible in the HOT value image. Also remarkable is the
vertical contrail on the left of the clip, which can also be identified with this
method. A similar result can be seen in the diagrams displayed in Figure 3.20.
The upper diagram shows the HOT values in a scatter plot of the radiances Ich1

and Ich3 of the same region. The effect of haze and cloud-cover is clearly visible
in this diagram by the increasing spread of the scatter cloud with increasing
brightness of the radiances for both channels. This shape of the scatter cloud is
expected for cloud-covered regions from the model calculations by Zhang et al.
(2002b) (see Figure 3.16) and is confirmed by a comparison with the lower
diagram in that figure that shows a scatter plot from a cloud-free region which
demonstrates the linear dependency that is predicted for clear sky regions.

An additional example is displayed in Figure 3.21 that shows the HOT value
and the true colour representation for a region near the Baltic Sea. In this clip,
haze and cloud-cover show the same range of HOT values as in Figure 3.19.
For instance, the small thin cloud marked with the yellow circle in the right
image can be identified as haze by its HOT values. This shows that the haze
is reliably estimated by the HOT method and this result can be confirmed for
all images used in this study.

Besides the recognition of clouds, the effect of the different surface types
on the HOT value must by small compared to the effect of aerosols. As visible
in the two lower clips in Figure 3.19, the displayed region consists of typical
land surface found in northern Germany like, e.g., various types of field crops,
woods, streets and urban regions. In this image, it can be seen that most
underlying surfaces have a HOT value of about 0. Exceptions are:

• Bare soil with a HOT value below 0 which appears turquoise in the false
colour image on the bottom right.

• Settlements or industrial areas with a high HOT value, visible at the top
right of the clip as grey or white regions in the true colour image.

• Broad roads like the highway that leads from the left to the right side



78 CHAPTER 3. PREPROCESSING

PSfrag replacements

153
120

PSfrag replacements

153
120

PSfrag replacements

153
120

Figure 3.19: Top: Result of the haze detection, i.e., the HOT value calculated with
equation (3.33). Bottom: The original data in true colour (left) and false colour (right)
representation with channels 4, 5 and 3 (right). Displayed is a clip near Braunschweig
from the TM image 193/023; June 5, 1998. The upper image demonstrates that the
cloud and hazy regions are clearly separable from each other and from the clear re-
gions by the HOT value. The colour bar for the HOT value is chosen such that haze
(3.5<HOT<9.8) will appear in orange and clouds (HOT>9.8) in yellow. Moreover it
shows that the majority of surfaces have a HOT value of about 0 and thus do not in-
fluence the detection of cloud and haze. Original data: LANDSAT TM c©ESA, 1998.
Distributed by Eurimage.
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Figure 3.20: Top: HOT scatterplots of a
hazy and cloud-covered region (upper left
rectangle in the small image) which shows
data from Figure 3.19. Bottom: HOT scat-
terplot of a clear region (lower right rectangle
in the small image). The influence of haze
and clouds is clearly visible in the upper dia-
gram. The lower diagram shows the expected
linear dependency (CL) of the radiances. The
lines for the HOT threshold in both plots demonstrate the selection of clear, hazy and
cloud-covered pixels. Original data: LANDSAT TM c©ESA, 1998. Distributed by Eu-
rimage.
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Figure 3.21: Result of the haze detection for image 193/022; May 13, 2001 for an image
clip west of Stralsund at the Baltic Sea. Left: The HOT value; Right: a true colour
composite of the same clip. Note that the small hazed regionmarked by the yellow
circle in the true colour image can be identified clearly as haze. Also of interest are the
areas with negative HOT value, which can be identified as flowering canola fields by the
yellowish colour in the true colour image. Original data: LANDSAT TM c©ESA, 2001.
Distributed by Eurimage.

of the clip in Figure 3.19 and have the same colour as settlements in the
true colour image.

• Sea surfaces with a high content of sediments (not displayed in Fig-
ure 3.19).

As discussed above, flowering canola is also an exceptional surface type with
a negative HOT value. This effect is not visible in Figure 3.19 since the TM
image in Figure 3.19 was acquired in June two weeks after the flowering period
of canola in that year. This effect is demonstrated by the TM image displayed
in Figure 3.21 which was acquired during the maximum of the flowering period
in 2001. This is also visible by the yellowish fields in the true colour composite.
For this image, the HOT value is clearly negative for the canola fields visible in
this clip. Note that the strength of the flowering is not constant but changing
from field to field. Moreover, the lower HOT value of fields in hazed regions
indicate that the effect of canola flowering and aerosols on the HOT value
cancel each other.

These results demonstrate that the HOT method allows the quantification
of haze and thin clouds in TM satellite images. Thus it can be used to adjust
the classification algorithm in hazy regions and to improve the cloud and cloud-
shadow detection. Nonetheless, these two tasks require further adjustments of
the haze algorithm for automatic processing.
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Application to the Detection of Canola

As demonstrated above, the quantification of haze is possible for the majority
of surfaces in the images. Unfortunately, just the surface type that is the
objective of this project, flowering canola, is an exception. The yellow canola
blossoms have the opposite effect as haze and the HOT value decreases with an
increasing number of blossoms. This results in a negative HOT value for clear-
sky regions and a reduced HOT value for hazy regions. Since the density of
flowering is usually not known, it is not possible to retrieve correct HOT values
for this surface type directly. Thus the haze correction for the classification
algorithm requires to take surrounding pixels into account that satisfy the
CL requirement. Practically, this is only possible with a recursive solution
applying the classification algorithm. The description of this method requires
knowledge on the classification algorithm and thus will be described later in
Section 4 (p. 87). Another effect of haze might be the misinterpretation of
non-canola surfaces. Since it is possible to detect haze over the majority of
surfaces, this can be prevented. The exceptions are bare soil, settlements,
roads and some sea surfaces. These surfaces can be treated in the same manner
as flowering canola by using the HOT values of adjacent pixel to interpolate
the HOT value for these surfaces. Practically, this is not necessary since the
spectral properties of these surface types are not altered by haze in the manner
to be misinterpreted as canola (see Section 4, p. 87). Note that this might be
necessary for other types of agricultural plants.

Improvement for the Cloud Detection

Besides the quantification of canola, the haze detection can also improve the
cloud detection algorithm described in Section 3.2.2. Clouds can also be iden-
tified by their high HOT value; visual inspection of several images showed,
that a HOT value of 9.8 is a good threshold for cloud cover. This new cloud-
cover mask give better results for small clouds and for the fringes of clouds.
Nonetheless, this new cloud-cover mask can not detect thick clouds since the
radiance reflected by these clouds exceeds the intensity range for channel 1
of the TM sensor. This saturation results in an HOT value below the cloud
threshhold.

The best result for the cloud detection is achieved by combining both masks
to a new mask (see Section 3.2.1, p. 62), which allows a better identification
of cloud edges and smaller clouds but also includes thick clouds. Figure 3.22
shows a comparison of the old and new masks for the cloud detection. Five
different clouded regions have been marked by yellow circles in the upper image
of that figure; all clouds have been identified correctly as visible in the lower
image. These results show the high quality of the cloud detection.

Nonetheless, the lower image in Figure 3.22 also shows that some areas
are wrongly declared as clouds. For instance, the region left of the clouded
region marked as cloud covered is actually a village. Thus, there are surface
types left with HOT values similar to those of clouds. These surface types
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Figure 3.22: Final result of the cloud and cloud shadow detection. Displayed is a clip
of the image 196/022; May 2, 2001, south of Stralsund. Top: Original image in false
colour representation of the channels 3,4 and 5. The circles indicate clouds (yellow)
or cloud-shadows (blue) which could not be detected by the threshold cloud detection.
Bottom: Comparison of the cloud and cloud-shadow detection with the threshold (dark
yellow/blue) and HOT method (bright yellow/dark blue). It can be seen that all borders
of clouds and smaller clouds are much more accurately identified by the HOT method.
Original data: LANDSAT ETM+ c©ESA, 2001. Distributed by Eurimage.
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are mainly roads, settlements and beaches and remain mostly unchanged for a
longer period of time, usually many years. This can be exploited to distinguish
these surfaces from clouds by comparing the results of the HOT method from
a cloud free image with the one of the clouded image. The HOT values for a
cloud-free image of the same frame are calculated and every pixel that has a
HOT value above 9 and its neighbouring pixels are removed from the cloud
mask of the original image. Using the image-to-image registration described
in Section 3.1.4 (p. 55), the corresponding pixels in the clouded image can be
accurately identified and masked out.

Another surface type that is misinterpreted as cloud is the sea surface with
high sediment concentration. This surface type is not constant in time but
fortunately the sea surface itself is constant for a longer period and can be
masked out easily.

Such an improved cloud mask is also used to generate a more accurate
cloud-shadow mask. As shown in Figure 3.22 all four marked cloud shadows
that have not been detected by the threshold algorithm can be identified with
the new method. Also obvious from this figure is the necessity to remove sur-
face types with high HOT value from the cloud-cover mask since misclassified
clouds are naturally also misclassified as cloud-shadows.

3.2.5 Radiance Correction with the HOT Value

The influence of haze on the radiance can be corrected to some extent. The
largest influence of aerosol scattering on the radiation received by the sensor
results from the sun irradiance scattered by these aerosols to the sensor. This
increases the measured radiation independently of the radiation reflected by
the surface and thus is a constant radiation offset for equal haze conditions
(Chavez, 1996; Moran et al., 1992).

The DOS method (Schowengerdt, 1997) uses dark objects in the image
to estimate the amount of this radiation by observing the light reflected by
dark surfaces. Under the assumption that those dark objects reflect no or
only a small amount of radiation (i.e., have a reflectance close to zero), the
radiation originating from the dark objects must be the radiation scattered in
the atmosphere, i.e., mostly by aerosols in haze regions.

Under this assumption, the radiance at the sensor for objects with higher
reflectance is then corrected by subtracting the radiance measured over the
dark object. Originally, the dark objects are selected manually but an auto-
mated selection is possible by selecting dark object with the aid of a radiance
histograms selecting those 1 % of all pixels that are darkest (Schowengerdt,
1997).

The drawback of the DOS method is the requirement for either a homoge-
neous haze cover or a large number of dark objects, which are seldom present or
available, respectively. The improvement possible by using the HOT method
is the correction of haze independently of nearby dark objects in the image.
Similar to Zhang et al. (2002b), this is achieved by calculating histograms
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Table 3.5: Mean q̄i and dark qi,1% sensor measurement of the TM channels for different
HOT-Values.

Clear sky 3 to 5 5 to 7 7 to 9 9 to 11
Channel

qi,1% q̄i qi,1% q̄i qi,1% q̄i qi,1% q̄i qi,1% q̄i
i

[DN] [DN] [DN] [DN] [DN] [DN] [DN] [DN] [DN] [DN]

1 80 94 92 114 101 129 111 146 118 161

2 31 42 35 53 39 62 43 73 46 83

3 27 43 31 56 36 68 41 82 44 94

4 33 88 41 99 46 107 50 114 54 120

5 26 69 31 79 36 88 37 98 38 108

7 10 30 12 36 14 41 17 48 16 54

in dependence of the pixel’s HOT value, i.e., the radiance of pixels within
a specific HOT value range are used to produce a histogram. As an exam-
ple, Figure 3.23 shows the radiance7 distribution for each channel for different
HOT-value ranges. With an increasing HOT-value the distributions are shifted
to higher radiances and as expected, the shift decreases with increasing wave-
length (see Section 1.4.2, p. 11).

Table 3.5 lists the mean values for the different HOT value ranges and
confirms the observed shift of the histograms by the increasing mean values
for the distributions. Additionally listed are the mean radiances Ii,1% for the
1 % darkest pixels , which likewise show a shift to higher radiances.

The Ii,1% are displayed in Figure 3.24 and it can be seen that the HOT
value and this radiance are linearly related. This is approximated by the
linear regression of Ii,1%(HOT) and allows to define a HOT-dependent dark
radiation Id(HOT) with:

Id(HOT) = a · HOT + b (3.34)

The calculated regression lines are also displayed in Figure 3.24. With this
linear relationship, each pixel can be corrected according to the HOT value
determined by Equation 3.33. The Id(HOT) is calculated for each image to
allow a correction of the influence of haze, unless the haze cover is below
10 % for the complete image. Unfortunately, the HOT values of canola are
influenced by the flowering of canola, which has to be corrected before applying
this method successfully. This will be discussed later in Section 4.2.3 (p. 113).

7Note that the values displayed in the Table 3.5 and in the Figures 3.23 and 3.24 are the
uncalibrated sensor measurements qi. The reason for this is the easier presentation of all
channels in single diagrams. The actually applied algorithm uses the calibrated radiances
Ii.
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Figure 3.23: Histogram of TM data for different HOT values. Note that all channels are shifted to the right with increasing HOT value. This
effect is stronger for the shorter wavelengths. The histograms have been exemplarily calculated from the TM image 193/024; May 02, 2000.
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Figure 3.24: Uncalibrated sensor measurement qi,1% of the 1% darkest pixels in depen-
dence of the HOT-Value the TM Channels 1,2,3,4,5 and 7. Displayed are the regression
lines for the different channels. Note that the qi,1%(HOT = 0) has been ignored for the
calculation of the regression lines.

3.2.6 Conclusion

The method described above allows a reliable identification of clouds and cloud
shadows which is essential in order to identify the regions in the image which
allow a classification and those which do not. This information is manda-
tory for the generation of cultivation statistics. The method can be applied
autonomously. The only exception is the selection of the cloud-free training
areas for the HOT method which has to be done by a human operator.

Moreover, the haze quantification with the HOT method allows to extend
the classification to regions with inhomogeneous haze cover by correcting the
influence of haze with a method based on a histogram and the HOT values.
Thus, the satellite data can be used more effectively.



Chapter 4

Classification

Classification is the assignment of a label to regions in a satellite image con-
sisting of similar surface types. The classification method can either be based
on the reflectances of a single pixel or those of a segment. A segment is a
collection of neighbouring pixels. The assignment is usually based on the com-
parison of the pixel’s reflectances σi for each channel i = 1, 2, 3, 4, 5, 7 with
a known distribution of reflectances of several surface type classes1. In this
study, we will investigate the reflectances of canola fields and that of other
surface types classes present in a satellite image in order to decide whether
and how to distinguish the different surface type classes.

An obvious example of the different reflectances from surface type classes
is the yellowish colour of flowering canola. In principle, this could be used
to identify canola fields with a simple threshhold algorithm. Unfortunately,
canola does not show a constant flowering over the complete image and even
within fields there can be variations not to mentrion satellite images from
acquired earlier or later than the flowering of canola.

Therefore, a more sophisticated method is necessry which also takes possi-
ble vaiations in canola fields into account (Colwell, 1983, Chapter 18). More-
over, it is important to get a comparison to the variations of other surface type
classes.

Agricultural plant are of special interest in this context and their reflectances
will be investigated with the Quillow mapping data set (see Section 2.2.2, p. 34).
This data set provides information on the crops planted in an area of 20,000
ha in the federal state of Brandenburg, in particular the field edges and the
crop type grown. This information will allow to determine the radiances re-
flected by fields of the most common agricultural plants in Northern Germany
for three TM images from the years 1999, 2000 and 2001, taken at different
growth stages of canola. Besides a first investigation of the separability of
agricultural plants, this discussion will show that not all TM channels are nec-
essary to separate canola fields from fields of other agricultural plants in a TM
or LISS/3 satellite image.

1In satellite remote sensing, one generally speaks of surface types classes. These describe
a collection of similar surface types or surface type mixtures

87
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The quality of crop type identification depends on the classification algo-
rithm used. The commonly used MLC is applied to the data. The results are
evaluated with the Quillow mapping data set and provide a first quantitative
estimation of the separability of classes (Richards, 1986, Chapter 10) and the
expected classification accuracy.

Although the MLC is common used in surface type classification, another
classifier, the MDC, is more suitable in this study since it requires only train-
ing data for one class, i.e., the canola class, whereas the MLC requires training
data for all classes. But since the MDC is not as accurate as the MLC, the re-
sults have to be improved after a first classification by combining neighbouring
classified pixels to segments and using the statistics of the segment’s radiances
to perform region growing and to decide if the segment really is canola. The
segmentation also allows to vectorise the data, in order to reduce the amount
of data and to obtain additional information on the canola fields, e.g., the
orientation with respect to the main wind direction.

As discussed before the classifier has to be adapted in haze covered regions
of the images. This is achieved by a histogram shift based on the HOT method
(see Section 3.2.4, p. 71). The variation of reflectivity during the canola flow-
ering is compensated by an adaption of the classification algorithm. This is
necessary to achieve a homogeneous quality of accuracy over the complete
satellite image.

Finally, the classification has to be applied to all available images which
requires an automated selection of training data from neighbouring fields and
the selection of a priori training data sets for years without ground truth data
are available. The results of the complete classification are then compiled to
global data which are used for further studies on the acreage of canola. A
selection of these will be presented in Chapter 5.

4.1 Spectral Properties of Surfaces in North-

ern Germany

The reflectance represented in a single pixel is usually a mixture of reflectances
of various materials. Thus, a surface type class in a satellite image does not
represent one specific material but rather a typical mixture of materials. Such
surface type classes generally depend on the sensor’s resolution: Red roofs can
be a surface type in an aerial photograph but not in lower resolution satellite
data. An adequate label for a corresponding TM data surface type class might
be settlement or urban.

In general, the reflectances of surface type classes are determined from the
image. Moreover, the reflectances are seldom constant in time, predominantly
because plant cover is a part of most of these surface types classes. The
reflectivity of plant cover depends on the growth and health state of the plants.
Nonetheless, the reflectances can be assumed to be constant for one TM image,
since the growth stages of plants can be assumed to be comparable within one
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image. In order to distinguish different surface type classes by their spectral
reflectances, the reflectance of the various surface type classes in Northern
Germany have to be discussed.

4.1.1 Surface Types in Northern Germany

Potentially, numerous surface types classes are distinguishable with TM or
LISS/III and it is difficult to identify them all. Nonetheless, most surface
types have reflectance properties quite distinct from canola since they contain
less vegetation, such as urban areas, or are much darker, such as woods and
waters. Moreover, some surface type classes can also be distinguished by their
shape (roads) and extent (villages, fields and woods). Taking this into account,
the most likely surfaces types to be mistaken for canola are fields of other
agricultural crops which will therefore be discussed here in detail.

4.1.2 Agricultural Plant Covers

The reflectance of plant cover is not constant but rather depends on growth
stage, fertilisation and past weather conditions but these parameters are sel-
dom available. If these parameters were present, resulting reflectance can be
modelled (Asrar, 1989; Sarkar et al., 2002; Rudorff and Batista, 1990; Toll
et al., 1997; Dawson et al., 1998). This is not the case in this study.

Another method to determine the reflectances of canola is the measurement
with a ground based radiometer (Martonchik, 1994; Richardson et al., 1992;
Gates et al., 1965). These measurements have to be made contemporaneous
with the satellite data because of the dependence on the growth stage. Ad-
ditionally, both methods require a correction for the atmospheric influence in
order to allow a comparison with the satellite data (Colwell, 1983, Chapter 18).
This requires additional information on the atmospheric conditions, which is
difficult to obtain.

A much more efficient method is to collect the reflectivity for the differ-
ent surface type classes from the satellite image itself. And, as discussed in
Section 3.2 (p. 60), the radiance at the sensor can be used equivalently to the
reflectances for comparisons within the same image.

Therefore, the radiances or reflectances of crops that are likely to be mis-
taken for canola have to be investigated and it is necessary to identify pixels
representative for these crops. The radiances of the pixel of agricultural crops
will be used to investigate their distribution in channel space (Schowengerdt,
1997, Chapter 9) and to acquire a training data set for the evaluation of the
classification algorithms used in this study.

Selection of Training Data

The Quillow mapping data set (see Section 2.2.2, p. 34) allows to identify
fields of agricultural plants for the years 1999, 2000 and 2001. Although it
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Figure 4.1: Selection of representative pixels for the different agricultural plants by iden-
tifying homogeneous regions within the different fields mapped in the Quillow mapping
data set; displayed is a clip of the image 193/023; May 15, 2001. Left: Fields empha-
sised by the coloured edges that where taken from the Quillow Mapping data set; the
colours correspond to the legend in the right clip. Note that the fields are frequently
containing more than one surface type. Right: Manuallay selected training pixels for
each agricultural crop displayed as filled polygons, the corresponding crop is visible in the
legend on the right of this clip. Inhomogeneous regions and obviously falsely mapped
fields have been omitted in this selection. Note that the training data set has been
generated for the complete Quillow data set and not only for this clip. Original data:
LANDSAT ETM+ c©ESA, 2001. Distributed by Eurimage.

covers about 20,000 ha which is only about 0.2 % of the complete investigation
area, it allows to investigate the reflectance properties of the most common
agricultural plants in Northern Germany.

As discussed in Section 3.1.4 (p. 57) the georectification has been improved
to one pixel deviation. Nonetheless, the mapped field boundaries available
cannot be used directly to select representative pixels by simply using all pixels
within them. The two reasons for that can be seen in the left clip of Figure 4.1.
This clip shows a false colour TM image overlaid with the edges from the
Quillow mapping data set. The different colours of the edges indicate the crop
grown on the field enclosed by a field border.

First, this clip shows that there are variations within the fields. These
result predominantly from small forest patches or from variations in the field
partitioning that may have changed since the ground truth field edges have
been taken. This is obvious from the similarity of the colour of these variations
with image areas of forest (lower left corner) and other crops (lower right
corner) in the left clip of Figure 4.1.

Differences in seeding density, water supply or fertilisation might also ex-
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plain such variations, but they usually have a smaller influence on the radiance
than the mapping inaccuracies mentioned above and would not appear in such
an obviously different colour.

Secondly, the labelling of the fields is incorrect for some fields. These errors
can be identified by comparing the colours of fields for different crops to those
of other crops. These errors mainly results from the accuracy of the mapping
data and will be discussed in detail in Appendix B since they have an influence
on the accuracy assessment for the classification. Obviously, these fields must
not be used for a training data set since they represent different crops.

A smaller error is caused by the inaccuracy of the border locations, either
of the mapping or of the georectification of the satellite data (see Section
3.1.4, p. 57). Additionally, pixels at the edge of the fields might also include a
fraction of other plants (mixed pixels) and are not usable as training data set.
For these reasons, representative pixels have to be identified manually.

The right clip in Figure 4.1 shows an example of these selections. These
pixels have been obtained by selecting homogeneous areas in fields of the dif-
ferent crops common in Northern Germany. Additionally, fields that obviously
have a wrong label are also omitted from the selection of such representative
pixels.

The training data include pixels for ten common crops. These represen-
tative pixels have been selected from the majority of fields available from the
Quillow data set for the years in which the mapping data is available. The
number of pixels depends on the acreages of the crop in question and ranges
from more than 8000 for wheat to 700 for peas for each year, which is sufficient
for a representation of the reflectance properties of these crops.

Distribution of Radiances in Channel Space

The resulting distribution of the radiances of these pixels are scatter clouds
in a four (for LISS/III data) or six dimensional (for TM data) channel space.
An identification of the different plants with the satellite data is only possible
if the scatter clouds for the different plants do not or only slightly overlap.
The quality of the separability depends on the size of this overlap. Therefore,
Figure 4.2 shows the distribution of all plants for the TM channel combination
3 (red) and 4 (NIR). Two further diagrams, one for the optical TM channels
1 (blue) and 2 (green) and one for the MIR channels 5 and 7 are displayed in
Figure 4.3. This representation is equivalent to the projection of the remaining
channels onto the plane of the displayed channels. Note that in spite of scatter
clouds overlapping in two channels, they might by separable with the aid of a
third or fourth channel.

There are two principal clouds in all three diagrams. The rightmost cloud
in Figure 4.2 and the upper one in the diagrams in Figure 4.3, consist of
radiances for peas, sugar beet and maize pixels. The lower cloud is formed by
the cereals2, clover and canola. These two principal clouds can be explained

2Although maize is also a cereal, the notion of cereals in this context is used for barley,
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Figure 4.2: Scatter diagram of the radiances for the selected representative TM pixels
(see Figure 4.1) plotted for the channels 3 and 4 for 10 different agricultural plants.
Note that the radiance for canola has been shifted by the size of one size to the upper
right in order two allow to display all canola pixels. Pixels for all other plants are simply
overplotted in order of their appearance in the legend on the right. This plot shows
that canola can be distinguished from cereals (barley, triticale, rye and wheat) by using
channel 4. Both channels allow the distinction of canola from maize, sugar beet and
peas.

by the lack of a dense vegetation cover for sugar beet, peas and maize and
thus are or appear as bare soil in the satellite image that have been acquired
in spring and early summer. Since they are harvested later than the other
crops these plants will be called late crops hereafter.

Fields of these plants are easily distinguishable from canola and other early
growing plants that already show a dense vegetation cover in spring and early
summer. All early growing crops are located in the same principal cloud and
are more difficult to distinguish. Figure 4.2 demonstrates that channel 4 allows
to separate canola from the majority of these crops since canola is brighter
than the other crops in this channel. The crops located closest to canola in
this figure are barley, meadow and rye. Obviously, these plants are most likely
mistaken for canola.

Two further diagrams of different channel combinations are shown in Fig-
ure 4.3. Both diagrams show scatter clouds similar to the one in Figure 4.2.

rye, wheat and triticale since they are diffcult to distinguish.
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Figure 4.3: Scatter diagram for the radiances in two VIS channels (upper diagram) and
two MIR channels (lower diagram) for 10 different agricultural plants. The diagrams are
displayed as in Figure 4.2. Both diagrams show two scatter clouds that consist either
of the radiances for early growing crops including canola (lower cloud in both diagrams)
or late growing crops (upper cloud). Canola, being within the lower cloud, is difficult to
distinguish from cereals and meadows using these channels.
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The upper diagram shows that the early growing plants in the lower cloud are
difficult to distinguish from each other with the TM channels 1 and 2, although
both channels still allow a discrimination of early and later crops. This is also
true for the MIR channels 5 and 7 displayed in the lower diagram of Figure 4.3.

Nonetheless, these two-dimensional plots do not represent the multidimen-
sional shape of the clouds and the use of additional channels will improve the
separability. A measure for the separability with the aid of the MLC will be
presented in Section 4.2 (p. 95).

4.1.3 Channel Selection

The volume of data for multispectral satellite images from sensors like TM and
LISS/3 is very large: A complete TM image, e.g., contains about 400 MB of
data. Since these data have to be kept in the working memory of the computer
for each processing step, it is of advantage to reduce the number of channels
used for a classification. This will also result in a faster classification since
fewer parameters have to be processed. Additionally, channels that are more
sensitive to atmospheric variations might be ignored.

A reduction of channels is possible if the satellite data include redundant
information in the available channels. For instance, the distribution of pixels
in the upper diagram in Figure 4.3 indicates that the radiances of the TM
channels 1 and 2 are linearly dependent, i.e., the radiance for TM channel 1
can be derived directly from the radiance of channel 2. This is also the case for
the distribution of radiances for the MIR channels 5 and 7 in the lower scatter
diagram of Figure 4.3, especially when focusing on the scatter cloud for the
early plants.

This linear dependence is confirmed by the correlation coefficients that have
been calculated for each channel combination and are listed in Table 4.1. The
three VIS channels have a very high correlation of 0.99. This high correlation
was already observed for channels 1 and 3 in the discussion of the HOT method
(see Section 3.2.4, p. 71). Moreover, the distribution of the canola radiances
for the channels 1 and 2 in Figure 4.3 is located within the scatter clouds of
the cereals (rye, triticale, wheat), meadows and clover.

Therefore, the use of more than one VIS channel will not improve the
discrimination of canola from the other crops. The channel that was selected
is the TM channel 3, the one least influenced by aerosol scattering and thus
the most suitable VIS channel for a surface type classification.

Moreover, the TM channel 3 has a similar counterpart on the LISS/3 sensor,
and a comparable combination of channels is of advantage to implement the
classification to LISS/3 and evaluating the classification results based on data
from different sensors.

Similar to the VIS channels, the two MIR Channels are also highly cor-
related with a correlation coefficient of 0.98 and thus likewise only one MIR
channel is necessary. The channel that was chosen is the channel 5 since it is
less affected by water vapour absorption (Asrar, 1989, p. 340) and a similar
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Table 4.1: Correlation coefficients for all TM channel combinations. The correlation
coefficients (see Section 3.1.4, p. 57) have been calculated from the quillow training
data set of 1999 for all ten selected agricultural plants. Note the very high correlation of
0.99 between the three VIS channels which indicate that only one of the VIS channels
is necessary for a classification. The same can be observed for the two MIR channels
which can also be represented by only one of both.

Spectrum VIS NIR MIR

Channels 1 2 3 4 5 7

1 1.00 0.99 0.99 -0.40 0.96 0.96
2 0.99 1.00 0.99 -0.37 0.96 0.96
3 0.99 0.99 1.00 -0.48 0.97 0.99
4 -0.40 -0.37 -0.48 1.00 -0.50 -0.58
5 0.96 0.96 0.97 -0.50 1.00 0.98
7 0.96 0.96 0.99 -0.58 0.98 1.00

channel is present on the LISS/3 sensor.
The remaining NIR channel shows only small correlation with the other

channels and thus contains information not present in the other channels. An
example is the high radiance of canola in Figure 4.2 for this channel.

The correlation between the VIS and MIR channels is quite high with a
value of 0.96. Nonetheless, both channels will be used to identify the different
crops.

Therefore, the combination of the TM channel 3, 4 and 5 is the one used
to distinguish different types of plant covers in this study. The corresponding
channels for LISS/II are also 3, 4 and 5. These channel combination is also
used to display the satellite images as false colour image. Channel 4 is assigned
to the red component of the image, channel 5 to green and channel 3 to blue .

Since the above consideration was only a qualitative one, this will be tested
and discussed by using this selection on the one hand and on the other hand
the complete set of TM channels for a classification with the MLC and then
comparing the results of the classification with the Quillow mapping data set
in the next section.

4.2 Pixel-Based Classification

The above discussion shows that the radiances of canola pixels are quite dis-
tinct from those of other agricultural crops which suggests a pixel-based clas-
sification. This type of classification is commonly used in the identification
of agricultural crops (Richards, 1986; Schowengerdt, 1997). Nonetheless, the
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accuracy of such a classification is estimated best by actually applying it.
The MLC described in (Richards, 1986, Chapter 8) is a very common clas-

sifier and frequently used in the identification of different crops with multi-
spectral satellite images (Richards, 1986; Lillesand, 2000). The MLC is based
on the comparison of probability density functions approximated with sets of
training data for each surface type class. A reliable result from this method
usually requires training data sets for all classes in the image. A complete set
of surface classes is difficult to obtain since a TM or LISS/3 image contains nu-
merous different surface types. These are difficult to determine and thus, the
MLC is not applicable for the complete classification of the available satellite
images.

If the classification is limited to the crops known from the Quillow map-
ping data set and the results of the classification is only compared to the
agricultural fields mapped, the MLC allows to estimate the separability of the
different crops by a pixel-based classification. Furthermore, the limitation of
a pixel-based classification and the sensor properties can be discussed with-
out the selection of additional non-agricultural surface classes or a probability
threshhold.

In Section 4.2.2, p. 102 we will compare the results of the MLC classification
with the Mahalanobis distance classifier (MDC) since this classifier has the
advantage of only depending on one single training data set (Richards, 1986,
Chapter 8). The results of the MDC with this classifier will also be tested with
the Quillow mapping data set.

4.2.1 Maximum Likelyhood Classification

The MLC is trained with the data set for the ten major crops in the Quillow
data set by calculating the probability density functions for the MLC for the
years 1999, 2000 and 2001.

Reduced and Complete Channel Set Classification

After the classification, the original fields from the Quillow mapping data set
are compared to the result from the MLC in order to estimate the accuracy of
the classification. This classification has been performed with the reduced set
of channels proposed above and with the complete set of available channels in
order to demonstrate the capability of the reduced set of channels. The results
of these classifications are used to calculate confusion matrices. The confusion
matrices of the year 2001 are shown in Table 4.2. They list all classified crops.

Most obvious is the high fraction of canola detected by the MLC (86 %)3.
Using the complete set channels for the classification achieves only 0.32 %

3Note that this value is obtained from the original Quillow data set. The acreage identified
in the corrected Quillow mapping data set (see Appendix B) is 95 %.
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Table 4.2: Confusion matrix of the MLC classification result for the Quillow data set. The satellite image used was the TM image 193/023;
May 13, 2001. Listed are the fractions of pixels for the classification that are in accordance with the crop on the mapped fields, i.e, the diagonal
elements shows the correct classifications. Shown are the results for the classification with the three selected (upper part of the table) and all
TM channels (lower part of the table) available. The entry representing canola has been emphasised by bold typesetting. The remaining field
crops have been sorted into two principal classes: cereals and late crops which are also emphasised by different fonts. The last row lists the
fraction for each crop. The size of one pixel is 900 m2.

Ground Truth [%] crop fraction

cereals late crops of ground
class [%] canola

barley triticale wheat rye maize peas sugar beet
clover meadow

truth area [%]
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5

canola 86.28 2.58 1.25 2.13 3.54 0.67 0.34 4.24 3.04 1.30 19.78

barley 1.19 54.03 21.51 6.01 4.33 0.03 0.68 0.35 0.00 0.20 9.59

triticale 0.70 6.82 29.82 7.28 11.74 0.14 0.98 1.26 5.37 4.36 6.82

wheat 3.08 8.09 13.47 52.95 12.03 2.04 12.56 3.40 3.25 6.76 21.19

rye 4.31 17.84 26.22 24.82 55.15 8.15 11.66 12.38 1.75 7.24 17.75

maize 0.57 1.97 0.31 0.50 2.26 50.56 13.92 19.92 0.83 0.51 6.26

peas 1.12 3.85 1.04 1.13 1.52 16.64 56.15 9.82 1.55 1.02 4.01

sugar beet 0.44 1.38 0.09 0.25 3.63 20.58 1.92 47.46 0.21 0.67 4.59

clover 0.10 0.81 0.31 0.82 0.13 0.06 0.11 0.15 46.18 10.35 1.67

meadow 2.20 2.64 5.98 4.11 5.67 1.15 1.69 1.03 37.82 67.59 8.33

Total [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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,
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,
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,
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7

canola 86.62 2.22 1.20 2.25 3.97 0.67 0.58 4.23 3.10 1.35 20.03

barley 1.55 57.39 21.35 3.77 3.97 0.07 0.58 0.36 0.00 0.43 9.11

triticale 1.30 10.98 36.36 12.45 12.75 1.95 2.14 4.76 4.85 4.56 9.89

wheat 2.80 6.42 15.76 63.94 7.74 2.69 11.63 4.61 3.64 8.07 24.49

rye 3.25 12.92 20.20 12.31 61.51 6.11 10.87 7.69 0.63 2.37 12.01

maize 0.64 2.24 0.40 0.46 2.29 51.73 14.20 14.30 1.26 2.10 6.27

peas 1.04 3.42 0.91 1.01 1.32 12.31 56.59 7.92 1.02 1.57 3.48

sugarbeet 0.42 1.65 0.09 0.29 3.69 23.44 2.64 54.93 0.24 1.03 5.27

clover 0.26 1.17 1.63 1.66 1.00 0.70 0.29 0.97 48.81 11.89 2.47

meadow 2.13 1.58 2.09 1.86 1.77 0.32 0.47 0.25 36.45 66.65 6.98

Total [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Total [px] 36787 17004 15360 55752 9086 15446 2659 8068 1938 12622 174722
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better classification accuracy than using the reduced number of channels4.
This shows that the reduced channel set is sufficient for the classification of

canola. In contrast, the classification with all channels provides better results
for cereals5 and sugar beet since the accuracy achieved with the full set of
channels is about 5 % higher than with the reduced set of channels. For the
remaining crops, the classification with the complete set of channels yields
slightly better results of 1 %.

Consequently, the use of the complete data set hardly improves the classi-
fication of canola acreage in a TM image. Considering the increased amount
of computational time and computer memory and the higher sensitivity to
the atmosphere of the omitted channels, the use of all channels poses more
disadvantages than advantages. Therefore, the selected channels 3, 4 and 5 is
the most suitable combination for the detection of canola. For cereals or sugar
beet, however, the use of the complete channel set allowed to classify 7 % more
of the acreage mapped in the ground truth data.

Separability of the Different Crops

Besides the justification to reduce the number of channels, this result allows
to discuss the separability of different crops with multispectral satellite data
using the example of the TM sensor. For instance, the agreement of the satellite
classification with the ground truth data is quite good for canola, which was
expected from the qualitative discussion on the channel space distribution of
the different crop classes. The crops mainly misinterpreted as canola (see the
first row in table 4.2) are sugar beet (4.24 %), rye (3.54 %), clover (3.04 %) and
barley (2.58 %). The amount of sugar beet identified as canola is surprisingly
high since the scatter diagrams show a large distance in channel space between
these crops; it probably results from errors in the Quillow mapping data set
described in Appendix B. The confusion of the cereals and also clover is in
agreement with their adjacency in the channel space (see Figures 4.2 and 4.3).

The fraction of 86 % canola acreage identified with the MLC is satisfying.
Moreover, the selected TM channels have a direct counterpart in the LISS/3
sensor which should thus also be suitable for the classification of canola.

A similarly high agreement is not found for any of the other crops. This
results mainly from the similarity of the plants or their growth state, especially
for cereals, which are difficult to distinguish at this development stage even for
an observer on the ground.

Another example are maize, sugar beet and peas, which have not reached a
growth stage with a sufficient plant cover to be detectable by the satellite sensor
and simply appear as bare soil in the satellite image (see also Figure 4.1). These
similarities allow to merge these classes into two new principal classes: cereals

4Accuracy in this context is the percenatge of mapped acreages identified with the satellite
image classification.

5Although maize is also a cereal, in this context the name cereal is used for barley, rye,
triticale and wheat since these plants are planted much earlier than maize.
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and late crops. These principal classes are already emphasised in Table 4.2 by
the title of the columns and the different fonts used for the numbers in the
confusion matrix.

Different Satellite Acquisition Dates

The results for these merged classes are displayed in Table 4.3 for the three
years investigated. The merging of the crop classes to two principal classes re-
sults in classification accuracies comparable to the one of canola. Thus a classi-
fication of cereals and late crops with a pixel-based classification would achieve
results comparable to that of canola, assuming that the principal classes do
not have to be broken down into the actual crop classes.

Similar to the discussion on the classification result of all ten classes for
2001, the most common plants to be mistaken for canola in 1999 and 2000
are also cereals. Generally, the results for 1999 and 2000 show a less accurate
result for canola. The fraction of identified canola acreage is only 65 % for 1999
but still 80 % for 2000. Again, the high amount of late crops misinterpreted as
canola suggests that at least 5 % of this misclassification results from wrong
mapping. This assumption is confirmed by the discussion in Appendix B.

Besides the errors of the mapping data set, another important source of
class error is the confusion of cereals and canola, which cannot be explained
by the wrong mapping. Therefore, a clip of the classification result of the
MLC is shown in the left clip of Figure 4.4: a lot of canola pixels have not
been identified within the mapped field. Some pixels are identified as meadow
but all remaining pixels in these fields are identified as cereals (not shown in
Figure 4.4). The most likely explanation for this misclassification is obvious
from the right clip of Figure 4.4, which shows that the canola fields do not have
the yellowish colour that can be expected for flowering canola (see Figure 3.21,
p. 80). The missing of this unique attribute of canola reduces the differences
between the spectral signature of the different classes, especially between ce-
reals and canola. The reason for this missing attribute is the acquisition date
of the image: it was acquired on April 30, 1999 well before the main flowering
period.

Nonetheless, the left clip in Figure 4.4 also shows that in all canola fields at
least half of the canola pixels could be identified. This is also true for all other
fields of the mapped area. Therefore, the pixels found can be used to make
use of the neighbourhood to identify the remaining pixels of these fields, which
will be described later in the discussion on segmentation and region growing.

Drawbacks of the Maximum Likelyhood Classification

The above discussion on the MLC showed that a pixel-based classification gives
acceptable results for the identification of canola, especially when compared to
the corrected ground truth data (see Appendix B). Unfortunately, the MLC
is not suitable for the classification of the complete data set as it can only be
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Table 4.3: Confusion matrix for the comparison of the MLC for the years 1999, 2000
and 2001 with the ground-truthing provided by the Quillow data set. The channels
3,4 and 5 with training data set for the same classes as listed in table 4.2. Listed are
only the merged new classes cereals and late crops. These classes are emphasised by
the fonts used: cereals in typewriter (e.g., 99.99), latecrops in italics (e.g., 99.99) and
canola in bold face (e.g., 99.99). This table shows that the agreement for canola in
years 2000 and 2001 is more than 80 %. The majority of the remaining mapped canola
is misinterpreted as cereals. In 1999, the identified canola reaches only 65 % and 18 %
are interpreted as cereals. Note the high value of 5.4 % canola pixels identified as late
crops.
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Class [%] canola cereals
crops

clover meadow
truth area [%]

M
ay

15
,

20
01

canola 86.28 2.20 1.73 3.04 1.30 19.78

cereals 9.29 89.58 14.10 10.37 18.55 55.36

late crops 2.13 3.26 82.91 2.58 2.20 14.87

clover 0.10 0.67 0.09 46.18 10.35 1.67

meadow 2.20 4.30 1.17 37.82 67.59 8.33

Total [%] 100.00 100.00 100.00 100.00 100.00 100.00

Total [px] 36787 97202 26173 1938 12622 174722

M
ay

2,
20

00

canola 80.23 2.98 1.80 1.68 2.09 14.15

cereals 9.51 70.32 5.56 16.41 21.84 46.11

late crops 2.26 3.70 84.35 3.49 6.52 15.50

clover 6.56 17.68 7.56 38.37 28.89 15.99

meadow 1.44 5.31 0.73 40.05 40.66 8.25

Total [%] 100.00 100.00 100.00 100.00 100.00 100.00

Total [px] 33382 132511 32719 2377 24262 225251

A
p
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l

30
,

19
99

canola 65.71 1.18 1.53 0.79 0.44 12.42

cereals 17.90 91.14 10.73 26.52 54.67 60.81

late crops 5.40 4.71 86.59 3.16 4.76 19.10

clover 0.97 0.89 0.37 47.84 18.15 2.66

meadow 10.02 2.08 0.78 21.69 21.98 5.02

Total [%] 100.00 100.00 100.00 100.00 100.00 100.00

Total [px] 38431 123906 38484 2153 17699 220673
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Figure 4.4: Clip of the Result from the MLC for 1999. Left: False colour representation
overlaid with the classification result. Yellow pixels represent identified canola pixels,
green pixels represent clover and purple pixels represent meadow. Note that pixels that
are identified as cereals are not displayed in this figure since most of the other pixels
in the clip are classified as cereals. The canola fields in the Quillow mapping data set
are represented by the yellow lines. Right: True colour representation of the same clip,
also overlaid with the mapped fields. The missing yellowish colour of the canola fields
(see Figure 3.21) indicate that this image was acquired before flowering. Original data:
LANDSAT TM c©ESA, 1999. Distributed by Eurimage.

applied if the majority of surface type classes in the image are known and an
appropriate set of training data is available for each of them.

• The effort for a limited number of images, like the three TM images used
for the investigation on the separability is manageable since it requires
only to manually identify sufficiently large training data sets for ten dif-
ferent agricultural crops. This manual selection is no longer appropriate
if a much larger volume of data has to be processed. The 50 images avail-
able in this study would require to manually select 500 sets of training
data only for the agricultural crops. Moreover, the comparison with the
validation data concentrated on the agricultural crops and a real classifi-
cation would require to add additional classes like urban regions, woods
or water.

• The automated selection of training data sets for canola that is used for
overlapping frames (see Section 4.4.1, p. 126) might solve this problem,
since it can also be applied for other surface type classes. However,
even for an automated training data selection, the restriction to only
one surface type class allows to limit the effort and also to reduce the
error.
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• The flowering of canola also reduces the applicability of the MLC since it
can change the spectral signature of canola within a very short period of
time (i.e., days) or within shorte distances (a few kilometres), which has
been discussed above. The MLC can take this into account by selecting
additional training data, which includes pixels that show flowering canola
with a similar intensity. This type of training data might not be available
if the overlap of the images does not contain fields with intensely flowering
canola. Moreover, the pixels of these fields might be too rare to be of
significance in the statistics and thus be ignored in the classification.

These shortcomings of the MLC can be overcome when using classifiers
that can be applied if only one surface class is known, like the parallelepiped
classifier (PPC) and the MDC for the classification.

4.2.2 Single-Class Classification

The distribution of the pixel radiances in the TM channel 3, 4 and 5 for canola
is shown in Figure 4.5. A classification algorithm based on the information
of the radiance distribution for a single class has to represent the shape of
this distribution accurately. The geometrical shape describing the boundaries
between the radiances of pixels assigned to this single class and pixels not
assigned to it is called a decision surface.

The Parallelepiped Classifier

The most simple solution in the case of a classification with three channel is
a three dimensional box. The classification with this decision rule is called
PPC and is represented by a box centred at the mean radiances Īi. The length
of the edge in the direction of the radiances for channel i of the box can be
estimated by the variance σii of that channel. Usually, a multiple k of the
standard deviation

√
σii is used and the pixel is classified as canola if the

following equation is true for all selected channels i:

Īi − k
√

σii < Ii < Īi + k
√

σii for i = 3, 4, 5 (4.1)

An example of the PPC is marked by the dashed rectangles in the diagrams
of Figure 4.5, for which k = 3 has been selected. The distribution of canola is
not represented well by the rectangles and consequently not by the box. This
is especially obvious from the left diagram which shows a slanted distribution
of radiances6 in channel 5. Therefore, the PPC is not suitable to represent the
radiance distribution for canola and a better approximation of the shape of
the distribution has to be found.

6Actually Figure 4.5 shows the original data qcal in DN which are linearly related to the
radiances.
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The Mahalanobis Distance Space

The MLC is based on the assumption of a known type of distribution for
the data (Richards, 1986, Chapter 8). Generally a normal distribution is as-
sumed. Furthermore, it was shown that the surface of equal probability of an
n-dimensional normal distribution is an n-dimensional ellipsoid. This ellipsoid
can be obtained directly from the covariance matrix Σ and the mean of the
radiances Ī. In the case of the reduced channel set used for the classification
of canola, covariance matrix and the classes mean radiances are:

Σ =






σ33 σ34 σ35

σ43 σ44 σ45

σ53 σ54 σ55




 Ī =






Ī3

Ī4

Ī5




 (4.2)

where σij denotes the variances (i=j) and covariances (i 6= j) calculated for
the distribution of the radiances Ii and Ij for channel i and j.

The direction and length of the principal axes of this ellipsoid can be calcu-
lated from the covariance matrix with an eigenvalue analyses (Richards, 1986).
The eigenvectors ei determine the direction of the principal axes and the eigen-
values λ indicate their length. This eigenvalue analysis thus allows to obtain
information on the shape and attitude of the ellipsoid describing the surface
of equal probability.

Slices of this ellipsoid are shown in the three scatter diagrams in Figure 4.5
by the ellipses enclosing the radiance distribution. Additionally, the projec-
tions of the eigenvectors multiplied with the eigenvalues determine the size
of the ellipsoid with the confidence factor k = 4. The figure shows that the
ellipses represent the distribution of the radiances much better than the rect-
angles used by the PPC. Note that the size of the ellipse in the direction of
channel 5 appears to be too small. This results from the inclination of the
scatter cloud in channel 4 and only represents a slanted slice of the ellipsoid
centre.

Consequently, this ellipsoid is a good decision surface for the identification
of canola pixels. Unfortunately, the decision surface is a slanted ellipsoid with
principal axes of three different lengths. A much simpler representation can
be found by transforming the radiances to a new coordinate system with the
origin at the mean radiances Ī for the canola class, the axes transformed to the
coordinate system described by the eigenvalues of the eigenvectors. These co-
ordinates are scaled by the eigenvalues so that the class ellipsoid is transformed
to a sphere.

This can be achieved by using the eigenvectors to transform the radiance
vector I to a new vector of transformed radiances I′ scaled with the square
roots of the eigenvalues. The components of this vector are:

I ′

i =
ei(I − Ī)√

λ1

for i = 1, 2, 3 (4.3)
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Figure 4.5: Logarithmic density scatter diagram of the DN values q for the TM channels for the canola training data set (see Figure 4.1) from
image 193/023; April 30, 1999. Left: Channels 4 and 5; Middle: Channels 3 and 5; Right: Channels 3 and 4. The dashed rectangle represents
the tripled standard deviation for the corresponding channels and a possible decision surface for the PPC. The ellipse indicates the ellipsoid
formed by the surface of equal probability with k = 4 projected onto the plane of the displayed axes, i.e., a possible Mahalanobis distance
decision rule. It can be seen that the distribution is rotated with respect to the band axis and thus the transformation with the MDC gives
better results than a parallelepiped classifier.
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With this transformation, the covariance matrix for those new coordinates
becomes the identity matrix:

Σ′ =






1 0 0

0 1 0

0 0 1




 (4.4)

This new coordinate system, called Mahalanobis distance space (MDS), allows
a much easier evaluation of the separability of classes than the original channel
space. One reason is that in this space the distance of pixels is measured by the
normalised standard deviation of the canola class. Moreover, the distribution
of the other agricultural classes are also normally distributed and thus can be
described as ellipsoids in channel space similar to the one of canola. These
ellipsoids are also transformed to the MDS and remain ellipsoids in the new
space. In the MDS these ellipsoids only have to be compared to a sphere to
obtain information on the relations of the canola class and other classes for
other crops.

The Mahalanobis Distance Classifier

The relations from the previous section are used to adapt the Mahalanobis
distance classifier to the distribution of crop classes. The decision rule for the
classification is based on the canola sphere in the MDS and the confidence
factor k:

I ′
′2
1 + I ′2

2 + I ′2
3 ≤ k2, (4.5)

The variation of the confidence factor allows to adapt this rule to the distri-
bution of other classes and since the equation describes the distance of a pixel
in the MDS, the classification is named Mahalanobis distance classifier. The
selection of k is based on the following aspects:

• The fraction of canola pixels within the sphere in the MDS, i.e., the class
statsitics.

• The distance in the Mahalanobis space to the other surface types distri-
butions, i.e., the position and the extent of the ellipsoids for the pixels
of other agricultural crops.

The first issue can be answered according to Press et al. (Chapter 15, p. 697,
1992) who state a factor of k2 = ∆χ2 = 8.02 or k = 2.83 to include 95.4 % of
the canola pixels in this 3-dimensional ellipsoid.

This estimation is only based on the statistics of the radiances for the
canola class. The other crop classes have not been taken into account for the
selection of this confidence ellipsoid. Now, the ellipsoids of the other classes
are transformed to MDS, are used to investigate their position, extent and
attitude relative to the canola class.
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Figure 4.6: Sketch of the relations of canola and other agricultural crops class ellipsoids
in the canola Mahalanobis space. The sphere on the left represents the ellipsoid of equal
probability for canola with a radius of k = 1. The ellipsoid on the right illustrates the
shape and position of the ellipsoid for another crop, e.g., rye or triticale. The ellipsoid on
the right is described by to main axis that are illustrated by the dashed circles with the
smallest rmin and largest radius rmax. There are four different distances shown in this
figure: dc is the distance between the origin and the class mean of the non-canola class;
db is the shortest distance from the sphere to the ellipsoid; dmax the largest distance from
sphere to ellipsoid and dmin the shortest possible distance. The last two distances are
approximations since the db depends on the attitude of the ellipsoid. These parameters
have been calculated for all classes and are shown in Table 4.4

.

A sketch of the situation in the MDS is shown in Figure 4.6 to illustrate
the relation of the class ellipsoid and the canola sphere. A good estimation for
the optimal size of the canola sphere is to evenly enlarged both, the sphere and
the ellipsoid, by a factor k until both merely touch in one point. Then k would
describe the maximum extent of the sphere and ellipsoid with no overlap.

Since it is complicated to calculate this optimal enlargement analytically,
it is estimated using the parameters described in Figure 4.6. They have been
calculated for the ground truth data from the Quillow data set (see Table 4.4).
The first parameter important for the separability is the distances dc of the
ellipsoids centre, or from the non-canola ellipsoid centre. As expected from
the previous discussion, the closest ellipsoids are the ones of the cereals and
meadow with a distance of 4 to 6.
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Table 4.4: Distance and extent of the different probability ellipsoids for k = 1 for the
training data sets of the year 1999 transformed to the canola mahalanobis space. φ is
the angle between the longest axis of the ellipsoid and the conection line of origin and
class centre.All other sympbols are explained in Figure 4.6

class dc [σc] rmax [σc] rmin [σc] dmin [σc] dmax [σc] φ [◦]

M
ay

1
5
,

2
0
0
1

canola 0.00 1.00 1.00 - - -

barely 4.18 1.79 0.41 2.39 3.77 83.39

triticale 4.86 2.91 0.41 1.95 4.45 92.17

rye 6.13 2.27 0.40 3.87 5.73 92.92

wheat 6.25 2.86 0.45 3.39 5.80 94.82

clover 10.04 5.51 0.60 4.53 9.44 42.21

maedow 12.00 3.43 0.81 8.57 11.19 26.11

peas 41.57 5.54 1.29 36.02 40.28 21.14

maize 41.83 4.06 0.68 37.77 41.15 91.54

sugar beet 47.63 3.65 0.35 43.98 47.28 32.34

M
ay

2
,

2
0
0
0

canola 0.00 1.00 1.00 - - -

triticale 4.37 1.62 0.32 2.75 4.05 71.65

rye 4.54 1.59 0.33 2.95 4.21 81.47

wheat 4.67 2.06 0.36 2.60 4.31 86.54

barley 5.47 2.03 0.31 3.44 5.16 58.04

clover 5.68 2.76 0.53 2.91 5.15 68.49

maedwo 6.46 1.71 0.55 4.75 5.91 121.13

peas 16.36 4.20 0.72 12.16 15.64 52.03

maize 18.39 3.91 0.85 14.49 17.54 49.50

sugar beet 20.97 4.46 0.51 16.51 20.46 40.27

A
p
ri

l
3
0
,

1
9
9
9

canola 0.00 1.00 1.00 - - -

barley 6.28 2.32 0.95 3.95 5.32 80.49

maedow 7.45 1.55 1.48 5.90 5.97 117.20

clover 8.19 1.40 1.09 6.80 7.10 48.35

rye 8.74 2.00 0.94 6.74 7.80 140.96

triticale 8.77 5.17 0.76 3.60 8.02 57.07

wheat 9.39 3.15 1.30 6.24 8.09 69.13

maize 41.64 3.93 0.63 37.71 41.01 32.99

peas 51.41 4.80 0.98 46.61 50.42 21.78

sugar beet 54.33 7.56 1.75 46.77 52.58 21.78
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The extent of the distribution is best described by the radii of the enclosing
and enclosed spheres and the distance to the centre. The necessary enlarge-
ment k for the two spheres to touch each other can be calculated from the
relations:

kmax + kmaxrmax = dc and kmin + kminrmin = dc,

where kmax represents the confidence factor for the enclosing sphere and kmin

the confidence factor for the enclosed sphere.
Assuming a minimum distance of 4.18, which is the smallest distance found

in Table 4.4 and the largest sphere, k has a value of 1.23, which is very small
and would, according to Press et al. (Chapter 15 1992), a kmin of 1.49 and
include only 68 % of the canola pixels. This is only the case, if the ellipsoid is
directly pointing in the direction of the origin. But since the angles also listed
in Table 4.4 found for the cereals are all nearly perpendicular to the connecting
lines of the class centres the smaller, enclosed sphere is the one more likely to
provide the relation between the class distributions. By taking the radius of
0.41, the confidence factor becomes kmax = 2.96 which will include more than
99.73 % of the canola pixels.

This value is still an estimation and therefore, three different values for k
will be tested. Figure 4.7 shows the result of the classification for k=4 and
k=5 compared to the result of the MLC classification result for canola. From
those clips, it can be seen that the result for the MDC gives nearly as good
results as the MLC. We also recognize that a k of 4 misses some pixels of
canola, mostly inside the fields. Some of these can be identified by incerasing
k to 5. However, this as expected increases the number of misclassifications
outside these fields. This figure shows that the canola pixels not identified by
the MDC are within the fields and are thus detectable by a region growing
(see Section 4.3.2, p. 119). Similarly, the positive misclassifications are usually
single pixels or small segments. From this apriori knowledge, these errors can
be corrected in a postprocessing step.

A quantitative comparison of the classification is shown in Table 4.5. The
MLC delivers better classification results than the new MDC algorithm since
it misses more than 15 % of the mapped canola pixels found by the MLC.
The larger confidence factor allows a better identification of canola but also
increases the misinterpretation of other plants as canola.

This result can be expected from the training of the neighbouring surface
type classes, that has been ommitted in the MDC algorithm. Nonetheless,
most of these inaccuracies can be compensated with some further additional
processing that will be presented hereafter.

Impact of Canola flowering

One reason for the misclassification of canola results from canola flowering. Al-
though this factor facilitates the identification of canola because of its distinct
reflectance, it impedes the selection of training data sets because of the vari-
ation of reflected radiances caused by the variation of flowering. It is mainly
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Originaldata MLC

MDC(k = 4) MDC(k = 5)

Figure 4.7: Comparison of the classification result for the MLC and the MDC with two
different threshold parameters for the TM image 193/023; May 13, 2001. Top left:
original data in false colour representation, canola fields are marked by the thick black
lines, other fields by white lines. Top Right: Result for the identification of canola with
the MLC. Bottom Row: MDC with k = 4 (left) and k = 5 (right). The best result is
achieved with the MLC classification which is obvious from the pixel in a canola field,
that have been identified almost completely. Moreover, the number of misclassifications
is quite small (see lower right field in the upper right clip). Also visible are several errors
in the Quillow mapping data set, e.g., the two narrow field in the center are not being
mapped and the field in the right middle has only been partly mapped. Original data:
LANDSAT TM c©ESA, 2001. Distributed by Eurimage.
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Table 4.5: Comparison of the MLC classification result with the result of the MDC for
three different k = 3.5, 4 and 5 validated with the quilow mapping data set. It can be
seen, that the fraction of identified pixels achieved with the MLC cannot be achieved
with the MDC unless the confidence factor is enlarged to more than 5.

Satellite Based Classification

MDC MDC MDC
classifier MLC

k = 3.5 k = 4 k = 5

non- non- non- non-
class canola

canola
canola

canola
canola

canola
canola

canola

G
ro

u
n

d
T

ru
th 2
0
0
1 canola 86.28 2.57 68.15 4.48 71.07 7.66 75.17 16.45

non canola 13.72 97.43 31.85 95.52 28.93 92.34 24.83 83.56

2
0
0
0 canola 80.23 2.65 71.63 1.74 75.37 2.31 82.46 21.92

non canola 19.77 97.35 28.37 98.26 24.63 97.69 17.54 77.08

1
9
9
9 canola 65.71 1.18 60.45 28.93 63.72 1.19 68.53 1.97

non canola 34.71 98.82 4.64 95.36 34.28 98.81 31.47 98.03

caused by an increase of the number of blossoms and does not conform to the
normal distribution determined for the MDC from region with less strongly
flowering fields. Thus selecting training data in regions with generally weaker
flowering canola can lead to misclassification resulting from variations of the
flowering in other parts of the satellite image.

Note that differences in strength of flowering also occures inside fields, as
visible in Figure 4.8. This a possible explanation for the gaps in some field
for the classification result in Figure 4.7, which are likely the result of such
variations.

This effect can already be observed in the relatively small area in which the
MLC is tested, but it becomes more important if the classified area and the
training data set are separated by a longer distance, i.e., 250 km at maximum,
if the training data set is located diagonally in the other corner of the satellite
image.

Figure 4.8 shows an example for such a situtation. The displayed area is
located in the same frame as the Quillow ground truth data which is used
as training data set, but located southeastwards at about 150 km distance.
The upper left clip shows the MDC classification result. The pink pixels are
canola which is easily verified in the upper right clip with the true colour
representation. The pink pixels of the false colour clip appear in the typical
yellowish green colour of flowering canola. Therefore, the pink pixels represent
canola. The reason for their misclassification is obvious from the right clip:
the pixels that are not identified as canola show a brighter yellow colour than
the corretly identified pixels and indicate a stronger flowering in these fields.
This stronger flowering is probably due to the climate in this region.

In the lower left clip, the HOT value for this image is displayed, in order
to exclude aerosol scattering as a possible cause for the misclassification. The
low HOT values of less than 3.5 indicate that the misclassifications are not
resulting from aerosol scattering.
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Figure 4.8: Example of missed classification resulting from intensely flowering canola.
Top left: False colour image overlaid with the MDC result: identified canola pixel are
masked with yellow and dark green. Top right : True colour image of the same clip. Note
the pink area in the left upper clip which have not been classified corectily although false
and true colour image both indicate, that these are canola fields. Bottom left: HOT
value of this clip to demonstrate that the missclassification is not resulting from aerosol
scattering. Bottom right: Classification result of the MDC adapted to the flowering of
canola. Original data: LANDSAT TM c©ESA, 2000. Distributed by Eurimage.

Therefore, it is necessary to account for this variations of the flowering
intensity of canola in the complete satellite image. A simple approach to over-
come this problem is to enlarge the classification sphere discussed in Section
4.2.2, p. 105. However, this would increase the misinterpretation of other crop
pixels as canola which can be observed in Figure 4.7. Therefor, it is necessary
to investigate the influence of the canola flowering on the reflected radiances.
This is done by selecting an additional set of training data (8000 pixels for the
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image 193/023; May 2, 2000) from pixels that are missed by the classification.
This new surface type class of “flowering canola” can be used to investigate
its relations to the original canola class and the classes of other crops. The
position of the class centre of the new class in the channel space is located
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from the centre of the original canola class7. Thus, the flowering of canola
results mainly in an increase of the reflected red light. This is to be expected
from the yellow colour of the blossoms. An smaller increase of mean radiances
can also be observed for the two infrared channels.

Additionally to the mean radiance of the flowering canola distribution, the
shape of this distribution is also of interest. This is best described by the
ellipsoid of equal probability. Therefore, the ellipsoids used to characterize the
various crops classes in comparison to the canola class is also used to describe
the relation between the classes of canola, flowering canola and the other crops.

The evaluation of the floweing canola ellipsoid shows that its distance from
the origin dc is 3.73 σc. This clearly explains the missclassifications because
this value is near the boundary of the classification sphere defined by k = 4.
The extent of the flowering canola ellipsoid is smaller than the original canola
sphere, which can be seen from radii of the enclosing and enclosed spheres
rmax = 1.1 and rmin = 0.68 and thus a large part of the flowering canola pixels
are not detected by the MDC.

Consequently, the MDC has to be adapted for the flowering of canola by
enlarging the decision sphere so that it also includes flowering canola pixels
and excludes non-canola pixel. As discussed above, a symmetric enlargement
would also increase the misclassifications (see Figure 4.7). Therefore, the en-
largement of the sphere has to be asymmetric and accommodated especially
to the flowering canola.

It is found, that the class closest to flowering canola is rye, whose class
centre is located at a distance of 7.04. This large distance to non canola classes
in the MDS are common for the three images investigated. Unfortunately, it is
has not been possible to find a direct relationship between the flowering and the
original canola class that could be exploited to identify flowering canola with
an acceptable accuracy by adapting the original class. The reason is probably
the different flowering states of the original canola class, which is also changing
with time and therefore has no constant relationsship to the flowering canola
class.

Therefore, it is not possible to automatically identify the flowering canola
fields without the identification of additional training data sets. Rather it is

7The first numbers for the components are the gain of the calibration and the second
number the mean DN calculated.
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necessary to select such data sets for every from the image by visual inspec-
tion. This additional training data can be identified easily by selecting the
pink coloured pixels in the false colour image that have been missed by the
classification.

This new learning data is used to train the MLC for flowering canola and
is applied in conjunction with the original canola MLC. The lower right clip of
Figure 4.8 shows the classification result for the image clip with this additional
flowering canola class. All fields now have been identified properly.

The manual selection of additional class of flowering canola is a drawback
for automatic classification aimed for in this study. and it would be desirable
to obtain this training data automatically.

4.2.3 Haze Correction

The above described classification assumes that the pixel are not covered or
shaded by clouds. Cloud-covered and shaded pixels are simply omitted from
the classification with the cloud and cloud shadow masks presented in Section
3.2.4 (p. 81) and pixels adjacent to clouds or cloud-shadows are marked as
cloud neighbours (see Section 4.3.3).

Pixels covered only by thin clouds still can be classified if the influence
of the aerosol scattering can be compensated for the HOT-Value (see Section
3.2.4, p. 71) is used to quantify the haziness of a pixel.

In principle the HOT value is used to correct the radiances with a term
derived from the comparison of histograms (see Section 3.2.5, p. 83), but as
known from that section, the HOT value is not calculated correctly for flower-
ing canola fields. Therefore, it is necessary to distinguish two different effects
of haze on the classification:

False alarm: A pixel is identified as canola although it contains a different
surface type.

False all-clear: A pixel is not identified as canola although it contains enough
canola to be classified under clear sky conditions.

Examples for both cases can be seen in Figure 4.9, which shows a compari-
son of TM images showing the same area in Mecklenburg-Vorpommern from
the same year but acquired under cloud free conditions (upper right clip) and
under hazy conditions (lower left clip). Both images are overlaid with the clas-
sification result of the MDC without atmospheric correction. The classification
result is already segmented (see below) and small segments (green) have been
marked additionally to the identified canola pixels (yellow). Since both clips
are acquired in the period of about 30 days, the canola fields identified in the
images should be identical, which is obviously not the case. Since the left clip
is acquired under cloud free conditions, this classification is used as reference
to evaluate the influence of the haze. The two types of misclassification and
their correction will be discussed separately hereafter.



114 CHAPTER 4. CLASSIFICATION

Figure 4.9: Example of the influence of haze on the classification of canola. All clips show
the same region in the same year but are taken from two different images, one from
the cloud free image 194/023; June 10, 2000 and the other from the partly clouded
image from 193/023; May 8, 2000. Upper Left: True colour representation of the
hazed image. Top right: Classification result of canola with the MDC under clear sky
conditions. Bottom left: The same clip classified by the MDC in hazy and cloudy
conditions. These images show the two different errors induced by haze cover. The blue
circle shows a false-all clear, i.e., a field that has been partly missed by the MDC. The
red circle shows an example of a false alarm, i.e., pixels that are incorrectly identified
as canola by the MDC. The blue pixels indicate undersized segments. Bottom right:
classification result of the MDC with additional HOT based haze correction. Note that
all false alarm pixels are identified but the false-all clear pixels are corrected. Original
data: LANDSAT TM c©ESA, 2000. Distributed by Eurimage.
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False Alarm

Some examples of this misclassifications are marked by the red circle in the
lower left clip in Figure 4.9. This error occurs if the radiances reflected from the
field are altered by aerosols resulting in signal resembling the one of canola, i.e.,
the signature is shifted into the decision ellipsoid presented in Section 4.2.2.
From Figure 4.9, it can be seen that this error occurs quite frequently under
hazy conditions. Most of the misclassifications are already masked out since
they do not meet the minimum size criterion for canola fields (see below).
These pixels are marked in blue.

The surface below that cloud is thus not a canola field and therefore, the
HOT values for these pixels are correct. A correction for this misclassification
is thus achieved by applying the shift suggested in Section 3.2.5, p. 83. Practi-
cally, this is done by applying this correction every time the HOT value exceeds
3.5. This threshold value is determined from observations of the missclassifi-
cation of the clear sky classification algorithm. The results of the correction
are shown in the lower right clip of Figure 4.9. It can be seen that all pixels
incorretly identified as canola have been removed from the classification.

False All-Clear

This type of errors occurs if the cloud alters the signal from a canola field in the
manner, that the radiances is no longer identified as canola by the classification
algorithm. An example is also shown the lower left clip in Figure 4.9 and
marked by the blue circle.

This type of error is more difficult to correct than the false alarm, mainly
because flowering canola impacts the HOT value and the haziness is underes-
timated over such fields.

There are three possible solutions for this problem. The first and optimal
solution would be to correct the influence of the flowering canola in an itera-
tive procedure. First experiments with a recursive method showed promising
results, but needs to be improved to allow an automated application which is
essential for the processing of the data in this project.

Another possibility is to smooth and filter the image formed by HOT val-
ues (Castleman, 1996, Chapter 11). This is not applicable since the haze in
the image very inhomogeneous as seen in Figure 4.9 and a filtering or smooth-
ing that interpolates the HOT value in order to remove the influences of the
canola fields would also eliminate the variations in the cloud cover. Moreover,
resulting from the size of the TM images, these algorithms are time consuming.

Another solution is to assume the quantity of flowering to be more or less
constant over the complete image. In this case, the change to the HOT values
originating from the canola flowering can be estimated from clear regions and
added as canola offset to the HOT value over canola fields. This method would
allow a fast classification and leave the small scale structure of the thin clouds
untouched. But, since the assumption of constant flowering of canola over the



116 CHAPTER 4. CLASSIFICATION

complete satellite image is not true in all casses, the results of this flowering
adaption are not very reliable.

Nonetheless and in lack of an alternative, this offset to the HOT value over
canola fields and the corrected radiances are used for the classification. An
exampel of this correction is shown in the Figure 4.9 and compared to the
original result of the classification. This comparison shows no improvement
to the original classification for the majority of fields. Thus, the simple ad-
justment suggested above is not sufficient for a compensation of the flowering
effects of canola and it is necessary to adapt this algorithm according to the
method proposed above.

However, the haze correction for images with less strongly flowering canola
works much better. Actually, the image used to demonstrate the haze cor-
rection is the same as the one used to investigate the impact of flowering on
canola.

Conclusion

The above discussion has shown, that the HOT method gives a very good pos-
sibility to exclude the false alarm misclassification. Since these are frequent
in hazy regions, this is an important progress. On the other hand, the HOT
method cannot be applied easily over flowering canola fields. In order to allow
an accurate classification as under clear sky coniditions, the effects of flower-
ing on the HOT value has to be compensated for which might be possible by
recursively correcting the influence of haze and canola flowering. Further de-
velopment of method to correct the haze identification over canola fields would
have exceeded the frame of this study.

4.3 Segmentation and Post Classification

The results of the pixel-based classification does not yet contain information on
the belonging of pixels to individual fields. This information can be obtained
by a segmentation of the results of the pixel based classification.

A segmentation merges neighbouring pixels belonging to the same class
into one segment. In remote sensing of agricultural fields, these segments are
mostly equivalent to individual fields. The segmentation will needed for the
following purposes:

1. Remove Pixels misinterpreted as canola because of the spectral mixture
of other surface types by simply removing undersized segments.

2. The application of a region growing procedure to compensate for smaller
variation of the spectral signature of canola.

3. Identifying pixels adjacent to the segment and which might partly con-
tain canola. Adjacent pixels of the segment can be identified with the
segments border pixels since these might also contain canola.
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4. Derive shape, size and location parameters the identified fields, e.g., the
field centre, size, orientation with respect to North or border length.

5. Reduce the amount of data necessary to represent the result by a vectori-
sation of the segments. This is also important for a further processing
in a GIS and the compilation of the acreage statistics for the complete
investigated area.

4.3.1 Segmentation of the Pixel Based Result

Neighbourhood Definition

A segmentation is based on the neighbourhood of pixels. There are two main
definitions of neighbouring pixels in digital images:

• The 4-neighbourhood is defined by the direct neighbours of the pixels,
i.e., the upper, left, lower and right pixel.

• The 8-neighbourhood additionally includes the diagonal neighbours.

The 4-neighbourhood has the advantage that it is less likely to merge neigh-
bouring fields together and thus gives a more accurate result for the field size
distribution. The 8-neighbourhood merges neighbouring fields more frequently
to one single segment than the 4-neighbourhood. This leads to an overesti-
mation of larger fields. The advantage of the 8-neighbourhood is that it also
allows to identify narrow fields that are oriented diagonally to the sensor’s scan
direction. These fields would be overlooked by using a 4-neighbourhood rule
since such pixels are frequently not joined to a segment although the field is
larger than the minimum field size (see below).

In this study, it is more important to identify the correct acreages and
field number of canola than to identify the correct field size. Therefore, the
8-neighbourhood is used to merge the pixels to segments.

Border Pixels and Undersized Segments

The segments identified are used to correct some errors of the classification
result. One source of error for the pixel-based classification are mixtures of
radiances from different surface types within one pixel that result in a radiance
similar to those of canola. These mixtures do not occur very frequently and
are usually limited to single pixels. Therefore they can be removed by defining
a minimum field size. Another reason for a misclassification are surfaces that
have not been taken into account by the discussion on the surface type sepa-
rability. This is especially important for non-agricultural surfaces since these
have not been investigated here in detail because the number of the possible
surfaces is to large. Anyhow, these surfaces are most likely much smaller than
agricultural fields and thus can also be filtered out by a minimum field size.

As discussed in Section 2.1.1, p. 17, a typical field in Northern Germany is
usually larger than 1 ha and segments smaller than 1 ha are removed from the
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Figure 4.10: Example of the corrections applied to the classification with the aid of the
segmentation. Displayed is a clip of the image 193/023; May 2, 2000. Left: Original
data overlaid with the MDC result in yellow. Centre: Original data overlaid with the
segmentation result (Yellow: canola pixel, red: segment border pixel, green: undersized
segments (< 1 ha)). Right: Original data overlaid with a pixel map generated from the
Quillow mapping data set. Original data: LANDSAT TM c©ESA, 2000. Distributed by
Eurimage.

classification. This amounts to the number of 11 pixels for TM and 16 pixels
for LISS/3.

Generally, pixels at the field border are mixed with other surface types. In
order to obtain an estimation of these acreages missed by the classification,
every neighbouring pixel is identified and assigned to the segment as border
pixel. Since the ratio of border and field pixels decreases with growing field
size, this is parameter is especially important for small fields.

The results of the segmentation and a comparison with the ground truth
data is shown in Figure 4.10. Pixels masked out because of their small size
(undersized segments) are marked in green and the border pixels are marked
in red. The classified canola pixels, i.e., pixels of segments with sufficient
size, are marked in yellow. It can be seen that the removal of the undersized
segments can be justified by the field structure and the comparison with the
mapped fields. The comparison with the field structure visible in the clip with
the original data shows the improvement of the classification with removal of
undersized fields. The inclusion of the segment border pixels also shows an
improvement the matching with field edges still visible left clip.

The Table 4.6 show a comparison for the complete Quillow mapping data
of the results for the MLC, the MDC and the result of the MDC, also taking
the adjustments of the segmentation into account. Note that the classification
results compared in this table are already processed with the region growing
presented below since these results are the ones actually used for the final result
of the classification. The rightmost column in Table 4.6 shows the changes of
the classification result based on the removal of undersized segments. The
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influence of this removal on the total acreage identified is very small with only
0.1 % improvement for non-canola surfaces in 2000 and even only 0.1 % in the
other years. In contrast, the accuracy of the canola classification is reduced
by up to 0.3 % in 2000. It is important, that the acreage of the non-canola
fields is larger than the canola acreage, since a small relative errors for non-
canola acreage results in a larger absplute error than a comparable error for
the canola acreages. According to Table 4.3 it ranges from 12 to 20 % of the
total acreage.

The other comparison shown in Table 4.6 is that between the MDC with
and without including the adjacent pixels. As discussed above, the border
pixels give an estimation of the influence of mixed pixels at the border of the
fields. Here, the results for the years 1999 and 2000 show an improvement of
about 3 % by simply adding the adjacent pixels to the segment. Nonetheless,
for the year 2000 this results in a larger error for the non-canola surfaces of
about 3 % of a much larger area. These errors result from overshown pixels
(see Section 5.3.1, p. 153) which are also visible by comparing the mapped and
classified data in Figure 4.10 which shows smaller mapped fields than classified
fields. This errors will be discussed in detail in Section 5.3, p. 152.

4.3.2 Segment Based Region Growing

As visible in Figure 4.7 and Table 4.5, both pixel-based classification algorithm
fail to classify some of the pixels obviously belonging to the canola fields.
Some of these pixels can be identified with the adaption of the classifier to the
flowering of canola, but others are still missed by the classification.

A possible improvement of the classification is suggested by the upper left
clip of Figure 4.7 by the canola fields that appear as generally homogeneous
region. Thus, a region growing procedure, applied to the segmentation results
can yield the classification of the complete field. A region growing algorithm
is an algorithm that uses information on the properties of adjacent pixel to
identify homogeneous regions in an image. Usually, this is done recursively
until no more pixel belonging to the segment are identified (Castleman, 1996,
Chapter 18). Typically, region growing is used on the complete image. Region
growing using the identified segments as starting point for the growing, allow to
reduce the computational burden. This is only possible, if at least some of the
pixels in the fields have been identified corretly by the pixel-based classification.
The evaluation of the pixel-based classification showed, that all fields have been
identified correcly in the Quillow mapping data set.

Therefore, only missed pixels neigbouring already identified segments have
to be identified. This is accomplished by applying a region growing algorithm
on the pixels adjacent to the segments. The decision of the belonging of a
neigbouring pixel to a segment is decided by the modified MDC by simpy
shifting the origin of the MDS to the mean of the segments radiances and
adding pixels within this new MDC sphere8.

8Actually, this is equivalent to the defition of a pixel based gradient, that includes pixels
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This automatic selection of training data requires some precautions since
the newly determined classifier might as well be based on misclassified pixels
and cause classification errors, e.g., by the classification of a completely dif-
ferent surface type or by an uncontroled sprawl of the region growing. Most
of these corrupted training data can be excluded by the above rule for un-
dersized segments which are ignored for the classification. To make sure that
the region growing process only starts from correctly classified canola pixels,
only segments with a minimum size of 2 ha are used. Another test is applied
on complete resulting segment by comparing its mean radiances to the MDC
with a tighter confidence factor of k = 3. With these two tests the uncontroled
sprawl of the region growing can be prevented. This was tested by the visual
inspection of the classification result.

The MDC rule can be applied to all pixels adjacent to the segment by
adding every pixels that confirms it. The following procedure is performed for
each segment until the segment is not changed further by the region growing
procedure.

1. Shift the MDC to the mean radiance of the segment.

2. Identify all pixels adjacent to the segment.

3. Clarify all adjacent pixels with the modified MDC and include those to
the segment.

4. Identify and clarify pixels that are adjacent to the newly identified pixels.

5. Repeat with the last step until no more adjacent pixels are identified as
“canola”.

In order to assure that the newly selected pixels are truly canola, the mean
of all added pixels is calculated and also evaluated with the MDC reduced to
k = 3. Note that the pixels added are not used for a new training data set
since this also increases the risk to sprawl of the region growing and therefore
severe errors in the classification. Segments at the border of hazed regions
have to be excluded since there it is not possible to prevent the region growing
from sprawling.

An example for the improvement achieved by the region growing is shown
in Figure 4.11, especially in the segments near the lower centre of this clip.
The quantitative comparison of the region growing results with the MLC in
Table 4.6 shows, that the it allows for an accuracy comparable or better than
the classification with the MLC.

4.3.3 Vectorisation

The results of a pixel-based classification is generally a mask indicating the
class membership of the pixel in question. This type of representation has

with a gradient smaller than the distance to the next agricultural class.
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Figure 4.11: Example for the result of the region growing applied to the segments. Left:
Original false colour image acquired April 30, 1999. Right: Result of the MDC (yellow
pixels) and the segment-based region growing (blue pixels). The red pixels indicate the
pixels adjacent to the segment. This image shows that the classification can be improved
by the application of the segment based region growing. Original data: LANDSAT TM
c©ESA, 1999. Distributed by Eurimage.

disadvantages for further processing of the data. A commonly used simplified
representation is a vectorisation of the data, i.e., the translation of the segments
to a geometric form that represents the segment. This generally allows a faster
and easier processing than a pixel based raster results.

Approximating Rectangles

Usually, fields and segments are represented as polygons formed by the pixels.
In this study, the canola fields are approximated by rectangles that have the
same area, orientation and long to short edge ratio. An example of this ap-
proximation is shown in Figure 4.12. A detailed description on the method is
presented in Appendix A.

The representation as rectangles for the vectorisation has the following
advantages:

• An rectangle can be described by only four lines which reduces the
amount of memory compared to the representation as a polygon. This is
especially important since the number of fields for a complete data set is
quite large, e.g, the data set for 2001 contains 300,000 canola fields and
a further processing would be difficult with the computers available in
this study.
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Table 4.6: Comparison of the MLC classification accuracy with the accuracy obtained
by the MDC with the additional usage of the region growing algorithm. The column
headlines indicate: MLC accuracy of the MLC classification. MDC: MDC accuracy with
additional region growing. MDC case 1: all pixels identified as canola plus the segment
border pixels including region growing; MDC case 2: same as case 1, but the undersized
segments removed (see also Figure 4.10).

Classification

MDC MDC
classifier MLC MDC

case 1 case 2

non- non- non- non-
class canola

canola
canola

canola
canola

canola
canola

canola

G
ro

u
n

d
T

ru
th 2
0
0
1 canola 86.28 13.72 86.45 13.55 86.25 13.75 86.04 13.94

non canola 2.57 97.43 2.43 97.57 3.66 96.34 3.65 96.35

2
0
0
0 canola 80.23 19.77 81.18 18.18 84.22 15.75 83.88 16.12

non canola 2.65 97.35 7.08 92.92 10.75 89.25 10.65 89.35

1
9
9
9 canola 65.71 34.71 75.07 24.93 78.26 21.24 78.38 21.62

non canola 1.18 98.82 1.05 98.95 2.07 97.93 2.06 97.94

• It is easier to identify corresponding fields in different images of the same
region with the vector information, i.e., the centre of the rectangles and
the extent.

• The simple shape of the fields allow to extract and compare further
parameter like, e.g., the orientation to North or the ratio of long to short
edge.

• The vectorised rectangles can easily be transfered to a GIS which is
necessary for the further use of the data within the project GenEERA.

Additional Field Information

The lower clips in Figure 4.12 shows the approximated rectangles overlaid
over a false colour image from the region at the River Elbe north of the city
of Hamburg. The following parameters have been extracted from the satellite
data for each rectangle and can be used for further statistics and investigations:

• Field size in ha.

• The aera covered by the neighbouring pixels, i.e., the number of border
pixels multiplied with the sensor resolution.

• The Position of the field in the satellite image coordinates.

• The Position, i.e., the centre coordinate of the field in UTM Zone 32
coordinates.

• The length of the two main axis of the rectangle.
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Figure 4.12: Image-based raster classification derived from the TM image 196/022;
April 24, 1995. Top: Classification result for a complete TM image. The slanted
rectangle marks the edges of the satellite image and the polygons represent the county
borders. The red rectangle shows the position in the satellite image and on the map.
Different shadings of green indicate different segments. Bottom left: Result of the raster
classification. The different shades of green pixels indicate different segments, red pixels
indicate the neighbouring pixels and yellow pixel the segments centre pixel. Note that
the centre pixels are sometimes skipped by the resampling. Bottom right: False colour
image overlaid with the result of the vectorization show by the white rectangles and the
green crosses. Original data: LANDSAT TM c©ESA, 1995. Distributed by Eurimage.



124 CHAPTER 4. CLASSIFICATION

• The mean and standard deviation for the radiances of the segment.

• The orientation of the long edge of the field with respect to North.

• The ratio of the field’s longer to shorter edge.

• The information if a cloud or a cloud shadow is adjacent to that field,
marking that the field size is probable underestimated.

• The information if the region of the field is hazed, indicating, if the
information of this field is less reliable than in clear sky regions.

• The length of the borders of the field. This information is important
since most transfer of genes can happen at the border of the fields.

4.3.4 Image Classificaton Result

Figure 4.12 shows an example of the results for the classification of one single
satellite image. The top image shows the pixel based result for the complete
image 196/022; April 24. The lower left clip shows an enlarged clip from this
image. The various segments can be identified by their different shades of
green. The centre pixels of the fields are marked by yellow pixels9 and the
neigbouring pxiels are marked in red. The blue pixels are rejected by the
undersized segments rule.

The lower right clip in Figure 4.12 shows the same enlarged clip in the vec-
torized representation, shown are the representative rectangels and the centre
of mass for each field in the clip. The frame-based vectorized data are also
stored in one file per frame and look very similar to the upper image in this
figure, if displayed completely.

4.4 Complete Dataset Classification

The presented algorithms for the classification of canola and clouds require
individual training data sets for each satellite image and since single images
of TM or LISS/3 which only cover a small part of the investigation area, the
classification of the complete investigation area requires mulitple training data
sets. These training data sets have to be extracted from identical fields in
neighbouring satellite images. This is especially important since the images
were acquired under different atmospheric conditions and at different growth
stages.

Moreover, the results of the classification and the cloud detection for the
single images have to be compiled into results for the complete year. Two
different results are desired for the identification of the canola acreage: A vector
data set containing all identified segments with the additional information

9Note that some of these centre pixels have been left missed by the nearest neigbour
resampling, which is also the case for some neighbouring pixels.
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available for these fields (last section) in a GIS compatible data format. This
compilation of the vector data is necessary to allow further processing by the
partners in the project GenEERA. Since the overlap of the images allows
to select the image, where the classification result provides the most reliable
classification results, e.g., least cloud or haze cover.

This data set produced from the satellite image classification is quite large,
e.g., for 2001 it contains about 300,000 segments. Such a large data set is not
very practical if statistics for the complete area are needed, mainly because of
the large amount of computer memory necessary to store the information on
all fields. Therefore, as a second procedure, the obtained field information is
used to construct statistical results with a much lower spatial resolution.

4.4.1 Collection of Training Data Sets

Training data have so far only been identified for the three images covering the
Quillow mapping data set. The obtained training data sets cannot be used to
classify other TM images or LISS/3 image since the appearance of canola in
the satellite image depends on the growth stage and health state of the plants.
Therefore, it is necessary to determine training data for each of the 50 images
available. However, the amount of ground truth data that allows to identify
the training data directly is limited.

The best training data is available for the frame 193/023 in the east of
Germany for the images of the years 1999 to 2001, since it allows to identify
canola fields from ground truth information. A similar ground truth data set
is only available in the region of Bremen covered by the frames 195/023 and
196/023. Unfortunately, this data set is only available for 2001 and 2002 and
does not cover such a large area.

Another ground truth data set is available for the experimental farm in
Sickte near Braunschweig covered by the frame 195/024. This data set covers
a larger time period (1996 to 2001) but only consists of about three to five
relatively small canola fields present per year. This is too small to obtain a
sufficient number of training pixels.

The conclusion of this inventory is that only the minority of images allow
to select training data sets with ground truth information. Consequently,
another way has to be found to identify canola fields to train the classification
algorithm.

Neighbouring Satellite Images

Figure 2.6 (p. 28) shows the coverage of the available TM images. They gener-
ally overlap, especially in the years 1998, 1999, 2000 and 2001. The overlap in
combination with the ground truth data available for the images of the years
2001, 2000 and 1999 for frame 193/023 will be used to extend the training
data for the images to images where no ground truth data is available.

This is accomplished by previously classifying and segmenting the images
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from frame 193/023 as discussed above. The pixel-accurate image-to-image
registration allows to identify training data in the neighbouring image.

Automated Selection from Overlapping Images

The selection of training data cannot be performed by simply selecting cor-
responding pixels for two reasons. First, the image-to-image registration still
has an error of about one to two pixels (see Section 3.1.4, p. 55). Therefore,
the edge pixels of the fields are removed in order to identify only canola pixels.
This is also important since canola fields have a tendency to appear larger
than they are in nature resulting from the bright colour that is overshining10

neighbouring pixel of darker surfaces types (see Section 5.3.1, p. 153). There-
fore three layers of edge pixels are removed from the segment by applying an
erosion algorithm (Castleman, 1996). If more than 10 adjacent pixels ramain,
they are used to identify training data in the overlapped image.

The other reason is that the crop on the observed field may have changed
in the time between the acquisition of the satellite images. This can happen
if the canola plants on that field are damaged, e.g., by drought or storms,
and the farmer plough these fields. Although this does not happen frequently
it has to be taken into account. As addtitional difficultiy the segments do
not necessarily correspond to fields and only part of the segment may have
changed. Therefore, it is necessary to find a criterion to identify fields where
the crop has completely or partly changed.

The criterion is based on simple statistics by calculating the mean radiances
and standard deviations for each segment. Radiance and standard deviation
are avreaged and segments with a mean radiance that differs more than three
times the averaged standard deviation are rejected.

This method allows to identify training data indirectly for images that
overlap each other and could be applied for the images of the years 1999, 2000
and 2001. However, in the years 1995 to 1998 there was no ground truth based
traing data available and the training data has to be colected in a different
way.

Manual Selection of Training Data

In the years 1995 to 1998 and 2002, the situation is less promising. The map-
ping information available from the experimental farm in Sickte (see Section
2.2.2, p. 34), with three to five fields is too small to select a representative
training data set.

In order to allow a classification of the images for the years 1995 to 1998,
it is necessary to identify canola fields by visual inspection. This is possible

10The sensor’s point spread function is influenced by light reflected from areas in the
neighbourhood of the pixel. Bright areas, like flowering canola fields, thus appear larger in
regions of surrounding darker pixels.
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because of the distinct appearance of canola fields in satellite images during
flowering and the experience gained in the years with mapping data available.

The most unique appearance of canola is found during flowering: a pink to
purple colour in the false colour representation or a greenish yellow in the true
colour representation. Thus one image acquired during the flowering period
is selected for each year. Note that two images were necessary for 1995 and
1996 since there is a missing overlap between groups of images (see Figure 2.6,
p. 28).

In these images 10 to 30 fields (the number is larger in the west of the
investigation area since the fields are smaller) are selected and pixels from
homogeneous regions within these fields (see Section 4.1.2, p. 89) are used as
training data for the MDC.

The classification result is used in the same manner as the one obtained
with the ground truth data to identify more training data in adjacent images.

Flowering Canola

As discussed in Section 4.2.2 (p. 108), the flowering of canola needs also to
be obtained by visual inspection. Although this has to be done manually, it
is simpler than the identification of the non-flowering canola, since flowering
canola can easily be identified by its colour in the true colour image.

The TM Image Acquired in 2002

These data present two specific difficulties. First, this frame was acquired very
early on the 3rd April, 2002 and there is no image available for comparison with
this early growth stage. Second, the grond truth data used for the selection
of training data in this image does not contain information on the field edges
as the Quillow data set. Mapped are information on habitat type at a single
postion. Since the habitat types “canola field” and “adjacent to canola field”
have been mapped, one of the fields adjacent or surrounding the postion of
these habitat types has to be a canola field. An example of this selection is
shown in Figure 4.13.

Therefore, the selection of training data for this image have to be a combi-
nation of the selection strategies for the ground truth and the visual inspection
methods. The canola fields are identified by choosing the one field near the
mapping position, indicated by the yellow flags in Figure 4.13), that seems
most likely to be canola by comparing its colour to other fields adjacent to
canola habitats.

The fields identified with this method were then used as training data for
the classification algorithm.

Conclusion

Using image overlap and visual inspection allow to identify training data sets
for each image although only limited ground truth data was available. More-
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Figure 4.13: Example for the training data set selection based on the single point based
habitat mapping data set from Bremen in 2002 (see Section 2.2.2, p. 34). Displayed
is a clip from image 196/023; April 3, 2002 from the south of Bremen. Yellow flags:
canola field habitat type. Blue flags: Other habitat type, e.g. street border or field of
other crops. The turquoise polygons indicate pixels acquired as training data set for the
classification algorithm with the aid of the habitat mapping. Original data: LANDSAT
ETM+ c©ESA, 2002. Distributed by Eurimage.

over, the manual selection of training data sets could be limited to one image
per year since the selection of training data with the overlapping image method
works autonomously after a starting image is classified. An exception are the
years 1996 and 1997, in which satellite data with no overlap to the other images
was present.

The selection of training data for the year 2002 is not very reliable since it
had to be guessed which of the fields are actually canola since the field edges
were not mapped. Moreover, it is not possibility to compare the appearance
of canola in that early growth stage to the data from other images since no
image from a similarly early date available.

4.4.2 Compilation of the Classification Results

The results of the classification of canola are the basis for a further investi-
gation concerning the biology of pollen transfer. Therefore, the results of the
georectification, the cloud-mask and the classification have to be combined.

There are two different types of data sets available, the result for the indi-
vidual images (image-based results) and the results for the entire investigation
area for a specific year (year-based results) .
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Image-Based Results

The image-based results are of interest for institutes that perform investiga-
tions on the regional agricultural and botanical situation and allow to compare
the classification result with maps like, e.g., habitats for breeding partners.
Therefore, the location of each canola pixel is of interest and the raster data
have to be converted to the vector information described above. The raster
data are converted to georectified grey-level raster graphics (GeoTiff). In these
raster graphics the classification including border pixels and undersized fields
are stored. The border pixels and the undersized fields can be identified by
their pixel value and equal values for pixels indicate their belonging to the
same segment.

In a second file, a geocoded grey-level raster graphics is provided for the
cloud cover mask, indicating clouded, shaded and hazed pixel by different
grey-levels.

Moreover, the vectorised data, i.e., the representative rectangles are also
provided in a standard geographical Vector format (ESRITMArcView shape-
file). This shapefile contains the vector information listed in Section 4.3.3 for
each segment identified for the image.

Year-based Results

The evaluation of the classification results for one whole year is difficult when
using the image based results. The main reason is the thata fields in overlap-
ping regions appears twice. The representation of the year-based results needs
to fulfil the following requirements:

1. All identified segments of one year are present as representative rectan-
gles.

2. The area evaluated with the satellite data is noted.

3. Individual fields only appear once in the data set.

Most of these three requirements are fulfilled by extracting the rectangles from
the image-based results and writing them to the new data set for the entire
investigation area. The exceptions are the regions where to images overlap. In
these regions, the cloud/cloud-shadow identification is taken into account to
select the more reliable classification result. The cloud cover mask has to be
evaluated in order to select the most appropriate segment. This is obtained
by dividing the overlapping area into rectangles of 5× 5km2 based on the geo-
graphic coordinates and determining the area covered by cloud, cloud-shadows
or haze. Note that fields from haze covered regions are only used if the area
in the other image is cloudy.

The comparison of the cloud cover for each rectangle is used to select the
segment to be added to the year based data set. Also taken into account is
the coverage of the satellite data since fields touching the border in one image
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Figure 4.14: Example for the vectorized classification result for the year 2001. Dis-
played are the frames used for the classification (red lines), the boundaries of the federal
states (blue lines) and every field found (black dots). A zoom would reveal the same
representation as for the image-based vector results shown in Figure 4.12.

might be better represented in another one. Another error, although it seldom
happens, for this method is that a field might be added twice if the field centres
are located on the edge of the rectangles. Therefore, each rectangle is tested
for its centre being located within another rectangle.

Besides the information on the identified canola fields it is necessary to
provide the coverage of the satellite data resulting from frame coverage and
cloud-cover. The representation of the frame coverage can simply be obtained
by identifying the frame borders and writing them to another shapefile (see
also Figure 2.6, p. 28).

The cloud coverage is more difficult to describe since it is mainly available
as a pixel-based result. Therefore, the above described 5 × 5 km2 rectangles
are used to represent the cloud coverage by building polygons enclosing the
rectangles with a cloud cover of more then 20 %.

With this data set the results can be processed with a usual GIS software
providing all required information in a data set of reduced size and ambigiouties
clarified. Figure 4.14 gives an impression on this data set for 2001. The size
of this figure is not adequate to identify details, but this file contains exactly
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the same information for each field as the frame-based vector files shown in
Figure 4.12. An example for the coverage information is shown in Figure 5.2
(p. 136).

Compiling Acreage Statistics for the Investigation Area

The above described data needs much storage space, e.g, 1 GB for the year
2001. However, a simple statistic of the field size distribution or total acreage
is sufficient. Therefore, statistics for a 5 × 5 km2 grid are extracted from the
classification result. The following results are generated:

• Total acreage of canola, for the vectorised result and for the raster result
(including the undersized fields).

• Fraction of canola fields compared to the complete evaluated area.

• Evaluable area, i.e., fraction of the rectangle that is covered by the satel-
lite data and not covered by clouds.

• Cloud-/cloud-shadow-cover fraction.

• Mean field size.

• Mean orientation with respect to the North.

• Mean ratio of long and small rectangle sides.

Some of these statistics will be presented in the following chapter and all results
are available on DVD (see Appendix C).

4.5 Conclusion

A classification algorithm has been presented that can identify the fields of
canola larger than 1 ha with an accuracy of about 80 %. The accuracy is ac-
chieved by applying an additional region growing. Moreover, the reflectance
properties of flowering canola had to be acounted for by an additional classifi-
cation. The adaption of the flowering canola could not be automised and still
requires the manual selection of training data sets. Nonetheless, the classifica-
tion with the automatically selected training data sets simplyfies the selection
of these flowering canola training data sets.

A correction for thin cloud cover is presented which allows to classify canola
pixels below it to some extent and prevents the confusion of other surface types
with canola .

From the results of the classification segments of neighbouring canola pix-
els are constructed. They are used to calculate representative rectangles to
produce a vector based data set.

Since the objective of this study is the evaluation of the canola cultivation
in entire Northern Germany and the training data sets are only available for a
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few images, a method has been developed, that allows to extract training data
sets from overlapping images with the help of the classification result for one
of the images.

The results obtained for the different satellite images are compiled to data
sets for the complete investigation area. One data set contains information on
various parameters, e.g., position and size for all individual identified fields.

All methods described in this chapter are developed under the requirement
of a mostly automated data processing to reduce the effort necessary by a
human operator. This has been achieved for most of the processing steps.



Chapter 5

Results and Validation

The methods described in the previous two chapters have been applied to
all 48 satellite images. In the first section of this chapter the results of the
classification are presented. The focus will be the statistical description of
the classification results. In Section 5.2 the validation of the classification
results is carried out with positions of known canola fields and a comparison
with cultivation statistics from 1995 and 1999. Section 5.3 discusses the error
sources for the identified field sizes and the likelyhood of overlooking small
fields. The chapter is closed with a final appraisal of the results from this
study.

5.1 Classification Results

As presented in the last chapter, the results are either based on a single image
or are compiled for the complete investigation area. The results are provided
in two different forms. A detailed form, including all fields with additional
information for each of them, and a compiled form that totals or averages the
parameters for all fields within 5 × 5 km2 squares of a grid overlaid over the
investigation area.

5.1.1 Detailed Field Information

The per-field information and its structure has already been presented in Sec-
tion 4.4.2, p. 128. These data are useful for the investigation of the local
cultivation characteristics of canola. Moreover, they contain detailed infor-
mation on the cloud situation in which the classification has been performed,
which allows the estimation of the local reliability of the classification result.

The image-based results consist of the individual classification results for
each satellite image. There are 48 such data sets available, one for each satellite
image (see Figure 2.6, p. 28). Additionally, a set of all fields identified is
compiled into one vector data set for each year. This substantial amount of
data is too large to be displayed in detail in this thesis, e.g., for the year 2001
more than 300,000 canola fields have been identified.
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Figure 5.1: Map of the total canola acreage for 2001 represented as a 5× 5 km2 raster.
The black grid lines represent the 105 km lines of the UTM Zone 32 grid and the irregular
lines the county borders. Regions with no satellite data available are displayed in white.
The main cultivation areas of canola in the northeast of Germany (upper right of the
map), in the east of Schleswig-Holstein (upper centre) and south of Berlin (lower right)
are clearly visible.

Although these detailed data sets are one of the main outcomes of this
study, they are only intermediate results and have to be analysed further in
order to estimate the gene transfer from genetically modified canola to non-
modified canola or other breeding partners of canola on a small scale in various
regions of the investigation area. This is not in the scope of this thesis and
will not be discussed here. The cultivation characteristics for the complete
investigation are discussed here instead.

5.1.2 Averaged Results

The averaged results contain the averaged or total of the parameters listed
in Section 4.4.2 (p. 131). Some of the parameters will be presented here and
their importance for the risk assessment of gene transfer will be discussed
exemplarily.
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Canola Acreage in Northern Germany

The acreage of canola for the year 2001 is shown in Figure 5.1. Clearly visible
are the main cultivation areas in northeastern Germany, eastern Schleswig-
Holstein and south of Berlin. The main cultivation areas are already known
from the agricultural statistics and show a good agreement. In these regions,
the canola acreage is larger than 500 ha, i.e., 20 % of the raster square area
of 2500 ha (5 × 5 km2) is covered with canola. The largest canola acreage
was found in the northeast of Germany with an acreage of 1050 ha, which
corresponds to 42 %.

The regions with little canola cultivation are mostly located in northwest
Germany and west of Schleswig-Holstein in the coastal areas near the North
Sea.

Canola Cultivation Density

The total acreage is only meaningful in raster squares completely covered with
cloud free satellite data. In raster squares at the border of a satellite image
or in squares with cloud cover, it is likely that not all fields in the square are
identified. Nonetheless, a relative coverage can be obtained by identifying the
observable area, i.e., the area in without cloud cover and the satellite data
available. The upper map in Figure 5.2 shows the observable area for the year
2000. The coverage of the investigation area was nearly complete, with the
exception of significant cloud cover in the eastern regions. The cultivation
density is the ratio of the identified canola acreage and the observable area
and is shown for the year 2000 in the lower diagram of Figure 5.2.

The comparison of this diagram with the total cultivation area from 2001 in
Figure 5.1 shows a good agreement for the main cultivation areas. Moreover,
the colour scale of the total acreage and the cultivation density is equivalent
for cloud free regions and a comparison with the amount of canola identified in
2000 and 2001 is very similar. This suggests that neither the main cultivation
of canola changed within the years nor the classification in 2000 and 2001
changed noticeably.

The cultivation density for the years 1995 to 1999 is displayed in Figure 5.3
and shows good agreement with those 2000 in Figure 5.2 (bottom). The results
for the investigation period showed that the main cultivation area also did not
change noticeably within this longer period.

The cultivation density for 2002 is also shown in Figure 5.3 and allows
to identify the cultivation area south of Bremen. Nonetheless, it misses the
canola cultivation near the river Elbe. This is caused by strong cloud and haze
cover in that part of the image. Moreover, the early acquisition date makes
the identification less reliable (see also Section 5.2.1, p. 144).

Pollen and seed dispersal is more likely in regions with high canola cultiva-
tion density simply because of the larger number of canola plants, i.e., in the
main cultivation areas mentioned above.
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Figure 5.2: Top: Observable area of the investigation area for the year 2000. Grey
pixels indicate a coverage below 50 %. Bottom: Cultivation density for the complete
investigation area for the year 2000. White pixels are those with an observable area of
zero. In cloud free areas, the largest displayed cultivation density of 36 % corresponds
to 900 ha total acreage.



5
.1

.
C

L
A

S
S
IF

IC
A

T
IO

N
R

E
S
U

L
T

S
137

1999 1998 1997

1996 1995 2002

0.0036.00
 

 

ca
no

la
 c

ul
tiv

at
io

n 
de

ns
ity

 [%
]

0

6

12

18

24

30

36

Figure 5.3: Canola cultivation density for the complete investigation area for the years 1995 to 1999 and 2002, same representation as in
Figure 5.2 (bottom). The main cultivation areas can be identified in most years.



138 CHAPTER 5. RESULTS AND VALIDATION

Field Size Distribution

The size of canola fields is another important parameter, since smaller fields
share a longer edge with the surrounding non-canola vegetation for the same
total cultivation area than larger ones. Consequently, a larger number of canola
plants is close to potential habitats of interbreeding partners.

Moreover, a smaller field size often indicates a larger number of farms
and thus a higher probability of the cultivation of different breeds of canola,
including GM canola in the future.

The mean field size is obtained by separately averanging the size of canola
fields in each of the 5× 5 km2 raster squares. Figure 5.4 shows this parameter
obtained from the classification result for the year 2001. It clearly shows the
differences in field size distribution between the western and eastern federal
states, which is the result of different historical developments of the two re-
gions. The range of field sizes found is about 2 to 20 ha in the western regions.
The large fields in the northeast of Germany have a size ranging from 30 to
50 ha. The largest field found in that area was 200 ha and is located in Bran-
denburg. Additionally, it can be seen that the mean field sizes in the main
cultivation areas in west Germany are also larger than in areas with less canola
cultivation.

Fields in eastern Germany are generally larger than fields in western Ger-
many and fields outside the main cultivation areas are also smaller than those
within. Consequently, the potential of gene transfer from field to habitats
surrounding the field is more likely in the western regions. Additionally, the
number of different breeds in these regions is potentially higher since there are
more fields and therefore the probability of a GM canola field is higher.

Ratio Border/Field Pixels

The length of the contact zone between the field and the surrounding vege-
tation depends not only on the size of the field but also on its shape, i.e., an
irregularly shaped field generally has a longer contact length than a rectangu-
lar one1. Therefore, the lower diagram in Figure 5.4 shows the distribution of
the number ratio of border and field pixels2. A comparison of this ratio and the
field size distribution allows to identify regions with irregularly shaped fields,
i.e., regions with a high border to field ratio and a large mean field size, which
is very likely resulting from the fractal shape of the fields in such regions.
Most obvious are regions in the northeast of the investigation area, north-
ern Brandenburg and Mecklenburg-Vorpommern. The region in the southeast
(Sachsen-Anhalt) shows much lower values for this ratio, which means that

1A irregularly circular field has a longer contact length than a narrow rectangular one
of the same size. However, the approximation by rectangles conserves the ratio of long to
short field extent.

2This parameter is only applicable to classification results from years consisting only of
TM data, since LISS/3 has a different spatial resolution and the results are not directly
comparable.
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Figure 5.4: Top: Mean field size for 2001 averaged over 5 × 5 km2 squares. Bottom:
Number ratio of border and field pixels.
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it mainly consists of fields with more regular shapes. The high values in the
western parts result from the smaller field sizes.

Besides the importance for the contact length, this value also allows to give
an estimation of the classification quality. Areas with high values have a large
number of neighbouring pixels and therefore misclassifications are more likely
(see Section 5.3, p. 152).

Border Pixel Area

An absolute estimation at the contact length of the fields can be given by the
area of covered by border pixels. The upper diagram in Figure 5.5 shows the
total area of pixels neighbouring canola pixels.

As discussed in Section 4.3.1 (p. 117) neighbouring pixels are important
to estimate the quality of the classification. Additionally, this parameter can
be used to estimate the area of the pixels that contain canola as well as other
vegetation. Therefore, the lower diagram in Figure 5.5 shows the total area of
border pixels for each square. Although this parameter is simply based on the
satellite’s spatial resolution, it allows to give a quantitative estimation of the
direct contact area. As expected, the largest values are obtained in the main
cultivation areas of northeastern Germany. Remarkable is the large number of
border pixels in the areas south of Bremen which is comparable to the number
of border pixels in the main cultivation areas although the amount of grown
canola is lower.

The potential gene transfer from canola fields to surrounding vegetation
would be high in the main cultivation areas in northeast Germany, northeast
Schleswig-Holstein but also in the region south of Bremen.

Note that for an exact assessment of pollen transfer to the surrounding
vegetation, detailed assumptions on the pollen transport should be included.
Generally, it can be stated that the importance of the field shape is decreasing
with increasing pollen transport range.

Length of Contact Line

Under the assumption of regular fields, a more meaningful parameter can be
determined from the approximated rectangle: The “length of the contact line”
is the total length of all field borders. It gives the length of the line where
canola is in contact with other plants. An approximation can be obtained
from the representative rectangles by adding the length of their borders. The
total of these borders for all fields is shown in the lower map in Figure 5.5.
This shows quite similar results to the border pixel area. High values of up
to 5 km are found in the main cultivation areas. Unlike the border pixel area,
the length of cantact line in the southeast is as high as in the northeast of the
investigation area. This results from the approximation as rectangles which
ignores the longer border length of irregularly shaped fields (common in the
northeast). The contact line is much shorter in the west of Germany than in
the East.
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Figure 5.5: Top: The total area of the border pixels, i.e., pixels that probably contain
canola as well as other vegetation. Bottom: Approximated length of the contact lines
for all canola fields, estimated from the edges of the approximated rectangles.
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Figure 5.6: Mean minimum distance between canola fields on the example of the result
for 2001. Grey pixels included less than two canola fields and therefore did not allow to
calculate a mean distance.

According to this parameter, hybridisation would be much more likely in
the east of the investigation area.

Distances Between Field Borders

The most important parameter to estimate the potential breeding of non-
modified and GM canola in connection with the pollen transport range is
the distance between fields. Obviously, the nearest fields are of interest and
therefore, the shortest distance to the next canola field has been calculated
and averaged for all fields. The result is shown in Figure 5.6 and indicates
that the mean distance is usually below 500 m in the main cultivation areas.
Because of the limitation to the raster grid of 5×5 km2 the maximum distance
displayed has been limited to 2.5 km. Nonetheless, the grey regions can be
taken as an indicator for regions of distances above 2.5 km. Considering the
transport range of up to 4.5 km, the transport of pollen from field to field is
very likely in the main cultivation area of northern Germany.
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Conclusion

The two potential risks linked with GM canola cultivation are hybridisation
and breeding with non-modified canola, also called contamination. Considering
the above parameters presented, the following qualitative assessment of these
risks can be made for northern Germany:

Contamination: The contamination can be expected to be very likely in the
main cultivation areas in Schleswig-Holstein, Mecklenburg-Vorpommern
and Brandenburg because of the low field distance of only 0.5 km which is
below the expected pollen transport range (Breckling et al., 2003; Rieger
et al., 2002). The short distance between fields can also be found in
the areas with smaller canola acreage like the region south of Bremen
or west of Hanover. In this context, the small field sizes in regions with
high canola acreage can also indicate an increased risk because of the
possibly increased number of different canola breeds.

Hybridisation: The hybridisation mainly depends on the neighbourhood of
canola with other types of vegetation. This can be best estimated with
the total field border length. This parameter shows values of up to 5 km
for eastern Germany, but also values of up to 2 km in the cultivation
areas of western Germany. Because of the approximation of the field
border length which ignores the regularity of the field shapes, the number
of border pixels can also be used to estimate the contact length to the
surrounding vegetation. Surprisingly, this parameter showed comparably
high values for northeastern Germany but also eastern Schleswig-Holstein
and the region south of Bremen. The importance of these two parameters
depends on the assumed pollen transport range3 and the distance to the
habitats of interbreeding partners. The pixel border area represents the
short distanc transport more successfully since it accounts for variations
in the shape of the field, which is less important for higher distances.

5.2 Validation

The estimation of the quality of the information gained on the cultivation
of canola requires a comparison with ground truth data. As described in
Section 2.2.2 (p. 33), some sets of validation data are available for this study.
The Quillow mapping data set has already been evaluated in the description
of the MDC. This comparison showed an accuracy of 78 to 86 % identified
canola acreage and an identification of 100 % of the present canola fields by
means of identifying the presence of a field. Nonetheless, this validation is not
representative for the complete classification, since:

• The training data set has been derived from the region classified and can
not describe the variations potentially present for larger distances from

3The correct pollen transport range is still been discussed (Rieger et al., 2002).
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the training data. The reflectance variations of canola flowering is one
example of such effects.

• The fields in eastern Germany are much larger than in the West. There-
fore, the number of fields in the west completely missed by the classifi-
cation is potentially higher than in the region of the Quillow data set.

• The training data for the fields located in images without ground truth
data available might be corrupted by the automatic training data selec-
tion (see Section 4.4.1, p. 126).

Two different types of validation are applied. The first one is based on
the position and, if available, the edges of known canola fields in other regions
than the Quillow region. The second is the comparison of the identified total
acreage with the agricultural statistics available for Schleswig-Holstein and
entire Germany (see Section 2.2.3, p. 36).

5.2.1 Known Field Positions

The comparison with known field positions allows to validate the local results of
the classification. This has the advantage that the reasons for misclassification,
e.g., small field size or strong flowering, can be directly investigated. Moreover,
a classification error can not compensated and thus be masked by other types
of misclassifications, which is possible if only the total of canola acreage is
compared as in the comparison with the agricultural statistics.

For a small number of fields, information on all corner coordinates, i.e., the
field sizes, was available and for a larger number only one coordinate and the
information if a canola field is present or not. While the first type of validation
data only contains very few fields, the second validation type contains a much
larger number of samples and is therefore presented first.

Mapping of Interbreeding Partners

The mapping of interbreeding partners described in Section 2.2.2 (p. 34) gives
ground truth information on the position of canola fields for the years 2001 and
2002. The position of canola fields and non-canola fields could be compared to
the classification result for the TM images 196/023; May 10, 2001 and 195/023;
May 11, 2001. The frame 196/023 covers the complete area mapped and can
be compared to the complete mapping data set in 2001 and 2002. The image
195/023 only covers a smaller part in the eastern region and the number of
comparable samples is reduced.

The mapping of interbreeding partners contains information on the habitat
type in which the interbreeding partner is found. The habitats usable for the
comparison with the results those marked as “is canola field” or “neighbours
canola field”. Additionally, the fields of other crops are also listed as habitat
type, e.g., marked as “is cereal field” or “is corn field”.



5.2. VALIDATION 145

Table 5.1: Validation of the classification with the mapping of interbreeding partners.
Listed is the number of canola field habitats within 120 m of pixels classified as canola
and the habitats of fields of other crops that are within 60 m of pixels classified as canola.
The number in brackets show the result for the visually tested habitats.

canola field non-canola fields
frame date

total found missed total misclassified

196/023 May 10, 2001 132 (102) 87 45 (15) 60 2 (1)

195/023 May 11, 2001 97 (65) 53 44 (12) 41 2 (0)

196/023 April 3, 2002 297 (243) 140 157 (103) 141 5

These habitat types are compared to the pixel-based classification. The
limited mapping accuracy – the database has been collected without the aid
of a GPS receiver – requires to define a neighbourhood in which the habitat
types are judged as found if a classified canola pixel is present. A distance of
120 m has been selected as direct neighbourhood of the habitat of types “is
canola field” or “neighbours canola”.

Since the habitat types “is field of other crops” are available, a negative test
is also applied by comparing non-canola field habitats with the classification
result. The mapped position is marked as “misclassified”.

The result of this validation is shown in Table 5.1 for the two different
images available in 2001 and for the one of 2002.

The validation of the image 196/023; 2001 show that the 87 of 132 fields
could be identified. Nonetheless, the number of 45 fields missed is larger than
expected. Therefore, the missed fields have been visually inspected in the
satellite image, which showed that 30 of those fields could not be identified
visually in the satellite data.

The reason for this is probably errors in the mapping or fields that have
been ploughed in in the meantime. Besides errors in the mapping of the
habitats, this results from spring sown canola which is not asssigned a special
habitat type and was not considered in this study. Of the remaining 15 fields,
10 fields were to small to be identified and 5 fields showed strong flowering.
Note that the latter fields are all partly identified but not at the location of
the mapped habitat.

The situation for image 195/023; 2001 is similar and the majority of habi-
tats could be identified: 53 of 97 fields in the classification result. Nonetheless,
the classification misses 12 fields in this region, of which 8 were too small and
4 were only partly classified.

As described in Section 4.4.1 (p. 127), the selection of training data was
not very reliable for the image acquired in 2002. This can be confirmed by the
identification of habitats since only half of them could be identified.
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GPS Mapped Fields

In addition to the habitat mapping, 15 canola fields were visited on May 15,
2001 in the area of Bremen. For each field, the position of at least two corner
points and the field orientation with respect to North have been measured with
the aid of a GPS receiver. For three of these fields, all corner coordinates have
been determined.

All of the present 15 fields were identified by the classification. The field
shapes of the three fields of which all corner coordinates were known have been
used to compare the field size from the classification result with the field size
derived from the corner coordinates and resulted in 92 %, 87 % and 69 % of
these fields.

Additionally, 12 fields identified in the satellite image 196/023; May 11,
2001 were visited afterwards at the end of June and all fields could be confirmed
as canola fields.

Seed Growing Fields

Further positions of canola fields could be obtained for fields used for canola
seed production. The fields were visited with an associate of a seed producer
Deutsche Saatveredelung (German Seed Refinement). The positions and ar-
rangements of fields and surrounding surface objects like woods, farm houses
or roads have been noted, which allowed to identify the correct field at the
position marked with a GPS receiver.

These included 9 fields for the year 2002, 5 fields for 2001, one for 2000 and
one for 1999. The comparison with the classification showed, that 6 of the 9
fields in 2002, 4 of those in 2001 and both fields from 1999 and 2000 could be
identified by the satellite data.

Experimental Fields

Another validation data set is available from the experimental farm in Sickte
near Braunschweig. It also contains information on the field size which allows
to compare the area of the segments with the field sizes. The field size of the
classification was corrected for mixed pixels by adding the halved area of the
border pixels. Figure 5.7 shows the positions and shapes of those experimental
fields on which canola was grown sometime in the period of 1995 to 2001. The
fields with the white border were canola fields in 1995. Generally two to three
of these fields were sown with canola each year.

Table 5.2 shows a comparison of these fields with the classification results
for the images available for this area. It can be seen that except for two fields
in 2000 and one in 1996 (cf. the zeros in the right part of Table 5.2), all
fields have been identified. The area identified generally ranges from 70 to
130 %. In this context it is important to note that these fields are quite small
and an misclassification of a single pixel has large influence on the accuracy.
One field was overestimated by 90 % in 2001, because there was a canola field
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Figure 5.7: Field used for canola cultivation at one time during the period of 1995 to
2001 overlaid over the images from 195/023 and 195/024 from May 3, 1995. Left:
Fields near the village Sickte. Right: Fields near the village Wendhausen. Both clips are
located southeast of the city of Braunschweig. Note, that the fields marked by the white
borders were canola fields in 1995, which can also be seen from the pink colour of the
false colour representation. Original data: LANDSAT TM c©ESA, 1995. Distributed by
Eurimage.

directly adjacent to the experimental field. Both fields have been joined by
the segmentation algorithm and therefore, the area of the experimental field
is overestimated.

Consequently, these results generally confirm the accuracy obtained from
the Quillow mapping data set.

Conclusion

The above evaluation data sets showed, that the majority of fields could be
identified by the classification algorithm. The addition of all available field
positions under the exclusion of the comparisons for 2002, yield that 189 of
224 fields could be identified which is 84,3 %. Only one field was misclassified
as canola. The available field sizes showed a similar result with agreements of
70 to 130%.

5.2.2 Agricultural Statistics

In contrast to the spot tests with the positions of known fields, the agricultural
statistic allows to compare the global results of the classification. Two types
of statistics are available in this study, the county statistics collected in 1995
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Table 5.2: Ratio of the area of mapped experimental canola fields am and the area
identified by the classification ac. Listed are the percentages for fields that were seeded
with canola in the particular year (see Figure 5.7). The order of entries in the last
coloumn is depending on the size of the mapped field. Note that there were nine fields
available in total, however only fields that were seeded with canola in that year and
appear in the satellite image, are listed.

Image Fields ac/am [%]

195/023; May 11, 2001 1 72 – – –
195/024; May 3, 2001 3 105 90 190 –
195/023; May 16, 2000 1 69 – – –
195/024; June 9, 2000 2 0 0 – –
195/023; May 11, 1998 2 99 121 – –
195/023; June 6, 1996 3 121 99 100 –
195/024; June 6, 1996 4 126 112 121 0
195/023; May 3, 1995 1 69 – – –
195/024; May 3, 1995 2 101 72 – –

for all counties in Germany and the township statistics from 1995 and 1999
for the federal state of Schleswig-Holstein (see Section 2.2.3, p. 36).

In order to compare statistics and classification, the acreage of identified
fields within a county or township, respectively, has been totalled and was then
compared to the statistical estimation. The ratio of satellite-derived acreage
and acreage from statistics is expressed in percent. The error of the field size
resulting from mixed pixels at the borders of the fields is taken into account
by adding the halved area of the neighbouring pixels to the field sizes.

Additionally, the area covered by the satellite data has been determined
and only counties or townships with a satellite coverage of 90 % were evaluated.

County Statistic

Figure 5.8 shows the comparison of the statistics and classification. The dif-
ferences are indicated by the fill colour of the different counties. Additionally
shown are the edges of the satellite frames available for 1995, to indicate the
area covered by satellite data.

Figure 5.8 shows good agreement of 70 to 110 % identified acreage for most
counties. Moreover, the agreement in the main cultivation area in the east of
Schleswig-Holstein is 90 to 110 % for 4 counties and 70 to 90 % for 7 further
counties. Results of 90 to 110 % agreement are also achieved in the counties
Verden and Nienburg located south of Bremen and also show a dense canola
cultivation.

This was not valid for the county of Harburg, located directly south of the
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Figure 5.8: Comparison of the classification results and the cultivation statistics collected
in 1995 for the counties. The blue rectangles show the coverage of the four available
satellite images. The counties are marked by the thin black lines. The fill colours of
counties indicate the comparison result. No fill colour is used for counties where the
satellite coverage was below 90 % or where no statistical data were available. The image
in the lower right shows the cloud cover which prevented a classification in the county of
Harburg, south of Hamburg. Original data: LANDSAT TM c©ESA, 1995. Distributed
by Eurimage.

city of Hamburg, where less than 30 % of the canola could be identified by
the satellite data. This error results from cloud and haze cover in this county
which is shown in the lower right clip in Figure 5.8.

According to the applied cloud algorithms 12 % of the area were covered by
thick clouds and 37 % by thin clouds. Additionally, Figure 5.2 shows that in
this area canola is not cultivated widely. Moreover, most of the canola fields
are located in the northern part of this county which is cloud-covered (see
lower right image in Figure 5.8.

The southernmost counties also show a less successful identification of
canola acreage with mostly 50 to 70 % but also only 30 to 50 % for five of
the townships. A possible explanation is the low amount of canola acreage in
these counties. Note that the two smaller counties located northwards are the
cities of Hannover and Braunschweig where the canola acreage naturally was
also very low.
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Township Statistics

A more detailed comparison is possible with the township statistics from
Schleswig-Holstein. Figure 5.9 shows the results of this comparison for the
statistics of 1995 and 1999. In 1995, the classification of the complete area
of Schleswig-Holstein could be compared to the statistics because of the com-
plete coverage with satellite data. In 1999 only about half of the area was
covered and could be evaluated. The frame coverage for that year can be
seen in Figure 5.8. Note that, for the statistics, all fields are assigned to
the township of residence of the owner or tenant, even if fields are in an-
other township. This is especially important for the townships neighbouring
Mecklenburg-Vorpommern since farmers from these townships have frequently
acquired acreage in the neighbouring federal state. The results of this com-
parison are discussed separately:

1995: The left map in Figure 5.9 shows the comparison for this year. The
comparison shows good agreement for the main cultivation areas in the east of
Schleswig-Holstein. Generally the comparison shows 70 to 130,% agreement
for this area. Very high or very low percentages of above 130 % or below 70 %
in some townships can be explained by the farm-based assignment described
above. The comparison of the western regions of Schleswig-Holstein show a
higher differences in the comparison, which result from the much lower culti-
vation density in these regions, which lead to higher differences in the relative
comparison. Nonetheless, classification and statistics show good agreement
for the townships without canola acreage marked in blue. Here, also the farm
based assignment of acreage can be the reason for some of the differences.

1999: The right map in Figure 5.9 shows the result of the comparison for
1999. Apparent is the overestimated amount of canola acreage on the island
of Fehmarn and on the adjacent peninsula. This can be explained by strongly
flowering canola observed in the satellite data. Directly below this region the
comparison shows very low amounts of identified canola. This is the conse-
quence of a thin cloud cover in this region which could not be compensated
by the haze correction because of the strong flowering. The same effect is the
reason for the underestimation in the northernmost part of this map. In the
western part of Schleswig-Holstein, there are variations which can again be
explained from the very low cultivation density in this region.

Area Comparison

In addition to the discussion on the acreage for single townships or counties,
respectively, statistic and classification are also compared for the complete
overlap of statistics and classification.

The results of this comparison for area of completely covered townships or
counties are shown in Table 5.3. The list shows the ratio of the canola acreage
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Figure 5.9: Comparison of the classification result for the township statistics of Schleswig-Holstein for 1995 (left) and 1999 (right). The colour
scale is similar to the one used in Figure 5.8, with the exception of three additional colours: “no canola“ indicates townships with no canola
acreage, neither in the satellite classification nor in the statistics, “stat only” indicates townships with only canola acreage noted in the statistics
and “sat only” indicates townships where canola acreage has only been found in the satellite data.
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Table 5.3: Comparison of the identified canola acreage AC and the acreage estimated
by the different statistics AS . Additionally included is the area of the border pixels Ap.
The results are shown for the township statistics in Schleswig-Holstein (SH) and for the
county statistics in northern Germany (NG).

eval. area ratio [%]
Statistic Year

[ha] AC/AS (AC + 0.5AB)/AS (AC + AB)/AS

Township SH 1995 1,009,204 81.16 102.49 123.82

Township SH 1999 491,501 68.04 88.04 108.05

County NG 1999 4,497,541 62.45 82.88 103.328

found by the satellite and the acreage statistically estimated. Additionally,
the influence of the border pixels is included into this comparison.

From this table, the acreage of canola is underestimated by 20 to 40 % if
the border pixels are not taken into account. Better results can be obtained
by adding the halved border pixel area to the field sizes. In this case, the
classification from 1995 showed only 2 % deviation from the statistic. The
comparison for the year 1999 still showed a difference of 20 to 10 %. This error
can be compensated by adding the full size of the border pixels, which leads
to an overestimation of 23 % for the statistic from 1995.

These differences in classification accuracy can be explained by a thin cloud
cover that was present in 1999 and not in 1995. Nonetheless, cloud covered
areas were small compared to the complete evaluated area. Another possible
explanation is the strong flowering that could be observed in 1995 and allowed
an easier separation of canola than those of 1999. On the other hand, this
effect can also be responsible for an overestimation of canola acreage because
of the misinterpretation of mixed pixels (see below).

Conclusion

The comparison with the statistics confirms the amount of 80 % to 90 % of
identified canola obtained from the classificaton in the Quillow mapping data
set. Similar the comparison to other known fields showed similar fraction of
field sizes identified by the classification.

5.3 Error Sources for the Classification

This section will discuss the different sources for errors in the final result of
the identified canola fields. The identified acreage depends on the number
of correctly identified canola pixels and on border pixels, i.e., pixels which
additionally include other surface types than canola (mixed pixels).

Besides this obvious error of the total identified acreage of canola, classi-
fication errors can have a stronger influence on the other parameters derived
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in this study. Therefore, this section will give a short overview over the error
sources for the derived parameters.

5.3.1 Classification Errors

Most obvious are the pixels that are wrongly interpreted because of errors in
the classification algorithm and the chosen training data. According to Section
4.3.2 (p. 119), this canola acrage that can be identified with remote sensing is
about 80 % to 90 % for the classification method used in this study. Remarkable
is the high amount of canola found in the images which showed strong canola
flowering. One effect responsible for this is the increased separability between
canola and other vegetation, which allows improves classification accuracy.

Another effect of the strong flowering on the classification result is the
misclassification of mixed pixels. Mixed pixels are pixels that cover more than
one surface type. In this study, the amount of canola acreage in these mixed
pixels at the canola field borders is estimated by identifying border pixels and
adding half of their area to the field size. This estimation might be influenced
by the strength of canola blooming because of the bright yellow flowers. The
effect can be illustrated as follows: the reflected radiation of a canola field is a
combination of the radiance reflected by flowers and green leaves. In bordering
pixels more green from non-canola plant cover is mixed into it. So, a border
pixel of a field with strongly flowering canola most likely resembles a fully
canola covered pixel with less intense flowering. Thus an only partly covered
pixel is interpreted as fully covered by canola and thus overestimate the amount
of identified canola is overestimated. This simplified explanation can also be
applied to the three channels used for the classification since the signature
of flowering canola is also distinct in the false colour representation and will
most likely also lead to an overestimation of canola. Note that the optics of
the sensor also have an influence on the classification of pixels neighbouring
canola fields since the radiance measured for one pixel originates also from
areas directly adjacent to the pixel, which is described by the point spread
function (PSF). This effect is called adjacency or overshine effect. An accurate
estimation of this effect requires the knowledge on the spectral properties of
the surface types within the pixel. This effect is difficult to estimate without
additional digital maps or higher resolved satellite or aircraft data. Further
information on mixed pixels and adjacency effects can be found in Cracknell
(1998); Huang et al. (2002); Townshend et al. (2000); Ren and Chang (2002);
Kerkes and Baum (2002); Garcia-Haro et al. (1999).

5.3.2 Splitting and Merging of Fields

The field size is of special interest in this study. Therefore, it is necessary to
discuss the comparability of segments derived from satellite data with field
shapes on the ground. In this context, there are two possible sources of errors:
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Figure 5.10: Field size distribution for northwest Germany (West of 10◦E) displayed as
a histogram for the field sizes for the year 2000. The majority of fields have sizes of
about 4 ha. Note that the field size is not truncated at the minimum field size of 2 ha
since the halved border pixel area is added to the field size.

Merging of Fields: Adjacent fields are joined two one segment. Depending
on the neighbourhood definition, this is already the case if two pixels are
diagonally adjacent.

Splitting of Fields: Narrow fields or fields that show high variation in their
reflectance can be misinterpreted as two individual fields if pixels of the
fields are missed by the classification algorithm.

These two error sources have an effect on the field size estimation. On the
one hand, if fields are joined, they are interpreted to be larger than they truly
are; on the other hand, if a smaller and narrower field is interpreted as two
individual fields, the number of smaller fields is wrongly increased.

5.3.3 Undersized Fields

Another source of errors is the definition of a minimum field size (undersized
segments) since fields smaller than 2 ha are removed. Obviously, the field size
is limited because of economical considerations, i.e., larger fields have a better
cost-value-ratio than smaller ones. Nonetheless, the minimum field size has
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to be evaluated. A first exemplary evaluation has been undertaken with the
comparison of the spatial resolution of an aerial photograph and of the TM
sensor in Section 2.1.1, p. 17.

A further evaluation is possible with the classification results yielded from
this study by evaluating the distribution of field sizes. Figure 5.10 shows the
distribution of canola fields in northwest Germany in the year 2000. The
northwest has been chosen since the fields in western Germany are generally
smaller than in the east. It can be seen from this figure that the majority of
fields have a size of about 4 ha. The number of fields smaller than this size
decreases rapidely.

5.4 Conclusion

In this chapter, a selection of results from this study has been shown. The
main cultivation areas have been identified successfully and also the field size
distribution yielded reasonable results for the years 1995 to 2001. The results
from 2002 showed a large amount of misclassifications due to cloud cover but
also due to the early acquisition date of the satellite data in the beginning of
April. The validation confirmed the accuracy of the identification of about 70
to 90 %, which is nearly as good as in the Quilllow mapping area where the
accuracy is 78 to 86 %. The discussion on the error sources showed, that further
investigations on the effect of flowering on the classification of neighbouring
pixels is necessary, especially since the flowering is responsible for a difference
of up to 20 % of the classification accuracy. Additionally, the determination
of field sizes can be improved with a more sophisticated vectorisation of the
classification result and the integration of an electronic map (Evans et al.,
2002; Le Moigne and Tilton, 1995; Huang et al., 2002).



156 CHAPTER 5. RESULTS AND VALIDATION



Chapter 6

Summary and Outlook

The first part of this chapter recapitulates the achievements of the methods
in preparing and classifying the satellite data using the methods presented in
this thesis. Moreover, it gives a short overview of the information gained on
the canola cultivation in northern Germany regarding potential gene transfer
to non-modified canola or wild relatives of canola.

The second part gives an outlook of the possible improvements of some
of the applied methods presented in this thesis. Moreover, it describes the
possible usage of these data for further studies on the risk assessment of GM
plants.

6.1 Summary

The aim of this work was the identification of canola fields in northern Ger-
many for the period from 1995 to 2002, analysing a total of 47 LANDSAT
TM and 1 IRS LISS/3 satellite images. This large amount of data required
the development of mostly automated methods for the georectification, the
atmospheric correction and the classification. A detailed assessment of these
methods has already been given at the end of the according chapters. Thus,
here, only a brief overview will be given:

Data selection: The most appropriate sensors currently available for the
identification of canola fields in the complete area of northern Germany
are LANDSAT TM/ETM+ and IRS LISS/3.

Georectification: The investigation of the mapping accuracy showed that a
georectification with a polynomial approximation of first order is suffi-
cient for a mapping accuracy of about 120 m. This result is probably not
valid for regions with higher elevations than the flat regions of northern
Germany. An application of the georectification in other regions might
therefore require the use of a DEM. An additional correction based on
image correlation achieved an accuracy of 30 m for the identification of
corresponding pixels in overlapping satellite images.
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Atmospheric Correction: A number of atmospheric influences on the clas-
sification can be compensated by selecting training data from the satel-
lite images themself. This is however not possible for effects of clouds.
Opaque clouds and their shadows could be identified using a thresh-
hold for brightness and cloud top temperature. The corresponding cloud
shadows wre identified by estimating the distance and direction of clouds
and cloud shadows, which could be determined by a comparison of cloud
cover and dark surfaces. Thin clouds or haze are detected by the HOT
method proposed by Zhang et al. (2002a) which has been adapted to
regions with flowering canola fields. In combination with a histogram-
based correction, the scattering effects of thin cloud-cover on the radiance
received by the satellite sensor were corrected. Note that, this correction
was not possible over flowering canola fields since the flowering prevented
a correct estimation of the haze amount by the HOT method.

Classification: The Mahalanobis distance classifier (MDC) has been com-
pared to the maximum likelyhood classifier for various agricultural plants
in order to adjust the classification range of the MDC. The classification
accuracy of the MDC ranged from 63 to 71 %. The adjusted MDC was
applied to all images, since it only depends on the training data set for
one single surface type here, canola. This allowed a partly automatic
selection of training data from the overlap of satellite images. The MDC
had to be manually adapted to variations of the flowering strength. Ad-
ditionally, the haze correction has been included in the algorithm. Note
that, this haze correction failed over flowering canola fields because the
HOT method does not work over such fields (see above).

Postclassification: The classification result was used to construct segments
to identify individual fields and also to apply a correction of the classi-
fication by including adjacent pixels with similar reflectance properties.
This improved the classification accuracy to 78 to 86 %. Moreover, the
segments were approximated as rectangles for a vectorised representation
of the classification result.

The results of the classification were compiled in various data sets and were
distributed to the participants of the GenEERA project. Additionally, aver-
aged and totalled parameters have been presented which allow a qualitative
discussion on the hybridisation and contamination probabilities for GM canola.

It could be seen that an increased probability of contamination is to be ex-
pected in the main cultivation areas in eastern Schleswig-Holstein, Mecklenburg-
Vorpommern and northern Brandenburg, mostly because of the large cultiva-
tion density of up to 42 % and the short minimum distances between canola
fields with a mean of about 0.5 km for most regions.

The hybridisation probability is increased because of the high cultiva-
tion density, but also because of the frequently irregularly-shaped fields in
Mecklenburg-Vorpommern which results in an increased contact line length
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with other vegetation. Another region with an increased contact length is
located south of Bremen because of numerous small fields.

6.2 Outlook

This work was part of the joint research project GenEERA. The data presented
here were used by the project partners for further comparison with ecological
and agricultural parameters. These results will be presented in the final report
of the GenEERA project and are already partly published in Breckling et al.
(2003).

The identification of surface types is a major task of satellite remote sens-
ing. Especially the identification of crops is important for agricultural aid
control and yield predictions. Therefore, an important extension of the meth-
ods described in this thesis is its application to other agricultural crops. This
is also important for the risk assessment of other GM plants.

Additionally, there are possible improvements for the different methods
used in this study:

Georectification: The georectification will require an additional DEM when
applied to other than the flat regions of northern Germany. Moreover,
the correlation method can be used to achieve a pixel accurate georecti-
fication by georectifying a reference image for each frame to a map with
this accuracy.

Cloud Identification: The HOT method may be adaptable to the flowering
of canola by identifying a direct relationship of the reflectances for the
TM Channels 1 and 3 and allow to develop a correction depending on
the strength of flowering.

Classification: A major improvement for the classification would be a better
estimation of the border pixels of the fields. Especially for northwestern
Germany with its mostly small fields the accuracy of the classification
could be improved. A possible solution is the use of higher resolved
satellite data. Unfortunately, sensors with a higher spatial resolution and
a coverage comparable to that of LANDSAT TM are neither available
nor planned. A possible improvement of the accuracy might be gained
by identifying the fraction of different surface types in the border pixel.
Such methods have been proposed by Huang et al. (2002); Townshend
et al. (2000); Ren and Chang (2002). Nonetheless, these methods will
have to compensate the influence of brightly flowering canola.

Postprocessing: The postprocessing can be improved by a more sophisti-
cated approximation of the field shapes. This can be achieved by identi-
fying all agricultural crops on the field, and if possible the fraction at the
border pixels. A possible solution was presented by Janssen and Mole-
naar (1995); Smith and Fuller (2001). In this context, also an additional
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vector data set, e.g. polygons instead of rectangles, can give further in-
formation on the exact field shapes. Nonetheless, it has to be stated that
these improvements will require either a much longer processing time or
expensive mapping data.

This work showed that a mostly autonomous crop type identification over
large areas with high resolution sensors is possible, which can improve the
various applications of remote sensing in agriculture and ecology. Moreover,
the usage of auxiliary data could be restricted to a minimum, which is essential
for the evaluation of data form larger areas.



Appendix A

Approximated Rectangles

Figure A.1: Example for the approximation of a segment of pixels by a representative
rectangle (blue hatch). The star indicates the centre of the segment calculated by the
centre of mass relation. The red lines indicate the directions of the eigenvectors.

Classification results of satellite or computer images are usually pixel based
raster data. Vectorised data have the advantage of being easier to process, e.g.,
to calculate size, determine the intersection with other objects or to derive
distances between objects.

There are different possibilities to generate a vectorisation from raster data.
Generally, a segmentation is performed first to identify pixels belonging to-
gether. One possibility to derive vector information from the pixels of a seg-
ment is to use the outlines of the pixels at the segment border. This increases
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the necessary memory and also does not allow an easier processing. A bet-
ter possibility is to approximate the segments with a simple geometric form.
Since fields frequently have a rectangular shape, rectangles are chosen as rep-
resentation for the fields. This appendix briefly describes the mathematical
background of this approximation.

A.1 Centre of Mass

Important is the position r̄ of the rectangle. The centre position, named here
centre of mass (CM), can be calculated with the centre of mass equation:

r̄ =

∑

i riAp
∑

i Ai
(A.1)

Here, Ap is size of a pixel and ri the centre position of the of the pixel i.

A.2 Principal Axes

Starting from the centre of mass, the principal axes can be calculated. The
inertia tensor M can be derived from the pixel position by:

M =

(

m11 m12

m21 m22

)

= Ap

∑

i

(

(yi − ȳ)2 (xi − x̄)(yi − ȳ)

(xi − x̄)(yi − ȳ) (xi − x̄)2

)

(A.2)

(A.3)

The principal axis can be identified with an eigenvalue analysis. The eigen-
values λ can be determined by solving the following equation:

det(M − λĪ) =

∣
∣
∣
∣
∣

m11 − λ m12

m21 m22 − λ

∣
∣
∣
∣
∣
= 0 (A.4)

λ2 − (m11 + m22)λ + m11m22 − m12m21 = 0 (A.5)

Solving this equation leads to the two eigenvalues λ+ and λ−, which are squares
of the length of the principal axes.

λ+ =
m11 + m22

2
+
√

m12m21 + (m11 − m22)2/4) (A.6)

λ− =
m11 + m22

2
−
√

m12m21 + (m11 − m22)2/4) (A.7)

The eigenvalues are used to calculate the corresponding eigenvectors e+ and
e− by solving:

(M − λ±I) e± =

(

m11 − λ± m12

m21 m22 − λ±

)

e± = 0 (A.8)
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These eigenvectors indicate the direction of the main axis and one belonging
to the higher eigenvalue can be used to determine the orientation with respect
to the North.

A.3 Area-Conserving Rectangles

Agricultural fields are frequently rectangular. Thus, it is the shape most ap-
propriate for an approximation. The orientation of the rectangle is represented
by the eigenvectors. Now, the length of the sides have to be determined from
the eigenvalues. To conserve the ratio of the two main axes, the following
equations can be written for a rectangle with the area F and the sidelengths
a and b:

F = ab with
a

b
=

√

λ+

λ−

(A.9)

⇒ a =
F

b
(A.10)

b =

√

λ−

λ+
a (A.11)

a =
F

√
λ−

λ+
a

(A.12)

b2 =
λ−

λ+

a2 (A.13)

a2 =

√

λ+

λ−

F (A.14)

b2 =
λ−

λ+

√

λ+

λ−

F (A.15)

Therefore, the length of the rectangle can be determined by the following
equations:

a = 4

√

λ−

λ+

√
F (A.16)

b = 4

√

λ+

λ−

√
F (A.17)

The size of the rectangle can simply be determined from the sensor’s resolution
and the number of pixels in the segment.
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Appendix B

Mapping Errors in the Ground
Truth Data Set

In order to identify representative areas in the satellite images it is necessary
to inspect the quality of the mapped data for true colour and false colour
(channels 4, 5 and 3) representation. The image clips in figure B.1 show a
clip of a TM image overlaid with the quillow mapping data set. Examplarily
emphasized are the edges of canola (yellow) and wheat (turquoise) fields.

This can be seen from the upper left canola field in the clips in figure B.1,
that both indicate that there are two different agriculural plants cultivated on
this fields. Moreover, a comparison with other canola fields suggests that nei-
ther of these plant covers are actually canola. This inaccuracy of the mapping
results from the different partitioning of fields by the farmers which are not
included in the quillow data set, since the field borders are mapped only once
and the plant is later determined by interogating the farmers. Another possi-
ble reason for this faulty labeling might be explained with damages caused by
freezing or drought. In these cases, farmers at times plough the fields in order
to plant a new plant, e.g. spring sawn canola or maize.
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Figure B.1: Example for the inaccuracies of the agricultural plant mapping at the river
Quillow. Left: true colour representation of a clip of the TM image 193/023; 2001.
Right: false colour representation of the same clip. Both clips are overlaid with the
mapped field edges from the quillow data set. Shown are canola (yellow) and wheat
(turqoise) field egdes that has been marked as canola. Most obvious is the bare soil on
the left side of the upper right field. It apears brown in the true color and turqoise in
the false colour representation. A comparison to other fields mapped as canola reveals
that the right side of this fields is also not canola. Also visible are smaller areas with
different colour within the other fields. These are most propably small woods or areas
that are also used to plant different crops.



Appendix C

Available Data Set DVDs

This appendix will give an overview of the structure of folders and files on
the digital versatile disks (DVDs) that have been created with the classifi-
cation results from this project. It mainly addresses the project partners of
GenEERA but also other parties interested in canola cultivation in north-
ern Germany might contact the author of this thesis at this emailaddress:
hlaue@iup.physik.uni-bremen.de.

In this thesis all results are projected onto the UTM grid for zone 32 North
with the WGS84 ellipsoid. Nonetheless, the data can also be obtained in the
following projections:

• Gauß-Krüger (german grid) for the 3rd, 4th and 5th stripe.

• UTM for zone 33 for zone 33 North.

• European Terrestrial Reference System 1989 (ETRS89) for zone 33 North.

C.1 Structure of Folders

A sketch of the folder structure is shown in Figure C.1. The uppermost folder
on the DVD indicates the type of projection used, e.g., “utm32” stands for
UTM zone 32 and “gk3” for Gauß-Krüger third stripe. Below this folder, the
left branch in Figure C.1 containes the image based results and the right folder
the years based results.

C.1.1 Image-Based Results

In the branch of the image-based results, the name of the folders below “frame”
indicates the type of data. The left branch “raster” contains the pixel-based
results and “vektor” the vectorised data. Each of this two folders contain the
same structure indicating the image stored in them, i.e., the year of acquisition,
which itself contains folders for each row/path combination available in this
year, e.g., folder “196023” contains the results for path 196 and row 023.
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Figure C.1: Structure of folders on the data DVDs.

Coverage and assignment of path and row numbers

As introduced in Section 2.1.1 (p. 17), the frames used for satellite data are
organised in path and rows. Therefore, the folders for the satellite data in the
year folder are named according to the path and row of the satellite data. The
positions of the path and rows is shown in Figure 2.2 (p. 19).

C.1.2 Available Raster Files

For each image, the following files are present:

cloud_SYSTEM_PATH_ROW_YEAR.tif contains the geocoded cloud
mask. Grey level values of 32 (dark grey) are hazed pixel, which can in-
fluence the classification (see Section 3.2.4, p. 71). Grey level values of
64 (a brighter grey) are cloud shadow pixel and grey values of 127 (light
grey) are cloud covered pixel, q.v. Figure C.1.2.

classification_SYSTEM_PATH_ROW_YEAR.tif contains the canola
classification. Grey values of 0 (black) are non-canola pixel. The different
shades of grey allow to descriminate different segements. Addtitionally,
a grey level value of 154 indicates the CM of the segment1 and a grey
level of 110 indicates border pixel. Additionally, pixel that have been
added by the region-growing are are marked with a grey level value of
1900, cp. Figure C.1.2.

sshift_SYSTEM_PATH_ROW_YEAR.tif contains the shift in easting

1Note that due to the resampling some CM and border pixel are overlooked and therefor
not present in the geocoded image
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Figure C.2: Example for the cloud cover in the pixel based representation. Shown are
clips from Mecklenburg-Vorpommern acquired in 2001. Original data: LANDSAT TM
c©ESA, 2001. Distributed by Eurimage.

.

direction in pixel size obtained from the correlation method described in
Section 3.1.4, p. 57.

tshift_SYSTEM_PATH_ROW_YEAR.tif contains the shift in northing
direction in pixel size obtained from the correlation method described in
Section 3.1.4, p. 57.

SYSTEM, PATH, ROW and YEAR are replaced by the information of geo-
graphic projection, e.g., “utm32”, the path, the row and the acquisition year.

C.1.3 Vectorized data

The vectorized data is available in two different types: a point based and a
rectangle based shapefile. The point based shapefile is much smaller and can be
processed easier and the rectangle based shapefile allows a better comparison
to a map or to the raster classification result. Both data sets contain additional
information on the segments stored into the tags of the shapefile. Table C.1
list the tag names and their meaning. Additional to the classification result,
there are shapefiles containing the image border of the satellite image.

The following files are present in this folder:

segmentshape_SYSTEM_PATH_ROW_YEAR_polygon.zip: Zipp-
ed shapefile with the approximated rectangles for each segment.
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Table C.1: Tag names and their description stored in the segment shapefiles.

Tag Description

ID Sequential segment number
SATCMX x-position of the CM in image coordinates
SATCMY y-position of the CM in image coordinates
RECHTS Easting of the CM [px]
HOCH Northing of the CM [px]
SSIZE Segment size [m2]
SANGLE Angle with respect to the North [◦]
ACHSE1X Easting component of the long principal axis [m]
ACHSE1Y Northing component of the long principal axis [m]
ACHSE2X Easting component of the short principal axis [m]
ACHSE2Y Northing component of the short principal axis [m]
CH3_MEANRA Mean radiance for the segment

for channel 3 [W/(m2srµm)]

CH3_SDVRA Standard deviation of the radiance
for channel 3 for the segment [W/(m2srµm)]

CH3_MEANBY Mean of the original satellite
data for channel 3 [DN]

CH3_SDVBY Standard deciation of the original
satelliten data for channel 3 [DN]

CH4_MEANRA like above for channel 4
CH4_SDVRA
CH4_MEANBY
CH4_SDVBY
CH5_MEANRA like above for channel 5
CH5_SDVRA
CH5_MEANBY
CH5_SDVBY
CLOUDED Segment neighbours cloud or cloud shadow
HAZY Segment neighbours hazy region
BORDERSIZE Area of neighbouring pixels [m2]
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Figure C.3: Example for the identified canola segments in the pixel-based representa-
tion. Shown is the island of Fehmarn. Original data: LANDSAT TM c©ESA, 2001.
Distributed by Eurimage.

segmentshape_SYSTEM_PATH_ROW_YEAR_point.zip: Zipped
shapefile with points indicating the CM of the segments.

bordershape_SYSTEM_PATH_ROW_YEAR_polygon.zip: Zipp-
ed shapefile containing the image border.

cloudshape_SYSTEM_PATH_ROW_YEAR_polygon.zip: Zipped
shapefile with information on the cloud coverage.

SYSTEM, PATH, ROW and YEAR are replaced by the information of geo-
graphic projection, e.g., “utm32”, the path, the row and the acquisition year.

C.1.4 Year-Based Results

The right branch in Figure C.1 contains the results compiled for each year.
There are two types of data in this folder, indicated by the topmost folder,
“vektor” and “statistik”.

C.1.5 Year-based Vectorized Data

“vektor” folder contains the compilation of the vectorised data for each year.
Except for the size, they are equivalent to the image based vectorised data.
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C.1.6 Totaled and Averaged Information

The following data sets have been been calculated2:

Anbauflaeche.tab: The total acreage for the 5×5 km2 squares obtained from
the vectorized data.

Anbauflaeche_pixel.tab: The total acreage for the 5 × 5 km2 squares ob-
tained from the identified pixels.

Beobachteteflaeche.tab: The observable area, i.e., the area with satellite
data available and not covered by clouds or cloud shadows.

Beobachteteflaeche_clear.tab: The observable area without also the haze-
covered regions excluded.

Anbaudichte_prozent.tab: The cultivation density obtained from the vector-
based results. The values have to be multiplied with 100 to obtain %.

Anbaudichte_prozent_raster.tab: Canola cultivation density obtained from
the raster-based result. The values have to be multiplied with 100 to ob-
tain %.

Anbaudichte_prozent_raster_clear.tab: Canola cultivation density ob-
tained from the raster-based result with the exclusion of haze-covered
regions. The values have to be multiplied with 100 to obtain %.

Randflaeche.tab: Area of neighbouring pixels in m2 obtained from the vec-
torized data.

Randpixelflaeche.tab: Area of neighbouring pixels in m2 obtained from the
raster data.

MittlerGroesse.tab: Mean Field size in m2.

MinimalerAbstand.tab: Mean Minimum distance of the fields in m.

Kantenlaengenverhaeltnis.tab: Ratio of long and short principal axes: 1
indicates a quadratic field and smaller values a longish one.

LaengederFeldgrenzen.tab: Sum of all edges of the rectangles as an esti-
matinon of the field border length.

MittlereAnbauFlaecheFehler.tab: Fehler für die mittlere Anbaufläche (An-
zahl der Randpixel pro Fläche).

Mittlereorientierung.tab: Mean orientation with repect to the North.

MittlereMininmaleEntferung.tab: Mean minimum distance, i.e., the av-
eraged distance between each possible combination of fields in the square.

2Since the majority of users are german, the file have been named in german.
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rechtswerte.tab: Easting of the upper left corner of the 5 × 5 km2 square.

Hochwerte.tab: Northing of the upper left corner of the 5 × 5 km2 square.

Values of -1 for relative values and of -9999.999 for absolute values indicate
missing data.

There are two different representations for this data, indicated by the folder
name. The file names are the same as listed above.

Arrays

Array files are organised as matrix of values, with the rows indicating the
values in the northing and the coloums in the easting direction. The position
of each value can be obtained from the files “rechtswerte.tab” (easting) and
“Hochwerte,tab” (northing).

Lists

Lists are organies as lists with each row containing the postion and the value
(see Table C.2).

Table C.2: Sturcuture of the list-files.

Easting [m] Northing [m]
(upper left corner) (upper left corner)

size [m2]

3.7456740000E06 5.7685760000E06 1.5390000000E05
3.7506740000E06 5.7685760000E06 2.1600000000E05
3.7556740000E06 5.7685760000E06 6.1290000000E05
3.7606740000E06 5.7685760000E06 6.9570000000E05
3.7656740000E06 5.7685760000E06 3.4650000000E05
3.7706740000E06 5.7685760000E06 5.9940000000E05
3.7756740000E06 5.7685760000E06 5.4000000000E04
3.7806740000E06 5.7685760000E06 0.0000000000E00
3.7856740000E06 5.7685760000E06 1.1700000000E04

...
...

...
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List of Acronyms

ASTER Advanced Spaceborne Thermal Emisssion and Radiation Radiome-
ter

ATKIS Amtliches Topographisch-Kartographisches Informationssystem (Au-
thoritative Topographic Cartographic Information System)

BBA Biologische Bundesanstalt für Land- und Forstwirtschaft (Federal Bio-
logical Research Centre for Agriculture and Forestry)

BMBF Bundesministerium für Bildung und Forschung (Federal Ministry of
Education and Research)

Canola Canadian – Oil Low Acid

CL clear line

CM centre of mass

DEM digital elevation model

DN digital number

DOS dark object subtraction

DSV Deutsche Saatveredelung (German Seed Refinement)

DVD digital versatile disk

ERS-SAR European Remote Sensing Satellite-SAR

ETM+ Enhanced Thematic Mapper+

ETRS89 European Terrestrial Reference System 1989

EU European Union

FOV field of view

GCP ground control point

GDR German Democratic Republic

GenEERA Generische Erfassung und Extrapolation der Rapsausbreitung (Generic
analysis and extrapolation of oilseed rape dispersal)

GM genetically modified

GIS geographical information system

GOME Global Ozone Monitoring Experiment
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GPS Global Positioning System

MODTRAN MODerate resolution TRANsmittance

HOT haze optimized transform

HRV Haute Résolution Visible

HRVIR High Resolution Visible - Infrared

IFOV instantaneous field of view

IRS Indian Remote Sensing Satellite

JERS-SAR Japanese Earth Resource Satellite-SAR

LISS/3 Linear Imaging Self Scanner/3

MARS monitoring agriculture with remote sensing

MDC Mahalanobis distance classifier

MDS Mahalanobis distance space

MIR middle infrared

MLC maximum likelyhood classifier

MODIS Moderate Resolution Imaging Spectroradiometer

MODTRAN Moderate Resolution Transmittance

NASA National Aeronautics and Space Administration

NDVI normalised difference vegetation index

NIR near infrared

PAR photosynthetically active radiation

PIF pseudo-invariant features

PP percentage points

PPC parallelepiped classifier

PSF point spread function

RMS root mean square

SAR synthetic aperture radar

SCIAMACHY Scanning Imaging Absorption Scatterometer for Atmospheric
Cartography

SPOT Système Pour l’Observation de la Terre

SRT scale-rotate-translate

SVD singular value decomposition

TIR thermal infrared

TM Thematic Mapper
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UFT Zentrum für Umweltforschung und Umwelttechnologie (Centre for En-
vironmental Research and Environmental Technology)

UTM universal transverse Mercator

VIS visible

ZALF Leibniz-Zentrum für Agrarlandschafts- und Landnutzungsforschung (Leibniz-
Center for Agricultural Landscape and Land Use Research)



178 LIST OF ACRONYMS



Acknowledgement

This work was funded by the BMBF and the University of Bremen. First,
I wish to express my gratitude to my first examiner Prof. Dr. Klaus Künzi
for his suggestions and his patience and to the second examiner, Dr. Broder
Breckling from the UFT, also for his suggestions and patience but especially
for the opportunity to participate in the multidisciplinary GenEERA project.
In this context I would also like to thank Dr. Johannes Ranke, also a member
of the UFT, since he was responsible for the first contact and consequently the
cooperation between our institutes.

Moreover, I would like thank my colleagues and friends Dr. Christian
Melsheimer, Dr. Ralf Schmidt, Dr. Georg Heygster, Christian Heidkamp,
Dr. Jens Dannenberg, Dr. Norbert Schlüter, Sharon Kerr, Regina Krammer,
Britta Beckmann and my brother, Dr. Carsten Laue for their suggestions and
their helpful proofreading of this thesis.

A great help were the colleagues from the ZALF in Müncheberg, Dr.
Michael Glemnitz, Dr. Angelika Wurbs, Dr. Uwe Heinrich and Bettina Funke
who provided excellent evaluation data (the Quillow mapping data set). More-
over, I would like to thank them and Dr. Martin Wegehenkel for give me the
opportunity to process the satellite images from frame 193/023 at their insti-
tute since these were only available at the ZALF.

Moreover, I would like to thank the colleagues from the UFT: Gertrud
Menzel for the interesting excursions into botany and agriculture in the neigh-
bourhood of Bremen and especially for the insight in the secrets of rapeseed
and mustard fields. Carsten Borowy for his “brave” selection of the great
amount of GCPs and Andreas Born for the help with the GIS data formats
and suggestions on my work. All three of them provided great ground truth
data with the mapping of the interbreeding partners, which I am also grateful
of.

Ground truth was also available from seed-producing fields which were
kindly visited with me by Mr. Wisloh from the local branch of the Deutsche
Saatveredelung in Thedinghausen whom I also like to thank very much. Grat-
itude also to Mr. Meseke and Mr. Baar from the experimental farm of the
BBA in Sickte who looked up the position of the experimental fields on which
canola was grown with me.

Additional thanks to Dr. Ulrike Middelhoff from the Ecology Centre at
the University of Kiel and Dr. Gunther Schmidt from the University of Vechta
for the flowering periods of canola and their patience with the classification

179



180 ACKNOWLEDGEMENT

results.
Special gratitude also to the people always helpful with administration and

computers problems: Birgit Teuchert, Sabine Packeiser, Heiko Schellhorn and
Claudia Vormann.

Moreover, I would like to thank my current and former colleagues of the
IUP: Dr. Lars Kaleschke, Hong Gang, Gunnar Spreen, Dr. Nathalie Selbach,
Nizy Mathew and Peter Mills for being such nice colleagues.

Additionally, I would like to thank all my friends not allready mentioned
above: Ronald Bormann, Ines Koenen, Claudia Wienberg, Connie Eisenach,
and Alex Drögmöller.

At last and most of all, I would like to thank my parents, Henry und Marita
Laue, for their support and encouragement.



Bibliography

Alados, I., Foyo-Moreno, I. and Alados-Arboledas, L., 1996: Photosyntheti-
cally active radiation: measurements and modelling. Agricultural and Forest
Meteorology, 78, 121–131.

Allen, J. D., 1990: A look at the Remote Sensing Applications Program of the
National Agricultural Statistics Service. Journal of Official Statistics, 6, 4,
393–409.

Asrar, G. (Ed.), 1989: Theory and Applications of optical Remote Sensing.
John Wiley & Sons.

Bellow, M. and Ozga, M., 1991: Evaluation of clustering techniques for crop
area estimation using remotely sensed data. In Proceedings of the Section on
Survey Research Methods, American Statistical Association, Atlanta, GA-
USA: American Statistical Association.

Blackburn, G., 1998: Quantifying Chlorophylls and Carotenoids at Leaf and
Canopy Scales: An Evaluation of Some Hyperspectral Approaches. Remote
Sensing of Environment, 66, 273–285.

Blackburn, G., 1999: Relationship between Spectral Reflectance and Pigment
Concentrations in Stacks of Deciduous Broadleaves. Remote Sensing of En-
vironment, 70, 224–237.

Blaes, X., Holeck, F. and Defourny, P., 2001: Potential contribution of EN-
VISAT ASAR Alternating Polarisation and Wide-Swath modes images for
crop discrimination at the regional scale. In Proceedings of the 3rd Interna-
tional Symposium on “Retrieval of Bio- and Geophysical Parameters from
SAR Data for Land Applications”, University of Sheffield, UK: SCEOS,.

Breckling, B., Middelhoff, U., Borgmann, P., Menzel, G., Brauner, R., Born,
A., Laue, H., Schmidt, G., Schröder, W., Wurbs, A. and Glemnitz, M.,
2003: Biologische Risikoforschung zu gentechnisch veränderten Pflanzen in
der Landwirtschaft: Das Beispiel Raps in Norddeutschland. In GfÖ Arbeit-
skreis Theorie in der Ökologie:Gene, Bits und Ökosysteme., P. Lang Verlag,
Frankfurt/Main.

Castleman, K. R., 1996: Digital Image Processing. 1st edn., Prentice Hall
International, Inc.

181



182 BIBLIOGRAPHY

Chavez, P. S. J., 1996: Image-based atmospheric corrections – Revisited and
improved. Photogrammetik Engineering & Remote Sensing, 62, 9, 1025–
1036.

Cihlar, J., Guindon, B., Beaubien, J., Latifovic, R., Peddle, D., Wulder, M.,
Fernandes, R. and Kerr, J., 2003: From need to product: A methodology
for completing a land cover map of Canada with LANDSAT TM. Canadian
Journal of Remote Sensing, 29, 2, 171–186.

Cihlar, J., Latifovic, R., Chen, J., Beaubien, J., Li, Z. and Magnussen, S.,
2000: Selecting Representative High Resolution Sample Images for Land
Cover Studies. Part 2. Remote Sensing of Environment, 72, 2, 127–138.

Colwell, R. N. (Ed.), 1983: Manual of Remote Sensing, vol. 1: Theory, Instru-
ments and Techniques. Falls Church, VA: American Society of Photogram-
metry.

Cracknell, A. P., 1998: Synergy in remote sensing - What’s in a pixel? Inter-
national Journal on Remote Sensing, 19, 11, 2025–2047.

Cramer, N., 1990: Raps: Züchtung - Anbau und Vermarktung von Körnerraps.
Verlag Euler Ulm.

Davenport, I., Wilkinson, M., Mason, D., Charters, Y., Jones, A., Allainguil-
laume, J., Butler, H. and Raybould, A., 2000: Quantifying gene movement
from oilseed rape to its wild relatives using remote sensing. International
Journal on Remote Sensing, 21, 18, 3567–3573.

Dawson, T., Curran, P. and Plummer, S., 1998: LIBERTY - Modeling the ef-
fects of leaf biochemical concentration on reflectance spectra. Remote Sens-
ing of Environment, 65, 50–60.

Di Vittorio, A., 2002: An automated, dynamic threshold cloud-masking al-
gorithm for daytime AVHRR images Over land. IEEE Transactions on
Geoscience and Remote Sensing, 40, 8, 1683–1694.

Du, Y., Teillet, P. M. and Ciihlar, J., 2002: Radiometric normalization of
multitemporal high-resolution satellite images with quality control for land
cover change detection. Remote Sensing of Environment, 82, 123–134.

Elachi, C., 1987: Introduction to the Physics and Techniques of Remote Sens-
ing. John Wiley & Sons, Inc.

Erbertseder, T., Tungalagsaikhan, P., Bittner, M., Meisner, R., Schroedter,
M. and Dech, S., 1999: Towards an operational atmospheric correction for
AVHRR land surface products. In Proceedings of the IGARSS 99, Hamburg,
Germany.



BIBLIOGRAPHY 183

Eurimage, 2001: Price List, European. http://www.eurimage.com/products/

docs/price_euro.pdf.

Euromap, 2001: European Price List. http://www.euromap.de/products/

prod_001.html.

Evans, C., Jones, R., Svalbe, I. and Berman, M., 2002: Segmentating Mul-
tispectral LANDSAT TM Images Into Field Units. IEEE Transactions on
Geoscience and Remote Sensing, 40, 5, 1054–1064.

Forster, B., 1984: Derivation of atmospheric correction procedures for LAND-
SAT MSS with particular reference to urban data. International Journal on
Remote Sensing, 5, 5, 799–817.

Ganapol, B., Johnson, L., Hammer, P., Hlavka, C. and Peterson, D., 1998:
LEAFMOD: A new Within-Leaf Radiative Transfer Model. Remote Sensing
of Environment, 63, 182–193.

Garcia-Haro, F., Gilabert, M. and Melia, J., 1999: Extraction of Endmembers
from Spectral Mixtures. Remote Sensing of Environment, 68, 237–253.

Gates, D., Keegan, H., Schleter, J. and Weidner, V., 1965: Spectral properties
of plants. Applied Optics, 4, 1, 11–20.

Genovese, G., 2004: MARS-STAT. http://agrifish.jrc.it/marsstat/default.

htm.

Gitelson, A. and Merzlyak, M., 1997: Remote estimation of chlorophyll content
in higher plant leaves. International Journal on Remote Sensing, 18, 12,
2691–2697.

Gonzalez, R. C. and Wintz, P., 1987: Digital Image Processing. 2nd edn.,
Addison-Wesley Publishing Company, Inc.

Gross, H. and Schott, J., 1998: Application of spectral mixture analysis and
image fusion techniques for image sharpening. Remote Sensing of Environ-
ment, 63, 85–94.

Guindon, B. and Zhang, Y., 2002: Robust haze reduction: An integral pro-
cessing component in satellite-based land over mapping. In Procedings of
the Joint International Symposium on Geospatial Theory, Processing and
Applications, Ottawa.

Hall, D. O. and Rao, K. K., 1999: Photosynthesis. 6th edn., Cambridge Uni-
versity Press.

Hall, F., Strebel, D., Nickeson, J. and Goetz, S., 1991: Radiometric rectifica-
tion: Toward a common radiometric response among multidate, multisensor
images. Remote Sensing of Environment, 35, 11–27.



184 BIBLIOGRAPHY

Hansen, M., Franklin, S., Woudsma, C. and Peterson, M., 2001: Caribou
habitat mapping and fragmentation analysis using LANDSAT MSS, TM,
and GIS data in the North Columbia Mountains, British Columbia, Canada.
Remote Sensing of Environment, 77, 50–65.

Holben, B., Vermote, E., Kaufman, Y., Tanré, D. and Kalb, V., 1992: Aerosol
retrieval over land from AVHRR data-application for atmospheric correction.
IEEE Transactions on Geoscience and Remote Sensing, 30, 2, 212–222.

Huang, C., Townshend, J., Liang, S., Kalluri, S. and DeFries, R., 2002: Impact
of sensor’s point spread function on land cover characterization: Assessment
and deconvolution. Remote Sensing of Environment, 80, 203–212.

Irish, R. R., 2000: LANDSAT 7 science data user’s handbook. http://

lptpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html.

Janssen, L. and Molenaar, M., 1995: Terrain objects, their dynamics and their
monitoring by integration of GIS and remote sensing. IEEE Transactions
on Geoscience and Remote Sensing, 33, 3, 749–758.

Kalyanaraman, S., Rajangam, R. and Rattan, R., 1995: Indian remote sensing
spacecraft 1C/1D. International Journal on Remote Sensing, 16, 5, 791–799.

Kerkes, J. and Baum, J., 2002: Spectral imaging system analytical model for
subpixel object detection. IEEE Transactions on Geoscience and Remote
Sensing, 40, 5, 1088–1101.

Kramer, H. J., 1996: Observation of the Earth and Its Environment. Berlin:
Springer-Verlag.

Le Moigne, J. and Tilton, J. C., 1995: Refining Image Segmentation by Inte-
gration of Edge and Region Data. IEEE Transactions on Geoscience and
Remote Sensing, 33, 3, 605–614.

Leo, O., 2004: MARS-PAC. http://agrifish.jrc.it/marspac/olivine/

default.htm.

Liang, S., Fang, H. and Chen, M., 2001: Amospheric correction of LANDSAT
ETM+ land surface imagery I: Methods. IEEE Transactions on Geoscience
and Remote Sensing, 39, 11, 2490–3498.

Liang, S., Fang, H., Morisette, J. T., Chen, M., Shuey, C. J., Walthall, C. L.
and Daughtry, C. S. T., 2002: Atmospheric correction of LANDSAT ETM+
land surface imagery: II. Validation and applications. IEEE Transactions
on Geoscience and Remote Sensing, 40, 12, 2736–2746.

Lillesand, T., 2000: Remote Sensing and Image Interpretation. 4th edn., John
Wiley & Sons.



BIBLIOGRAPHY 185

Lopès, R., Fjørtoft, R. and Ducroft, D., 1999: Edge detection and segmentation
of SAR images in homogeneous regions, chap. SAR Image Processing and
Segmentation. World Scientific Publishing Co., 139–166.

Martonchik, J., 1994: Retrieval of Surface Directional Reflectance Properties
Using Ground Level Multiangel Measurements. Remote Sensing of Environ-
ment, 50, 303–316.

Menzel, G., Breckling, B. and Filser, J., 2003: Monitoring der Umweltwirkun-
gen transgener Kulturpflanzen in Bremen und im Bremer Umland. Final
report, UFT University of Bremen, Leobener Str.; D-28334 Bremen.

Michelson, D., Liljeberg, B. and Pilesjoe, P., 2000: Comparison of algorithms
for classifying Swedish landcover using LANDSAT TM and ERS-1 SAR
data. Remote Sensing of Environment, 71, 1–15.

Mölders, N., Laube, M. and Raschke, E., 1995: Evaluation of model generated
cloud cover by means of satellite data. Atmospheric Research, 39, 91–111.

Moran, M., Bryant, R., Thome, K., Ni, W., Nouvellon, Y., Gonzales-Dugo, M.,
Qi, J. and Clarke, T., 2001: A refined empirical line approach for reflectance
factor retrieval from LANDSAT-5 TM and LANDSAT-7 ETM+. Remote
Sensing of Environment, 78, 71–82.

Moran, S., Jackson, R., Slater, P. and Teillet, P., 1992: Evaluation of simpli-
fied procedures for retrieval of land surface reflectance factors from satellite
sensor output. Remote Sensing of Environment, 41, 169–184.

Myneni, R., Nemani, R. and Running, S., 1997: Estimation of Global Leaf
Area Index and absorbed PAR using radiative transfer models. IEEE Trans-
actions on Geoscience and Remote Sensing, 35, 6, 1380–1393.

Müschen, B., Flügel, W., Hochschild, V., Steinnocher, K. and Quiel, F., 2001:
Spectral and spatial classification methods in ARSGISIP project. Physics
and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere,
26, 7-8, 613–616.

Ouaidrari, H. and Vermote, E., 1999: Operational atmospheric correction of
LANDSAT TM data. Remote Sensing of Environment, 70, 1, 1–127.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., 1992:
Numerical Recipes in C: The Art of Scientific Computing. 2nd edn., Press
Syndicate of the University of Cambridge.

Price, J., 1994: How Unique Are Spectral Signatures. Remote Sensing of
Environment, 49, 181–186.

Ren, H. and Chang, C.-I., 2002: A Generalized Orthogonal Subspace Projec-
tion Approach to Unsupervised Multispectal Image Classification. ieeetrgrs,
38, 6.



186 BIBLIOGRAPHY

Richards, J., 1986: Remote Sensing Digital Image Analysis. Springer Verlag
Berlin Heidelberg.

Richardson, A., Wiegand, C., Wanjura, D., Dusek, D. and Steiner, J., 1992:
Multisite analysis of spectral-biophysical data for sorghum. Remote Sensing
of Environment, 41, 71–82.

Richter, R., 1996: A spatially fast atmospheric correction algorithm. Interna-
tional Journal on Remote Sensing, 17, 6, 1201–1214.

Richter, R., 1997: Correction of atmospheric and topographic effects for high
spatial resolution satellite imagery. International Journal on Remote Sens-
ing, 18, 5, 1099–1111.

Richter, R. and Lüdeker, W., 1999: Atmospheric water vapour retrieval from
MOS-B imagery. International Journal on Remote Sensing, 20, 6, 1133–
1140.

Rieger, M. A., Lamond, M., Preston, C., Powles, S. B. and Roush, R. T.,
2002: Pollen-mediated movement of herbicide resistance between commer-
cial canola fields. Science, 296, 2386–2388.

Rudorff, B. and Batista, G., 1990: Spectral Response of Wheat and Its Rela-
tionship to Agronomic Variables in the Tropical Region. Remote Sensing of
Environment, 31, 53–63.

Sarkar, A., Manoj Kumar Biswas, B. Kartikeyaqn, Vikash Kumar, K. L. Ma-
jumder and D. K. Pal, 2002: A MRF model-based segmentation approach to
classification for multispectral imagery. IEEE Transactions on Geoscience
and Remote Sensing, 40, 5, 1102–1113.

Saunders, R. W. and Kriebel, K. T., 1988: An improved method for detecting
clear sky and cloudy radiances from AVHRR data. International Journal
on Remote Sensing, 9, 1, 123–150.

Schimmeck, T., 2002: Feldzug im Grünen. Die Zeit, 39.

Schlink, S., 1994: Ökologie der Keimung und Dormanz von Körnerraps (Bras-
sica napus L.) und ihre Bedeutung für eine Überdauerung im Boden. Ph.D.
thesis, Universität Göttingen.

Schopfer, P. and Brennicke, A., 1999: Pflanzenphysiologie. 6th edn., Springer-
Verlag Berlin Heidelberg New York.

Schowengerdt, R. A., 1997: Remote Sensing: Models and Methods for Image
Processing. 2nd edn., Academic Press.

Short, N., 2003: Remote sensing tutorial. http:\\rst.gsfc.nasa.gov.

Simon, B., 2004: Monsanto wins patent case on plant genes. New York Times.



BIBLIOGRAPHY 187

Simpson, J., Jin, Z. and Stitt, J., 2000: Cloud shadow detection under ar-
bitrary viewing and illumination conditions. IEEE Transactions on Geo-
science and Remote Sensing, 38, 2, 972–976.

Simpson, J. and Stitt, J., 1998: A procedure for the detection and removal
of cloud shadow from AVHRR data over land. IEEE Transactions on Geo-
science and Remote Sensing, 36, 3, 880–897.

Sims, D. A. and Gamon, J. A., 2002: Relationships between leaf pigment
content and spectral reflectance across a wide range of species, leaf structures
and development stages. Remote Sensing of Environment, 81, 337–354.

Smith, G. M. and Fuller, R. M., 2001: An integrated approach to land cover
classification: an example in the Island of Jersey. International Journal on
Remote Sensing, 22, 16, 31–23–3142.

Snyder, J. P., 1984: Map Projections Used by the U.S. Geolocgical Survey.
Washington: United States Gouvernment Printing Office.

Song, C., Woodcock, C., Karen C. Seto, Lennney, M. and Macomber, S., 2001:
Classification and change detection using LANDSAT TM data: when and
how to correct atmospheric effects? Remote Sensing of Environment, 75,
230–244.

Space Imaging Eurasia, 2003: Price List of IKONOS Products. http://www.

sieurasia.com/eng/pricelist.pdf.

Statistisches Bundesamt Deutschland, 2002: Struktuerhebungen in land- und
forstwirtschaftlichen Betrieben. http://www.destatis.de/basis/d/forst/

forsttxt.htm.

Stowe, I. L., McClain, E. P., Carey, R., Pellegrino, P., Gutmann, G. G., Davis,
P., Long, C. and Hart, S., 1991: Global Distribution of Cloud Cover De-
rived from NOAA/AVHRR Operational Satellite Data. Advances in Space
Research, 20, 3673–3684.

Tanré, D., Holben, B. and Kaufman, Y., 1992: Atmospheric correction against
algorithm for NOAA-AVHRR products: theory and application. IEEE
Transactions on Geoscience and Remote Sensing, 30, 2, 231–248.

Thome, K., 2001: Absolute radiometric calibration of LANDSAT 7 ETM+
using the reflectance-based model. Remote Sensing of Environment, 78,
27–38.

Toll, D., Shirey, D. and Kimes, D., 1997: NOAA AVHRR land surface albedo
algorithm development. International Journal on Remote Sensing, 18, 18,
3761–3796. Surface albedo plant cover.



188 BIBLIOGRAPHY

Townshend, J. R. G., Hunag, C., Kalluri, S. N. V., Defires, R. S. and Liang,
S., 2000: Beware of per-pixel characterization of land cover. International
Journal on Remote Sensing, 21, 4, 839–843.

Tucker, C., 1985: African land-cover classification using satellite images. Sci-
ence, 227, 369–375.

U.S. Geological Survey, 2003a: LANDSAT 7 SLC Anomaly Investigation.
http://landsat7.usgs.gov/updates.php.

U.S. Geological Survey, 2003b: USGS LANDSAT project website: levels of
processing. http://landsat7.usgs.gov/l7_processlevels.html.

Vincent, R. K., 1997: Fundamentals of Geological and Environmental Remote
Sensing. Prentice Hall, Inc.

Wen, G., Cahalan, R., Tsay, S. and Oreopoulos, L., 2001: Impact of cumulus
cloud spacing on LANDSAT atmospheric correction and aerosol retrieval.
Journal of Geophysical Research, 106 1, D11, 2129–12 138.

Wilkinson, M. J., Davenport, I. J., Charters, Y. M., Jones, A. E., Allainguil-
laume, J., Butler, H. T., Mason, D. C. and Raybould, A. F., 2000: A direct
regional scale estimate of transgene movement from genetically modified
oilseed rape to its wild progenitors. Molecular Ecology, 9, 7, 831–1011.

Wright, G. G., 1985: Distribution and area of winter oilseed rape within eastern
Scotland: a survey based on LANDSAT data. Research and Development
in Agriculture, 2, 1, 41–45.

Wright, G. G., 1994: The Application of Satellite Remote Sensing and Spatial
Proximity Analysis Techniques to Observations on the Grazing of Oilseed
Rape by Roe Deer. International Journal on Remote Sensing, 15, 10, 2087–
2097.

Wrigley, R., Spanner, M., Slye, R., Pueschel, R. and Aggarwal, H., 1992:
Atmospheric Correction of Remotely Sensed Image Data by a Simplified
Model. Journal of Geophysical Research, 97, D17, 18 797–18 814.

Zhang, Y., Guindon, B. and Cihlar, J., 2002a: Development of a Robust Haze
Removal Algorithm: Assessment Using Temporally Invariant Targets. In
Proceeding of the IGARSS.

Zhang, Y., Guindon, B. and Cihlar, J., 2002b: An image transform to charac-
terize and compensate for spatial variations in thin cloud contamination of
LANDSAT images. Remote Sensing of Environment, 82, 173–187.

Zhao, W., Tamura, M. and Takashi, H., 2000: Atmospheric and spectral cor-
rections for estimating surface albedo from satellite data using 6S code.
Remote Sensing of Environment, 76, 202–212.



BIBLIOGRAPHY 189

Zwiggelaar, R., 1998: A review of spectral properties of plants and their po-
tential use for crop/weed discrimination in row-crops. Crop Protection, 17,
3, 189–296.


