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“PRIMERO ESTABA EL MAR 
  TODO ESTABA OSCURO, 
  NO HABIA SOL NI LUNA, 

  NI GENTE, NI ANIMALES, NI PLANTAS 
  EL MAR ERA LA MADRE, 

  LA MADRE NO ERA GENTE 
  NI NADA, NI COSA ALGUNA. 

  ELLA ERA ESPIRITU DE LO QUE IBA A VENIR 
  Y ELLA ERA PENSAMIENTO Y MEMORIA” 

 
     Mitología Kogui 

     - Kogui: grupo indígena colombiano - 
 
 
 

“FIRST THERE WAS THE SEA 
  EVERYTHING WAS DARK, 

  THERE WAS NEITHER SUN NOR MOON 
  NO PEOPLE, NEITHER ANIMALS NOR PLANTS 

  THE SEA WAS THE MOTHER, 
  THE MOTHER WAS NO PEOPLE 

  NOR ANYTHING, NOT EVEN SOMETHING. 
  SHE WAS THE SPIRIT OF WHAT WAS GOING TO COME 

  AND SHE WAS THOUGHT AND MEMORY” 
 

     Kogui Mythology 
     - Kogui: Colombian Indian group - 
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ABSTRACT 

 

The topic of the present study is to compare shallow-water mega-epibenthic fauna of two 

biogeographic areas in the Antarctic, the Antarctic Peninsula (Bellingshausen Sea) and the high 

Antarctic (Weddell Sea).  Continental shelves around Antarctica are unusual in being deep, and 

consequently shallow habitats at depths <150 m are scarce.  In the Weddell Sea, for example, only two 

shallow sites with water depths between 55 and 160 m are known: the inner parts of Atka Bay and a 

recently discovered shallow bank off Four Seasons Inlet NE of Kapp Norvegia.  In contrast, the 

Antarctic Peninsula has a true coast and thus, true littoral areas are common.  This study (1) 

characterises and describes the distribution and spatial patterns of shallow-water (55-160 m) mega-

epibenthic fauna in the Antarctic Peninsula (Marguerite Bay, Bellingshausen Sea) and at two sites in 

the high Antarctic (Weddell Sea), (2) analyses community structures and (3) compares benthic 

biodiversity in these areas at different spatial scales and with additional data from deep Antarctic shelf 

sites and corresponding shallow and deep areas in the Arctic, originated from previous studies. 

In order to achieve the composition of the Antarctic benthic community, all organisms (>1 cm) were 

identified and counted on a total of 17 sea bed video transects conducted at 14 stations using a 

Remotely Operated Vehicle (ROV) during four Antarctic expeditions with R.V. Polarstern and R.R.S. 

James Clark Ross (ANT XIII, XV, XVII; JR37).  

 

Multivariate analyses revealed significant faunal differences between Marguerite Bay (Bellingshausen 

Sea) and the Weddell Sea stations, Atka Bay and Four Seasons Bank.  Echinoderms, especially 

ophiuroids, dominated Marguerite Bay, bryozoans and ascidians were abundant at Atka Bay, and 

hydroids and gorgonians were well represented at Four Seasons Bank.  These differences can mainly 

be explained by the influence of local environmental conditions that are probably the primary factor 

shaping the Antarctic shallow-water epifauna, and not an intensive exchange with larger depths or 

limited dispersion due to scarce and isolated shallow areas.  In addition, modes of reproduction and 

characteristics of the early life history (e.g. brooding, viviparity or budding) of key taxa may also 

shape patterns of species distribution in shallow benthic Antarctic communities. 
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Spatial patterns of Antarctic benthic shelf communities were analysed.  Stations with non-significant 

“seriation” values, indicating no sharp faunistic discontinuities, have the smallest range of species or 

faunal-heterogeneity but intermediate values for species turnover along the videotransects.  

Conversely, stations with relatively good faunal seriation displayed broad ranges of species turnover.  

An analysis of depth zonation (60-143 m) at Four Seasons Bank (Weddell Sea) showed a clear 

gradient in faunistic assemblages.  Different patterns are identifiable: a locally limited typical fauna, a 

patchwork of assemblages as well as continuous faunistic gradients.  Combinations of these three 

scenarios can be considered as the rule in Antarctic mega-epibenthic communities. 

 

The benthic fauna around Antarctica should not be viewed in isolation.  Following this argument the 

faunistic and environmental parallelism with the Arctic in terms of biodiversity was studied.  At a 

regional scale (γ-diversity), Antarctic sites (Bellingshausen and Weddell Seas) were richer in the 

number of mega-epibenthic taxa than the Arctic.  In the Antarctic, all regional species numbers at 

shallow sites were higher than at deeper ones, but in contrast to the Arctic this could not be explained 

by a higher species turnover.  No differences were found in species turnover (β-diversity) between the 

Arctic and Antarctic.  At the local spatial scale (α-diversity), species numbers were higher in the 

Antarctic, what might be a reflection of a clearly higher regional diversity.  In addition, different types 

of natural disturbances (e.g. predation pressure, iceberg scouring) might be other reasons for the 

higher local species numbers in the Antarctic. 
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ZUSAMMENFASSUNG 

 

Gegenstand der vorliegenden Arbeit ist ein Vergleich der mega-epibenthische Flachwasserfauna 

zwischen zwei biogeographische Gebiete der Antarktis, der Antarktische Halbinsel (Bellingshausen 

Meer) und der Hochantarktis (Weddellmeer).  Die Kontinentalschelfe um die Antarktis sind 

außergewöhnlich tief, daher sind flache Lebensräume mit Tiefen unter 150 m selten.  Im Weddellmeer 

sind z.B. nur an zwei Stellen Wassertiefen zwischen 55 und 160 m bekannt: die südliche Atka Bay 

und eine kürzlich entdeckte flache Bank vor dem Four Seasons Inlet nordöstlich von Kapp Norvegia.  

An der Antarktischen Halbinsel (Bellingshausen Meer) hingegen gibt es eine echte Küste, und 

deswegen sind Flachwassergebiete häufig.  Im Rahmen dieser Arbeit habe ich (1) die Verteilung und 

räumlichen Muster der mega-epibenthischen Flachwasserfauna der Hochantarktis (Weddellmeer) und 

der Antarktischen Halbinsel (Marguerite Bay, Bellingshausen Meer) in 55 bis 160 m Tiefe 

beschrieben und charakterisiert, (2) deren Lebensgemeinschaften analysiert und (3) die benthische 

Biodiversität dieser Gebiete auf verschiedenen räumlichen Skalen miteinander vergleichend analysiert 

und mit zusätzlichem Datenmaterial aus tiefen antarktischen Schelfgewässern und entsprechenden 

Flach- und Tiefwassergebieten der Arktis verglichen.   

Um die Zusammensetzung der antarktischen Benthosgemeinschaften zu erfassen, habe ich auf 

insgesamt 17 Videotransekten auf 15 Stationen alle erkennbaren (>1 cm) Organismen bestimmt und 

gezählt.  Dieses Videomaterial wurde mit einem ferngesteuerten Unterwasserfahrzeug (ROV) während 

vier Antarktis-Expeditionen mit „Polarstern“ und „James Clark Ross“ (ANT XIII, XV, XVII; JR37) 

aufgenommen.  

 

Multivariate Analysen zeigen, dass sich die Fauna in den Untersuchungsgebieten im 

Bellingshausenmeer (Marguerite Bay) und im Weddellmeer (Atka Bay und Four Seasons Bank) 

deutlich unterscheiden  Echinodermen, besonders Ophiuroiden, dominierten in der Marguerite Bay, 

während Bryozoen und Ascidien in der Atka Bay die höchsten Abundanzen aufwiesen  Auf der Four 

Seasons Bank waren Hydroiden und Gorgonarien besonders zahlreich.  Diese Unterschiede können 

vor allem durch den Einfluß der lokalen Umweltbedingungen erklärt werden, die vermutlich die 
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antarktische Flachwasser-Epifauna grundsätzlich prägen, und nicht ein intensiver Austausch mit 

größeren Tiefen oder eingeschränke Ausbreitung wegen der wenigen isolierten Flachwassergebiete  

Zudem können auch der Reproduktionsmodus und Eigenschaften der Jugendstatien von Schlüsselarten 

(z. B. brütend, Lebendgebärend oder Knospend) die Verteilungsmuster der Arten in flachen 

benthischen Gemeinschaften in der Antarktis beeinflussen. 

 

Räumliche Muster von antarktischen benthischen Schelfgemeinschaften wurden analysiert.  In der 

mega-epibenthischen Flachwasserfauna gefundene Muster für “reihenweise Anordnung” [“seriation“] 

(Zonierung ohne scharfe Unterbrechung) und Tiefenzonierung wurden durch Beispiele 

hervorgehoben.  Stationen mit nicht signifikanten Werten für eine reihenweisen Anordnung 

(seriation), also ohne scharfe Unterbrechung in der Fauna hatten die geringsten Artenzahlen bzw. 

geringste faunistischer Heterogenität, aber mittlere Werte für den Faunenwechsel (species turnover) 

entlang der Videotransekte.  Im Gegensatz dazu zeigten Stationen mit relativ guter reihenweiser 

Anordnung einen erheblichen Faunenwechsel.  Eine Analyse der benthische Tiefenzonierung (60-143 

m) der Four Seasons Bank (Weddellmeer) zeigt einen klaren Gradienten der Artenassoziationen zu 

geben.  Verschiedene Muster konnten identifiziert werden: eine lokal begrenzte typische Fauna, ein 

Nebeneinander von Assemblages und kontinuierliche faunistische Gradienten.  Kombinationen dieser 

drei Möglichkeiten können in antarktischen mega-epibenthischen Gemeinschaften als die Regel 

betrachtet werden. 

 

Die benthische Fauna um den Antarktischen Kontinent sollte nie isoliert betrachtet werden.  Diesem 

Argument folgend, ist es ein wurde versucht Parallelen zur Arktis vor Nordostgrönland zu finden.  Auf 

der regionalen Skala (γ-Diversität) wiesen die antarktische Gebiete (Bellingshausen und Weddellmeer) 

eine größere Anzahl mega-epibenthischer Arten auf als die Arktis.  In der Antarktis waren alle 

regionalen Artenzahlen in flachen Gebiete höher als in tieferen, aber im Gegensatz zur Arktis konnte 

dies nicht durch einen höheren Faunenwechsel erklärt werden.  Es gab keine Unterschiede der Zu- und 

Abwanderung von Arten (β-Diversität) zwischen der Arktis und der Antarktis.  Auf der lokalen Skala 

(α-Diversität) waren die Artenzahlen in der Antarktis höher, was möglicherweise eine höhere 
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regionale Diversität widerspiegelt.  Zudem können verschiedene natürliche Störungen (z. B. 

Fraßdruck, Eisbergkratzer) ein weiterer Grund für die höheren lokalen Artenzahlen in der Antarktis 

sein. 
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RESUMEN 
 

El tema central de este estudio es comparar la fauna megaepibentónica de aguas someras de dos áreas 

biogeográficas en la Antártida, la Peninsula antártica (Mar de Bellinghausen) y la Antártida alta (Mar 

de Weddell).  La plataforma continental que circunda la Antártida es excepcionalmente profunda, y 

por consiguiente los habitats someros con profundidades <150 m son escasos.  En el Mar de Weddell, 

por ejemplo, solo dos lugares con profundidades entre 55 y 160 m son conocidos: las partes internas 

de la Bahía Atka y el banco somero “Four Seasons” ubicado al nororiente del cabo “Norvegia” 

descubierto recientemente .  Contrario a ésto, la península antártica tiene una costa verdadera y por lo 

tanto, las áreas litorales son comunes.  Este estudio (1) caracteriza y describe la distribución y los 

patrones espaciales de la fauna megaepibentónica de aguas someras (55-160 m) en la península 

antártica (Bahía Marguerite, Mar de Bellinghausen) y en dos sitios en la Antártida alta (Mar de 

Weddell), (2) analiza la estructura de la comunidad y (3) compara la biodiversidad béntonica en estas 

áreas a diferentes escalas espaciales, y compara éstos datos a su vez, con datos adicionales de áreas 

profundas de la plataforma continental antártica y áreas someras y profundas del Artico, originados en 

estudios anteriores.  Con el objetivo de obtener la composición de la comunidad bentónica de la 

Antártida, se identifico y contó todos los organismos (>1 cm) en un total de 17 video transectos del 

fondo marino realizados en 14 estaciones, empleando un vehículo operado a control remoto (ROV) 

durante cuatro expediciones antárticas con las motonaves de investigación científica Polarstern y 

R.R.S. James Clark Ross (ANT XIII, XV, XVII, JR37) 

 

Los análisis multivariados mostraron diferencias faunísticas significativas entre la Bahía “Marguerite“ 

(Mar de Bellingshausen) y las estaciones del Mar de Weddell, Bahía Atka y el banco “Four Seasons“.  

Los equinodermos, especialmente ofiúridos, dominaron Bahía “Marguerite”, bryozoos y ascidias 

fueron abundantes en la Bahía Atka, e hidroídeos y gorgonias estuvieron bien representados en el 

banco “Four Seasons“.  Estas diferencias pueden ser básicamente explicadas por la influencia de las 

condiciones ambientales locales que son probablemente el príncipal factor que moldea la epifauna 

antártica de aguas someras y no por un intercambio intensivo con profundidades mayores, o por una 
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dispersión limitada debido a la escasez y el aislamiento de áreas someras.  Adicionalmente formas de 

reproducción (e.g. incubación, viviparísmo o gemación) y características de la historia temprana de 

vida de las taxas clave, también pueden moldear patrones de distribución de especies en las 

comunidades bentónicas someras de la Antártida. 

 

Patrones espaciales de las comunidades antárticas bentónicas fueron analizados.  Estaciones con 

valores no significativos de “seriación”, indicando discontinuidades faunísticas no fuertemente 

marcadas, presentan el rango mas bajo de especies o heterogeneidad faunística pero valores 

intermedios para rotación de especies (species turnover) a lo largo del video transecto.  

Contrariamente estaciones con una “seriación” faunística relativamente buena desplegaron rangos 

amplios de rotación de especies.  Un análisis de zonación por profundidad (60-143 m) mostro en el 

banco “Four Seasons“ (Mar de Weddell) un gradiente claro de asociaciones faunísticas.  Diferentes 

patrones son identificables: una fauna típica localmente limitada, un mosaico de asociaciones, al igual 

que gradientes faunísticos continuos.  Combinaciones de éstos tres escenarios pueden ser consideradas 

como la norma en las comunidades megaepibentónicas antárticas. 

 

La fauna bentónica que circunda la Antártida no debe ser vista aisladamente.  Siguiendo etse 

argumento, el paralelismo faunístico y ambiental con el Artico en términos de biodiversidad fue 

estudiado.  A una escala regional (diversidad γ) las áreas antárticas estudiadas (Mar de Bellingshausen 

y Mar de Weddell) fueron mas ricas en el número de taxa megaepibentónica que en el Artico.  En las 

áreas someras de la Antártida, todos los números de especies regionales fueron mayores que en áreas 

profundas, pero en contraste con el Artico esto no puede ser explicado por una rotación de especies 

mas alta.  No hubo diferencias considerando las comparaciones entre rotación de especies (diversidad 

β) en el Artico y la Antártida.  A una escala espacial local (diversidad α) el número de especies fue 

mas alto en la Antártida, lo cual puede ser el reflejo de una clara diversidad regional alta.  

Adicionalmente, diferentes tipos de perturbaciones naturales (e.g. presión por predación, o 

perturbaciones por témpanos de hielo) pueden ser otra razón del alto número de especies locales en la 

Antártida. 
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1   Introduction 
 

1.1   Origin of the Antarctic fauna 

 

The origin of the Antarctic marine fauna has attracted the curiosity of researchers since it is 

unique, it shows only few similarities with that of adjacent continents and some elements 

appear to represent an ancient relict fauna.  As a consequence, several hypotheses have been 

suggested in order to describe the origin and evolution of the Antarctic fauna (Knox and 

Lowry 1977, Lipps and Hickman 1982, Dayton 1990).  (1) Time stability hypothesis: The 

Antarctic fauna has undergone extensive evolution ”in situ”, since the Cretaceous or even 

earlier, before Gondwana broke up (Dell 1972, Clarke and Crame 1989).  (2) Stepping stones 

hypothesis: cool-temperate species dispersing from South America via the Scotia Arc. 

Different elements of exchange had been shown between the fauna of the Antarctic Peninsula 

and South America (Watling and Thurston 1989, Clarke and Johnston 2003).  This 

immigration process could apparently be achieved by using these islands as stepping stones.  

(3) Colonization hypothesis: eurybathic and psychrospheric fauna derived from adjacent 

deep-water basins, immigration being facilitated by similar conditions in the environment.  

However, the latter hypothesis has been particularly controversial taking in account the 

opposite process (Sieg 1988).  Eurybathy in Antarctic benthic invertebrates is assumed to 

have been controlled by glacial-interglacial cycles. Species without the ability of moving into 

the deeper waters of the continental slope during glacial periods were likely to become extinct 

(Galéron et al. 1992, Brey et al. 1996).  

 

A certain level of consensus have been achieved by biogeographers in that most of the 

Antarctic benthos is old and represents original propagules that moved southwards with the 

continent (Picken 1985).  Although considerable amount of information is available process 
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and mechanisms (e.g. dispersal, vicariance or competence) undergone in order to generate the 

modern fauna are not well known (Orensanz 1990).  Within this context, Clarke and Crame 

(1989, 1992) suggested that the polyphyletic feature of this fauna, does not allow to make 

reference to a single origin for the overall fauna.  For example teleost fishes (notothenioids), 

amphipods, isopods, pycnogonids have undergone marked radiation in the Southern Ocean 

(Clarke and Johnston 2003) whereas, e.g polychaetes could have just disperse and colonize, or 

just been part of the ancient fauna (Knox 1977).  Different origins have to been taken in 

account, and, it also depends on which taxonomic group or level is of interest.  

 

 

1.2   Biogeographic remarks: Antarctic Peninsula and high Antarctic 

 

The faunas of the Antarctic Peninsula and the high Antarctic Weddell Sea have long been 

considered to belong to different zoogeographical regions (Hedgpeth 1971).  These two areas 

are distant from each other by about 2000 km, and are characterised by a strong seasonality 

with changing light regime, ice coverage (Gutt 2000), primary production, sedimentation 

(Arntz et al. 1992), but relatively constant physical conditions (Klages 1993; Klages et al. 

1995).  However, these two regions differ in one striking aspect that is relevant to the benthos: 

the Antarctic Peninsula has a true coast and thus, true littoral areas are common whereas in 

the Weddell Sea almost all shallow waters are covered by the floating margins of the 

continental ice caps.   

 

The continental shelves around Antarctica are unusual in being deep, commonly as much as 

800 m in some areas (Clarke 1996b).  More than 95% of the coastline and near shore region 

of the high Antarctic is covered by floating or grounded ice, thus deep waters (>150 m) 

predominate and shallow areas are scarce (Drewry 1983; Gutt 2000).  In the Weddell Sea only 
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two shallow sites with water depths between 55 and 160 m are known: the inner parts of Atka 

Bay and a recently discovered shallow bank off Four Seasons Inlet NE of Kapp Norvegia.  

This bank seems to host a faunal assemblage which differs from that of well investigated 

adjacent deeper waters. 

 

The benthos of the Southern Ocean is influenced by a number of factors including depth, 

sediments, bottom topography, habitat, oceanography, ice scouring, competition and 

predation (Dayton et al. 1970, 1974, Gallardo 1987, Arntz et al. 1994, Clarke 1996a, 1996c, 

Slatery and Bockus 1997, Stanwell-Smith and Barnes 1997, Gutt 2000).  Furthermore, 

Antarctic epifaunal assemblages have been described basically as circumpolar by many 

authors (Hedgpeth 1971, Knox and Lowry 1977, Richardson and Hedgpeth 1977, Voß 1988), 

due to the similarity of conditions in the sea around the continent and the circum-Antarctic 

current systems.  The existence of comparable assemblages has been doubted by others 

including White (1984), Picken (1984) and Gallardo (1987), and recent evidence indicates the 

existence of quite a number of genetically different species of very similar morphological 

appearance (e.g. Held 2003 for isopods).  It has been defined the circum-Antarctic occurrence 

of many species plus smaller provinces or regions may be the dominant distribution pattern 

(Dayton 1990). 

 

 

1.3   Imaging techniques 

 

Research on patterns and processes in benthic communities of the Southern Ocean are of 

general interest to characterize their structure, to describe their function and to understand 

their development (White 1984, Arntz et al. 1994, Clarke 1996c).   
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In general, distributional studies of Antarctic macrobenthos have relied on traditional 

sampling techniques (e.g. bottom trawls, dredges, grabs) (Knox 1960, Hedgpeth 1969, Dell 

1972, Arnaud 1977, Sarà et al. 1992) which are basically destructive.  Trawls and dredges in 

particular suffer from the disadvantages of destroying any structure in the community (e.g. 

ecological associations), damaging many specimens and mixing samples from different 

assemblages (Clarke 1996c), and should therefore be restricted to occasions when large 

amounts of material are required.   

 

Imaging technique is one major modern survey method (Pilgrim et al. 2000) which provides 

information to apply new analytical methodologies e.g. landscape approach (Garrabou et al. 

2002) that allow to obtain new quantitative results and scientific insights in ecological 

research.  The use of imaging techniques allows to observe non-destroyed benthic 

assemblages with a high resolution over large areas.  These techniques have been 

implemented in tropical (Hughes and Jackson 1985, Edmunds and Wittman 1991), temperate 

(Schneider et al. 1987, Parry et al. 2003) and high latitudes (Gutt and Starmans 1998, Teixidó 

2003).  As a consequence, a variety of marine communities have been investigated, e.g coral 

reefs (Done 1981, Carleton and Done 1995, Aronson and Swanson 1997, Ninio et al., 2003), 

rocky (Garrabou et al. 2002) and deep-sea (Grassle et al. 1975, Kaufmann et al. 1989, 

Hovland et al. 2002).  Furthermore such modern techniques have been implemented as useful 

tools in monitoring programmes for conservation policies (Cooper et al. 1987, Aronson et al. 

1994, Vago et al. 1994, Connell et al. 1997, Edmunds 2002). 

 

In the Antarctic Bullivant (1959, 1961) was pioneer in the use of imaging methods as a 

sampling method for benthic communities.  However, such studies were then largely ignored 

and were not used for quantitative analyses (Clarke 1996c).  Recently, the use of modern 
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imaging techniques have been implemented in the Antarctic, and ROVs have provided 

powerful new insights on the ecology of the benthos of the Southern Ocean.  

 

ROV deployments have been planned and carried out in such a way, that the scientific 

information retained on the images could be transformed to quantitative ecological data.  In 

this study a ROV was employed as a sampling method, which is highly effective for marine 

ecological studies at large spatial scale for work with the mega-epibenthos, due to its high 

spatial resolution (Clarke 1996a), since abundances can be determined separately for each 

square metre.  Recent advances in Remotely Operated Vehicle (ROV) technology allow the 

recording of a continuous stream of images with sufficient resolution and colour saturation to 

identify the fauna and determine fine-scale substrate characteristics (Malatesta et al. 1992).  

 

Although these methods cannot fully replace traditional sampling, e.g. for small fauna or 

infauna in general, they are contributing increasingly to biodiversity assessments.  Continuous 

video-records have made possible scientific research on iceberg scouring and succession on 

megabenthic assemblages and allowed the verification of ecological hypotheses (Gutt et al. 

1996, Gutt 2001, Gutt and Starmans 2001, Starmans et al. 1999, Starmans and Gutt 2002).  

Furthermore, such video records enable analyses at different scales (ca. 1 to 1000 m) within a 

single transect e.g relations of demersal fish with specific habitats (Gutt and Ekau 1996) or 

patchiness of sessile fauna (Gutt and Starmans 2003, Gutt and Piepenburg 2003).  In addition, 

detailed information on spatial community structure and specific architectonic arrangements 

of the mega-epibenthos: “three-dimensional assemblages”, were possible to observe and 

quantify (Barthel and Gutt 1992, Gutt and Schickan 1998, Gutt and Starmans 1998).     
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1.4   Objectives of this study 

 

This study was designed to answer the following scientific questions: 

 

1.   Are there differences in zoogeographic patterns at the community level in the shallow-

water benthic fauna between the high Antarctic (Weddell Sea) and the Antarctic 

Peninsula region (Bellingshausen Sea)? 

 

2.  Are Antarctic shallow-water mega-epibenthic communities shaped by circumpolar 

dispersion or local conditions? 

 

3.      What is the structure of Antarctic mega-epibenthic communities at intermediate scales? 

 

4.      Is the mega-epibenthos inhabiting the Antarctic shelf in the Weddell and Bellingshausen 

seas really more diverse than that of the Arctic?  

 

5.   Does shallow-water polar mega-epibenthos exhibit a higher heterogeneity than the 

benthos on the deeper shelves?   
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2   Study areas  

 
The investigations presented here were carried out in the Weddell and Bellingshausen seas in 

the Southern Ocean, complementary material was used from one additional investigation area 

off north-east Greenland and deep areas in the Antarctic.  

 

2.1   Weddell Sea 

 

The area of the Weddell Sea is approx. 2.3 million km2 and forms the southernmost part of 

the Atlantic Ocean (Carmack and Foster 1977, Stewart 1990) (Fig. 1).  The continental shelf 

reaches depths of down to 500 m (Carmack and Foster 1977, Elverhφi and Roaldset 1983).  

The sites selected for this study comprised the narrow shelf of the eastern Weddell Sea, 

including basically the areas of Kapp Norvegia  and Atka Bay.  Seasonal ice covers the 

continental shelf and extends beyond the continental break (Tréguer and Jacques 1992) but a 

coastal polynya of interannual variation in size may occur, that due to katabatic winds may 

remain also open in winter (Hempel 1985, Hellmer and Bersch 1985).  Water temperature 

close to the seafloor varies from –1.3 °C to –2.0 °C (Fahrbach et al. 1992).  The 

oceanographic circulation of the Weddell Sea is characterised by the Weddell gyre.  Current 

directions vary strongly during the year in the Kapp Norvegia area, between 197˚ and 257˚ at 

different locations and depths (Fahrbach et al 1992).  Primary production is characterised by a 

marked summertime peak (Gleitz et al. 1994, Park et al. 1999), reflected by the organic matter 

flux from surface waters to the seabed (Bathmann et al. 1991, Gleitz et al. 1994).  A general 

feature of the eastern part of the Weddell Sea is the biogenic sediment (Grobe 1986).   
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In some places sponge spicule mats and fragments of bryozoans are important components 

forming biogenic sediment beds.  An overview of the distribution of the different sediment 

types is given by Voß (1988). 

 

 

Fig. 1 Areas of investigation: Bellingshausen Sea (Marguerite Bay) and Weddell Sea (Atka Bay, Kapp 

Norvegia), Antarctica 

 

 

Due to the submerged continental shelf and the glaciated coast shallow-water areas (<150 m) 

in the Antarctic are scarce.  In the eastern Weddell Sea two such sites are known, one in and 

west of Atka Bay and the other being a shallow bank off Four Seasons Inlet (11°28'W, 

71°07.5'S) NE of Kapp Norvegia (Fig. 1).  
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2.1.1   The benthic fauna of the eastern Weddell Sea 

a) 

 
b) 

 
c) 

 
d) 

 

 
The benthic fauna in the eastern Weddell 

Sea around Kapp Norvegia and Atka Bay 

is dominated by a great number of sessile 

suspension feeders such as sponges, 

gorgonians ascidians  and bryozoans,  

which at some  localities cover the  

sediment completely  (Gutt and Starmans 

1998, Starmans et al. 1999).  In this area 

assemblages are characterised by complex 

three-dimensional structures, the so-called 

“multistoried assemblages” (Fig.2) (Knox 

and Lowry 1977, Dearborn et al. 1986).  

Especially hexactinellid sponges, 

gorgonians and bryozoans play an 

important role providing biogenic substrata 

for a significant number of Antarctic 

invertebrates.  The benthos in this area is 

characterised with intermediate to high 

diversity, high values of biomass and a 

patchy distribution of organisms (Gutt and 

Starmans 1998, Gili et al. 2000).

 
Fig. 2 Eastern Weddell Sea fauna.  a) Crinoids, bryozoans and hexactinellid sponges, (125 m).  b) bryozoans, Aplidium sp. 

(Ascidiacea) Corymorpha parvula (Hydrozoa) and Stylocordyla borealis, round (Demospongiae), (102 m).  c) Ekmocucumis 

turqueti (Holothuroidea), gorgonians and bryozoans, (64 m).  d) Front bryozoans and  Corymorpha parvula (Hydrozoa). 

Middle hexactinellid sponge with Psolus spp. (Holothuroidea) and Astrotoma agassizii (Ophiuroidea), (119 m). 
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Most of the coastal areas on the Weddell Sea shelf display differences in community 

composition on small spatial scales, generally in response to differences in substrata, 

topography or  hydrography (Gutt 2000).  Voß (1988) characterised the sediments of the 

eastern Weddell Sea by the presence of sandy bottoms, bryozoan debris, sponge spicule mats 

and a few stones.  A first description of the benthic assemblages in this area was made by Voß  

(1988) and it was then modified by Gutt and Starmans (1998).  They distinguished three basic 

communities on the shelf of the eastern Weddell Sea: “Eastern”, “Southern” and “Trench”, 

with the “Eastern community” as the richest of the three. 

 

 

2.2   Bellingshausen Sea 

 

The Bellingshausen Sea is located in the Pacific sector of the Southern Ocean, between 

Thurston Island in the west and the Antarctic Peninsula in the east (Stonehouse 2002) (Fig. 1).  

The continental shelf is very extensive (150-400 km) and in its narrow parts, very similar to 

the southeastern Weddell Sea.  Water temperatures range from –1.8 °C to +0.3 °C (Stambler 

2003).  Two water masses characterise the area in the Bellingshausen Sea (Hellmer and 

Bersch 1985).  Biogenic sediments are not common in Marguerite Bay (Brockington et al. 

2001).  Soft bottoms with different proportions of gravel, sand and films of diatoms are 

characteristic of this area (Bryan 1992). 

 

Shallow-water stations (<150 m) in the Bellingshausen Sea were located in northern 

Marguerite Bay (at Adelaide Island), where a true coast and adjacent shallow waters are 

found, in contrast to the eastern Weddell Sea (Kennedy and Anderson 1989, Bonn et al. 

1996).  The land as well as the seascape, and consequently the coastline, are here quite 

variable and heterogeneously structured. 
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2.2.1   The benthic fauna of the Bellingshausen Sea 

 
a)

 
b)

 
c) 

 
d) 

 

 

In contrast to the Weddell Sea, the mega-

epibenthos in the Bellingshausen Sea has 

not been intensively studied.  However, 

several studies on the benthos at depths 

between 0-45 m have been a subject of 

particular interest north of the Antarctic 

Peninsula (Zamorano 1983, Wägele and 

Brito 1990, Rauschert 1991, Nonato et al. 

2000, Barnes and Arnold 2001, Barnes and 

Brockington 2003) but research on deeper 

areas has been scarce. 

 
The benthic fauna of the Antarctic 

Peninsula is represented mainly by a true 

soft-bottom community dominated by 

polychaetes, molluscs and bivalves 

(Gallardo et al. 1977, Mühlenhard-Siegel 

1988, Saiz-Salinas et al. 1998).  Further 

south, Starmans et al. (1999) studied the 

mega-epifauna and noted that assemblages 

of suspension feeders dominated by 

sponges and bryozoans are almost

 

Fig. 3 Bellingshausen Sea fauna.  a) Rosella racovitzae (budding type) (hexactinellid), ophiuroids, shells of Adamussium 

colbecki (Bivalvia), (76 m). b) Cinachyra antartica (Demospongiae) , Primnoella spp.(Gorgonacea), Sterechinus neumayeri 

(Echinoidea), (70 m). Soft sediments: c) Ceriantharia spp. (170 m), d) Holothuroidea and Trematomus spp. (Pisces), (157 m).  
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absent in this region.  In addition, these  assemblages lacked the pronounced three-

dimensional architecture reported for communities in the Weddell Sea (Fig. 3).  The authors 

noted the presence of sandy bottoms and the relative abundance of drop stones.  They also 

remarked high abundances of sessile anthozoans, mobile echinoderms, and bryozoans.   

 

 

2.3   North-east Greenland 

 

The Arctic investigation  site was the  high-Arctic shelf region  off northeast  Greenland in the  

Greenland Sea (Fig. 4).  At this site the bathymetry is complex and  the shelf consists of a 

system of shallow banks (< 100 m) 

separated by troughs and trenches with 

depths > 400 m.  Fine-grained 

sediments cover the sea floor, 

particularly in the shelf troughs and at 

the slope, whereas coarser fractions 

predominate on the shallower banks 

(Piepenburg 1988). Here a pronounced 

depth zonation is a principal feature of 

the megabenthic distribution 

(Piepenburg and Schmid 1996).  
 
Fig. 4 Area of investigation: off Northeast Greenland, 
Greenland Sea 
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3   Material and Methods 

 

3.1   Video sampling 

 

Sea-bed video observing transects were conducted using a ROV ("Sprint 101") (Fig. 5) at 

shallow depths between 55-160 m (Fig. 1 and 4).  With the exception of station ANT XIII, 

24II (see below), each single station is comprised of a video transect lasting approximately 60 

minutes.  The length of the transects was determined by the drift of the ship and the width (ca. 

0.5 m) by two parallel laser beams, which acted as a scale on the image.   

 

In the Weddell 

Sea, video 

records were 

taken during the 

expeditions ANT 

XIII/3, ANT 

XV/3 and ANT 

XVII/3 of the 

German R/V 

“Polarstern” (for 

details on the 

expeditions see Arntz and Gutt 1997, 1999; Arntz and Brey 2001).  The study site west of 

Atka Bay is a bank being unusually shallow at the ice-shelf cost.  Another site in the Atka 

Bay rises continuously at a width of approximately 5 km to the ice-shelf coast, where at a 

water depth of 55 m the ice is locally in contact with the seafloor (Grosfeld et al. 1989).  The 

 
Fig. 5 Remotely Operated Vehicle (ROV),  “Sprint 101” 
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shallow bank off Four Seasons Inlet (11°28'W 71°07,5'S) NE of Kapp Norvegia is 

approximately 1.7 km long in its north-west south-east extension and on average 320 m wide; 

it rises from a plateau at 170 m depth to 60 m depth at its shallowest part.  Its north-eastern 

slope is relatively steep over the complete depth ranging from approximately 150 to almost 60 

m.  At Kapp Norvegia the complete ROV station (ANT XIII, stn 24II) was split into four 

different transects: at the north-eastern side it was separated according to depth from the deep 

to the shallow into three distinct transects; after a certain distance without video observation 

the fourth part of this transect (ANT XIII, stn 24II) is situated at the south-western slope of 

the bank at around 120 m depth.  One additional transect has been videotaped at this slope 

between 60 and 90 m (ANT XVII, Stn 111-1). 

In northern Marguerite Bay (Bellingshausen Sea) off the west coast of the Antarctic Peninsula 

(Fig. 1), video transects were undertaken from the British Antarctic Survey research vessel 

R.R.S. “James Clark Ross” (cruise JR37).  The transects covered depths below 57 m.   

 

For data used in the third publication the sampling method was the same but deeper stations in 

the Antarctic were video-taped during the expeditions ANT VI/3 (eastern Weddell Sea) and 

ANT XI/3 (Bellingshausen Sea) (Fütterer 1988, Miller and Grobe 1996).  Arctic samples for 

deep and shallow water depths were taken off Northeast Greenland (Greenland Sea) during 

ARK IX/2-3  (Hirche and Kattner 1994) (Fig. 4).  These data were available as raw material 

and were recalculated for the analyses in order to provide an optimum in compatibility e.g. in 

terms of sample size. 

 

Due to logistics and temporal constraints, measurements of ecologically relevant 

environmental parameters being directly linked to my benthological concept were not 

possible, especially since this approach combines results from four expeditions and three 

investigation areas.  
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3.2   Identification 

 

All organisms > 1 cm were counted and identified to the lowest possible taxonomic level at 

the given optical resolution of the cameras.  Organisms were identified based on literature 

(Thomson and Murray 1880 to 1889, Discovery Committee Colonial Office 1929 to 1980, 

Sieg and Wägele 1990) and experts, who identified true material from the study sites and also 

assisted in the identification of different taxa.  Most of these specialists contributed to a 

comprehensive species list for the Weddell Sea (Gutt et al. 2000).  Colonies of colonial taxa 

were counted and treated as single individuals in the statistical analyses.  Where this approach 

proved impossible because of the irregular shape of the colony, percentage cover of the sea 

floor was determined and used as a proxy for true abundances.  In order to achieve a better 

identification of the organisms, an average of 100 still photographs for each station were also 

made by the ROV on the same transects and consulted in addition to the video observations. 

 

3.3   Data analyses 

 

Detailed descriptions of the methods applied are included in the publications attached.  Here I 

give a general overview of the data analysis used in this study. 

 

Multivariate methods available in the statistical analysis package PRIMERv5 (Clarke and 

Gorley 2001) were applied to a matrix containing abundances for each station (Publication I) 

or subsamples (Publication II).  Similarities between stations (or subsamples) and taxa were 

calculated using the Bray-Curtis coefficient (Clarke and Warwick 1994).  Non-metric multi-

dimensional scaling (MDS) was employed for ordination (Kruskal and Wish 1978).  

Significance tests for differences among sites were carried out using one-way ANOSIM 

(Clarke and Green, 1988) permutation tests (Publication I).  The nature of the community 
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groupings resulting from the MDS ordination was explored further by using the similarity 

percentages (SIMPER) routine to determine the contribution of individual taxa to the average 

dissimilarity between samples (Clarke 1993) (Publication I). 

 

For horizontal seriation (Clarke et al. 1993) and depth zonation the following procedures were 

used (Publication II): 

 

Horizontal seriation: Firstly non metric multidimensional scaling (MDS, Kruskal and Wish 

1978) was performed.  Secondly, the degree of seriation was visualized by joining the points 

in the MDS, in the order of the subsamples along the transect (Clarke et al. 1993).  After these 

analyses an index of multivariate seriation (IMS) (Clarke et al. 1993) was calculated to 

determine the extent to which the community changes in a smooth and regular fashion along 

each transect.  In order to achieve a measure of species turnover, Bray- Curtis similarity 

between all pairwise permutations of subsamples was used (Magurran 1988). 

 

Depth zonation: Firstly multivariate analyses were performed as mentioned above.  In 

addition inverse analysis (Field et al. 1982) was performed in order to cluster species that tend 

to co-occur in similar ratios across the subsamples.  Finally univariate measures of diversity 

and evenness were computed: total number of taxa (S), Pielou’s evenness (J’= H’/ loge S) and 

Hill’s numbers diversity (N1= exp (H’)) with H’=-Σipi ln(pi) and pi= relative abundance per 

station of species i (Clarke and Warwick 1994). 

 

Different measures of biodiversity were performed at different spatial scales in mega-

epibenthic communities in the Antarctic and the Arctic (Publication III).  Data were analysed 

according to univariate and multivariate measures in the following way: 
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Within-habitat (α) diversity: Firstly univariate measures of diversity and evenness were 

computed for each group of stations: total number of taxa (S), Shannon diversity ( H’= -Σi pi 

(loge pi) ) and Pielou’s evenness (J’= H’/ loge S) (Clarke and Warwick 1994).  Secondly the 

normalised expected number of taxa, calculated after Hurlbert’s (1971) modification of 

Sanders (1968) rarefaction method was used. 

 

Between-habitat (β) diversity: As a measure of β diversity or species turnover the Bray- Curtis 

similarity between all pairwise permutations of sites was used.  The higher the overall 

similarities are, the lower the β diversity (Magurran 1988). 

 

For α and β diversity, non-parametric Kruskal-Wallis tests and post-hoc multiple comparison 

(after Nemenyi) were used to test the significance of differences (p<0.05) (Sachs 2002).  For 

details on the post-hoc multiple comparisons see Publication III. 

 

Regional (γ) diversity: In order to assess the γ diversity, different indices of diversity were 

computed.  Assuming mainly independent data comparability between primarily single values 

(H’, E(S70) and J’) for each investigation site jack-knifing was applied (Magurran 1988).  

Statistical significance was tested using analysis of variance (ANOVA) and post-hoc 

procedures (Tukey test). 

As a second measure of γ diversity, non-parametric estimators of true species richness were 

computed (Colwell 1997).  Values of these true species richness estimators were used as a 

measure of γ diversity.  Detailed information is available in the chapter “materials and 

methods” in Publication III. 
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4   Results and Discussion 
 

In the following chapter the results of the investigations are summarised and discussed.  A 

more detailed discussion can be found in the attached publications.  Here section 4.1 

summarises and discusses general features of the distribution and community structure of the 

shallow-water (55-160 m) mega-epibenthic communities, while section 4.2 provides 

examples of spatial patterns of Antarctic benthic shelf communities.  Section 4.3 will focus on 

the biodiversity comparison with high-Arctic shelf mega-epibenthos. 

 

 

4.1   Distribution and community structure of shallow-water Antarctic mega-epibenthic 
communities 
 

4.1.1   Hypotheses 

 

On all continents other than Antarctica, animals restricted to shallow waters can disperse 

continuously along the shelves over long distances.  Around Antarctica littoral areas not 

covered by ice-shelf are scarce and often highly isolated.  Does this condition cause a 

permanent reduction in the dispersion of the shallow-water species, or does a circumpolar 

relatively homogenous shallow-water fauna exist? Are general conclusions on the role of 

bridging long distances possible for macrobenthic species? 

 

It is known that benthic shallow-water assemblages in the Antarctic contain a considerable 

number of species that are highly eurybathic (Brey et al. 1996), whereas others are restricted 

exclusively to shallow water (Dayton et al. 1970; Gutt 1991).  
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If such assemblages are not primarily the result of restricted circumpolar dispersion, are they 

(a) driven by local conditions at shallow depths, or (b) affected by exchange with specific 

assemblages in adjacent, deeper waters? 

 

4.1.2   Antarctic shallow-water mega-epibenthos: shaped by circumpolar dispersion or 

local conditions?  

 

The community analyses revealed significant differences between the fauna of all three sites 

(Fig. 6 and Table 3 in Publication I), Marguerite Bay, Atka Bay and Four Seasons Bank.  The 

 

 

Fig. 6 Nonmetric multidimensional scaling (MDS) ordination based on 

Bray-Curtis similarity derived from fourth-root-transformed abundance 

data.  Symbols represent grouping of stations according to cluster 

analysis (S shallow; M middle; D deep; B fourth part of the transect on 

the south-west slope)  

 

faunistic distances 

between sites and the 

degree of homogeneity 

within the sites were 

similar, with the 

exception of a more 

homogenous pattern at 

Atka Bay.

 

An important question is whether the faunistic differences reflect the spatial distances 

between the study sites.  Since there are few shallow-water areas to act as stepping stones, 

colonisation of isolated areas of shallow water could be dispersal limited (Clarke 1996b).  The 

R-statistic values (Table 2 in Publication I) representing faunistic similarities between all sites 
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are similar to each other, with a slightly higher distance between Marguerite Bay and Four 

Seasons Bank, which is also shown in the MDS plot. Geographical distances, which represent, 

at least theoretically, routes of dispersion, differ considerably from this pattern.  Atka Bay and 

Four Seasons Bank are in relatively close proximity, since they are not more than 330 km 

apart.  If distances in space play a dominant role in explaining benthic structures, some of the 

most abundant species at Atka Bay would also be expected at Four Seasons Bank, because 

they could be dispersed by the westerly current. Although a depth gradient was found within 

the data from Four Seasons Bank, differences between all sites were significant.  For an 

exchange of fauna between the two sites in the eastern Weddell Sea and the area west of the 

Antarctic Peninsula two different routes can be assumed. The first would start in Marguerite 

Bay, cyclonically following the Eastwind Drift and travelling three-quarters of the entire 

continent of approximately 11,000 km before arriving in the Weddell Sea.  From here 

dispersion could follow the Weddell Gyre and enter the Bransfield Strait from the region off 

Joinville Island at the tip of the Antarctic Peninsula (Gordon et al. 2000) leading back to 

Marguerite Bay.  The second route would be dispersal via the Westwind Drift, clockwise 

from Marguerite Bay.  Even by this route, however, the distance to the eastern coast of the 

Weddell Sea would be 10 times longer than the distance between the two sites in the Weddell 

Sea.   

 

 
There is no homogenous shallow water benthos between 60 and 160 m depth, 

instead different assemblages were found independently of their geographical 
location and distance from each other. 

 
Benthic assemblages in Antarctica are not shaped significantly by the 

limitation of long-distance dispersion, caused by the existence of few shallow water 
areas not being covered by the ice shelf. 
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Although information on generality in reproduction strategies and early life history is scarce, 

it seems worthwhile to check some species dominant at our sites for common characteristics 

regarding the potential to disperse.  Several abundant Antarctic invertebrates are short-

distance dispersers, either because they reproduce asexually or because they brood their 

juveniles  (Arntz et al. 1994).  These reproductive strategies support the local success of 

single species (Bolker and Pacala 1999), and, if these species become dominant, the 

community structure can be shaped considerably.  Asexual reproduction via budding is 

prevalent e.g. in the hexactinellid sponge Rosella racovitzae (budding type; according to 

Barthel and Gutt 1992), and brooding seems to be a common feature of reproduction in 

Antarctic octocorals, e.g. gorgonians (Orejas et al. 2002).  The stoloniferous coral Clavularia 

cf. frankliniana broods its embryos, and asexual propagation via fission is common (Slattery 

and McClintock 1997).  Long-range dispersion among sessile animals by pelagic 

planktotrophic larvae, e.g. Sterechinus neumayeri and other abundant invertebrates (Bosch et 

al. 1987, Pearse et al. 1991) supports the coexistence of many species, as has been shown by a 

spatially explicit simulation model (Potthoff, Johst, Gutt, Wissel unpublished results), and 

leads to a high capacity to colonise highly disturbed habitats (Poulin et al. 2002).   

 

 
Modes of reproduction and characteristics of the early life history, e.g. 

brooding, viviparity or budding, and the consequent patterns of dispersion, of key 
taxa also shape patterns of species distribution in shallow benthic Antarctic 
communities. 

 
 

In order to confirm a certain generality of our results, some species typical or abundant at our 

sites were checked for their circumpolar distribution: Rossella racovitzae, Scolymastra 

joubini, Cinachyra barbata, Monosyringa longispina (Koltun 1969; Sarà et al. 1992; Gutt and 

Koltun 1995) and Synoicum adareanum (Kott 1969) all have a clear circumpolar distribution 

and cover a broad depth range.  A species reported as common in widely separated areas, but 
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with less evidence of a widespread circumpolar distribution than those mentioned above is 

Sterechinus neumayeri, present along the Antarctic Peninsula, in the Weddell, Ross and Davis 

Seas (Pawson 1969).  The reason for this might be related to the obvious preference of waters 

shallower than 300 m (Brey and Gutt 1991).  Indeed at Syowa research station, Hamada et al. 

(1986) described differences in faunal composition at different depths and noted the lack of S. 

neumayeri at 200 m, where bryozoans were very dominant.  The hydroid Tubularia ralphii 

has an even more obvious preference for shallow water and, so far, has only been found above 

36 m water depth around Antarctica (Dayton et al. 1970, 1974; Propp 1970; Gruzov 1977; 

Stepaniants 1980; Barnes and Bullogh 1996), although in our study it reached a maximum 

depth of 104 m at Four Seasons Bank.  A similar pattern was shown by the octocoral 

Clavularia cf. frankliniana, which is known from the Weddell Sea (this study), South Georgia 

(Molander 1929) and McMurdo Sound (Dayton et al. 1970, 1974; Slattery and McClintock 

1995, 1997), where it is "numerically dominant" between 12 and 33 m and seems to be a true 

shallow-water taxon.  The newly described gorgonian genus Arntzia belongs to those taxa that 

obviously prefer deeper waters, since their shallowest occurrence has been recorded in the 

Weddell Sea (64 m) and it is known from the Scotia Arc and the Weddell and Ross Seas, but 

not from other sites in East Antarctica (López-González et al. 2002).  Two species that seem 

to have a limited distribution on the continental shelf are Oswaldella antarctica, found at the 

Antarctic Peninsula (Peña Cantero and Vervoort 1998) and at Four Seasons Bank (this study), 

and Schizotricha cf. unifurcata, recorded mainly from sub-Antarctic islands in the Indo-

Pacific sector of the Antarctic, as well as in the Weddell Sea (Peña Cantero 1998).  Each of 

the shallow-water assemblages examined in this study has a specific composition, but there is 

no indication for generally unique faunas at any of these sites, since they represent a mixture 

of opportunistic species and species with specific environmental demands. 
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Another reason for the specific faunistic compositions at the three sites could be the 

considerable exchange with deeper assemblages.  In a critical short review of the frequently 

described "eurybathy" among Antarctic invertebrates, Gutt (1991) suggests that assemblages 

may also be eurybathic between 160 and 1,180 m.  Widespread eurybathy of the Weddell Sea 

benthos was described by Brey et al. (1996); however, at that time, the shallow sites were not 

yet known or had not been investigated, and species that occurred elsewhere in shallow waters 

were not included in the analysis, which reduces the representativity of the results.  Use of the 

160-m-depth contour as the lower limitation in the present study does not coincide with any 

clear benthic depth zonation; the depth limitation ensures only that the presence of species 

restricted to shallow waters is likely to be detected and that assemblages typical of deeper 

waters are partly represented.  Some examples of abundant and typical species have already 

been discussed.  In addition, Hamada et al. (1986) described differences in faunal composition 

at different depths and noted the lack of S. neumayeri at 200 m, where bryozoans were very 

dominant.  Cattaneo-Vietti et al. (1997) mentioned the presence of large beds of Adamussium 

colbecki up to 70-80 m depth, which were abundant, but patchily distributed.  Furthermore, 

Cattaneo-Vietti et al. (2000b) indicated that the bivalves A. colbecki and Yoldia eightsi 

seemed to be restricted to relatively shallow water (200 m) at Terra Nova Bay.  If the 

exchange between deeper and shallower benthos is important, then the two sites in the 

Weddell Sea should be, by far, more similar to each other than is either to the Marguerite Bay 

site because they are located in an area, where just one quite homogenous community exists 

on the deeper shelf (Gutt 2000). However, they are not.   

 
Each of the shallow-water assemblages examined has a specific composition, 

but there is no indication for generally unique faunas at any of these sites. 
 
The Antarctic shallow-water benthos is not shaped by intensive exchange 

with the deeper fauna, although it is not isolated from these assemblages.  
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4.2   Spatial patterns of the Antarctic benthos by examples  
 

Research on patterns and processes in benthic communities of the Southern Ocean is of 

general interest to characterize their structure, to describe their function and to understand 

their development (White 1984, Arntz et al. 1994, Clarke 1996b).  Zonation might be defined 

as a familiar and ubiquitous organisation of organisms by geography, topography and 

exposure (Barnes and Brockington 2003).  Clear-cut zonation patterns in the form of a serial 

change in community structure with increasing water depth are a striking feature of intertidal 

and shallow-water benthic communities on both hard and soft substrata (Clarke and Warwick 

1994).  Possible causes of zonation patterns are diverse, and may vary according to 

environmental conditions and ecological demands of assemblages with their specific species 

composition. 

 

The benthos of the Southern Ocean is influenced by a number of factors including depth, 

currents, sediments, bottom topography, light or wave energy, ice scouring, competition and 

predation (Dayton et al. 1974, Dayton 1989, Arntz et al. 1994, Clarke 1996a, 1996b, Slattery 

and Bockus 1997, Stanwell-Smith and Barnes 1997, Gutt 2000).  None of these mechanisms, 

however, will necessarily give rise to discontinuous bands of different assemblages of species, 

which is implied by the term “zonation”. Therefore, the more general term “seriation” 

(zonation with no sharp discontinuities) is perhaps more appropriate to describe continua of 

changing communities (Clarke et al. 1993, Gherardi and Bosence 2001, Brown et al. 2002).  

In this context arises the question, what is the structure of Antarctic shallow-water benthic 

shelf communities at intermediate scales? 
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4.2.1   Horizontal seriation 

 

Specific seriation patterns of benthic ecosystems may be caused by both abiotic conditions 

(depth, substratum, habitat, bottom topography, sedimentation, oceanography, disturbance) 

(Dayton et al. 1970, 1994, Gallardo 1987, Barnes et al. 1996, Gutt 2000) and by biotic factors 

(competition, predation, recruitment) (Rowe 1981, Arntz et al. 1994, Clarke 1996a, 1996b). 

 

Stations with the poorest seriation (Table 1 in Publication II), e.g. stn 015, 059-1, and 32IV 

belong to those with the smallest range of species or faunal-heterogeneity in combination with 

intermediate values for species turnover (median of Bray-Curtis values) (Fig. 7 in Publication 

II). This shows that along the 150 m standardized transects neither a patchwork of different 

assemblages nor a gradual change in assemblages exists, instead the fauna is quite 

homogenous.  This phenomenon was observed locally in all three areas of investigation.  

Interestingly, this includes two stations (059-1 and 32IV) which are situated close (<0.5 km) 

to the ice shelf coast, where, due to a continually changing environment, greater differences in 

benthic communities can be expected than elsewhere or at different spatial scales (Barry and 

Dayton 1988, Gutt 2000). 

 

Discontinuity in the macro-epibenthic assemblages may correspond to a sharp change in local 

bottom topography (Pérès 1982).  Some of the stations analysed in Marguerite Bay displayed 

abrupt changes in the bottom topography, e.g. stn. 010 (Fig. 7).  Soft-bottom sediments with 

valleys and crests, drop stones, and biogenic substrata (e.g. scallop shells of Adamussium 

colbecki) were observed along this transect. 

 

An exceptional result in terms of species turnover is that of stn 010 (Fig. 7 in Publication II), 

with a high heterogeneity, whilst the IMS value and its significance level were intermediate 
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Stn 012 
a) 

 
b) 

 
c) 

 
d) 

 
 

Stn 24II shallow 
e) 

 
f) 

 
g) 

 
h) 

 

 
 
 
 
 

Fig. 8 Horizontal seriation in the Bellingshausen (stn 012) and Weddell Seas (stn 24II shallow), photographic representation of some  
of the outliers in the seriation.    a)  and e)  MDS ordination.    Stn 012: b) and c) show part of the community structure present at the  
majority of the subsamples,  with high abundances  of the sedentary Polychaeta sp.1 (106 m).   d) Represents outliers of the seriation  
(subsamples 9 and 14) showing low abundances of the Polychaeta sp.1 (102 m).  Stn 24II shallow: f) Ice scour, with low abundances  
of Oswaldella antarctica  (Hydrozoa) (subsamples 7-8)  (58 m).   g)  and h)  Display differences in abundances  of O. antarctica and  
sediments between different subsamples (60 and 59 m).  
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Stn 24II middle 
a) 

 
b) 

 
c) 

 
d) 

 
 
 

Stn 24II deep 
a) 

 
b) 

 
c) 

 
d) 

 
 
 

Fig. 9 Horizontal seriation in the Weddell Sea (Four-Seasons Bank), photographic representation of some of the outliers in 
the seriation.  a) MDS ordination. Mid-depths: b) Assemblages of gorgonians present where strong currents are absent 
(subsamples 1-3), (120 m), conversely, assemblages of subsamples 4-12 (c and d) present at sites characterized by strong 
currents, (118 and 95 m).  Deep sites: b) Displays subsample 3, with absence of C. barbata (Demospongiae, 129 m), which is 
present at subsamples 1-2 (c and d), (128 and 130 m).  
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 (Table 1 in Publication II).  Here obviously changing environmental conditions at different 

levels shape a heterogeneous megabenthos.  The fauna seems to exhibit both a gradual change 

in taxa composition and, superimposed, a faunal patchwork shaped by discrete impact 

independently of the locality on the transect. 

 

 
Stations with the poorest seriation belong to those with the smallest range 

of species or faunal-heterogeneity but with intermediate values for species 
turnover.  

 
Discontinuity in the mega-epibenthic assemblages may correspond to a sharp 

change in local bottom topography.  
 

 

Four transects, one from the Marguerite Bay (stn 012) (Fig. 8a-d) and three from the Four 

Seasons Bank (stn 24IIA-shallow, 24IIA-middle, 24IIA-deep) (Fig. 8e-h and 9), show 

relatively good faunal seriation, though, never high values close to 1.0 (Table 1 in Publication 

II).  The latter transects have broad ranges of species turnover values (Fig. 7 in Publication II).  

Because of the mathematical nature of the IMS this combination of median and value range 

can be found if an existing seriation is occasionally interrupted.  At both sides of the Four 

Seasons Bank the most obvious disturbance agent is iceberg scouring, a process which also 

leads to the heterogeneity within the two groups of subsamples, SW-slope and NE-slope, the 

latter including one subsample with an extreme faunistic composition.  The same was 

observed in the "Top" group where additional disturbance, such as wave action, an especially 

strong exposure to tidal and other currents, changes in daylight and a more intensive ice 

impact due to shallow water depth is obvious.  The fact that nevertheless a significant 

seriation existed might be due to the small but not avoidable depth gradient within each depth 

stratum (=transect,  24IIA-shallow, 24IIA-middle, and 24IIA-deep), causing gradients in 

ecologically relevant conditions as also observed at a larger spatial scale discussed below.  In 

contrast to all the other results discussed above stn 012 in Marguerite Bay has a relatively
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high median value of species turnover, with a narrow range of corresponding single values 

(Fig. 7 in Publication II).  This can be explained by an obviously very good seriation, 

however, without a very clear faunal difference between the beginning and the end of the 

transect and not being considerably interrupted.  Furthermore there was no indication of any 

change in the abiotic environmental conditions.  This is confirmed by the horseshoe-shaped 

MDS plot, a pattern which is typical of temporal succession rather than for the spatial 

structure found here. 

 

 
Stations with relatively good faunal seriation displayed broad ranges of 

species   turnover.  
 
Seriations are occasionally interrupted by disturbances such as ice scouring.  
 
Significant seriations observed at Four .Seasons Bank might be influenced by 

the small but not avoidable depth gradient within each depth stratum, causing 
gradients in ecologically relevant conditions. 

 
 

 

 

 

4.2.2   Depth zonation 

 

Clear zonation according to depth has been observed by different authors (Rowe and Menzies 

1969, Dayton et al. 1970, 1974, Carey et al. 1975, Piepenburg and Schmid 1996, Mayer and 

Piepenburg 1996).  Vertical distributions of benthic communities (0-150 m) in Terra Nova 

Bay (Ross Sea) (Cattaneo-Vietti et al. 2000a) displayed some similarities with the pattern 

observed at Four Seasons Bank.  At depths between 2 and 70 m the sea urchin Sterechinus 

neumayeri is also abundant; below this depth range (up to 150 m) a complex community of 

sponges and anthozoans characterize the area.  The sponge community living at Four Seasons 
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Bank is quite similar to those found at McMurdo Sound: mixed and glass sponge 

communities (Bullivant 1967, Dayton et al.1974), but at both sides of the bank (NE and SW 

“slopes”) high abundances of single species like Cinachyra barbata, Stylocordyla borealis 

(round type), Tedania tantula, Monosyringa longispina, Polymastia invaginata, Polymastia 

isidis are remarkable. 

 

In general, the Four Seasons Bank seems to comprise several faunal assemblages which 

combines a clear depth gradient and a zonation with discrete assemblages (Fig. 8 and 9 in 

Publication II).  Special environmental conditions are originated due to the topography of the 

bank.  Strong currents and a generally enhanced variability on banks have been observed 

frequently (Genin et al 1986; Beckmann 1999).  Hydroids (Tubularia ralphii, Oswaldella 

antarctica, Corymorpha parvula, Hydrozoa sp.8 and Corymorpha sp.1) and anthozoans 

(Clavularia cf. frankliniana), especially gorgonians (Ainigmaptilon antarcticum, Primnoisis 

spp., Thouarella spp., Dasystenella sp., Fanyella spp.), were well represented (Fig. 10 and 

Fig. 10a-c in Publication II).  Some of these species are described as “macro”- and 

microphagous” suspension feeders whose feeding strategies imply that sediment might be 

resuspended e.g. by the effect of currents (Orejas et al. 2001, 2003) and that other methods 

than active filtration (e.g. gravitational deposition, direct interception) may also occur 

(LaBarbera 1984).  In this context, strong currents seem to be an advantage for the 

establishment of this group of organisms because these currents supply them with food (Genin 

et al. 1986, Rogers1994). 

 

 
Four Seasons Bank seems to comprise several faunal assemblages which 

combines a clear depth gradient and a zonation with discrete assemblages.  
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a)

 
b)

 
c)

 
d)

 

 

Depth zonation and diversity values 

(Fig. 10 and Fig. 12 in Publication II) 

observed appear to be strongly 

influenced by the nature of the 

substratum (cf. Pérès 1982, Kirkwood 

and Burton 1988, Hecker 1990, 

Simboura et al. 1995, Nonato et al. 

2000).  The lowest values were 

displayed in shallow areas at the 

northern site of the bank where drop 

stones and boulders were the main 

substrata.  This type of substrata 

favoured epilithic organisms or species 

that need a form of anchorage for their 

settlement; e.g. the octocoral Clavularia 

cf. frankliniana forms encrusting 

colonies that cover a great part of the 

stone (Gili et al. 1999) and the hydroid 

Tubularia ralphii forms creeping 

colonies on stones (Stepaniants 1980).   

 

 
Fig. 10 Depth zonation at Four Seasons Bank (eastern Weddell Sea). Top of the bank a) Clavularia cf. 

frankliniana (Octocorallia), S. neumayeri (Echinoidea), (60 m). Mid-depths b) Oswaldella antarctica 

(Hydrozoa), Polymastia invaginata (Demospongiae), (68 m) and c) Primnoella spp. (Gorgonacea, 95 m).  Deep 

sites d) Sponge assemblages: Cinachyra barbata and “Yellow branches” (Demospongiae, 135 m). 
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The complex morphology and architecture of specific organisms (e.g. sponges, gorgonians, 

 

Fig. 11 “multi-storied” habitats: Psolus spp. 
(Holothuroidea), Astrotoma agassizii (Ophiuroidea) 
and crinoids on gorgonians.  

bryozoans, ascidians) offer a variety of 

secondary habitats providing favourable 

conditions for epibiotic species (Gutt and 

Schickan 1998).  This might explain high 

values of diversity and number of taxa 

observed at both sides of the bank (NE and 

SW “slopes”), where sponges were 

 

abundant (Fig. 10d-f and 11 in Publication II).  Sponges provide the most fascinating of these 

secondary habitats in Antarctica (Arntz et al 1997, Gutt and Schickan 1998), being associated 

with a large number of organisms that exhibit epibiotic behaviour (Gutt and Schickan 1998).  

These associations generate a variety of “multi-storied habitats” and living substrates provide 

additional ecological niches (Gutt 1996) (Fig. 11).  Furthermore, differences in current 

regimes at both sides of the bank (Fahrbach et al. 1992, Dijkstra 2000) might explain faunistic 

differences found between the northeast and southwest “slopes”. 

 

 
Depth zonation and diversity values observed appear to be affected by the 

nature of the substratum.  
 
Low values of diversity were displayed in shallow areas of Four Seasons Bank 

where boulders and gravel were the main substrata.  
 
High values of diversity and number of taxa were observed at both sides of 

the bank, where complex morphology and architecture of specific organisms, 
especially sponges, provided secondary habitats for epibiontic species.  

 
Differences between the Northeast and Southwest “slopes” were found, with 

a higher heterogeneity at the Northeast “slope”  
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In general these findings show, that despite the isolated nature of the Antarctic ecosystem, 

each detailed look at mega-epibenthic assemblages provides more insight into a high 

complexity of processes behind spatial structures.  Our results do not only provide evidence 

that the high Antarctic benthos is not homogenous as indifferently stated some decades ago.  

They also show that the opposite, “all patterns can occur everywhere” as stated in some more 

advanced studies (Gutt and Piepenburg 2003), is not a general phenomenon if results refer to 

comparable spatial scales.   

 

 
 
Different kinds of patterns are identifiable: a locally limited typical fauna, a 

patchwork of assemblages as well as continuous faunistic gradients.  Combinations 
of these three scenarios are possible or must even be considered as the rule. 

 
 

 

 

 

4.3   Biodiversity at different spatial scales: Parallelism with the Arctic? 
 

Measures of species diversity are central to many aspects of ecology and conservation 

(Whittaker 1960, Magurran 1988, Gaston 1996, Gray 2000).  The concept of biological 

diversity as the “variety of living organisms” cannot be summarized by a single measure 

(May 1994, Ellingsen 2001) and there is also no single correct scale at which to view 

ecosystems (Levin 1992).  The concept of diversity expresses something more than the notion 

of the effective number of species present (Hill 1973, Williamson 1997).  Distributions of 

species and community differences should be taken into account in addition to species 

diversity when measuring marine biodiversity (Ellingsen 2001). 
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Gray (2001) concluded that two basic considerations have to be taken in account when 

comparing the Arctic with the Antarctic: age and area.  The benthic fauna of an area such as 

the Southern Ocean cannot be viewed in isolation, and it is pertinent to ask how the present  

Antarctic fauna is related to faunas elsewhere (Clarke 1996b).  Following this argument a 

reasonable approach is to study the faunistic and environmental parallelism with the Arctic.  

The Arctic and Antarctic benthic faunas have been compared previously by George (1977), 

Knox and Lowry (1977), White (1984), Dayton (1990) and Piepenburg et al. (1997), and all 

have indicated high species richness and diversity in the Southern Ocean.  Recent studies on 

Antarctic benthic diversity (Clarke and Johnston 2003, Gutt et al., in press) have been made 

in order to get a better approach to the existent taxa and their number of species.  With this 

background, a comparison between polar shelves was made in order to answer the following 

questions: (a) Is the mega-epibenthos inhabiting the Antarctic shelf in the Weddell and 

Bellingshausen seas really more diverse than that of the Arctic?, (b) Does shallow-water polar 

mega-epibenthos exhibit a higher heterogeneity than the benthos on the deeper shelves? 

 

 

 

Hypotheses and results are presented in an overview in Table 1, in which the comparisons 

between the Arctic and the Antarctic as well as shallow and deep polar samples at different 

spatial scales are shown diagrammatically (Fig. 2, 3, 4,5 and details on the hypotheses in 

Publication III).  Here only significances between comparable units are depicted, e.g. between 

shallow and deep assemblages within one investigation site or between shallow sites but not 

for example between shallow Antarctic and deep Arctic stations or vice versa. 

 

 

 



Results and Discussion  37 

 

Table 1 Schematic representation of the 
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results and hypotheses tested for within-

habitat (α), between-habitat (β) and 

regional (γ) diversity at shallow (35-150 

m) and deep (160-585 m) sites and for 

Antarctic (ANT) and Arctic (ARK) 

regions.  For details on the hypotheses 

see introduction in Publication III.  S: 

number of taxa; E(S70): rarefaction 

richness estimator; H’: Shannon 

diversity; J’: Pielou’s evenness.  The 

tone intensity of the arrows indicates the 

trend of the direction into which the 

hypothesis goes. 

 

 

 
 
 

 
 
 
 

.3.1   Gamma and beta diversity 

iversity, often reduced to pure species numbers, is regulated at the regional (gamma) scale 

ainly by historical processes (Crame and Clarke 1997, Gray 1997).  Consequently, 

issimilarities in the evolution of Arctic and Antarctic faunas (Dayton 1990) have to be 

onsidered, when trying to understand patterns we observe today (Clarke 1996b).  

nvironmental stability over evolutionary time was identified by Sanders (1969) as the main 

river to foster specialization e.g. in the deep sea since species are able to adapt to each other 

nd require less effort to adapt to the environment.  The resulting effect is that many species 
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with narrow, almost non-overlapping niches coexist (Grassle and Sanders, 1973).  In this 

convincing concept, however, the role of large, primarily geomorphological disturbances is 

ignored.  Pianka (1978) also considered competition as an important evolutionary force that 

has led to niche separation, specialization and diversification.  In addition, Dayton and 

Hessler (1972) pointed out the importance of continued biogenic disturbance as a significant 

factor in maintaining high diversity.  They argued that as an effect of disturbance, resources 

might become less limiting and as a result the probability of competitive exclusion is reduced. 

 

Our results show that both Antarctic study sites are richer in the number of mega-epibenthic 

taxa than the Arctic.  This cannot be explained exclusively by either stability or disturbance.  

An increase in species number as a result of environmental stability during discrete periods 

such as interglacials and glacials according to Sanders (1969) was regularly and irregularly 

interrupted by climatic shifts with enormous consequences for the benthos (Clarke and Crame 

1989).  In this context vicariance can have a great importance (Clarke and Crame 1992), since 

speciation may occur as a result of geographic or ecological separation and subsequent 

isolation of portions of an original population (Pielou 1979, Barton 1990, Myers and Giller 

1990).  The rate of resulting speciation may vary systematically with conditions that promote 

reproductive isolation between populations and that enhance the rate of evolution (Ricklefs 

1987).  

 

However, both polar regions generally experienced the same conditions.  One major 

difference in this context might be the fact that in case of large-scale marine warming and 

cooling the Arctic fauna had a chance to migrate longitudinally, and consequently genetic 

exchange among populations was not blocked as much as in the Antarctic by large ice 

extensions.  We do not claim for a complete knowledge of all evolutionary relevant factors 

but it seems to be logical that their characteristic combination and specific details may have 



Results and Discussion  39 

led to the higher species number in the Antarctic.  This includes not only environmental 

conditions but also positive and negative interspecific interactions, such as development of 

commensalism, e.g. epibiotic life (Gutt and Schickan 1998) as well as well balanced 

concurrence and competition (Dayton et al. 1974).  In addition the Arctic is younger as a cold 

environment, what could probably explain its lower species richness since there may have not 

been enough time and environmental stability (Grassle and Sanders, 1973) for the 

establishment of an extensive species component (Gray 2001).  Indeed different authors 

(Vermeij 1991, Dunton 1992) have remarked that the Arctic marine ecosystem is in an 

evolutionary sense still facing colonization.  

 

Not many theories exist about evolutionary processes triggering a high numerical equitability 

among species or, alternatively, a high dominance of single species.  Our results show that at 

a large spatial scale species numbers are not related to dominance patterns; otherwise any of 

the variables including equitability, E(S70), H', or J' would also be higher in the Antarctic.  

Obviously the above-mentioned complexity of forces does not lead to a composition of 

species with a higher numerical equilibrium.  In the older Antarctic as well as in the younger 

Arctic communities (Knox and Lowry 1977, Dayton 1990, Gray 2001) both, rare and 

dominant species seem to perform independently a successful adaptive strategy over 

evolutionarily relevant periods. 

 

 
Both Antarctic study sites are richer in the number of mega-epibenthic taxa 

than the Arctic.   
 
Not only environmental conditions but also positive and negative interspecific 

interactions, such as development of commensalism, e.g. epibiotic life as well as well 
balanced concurrence and competition have led to the higher species number in the 
Antarctic. 
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To compare the faunas of shallower and deeper shelves in the light of evolutionary processes 

is only worthwhile if a clear depth zonation exists as found in the Arctic (Piepenburg and 

Schmid 1996).  In the Antarctic except for a zone exposed to permanent sea-ice disturbance a 

large proportion of the fauna is eurybathic (Brey et al. 1996).  In addition, also a true shallow-

water fauna exists (Gutt 1991).  Generally, it can be stated that over both evolutionarily and 

ecologically relevant time scales the environment in shallow-water systems is more 

heterogeneous and dynamic than in deeper systems, an assumption on which some of our 

hypotheses were based.  In the Arctic the deeper site was slightly poorer in species and 

species turnover (beta-diversity) indicating a lower habitat heterogeneity compared to 

shallower habitats.  In the Arctic only the shallow depth stratum is affected by iceberg 

scouring.  Consequently, the difference between shallow and deeper sites can reflect among 

other locally changing ecological conditions this specific impact.  However, it is not yet 

quantitatively investigated at this study site.   

 

In the Antarctic all regional species numbers in the shallow sites were higher than in deeper 

ones including one significant difference, but in contrast to the Arctic this cannot be explained 

by a higher species turnover.  This might indicate a different origin or colonization history of 

shallow and eurybathic species.  At the deeper stations a high proportion of eurybathic species 

occurs as well as in the shallow sites where, however, additional species restricted to shallow 

waters are present.  The deeper species could colonize the circumpolar continental slope 

during ice ages.  The shelf, however, was mainly covered by overlying shelf ice (Anderson et 

al. 1980, Anderson 1991, Harris and O’Brien 1996) and many populations, species, and their 

assemblages restricted to shallow water were separated and evolved during these periods in 

sparse Antarctic shallow water refuges.  At the beginning of interglacials these mixed among 

each other and with the deeper species on the continental shelf primarily without much 

competition and, thus, contributed to the high regional species richness. 
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Concerning the comparisons between species turnover (beta diversity) in the Arctic and 

Antarctic samples no systematic trends were found since in one case the Arctic and in another 

the Antarctic study site had a significantly higher species turnover.  As with the comparison 

between depth strata this indicates that rather locally changing ecological conditions within 

the study sites than differences in long-term evolutionary processes between both polar 

regions affect species turnover patterns. 

 

 
In the Antarctic all regional species numbers in the shallow sites were higher 

than in deeper ones including one significant difference, but in contrast to the 
Arctic this cannot be explained by a higher species turnover.   

 
No differences were found in species turnover between the Arctic and 

Antarctic, since in one case the Arctic and in another the Antarctic study site had a 
significantly higher species turnover.   

 
Similarly to the comparison between depth strata this indicates that rather 

locally changing ecological conditions within the study sites than differences in long-
term evolutionary processes between both polar regions affect species turnover 
patterns. 

 
 

 

4.3.2   Alpha diversity 

 

Why did the results from both comparisons Arctic versus Antarctic, shallow versus deep not 

follow our hypotheses?  We cannot imagine that recent ecological conditions in small areas of 

100 m2 or, in other words, the carrying capacity for alpha diversity differ in a way that the 

presence of more species is favoured in one of the two polar regions by the presence of a 

higher number of microniches.  Generally, small-scale coexistence of many species is also 

supported by a fast dispersal through reproductive stages (Holmes and Wilson 1998, 

Amarasekare and Nisbet 2001, Shurin and Allen 2001).  However, despite the fact that 
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recently for some abundant species meroplanktonic larvae have been discovered (Pearse et al. 

1991, Stanwell-Smith et al. 1999, Gambi et al. 2000b, 2001), environmental conditions in the 

Antarctic seem to favour direct development (Poulin et al. 2002).  Nevertheless, at the local 

spatial scale species numbers were higher in the Antarctic.  We believe that this is due to the 

clearly higher regional diversity.  This includes the occupation of specific small-scale niches, 

which, however, must be primarily considered as a large-scale phenomenon.  Such adaptive 

strategies evolved in the entire Antarctic as the above mentioned epibiotic life or any traits in 

the early life history e.g. preference of generally poorly sorted sediments which are so far 

totally undiscovered. 

 

Another reason for the higher local species numbers in the Antarctic could be differences in 

natural disturbances such as predation pressure or iceberg scouring (Lewis and Blasco 1990, 

Gutt 2000, Gutt and Starmans 2001).  If in the Antarctic most, if not all, sites investigated did 

not return to an advanced stage of equilibrium they could harbour a maximum diversity 

according to the intermediate disturbance hypothesis (Huston 1979).  The impact of iceberg 

scouring on polar benthic communities can play an important role in both hemispheres (Gutt 

et al. 1996, Conlan et al. 1998, Gutt 2001), however, studies focussing on smaller spatial 

scales are, at least for the Antarctic, necessary to detect corresponding effects (Gutt and 

Piepenburg 2003).  If the intermediate disturbance hypothesis can be applied the question 

remains open, whether in the Arctic disturbances are less frequent or more effective and thus 

species numbers are reduced.  In the latter case we would expect also a higher evenness in the 

Arctic, which we did not find.  It is also still open whether the Antarctic benthos is still in a 

non-mature stage after the last glaciation (Gutt 2000) and whether in the future due to 

competition less robust species will get extinct at least at the local scale. 
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At the local spatial scale species numbers were higher in the Antarctic 

compared to the Arctic, what might be a reflection of a clearly higher regional 
diversity.  

 
Natural disturbances such as predation pressure or iceberg scouring are 

another reason for the higher local species numbers in the Antarctic.  
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5   Publications 
 
The publications of this thesis are listed below and the contribution from each author in the 

different papers is also outlined. 

 
 
Publication I: 
 
Juana M. Raguá-Gil, Julian Gutt, Andrew Clarke, Wolf E. Arntz  
 
Antarctic shallow-water mega-epibenthos: shaped by circumpolar dispersion or local 
conditions?   
Marine Biology, in press* 
 

The original idea for this paper was developed by the first two authors.  I conducted the video 

and data analyses and wrote the first version of the manuscript which was then improved in 

cooperation with the co-authors. 

 
 
Publication II: 
 
Juana M. Raguá-Gil, Julian Gutt, Wolf E. Arntz  
 
Antarctic mega-epibenthos: horizontal seriation and depth zonation by examples 
 

The first and second author discussed the conceptual frame of this publication.  The video and 

data analyses were conducted by the first author.  After writing the first draft of the manuscript, 

I discussed and revised it with the co-authors. 

 
 
Publication III: 
 
Juana M. Raguá-Gil, Julian Gutt, Andreas Starmans, Wolf E. Arntz  
 
Differences in mega-epibenthic diversity on polar shelves at different spatial scales 
 

I did the video analyses for the shallow-water areas in the Antarctic.  Preview video analyses of 

data for the Arctic and deep areas of the Antarctic was performed by the third author.  I 

conducted all data analyses and wrote the first version of the manuscript which I then revised in 

close cooperation with the co-authors. 

 
* Reproduction with the permission of Inter-Research 
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Antarctic shallow-water mega-epibenthos: shaped by circumpolar dispersion 

or local conditions? 

 

 

J. M. Raguá-Gil 1,*  J. Gutt 1  A. Clarke 2 W.E. Arntz 1

(1) Alfred-Wegener-Institute für Polar- und Meeresforschung, Columbusstraße, D-27568 Bremerhaven, Germany 

(2) British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom 

 

 

Abstract The mega-epibenthos of two different geographic areas, Antarctic Peninsula and the 

high Antarctic (eastern Weddell Sea), were investigated using underwater video.  The distribution 

of the marine fauna at shallow depths between 55-160 m in these two areas was investigated to 

determine whether there are any zoogeographic differences at community level.  A total of 237 

taxa represented by 85,538 individuals was identified.  Multivariate analyses revealed significant 

faunal differences between northern Marguerite Bay (western Antarctic Peninsula) and the 

stations from the Weddell Sea, Atka Bay and Four Seasons Bank.  Echinoderms, especially 

ophiuroids, dominated Marguerite Bay, bryozoans and ascidians were abundant at Atka Bay, and 

hydroids and gorgonians were well represented at Four Seasons Bank.  These clear differences 

can mainly be explained by the influence of local environmental conditions that are probably the 

primary feature responsible in shaping the Antarctic shallow-water epifauna and not an intensive 

exchange with larger depths or a limited dispersion due to scarce and isolated shallow areas.  In 

addition, modes of reproduction and characteristics of the early life history (e.g. brooding, 

viviparity or budding) of key taxa may also shape patterns of species distribution in shallow 

benthic Antarctic communities. 
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Introduction 

 

The origin and evolution of the Antarctic benthic fauna have long been discussed in the literature 

(Lipps and Hickman1982; Clarke and Crame 1989, 1992, 1997).  The faunas of the Antarctic 

Peninsula and of the high-Antarctic Weddell Sea have long been considered to belong to different 

zoogeographical regions (Hedgpeth 1971).  These two areas separated from each other by ca. 

2,160 km, are characterised by strong seasonality, with changing light regimes, ice coverage 

(Gutt 2000), primary production, sedimentation (Arntz et al. 1992), but relatively constant 

physical conditions (Klages 1993; Klages et al. 1995).  However, these two regions differ in one 

striking aspect that is generally relevant to the benthos, namely, that the Antarctic Peninsula has a 

true coast and, thus, true littoral areas are common.  In contrast, > 95% of the coastline and near-

shore region of the high-Antarctic is covered by floating or grounded ice; thus, deep waters (>150 

m) predominate and consequently shallow areas are scarce (Drewry 1983; Gutt 2000).  In the 

Weddell Sea, two shallow sites with water depths between 55 and 160 m are known: the inner 

parts of Atka Bay and a recently discovered shallow bank off Four Seasons Inlet north-east of 

Kapp Norvegia.  This bank seems to host a faunal assemblage, which differs from that of well-

investigated, adjacent, deeper waters. 

 

 

With this background, the current study centred around the following hypotheses and questions: 

 

1. On all continents other than Antarctica, animals restricted to shallow waters can disperse 

continuously along shelves over long distances.  Around Antarctica littoral areas not covered by 

ice-shelf are scarce and highly isolated.  Can this condition cause a permanent reduction in the 
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dispersion of the shallow-water species, or does a circumpolar, relatively homogenous, shallow-

water fauna exist? Are general conclusions on the role of bridging long distances possible for 

macrobenthic species? 

 

2. It is known that benthic shallow-water assemblages in the Antarctic contain species that are 

highly eurybathic (Brey et al. 1996) or restricted exclusively to shallow water (Dayton et al. 

1970; Gutt 1991).  If such assemblages are not primarily the result of unrestricted circumpolar 

dispersion, are they: 

a. driven by local conditions at shallow depths, or  

b. affected by exchange with specific assemblages in adjacent, deeper waters? 

 

The general approach for this study was to determine whether zoogeographic patterns at the 

community level could be detected from which conclusions could be drawn.  We employed video 

techniques that are highly effective for marine ecological studies at large spatial scales, especially 

for work with the mega-epibenthos, because of their high spatial resolution (Clarke 1996a), 

which permitted the determination of abundances for each square metre separately.  Recent 

advances in remotely operated vehicle (ROV) technology allowed the recording of a continuous 

stream of images with resolution and colour saturation sufficient to identify the fauna and 

determine fine-scale substrate characteristics (Malatesta et al. 1992).   

 

This study is a contribution to the SCAR (Scientific Committee on Antarctic Research) 

programmes EASIZ (Ecology of the Antarctic Sea Ice Zone) and EVOLANTA (Evolution in the 

Antarctic), which together provide a framework for research on the evolutionary history and 

biology of Antarctic biota. 
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Materials and Methods 

 

Study sites and sampling 

A total of 17 sea-bed video-observation transects were conducted at 14 stations using a ROV 

("Sprint 101"), at shallow depths between 55 and 160 m.  The sampling locations are shown in 

Fig. 1.  With the exception of station (stn) ANT XIII, 24II (see below), each single station 

comprised a video transect lasting approximately 60 min.  The length of the transect was 

determined by the drift of the ship and the width (ca. 0.5 m) by two parallel laser beams, which 

also acted as a scale on the image.  It was attempted to select from the complete transects a 

standardised section of 400 m length with the best optical quality.  This length could not be 

obtained at all stations, leading to an average area covered of 174 m2. 

 

In the first investigation area, the Weddell Sea, video records were taken during the expeditions 

ANT XIII/3, ANT XV/3 and ANT XVII/3 of the German R.V. “Polarstern” (for details on the 

expeditions see Arntz and Gutt 1997, 1999; Arntz and Brey 2001).  One study site is situated in 

and west of Atka Bay, with one station having a minimum water depth of 55 m; here the sea-floor 

rises continuously, in a width of approximately 5 km, to the ice-shelf coast, where the ice is 

locally in contact with the sea-floor (Grosfeld et al. 1989).  The other site is a shallow bank off 

Four Seasons Inlet (71°07,5'S; 11°28'W) north-east of Kapp Norvegia.  This bank is 

approximately 1.7 km long in its north-west-south-east extension and, on average, 320 m wide; it 

rises from a plateau at 170 m depth to 60 m depth at its shallowest part.  Its north-eastern slope is 

relatively steep over the complete depth-range from approximately 150 to almost 60 m.  Here, the 

complete ROV station (ANT XIII, stn 24II) was split into four different transects: on the north- 
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Fig. 1 Areas of investigation: Marguerite Bay (Antarctic Peninsula) and Weddell Sea (Atka Bay, Kapp Norvegia), 

Antarctica 

 

east side, it was separated according to depth, from deep to shallow, into three distinct transects; 

after a certain distance without video observation, the fourth part of this transect (ANT XIII, stn 

24II) was situated on the south-west slope of the bank at around 120 m depth.  One additional 

transect was videotaped on this slope between 60 and 90 m (ANT XVII, Stn 111-1). 

 

In the second study area, northern Marguerite Bay off the west coast of the Antarctic Peninsula 

(Fig. 1), video transects were carried out by the British Antarctic Survey research vessel R.R.S. 

“James Clark Ross” (cruise JR37).  The land, as well as the seascape, and, consequently, the 

coastline, are quite variable and heterogeneously structured here.  The transects covered depths 
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<57 m.  The 160-m-depth contour was defined as the lower depth limit for this study at all three 

sites. 

 

Faunal analysis 

All organisms >1 cm were counted and identified to the lowest possible taxonomic level at the 

given optical resolution of the cameras.  Organisms were identified based on literature (Thomson 

and Murray 1880 to 1889; Discovery Committee Colonial Office 1929 to 1980; Sieg and Wägele 

1990) and on experts, who identified original material from the study sites and also assisted in the 

identification of different taxa (see “Acknowledgements”).  Most of these specialists contributed 

to a comprehensive species list for the Weddell Sea (Gutt et al. 2000).  Imaging methods, 

however, arise some problems: (1) in some cases individuals cannot be distinguished from other 

organisms, especially where sponges, hydrozoans, and bryozoans nearly fully cover the sea 

bottom, and (2) density estimates are influenced by optical resolution and, thus, limited species 

identification.  Colonies of colonial taxa were counted and treated as single individuals in the 

statistical analyses.  Where this approach proved impossible, because of the irregular shape of the 

colony, percentage cover of the sea-floor was determined and used as a proxy for true 

abundances.  Abundances were standardised to numbers per 100 m2.  In order to facilitate 

identification of the organisms, an average of 100 still photographs was also taken by the ROV at 

each station along the same transects and consulted in addition to the videos. 

 

Data analyses 

Multivariate analyses were based on a matrix containing standardised abundances for each 

station.  Taxa with an overall relative abundance of <4% were eliminated, as suggested by Field 

et al. (1982), in order to exclude bias of the results due to rare taxa.  Fourth-root transformation 
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was used to reduce the contribution from numerically dominant species and to reveal changes 

among less dominant species (Field et al. 1982).  Similarities between stations and taxa were 

calculated using the Bray-Curtis coefficient.  Nonmetric multidimensional scaling (MDS) was 

employed for ordination.  This method plots complex multivariate relationships in two 

dimensions.  A low (<0.2) MDS stress coefficient indicates that the multivariate similarity pattern 

is represented by the plot without much distortion (Clarke 1993).  Significance tests for 

differences among sites were carried out using one-way ANOSIM (analysis of similarities, a 

multivariate analogue of ANOVA, Clarke and Green 1988) permutation tests.  The R-statistic 

gives an absolute measure of the degree of discrimination between all sites or pairs, on a scale of 

0-1, representing a range from indistinguishable to perfect discrimination.  The nature of the 

community groupings identified in the MDS ordination was explored further by using the 

similarity percentages (SIMPER) routine to determine the contribution of individual taxa to the 

average dissimilarity between samples (Clarke 1993).  The majority of the techniques are 

described in Clarke and Warwick (1994) and were implemented using PRIMERv5 (Plymouth 

Routines in Multivariate Ecological Research; Clarke and Gorley 2001). 

 

 

Results 

 

Number of taxa 

A total of 237 taxa were identified comprising of 85,538 individuals: 50 taxa of sponges, 57 

cnidarians, 1 nemertean, 1 echiurid, 9 molluscs, 17 polychaetes, 2 pycnogonids, 4 crustaceans, 2 

hemichordates, 26 ascidians, 38 echinoderms, 22 bryozoans and 8 fish.  The number of taxa per 

station ranged between 58 and 115 (Table 1). 



55 mega-epibenthos: shaped by circumpolar dispersion or local conditions? Publication I 
 

 

Community analysis  

 

The MDS ordination revealed three distinct groups (Fig. 2) corresponding to the three studied 

sites: Marguerite Bay (Antarctic 

Peninsula), Atka Bay and Four 

Seasons Bank in the Weddell 

Sea.  For this ordination, the 

stress was considered to be good 

(0.11), with no real risk of 

drawing false inferences.  A 

clear depth gradient was 

determined for Four Seasons 

Bank, where the shallow station 

(24II-S) was separated from the 

middle-depth stations (111-1, 

24II-M) and the deepest stations (24II-D, 24II-B).  The use of ANOSIM confirmed that the 

groups obtained were significantly different (P<0.001) from each other, since the global R-value 

of 0.915 was higher than the threshold value of 0.15 (the value delivered by the null-hypothesis 

that there is no difference between samples).  R-statistic values for pairwise comparisons lying 

near 1 demonstrated significant difference also between groups, since significant levels for all 

pairs were clearly <5% (Table 2). 

 
 
Fig. 2 Nonmetric multidimensional scaling ordination based on Bray-
Curtis similarity derived from fourth-root-transformed abundance data. 
Symbols represent groupings of stations according to cluster analysis (S
shallow; M middle; D deep: B fourth part of the transect on the south-
west slope) 
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Table 2 Results of one-way ANOSIM randomisation test based on similarity measures derived from macrofaunal 
abundance estimates, examining differences in the structure of the assemblages at each location, Global R=0.915 
(P<0.001) (MB Marguerite Bay; AB Atka Bay; FS Four Seasons Bank) 
 

Groups R-statistic Significance Possible

  Level % Permutations

MB, AB 0.886 0.2 495

MB, FS 0.958 0.1 1287

AB, FS 0.888 0.8 126

 
 

 
 
Faunal composition 

In Marguerite Bay Ophiuroidea spp. were most abundant, followed by the hexactinellid sponge 

Rossella racovitzae (budding type; according to Barthel and Gutt 1992), the regular sea urchin 

Sterechinus neumayeri, a sedentary polychaete species, and hydrozoans (Table 1).  Only two 

species, R. racovitzae and S. neumayeri, served as good key species.  The latter also reached 

relatively high average abundances at the other sites; however, in Marguerite Bay, it was most 

homogenously distributed over the stations, indicated by a high δi/SD(δi) value (Table 3). 

 

The stations in and close to Atka Bay were dominated by the bryozoan Melicerita obliqua, 

Ophiuroidea spp. and the compound ascidean Synoicum adareanum.  The phylum Porifera was 

represented with a high abundance of the glass-sponge Scolymastra joubini at a single station 

(059-1) (Table 1), but this species was very rare at the shallowest station in the inner part of Atka 

Bay.  The analysis of key species identified M. obliqua, S. adareanum and the demosponge 

Monosyringa longispina as being typical for the fauna at this site (Table 3). 
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Table 3 Characteristic species for each group of stations, as determined by similarity percentage (SIMPER) analyses 
based on fourth-root-transformed abundance data and the Bray-Curtis measure of dissimilarity [δ and δi the overall 
dissimilarity and individual contribution to the average dissimilarity, respectively, between groups; SD(δi) standard 
deviation; MB Marguerite Bay; AB Atka Bay; FS Four Seasons Bank; OS others; asterisk indicates Rosella 
racovitzae (budding type)] 
 

Average Abundance Average 

Term

Group Taxa

 δi

δi/SD(δi)

  MB AB FS OS   

MB vs OS Rosella racovitzae * 886.61   5.08 1.35 1.39

δ=56.71 Sterechinus neumayeri 852.88   402.40 1.12 1.48

 Oswaldella antarctica 4.35   103.86 0.88 1.54

        

AB vs OS Melicerita obliqua  1215.80  0.28 1.84 2.52

δ=54.72 Synoicum adareanum  232.25  1.29 1.12 1.83

 Monosyringa longispina  27.03  3.62 0.71 2.08

        

FS vs OS Arntzia sp.   422.82 1.17 1.27 1.96

δ=56.67 Schizotricha cf. unifurcata   162.94 0.00 1.23 2.98

 Oswaldella antarctica   151.10 17.83 0.99 1.94

 Clavularia cf. frankliniana   297.42 0.00 1.08 1.28

 Tubularia ralphii   1800.88 0.00 1.13 0.76

 

The hydroid Tubularia ralphii, the sea urchin S. neumayeri and the gorgonian Arntzia sp. were 

the most dominant taxa at the Four Seasons Bank.  The demosponge Cinachyra barbata was also 

abundant at this site (Table 1).  The characteristic taxa for this site were Arntzia sp., and the 

hydroids Schizotricha cf. unifurcata and Oswaldella antarctica.  Furthermore, the sponge 

Homaxinella spp. was abundant at this site (Table 1), with number of individuals between 2 and 

298 per 100 m2.  In this study the hydroid T. ralphii and the octocoral Clavularia cf. frankliniana 

were found only at the Four Seasons Bank.  However, they did not show high values of 

dissimilarity (δi) because they were patchily distributed with high abundances only at the shallow 

transects of stn 24II, which is indicated by the relatively low δi/SD(δi) value (Table 3).  

Consequently, they can also be considered typical for this group of stations, but their role as key 

species is only moderate. 
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Furthermore, on a coarse taxonomic level, 
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the faunal composition appeared to be 

different between the three study sites 

(Fig. 3).  The echinoderms (69.7%), and 

particularly ophiuroids, dominate the 

fauna in Marguerite Bay.  At Atka Bay 

bryozoans had the highest proportion 

(39.5%), and ascidians (13.5%) were well 

represented.  At Four Seasons Bank 

hydroids were the most dominant (43.1%) 

and, in this group, in contrast to the other 

sites, gorgonians (12.8%) were more 

important.  Sponges and polychaetes were 

more evenly distributed across the three 

different sites. 

ig. 3 Abundance  (%) of  major  taxonomic  components  in  the 

tation clusters distinguished in the study area: a Marguerite Bay, 

 Atka Bay, c Four Seasons Bank 

iscussion and conclusions 

he general aim of this study was to compare benthic community composition at three different 

ites, to determine whether this composition was influenced more by long-distance dispersal and 
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local environmental conditions, or by colonisation from nearby deeper water.  Three study sites 

shallower than 160 m were sampled.  The Atka Bay and Four Seasons Bank transects are both 

situated in an area where hydrodynamics are dominated by the westward coastal current 

(Fahrbach et al. 1992), which is part of the large clockwise Weddell Gyre.  The benthic 

community in adjacent deeper waters is rich and relatively homogenous (Voß 1988; Gutt and 

Starmans 1998; Gutt and Schickan 1998; Starmans et al. 1999; Starmans and Gutt 2002).  The 

third station, in northern Marguerite Bay, west of the Antarctic Peninsula, has by far the highest 

proportion of a true coast with adjacent shallow waters (Kennedy and Anderson 1989; Bonn et al. 

1996), influenced by a prevailing westward current along the coast (Hofmann et al. 1996). 

 

The community analyses revealed significant differences between the fauna of all three sites.  

The faunistic distances between sites and the degree of homogeneity within the sites were similar, 

with the exception of a more homogenous pattern at Atka Bay, which might be because only four 

stations were analysed at this site.  First main conclusion: there is no homogenous shallow-water 

benthos between 60 and 160 m depth; instead, different assemblages were found independent of 

their geographical location. 

 

The next question is whether the faunistic differences reflect the spatial distances between the 

study sites.  Since there are few shallow-water areas to act as stepping stones, colonisation of 

isolated areas of shallow water could be dispersal limited (Clarke 1996b).  The R-statistic values 

representing faunistic similarities between all sites are similar to each other, with a slightly higher 

distance between Marguerite Bay and Four Seasons Bank, which is also shown in the MDS plot. 

Geographical distances, which represent, at least theoretically, routes of dispersion, differ 

considerably from this pattern.  Atka Bay and Four Seasons Bank are in relatively close 
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proximity, since they are not >330 km apart.  If distances in space play a dominant role in 

explaining benthic structures, some of the most abundant species at the Four Seasons Bank would 

also be expected at Atka Bay, because they could be dispersed by the westerly current. Although 

a depth gradient was found within the data from Four Seasons Bank, differences between all sites 

were significant.  For an exchange of fauna between the two sites in the eastern Weddell Sea and 

the area west of the Antarctic Peninsula, two different routes can be assumed. The first would 

start in Marguerite Bay, cyclonically following the Eastwind Drift and travelling three-quarters of 

the entire continent of approximately 11,000 km before arriving the Weddell Sea.  From here 

dispersion could follow the Weddell Gyre and enter the Bransfield Strait from the region off 

Joinville Island at the tip of the Antarctic Peninsula (Gordon et al. 2000) leading back to the 

Marguerite Bay.  The second route would be dispersal via the Westwind Drift, clockwise from 

Marguerite Bay.  Even by this route, however, the distance to the eastern coast of the Weddell 

Sea would be ten times longer than the distance between the two sites in the Weddell Sea.  

Second main conclusion: benthic assemblages in Antarctica are not shaped significantly by the 

limitation of long-distance dispersion, because of the existence of few shallow-water areas not 

being covered by the ice shelf. 

 

Although information on generality in reproduction strategies and early life history is scarce, it 

seems worthwhile to check some species dominant at our sites for common characteristics 

regarding the potential to disperse.  Several abundant Antarctic invertebrates are short-distance 

dispersers, either because they reproduce asexually or because they brood their juveniles  (Arntz 

et al. 1994).  These reproductive strategies support the local success of single species (Bolker and 

Pacala), and, if these species become dominant, the community structure can be shaped 

considerably.  Asexual reproduction via budding is prevalent, e.g. in the hexactinellid sponge 
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Rosella racovitzae (budding type; according to Barthel and Gutt 1992), and brooding seems to be 

a common feature of reproduction in Antarctic octocorals, e.g. gorgonians (Orejas et al. 2002).  

The stoloniferous coral Clavularia cf. frankliniana broods its embryos, and asexual propagation 

via fission is common (Slattery and McClintock 1997).  Long-range dispersion among sessile 

animals by pelagic planktotrophic larvae, e.g. Sterechinus neumayeri and other abundant 

invertebrates (Bosch et al. 1987, Pearse et al. 1991), supports the coexistence of many species, as 

has been shown by a spatially explicit model (Potthoff, Johst, Gutt, Wissel unpublished results), 

and leads to a high capacity to colonise highly disturbed habitats (Poulin et al. 2002).  The 

marked differences in the reproductive mode of some dominant species within a single site might 

be an additional reason for the faunistic differences between sites. 

 

In order to confirm a certain generality of our results, some species typical or abundant at our 

sites were checked for their circumpolar distribution: R. racovitzae, Scolymastra joubini, 

Cinachyra barbata, Monosyringa longispina (Koltun 1969; Sarà et al. 1992; Gutt and Koltun 

1995), and Synoicum adareanum (Kott 1969) all have a clear circumpolar distribution and cover 

a broad depth range.  A species reported as common in widely separated areas, but with less 

evidence of a widespread circumpolar distribution than those mentioned above is S. neumayeri, 

present along the Antarctic Peninsula, Weddell, Ross and Davis Seas (Pawson 1969).  The reason 

for this might be related to the obvious preference of waters shallower than 300 m (Brey and Gutt 

1991).  Indeed at Syowa research station, Hamada et al. (1986) described differences in faunal 

composition at different depths and noted the lack of S. neumayeri at 200 m, where bryozoans 

were very dominant.  The hydroid Tubularia ralphii has an even more obvious preference for 

shallow water and, so far, has only been found above 36 m water depth around Antarctica 

(Dayton et al. 1970, 1974; Propp 1970; Gruzov 1977; Stepaniants 1980; Barnes and Bullogh 
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1996), although in our study it reached a maximum depth of 104 m at Four Seasons Bank.  A 

similar pattern was shown by the octocoral Clavularia cf. frankliniana, which is known from the 

Weddell Sea (present study), South Georgia (Molander 1929) and McMurdo Sound (Dayton et al. 

1970, 1974; Slattery and McClintock 1995, 1997), where it is "numerically dominant" between 

12 and 33 m and seems to be a true shallow-water taxon.  The new gorgonian genus Arntzia 

belongs to those taxa that obviously prefer deeper waters, since their shallowest occurrence has 

been recorded in the Weddell Sea (64 m) and it is known from the Scotia Arc and the Weddell 

and Ross Seas, but not from other sites in East Antarctica (López-González et al. 2002).  Two 

species that seem to have a limited distribution on the continental shelf are Oswaldella 

antarctica, found at the Antarctic Peninsula (Peña Cantero and Vervoort 1998) and at Four 

Seasons Bank (present study), and Schizotricha cf. unifurcata, recorded mainly from sub-

Antarctic islands in the Indo-Pacific sector of the Antarctic, as well as in the Weddell Sea (Peña 

Cantero 1998).  Third main conclusion: each of the shallow-water assemblages examined in this 

study has a specific faunal composition, but there is no indication for a generally unique fauna at 

any of these sites due to a mixture of species with circumpolar and more specific distributions. 

 

Another reason for the specific faunistic compositions at the three sites could be the considerable 

exchange with deeper assemblages.  In a critical short review of the frequently described 

"eurybathy" among Antarctic invertebrates, Gutt (1991) suggests that assemblages may also be 

eurybathic between 160 and 1,180 m.  The complete eurybathy of the Weddell Sea benthos was 

demonstrated by Brey et al. (1996); however, at that time, the shallow sites were not yet known 

or had not been investigated, and species that occurred elsewhere in shallow waters were ignored, 

which reduces the representativity of the results.  Use of the 160-m-depth contour as the lower 

limitation in the present study does not coincide with any clear benthic depth zonation; the depth 
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limitation ensures only that the presence of species restricted to shallow waters is likely to be 

detected and that assemblages typical of deeper waters are partly represented.  Some examples of 

abundant and typical species have already been discussed.  In addition, Hamada et al. (1986) 

described differences in faunal composition at different depths and noted the lack of S. neumayeri 

at 200 m, where bryozoans were very dominant.  Cattaneo-Vietti et al. (1997) mentioned the 

presence of large beds of Adamussium colbecki up to 70-80 m depth, which are abundant, but 

patchily distributed.  Furthermore, Cattaneo-Vietti et al. (2000) indicated that the bivalves A. 

colbecki and Yoldia eightsi seemed to be restricted to shallow water (200 m) at Terra Nova Bay.  

If the exchange between deeper and shallower benthos is important, then the two sites in the 

Weddell Sea should be, by far, more similar to each other than is either to the Marguerite Bay 

site, because they are located in an area, where just one quite homogenous community exists on 

the deeper shelf (Gutt 2000). However they are not.  Fourth main conclusion: the Antarctic 

shallow-water benthos is not shaped by intensive exchange with the deeper fauna, although it is 

not isolated from these assemblages.  

 

We came to the conclusion that shallow-water benthic assemblages in the Antarctic are shaped 

mainly by local environmental conditions rather than by specific large-scale processes.  Clarke 

(1996a), identified a number of factors including depth, habitat, bottom topography and 

oceanography as those with the most effective influence on benthic distribution.  In relation to 

our scientific question, Antarctic benthic assemblages are affected by the ability of species to 

disperse around Antarctica and the physical stresses delimiting general patterns of distribution 

and abundance (where the latter refers to locally specific and not only to circumpolar conditions 

such as the permanently low temperatures).  In this context, an interesting taxon is the sponge 

genus Homaxinella, of which H. balfourensis is abundant and H. flagelliformis is known only 
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from the Magellan region (excluding the Falkland Islands), Kerguelen Islands (Sarà et al. 1992), 

and the Ross and Lazarev Seas (Pansini et al. 1994; Gutt and Koltun 1995).  All known habitats 

of this genus are related to quite specific, small-scale areas that have recently been disturbed by 

glaciers, icebergs, or anchor ice (Dayton 1989; Dawber and Powell 1997; Gutt 2000).  Both 

species also occur in the Weddell Sea, and at least one of them is extremely abundant where 

iceberg scouring is frequent, especially at Four Seasons Bank (298 individuals per 100m2 at stn 

24II).  Clearly, these species have the potential to disperse around the Antarctic continent, using 

disturbed areas with their associated specific environmental conditions as stepping stones; 

however, such species are probably displaced by competitive exclusion as succession proceeds 

and consequently are very rare in undisturbed areas (Dayton 1989).  This may apply to both 

species, of which H. balfourensis seems to be less and H. flagelliformis more selective, in terms 

of environmental demands.  A similar case is the deep occurrence of Tubularia ralphii, which 

lives elsewhere in the Antarctic, in a depth zone that is regularly but not very frequently disturbed 

by sea-ice (Dayton et al. 1970, 1974; Propp 1970; Gruzov 1977; Barnes and Bullogh 1996) and 

which, obviously, at its lower depth limit in the Weddell Sea, is affected by icebergs.  In general, 

Four Seasons Bank seems to support special faunal assemblages of organisms that are not very 

common in other benthic Antarctic areas.  This could be influenced by special environmental 

conditions originating as a result of the topography of the bank.  Strong currents and generally 

enhanced variability above the banks have been observed frequently (Genin et al. 1986; 

Beckmann 1999).  Hydroids and anthozoans, especially gorgonians, were well represented in 

these station groups.  Strong currents are an advantage for the establishment of this group of 

organisms, because currents supply them with food and continuously keep the substratum and the 

organisms completely clear of sediment (Genin et al. 1986, Rogers 1994). 
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As previously mentioned, it is remarkable that the difference between the faunas of the 

neighbouring areas, Atka Bay and Four Seasons Bank, is almost as great as that between these 

areas and the western Antarctic Peninsula.  We discussed the possibility that specific 

environmental conditions may dictate differences at the community level.  However, additional 

mechanisms exist that might contribute to the benthic structure; one of these is the very limited 

dispersal and associated gene flow which may promote genetic and morphological differences at 

a scale of just a few kilometres (Wägele, 1992; Poulin and Féral 1994; Allcock et al. 1997).  The 

observed overlap of species’ presences in different assemblages, in combination with genetic 

differences, could also be the result of re-establishment on the high-Antarctic shelf following the 

most recent glacial maximum, after which many parts of the shelf became available again for the 

benthos (Harris and O’Brien 1996).  In this phase (approximately the last 5,000 years: Dayton 

and Oliver 1977) genetic differentiation in a relatively stable environment is only the first step 

towards speciation and the occupation of different ecological niches (Grassle and Sanders 1973), 

a phenomenon known as "vicariance" or "climate diversity pump" (Clarke and Crame 1997).  

Different substratum types (e.g. hard substrata, sandy areas, living organisms used as substratum, 

or biogenic structures, such as mats of sponge spicules), the presence of specific current regimes 

and a variety of bottom topographies influencing the food supply for filter feeders, together with 

a reduced ability to disperse, have provided the opportunity for some populations to develop 

uniquely.  It is therefore only a matter of time until endemic species will occur in specific 

Antarctic benthic habitats, and, consequently, the number of Antarctic invertebrate species will 

increase.  Recently, in some groups (for example crustaceans and bivalves: Held 2003; Katrin 

Linse pers. comm.), closely related "cryptic" species have been found, indicating that speciation 

processes remain active in Antarctica (Clarke and Crame 1997). 

 



Publication I                     mega-epibenthos: shaped by circumpolar dispersion or local conditions? 68

Acknowledgements The following experts assisted in the identification of different taxa: V.M. Koltun (sponges), S. 

Hain (molluscs), M. Stiller (polychaetes), I. Smirnov (ophiuroids), C. Monniot (ascidians), P.J. López-González 

(gorgonians), J.M. Gili (hydroids) and M. Zabala (bryozoans).  Financial support for this study was provided by 

DAAD (Deutscher Akademischer Austausch Dienst) fellowship A/98/14142.  Thanks to J. Pearse and two 

anonymous referees for reading and improving earlier versions of this manuscript.  We also thank A. Starmans for 

ROV deployments, W. Dimmler and A. Buschmann for technical assistance.  The authors are grateful to the crew of 

the R.R.S. “James Clark Ross” and colleagues of the British Antarctic Survey on board for their co-operation and 

hospitality during the “JR37” cruise.  Also, the support of the R.V. “Polarstern” crew was greatly appreciated during 

three EASIZ cruises.  

 

 

 



Publication II   69

 
 
 
 
 
 
 
 
 
 

Publication II 
 

Antarctic mega-epibenthos: horizontal seriation and  
depth zonation by examples 

 

J. M. Raguá-Gil  J. Gutt  W.E. Arntz 

 
Alfred-Wegener-Institute für Polar- und Meeresforschung, Columbusstraße, D-27568 Bremerhaven, 

Germany, E-mail: jragua@awi-bremerhaven.de  



Publication II horizontal seriation and depth zonation by examples 70 

Antarctic mega-epibenthos: horizontal seriation and depth zonation  

by examples 

 

J. M. Raguá-Gil  J. Gutt  W.E. Arntz 

Alfred-Wegener-Institute für Polar- und Meeresforschung, Columbusstraße, D-27568 Bremerhaven, Germany 

 

 

Abstract  

 

Spatial patterns of Antarctic benthic shelf communities were studied using underwater video.  Examples 

of patterns of “seriation” found in the shallow-water mega-epibenthic fauna in the Marguerite Bay 

(Adelaide Island, Bellingshausen Sea) and the Weddell Sea are given.  For horizontal seriation a total of 

12 seabed video-strips were conducted at 9 stations between 55 and 160 m.  The index of multivariate 

seriation (IMS) showed eight significant results for horizontal seriation.  Stations with non-significant 

seriation values belong to those with the smallest range of species or faunal-heterogeneity but with 

intermediate values for species turnover (median of Bray-Curtis values).  Conversely stations with 

relatively good faunal seriation displayed broad ranges of species turnover.  Depth zonation (60-143 m) 

was observed and analysed at Four Seasons Bank (Weddell Sea). This bank seems to comprise several 

faunal assemblages which combines a clear depth gradient and a zonation with discrete assemblages. 

Results show that different patterns are identifiable: a locally limited typical fauna, a patchwork of 

assemblages as well as continuous faunistic gradients.  Combinations of these three scenarios can be 

considered as the rule in Antarctic mega-epibenthic communities.     

 

Key words:  Mega-epibenthos, Antarctic, seriation, depth zonation, multivariate analyses, IMS, 

underwater video, ROV 



71 horizontal seriation and depth zonation by examples Publication II 

Introduction 

 

Research on patterns and processes in benthic communities of the Southern Ocean is of general 

interest to characterize their structure, to describe their function and to understand their 

development (White 1984, Arntz et al. 1994, Clarke 1996c).  Zonation might be defined as a 

familiar and ubiquitous organisation of organisms by geography, topography and exposure 

(Barnes and Brockington 2003).  Clear-cut zonation patterns in the form of a serial change in 

community structure with increasing water depth are a striking feature of intertidal and shallow-

water benthic communities on both hard and soft substrata (Clarke and Warwick 1994).  

 

Zonation is a common benthic distribution feature of continental slopes (Carey and Ruff 1977, 

Dayton 1994) and has been a research topic at different latitudes (Rowe and Menzies, 1969, 

Dayton et al. 1970, Carey et al. 1975, Abbiati et al. 1987, Hecker 1990, Simboura et al. 1995, 

Piepenburg and Schmid 1996, Cattaneo-Vietti et al. 2000a). Possible causes of zonation patterns 

are diverse, and may vary according to environmental conditions and ecological demands of 

assemblages with their specific species composition. 

 

The benthos of the Southern Ocean is influenced by a number of factors including depth, 

currents, sediments, bottom topography, light or wave energy, ice scouring, competition and 

predation (Dayton et al. 1974, Dayton 1989, Arntz et al. 1994, Clarke 1996a, 1996c, Slattery and 

Bockus 1997, Stanwell-Smith and Barnes 1997, Gutt 2000).  None of these mechanisms, 

however, will necessarily give rise to discontinuous bands of different assemblages of species, 

which is implied by the term “zonation”. Therefore, the more general term “seriation” (zonation 

with no sharp discontinuities) is perhaps more appropriate to describe continua of changing 
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communities (Clarke et al. 1993, Gherardi and Bosence 2001, Brown et al. 2002).  The present 

study describes examples of patterns of “seriation” found in the shallow-water mega-epibenthic 

fauna in the Marguerite Bay (Adelaide Island, Bellingshausen Sea) and the Weddell Sea, 

independently of the existence of a depth gradient.   

 

Many shallow inshore waters of the Antarctic coastal zone are poorly sampled (Arntz et al. 

1994) and corresponding hard-bottom biotopes are poorly known also because these are not 

easily accessible (Gambi et al. 2000a).  The mega-epibenthos in the Bellingshausen Sea has been 

until now not intensively studied.  Recent descriptions of the fauna of the Marguerite Bay 

indicate the lack of the dominance of sponges and bryozoans in the mega-epibenthic 

assemblages (Starmans et  al. 1999).  A zonation pattern for littoral areas was proposed by 

Barnes and Brockington (2003), and Barnes and Arnold (2001) describe polar boulder shore 

assemblages with fewer species and considerably less variability compared with those at other 

latitudes.  Zonation at hard (0.5–60 m) (Dayton et al. 1970, Gruzov and Pushkin 1970, Propp 

1970, Gruzov 1977, Gambi et al. 1994, 2000a), soft (0-25 m) (Nonato et al. 2000) and mixed (0-

150 m) (Zamorano 1983, Kirkwood and Burton 1988, Cattaneo-Vietti et al. 2000a) bottoms in 

the Antarctic has been described and diverse zonation schemes for these biotopes have been 

proposed.   

 

The aims of the present investigation were: (1) to study for the first time horizontal seriation of 

mega-epibenthic assemblages by underwater video at intermediately shallow water depth (53 to 

143 m) with a mixture of hard and soft bottoms in different Antarctic regions, (2) to analyse 

simultaneously horizontal seriation and vertical zonation, especially in this depth stratum in the 

Weddell Sea where both phenomena can not only be expected but where corresponding areas are 
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also accessible to sampling activities and (3) to identify environmental conditions which can 

either lead to clear zonation and/or seriation or which, alternatively, superimpose these, resulting 

in an obvious pattern variability. 

 

 

Material and methods 

 

Study sites and sampling 

A total of 12 sea-bed video observing transects were conducted at 9 stations using a ROV 

("Sprint 101").  The sampling locations are shown in Fig. 1.  With the exception of station ANT 

XIII, 24II where an unusually long video observation was split into four different transects, each 

single station comprised one video transect, in total lasting approximately 60 minutes. The length 

of the transects was determined by the drift of the ship and the width (ca. 0.5 m) was estimated 

by two parallel laser beams, which acted as a scale on the image.  Comparable sample sizes were 

obtained by randomly selecting video footages from the complete transects being as continuous 

as possible and representing 150 m of seafloor for the analyses. 

 

In the Weddell Sea, video records were taken during the expeditions ANT XIII/3, ANT XV/3 

and ANT XVII/3 of the German R/V “Polarstern”.  For details on the expeditions see Arntz and 

Gutt 1997, 1999; Arntz and Brey 2001.  One study site is situated at stn 059-1 and west of Atka 

Bay stn 32IV.  At the first station the seafloor rises continuously at a width of approximately 5 

km towards the ice-shelf coast, where the ice is locally in contact with the approximately 55 m 

deep sea-floor (Grosfeld et al. 1989).  The site  off Kapp  Norvegia is an  unusually shallow bank  
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Fig. 1 Areas of investigation: Bellingshausen Sea (Marguerite Bay) and Weddell Sea (Atka Bay, Kapp Norvegia), 
Antarctica 
 
 

with a marked topography off Four Seasons Inlet (11°28'W 71°07.5'S) NE of Kapp Norvegia 

(Fig. 2).  This bank is approximately 1.7 km long in its north-west south-east extension and on 

average 320 m wide; it rises from a plateau at 170 m depth to 60 m depth at its shallowest part.  

Its north-eastern slope is relatively steep over the complete depth ranging from approximately 

150 to almost 60 m.  Here the long video observation (ANT XIII, stn 24II) was separated 

according to depth into three separate transects representing single samples.  The southwestern 

slope is steep only in shallow water between 60 and 90 m where one additional transect had been 

videotaped (ANT XVII, Stn 111-1).  Another transect at this side of the bank is from a more 

gentle slope at around 120 m depth (end of stn 24II). 
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Fig. 2 Multibeam bathymetric map of Four Seasons Bank (Weddell Sea), 

showing video transects from ROV (“Sprint 101”) 

 

In the second study area, 

northern Marguerite Bay 

(by Adelaide Island) off 

the west coast of the 

Antarctic Peninsula (Fig. 

1), video transects were 

undertaken from the 

British Antarctic Survey 

research vessel R.R.S. 

“James Clark Ross” (cruise 

JR37).  The land as well as 

the seascape, and 

consequently the coastline, 

are here quite variable and 

heterogeneously structured.  The transects covered depths below 57 m.  The 160 m depth contour 

was defined as the lower depth limit for this study at all three sites.  

 
 
Faunal analysis 

All organisms > 1 cm were counted and identified to the lowest possible taxonomic level at the 

given optical resolution of the cameras.  Colonies of colonial taxa were counted and treated as 

single individuals in the statistical analyses.  Where this approach proved impossible because of 

the irregular shape of the colony, percentage cover of the sea floor was determined and used as a 

proxy for true abundances.  In order to achieve a better identification of the organisms, an  
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average of 100 still photographs for each station also made by the ROV on the same transects 

were consulted in addition to the video observations. 

 

Data analyses 

 

For horizontal seriation and species turnover analyses, the 150 m long seabed video-strips were 

divided into 15 continuous areas, here defined as subsamples of 5 m2.  For depth zonation 

complete transects were chosen and divided into continuous subsamples of 15 m2 each. 

 

Classification and Ordination.  Multivariate analyses were based on a matrix containing 

abundances for each subsample.  Square root transformation was used, to reduce the contribution 

from numerically dominant species and to reveal changes among less dominant species (Field et 

al. 1982).  Similarities between stations and taxa were calculated using the Bray-Curtis 

coefficient.  A hierarchical agglomerative cluster analysis (i.e. classification) was used and the 

linkage option was the group-average method, which is more balanced and produces a moderate 

number of medium-sized clusters that are only grouped at a later stage.  Non-metric multi-

dimensional scaling (MDS; Kruskal and Wish 1978) was employed for ordination.  This method 

plots complex multivariate relationships in two dimensions.  A low MDS stress coefficient of 

<0.2 indicates that the multivariate similarity pattern is represented by the plot without much 

distortion (Clarke 1993).  Cluster analysis and MDS were applied for both horizontal seriation 

and vertical zonation. 

 

Horizontal seriation.  For seriation analyses all 12 sea-bed video observing transects were used.  

The extent to which the communities change in a smooth and regular fashion (= degree of 
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seriation) was visualised by joining the subsamples in an MDS in their spatial order along the 

transects.  An index of multivariate seriation (IMS) (Clarke et al. 1993) was calculated to 

determine the extent to which the species compositions depart along the transects from their state 

at the start of transects.  The IMS is obtained from a Spearman rank correlation coefficient (ρ) 

computed between the corresponding elements of two triangular matrices of rank dissimilarities.  

The first is that of Bray-Curtis coefficients calculated for all pairs from the n mega-epibenthic 

community (n=15) transect subsamples and the second is from the inter-point distances of n 

points laid out, equally-spaced, along a line (= transect).  If changes in species composition 

match this spatial sequence then the IMS is close to 1.  Alternatively, the IMS will be close to 0 

if species composition along the transect does not show any discernible pattern: being possibly 

similar at opposite ends but very different in between.  The percent significance levels calculated 

for each IMS are based on a Monte Carlo permutation test for absence of seriation (Clarke and 

Green 1988). 

 

Species turnover.  Species turnover or beta-diversity is the extent of change in species 

composition of communities among samples and, consequently, not related to the size of the area 

investigated (Whittaker 1975).  As a measure of species compositions in the subsamples the 

Bray- Curtis similarities between all pairwise permutations were used.  The higher the overall 

similarities are, the lower is the species turnover value (Magurran 1988).   

 

Depth zonation and diversity.  The video observations at the shallow bank off Four Seasons 

Inlet in the Weddell Sea provided the opportunity to study depth zonation because of the depth 

range of 61 to 143 m at its NE slope (transect 24IIA) and of 60 to 112 m at its SW slope 
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(transects 24IIB, 111-1).  All these transects were analysed together and the continuous 

subsamples of 15 m2 each were used to calculate a similarity matrix as a basis for multivariate 

analyses, MDS and cluster analysis.  In addition, the latter was used for an inverse analysis 

(Field et al. 1982) in order to cluster taxa that tend to co-occur in similar ratios across 

subsamples.  The resulting community table provides a good tool to explain the outcome of the 

MDS and clustering.  In addition, univariate measures of taxa diversity and evenness were 

computed: total number of taxa (S) and Hill’s numbers of diversity (N1= exp (H’)) with H’=-Σipi 

ln(pi) and pi= relative abundance per station of species i(Clarke and Warwick 1994). 

The majority of the techniques are described in Clarke and Warwick (1994) and were 

implemented using PRIMERv5 (Plymouth Routines in Multivariate Ecological Research) 

(Clarke and Gorley 2001). 

 

 

 

Results 

 

Horizontal seriation 

Seriation values (ρ) and their significance levels, are shown in Table 1.  No single transect 

covered a depth range broader than 137 m.  In the Marguerite Bay (stns 006, 010, 012 and 014) 

seriation varied to a large extent, ranging from 4 significant values to the lowest non-significant 

result.   
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Table 1  Index of Multivariate Seriation (IMS) for each station.  Values in parentheses are the % significance levels 
based on a permutation test for absence of seriation (M=999 simulations) 
 
  Station 

 

IMS

  006 0.19 (3.7%)*

  010 0.38 (0.7%)*

 Marguerite Bay 012 0.42 (0.3%)*

  014 0.22 (2.8%)*

  015 0.16 (7.5%)

    

 Atka Bay 059-1 0.15 (8.6%)

  32 IV -0.02 (55.7%)

    

  111-1 0.33 (0.3%)*

  24 IIA-S 0.46 (0.3%)*

 Four Seasons Bank 24 IIA-MS 0.50 (0.2%)*

  24 IIA-D 0.62 (0.1%)*

  24 IIB 

 

0.07 (24.9%)

 

 

For three examples from this investigation area also the MDS plots are shown.  At stn 012 (Fig. 

3a) 15 subsamples along the transect conform rather closely to a linear sequence, and there are 

no strong discontinuities in the sequence of community change (i.e. no discrete clusters separated 

by large gaps); the community change follows a quite gradual pattern (Fig. 4a-b).  At this station 

subsamples 9 and 14 could be regarded as “outliers” of the seriation showing lowest taxa 

numbers (S) and a very low abundance of sedentary Polychaeta sp.1 (Fig. 4c).  However, these 

two subsamples did not exhibit any special relations with sediment, currents or ice scouring. 

 

Stn 010 also showed horizontal seriation although the MDS plot did not depict a linear sequence 

(Fig. 3b).  Great part of the sediment at subsamples 1-9 is conformed by sand valleys and sand 

crests, but beds of shells of Adamussium colbecki are also present (Fig. 5a-b).  At subsamples 10 

and 11 begins a mixture of sand with pebbles and cobbles to appear.  Most of the substrates at  
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Stn 111-1

d)

Stn 010

b)

Stn 24IIA-M

f)

Stn 015

c)

Stn 24IIA-D

g)

Stn 012

a)

Stn 24IIA-S

e)

 
 
 
Fig. 3 Multi-dimensional scaling (MDS) of the mega-epibenthic communities in the Bellingshausen (a-c) and 
Weddell (d-g) seas, based on Bray-Curtis similarities from root-transformed data on abundances.  The lines 
indicate the degree of seriation by linking successive subsamples along the video transect.  The Rho values are 
Spearman correlation with a linear sequence (the IMS). 
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Stn 012 
 
a) 

 
 
 
b) 

 
 
 
c) 

 
 
 
 
 

Stn 24II shallow 
 
d) 

 
 
 
e) 

 
 
 
f) 

 

Fig. 4 Horizontal seriation in the Bellingshausen (stn 012) and Weddell Seas (stn 24II-shallow), photographic 
representation of some of the outliers in the seriation.  a) and b) show part of the community structure present at 
the majority of the subsamples, with high abundances of the sedentary Polychaeta sp.1, (106 m).  c) Represents 
outliers of the seriation (subsamples 9 and 14) showing low abundances of the Polychaeta sp.1, (102 m).  d) Ice 
scour (58 m), with low abundances of Oswaldella antarctica (hydrozoa) (subsamples 7-8).  e) and f) display 
differences in abundances of O. antarctica and sediments between different subsamples, (60 and 59 m).  
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subsamples 12–15 are pebbles and cobbles with a very small amount of sand (Fig. 5c-d).  This 

explains the proximity of the latter subsamples displayed in the MDS plot. 

 

At stn 015 (Fig. 3c), no seriation was observed which becomes obvious from the irregular 

arrangement of the subsamples in the MDS-plot.  The points representing the species 

compositions “jump” irregularly and show a very heterogeneous non-continuous pattern.  The 

IMS had a low value (0.16) and the correlation with a linear sequence is no longer significant 

(ρ=7.5%).  

 

Stations 059-1 and 32IV situated in the Atka Bay did not show any horizontal seriation pattern.  

The MDS plots look similar to that of stn 015 (Marguerite Bay) and are therefore not shown.  At 

the Four Seasons Bank for all four stations/transects with relatively high and significant seriation 

values, ranging from 0.33 to 0.62 also the MDS plots are presented (Fig. 3d-g).  Despite the 

overall trend within each transect of a good correlation between the faunistic composition and 

the linear sequence (seriation), local deviations from this general pattern become obvious, e.g. 

subsamples 8, 9 and 13 at stn 111-1, 12-15 at stn 24IIA-shallow, or 3 at stn 24IIA-deep. 

 

Station 111-1 did not show any visible ice scouring or influence of strong currents and the 

sediment was very homogeneous along the whole transect.  Differences of “normal subsamples” 

with the “outliers” (8, 9, 13) might be explained by differences in species abundances.  

Subsamples 8 and 9 showed low abundances of the hydroid Schizotricha sp.2 and the octocoral 

Clavularia cf. frankliniana, and no presence at all of the hydroid sp.8.  Subsample 13 displayed 

low abundances of Schizotricha sp.2 and no presence at all of C. cf. frankliniana and the hydroid 
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Stn 24II middle 
 
a) 

 
 
b) 

 
 
c) 

 
 
 
 
 
 
 

 
 
Stn 24II deep 
 
d) 

 
 
e) 

 
 
f) 

 
 
 

Fig. 6 Horizontal seriation in the Weddell Sea (Four Seasons Bank), photographic representation of some of the outliers in 

the seriation.  Mid-depths: a) Assemblages of gorgonians (120 m) present where strong currents are absent (subsamples 1-3), 

conversely, assemblages of subsamples 4-12 (b and c) present at sites characterized by strong currents, (118 and 95 m).  

Deep sites: d) Displays subsample 3, with absence of C. barbata (Demospongiae, 129 m), which is present at subsamples 1-2 

(e and f), (128 and 130 m).  
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sp.8.  It also  showed  high  abundances of the hydroid Oswaldella antarctica and the sedentary 

Polychaeta sp.1.  The hexactinellid sponge Rosella racovitzae and the bryozoan Bostrycopora 

dentata were only present at this subsample. 

 

At station 24IIA-shallow subsamples 7 and 8 are ice scours (Fig. 4d).  Subsamples 12 and 15 are 

characterized by high abundances of O. antarctica.  Conversely subsamples 13 and 14 showed 

low abundances of O. antarctica, the sediment is different compared with the other subsamples 

and is conformed by pebbles and boulders (Fig. 4e-f).  At station 24IIA-middle subsamples 1-3 

do not show strong currents (Fig. 6a), which are very characteristic of the subsamples 4–12 (Fig. 

6b-c).  Subsample 15 is an ice scour, which differentiates faunistically but not very clear by 

subsamples 13 and 14.  Characteristic at station 24IIA-deep is that subsample 3 lacks the 

presence of the 

sponge Cinachyra 

barbata (Fig. 6d) 

the abundance of 

which is clear at 

subsamples 1 and 

2 (Fig. 6e-f). 

 
 
 
Fig. 7 Species turnover.  Distribution of similarity coefficients between all possible 
combinations of subsamples.  Box Plots: the 5 horizontal lines represent 10th, 25th, 50th, 
(median), 75th and 90th percentiles of the variable; circles represent outliers.  Sample size 
(n)= 15 for each station.  (S shallow; M middle; D deep; B transect on the south-west 
slope). 

 

Fig. 7 shows 

species turnover 

within transects 

by use of Bray-
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Curtis similarity medians.  No general trend is discernible. The lowest median values, 

representing high species turnover are displayed by stations 010, 24IIA-middle and 24IIA-deep.  

Station 32IV shows the highest median, indicating a very low value for species turnover.  Single 

consistencies of these results with those from the seriation analysis or corresponding 

discrepancies are pointed out in the discussion since they can provide insight in the ecological 

background of specific patterns. 

 
 
 
 
 
Depth zonation 

 

In the MDS 

ordination plot 

combining all 

subsamples at the 

Four Seasons Bank 

three main groups 

were separated: 

“Top”, NE “Slope” 

and SW “Slope” 

(Fig. 8), using 

information from the 

cluster analysis.   
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Fig. 8 Nonmetric Multidimensional Scaling (MDS) ordination based on Bray-Curtis 
similarity derived from root-transformed data at Four Seasons Bank in the Weddell 
Sea, Antarctica.  Dotted lines represent subgroups formed at the “Top” of the bank: 
a, b and c 
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These groups coincide very well with the location on the bank and are therefore labelled 

accordingly.  Quite obvious is the difference between the SW and NE slopes with a higher 

heterogeneity at the NE slope.  The information on the SW slope is from two different transects 

of which the total of the subsamples form one group.  In both groups a depth gradient is visible 

with the shallow subsamples on the right and the deeper on the left side of the MDS plot.  The 

"Top" group shows the largest heterogeneity; the links with both slope gradients along the 

transects are not very obvious, in case of transect 24IIA consisting of "Top_a" (59-77 m), 

"Top_c " (82-105 m) and the "NE slope" (111-146 m) or even interrupted in case of the transect 

of stn 111-1 comprising "Top_b" (53-57 m) and the shallower subsamples of "SW slope" (56-89 

m). 

 

Figure 9 shows a condensed community table of the fauna observed at Four Seasons Bank, based 

on cluster analyses for subsamples and species.  At the “Top” we found a typical shallow-water 

fauna characterized by species as the octocoral Clavularia cf. frankliniana, and locally high 

abundances of the hydroid Tubularia ralphii as well as the sea urchin Sterechinus neumayeri 

(Fig. 10a-c).  The local variations within the taxa group B1 especially of the two latter species 

and in addition the almost unique high abundance of Ainigmaptilon antarcticum, Corymorpha 

parvula, Hydrozoa sp.8 and Corymorpha sp.1 in subgroup b explain the separation of the 

subgroups a-c within “Top”. 

 

The NE “Slope” displayed a small proportion of the shallow-water fauna but is dominated 

obviously by a typical slope mega-epifauna (B2) of which the taxa Gorgonaria sp.11, Sabellidae 

spp., Crinoidea spp., Tedania tantula, Primnoisis spp., Thouarella spp., Dasystenella spp. have 

highest abundances only at this slope, and is also characterized by scattered presences of taxa 
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belonging to the taxa group A with e.g. Fanyella spp., Synascidiacea sp.32, Actinaria sp.8, 

Latrunculia brevis, Aplidium sp.3, Isodictya sp.1 (Fig. 10d-f).  The SW “Slope” showed a most 

homogenous fauna without a specific dominance of species groups being especially 

characteristic of any single depth stratum or local area (Fig.11). 

 

Numbers of taxa and univariate 

measures of diversity of the Four 

Seasons Bank are displayed in 

Figure 12.  Numbers of taxa and 

diversity are superimposed on the 

subsamples (each 15 m2).  Values 

of number of taxa varied between 4 

and 35.  For the diversity 16.2 was 

the highest value and 2.1 the 

lowest.  Considering the three main 

groups: “Top”, NE “Slope” and SW 

“Slope”, the highest number of taxa 

was observed at the SW “Slope” 

and also the highest values for 

diversity.  Moderate and small 

values of number of taxa were 

displayed at the “Top” but diversity 

values were very low.  On the 
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Fig. 12 MDS ordination based on Bray-Curtis similarity derived 
from root transformed abundance data at Four Seasons Bank in the 
Weddell Sea, Antarctica.  Subsamples have been with depth labels 
superimposed.  Circles sizes represent values for number of taxa 
(S) and diversity (N1) 
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contrary the NE “Slope” showed the lowest values but also high values of number of taxa, and 

diversity values were higher than at the “Top”.    

 

Also two characteristics of the diversity are remarkable in Figure 12b.  At the northern site of the 

bank diversity increased with increasing depth.  However, at the southern site of the bank no 

trend is discernible and the highest diversity values can be observed at mid-depths. 

 

 

Discussion 

 

Horizontal Seriation 

 

Specific seriation patterns of benthic ecosystems may be caused by both abiotic conditions 

(depth, substratum, habitat, bottom topography, sedimentation, oceanography, disturbance) 

(Dayton et al. 1970, 1994, Gallardo 1987, Barnes et al. 1996, Gutt 2000) and by biotic factors 

(competition, predation, recruitment) (Rowe 1981, Arntz et al. 1994, Clarke 1996a, 1996c). 

 

Benthic processes seem to be very complex in the Antarctic and, consequently, it was not the 

aim of this study to reveal general correlations between benthic structures and biological as well 

as chemico-physical processes.  Nevertheless, explanations for both, significant and non-

significant seriation can be provided.  Stations with the poorest seriation, e.g. stn 015, 059-1, and 

32IV belong to those with the smallest range of species or faunal-heterogeneity but with 

intermediate values for species turnover (median of Bray-Curtis values). This shows that along 

the 150 m standardized transects neither a patchwork of different assemblages nor a gradual 
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change in assemblages exists, instead the fauna is quite homogenous.  This phenomenon was 

observed locally in all three areas of investigation.  Interestingly, this includes two stations (059-

1 and 32IV) which are situated close (<0.5 km) to the ice shelf coast, where, due to a continually 

changing environment, greater differences in benthic communities can be expected than 

elsewhere or at different spatial scales (Barry and Dayton 1988, Gutt 2000). 

 

Discontinuity in the mega-epibenthic assemblages may correspond to a sharp change in local 

bottom topography (Pérès 1982).  Some of the stations analysed in Marguerite Bay displayed 

abrupt changes in the bottom topography, e.g. stn. 010.  Soft-bottom sediments with valleys and 

crests, drop stones, and biogenic substrata (e.g. scallop shells of Adamussium colbecki) were 

observed along this transect. 

 

An exceptional result in terms of species turnover is that of stn 010, with a high heterogeneity, 

whilst the IMS value and its significance level were intermediate.  Here obviously changing 

environmental conditions at different levels shape a heterogeneous megabenthos.  The fauna 

seems to exhibit both a gradual change in taxa composition and, superimposed, a faunal 

patchwork shaped by discrete impact independently of the locality on the transect. 

 

Four transects, one from the Marguerite Bay and three from the Four Seasons Bank, show 

relatively good faunal seriation, though, never high values close to 1.0.  The latter transects have 

broad ranges of species turnover values.  Because of the mathematical nature of the IMS this 

combination of median and value range can be found if an existing seriation is occasionally 

interrupted.  At both sides of the Four Seasons Bank the most obvious disturbance agent is 
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iceberg scouring, a process which also leads to the heterogeneity within the two groups of 

subsamples, SW-slope and NE-slope, the latter including one subsample with an extreme 

faunistic composition.  The same was observed in the "Top" group where additional disturbance, 

such as wave action, an especially strong exposure to tidal and other currents, changes in 

daylight and a more intensive ice impact due to shallow water depth is obvious.  The fact that 

nevertheless a significant seriation existed might be due to the small but not avoidable depth 

gradient within each depth stratum (=transect,  24IIA-shallow, 24IIA-middle, and 24IIA-deep), 

causing gradients in ecologically relevant conditions as also observed at a larger spatial scale 

discussed below.  In contrast to all the other results discussed above stn 012 in Marguerite Bay 

has a relatively high median value of species turnover, with a narrow range of corresponding 

single values.  This can be explained by an obviously very good seriation, however, without a 

very clear faunal difference between the beginning and the end of the transect and not being 

considerably interrupted.  Furthermore there was no indication of any change in the abiotic 

environmental conditions.  This is confirmed by the horseshoe-shaped MDS plot, a pattern which 

is typical of temporal succession rather than for the spatial structure found here. 

 

 

Depth zonation  

 

Clear zonation according to depth has been observed by different authors (Rowe and Menzies 

1969, Dayton et al. 1970, 1974, Carey et al. 1975, Piepenburg and Schmid 1996, Mayer and 

Piepenburg 1996).  Vertical distributions of benthic communities (0-150 m) in Terra Nova Bay 

(Ross Sea) (Cattaneo-Vietti et al. 2000a) displayed some similarities with the pattern observed at 

Four Seasons Bank.  At depths between 2 and 70 m the sea urchin Sterechinus neumayeri is also 
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abundant; below this depth range (up to 150 m) a complex community of sponges and 

anthozoans characterize the area.  The sponge community living at Four Seasons Bank is quite 

similar to those found at McMurdo Sound: mixed and glass sponge communities (Bullivant 

1967, Dayton et al.1974), but at both sides of the bank (NE and SW “slopes”) high abundances 

of single species like Cinachyra barbata, Stylocordyla borealis (round type), Tedania tantula, 

Monosyringa longispina, Polymastia invaginata, Polymastia isidis are remarkable. 

 

In general, the Four Seasons Bank seems to comprise several faunal assemblages which 

combines a clear depth gradient and a zonation with discrete assemblages.  Special 

environmental conditions are originated due to the topography of the bank.  Strong currents and 

a generally enhanced variability on banks have been observed frequently (Genin et al 1986; 

Beckmann 1999).  Hydroids (Tubularia ralphii, Oswaldella antarctica, Corymorpha parvula, 

Hydrozoa sp.8 and Corymorpha sp.1) and anthozoans (Clavularia cf. frankliniana), especially 

gorgonians (Ainigmaptilon antarcticum, Primnoisis spp., Thouarella spp., Dasystenella sp., 

Fanyella spp.), were well represented.  Some of these species are described as “macro”- and 

microphagous” suspension feeders whose feeding strategies imply that sediment might be 

resuspended e.g. by the effect of currents (Orejas et al. 2001, 2003) and that other methods than 

active filtration (e.g. gravitational deposition, direct interception) may also occur (LaBarbera 

1984).  In this context, strong currents seem to be an advantage for the establishment of this 

group of organisms because these currents supply them with food (Genin et al 1986, Rogers 

1994).   

 

Depth zonation and diversity values observed appear to be affected by the nature of the 

substratum (cf. Pérès 1982, Kirkwood and Burton 1988, Hecker 1990, Simboura et al. 1995, 
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Nonato et al. 2000).  The lowest values were displayed in shallow areas at the northern site of the 

bank where boulders and pebbles were the main substrata.  This type of substrata favoured 

epilithic organisms or species that need a form of anchorage for their settlement; e.g. the 

octocoral Clavularia cf. frankliniana forms encrusting colonies that cover a great part of the 

stone (Gili et al. 1999) and the hydroid Tubularia ralphii forms creeping colonies on stones 

(Stepaniants 1980).   

 

The complex morphology and architecture of specific organisms (e.g. sponges, gorgonians, 

bryozoans, ascidians) offer a variety of secondary habitats providing favourable conditions for 

epibiotic species (Gutt and Schickan 1998).  This might explain high values of diversity and 

number of taxa observed at both sides of the bank (NE and SW “slopes”), where sponges were 

abundant.  Sponges provide the most fascinating of these secondary habitats in Antarctica (Arntz 

et al 1997, Gutt and Schickan 1998), being associated with a large number of organisms that 

exhibit epibiotic behaviour (Gutt and Schickan 1998).  These associations generate a variety of 

“multi-storied habitats” and living substrates provide additional ecological niches (Gutt 1996). 

 

Furthermore current regimes are also responsible for faunistic differences found between the 

northeast and southwest “slopes”.  The bank is situated in an area that is affected by the 

Antarctic Coastal Current and water coming out the Quarisen ice shelf (Fahrbach et al. 1992, 

Dijkstra 2000).  Therefore the east side of the bank is exposed to strong currents flowing through 

and flowing out the Quarisen ice-shelf.  As the strong Antarctic Coastal Current reaches the 

northward tip of the bank, it starts to flow southwest decreasing velocity.  As a consequence, the 

western side of the bank is sheltered from these strong currents and may also be protected, by the 
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east side, from the high frequencies of iceberg impact.  This might explain the higher 

heterogeneity found at the northeast “slope”. 

 

In general these findings show, that despite the isolated nature of the Antarctic ecosystem, each 

detailed look at mega-epibenthic assemblages provides more insight into a high complexity of 

processes behind spatial structures.  Our results do not only provide evidence that the high 

Antarctic benthos is not homogenous as indifferently stated some decades ago.  They also show 

that the opposite, “all patterns can occur everywhere” as stated in some more advanced studies 

(Gutt and Piepenburg 2003), is not a general phenomenon if results refer to comparable spatial 

scales.  Instead, different kinds of patterns are identifiable: a locally limited typical fauna, a 

patchwork of assemblages as well as continuous faunistic gradients.  Combinations of these three 

scenarios are possible or must even be considered as the rule. 
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Abstract  

 

Diversity of mega-epibenthic assemblages in the Arctic (off northeast Greenland) and Antarctic 

(Bellingshausen and Weddell Seas) was studied using underwater video.  A total of 54 sea-bed 

video transects were conducted at 51 stations at depths between 35 and 585 m.  At a regional 

scale (γ-diversity) Antarctic studied sites were richer in the number of mega-epibenthic taxa than 

the Arctic.  In the Antarctic all regional species numbers in the shallow sites were higher than at 

deeper ones, but in contrast to the Arctic this could not be explained by a higher species turnover.  

No differences were found in species turnover (β-diversity) between the Arctic and Antarctic.  At 

the local spatial scale (α-diversity) species numbers were higher in the Antarctic compared to the 

Arctic, what might be a reflection of a clearly higher regional diversity.  In addition, differences 

in the type of natural disturbances such as predation pressure or iceberg scouring are another 

reason for the higher local species numbers in the Antarctic. 

 

Key words: Mega-epibenthos, Arctic, Antarctic, marine biodiversity, alpha diversity, beta 

diversity, gamma diversity, underwater video, ROV 
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Introduction 

 

The more detailed information on biodiversity becomes available and analytical approaches are 

developed the more the relevance of details becomes obvious also when generalizations are 

requested.  This includes the often mentioned difference between the Arctic and the Antarctic 

benthos (George 1977, Knox and Lowry 1977, Dayton 1990) as well as statements referring to a 

homogenous Antarctic benthos.  At an evolutionary scale long-term stability but also specific 

dynamic processes such as the change between glacials and interglacials (Pianka 1978, Clarke 

and Crame 1989) contribute to the complexity not only of polar biodiversity patterns. 

Nevertheless, origins and evolution of the Arctic and Antarctic benthos are different (Dayton 

1990).  At the ecological level, disturbances (Gutt 2001) and consecutive faunal succession as 

well as local and regional environmental conditions shape benthic structures. 

 

With this background Gray (2001) concluded that two basic considerations have to be taken in 

account when comparing the Arctic with the Antarctic: age and area.  The benthic fauna of an 

area such as the Southern Ocean cannot be viewed in isolation, and it is pertinent to ask how the 

present Antarctic fauna is related to faunas elsewhere (Clarke 1996b).  Following this argument a 

reasonable approach is to study the faunistic and environmental parallelism with the Arctic.  The 

Arctic and Antarctic benthic faunas have been compared previously by George (1977), Knox and 

Lowry (1977), White (1984), Dayton (1990) and Piepenburg et al. (1997), and all have indicated 

high species richness and diversity in the Southern Ocean.  Recent studies on Antarctic benthic 

diversity (Clarke and Johnston 2003, Gutt et al., in press) have been made in order to get a better 

approach to the existent taxa and their number of species.  
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A study based on a best possible methodological compatibility and modern analytical approaches 

was that of Starmans and Gutt (2002) in which not only well known assumptions, e.g. that of a 

higher benthic diversity in the Antarctic compared to the Arctic were confirmed and diversity 

measure was not only reduced to the counting of species numbers.  Some interesting questions 

raised in this investigation could not be sufficiently answered due to the lack of results from 

shallow waters in both Antarctic study sites.  In the meantime such data have been sampled in the 

course of a joint German-English initiative.  Again sea-bed video recording was used for data 

acquisition firstly in order to provide comparable information.  Secondly, diversity of species 

identifiable on videos was used as a proxy for the desired but never attainable complete and 

absolute diversity of thousands of mega-epibenthic species, since this selection is not biased by 

the "taste" of the investigator.  The three main questions (1) - (3) with detailed hypotheses were: 

(1) Is the mega-epibenthos inhabiting the Antarctic shelf really more diverse than that of the 

Arctic, comparing only same depth strata?  (a) At the local spatial scale there is no reason to 

assume generally a higher diversity in the Antarctic than in the Arctic.  (b) Due to a more 

heterogeneous bottom topography in the Arctic comprising an off shore bank, trenches, troughs, a 

shelf ice barrier and shelf areas situated close to the coast but being exposed to the open ocean, 

which may have consequences for the current regime (Dayton et al. 1994, Piepenburg et al 1997), 

species turnover is expected to be higher in the Arctic than in the Antarctic, at least on the 

relatively flat Weddell Sea shelf.  (c) Due to the long period of isolated evolution, however, at a 

large regional scale the Antarctic shelf benthos at any depth must be richer than the Arctic 

(Clarke and Crame 1997).  (2) Does within each of the 3 study sites the shallow-water mega-

epibenthos perform a higher heterogeneity than the benthos on the deeper shelves?  (a) At a local 

spatial scale (α-diversity) the shallower benthos is poorer than the deeper.  Reasons for this 

difference to be discovered in future process-oriented studies could be locally varying 
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combinations of ecological conditions, e.g. wave action, small scale current regime due to an 

uneven bottom structure, or phytoplankton production to which only a few locally varying 

species are perfectly adapted.  (b) Due to the resulting hypothesized faunistic heterogeneity 

species turnover (β-diversity) should be higher at shallower sites.  (c) As a consequence of these 

two assumptions, regional diversity could be roughly equal at both depth strata.  (3) Following 

principally Hill's (1973) diversity concept of a gradient ranging from pure species numbers, 

followed by a function of both, species numbers and evenness to pure evenness, gradients of 

decreasing or increasing sensitivity of the above mentioned environmental conditions can be 

found. 

 

 

Material and Methods 

 

Study sites  

 

Antarctic 

The Antarctic sites selected for this study comprised the narrow shelf (<500 m) of the eastern 

Weddell Sea in the Atlantic sector of the Southern Ocean, and the shelf of the Bellingshausen Sea 

in the Pacific sector (Fig. 1). 

 

Voß (1988) characterized the sediments of the eastern Weddell Sea by the presence of sandy 

bottoms, bryozoan debris, sponge spicule mats and a few stones.  He described also for the first 

time the benthic assemblages and distinguished the “Eastern” and “Southern” assemblages as the 

major ones on the shelf of the eastern Weddell Sea, which were corroborated later by Galéron et 
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al. (1992), Piepenburg et al. (1997), Gutt and Starmans (1998) and Starmans et al. (1999) and 

reviewed by Gutt (2000).  

 

Due to the submerged continental shelf and the 

glaciated coast shallow-water areas (<150 m) in 

the Antarctic are scarce.  In the eastern Weddell 

Sea one two such sites are known, one in and 

west of Atka Bay and the other being a shallow 

bank off Four Seasons Inlet (11°28'W 

71°07.5'S) NE of Kapp Norvegia, 

approximately 1.7 km long and on average 320 

m wide, rising from a plateau at 170 m depth to 

about 60 m depth at its shallowest part.  

 

In contrast to the Weddell Sea, the mega-

epibenthos in the Bellingshausen Sea has been 

until now not intensively studied.  Starmans et 

al. (1999) described the presence of sandy 

bottoms and the relative abundance of drop-

l

S

B

 
 
Fig. 1 Areas of investigation: a) off Northeast 
Greenland, b) Antarctica 
stones.  They remarked that the assemblages 

acked the pronounced three-dimensional structure reported for communities in the Weddell Sea.  

hallow-water stations (<150 m) in the Bellingshausen Sea were located in northern Marguerite 

ay, where a true coast and adjacent shallow waters is normal in contrast to the eastern Weddell 
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Sea (Kennedy and Anderson 1989, Bonn et al. 1996).  The land as well as the seascape, and 

consequently the coastline, are here quite variable and heterogeneously structured. 

 

Arctic 

The Arctic investigation site was the high-Arctic shelf region off northeast Greenland in the 

Greenland Sea (Fig. 1).  At this site the bathymetry is complex and the shelf consists of a system 

of shallow banks (< 100 m) separated by troughs and trenches with depths >400m.  Fine-grained 

sediments cover the sea floor, particularly in the shelf troughs and at the slope, whereas coarser 

fractions predominate on the shallower banks (Piepenburg 1988).  Here a pronounced depth 

zonation is a principal feature of the megabenthic distribution (Piepenburg and Schmid 1996). 

 

Field sampling 

 

A total of 54 sea bed video transects were conducted at 51 stations using a ROV ("Sprint 101").  

Stations were classified according to depth into shallower, 35-150 m, and deeper sites, 160-585 

m, in order to get equally sized samples.  Sea bed video records for both sites were carried out 

aboard the German R/V “Polarstern”.  Deeper stations in the Antarctic were video-taped during 

the expeditions ANT VI/3 (eastern Weddell Sea) and ANT XI/3 (Bellingshausen Sea) (Fütterer 

1988, Miller and Grobe 1996).  Shallow–water samples in the eastern Weddell Sea were from the 

expeditions ANT XIII/3, ANT XV/3 and ANT XVII/3 (Arntz and Gutt 1997, 1999; Arntz and 

Brey 2001).  Arctic samples for both depth ranges were taken off (Northeast Greenland, 

Greenland Sea) during ARK IX/2-3  (Hirche and Kattner 1994).  Video transects in shallow 

water in the Bellingshausen Sea (Antarctica) were a major contribution to a bilateral project 
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between the Alfred Wegener Institute for Polar and Marine Research and the British Antarctic 

Survey, the field work of which was carried out during the “James Clark Ross” cruise (JR37). 

 

With the exception of the shallow station ANT XIII, 24II in the Weddell Sea where an unusually 

long complete video observation was split into four different transects, each station is comprised 

of a video transect lasting between 60 and 90 minutes.  The length of the transects was 

determined by the drift of the ship and the width (ca. 0.5 m) by two parallel laser beams, which 

acted as a scale on the image.  Comparable sample sizes were obtained by randomly selecting 

video footages being as continuous as possible and representing 100 m2 of sea floor for the 

analyses. 

 

The split of the three study sites (Weddell, Bellingshausen and Greenland Seas) into two depth 

strata each resulted in 6 sampling sites: Antarctic: Weddell Sea, shallow (60 to 150 m) and deep 

(195 to 555 m); Bellingshausen Sea, 55 – 150 m (shallow) and 160 - 585 m (deep); Arctic: 

Greenland Sea, shallow (35 to 125 m) and deep (180 to 334 m).  Nine stations were randomly 

chosen for each of the 6 sampling sites.  

 

Antarctic shallow-water samples from Weddell and Bellingshausen Seas are new. In order to 

provide an optimum in compatibility e.g. in terms of sample size, raw data from Weddell Sea 

(deep), Bellingshausen Sea (deep) and Greenland Sea (deep and shallow) (Starmans and Gutt 

2002) were recalculated for the analyses. 
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Faunal analysis 

 

All individuals > 1 cm were counted and identified to the lowest possible taxonomic level at the 

given optical resolution of the cameras.  Colonies of colonial taxa were counted and treated as 

single organisms in the statistical analyses.  Where this approach proved impossible because of 

the irregular shape of the colony, percentage cover of the sea floor was determined and used as a 

proxy for true abundances.  In order to achieve a better identification of the organisms, an 

average of 100 still photographs for each station also made by the ROV on the same transects 

were consulted in addition to the video observations. 

 

Data analyses 

 

Different measures of biodiversity were performed at two spatial scales: local (within-habitat or 

α-diversity) and regional (within the whole study site or γ diversity) (Whittaker 1960).  In 

contrast, between-habitat or β-diversity is the extent of change in species composition of 

communities among samples and, consequently, not related to the size of the area investigated 

(Whittaker 1975).  Data were analysed according to univariate and multivariate measures in the 

following way: 

 

Within-habitat (α) diversity 

 

Firstly univariate measures of diversity and evenness were computed for each group of stations: 

total number of taxa (S), Shannon diversity ( H’= -Σi pi (loge pi) ) and Pielou’s evenness (J’= H’/ 

loge S) (Clarke and Warwick 1994). 
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Secondly the normalised expected number of taxa, calculated after Hurlbert’s (1971) 

modification of Sanders (1968) rarefaction method was used.  The rarefaction technique despite 

the justify criticism of Gray (1997), allows one to adjust a series of samples to a common sample 

size so that species richness can be compared among samples, with varying abundances  (Krebs 

1999).  This method calculates the expected number of taxa, E(Sn), in a reduced standardised 

sample of n individuals selected from the given sample.  For the rarefaction approach a reduced 

number of individuals (n=70) was chosen which took into account the lowest abundances at each 

station. 

 

Between-habitat (β) diversity 

 

For species turnover or β diversity, a similarity matrix was constructed using fourth-root 

transformation in order to reduce the contribution from numerically dominant species and to 

reveal changes among less dominant species (Field et al. 1982).  Similarities between stations and 

taxa were calculated using the Bray-Curtis coefficient.  As a measure of β diversity the Bray- 

Curtis similarity between all pairwise permutations of sites was used.  The higher the overall 

similarities are, the lower the β diversity (Magurran 1988). 

 

For α and β diversity, non-parametric Kruskal-Wallis tests and post-hoc multiple comparison 

(after Nemenyi) were used to test the significance of differences (p<0.05) (Sachs 2002) between 

the 3 study sites and Arctic and Antarctic at same depth strata. 
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Regional (γ) diversity 

 

In order to assess the γ diversity, different indices of diversity were computed.  Assuming mainly 

independent data comparability between primarily single values (H’, E(S70) and J’) for each 

investigation site jack-knifing was applied, since it provides standard errors.  Series of jack-knife 

estimates and, based on these, pseudovalues were produced.  The mean of these pseudovalues 

forms the best estimate of the statistic (Magurran 1988).  All values are given as means 

(+standard deviation).  Statistical significance was tested using analysis of variance (ANOVA) 

and post-hoc procedures (Tukey test). 

 

As a second measure of γ diversity, non-parametric estimators of true species richness were 

computed (Colwell 1997).  Parameters that are components of the abundance-based estimators 

(Colwell and Coddington 1994) are “singletons” (species represented by a single individual) and 

“doubletons” (species represented by only 2 individuals).  Incidence-based estimators, considered 

“uniques” (species restricted to a single site) and “duplicates” (species occurring at exactly 2 sites 

only) (Colwell and Coddington 1994).  The following statistical estimators (Colwell 1997) were 

computed, a) Abundance-based estimators: Chao1 and Abundance-based Coverage Estimator 

(ACE); b) Incidence-based estimators: Chao2, Jack-Knife1 (1st order), Jack-Knife2 (2nd order) 

and Incidence-based Coverage Estimator (ICE).  Values obtained were means.  For all 

calculations involving random orderings of the samples, 50 randomisations (without replacement) 

were used.  Values of these true species richness estimators were used as a measure of γ diversity. 
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The majority of the techniques used for data analyses are described in Clarke and Warwick 

(1994) and were implemented using PRIMERv5 (Plymouth Routines in Multivariate Ecological 

Research) (Clarke and Gorley 2001).  True species richness estimators were computed with the 

EstimateS package (Version 5, Colwell 1997).  Statistical analyses were performed using 

StatView.v5 (SAS Institute Inc. 1998). 

 

 

Results 

 

Alpha diversity 

 

The number of taxa found at each station varied markedly among the 6 study sites (Fig 2a).  The 

highest median values were calculated for the shallow-water stations in the Weddell (56) and 

Bellingshausen (44) Seas in the Antarctic, whereas values at deeper stations from the same sites 

were lower, 36 and 23 respectively.  The lowest medians were computed for the Arctic, with a 

number of 18 and 13 taxa for the deeper and shallower stations, respectively.  The post-hoc 

multiple comparison showed that the number of taxa at the shallow-water stations in the 

Antarctic was significantly higher than at those in the Arctic.  Additionally medians from deeper 

stations in the Weddell Sea were significantly higher than deeper stations off northeast 

Greenland. 

 

E(S70) also differs noticeably between stations (Fig. 2b).  The shallow-water stations in the 

Bellingshausen Sea showed the widest range (4.17 to 27.35).  Highest medians were computed 

for the Weddell Sea and deeper stations in the Bellingshausen Sea.  However, values for shallow 
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water in the Bellingshausen Sea and deeper stations in the Arctic were similar.  The lowest E(S70) 

value was calculated for the shallow-water stations off northeast Greenland.  Diversity in the 

Weddell Sea at shallow stations showed significantly higher values compared to the shallow-

water stations in the Arctic.  

 

A similar pattern was discernible for Shannon diversity (H’) (Fig. 2c).  The Weddell Sea and 

deeper stations in the Bellingshausen Sea displayed the highest estimates for H’.  Again deeper 

stations off northeast Greenland and shallow-water stations in the Bellingshausen Sea showed 

similar values for H’.  The lowest H’ values were calculated for shallow-water stations in the 

Arctic.  However, significant differences in diversity values were only found between shallow-

water stations in the Weddell Sea and the Arctic. 

The highest median values for Pielou’s evenness (J’) were observed for the Weddell Sea, deeper 

stations in the Bellingshausen Sea and the Arctic (Fig. 2d), indicating low dominance at these 

localities.  The lowest J’ values and therefore highest dominance, were displayed at shallow sites 

in the Bellingshausen Sea and shallower stations in the Arctic.  No statistical differences were 

discernible between stations in these cases. 

 

Beta diversity 

 

Whittaker’s between habitat diversity displayed a broad range in similarity coefficients within the 

study sites (Fig. 3).  The shallow-water stations from the Arctic showed the widest range (7.8 to 

70.3) but also had the lowest median value, indicating a high β diversity.  In the Weddell Sea β 

diversity was high with medians of 35.8 (deep) and 38.4 (shallow), but not as high as in the 

shallow Arctic (28.3).  Deeper stations off northeast Greenland showed by far the lowest β 
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diversity, with a median value 

of 48.7.  Post-hoc multiple 

comparison showed that 

similarities from the shallow-

water stations in the Arctic 

differed significantly from 

those of the deeper Arctic and 

shallower Bellingshausen 

Sea, although not from the 

Weddell Sea stations.  In 

addition similarity values for 

the deeper stations off 

northeast Greenland were significantly higher than the values found in the Weddell Sea, thus 

indicating a higher species turnover at the latter stations. 

 
 

Fig. 3 Between-habitat diversity (β).  Distribution of similarity 
coefficients between all possible combinations of stations (For more 
details see legend Fig.2).  Sample size (n)= 36 for each study site 

 

Gamma diversity 

 

Values for H’ and E(S70) showed similar patterns for the regional diversity (Fig. 4a and 4b).  The 

highest mean value was found at the shallow-water stations in the Weddell Sea, followed by 

mean values from the Arctic and deeper stations in the Bellingshausen Sea.  The least diverse 

sites were shallow stations in the Bellingshausen Sea and deep stations in the Weddell Sea.  

However, significant differences in diversity values were only found between shallow and deep 

stations in the Weddell Sea.  In addition, highest measures of evenness (J’) (Fig. 4c) and therefore 

lowest dominance were observed at deeper sites in the Arctic and shallow-water stations in the  
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Weddell Sea.  Shallower stations 

in the Arctic and deeper sites in 

the Bellingshausen Sea showed 

intermediate evenness.  The 

lowest mean values for evenness 

were found in the Antarctic, at 

deeper and shallower stations in 

the Weddell and Bellingshausen 

Seas, respectively, indicating high 

dominance in these regions.  No 

statistical differences were 

discernible between sites. 
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Fig. 4 Regional (γ) diversity.  Jack-knife estimates for: a) Shannon 
diversity (H’); b) Rarefaction richness estimator E(S70); c) Pielou’s 
evenness (J’) in mega-epibenthic assemblages in Bellingshausen and 
Weddell Seas (BHS, WS) (Antarctica) and off northeast Greenland 
(NEG) (Arctic).  D: deep stations; S: shallow stations.  (For depth 
details see Fig.2).  *: indicates significant differences between 
investigation sites.  Symbols are mean values (n= 9). Bars show SD 
 

 

Mean values of species richness 

estimators at the Arctic shallow-

water stations varied between 

50.96 - 105.33 (Fig. 5).  At deeper 

stations off northeast Greenland 

the range for the different 

computed estimators was 49.9 – 

58.88.  Estimators for the 

Bellingshausen Sea region ranged 

between    163.88  –  207.31    and  
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97.2 – 163.25 at shallower and deeper sites, respectively.  The Weddell Sea showed a similar 

pattern, with estimator values for shallower and deeper sites between 161.06 –198.86 and 105.54 

– 128.72, respectively.  

 

 

The highest mean values 

for the data set of true 

species richness estimators 

were calculated for the 

Southern Ocean (Fig. 5).  

However, these values 

were higher at the shallow-

water stations of the 

Antarctic sites 

investigated.  Also in the 

Arctic, shallower stations 

displayed higher estimator 

ranges than deeper ones.  

Significant differences in 

diversity values were only 

found between deep and 

shallow-water sites off 

northeast Greenland. 
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Fig. 5 Regional (γ) diversity.  Non-parametric species richness estimators in 
mega-epibenthic assemblages in Bellingshausen and Weddell Seas (BHS, 
WS) (Antarctica) and off northeast Greenland (NEG) (Arctic).  D: deep 
stations; S: shallow stations.  (For depth details see Fig. 2.  *: indicates 
significant differences between investigation sites.  Abundance-based 
estimators: Chao1 and Abundance-based Coverage Estimator (ACE); 
Incidence-based estimators: Chao2, Jack-knife 1st order (JAKN1), Jack-knife 
2nd order (JAKN2) and Incidence-based Coverage Estimator (ICE).  Symbols 
are mean values (n= 9).  For all calculations involving random orderings of 
the samples, 50 randomisations (without replacement) were used.  Estimators 
were calculated using EstimateS package (V.5, Colwell 1997) 
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Discussion  

 

 

Measures of species diversity are central to many aspects of ecology and conservation (Whittaker 

1960, Magurran 1988, Gaston 1996, Gray 2000).  The concept of biological diversity as the 

“variety of living organisms” cannot be summarized by a single measure (May 1994, Ellingsen 

2001) and there is also no single correct scale at which to view ecosystems (Levin 1992).  The 

concept of diversity expresses something more than the notion of the effective number of species 

present (Hill 1973, Williamson 1997).  Distributions of species and community differences 

should be taken into account in addition to species diversity when measuring marine biodiversity 

(Ellingsen 2001). 

 

Consequently it is not surprising that the results presented here are complex and that they confirm 

the statement made in the Introduction that detailed knowledge is necessary to come to reliable 

generalizations on biodiversity patterns.  Additionally, the results demonstrate that the more 

details are known the more expected generalities become unclear even if modern analytical 

methods are applied.  Due to this difficulty hypotheses and results are presented in an overview in 

Table 1, in which the comparisons between the Arctic and the Antarctic as well as shallow and 

deep polar samples at different spatial scales are shown diagrammatically.  Here only 

significances between comparable units are depicted, e.g. between shallow and deep assemblages 

within one investigation site or between shallow sites but not for example between shallow 

Antarctic and deep Arctic stations or vice versa. 
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Since most results are related to each other classifications in terms of spatial scales or depth strata 

represent rather gradients than discrete differences.  As a consequence, the discussion is not only 

structured according to the hypotheses stated in the Introduction and to spatial scales but also to 

the two general driving forces behind biodiversity patterns, evolution and ecology. 

 

 

 

Table 1 Schematic 

representation of the results and 

hypotheses tested for within-

habitat (α), between-habitat (β) 

and regional (γ) diversity at 

shallow (35-150 m) and deep 

(160-585 m) sites and for 

Antarctic (ANT) and Arctic 

(ARK) regions.  For details of 

the hypotheses see introduction.  

S number of taxa; E (S70): 

rarefaction richness estimator; 

H’: Shannon diversity; J’: 

Pielou’s evenness.  The tone 

intensity of the arrows indicates 

the trend of the direction into 

which the hypothesis goes. 
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Gamma and beta diversity 

 

Diversity, often reduced to pure species numbers, is regulated at the regional (gamma) scale 

mainly by historical processes (Crame and Clarke 1997, Gray 1997).  Consequently, 

dissimilarities in the evolution of Arctic and Antarctic faunas (Dayton 1990) have to be 

considered, when trying to understand patterns we observe today (Clarke 1996b).  Environmental 

stability over evolutionary time was identified by Sanders (1969) as the main driver to foster 

specialization e.g. in the deep sea since species are able to adapt to each other and require less 

effort to adapt to the environment.  The resulting effect is that many species with narrow, almost 

non-overlapping niches coexist (Grassle and Sanders, 1973).  In this convincing concept, 

however, the role of large, primarily geomorphological disturbances is ignored.  Pianka (1978) 

also considered competition as an important evolutionary force that has led to niche separation, 

specialization and diversification.  In addition, Dayton and Hessler (1972) pointed out the 

importance of continued biogenic disturbance as a significant factor in maintaining high 

diversity.  They argued that as an effect of disturbance, resources might become less limiting and 

as a result the probability of competitive exclusion is reduced. 

 

Our results show that both Antarctic study sites are richer in the number of mega-epibenthic taxa 

than the Arctic.  This cannot be explained exclusively by either stability or disturbance.  An 

increase in species number as a result of environmental stability during discrete periods such as 

interglacials and glacials according to Sanders (1969) was regularly and irregularly interrupted by 

climatic shifts with enormous consequences for the benthos (Clarke and Crame 1989).  In this 

context vicariance can have a great importance (Clarke and Crame 1992), since speciation may 

occur as a result of geographic or ecological separation and subsequent isolation of portions of an 
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original population (Pielou 1979, Barton 1990, Myers and Giller 1990).  The rate of resulting 

speciation may vary systematically with conditions that promote reproductive isolation between 

populations and that enhance the rate of evolution (Ricklefs 1987).  

 

However, both polar regions generally experienced the same conditions.  One major difference in 

this context might be the fact that in case of large-scale marine warming and cooling the Arctic 

fauna had a chance to migrate longitudinally, and consequently genetic exchange among 

populations was not blocked as much as in the Antarctic by large ice extensions.  We do not 

claim for a complete knowledge of all evolutionary relevant factors but it seems to be logical that 

their characteristic combination and specific details may have led to the higher species number in 

the Antarctic.  This includes not only environmental conditions but also positive and negative 

interspecific interactions, such as development of commensalism, e.g. epibiotic life (Gutt and 

Schickan 1998) as well as well balanced concurrence and competition (Dayton et al. 1974).  In 

addition the Arctic is younger as a cold environment, what could probably explain its lower 

species richness since there may have not been enough time and environmental stability (Grassle 

and Sanders, 1973) for the establishment of an extensive species component (Gray 2001).  Indeed 

different authors (Vermeij 1991, Dunton 1992) have remarked that the Arctic marine ecosystem 

is in an evolutionary sense still facing colonization.  

 

Not many theories exist about evolutionary processes triggering a high numerical equitability 

among species or, alternatively, a high dominance of single species.  Our results show that at a 

large spatial scale species numbers are not related to dominance patterns; otherwise any of the 

variables including equitability, E(S70), H', or J' would also be higher in the Antarctic.  Obviously 

the above-mentioned complexity of forces does not lead to a composition of species with a higher 
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numerical equilibrium.  In the older Antarctic as well as in the younger Arctic communities 

(Knox and Lowry 1977, Dayton 1990, Gray 2001) both, rare and dominant species seem to 

perform independently a successful adaptive strategy over evolutionarily relevant periods. 

 

To compare the faunas of shallower and deeper shelves in the light of evolutionary processes is 

only worthwhile if a clear depth zonation exists as found in the Arctic (Piepenburg and Schmid 

1996).  In the Antarctic except for a zone exposed to permanent sea-ice disturbance a large 

proportion of the fauna is eurybathic (Brey et al. 1996). In addition, also a true shallow-water 

fauna exists (Gutt 1991).  Generally, it can be stated that over both evolutionarily and 

ecologically relevant time scales the environment in shallow-water systems is more 

heterogeneous and dynamic than in deeper systems, an assumption on which some of our 

hypotheses were based.  In the Arctic the deeper site was slightly poorer in species and species 

turnover (beta-diversity) indicating a lower habitat heterogeneity compared to shallower habitats.  

In the Arctic only the shallow depth stratum is affected by iceberg scouring.  Consequently, the 

difference between shallow and deeper sites can reflect among other locally changing ecological 

conditions this specific impact.  However, it is not yet quantitatively investigated at this study 

site.   

 

In the Antarctic all regional species numbers in the shallow sites were higher than in deeper ones 

including one significant difference, but in contrast to the Arctic this cannot be explained by a 

higher species turnover.  This might indicate a different origin or colonization history of shallow 

and eurybathic species.  At the deeper stations a high proportion of eurybathic species occurs as 

well as in the shallow sites where, however, additional species restricted to shallow waters are 

present.  The deeper species could colonize the circumpolar continental slope during ice ages.  
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The shelf, however, was mainly covered by overlying shelf ice (Anderson et al. 1980, Anderson 

1991, Harris and O’Brien 1996) and many populations, species, and their assemblages restricted 

to shallow water were separated and evolved during these periods in sparse Antarctic shallow 

water refuges.  At the beginning of interglacials these mixed among each other and with the 

deeper species on the continental shelf primarily without much competition and, thus, contributed 

to the high regional species richness 

 

Concerning the comparisons between species turnover (beta diversity) in the Arctic and Antarctic 

samples no systematic trends were found since in one case the Arctic and in another the Antarctic 

study site had a significantly higher species turnover.  As with the comparison between depth 

strata this indicates that rather locally changing ecological conditions within the study sites than 

differences in long-term evolutionary processes between both polar regions affect species 

turnover patterns. 

 

 

Alpha diversity 

 

Why did the results from both comparisons Arctic versus Antarctic, shallow versus deep not 

follow our hypotheses?  We cannot imagine that recent ecological conditions in small areas of 

100 m2 or, in other words, the carrying capacity for alpha diversity differ in a way that the 

presence of more species is favoured in one of the two polar regions by the presence of a higher 

number of microniches.  Generally, small-scale coexistence of many species is also supported by 

a fast dispersal through reproductive stages (Holmes and Wilson 1998, Amarasekare and Nisbet 

2001, Shurin and Allen 2001).  However, despite the fact that recently for some abundant species 
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meroplanktonic larvae have been discovered (Pearse et al. 1991, Stanwell-Smith et al. 1999, 

Gambi et al. 2000b, 2001), environmental conditions in the Antarctic seem to favour direct 

development (Poulin et al. 2002).  Nevertheless, at the local spatial scale species numbers were 

higher in the Antarctic.  We believe that this is due to the clearly higher regional diversity.  This 

includes the occupation of specific small-scale niches, which, however, must be primarily 

considered as a large-scale phenomenon.  Such adaptive strategies evolved in the entire Antarctic 

as the above mentioned epibiotic life or any traits in the early life history e.g. preference of 

generally poorly sorted sediments which are so far totally undiscovered. 

 

The only clear gradient following Hill's concept of a changing relevance of species numbers and 

equitability confirms the interpretation that the regionally high species richness is the main reason 

for the high local species numbers.  If local environmental conditions would have a major effect 

also equitability results would differ between Arctic and Antarctic study sites. 

 

Another reason for the higher local species numbers in the Antarctic could be differences in 

natural disturbances such as predation pressure or iceberg scouring (Lewis and Blasco 1990, Gutt 

2000, Gutt and Starmans 2001).  If in the Antarctic most, if not all, sites investigated did not 

return to an advanced stage of equilibrium they could harbour a maximum diversity according to 

the intermediate disturbance hypothesis (Huston 1979).  The impact of iceberg scouring on polar 

benthic communities can play an important role in both hemispheres (Gutt et al. 1996, Conlan et 

al. 1998, Gutt 2001), however, studies focussing on smaller spatial scales are, at least for the 

Antarctic, necessary to detect corresponding effects (Gutt and Piepenburg 2003).  If the 

intermediate disturbance hypothesis can be applied the question remains open, whether in the 

Arctic disturbances are less frequent or more effective and thus species numbers are reduced.  In 
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the latter case we would expect also a higher evenness in the Arctic, which we did not find.  It is 

also still open whether the Antarctic benthos is still in a non-mature stage after the last glaciation 

(Gutt 2000) and whether in the future due to competition less robust species will get extinct at 

least at the local scale. 

 

In general we conclude that at the level of the here presented metaanalysis many ecological 

processes are superimposed and generate even among the relatively simple diversity parameters a 

complexity, which does not allow for many generalizations.  Maybe studies with more detailed 

questions and focussing on more specific temporal and spatial scales or specific groups of 

animals will in fact not answer the "big" questions but can provide more clear insight in driving 

forces behind polar benthic biodiversity patterns. 
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8   Appendices 
 
 
 
8.1   List of abbreviations 
 
 
 
 Abbreviation Description 
 ACE Abundance-based Coverage Estimator 
 ANOSIM Analysis of similarities 
 cm Centimetre 
 EASIZ Ecology of the Antarctic Sea Ice Zone 
 H’ Shannon-Wiener Index 
 ICE Incidence-based Coverage Estimator 
 IMS Index of multivariate seriation 
 J’ Pielou’s evenness 
 km Kilometre 
 m Metre 
 m2 Square metre 
 MDS Non-metric multidimensional scaling 
 ROV Remotely Operated Vehicle 
 S Number of taxa 
 SIMPER Similarity percentages 
 Stn Station 
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8.2   List of ROV stations 
 
 
 
 
Table 1 Video transects undertaken from the British Antarctic Survey research vessel R.R.S. “James Clark Ross” 
in the Bellingshausen Sea (northern Marguerite Bay).  Exp expedition; TL Transect length; AI Adelaide Island; HI 
Horseshoe Island; MI Millerand Island 
 
Exp Stn Date Position (start) 

 
Position (end) Time Depth TL Area 

   Lat (S) Long(W) Lat (S) Long(W)  (m) (m)  
 
JR37 

 
002 

 
03.12.1998 

 
67°35’53.96’’ 

 
68°13’31.55’’ 

 
67°35’59.85’’ 

 
68°13’44.74’’ 

 
21:29 – 22:05 

 
72-132 

 
257 

 
AI 

 
JR37 

 
005 

 
04.12.1998 

 
67°48’39.39’’ 

 
67°20’47.53’’ 

 
67°48’28.09’’ 

 
67°20’07.34’’ 

 
20:29 – 21:59 

 
77-68 

 
788 

 
HI 

 
JR37 

 
006 

 
05.12.1998 

 
67°48’37.95’’ 

 
67°20’39.95’’ 

 
67°48’30.83’’ 

 
67°20’20.22’’ 

 
11:35 – 12:28 

 
70-72 

 
386 

 
HI 

 
JR37 

 
010 

 
06.12.1998 

 
68°10’10.08’’ 

 
67°21’02.32’’ 

 
68°10’04.86’’ 

 
67°21’33.67’’ 

 
12:22 – 13:30 

 
68-71 

 
504 

 
MI 

 
JR37 

 
011 

 
06.12.1998 

 
68°10’44.61’’ 

 
67°10’56.15’’ 

 
68°10’44.89’’ 

 
67°11’01.24’’ 

 
15:46 – 16:27 

 
143-135 

 
425 

 
MI 

 
JR37 

 
012 

 
07.12.1998 

 
67°49’05.73’’ 

 
68°41’13.81’’ 

 
67°49’11.79’’ 

 
68°41’43.93’’ 

 
13:30 – 14:36 

 
112-97 

 
451 

 
AI 

 
JR37 

 
014 

 
07.12.1998 

 
67°44’59.08’’ 

 
68°27’06.19’’ 

 
67°45’02.63’’ 

 
68°27’38.57’’ 

 
19:56 – 21:00 

 
71-56 

 
437 

 
AI 

 
JR37 
 

 
015 
 

 
08.12.1998 

 
67°35’57.66’’ 

 
68°13’28.49’’ 

 
67°36’04.43’’ 

 
68°13’44.87’’ 

 
11:53 – 13:02 

 
90-208 

 
396 

 
AI 

 
 
 
 
 
Table 2 Video transects undertaken from the Alfred-Wegener Institute research vessel “Polarstern” in the Weddell 
Sea.  Exp expedition; TL Transect length; KN Kapp Norvegia; AB Atka Bay 
 
Exp 
ANT 

Stn Date Position (start) 
 

Position (end) Time Depth TL Area 

   Lat (S) Long(W) Lat (S) Long(W)  (m) (m)  
 
XIII/3 

 
024 IIA 

 
21.02.1996 

 
71°07’19.68’’ 

 
11°26’47.16’’ 

 
71°07’20.62’’ 

 
11°28’22.85’’ 

 
11:26 – 12:39 

 
144-62 

 
1358 

 
KN 

 
XIII/3 

 
024 IIB 

 
21.02.1996 

 
71°07’22.80’’ 

 
11°28’40.80’’ 

 
71°07’33.60’’ 

 
11°29’24’’ 

 
12:53 – 13:44 

 
109-112 

 
865 

 
KN 

 
XIII/3 

 
032 II 

 
04.03.1996 

 
70°31’28.43’’ 

 
08°30’46.31’’ 

 
70°32’02.35’’ 

 
08°34’16.70’’ 

 
02:35 – 03:51 

 
145-131 

 
2473 

 
AB 

 
XIII/3 

 
032 IV 

 
05.03.1996 

 
70°32’28.52’’ 

 
08°36’04.77’’ 

 
70°31’42.88’’ 

 
08°36’19.90’’ 

 
01:39 – 02:54 

 
132-139 

 
1466 

 
AB 

 
XV/3 

 
281 

 
01.03.1998 

 
70°40’15.31’’ 

 
08°01’35.12’’ 

 
70°40’00.29’’ 

 
08°02’25.74’’ 

 
19:00 – 20:07 

 
64-66 

 
771 

 
AB 

 
XVII/3 

 
059-1 

 
30.03.2000 

 
70°40’25.72’’ 

 
07°41’08.63’’ 

 
70°40’18.84’’ 

 
07°40’38.96’’ 

 
02:09 – 03:11 

 
126-101 

 
433 

 
AB 

 
XVII/3 
 

 
111-1 

 
05.04.2000 

 
71°07’33.85’’ 

 
11°27’59.98’’ 

 
71°07’32.27’’ 

 
11°27’38.88’’ 

 
00:48 – 01:16 

 
89-61 

 
300 

 
KN 
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8.3   Tables of abundance of taxa  
 
 
 
Table 1 Abundance of taxa (n/100m2) per station in the Marguerite Bay (Bellingshausen Sea).  For description 
of taxa names see list of taxa [“Labels”] (appendices 8.4). 
 
 

Taxa Station 

 002 005 006 010 011 012 014 015 
 
RRC 

 
26,6 

 
36,7 

 
0,0 

 
0,6 

 
10,8 

 
0,0 

 
1,6 

 
1,4 

RSY 3,5 1,1 0,0 0,0 2,5 0,0 7,8 0,7 
RRbt 751,2 2730,0 2444,2 188,9 0,0 6,0 0,0 972,6 
DEM 113,2 155,4 103,6 45,9 20,9 26,6 14,6 59,2 
DEMsp12 0,0 0,0 0,0 5,2 1,7 0,0 0,0 2,2 
DEMsp13 46,2 0,6 2,1 6,9 5,8 0,0 1,4 12,3 
CAL 3,5 0,0 2,1 0,0 0,0 0,0 0,0 0,0 
CIA 11,6 4,5 5,7 4,2 4,2 0,0 0,5 1,4 
CIB 13,9 3,4 4,3 2,3 0,0 0,5 1,6 2,2 
CTN 0,0 0,0 0,0 0,0 0,0 0,0 0,0 8,7 
CTH 2,3 0,0 2,1 1,7 2,5 0,0 0,0 0,0 
HAL 4,6 0,6 0,0 0,6 1,7 3,8 16,1 1,4 
HALsp1 0,0 0,0 5,0 0,0 0,0 0,0 0,0 0,0 
HALsp7 0,0 0,0 0,7 0,0 0,0 0,0 0,0 0,7 
HNA 4,6 4,0 3,5 0,0 0,0 0,5 0,0 2,9 
HNAsp1 3,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 
ISO 1,2 1,1 0,0 0,0 0,0 0,5 0,0 0,0 
ISOsp3 1,2 0,0 0,0 0,0 0,0 0,0 0,0 0,7 
LAP 0,0 0,0 0,7 0,0 0,8 0,0 0,0 0,0 
LAT 1,2 0,6 0,0 0,0 0,8 1,6 0,0 0,0 
LATsp1 0,0 0,0 0,0 0,0 0,0 0,5 0,0 4,3 
LAV 0,0 0,0 0,0 0,0 0,0 0,5 0,0 0,0 
MYC 1,2 15,3 5,7 0,0 4,2 0,0 1,6 2,2 
PHO 0,0 36,2 0,0 0,0 0,0 0,0 0,0 0,0 
PII 1,2 0,6 0,7 6,3 0,0 0,0 0,0 0,0 
PIN 4,6 1,1 0,0 2,3 0,0 0,5 0,0 0,0 
SBL 0,0 0,0 0,0 0,0 0,0 0,0 0,0 2,9 
SBR 6,9 1,7 1,4 1,7 2,5 23,3 7,8 3,6 
TED 0,0 9,4 5,7 4,2 2,5 0,0 1,6 0,0 
TEO 0,0 0,0 0,0 1,1 0,0 0,0 0,0 0,0 
TEL 1,2 4,5 5,7 63,2 2,5 11,4 1,6 0,7 
TEV 3,5 0,0 0,0 0,0 0,0 0,5 0,0 0,0 
YEB 4,6 22,7 104,3 28,1 0,0 0,0 89,5 0,0 
FSH 1,2 2,3 3,5 1,1 21,7 1,3 2,9 2,2 
HYD 120,2 40,7 55,3 64,9 78,5 274,1 48,9 55,6 
HYDsp3 0,0 0,0 0,0 0,0 0,0 8,1 0,0 0,0 
OSA 0,0 0,0 0,0 0,0 0,0 0,5 34,3 0,0 
SYM 0,0 0,6 0,0 0,0 0,0 0,0 0,0 0,0 
LUC 0,0 0,0 0,0 0,0 0,0 12,5 0,5 0,0 
ANT 9,2 6,8 0,7 1,1 0,0 0,0 0,0 4,3 
ALY 0,0 0,0 0,0 0,0 2,5 2,7 36,9 0,0 
ALYsp5 0,0 0,0 0,0 0,0 0,0 0,0 4,7 0,0 
ALM 1,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 
GER 0,0 0,0 0,0 0,6 0,0 0,0 0,0 0,0 
GOR 0,0 11,3 0,0 0,0 3,3 1,6 0,5 0,0 
ARN 0,0 2,3 1,4 0,6 0,0 0,0 6,2 0,0 
DAS 9,2 0,0 0,0 4,6 0,0 28,8 2,6 5,6 
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Table 1 [continued] Abundance of taxa (n/100m2) per station in the Marguerite Bay (Bellingshausen Sea).  For 
description of taxa names see list of taxa [“Labels”] (appendices 8. 4). 
 
 

Taxa Station 

 002 005 006 010 011 012 014 015 
 
ISI 

 
2,3 

 
0,0 

 
0,0 

 
0,0 

 
7,5 

 
6,0 

 
0,5 

 
0,0 

PREsp1 79,7 14,7 15,6 102,8 12,5 5,4 50,5 115,6 
PREsp2 11,6 102,3 132,7 57,4 1,7 15,3 9,9 1,4 
PRI 4,4 0,0 1,4 8,6 3,3 45,6 2,9 19,6 
THO 19,6 6,8 1,4 28,1 20,0 124,3 47,3 19,6 
FAN 0,0 1,7 2,8 2,9 0,0 2,2 0,0 0,0 
IDI 0,0 0,0 0,0 0,0 0,0 0,5 0,0 2,9 
ACT 5,8 1,7 3,5 14,9 0,0 0,5 5,2 0,0 
ACTsp3 4,6 0,0 0,0 0,0 0,0 0,0 0,0 2,9 
ACTsp6 1,2 0,0 0,0 0,0 0,0 0,0 0,0 1,4 
ACTsp8 13,9 0,0 0,0 0,0 0,0 0,0 0,0 6,5 
ACTsp9 2,3 0,0 0,0 0,0 0,0 0,0 0,0 2,2 
ACTsp13 12,8 0,0 1,4 3,4 0,0 0,0 11,4 2,2 
ACTsp19 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,6 
ACTsp20 83,2 0,0 0,0 0,0 0,0 0,0 0,0 34,0 
COF 1,2 1,7 0,0 0,0 0,0 0,0 5,2 1,4 
ICY 0,0 0,0 0,0 0,0 0,8 0,0 0,0 0,0 
CER 69,3 1,7 13,5 13,3 50,9 1,9 2,3 2,2 
CERsp5 16,2 0,6 0,0 0,0 0,0 0,0 0,0 57,8 
NEM 8,9 1,7 4,3 0,6 0,0 1,6 1,9 4,3 
BUC 0,0 0,0 0,7 1,1 0,0 0,0 0,0 0,7 
NUM 0,0 1,1 0,0 0,0 0,0 1,9 0,0 0,0 
NEO 0,0 0,0 3,5 0,0 0,0 0,0 0,5 0,7 
HAR 0,0 0,0 0,0 0,0 0,8 0,0 0,0 0,0 
NUD 0,0 0,0 2,8 0,0 0,0 0,0 0,0 0,0 
RIS 3,5 0,0 0,0 0,0 0,0 0,0 1,4 0,0 
POL 0,0 0,0 0,0 0,0 0,0 0,0 6,2 0,0 
PTA 4,6 0,0 0,0 0,0 0,8 0,0 0,0 0,0 
SAB 0,0 5,7 5,7 2,3 9,2 356,6 11,4 0,0 
SABsp4 0,0 0,0 1,4 1,1 0,8 0,5 0,0 1,4 
SABsp5 34,7 0,0 1,4 0,0 1,7 2,2 27,1 3,6 
SABsp11 0,0 0,0 0,0 0,0 0,0 6,5 1,6 0,0 
SABsp12 0,0 0,0 0,0 0,0 0,0 1,6 0,5 0,7 
POS 0,0 1,7 7,1 7,5 9,2 0,0 71,3 0,0 
POSsp1 1,4 0,0 0,0 4,2 15,0 917,6 2,6 6,5 
POSsp2 0,0 0,0 0,0 2,9 0,0 0,0 0,0 0,0 
PYC 0,0 0,0 0,0 1,1 0,0 2,7 0,5 0,0 
GLY 0,0 0,0 0,0 0,0 0,0 1,9 0,5 0,0 
HEMsp2 0,0 0,0 0,0 0,6 0,8 0,0 0,0 0,0 
HEMsp3 0,0 0,0 0,7 0,0 0,0 0,0 0,0 0,0 
ASC 0,0 3,4 0,0 1,7 0,8 7,6 3,6 0,0 
MOP 42,7 6,8 18,4 1,7 4,2 14,7 6,2 34,7 
CNV 9,2 44,7 51,1 1,7 6,7 0,0 5,5 5,6 
PYU 0,0 16,4 0,0 0,0 0,0 0,5 0,0 0,0 
PYB 2,3 0,0 0,0 1,1 2,5 17,4 1,6 7,2 
PYD 67,1 0,0 38,3 7,5 0,0 2,7 1,4 2,2 
PYS 25,4 0,0 0,0 0,0 2,5 3,3 0,0 14,5 
SYA 0,0 0,0 2,1 0,0 0,0 0,0 0,0 0,0 
SCY 22,0 7,3 0,0 12,6 3,3 8,7 12,0 2,2 
APLsp2 0,0 0,0 0,0 0,0 0,0 0,0 0,5 0,0 
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Table 1 [continued] Abundance of taxa (n/100m2) per station in the Marguerite Bay (Bellingshausen Sea).  For 
description of taxa names see list of taxa [“Labels”] (appendices 8. 4). 
 
 

Taxa Stations 

 002 005 006 010 011 012 014 015 
 
APLsp3 

 
0,0 

 
0,0 

 
0,0 

 
0,0 

 
0,0 

 
0,0 

 
1,4 

 
0,0 

TON 3,5 1,1 0,0 0,0 0,0 0,0 0,0 0,7 
SYN 0,0 0,0 0,7 1,1 0,0 1,9 4,7 0,0 
SYNsp31 0,0 0,0 0,0 0,0 0,0 0,0 1,4 0,0 
ASG 0,0 0,6 0,0 0,0 0,0 11,4 0,0 0,0 
AST 18,5 18,9 13,5 8,6 3,3 21,2 17,2 2,9 
ASTsp25 0,0 0,0 0,0 0,0 0,8 0,0 3,6 0,0 
ACO 5,8 9,7 3,5 0,6 0,8 1,6 2,6 0,7 
CUE 0,0 0,0 0,0 0,0 0,0 0,5 0,0 0,0 
HEN 3,5 0,0 6,4 2,9 0,8 0,5 1,4 1,4 
MAC 4,6 11,9 20,6 4,2 2,5 4,3 6,8 2,2 
ODO 0,0 9,7 5,0 2,9 0,0 2,2 1,9 0,7 
POR 0,0 2,3 0,7 1,1 0,0 4,3 0,0 0,0 
OPH 3923,7 3856,4 4574,8 3766,4 923,1 657,3 2589,2 2464,6 
OGI 0,0 4,0 0,7 0,0 0,0 0,0 2,6 0,0 
CID 0,0 0,0 0,7 0,0 0,0 1,6 0,0 0,0 
STE 1653,4 1656,7 1857,5 884,2 32,5 29,3 54,7 654,7 
HOL 3,5 4,0 0,7 0,0 5,0 3,3 0,5 1,4 
HOLsp10 27,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 
HOLsp11 0,0 0,0 0,0 0,0 0,0 9,2 0,0 0,0 
DEN 2,3 0,6 1,4 1,7 10,0 34,2 214,9 1,4 
DENsp2 1,2 0,0 0,0 0,0 0,0 4,3 0,0 0,0 
EKM 16,2 0,6 0,7 0,0 0,0 0,5 9,9 2,9 
PSO 0,0 0,0 0,0 0,0 0,0 1,9 1,4 0,0 
CRI 5,8 0,0 0,0 0,0 3,3 638,9 5,2 0,7 
BRY 1,2 2,8 3,5 1,1 2,5 1,9 5,2 0,7 
BRYsp7 0,0 0,0 0,7 0,0 0,8 0,0 0,0 0,0 
ALC 0,0 4,0 0,0 0,0 0,0 0,0 0,0 0,0 
AUS 0,0 0,6 0,7 0,6 0,0 1,9 0,0 0,0 
BOD 0,0 1,7 2,8 1,1 0,0 1,9 0,5 0,0 
CAR 0,0 0,0 0,0 0,0 0,8 0,5 0,0 0,0 
CAT 2,3 1,7 0,0 2,3 3,3 0,5 0,0 0,7 
CEL 0,0 5,7 0,0 0,0 0,0 1,6 0,0 0,0 
CHO 0,0 0,0 0,0 0,0 0,8 2,2 0,0 0,0 
CLN 1,2 0,6 0,0 0,0 1,7 0,5 0,0 0,7 
CYCsp1 2,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 
FAS 0,0 1,7 0,0 2,9 0,8 1,9 1,4 0,0 
FLU 1,2 0,0 0,0 0,0 1,7 1,9 2,6 0,7 
FLUsp2 0,0 0,0 0,0 0,0 0,8 0,0 0,0 0,0 
KYM 0,0 0,0 0,0 0,0 0,8 0,5 0,0 0,0 
LAG 0,0 0,0 0,0 0,0 0,8 1,6 0,0 0,0 
MEO 0,0 0,0 0,0 0,0 0,8 2,2 0,0 0,0 
ORT 0,0 0,0 0,0 0,0 0,0 14,7 0,0 0,0 
RET 2,3 0,0 0,0 0,6 0,8 0,5 0,5 0,0 
BSH 0,0 0,6 0,0 2,9 3,3 1,6 2,6 0,0 
PISsp2 0,0 0,0 0,0 3,4 0,0 0,0 0,0 0,0 
PAG 0,0 0,0 0,0 0,0 0,8 0,0 0,0 0,0 
TRE 9,2 5,9 2,8 0,6 0,8 0,5 0,0 1,4 
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Table 2 Abundance of taxa (n/100m2) per station in the Four Seasons Bank (Weddell Sea).  For description of 
taxa names see list of taxa [“Labels”] (appendices 8. 4).  S: shallow; M: middle; D:deep. 
 
 

 Taxa Stations 

  111-1 24IIA-S 24IIA-M 24IIA-D 24II-B 

  
RRC 

 
1,8 

 
0,0 

 
0,0 

 
0,0 

 
8,6 

 RSY 0,9 3,2 1,0 12,2 23,7 
 RRbt 0,0 0,0 0,0 0,0 9,7 
 DEM 145,9 79,1 56,2 34,4 23,2 
 CAL 0,0 1,2 4,9 0,0 1,8 
 CIA 4,4 0,0 0,5 1,7 5,9 
 CIB 69,4 5,7 58,2 232,1 1557,5 
 CTH 0,9 0,0 0,0 1,1 0,0 
 HAL 17,6 10,9 107,0 175,4 0,5 
 HALsp7 15,8 0,0 0,0 0,0 0,0 
 HALsp11 0,0 3,6 24,4 3,9 0,0 
 HNA 7,3 0,0 0,5 2,8 348,0 
 HNAsp1 4,4 0,0 2,0 0,6 7,6 
 HOM 72,6 149,4 297,7 1,7 0,0 
 HOMr 35,1 0,0 0,0 0,0 0,0 
 IOP 2,6 0,0 3,4 4,4 71,8 
 ISO 2,6 0,0 0,0 0,6 0,0 
 ISOsp1 0,0 0,0 0,5 1,1 0,0 
 ISOsp2 2,6 2,0 2,4 0,0 1,8 
 ISOsp3 4,4 0,0 0,0 1,1 23,2 
 LAP 1,8 0,0 0,0 0,0 0,0 
 LAV 0,0 0,4 0,5 1,1 0,0 
 MOL 0,0 0,0 0,0 0,6 46,4 
 MYC 0,0 0,0 0,0 0,6 0,0 
 PII 66,8 25,8 0,0 0,6 9,2 
 PIN 26,4 5,7 0,0 0,0 5,9 
 POC 0,0 0,0 0,0 0,0 9,2 
 SBL 2,6 71,5 50,8 11,7 27,5 
 SBR 6,2 0,0 10,3 86,6 7,7 
 TED 0,0 0,0 106,6 188,8 52,9 
 TEL 1,8 0,8 1,5 3,3 0,5 
 TEV 1,8 0,0 0,0 0,0 0,0 
 TEN 2,6 0,0 0,0 0,0 0,0 
 YEB 1,8 0,0 1,0 121,0 0,0 
 FSH 0,0 0,0 8,3 7,2 2,7 
 HYD 213,5 16,1 37,1 44,4 62,0 
 HYDsp1 22,0 0,0 0,0 0,0 0,0 
 HYDsp2 0,0 0,0 0,5 0,0 0,0 
 HYDsp4 15,8 0,0 0,0 0,0 0,0 
 HYDsp5 0,0 19,8 0,0 0,0 76,1 
 HYDsp6 14,9 0,0 0,0 0,0 0,0 
 HYDsp8 254,0 0,0 0,0 18,9 0,5 
 COM 257,5 0,0 0,0 0,0 0,0 
 COP 185,4 11,7 0,0 3,3 1,8 
 COR 8,0 0,0 0,0 1,7 0,5 
 DRO 14,6 0,0 0,0 0,0 0,0 
 OSA 37,6 337,5 179,9 182,7 17,8 
 SCH 54,5 213,6 478,5 24,4 43,7 
 SCHsp2 171,4 0,0 0,0 0,0 0,0 
 SYM 0,9 66,6 33,2 12,2 0,0 
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Table 2 [continued] Abundance of taxa (n/100m2) per station in the Four Seasons Bank (Weddell Sea).  For 
description of taxa names see list of taxa [“Labels”] (appendices 8. 4).    S: shallow; M: middle; D:deep. 
 
 

 Taxa Stations 

  111-1 24IIA-S 24IIA-M 24IIA-D 24II-B 

  
TUB 

 
0,0 

 
8938,6 

 
5,9 

 
0,0 

 
59,9 

ANT ANT 0,9 4,8 0,5 7,8 4,9 
RRC CLA 283,0 1052,5 151,0 0,6 0,0 
 ALY 17,6 4,4 1,0 0,6 0,5 
 ALYsp5 0,9 0,0 0,0 0,0 0,0 
 ALM 17,6 59,7 6,4 10,0 0,5 
 GER 1,8 0,0 3,9 0,0 0,0 
 GOR 58,9 0,0 11,7 2,8 1,8 
 GORsp11 0,0 0,0 17,1 28,9 1,6 
 AIN 95,8 0,0 0,5 2,8 0,0 
 ARN 97,5 416,2 1406,3 184,9 9,2 
 DAS 4,4 0,0 2,0 16,7 0,0 
 PREsp1 65,9 26,6 85,5 9,4 32,4 
 PREsp2 23,7 2,4 20,0 89,9 0,5 
 PRI 0,0 1,2 159,8 159,3 127,3 
 THO 1,5 0,0 97,3 206,5 9,7 
 FAN 35,1 3,2 0,0 0,6 1,6 
 IDI 0,0 0,0 0,0 0,0 2,7 
 POG 0,0 90,4 0,0 0,0 0,0 
 ACT 1,8 1,2 2,4 6,1 0,0 
 ACTsp3 0,0 0,0 0,0 0,0 0,5 
 ACTsp6 0,0 0,0 0,0 0,0 0,5 
 ACTsp8 0,0 0,8 1,0 5,0 1,6 
 EDW 4,4 0,0 0,0 0,0 1,8 
 HOR 2,6 1,2 1,0 4,4 0,5 
 COF 0,0 0,0 0,0 0,0 0,5 
 CER 6,2 4,0 0,0 5,6 0,0 
 NEM 4,4 1,2 0,0 0,0 0,0 
 NUD 57,1 7,3 0,5 2,2 0,0 
 RIS 1,8 0,0 0,0 0,0 0,0 
 SAB 21,1 5,2 83,1 83,3 1,1 
 SABsp3 0,0 0,0 0,0 0,0 9,7 
 SABsp4 0,0 0,0 0,0 0,0 0,5 
 SABsp5 78,2 0,0 0,0 0,0 148,4 
 SABsp7 0,0 0,0 0,0 1,1 0,0 
 SABsp12 29,0 0,0 0,0 0,0 0,5 
 POS 0,0 0,0 0,0 5,6 0,0 
 POSsp1 89,6 101,3 100,7 20,5 3,2 
 PYC 66,8 39,2 18,6 7,2 8,9 
 GLY 0,9 0,0 0,0 0,0 1,6 
 HEMsp3 1,8 0,0 0,0 0,0 0,0 
 ASC 0,9 0,0 2,0 0,6 0,0 
 MOP 0,9 0,0 0,5 0,0 2,2 
 CNV 0,9 0,8 0,0 0,6 1,8 
 PYU 0,0 0,4 0,5 0,0 0,0 
 PYS 0,0 0,0 0,5 0,0 0,0 
 SYA 0,0 0,0 0,0 6,1 8,6 
 SCY 1,8 0,0 0,0 0,0 0,0 
 APLsp2 0,0 0,0 0,0 0,6 2,7 
 APLsp3 0,9 0,0 1,0 2,2 2,2 
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Table 2 [continued] Abundance of taxa (n/100m2) per station in the Four Seasons Bank (Weddell Sea).  For 
description of taxa names see list of taxa [“Labels”] (appendices 8. 4).    S: shallow; M: middle; D:deep. 
 
 

 Taxa Stations 

  111-1 24IIA-S 24IIA-M 24IIA-D 24II-B 

  
PAEsp2 

 
0,0 

 
0,0 

 
0,0 

 
1,7 

 
0,0 

SYN SYN 1,8 1,2 0,5 0,6 0,0 

 SYNsp30 0,0 0,0 0,0 0,0 4,3 

 SYK 0,0 8,5 3,9 1,1 0,0 

 ASG 0,0 0,0 0,5 0,6 0,0 

 AST 3,8 11,3 7,3 25,5 5,4 

 ASTsp25 0,0 0,4 0,0 0,6 0,0 

 ACO 0,0 0,0 0,0 0,6 7,6 

 CUE 0,0 0,0 0,0 0,6 0,0 

 HEN 5,3 0,4 1,0 5,0 3,2 

 MAC 5,3 1,2 1,5 0,6 1,8 

 ODO 18,5 10,9 1,5 0,0 0,0 

 POR 0,9 0,4 0,0 0,0 0,5 

 OPH 174,0 35,5 88,0 184,9 243,8 

 ASA 0,0 0,0 1,5 12,2 0,0 

 OGI 2,6 1,6 1,0 0,0 0,0 

 CTE 0,0 0,0 0,0 0,0 1,8 

 STE 488,6 2943,1 101,2 26,6 34,5 

 HOL 0,0 0,0 0,0 0,0 1,8 

 DEN 12,3 184,5 25,9 12,2 1,8 

 EKM 1,2 17,8 21,5 2,2 3,2 

 PSO 0,9 0,4 0,0 0,0 0,0 

 CRI 0,9 0,8 23,5 33,3 2,2 

 BRY 0,9 0,0 1,3 1,8 1,8 

 BOD 1,8 0,0 0,5 0,6 0,0 

 CEL 0,0 0,0 0,0 1,4 0,0 

 CLN 0,0 0,0 0,5 0,6 0,5 

 FAS 0,0 0,0 0,5 0,0 0,0 

 MEO 0,0 0,0 0,0 0,6 0,0 

 RET 0,0 0,0 0,0 0,6 0,0 

 BSH 3,5 0,0 1,9 1,8 0,0 

 PISsp3 0,0 0,0 0,0 0,0 14,3 

 TRE 3,5 1,6 1,5 1,1 8,9 
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Table 3 Abundance of taxa (n/100m2) per station in the Atka Bay (Weddell Sea).  For description of taxa names 
see list of taxa [“Labels”] (appendices 8. 4). 
 
 

 Taxa     

  059-1 281 32II 32IV 

  
RRC 

 
51,8 

 
3,0 

 
33,4 

 
55,0 

 RSY 503,9 4,0 34,8 42,1 

 ROF 0,0 0,0 9,5 0,0 

 RRbt 1,0 0,0 3,3 31,7 

 DEM 44,1 27,0 32,5 86,3 

 DEMsp12 2,1 0,0 0,0 0,0 

 CIA 12,3 1,5 5,7 53,4 

 CIB 5,6 0,0 3,5 56,5 

 HAL 2,1 2,0 3,3 7,9 

 HALsp1 3,1 0,0 0,0 0,0 

 HALsp2 2,1 0,0 0,0 0,0 

 HALsp7 1,0 0,0 0,0 0,0 

 HNAsp1 0,0 0,0 0,0 0,5 

 HOM 0,0 0,5 0,0 0,0 

 IOP 9,2 0,0 51,9 11,4 

 ISO 4,1 0,5 0,0 0,0 

 ISOsp2 12,8 0,5 2,9 5,5 

 ISOsp3 0,0 1,5 0,0 0,0 

 LAP 0,5 0,5 0,0 0,0 

 LATsp1 3,1 0,0 0,0 0,0 

 MOL 1,0 13,5 69,2 24,4 

 MYC 1,0 0,5 0,0 0,5 

 PII 0,5 14,5 1,0 2,0 

 PIN 1,0 5,5 0,0 0,5 

 POC 0,0 0,5 0,0 0,0 

 SBL 0,5 0,0 2,4 0,0 

 SBR 0,5 5,5 28,1 2,0 

 TED 7,2 8,0 9,5 4,5 

 TEO 1,5 0,0 0,5 0,0 

 TEL 15,9 2,5 1,5 25,3 

 TEV 1,0 0,0 0,0 0,0 

 YEB 171,2 0,0 78,6 34,3 

 FSH 0,5 133,4 0,5 3,0 

 HYD 380,8 265,8 139,2 138,3 

 HYDsp1 4,1 0,0 0,0 0,0 

 HYDsp2 6,2 0,5 0,0 0,0 

 COP 55,9 1,0 0,5 121,5 

 COR 1,5 0,5 0,0 0,0 

 OSA 0,0 175,4 3,3 0,5 

 SYM 19,0 0,0 0,0 0,0 

 LUC 1,0 1,5 0,0 0,0 

 ANT 0,5 0,0 1,0 9,9 

 ALY 0,0 0,0 0,0 2,0 

 GER 0,0 1,0 0,0 0,0 

 GOR 3,1 1,5 0,0 0,0 

 AIN 0,0 0,0 4,0 1,5 
 API 1,0 15,5 0,0 0,0 
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Table 3 [continued] Abundance of taxa (n/100m2) per station in the Atka Bay (Weddell Sea).  For description of 
taxa names see list of taxa [“Labels”] (appendices 8. 4). 
 
 

 Taxa     

  059-1 281 32II 32IV 

  
ARN 

 
0,0 

 
3,5 

 
0,0 

 
0,0 

DAS DAS 2,1 6,0 3,3 1,0 
Presp1 PREsp1 0,5 5,0 0,0 0,5 
 PREsp2 0,5 5,0 0,0 0,0 
 PRI 17,9 8,5 21,9 5,9 
 THO 45,1 95,4 5,7 19,3 
 FAN 13,8 56,5 0,0 0,0 
 ACT 5,1 3,0 2,4 2,5 
 ACTsp6 0,0 0,0 0,0 5,9 
 ACTsp8 0,0 0,0 0,0 2,5 
 EDW 0,0 0,0 1,0 5,9 
 HOR 4,1 0,5 0,5 0,5 
 CER 8,7 1,0 0,0 0,0 
 NEM 0,5 0,5 0,0 0,0 
 NUM 3,6 0,5 1,0 0,0 
 NUD 1,5 1,0 0,5 0,0 
 RIS 0,5 0,0 0,0 0,0 
 PTA 0,5 0,0 2,0 1,5 
 SAB 10,8 0,0 4,8 5,5 
 SABsp3 0,0 1,0 0,0 0,0 
 SABsp4 5,1 23,5 1,0 0,0 
 SABsp5 14,9 147,4 2,9 0,0 
 SABsp7 192,7 0,0 0,0 0,0 
 SABsp11 0,0 0,5 0,5 0,0 
 SABsp12 1,0 23,0 0,0 0,0 
 POS 1,0 0,0 0,0 0,0 
 POSsp1 1,5 1,5 1,4 0,0 
 PYC 4,1 1,5 0,5 1,0 
 HEMsp2 0,0 0,0 1,4 0,0 
 HEMsp3 2,6 0,0 5,0 5,9 
 ASC 6,2 1,0 0,0 0,0 
 MOP 6,2 3,0 0,0 2,5 
 CIO 0,0 1,0 0,0 0,0 
 COL 6,2 0,0 0,0 0,5 
 CNV 10,3 1,0 0,0 0,5 
 PYU 0,5 0,0 0,0 0,0 
 PYB 4,1 1,0 0,5 1,0 
 PYD 4,6 0,5 0,0 0,5 
 PYS 7,7 0,5 0,0 6,4 
 PCL 89,2 0,0 0,0 0,0 
 SYA 35,4 6,0 417,7 469,9 
 SCY 4,1 0,0 1,0 0,5 
 DIS 2,1 0,0 0,0 0,0 
 APLsp2 1,5 0,0 23,4 4,5 
 APLsp3 16,4 3,0 11,4 136,3 
 PAEsp2 15,9 343,3 6,2 2,0 
 TON 0,0 0,0 18,1 3,5 
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Table 3 [continued] Abundance of taxa (n/100m2) per station in the Atka Bay (Weddell Sea).  For description of 
taxa names see list of taxa [“Labels”] (appendices 8. 4). 
 
 

 Taxa     

  059-1 281 32II 32IV 

  
SYN 

 
7,7 

 
7,9 

 
1,0 

 
0,0 

 SYNsp31 0,0 7,0 0,0 0,0 
 SYK 6,2 16,0 17,6 18,8 
 AST 20,0 11,5 5,2 5,5 
 ACO 0,5 0,0 2,9 1,0 
 CUE 1,5 0,0 0,0 0,5 
 HEN 5,1 4,0 1,0 4,0 
 MAC 1,0 0,5 0,5 3,5 
 ODO 1,0 0,0 0,0 0,0 
 POR 0,0 0,5 0,0 0,0 
 OPH 593,6 92,4 291,7 136,8 
 ASA 2,6 0,0 0,0 0,5 
 OGI 0,5 1,5 1,0 0,5 
 CID 17,9 0,0 2,9 5,0 
 CTE 0,0 0,0 12,4 6,4 
 OTO 0,0 0,0 2,9 12,9 
 STE 26,1 1,0 0,5 0,0 
 IRR 0,0 0,0 6,7 2,0 
 HOL 3,1 0,0 0,0 0,0 
 DEN 217,8 38,5 27,6 5,7 
 EKM 94,8 38,5 8,7 8,9 
 PSO 2,6 0,0 1,0 1,0 
 TAE 3,6 0,0 1,0 0,5 
 CRI 54,3 39,5 86,3 37,7 
 BRY 3,1 0,5 0,0 2,5 
 BRYsp7 0,0 1,0 0,0 0,0 
 ALC 0,5 26,0 0,0 3,5 
 AUS 8,2 0,0 0,0 0,0 
 BOD 16,9 13,0 12,9 3,5 
 CAR 0,5 0,5 0,0 0,0 
 CAT 2,1 0,0 1,0 0,5 
 CEL 20,0 19,5 3,3 3,5 
 CHO 11,8 2,5 2,4 16,4 
 CLN 6,2 6,5 17,6 9,9 
 CYCsp1 0,5 3,0 9,5 0,0 
 FAS 6,2 2,0 0,0 0,0 
 FLU 0,0 0,5 0,5 0,5 
 KYM 9,7 1,0 0,0 0,0 
 LAG 14,4 0,0 7,1 15,9 
 MEO 488,5 236,8 3863,8 274,1 
 RET 0,5 0,5 0,0 0,5 
 BSH 4,1 6,0 0,0 0,5 
 CHI 0,0 1,0 0,0 0,0 
 PAG 0,0 0,0 0,5 0,0 
 TRE 9,2 0,0 1,4 5,0 
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8.4   List of taxa  
 
Here I present the list of the mega-epibenthic taxa identified and analysed at shallow-water stations in 
the Bellingshausen and Weddell seas, Antarctica.   
 
 
Porifera        “LABELS” 
 
Class Hexactinellida      
  Rosella fibulata      ROF 
  Rosella racovitzae     RRC 
  Rosella racovitzae ( budding type)    RRb.t. 
  Scolymastra joubini / Rosella nuda    RSY 
   
Class Demospongiae      
  Calyx spp.      CAL 
  Cinachyra antarctica     CIA 
  Cinachyra barbata     CIB 
  Clathria nidificata     CTN 
  Clathria pauper      CTH 
  Demospongiae spp.*     DEM 
  Demospongiae sp.12     DEM sp12 
  Demospongiae sp.13     DEM sp13 
  "Fan shape"       FSH 
  Guitarra fimbriata      GUI 
  Haliclona sp.      HNA 
  Haliclona sp.1      HNA sp1 
  Haliclonidae spp.      HAL 
  Haliclonidae sp.1      HAL sp1 
  Haliclonidae sp.2      HAL sp2 
  Haliclonidae sp.3      HAL sp3 
  Haliclonidae sp.7      HAL sp7 
  Haliclonidae sp.8      HAL sp8 
  Haliclonidae sp.9      HAL sp9 
  Haliclonidae sp.10     HAL sp10 
  Haliclonidae sp.11     HAL sp11 
  Homaxinella spp.      HOM 
  Inflatella belli      INF 
  Iophon radiatus      IOP 
  Isodictya spp.      ISO 
  Isodictya sp.1.      ISO sp1 
  Isodictya sp.2.      ISO sp2 
  Isodictya sp.3.      ISO sp3 
  Latrunculia sp.1      LAT sp1 
  Latrunculia apicalis     LAP 
  Latrunculia brevis     LAV 
  Latrunculia spp.      LAT 
  Monosyringa longispina     MOL 
  Mycale acerata      MYC 
  Phorbas areolata      PHO 
  Poecilosclerida spp.     POC 
  Polymastia invaginata     PIN 
  Polymastia isidis      PII 
  Stylocordyla borealis (oblong)    SBL 
  Stylocordyla borealis (round)    SBR 
  Tedania oxeata      TEO 
  Tedania tantula      TED 
  Tedania vanhoeffeni     TEV 
  Tentorium semisuberites     TEN 
  Tetilla leptoderma     TEL 
  "Yellow branches"     YEB 
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Cnidaria       
Class Hydrozoa       
  Corymorpha parvula     COP 
  Corymorpha spp.      COR 
  Corymorpha sp.1      COM 
  Hydrodendron arborea     DRO 
  Hydrozoa sp.1      HYD sp1 
  Hydrozoa sp.2      HYD sp2 
  Hydrozoa sp.3      HYD sp3 
  Hydrozoa sp.4      HYD sp4 
  Hydrozoa sp.5      HYD sp5 
  Hydrozoa sp.6      HYD sp6 
  Hydrozoa sp.7      HYD sp7 
  Hydrozoa sp.8      HYD sp8 
  Hydrozoa spp.*      HYD 
  Oswaldella antarctica     OSA 
  Schizotricha cf. unifurcata    SCH 
  Schizotricha sp.2      SCH sp2 
  Symplectoscyphus spp.     SYM 
  Tubularia ralphii      TUB 
 
 
Class Scyphozoa 
  Lucernaria spp.      LUC 
 
 
Class Anthozoa        
 Anthozoa spp.*       ANT 
Subclass Octocorallia
  Clavularia cf. frankliniana    CLA 
  
 Alcyonacea      

Alcyonacea spp.*      ALY 
 Alcyonacea sp.5       ALY sp5 
  Alcyonium spp.      ALM 
  Gersemia spp.      GER 
   
 Pennatulacea
  Umbellula spp.      UMB 
 
 Gorgonacea  
  Ainigmaptilon antarcticum    AIN 
  Arntzia sp.      ARN 
  Ascolepis spinosa     API 
  Dasystenella spp.      DAS 
  Fannyella spp.      FAN 
  Gorgonacea sp.11     GOR sp11 
  Gorgonacea spp.*     GOR 
  Isididae spp.      IDI 
  Notisis spp. / Tenuisis spp.    ISI 
  Primnoella sp.1.      PRE sp1 
  Primnoella sp.2.      PRE sp2 
  Primnoisis spp.      PRI 
  Thouarella spp.      THO 
  Tokoprimno spp.      TOK 
 
Subclass Hexacorallia
  Actiniaria
  Actinaria sp.3      ACT sp3 
  Actinaria sp.6      ACT sp6 
  Actinaria sp.8      ACT sp8 
  Actinaria sp.9      ACT sp9 



152  Appendices 

  Actinaria sp.13      ACT sp13 
  Actinaria sp.16      ACT sp16 
  Actinaria sp.18      ACT sp18 
  Actinaria sp.19      ACT sp19 
  Actinaria sp.20      ACT sp20 
  Actinaria spp.*      ACT 
  Capnea georgiana     CAP 
  Corallimorphus profundus    COF 
  Edwardsia spp.      EDW 
  Hormathia spp.      HOR 
  Isosicyonis alba      ICY 
  Urticinopsis antarcticus     URT 
  Ceriantharia      
  Ceriantharia spp.*     CER 
  Ceriantharia sp.2      CER sp2 
  Ceriantharia sp.5      CER sp5 
 
 
Bryozoa  

Class Stenolaemata 
  Alcyonidium spp.      ALC 
  Austroflustra spp.     AUS 
  Bostrychopora dentata       BOD 
  Bryozoa sp.7      BRY sp7 
  Bryozoa sp.19      BRY sp19 
  Bryozoa spp.*      BRY 
  “Bush complex”*     BSH 
  Camptoplites tricornis     CAT 
  Carbasea curva      CAR 
  Cellaria spp.      CEL 
  Cellarinella spp.      CLN 
  Chondriovelum adeliense     CHO 
  Cyclostoma sp.1      CYC sp1 
  Fasciculipora spp.     FAS 
  Flustridae sp.2      FLU sp2 
  Flustridae spp.      FLU 
  Kymella polaris      KYM 
  Lageneschara spp.     LAG 
  Melicerita obliqua     MEO 
  Nematoflustra spp     NEF 
  Orthoporidra compacta     ORT 
  Reteporella spp.      RET 
 
Nemertini       
 Nemertini spp.*       NEM 
 
 
Echiura        
 Echiura sp.2       ECH sp2 
 
 
Mollusca       
  Austrodoris kerguelensis     RIS 
  Buccinulidae spp.     BUC 
  Harpovoluta charcoti     HAR 
  Marseniopsis mollis     MAR 
  Neobuccinum eatoni     NEO 
  Nudibranchia spp.     NUD 
  Nuttallochiton mirandus     NUM 
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Annelida       
Class Polychaeta       
 Errantia 
  Flabelligeridae spp.     FLA 
 Sedentaria 
  Pista spp.      PTA 
  Sabellidae sp.1      SAB sp1 
  Sabellidae sp.3      SAB sp3 
  Sabellidae sp.4      SAB sp4 
  Sabellidae sp.5      SAB sp5 
  Sabellidae sp.7      SAB sp7 
  Sabellidae sp.9      SAB sp9 
  Sabellidae sp.11      SAB sp11 
  Sabellidae sp.12      SAB sp12 
  Sabellidae spp*.      SAB 
  Polychaeta sedentaria spp.     POS 
  Polychaeta sedentaria sp.1     POS sp1 
  Polychaeta sedentaria sp.2     POS sp2 
  Telepus-Typ      PUS 
 
 
Pycnogonida 
 Pycnogonida spp.*      PYC 
 Colossendeis spp.      EIS 
 
 
Crustacea       
 Isopoda       
  Glyptonotus antarcticus     GLY 
 
 
Hemichordata  
Class Pterobranchia     
  Pterobranchia sp.2     HEM sp2 
  Pterobranchia sp.3     HEM sp3 
 
 
Echinodermata 

Class Asteroidea       
  Acodontaster spp.     ACO 
  Asteroidea spp.*      AST 
  Asteroidea sp.3      AST sp3 
  Asteroidea sp.25      AST sp25 
  Cuenotaster involutus     CUE 
  Diplasterias brucei     DIP 
  Henricia spp.      HEN 
  Labidiaster anulatus.     LAB 
  Leptychaster spp.      LEP 
  Lophaster tenuis      LOP 
  Macroptyaster spp.     MAC 
  Odontaster validus     ODO 
  Perknaster aurorae     PEK 
  Porania spp.      POR 
  Remaster gourdoni     REM 
  Solaster regularis subarcuatus    SOR 
 
Class Ophiuroidea 
  Astrotoma agassizii     ASA 
  Ophiosparte gigas     OGI 
  Ophiuroglypha carinifera     OCA 
  Ophiuroidea spp.*     OPH 
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Class Echinoidea 
  Cidaridae spp.      CID 
  Ctenocidaris spp      CTE 
  Irregularia spp.      IRR 
  Notocidaris spp      OTO 
  Sterechinus neumayeri     STE 
 
Class Holothuroidea  
  Bathyplotes fusciviniculum    BAF 
  Bathyplotes spp.      BAT 
  Dendrochirotida sp.2     DEN sp2 
  Dendrochirotida spp.*     DEN 
  Ekmocucumis turqueti     EKM 
  Holothuroidea sp.10     HOL sp10 
  Holothuroidea sp.11     HOL sp11 
  Holothuroidea spp.*     HOL 
  Psolus spp.      PSO 
  Taeniogyrus contortus     TAE 
 
Class Crinoidea      
  Crinoidea spp.*      CRI 
 
Chordata 
Class Ascidiacea       
 
 Aplidium sp.1       APL sp1 
 Aplidium sp.2       APL sp2 
 Aplidium sp.3       APL sp3 
 Aplidium sp.5       APL sp5 
 Ascidiacea sp.17       ASC sp17 
 Ascidiacea spp.*       ASC 
 Corella eumyota       COL 
 Ciona antarctica       CIO 
 Cnemidocarpa verrucosa      CNV 
 Distaplia spp.       DIS 
 Molgula pedunculata      MOP 
 Pyura bouvetensis      PYB 
 Pyura discoveryi       PYD 
 Pyura setosa       PYS 
 Pyura spp.       PYU 
 Scycozoa sp.1       SCY 
 Synascidiacea sp.30      SYN sp30 
 Synascidiacea sp.31      SYN sp31 
 Synascidiacea spp.*      SYN 
 Synoicum adareanum      SYA 
 Polycitoridae sp.2      PAE sp2 
 Polyclinidae spp.       PCL 
 Polyclinidae f2       PCL f2 
 Polysyncraton trivolutum      TON 
 Synascidiacea sp.32      SYN sp32 
 
Pisces* 
 Chinodraco myersi      CHI 
 Cygnodraco mawsoni      CYG 
 Muraenolepis spp.      MUR 
 Pagetopsis macropterus      PAG 
 Pisces sp.1       PIS sp1 
 Pisces sp.2       PIS sp2 
 Pisces spp.       PIS 
 Trematomus spp.       TRE 
 
 * taxa excluded from diversity analysis 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


