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Abstract: Whenever one draws conclusions from data of neuronal activity about its function for
sensory processing and generating behavior, one inevitably has to hypothesize about the
neural code. Moreover, most specifications of the neural code cannot be justified by data
for principle reasons. Therefore, it is important to strive for descriptions of neural codes,
which make their underlying assumptions as transparent as possible. This thesis combines
arguments of efficient coding with models and constraints of population coding and population

dynamics in order to derive optimal codes from a well-posed set of constraints and demands.
Playing around with these assumptions uncovers their mutually dependent influence on the
shape of the optimal code.

Starting from the standard model of population coding for the study of optimal tuning
widths, diverging conclusions in the literature are resolved by the introduction of a new
independent parameter, namely the dynamic range of a tuning function. The difficulties of
applying this standard model to neuronal representations of, say natural images, motivates a
more exhaustive search for characteristic features of population codes that are most relevant
of coding efficiency. In fact, maximum reduction of the dynamic ranges of the tuning
functions turns out to be most crucial for the maximization of Fisher information. At the
same time, however, this less restricted optimization uncovers severe limitations of Fisher
information as a measure for coding efficiency. In order not to rely on the heuristic argument
of Fisher-optimality, direct numerical evaluations of the minimum mean square error are
used (for the first time in the literature) to compare the efficiency of characteristic examples
of population codes, confirming the advantage of a small dynamic range. The totality of
results on optimal population coding in the first part of this thesis lead to the proposal of the
Bernoulli coding hypothesis. In short, it states that rate coding at physiologically plausible
time scales suggests the use of binary coding rather than analog coding. This statement
applies to population coding as well as single neurons.

The Bernoulli coding hypothesis is challenged by criteria other than coding efficiency as
well. Additionally to the study of the influence of computational constraints on the neu-
ronal readout, the question of the robustness of a code and the possibility of faithful signal

transmission in spite of the neuronal dynamics are investigated in the second part of the
thesis. In particular the latter provides an additional strong argument for the Bernoulli
coding hypothesis, which is independent from coding efficiency.
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The strange thing is that, with so poor means, and so prosaic an
imagination, we manage to formulate workable models – partially work-
able at least. Clever as we are at ball games and ballistics, we imagine
elementary particles everywhere around us and we discuss their collisions
or their capture. These naive pictures already can solve many problems.

Leon Brioullouin, 1964





Chapter 1

Introduction

1.1 Intelligence and Ecology

When the little raven was caught by Gerkeles, the mean giant, he
started to snivel: “Oh, if only I had believed my old grandma... why
I haven’t believed my old grandma, ...oh if only I had believed my old
grandma...” The giant got sick of the cant and asked the raven: “What
in God’s name did your grandmother tell you?” The raven sobbed: “She
said: I tell you what: once there will be a giant, and he will catch you,
and then he will throw you down a kloof, and you will die overwhelmed by
his laughter” and he started to snivel again: “...oh if only I had believed
my old grandma...” The giant grinned maliciously. “Your Grandma shall
be proved correct”, he said, running to the next kloof, which was deep
and steep. When he threw him down the kloof, however, the raven just
opened his wings, flew a quick turn and pecked out Gerkeles eyes. Blind
as he was, the giant toppled erratically over the ridge and fell down the
kloof, while the raven was laughing.

Giants can be tripped up easily, when attacked in an unexpected way. It is the rule
rather than the exception that their extraordinary power is bought at the cost of
being too specialized, such that even slight changes in their situation suffice to make
them look foolish.

Intelligence, on the contrary, rather denotes the intriguing ability to hardly ever
get thrown out of the context required for successful behavior. In other words,
intelligence may be defined to reflect the size of the ecological niche of an organism.
Accordingly, it is an important feature of intelligence and intelligent systems to
be receptive to a large number of potential interpretations for a given situation
more or less simultaneously. A fascinating example for this ability is the impressive

3



4 CHAPTER 1. INTRODUCTION

information processing performance underlying our every-day visual perception.

Egon Brunswik (1903-1955), who was a pioneer of this ecological perspective on
perception [Bru34; Bru43], compared the perceiver with a boxer who is fighting to
survive. Perception is highly selective, task-dependent, and speed may be more
important than accuracy. As a consequence, perceiving should be treated as a series
of gambles, where cues arising from the world are probabilistic in nature.

Even under highly regularized conditions, however, functional models of vision are
not able to mimic human visual perception. For illustration, the task of object
recognition, say to detect an animal within pictures presented on a computer screen,
has not been solved yet. In contrast, human subjects are able to detect a large
multitude of different objects with high speed and apparent ease.

In fact, it is difficult to avoid the conclusion that our brain ’knows’ something about
the structure of natural objects in general independent of the particular item to be
detected. It is not trivial, however, whether it is possible to describe this knowledge
in a compact way. Will we ever be able to name a rule for what makes an object an
object? Or is object recognition essentially a matter of knowledge acquisition?

More concretely we can ask: is it possible to find representations of images that
enhance the possibility for object recognition in general? Clearly, ’in general’ can
only mean ’in general for all natural objects’: only if there is a specific structure
exhibited by the natural environment or more precisely exhibited by those objects
that are naturally relevant, is it possible to reduce the complexity of the problem.

Can we identify such structures in the set of naturally relevant stimuli? How can we
explore whether the early visual system of the brain makes use of such structures?

1.2 Efficient Coding

An intriguing approach to these questions has been based on the efficient coding
hypothesis, which states that sensory neurons adapt to achieve an efficient repre-
sentation of sensory signals. The proposal of this idea is commonly assigned to
Attneave [Att54] and Barlow [Bar59], while there is an even earlier publication by
Zipf in 1949 [Zip49], which presents pioneering work in this direction, and should
be mentioned, too.

The efficient coding principle allows to constrain models of sensory representations
by some knowledge about the ecology of the system. One aspect of the ecology of
visual perception is the fact that natural images (i.e. behaviorally relevant images)
constitute a very restricted set within the space of all possible images. For illustra-
tion, one might compare the number of different images that can be generated with
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Figure 1.1. Comparison of a random grey-scale images (left) with a natural image
(right). The original size of both images is identical (400 × 300 pixels).

a typical computer screen. The number of different grey-scale images that can be
displayed on a computer screen is huge

# {images} = 2561024×768 = 26 291 456 . (1.1)

However, if you look at a random computer screen image (i.e. an image for which
each pixel value is independently drawn from a uniform distribution over the 256
different possible values), it does not look very meaningful to us (see Fig. 1.1, left).
In other words the great majority of images in the pixel space are not relevant, but
natural images (see Fig. 1.1, right, for example) occupy a very small volume in the
pixel image space only. In order to get an estimate for the number of natural images,
one might assume that every natural image can be described in sufficient detail by
the combination of say 10000 (English) words. Assuming further that it is sufficient
to take these words out of a set of 215 = 32768 words, we end up with

# {natural images} ∼ 2150 000 . (1.2)

Though the absolute number of natural images is still large, the information gain
achieved by the constraint to have a natural image will be more than six million
bits with respect to the space of arbitrary 1024 × 768 - pixel images.

In spite of the fact that the number of natural images is several orders of magnitude
smaller than the number of possible images on a computer screen, it is still far too
large for it to be feasible to inform a model by using the brute force method of feeding
it with all natural images. Instead one can search for characteristic similarities
between natural images [SLSZ03] that can be used to find more efficient image
representations, for which the number of irrelevant images is reduced, to some extent
at least.

One such similarity, which has been extensively studied in the recent past, is the
correlation in the statistics of small patches (say 12 × 12 pixel) taken from natural
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Figure 1.2. Basis functions optimized for natural image patches (left) resemble the
receptive fields of cortical simple cells in contrast to the basis functions of a Fourier
representation (right). Pictures are taken from a paper by Lewicki and Olshausen
[LO99]

images (cf. the outstanding review paper [SO01] and references therein). The corre-
sponding basis functions of certain linear generative models of these image patches
(see Fig. 1.2) are more localized than for example a Fourier basis and resembles,
surprisingly, the shape of simple cell receptive fields in cortex [OF96; OF97; BS97;
vHvdS98; LO99].

1.3 Adaptive Distributed Processing and the

Neural Code

The goal of this thesis is not to study the structure or the behavioral relevance of
natural stimuli. Rather, the introduction should set the stage for a problem that
we encounter when we seek to relate functional models of sensory processing to
electrophysiological data.

In fact, there is pretty much evidence that early cortical representations are not com-
pletely predetermined by the genes, but are subjected to activity-dependent changes
and reorganization [Cra99; WCF01; AH02] (see, however, also [KC02; KWGL02]).
This possibility of changing has been related to Hebbian models of synaptic plas-
ticity [MKS89; WG98] and appears to be well suited for unsupervised learning
algorithms[Lin86c; Lin86b; Lin86a], which may optimize the neuronal represen-
tation according to the image statistics such that frequent patterns can be bet-
ter discriminated than rare ones as predicted by the efficient coding hypothesis
[KFK90; PTT00]. But is this enough to expect an agreement between the basis
functions of linear generative models for patches of natural images with measured
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stimulus response

−90 900−45 45

tuning function

0
φ−φ

Figure 1.3. Carica-
ture demonstrating the
construction of a tun-
ing function: the rate
response of a neuron is
plotted as an (interpo-
lating) function of the
stimuli used.

receptive fields in cortex?

In order to assess the meaning of such a comparison, it is necessary to understand in
how far abstract generative models can be related to more detailed descriptions of
neuronal responses. For example, one might ask in how far it is justified to describe
neuronal rate responses by a real number. Moreover, it is not known, whether and
how rate signals are relevant for neuronal processing in the cortex. In other words,
if we aim to relate efficient coding models to neurophysiological data, we are faced
with the fundamental problem that all models of neuronal representations rely on
certain assumptions that can not be justified by data, but are used in the sense of
an approximation. In fact, to date, every study1 of cortical representations relies on
such uncertain knowledge.

Generally speaking, this lack of knowledge about the fundamental question how to
read the measured traces of neuronal responses is expressed by the quest for “the
neural code”. This quest is not so much defined by a clear posed problem, but
rather constitutes a broad collection of questions arising from different contextual
backgrounds.

Conceptually, this thesis developed from the background of population coding re-
search. It contains, however, two fundamental innovations:

• A strong motivation for this work originates from the fundamental problem,
how to make use of results obtained from models that suffer from a large
amount of uncertainty about the assumptions used to set up the model. As
a consequence it is suggested that the goal of theoretical modeling should be
less restricted to the question, whether a model can reproduce an experimental

1It makes no difference whether the study is experimental or theoretical. Any conclusion from
experimental data is possible only by the (implicit) use of a sufficiently precise model, independent
of whether this model is spelled out precisely in mathematical terms, described in plain English,
or not described at all.
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result, but rather it should bring to light, which uncertain assumptions used
by a model are most critical to reproduce the result. Most comprehensively,
this way of model analysis is exemplified in the context of Fisher-optimal
population codes (chapter 5).

• The other innovation is to establish a link between population coding and
efficient coding models, which have been investigated to a large extent inde-
pendently so far. Previous theoretical work on optimal population coding was
mainly concerned with the question on how the tuning width and the noise
model affect the coding accuracy of distributed neuronal representations (see
chapter 4 for references and more), but ignored the influence of the shape of
the signal that is encoded. Efficient coding, in turn, strongly emphasizes the
effect of the particular shape of the signal that is to be encoded, but it is
less detailed with respect to the neuronal constraints on signal transmission
[SO01]. Since these two complementary aspects of encoding mutually influ-
ence each other, it makes sense indeed to bring together what, in fact, belongs
together.

An overview of the particular problems investigated in this thesis is given in the
following section.

1.4 Overview

In chapter 4, the somewhat divergent conclusions in the literature about the opti-
mal tuning width are resolved by introducing a new relevant parameter, which is
the dynamic range of the neuron’s rate response. Subsequently, it is pointed out
that the concept of the tuning width hardly applies to basic linear receptive field
models of simple cells in visual cortex as they are commonly used in efficient coding
models of image patches. In fact, the concept of tuning functions (see Fig. 1.3) used
in population coding models has the drawback to represent a low-dimensional pro-
jection of a high-dimensional parameter space, which is determined by the selection
bias of the experimentalist rather than by the search for a complete model of the
behaviorally relevant parameters as it is strived for in efficient coding.

In order to account for this problem, the study of population codes is first extended
to larger classes of tuning functions, where the shape of the optimal tuning func-
tions is less predetermined by the selection of the set of candidate tuning functions
(Chapter 5). Additionally, this chapter discusses the meaning of Fisher information
in the context of population coding. As a result, it turns out that bell-shaped tun-
ing functions, which are widely considered to be biologically plausible, are rather
disadvantageous. Instead, tuning functions with a small dynamic range turn out to
be advantageous under relevant conditions for a wide range of parameters.
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The relevance of this result is further substantiated by optimizing the nonlinear
gain function of a linear-nonlinear cascade neuron model, which includes the linear
receptive field models used in efficient coding as a special case (Chapter 8). The
crucial result of this analysis is the Bernoulli coding hypothesis, which says that
the rate response of the individual neurons should be interpreted as binary valued
(’all-or-nothing’), rather than analog. This clearly has important implications for
efficient coding models and suggests a new concrete line of approach to the question,
how to read neuronal rate responses.

Finally, the simplifying assumption of a discrete time, memoryless channel is relaxed
and additional constraints on signal transmission due to the neuronal dynamics are
investigated (chapter 11). As it turns out, the need of temporal decorrelation for
rapid signal transmission imposes strong constraints on analog encoding strategies,
while it is crucially less restrictive in case of Bernoulli coding.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Measurement and Models of
Neuronal Activity

The brain consists of a large number of coupled nerve cells (neurons), which for the
human brain has been estimated to be of the order of 1010 to 1011 [BA91]. The most
effective sort of coupling between two neurons takes place at the so called chemical
synapses, which exclusively respond to action potentials of one of both cells only,
namely the presynaptic neuron. Action potentials are characteristic electrical pulses
(“spikes”) that are actively generated by neurons, if their membrane potentials are
sufficiently depolarized. Correspondingly, membrane potential fluctuations are in
general divided into action potentials and subthreshold potentials, the component of
the membrane potential below the firing threshold for spike initiation. The temporal
width of spikes is about 1 ms. Although further signaling mechanisms between
neurons are known, the signal transmission properties of action potentials are very
distinct: While subthreshold membrane potential fluctuations can only propagate for
about 1 mm before becoming substantially attenuated, signals traveling over larger
distances within the nervous system are carried exclusively by action potentials.
Hence, spikes are considered as the most important signal unit in neural networks
of the mammalian brain.

2.1 Recording Neuronal Responses

For a direct measurement of the membrane potential, which does not only resolve
the spikes, but also the subthreshold component, it is necessary to get in electrical
contact with the inner part of the cell. Such intracellular recordings can be performed
either by inserting a sharp, hollow glass electrode filled with an electrolyte into a
neuron, or by attaching a broader tipped ’patch’ electrode to the outer surface of
the cell and breaking or perforating the membrane beneath the tip of the electrode.

11
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C RI

Figure 2.1. The equivalent circuit for the leaky integrate-and-fire model. The
capacitance C can be charged by an external current I(t), while the leak current
V/R against the resistance R always discharges it.

With the patch clamp technique it is possible to either measure the membrane
potential of the whole body of a cell, or of a single channel of the membrane only
(cf. [SN84]).

If one is interested in spike trains only (i.e. the temporal sequence of action poten-
tials), it is sufficient to bring an electrode close enough to the cell, which measures
the electric field induced by the large membrane potential fluctuations of the spikes.
Since such extracellular recordings are less complicated and more stable than intra-
cellular recordings, they are often preferred, in particular for in vivo experiments.
Furthermore, it is possible to record extracellularly from many neurons simultane-
ously, using multi-electrode arrays.

Apart from these methods, which aim to measure the membrane potentials or spikes
of individual neurons, there are a few more techniques based on secondary signals
that reflect certain spatial averages over the electrophysiological activity of many
cells. Similar to extracellular recordings, the local field potential (LFP) and the
electroencephalogram (EEG) are measurements of the electric field induced by the
electric nerve cell activity, while only the size of spatial averaging is increased. Com-
pletely different is the use of voltage-sensitive optical dyes and fMRI.

2.2 Neuron Models

In order to investigate the electrical response properties of a neuron, one injects
current signals into the cell during recording in vitro. The basic response properties
of neurons find a simple description in terms of the leaky integrate-and-fire (LIF)
model [Lap07; Tuc88; DA01; GK02]. In this model, the subthreshold membrane
potential response V (t) corresponds to the charging and discharging curve of a
capacitance C that is wired in parallel with a resistance R (Fig. 2.1) leading to a
simple low pass equation
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τmemV̇ (t) = Vin(t) + V0 − V (t) (2.1)

where the membrane time constant τmem is equal to the product RC and Vin(t)
denotes the input signal, which corresponds to an input current multiplied by the
resistance R. Typically, values for the membrane time constant lie in the range
between 10 ms and 50 ms. The resting potential V0 is about −60 mV. Whenever
the membrane potential crosses a certain threshold Vth, which is about 10 mV above
the resting potential, the neuron generates an action potential. Within a fixed time
interval (tsp, tsp + τsp) after each threshold crossing tsp the time evolution of V (t) is
not governed by Eq. 2.1 anymore, but given by a predefined spike shape function
Vsp(t − tsp) with Vsp(0) = Vth and Vsp(τsp) = Vreset. An example is displayed in
Fig. 2.2, where the shape of Vsp : [0, τsp) → R was chosen to resemble the shape of
action potentials in real measurements.

For the purpose of many theoretical studies, however, the particular shape of an
action potential is not relevant. Therefore, it suffices to specify the parameters
τsp, Vth and Vreset only. Then, for a constant input the time course of the membrane
potential can be easily computed analytically. Let tn, tn+1 denote the time instants
of two subsequent spikes. Then the dynamics within (tn + τsp, tn+1) is governed by
the linear differential equation (2.1) with the initial condition V (tn + τsp) = Vreset

so that we obtain

V (t) − V0 = Vin + (Vreset − V0 − Vin) exp

{

−t − tn − τsp

τmem

}

(2.2)

for all t ∈ (tn + τsp, tn+1). Since we know that limt→tn+1 V (t) = Vth, we can now
express the length T ISI = tn+1 − tn of an interspike interval (ISI, i.e. the interval
between two subsequent spikes) as a function of the constant input Vin and the
parameters of the LIF model:

T ISI = τsp − τmem ln
Vth − V0 − Vin

Vreset − V0 − Vin

(2.3)

provided Vin > Vth − V0.

There are several symmetries in Eq. 2.3, which can be used to clarify the relevant
determinants of the interspike interval length. By introducing new variables, V̂in :=
Vin/(Vth − V0) and Creset := 1 − (Vreset − V0)/(Vth − V0), Eq. 2.3 can be rewritten

T ISI

τmem
=

τsp

τmem
+ ln

(

1 +
Creset

V̂in − 1

)

, V̂in > 1 (2.4)
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Figure 2.2. The upper panel shows the normalized input current, which equals
two for the first 50 ms and then switches to a zero mean Gaussian white noise
signal. The resulting membrane potential fluctuations of a LIF neuron model with
V0 = Vreset = −60 mV, Vth = −50 mV, and τsp = 2 ms are shown in the middle
panel. In the lower row, a random sample of a Poisson spike train is displayed, for
which the rate is proportional to the input signal shown in the upper panel with the
negative values treated as zero.

which means that now time is measured in units of the membrane time constant, the
input is measured in units of the difference between threshold and resting potential,
and the reset potential only enters Eq. 2.4 through the constant Creset, which is the
smaller, the larger the reset potential is.

In experimental studies it is quite common to measure and plot the frequency of
spikes as a function of an injected constant input current I for characterizing the
response properties of a neuron. In this way one obtains the so-called frequency-
current curve or just f-I curve, which can be compared to that of neuron models
Equivalently, f := 1/T ISI can be determined as a function of Vin = RI for the
integrate-and-fire neuron model. Since the quantities f and I are well-defined only in
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Figure 2.3. In case of Vreset = V0 and τsp = 0 the average firing rate of the LIF
neuron lies within the dark shadowed region for any given (temporal) average of the
input current. The dashed line indicates a tighter upper bound, which is obtained,
if the maximum input V̂in = 10. The dotted lower bound corresponds to a constant
current input, if τsp/τmem = 0.1.

the particular case of constant input, one may ask more generally for the relationship
between the temporal averages of the rate and the input, which is called the gain
function of the neuron. In particular, the average rate

〈r〉 = lim
n→∞

n
∑n

k=1 T ISI
k

, (2.5)

where T ISI
k denotes k-th interspike interval, is a quantity that can be measured very

reliably and hence, it often makes sense to use 〈r〉 for determining the parameters of
the LIF model. The relationship between 〈r〉 and the average input 〈Vin〉, however,
is not uniquely determined by the parameters of the LIF model, but depends on the
waveform of the input signal as well.

Nevertheless, it is possible to give lower and upper bounds that hold in general.
Clearly, the constant current input is the least effective input, i.e. it is the waveform
with the lowest average rate for a given 〈Vin〉. In order to obtain an upper bound
on 〈r〉, we make use of the fact that in reality Vin(t) has to be bounded so that
we have Vmin ≤ Vin ≤ Vmax. The biophysical properties of neurons further suggest
that the values of Vmin and Vmax can be related to the resting potential V0 and the
peak membrane potential maxt∈[0,τsp] Vsp(t) that is reached during the formation of
an action potential.
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If we use Vin ≥ 0 only, the most effective waveform is given by a Dirac delta comb
V̂in(t) =

∑

{tsp}
δ(t− tsp), where {tsp} stands for an arbitrary set of spike times with

the only restriction that |tsp − t′sp| > τsp for all tsp, t
′
sp ∈ {tsp}. In this limiting case

the effect of the leak current vanishes, so that the gain function of the LIF neuron
becomes equivalent to that of the perfect integrate-and-fire model (PIF model), for
which Eq. 2.1 is replaced by

τmemV̇ (t) = Vin(t) . (2.6)

For the standard choice τsp = 0 and Vreset = V0 the gain functions of both waveforms
(constant and delta comb) are shown in Fig. 2.3 (solid), enclosing a rather narrow
region, within which 〈I〉 may vary for given 〈r〉, if nothing else is known about the
waveform of the input current. If one makes additionally use of V̂in ≤ V̂max, the size
of this area is further reduced. Assuming V̂max = 10 according to the typical size
of spikes measured in vitro we can compute an upper bound on 〈r〉 that is closer to
the lower bound (Fig. 2.3, dashed).

It is important to note that the choice τsp = 0 and Vreset = V0, frequently taken for
the sake of simplicity, have an effect on the gain function as well. While τsp > 0
leads to asymptotic saturation (e.g. Fig. 2.3, dotted), 1/Creset can be considered as
a constant gain factor, because it holds

τmem

T ISI − τsp

=

{

ln

(

1 +
Creset

V̂in − 1

)}−1

≈ 1

Creset

{

ln

(

1 +
1

V̂in − 1

)}−1

, V̂in > 1

(2.7)

In fact, the choice of Creset can even change the way of signal transmission between
integrate-and-fire neurons qualitatively. This qualitative change is tightly related
to the possibility or impossibility of generating irregular spike trains, which has
been shown to depend strongly on the reset potential [TM97]. The implications of
irregular firing for signal transmission will be analyzed in chapter 11.

2.2.1 Multi-dimensional Neuron Models

Although the LIF model is motivated by the description of the membrane as a
capacitance, it has to be considered rather as a phenomenological model than as a
biophysical one. Historically, the Hodgkin-Huxley model was a great success because
of its biophysical motivation [HH52]. It belongs to the class of conductance-based
models (for a comprehensive introduction, see [DA01; GK02]), which are of the form
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CV̇ =

n∑

k=1

ḡk mαk

k hβk

k (V − Vk) + I(t) . (2.8)

While the membrane is modeled by a capacitance like in the integrate-and-fire neu-
ron, the conductances governing the currents through the membrane need not be
passive, but can depend on the history of the voltage time course. The different sorts
of conductances commonly used can be related to certain types of ion channels in
the cell membrane. Each type of ion channel can be modeled by a maximal conduc-
tance ḡk and an individual reversal potential Vk. The dynamics of the conductances
are described by certain gating variables mk, hk, for which additional differential
equations have to be specified. Sometimes the gating variables are potentiated by
integers αk, βk ∈ N, if e.g. a number of gates have to be activated simultaneously
in order to open the channel. In other words, Eq. 2.8 expresses some kind of mean
field approach.

Through the explicit modeling of the effective channel dynamics, it becomes possi-
ble to model the generation of a spike explicitely as the result of the autocatalytic
processes caused by the voltage dependent conductances1. Another important as-
pect of conductance-based models is the fact that they can also model the ligand
controlled input from the synapses more realistically, because the effect of synaptic
input is not constant, but depends on the membrane potential as well. This aspect
is very often neglected in network models using integrate-and-fire neurons (but see
e.g. [HNT01]). Finally, there is also the possibility to account for current injection
experiments, by using I(t) in order to model the input from the electrode.

Different conductance-based models differ mainly in the number and types of cur-
rents taken into account. The Steven-Conners model e.g. has been developed as a
model of the pyramidal cells in cortex, for which the Na+ and K+ conductances
have faster kinetics than in the Hodgkin-Huxley model, which makes action poten-
tials briefer. In addition, the Connor-Stevens model contains an extra K+ conduc-
tance, called the A-current, that is transient. Further specializations and aspects,
which are important for signal transmission, like spike-frequency-adaptation (SFA),
can be implemented in the same way by adding further currents. A comprehensive
overview can be found in [DA01].

This brief report on different neuron models may already demonstrate that there is
actually a large variety in the response properties of neurons, which require many
specifications. Various approaches have been suggested in order to handle the large
number of parameters. A well known example of a simplified conductance-based
model with only two state variables is the Fitz-Hugh-Nagumo model [Fit61]. Later,
a straightforward method to reduce the number of parameters of neuron models was
published by Kepler [KAM92], which is based on time scale separation approxima-
tion. Although approximation methods are often motivated by the need to simplify

1The Na+ and K+ conductances are most important for the generation and shape of spikes
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the analysis of a particular model, they typically reflect the idea that the description
of some details may not be necessary, but rather obscures the actual functioning of
a neuron.

2.2.2 Statistical neuron models

Statistical neuron models are prevalently used as abstract models for spike gener-
ation that aim to catch the essential dependence on some input signal of interest.
While it is possible to consider a current signal injected into a neuron as such,
in most experiments the input signal is defined by a parameter that distinguishes
different features of externally presented stimuli. In the latter situation the neu-
ronal response properties can be very different from those in the current injection
paradigm, because they are not shaped merely by the dynamics of the individual cell
anymore, but now reflect a much longer signaling pathway influenced by multiple
interactions with other neuronal and synaptic processes. For this reason, a neuron
responds typically quite variably to the presentation of the same stimulus signal,
which makes statistical descriptions necessary.

Most statistical neuron models are build upon point process theory, for which an
outstanding review paper is available [Joh96]. The most simple point process is the
inhomogeneous Poisson process, which is completely characterized by an intensity
function µ(t) that depends on the absolute time t only. In other words, the Poisson
process is unique in its property of being completely independent from the occurrence
of former spikes. An important implication of this independence on the history is
the fact that for a Poisson spike train the counting statistics, i.e. the probability
to find k spikes in any arbitrary chosen time interval (t1, t2), is always given by a
Poisson distribution

PPoisson(k|λ) =
λk

k!
e−λ (2.9)

with parameter

λ =

∫ t2

t1

µ(t) dt . (2.10)

This is different for all other point processes, where the occurrence of a spike can
change the shape of the intensity function r(t|t0, t1, . . . , tn) with respect to t. In
general, a random sample of any point process can be generated from the conditional
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Renewal Process: Intensity function depends merely on the time point of the last spike

Markov Process of n−th order: Intensity function depends only on the time points of the last n spikes

Markov Point Process Hierarchy

Poisson Process: Intensity function is completely independent from the history of spike generation

Figure 2.4. Markov Point Process Hierarchy: Generally speaking, a point process
is a Markov point process of order n, if the intensity function depends only on the
last n events. The Poisson process and the Renewal process are special cases for
n = 0 and n = 1, respectively.

interval distribution given by the density:

ρ(T |t0, t1, . . . , tn) = r(tn + T |t0, t1, . . . , tn) exp

{

−
∫ tn+T

tn

r(s|t0, t1, . . . , tn) ds

}

.

(2.11)

Hence, the crucial question that needs to be answered in order to specify the neuron
model, is how to determine the intensity function. Note, that this holds also true in
case of a Poisson process, because there are many ways to define how its intensity
function µ(t) shall be governed by the input. In the most simple case µ(t) is just
equal to the input signal x(t) for all t (which requires x > 0), or more generally
there is a static mapping g : R → R

+ translating the input signal into the required
intensity signal (see Fig. 2.2). It is, however, also possible to model the activity
of a neuron by a Poisson process, for which the intensity function µ(t) is a filtered
version of the input signal. In that case spike initiation is not only governed by the
current input x(t), but may depend on its history in arbitrary complex ways. The
choice of the Poisson model implies only that it is irrelevant whether or when the
input in the history has triggered an action potential.

The basic biophysical properties of neurons, however, give reasons to make the in-
tensity function also dependent on previous spikes. In particular, immediately after
each spike there is a refractory period within which the neuron can not be driven
to generate an action potential again. This piece of knowledge can be incorporated
into a renewal process. The renewal processes constitute the next level in the hi-
erarchy of Markov point processes (see Fig. 2.4), being additionally dependent on
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the occurrence of the last spike only. Although this additional degree of freedom
is not sufficient to model prominent properties of neurons such like spike frequency
adaptation exactly2, the importance of renewal neurons lies in the fact that these
mechanisms do not significantly alter the transmission of the high frequency com-
ponents of the input signal.

An example of a renewal neuron model, we already know, is the LIF model intro-
duced above, for which the period of absolute refractoriness can be modeled by the
width τsp of the spike shape function and the strength of the relative refractoriness
can be modeled by its reset value Vreset. In any case, however, the LIF model is
strictly deterministic, and hence, it is an important generalization to take the pos-
sible influence of noise into account. For illustration, this can be done by defining
the intensity function on the basis of LIF model via µ(t) = g(V (t)) with the only
difference that the spike shape function is now used exclusively to model the period
of absolute refractoriness and hence, is set to Vreset identically. If we choose e.g.
g(V ) = β[V − Vth]+, where

[x]+ =

{
x , x > 0
0 , x ≤ 0

(2.12)

denotes the rectifier function, the noise level in spike generation is controlled by the
parameter β, obtaining the deterministic LIF neuron as a special case for β → ∞.

For completeness it should be mentioned that there are also point processes that
are not Markovian and might be useful for neuronal modeling. For example in the
Hawkes Process [Haw71] the intensity function depends on the Green’s function of a
linear filter responding to the Dirac impulses generated by the point process, which
provides the basis for a statistical generalization of the spike response model, which
has been used in [GvH93]. In general, the appropriate choice of a neuron model
strongly depends on the question under study and has to be justified with respect
to the problem at hand.

2.2.3 Large-Scale Population Models

Another line of abstraction from detailed modeling of individual cells is based on
the idea, that information processing in cortex does not rely on single cells, but is
based on the pooled activity of large populations of neurons. Probably the best
known population model is the Wilson and Cowan model [WC72], which describes
the total firing rate of a population in terms of linear response theory with a time
constant typically set equal to the membrane time constant of single neurons.

2Exact modeling of SFA requires an explicit dependency of the intensity function on the occur-
rence of several spikes in the history. It is, however, possible to account for the effects of SFA in
some detail just by linear or nonlinear high-pass filtering of the input[BBH+01]
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Population neuron models are of particular importance for large-scale neural network
models, which have been extensively used to analyze pattern formation processes
of cortical maps like e.g. ocular dominance [Swi80] or orientation preference maps
[Swi82; Mil96; BC02]. The linear approximation of the population rate response,
however, is rather weak due to the crucial dependence of the population response
on the present membrane potential distribution which in general is a function of
the input history [Kni72]. Recently, many theoretical studies [vS96; BH99; NB02;
OKKS00; HNT01; GK02; DGM] clarified the population response properties in
considerable detail using a diffusion approximation approach [GM64; Joh68]. This
improved understanding also opens up new possibilities to determine relevant aspects
of the dynamics of real neurons experimentally [SBM+04].

The reasons for the use of population models are twofold: first, one is clearly urged
to make some simplifications, if one intends to model large-scale neural network
models, because otherwise such a task becomes simply intractable. On the other
hand, simple or even minimalist models can have the distinct advantage to make
transparent, which minimal set of assumptions are necessary in order to achieve
a certain behavior of interest. In this sense, the level of abstraction of a model
also tells something about what the relevant entities are. This question is indeed
important for the exploration of neuronal functioning and will be the subject of the
next chapter.



22 CHAPTER 2. MEASUREMENT AND MODELS OF NEURONAL ACTIVITY



Chapter 3

Neural Coding

The quest for the neural code arises from the fact that not all known neurophysiolog-
ical processes need to be relevant for the control of behavior performed by the brain.
What the “right” way is to read the activity recorded from a neuron depends on
the question that is to be answered. While biophysical neuron models are quite suc-
cessful in reproducing the behavior of real neurons responding to injected currents,
these preparations allow only very limited conclusions about the function of a cell
in a (large) network of coupled neurons. In other words, the issue of the neural code
constitutes an ecological approach towards the study of nerve cells, where the ’mean-
ing’ of a neuron’s behavior is to be determined by its environment. This implies,
in particular, that any sound definition of a neuronal representation requires that a
model of the environment is specified, since there are typically various interesting
aspects of the environment with respect to which a system can be studied.

Unfortunately, there is no established concept how to define a neural code precisely.
Instead, neural coding is commonly rather introduced as a collection of particular
questions (e.g. ’rate coding’ vs ’temporal coding’ or ’grandmother cells’ vs ’popu-
lation coding’)1 and methods (e.g. ’stimulus reconstruction’ experiments or ’infor-
mation theory’). Since this often leads to misunderstandings between researchers, I
will present my personal approach to this question. Because I am aware of the fact
that any proposal for a precise grounding of this issue is at risk of being too narrow
for the taste of some others, I will try to clarify its notion by the use of analogies
rather than giving a formal definition.

Probably, most people will follow me if I say that the issue of neural coding is
motivated by the goal of understanding how information is processed by the brain.
Note that I do not claim that the brain is an information processing device per
se. However, through the definition of a task, which defines the input (e.g. a set
of visual stimuli) and the output of the brain (e.g. pressing a button or not) it is

1All terms will be explained below.
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Figure 3.1. Simple feed-forward network.

often possible to describe the output as a deterministic function of the input (e.g.
the button is pressed, whenever there is an animal in the presented picture). In
other words, whenever we are able to prepare a system such that its response is
reliably controlled by its input, we can ask for those processes in the system that
are necessary and sufficient to achieve the observed input-output relationship2.

Although artifical neural networks are too simplistic to account sufficiently for in-
formation processing in biological neural networks, we should at least be able to
explain the issue of neural coding by means of a neural network model, where vague
notions cannot be excused by a lack of knowledge about the system.

It is instructive to start with a very simple discrete time, feed-forward network, which
is already sufficient to reveal some fundamental difficulties of defining a neural code.
In this model (see Fig.3.1), each unit computes the sum of its inputs within the
last time-step only and the output of the neuron is set to one, whenever this sum is
super threshold, and otherwise zero:

st+1
l+1,j = θ

(
st

l,3j−2 + st
l,3j−1 + st

l,3j − φl

)
, l ∈ {1, 2} . (3.1)

In Eq. 3.1 the index l denotes the layer of the network, j = 1, . . . 3(4−l) enumerates
the different neurons within each layer, φl = 5

2
− l is the threshold depending on

l, and θ(x) is the Heaviside function, which is one if x > 0 and otherwise zero. In
this way, the output of layer 3 at time t is completely determined by the activity
pattern of layer 1 at time t − 2 or equivalently by the activity pattern of layer 2 at
time t− 1. In conclusion, the functioning of this network is known, but what is the
neural code of this network?

2Note that the notion of information processing implies that the input-output relationship is
stable and hence intended to be deterministic.
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3.1 Neural Code vs Neuronal Representations

Clearly, we cannot determine the relevant aspects of a neuron’s activity within a
network, if we had not specified before what the relevant behavior of the network is.
The feed-forward structure of the network model introduced above might suggest
to consider the output pattern of the third layer as the relevant network behavior.
According to the point of view that a neuronal representation is something like the
relevant neuronal activity used to make an intermediate result available to further
processing by subsequent neurons, the binary string (st

l,1, . . . , s
t
l,3(4−l)) of neuronal

activities at one particular time step in each layer would constitute an intermedi-
ate result, because this string is necessary and sufficient to determine the network
output.

This is different, however, if for instance we use the network in order to control the
behavior of a Khepera robot. For concreteness, let us assume the velocity vl of the
left wheel is given by

vt
l = st

3,1 +

100∑

τ=0

st−τ
3,2 , (3.2)

while the velocity the right wheel does not depend on the first neuron, but on the
third instead:

vt
r = st

3,3 +
100∑

τ=0

st−τ
3,2 . (3.3)

Consequently, it is now necessary to consider the last 101 time steps
(st−100

l,1 , . . . , st−100
l,3(4−l), . . . . . . . . . , s

t
l,1, . . . , s

t
l,3(4−l)) at each layer in order to obtain a com-

plete intermediate result. While this array of recorded activity constitutes a precisely
defined neuronal representation of the motor behavior of the robot, it is not so much
appropriate to look at if one rather seeks a simple description of the computation-
ally relevant interaction between the individual neurons in a network. Therefore, it
is worthwhile to distinguish between a neuronal representation and a neural code.
While a neuronal representation should explain an external variable of interest com-
pletely, the neural code is merely about setting up an appropriate signal space.

The relation between neuronal representations and neural codes may be best illus-
trated by an example: Imagine an experimentalist recorded spike trains from our
simple network model without knowledge about the time binning, and now tries to
identify the neuronal representation of the wheel velocities on the basis of interspike
intervals. Obviously, he would never be able to explore the correct neuronal rep-
resentation, if he sticks to the interspike intervals as a description of the neuronal
response.

In fact, every electrophysiological study relies on a hypothesis about the neural code,
which makes the pursuit of the neural code such an important enterprise. As long
as one is not able to set up experiments where the relationship between neuronal
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activity and the external variable of interest is deterministic, it is likely that at least
to some extent the observed variability is due to an inappropriate choice of the signal
space.

The question for the neural code is more closely related to theoretical considerations
than the study of neuronal representations is. This is, because in the regime of large
variability every interpretation of experimental data in terms of a certain type of
neuronal representation relies on a hypothesis about the neural code that can not
be justified by the data. Further clarification of this complementary relationship be-
tween neuronal representations and the neural code is possible in terms of statistical
learning theory, to which we will get within the next section on neuronal decoding.

3.2 Neuronal Decoding

...The Art of Reading Thoughts

Today the prevalent experimental paradigm in neural coding research is the stimulus
reconstruction approach. Instead of looking for those neuronal signals that control
the behavior of the animal, the neurons are selected beforehand (by poking with an
electrode into certain regions of the brain) and then it is explored which variables of a
stimulus and behavior can be predicted by the recorded activity. While in principle,
it would be highly desirable to correlate the neuronal activity with both, the relevant
sensory signals and the behavioral signals at the same time, most studies consider
only one of the two. Moreover, as a purely correlational study, stimulus reconstruc-
tion techniques can only reveal statistical dependencies, but they do not support
any conclusions about causality. While the principle possibilities and limitations of
this approach are illustrated in Fig. 3.2, we will now go on by taking a closer look
at the inference problem that plays a major role in stimulus reconstruction studies.

Ultimately, one seeks to determine a function, which maps any possible neuronal
response to the stimulus (or the motor response) that one would predict from it.
Typically, the goal is to determine this function such that the predictions become
as good as possible.

The issue of inference does not only arise in the context of stimulus reconstruction
experiments, but it also applies for instance to the problem of perception in general,
which has to be solved by the brain in order to generate successful behavior. In
fact, the inferential approach constitutes a particularly important concept in under-
standing perceptual brain functions, because it helps to guide thinking about the
problems of perception and action in general3.

3A strong influence towards this way of thinking came from the studies of Helmholtz [Hel78].
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Figure 3.2. Left: caricature of a neural network. x denotes the stimulus and s the
behavioral response controlled by the experimentalist. k1, . . . , k5 represent examples
of possibly recorded neuronal responses. To some extent, the responses k1, . . . k4 are
controlled by the stimulus, but it will be influenced by other inputs as well (red
question marks). This input can be either purely endogenous or there may also
be some relevant stimulus parameters that have been overlooked (black question
marks). While on the basis of correlation studies k4 can not be distinguished from,
say, k3, it is obvious in this model that k4 is irrelevant for the considered task, while
k3 is not. Note, that “causal studies”, which make use of electrical stimulation or
reversible inactivation of cells, are likely going to fail to reveal a contribution of
k3, if the neuron is part of a redundant processing scheme. This case is illustrated
if k1, k2, k3 ∈ {0, 1} are identically activated and read out as indicated. Right:
The Venn diagram illustrates how the neuronal signals can be separated into four
parts. For the signal processing only the intersection of the neuronal response k
with the behavior s is relevant. This part of the signal can be further decomposed
into a part, which is additionally correlated with the stimulus x, and the remaining
variability, which impairs the performance of the network. The other two regions
represent noise. If the noise is correlated with the stimulus, the correlation is usually
called an epiphenomenon, while the remaining variability (indicated by the question
marks) is not related to the considered signal processing task at all.

3.2.1 Optimal Estimation

Statistical estimation theory constitutes a successful approach to deal with inference
problems. The general question in estimation theory is to determine a rule (called
estimator) that is optimally suited to the given inference problem. Inference prob-
lems differ mainly in the kind of knowledge that is available. E.g. knowledge can
vary to the extent in which the statistical relationship between observable data and
the signal to be estimated is known. Therefore, the notion of an optimal estimator
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strongly depends on the assumptions one is willing to make.

The main concepts are explained in the following in a way that is intended to
serve especially those readers, who want to get an overview about the main ideas
in estimation theory, but do not bother too much with mathematical details. To
this end, I will explain the concepts all along the same toy problem, namely to
estimate the mean of a Bernoulli random variable, which constitutes a particularly
simple exponential family (see appendix A.1). The most important source of the
following overview is the textbook of Lehmann and Casella [LC99], which I can
highly recommend for a more comprehensive and a more precise introduction.

The Bernoulli family of distributions is given by

P (b|f) = f b(1 − f)1−b (3.4)

where b ∈ {0, 1} and f ∈ [0, 1]. Probably the best known estimator of the mean of
a random variable is the sample mean, which in case of our example reads f̂n = k

n
,

where n is the total number of samples and k is the number of samples, for which
b = 1. In the case that all samples are independent, identically distributed (i.i.d.),
the sample mean is a consistent estimator, which means that

∀ε > 0 : P (|f̂n − f | > ε)
n→∞−→ 0 (3.5)

Note that the term ’estimator’ is often used with two different meanings. While
basically any arbitrary function of observable random variables is called an estima-
tor, if it is intended to predict some quantity, we have here a somewhat different
meaning: An estimator denoting a single function cannot be consistent, but only a
particular sequence of such. Therefore, if one talks about ’the’ sample mean, ’the’
maximum likelihood estimator or ’the’ mean square estimator, to name some ex-
amples, one does not refer to a unique function, but to a certain set of estimators,
which is defined by a unique construction rule. If the latter is specified, a sequence
of observations naturally leads to a unique sequence of estimators.

Like any asymptotic property, consistency is a rather weak constraint, which can be
fulfilled by many functions. For illustration consider the following estimators

f̂n(k|a, b) =
k + a

n + b
, a, b ∈ Z (3.6)

which all converge to the sample mean for large n and hence, are all consistent
estimators as well. Loosely speaking, consistency requires that the estimator (i.e.
the construction rule) yields an estimator (i.e. the function), which makes no error
if noise effectively vanishes due to the large sample size.

In practice, however, one has to rather deal with situations where the amount of
data is limited and the errors of the estimators are finite. In that case, it is clearly
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necessary to specify the loss caused by an error in order to make a comparison of
two estimators possible. Therefore, the loss function constitutes one of the most
fundamental terms in estimation theory. In general it has the form

l : D × D −→ R , (3.7)

if D denotes the image set of the random variable of interest. The most promi-
nent loss function is the squared error loss l(f, f̂) = (f − f̂)2, because of its nice
mathematical properties. Therefore, it will also be used in the following.

The next step is to define the risk function

rf̂ (f) = E[l(f, f̂)|f ] (3.8)

in order to get a unique number representing the quality of a given estimator f̂ at
a given f (throughout the thesis E [.] and E [ .| .] will be used to denoted the mean
or the conditional mean of a random variable).

Spelling Eq. 3.8 out in case of the squared error loss

rf̂(f) =
n∑

k=0

P (k|f)(f − f̂(k))2

=

n∑

k=0

P (k|f)(f − E[f̂ |f ] + E[f̂ |f ] − f̂(k))2

=

n∑

k=0

P (k|f)
{

(f − E[f̂ |f ])2 + 2(f − E[f̂ |f ])(E[f̂ |f ] − f̂(k))

+(E[f̂ |f ] − f̂(k))2
}

=
(

f − E[f̂ |f ]
)2

︸ ︷︷ ︸

“bias”

+2(f − E[f̂ |f ])

(

E[f̂ |f ] −
n∑

k=0

P (k|f)f̂(k)

)

︸ ︷︷ ︸

=0

+ V ar[f̂ |f ]

= Bias
[

f̂
∣
∣
∣ f
]

+ Var
[

f̂
∣
∣
∣ f
]

(3.9)

yields the so-called bias-variance decomposition of the risk function. If the condi-
tional mean of the estimator equals the true value of f (i.e. E[f̂ |f ] = f) for all f ,
the bias vanishes identically and the estimator is called unbiased. As it is easy to
check, the sample mean fn(k) = k

n
is an unbiased estimator of f in our toy model.

In contrast to consistency, however, unbiasedness is not a minimal requirement and
it is also not necessarily desirable because in general, bias and variance cannot be
minimized independently of each other. This leads us to a fundamental problem,
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Figure 3.3. The risk functions of the sample mean for n = 1 (red) and of three
constant estimators f̂ = 0.3, 0.5, 0.8 (blue) are compared. This illustrates that no
estimator can exist, for which the risk is uniformly smaller than the risk of all other
estimators. The sample mean is also the UMVU estimator and its risk is equal to
the Cramer-Rao bound (red).

which can be illustrated by introducing another class of estimators, namely the
constant estimators f̂0(k) = f0, which do not depend on k at all. The interesting
thing about such an estimator is not only that it has zero variance, but also that
its risk function obviously becomes zero in case of f = f0 (see Fig. 3.3). From this
it follows that no estimator exists that minimizes the risk r(f) uniformly for all f ,
apart from the trivial case, when error free estimation (i.e. r(f) ≡ 0) is possible.

In the special case that there is an estimator, which is uniformly worse than some
other estimator, this estimator is called inadmissible. Conversely, an estimator is
called admissible, if no estimator exists, which has a uniformly smaller risk. In
other words, the derivation of a unique optimal estimator by using nothing but the
risk function was possible only if one could show that all estimators but one are
inadmissible. Moreover, the finding that constant estimators are always admissible
as long as error-free estimation is impossible, suffices to show that further concepts
are required to motivate the selection of a particular estimator. In fact, the set
of admissible estimators turns out to be typically huge and thus the concept of
inadmissibility is considered a way to rule out the most uninteresting cases before
the real story starts.

In principle, there are two different approaches that enable a unique selection of an
optimal estimator on the basis of the risk. Either the class of ’allowed’ estimators
is restricted a priori such that the order between the risks r1(f), r2(f) of any two
estimators becomes completely independent from f , or the estimators are compared
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on the basis of a loss functional F [r(f)] over the whole range of f . In any case,
however, the unique selection of an estimator is only possible on the basis of further
specifications.

One such specification, which is rather ad hoc, is the frequently used restriction to
unbiased estimators. While unbiasedness can be motivated in order to get “impar-
tial” estimators, it can not be seen as a necessary requirement of “impartiality”.
Nevertheless, however, it is sometimes particularly easy to determine the best one
within the restricted set of unbiased estimators. Since the best unbiased estimator
is clearly that one, which has the minimal variance for all f , such an estimator is
called a uniformly minimum variance unbiased (UMVU) estimator. Note, however,
that a UMVU estimator need not exist. E.g. no UMVU estimator exists, if one
wishes to estimate 1/f instead of f in our toy model.

For our simple toy problem, there is a particularly elegant way to show that the
sample mean even constitutes the UMVU estimator: The variance of any estimator
can be bounded from below by the Cramer-Rao bound [AS42; Cra46; Rao46]:

V ar[f̂(k)|f ] ≥ (∂fE[f̂(k)|f ])2

J [P (k|f)]
, (3.10)

where an important score function called Fisher information [Edg08; Edg09; Fis22]
shows up in the denominator, which is defined by:

J [P (k|f)] ≡ E[(∂f log P (k|f))2|f ] . (3.11)

For unbiased estimators, the Cramer-Rao bound is completely determined by the
Fisher information, because then the enumerator is equal to one. This makes Fisher
information particularly useful for unbiased estimators, because its knowledge allows
to bound the risk function of all unbiased estimators from below.

If f is an element of a multi-dimensional vector space, the Cramer-Rao bound can
be applied to the scalar product 〈v, f〉 for any given v and hence, it is possible to use
matrix algebra to efficiently write down a Cramer-Rao bound for each component
with respect to a given basis set {v1, . . . , vn}, which leads to the definition of the
Fisher Information matrix [Bla88]. Since the latter is not so important for this
thesis, the interested reader is refered to [Bla88; LC99] for an introduction.
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For our toy problem, the Fisher information yields:

J [P (k|f)] = E

[(
∂

∂f

{

log

(
n

k

)

+ k log f + (n − k) log(1 − f)

})2

|f
]

= E

[(
k

f
− n − k

1 − f

)2

|f
]

=
1

f 2(1 − f)2
E
[
(k − nf)2 |f

]

=
1

f 2(1 − f)2
V ar [k|f ] =

n

f(1 − f)
(3.12)

so that the risk of any unbiased estimator cannot be smaller than f(1− f)/n. Since
the sample mean is unbiased and because its risk function equals the Cramer-Rao
bound, we can conclude that the sample mean is indeed the UMVU estimator of f
in our toy problem (see Fig. 3.3).

At this point it is good to place a warning, which applies to all kinds of optimiza-
tion problems. It is so seductive to be satisfied with the fact that one was able to
determine “the best” candidate out of a certain set that one might forget about the
important aspect, how many other candidates are actually worse than the best (i.e.
how large is the set with respect to which the “best”candidate has been determined).
For illustration, in our example the sample mean has to be the best unbiased esti-
mator, simply because it is in fact the only unbiased estimator. In general, the set
of all unbiased estimators is rather small and can be obtained from one member of
them by adding all unbiased estimators of zero (i.e. all functions U(k), for which
E[U(k)|f ] = 0 for all f). In our case, the condition for an unbiased estimator of
zero leads to an infinitely large set of independent linear equations

n∑

k=0

(
n

k

)

fk(1 − f)n−kU(k) = 0 , f ∈ [0, 1] , (3.13)

which has no solution apart from the trivial one U(k) ≡ 0 proving that the sample
mean is the only unbiased estimator.

In fact, the restriction to unbiased estimators is quite awkward, which can best
be demonstrated by a relevant example, for which it is possible to show that all
unbiased estimators are so disadvantageous that they are even inadmissible. Recall
that many situations in practice, where one wishes to estimate the parameter of a
Bernoulli variable, are symmetric in the sense that one only has to consider values
of f which are larger than or equal to one half. This is for instance the case, if
one quantifies the performance of a subject in a binary forced choice task. If we
thus consider the estimation problem with f ∈ [0.5, 1], we have to compare the risk
functions only with respect to the interval [0.5, 1], and it becomes easy to find an
estimator, which is uniformly better than all unbiased estimators. For illustration,
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Figure 3.4. The risk function of an ad hoc estimator f̂(k) = 1/2 + [k/n − 1/2]+
(blue) is uniformly smaller than the Cramer-Rao bound (red) within the relevant
interval f ∈ [0.5, 1].

in Fig. 3.4 it is shown that the Cramer-Rao bound is uniformly larger than the risk
of the biased estimator

f̂(k) = 1/2 + [k/n − 1/2]+ . (3.14)

where [x]+ = max(0, x) denotes the rectifier function.

This brings us back to the question, whether it is possible to find more principled
approaches to determine a good estimator. The strength of the last example lies
in the fact that it demonstrates the inappropriateness of unbiasedness as an im-
partiality assumption without relying on any alternative definition of ’impartiality’.
An alternative way, one might think of in order to determine an optimal impartial
estimator, may be to use the arithmetic mean of the risk

Fimpartial[r(f)] = lim
B→D

∫

B
r(f)df
∫

B
df

(3.15)

as objective function. In this equation B → D is a sequence of sets converging
to D, which denotes the range of f . Although by now this candidate definition of
impartiality is still ad hoc, it nevertheless sounds quite acceptable, since the risk at
any possible f contributes equally to the total risk and additionally, one can show
that the resulting estimators are always admissible.

At this point the educated reader of course will suspect some ’Bayesian way of
thinking’ in the air and I am aware of the fact that anybody who writes something
about estimation theory, is still subjected to the judgment of how much ’Bayesian’
or ’non-Bayesian’ he or she is. My short answer to this issue is that I do not think
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the distinction into these two categories to be very helpful. It is more crucial to
recognize instead that the interpretation of statistical models are at much higher
risk to be interpreted misleadingly than deterministic models are. In particular, the
common use of assumptions for the sake of mathematical tractability, simplicity, or
elegance is often the source of serious pitfalls. Quite generally I would argue that
the appropriateness of an assumption always depends to some extent on the entire
set of assumptions that enter a model and hence, the justification of assumptions
can only be evaluated with respect to the particular problem at hand. Before going
deeper into the discussion what makes the difference between a strong and a weak
justification of an assumption (see section (3.2.5), this section will continue first
with an illustration of the Bayesian approach. To this end I resort to a somewhat
artifical but nevertheless realistic example, for which it is difficult to not accept its
validity.

Imagine, I programmed the incredibly exciting computer game, where you are sup-
posed to predict the parameter f of a Bernoulli distribution from seeing n indepen-
dent identically distributed samples thereof. The score you get for every single guess
is proportional to 1− (f − f̂ )2 and adds up linearly. Which strategy would you play,
if you want to beat the high score after you have looked at the following lines of the
(matlab) source code:

f=rand∧0.5;
b(1:n)=(rand(1,n) < f);

Clearly, in this case it makes sense to use the fact/assumption that f is distributed
according to a triangular distribution. Using the minmax-function

a[x]b = min(max(a, x), b) =







x = a , x ≤ a
x , a < x < b
x = b , x ≥ b

(3.16)

the distribution function of the latter is given by F (f) = 0[f
2]1, which has the

density ρ(f) = 0[2f ]1θ(1 − f). This knowledge is indeed sufficient to prove that
there is a unique optimal estimator, because now by using Bayes theorem4

ρ(f |k) =
P (k|f)ρ(f)

∫
P (k|f)ρ(f)df

(3.17)

it is possible to determine the posterior risk of an estimator for any given observation:

rpost

f̂
(k) =

∫

rf̂(f)ρ(f |k)df (3.18)

4The special form of the Bayes theorem used here is adapted to the toy problem, where the
measure over (k, f) has a density with respect to f , but is discrete with respect to k.
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The crucial advantage of the posterior risk function is that its argument is not a
hidden variable as it is true for the classical risk function. Therefore, a unique
optimal estimator can be defined directly as the minimizer of the posterior risk:

f̂Bayes(k) ≡ argmin
f̂

rpost

f̂
(k) (3.19)

which is called the Bayes estimator. As a simple consequence, the Bayes estimator
is also the minimizer of the average risk:

〈rf̂〉 =

∫

rf̂ (f)ρ(f)df . (3.20)

The minimum average risk is also called Bayes risk, because this lower bound is
attained by the Bayes estimator.

In case of the mean squared error loss, Eq. 3.19 can be formally solved, which yields
the mean square estimator (or minimum mean square estimator):

f̂MS(k) = E[f |k] (3.21)

where k stands for the observation as in our example. The corresponding Bayes risk
also has a quite simple form

〈rMS〉 = E[(f − f̂MS(k))2] = E[f 2] − E[f̂ 2
MS(k)] (3.22)

and is called the minimum mean square error (MMSE). Sometimes it is also intuitive
to express the MMSE as an average over the posterior risk, which yields

〈rMS〉 = E[E[(f − E[fMS|k])2|k]] = E[V ar[f |k]] . (3.23)

Generally speaking, Bayes estimators are difficult to compute, but sometimes solu-
tions exist in a closed form for certain priors. Such (families of) prior distributions
are called the conjugate priors of the given estimation problem. In our example, the
conjugate prior is given by the family of beta distributions:

ρ(f |a, b) =
Γ(a + b)

Γ(a)Γ(b)
fa−1(1 − f)b−1 (3.24)

which includes the triangular distribution considered above as the special case with
a = 2 and b = 1. For all a and b, the beta distribution has the mean

E[f |a, b] =
a

a + b
(3.25)

and the variance

V ar[f |a, b] =
ab

(a + b)2(a + b + 1)
. (3.26)
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Figure 3.5. Upper panel: Course of reweighting from the constant a priori estimate
to the sample mean as a function of n/(a + b): solid line indicates the coefficient of
the prior mean and dashed line indicates the coefficient of the sample mean. Lower
panel: Comparison of the average risk of the Bayes estimator (blue) with the average
risk of the sample mean (red) as a function of n/(a + b) in case of a uniform prior
(i.e. a = b = 1).

The minimum mean square estimator in case of the beta prior reads

f̂MS(k) =
k + a

n + a + b
, (3.27)

which can be rewritten in the following decomposed way

f̂MS(k) =
a + b

n + a + b
E[f |a, b] +

n

n + a + b
· k

n
. (3.28)

This means it can be interpreted as a linear interpolation between the mean E[f |a, b]
of the prior distribution and the sample mean k

n
, because the sum of their coefficients
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equals one. Particularly interesting is the behavior of the coefficients as a function
of the sample size n. With increasing n the weighting moves more and more away
from the prior mean closer and closer towards the sample mean. For n = 0 the
mean square estimator is a constant exactly equal to the prior mean and in the
limit n → ∞ it becomes asymptotically equal to the sample mean. The exact
course of the reweighting as a function of n is displayed in Fig. 3.5 together with
the corresponding average 〈rMS〉 over the risk of the mean square estimator

rMS(f) =
[a(1 − f) − bf ]2 + nf(1 − f)

(n + a + b)2
(3.29)

and the average risk of the sample mean

〈rn〉 =
1

n

(
E [f | a, b] − Var [f | a, b] − E

[
f 2
∣
∣ a, b

])
∀n ≥ 1 . (3.30)

The average over Eq. 3.29 reads

〈rMS〉 =

(
a + b

n + a + b

)2

Var [f ] +

(
n

n + a + b

)2

〈rn〉 . (3.31)

which can be directly related to the decomposed representation of the MS estimator:
the first term at the right hand side in Eq. 3.28 leads to a bias, but does not
contribute to the error variance. The second term in turn has a positive variance,
but does not contribute to the bias. Thus the reweighting between both terms of the
MS-estimator directly reflects the bias-variance trade-off in minimum mean square
estimation.

In case the Bayes estimator cannot make use of any observation, the posterior dis-
tribution equals the prior distribution and the resulting a priori Bayes estimator is
a constant f̂0. The average risk of this estimator can be used as a reference in order
to quantify the loss-dependent information gain of a measurement, which in general
is given by

∆[P (k, f), l(f, f̂)] ≡ inf
f̂0

E[l(f, f̂0)] − E[l(f, f̂Bayes(k))] ≥ 0 . (3.32)

The information gain has to be a non-negative number, because f̂Bayes(k) constitutes
the minimizer of the second term with respect to a set of functions, which contains
all constant functions and hence also f̂0 as a special case. In case of the minimum
mean squared error loss, the a priori Bayes estimator is simply the mean of the prior
distribution so that the first term at the right hand side is equal to the variance of
f . Since the second term is equal to the average over the posterior risk E[V ar[f |k]],
the quadratic information gain reads

∆[P (k, f), (f − f̂)2] = V ar[f ] − E[V ar[f |k]] (3.33)

= V ar[E[f |k]] = V ar[fMS(k)] . (3.34)
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The consideration of the average information gain reveals an interesting fact about
Bayesian estimation, namely that it separates the representation of uncertain knowl-
edge from the problem to choose a best guess under uncertain knowledge. In other
words, before the Bayesian makes a decision, he or she always determines first a
probability distribution over the variable of interest. After that, the best decision
is simply obtained by that estimate, which minimizes the loss under the previously
determined distribution. This means that if one accepts the concept to represent
uncertain knowledge about a variable by a probability distribution, it becomes an
independent problem to evaluate the effective cost under a certain loss function that
is due to the ambiguity represented by the distribution. This effective cost will
be called the loss-dependent uncertainty risk in the following, which in case of the
squared error loss is exactly the variance of a distribution.

In general, the uncertainty risk of a distribution P (f) under a certain loss l(f, f̂) is
given by

U [P (f), l(f, f̂)] ≡ inf
f̂

E[l(f, f̂)]P (f) , (3.35)

which allows to rewrite Eq. (3.32):

∆[P (k, f), l(f, f̂)] = U [P (f), l(f, f̂)] − E[U [P (f |k), l(f, f̂)]]P (k) ≥ 0 . (3.36)

The crucial point expressed by this equation is the fact that the Bayesian framework
makes sure that any increase in knowledge can never increase the average risk.

In situations like in the motivating example given above, there is actually not so
much disagreement about the optimality of the Bayes estimator. The objections
raised against the use of Bayesian methods rather aim at those situations in prac-
tice, where a prior distribution is not directly accessible. One aspect of the critique
against Bayesian methods – maybe even the most important one – is the repeata-
bility of the random experiment. So, while many people accept a prior distribution
in case of signal transmission with a stationary source because there, one can imag-
ine that at each instant of time a new independent, identically distributed (i.i.d.)
symbol is drawn, they do not accept this approach, if the variable to be estimated
is rather fixed. One reason for this distinction maybe is the fact that in case of
many repetitions the empirical average over the experienced losses becomes less and
less random, such that the average risk becomes a quite reliable measure for the
performance of the estimator in the long run, while this is not so in case of a single
experiment.

In principle, however, there is actually no difference between both situations (cf.
[vNM47]). The interpretation of a time series as a one of many i.i.d. samples is
never more than a Gedanken experiment. In particular the independency between
subsequent observations is necessarily a purely subjective assumption of the ob-
server. If I generate a time series, say by using the logistic map [Sch89], then to
me every data point is completely dependent on the preceding one. Everybody who
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does not know about the origin of this time series, however, will be happy with
describing it as a random variable.

Probability distributions are not given by nature, but are always the product of
treating the values of a time series at different instances as unlabeled elements of
the same set. Since no finite amount of data is sufficient to rule out any distribution,
for which the support includes the data point, the specification of a distribution is
always an extrapolation. In conclusion, in principle there is nothing new in Bayesian
estimation with respect to its philosophical requirements. At most there may be a
gradual change, whether the extrapolation is informed by one, a thousand or a mil-
lion data points. In other words, Bayesian models should be fine, if the assumptions
underlying the specification of the prior are thoroughly discussed. In fact, the major
perk of Bayesian models is the enhanced visibility of the assumptions in their total-
ity, because all assumptions apart from the likelihood and the loss function have to
enter the model through the prior.

Nevertheless, it seems that the Bayesian way of reasoning gains nothing but trans-
lating a relatively simple problem (in our example selecting an element out of the
unit interval [0, 1]) into a more difficult one, namely to select an element out of
the set of all distributions over the unit interval. In other words, if we already had
problems to estimate f , how can we expect to be better off in case of estimating
F (f)?. Indeed, prior selection is not at all a simple problem and many text books
circumvent a conceptual discussion of this issue, by rather turning to the style of a
recipes collection and drawing too quickly on arguments of convenience.

Here, I will motivate the ’no unjustified risk reduction principle’ as I think the most
satisfactory way to construct an impartial estimator, in the sense of translating
the situation of having “no knowledge about the prior at all” into mathematical
terms. In other words, the motivation is to find a way to construct an estimator
such that this way of construction accounts for the insight that it is bad, if one has
no knowledge about something, but it is even worse, if one takes a random guess as
truth instead.

As discussed above, any increase in knowledge can never increase the average risk
in the Bayesian framework. Conversely, this also implies that any reduction of the
average risk, requires some additional amount of knowledge. Thus, if we assume that
we have no knowledge about the prior at all, the average risk has to be maximal
with respect to variations of the prior. In other words, the most impartial prior is
the one, which does not lead to any unjustified decrease of the average risk. This
leads to the definition of the maximum Bayes risk estimator

f̂max(k) ≡ sup
Λ
〈rBayes,Λ〉Λ (3.37)

where Λ denotes any arbitrary distribution.

An important theorem (cf. [LC99]) for determining the maximum Bayes risk esti-
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mator is the following:

Suppose that Λ is a distribution on f such that

〈rBayes,Λ〉Λ = sup
f

rBayes,Λ(f) (3.38)

then Λ is ’least risk reducing’5 and hence, the corresponding Bayes esti-
mator is the maximum Bayes risk estimator.

Eq. 3.38 states that the average risk of the Bayes estimator is equal to its maximum.
This is the case when the risk function is constant or, more generally, when it is
constant at least on a set, to which Λ assigns probability one.

Using this condition, one can show that the maximum Bayes risk estimator in our
example is given by the Bayes estimator for the beta prior with a = b = 1

2

√
n,

because the risk function in that case (see Eq. 3.29) becomes constant. Consequently,
the maximum Bayes risk estimator reads

f̂max(k) =
k + 1

2

√
n

n +
√

n
=

1

1 +
√

n
· 1

2
+

√
n

1 +
√

n
· k

n
(3.39)

and has the risk:

〈rmax〉Λ =
1

4

1

(1 +
√

n)2
. (3.40)

If the condition of a constant risk (i.e. Eq. 3.38) holds, it implies that the maximum
Bayes risk estimator is also the minimizer of the maximum risk. In fact, statisticians
typically do not use the ’no unjustified risk reduction principle’ to motivate the
maximum Bayes risk approach, but rather start with the minimax property, which
can be justified by the intention to minimize the risk in the worst case. A good
example to motivate this goal is the problem of signal transmission with instationary
sources. There one might prefer to sacrifice a little bit of the average performance
in order to achieve a guarantee for the minimum quality of the signal.

Note, however, that this is a very different argument than that used to motivate the
maximum Bayes risk approach. Although both approaches lead to equivalent results,
whenever a constant risk estimator exists, it is important to distinguish between the
different kinds of motivations. In other words, the justification of the constant risk
estimator depends on the problem at hand. In the example of signal transmission
with an instationary source, the minimax approach can be an appropriate, direct
translation of the real problem into a mathematical model. Whenever one aims to

5I use ’least risk reducing’ in place of the more common term ’least favorable’, because the
latter is associated with the concept of minimizing the worst case error, which is different from the
’no unjustified risk reduction principle’.
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model the complete absence of knowledge, however, the ’no unjustified risk reduction
principle’ suggests to translate this situation directly into the maximum Bayes risk
criterion, independent from whether it leads to the same solution as the minimax
approach or not.

Nevertheless, the similarity between the maximum Bayes risk estimator and the
minimax estimator suggests that the constant risk estimator has an unjustified bias
towards the worst case and hence is not optimal, if one has simply no knowledge
about the prior. However, if we follow the argument given above for the ’maximum
Bayes risks’ approach, it is not based on the worst case at all, but it only seeks
to avoid risk reductions due to unjustified assumptions. The essential idea behind
the ’no unjustified risk reduction principle’ is that any risk reduction can only be
achieved by the use of stronger assumptions and hence, the maximum Bayes risk
estimator should be the least specialized one. So, could there be another reason,
why the maximum Bayes risk estimator appears to be biased towards the worst
case?

A textbook example to demonstrate the sub-optimality of the ’constant risk estima-
tor’ is its comparison with the sample mean in the case of our toy problem, where
it turns out that the risk function of the constant risk estimator is smaller than
the risk function of the sample mean within the interval (1

2
− cn, 1

2
+ cn). Since

cn is a decreasing function of n, which is always positive, but converges to zero in
the limit of large n, it seems then that the constant risk estimator becomes worse,
loosely speaking, for ’almost all’ f . But strictly speaking, for any finite n, there is
an interval of finite length, within which the sample mean is worse. And if we do
not know anything about the prior, we can also not make the assumption that the
prior is flat and hence the length of the interval is indeed completely meaningless.
There are uncountably many distributions which have larger mass within this small
interval, in the same way as there are uncountably many distributions, which have
less mass there. Without assuming a prior distribution or a hyper prior over the
prior distributions (or a hyper hyper prior, etc.) there is no way to give the length
of an interval (i.e. the choice of Lebesgue measure) a distinct meaning.

To make a long story short, the crucial point is that the maximum Bayes risk estima-
tor is not impartial with respect to the choice of the loss function. For illustration,
if we take the following weighted squared error loss

l(f, f̂) =
(f − f̂)2

f(1 − f)
(3.41)

which is less sensitive to errors in case of f ≈ 0.5, the least risk reducing distribution
is the uniform distribution, which is different from the ’u’ shaped prior in case of
the standard squared error loss.

According to the Bayesian view, however, it is natural to require that the prior and
posterior distributions represent all knowledge about a variable of interest, inde-
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pendent of the particular choice of the loss function because as noted above, the
Bayesian approach separates the optimization with respect to the loss function from
the estimation of the posterior distribution. In the next section it will be explained,
how the maximum Bayes risk approach can become impartial with respect to the
choice of a loss function. This is often possible by applying the maximum Bayes risk
approach to the estimation of the posterior distribution instead of a single valued
estimate.

3.2.2 Information Theory – Part I (decoding)

Information theory can be motivated by a very Bayesian type of estimation problem.
As explained above, the Bayesian always specifies first a probability distribution over
the variable of interest before he or she determines the best decision on the basis
of this distribution with respect to a particular loss function. In case the Bayesian
is not forced to make a decision immediately, however, it makes sense to skip the
second step and to postpone the decision, because in general, decisioning reduces
the amount of knowledge6.

The specification of a probability distribution itself can also be treated as an estima-
tion problem. Instead of being forced to decide for a unique guess about the value
of the variable of interest, one is allowed to give more or less ambiguous answers
depending on the own degree of uncertainty. More precisely, the task in informa-
tion theory is to estimate a distribution over the variable of interest rather than to
estimate the value of that variable. In contrast to general estimation theory, there
is a distinct loss function, to judge the quality of estimating probability distribu-
tions: This so-called log-loss is unique as it is the only smooth, proper, and local
loss function [Ber79].

For the sake of clarity, only discrete distributions will be considered in the follow-
ing. Let f denote the variable of interest and let k be the variable visible to the
observer, who is required to describe his knowledge on f by specifying a (subjective)
probability distribution P̂ (F |k) for any given k. Then the log-loss is given by

l(f, P̂ (F |k)) = − log P̂ (f |k) (3.42)

where the bold font F has been used, to make clear that the observer has to estimate
the entire distribution, while P (f |k) with the small letter f at the right hand side
denotes the probability mass of P (F |k) at a particular value f .

Now one can apply the standard procedures of Bayesian estimation theory in a
straightforward way. The average log risk is given by

〈rlog〉 = −E[log P̂ (f |k)] , (3.43)

6This is so, because it is not possible to combine the information of two different best guesses
in a meaningful way, if nothing is known about the underlying uncertainty of these guesses.
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and the posterior log risk reads

rlog(k) = −E[log P̂ (f |k)|k] . (3.44)

The uncertainty risk for the log loss is given by

U [P (f),− log P̂ (f)] = inf
P̂ (F )

−E[log P̂ (f)]P (f) = −E[log P (f)]P (f) , (3.45)

which is called ’entropy’ and commonly denoted by H(F ). Consequently, the average
conditional entropy

H [F |K] ≡ E[H [F |k]] = E[U [P (f |k),− log P̂ (f |k)]P (k) (3.46)

is nothing but the Bayes risk under log loss.

Now one can see very clearly how to deal with the prior distribution in Bayesian es-
timation. In case one does not know anything about the true prior distribution, the
minimum loss reduction principle implies the use of the Bayes estimator, for which
the Bayes risk (i.e. the average conditional entropy H [F |K]) takes a maximum. In
conclusion, the ’no unjustified risk reduction principle’ directly leads to the maxi-
mum entropy principle [Jay78], if applied to the problem of estimating distributions
under log loss.

The derivation above does always work in case of estimation problems with a fi-
nite number of possible choices. In case of infinite problems, however, a unique
and proper maximum entropy distribution only exists if additional knowledge is
available. The typical way to sufficiently constrain these models is by determining
certain expectation values like the variance of the distribution for instance. Well
known examples of continuous maximum entropy distributions are the Normal dis-
tribution (for given mean and variance), the exponential distribution (for given mean
and positivity constraint), and the uniform distribution (for a given finite support).
Note, however, that not all maximum entropy distributions are well-defined. In our
toy problem for instance, the uniform distribution maximizes the entropy for all
distributions over the unit intervall. So one might conclude that the corresponding
estimator

f̂(k) =
k + 1

n + 2
(3.47)

constitutes the most impartial choice. This conclusion, however, is not sound, be-
cause here the entropy maximization is not unique. This can be seen by recognizing
the fact that one could equivalently maximize the entropy of any other parameteri-
zation, like f̃ = f 2 for instance, which clearly allows for arbitrary different solutions.

In conclusion, in case of many estimation problems, the maximum entropy principle
can provide a satisfactory solution for the construction of impartial estimators. In
some cases however, like for our toy problem, the naive use of the maximum entropy
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method is akward, because the existence of a maximum entropy distribution itself
is not enough. The method can only be applied, if the constraints governing the
maximum entropy solution are specific for the considered variable.

3.2.3 Loss Functions

In this section I will just give some hints regarding the choice of the loss function.
While in many cases the maximum entropy principle solves the problem to estimate
the posterior distribution, independent of any loss function, the loss function is
always crucial for the decision step in Bayesian estimation.

The predominant motivation for the squared error loss is in fact its mathematical
convenience and frequently it does not really fit the problem at hand. While for large
signal-to-noise ratios (i.e. if the average risk is close to zero) differences in the loss
functions are less relevant, it matters significantly in case of large errors. Therefore,
in practice one should take great care to adjust the choice of the loss function to the
problem at hand. Sometimes, however, the loss function is difficult to obtain and
one might wish to seek for loss functions that are more ’robust’. The concepts of
’robust loss functions’, however, are by far not as satisfying as the maximum Bayes
risk approach, and one is forced to use more handwaving arguments.

One such argument is the following: If one does not know anything about the loss,
every error should be treated equally. Therefore, the loss function should be constant
for all f̂ 6= f , which leads to the definition of the 0-1-loss. In case f is a discrete
variable, the 0-1-loss is zero if f̂ = f and one otherwise. However, if f is a real
or complex random variable, the 0-1-loss has to be modified, because otherwise the
average risk would always be one for all estimators. This problem can be solved by
first determining a family of optimal estimators with respect to the ε-0-1-loss

lε(f, f̂) = θ(|f − f̂ | − ε) (3.48)

and then taking the limit ε → 0. In other words, it suffices if ε is sufficiently small
that is, if all posterior distributions are sufficiently constant within any interval
of length ε. In both cases, discrete and continuous, the resulting Bayes estimator
becomes equivalent to the maximum a posteriori estimator (MAP estimator), which
is very convenient and successful in practice. The MAP estimator is given by

f̂MAP (k) = arg sup
f

ρ(f |k) . (3.49)

and contains the maximum likelihood estimator (ML estimator) as a special case,
if the prior is a uniform distribution. In our toy problem the maximum likelihood
estimator is equivalent to the sample mean. Note, however, that neither the MAP
estimator nor the ML estimator needs to be unbiased. The most prominent counter
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example is the ML estimator of the variance of a Gaussian distribution, which is
biased for all finite n.

Finally, it shall be mentioned that for estimation of variables living on a nonlin-
ear manifold the loss function in the embedding space is not the same like the
loss function on the lower-dimensional manifold. For illustration consider the quite
frequent case of estimating a circular variable like the angle of an oriented bar stim-
ulus, wind direction, etc. The common way to find an optimal estimator for such
a variable is to optimize a two-dimensional vector estimator with respect to a loss
function defined on R

2, say the quadratic loss lR2(~x, ~̂x) = (~x − ~̂x)2. Clearly, this is
not the same as if one minimizes a quadratic loss defined directly on the manifold
M := {~x = (cos φ, sin φ)T} like lM(φ, φ̂) = (min(|φ − φ̂|, 2π − |φ − φ̂|))2. Since the
Euclidean distance on the unit circle between two different values of φ is given by
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the effective loss function on M reads

l̃M(φ, φ̂) = 2 − 2 cos(φ − φ̂) . (3.51)

A Taylor expansion of l̃M at (φ − φ̂) = 0, however, shows that the loss function is
very similar to the quadratic loss lM for small errors

l̃M(φ, φ̂) ≈ (φ − φ̂)2 − (φ − φ̂)4

12
+ O(6) . (3.52)

For illustration a comparison of l̃M and lM is plotted in Fig. 3.6
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3.2.4 Statistical Learning Theory

In statistical learning theory [Vap95; SS02; Her02] the construction of an estima-
tor itself is treated as an estimation problem. This means that it is not based on
pre-known assumptions only, but can, additionally, be informed by sampling data.
The framework and problems arising in statistical learning theory fit exactly the
task we are faced with in neural coding. First of all, the determination of a neu-
ronal representation means in principle to determine an estimator, which is able to
predict the behavior of an animal from its neuronal activity. Stimulus reconstruc-
tion experiments also have to deal with exactly the same problem: Estimating an
estimator, which predicts the stimulus as good as possible from neuronal responses.
Therefore, it is worthwhile, to first understand at an abstract level, how to deal with
this problem.

In contrast to general estimation theory, the special case of estimating estimators
studied in statistical learning theory has a great advantage: The evaluation, how
good the choice of a certain estimator was, is not so much committed to the ’right
philosophy’, but the quality of such a choice can be evaluated empirically by mea-
suring the success, with which the estimator is able to predict new data.

When seeking to constrain the prediction error of a chosen estimator it becomes
strikingly clear that this is only possible if one has selected a set of all candidate es-
timators beforehand. Without the construction of such an hypotheses space [Her02],
it is impossible to make a reasonable choice of a particular estimator from data. The
more data you are able to collect, the more candidate estimator can be compared
in a meaningful way, and hence, the larger one may choose the hypothesis space.
Therefore, it is a major business in statistical learning research to derive rules that
tell one about the optimal complexity7 (i.e. its ’largeness’) of the hypothesis space,
depending on the amount of available data. In conclusion, the success to minimize
the prediction error is rather weakly influenced by data in comparison to its fun-
damental dependency on the pre-knowledge or luckiness [Her02], with which the
hypotheses space has been selected.

Alluding to these complementary aspects of data and hypotheses space that together
determine the best guess of an estimator in statistical learning theory, we can now
better understand the relationship between the terms ’neuronal representation’ and
’neural code’: the ’neural code’ is about the choice of the hypothesis space, while the
’neuronal representation’ is exactly the function to be estimated (i.e. the function
which maps the neuronal activity to the behavior of interest). Recall the example
given above, where the neural code has been related to the “appropriate signal
space”: If the signal space is supposed to be, say, interspike intervals, this introduces

7In general, the hypotheses space are infinitely large sets, but similar to the state spaces in quan-
tum mechanics, the hypotheses spaces become effectively finite, if uncountably many hypothesis
can be considered to be indistinguishable.
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a bias towards certain candidate functions, which, if it was carried out precisely,
would correspond to the definition of a hypothesis space.

Another way to interprete statistical learning theory is that it decomposes the infor-
mation underlying the outcome of an experiment into theory and data. While data
have the great advantage to be irrevocable, it is often overlooked how little they are
actually capable to constrain the outcome. The selection of an hypothesis space, in
turn, is fundamental to the outcome but is always subjected to guessing as long as
the prediction error of the estimator does not attain zero. While in the traditional
fields of physics we have the satisfying situation that for several preparations the
prediction error is zero (for practical purposes), this is very different in neuroscience,
where the search for appropriate hypotheses spaces is still in its infancy. Clearly,
the search for successful hypotheses spaces is a very difficult and arguable issue as
long as ’the breakthrough’ is yet to come, and I can just hope to make plausible in
the next section, why I believe that the theoretical analysis of models may help to
educate our guesses about neural codes.

3.2.5 Building Models from Uncertain Information

In the presentation of estimation theory, I have put strong emphasis on the con-
ceptual issues regarding the question, how to translate a given situation into a
statistical model. In this section, the issue of model selection will be discussed at a
more general level with a particular focus on the problem of dealing with imprecise
or uncertain knowledge. Building models from uncertain information always bears
some difficulties and potential disagreement between researchers. This problem is
not specific to estimation theory, but arises whenever we want to set up precise
models out of imprecise information, and in fact there is hardly any agreement in
neuroscience about how to evaluate the appropriateness of neural network models.

At this point, one might like to ask whether it makes sense to set up precise (mathe-
matical) models at all, if too many ingredients are necessarily subjected to guessing.
In particular, experimentalists tend to have doubts as to the use of precise models
in neuroscience, because they feel that too many assumptions lack experimental jus-
tification. Indeed, it is true that the gap between theory and experiments is so large
that – to be honest – critical experimental testing of electrophysiological predictions
of a model is nothing but a graceful wish today, whenever these predictions go be-
yond current injection studies at isolated cells. A clear barrier for example is set by
the impossibility to monitor the synaptic inputs of a cell caused by the presynaptic
activity in the network within which the cell is embedded.

Due to this lack of critical testing in neuroscience, we have the dissatisfying situation
that models do not compete for the explanation of data, but there is enough place
for all models that somehow fit to the data of interest. In this way, models (as well
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as vague proposals) accumulate more and more, which often obscures the available
information rather than making it more transparent and instructive.

So why bother with precise models and the resulting mathematical difficulties?
What can be learned from models, for which almost all assumptions are wrong
or which are at best a caricature of the true situation? A simple reason to begin
with is that specifying precise models is healthy in the sense that it reveals which
kind of assumptions we typically make without recognizing it. Indeed, one can fre-
quently observe the beliefs, that a model could rely on a smaller or larger amount of
assumptions8. I even saw, how models have been advertised to be completely ”free
of assumptions”.

The deeper reason, why I indeed believe that the study of precise models is worth
bothering with, may be illustrated as follows: Like in the case of optimal estima-
tion, the effect of an assumption relies on the totality of specifications and can not
be evaluated without a precise model. Some assumptions will turn out to be very
critical, while some other assumptions can be changed influencing the outcome of
the model only weakly. The question, whether the use of an approximation in case
of uncertain knowledge can be justified is not a matter of the amount of uncertainty
in the first place, but can be evaluated only if one knows about the sensitivity with
which the result depends on this assumption. In other words, it is the uncertainty
of the result caused by an uncertain assumption of the model, which tells whether
its justification is strong or weak. Therefore, the understanding, which of the as-
sumptions are most critical constitutes an important guide for further research, for
it tells something about which sort of data may be most informative to the model.

A colleague and good friend asked me once: “Have you ever seen real data?” I
responded: “Well,... yes, but I have to admit, it could have been more. On the
other hand, let me also ask back: Have you ever checked thoroughly what you can
conclude from your measurement by simulating a poke of your electrode into a model
network first?”

This is the spirit that was governing my work presented in this thesis. Starting
from some kind of standard models, I tried to figure out how far the results are
affected by variations in the individual assumptions. Gambling a little bit around
with assumptions can tell us how critically they influence the results. Replace the
system of interest by a caricature model and figure out whether the terms commonly
used make sense at least in the toy model. Indeed, it can happen that researchers
try to support their favorite ideas about the neural code by setting up a strawman
(an uninteresting null hypothesis) that sounds like the opposite of the preferred
hypothesis, but is actually much more specialized. For example, though nobody
believes that neurons are Poisson process generators, a lot of work has been done to

8Clearly, there is no absolute measure for the amount of assumptions in a model, but the latter
can be measured only with respect to a particular class of models that itself has to be specified
beforehand.



3.3. SYSTEMATIC DESCRIPTION OF NEURAL CODES 49

falsify this idea in order to suggest that there is some kind of ’temporal coding’ at
work. In fact, however, it does not reveal any interesting kind of ’synchronization’
or ’temporal coding’, but only what we actually know, namely that neurons are no
Poisson process generators.

I hope that the investigations and discussions in this thesis will encourage other
researchers, to report more explicitely on the degree of uncertainty of the individual
ingredients that entered their models9. It does not seem to be sufficient, if everybody
is left to think about the choice of assumptions himself, but I believe that it is
important that we also write and talk about it. In particular, assumptions that
are weakly justified and potentially critical for the results should be pointed out
and discussed. While it is understandable that there is a tendency to rather hide
such ’problematic’ assumptions, it should actually be appreciated as a significant
scientific effort that deserves to be acknowledged.

3.3 Systematic Description of Neural Codes

This section provides a short overview of a set of questions that may be suitable to
decompose the pursuit for the neural code into a set of sub-problems. Recall that
I defined a neural code as a specification of the signal space describing how to read
or represent the neuronal activity. A prominent way to do this is the peri stimulus
time histogram (PSTH), where time is discretized by slicing it into bins of equal
width and counting the number of spikes within each time bin. In this way, one
obtains a vector of integer valued numbers, which could be called a “PSTH code”.
Note, however, that there are critical parameters to be specified. How large is the
width of a bin? How many bins are taken (i.e. how large is the dimension of the
resulting signal vector)? How to define the latency (i.e. the relative time delay
between stimulus signal and neuronal PSTH response)? These and similar question
are discussed in the following.

3.3.1 Spike Timing Precision

The question for the relevant spike timing precision seems to be a good one to
start with. A simple way to implement an assumption about the required temporal
resolution, is to discretize time by slicing it into bins of equal width, exactly as
in case of the PSTH. The higher the required temporal resolution, the smaller the
bin width to be chosen. This choice of the ’sampling frequency’ is a fundamental
requirement and has to be specified for ’rate codes’ as well as for any other coding

9Even if the model is not spelled out in mathematical terms, there is also a (vaguely specified)
model, whenever one draws conclusion from an experiment.
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scheme. Therefore, a systematic description of a neural code should always start
with specifying the temporal precision. In other words, every (reasonable) code we
can think of can be expressed as a function of a time histogram over the entire spike
train if the bin width is chosen appropriately. After this first step, the dimension of
the signal space is not uncountably large any more, but still infinite, so that further
reductions will be necessary.

Remarking on the discretization of time, it is also possible to work with continuous
spaces with countable dimension. Such spaces look somewhat more elegant because
they allow to avoid the symmetry breaking with respect to time shifts. In case of
time discretization, time shift invariance gets lost for time shifts that are smaller
than the bin width of the time histogram. However, this kind of symmetry breaking
does not matter too much, because per definition of the bin width, it has an effect
on those temporal structures only, which are considered to be irrelevant.

3.3.2 Neuronal Memory, Reset, and the Representation of

Time

The next obvious possibility to reduce the dimension of the signal space is to assume
that the relevant memory of a single neuron is finite. This assumption follows
directly from the fact that relevance in neural coding is defined on the basis of
information processing tasks, which require consideration of a limited amount of
history only. For illustration, humans are able to categorize flashed images very
reliably [TFM96]. Clearly, the relevant memory of the neurons can not exceed the
total response time of the subject, because for the decisioning in a classification
task every dependence on the history preceeding the stimulus can only be noise.
The observation that such tasks can be done quite rapidly implies that the neuronal
response should depend on a rather small history of the synaptic inputs only.

In fact, the issue of neuronal memory turns out to be very important but has not
received much attention until now. In a feed-forward network, the memory of the
neurons of different layers adds up linearly. For illustration, if the network consists
of 20 layers and the neuronal responses all depend on the last 50 milliseconds of
their synaptic inputs, then the total response time is already as much as one second.
Much more dramatic is the effect in recurrent networks, where the network memory
need not decay at all. In conclusion, the fact that it is possible to set up experiments
where the brain acts as an information processing device is not at all trivial, but
requires some mechanism to clean the network memory.

The simplest possibility to reset the network state of a feed-forward network as fast
as possible is to have neurons, for which the memory equals the temporal resolution.
In that case, the total response time is equal to the sum of the neuronal response
delays only. For illustration, an example of such a network is the one considered at
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the beginning of this chapter (Eq. 3.1). In such a network, the time course of the
external variable is directly represented by the time course of the neuronal response
(apart from a fixed delay). This idea of “faithful signal transmission” is the most
interesting point underlying the idea of a rate code. Although rate coding has often
been used as a strawman standing for low temporal resolution or the absence of
interspike correlations, I believe that the proponents of rate codes rather think of
rate codes in the sense that ’time represents time’ (cf. [Mov99]) with high temporal
resolution (see section 11.2 for a detailed discussion).

Other interesting possibilities to reset the network require some global reset signal.
In fact, shunting inhibition would be well-suited to this end [BPG99; Her]. In case
the reset signal is applied periodically, one would speak of a neuronal clock or a
clocked network. Another very intriguing possibility would be if the reset signal is
triggered by the task. In that case, one could even think of different reset signals for
different tasks that in a top-down manner adjust the network state to the particular
task to be solved [BP01]. Clearly, these ideas are typically discussed in the context
of selective attention.

3.3.3 Interspike Correlations

Since ’rate coding’ is often associated with Poisson neuron models, correlations
between spikes are frequently used to establish ’temporal coding’ as an alternative
to rate coding. As pointed out above, however, one should define a rate code by
the interesting property that the neuronal memory equals the temporal resolution
(’time represents time’), which clearly allows for several interspike correlations. In
particular, coincident spikes in a population of neurons are rather a prediction of
rate codes than an objection against them, if one takes a short absolute refractory
period into account.

In any case, correlations are interesting only if they can be used to reduce the size
of the signal space. The presence of interspike correlations per se are not very
interesting. What is needed is an explicit model on how these correlations are
generated and how they are used by subsequent neurons to read out the presynaptic
signal.

In the second part of this thesis, it will be demonstrated that correlations between
spikes may be disadvantageous even if they carry significant information. Therefore,
one should be careful not to focus too much on the idea of maximizing the mutual
information between stimulus and response, because it may be incompatible with
other relevant demands on the neural code.
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3.3.4 Redundancy and Computational Load

Further arguments used to constrain the set of candidate neuronal representations
are the redundancy between neurons and the computational load. It is quite likely
that there is a considerable amount of redundancy between different neurons, be-
cause neuronal information processing, in particular in the cortex, seems to be robust
against the death of individual cells. Redundancy, however, can be implemented in
different ways. A pure form of redundancy would be if each neuron has a number
of copies that could do the same job if necessary. It is, however, also possible to
think of redundant coding schemes, where each neuron still has a small independent
contribution to the total representation, so that the accuracy will decrease with the
loss of any neuron. In that case, there are still enough neurons, which are sufficiently
similar so that the loss of a neuron would be tolerable. The effect of redundancy
on the accuracy of a neuronal representation, will be part of the investigations pre-
sented in the first part of this thesis and the issue of robustness is addressed in
chapter 10.

A similar criterion is the argument that the computational load of the individual
neurons should be rather small (see chapter 7). In other words, a certain kind
of neuronal representation is considered to be unlikely, if it requires computations
from the individual neurons, which are too complex. An appropriate amount of
computational complexity seems to be the linear-nonlinear cascade model [Chi01;
SPPS04], where the multi-dimensional synaptic input is first mapped onto a scalar
variable using a linear time-invariant filter, and subsequently the output of the
neuron is determined through a nonlinear function of the scalar variable.

3.4 Population Coding

The neuronal representation of an external variable of interest typically requires a
large population of neurons. Through theoretical studies of population coding, it
is possible to explore how the response properties of individual neurons affect the
representation of the entire population.

Historically, the notion of ’population coding’ has developed in a somewhat narrower
sense, namely as the opposite to ’grandmother cell’, ’labeled-line’, or ’winner-take-all’
coding. These terms all denote the special case, when merely the label of the most
active neuron is used to encode a certain variable of interest. The most prominent
example of a population code is the color coding of the cones in the retina, of which
is known that a combination of the graded activity of different sorts of cones is
necessary for color discrimination.

Experimentally, population coding is frequently investigated by using the population
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vector method, which assumes that the value of the encoded variable is proportional
to the weighted sum

~̂f ∝
N∑

j=1

kj
~fj (3.53)

where the fj denote the preferred values of the individual neurons j = 1, . . . , N and
kj denotes the current activation (i.e. the number of spikes in a certain time window)
of neuron j. The relevance of this method has been impressively demonstrated in
[LRS88] for neuronal representations of saccadic eye movements in the deep layers of
the superior colliculus. Through reversible inactivation of small subsets of collicular
neurons it has been shown that it is not the most active cell that exclusively controls
the eye movement (as it has been hypothesized before), but rather the average
preferred direction weighted by the activities of a large population of coarsely tuned
neurons.

Nevertheless, the population vector method is only one of many possible population
coding strategies, and actually, every encoding problem that cannot be decomposed
into a set of sub-problems, where each sub-problem deals only with a single neu-
ron, constitutes a population coding problem. In this sense, a grandmother cell
coding scheme has to be considered a population coding strategy as well, because
the winner-takes-all function induces strong correlations between the activation of
different neurons. However, even more fundamental than statistical correlations
between neuronal responses is the role of the loss function for a population code.
Whenever the average risk is reduced by a number of neurons in such a way that
the contributions of the individual neurons to the total risk reduction cannot be
assessed separately, we are faced with a population coding problem.

In other words, the question whether we have to deal with population coding or
with single cell coding, essentially depends on how we define the loss function or,
loosely speaking, how we set up the coding problem. If one aims to figure out which
stimulus aspects can be discriminated by a single cell, this constitutes by definition
a single cell coding problem. Conversely, if one sets up the problem by starting with
a certain external variable of interest and then seeks to determine those aspects
of neuronal activity that contribute to the representation of this given variable,
this will naturally lead to a population coding problem. These two complementary
approaches may be illustrated with the complementary concepts of the point spread
function and the receptive field. The point spread function aims to describe the
patterns of neuronal activity caused by a dot stimulus (e.g. a bright pixel on a black
screen), whereas the receptive field aims to describe the set of stimuli causing an
increase of the firing rate of a given neuron [McI01].
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3.5 Neuronal Encoding from First Principles

Many theoretical studies investigate certain features of neural codes by using an
optimization approach. In particular, the efficient coding hypothesis has been ex-
pressed in terms of the infomax principle, which seeks to optimize the encoding in
such a way that the mutual information (i.e. the log information gain, see below)
between input (sensory signals) and output (neuronal response) takes a maximum.
Due to the ecological motivation of this approach, the focus of research thereby is
to approximate the correct prior statistics of sensory signals as closely as possible.

In the context of population coding there is another line of theoretical research,
which makes use of the idea of optimal signal transmission. Models of optimal
population coding, however, are usually not informed by empirical prior distributions
of sensory signals, but rather seek to explore general encoding strategies that are
most efficient to overcome the corruption of signals caused by certain types of neural
noise.

In fact, efficient coding and population coding research are concerned with com-
plementary aspects of signal transmission and have been investigated rather inde-
pendently of each other. The following quote may be a good way to describe the
relationship of both:

The efficient coding principle should not be confused with optimal com-
pression (i.e. rate-distortion theory) or optimal estimation. In partic-
ular, it makes no mention of the accuracy with which the signals are
represented [...]. This may be viewed either as an advantage (because
one does not need to incorporate any assumption, or the cost of mis-
representing the input) or a limitation (because such costs are clearly
relevant for real organisms).

Simoncelli & Olshausen [SO01]

It is true that information theory, which constitutes the basis of the efficient coding
hypothesis, allows to study certain aspects of signal representations without the need
to specify a particular loss function. Whether this is an advantage or a disadvantage
depends, however, on how much the inclusion of the true loss function would change
the results.

Here I am presenting population coding and efficient coding from a unifying point
of view. In this way, it becomes clear what one might gain, if a model is additionally
informed by knowledge about the loss function. Clearly, the efficient coding princi-
ple does not require to specify the cost of misrepresenting the input, only because
this cost has already been specified by the fundamental assumptions of information
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theory, which is used by this principle. The next section presents the necessary
basics of information theory in the context of optimal encoding.

3.5.1 Information Theory – Part II (encoding)

The fundamental problem that has lead to the invention of information theory by
Shannon and Weaver [Sha48; SW49] may be sketched by the question for those con-
ditions that are necessary and sufficient to send a given source over a given channel
with zero error. For the sake of simplicity, we will only consider discrete time,
memoryless sources and channels, such that the source is completely determined by
a probability distribution P (X) over the possible set of symbols x ∈ X, while the
channel is given by a family of distributions (P (K|f))f∈F , which for every possible
input f specifies the probability to observe a particular output k ∈ K. Furthermore,
X, F, K are supposed to be discrete sets10 for the time being.

The task now is to seek for a code that maps each source symbol x ∈ X to a
sequence of input elements (f1(x), . . . , fn(x)). Whether a source can be send over
a channel depends on whether one can find a code, which allows to transmit all
symbols generated by the source sufficiently fast over the channel without error.
Both, the probability distribution P (X) of the source, as well as the shape of the
channel, impose constraints on the possibility of error-free signal transmission. An
important insight of classical information theory is the fact that these constraints
can be investigated independently, so that one commonly distinguishes between the
problem of source coding and the problem of channel coding [CT91].

Source coding is concerned with the fact that the plain index |X|, counting the total
number of symbols in X, does not reflect the relevant constraint of the source on
signal transmission because a code allows to map the source symbols to sequences of
input elements of the channel. Instead, the source coding theorem tells us that the
entropy of P (X) reflects the essential complexity of the source, because it provides
a tight lower and upper bound for the average length of the input sequence (i.e. the
average code word length) that has to be transmitted over the channel.

In conclusion, discrete source coding deals with the minimization of the code word
length necessary to describe the source completely. If the source distribution P (X)
is uniform, its entropy equals the log of the index log |X| of the support of P (X),
which is the maximum over all possible distributions with the same support such
that no further compression is possible. Conversely, every source, which has not a
uniform distribution exhibits some amount of (theoretical) redundancy

R[P (X)] ≡ log |X| − H [X] (3.54)

10Note that it is impossible to achieve error-free signal transmission in case X is a continuous
set apart from the trivial case of noise-free signal transmission.
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so that the problem of discrete source coding is frequently called redundancy reduc-
tion. While Eq. 3.54 defines the theoretical amount of redundancy as it is evaluated
on the basis of the log loss, the operational definition is given by the average code
word length of the code that is given by the source minus the minimal possible
average code word length that can be achieved by using another code to describe
the source signal.

Another reason, why the average code word length is often larger than actually
necessary is that in practice, one often does not know the ’true’ distribution P (X).
In that case, the average code word length is clearly given by −E[log P̂ (x)], which
is the average log risk of the estimated distribution P̂ (x). The additional bits that
are required due to the error in the estimate of P (X) are measured by the Kullback-
Leibler distance

DKL[P (X)||P̂ (X)] ≡ −E[log P̂ (x)] − H [X] = E

[

log
P (x)

P̂ (x)

]

. (3.55)

In summary, coding theory provides an intuitive explanation for the meaning of the
log loss as a measure of the average code word length. Redundancy reduction deals
with the question of how to find a code with minimal average code word length,
which can be bound from below by the entropy, which is the Bayes risk under
log loss. Consequently, it is possible to give Bayesian uncertainty representations
by ’subjective’ (maximum entropy) distributions the following meaning: Loosely
speaking, one could imagine that a Bayesian never looses hope that someone will
come to tell him about the true value of the variable, about which he or she has
only uncertain knowledge. To make it possible to get informed by someone else, it
is still necessary, to announce a code for the different possible values. This leaves
the Bayesian free to choose the code such that the most likely values should be
encoded by preferably short code words. In other words, an operational definition
for the distributions in Bayesian theory is given by the corresponding choice of a
representation for the uncertain variable. This renders precisely the fact that the
wronger ones prejudices are, the longer it will take to get informed about the truth.

The central measure in channel coding is the mutual information

I[f, K] ≡ ∆[P (f, K), log P̂ (x)] = H [f ] − H [f |K] = E

[

log
P (f, K)

P (f)P (K)

]

(3.56)

which is the information gain (see Eq. 3.32) under log loss. In contrast to the
quadratic information gain, mutual information has the remarkable property to be
symmetric in f and K, such that the following equalities hold:

I[P (f, K)] = H [K] − H [K|f ] = H [f ] + H [K] − H [f, K] (3.57)
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The amount of information that can be transmitted through the channel (P (K|f))f∈F

depends on the distribution of the input P (f). The maximum mutual information
determined over all possible input distributions

C[P (K|F )] ≡ sup
P (f)

I[f, K] (3.58)

reflects the channel capacity. This definition is justified because of the important
channel coding theorem, which states that all rates below the capacity C are achiev-
able. This means that a sequence of codes fn : X → F n exists, for which the
maximal probability of error vanishes in the limit of large n. In conclusion, the con-
dition H [X] < C[P (K|F )] is necessary and sufficient for the possibility of error-free
transmission of a source over a channel.

When generalizing information theory from the discrete to the continuous case, it
is very important to distinguish the source coding problem from the channel cod-
ing problem. While there is a unique limiting value of mutual information for all
sequences of partitions with decreasing maximum bin width, this is different for
continuous sources. If X is continuous, the whole problem of redundancy reduction
considered above becomes irrelevant, because the entropy (i.e. the minimal descrip-
tion length) of the elements of X diverges and hence error free signal transmission is
impossible in limited time. While it is clear by the definition of the problem above
that error-free signal transmission does not require to specify a cost function for pos-
sible errors, this becomes necessarily different in case of continuous distributions. In
other words, a new issue arises in case of continuous sources, namely to decompose
the degrees of freedom of the source variable into source signal and source noise. To
this end, rate-distortion theory has been developed, where the issue of redundancy
reduction is replaced with the more general concept of compression, which merely
seeks to describe the relevant information of a source as efficiently as possible.

The elegance with which the formulas of discrete information theory can be extended
to continuous sets is so seductive that this crucial difference between both concepts
often remains obscured. Therefore, it should be emphasized that as soon as one
departs from the goal to achieve error-free transmission, it is indispensable to make
assumptions about the effective cost of an error [CT91]. In other words, there is no
way around rate-distortion theory in case of continuous sources.

Nevertheless, models used in efficient coding and unsupervised learning research
are typically constructed without a discussion of the loss function by resorting to
the infomax principle [Lin88] instead. The infomax principle can be defined by
the objective to maximize mutual information between a certain source and the
output of a channel. At this point it is important to note that the infomax method
is related to the channel coding problem only: because of the separability of
source coding from channel coding, it cannot tell anything about which
part of information produced by the source should be disregarded!
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In conclusion, in such infomax models the decision, which information of the source
is to be discarded is not explicitely controlled by the choice of a loss function, but is
left to other ingredients of the model like, for example, the architecture of a neural
network. Since these other ingredients are not suited directly to the source coding
problem, it is difficult to assess which information exactly is discarded, and even
more importantly, why this information is discarded.

One way to inform a model effectively about the distinction between signal and noise,
without using a cost function, which has frequently been used in efficient coding, is
to specify an appropriate generative model. Generally speaking, a generative model
is a latent variable model of the source distribution

P̂ (x) =
∑

s

P̂ (x|s)P̂ (s) . (3.59)

The latent variables s are intended to represent the relevant quantities (often called
’causes’), whereas the conditional distribution P̂ (x|s) represents noise. While it is
tempting to discuss generative models in terms of redundancy reduction [LO99] by
minimizing the average log risk11

−E[log ρ̂(x)] = −E[log
∑

s

ρ̂(x|s)P̂ (s)] . (3.60)

this is somewhat misleading, because it suggests that the major problem was to
estimate the true distribution P (X) (e.g. the ’natural scene statistics’), which would
imply that all generative models are equivalent whenever they lead to the same
optimal P̂ (x). However, different latent variable models of the same distribution
P (X) make a big difference if one takes the maximum likelihood estimate ŝML(x)
as the ’efficient representation’ of the source signal x. Therefore, it is so important
in efficient coding to use ’physically motivated’ generative models, in which the
latent variables rather reflect the behaviorally relevant parameters of a scene. Since
the use of continuous variables for the description of these behaviorally relevant
parameters corresponds to the intuition that something like the Euclidian metric
reflects the relevant cost function, the knowledge incorporated by the choice of the
generative model can be even better described by a loss function like l(x, k) =
(ŝML(x)− x̂MS(x))2, which measures the error with respect to the relevant function
of x.

In conclusion, generative models constitute an interesting alternative to inform a
model how to distinguish signal from noise, but it is misleading to discuss continuous
sources in terms of redundancy reduction, because its entropy (i.e. its minimal
description length) diverges. Redundancy reduction makes sense only for sources
with finite information rate. In particular, it is not true that ’one does not need
to incorporate any assumption of misrepresenting the input’, but the whole issue

11In case of continuous distributions the log loss is defined with respect to the density ρ(x) of
that distribution.
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in unsupervised learning with continuous sources is about finding good reasons to
prefer some information (i.e. the signal) to some other information (i.e. the noise).
The most principled way (i.e. the most transparent way) to do so, is clearly to
specify a loss function as it is done in rate-distortion theory.

3.5.2 Efficient Coding meets Population Coding

Summarizing the preceeding discussions on optimal decoding and encoding, there
are three major sorts of knowledge, with which models of neuronal representations
can be informed: behavioral relevance, the relevant input statistics, and neuronal
transmission noise. Additionally, the limited computational power of neurons con-
stitutes an important aspect too, which will be discussed in chapter 7.

The foremost problem is, in fact, to unravel the aspect of behavioral relevance
because it determines the relevant input statistics, which is indispensable for coding.
The investigations in this thesis, however, are not intended to contribute to this issue,
but follow the approach in population coding, which is to resort to some abstract
coding problem, in order to learn something about which encoding strategies are
most effective to overcome the effect of neuronal noise.

While the focus of efficient coding research is to look rather for the relevant input
statistics, the comparison of basis images with neuronal receptive fields relies on as-
sumptions about the neural code as well. Therefore, it makes sense to relate efficient
coding models to population coding. Concisely speaking, this thesis investigates ef-
ficient coding and population coding jointly with respect to the problem of channel
coding (i.e. the problem of signal transmission), but it neglects the source coding
issue, which is the actual core of efficient coding research.

A general scheme of signal transmission models is displayed in Fig. 3.7 showing
the ingredients, which are necessary to evaluate the performance of an encoding
strategy. The generative model is one way to specify the task. It is the task,
which allows to consider a neuronal system as an information processing device,
computing a function ŝ(x) on the inputs x. The neuronal representation k of ŝ(x)
is likely to suffer from both, the input noise P (x|s) as well as the noise of neuronal
signal transmission P (k|f). The quality of this representation also depends on the
subsequent readout. An experimentalist tends to use the best possible readout,
while in the brain, it should become more and more constraint at later stages of the
system. Conversely, this means that at early systems of sensory processing, say for
the striate cortex or at least for the retina, it makes sense to model the subsequent
neuronal processing by a rather powerful estimator too.

Efficient coding models commonly use a loss function with a binary case distinction
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Figure 3.7. General scheme for deriving neuronal representations from first princi-
ples. The encoding is optimized by minimizing the average loss. The scheme brings
to light the different sorts of assumptions that enter the optimization model: the
source distribution P (x), the loss function l(x, y) which summarizes the distinction
between signal ŝ(x) and noise P (x|s), the set of candidate encodings {f(x)}, the
noise model P (k|f), and the decoder ŝ(k). Note that ŝ(x) here may also constitute
a representation of the posterior distribution P (s|x).

l(x, k) =

{

log P̂ (x|k) , ifx ∈ {natural stimuli}
l0 , otherwise

. (3.61)

For natural stimuli it is the log loss, while otherwise it is constant. In this way, the
task becomes equivalent to a stimulus reconstruction problem (i.e. ŝ(x) = x), when
P (x) is replaced with P (x|x ∈ {natural stimuli}). Efficient coding models typi-
cally resort to the infomax principle, which means that the decoder is not required
to decide for a best guess x̂, but it estimates a probability distribution P̂ (X|k)
instead. The decoder P̂ (x|s) is supposed to be the optimal Bayes estimator, us-
ing P (x|x ∈ {natural stimuli}) as prior, so that it holds P̂ (X|k) = P (X|k, x ∈
{natural stimuli}). Simple models restrict the set of possible encodings to uni-
tary mappings and assume constant additive noise, such that the optimal encoding
makes the different dimensions of the output as independent as possible. These
models constitute a linear version of the independent component analysis (ICA).

Population coding models stick with the stimulus reconstruction paradigm as well.
In contrast to efficient coding, the distinction between relevant and irrelevant stimuli
is not made explicit. Either certain stimulus parameters of interest supposed to be
relevant are selected ad hoc, or the coding problem remains entirely abstract. Conse-
quently, there is often no corresponding prior distribution that could be determined
empirically.
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Another difference is that most models in population coding demand from the de-
coder to make a decision for a best guess x̂, which is commonly evaluated with
respect to the squared error loss. The selection of the decoder has rather been a
matter of taste: the most popular choices are the population vector method, maxi-
mum likelihood, Bayes, and linear Bayes estimators12. For the derivation of optimal
population codes, however, all previous studies used the average Fisher information
as objective function instead of evaluating the error of an estimator explicitly.

The standard noise model in population coding is Poisson noise, while the effect of
using other noise models has been investigated quite extensively [Kar00; WE01]. In
particular, several models of correlated noise have been studied [AD99; HHKM01].

A major goal in theoretical work on population coding is to determine signatures of
advantageous encoding strategies. The encoding is commonly specified by an array
of tuning functions, which determine the firing rate of each neuron as a function
of the stimulus parameter(s) of interest. In particular, sets of candidate encodings
that differ in the tuning widths have been investigated. This issue will be addressed
in the next chapter.

Since a great deal of work in this thesis is about optimizing encoding strategies,
I conclude this section with a warning, because optimization approaches carry a
large risk to give wrong impressions about the assumptions used to obtain a certain
result. While the first principle is typically emphasized showing up repeatedly in
the literature, it actually constitutes only one of many aspects that are responsible
for the results obtained from a model. First principles are discussed at length in the
beginning and the end of a paper, but many relevant aspects of a model, other than
the objective function, often remain hidden in the technical sections.

What is widely overlooked is the fact that also the problems typically studied in
physics, say e.g. the electric field caused by charged metallic objects, is not at
all determined by the first principle alone, but strongly depends on the particular
constraints at hand, like e.g. the geometry of the objects. Therefore, a major goal
of this thesis is to set up a common framework, which makes the assumptions of
different studies in the literature explicitly comparable and to figure out whether
and how results may change if one gambles a little bit around with the constraints
that have been used so far.

12This estimator is presented in chapter 7
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Part I

Optimal Neuronal Tuning
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Chapter 4

Coarse Coding

– Optimal population coding revisited

One major motivation for the theoretical study of population codes originates from
the problem, how to relate the shape of the tuning function of an individual neuron
to the accuracy of a distributed representation, which makes use of the activity
pattern of a large population of neurons. In particular, a lot of attention has been
devoted to the problem how the tuning width affects the accuracy of population
codes, since it was recurrently observed “that the accuracy with which primates are
able to perform perceptual or motor tasks is much better than expected from the
tuning width of single cells that are presumed to be involved in these tasks” [Vog90].

The expectation to have a simple correspondence between receptive field size and
discriminability stems from the particular idea of a “grandmother cell” type of rep-
resentation, where the label of the most active neuron encodes the current signal
value (see Fig. 4.1). For population codes, the tuning width w clearly does not
provide a lower bound for spatial resolution (see Fig. 4.2), and an early theoretical
study by Hinton [Hin81; HMR86] demonstrates even a superiority of coarse coding:
for binary radial symmetric tuning functions, distributed uniformly over a D di-
mensional stimulus space and vanishing neuronal response variability, the minimal
decoding error scales according to

σ ∝ w1−D . (4.1)

This means that sharp and broad tuning are equally good in case of D = 1, while
broad tuning is optimal for all D ≥ 2.

Subsequently, several theoretical studies investigated the effect of the tuning width
on the acuity of population codes. Eurich and Schwegler [ES97] confirmed the result
given by Eq. 4.1 analyzing the same model as in [Hin81], while the infinitely sized
stimulus space, was replaced with a D dimensional sphere. Another very different
argument for the advantage of coarse coding was presented by Baldi and Heiligenberg
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Figure 4.1. If the most
active unit is the only one
used to represent the stim-
ulus, then the uncertainty
about the location of the
stimulus is directly related to
the receptive field size of that
neuron.
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Figure 4.2. If more than
one neuron is taken into ac-
count, the uncertainty about
the location of the stimulus
can be substantially smaller
than the receptive field size
of the individual neurons. If
e.g. the combinatorics of all
“sufficiently” active neurons
is used, the uncertainty is
rather related to the intersec-
tions of the receptive fields.

[BH88], who considered the approximation error of a particular radial basis function
network.

On the other hand, Snippe and Koenderink [SK92] argued against the square nature
of the sensitivity profiles used in [Hin81] and through their analysis using Gaussian
receptive fields they found that coarse coding is not always optimal but that sharp
tuning is better in the case of D = 1. While this conclusion contradicts the result of
[BH88], which was based on Gaussian tuning curves as well, they claimed that their
analysis was more accurate. More recently, the conclusion of [SK92] was supported
by a work of Zhang and Sejnowski [ZS99], who derived an equivalent scaling rule on
the basis of Fisher information

σ2 ∝ w2−D
Z , (4.2)

which they claimed to be “universal”. In particular, they concluded for any noise
model and all radial symmetric tuning functions, distributed uniformly over a D
dimensional stimulus space, that sharp tuning is optimal in case of D = 1, sharp
and broad tuning are equally good in case of D = 2, and broad tuning is optimal in
case of D ≥ 3.
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Figure 4.3. Minimum mean squared error as a function of the tuning width in
case of D = 1 and a Poissonian spike count distribution with a maximum mean
spike count equal to one. Furthermore, the model used has equidistantly spaced
box tuning functions and a uniform prior distribution with a support of unit length.

Obviously, however, this “universal scaling rule” does not account for the particular
case studied by Hinton. Since Fisher information is particularly relevant in case
of small noise (see next chapter or [BRP02]), the absence of noise cannot explain
this contradiction. In fact, Fig. 4.3 shows the numerical result that for D = 1, a
small tuning width becomes even worse, if noise is increased. Furthermore, it will
be shown that tuning functions exist, which are not binary, but exhibit the same
scaling as predicted by Hinton’s model. Hence, the latter does not constitute an
irrelevant exception, but that shows a universal scaling rule cannot match Eq. 4.2.

Taken together, the literature on optimal tuning width did not provide a coherent
picture and it was lacking a thorough discussion of the assumptions leading to
divergent conclusions. In the following section, a new scaling rule is presented,
according to which Eq. 4.1 and Eq. 4.2 can be understood as special cases, each of
which representing a particular choice for the dynamic range of the tuning functions.

4.1 What determines the optimal tuning width?

The contradiction between both scaling rules, Eq. 4.1 and Eq. 4.2, can be resolved
by recognizing that the ansatz for the variation of the tuning width used in [ZS99]
implies a scaling of the dynamic range of the tuning function at the same time (see
Fig. 4.4, left). In order to decouple the tuning width from the dynamic range of a
tuning function, it is necessary to use a slightly different ansatz, which we will first
demonstrate by a simple example, where the tuning function of each single neuron
f(~x) = fmaxφ(|~x − ~c|) also depends only on the Euclidean distance to the center ~c,
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Figure 4.4. Radial component of the tuning functions. Left: Shows 4 examples for
different values of the length scale parameter used in [ZS99] in order to illustration
its simultaneous effect on both, the tuning width as well as the dynamic range.
Right: Parameterization that allows to adjust the tuning width independent of the
dynamic range.

but now can be adjusted by two independent parameters a and b

φ(z) =







1 , z < a
1 − z−a

b−a
, a < z < b

0 , z > b
(4.3)

instead of a single scaling parameter only (see Fig. 4.4, right). Following [ZS99], we
assume an (improper) uniform distribution of the tuning function centers ~c over the
entire stimulus space by which the average tuning function array becomes isotropic
and one may consider the reconstruction error w.r.t. an arbitrary direction, say ~e1,
only. Furthermore, it suffices to consider the tuning function at ~c = 0. In case
of additive Gaussian noise with variance v the corresponding Fisher information
component J1 yields

J1[f(~x)] = f 2
max







0 , |~x| < a

1
v
· 1

(b−a)2

(
x1

|~x|

)2

, a < |~x| < b

0 , |~x| > b

. (4.4)

The total Fisher information in the uniform neuron density approximation as used
in [ZS99] is proportional to the average over J1:

J̄ =

∫

J1[f(~x)]d~x . (4.5)
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d=2d=1

Figure 4.5. Geometry of coarse coding. For each tuning function the area of
positive Fisher information corresponds to the surface of a d-dimensional sphere
with radius w, which is proportional to wd−1.

In case of D = 1 this yields

J̄ = 2 · f 2
max

v
· 1

b − a
= 2 · f 2

max

v
· 1

d
, (4.6)

where we defined d := b− a as the dynamic range (i.e. the length of the region with
positive Fisher information). In case of D = 2 we obtain

J̄ =
π

2
· f 2

max

v
· b + a

b − a
=

π

2
· f 2

max

v
· w

d
, (4.7)

where we defined w := a + b as the tuning width. In case of D = 3 the average
Fisher information reads

J̄ =
4π

9
· f 2

max

v
· w2

d
, (4.8)

and for arbitrary D it is straightforward to prove the following scaling rule:

J̄ ∝ f 2
max

v
· wD−1

d
, (4.9)

This scaling rule does not rely on the noise model as long as the amount of noise
does not systematically depend on w or d, and it can simply be generalized to
other tuning functions, where the ramp function, describing the radial component
of the tuning curves, is replaced with some other decay profile (e.g. any sigmoidal
function). As explained in [BRP02], however, the Fisher information J1(|~x − ~c|) is
tightly related to the minimum mean squared error only if the tuning functions are
sufficiently regularized.
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Figure 4.6. Why a small dynamic range increases total Fisher information. Coding
scheme 1 (solid) with small dynamic ranges is compared with coding scheme 2
(dashed) with large dynamic ranges. The corresponding tuning curves are shown
in the upper panel and the resulting Fisher information for each tuning function
in case of additive Gaussian noise is shown in the lower panel. The total Fisher
information of scheme 1 is three times larger than the total Fisher information of
scheme 2

For a constant dynamic range Eq. 4.9 reproduces Hinton’s scaling rule (Eq. 4.1).
While the total Fisher information diverges in the limit d → 0 due to the neuron
density approximation, it will become clear in the next chapter how the effect of
the dynamic range on Fisher information can be understood in detail. For the time
being, one has to read this formula simply a rule of thumb for the scaling behavior,
which also holds for small but not too small d.

Zhang’s scaling rule (Eq. 4.2) is obtained under the special assumption d ∝ w. In
other words, Fisher information of radial symmetric tuning functions does not only
depend on the width, but also on the dynamic range. The dependence on the width
is well described by Hinton’s rule and has the same simple geometrical explanation
namely, that the surface of a D-dimensional sphere with diameter w is proportional
to wD−1 (see Fig. 4.5). The additional dependence on the dynamic range is due
to the fact that Fisher information is proportional to the squared derivative of the
tuning function. Therefore, the contribution of a single tuning function to the total
Fisher information decreases quadratically with an increase of the dynamic range so
that the net effect for the total Fisher information is negative (see Fig. 4.6).

In conclusion, the long standing contradictions in the literature regarding the conclu-
sions about the optimal tuning width have been resolved by making the underlying
assumptions explicit. In this way, we discovered the steepness of a tuning function
as a new, crucial parameter of population codes, which allows us to end up with the
unique result that coarse coding is advantageous for all D.
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It should be mentioned, however, that this result is clearly not the end of the story.
There are several assumptions underlying the models considered so far that can be
called into question. To name some important examples, we will see below that the
advantage of coarse coding relies on . . .

• the radial symmetry of the tuning functions,

• the absence of energy constraints,

• and, in the context of vision, on the dot stimulus prior.

Furthermore, the use of Fisher information and the neuron density approximation
to construct an objective function for the derivation of optimal population codes is
rather awkward because as it turns out, those tuning functions that lead to a large
total Fisher information are particularly likely to underestimate the true minimum
mean squared error by far. This observation has been the motivation for a careful
study of Fisher-optimal population codes, which will be presented in the next section.



72 CHAPTER 4. COARSE CODING



Chapter 5

Fisher-Optimal Population Coding

The scaling rule for an optimal tuning width derived in the previous chapter is a good
example for a model, which substantially relies on uncertain knowledge. Clearly, we
have to ask, what the scaling rule can tell us about real neurons in the brain. Shall
we now expect to find a large tuning width, whenever we measure a two-dimensional
tuning function? Or can we falsify the efficient coding principle from the ubiquitous
finding of smooth bell-shaped tuning functions, which are inefficient because of their
large dynamic range?

While most people will not hesitate to consider these ’naive’ conclusions invalid, it
is, in turn not at all obvious which conclusions can actually be drawn. One of the
foremost problems with the scaling rule is the question to which stimulus space it
refers. Clearly, according to the efficient coding principle, neurons are not optimized
to any arbitrary stimulus dimension (which would be an inconsistent demand), but
one has to consider the naturally relevant stimulus space. This space, however, is
unlikely to be selected by chance. Consequently, the requirement of radial symmetry
or unimodality is very unlikely to hold with respect to the relevant stimulus space.
Its ubiquitous finding in experimental data, however, rather reflects an experimental
selection bias.

In conclusion, the assumption of a particular parameterization of a tuning function
cannot be justified unless one knows about the space of all relevant stimulus param-
eters, which in particular cases might be possible. Therefore, we here depart from
previous studies of optimal population coding, where the optimization of scale or
width was based on a comparison between tuning functions only with exactly the
same shape, neglecting the fact that the precision may depend much less on scale
or width than on other aspects of the shape of the tuning functions. In contrast, we
now seek to find population codes that are optimal within preferably large classes of
tuning functions that are specified by very basic constraints only, like e.g. a limited
maximum firing rate or unimodality. This means, in particular, that we do not

73
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restrict the class of encoding strategies a priori to only those tuning functions that
are considered as biologically plausible, but we rather intend to check the actual
explanatory power of Fisher-optimality as a first principle.

The relaxation of the restrictions on the set of candidate encodings, however, un-
covers another, technical problem, which has been rather ignored in previous work,
namely, that Fisher information tends to give meaningless results, the less regular-
ized the space of encodings is. In fact, the hegemony of Fisher information as the
commonly used measure of coding accuracy in the population coding literature is
accompanied by a striking lack of justification. In particular, it seems that Fisher
information has been more and more simply equated or even defined as the cod-
ing accuracy [PDL01], rather than treating it as an approximation or a minimalist
calculus.

Since it turned out that the Fisher information approximation tends to fail, when
used for the derivation of efficient encodings, the work presented in this chapter
also emphasizes the technical question of when this approximation is able to give
meaningful results. In spite of the restricted validity of Fisher information as a
measure of coding accuracy, however, it is instructive to see how critically optimal
encodings can depend on small changes in the assumptions. Furthermore, because
Fisher information allows for an analytical treatment of population coding, it can
serve as a tool to first develop hypotheses about optimal encoding strategies, which
can be tested subsequently by numerical studies.

The chapter is organized as follows: In section 5.1, different ways to justify the use of
Fisher information that are present in the literature, will be reviewed, and the most
general argument based on asymptotic efficiency will be explained. In section 5.2 the
optimal scale for the example of Gaussian tuning curves is determined with respect to
Fisher information on the one hand and with respect to the minimum mean squared
error (MMSE) in the case of a small counting time window on the other hand.
This example indicates that Fisher information does not account for the MMSE
in the case of short-term population coding. Subsequently, it is shown that this
problem becomes especially relevant for Fisher-optimal codes if one drops the a priori
restriction to Gaussian shaped tuning curves. This is demonstrated by presenting
an example in section 5.3, where two neurons are sufficient to achieve arbitrary large
Fisher information. The conditions under which Fisher information can be used to
determine the MMSE are discussed in section 5.4. In section 5.5, we investigate the
case, where the tuning functions are constrained to have a single maximum only (i.e.
unimodal tuning functions) and the crucial role of energy constraints for the tuning
width is demonstrated in section 5.6. Finally, the prerequisites and implications of
the results are discussed in section 5.7.

Throughout this chapter the encoded random variable will be denoted by x and the
observable spike count vector by k, whose N components are the numbers of spikes
of the N neurons (see Fig. 5.1). Because all observable quantities take values within
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Figure 5.1. General popu-
lation coding scheme. The
relationship between a stimu-
lus signal x and the neuronal
response k is determined by
the conditional probabilities
p(k|x), which can be de-
composed into the encoding
and the noise model. The
mean spike counts µj(x) ≡
E[kj |x] = Tfj(x) as functions
of x specify the encoding.
Any function x̂ : k 7→ x̂(k)
may be considered as a can-
didate estimator of x. The
performance of an estimator
x̂ with respect to a given x is
judged by its mean squared
error risk.

a limited range only, we set the range of x to the open unit interval x ∈ (0, 1) without
loss of generality. For convenience, we assume x to be uniformly distributed with
density p(x) = Θ(x)Θ(1 − x), where Θ(y) denotes the Heaviside function, which
is one, if y > 0, and zero otherwise. p(x) is also called the a priori distribution,
because it determines general properties of the signal x that are independent of the
observed k.

The encoding of x is specified by the set of tuning functions {fj(x)}N
j=1 that give the

mean number of spikes for each neuron j divided by the length T of the counting time
window. Together with the assumption of independent Poisson noise, the response
statistics of the entire population is then described by

p(k|x) =
N∏

j=1

pµj
(kj) =

N∏

j=1

(Tfj(x))kj

kj!
exp{−Tfj(x)} , (5.1)
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where pµj
(kj) denotes the probability mass function of the Poisson distribution with

parameter µj = Tfj(x), which gives the mean and the variance of the spike count.
Apart from the asymptotic cases T → 0 and T → ∞, we will frequently consider
the case fmaxT = 1, i.e. each neuron does not fire more than one spike on average.
As will be discussed in section 5.7, I suspect that fmaxT = 1 is of the relevant order
for signal transmission in cortex.

Throughout this chapter, we will consider the estimation of a single parameter only.
In the case of multi-parameter estimation, the choice of the squared error distance
is not sufficient to enable a well-posed comparison of different coding schemes, but
additional specifications become necessary. While the optimization can be very
complicated if the loss functional L[x̂,x] depends on different dimensions in a non-
linear fashion, it becomes rather simple if it is multi-linear, i.e.

L[x̂,x] = L(χ2
1, . . . , χ

2
D) =

D∑

d=1

cdχ
2
d , (5.2)

which makes the individual loss χ2
d of different parameters commensurable by an

appropriate choice of weightings {cd}D
d=1. If one further assumes that no statis-

tical dependencies between the different stimulus components exist (i.e. p(x) =
∏D

m=1 p(xm)), it is easy to relate the results below to the case, where many pa-
rameters, say D, have to be inferred simultaneously from the neuronal population
activity1. In the absence of special constraints, the optimization problem reduces
to the single parameter case, where optimal encoding is simply given by D sub-
populations that encode each parameter independently and the number of neurons
in each subpopulation has to be chosen, such that the contributions cdχd to the
total loss become equal. The more general case, where statistical dependencies
between the variables exist, can often be traced back to the case without corre-
lations, provided the weightings cd are all identical. E.g. if p(x) is given by an
arbitrary multivariate normal distribution, for which all correlations are determined
by the covariance matrix, one can always find another coordinate system x̃ by the
Karhunen-Loeve transformation [Jol86], for which all variables become independent
(p(x̃) =

∏D
m=1 p(x̃m)).

In conclusion, the shape of optimal tuning functions is not necessarily related to
the number of dimensions as the models of the previous chapter might suggest.
Under specific assumptions, however, dependencies on the number of dimensions
can emerge. In particular, the scaling rules presented in the previous chapter, are a
direct consequence of the restriction to radial symmetric tuning functions.

1This corresponds to the case considered in the previous chapter 4 apart from the assumption
of radial symmetry.
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5.1 How to justify the use of Fisher information

in population coding

The first publication in population coding using Fisher information I am aware of
was the work of Paradiso in 1988 [Par88], which relates the psychophysical perfor-
mance of orientation discrimination to the Cramer-Rao bound, where the Fisher
information has been derived from a statistical model of a cortical hypercolumn. In
that paper the Cramer-Rao bound is printed only for the special case of unbiased
estimators

Var [x̂] ≥ 1

J [p(k|x)]
, (5.3)

whereas in the text it is stated inconsistently that the inequality holds for ’any esti-
mate’. Apart from the Cramer-Rao bound, Paradiso also alluded to the asymptotic
behavior of the ML estimator. The original statement ’If a large number of cells are
used for the orientation estimation, this limit is attainable (in the sense that the
variance of a maximum likelihood estimate of orientation asymptotically equals the
lower bound)’ again is too sloppy as it does not mention the necessary conditions,
under which this statement holds true. Special care is required, however, because
tuning functions of different neurons are typically not identical, so that the limit of
a large number of neurons is not equivalent to the standard case of the limit of a
large number of i.i.d. samples. Because of this departure from the standard case, it
is indispensable to justify the use of Fisher information in a more explicit, thorough
way.

The use of Fisher information as an asymptotic approximation of the true mean
squared error is typically innocuous for the special case of smooth unimodal tuning
functions, provided they are independent of the total number of neurons
(This case has been studied e.g. by Paradiso [Par88] or Seung and Sompolinsky
[SS93]). Optimal encodings, however, typically depend on the total number of neu-
rons. For example, if we consider the model studied by Zhang and Sejnowski [ZS99],
the optimal scale of the tuning functions should be as small as possible in case of
D = 1. As small as possible means that the scale decreases proportionally to
1/N with increasing number of neurons N . It will be shown below that in this
case no asymptotically efficient estimator exists with respect to the limit N → ∞!
This demonstrates that the optimization of population codes with respect to Fisher
information is particularly awkward. Previous papers, however, where Fisher infor-
mation has been used to look for optimal encodings [ZS99; EW00], do not mention
this problem, but justify the use of Fisher information by alluding merely to the
Cramer-Rao bound again.

Apart from the problem that the Cramer-Rao bound is known to be not sharp
[LC99], another issue arises in the context of Fisher-optimal encodings, which is in
need of clarification. A restriction to unbiased or asymptotically unbiased estima-
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tors can be a reasonable strategy in case of looking for optimal decoding, when a
UMVU estimator exists. However, it is easy to see that there is no uniform max-
imum Fisher information (UMFI) encoding because without regularization of the
encodings, Fisher information can be made infinitely large at any singular point. In
other words, even if one accepts a restriction to unbiased or asymptotically unbiased
estimators and supposing that the risk of one of these estimators can be approxi-
mated by the inverse Fisher information, this is still not sufficient to determine a
unique optimal encoding with respect to the risk function.

In [ZS99; EW00] this problem is obscured by the use of the uniform neuron density
approximation, which artificially ensures that the approximate population Fisher
information does not depend on the stimulus. However, the neuron density ap-
proximation is justified only for those encodings, for which the true total Fisher
information of the population is constant. If the true total Fisher information is
constant, however, there is no need anymore to introduce an approximation. In
conclusion, nothing is achieved by the use of the neuron density approximation,
except that it misleads the reader to overlook the limited validity of the approach.
Additionally, the wrong impression about the alleged generality of this approach is
supported in [ZS99] by the repeated emphasis on the generality of the ’universal
scaling rule’, which ’includes all radial symmetric tuning functions’.

It is very seductive to accept the introduction of a density approximation, because
there are so many successful examples in physics, where this leads to valid predic-
tions. This is, however, not the case in optimal population coding. The meaning of
the objective function, in particular, should not rely on this specific approximation.

5.1.1 The MMSE as Objective Function

A transparent way to construct an objective function in a meaningful way is to
specify a total ordering on the risk functions as it is common in estimation theory
and only then to ask for the conditions under which the inverse Fisher information
can be used to approximate the risk function of certain estimators.

As mentioned above, the restriction to unbiased estimators does not lead to a total
ordering on the risk functions, if the encoding is optimized instead of the decoding2.
In fact, however, there is hardly any good reason to not accept the Bayesian ap-
proach, in the case of optimizing the encoding for optimal signal transmission. Al-
though some researchers in population coding tend to avoid Bayesian methods, one
should recognize at least its unquestioned hegemony in information engineering.

In signal processing, the minimax approach is particularly appropriate, because it

2While also in the case of decoding the assumption of unbiasedness does not always allow for
determining a uniformly best estimator, this problem is completely devastating in case of encoding.
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ensures minimal accuracy for all signals and not only on average. Correspondingly,
this criterion would lead to a maximin approach with respect to the Fisher informa-
tion approximation.

Similar to what is frequently done in minimax estimation, I will begin, however, with
the average risk criterion and then I derive constant Fisher information encodings
(analog to constant risk decodings) by using a uniform prior (which is analog to
the least favorable distribution). There are some more reasons, why the average
risk criterion is preferable in this context. First, because the Bayes risk can be seen
as an ultimate limit for the coding accuracy, which, in particular, allows to reveal
the limits of the Fisher information approximation: if for any prior the minimum
mean squared error (MMSE) is larger than the inverse Fisher information, this is
clearly sufficient to prove that no estimator can exist with a risk function equal to
the inverse Fisher information. Furthermore, the average risk criterion

χ2 = E[(x̂ − x)2] = E[E[(x̂ − x)2|x]] = E[E[(x̂ − x)2|k]] (5.4)

is computationally much more convenient than the minimax error, and last but not
least, it constitutes the standard distortion measure in rate-distortion theory [CT91].

Recall that the best estimator x̂MS, which minimizes χ2, is given by the MS-
estimator

x̂MS(k) = E[x|k] =

∫

x p(x|k)dx . (5.5)

and its average risk, the MMSE in general reads

χ2
MS = E[(x̂MS − x)2] = E[x2] − E[x̂2

MS ] . (5.6)

In the next section, it will be explained under which conditions the risk of this
estimator can be approximated by the inverse Fisher information.

5.1.2 Asymptotic efficiency

The essential justification for the use of Fisher information is the concept of asymp-
totic efficiency. If one considers sequences of estimators (x̂m)∞m=1, for which each
element x̂m(k(1), . . . ,k(m)) refers to m independent, identically distributed (i.i.d.)
spike count vectors (k(1), . . . ,k(m)), the corresponding sequence of risk functions
asymptotically decreases proportionally to 1/m for many types of estimators3. This
can essentially be explained by the central limit theorem. More precisely, it can be
shown under some rather weak assumptions about p(k|x) and p(x) (for details see

3’Type of estimator’, which is often called just ’estimator’ as well, denotes a unique construction
rule for estimators like the ’maximum likelihood’ or ’minimum mean squared error’ method.
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[LC99]) that the rescaled error
√

m(x̂m−x) converges in law to a normal distribution
with zero mean and a variance, which is the reciprocal value of Fisher information

J [p(k|x)] ≡ E[(∂x log p(k|x))2|x] . (5.7)

Such (sequences of) estimators are called asymptotically efficient.

In the case of a homogeneous Poisson process, as considered here, it is equivalent
to consider sequences of increasing decoding time windows Tm = mT0. While the
corresponding estimators are functions of a single spike count vector k only, this
spike count vector can be interpreted as the sum

∑m
t=1 k(t) of m spike count vectors

that are independently drawn from a Poisson distribution, corresponding to the
time window T0. Thereby no information gets lost, because

∑m
t=1 kj(t) is a sufficient

statistics for the parameter of the Poisson distribution [LC99]. Accordingly, for
asymptotically efficient estimators holds

lim
T→∞

r(x, T ) · J [{fj(x)}N
j=1] = 1 , (5.8)

where r(x, T ) denotes the risk depending on T and the Fisher information is deter-
mined by

J [{fj(x)}N
j=1] = T

N∑

j=1

f ′2
j (x)

fj(x)
, (5.9)

which is obtained by inserting Eq. 5.1 into Eq. 5.7 [Par88; SS93].

While Fisher information also shows up in a similar way in the Cramer-Rao bound
for unbiased estimators, the latter by itself is not sufficient to justify the use of
Fisher information as a general measure for coding precision. In its general version,
the Cramer-Rao bound leads to a lower bound for the risk of any estimator

r(x) ≥ (∂xE[x̂(k)|x])2

J [p(k|x)]
+ (E[x̂(k)|x] − x)2 , (5.10)

which is not unique for different estimators. Furthermore, even if uniqueness is given
as e.g. in case of uniformly unbiased estimators, a comparison of different encodings
can not be traced back to a comparison of some lower bounds on the decoding risks.
Instead, it is indispensable to determine a sufficiently close approximation of the
actual values. Since the exact equality r(x) = J(x)−1 holds true only in very rare
cases (see appendix 5.8.1), the notion of asymptotic efficiency presented above is
crucial for the use of Fisher information4.

5.1.3 MMSE and Fisher information

Provided a set of regularity conditions hold, the MS-estimator is known to be asymp-
totically efficient [LC99]. As explained above, this means that with an increasing

4For a more detailed discussion of differences and relationships between asymptotic theory and
the Cramer-Rao bound see [LC99]
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number of observations its risk asymptotically approaches 1/J(x) for all x. Because
this of course implies that also the mean values of both converge, the MMSE is then
asymptotically equal to the mean asymptotic error (MASE)

χ2
AS ≡ E

[
1

J [{fj(x)}N
j=1]

]

=
1

T

1∫

0

(
N∑

j=1

f ′2
j (x)

fj(x)

)−1

dx . (5.11)

Note, however, that the finite number of neurons is crucial for the accuracy of
population codes, so that this limiting behavior is only useful as a guide of intuition,
but not in a rigorous sense. This means that, even if one can prove asymptotic
normality for a certain sequence of estimators (x̂m)∞m=1, one still has to figure out,
how large at least m has to be so that the MASE becomes a good approximation of
the MMSE (i.e. for the relative difference between both it holds |χ2

MS−χ2
AS |/χ2

MS <
ε � 1). For example, it will be demonstrated below that T typically has a large
effect on the shape of the MMSE-optimal code, although as explained above the MS
estimator is asymptotically efficient with respect to T → ∞. In contrast, the shape
of Fisher-optimal codes are necessarily independent of the available decoding time
because T appears only as a constant factor in Eq. 5.11.

Previous papers on population coding, using Fisher information, referred rather to
the limit of large N than to the limit of large T considered above. There is an
important difference between these two kind of limiting processes: As long as the
tuning functions are taken to be static, the integration of spikes over time corre-
sponds to a sum over i.i.d. spike count vectors. In contrast, for the spike counts of
different neurons we typically have p(ki|x) 6= p(kj|x) for all i 6= j. This diversity of
the tuning functions can crucially slow down the convergence of the MMSE to the
MASE or it may even destroy the property of asymptotic efficiency. In fact, it is
possible to construct sequences of tuning functions so that the difference between the
MASE and MMSE becomes larger and larger the more tuning functions are taken
into account by the MS-estimator (an example will be given below). Furthermore,
as it turns out, those tuning functions that lead to large Fisher information are
particularly likely to underestimate the MMSE by far. Clearly, the latter becomes
a severe problem, when Fisher information is used as an objective function in order
to determine optimal encodings.

Another fundamental problem is that Fisher information can be used for those en-
codings only, for which x is identifiable. This means that the mapping of the tuning
functions has to be one-to-one. If x is not identifiable, Fisher information may ei-
ther underestimate or overestimate the true error by far. E.g., a single symmetric
tuning function centered at 1/2 (the middle of the interval (0, 1)) cannot improve
the mean squared error at all for any x, while Fisher information can be arbitrarily
large everywhere. Conversely, the Fisher information of a single tuning curve that is
constant somewhere within an arbitrary small, but finite interval, predicts a diverg-
ing error within this interval, while the risk of the MS-estimator, in fact, depends
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on the length of this interval and χ2
MS can never be larger than the variance of the

a priori distribution (Eq.5.6). In conclusion then, the use of Fisher information can
at most be justified for the restricted set of encodings, for which the mapping of the
tuning function array is one-to-one and hence, Fisher-optimality is here defined as
to require both, a minimal MASE as well as identifiability.

5.1.4 Alternative Justifications

The justification of Eq. 5.11 as an objective function constructed from Fisher infor-
mation as outlined above is actually the most general that is present in the literature.
Nevertheless, one of our referees gave us a hard time with publishing [BRP02] be-
cause he rather believed that the limited validity of Fisher information as a measure
for population codes uncovered by this justification, is a deficiency of the choice of
the MMSE as objective function and not due to Fisher information itself. This is
clearly not true. In fact, it should be noted that considering only the mean of the
risk function (instead of its entire shape) is a rather graceful way, which at most
underestimates the limitations of the Fisher information approximation! Once more,
if for any prior the minimum mean squared error (MMSE) is larger than the inverse
Fisher information, this is indeed sufficient to prove that no estimator can exist with
a risk function equal to the inverse Fisher information.

Conversely, in the cases where one drops the common restriction to smooth, bell-
shaped tuning functions like Gaussian or cosine tuning profiles, it is also possible
that the MMSE becomes smaller than the mean inverse Fisher information5. In
these cases, unbiased estimators – if they exist at all – are strongly suboptimal not
only with respect to the average risk but also with respect to the maximum risk.
While it is a wide-spread believe that unbiasedness is a generally desirable property
this is not true even from a purely frequentist’s point of view.

In conclusion, if one refers to the squared error loss, the (approximate) equality of
the MMSE with the MASE is a necessary condition for a meaningful use of Fisher
information.

Another line of motivation for the use of Fisher information originates from the
finding that Fisher information also shows up as the leading coefficient in a Taylor
expansion of the Kullback-Leibler distance:

DKL(P (k|x)||P (k|x + ∆x)) = J [P (k|x)]
∆x2

2
+ O(x3) (5.12)

which builds the basis for information geometry [AN00] and has interesting applica-
tions in the context of neural coding [WNiA01]. In fact, I think the interpretation of

5This is the case if Fisher information is small within a surrounding of a stimulus parameter
value, which preferably happens, if the tuning functions are flat within large regions like for example
for sufficiently box-shaped tuning functions.
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Fisher information as a ’rate’ of the Kullback-Leibler distance is the most intuitive
one. As such, however, it is obvious that Fisher information is neither sufficient to
serve as a reliable measure for the mean squared error coding cost nor to determine
the mutual information of an encoding.

5.1.5 Fisher information, MMSE, and Mutual Information

In the population coding literature, the accuracy of a code is frequently simply
equated with its Fisher information. In fact, it appears that it is sometimes taken
as a definition rather than as a means to approximate the coding error [PDL01]. It
is important to note, however, that ’Fisher information’ does not always make sense
as an information measure although it carries the word ’information’ in its name.

The paper [BN98], which relates Fisher information to mutual information, already
contains several hints that Fisher information gives unreasonable results in case of fi-
nite size/finite time conditions. I am afraid, however, that it has rather strengthened
the view to consider Fisher information as an information measure of population
codes per se and not as an approximation.

The relationship between Fisher information and mutual information established in
[BN98] builds upon the notion of asymptotic normality as well. It is important to
note, however, that the whole point in the asymptotic relationship between these
two information measures is nothing but the distinct role of the normal distribution
due to the central limit theorem. In order to illustrate this fact, consider some
arbitrary feature of the distribution, say for example the Fritze information6, which
is defined to be the supremum of a density in case of continuous distributions:

HF [ρ(x)] ≡ sup
x

ρ(x) . (5.13)

Since the variance as well as the entropy of a Gaussian is uniquely determined
by its maximum, it is clearly possible to relate the Fritze information to mutual
information in the case of asymptotic normality. In that case it holds:

I[X, Y ] = H [X] − E

[

log

(
2π

√
e

HF [ρ(x|y)]

)]

. (5.14)

Furthermore, the Fritze information imposes an interesting lower bound on the av-
erage risk under 0-1-loss for any estimate:

lim
ε→0

E [lε(x, x̂)]

ε
≥ E [HF [ρ(x|k)]] . (5.15)

6The origin of the name is due to the German tongue twister:“Fischers Fritze fischt frische
Fische...”
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and the bound is always attained by the MAP estimator. I hope this small humorous
example helps to better assess the meaning of asymptotic relationships and general
lower bounds.

Now, we turn to the question, how the three quantities, Fisher information, mutual
information, and the MMSE are related to each other also beyond the asymptotic
limit. In order to address this question let us consider the following bound

I[X,K] = H [X] − E [H [X|k]]

≥ H [X] − E

[
1

2
log (2π e Var [X| k])

]

(5.16)

≥ H [X] − 1

2
log (2π e E [Var [X| k]]) (5.17)

= H [X] − 1

2
log
(
2π e χ2

MS

)
(5.18)

for which in (5.16) equality holds in case of the Gaussian channel and hence, in
the asymptotic normal case as well. The second bound (5.17) is due to Jensen’s
inequality and hence, equality holds if and only if Var [X| k] is constant almost
everywhere. Clearly, the resulting inequality (5.18) can also be rewritten as a lower
bound for the MMSE:

χ2
MS ≥ exp{2(I[X, K] − H [X])}

2π e
(5.19)

Similar to the definition

IF isher = H [X] − E

[
1

2
log

(
2π e

J(X)

)]

(5.20)

used in [BN98] one may define

IMS = H [X] − 1

2
log
(
2π e χ2

MS

)
(5.21)

and

IAS = H [X] − 1

2
log
(
2π e χ2

AS

)
. (5.22)

The only difference between IAS and IF isher is the Jensen inequality. Therefore, it
holds IAS ≤ IF isher and equality holds if and only if Fisher information is constant
almost everywhere. Since the Fisher-optimal codes, which are going to be derived in
the following have indeed constant Fisher information, the use of χ2

AS as objective
function is equivalent to the use of IF isher.

In case of a single tuning curve and the Poisson noise model, Fisher information
is constant for a quadratic tuning function f(x) = fmaxx

2 (see Fig. 5.4, left). The
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Figure 5.2. Comparison of IMS (blue), IAS (green), and the mutual information
I[X, K] (red) as a function of fmaxT .

resulting courses of IMS, IAS, and the mutual information I[X, K] are shown in
Fig. 5.2 as a function of T . Here, the MMSE and mutual information behave very
similarly, while Fisher information is rather different. This observation demonstrates
that Fisher information is only approximately valid also with respect to mutual
information.

A very instructive example is given by the following tuning function

fω(x) = fmax [(ωx) mod 1]2 . (5.23)

In case of ω = 1, it is just the quadratic tuning function considered above. With
increasing ω, however, the tuning function constitutes a wave function with increas-
ing wave number ω (see Fig. 5.4, right). The interesting thing about this type of
tuning function is that all three measures, mutual information, MMSE, and Fisher
information take different values in the limit ω → ∞. While the MMSE increases
with ω, converging to the a priori error Var [X] (i.e. no quadratic information gain
at all), Fisher information diverges as it holds J(x) = 4fmaxTω2 in this case. Mutual
information, however, is identical for all ω.

This example also demonstrates nicely the difference between channel coding and
rate distortion theory. To make this point as clear as possible think of x =

∑∞
j=1 bj2

−j

to be represented by the binary sequence (bj)
∞
j=1. Furthermore let us suppose a noise

model such that only the finite string of the first m elements (i.e. (bj)
m
j=1) is observ-

able. If we now compare, say f1(x) = x with f2(x) = 2x mod 1, then in both cases
m bits are transmitted and hence the mutual information is log2 m bits. However,
the kind of information is not the same: while the string (bj)

m
j=1 is transmitted in

case of f1, it is the string (bj)
m+1
j=2 transmitted in case of f2. More generally, if we

define fn(x) = 2n mod 1, the transmitted string (bj)
m+n
j=1+n is completely independent



86 CHAPTER 5. FISHER-OPTIMAL POPULATION CODING

from (bj)
m
j=1 if n ≥ m.

The purpose of a loss function is to introduce a weighting or ranking which kind
of information is most worthwhile for the problem at hand. In our example the
quadratic loss corresponds to a weighting, which decays exponentially as 2−j. This
means the first bit is twice as much important as the second bit and so on. Since
we typically have this idea in mind, when dealing with continuous variables, the
MMSE is often more appropriate as objective function in case of encoding continuous
variables than mutual information.

In conclusion, the channel determines only how much information can be transmit-
ted. If the entropy rate of the source is larger than the mutual information of the
channel, the issue of encoding is mainly an issue of choice, which information is to
be selected to be transmitted.

5.2 Optimal Gaussian tuning depends on avail-

able decoding time

In this section, we start with a reinvestigation of Fisher-optimal encoding strategies
in case of one-dimensional Gaussian tuning tuning functions under the assumption of
a Poisson noise model. The MASE is compared with the MMSE for a given, limited
number of neurons N (N = 10 and N = 100) and a finite decoding time window
of length T . Similar to previous studies by Panzeri et al. [PBR+96; PTSR99], we
will focus on short time windows, since psychophysical experiments have shown that
efficient computations can be performed in cortex at a rate where each neuron has
fired on average only once [RT94; TFM96]. Precisely speaking, we consider the
example of equidistant Gaussian tuning curves on the unit interval

fGauss
j (x) = fmax exp

{

−1

2

(
x − j/N

σ

)2
}

, j = 1, . . . , N . (5.24)

In order to determine the optimal scale with respect to the MASE, the corresponding
Fisher information is calculated by inserting Eq.5.24 into Eq.5.9

J [{fGauss
j (x)}N

j=1] =
Tfmax

σ2

N∑

j=1

(
x − j/N

σ

)2

exp

{

−1

2

(
x − j/N

σ

)2
}

. (5.25)

Numerical integration over 1/J [{fGauss
j (x)}N

j=1] then yields the MASE (χ2
AS)

Gauss
.

If it is multiplied by fmaxT , the resulting expression becomes independent of time,



5.2. OPTIMAL GAUSSIAN TUNING 87

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

↓
↓

σ

(χ
2 )G

au
ss

k−1    k    k+1

10
−3

10
−2

10
−1

 

 

 

 

 

 

↓
↓

10−4

10−2

100

σ

(χ
2 )G

au
ss

k−1    k    k+1

Figure 5.3. Optimal Gaussian tuning. Left: Log-log plot of the minimum mean
squared error (χ2

MS)
Gauss

as a function of the scale σ for fmaxT = 1 (solid) compared

with the mean asymptotic error fmaxT (χ2
AS)

Gauss
= (χ2

AS)
Gauss

= E[1/J ] (dashed)
in the case of N = 10 (upper) and N = 100 neurons (lower). The variance of the a
priori distribution Var[x] = 1/12 (dotted) provides an upper bound for χ2

MS. The
arrows indicate the different minima. Right: Comparison of the optimal tuning
curves with respect to the mean asymptotic error (χ2

AS)
Gauss

(dashed) and with

respect to the minimum mean squared error (χ2
AS)

Gauss
(solid) in the case of N = 10

(upper) and N = 100 neurons (lower). The grey colored lines indicate the adjacent
tuning curves.

which implies that the optimal scale with respect to Fisher information is indepen-
dent of time too. In Fig. 5.3 fmaxT (χ2

AS(σ))
Gauss

is plotted as a function of the scale
in the case of N = 10 and N = 100 exhibiting a unique minimum, for which the
corresponding values are displayed in the following table.

N σAS fmaxT (χ2
AS)

Gauss

10 0.045 2 · 10−3

100 0.004 2 · 10−5
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As mentioned in section 5.1, the use of the MASE as objective function is justified
only in the case T → ∞ of asymptotic normality. For finite T , however, it is
necessary to check, whether the MASE agrees with the MMSE or not. Hence, we
computed (χ2

MS)
Gauss

directly for the case of fmaxT = 1 using Monte-Carlo methods
(see appendix A.2).

The MMSE as a function of the scale for fmaxT = 1 is also plotted in Fig. 5.3 (left,
solid line) and the values of the minima are displayed in the following table.

N σMS (χ2
MS)

Gauss

10 0.11 1.2 · 10−2

100 0.04 2 · 10−4

By comparison, we find that the optimal scales with respect to (χ2
MS)

Gauss
are

about one order of magnitude larger than one would conclude from the MASE.
In particular, this difference between the short-term optimum and the long-term
optimum scale becomes larger, when increasing the number of neurons from ten to
hundred. Figure 5.3 (right) shows the corresponding tuning curves illustrating this

relative increase. While the MASE is close to (χ2
MS)

Gauss
for scales that are larger

than the optimal scale, the difference between both increases rapidly the more the
scale is reduced from the optimal scale and reaches a maximum at the minimum
MASE.

5.3 Fisher-optimal codes without tuning curve

shape constraints

The analysis of optimal Gaussian tuning in the previous section indicates that
Fisher-optimal codes are particularly likely to underestimate the MMSE, if the time
window is small. This mismatch between the MASE and the MMSE becomes even
more dramatic in the case of Fisher-optimal codes, if one does not stick to the
restriction of Gaussian shaped tuning functions. This can be demonstrated by con-
sidering Fisher-optimal population codes, where the tuning curves are not subjected
to a priori constraints apart from a limitation of their dynamic range by a minimum
firing rate fmin and a maximum firing rate fmax. We will first determine the optimal
tuning function in the case of a single neuron and then for multiple neurons.
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5.3.1 Single neuron

A way to find the tuning function that minimizes the MASE is to start with a
calculus of variations for the MASE functional

1

T

1∫

0

f(x)

(f ′(x))2
dx . (5.26)

A necessary condition for a minimum of the MASE functional is given by the cor-
responding Euler-Lagrange differential equation

f(x)

(f ′(x))2
+ 2f ′(x)

f(x)

(f ′(x))3
= C (5.27)

which is equivalent to the requirement of a constant Fisher information, because the
l.h. side is proportional to 1/J [f ]. The unique solution, satisfying the boundary
conditions f(0) = fmin and f(1) = fmax, reads

f opt(x) =
[(√

fmax −
√

fmin

)

x +
√

fmin

]2

. (5.28)

While the calculus of variation does not account for solutions with kinks, one can
prove with some additional effort that f opt in fact constitutes the Fisher-optimal
tuning function in the case of the Poisson noise model. Its Fisher information is
J [f opt(x)] = 4T (

√
fmax −

√
fmin)2. For constant additive Gaussian noise an analog

analysis leads to a linear tuning function

f(x) = (fmax − fmin)x + fmin. (5.29)

Since the Fisher information of the minimizer of the MASE, in case of the uniform
prior, is a constant, Eq. 5.28 and Eq. 5.29 are also asymptotic minimax.

5.3.2 Many neurons

If x is encoded by more than one neuron, the requirement of identifiability of x
does not necessarily imply any more that the tuning functions are monotonic. In
particular, if at least one neuron has a strictly monotone tuning curve, all other
neurons may have arbitrarily shaped tuning functions. This makes it is easy to
construct Fisher-optimal codes, for which the MASE vanishes. In particular, we will
show that this is already possible for two neurons only, if they have the following
tuning functions (Fig. 5.4):

fwave
1 (x) = fmaxx

2 , (5.30)
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Figure 5.4. Fisher-optimal wave coding scheme consisting of two neurons: One
tuning function ensures the identifiability (left). The other tuning function is a
wave function that leads to arbitrary large Fisher information when the wave length
is decreased (right).

fwave
2,ω (x) = fmax [(ωx) mod 1]2 , (5.31)

where we have set fmin = 0 for the sake of clarity. In this example, the total Fisher
information is also a constant

J [{fwave
1 (x), fwave

2,ω (x)}] = 4fmaxT (ω2 + 1) . (5.32)

Hence, the mean asymptotic error of this wave function encoding scheme equals
(χ2

AS)
wave

= [4fmaxT (ω2 + 1)]−1, which becomes arbitrarily small with increasing
ω. If Fisher information would be a general measure for the precision of population
codes, this would imply that all coding problems could be solved with two neurons
only. However, if we compare Fisher information with the precision of the MS-
estimator in the case of fmaxT = 1, we find that (χ2

MS)
wave

> 0.06 for all ω ≥ 1.

In summary, this analysis of Fisher-optimal codes allows two important conclusions:
(1) With respect to Fisher information, Gaussian tuning curves are particularly
disadvantageous, however large or small their tuning widths. (2) Fisher-optimal
codes are not necessarily advantageous in case of finite time windows.

5.4 When and why Fisher information fails

In the space of possible arrays of tuning functions it is difficult to name clear cut
decision boundaries that tell precisely, where χ2

AS is a fairly good approximation
of χ2

MS and where it is not. Therefore, the goal of this section is to gain intuition
about which features of an encoding strategy are most relevant to the correspondence
between the MASE and the MMSE.

In general, Fisher information and hence the MASE is a separable function in N
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and T

χ2
AS =

1

T
s(N) . (5.33)

If the a posteriori distribution is not normal for small N , but approaches a nor-
mal distribution with increasing N , s(N) has to decrease as N−1. This provides a
necessary condition for asymptotic efficiency with respect to the limit of large N .

This condition is not necessarily fulfilled, because as becomes clear by the exam-
ple considered in section 5.3.2, Fisher information can grow arbitrarily fast with
increasing N . However, even in case of strongly regularized tuning functions, as in
the example of optimal Gaussian tuning investigated above, the population Fisher
information grows faster with N than linearly (it grows quadratically), so that in
the limit N → ∞, the relationship between Fisher information and the true risk of
any estimator through asymptotic normality breaks down for all fixed time windows
T .

Note, however, that it is indeed possible to construct encodings, for which also the
MMSE decreases substantially faster than N−1 (an example is given below). This
means that the case of asymptotic efficiency holds only for particularly suboptimal
codes, which exhibit a high degree of redundancy.

In the example above, there are tuning functions, which map very distant values
of x to the same firing rate, and the mismatch between the MASE and the MMSE
increases with an increasing number of maxima and minima in the tuning functions.
In the following example, we will show that a restriction of the number of maxima
is not sufficient to ensure χ2

AS ≈ χ2
MS, but the matching of these two quantities

crucially depends on nonlinearities in the tuning functions.

Consider the following class of Fisher-optimal codes built with monotonic tuning
functions7

fmono
j,ν (x) =







fmax

(

Nx − (l−1)N+j−l
ν

)2

, (l−1)N+j−1
νN

< x < (l−1)N+j
νN

fmax

(
l
ν

)2
, (l−1)N+j

νN
< x < lN+j−1

νN

. (5.34)

where j denotes the neuron index and ν = 1, 2, 3, . . . specifies the shape of the
tuning function array (Fig. 5.5). Each tuning curve is completely determined, if one
lets l run through all integer values l = 1, . . . , ν. The Fisher information of these
encodings is independent of ν

J [{fmono
j,ν (x)}N

j=1] = 4fmaxT N2 . (5.35)

In the limit ν → ∞, this coding scheme can not be distinguished from N identical
tuning functions fmono

j,∞ (x) = fmaxx
2 (see Fig. 5.5). However, the population Fisher

7The proof of Fisher-optimality is based on the same reasoning as the proof of Fisher-optimality
for unimodal tuning functions given in section 5.5. It should be mentioned, however, that the set
of encodings {{fmono

j,ν (x)}N
j=1 : ν = 1, 2, 3, . . .} does not contain all Fisher-optimal tuning function

arrays.



92 CHAPTER 5. FISHER-OPTIMAL POPULATION CODING

  
 

N =2
ν =5

0

f
max

  
 

N =100
ν =5

0 1
 

N =2
ν =20

x

0

f
max

0 1
 

N =100
ν =20

x

Figure 5.5. Four examples of Fisher-optimal encodings built with monotonic tuning
functions as described by Eq. 5.34. The left column shows the case of N = 2 and
the right column shows the case of N = 100, where we only plotted the first tuning
function (j = 1, grey) and the last one (j = N , black). The intermediate tuning
functions (j = 2, . . . , N − 1, not shown) are lying in between the first and the last
one. Independent of N all tuning functions converge to fmono

∞ (x) = fmaxx
2 in the

limit ν → ∞, which is illustrated by the comparison of the case ν = 5 (upper row)
with the case ν = 20 (lower row).

information J [{fmono
j,ν (x)}N

j=1] is N times larger than the population Fisher infor-
mation of the asymptotic tuning functions {fmono

j,∞ (x)}N
j=1 (this is possible, because

limiting values are not invariant under a change in the order of limiting processes).

This example demonstrates nicely the fact that Fisher information behaves as if all
structures in the tuning functions are of the same relevance independent of their
length scale. In fact, however, nonlinearities in the tuning functions become rele-
vant only if they are observable at a scale that is naturally set by the scattering
of the noise distribution. Correspondingly, the critical decoding time Tc that is
necessary to approach the asymptotic normal case, which is described correctly by
Fisher information, increases with increasing ν. For large ν, Tc has to be roughly
proportional to ν2, because the deviations of the tuning functions fmono

j,ν (x) from
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Figure 5.6. The MMSE of {fmono
j,ν (x)}20

j=1 is displayed as a function of the decoding
time T for ν = 1, 2, 3, 4, 5 and ν = 20 (solid, from dark to pale). Although all
encodings have the same Fisher information (dashed), the critical decoding time
increases with increasing ν. If T is smaller than the critical decoding time and larger
than 3/(fmaxN), the MMSE curves are well described by the Fisher information of
the asymptotic tuning functions J [{fmono

j,∞ (x)}20
j=1] (dot-dashed). For T < 3/(fmaxN)

the bound given by the a priori variance 1/12 (dotted) is most relevant.

the ’smoothed’ tuning functions fmono
j,∞ (x) are of the order of (1/ν)2 and become

relevant, only if the mean squared error, which scales like 1/T , is of the same order
(or smaller). Therefore, the critical decoding time diverges for a diverging ν, which
explains the difference in the population Fisher information between {fmono

j,ν (x)}N
j=1

and {fmono
j,∞ (x)}N

j=1. Finally, it is worthwhile to note that the ramp coding scheme
obtained for ν = 1 can be considered as the best among the class of Fisher-optimal
coding schemes built with nondecreasing tuning functions because it has the smallest
critical decoding time. This is demonstrated in Fig. 5.6 where it is shown, how the
different dependency of (χ2

MS)
mono

on the decoding time is effected by the parameter
ν.

Taken together, Fisher information is a measure of the long-term coding precision
of population codes in the first place, while in the case of finite T one has to check
carefully, whether Fisher information provides correct results for the minimum mean
squared error. As a rule of thumb, one can say, the smoother the tuning functions,
the smaller is the total Fisher information, and the higher the probability that the
MASE matches the MMSE.
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Figure 5.7. Illustration of the ramp coding schemes for different values of α. The
tuning functions differ only in the shape of the ramp, which is determined by α.
Apart from the Fisher-optimal encoding, which is given for α = 2 (solid), we also
plotted some other shapes of the ramp (dashed) that correspond to α = 0, 1, 3,∞
(from pale to dark).

Hitherto, we have only considered examples where χ2
AS ≤ χ2

MS, and one might
suspect that this holds true in general according to the Cramer-Rao bound. Apart
from the trivial fact that χ2

AS diverges in the limit T → 0 in contrast to χ2
MS ≤

Var[x], it will now be shown that also for arbitrary large T , arrays of tuning functions
exist, for which χ2

AS >> χ2
MS as well. In order to see this, consider a generalized

ramp coding scheme

f ramp
j,α (x) = fmax ([Nx − j + 1]+ − [Nx − j]+)α , (5.36)

where [y]+ = yΘ(y) is the rectifier function. The parameter α ∈ [0,∞) can be used
to change the tuning curves smoothly from linear ramp functions (α = 1) to step
functions (α → 0 or α → ∞), which is illustrated in Fig. 5.7. Furthermore, it is
important to note that f ramp

j,2 (x) is identical to fmono
j,1 (x), which is the Fisher-optimal

encoding for nondecreasing tuning functions with the smallest critical decoding time.
According to Eq. 5.36 the MASE becomes

(
χ2

AS(α)
)ramp

=
1

fmaxTN2
·
{ 1

α2(3−α)
, α ∈ (0, 3)

∞ , otherwise
, (5.37)

which implies that for all T , there is an α < 3 so that (χ2
AS(α))

ramp
>> Var[x] ≥

(χ2
MS(α))

ramp
. In the case of α ≥ 3 the MASE diverges however large T may be.
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Figure 5.8. The MMSE (solid) of the Fisher-optimal ramp encoding (α = 2) is
shown in the case of fmaxT = 1. It is very close to the upper bound (dashed) that is
the minimum of the two upper bounds that are given by Eq. 5.38 and the a priori
variance. The dotted line indicates the MASE of the Fisher-optimal ramp encoding,
which may be considered as a lower bound on the MMSE for all α provided N is
sufficiently large. Therefore all ramp encodings perform similarly well in case of
fmaxT = 1.

The strong dependence on α in case of (χ2
AS(α))

ramp
is not likely to hold for the

MMSE as well. In particular, it is surprising that (χ2
AS(3))

ramp
diverges, although

the corresponding tuning function array looks very similar to that in the Fisher-
optimal case (α = 2). The reason for this huge discrepancy is that Fisher information
can, in general not account for the precision of encodings, for which J(x) has first-
order zeros (or higher-order). One could say that the latter is a weaker form of
non-identifiability. Although the encoding is one-to-one, Fisher information cannot
account for the precision if the slope of all tuning functions becomes too small
somewhere.

In contrast to the strong dependence of the MASE on α, the MMSE in the case of
fmaxT = 1 is very similar for all α. It can be shown analytically (see appendix 5.8.2)
that the following inequality holds for all α:

(
χ2

MS

)ramp ≤ 1

N2p
+

1

N3

(

1 − 1 − qN

p2

)

(5.38)

where p = 1 − e−fmaxT increases and q = 1 − p decreases with the length T of the
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time window. As one can see in Fig. 5.8, this bound is quite close to (χ2
AS(2))

ramp

of the Fisher-optimal code.

To summarize, all examples discussed in this section demonstrate that the matching
of the MASE with the MMSE depends critically on the effect of nonlinearities of
the tuning functions on the stimulus reconstruction. This is also suggested by the
fact that Fisher information is calculated only on the basis of the local shape of the
likelihood function p(k|x), which corresponds to a linear extrapolation around the
true value xtrue.

In fact, it is possible to give this statement about the ’locality’ of Fisher information
a precise meaning, because for the most often used noise models like the Poisson
noise model considered here or the additive Gaussian noise model, it is actually not
necessary to resort to Fisher information, but one can derive the same expressions
directly as an approximation of the risk of the MS-estimator via linearization.

If gj = f−1
j denotes the local inverse function of a tuning curve fj then the conditional

variance Var[gj(kj/T )|x] at the point x can be expressed by

Var[gj(kj/T )|x] = Var[gj(fj(x)) + g′
j(fj(x))

kj − Tfj(x)

T
+ O(k2

j )|x] (5.39)

=

(
g′

j(fj(x))

T

)2

Var [kj| x] + Var[O(k2
j )|x]

=

(
1

Tf ′
j(x)

)2

Tfj(x) + Var[O(k2
j )|x]

=
fj(x)

Tf ′2
j (x)

+ Var[O(k2
j )|x] (5.40)

=
1

J [fj(x)]
+ Var[O(k2

j )|x] . (5.41)

In a similar way, Fisher information shows up if one determines the error of the
MS-estimator in the limit of vanishing noise. For any given x the MS-estimator can
be approximated by a linear function of k in this limit. In particular, this linear
function can be set to the form of a superposition of the inverse tuning functions
gj = f−1

j , because the MS-estimator is asymptotically unbiased. Therefore, it holds

x̂MS(k) ≈ x +
∑

j

Wjg
′
j(f(x)) (kj/T − fj(x)) = x +

∑

j

Wj
kj/T − fj(x)

f ′
j(x)

, (5.42)

where the {Wj}N
j=1 stand for an arbitrary weighting with

∑N
j=1 Wj = 1. Accordingly,

the conditional error variance of the MS-estimator is given by

E[(x̂MS(k) − x)2|x] =
∑

j

W 2
j

Var[kj |x]

(Tf ′
j(x))2

. (5.43)
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Minimizing Eq. 5.43 under the constraint of {Wj}N
j=1 yields

Wj =
(Tf ′

j(x))2

Var[kj|x]
∑

j

(Tf ′

j(x))2

Var[kj |x]

(5.44)

and correspondingly the conditional error variance becomes

E[(x̂MS(k) − x)2|x] =
1

∑

j

(Tf ′

j(x))2

Var[kj |x]

=
1

J [{fj(x)}N
j=1]

. (5.45)

This somewhat heuristic calculation suggests that the inverse Fisher information is
a good approximation of the risk of the MS-estimator, when the scattering of the
MS-estimator around the true value of x is restricted to a region within which the
tuning functions may be considered as linear (see also [Kay93]).

5.5 Optimizing unimodal tuning functions

The optimization of the width of unimodal tuning functions, which has been dis-
cussed in the previous chapter 4, is built upon the assumption of a given, fixed
tuning profile. In contrast, here it shall be investigated, what the Fisher-optimal
encoding looks like, if one allows for adjustment of the profile of the tuning func-
tions as well. While we have seen that Fisher information can diverge already in
the case of only two neurons if no particular constraints are imposed on the shape
of the tuning function, the MASE remains finite if the number of maxima of each
tuning function is set to be limited. This is clearly the case for unimodal tuning
functions, which have one maximum only. For such encodings, Fisher information
cannot increase faster than proportional to N2, provided identifiability of x.

In order to avoid asymmetries due to the boundaries of the interval, we now switch
to the case of a circular random variable (which could represent e.g. the angle of an
oriented bar). The ring topology of the circular random variable requires to modify
the Euclidean distance slightly

D(x1, x2) = min{|x1 − x2|, 1 − |x1 − x2|] (5.46)

by always choosing the path of smaller distance. Accordingly the MMSE is then
given by

(
χ2

MS

)uni
= E[D(x̂MS − x)2] . (5.47)

While this modification reduces the a priori error, compared to the case without
periodic boundary conditions, it has no effect asymptotically.
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Figure 5.9. The Fisher-optimal unimodal tuning curve with the smallest critical
decoding time is flat with small edges of length 1/(2N). Fisher information and the
special type of noise model is relevant for the shape of optimal tuning curves, only
within these edge regions: The solid line refers to a Poisson noise model and the
dashed line to additive Gaussian noise of arbitrary variance.

For convenience, assume that x is encoded by unimodal symmetric tuning curves of
identical shape with equidistantly distributed centers cj = j/N

funi
j (x) =







fmax , D(x, cj) ≤ a

g
(

D(x,cj)−a

b−a

)

, a < D(x, cj) < b

fmin , b ≤ D(x, cj) ≤ 1
2

, (5.48)

where g : (0, 1) → [fmin, fmax] is a monotone decreasing and otherwise arbitrary
function.

Since the Fisher information J [funi
j (x)] can be positive only for a < D(x, cj) < b, it

is refered to the corresponding regions as Fisher information regions (F-regions) of
the tuning functions. Independent of the function g(z), J [funi

j (x)] is proportional to
the inverse squared F-region width (b − a)−2. Therefore, it is a necessary condition
for a minimum of the MASE, that the F-regions of different neurons must not
overlap, because the contributions of different neurons add at most linearly to the
total Fisher information.

Then the evaluation of the MASE can be decomposed

E

[
1

Juni(x)

]

=

∫

D(x,cj)<a

dx

Juni(x)
+

∫

a<D(x,cj)<b

dx

J [funi
j (x)]

+

∫

b<D(x,cj)<0.5

dx

Juni(x)

(5.49)
and we can conclude from chapter 4.1. that g(z) = ((

√
fmax−

√
fmin)(1−z)+

√
fmin)2

is the minimizer of the second term. It remains to determine the optimal choice of
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Figure 5.10. Sketch of the MASE (solid) as a function of the F-region width
(b − a). If (b − a) < 1/(2N) there is an interval with zero Fisher information and
hence the MASE diverges (grey region). For (b − a) = 1/(2N) we have derived
the encoding with minimal MASE, for which we found that it equals 1/E[J ] of
that encoding (dot). Since the MASE is larger or equal to 1/E[J ] (dashed) and
this lower bound is an increasing function of (b − a), the MASE is an increasing
function of (b − a) too, independent of the particular shape of the encoding. It
follows that the encoding that minimizes the MASE in case of (b − a) = 1/(2N) is
also Fisher-optimal, compared to coding schemes with different F-region widths.

a and b. As we will show in the following, the MASE becomes a minimum, if the
F-region width is set to b − a = 1/(2N), and b = k/N for any k ∈ {1, 2, . . . , N}
(Fig. 5.9). In this case, the total Fisher information Juni does not depend on x so
that it holds

E

[
1

Juni

]

=
1

E
x
[Juni]

=
1

16
(√

fmax −
√

fmin

)2
TN2

. (5.50)

Because E[Juni] decreases if b − a is increased, it follows together with Jensen’s
inequality

E

[
1

J

]

≥ 1

E
x
[J ]

(5.51)

that the optimal F-region width b− a cannot be larger than 1/(2N) (see Fig. 5.10).
However, b − a can not be smaller than 1/(2N) either, due to the requirement of
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identifiability as well as due to the fact that the MASE diverges for all encoding
strategies with b − a < 1/(2N).

Since the identical minimal MASE is achieved for sharp tuning as well as for broad
tuning, we recovered the result of the scaling rule (4.9) in case of D = 1 that the
length of the tuning width w := a + b is not a characteristic signature of Fisher-
optimal codes. Instead of the tuning width, we find that in general, the length
of the F-region width is crucial for Fisher-optimality, because the optimization is
mainly a matter of making the F-region width as small as possible (cf. Fig. 5.10) as
has been demonstrated by the example of unimodal tuning functions. Accordingly,
steep changes and flat plateaus are the striking signatures of Fisher-optimal tuning
curves, which is the more true, the larger the populations are, because the minimal
average F-region width scales at least as 1/N .

While the analysis above suggests that Fisher-optimal unimodal tuning functions
are approximately box-shaped if N is sufficiently large, it is important to note that
the set derived above is not complete, because we have imposed various additional
constraints on the tuning functions there. If we drop these assumptions, there are
actually many more Fisher-optimal unimodal tuning functions, all having the same
MASE as given by Eq. 5.50. E.g. if we require monotony instead of strict monotony
for g(z) only, g may have arbitrarily many constant parts. Then similar to the idea
underlying the Fisher-optimal class of monotonic tuning function encodings given by
(5.34), this allows to construct various Fisher-optimal codes, which have no features
in common apart from the strongly bimodal distributions of their derivatives.

5.6 Optimal tuning width - a question of energy?

While it was not possible to determine an optimal tuning width with respect to
Fisher information under the constraints considered above, it is suspected that en-
ergy consumption constitutes an important design constraint for neuronal process-
ing in the brain [LB96], and as pointed out by several researchers, sparse codes are
advantageous under this conditions [Bad96]. In population coding models the (life-
time8) sparseness of a neuronal encoding is given by the mean of the tuning function,
which is the firing rate of the neuron averaged over the prior distribution p(x). In
case of a flat prior distribution and unimodal tuning, the mean of a tuning function
is essentially determined by the tuning width. Therefore, we can suspect to find a
symmetry breaking towards small tuning widths, if a limit on energy consumption
is taken into account.

8Life-time sparseness refers to the neuronal activity averaged over time, which is distinguished
from population sparseness, which refers to the average activity of a population at given instant
of time. Population sparseness implies life-time sparseness, but the opposite is not true.
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Figure 5.11. MMSE as a function of the tuning width in the case of N = 10
neurons (solid) and N = 20 neurons (dot dashed). The dashed line indicates the
a priori variance Var[x] = 1/12 that is an upper bound for χ2

MS. The dotted lines
denote the results for N = 10 (upper) and N = 20 (lower) neurons if the energy
constraint (Eq. 5.53) is taken into account.

Hitherto, the coding efficiency was only limited by a constraint on the power (f(x) ≤
fmax), which can be motivated for instance by the refractory period of a neuron af-
ter the generation of an action potential. On the other hand, however, it is likely
that energy constraints are relevant, because the average interspike intervals of cor-
tical neurons are much larger than their refractory period. This fact can be taken
into account, if one assumes an additional upper bound for the mean firing rates
E[fj(x)] ≤ 〈f〉max.

This constraint can be applied to the Fisher-optimal tuning functions derived above
by computing their mean value as a function of the tuning width:

E
[
f optuni

j (x)
]

=

(

w − 1

6N

)

fmax (5.52)

Then, both constraints together can be expressed by a width dependent maximum
firing rate

f̃max(w) = min

(

fmax,
〈f〉max

w − 1
6N

)

. (5.53)

It is straightforward to see that under this constraint the MASE is minimal only for
those tuning widths that are smaller than or equal to 〈f〉max + 1/(6N).

Since the inverse Fisher information will not be close to the MMSE in case of partic-
ularly small (and broad) tuning, we computed the MMSE numerically for fmin = 0
and fmaxT = 1 (this corresponds e.g. to fmax = 200 Hz and T = 5 ms) in the case
of N = 10 and N = 20 neurons.

In the absence of energy constraints (i.e. 〈f〉max ≥ fmax), it turns out that w ≈ 1/2
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is optimal, while the objective function is flat in a wide region around this optimum
(Fig.5.11). There is a slight asymmetry due to the rate-dependent noise of the
Poisson model, such that (χMS(w))uni increases not so fast for decreasing tuning
width than for increasing width. However, this asymmetry is rather negligible.

While the broadness of the minimum of the MMSE, as a function of the tuning
width, does not indicate a substantial advantage of a certain receptive field size,
this changes if energy consumption is taken into account. In order to demonstrate
the effect of this energy constraint, the MMSE has been determined numerically
in the case, where the mean firing rate is limited by 〈f〉max = fmax/20 (this e.g.
corresponds to a maximum firing rate of 200 Hz and a mean firing rate of 10 Hz).

The resulting (χ2
MS)

uni
energy is shown in the case of fmaxT = 1 in Fig. 5.11 by the

dotted line exhibiting a distinct minimum located directly at the energy bound.

This preference for smaller tuning widths gives a precise meaning to the statement
that sparse coding can be explained by constrained energy consumption. In contrast
to previous conclusions in [vV01], this result does not rely critically on the Poisson
noise model, but holds also true in case of a Gaussian noise model. In fact, the
Fisher-optimal code for the Gaussian noise model differs from the Poisson case only
by a small change of the function g(z), which becomes g(z) = (fmax −fmin)(1−z)+
fmin (see Fig. 5.9, dashed line). This leads to a MASE v/[2N(fmax − fmin)]2, where
v = Var[kj|x] denotes the constant noise variance. Correspondingly, the MASE is
again minimal for w ≤ 〈f〉max/fmax ≤ 1/20 in the same way as in the Poisson
case. Moreover, the Poisson model itself is not sufficient to explain small receptive
fields, because (χ2

AS)
uni

is identical for all tuning widths w = 1/N, 2/N, . . . , 1 and

the asymmetry of (χ2
MS)

uni
in the absence of energy constraints is very weak.

5.7 Discussion and conclusion

The goal of this work was to understand the general principles of optimal population
coding constraining the possibilities of inter-neuronal signal processing in cortex. To
this end, Fisher-optimal encodings have been derived within much larger sets of can-
didate tuning function arrays than in previous studies, because the usual restriction
to bell-shaped tuning functions cannot be justified in the context of efficient cod-
ing. In particular, the ultimate Fisher-optimal encoding has been determined by
a nonparametric calculus of variation. In case of a single neuron, this leads to a
quadratically increasing tuning function as the unique optimum. In case of two neu-
rons, there are already infinitely many possibilities to achieve a one-to-one encoding
with a uniformly diverging Fisher information.

The latter is clearly an example, which demonstrates that Fisher information is not
always appropriate as a measure of coding accuracy and hence raises the question
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what one can actually learn from the comparison of encoding strategies with respect
to Fisher information. Although Fisher information is predominantly used in the
population coding literature, there is hardly any mention about its limited range of
validity. Since it is indispensable to have at least an intuition about the conditions
under which an approximation is likely to fail, both, the mathematical background
as well as several instructive examples have been presented.

In particular, it has been pointed out that a necessary condition for asymptotic effi-
ciency is that the population Fisher information does not increase faster with N than
linearly, which holds only for particularly suboptimal codes. Consequently, even for
the graceful example of Gaussian tuning curves, the use of Fisher information is
awkward, if the scale of the Gaussians is not fixed but decreased with increasing N
(as it was advantageous). For illustration of this fact, the Fisher-optimal scale of
Gaussian tuning curves has been compared with the MMSE-optimal width in case
of N = 10 and N = 100 neurons. While the Fisher-optimal scale decreased by a
factor of ten, the MMSE-optimum decreased only by a factor of smaller than three.
In both cases (N = 10 and N = 100), the Fisher-optimal scale was much smaller
than the MMSE-optimum.

Furthermore, this example illustrates that the shape of an optimal encoding depends
on the available decoding time, while the Fisher-optimal codes are always indepen-
dent of T . This does not come as a surprise, if one accepts the interpretation that
the Fisher information divided by T reflects the rate with which the error decreases
in the limit T → ∞. From this point of view, the crucial question is, how large does
T have to be for a given tuning function array, at least so that Fisher information
describes the risk sufficiently correct.

As a partial answer to this question, it has been demonstrated that the critical
decoding time Tc that is necessary for a sufficient matching of the MASE and the
MMSE, is typically increased by nonlinearities of the tuning functions. In particular,
Tc grows with the frequency with which the tuning functions rise and decay between
their minimum and maximum firing rate.

The relevant counting time window length can be related to the time scale at which
neurons integrate over their synaptic inputs. Since the high degree of irregularity
of neuronal discharge in cortex [SK93] implies that the effective integration time
constant is of the order of a few milliseconds, the situation, where the spike count
of a single neuron is of the order of one, appears to be most relevant. Clearly, the
MASE cannot be expected to be a reliable measure for the MMSE in that case.
Nevertheless, it might give worthwhile hints about the qualitative behavior of the
MMSE that can be used to guide numerical studies of the MMSE, which typically
require substantial computer power.

If Fisher information is used as an objective function in order to determine optimal
coding schemes, one is typically lead to tuning functions with a slope that is as large
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as possible. In fact, the Fisher information of a (bounded) tuning function behaves
like a penalty term for regularization. Because Fisher information is intended to
become as large as possible, however, Fisher-optimality has quite the opposite effect
of regularization and hence, it cannot be expected to rule out a large number of
coding schemes on the basis of Fisher information only.

If the total number of maxima of the tuning functions is finite, the MASE remains
finite, too. However, also in these cases, there is no unique Fisher-optimal code, but
very many encodings achieve the same minimal MASE. This can be conceived e.g.
from the case of nondecreasing tuning functions, for which we presented an infinitely
large set of Fisher-optimal encodings (that was still not complete). The method with
which Fisher optimal codes can be derived was presented in the case of unimodal
tuning functions. It is, however, not restricted to monotonic or unimodal tuning
functions, but can also be applied to tuning functions with more maxima. The
crucial point is that the F-regions of Fisher-optimal tuning functions do not overlap
and the total length of the F-regions of a single tuning function fj equals dj/

∑N
i=1 di,

where dj denotes the number of how many times fj(x) is allowed to traverse the
dynamic range9. In the most simple case, the tuning function fj then has dj regions,
within which the tuning function increases (or decreases) quadratically as given by
Eq. 5.28. We therefore have the general formula for the Fisher information of Fisher-
optimal codes:

J = 4T
(√

fmax −
√

fmin

)2
(

N∑

j=1

dj

)2

. (5.54)

It is, however, also possible, that the quadratic increase itself is interrupted by flat
regions as it is the case e.g. for fmono

j,ν (x) and ν > 1, so that the F-regions can be
shattered over the entire range of x. Due to this freedom, the number of Fisher-
optimal codes is very large.

Furthermore, we found that the question whether small or broad tuning widths are
advantageous cannot be decided, if the number of neurons N , the available decoding
time T and the maximum firing rate fmax are given only. Instead, it was shown that a
limitation of the average firing rate, which can be motivated by energy consumption,
naturally breaks the symmetry towards sparse codes with small tuning widths.

While the tuning width cannot serve as a general indicator of Fisher-optimality,
the minimization of the dynamic range is the foremost property of such. Fisher-
optimal codes, however, do not perform equally well, with respect to the MMSE.
The example of the Fisher-optimal monotonic tuning curves demonstrates a clear
advantage for those tuning functions which are mostly binary (ν = 1). This suggests
that a strong selectivity, that is when the cells switch rapidly between their minimum
and maximum firing rates so that they have a small dynamic range only, appears to

9E.g. dj = 1 in case of monotonic tuning functions and dj = 2 in case of unimodal tuning
functions.
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be a very general signature of efficient encodings. This holds not only asymptotically
for long decoding time windows, but even for short windows as well. In order to
further test this hypothesis, the MMSE is computed and compared for a selection
of characteristic encoding strategies, which is the subject of the next chapter.

5.8 Appendix

5.8.1 Fisher information and the exponential family

The mean squared error of any estimator can always be decomposed into its bias
bx̂(x) = (g(x) − x)2 and its variance vx̂(x) = E[(x̂ − g(x))2|x], where we introduced
g(x) = E[x̂|x] for the sake of clarity. Accordingly, the Cramer-Rao bound (Eq. 5.10)
can also be given in the form

vx̂(x) ≥ g′(x)2

J(x)
. (5.55)

For this lower bound it is known that equality holds, if and only if p(k|x) constitutes
an exponential family. While the Poisson distribution constitutes an exponential
family with respect to the mean spike count µj = fj(x)T for each neuron j, it
depends on the shape of the tuning functions, whether an estimator of x exists, for
which equality holds in Eq. 5.55. Such an estimator has to satisfy the following
equation (see e.g. Lehmann & Casella, 1999)

x̂(k) = g(x) +
g′(x)

J(x)
∂x log p(k|x) . (5.56)

Therefore the mean squared error of an estimator is completely determined by Fisher
information, if it is unbiased (i.e. g(x) = x) and the r.h. side of Eq. 5.56 is
independent from x, i.e.

x +
∂x log p(k|x)

J(x)
= const . (5.57)

Inserting Eq. 5.1 and taking the derivative with respect to x yields

(k − µ)µ′′

µ′2
= 0 (5.58)

in case of N = 1. From this it follows that µ′′ equals zero and hence, the tuning
function f(x) = 1

T
µ(x) is required to be linear. While we didn’t solve Eq. 5.57

for N > 1, this short calculation may hint towards the strong restrictions that it
imposes on the shape of the tuning functions.
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5.8.2 Derivation of equation 5.38

The upper bound results from a calculation of the error of an suboptimal estimator:

x̂(k) := max

{
1

N
,

j

N
Θ

(

kj −
1

2

)∣
∣
∣
∣
j = 1, . . . , N

}

(5.59)

We decompose the mean squared error

(
χ2(α)

)ramp
=

1∫

0

∑

k

(x − x̂(k))2p(k|x)dx

=
1

N

N∑

a=1

N

a
N∫

a−1
N

∑

k

(x − x̂(k))2p(k|x)dx

︸ ︷︷ ︸

χ2
a

(5.60)

and consider the parts χ2
a, a = 1, . . . , N separately.

χ2
1 = N

1
N∫

0

(

x − 1

N

)2

dx ≤ max
x∈[0,1/N ]

(

x − 1

N

)2

=
1

N2
(5.61)

χ2
2 = p(k2 > 0|x ∈ [1/N, 2/N ])

2
N∫

1
N

(

x − 2

N

)2

dx

+p(k2 = 0|x ∈ [1/N, 2/N ])

2
N∫

1
N

(

x − 1

N

)2

dx

≤ p(k2 > 0|x ∈ [1/N, 2/N ]) max
x∈[1/N,2/N ]

(

x − 2

N

)2

+p(k2 = 0|x ∈ [1/N, 2/N ]) max
x∈[1/N,2/N ]

(

x − 1

N

)2

≤ p(k2 > 0|x ∈ [1/N, 2/N ])
1

N2
+ p(k2 = 0|x ∈ [1/N, 2/N ])

1

N2

=
1

N2
(5.62)

χ2
3 ≤ p(k2 > 0|x ∈ [2/N, 3/N ])

3
N∫

2
N

(

x − 2

N

)2

dx + p(k2 = 0|x ∈ [2/N, 3/N ])

(

χ2
2 +

1

N2

)

≤ 1

N2
(1 + p(k2 = 0|x ∈ [2/N, 3/N ])) (5.63)
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In general it holds for all a ≥ 2:

χ2
a+1 ≤

1

N2
+ p(ka = 0|x ∈ [a/N, (a + 1)/N ])χ2

a =
1

N2
+ q χ2

a , (5.64)

where we introduced the abbreviation q for the probability p(ka = 0|x ∈ [a/N, (a +
1)/N ]) = e−fmaxT , which does not depend on the neuron index. Together with
p := 1 − q it then follows by induction:

χ2
a ≤ 1

N2

1 − qa−1

1 − q
=

1

N2

1 − qa−1

p
, (5.65)

because it holds

χ2
a+1

Eq. 5.64

≤ 1

N2
+ q

1

N2

1 − qa−1

p
=

1

N2

(
p + q − qa

p

)

=
1

N2

1 − qa

p
. (5.66)

According to (5.60) we finally obtain

(
χ2(α)

)ramp
=

1

N

N∑

a=1

χ2
a ≤ 1

N

(

1

N2
+

N∑

a=2

1

N2

1 − qa−1

p

)

=
1

N3

(

1 +
1

p

N∑

a=2

(1 − qa−1)

)

=
1

N3

(

1 +
N − 1

p
− 1

p

N−2∑

a=0

qa+1

)

=
1

N3

(

1 +
N − 1

p
− q

p

1 − qN−1

1 − q

)

=
1

N2p
+

1

N3

(

1 − p + q − qN

p2

)

=
1

N2p
+

1

N3

(

1 − 1 − qN

p2

)

. (5.67)
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Chapter 6

MMSE-Optimal Codes: Labels or
Intensity?

In principle, one can distinguish two extreme cases of population encoding strategies:
in case of label-pattern coding1 the neurons function as binary devices, which are
either (maximally) active or inactive (see Fig. 6.1 right). In the other extreme of
intensity coding, the response of each neuron constitutes a (noisy) representation of
an analog value, which can be reliably read out by averaging or pooling over the
responses of all neurons (see Fig. 6.1 left).

In the context of large-scale neural network modeling and studies of neuronal pop-
ulation dynamics, the idea of population coding plays an important role as well.
There, populations of neurons are commonly taken as the basic units of information
processing, computing in their totality a single analog number. While averaging over
sufficiently large populations of neurons clearly allows for precise analog rate esti-
mates at short time scales (see Fig. 6.2), the results shown in the previous chapter
suggest that optimal encodings of an analog signal might be closer to label-pattern
coding than to intensity coding. Because of the limited validity of Fisher information
in particular for tuning functions with a small dynamic range, we now study how rel-
evant intensity coding is for efficient analog population signaling if the MS-estimator
is taken as neuronal read out.

To this end, we consider examples from two different classes RN
2 ,WN of tuning

function arrays, where N indicates the total number of tuning functions per array.
A tuning function array in RN

2 is of the form {fλ,N−ramp
j }N

j=1, where each tuning

1I introduce the new term ’label-pattern’ coding, because the related terms ’place coding’ and
’labeled-line’ coding have been used by several authors in order to refer to the special case, where
only one neuron of a population is active at a time.
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curve is a parabolic ramp function

fλ,N−ramp
j (x) =







0 , 0 ≤ x ≤ Xj,λ,N

fmax

(
x−Xj,λ,N

λ

)2

, Xj,λ,N < x < Xj,λ,N + λ

fmax , Xj,λ,N + λ ≤ x ≤ 1

. (6.1)

In Eq. 6.1 it has been used the abbreviation

Xj,λ,N =
j − 1

N − 1
(1 − λ) (6.2)

and λ determines the length of the region within which the ramp function is increas-
ing (Fig. 6.3).

The tuning function arrays in WN are arbitrary combinations (ν1, . . . , νN ) of square
wave functions

f ν−wave(x) = fmaxΘ((2ν−1x) mod 1 − 0.5) (6.3)

with ν ∈ {1, 2, 3, . . .}.

As in the previous chapter, we again assume a factorizing Poisson noise model

p(k|x) =

N∏

j=1

p(kj|µj(x)) =

N∏

j=1

(µj(x))kj

kj!
exp{−µj(x)} (6.4)
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Figure 6.1. Intensity vs label-pattern coding. In case of intensity coding, neurons
have rather linear tuning functions (left, upper), and averaging over the population
leads to a reliable representation of the signal (left, lower). In the opposite extreme of
label-pattern coding, the tuning functions are binary (right, upper) and the signal
is encoded by the binary, spatial pattern of neuronal activity (right, lower). For
illustration, the activations caused by two different stimuli (blue and red) are shown.
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Figure 6.2. Intensity estimation from Poisson spike trains via pooling. While in
case of a single neuron (left) an intensity estimate is very unreliable, averaging over
the population allows for analog signaling with high temporal precision (right).

and the objective function reads

χ2[µ1(x), . . . , µN(x)] = E[x2] − E[x̂2] (6.5)

=
1

3
−

∞∑

k1=0

· · ·
∞∑

kN=0

(∫ 1

0
x p(k|µ1(x), . . . , µN(x)) dx

)2

∫ 1

0
p(k|µ1(x), . . . , µN(x)) dx

.

Since the multi-dimensional integration in Eq. 6.5 cannot be solved analytically,
Monte-Carlo methods have been used to evaluate χ2 (see appendix A.2). In this
way, χ2 is determined as a function of µmax for four different ramp coding schemes
(λ = 0, 1

N
, 1

2
, 1) and three different wave coding schemes (1, 2, 3, 4, 5, 6, 7, 8, 9, 10),

(1, 1, 2, 2, 3, 3, 4, 4, 5, 5), and (1, 1, 2, 2, 3, 3, 4, 4, 5, 6) in case of N = 10 (see Fig. 6.4).

The ramp coding schemes with λ > 1
N

are always worse than the ramp coding
scheme with λ = 1

N
, which is optimal with respect to Fisher information within this

class (see Chp. 5). The ramp coding scheme with λ = 0, however, is slightly better
for µmax / 5, while it becomes worse for µmax > 5, which is again due to the bias
that is unavoidable for discrete encodings. By the use of wave functions, however,
this bias can be reduced exponentially fast with increasing number of neurons. The
bias of the wave coding scheme (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) e.g. is equal to 1

12
2−20 so

that this code has a smaller error than all codes of the class R10
2 within the region

6 / µmax < 3
25

218 ≈ 31457. But also for µmax < 6 it is possible to achieve a
much smaller error with binary encoding, if one introduces some redundancy in the
wave coding scheme. A simple choice e.g. is the code (1, 1, 2, 2, 3, 3, 4, 4, 5, 5), where
each wave function exists twice. Of course this redundancy can only be used at the
cost of a much larger bias, which now is 1

12
2−10. The code (1, 1, 2, 2, 3, 3, 4, 4, 5, 6)
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Figure 6.3. Sketch of the population ramp coding scheme RN
2 for λ = 1

2
(left),

λ = 1
N

(middle), and λ = 0 (right). In case of λ = 1 the tuning functions of all
neurons become identical with fasymp (see Fig. 5.4 left).

is an example that illustrates, how one may achieve better compromises between
redundancy and bias reduction with particular combinations of wave functions.

Taken together, the comparison of the MMSE for these examples confirms the hy-
pothesis that the contribution of intensity coding to the coding accuracy of popula-
tion codes is rather small. Another way to express this fact is that it appears that
a certain required precision χ2 with respect to a given µmax can always be achieved
with a minimal number of neurons, if the encoding is binary.

6.1 Encoding of a circular random variable

For better illustration, we also demonstrate the superiority of binary population
coding for the frequently studied case of encoding a circular random variable φ ∈
[0, 2π) [TM91; SS93; SA94; ES97]. While it has been argued for the optimality of
cosine tuning functions [SA94; Tod02], the results in section 5.5 suggest that box-
shaped tuning functions are advantageous. In fact, it turns out that box tuning
functions lead to a much smaller minimum mean squared error within a large range
of µmax.

For sufficiently large N the MMSE of cosine tuning functions

f cos
j (φ) =

fmax + fmin

2
+

fmax − fmin

2
cos(φ − cj) , j = 1, . . .N (6.6)

with cj uniformly distributed over [0, 2π) is approximately equal to the inverse of
the total average Fisher information [SS93]

J =
N

2π

∫ 2π

0

T
(f cos ′

j (φ))2

f cos
j (φ)

dφ ≤ µmax

2
N , (6.7)

where equality holds at the inequality, if there is no background noise (i.e. fmin =
0). Hence, the resulting MMSE of cosine tuning functions is not smaller than
2/(Nµmax).
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Figure 6.4. Comparison of the MMSEs of different population coding schemes in
case of N = 10 neurons (log-log-scale). Solid lines are associated with pure binary
encodings, while dashed lines indicate the MMSE of R10

2 in case of λ = 1 (upper),
λ = 1

2
(middle), λ = 1

N
(lower). The range of 1

N
≤ λ ≤ 1 corresponds to those tuning

function arrays in RN
2 that are one-to-one. Within this subclass the choice of the

minimal λ is optimal for all µmax. The different binary encodings are distinguished
by a number (1-4) at the end of the graphs. The MMSE of R10

2 in case of λ = 0 (solid,
1) is slightly better than the case of λ = 1

N
until it saturates at about µmax ≈ 5. The

square wave function encodings (1,1,2,2,3,3,4,4,5,5) (solid, 2) and (1,1,2,2,3,3,4,4,5,6)
(solid, 3) that exhibit some amount of redundancy achieve a substantially smaller
MMSE within 3 / µmax / 8. The coding scheme (1,2,3,4,5,6,7,8,9,10) (solid, 4),
which has no redundancy and a minimal maximum frequency, is by far the best
encoding for 10 / µmax / 31457.

On the other hand, when the tuning functions are box shaped (i.e. if cos(φ − cj)
is replaced with sgn(cos(φ− cj)) in Eq. 6.6), no unbiased estimator exists and even
in the absence of noise the error cannot be smaller than the minimal bias, which is
given by

bias =
1

12

( π

N

)2

. (6.8)

However, the error variance decreases substantially faster in case of binary tuning
functions than in case of smooth tuning functions. This fact suggests how to derive
a rule of thumb for the critical µmax, namely by equating the minimum bias of the
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Figure 6.5. Phase diagram: box vs cosine tuning. For small χ2 the MMSE in
case of cosine tuning can be bounded from below by the inverse Fisher information,
which yields (χ2)

cos ≥ 1/(Nµ̄). The intersection of this bound with the limiting

value limµ̄→∞ (χ2)
box

= 1/(12N2) provides a lower bound for the critical µ̄, up to
which the box code is optimal (see figure, solid). A similar lower bound holds for
all smooth tuning functions (dashed).

box encoding to the lower bound 1/J on the MMSE of cosine tuning functions,
which yields:

µc
max =

24

π2
N . (6.9)

In order to support the validity of Eq. 6.9, we determined the reconstruction error
for the box coding scheme numerically in case of µc

max/2 (i.e. higher noise level) with
a rather large background noise µmin = µc

max/20. While the lower bound (6.7) for
the cosine coding scheme is twice as large at µc

max/2 than at µc
max, the mean squared

error of a simple perceptron estimator has already reached the lower bound (6.8) for
the box tuning, provided N is sufficiently large (i.e. N & 20). The main result is
displayed by the phase diagram (Fig. 6.5), which indicates the region within which
box tuning leads to a smaller coding error than cosine tuning. From this diagram,
it is obvious that label-pattern coding is the more relevant, the larger the size of the
population.

Note, that the lower bound (6.8) can only be reached for particular arrangements of
the tuning function centers. If the centers are uniformly distributed over the ring,
the average bias is smaller than 2π2/N2, which gives reason to use µc

max = N/π2

as a rule of thumb instead. The scaling of this rule with respect to N remains the
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same as in Eq. 6.9 though.
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Chapter 7

Linear Decoding

Until now, we have studied neuronal encodings from the perspective of an “ideal”
observer. The MS-estimator, in particular, has to be considered as such in the sense
of minimizing the average mean squared error. As mentioned in (3.5.2), there is,
however, reason to assume constraints on the computational power of subsequent
neuronal readout. Therefore, this chapter investigates how the coding accuracy
is affected if the decoding is constrained to be linear. Linear estimation is inter-
esting also because of its analytical tractability. Therefore, it can be used as an
upper bound on the MMSE, which is not sharp, but of unrestricted validity at least.
Since the neuronal readout is likely to be less constrained than in the case of be-
ing linear, the restriction to linear estimates can be seen as the limiting case of a
maximally constrained decoding, as opposed to the case of the entirely unrestricted
MS-estimator.

7.1 LMMSE and label-pattern coding

In general, the linear minimum mean square estimator (LMS-estimator) of a random
variable x [Kay93] is given by

x̂(~y) := E [x] +

N∑

j=1

ajyj = CxyC
−1
yy (~y − E [~y]) . (7.1)

There, (Cxy)i = E[xyi] − E[x]E[yi] is the covariance between x and the observable
random variables y1, . . . , yN and

(Cyy)ij = E[yiyj]−E[yi]E[yj] =

{
E [E [yiyj| x]] , i 6= j
Var [yj] = Var [E [yi| x]] + E [Var [yi|x]] , i = j
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is the covariance between yi and yj. The optimality of this estimator can simply be
shown by using the Hilbert space structure of zero mean random variables, for which
the scalar product is defined by the covariance. Accordingly, the mean squared error

E[(x − x̂(~y))2] =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
x − E [x] +

N∑

j=1

aj(yj − E [yj])

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

(7.2)

corresponds to the squared length of the error vector (x − x̂(~y)), which takes its
minimum, if

E[(x − x̂(~y))(yj − E [yj])] = 0 (7.3)

for all j = 1, . . . , N , because then the error vector cannot be reduced any further.
Since Eq. 7.3 can also be written as a matrix equation

Cxy − Cyy~a = ~0 , (7.4)

the coefficients ~a of the optimal linear estimator are obtained simply by rearranging
this equation.

Now we want to use the optimal linear estimator to reconstruct a signal from a
population code of N neurons, for which the sensitivity profiles are described by
µj(x) := E[yj|x], j = 1, . . . , N . In case the noise of different neurons is mutually
uncorrelated (i.e. E[yiyj|x] = E[yi|x]E[yj|x]), the components of the covariance
matrix Cyy always have the following form:

(Cyy)ij = E[µi(x)µj(x)] − E[µi(x)]E[µj(x)] + δij ν̄2
j (7.5)

where ν̄2
j := E[V ar[yj|x]] denotes the mean of the conditional variance of yj (i.e.

the noise level). Hence, the noise model only affects the main diagonal of Cyy and
nothing but the average variance of the noise distribution matters. To give some
relevant examples, for constant additive noise (i.e. V ar[yj|x] does not depend on x)
it holds

ν̄2
j = V ar[yj|x] . (7.6)

In case of a Poisson distribution, we obtain

ν̄2
j = E[µj(x)] (7.7)

and for a Bernoulli distribution it holds

ν̄2
j = E[µj(x)(1 − µj(x))] . (7.8)
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X

Figure 7.1. Sketch of box tuning function array. The intervals of positive firing
rates of the different tuning functions constitute an equipartition of the support of
X.

Now, let us assume that x is uniformly distributed x ∼ U(−1, 1) and the generalized1

tuning functions are given by

µj(x) = µ̄Θ(ϑj, x, ϑj + w) (7.9)

w =
2l

N
, l ∈ {1, . . . , N} (7.10)

ϑj = (2 − w)
j − 1

N − 1
− 1 (7.11)

Due to the similarity of the tuning functions, the average noise ν̄2
j = ν̄2 becomes

independent of j, and the corresponding covariance matrix reads

(Cyy)ij = µ̄2

{

[l − |i − j|]+
l

N
−
(

l

N

)2
}

+ δij ν̄
2 . (7.12)

For the sake of clarity, we now restrict the analysis to the case of l = 1, for which
the array of tuning functions is sketched in Fig. 7.1. In this case, the covariance
matrix can be written as

(Cyy)ij = δij
µ̄2 + Nν̄2

N
−
( µ̄

N

)2

. (7.13)

Since generally for any N × N matrix of the form (δija + b) the inverse is given by
(δijA + B) with

A =
1

a
and B =

b

Nab + a2
=

1

Na + a2/b
(7.14)

1The tuning functions µj(x) do not have the dimension of a firing rate, but directly represent
the mean spike count µj(x) = Tfj(x), which is the quantity that effectively matters. Therefore,
I call the µj(x) ’generalized tuning functions’, since the term ’tuning function’ is commonly used
for the mean firing rates.
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C−1
yy has a short representation for this example

(C−
yy1)ij = δij

N

µ̄2 + Nν̄2
+ B . (7.15)

For uncorrelated noise, the general form of the covariance matrix Cxy is given by

(Cxy)j = E[xµj(x)] − E[x]E[µj(x)] (7.16)

In case of the example (Eq. 7.9) this yields

(Cxy)j =
µ̄

2

(

1 − w

2

) (

2
j − 1

N − 1
− 1

)

w
(l=1)
=

µ̄

N

N − 1

N

(

2
j − 1

N − 1
− 1

)

(7.17)

Hence, the coefficients of the optimal estimator are given by

aj = (CxyC
−1
yy )j =

NCxy

µ̄2 + Nν̄2
+ B

N∑

i=1

(Cxy)i

︸ ︷︷ ︸

=0

=
µ̄

µ̄2 + Nν̄2

N − 1

N

(

2
j − 1

N − 1
− 1

)

(7.18)

Substituting x̂ = CxyC
−1
yy in Eq. 7.2 leads to the general expression for the linear

minimum mean squared error (LMMSE):

χ2
LMS ≡ E[(x − x̂(~y))2] = V ar[x] − CT

xyC
−1
yy Cxy = V ar[x] − x̂Cxy (7.19)

Substituting Eq. 7.15 and Eq. 7.17 yields (see appendix 7.2)

χ2
LMS =

1

3
− µ̄

µ̄2 + Nν̄2

µ̄

N

(
N − 1

N

)2 N∑

j=1

(

2
j − 1

N − 1
− 1

)2

(7.20)

=
1

3

{
Nν2

Nν2 + µ̄2
+

1

N2
· µ̄2

µ̄2 + ν2N

}

. (7.21)

Note that ν̄2 = ν̄2(N) depends in general on the encoding and hence it may depend
on N . If Var [yi|x] is independent of x (i.e. additive noise), it holds ν̄2 = const. In
that case, the second term at the r.h. side of (7.21) scales as N−2, while the first
term within the brackets increases with N and converges to 1. In other words, for
additive noise the quadratic information gain of the LMS-estimator is zero in the
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limit N → ∞. This is different in case of Poisson noise, for which ν̄2 = µ̄
N

so that
Eq. 7.21 becomes

χ2
LMS =

1

3

{
1

1 + µ̄
+

1

N2
· µ̄

1 + µ̄

}

=
1

3
· 1

1 + µ̄

(

1 +
µ̄

N2

)

≥ 1

3
· 1

1 + µ̄
. (7.22)

This means that for the Poisson noise model the average risk is a strictly decreasing
function of N . However, also in this case, the mean squared error remains finite for
all N , and the lower bound 1/(1 + µ̄) depends only on the maximum firing rate µ̄.

There is, however, a way to increase µ̄ effectively by using a number of identical
copies, say R, of the tuning function array and to sum over the responses of all
neurons that have identical tuning curves. Each pool of equivalent neurons then has
an effective maximum mean spike count µ̄pool = Rµ̄, but the total number of neurons
required to obtain Npool sub-populations clearly increases as well (i.e. N = NpoolR).
For such a (more) redundant encoding strategy Eq. 7.22 reads

χ2
LMS =

1

3
· 1

1 + µ̄pool

(

1 +
µ̄pool

(Npool)2

)

=
1

3
· 1

1 + µ̄R

(

1 +
µ̄R3

N2

)

=
1

3
· 1

1 + 1
µ̄R

(
1

µ̄R
+

R2

N2

)

≤ 1

3

(
1

µ̄R
+

R2

N2

)

. (7.23)

The upper bound suggests to choose an optimal redundancy level Ropt according to

1

µ̄Ropt
=

R2
opt

N2
. (7.24)

Consequently, the average risk for the choice Ropt = 3

√
N2

µ̄
yields

χ2
LMS ≤ 2

3
(Nµ̄)−

2
3 (7.25)
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Figure 7.2. The LMMSE as a function of N depends on the chosen redundancy
level. For illustration these functions are shown for R = 1, 2, 3, . . . (grey, from black
to pale) in case of µ̄ = 1 (upper) and µ̄ = 4 (lower). The choice R(N) = 2

µ̄
log N is

close and ’parallel’ to the lower envelope of these functions.

This means that even if one selects an optimal level of redundancy, the LMMSE
of the box encoding strategy decreases more slowly than 1

N
. Since the latter is

clearly achievable in case of linear tuning functions, one might hypothesize that
computational constraints on the subsequent neuronal readout support the idea of
intensity coding. In fact, inverse linear scaling is commonly the best that one may
achieve with linear decoding and a finite amount of noise in the limit N → ∞.

However, as mentioned before, the case of linear decoding is likely to be over-
constrained. Therefore, it is instructive to see that even simplest nonlinearities
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are sufficient to achieve a scaling close to 1
N2 , which is the optimum in case of the

unconstrained MS-estimator. To this end, the Bernoulli noise model is of interest
as it can be used in order to mimic a simple saturation non-linearity.

Now, the response of each pool corresponds to a saturating sum, which is equal to
one, if at least one neuron emits a spike, and zero otherwise. This picture is not
restricted to Bernoulli neurons, but can be applied to any neuron model. It is only
required to specify the probability p≥1 of the spike count to be larger than or equal
to one. Then the maximum pool response probability is given by

µ̄pool = 1 − (1 − p≥1)
R , (7.26)

which scales exponentially with R. In case of Poisson neurons it holds p≥1 = 1 −
exp(−µ̄), leading to the simple expression

µ̄pool = 1 − exp(−Rµ̄) . (7.27)

Substituting ν̄2 = (1 − µ̄)µ̄/N for the Bernoulli noise model into Eq. 7.21 yields

χ2
LMS =

1

3

(

1 − µ̄pool +
µpool

(Npool)2

)

. (7.28)

Inserting (7.27) into (7.28) and using Npool = N/R we finally obtain for the LMMSE

χ2
LMS =

1

3

(

exp(−Rµ̄) + (1 − exp(−Rµ̄))
R2

N2

)

. (7.29)

Using a redundancy level R = 2
µ̄

log N , the error scales proportional to
(

log(N)
N

)2

,

which is close to 1
N2 and substantially faster than 1

N
. In Fig. 7.2 it is shown that

the particular choice R = 2
µ̄

log N is close to being optimal.
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In conclusion, this example demonstrates that even very simple non-linearities allow
for a substantial improvement of signal transmission and suggest to consider other
encoding strategies than is the case for strictly linear decoding.

7.2 Appendix

For the derivation of (7.20) from (7.21) it is used that

N∑

j=1

(

2
j − 1

N − 1
− 1

)2

=

N∑

j=1

{

4

(
j − 1

N − 1

)2

− 4
j − 1

N − 1
+ 1

}

=

N∑

j=1

{

4
j2 − 2j + 1

(N − 1)2
− 4

j − 1

N − 1
+ 1

}

=

N∑

j=1

{
4

(N − 1)2
j2 −

(
8

(N − 1)2
+

4

N − 1

)

j

}

+ N

(
4

(N − 1)2
+

4

N − 1
+ 1

)

=
4

(N − 1)2

(
N∑

j=1

j2

)

− 8 + 4(N − 1)

(N − 1)2

(
N∑

j=1

j

)

+ N
(N − 1)2 + 4(N − 1) + 4

(N − 1)2

=
4

(N − 1)2
· N(N + 1)(2N + 1)

6
− 4N + 4

(N − 1)2
· N(N + 1)

2
+

N((N − 1) + 2)

(N − 1)2

=
4

6
· N(N + 1)2 + N2(N + 1)

(N − 1)2
− 2

N(N + 1)2

(N − 1)2
+

N(N + 1)2

(N − 1)2

=
4

6
· N2(N + 1)

(N − 1)2
+

4 − 6

6
· N(N + 1)2

(N − 1)2

=
2N3 + 2N2 − N3 − 2N2 − N

3(N − 1)2
=

N(N + 1)(N − 1)

3(N − 1)2
=

N(N + 1)

3(N − 1)
.

Substituting this into Eq. 7.20 yields
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1

3
− µ̄

µ̄2 + Nν̄2

µ̄

N

(
N − 1

N

)2
N(N + 1)

3(N − 1)
=

1

3

{

1 − µ̄

µ̄2 + Nν̄2

(
N − 1

N

)2
N + 1

N − 1

}

=
1

3

{

1 − µ̄

µ̄2 + Nν̄2

(N − 1)(N + 1)

N2

}

=
1

3

{

1 − µ̄

µ̄2 + Nν̄2

(

1 − 1

N2

)}

=
1

3

{
Nν̄2

µ̄2 + Nν̄2
+

µ̄2

µ̄2 + Nν̄2
· 1

N2

}

=
1

3N2
· µ̄2 + ν2N3

µ̄2 + ν2N

=
1

3

{

1

1 + µ̄2

Nν2

+
1

N2
· µ̄2

µ̄2 + ν2N

}

.
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Chapter 8

Optimality of Binary Coding: A
Phase Transition

The previous four chapters investigated population coding from a very abstract point
of view, and some readers may feel a little bit lost because of the variety of aspects
that have been addressed. Therefore, I think, it is a good time to shortly recap the
major lessons we have learned so far: Starting from the context of the literature on
population coding, we saw in chapter 4 that the Fisher information of population
codes is influenced by the tuning width and the dynamic range independently of
each other.

While this result allowed to resolve the conflicting conclusions in the literature about
the optimal tuning width, we noticed several difficulties at interpreting the under-
lying model in a meaningful way. Irrespective of the technical problems due to the
limited validity of Fisher information, the preselection of the candidate encodings
(chapter 5 and 6) as well as the choice of the decoder (chapter 7) have been shown
to influence the shape of the optimal encodings in a crucial way. Three insights, in
particular, shall be pointed out here:

• Strictly linear decoding is too restrictive, because simple saturation or thresh-
old nonlinearities are sufficient to take advantage of label-pattern coding. This,
in particular, makes a big difference for the shape of the optimal encoding.

• It is not possible to justify a preselection of tuning functions independent of
a particular problem at hand. Therefore, it is important to note that the
frequent restriction to bell-shaped tuning profiles and radial symmetric tuning
functions impair the coding accuracy substantially.

• Minimization of the dynamic range turned out to be crucial for maximizing
Fisher information in general and has been proven to be advantageous in
several case studies with respect to the MMSE as well.
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The purpose of the previous chapters was mainly to facilitate intuitions as to how
the shape of an efficient neuronal representation is affected by a variety of mutually
influencing factors. Here, this knowledge shall be used to derive a constraint on
neural rate coding that directly applies to efficient coding models of natural images.

8.1 Multi-dimensional encoding in the visual sys-

tem

The original work on the optimal tuning width in population coding by Hinton
[Hin81] was motivated by a search for theoretical determinants of the coding effi-
ciency of sensory neurons in the visual system. Accordingly, his study is related to
the task of reconstructing the location of a single light dot in the two dimensional
visual field from the neuronal responses. While Hinton already remarked that his
scaling rule holds true only under the assumption that not more than one light dot
is located within the same receptive field simultaneously, the more general setting
has hardly been investigated so far.

In order to describe arbitrary visual stimuli, we use a scalar intensity field I :
[−bx, bx] × [−by , by] → [0, 1], (x, y) 7→ I(x, y). Furthermore, we model the rate
response of neuron j = 1, . . . , N by a memoryless linear-nonlinear cascade neuron
model [SPPS04]

zj [I] = 〈Fj, I〉 =

∫ bx

−bx

∫ by

−by

Fj(x, y)I(x, y)dydx (8.1)

fj [I] = gj(zj [I]) (8.2)

where the first equation is a scalar product and gj(zj) is some nonlinear gain function
with limited output range (i.e. fmin ≤ gj(z) ≤ fmax). In the particular case of
Poisson noise, it is also referred to this model as the linear-nonlinear-Poisson (LNP)
model [Chi01].

In case of I(x, y) being a delta function (i.e. a ’dot stimulus’), this model be-
comes equivalent to those analyzed in previous studies discussed above, because
then fj [I(x, y)] = F (x, y) becomes a tuning function for the location of the delta
peak. Note, however, that radial symmetry or smoothness of F , is typically not
conserved under the mapping Eq. 8.1, if P (I) contains images other than delta
functions. Even in the simple case, where I may be the sum of two delta functions,
the stimulus space and the tuning functions become very different, because now a
four-dimensional signal (x1, y1, x2, y2) has to be encoded. Clearly, the visual system
actually deals with very high-dimensional data.

The merit of the linear-nonlinear cascade neuron model is that it allows to separate
the ecological problem of optimizing the receptive fields with respect to the natural
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image statistics from the other, endogenous, problem to overcome the neuronal noise
of rate signaling between neurons. In fact, this is a crucial step, because the optimal
set of basis functions {Fj : j = 1, . . . , N} is mainly determined by the shape of the
prior distribution P (I), while the optimal gain function can be, to a large extent,
considered independently. Furthermore, the degree of nonlinearity appears to be a
plausible choice.

In summary, we here take the point of view that it makes sense to ask for the
precision with which the N-dimensional vector (z1, . . . , zN) can be reconstructed
from variable neuronal responses with mean (g1(z1), . . . , gN(zN)), rather than to ask
for the precision with which an intensity field I can be reconstructed under the
assumption of a particular prior distribution P (I). A different way to motivate this
point of view is to make use of the hypothesis that each neuronal response may
reflect an independent component of natural scenes [BS97; Ati92].

Under the assumption that the zj are mutually independent (i.e. P (z1, . . . , zN ) =
∏

P (zj)), and that all dimensions are equivalent with respect to the variance of their
prior distributions as well as to their relevance for further processing, it is optimal to
encode each dimension exclusively by one neuron [BRP02]. Therefore, the study of
optimal rate encoding of an individual neuron appears to be well suited to analyze
the effect of neuronal noise on efficient neuronal representations.

This may come somewhat as a surprise, since it is widely believed that population
coding is most relevant to understand the neural code. Although, in principle, it
cannot be wrong to study populations instead of individual neurons, the usually
studied case of point estimation with respect to the mean squared error loss in an
Euclidian space is likely to misrepresent the actual neuronal functionality under
natural conditions. For the special task of determining the position of a single light
dot, it might be reasonable to consider a two-dimensional point estimation problem
under squared error loss. However, this model becomes more or less irrelevant, if,
in fact, the discrimination of natural scenes is important.

In conclusion, the optimization of population codes makes sense if the loss function
implements behavioral relevance1. The loss functions used in contemporary models
of optimal population coding, however, are not informed by behavioral relevance,
but have been chosen merely for the sake of convenience. While strong knowledge
is required to set up a meaningful loss function, the less ambitious question of how
to signal a certain magnitude from one neuron to another, may be of relevance,
independent of the particular task the neurons have to solve.

1This is the reason why the efficient coding principle puts so much emphasis on the role of
natural stimuli.
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T

fx x(k)

Figure 8.1. The presynaptic neuron at the left computes some analog value z from
its synaptic inputs. In order to signal this quantity to another postsynaptic neuron,
spikes are generated with a firing rate g(z) and propagated to the postsynaptic
neuron. The postsynaptic neuron integrates over all incoming spikes within a time
window of length T . The resulting spike count k then serves as the basis for any
computation of the postsynaptic neuron, for which an estimate x̂ of z is required.

8.2 The rate coding bottleneck

The bottom line of the analysis in this chapter is to ask in how far the interpretation
of rate coding as an analog code makes actually sense. In fact, the notion of rate cod-
ing is frequently linked to the idea of analog coding, which constitutes the basis for
many neural network models. Apart from its hegemony in stimulus reconstruction
experiments, the idea of rate coding can also be motivated by a basic biophysical
property of neurons, namely the temporal integration of the postsynaptic cells over
the current pulses induced by the presynaptic spikes. Reliable inference from the
observed number of spikes about the underlying firing rate of a neuronal response,
however, requires a sufficiently long time interval, while integration times of neu-
rons in vivo [SK93] as well as reaction times of humans or animals when performing
classification tasks [KXFP01; TFM96] are known to be rather short. Therefore, it
is important to understand, how neural rate coding is affected by the limited time
window, which in reality is available for decoding.

The motivating picture, we have in mind, refers to the communication process from
one neuron to another, where we assume that the presynaptic neuron has computed
an analog number z from its inputs and is now faced with the problem of signaling it
over some distance along its axon to other neurons by the use of spikes (Fig. 8.1). In
other words, z is assumed to represent exactly the “relevant information” encoded
by the neuron, which need not match with the stimulus parameters commonly in-
vestigated experimentally. For this situation, we seek to determine optimal gain
functions, such that the MMSE, with which z can be inferred by a postsynaptic
neuron, is minimized. A gain function with respect to z constitutes a neuronal re-
sponse function very similar to an f-I curve as known from experimental studies. The
theoretical analysis in this chapter, however, does not rely on assumptions about
particular physical signals corresponding to z. The essential question is simply, as
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to how it is possible to overcome the rate-coding bottleneck.

In 1996, Softky pointed out that there is a trade-off between the higher information
content of each analog “message” and the lower rate at which this message may
be sent [Sof96], so that the question arises how relevant the idea of analog coding
actually is for neuronal processing in the brain. Although this is an important prob-
lem that even may be decidable experimentally, it did not receive much attention in
neuroscience until today.

Here, we analyze this issue by seeking the optimal gain function that minimizes
the MMSE for a uniform source signal transmitted through a Poisson channel as
a function of the maximum mean number of spikes. In formal terms, the issue is
to optimally encode a real random variable z in the number of pulses emitted by
a neuron within a certain time window. Thereby, z stands for the analog signal
computed by a presynaptic neuron that shall be transmitted to subsequent neurons.
The neuronal output, actually read out by subsequent neurons, however, is given
by the discrete number of spikes k integrated within a time interval of length T .
The statistical dependency between z and k then is specified by the assumption of
Poisson noise

p(k|µ(z)) =
(µ(z))k

k!
exp{−µ(z)} , (8.3)

and the choice of the gain function g(z), which together with T determines the mean
spike count µ(z) = Tg(z) . An important additional constraint is the limited range
of the neuronal firing rate, which can be included by the requirement of a bounded
gain function (gmin ≤ g(z) ≤ gmax , ∀x). Since inhibition can reliably prevent a
neuron from firing, we will consider the case gmin = 0 most of the time. Instead of
specifying gmax it makes sense to impose a bound on the mean spike count directly
(i.e. µ(z) ≤ µmax), because gmax constitutes a meaningful constraint only with
respect to a fixed time window of length T . Since µmax has a crucial effect on the
signal-to-noise ratio, we will analyze the coding properties as a function of µmax.

In reality gmax is bounded and fixed so that µ̄ = gmaxT is directly related to the
rate 1/T at which independent signals can be transmitted. Hence, in our study the
trade-off between the higher information content of each analog “message” and the
lower rate at which this message may be sent corresponds to the larger amount of
time T that is necessary to achieve a lower distortion χ2 by increasing the range of
analog signaling. For the optimization of a gain function the MMSE χ2 reads

χ2[µ(z)] =
1

3
−

∞∑

k=0

(∫ 1

0
x p(k|µ(z)) dx

)2

∫ 1

0
p(k|µ(z)) dx

. (8.4)

With respect to the issue of optimal analog rate signaling between neurons, the
MMSE appears to be a well-suited objective function.
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Figure 8.2. While the parabolic gain function gasymp (left) is asymptotically op-
timal in the limit µmax → ∞, the step function gbinary (right) is advantageous for
small µmax. The optimal threshold of the step function moves from 2

3
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2
with

increasing µmax.

8.3 Optimal gain functions in the limiting cases

As derived above on the basis of Fisher information, the optimal gain in the asymp-
totic limit T → ∞ has a parabolic shape (Fig. 8.2, left):

gasymp(z) = ((
√

gmax −
√

gmin)x +
√

gmin)2 . (8.5)

For any finite µmax, however, this gain function is not necessarily optimal. In par-
ticular, in the limit µmax → 0, the Poisson distribution converges uniformly to a
Bernoulli distribution with P (k|µ) = µk(1 − µ)1−k for k ∈ {0, 1}, and for the lat-
ter, it is straightforward to show that the optimal gain function is a step function
(Fig. 8.2, right).

gbinary(z) = gmin + (gmax − gmin) Θ (x − ϑgmin
(µmax)) , (8.6)

In case of gmin = 0 the optimal threshold ϑgmin
(µmax) ∈ [1/2, 2/3] as a function of

µmax can be determined analytically

ϑ0(µmax) = 1 − 3 −
√

8e−µmax + 1

4(1 − e−µmax)
(8.7)

as well as the corresponding MMSE (see appendix 8.7):

χ2[gbinary] =
1

12

(

1 − 3 ϑ2
0(µmax)

[(1 − ϑ0(µmax))(1 − e−µmax)]−1 − 1

)

. (8.8)

The MMSE of the asymptotically optimal gain function is given by

χ2[gasymp] =
1

3
− 1

2 (
√

µmax)3

∞∑

k=0

1

k!

Γ2
0,µmax

(k + 1)

Γ0,µmax
(k + 1

2
)

, (8.9)
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Figure 8.3. Comparison of the minimum mean squared error for the parabolic gain
function (solid) and for the step function (dashed). The χ2-axis has a logarithmic
scale. In the relevant region 1 ≤ µmax ≤ 5 the step function gbinary is clearly
advantageous.

where Γr,s denotes the truncated Gamma function

Γr,s(k) =

∫ s

r

tk−1e−tdt . (8.10)

A comparison of χ2[gasymp] with χ2[gbinary] shows that the step function leads, in
fact, to a smaller average reconstruction error than the parabolic gain function (see
Fig. 8.3) if µmax < 8.2.

8.4 Numerically optimized gain functions for fi-

nite µmax

The binary shape for small µ̄ and the continuous parabolic shape for large µ̄ implies
that there has to be a transition from discrete to analog encoding when µ̄ is increased.
Unfortunately, it is not possible to determine the optimal gain function within the
entire set of all bounded functions B := {f |f : [0, 1] → [0, gmax]}, using the calculus
of variations. Instead, we will have to chose certain parameterized function spaces
in advance that are feasible for the optimization. In order to not rely on a particular
parameterization, we investigated a variety of function classes for which the most
important are presented in the following.

Let us first consider the classes Sλ of piecewise constant staircase functions with
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Figure 8.4. Bifurcation diagram with logarithmic µmax-axis that shows the pa-
rameters a1, . . . , a4 of the optimal gain function within the class S5. A clear phase
transition from the binary step function to a staircase function that uses all available
quantization levels occurs at µmax ≈ 3. Up to the phase transition the graphs of
a1, . . . , a4 are in precise agreement with Eq. 8.7.

λ ≥ 2 quantization levels

Sλ ≡
{

gλ−stair
a1,...,aλ−1,b1,...bλ−2

(z) :

gλ−stair
a1,...,aλ−1,b1,...bλ−2

(z) = b0 +
∑λ−1

l=1 (bl − bl−1)Θ(x − al) , (8.11)

a1, . . . , aλ−1 ∈ [0, 1] and b1, . . . bλ−2 ∈ [gmin, gmax]} ,

where b0 = gmin and bλ−1 = gmax. All these classes together build up a hierarchy of
genuine subsets:

S2 ⊂ S3 ⊂ S4 ⊂ . . . . (8.12)

and contain the optimal binary step functions given by Eq. 8.6 as a special case.
Note, that for λ = 2 the general notation above might be misleading, because
then b1 does not constitute a free parameter anymore so that we have g2−stair

a1
(z) =

b0 + (b1 − b0)Θ(x − a1). The MMSE for all of these gain functions reads

χ2[gλ−const
a1,...,aλ−1,b1,...bλ−2

] =
1

3
− 1

4

∞∑

k=0

1

k!

[
∑λ

i=1

(
a2

i − a2
i−1

)
bk
i−1e

−bi−1

]2

∑λ
j=1 (aj − aj−1) bk

j−1e
−bj−1

(8.13)

where a0 = 0 and aλ = 1 are the left and right boundaries of the interval, respec-
tively.

In the case of gmin = 0 and λ = 3, 4, 5, we evaluated the optimal parameters
a1, . . . , aλ−1, b1, . . . bλ−2 as a function of µmax finding a phase transition at µc

max &
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Figure 8.5. Bifurcation diagram with logarithmic µmax-axis that shows the pa-
rameters a1, . . . , a3 of the optimal gain function within the class L3. A clear phase
transition from the binary step function to a piecewise linear function occurs at
µmax ≈ 3. Up to the phase transition the graphs of a1, . . . , a3 are in precise agree-
ment with Eq. 8.7.

2.95 (Fig. 8.4). For µmax < µc
max the optimal gain function within S5 is equal to the

optimal step function defined by Eq. 8.6 and Eq. 8.7. For µmax > µc
max, however, it

makes use of all available quantization levels.

In order to check, whether the binary coding for µmax < µc
max is generically optimal

or whether this is rather due to the specific parameterization of S5, we also considered
another function class Lλ that consists of piecewise linear gain functions:

gλ−linear
a1,...,aλ,b2,...bλ−1

(z) =







b1 , 0 < x < a1

b1 + (b2 − b1)
x−a1

a2−a1
, a1 < x < a2

b2 + (b3 − b2)
x−a2

a3−a2
, a2 < x < a3

... ,
...

bλ−1 + (bλ − bλ−1)
x−aλ−1

aλ−aλ−1
, aλ−1 < x < aλ

bλ , aλ < x < 1

, (8.14)

where b1 = gmin and bλ = gmax and it holds Sλ ⊂ Lλ+1.

We determined the optimal gain function within L3, for which the MMSE is given
by

χ2[gλ−linear
a1,...,aλ,b2,...bλ−1

] =
1

3
−

∞∑

k=0

A2(k)

B(k)
(8.15)
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Figure 8.6. Bifurcation diagram with logarithmic µmax-axis that shows the param-
eters α, β of the optimal gain function within the class R2. A clear phase transition
from the binary step function to a parabolic ramp function occurs at µmax ≈ 3. Up
to the phase transition the graphs of α, β are in precise agreement with Eq. 8.7.
After the phase transition, the width of the parabolic region is permanently increas-
ing. The continuation of the graph of the optimal threshold ϑ0 is indicated by the
dashed line.

where

A(k) =
a2

1

2
δk,0 + Aa1,a2,0,b2 + Aa2,a3,b2,µmax

+
(1 − a2

3)

2

µk
maxe

−µmax

k!
(8.16)

B(k) = a1δk,0 + Ba1,a2,0,b2 + Ba2,a3,b2,µmax
+ (1 − a3)

µk
maxe

−µmax

k!
(8.17)

Aα,β,γ,ζ =
(β − α)2Γγ,ζ(k + 2)

k!(ζ − γ)2
+

(

α − γ(β − α)

(ζ − γ)

)

Bα,β,γ,ζ (8.18)

Bα,β,γ,ζ =
1

k!

(β − α)

(ζ − γ)
Γγ,ζ(k + 1) . (8.19)

The corresponding bifurcation diagram for the optimal parameters as a function of
µmax is shown in Fig. 8.5, which again exhibits a phase transition at µc

max ≈ 3.

Finally, we consider the function class R2, which has only two free parameters
α ≤ β ∈ [0, 1] and contains S2 as well as the asymptotic optimal parabolic function
as special cases. The parameterization

gramp
α,β (z) =







gmin , 0 < x < α
((
√

gmax −
√

gmin) x−α
β−α

+
√

gmin)2 , α < x < β

gmax , β < x < 1

(8.20)
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chapter with the MMSE of the asymptotic optimal gain function gasymp (upper
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(dashed) can be distinguished at their index that is printed at their saturation level
at the right border of the figure. The MMSEs with respect to L3 and R2 can hardly
be distinguished (solid, lower), because both graphs are very close to each other over
the entire plotted range of µmax.

interpolates between both types of gain functions and their MMSE is given by

χ2[gramp
α,β ] =

1

3
− 1

2

∞∑

k=0

1

k!

C2(k)

D(k)
(8.21)

where

C(k) = a
b − a√
µmax

Γ0,µmax

(

k +
1

2

)

+
(b − a)2

µmax

Γ0,µmax
(k + 1) +

+ (1 − b2)e−µmaxµk
max + δk,0a

2 (8.22)

D(k) =
b − a√
µmax

Γ0,µmax

(

k +
1

2

)

+ 2(1 − b)e−µmaxµk
max + 2δk,0a . (8.23)

Again, we find a phase transition at µc
max ≈ 3 (Fig. 8.6). Taken together the results

show that the optimal gain function within G = S2 ∪ S3 ∪ S4 ∪ S5 ∪ L3 ∪R2 is the
step function gbinary ∈ S2 given by Eq. 8.6 and Eq. 8.7, provided µmax is smaller
than circa three. Due to the diversity of the different considered classes, it is rather
unlikely to find a better gain function than the step function, if no such function
exists in G.

While all results presented here have been computed with the uniform prior, the exis-
tence of the phase transition appears to be independent of the shape of ρ(z). In par-
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Figure 8.8. The histogram
functions of the firing rate
distribution induced by gramp

with ∆ = 40 bins for dif-
ferent µmax demonstrate that
bimodality is a typical fea-
ture of optimal firing rate dis-
tributions.

ticular, we observed the same qualitative dependence in case of other unimodal dis-
tributions (we checked for ρ(z) = (ν+1)2ν(0.5−|0.5−z|)ν with ν = 0.2, 0.5, 1, 2, 4, 10
exhibiting a phase transition at µ̄c = 2.9, 2.9, 2.8, 2.7, 2.6, 2.5, respectively).

Beyond the phase transition, the optimal encodings of all parameterizations perform
similarly well2 (Fig. 8.7) apart from the regions of saturation in case of S3,S4,S5

that are due to the bias necessarily induced by piecewise constant gain functions.
This bias leads to a lower bound on the MMSE χ2[Sλ] ≥ 1

12λ2 , which is indicated in
Fig. 8.7 by the dotted lines.

Since for µmax > µc
max the MMSE landscape appears to be extremely flat around

its minimum, the question for the exact shape of the optimal gain function is rather
technical. However, our analysis shows that all optimal encodings exhibit bimodal
firing rate distributions with respect to Lebesgue measure. This can be nicely
demonstrated with the optimal parabolic ramp function, for which the distribution

2We also determined the MMSE with respect to the class R :=
⋃

γ∈(0,∞) Rγ in the range

0 ≤ µmax ≤ 100 (not shown). The result was that its MMSE is at most 0.7 % smaller than the
MMSE with respect to R2.
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function F of firing rates f is given by

F ramp(f) =







0 , f < 0

α̃ + (β̃ − α̃)
√

f , 0 ≤ f < 1
1 , f ≥ 1

, (8.24)

where α̃, β̃ are the optimal parameters of the parabolic ramp function, which depend
on µmax. In order to illustrate the bimodality of F ramp, we show the corresponding
histogram function (see Fig. 8.8), which is defined for any distribution function F
by

H∆(f) = F (([f/∆] + 1)∆) − F ([f/∆]∆) (8.25)

where [x] denotes the integer part of x and ∆ is the bin size. The plotted histogram
functions demonstrate that even in the case of µmax = 100 the minimum and the
maximum firing rate have a substantially higher probability.

8.5 Analytical study of the phase transition

The finding of a phase transition in all function spaces considered above suggests
to check whether the existence of a phase transition can be proved analytically.
To this end, two further function classes, A1,A2, are introduced in this section.
The two classes contain both, the binary gain function as well as the asymptotic
optimal parabolic function as special cases. Furthermore, A1 is a proper subset of
A2. By numerical optimization within A2 for various µ̄, we found again a clear
phase transition from binary to analog encoding at a critical µ̄c with 2.9 < µ̄c < 3.0
(Fig. 8.9, upper). Although the critical value depends on the function space within
which the optimization is performed, we did not find any gain function with an error
smaller than the MMSE of the step function for µ̄ < 2.9.

Our interest in A1 results from the fact that we can analyze the phase transition
in this subset analytically, while A2 is a quite large function space that is likely to
sufficiently approximate all relevant gain functions. Altogether A2 has six free pa-
rameters a ≤ b ≤ c ∈ [0, 1], gmid ∈ (0, gmax), α, β ∈ [0,∞), and the parameterization
of the gain functions is given by

gS2(z|a, b, c, gmid, α, β) =







0 , 0 < z < a
gmid

(
z−a
b−a

)α
, a < z < b

gmid + (gmax − gmid)
(

z−b
c−b

)β
, b < z < c

gmax , c < z < 1

. (8.26)

The integrals entering Eq. 8.4 for the MMSE in case of the tuning function fS2 then
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read
∫ 1

0

x p(k|x) dx =
1

k!

{

a2

2
δ0,k +

(b − a)2 Γ0,fmid

(
k + 2

α

)

α( α
√

fmid)2
+

a(b − a) Γ0,fmid

(
k + 1

α

)

α α
√

fmid

+
(c − b)2 Γfmid,fmax

(

k + 2
β

)

β( β
√

fmax − β
√

fmid)2

+

(

b −
β
√

fmid(c − b)

( β
√

fmax − β
√

fmid)

) (c − b) Γfmid,fmax

(

k + 1
β

)

β( β
√

fmax − β
√

fmid)

+
(1 − c2)

2
fk

maxe
−fmax

}

∫ 1

0

p(k|x) dx =
1

k!

{

aδ0,k +
(b − a) Γ0,fmid

(
k + 1

α

)

α α
√

fmid

+
(c − b) Γfmid,fmax

(

k + 1
β

)

β( β
√

fmax − β
√

fmid)

+(1 − c)fk
maxe

−fmax

}

.

Numerical optimization leads to the minimal MMSE as a function of µ̄ as displayed
in Fig. 8.9 (middle).

The parameterization of the gain functions in A1 is given by

gS1(z|w, γ) =







0 , 0 < z < ϑ(µ̄) − w

gmax

(
z−ϑ(µ̄)+w

2w

)γ

, ϑ(µ̄) − w < z < ϑ(µ̄) + w

gmax , ϑ(µ̄) + w < z < 1

, (8.27)

with w ∈ [0, 1] and γ ∈ [0,∞). The integrals entering Eq. 8.4 for the MMSE in case
of the gain function gS1 read

∫ 1

0

z p(k|z) dz =
1

k!

{

(ϑ(µ̄) − w)2

2
δ0,k +

2w(ϑ(µ̄) − w)Γ0,gmax

(

k + 1
γ

)

γ γ
√

gmax

+
4w2Γ0,gmax

(

k + 2
γ

)

γ( γ
√

gmax)2
+

1 − (ϑ(µ̄) + w)2

2
gk

maxe
−gmax

}

∫ 1

0

p(k|z) dz =
1

k!

{

(ϑ(µ̄) − w) δ0,k +
2wΓ0,gmax

(

k + 1
γ

)

γ γ
√

gmax

+(1 − ϑ(µ̄) − w)gk
maxe

−gmax

}

.
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Figure 8.9. The upper panel shows a bifurcation plot for ϑ(µ̄) − w and ϑ(µ̄) + w
of the optimal gain function in A1 illustrating the phase transition from binary to
continuous encoding. The dotted line separates the regions before and after the
phase transition in all three panels. Left from this line (i.e. for µ̄ < µ̄c), the step
function given by Eqs. 3 and 4 is optimal. The middle panel shows the MMSE of
this step function (dashed) and of the optimal tuning function in A2 (solid), which
becomes smaller than the first one after the phase transition. The relative deviation
between the minimal errors of A1 and A2 (i.e. (χ2

A1
− χ2

A2
)/χ2

A2
) is displayed in the

lower panel.

The minimal MMSE for these gain functions is only slightly worse than that for
S2. The relative difference between both is plotted in Fig. 8.9 (lower) showing a
maximum deviation of 3.2%. In particular, the relative deviation is extremely small
around the phase transition. This comparison suggests that a restriction to A1,
which is a necessary simplification for the following analytical investigation, does
not change the qualitative results.

The phase transition from binary to analog encoding corresponds to a structural
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Figure 8.10. The critical maximum mean spike count µc is shown as a function of γ
(numerical evaluation at γ ∈ {0.5, 0.505, 0.51, . . . , 3.5}). The minimum µc = 2.9857
at γ = 1.9 determines the phase transition in A1.

change of the objective function χ2(w, γ). In particular, the optimality of binary
encoding for µ̄ < µ̄c implies that χ2(w, γ) has a minimum at w = 0. The existence
of a phase transition implies that with increasing µ̄ this minimum changes into a
local maximum at a certain critical point µ̄ = µ̄c. Therefore, the critical point can
be determined by a local expansion of χ2(w, γ, µ̄) − χ2(0, γ, µ̄) =

∑∞
k=1 gk(γ, µ̄)wk

k!

around w = 0, because the sign of its leading coefficient Aγ(µ̄) (i.e. the coefficient
gk with minimal k that does not vanish identically) determines, whether χ2(w, γ, µ̄)
has a local minimum or maximum at w = 0. Accordingly, the critical point is given
as the solution of Aγ(µ̄) = 0.

With quite a bit of efforts one can prove that the first derivative of χ2(w, γ, µ̄)
vanishes for all µ̄. The second derivative, however, is a decreasing function of µ̄ and
hence constitutes the wanted leading coefficient

Aγ(µ̄) =
1

4(eµ̄ − 1)2

{

8 − 7eµ̄ + 16e2µ̄ + e3µ̄ −
√

1 + 8e−µ̄ (2 + eµ̄ (−3 + eµ̄(6 + eµ̄)))

+
(

16eµ̄ − 48e2µ̄ − 4e3µ̄ +
√

1 + 8e−µ̄ (4eµ̄ − 8 (4 + eµ̄))
) µ̄− 1

γ

γ
Γ0,µ̄

(
1

γ

)

+
(

8e2µ̄ + 2
(

5 − 3
√

1 + 8e−µ̄
)

e3µ̄
) µ̄− 2

γ

γ2
Γ2

0,µ̄

(
1

γ

)

(8.28)

− 16eµ̄ (eµ̄ − 1)
(√

1 + 8e−µ̄ − 3
) µ̄− 2

γ

γ
Γ0,µ̄

(
2

γ

)

+ 2e2µ̄ (eµ̄ − 1)
(√

1 + 8e−µ̄ − 3
) µ̄− 2

γ

γ2

∫ µ̄

0

e−ss
1−γ

γ

(

1 − s

µ̄

)− 1
γ

Γ0,µ̄−s

(
1

γ

)

ds

}

.

Obviously, it is not possible to write the zeros of Aγ(µ̄) in a closed form. The
numerical evaluation of the critical point µ̄c(γ) as a function of γ is displayed in
Fig. 8.10. Note, that we have treated γ as a fixed parameter, which means that we
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Figure 8.11. Examples of the optimal gain function within A1 for µ̄ < µ̄c (left),
µ̄ = 5 (middle), and µ̄ = 50 (right).

determine the critical point of the phase transition in all subsets A1(γ) of A1 that
correspond to a fixed γ. It is straightforward to show that the critical point µ̄c, with
respect to the entire class A1, is given by the minimum of µ̄c(γ). We determined
this value up to a precision of ±0.0001 to be µ̄c = 2.9857. The shape of the optimal
tuning function before and after the phase transition is displayed in Fig. 8.11. Since
the structural change of the objective function is governed by a change of the sign
of the leading coefficient, we thus have found a second-order phase transition.

8.6 Discussion

In this chapter, we have derived the shape of optimal gain functions for rate cod-
ing, depending on the maximum number of spikes µmax that can be integrated by
subsequent neurons. It has been shown that optimal tuning is strictly binary for
µmax / 3 and gmin = 0. For larger µmax, optimal gain functions may have regions
of analog encoding. However, these gain functions still cause bimodal firing rate
distributions at least up to µmax = 100. Within the function class A1 the phase
transition from binary to continuous encoding has been treated analytically. From
the point of view of coding efficiency, I therefore conclude that the idea of analog
rate signaling is unlikely to be relevant for cortical information processing.

Intuitively, this result is quite conceivable by recognizing that the quantized nature
of spike counts imposes already a strong constraint on rate signaling on its own. In
this way, it has been argued before by Softky and Koch in [SK93] that the irregular
firing of cortical neurons in vivo contradicts the possibility of rate coding. In fact, it
is rather obvious that the maximum number of spikes kmax that can be taken into
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account by subsequent neurons is limited by their integration time. In other words, a
more intuitive way to point out the constraint on analog coding is to describe a rate
code as a discrete code with kmax+1 different symbols. kmax has to be small, because
the high degree of irregularity in spike timing implies that the effective integration
time of cortical neurons is small in comparison with the average interspike interval.
Therefore, the mutual information I between the received number of spikes k and
the underlying firing rate f has to be small as well, because it cannot be larger than
the log index of the symbol set (i.e. I ≤ log2(kmax + 1) [CT91]).

Similarly to mutual information, the MMSE χ2 is bounded by kmax as well. For any
uniformly distributed signal with variance v, it holds χ2 ≥ v/(kmax + 1)2, where the
r.h. side corresponds to the mean squared error of the uniform quantizer [GG92].
Furthermore, the two bounds can only be attained in case of noiseless signal trans-
mission.

On the other hand, there is a large body of literature that considers populations
of thousands of neurons as the basic units of information processing. This view
is motivated by local similarities in the tuning of different neurons as they can
be found for instance in a cortical column. One of the first theoretical papers
that has established this point of view is [WC72], analyzing the question of how
to average the activity of individual neurons, in order to obtain the population
rate dynamics. Another early work [GM64] introduced the idea that the balance
of excitation and inhibition may provide a source of noise that could explain the
high degree of irregularity in the firing of cortical neurons. Combining these ideas,
a more recent work [SN98] concludes that noisy firing is used in order to enable
analog population rate coding over a large dynamic range.

From the point of view of coding efficiency, however, we have seen in chapter 6 that
the strategy of using intensity coding is particularly disadvantageous, if it is used
to represent a single analog value by the total population rate: the more neurons
encode for the same analog value, the larger becomes the range of µmax , within
which intensity coding is not relevant and the larger is the advantage of label-pattern
coding over intensity coding. This fact clearly enfeebles the argument presented in
[SN98] that it is the goal to achieve a large dynamic range, which explains the high
degree of irregularity. Moreover, it is difficult to find a good reason, why cortical
processing should not make use of label-pattern coding, which leads to substantially
higher precision. In fact, there is experimental evidence that the redundancy in the
responses between different neurons is small, supporting the idea of label-pattern
coding [RMV01].

Finally, some experimental data shall be discussed, supporting the relevance of bi-
nary coding in natural neuronal systems. For example, the just noticeable difference
(jnd) in orientation is known to be almost independent of stimulus contrast over
a large range of contrasts [SBS+87]. Together with the fact that the firing rate of
most cells in the visual system is strongly affected by stimulus contrast, this sug-
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Figure 8.12. Responses of an H1 neuron from an experiment explained in detail
in [LBdRvS01] as an example for which the rate depends on the stimulus in a
rather binary way. (a) The rotation velocity, derived from the yaw component of
an actual free flight path (1 s of the total 5 s sequence is shown). (b,c,d) Left:
raster plots showing a subset of repeated spike train recordings from H1 responding
to the same rotation signal shown in (a). Right: Corresponding tuning functions
(thick) obtained from PSTH with 1 ms bin precision, shifted in time according to the
the peak of the cross correlation function (the same kind of regression was used in
[BBdRvS00]). Thin lines are given by the mean plus/minus one standard deviation.
The difference between (b), (c), and (d) is due to different day times and hence,
different light conditions of the recordings. The photon rate per photoreceptor at
zenith is 3× 106 photons/s, 2× 105 photons/s, and 3× 102 photons/s, respectively.

gests that the jnd is almost independent of the graded firing rate as well. Vogels
[Vog90] recognized the difficulty to explain this finding on the basis of the popula-
tion vector method. Within the framework of binary coding, however, subsequent
neuronal readout should clearly be binary as well. Therefore, the concept of binary
coding does not rely on any corrective assumptions as they have been suggested in
[Vog90], but on the contrary, the observed contrast independence of the jnd is a
generic prediction of binary coding.

The second example shall demonstrate that not all measured tuning functions are
smooth. In fact, the H1 neuron of the blow fly constitutes a striking example, for
which the firing rate depends on the angular velocity of horizontal rotations of the fly
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in a rather binary way (see Fig. 8.12, I am grateful to Rob de Ruyter van Steveninck
who made the data available to me3).

Furthermore, this example illustrates why the hegemony of smooth tuning functions
in experimental studies is not a critical finding, but is rather to be expected, even
if the encoding is actually binary: In case of the H1 neuron, the binary nature of
the response is clearly visible only under optimal light conditions. The smaller the
illumination of the stimulus the more unreliable the rate response. This suggests that
the tuning is smoothened in the latter case due to stochastic threshold linearization.

In order to explain this point a little more, imagine that the relevant quantity z is
not identical with the chosen stimulus parameter s, but it holds z = s + c, where
c is noise (i.e. an arbitrary contextual quantity that is not under the control of
the experimentalist). The variability of c during measurement would lead to a
smoothened version f(s) of the actual gain function f(z).

A recent work by Liam Paninski (personal communication) provides yet another
example, supporting the point of view that smoothness in measured tuning functions
is an expectable artefact rather than a meaningful finding. Using data recorded
from a multiple-electrode array implanted in the primary motor cortex of macaques,
performing a visually guided manual target tracking task [PFHD03], he showed that
tuning functions for manual reaching experiments look much more nonlinear if they
are plotted as a function of the ’principal component’ instead of the commonly
chosen projections onto position or velocity.

The fact that the response of the H1 neuron is the more binary the better the light
conditions, even suggests an explicit interpretation for the role of intermediate fir-
ing rates: instead of permanently sacrificing temporal precision for resolving graded
rate differences in order to enlarge the range of distinguishable stimulus parame-
ter values, intermediate rates could represent a state of uncertainty. In fact, a low
pass average over a binary random variable can be interpreted as a maximum like-
lihood estimate of its probability distribution. In this way, a binary code provides
a simple solution to the important problem of how to represent uncertain knowl-
edge. Furthermore, in order to obtain a Bayes optimal estimate (w.r.t. 0-1-loss)
from such a representation, nothing more is required than a threshold operation.
This allows subsequent neurons to choose individually the temporal precision with
which they filter the neuronal spike trains depending on the respective required tem-

3While we here focus only on that information of the H1 response that can be read out by time-
invariant filtering (i.e. ’rate coding’), the authors of the experimental data [LBdRvS01] presented
evidence for additional information in the correlation between spikes (cf. [SKdRvSB98; BSK+00])
that might also result from analog changes of the velocity signal. In order to test directly, to which
extent the analog signal actually affects the H1 response, I propose to compare the information
rate I[φ̇(t)] of the H1 response in case of an analog input signal φ̇(t) with the information rate
I[sgn(φ̇(t))] that is obtained when the analog input signal is replaced with a random telegraph
signal such that the sign of both matches for all t. This experiment is presently under way (de
Ruyter van Steveninck, personal communication).
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poral precision: the less temporal precision is necessary the more precise becomes
the representation of the probabilities. Since few samples are virtually sufficient
to determine a Bernoulli distribution, this solution of representing uncertainty ’on
demand’ appears to match the constraints and demands of sensory processing with
spiking neurons. In conclusion, such a “Bernoulli code” is not only efficient in terms
of signal transmission as shown here, but additionally it carries the information in a
highly usable form. In this way, the information can be flexibly read out, adjusted
to the required temporal precision, with low computational complexity.

8.7 Appendix

Derivation of Eq. 8.7 and Eq. 8.8

We determine the MMSE for the gain function

g(z) = gmax Θ (z − ϑ)) , (8.29)

which parameterizes S2 in case for gmin = 0 as a function of µmax and θ. In order
to simplify calculations, we substitute z = x − 1

2
in the following so that Eq. 8.3 is

given by

p(k|µ(z)) =

{
δ0,k , −1

2
< z < ϑ − 1

2
(µmax)k

k!
e−µmax , ϑ − 1

2
< z < 1

2

(8.30)

and Eq. 8.4 becomes

χ2[µ(z)] = E[z2] − E[ẑ2] =
1

12
−

∞∑

k=0

(∫ 1
2

− 1
2

z p(k|µ(z)) dz
)2

∫ 1
2

− 1
2

p(k|µ(z)) dz
, (8.31)

For the integrals we obtain

∫ 1
2

− 1
2

z p(k|µ(z)) dz =
1

k!

(
∫ ϑ− 1

2

− 1
2

z δ0,k dz +

∫ 1
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2

z µk
max e−µmaxdz

)

=
ϑ2 − ϑ

2

(
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1

k!
µk

max e−µmax

)

(8.32)

and

∫ 1
2

− 1
2

p(k|µ(z)) dz =
1

k!

(
∫ ϑ− 1

2

− 1
2

δ0,k dz +

∫ 1
2

ϑ− 1
2

µk
max e−µmaxdz

)

= ϑ δ0,k + (1 − ϑ)
1

k!
µk

maxe
−µmax . (8.33)
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Inserting Eq. 8.32 and Eq. 8.33 into Eq. 8.31 yields

χ2 =
1

12
− (ϑ2 − ϑ)2

4

(1 − e−µmax)
2

ϑ + (1 − ϑ)e−µmax

−(ϑ2 − ϑ)2

4(1 − ϑ)

∞∑

k=1

1

k!
µk

max e−µmax (8.34)

After some steps one obtains

χ2 =
1

12

(

1 − 3 ϑ2

[(1 − ϑ)(1 − e−µmax)]−1 − 1

)

(8.35)

by using the equality
∑∞

k=1
1
k!

µk
maxe

−µmax = 1 − e−µmax The derivative of the r.h.
side with respect to ϑ has three different zeros. Together with the conditions that
the second derivative should be positive and that ϑ ∈ (0, 1) Eq. 8.7 remains as the
unique minimum of Eq. 8.35.
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Chapter 9

Interim Conclusion and
Introduction to Part II

The overall conclusion from the previous chapters is the plain insight that analog
coding does not suit rate coding at physiologically plausible time scales. This result
is rather obvious if one starts with a single cell model right from the beginning.
In this thesis, however, it emerged as an optimal solution to the population coding
problem of representing an N -dimensional vector on the basis of N neurons. Fur-
thermore, this conclusion is backed up by the studies in chapter 6 and 5, which
provide a strong argument that the importance of label-pattern coding only in-
creases if one reduces the dimensionality of the vector to be represented. Moreover,
the model used to derive this result has not been specifically set up to support this
particular hypothesis, but the standard framework of population coding has been
used, which by the choice of the squared error loss is rather tailored to the goal of
analog encoding.

It is not at all an established point of view that graded rate differences are not a
useful means for the design of neuronal rate codes. First of all, there is clearly a
rather unspecific preference for smooth functions, which is due to the mathemat-
ical experience that singularities of nondifferentiability can be very nasty to deal
with. Therefore, the mathematically educated researcher typically feels that neu-
rons should rather avoid the use of such freaky tuning functions. On the other hand,
the difficulty to find an example of a measured tuning function that looks binary
leads inevitably to the impression that ’empirical evidence’ speaks against the idea
of binary coding. These intuitive arguments are so fundamental that it is hard to
avoid getting affected by them even if one is aware of the fact that it is, for instance,
too naive to take the shape of a measured tuning function as evidence against binary
coding, as long as there is large variability1 in the neuronal response.

1The variability probably reflects a signal, which is actually relevant for neuronal processing
[ASGA96; Fer96; TKGA99].
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There are, however, also some more specific objections against the Bernoulli coding
hypothesis. In particular, there are serious objections against the experimental
support presented above. For instance, Peter Dayan pointed out to me that the
finding of an adaptive rescaling of the dynamic range of the H1 neuron’s tuning
with respect to the variance of the input signal (i.e. the horizontal rotation velocity)
[BBdRvS00] suggests that intensity coding is of meaning there. Apart from that,
Rob de Ruyter van Steveninck (who clearly knows his own data much better than
I do) also does not follow the interpretation given above, but he believes that the
information carried by correlations between subsequent spikes are relevant for the
neuronal processing in the fly. This kind of neuronal encoding cannot be treated
within the rate coding paradigm at all.

In fact, I have to admit that the ’experimental support’ given above can at best
function as an attempt to weaken the psychological barrier against strongly nonlinear
tuning, while until today I have got no idea how it may be feasible to critically test
this hypothesis with the means available to date. However, there is still something
what we can do on the theoretical side: Since it is a wide-spread belief that for certain
functional demands, other than coding efficiency, smooth tuning is important more
than accuracy, it is the purpose of the second part of this thesis to depart from
the efficiency argument and to seek other criteria to challenge the Bernoulli coding
hypothesis.

One such argument is the limited computational power of neuronal read out. In fact,
many studies of population codes are based on the population vector method or on
the LMS-estimator, which are both not capable to take advantage of label-pattern
coding. As has already been shown in chapter 7, however, a very simple threshold
nonlinearity, which appears to be more than plausible with respect to the basic
biophysical properties of neurons, is indeed sufficient to make use of label-pattern
coding.

The following two chapters will address two other intuitions. One intuition is that
analog encoding strategies, like population rate coding, are more robust against cell
death and other sources of unreliability. This issue will be discussed in the next
chapter. Another criterion is the question, whether a coding scheme can actually be
realized when taking the neuronal dynamics into account. To this end, chapter 11
investigates the possibility of realizing analog and label-pattern rate coding schemes
by means of integrate-and-fire neurons.



Chapter 10

Robustness: Bernoulli vs
Population Rate Coding

The need for a neuronal coding scheme that is robust against cell death and the
corruption of action potentials seems to support the idea of population rate coding,
where the labels of different neurons need not to be distinguished. In order to test
this intuition, this chapter investigates the efficiency and robustness of a population
rate coding scheme in comparison to a label-pattern coding scheme, using identical
noise models. As it turns out, not only the efficiency of population rate coding is
substantially worse than that of a label-pattern coding scheme, but the latter also
remains to be superior, independent of the number of neurons that are randomly
selected to be erased.

A good model for the description of a binary rate code is the Bernoulli neuron
model. The Bernoulli model can be related to what is measured in a PSTH if the
bin width chosen is sufficiently small. Then one will find at most one spike within
any given bin in all trials due to the refractory period of neurons. Hence, the average
spike count over trials for each bin t will be a number p(t) ∈ [0, 1], representing the
fraction of trials, where a spike occurred.

In contrast to a rate signal transmitted by a single neuron, population rates are not
necessarily slow, but with an increasing number of neurons, it becomes possible to
get a reliable estimate of p(t) simply by averaging over a population of identically
tuned neurons. This idea of population rate coding is, in particular, frequently
considered as the biological basis for analog signaling and computation in more
abstract neural network models.
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10.1 Analysis

Consider a population of N neurons k = 1, . . . , N , whose spike trains together
represent a certain real-valued signal x(t) with finite dynamic range. E.g. x(t)
could stand for the population rate of all presynaptic neurons [SN98] or for the
correlation of two moving objects in the visual field or anything else one might
consider relevant for signal processing in the brain. Without restriction of generality,
we can choose a scale such that x ∈ [0, 1] holds. For the sake of simplicity, we focus
on temporally uncorrelated discrete time signals x(tm) with a discretization period
∆T = tm − tm−1 that is smaller than the neurons minimal interspike interval. In
this case, the neuronal response at each instance of time is either sk(tm) = 1 (spike)
or sk(tm) = 0 (no spike) and the conditional distribution

P (s1(tm), . . . , sN(tm)|x(tm)) (10.1)

captures all available information about the signal x carried by the spike trains
(s1, . . . , sN) (provided the encoding is constant). Assuming that Eq. 10.1 can be
written in product form, an encoding is completely specified by N activation func-
tions

pspike
k (x) = P (sk(tm) = 1|x(tm)) (10.2)

that tell for each neuron k = 1, . . . , N how much it is driven by a given input x.

While it is not difficult to imagine that a neuron can be reliably prevented from firing,
for instance via apical shunting inhibition, there are several reasons to assume that
the activation functions can take values only substantially below one: for example,
the internal state of the neuron constitutes a source of variability that is independent
of the signal x(t), because the excitability of a neuron substantially depends on the
time elapsed since it has generated the last spike. Furthermore, the reliability with
which a single spike contributes to the entire signal representation is limited by the
reliability of synaptic transmission, which can be quantified by the probability of
synaptic release prel [Zad98].

In this model, all possible corruptions of spikes due to unreliable synaptic transmis-
sion as well as any other sources of noise are captured by an upper bound for the
probabilities of spike generation pspike

k (x) ≤ prel.

10.1.1 Rate coding with high noise level

The signal of a population rate coding scheme is given by the population spike count
c(tm) =

∑N
k=1 sk(tm), which is invariant under random permutations of the neuron

index k. If prel is small, the probability mass function P (c|x) for the spike count
is well approximated by a Poisson distribution with mean µ(x) =

∑N
k=1 pspike

k (x).
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Figure 10.1. Left figure shows the mean square efficiency η as a function of the
spike reliability prel (N = 1000) in the case of optimal rate coding (solid), label-
pattern coding (dashed), and Poissonian approximation (dotted). Right figure
shows η as a function of the population size N (prel = 0.1) in the corresponding
cases.

Therefore, the population rate coding scheme then is completely specified by an
arbitrary function µ(x) with 0 ≤ µ ≤ Nprel.

The efficiency of the different coding schemes is measured by the ratio

η =
V ar[x]

E[(x − x̂(ξ))2]
≤ V ar[x]

E [V ar[x|ξ]] (10.3)

where ξ denotes the neuronal response under consideration, and x̂(ξ) is the corre-
sponding estimator used. In case of asymptotic normality, the log of the r.h. side of
Eq. 10.3 becomes equal to mutual information. Using µ(x) = Nprelx, this quantity
is evaluated and shown in Fig. 10.1 for different coding schemes. On the left it is
plotted as a function of prel in case of N = 103. On the right it is shown as a function
of N for prel = 0.1, which is a typical value of synaptic release probability [HS97].

In case of the Poisson approximation, the efficiency of the intensity coding strategy
is given by

ηPoisson = 1 +
Nprel

6
(10.4)

and plotted as dotted line in Fig. 10.1.

10.1.2 Optimal population rate coding

Even in case of population rate coding, the most efficient encoding strategy is again
based on label-pattern coding. More specifically, it is optimal, if there is one sub-
population denoted by the index set S1(x), within which all neurons have maximum
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Figure 10.2. The diagram sketches the likelihood functions pspike
k (x) of the popu-

lation.

probability of spike generation (pspike
k (x) = prel ∀ k ∈ S1(x)) and the residual neurons

of the complement set S0(x) have minimum probability (pspike
k (x) = 0 ∀ k ∈ S0(x)).

While the difference to the Poissonian case approaches zero in the limit of small
spike probabilities, it becomes large when the boundary prel is increased. In order
to allow for a direct comparison with the Poissonian case, we define the likelihood
functions pspike

k (x) such that the mean spike count remains the same as in the pre-

vious example (i.e.
∑N

k=1 pspike
k (x) = Nprelx). (see Fig. 10.2). The corresponding

result for the mean square efficiency

ηbinary = 1 +
Nprel

6N−1
N

(1 − prel) + 1
N

(6 − 4prel)
(10.5)

is also displayed in Fig. 10.1 (solid line). This shows that even in case of population
rate decoding it is advantageous if the tuning functions are strongly nonlinear.

10.1.3 Label-pattern coding

Now, we ask for the coding accuracy that can be achieved, if subsequent neuronal
readout depends on the neuron index as well. A simple estimator that essentially
makes use of the neuron index is given by

x̂(s1, . . . , sN) := max

{
1

N
,

k

N
Θ

(

sk −
1

2

)∣
∣
∣
∣
k = 1, . . . , N

}

. (10.6)
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The resulting efficency is displayed in Fig. 10.1 by the dashed line. A remarkable
feature of this label-pattern coding scheme is that its efficency scales with N2 in
contrast to the efficency of the optimal rate coding schemes, which is proportional
to N only (right). Furthermore, it is important to note that this superiority of the
label-pattern coding scheme is not achieved at the cost of a reduced robustness: the
advantage of label-pattern coding against rate coding holds for a given number of
neurons even if prel becomes very small (left). Furthermore, the worst case error
W = maxx E[(x− x̂)2|x] (not shown) is close to the mean squared error E[(x− x̂)2].

If neurons are randomly erased, the distribution of the thresholds of the neurons
looses its regularity. In the worst case the thresholds then become uniformly dis-
tributed over the interval. In that case, however, the error increases at most by a
factor 2, namely if prel = 1. If prel < 1, the error increases even less. In Fig. 10.1
a decrease by a factor of two corresponds to an almost invisible shift of the dashed
line. In conclusion, the superiority of the label-pattern coding scheme holds true
also if one takes random cell death into account.

10.2 Appendix

10.2.1 Derivation of Eq. 10.4

With x ∼ U(0, 1) and µ(x) = Nprelx it follows

E [x] =
1

2
(10.7)

E [k] = E [µ(x)] = Nprel

∫ 1

0

x dx =
Nprel

2
(10.8)

E [xk] = E [xµ(x)] = Nprel

∫ 1

0

x2 dx =
Nprel

3
(10.9)

and consequently the cross-covariance reads

Cxk = E [xk] − E [x] E [k] =
Nprel

12
. (10.10)

Because of Var [k|x] = E [k|x] = µ(x) for the Poisson model, it holds

Var [E [k|x]] = Var [µ(x)] = (Nprel)2Var [x] =
(Nprel)2

12
(10.11)

E [Var [k|x]] = E [µ(x)] =
Nprel

2
. (10.12)



158 CHAPTER 10. ROBUSTNESS

Since k is 1-dimensional, this determines the auto-covariance

Ckk = Var [k] = Var [E [k| x]] + E [Var [k|x]] = Nprel

(
Nprel

12
+

1

12

)

. (10.13)

In summary, we obtain for the LMMSE

χ2
LMS = Var [x] − C2

kx

Ckk
=

1

12



1 − Nprel

12
(

Nprel

12
+ 1

2

)





=
1

12

(

1 − Nprel

Nprel + 6

)

=
1

12
· 6

Nprel + 6
(10.14)

and hence for the efficiency

η =
1

12χ2
LMS

= 1 +
Nprel

6
(10.15)

10.2.2 Derivation of Eq. 10.5

The cross-covariance does not depend on the noise model and hence is given by
Eq. 10.10 again.

In case of the optimal population rate encoding strategy, bNxc neurons are activated
at maximum (i.e. prel), N − bNxc − 1 neurons have zero probability to fire, and
only one neuron has an intermediate probability

pi =

(

x − bNxc
N

)

prel . (10.16)

Therefore, we can conclude that

Var [k|x] =
N∑

j=1

Var [kj|x] = bNxcprel(1 − prel) + 0 + pi(1 − pi) . (10.17)

Integrating over the N intervals (0, 1
N

), ( 1
N

, 2
N

), . . . (N−1
N

, 1) yields

E [Var [k|x]] =
1

N

N−1∑

m=0

mprel(1 − prel) + N

∫ 1
N

0

Nprelx(1 − Nprelx) dx

=
prel(1 − prel)

N
· N(N − 1)

2
+ N2prel 1

2N2
− N3(prel)2 1

3N3

=
N − 1

2
prel(1 − prel) +

prel

2
− (prel)2

3
. (10.18)



10.2. APPENDIX 159

In summary, we obtain for the LMMSE

χ2
LMS =

1

12
− Nprel

12
(

Nprel + 12
Nprel

[
N−1

2
prel(1 − prel) + prel

2
− (prel)2

3

])

=
1

12

{

1 − Nprel

Nprel + 6N−1
N

(1 − prel) + 6
N
− 4prel

N

}

=
1

12
· 6N−1

N
(1 − prel) + 1

N
(6 − 4prel)

Nprel + 6N−1
N

(1 − prel) + 1
N

(6 − 4prel)
(10.19)
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Chapter 11

Rapid Population Rate Coding

In this chapter, we will take a large step from the abstract, discrete-time, memo-
ryless encoding models considered above towards more detailed models, which, in
particular, take the basic dynamics of neurons into account. In other words, we
are departing from merely spatially structured models and ask how the realization
of rapid rate codes is possible, depending on the chosen encoding strategy. As it
will turn out, the smoothness of tuning has strong implications for the dynamics of
neuronal signal transmission.

11.1 Rate coding and the independence of spikes

When I was writing this thesis, I was not sure, whether I should ascribe the discrete-
time, memoryless neuron models, used throughout this thesis, to ’rate coding’ or
whether I should better invent a new category for that right from the beginning.
The problem is that the term ’rate code’ is used with so many different meanings, so
that misunderstandings become highly likely. Nevertheless, for the sake of clarity, I
decided to stick with ’rate coding’ to begin with and to postpone a more detailed
discussion of temporal coding issues to this chapter.

In the ongoing discussions about the neural code, the term ’rate coding’ has mainly
been used by proponents of “temporal coding” as an equivalent to the notion of a
low temporal resolution. While it is true that many experimental studies consider
spike counts obtained from time windows on the order of seconds, I think, it is not
very useful to assign the term ’rate coding’ to a particular time scale. I believe, in
particular, that everyone would agree that the relevant time scale has to be smaller
than, say 50 ms, because any larger time scale is actually not compatible with the
speed of neuronal processing.
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“Temporal coding” in turn, actually sounds like a much stronger claim than standing
for nothing more than the quite obvious doubts regarding the slow time scale. In
fact most proponents of “temporal coding” place the objections against “slow rate
coding” not with respect to the issue of temporal precision per se, but in order
to support more specific ideas like e.g. that the relative spike timing (i.e. the
interspike interval for instance) is used in the brain to distinguish between different
stimulus features. This belief, however, is by far more arguable than a high temporal
precision. I quote [DA01]:

When careful studies have been done, it has been found that some
information is carried by correlations between two or more spikes, but
this information is rarely larger than 10% of the information carried
by spikes considered independently. Of course, it is possible that, due
to our ignorance of the “real” neural code, we have not yet uncovered
or examined the types of correlations that are most significant for neural
coding. Although this is not impossible, we view it as unlikely and feel that
the evidence for independent-spike coding, at least as a fairly accurate
approximation, is quite convincing.

In the following, I will refer to this point of view as the independent-spike hypothesis.
Another way to put it is to say that the Poisson model is sufficient to describe the
neuronal response to the stimuli that are processed in the neural networks of the
brain. The independent-spike hypothesis is helpful, when giving a more compre-
hensive overview on ’temporal coding’, to point out that it has been related to the
following different issues:

• As the opposite to slow rate coding (in this case, “temporal coding” means
nothing more than a high temporal precision, which is compatible with the
independent-spike hypothesis)

• As the encoding of static stimulus features in the temporal structure of the
neuronal response (i.e. if a stimulus signal is presented with a cut off frequency
ν and the unfiltered neuronal response contains more information about the
stimulus signal than a low pass filtered version of the response with cut off
ν [TM95]). Again, this definition is compatible with the independent-spike
hypothesis.

• As a spike-pattern code, which makes distinctive use of serial correlations
between spikes, standing in opposition to the independent-spike hypothesis.

Let us now consider as to how the discrete-time memoryless channel is related to
these three issues. The first point is easy. As mentioned several times before, the
psychophysical performance as well as the effective integration time of neurons in
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vivo provides strong evidence that the relevant time scale is short, say in the range
of 1-50 ms.

The last point is more difficult to answer, because it is not clear when the use
of serial correlations between spikes is ’distinctive’, and when it is not. Strictly
speaking, the independent-spike hypothesis is fulfilled, if and only if the neurons
function as Poisson spike generators. Strictly speaking, however, neurons cannot
realize a Poisson process for principle reasons. The finite temporal extension of a
spike and, in particular, the subsequent refractory period necessarily generate serial
correlations. Therefore, the independent-spike hypothesis has to be understood as
an approximation. This, however, requires to define, where to draw the line between
relevant and irrelevant correlations.

The usual practice, to refer to the estimated fraction of the amount of information
at this point, is dangerous because the notion of a hypothesis should not rely on
data. The Bernoulli coding hypothesis proposed in this thesis can, in particular,
take substantial advantage of serial correlations between spikes, but it works with a
pure Poisson process as well. In order to make this point clear, it is instructive, to
seek a description of the discrete-time memoryless channel considered above in terms
of a point process. To this end, let us assume a bin width T = 5 ms, within which
the signal to be represented is taken as constant. In case of a Poisson noise model, it
is straightforward to define a corresponding Poisson process. Its piecewise constant
intensity function directly reflects the firing rates given by the tuning functions.

As in the previous chapter, however, we also considered the Bernoulli noise model,
which in a sense is more realistic than the Poisson noise model, because real neurons
cannot generate more than one spike within a sufficiently small time bin. While for
prel → 0 the difference to the Poisson model vanishes, the Bernoulli model is very
different for large prel. In order to implement such a code as a point process, one has
to resort to a renewal process, and it is impossible to approximate this situation by
a Poisson process. Clearly, the reason for this problem is that a small spike count
variability can be achieved only if the intensity function of a point process may
depend on the last spike. In other words, spike correlations are definitely relevant
in this case and increase the mutual information dramatically, but nevertheless, the
signal can be read out “instantaneously” and is clearly not related to interspike
intervals or more complex spike patterns.

I think, this is a striking example of how misunderstandings can arise, if we do
not set up specific models, but vaguely refer to ’spike correlations’ only. In fact,
the notion of ’spike correlations’ is way too ambiguous. What we need are clear
models that hypothesize about what is the signal as opposed to the noise (even if
this implies the risk that these models may be falsified by data, or, conversely, that
available data cannot be used any more to support certain statements).

Experimentally, the question of the statistical independence of spikes is related to the
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Time

Figure 11.1. Example of spike train with exponential ISI statistic (CV = 1) and
strong regularities.

measurement of the irregularity in sequences of interspike intervals and the response
variability. The commonly used measure for the irregularity of a spike train is the
coefficient of variation, which is defined by

CV =

√

Var [T ISI ]

E [T ISI ]
. (11.1)

The finding that the CV values for cortical neurons are typically close to one shows
that the degree of irregularity is compatible with that of a Poisson process, for
which CV = 1 in case of a constant intensity function. Furthermore, the shape of
measured ISI distributions also resembles the exponential shape of a homogenous
Poisson process1 in some detail.

For inhomogeneous point processes, however, the finding of an exponentially shaped
ISI histogram is not a unique feature of the Poisson process. E.g. it is possible
to obtain an exponentially distributed ISI histogram also in case of spike trains
that have strong regularities (see Fig. 11.1). Hence, what is actually necessary to
consider is the entire set of conditional ISI distributions, which depend on the length
of the preceeding interspike interval. Accordingly, a more significant measure of
irregularity would be the mean conditional coefficient of variation, which is defined
by

CV = E
[
CV (T ISI

pre )
]

=

∫ ∞

0

CV (T ISI
pre ) ρ(T ISI

pre ) dT ISI
pre . (11.2)

In the equation above, CV (T ISI
pre ) is the coefficient of variation with respect to the

conditional ISI distribution that depends on T ISI
pre of the preceeding interspike inter-

1For a constant intensity function, the exponential shape of the ISI distribution follows directly
from Eq. 2.11.
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val, i.e.

CV (T ISI
pre ) =

√

Var
[
T ISI |T ISI

pre

]

E
[
T ISI |T ISI

pre

] . (11.3)

Unfortunately, this data analysis has not been carried out so far. Although it is
visible by eye that CV will not differ too much from CV for cortical spike trains, it
would still be nice to have a quantitative estimate.

Another way to take the question of statistical independence of successive inter-
spike intervals into account, which has been brought to neurophysiology by Rodieck,
Kiang, and Gerstein in 1962 [RKG62], is the joint ISI histogram, where one plot
each interspike interval over its preceeding ISI. In case of statistical independence,
this diagram has to be symmetric with respect to the diagonal. More precisely, the
joint density ρ(T ISI

pre , T ISI) should equal the product of the marginals, which are
both identical to the unconditional ISI density.

However, even if the spike trains matched perfectly all statistical properties of a
Poisson process that can be determined without control of the underlying intensity
function, this would not necessarily imply the Poisson model to be a valid description
of neuronal signal transmission. Because neurons are driven systems, the question
whether they instantiate a Poisson process or not may depend on the definition
of the input signals. In fact, it is well possible that spike generation considered
as a function2 of the synaptic inputs constitutes a renewal model but nevertheless
instantiates a Poisson process with respect to a more abstract input signal of interest,
like e.g. a parameter of a visual stimulus.

We illustrate this point with the LIF neuron. In this model, the signatures of
statistical independence of successive spikes considered so far can be achieved, e.g.
if the input is a Dirac delta comb, for which the delta functions are scaled by Vth

and temporally distributed with respect to a Poisson process. This shows that
the description of spike generation with an LIF model does not uniquely define a
particular renewal process, but it still allows for a large set of possible candidates
that even includes the Poisson process. Or to put it differently, the LIF neuron
may function as a part of a system which instantiates a Poisson model; the only
known thing is that it definitely cannot realize a Markov process of higher orders
than renewal.

Up to now, we only considered those aspects of statistical dependencies between
successive spikes that can be analyzed on the basis of a single spike train. For non-
stationary point processes, however, it does not make any sense to refer to a single
spike train only, but it is essentially a description of an infinite set of spike trains

2In precise mathematical terms it is not a function, but a stochastic operator.
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with certain common properties. Hence, it is not sufficient to analyze a single spike
train only, but we need to check the variability between different samples drawn
from the same process as well. Experimentally, the process as a whole, and the
variability between different samples of this process clearly depend on the control
conditions used to define operationally different recordings as different samples of
the same process.

In neurophysiological studies there are typically two different control conditions
used. If the neuronal response to the direct injection of a current signal is recorded,
the set of responses that have been triggered by identical input signals are considered
as samples of the same process. If the neuronal response to the presentation of
exogenous stimuli (say e.g. visual stimuli) is measured, all spike trains that have
been triggered by the same stimulus are considered as samples of the same process.
Clearly, the second control condition does not imply that the neuron receives the
same synaptic input in different trials of the same exogenous stimulus. Therefore,
it is important to say, which control condition a neuronal response model refers to,
when discussing its statistical properties.

In chapter 2, we have mainly considered the case where the input current is used
as control condition. As reported above, this situation is not well described by a
Poisson process, but requires to take at least the last spike time into account, as in
the LIF model. In particular, the responses to the same input current signal look
very similar across different trials, which is not compatible with the Poisson process.

The major reason, why the Poisson model is frequently used to model experimental
studies stems from the fact that under the second control condition almost all stim-
ulus features investigated so far constrain the neuronal response so weakly that even
the total spike count is not reproducible from trial to trial, but varies in a manner
very similar to what one would expect from the Poisson process.

The spike count variability is commonly measured by the variance of the counting
statistics P (k|t1, t2) with respect to the interval (t1, t2) divided by its mean

F (t1, t2) =
Var [k| t1, t2]
E [k| t1, t2]

(11.4)

In the limit t2−t1 → ∞ this ratio is called the Fano factor F∞ and it holds F∞ = C2
V

for all homogeneous renewal processes. In case of the integrate-and-fire models with
constant input, both, the coefficient of variation as well as the Fano factor equal
zero. In contrast, in case of the homogeneous Poisson process both measures equal
one. Since the counting statistics of the inhomogeneous Poisson process does not
depend on the choice of the time window, F (t1, t2) is always one independent of the
time bin (t1, t2).

In most experiments, the measured variability between trials controlled by the same
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visual stimulus is close to or even exceeds that of a Poisson process. While the excess
variability can only be explained by changes in uncontrolled parameters of the input,
the ubiquitous finding of a large amount of variability leads to the impression that
neural encoding (in cortex) of information about sensory data does not make use
of knowledge about when previous spikes have been generated. In other words, the
large variability is a necessary condition for the independent-spike hypothesis, but it
is clearly not sufficient.

The issue, how well the independent-spike hypothesis is actually justified, is not a
simple matter. In contrast, the irregularity of discharge is well established, because
it can be determined from a single spike train and does not rely on specifications of
the input. Since the ISI irregularity is interesting on its own, I will refer to it as the
weak independent-spike hypothesis: Even though neuronal spike generation is surely
not a Poisson process for a given time course of synaptic inputs, the irregularity of
discharge then implies that the correlation time of the intensity function has to be
substantially smaller than the mean interspike interval. It is the weak independent-
spike hypothesis, which I have taken as an argument to consider the relevant time
scale to be about 1 − 10 ms rather than 10 − 50 ms. Note that the Bernoulli
coding hypothesis came out mainly as a consequence of the weak independent-spike
hypothesis, while it does not require the strong one to be true.

11.2 Faithful signal transmission

This section addresses the second point of the listing above and aims to clarify
the functional motivation behind the Bernoulli coding hypothesis. I think, the
main intuition underlying the idea of a rate code is not the statistical independence
of spikes in the first place, but the possibility of faithful signal transmission. In
contrast to the use of ’rate coding’ as a strawman for a slow time scale, faithful
signal transmission denotes the objective to faithfully represent the time course of
the input signal. More precisely, it aims to achieve an output signal, which looks
as similar as possible to the input signal in particular at the relevant scale of say
1 − 10 ms.

In order to demonstrate that faithful signaling is not at all a demand that could
be easily fulfilled, consider the PSTH response of a population of integrate-and-fire
neurons that are driven by shot noise input currents which all have a step intensity
function. As one can see in Fig. 11.2, the neuronal output does not faithfully reflect
the input signal. Note that faithful signal transmission is a much stronger demand
than that neurons can react rapidly. Since it was a wide-spread belief that the cut-
off frequency of neuronal population rates is set by the membrane time constant
of the neurons, it has been pointed out in the literature on population dynamics
[GK02] that (integrate-and-fire) neurons react to changes in the input with a delay
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Figure 11.2. PSTH response of a population of integrate-and-fire neurons that are
driven by shot noise input currents, which all have a step intensity function.

smaller than the membrane time constant. In Fig. 11.2, for instance, the rise time
of the neuronal response after the step is way below the membrane time constant of
the neurons. This, however, is not enough for faithful signal transmission!

In contrast to the population of integrate-and-fire neurons, large populations of
Poisson neurons are capable to achieve faithful signal transmission. The temporal
precision of the Poisson model is not limited in principle, but the time scale at which
the intensity signal µ(t) within an arbitrary interval (t1, t2) can reliably be estimated
decreases proportionally to the mean of the counting statistics λ =

∫ t2
t1

µ(t)dt without
any limit. At the level of populations it is therefore well possible to achieve high
temporal precision simply by a superposition of the individual spike trains. This is
the main argument pointed out by various researchers why the Poisson process is
compatible with high temporal precision [GK02; DA01].
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11.2.1 Faithful signal transmission, computation, and tem-

poral coding

At this point I should emphasize that I do not believe that neuronal functioning in
the brain is about faithful signal transmission. The study of faithful signal trans-
mission originates rather from a Gedanken experiment, which is motivated by the
demand to have a self-consistent code that, at a minimum, should be able to ’com-
pute’ the simple function f(x) = x. In other words, even if neuronal processing
clearly requires nonlinear computations, it appears reasonable to require that the
realization of the identity function is not impossible.

As a theoretical argument the demand of faithful signal transmission is a strong
hypothesis, on the basis of which one can rule out a lot of candidate coding schemes.
Unfortunately, however, it is the property of being only a Gedanken experiment,
which makes experimental testing so difficult: Of course, within neural networks in
the brain, we clearly cannot expect to observe faithful signal transmission because of
the network dynamics and its objective to process information rather than to ’copy’
it.

The problem encountered in this example is very fundamental in neural coding and
inevitably leads to severe difficulties in experimental testing. In fact, faithful signal
transmission is quite the opposite of the definition of temporal encoding as has
been proposed in [TM95]. As pointed out above, however, the principle possibility
of faithful signal transmission cannot make a prediction about what it is likely to
measure in experimental recordings. From a dynamical systems point of view, it
is, in fact, almost impossible to avoid memory effects in a neural network. In this
sense, temporal coding constitutes more or less a truism. The only reason, why it
is possible that this is not obvious from experimental studies is due to the severe
lack of determinism (i.e. the possibility of control) in the experiments, probing the
neural code. I do not say this in order to criticize the experiments. Of course, if I
knew how to do it better, I would just do it rather than talk about it. It is only
important not to forget that the totality of data available to date includes a strong
bias caused by the limited possibilities of experimental investigation. The latter
might sometimes be obscured because of the large number of clever inventions and
the variety of sophisticated techniques we already have.

I believe that the large variability is indeed due to our ignorance of the “real” func-
tioning of the neural system, because under controlled input current conditions in
slice experiments the reliability of spike timing is much higher [MS95], and com-
plex dynamic systems are difficult to separate from contextual influences. The large
gap between the principle signal transmission capabilities of neurons and the large
amount of noise found in experiments supports the conjecture that, to a large ex-
tent, the variability may be explained by some other relevant variables that have
simply not yet been discovered to date.
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Figure 11.3. In case of a constant input, a deterministic neuron as the LIF or PIF
neuron fires perfectly regularly, such that its ISI density is a delta function (dashed).
Therefore, two different inputs (blue vs red) can be perfectly discriminated. The
corresponding densities in case of a Poisson process are exponentially shaped (solid)
and hence change only slightly in case of different inputs.

11.2.2 When information is noise

As we have seen in the example of population rate coding with Poisson neurons, the
independent-spike hypothesis is different from the question of temporal precision.
Nevertheless, the two issues are clearly not independent of each other. In fact, it
appears that one has to sacrifice temporal precision for the independence of spikes,
which can be illustrated by a comparison of the interspike interval distribution of
the integrate-and-fire model with that of the Poisson model (Fig. 11.3): for constant
inputs, the length of an interspike interval uniquely determines the strength of the
input in case of the deterministic LIF or PIF model, but it is highly ambiguous
when determining the input of a Poisson spike train. In other words, in case of the
latter all irregularity in spike timing reflects nothing but noise, and it is necessary
to average over many interspike intervals in order to achieve a reliable estimate of
the input strength.

Now we want to compare the temporal precision of the Poisson model with that of the
deterministic integrate-and-fire model in case of a time-dependent input signal. For
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the sake of clarity, we will consider the PIF model instead of the LIF model, which
allows for a direct comparison with the Poisson model. As for any point process,
the strongest constraint on information transmission in the PIF model stems from
the translation of an analog input signal into a point process with a limited average
firing rate: clearly, it is impossible to resolve an analog input signal at a time scale
that is smaller than the corresponding interspike intervals. In contrast to the Poisson
model, however, the PIF model is capable to get very close to this principle limit:
each interspike interval T ISI

k perfectly3 reflects the average input within the last
interspike interval (tk−1, tk):

〈V 〉k =
1

tk − tk−1

∫ tk

tk−1

Vin(t) dt =
Vth τmem

T ISI
k

. (11.5)

Therefore, the PIF neuron allows for a simple decoding of the input, which is mini-
max with respect to the mean squared error loss.

The Poisson model can be obtained as a stochastic version of the PIF model by
introducing a particular sort of threshold noise: After each spike the threshold is
randomly drawn from an exponential distribution with a mean that is equal to
the fix threshold Vth of the noise free PIF model4. Consequently, in comparison
with the PIF neuron, the representation of the input signal by a Poisson neuron is
additionally impaired due to the variance of the threshold noise. A reliable estimate
of the average intensity is only possible at a time scale that corresponds to a large
number, say about a hundred, of interspike intervals.

In summary, the Poisson model appears to be quite disadvantageous for neuronal
signal transmission. The comparison, however, did not take the limited average
firing rate of real neurons into account. In the cortex, average rates of neurons are
typically about 10 Hz or even lower. This implies that the average precision of a
faithful code cannot go beyond 100 ms even for the perfect integrate-and-fire neuron.
Since this is probably not precise enough, the two cases both, Poisson as well as the
PIF model, need to make use of some sort of population coding in order to allow
for a further reduction of the time scale. In case of Poisson neurons, it is equivalent
to either multiply the intensity function of a single neuron by a number N in order
to increase the temporal precision or to superimpose the spike trains of N neurons.
This equivalence, however, does not hold true for the PIF neuron. Without any
mechanism for decorrelating the activity of different neurons in the population, no
additional information can be transmitted by more than one neuron. The average
population response, in particular, then equals the shape of a single spike train and

3In case of the LIF neuron, the mapping from the average input within an interspike interval onto
the length T ISI of this interspike interval is not one-to-one anymore and the density ρ(〈V 〉k|T ISI)
over the possible average inputs 〈V 〉k depends on the waveform of the input. Precisely, the maxi-
mum possible degree of ambiguity can again be bounded by the inequalities displayed in Fig. 2.3.

4This choice ensures the average rates to be equal
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does not realize a faithful signal transmission.

In conclusion, in population coding, neuronal noise can be useful in order to decor-
relate the responses of different neurons. For faithful analog coding, in particular,
the introduction of noise is the only strategy to make the spikes of different neurons
sufficiently independent. In fact, I suspect it was the idea of faithful intensity cod-
ing, which lead Shadlen and Newsome [SN98] to the conjecture that the balance of
excitation and inhibition may be required as a noise generator in order to achieve
this goal. This model will be analyzed in more detail in the next section, before it
will finally be demonstrated that label-pattern coding is not only more efficient but
as a by-product can solve the problem of faithful signal transmission at the same
time without the unattractive incorporation of noise.

11.3 Faithful intensity coding

Apart from signal-to-noise issues, population codes are fundamentally constrained
by the neuronal dynamics. In particular, the biophysical properties of individual
neurons as well as collective phenomena may substantially limit the speed at which
a graded signal can be faithfully represented by the activity of an ensemble [Kni72].
Therefore, we now investigate as to how intensity encoding can be realized in pop-
ulations of neurons, such that faithful signal transmission is possible. To this end,
two rather general strategies are compared: depending on the ratio of excitatory
input and inhibitory input, the input signal can be either encoded in the population
mean or the population variance of the neuronal input currents.

In other words, in contrast to the usual characterization of a signal by the temporal
mean and the variance components, we consider here the instantaneous distribution
of input currents into the neurons of a functional ensemble at each moment in time.
In this case, the synaptic inputs can also be divided into two components: one
component is given by the input averaged over the ensemble; the other component
is given by the deviations of individual inputs from the average: the population
variance. Both components can, in general, fluctuate with time, contributing to the
observable fluctuations in the synaptic currents of single neurons. The output of the
ensemble is described by a PSTH. The population rate depends on the amplitudes
of both components of the input. This reasoning allows one to conclude that signals
delivered to a neuronal ensemble could in principle be carried by (encoded in) either
the common, correlated, part of the synaptic inputs to the neurons, or the variance
of the inputs across the population, or in both.
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11.3.1 Theoretical analysis based on integrate-and-fire neu-

rons

In order to assess the principle possibilities of these two strategies for faithful signal
transmission, we consider an (infinitely) large population of identical integrate-and-
fire neurons indexed by i, each receiving fluctuating synaptic inputs of the following
form:

Ii(t) = µ̃(t) + Ĩi(t). (11.6)

Here µ̃(t) := 1
N

∑N
k=1 Ik(t) stands for the instantaneous amplitude of the averaged,

correlated part of the input (common to all the neurons), while Ĩi(t) := Ii(t)− µ̃(t)
are the deviations of individual inputs from the average (unique for every neuron).
A global measure for the time-dependent input diversity is given by the instanta-
neous population variance of the input σ̃2(t) = 1

N

∑N
k=1 Ĩ2

k(t). In general, both of
the variables, µ̃(t) and σ̃2(t), change in time and thereby can serve as signals car-
rying information from presynaptic populations. The main goal of the analysis is
to estimate how the activity of the population reflects the signals carried by either
variable. We are, in particular, interested in the conditions under which the instan-
taneous population rate will faithfully follow the analog value of the signal at any
time.

The analysis can be pursued to the ultimate solution, if Ĩi(t) are mutually inde-
pendent and temporally uncorrelated random processes (i.e. Gaussian white noise).
In that limiting case σ̃2 diverges, because of the vanishing correlation time. It is
understood, however, that if the correlation time τc of a real current is sufficiently
small (i.e. clearly smaller than the membrane time constant) essentially only the
product σ2 = σ̃2 · τc is relevant. For the sake of convenience, we will therefore call
σ2 somewhat incorrectly a “population variance” in the following as well.

We can thus write down the equation for the input currents

Ii(t) = µ(t) + σ(t)ηi(t), (11.7)

where µ(t) denotes the mean input across the population at time t, ηi(t) is Gaussian
white noise with unit spectral density, and σ(t) is a scaling factor measuring how
strongly the individual input currents deviate from the mean. Rigorously speaking,
Gaussian white noise does not exist in nature, but it is understood as a reasonable
idealization that together with the circuit equation (cf. Eq. 2.1)

τ
dV

dt
= −(V − Vrest) + RinIsyn,

becomes a well defined mathematical term in the sense of Langevin equations.
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Since the momentary state of an integrate-and-fire neuron is defined by only one
variable – its membrane potential V (t), the state of the whole population is com-
pletely characterized by a probability density function P (V ; t), i.e. the fraction of
neurons with membrane potential close to V. The time evolution of the density func-
tion is governed by both the average and the fluctuating components of the inputs
via the so-called Fokker-Planck equation [H.84]

∂P (V, t)

∂t
= −∂J(V, t)

∂V
, (11.8)

where the probability flux J(V, t) is given by

J(V, t) =
Rinµ(t) − V (t)

τ
P (V, t) − R2

inσ(t)2

2τ 2

∂P (V, t)

∂V
. (11.9)

The flux consists of two components: the first term is the drift component, which
is governed by the mean µ(t), and the second term is the diffusion component,
representing the effect of random fluctuations. The firing threshold and the reset
potential impose boundary conditions on the flux, which imply P (Vth, t) ≡ 0 for all

D = σ(t)2

2
> 0 [TS95; H.84]. Therefore, at threshold, the only contribution to the

flux is given by the diffusion component.

One can visualize this formulation by considering a collection of point-like particles
moving independently along a one-dimensional axis under the combined influence
of the deterministic force and a random, diffusing force, which tends to equilibrate
the particles along the axis. In this analogy, P (V ) is just the density of particles on
the axis of V.

The advantage of this approach is that one can derive an exact expression for the
instantaneous firing rate of a population of neurons, which is given by the flux of
particles to the firing threshold Vth:

R(t) = −R2
inσ(t)2

2τ 2

∂P (V ; t)

∂V

∣
∣
∣
∣
V =Vth

(11.10)

The instantaneous population rate R(t) is here defined as the number of spikes
emitted by the whole population in an (infinitely) small time bin around time t,
normalized by the duration of the bin. Importantly, if the uncorrelated noise has a
positive amplitude, only the diffusion component of the flux is contributing to the
firing rate, since in this case, the density of particles at the threshold is zero. The
above formula, together with the Fokker-Planck equation, represents a complete
characterization of the population response in its dependence on the parameters
of the input. In a stationary situation, when µ and σ2 are constants, the density
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Figure 11.4. Simulations of the probability density function evolution in response
to fast changes in input mean. A population of 20000 integrate and fire neurons
with τ = 10 ms, Vth = 1, Vrest = Vreset = 0 are simulated, with constant input
variance σ = 0.3 and µ(t) oscillating between the values of 0.4 and 0.9, applied for
200 ms. (A) Overlayed probability density functions computed for subsequent 1 ms
time bins, where µ(t) oscillates with a frequency of 50 Hz. (B) Same as A, but
now µ(t) oscillates with a frequency of 1000 Hz. (C) The standard deviation of the
density function averaged over positive values of voltage, plotted as a function of
the frequency.

function adjusts its shape to the values of these parameters. The output rate, as
stated above, is therefore a function of both parameters [RS69; Tuc88].

In the general situation, when the signals depend on time, the density function
P (V ; t) evolves according to the Fokker-Planck partial differential equation, thereby
exhibiting a low-pass filtered response to changes in the signals µ(t) and σ2(t) with
a filter whose parameter depends on the membrane time constant of the neurons in
a population [BH99]. This means that the output rate R(t) given by Eq. (11.10)
depends not only on the current values of the input parameters but also on their
previous values i.e. the instantaneous population rate does not faithfully reflect
the instantaneous signals. However, if the modulations of the input signals around
some baseline values are much faster than the membrane time constant, the shape
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of P (V ; t) will be almost stationary, due to the above mentioned filtering property
of the Fokker-Planck Equation.

To verify that the density function is indeed stable to very fast modulations of the in-
put signals, we performed numerical simulations of the activity of a large population
of integrate-and-fire neurons, receiving noisy input currents with an instantaneous
mean value, oscillating in time with increasing frequency. The time evolution of
the density function was then computed from the results of the simulations and its
stability was assessed. In Fig. 11.4 A+B, we show a sample of probability den-
sity functions across the population computed over subsequent 1 ms bins for two
different values of the frequency. Obviously, the variations in the density function
are smaller for higher frequency. To quantify this result, we plot on Fig. 11.4 C
the standard deviation of the density function, averaged over all positive values of
the voltage, as a function of the frequency of the signal. For very high frequency,
the standard deviation reduces to a low residual value that is explained by the fi-
nite size of the neuronal population. Qualitatively similar results were obtained for
oscillating instantaneous variance in the input current (results not shown).

This result, together with Eq. (11.10), implies that the output population rate R(t)
will be proportional to the quickly changing instantaneous values of the population
variance of the uncorrelated component of the inputs, σ2(t), and ignores the modu-
lation in the mean. In other words, the population can faithfully transmit bandpass
signals, if they are encoded in the amplitude of the uncorrelated noise.

Intuitively, this effect can be understood most easily in a population of neurons
simultaneously receiving excitatory and inhibitory inputs. An excess of excitation
at a given time will drive the neurons towards threshold. Some neurons will be
caused to fire and immediately afterwards will be synchronously refractory. In order
to achieve a rapid response, the excitatory pulse would have to be huge, which
in turn would temporarily saturate the population activity. Therefore, the analog
signal cannot be transmitted this way since the population activity will not be able to
remain constantly at the intermediate values dictated by the signal. If, in contrast,
the inhibition is increased simultaneously together with the excitation, this implies
an increased population variance of the inputs. In this case, only a fraction of the
neurons will receive big excitatory pulses and thereby respond rapidly, while a large
proportion will be less affected or driven away from threshold. In this way, the
balance of excitation and inhibition randomly selects changing subsets of neurons
that are driven across threshold. This mechanism avoids population saturation and
the number of firing neurons at each moment in time (population rate) faithfully
reflects the graded signal encoded in the population variance of the input.
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11.3.2 Experimental testing

In order to test the validity of this theoretical prediction, a series of experiments
have been performed by Gilad Silberberg [SBM+04], using neocortical slice prepara-
tions. Experimental test is clearly necessary due to the many simplifications in the
mathematical model, most notably the neglect of the kinetics of ionic channels. To
this end, an ensemble of virtually white noise current traces (see caption Fig. 11.5)
characterized by particular µ(t) and σ2(t) were injected into neocortical neurons
while monitoring their spiking response. More precisely, it was repeatedly injected
into single neurons, but every time choosing a different current trace from the same
ensemble. The ’population’ activity has then been estimated by using a PSTH with
time bins of 1 ms.

In the first series of experiments, the response to two simple forms of input signals
are compared for which either µ(t) or σ2(t) increases abruptly at a particular time
(Fig. 11.5 A+B). Eq. (11.10) predicts that there should be a gradual response to the
jump in µ, and an instantaneous initial response to a change in σ2 since the latter
enters as a multiplying factor in the expression for the response. The amplitudes
of the signals were calibrated such that the steady-state level of a neuron’s firing
was identical in both cases, because this implies that the average firing rates are
almost identical in both cases. However, the time profile of the PSTH in response
to abrupt increase in µ and σ2 was very different: while in the first case, there was
a gradual change in the PSTH, in the second case we observed an instantaneous
initial response with subsequent decay to the new stationary level. These results are
in agreement with the theoretical prediction (Eq. (11.10)).

Similar results were obtained in all 18 of a wide variety of neocortical neurons,
which included pyramidal neurons and different types of interneurons. It has to
be emphasized that in both cases, the output rate continued to change after the
transition, when the input signal (the values of either µ or σ2) stayed constant at
a different level. This means that the instantaneous population rate did not follow
the step in the signal amplitude when this was modulating the mean current to the
population. Therefore, in both cases, the responses did not faithfully reflect the
overall shape of the single step and showed temporal modulations, which are also a
prediction of the theory presented above.
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Figure 11.5. Response of neocortical neurons to abrupt changes in input param-
eters µ and σ2. In each case, 4000 different virtually white noise current traces
(sampling interval in all of the experiments is τsample = 0.25 ms) were injected into
a pyramidal neuron sequentially. (A) Lower trace, an example of a single current
trace injected. The arrow indicates the moment at which the amplitude of the mean
current was increased. Middle trace, histogram of the ”population”response with
a time bin of 1 ms. At the transition point, the mean current was increased from
120 pA to 200 pA. Upper trace - raster plot of spike trains for 10 randomly chosen
trials. Solid red lines show the stationary levels of the response before and after
the transition. (B) Same as in A, but the set of current time-courses featured a
change in the population variance σ2 = σ̃2τsample from 22.5 (pA)2sec to 90 (pA)2sec.
Histogram binning is 1 ms.
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Figure 11.6. Response of a pyramidal neuron to virtually white noise current
injection (τsample = 0.25 ms), in which two temporally uncorrelated signals are
encoded. (A) Instantaneous values of mean current. (B) Instantaneous values of
population variance. (C) Instantaneous response (PSTH) in time bins of 1 ms. For
every time bin, the PSTH was computed from the spiking responses of a neuron
to repeated injections of different current traces as explained in the text. (D+E)
Instantaneous response plotted vs the instantaneous value of µ and σ2, respectively,
after compensating for a 1 ms delay. Every point on the graph represents a pair (µ(t),
PSTH(t)) or (σ2(t), PSTH(t)) for consecutive time bins. (D) Correlation coefficient
R = 0.15. (E) Red line is a linear regression. The sample correlation coefficient is
ρ = 0.79 and the sample correlation ratio is 0.65, which is very close to ρ2 and hence
confirms the linear relationship [SO94]. Overall, 5600 current traces were injected
(i.e. the observed correlation reflects the precision that would be achieved in a
population at a time scale of 1 ms in a population of about 5000 neurons. (F) The
cross-correlation values between the ”population”response and the signals carried
by the mean and the variance of the input currents.
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The main theoretical prediction then has been tested by studying the population
response to signals that undergo rapid ongoing changes in time. To this end, the
same type of current forms have been injected as in the first experiment, while
now both, µ(t) and σ2(t) are rapidly fluctuating all the time. In other words,
the two signals were present simultaneously in the input. In order to separate
the effectiveness of these two signals, we constructed µ(t) and σ2(t) by randomly
assigning new values to each of them independently at every millisecond drawn
from uniform distributions (see Fig.11.6 A+B). The ranges for both kinds of input
signals were calibrated for each neuron individually, such that the corresponding
output ranges of the firing rates were of the same size (i.e. the calibration makes
sure that the stationary firing rate for constant µ, σ2 is identical in both cases,
(µ = µmin, σ

2 = σ2
max) and (µ = µmax, σ

2 = σ2
min).

The PSTH response to these currents was obtained (Fig. 11.6 C). Strikingly, the
instantaneous population rate reliably followed the signal carried by the variance of
the input currents, and there was no observable correlation with the signal contained
in the mean (Fig. 11.6 F). To quantitatively test the prediction contained in Eq.
(11.10) about the dependency of the response on the components of the input,
we plotted the instantaneous values of the PSTH response vs the instantaneous
variance of the currents (Fig. 11.6 E). In agreement with the prediction, the points
in this graph scatter around the straight line passing through the origin. The same
graph, but with the signal contained in the average current µ, does not result in
any significant dependency (Fig. 11.6 D), again following the theoretical prediction.
Very similar results were obtained in all 4 pyramidal neurons, which were tested.

The above experiments confirm the validity of the abstract mathematical analysis.
However, because in these experiments the injected currents were artificial and, in
particular, did not correctly reflect the temporal correlations of real input currents,
he, in addition, obtained realistic synaptic currents from whole-cell voltage-clamp
recordings in cortical slices with different levels of excitation. With these currents, a
control experiment has been performed by injecting them into a neuron and record-
ing the discharge responses for both, step changes in mean current as well as step
changes of the variance.

Like in the first experiments, the discharge response increased gradually when the
recorded currents were injected, containing abrupt changes in the mean current
(Fig. 11.7 A). In contrast, the change in discharge was much faster when the variance
of the current increased abruptly (Fig. 11.7 B). These results demonstrate that the
difference between signaling by variance and signaling by mean persists with real
synaptic noise currents (c.f. [BCFA01]). In particular, signaling by variance does
not require white noise currents, but is possible with the synaptic currents generated
in neocortex.
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Figure 11.7. Response of neocortical neurons to currents obtained from voltage-
clamp experiments. (A) Lower trace, an example of a segment of a current obtained
in a voltage-clamp recording from a slice with low activity level. At the transition
time, a constant value was added to the current. Upper trace, histogram of 4000
responses to different current segments. (B) Same as in A, but with a step change
in the variance of the current. This was achieved by switching to current traces,
recorded at higher activity level.

Conclusion

The analysis as well as the experimental tests have shown that faithful analog signal
transmission is not easy to achieve in populations of cortical neurons. Eq. 11.10, in
particular, determines conditions for which faithful signal transmission is possible.
This is the case if the population variance of the input currents carries the signal to
be represented and the latter, in addition, is a rapidly changing bandpass signal.

This finding matches the intuition of Shadlen and Newsome [SN98] that the balance
of excitatory and inhibitory synaptic inputs is important for intensity coding. While
such a balance can explain the high degree of irregularity in cortical spike trains
[GM64], it does not support the conjecture that current fluctuations are nothing but
noise, apart from their amplitude. From a functional point of view, in particular,
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Figure 11.8. Ambiguity of the candidate input currents for a given spike train
(upper). The lower plot shows two examples of input waveforms, which both may
have generated the spike train, when fed into an integrate-and-fire neuron. While
Bernoulli coding suggests to use waveforms, which are either at maximum or zero
(blue), the other extreme (red) is a waveform, which is constant within each inter-
spike interval, and hence minimizes the amplitude of the input current.

this idea appears to be not very attractive, because the required noise will clearly
impair the coding efficiency, and the uncoordinated cancellation of action potentials
constitutes a large waste of energy consumption. The last section will show that the
superiority of Bernoulli coding over intensity coding is indeed even more obvious
when taking the constraints of the neuronal dynamics into account.

11.4 Faithful Bernoulli coding vs intensity coding

From the (static) population coding point of view, the ’signaling by variance’ strat-
egy presented in the previous section is a randomized version of the encoding strategy
presented in section 10.1.2 above. While there, the partitioning of the neurons into
the two subpopulations of maximally activated neurons S1 and silent neurons S0

was a deterministic function of x, it is random in case of signaling by variance. In
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Figure 11.9. Balance of excitation and inhibition is needed for faithful signaling.
With increasing balance ratio, the output signal (lower left) looks more and more
like the input signal (upper left). For illustration, a sample of spike patterns is
shown for each case (ρ = 0, 0.75, 0.9, 1) as well (right).

other words, signaling by variance is actually not a pure intensity code anymore,
but it already resorts to a binary encoding strategy.

There is, in fact, a simple explanation, why binary encoding strategies are so im-
portant for faithful signal transmission: Since the absence of spike generation is not
constraint by the history5, the essential constraint on the possibility of faithful signal
transmission stems from the time required to integrate over the synaptic inputs in
order to generate an action potential. Because this time takes a minimum, if the
input is maximal, it is an optimal strategy to use maximum current input for spike
generation.

This insight allows us to restate the Bernoulli coding hypothesis, eliminating the
reliance on the discrete-time memoryless channel. The crucial point is that any spike
train can be generated in infinitely many ways. For the sake of clarity, consider the

5It is well justified to assume that a neuron does not fire if its input is zero, independent of its
input in the past.
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Figure 11.10. Input-output relationship for different degrees of balance. Crosses
indicate samples from P (rout|rin). Red line corresponds to a tuning function and is
obtained by algebraic regression. Blue line indicates the intended function f(x) = x.
The minimal reconstruction error of 2.4 · 10−1 is achieved for a balance ratio of
ρ = 0.9.

example given in Fig. 11.8. The Bernoulli coding hypothesis is now completed by an
additional statement of how to resolve the ambiguity of candidate input: it suggests
that the spike trains should be generated by current waveforms, where the individual
spikes are caused by preferably short and hence as large as possible current pulses.

In order to illustrate, the superiority of Bernoulli coding over intensity coding, a con-
crete example with N = 5000 integrate-and-fire neurons is discussed in the following.
The task is to faithfully transmit a colored noise signal x(t) with mean 〈x〉 = 10 and
a correlation time equivalent to the membrane time constant (say 10 ms for illustra-
tion) of the integrate-and-fire neurons. The firing threshold of the latter is chosen
such that self-consistency for the average rates 〈rin〉 = 〈rout〉 = 10 Hz is achieved.
The output signal rout(t) is given by the sample mean PSTH rout(t) = 1

N

∑N
k=1 sk(t),

where sk(t) is the PSTH (bin=1ms) of neuron k.

In case of population rate coding, the signal x(t) is encoded in the instantaneous
firing rate rin(t) := x(t) · 1 Hz of the presynaptic neurons that are modeled by an
inhomogeneous Poisson process. There are Ne excitatory neurons and Ni inhibitory
neurons in the presynaptic population, which in total Ne+Ni equal the total number
of postsynaptic neurons N = 5000. Four different degrees of balance are considered,
characterized by the balance ratio ρ = Ni

Ne
(see Fig. 11.9) The case of ρ = 1, in

particular, matches the coding strategy discussed at length in [SN98].

The performance of the encoding with respect to faithful signal transmission can be
assessed by the instantaneous response plotted as a function of x (Fig. 11.10). The
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Figure 11.11. Binary encoding - analog decoding. The upper left shows a com-
parison of the input signal (upper) with the population average output signal. A
sample of spike trains for neurons with different tuning function centers is displayed
at the right. Furthermore, the input-output relationship is shown (lower left).

regressions (red lines) can be interpreted as the gain functions of the neurons: The
larger the balance ratio, the closer these gain functions are to the intended function
f(x) = x. The minimal reconstruction error of 2.4 · 10−1 is achieved, however, for
the balance ratio of ρ = 0.9.

As explained above, ’signaling by variance’ is a randomized version of a binary
encoding strategy. Clearly, we can expect a much better signal-to-noise ratio, if
we use the deterministic version instead. This can be achieved, for instance, in
the following way. Suppose each neuron k receives excitatory input from a box-like
receptive field rE

k (t) = rmaxΘ(x(t)− ck − 0.05) Θ(ck + 0.05− x(t)), where ck denotes
the center of the tuning function. Further assume that the centers are distributed
according to a triangular distribution such that more neurons are activated in case
of large x and less are activated in case of small x. Using this strategy, one obtains
the result shown in Fig. 11.11. The minimal reconstruction error is more than three
orders of magnitude smaller than in case of optimal balance. A further reduction of
the minimal reconstruction error can be achieved, if the subsequent neuronal readout
distinguishes between the labels of the different neurons. By using the simplistic
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population vector method and a uniform distribution of the tuning function centers
the error has been reduced to 3.2 · 10−7, which is about six orders of magnitude
smaller than in case of optimal balance.

In conclusion, the examples considered here confirm the argument that Bernoulli
coding is not only optimal with respect to ’spatial’ decorrelation between differ-
ent neurons, but is advantageous with respect to the temporal decorrelation of the
individual neuronal responses as well.



Chapter 12

Conclusion

The objective of the quest for the neural code is the missing link between electro-
physiology and function. Consequently, the search for the neural code allows for two
complementary approaches, starting either from electrophysiological data or from a
functional point of view.

In this thesis, the latter approach was taken, combining two areas of research – effi-
cient coding and population coding – that have developed rather independently from
each other. Conceptually, this study is motivated by the insights of efficient coding
research, which emphasizes the importance of knowing the shape of the signal for the
understanding of neuronal representations. The models investigated, however, have
been mainly informed by biophysical constraints on neuronal signal transmission,
as it is more common in the research on population coding. Particular emphasis is
placed on the fact that the shape of efficient representations may critically depend
on a multitude of constraints rather than to focus too much on a single principle.
The somewhat lighthearted play with the ingredients of a model served the goal of
this thesis, which was to achieve more educated intuitions and hypotheses about the
neural code.

Starting from the standard model of population coding for the study of optimal
tuning widths, diverging conclusions in the literature have been resolved by the
introduction of a new independent parameter, namely the dynamic range of a tun-
ing function (chapter 4). The difficulties of applying this standard model to neu-
ronal representations of, say natural images, motivated a more exhaustive search
for characteristic features of population codes that are most relevant for coding ef-
ficiency. Using Fisher information, the commonly used measure of coding efficiency
in the context of population codes, the maximum reduction of the dynamic ranges
of the tuning functions turned out to be most crucial for high efficiency (chapter 5,
[BRP02]). At the same time, however, this less restricted optimization uncovered
severe limitations of Fisher information as a measure for coding efficiency.

187
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Several examples have been presented that help to assess which dependencies of
Fisher information on the shape of a population code are meaningful and which
are not. This experience suggested that a small dynamic range does not only lead
to large Fisher information but is an important aspect of population coding also
beyond the scope of Fisher information.

In order to not rely on the heuristic argument of Fisher-optimality, we then pro-
ceeded to test the advantage of label-pattern coding by explicit numerical evaluations
of the minimum mean square error (MMSE) for a selection of characteristic exam-
ples (chapter 6). This study has not only confirmed the superiority of label-pattern
coding above intensity coding, but it also constitutes the first ’exact’ investigation of
the minimum mean square accuracy of population codes in the literature [BRP03b].

Another advantage of using the MMSE in place of Fisher information is its clear
correspondence to an explicit estimator, which can be derived from first principles.
Instead of relying on the hegemony of Fisher information, it thus becomes possi-
ble to investigate how specific constraints on the decoding affect optimal encoding
strategies. This possibility has been used in chapter 7 to test whether the advantage
of label-pattern coding holds true also in case of a limited computational power of
the neuronal readout. While strict linearity turns out to suspend the advantage
of label-pattern coding, it is reinstated again if one allows for a simple threshold
nonlinearity. Since the possibility of a threshold operation appears to be more than
plausible in case of neurons, I concluded that strict linearity is likely to be too re-
strictive. This fact should also be kept in mind as a possible pitfall, when dealing
with linear models for the sake of simplicity.

Alluding to the linear-nonlinear cascade neuron models, it is argued in chapter 8
that the optimization of the nonlinear gain functions appears to be the most unbi-
ased approach, in order to deal with the situation of lacking knowledge about the
particular function of a neuron. Again, this study confirms the advantage of binary
coding at physiologically plausible time scales. While not so much important for the
conclusion on the relevance of binary coding, the analytically proven existence of
a phase transition from analog towards binary coding at a critical maximum mean
spike count of slightly less than three is an intriguing piece of physics discovered on
the side [BRP03c].

The totality of results on optimal population coding investigated in the first part of
the thesis, led me to the proposal of the Bernoulli coding hypothesis (cf.[BRP03a]).
In short, it states that analog coding does not suit rate coding at physiologically
plausible time scales because of its distinct inferiority with respect to coding accu-
racy. In the second part, the efficiency argument took a back seat, but other criteria
have been considered to challenge the Bernoulli coding hypothesis.

In chapter 10 the intuition is addressed that analog encoding strategies, like popula-
tion rate coding, are more robust against cell death and other sources of unreliability.
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This intuition is invalidated by a comparison, which shows substantial superiority
of label-pattern coding, independent of the amount of noise and of the number of
neurons randomly erased.

In chapter 11, finally, the discrete-time, memoryless neuron models are replaced by
integrate-and-fire neurons in order to investigate the effect of the neuronal dynamics
on the possibility of faithful signal transmission in case of analog and binary encoding
strategies. The meaning of ’faithful signal transmission’ is discussed in detail, and,
as I hope, will contribute some clarifying hints to the ongoing debate on ’rate coding’
vs ’temporal coding’.

The results of chapter 11 show that faithful signal transmission is, generally speak-
ing, difficult in case of analog coding. Analog encoding necessarily implies a much
higher degree of homogeneity in the neuronal population, so that it is necessary to
introduce noise in order to decorrelate neuronal responses temporally and spatially.
Inspired by the conjecture that the random-walk model of Gerstein and Mandelbrot
[GM64] is well-suited for the realization of an analog population rate code with a
large dynamic range [SN98], we investigated the possibilities of faithful signal trans-
mission with respect to the two relevant input signal components in this model: the
average population input (the mean current) and the population variance.

While signaling by the mean current does not allow for faithful signal transmission
in general, it has been shown that signaling by variance may work for this pur-
pose in case of rapidly fluctuating bandpass signals. Essential predictions of the
abstract analysis have been confirmed in a series of experiments, using neocortical
slice preparations.

A strikingly superior performance in faithful signal transmission is easily achieved,
however, by using a label-pattern encoding strategy. Although this investigation
has been carried out not in the same detail as the work on coding efficiency so far,
the dynamical constraints obviously provide a strong argument for the Bernoulli
hypothesis, maybe even stronger than that of coding efficiency.
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Appendix A

Appendix

A.1 Exponential family

An s-parametric family of distributions is a member of the exponential family, if it
can be written in the following form:

P (x|θ) = P0(x) + exp

{
s∑

i=1

ηi(θ)Ti(x) − B(θ)

}

(A.1)

These distributions can always be written in the canonical form:

P (x|η) = P0(x) + exp

{
s∑

i=1

ηiTi(x) − A(η)

}

(A.2)

where η = (η1, . . . , ηs) is called the natural parameter. Prominent examples of the
exponential family are the normal family, the Poisson family, and the Multinomial
family. The Multinomial family M(η1, . . . , ηs; n) is given by

P (k|η1, . . . , ηs, n) =
n!

k1! · · ·ks+1!
exp

{
s∑

i=1

kiηi − n log

(

1 +
s∑

i=1

eηi

)}

(A.3)

where the natural parameters η1, . . . , ηs ∈ R. Using pi := ps+1e
ηi , i = 1, . . . , s and

ps+1 := (1 +
∑s

i=1 eηi)
−1

Eq. A.3 can be transformed into the more familiar form

P (k|p1, . . . , ps+1, n) =
n!

k1! · · · ks+1!
pk1

1 · · · pks+1

s+1 (A.4)

191



192 APPENDIX A. APPENDIX

If s = 1 one obtains the Binomial family and in the special case of n = 1 this gives
the Bernoulli family.

A good thing about the members of the exponential family is that it is easy to obtain
the moments and cumulants of their distributions, because the moment generating
function is always given by

MT (u) = exp {A(η + u) − A(η)} . (A.5)

A.2 Monte-Carlo integration

In general, the evaluation of Eq. 5.6 or Eq. 6.5 requires integration over an N -
dimensional space. According to the Monte-Carlo technique [Bis95], we estimate
the value of Eq. 5.6 or Eq. 6.5 by an average over n trials, for which a particular
(x,k)i is randomly drawn from the joint distribution p(k|x)p(x) with p(x) = 1 for
all x ∈ [0, 1] and otherwise zero. Then it holds:

E[(x̂(k) − x)2] ≈ 1

n

n∑

i=1

(x̂(ki) − xi)
2 . (A.6)

The error of this approximation decreases with the number of trials. We evaluated
the r.h. side of Eq. A.6 up to the second relevant digit. As a termination criterion,
the averaging process has been stopped , when there was no change in the value of
the second relevant digit, during the last 10000 trials.
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