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1. General Introduction

1.1 Harmful Algal Blooms

Microscopic algae of the oceans are the critical food for marine species, such as filter

feeding bivalve shellfish, the larvae of commercially important crustaceans and finfish. In

most cases the proliferation of plankton algae up to millions of cells per litre, the so-called

‘algal blooms’, therefore have a positive effect for aquaculture and wild fisheries operations.

Such algal blooms can also have serious negative consequences, such as major environmental

and human health impacts, and can cause huge economic losses to aquaculture, fisheries and

tourism (Hallegraeff 1995; Li et al. 2001). More than ten thousand known species of

planktonic algae are found in the upper layers of the oceans and continental waters. Excluding

those species that respond to eutrophication and associated processes and that can give rise to

biomass problems, less than a hundred of these algae have so far been recorded as harmful.

The severity of their harm can range from nuisance algae, when foam accumulates on tourist

beaches, to economically damaging algae, when for example, fish farms lose stock or

extraction of resources is prevented, and to possible death, when drinking water or seafood

become contaminated with potent toxins (Wyatt 1998).

It is believed that the first written reference to a Harmful Algal Bloom (HAB) appears

in the bible, 1000 years B.C.: ‘‘…all the waters that were in the river were turned to blood.

And the fish that was in the river died; and the river stank, and the Egyptians could not drink

of the water of the river’’ (Exodus 7:20-21). This colouration was presumably caused by a

non-toxic bloom-forming alga, which became so densely concentrated that it generated anoxic

conditions resulting in indiscriminate kills of both fish and invertebrates (Hallegraeff 1995).

In a strict sense, HABs are completely natural phenomena, which have occurred

throughout recorded history. However, in recent decades the public health and economic

impacts of such events appear to have increased in frequency (Hallegraeff 1993). Until 1970,

HABs of Paralytic Shellfish Poisoning (PSP) producing dinoflagellate blooms were only

known from temperate waters of Europe, North America and Japan (Dale and Yentsch 1978).

By 1990, toxin-producing dinoflagellate blooms were also documented from throughout the

Southern Hemisphere in South Africa, Australia, India, Thailand, Brunei, Sabah, the

Philippines and Papua New Guinea (Hallegraeff 1993). Possible reasons for this apparent

increase of HABs could be an increased scientific awareness of toxic species, increased

utilization of coastal waters for aquaculture, stimulation of plankton blooms by cultural
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eutrophication and/or unusual climatological conditions and transport of dinoflagellate resting

cysts either in ship ballast water or associated with movement of shellfish stocks from one

area to another (Hallegraeff 1993 and 1995).

HABs are generated when environmental conditions, such as changes in salinity, water

temperature, and increased nutrients and sunlight trigger cyst germination to a vegetative

stage that enables rapid reproduction of microalgae (Anderson 1990). Once the dinoflagellate

bloom begins, an exponential growth phase causes a tremendous increase in their population.

Depletion of nutrients and carbon dioxide in the water and degraded environmental conditions

caused by the bloom decrease population growth. A stationary phase ensures levelling off the

population. Then the water may become a fluorescent reddish colour, termed a red tide (Fig.

1). Continued environmental degradation increases cell death and leads ultimately to a

population crash. At this phase of the bloom, many dinoflagellate species, undergo sexual

reproduction and form resting cysts that settle to the bottom, ready for the next bloom

(Anderson 1990). It has been suggested that dinoflagellate red tides may represent a set of

conditions optimising the process of sexual reproduction (Seliger 1993), which is required for

genetic recombination and to provide cysts for inoculation of subsequent blooms (Doucette

1995).

Cysts can be toxic too, as reported for the dinoflagellates Alexandrium tamarense and

Gymnodinium catenatum and can be filtered from the sediments by benthic marine organisms.

However, cysts have very robust cell walls and the efficiency of the transfer of the toxins

from cysts to benthic organisms is still not known. Therefore, it is possible that some benthic

organisms will simply pass cysts through their digestive systems and expel them in their

faeces (Granéli et al. 1999). Within this bloom cycle, the most toxic cells occur generally

during the middle of the exponential growth phase, whereas older cells tend to undergo more

toxin transformation (Anderson 1990).
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Different Types of Harmful Algal Blooms

According to Hallegraeff (1995) the following types of HABs can be differentiated:

1. Species that produce basically harmless water discolourations, which under exceptional

conditions in sheltered bays can grow so dense that they cause indiscriminate kills of fish and

invertebrates due to oxygen depletion. Such species are, for example, the dinoflagellates

Gonyaulax polygramma, Noctiluca scintillans, Scrippsiella trochoidea and the

cyanobacterium Trichodesmium erythraeum.

2. Species that produce potent toxins that can find their way through the food chain to

humans, causing a variety of gastrointestinal and neurological illnesses:

-Diarrhetic shellfish poisoning (DSP) is caused by dinoflagellates. Examples: Dinophysis

acuta, D.  acuminata, D.  fortii, D. norvegica, D. mitra, D. rotundata and Prorocentrum lima.

-Amnesic shellfish poisoning (ASP) is caused by diatoms. Examples: Pseudo-nitzschia

multiseries, P. pseudodelicatissima and P. australis.

-Ciguatera Fish Poisoning is caused by dinoflagellates. Examples: Gambierdiscus toxicus and

probably also Ostreopsis spp. and Prorocentrum spp.

-Neurotoxic Shellfish Poisoning (NSP) is caused by dinoflagellates. Examples: Gymnodinium

breve and G. cf. breve (New Zealand).

-Cyanobacterial Toxin Poisoning is caused by cyanobacteria. Examples: Anabaena circinalis,

Microcastis aeruginosa and Nodularia spumigena.

-Paralytic Shellfish Poisoning (PSP) is caused, mainly by dinoflagellates. Examples:

dinoflagellates Alexandrium acatenella, A. catenella, A. cohorticula, A. fundyense, A.

fraterculus, A. minutum, A. tamarense, Gymnodinium catenatum, and Pyrodinium bahamense

var. compressum.

3. Species that are non-toxic to humans, but harmful to fish and invertebrates by damaging or

clogging their gills or by producing haemolytic toxins. Examples: diatom Chaetocerus

convolutus, dinoflagellate Gymnodinium mikimotoi, prymnesiophytes Chrysochromulina

polylepsis, Prymnesium parvum, and P. patelliferum, raphidophytes Heterosigma carterae,

and Chattonella antiqua (Hallegraeff 1995).
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Fig.1: California red tide generated by a Noctiluca bloom (picture made by Peter J.S. Franks)

1.2  Paralytic Shellfish Poisoning and Paralytic Shellfish Toxins

One of the first recorded fatal cases of human poisoning after eating shellfish

contaminated with dinoflagellate toxins goes back to the year 1793, when Captain George

Vancouver and his crew landed in British Columbia, now known as Poison Cove. He wrote

that for local Indian tribes it was forbidden to eat shellfish when the seawater became

phosphorescent (Dale and Yentsch 1978). This water colouration was induced by a toxic

dinoflagellate bloom. Today the illness is known as Paralytic Shellfish Poisoning (PSP) and

the causative alkaloid toxins are now called Paralytic Shellfish Toxins (PSTs). On a global

scale, almost 2000 cases of human poisoning with a mortality of 15% through the

consumption of fish or shellfish are reported each year. Also whales and porpoises can be

poisoned, when they receive toxins through the food chain via contaminated zooplankton or

fish (Geraci et al. 1989; Durbin et al. 2002; Cembella et al. 2002).

So far, PSTs have been detected in laboratory cultures of the dinoflagellates Alexandrium

spp., Pyrodinium bahamense var. compressum and Gymnodinium catenatum (Cembella 1998)

and also in freshwater cyanobacteria, Aphanizomenon flos-aquae (Jakim and Gentile 1968;

Mahmood and Carmichael 1986), Anabena circinalis (Humpage et al. 1994; Negri et al.
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1997) and Lyngbya wollei (Carmichael et al. 1990; Carmichael and Falconer 1993;

Carmichael 1997; Onodera et al. 1997).

Toxic dinoflagellate produce higher amounts of PSTs when nitrogen is abundant. Where

phosphorus is deficient, individual algal cells become more toxic, probably because the cells

continue PST production but reduced cell division prevents distribution of toxins to newly

produced cells. These non-dividing cells continue to accumulate toxin (Anderson et al. 1990),

and therefore the cell quota for the toxin is higher. PST occurrences tend to be seasonal,

occurring most often during late spring and summer. Off-season episodes of PSTs are most

likely caused by retention of toxins from the summer (Anderson 1990).

PSTs are termed collectively saxitoxins (Fig. 2), deriving the name from the butter clam,

Saxidomus giganteus, where saxitoxins were originally extracted and identified (Kao 1993).

Approximately two dozen naturally-occurring derivates of saxitoxins exist (Shimizu 1996).

All the saxitoxins are neurotoxins that act to block movement of sodium through nerve cell

membranes, stopping the flow of nerve impulses causing the symptoms of PSP, which

includes numbness, paralysis, and disorientation (Mosher et al. 1964). PSTs have been

classified in three groups: 1. The highly potent carbamates, such as STX, neo-saxitoxin, and

gonyautoxins (GTX1-4); 2. The weakly toxic N-sulfocarbamoyl toxins (B1, B2, C1-4); and 3

the decarbamoyl analogues of intermediate toxicity (Suárez-Isla and Vélez 2000). PSP toxins

have a common tricyclic skeleton differing in toxicity that results from N-1 (=R1)

hydroxylation, C-11 O-sulfation (=R2, R3), C-13 carbamolyation (=R4), and N-21 sulfation

(Oshima et al. 1989; Shimizu 1993; van Dolah 2000).

The toxicity of PSP toxins is estimated to be 1000 times greater than cyanide and

symptoms appear soon after consuming toxic shellfish (Kao 1993). These toxins are so potent

that the small amount of about 500 µg, which can be easily accumulated in just one 100 gram

serving of shellfish, can be fatal to humans. There is no antidote for PSP, and all cases require

immediate medical attention that may include application of life support equipment to save a

victims life. If the dosage is low and proper medical treatment is administered, symptoms

should diminish in approximately nine hours (Kao 1993).

Saxitoxin molecules undergo chemical transformations that change one molecular form to

another. Transformations are performed by the dinoflagellate cell and by many animals that

acquire saxitoxins. One common transformation, named epimerisation, occurs when a part of

the original saxitoxin molecule rearranges (Oshima 1995). Scallops and mussels, for example,

can perform the epimerisation of saxitoxin, when hydrogene and hydroxsulfate switch

locations on the number 11 position of the saxitoxin molecule (Oshima et al. 1990). This
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transformation can decrease the toxicity of the original saxitoxin by 11 times. Numerous other

types of transformations occur as well as eventual detoxification that can render the shellfish

safe for consumption (RaLonde 1996).

Only few studies have been published that have investigated the genes involved in

PST production and it is not yet clear whether chromosomal, chloroplast or mitochondrial

DNA from dinoflagellates, or nucleic acids from bacteria, plasmids or viruses are involved

(Ishida et al. 1998; Sako et al. 1995). Sako et al. (1995) demonstrated that F1 progeny of

mating dinoflagellates, with different toxin profiles, inherited their toxin profile in a

Mendelian manner. The authors suggested that genes for toxin synthesis were coded by

chromosomal genes in these algae and are a hereditary characteristic (Sako et al. 1995).

Mendelian inheritance did not occur in all cases and recombination between genes was

proposed (Ishida et al. 1998). An alternative explanation could be the involvement of genes

other than dinoflagellate chromosomal DNA (Cembella 1998). Taroncher-Oldenburg and

Anderson (1997 and 2000) suggested that up or down regulated genes during a narrow time

frame in early G1-phase are related to toxin biosynthesis in dinoflagellates and found that

STX is accumulated in A. fundyense in this time period of the cell cycle. Because of these

findings, the authors assumed that STX biosynthesis could be regulated at the transcriptional

level, and the genes responsible for toxin production are activated in a cyclic pattern

(Taroncher-Oldenburg and Anderson 2000).
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Fig. 2: Chemical structure of Paralytic Shellfish Toxins. STX, saxitoxin, GTX, gonyautoxin,
neo-STX, neo-saxitoxin, dc, decarbamoyl (Sako et al. 2000)

1.3 Measurement of Paralytic Shellfish Toxins

The detection of saxitoxins causes problems because of the large differences concerning

the specific toxicity of STX derivates, the small amount of STX in natural samples and the

tendency for the toxins to undergo biotransformation in the shellfish digestive glands and

during sample extraction and preparation. The analytical methods provide an instrumental

response proportional to the concentration of each derivative in a complex sample. Pure

standards of known concentrations enable this proportionality, whereas assays provide a

single response proportional to the toxicity of a toxic mixture. The assay response could be,

e.g., a colorimetric or fluorescence change or a loss of a physiological response (Suárez-Isla

and Vélez 2000).

1.3.1 Mouse Bioassay

The preferred method for analysing shellfish for PSP is the mouse bioassay (MBA),

which is used in shellfish monitoring programs world-wide (AOAC 1990). This test measures

simultaneously the total of all the saxitoxin toxicities from a sample of shellfish tissue. The

saxitoxin level is measured by timing the death of an 18-20 gram mouse following injection

of fluid extracted from shellfish tissue (AOAC 1990). Toxicity is expressed as microgram
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STX equivalents (equiv.) /100 g shellfish tissue standardised against a reference STX

solution. Harvesting or consumption is not permitted in many countries when toxicity reaches

or exceeds 80 µg STX equiv. /100 g shellfish tissue (Suárez-Isla and Vélez 2000). The mouse

bioassay has many disadvantages, such as the lack of specifity and precision. This test does

not specify the toxins, it only reveals the total PSP toxicity of a sample (Luckas 1992).

Additionally, the test is very expensive and time consuming, especially when large numbers

of samples have to be analysed. The main analytical limitations are the high variability of ±

20% and the low sensitivity very near to the detection limit of about 35 µg STX equiv. /100 g

(Suárez-Isla and Vélez 2000). Increasingly, the use of this technique is becoming

unacceptable for ethical reasons in a number of countries. Therefore, alternative techniques

were evaluated for use in PSP monitoring programs (Gallacher et al. 1998).

1.3.2 Alternatives to the Mouse Bioassay

In the mouse neuroblastoma (MNB) assay a mouse neuroblastoma cell line is used,

which originally arose from a spontaneous tumor in mice. This cell line allows detection of

sodium channel blocking toxins (SCBs), such as PSP toxins (Gallacher et al. 1993).

The expose of MNB cells to two chemicals, oubain and veratridine, results in an influx

of sodium ions and subsequently to cell death. In the presence of toxins that exhibit sodium

channel blocking activity, such as saxitoxin, the cells survived. By incorporating the use of

chemicals like neutral red, which gave a colorimetric reaction, quantification can be carried

out with a microtiter plate reader. The technique determines total toxicity, regardless of which

PSTs are present. Therefore, several workers suggested that this method could be used to

detect PSP in shellfish monitoring programs (Jellet et al. 1992; Gallacher et al. 1993).

However, although the MNB is highly specific for the detection of SCBs and more sensitive

than the MBA, it does not differentiate which PSTs are present nor does it distinguish PST

from the other SCB group, the tetrodotoxins (TTX) (Gallacher et al. 1997).

Several immunoassays have been developed for the detection of PSTs. These assays

have the advantage of being relatively sensitive and no special apparatus is needed. Saxitoxin

and neo-saxitoxin enzyme linked immunosorbent assay (ELISA) kits were found to be as

sensitive as the MBA (Usleber et al. 1997).

Bioassays using animals other than mice, like houseflies, chick embryos, brine shrimp,

and bacteria have been suggested (Ross et al. 1985). A bioassay that uses the desert locus,
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Schistocerca gregaria, for the detection of saxitoxin and related compounds in cyanobacteria

and shellfish may be useful for routine screening of PSP toxins (McElhiney et al. 1998).

The housefly assay is more sensitive than the mouse bioassay but requires

considerable technical experience to perform microinjections, whereas the other bioassays do

not have the required sensitivity for regulatory work (Isla and Vélez 2000). So far, none of the

alternative techniques to determine PSP in seafood are validated for monitoring purposes, but

the chemical methods for the determination of PSP toxins already reduce the animal

experiments (Whittle and Gallacher 2000).

1.3.3 Spectrophotometric Assay

Bates and Rapaport (1975) developed a fluorimetric method for the measurement of

saxitoxins in shellfish samples. The nonfluorescent PSTs are oxidised in an alkaline solution

to a fluorescent purine derivative by hydrogen peroxide treatment. The fluorescence of the

oxidised products is measured after acidification the solution (Bates and Rapaport 1975).

Individual PSTs differ in toxicity and fluorescence intensity after oxidation (Franco and

Fernández-Vila 1993).

1.3.4 Chromatography

The methods based on the oxidation/fluorescence assay do not specify the individual

toxins. Therefore, alternative methods have been developed by many researchers. High

performance liquid chromatography (HPLC) is the most widely used technique for PSP toxin

detection. HPLC is very sensitive and enables the separation of each PSP toxin. All HPLC

methods are based on the fluorescence detection of the oxidised PSP toxins (Luckas 2000).

HPLC developed for the detection of PSP in shellfish and dinoflagellates requires treating the

samples with either a pre–or post-column alkaline oxidation procedure followed by

fluorescence detection (Franco and Fernández-Vila 1993; Oshima 1995; Flynn and Flynn

1996) to exclude insecurities during the PSP measurement with HPLC (Luckas 2000).

A pre-column HPLC oxidation method proposed by Lawrence and Ménard (1991) and

Lawrence et al. (1996), does not separate all toxins, but can produce fast and sensitive results.

A post column derivatization HPLC method for PSTs has the ability to quantitate each toxin

in a crude sample of small size and simple clean-up procedures can avoid toxin

transformations, which can occur during purification and concentration procedures (Oshima



10

1992). The HPLC method of Oshima (Oshima 1995) can separate all PSP toxins, but has the

disadvantage that it is a very time consuming measurement method, due to the need of three

separate runs in order to determine all toxins (Vale 2001).

1.3.5 Capillary electrophoresis

The HPLC method offer good sensitivity for the separation and detection of different

PSTs, but the sensitivity is dependent on parameters, such as reagent concentrations, reaction

time, pH, and temperature of the oxidation reaction (Luckas 2000). Therefore, the Capillary

Electrophoresis-Mass Spectrometry (CE-MS) with UV detection was developed for the

separation and determination of the underivatized PSP toxins (Thibault et al. 1991). The

separation of the toxins is conducted by differential migration of solutes in an electric field.

The advantage of this technique is the short analysis time and high efficiency and resolution.

However, for the capillary electrophoresis highly purified extracts are necessary, to obtain

reproducible separations. Additionally, the detection limit is one magnitude higher than the

HPLC technique with fluorescence detection, because of the very low volumes for injection

(Luckas 2000).

1.4 Interactions between bacteria and microalgae

1.4.1 Symbiotic relationship

Bacteria can be found in loose and tight associations in the physical environment of

phytoplankton (Caldwell 1977; Rothaupt and Güde 1992; Gallacher and Smith 1999; Alavi et

al. 2001) and also inside microalgae cells (Cole 1982; Franca et al. 1995; Alverca et al. 2002).

The latter symbiotic bacteria live inside their host cells in special compartments that are rich

in metabolites, such as the cytoplasm (Jeon 1991), nuclei (Görtz 1983), or perinuclear space

(Fokin and Karpov 1995). Interactions of bacteria and algae range from symbiotic, via

commensal, to parasitic interactions (Schäfer et al. 2002) and are highly variable in space and

time (Grossart 1999). In the symbiotic relationship, bacteria benefit from phytoplankton

products, such as exudates (Bell et al. 1974; Cole 1982), whereas phytoplankton profits of

bacterial products, such as remineralized nutrients (Golterman 1972), vitamins (Haines and

Guillard 1974), and other growth factors (Paerl and Pickney 1996). Commensalic bacteria in

or around algae benefit from the algae without having any negative effect on it (Barbeyron
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and Berger 1989). Bacteria can be also parasites of phytoplankton, and penetrate into the

algae to lead to cell lysis and death (Cole 1982).

Also, a gene transfer from symbiont to host nucleus is postulated, which could result

in an advantage in contrast to cells without a symbiotic relationship (Henze et al. 1995).

However, little is known about metabolic interactions of intracellular bacteria and their host

protozoa (Görtz and Brigge 1998).

Intracellular bacteria or cyanobacteria have been found so far in the dinoflagellate

Glenodinium foliaceum and Gonyaulax diacantha, (Silva 1962; Silva 1978), Amphidinium

herdmanii and Katodinium glandulum (Dodge 1973), Gymnodinium lebourae (Lee 1977),

Gymnodiniumm splendens (Silva 1978), Noctiluca scintillans (Lucas 1982; Kirchner et al.

1999), Peridinium balticum (Chesnick and Cox 1986) in the genera Ornithocercus, Histioneis

and Citharistes (Lucas 1991; Gordon et al. 1994), Gyrodinium instriatum (Silva and Franca

1985; Alverca et al. 2002), in Alexandrium minutum (Lu et al. 2000), A. tamarense and A.

fundyense (Lewis et al. 2001).

Lewis et al. (2001) investigated the association of bacteria with various vegetative

growth phases and sexual life-cycle stages of Alexandrium spp. The authors found bacteria to

be associated with the surfaces of vegetative cells, planozygotes, hypnozygotes and

planomeiocytes by using transmission electron microscopy (TEM) and the presence of

intracellular bacteria in vegetative cells were also shown (Lewis et al. 2001). Bacteria were

generally 0.2-1 µm across with a thin outer wall and membrane, and a dense peripheral

cytoplasmatic layer. Often no bacteria were found in the cut sections, but when present, there

were usually less than 10 bacteria per section. The highest bacterial numbers were found

endocytoplasmatic in dinoflagellates isolated as individuals or found in loose clusters,

particularly in log and stationary phase cultures of A. tamarense and A. fundyense. Bacteria

were frequently located adjacent to chloroplasts and were detected also outside the theca but

under the outer cell membrane, in the cingular region of the dinoflagellate (Lewis et al. 2001).

Hold et al. (2001b) showed with isolation and culture studies that a number of

different bacterial species are extracellularly associated with dinoflagellates, some of which

are common to each of the dinoflagellate cultures examined, whereas others appear to be

unique to a particular dinoflagellate. The phylogenetic diversity of the observed bacteria was

limited to two bacterial phyla, the Proteobacteria and the Cytophaga-Flavobacter-Bacteroides,

with the former restricted to the a-and g-Proteobacteria subclasses (Hold et al. 2001b). This is

similar to the findings of Babinchak et al. (1998) who found similar classes of bacteria in a

range of dinoflagellates. The a-Proteobacteria, particularly those of the Roseobacter-clade,
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dominated the microflora of all dinoflagellate cultures in the study of Hold and colleagues

(Hold et al. 2001b). Prokic et al. (1998) investigated the diversity of bacteria associated with

Prorocentrum lima, a known diarrhoetic shellfish poison producing dinoflagellate. The

authors also found that bacteria of the genus Roseobacter dominated the microflora of P .

lima. Córdova et al. (2002) showed that Chilean clones of A. catenella are simultaneously

infected by several bacterial species and that these bacteria were alive inside the cell.

Furthermore, the authors hypothesised that bacterial infection may be clone specific and that

some dinoflagellates are more susceptible to infection than others (Córdova et al. 2002).

1.4.2 Nutrient exchange

Algae represent the primary source of organic nutrients for heterotrophic microbes in

the marine environment and the abundance of bacteria is frequently positively correlated with

algal concentrations (Kjelleberg et al. 1993). The major flow of organic matter produced by

phytoplankton is transferred via dissolved organic compounds, e.g., exudates and leakage

from broken cells, to bacteria and the microbial loop (Azam 1998), whereas remineralisation

by bacteria supplies nutrients to the phytoplankton. Heterotrophic bacteria utilise carbon

ultimately by photosynthetically (algal-) derived carbon sources (Bell 1984) and bacteria are

important in processing of phytoplankton derived particulate organic matter. Bacteria rapidly

colonise different sized aggregates and their ectoenzymatic activities have important

implications, e.g., for reducing the export of organic carbon and the release of dissolved

organic carbon to the deeper ocean layers, or into the surrounding medium (Azam and Long

2001). The stimulation of bacterial growth by extracellular release of organic carbon by

photosynthetic algae has led to the formulation of the phycosphere as an important region of

interactions between bacteria and algae (Bell and Mitchell 1972). In this phycosphere,

bacteria and algae interact with each other and produce both stimulatory and inhibitory

substances towards each other. The bacteria can be free in this zone (Blackburn et al. 1998),

attached to the surface of algal cells (Kogure et al. 1982; Vaqué et al. 1990; Worm and

Sondergaard 1998), or occur intracellularly (Silva and Franca 1985; Lewis et al. 2001;

Alverca et al. 2002). Motile bacteria in the phycosphere of phytoplankton cells utilise

nutrients and exudates released from the algae, which then ultimately cannot be utilised by

bacteria outside this zone (Bell and Mitchell 1972). Bacteria and phytoplankton cells can also

compete for nutrients under certain environmental conditions where nutrients are limited for

both organisms (Cole 1982; Manage et al. 2000). Changes in bacteria and phytoplankton
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interactions because of environmental conditions, such as eutrophication and pollution may

have huge impacts on global carbon cycling (Azam et al. 1998; Grossart 1999).

1.4.3 Bacteria and Harmful Algal Blooms (HABs)

Interactions between algae and bacteria are commonly observed in both freshwater

and marine ecosystems, and bacteria are increasingly postulated as important regulators in

processes of algal bloom initiation, maintenance and decline (Doucette 1995). So far, the

interactions of bacteria and HABs have not been investigated to a great extent (Doucette et al.

1999), despite the known coupling of both organisms through the microbial loop (Azam et al.

1983). The bacterial community change quantitatively during an algal bloom and may either

play a beneficial or a detrimental role in controlling algal growth (Doucette 1995; Plumley

1997; Doucette et al. 1999). The bacterial effects may be either direct, e.g., through

intracellular symbionts (Franca et al. 1995; Plumley 1997) or indirect through, e.g., the

release of soluble compounds into the surrounding water that could impact algal growth

responses (Yoshinaga et al. 1995). The free-living bacterioplankton in a phytoplankton bloom

has been shown to be dominated by a-Proteobacteria, Cytophaga-Flavobacter Bacteroides, g-

Proteobacteria, and the Planctomycetes groups (De Long et al. 1993; González and Moran

1997).

Fukami et al. (1991) showed that in Gymnodinium nagasakiense red tides bacteria

could either stimulate or inhibit dinoflagellate growth depending on the stage of the bloom.

Bacteria of undetermined composition at times up to and including peak algal concentrations

increase the growth of G. nagasakiense cultures, whereas bacteria obtained during bloom

decay produced a strong negative effect on algal growth. A number of dinoflagellates undergo

sexual reproduction, which comprises a number of life stages and can lead to the production

of cysts, the resting state of dinoflagellates (Dale 1983). Marine bacteria associated with

surfaces were shown to inhibit germination of algal spores (Egan et al. 2001) and the

inhibition of mating was suggested to have an adverse effect of the dynamics of HABs and

also on the genetic fitness of the population (Doucette 1995).

A potentially more positive bacterial influence on HABs is the production of

cytokinins (plant hormones) by numerous species of marine bacteria (Maruyama and Simidu

1986). Bacteria which are able to synthesize these compounds may promote the development

of algal blooms (Doucette 1995), because cytokinins can stimulate the growth of some red

tide species (Iwasaki 1979). Moreover, bacteria may substantially alter their phenotypic
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expression by attaching to algae cells and synthesize different lipopolysaccharide and proteins

and exhibit markedly enhanced antibiotic resistance (Costerton 1987).

It has been reported that several bacteria are capable of killing various HAB species

and consequently are involved in the termination of HABs and the regulation of population

dynamics of marine phytoplankton (Doucette et al. 1998). These algicidal bacteria have

different requirements for physical contact with the algal cell, some kill by direct attack (Imai

et al. 1998), whereas others release the active compound into the surrounding water (Lovejoy

et al. 1998). Several algicidal marine bacteria that kill bloom-forming phytoplankton have

been isolated from different geographic locations (Sakata 1990; Imai et al. 1991; Fukami et al.

1992; Yoshinaga et al. 1995; Lovejoy et al. 1998; Doucette et al. 1998 and 1999). So far, only

one bacterially produced algicidal agent, a 10 kD heat labile compound, has been

characterised chemically to any extent (Yoshinaga et al. 1995).

Viruses are also proposed to be important regulators of phytoplankton population

dynamics and HABs (Doucette 1995; Imai et al. 1998). They can also kill marine

phytoplankton (Shuttle et al. 1990) and have been detected in the cells of bloom-forming

phytoplankton at the end of phytoplankton blooms. Their importance in bloom dynamics has

been suggested in the rapid termination of the blooms (Sieburth et al. 1988; Milligan and

Cosper 1994; Brussaard et al. 1996). Algicidal bacteria and viruses are suggested to be useful

tools in reducing the effects of HABs (Imai et al. 1998). However, the use of these organisms

as natural regulators of HAB dynamics needs further investigations about how these

organisms interact with algae at the molecular, cellular, and population levels (Imai et al.

1998; Doucette et al. 1999).

1.4.4 Bacterial Saxitoxin Synthesis

It has been proposed that prokaryotic cells are able to synthesize saxitoxins. This has

changed the way HABs have been viewed and has lead to a closer look at prokaryotes

involved. The identification of a bacterial strain within non-toxic dinoflagellate cultures (Silva

and Sousa 1981; Silva 1990), the modification of the toxin profile after a bactericidal

treatment of a toxic dinoflagellate culture (Hold et al. 2001a) and the autonomous bacterial

production of phycotoxins (Gallacher et al. 1997; Doucette et al. 1998) have caused doubts,

that these toxins are indeed produced by the algae alone. Several authors have reported on the

production of PST by ‘axenic’ dinoflagellate cultures with levels of toxicity similar to those

observed for non-axenic strains (Dantzer and Levin 1997; John and Flynn 1999), but the
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absence of bacteria was not clearly demonstrated. Silva and Sousa (1981) made an important

discovery, when they transformed a non-toxic dinoflagellate strain to a toxin producer by

simply inoculating the non-toxic strain with the bacterium Pseudomonas sp., isolated from a

toxin-producing dinoflagellate. However, this observation did not show which organism, the

bacterium or the dinoflagellate, produced the toxins. This observation, linked to the fact that

dinoflagellates routinely harbour intracellular bacteria (Bold and Wynn 1979), prompted the

question ‘Are bacteria the real source of saxitoxins?’ Kodama and co-workers attempted to

prove the hypothesis that bacteria can produce saxitoxins by isolating bacteria from cultured

dinoflagellates and even removing bacteria individually from inside the dinoflagellate cells.

They found that under certain precise growing conditions bacteria could synthesize saxitoxins

(Kodama et al. 1988; 1990a). A PST-producing intracellular bacterium named ‘Moraxella’ sp.

was subsequently isolated from Alexandrium tamarense (Kodama et al. 1988; Kodama 1990a)

and bacteria were observed within the dinoflagellate nucleus (Kodama et al. 1990a). Doucette

and Trick (1995) demonstrated PST synthesis by this bacterium, named PTB-1, and another

bacterial strain, Pseudomonas stutzeri by HPLC (Doucette and Trick 1995). Pseudomonas

stutzeri was originally isolated as an intracellular symbiont of a saxitoxin producing

Alexandrium lusitanicum strain (Franca et al. 1995 and 1996). In contrast, Plumley (2001)

showed that Pseudomonas stutzeri does not synthesize saxitoxins. Available evidence

indicates that this bacterium does synthesize compounds that compete for saxitoxin at sodium

channel binding sites, and hence could contribute to PSP events in coastal areas (Plumley

2001). Córdova and colleagues (2002) isolated intracellular bacteria from a Chilean A.

catenella clone and they showed by HPLC analysis that two of the isolated intracellular

bacteria were capable to produce small amounts of saxitoxin.

Several independent research groups have isolated overall 18 eubacteria (Table 1),

which have been reported to produce PSTs. In most cases, taxonomic information are lacking

and so it is difficult to conclude if these are different species. The exception are studies

incorporating 16S rRNA sequence analysis which demonstrated that five of the strains

consisted of three species of the genus Alteromonas and one from the Roseobacter-clade

(Gallacher and Smith 1999). These bacteria are distinctly different from the putatively toxic

PTB strains, isolated from A. tamarense by Kodama et al. 1988, where sequence analysis has

suggested similarity to the non-validated species Agrobacterium stellulatum, belonging to the

a-subclass of Proteobacteria (Kopp et al. 1997). In 1997, the first spectral evidence of PST

production by bacteria was published, which demonstrated the presence of saxitoxin, neo-
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saxitoxin and several gonyautoxins (GTX’s) using selective ion monitoring with capillary

electrophoresis-mass spectrometry (CE-MS) (Gallacher et al. 1997).

It has been suggested that bacteria associated with dinoflagellates in nature and also

under laboratory conditions, may influence the production of PST by dinoflagellates

(Doucette and Powell 1998; Gallacher and Smith 1999). Tosteson et al. (1989) and Doucette

et al. (1998) suggested that bacteria could modify algal toxicity via attachment. However,

mechanisms by which physical interactions bacteria can influence toxin production of the

dinoflagellate remain unknown (Simon et al. 2002). Some authors report higher toxicity in

axenic cultures (Singh et al. 1982; Dantzer and Levin 1997), whereas others show the reverse

(Doucette and Powell 1998). Hold et al. (2001a) investigated the PST production of A.

tamarense and A. lusitanicum cultures in the presence and absence of bacteria. The authors

showed that removal of bacteria either did not inhibit toxin production and/or change the

toxin profile in A. lusitanicum. Also, the growth rate of A. lusitanicum was unaffected by

removal of bacteria. However, the concentration of individual toxins and total toxicity

generally was greater in axenic cultures. In contrast, the same A. lusitanicum strain was

shown to be 50% less toxic in the absence of bacteria compared to control cultures in a study

of Doucette and Powell (1998). Hold et al. (2001) showed that the removal of bacteria had a

different effect on the toxicity of A. tamarense. In general, the toxin profile was similar in

axenic and non-axenic cultures. However, the removal of bacteria from this dinoflagellate

resulted in a decrease in overall toxicity of the culture. The non-axenic culture produced more

of some toxin compounds, depending on the growth rate of the dinoflagellate and the toxin

derivate. Therefore, the authors concluded, that bacteria directly influence toxin production in

some dinoflagellate cultures whereas in others they may have an indirect effect through

influencing the growth rate, although the mechanisms remain unknown (Hold et al. 2001a).

To date, evidence for bacterial production of PST has mainly been based on

chromatographic behaviour and sodium channel blocking activity and capillary

electrophoresis-mass spectrometry (Gallacher et al. 1997). The topic that several bacteria

isolated from Alexandrium tamarense, A. affine, A. lusitanicum, Gymnodinium catenatum,

shellfish and seawater are capable of producing a range of PSTs remains controversial,

because there is a lack of unequivocal spectral evidence and the quantities of bacterial PST

production seem low in comparison to dinoflagellates (Gallacher and Smith 1999), and

therefore these bacteria remain only putatively toxic (Groben et al. 2000).



17

Table 1. Paralytic shellfish toxins produced by marine bacteria (redrawn from Gallacher and Smith 1999, modified).

Bacterial strain Detection method Toxin
(x 10-4 pg STX equiv. cell –1)

Toxin Profile Origin Reference

Ten unidentified strains*
Moraxella sp.

1, 2, 3
2, 4

0.06-0.004 STX
neo-STX, GTX1-4

A. tamarense OF 84423D-3 Kodama et al. 1988 and 1990a

PTB-1** 2, 4
5 0.08-3.26

GTX5, C1
B2/neo-STX,
C1, GTX2

A. tamarense PT-1 Ogata et al. 1990; Doucette
and Trick 1995; Levasseur et
al. 1996

PTB-6
GCB-2***

2, 4 Not available GTX1-4
STX, GTX1-4
unidentified peaks

A. tamarense PT-5
G. catenatum

Ogata et al. 1990

Vibrio sp.
Pseudomonas sp.

2, 6,7 1.47
3.71

STX, neo-STX
GTX1-4

Perna perna (Mussels) Freitas et al. 1992

667-2
407-2
UW4-1
UW2c-6
253-19

2, 8, 4
9,10

0.87-2.94 STX, neo-STX,
GTX1-4, B2, C toxins

A. affine NEPCC 667
A. tamarense NEPCC 407
A. tamarense UW4
A. tamarense UW2c
A. lusitanicum NEPCC 253

Gallacher et al. 1996 and 1997

Pseudomonas stuzeri
Pseudomonas diminuta

2 Not available GTX4, C4
GTX1,3,4,C2-4

A. lusitanicum
G. catenatum

Franca et al. 1996

Sp. 1 and 2 2, 11,4 1.00 STX, neo-STX A. tamarense
Ipswitch strain

Shimizu et al. 1996

Pseudomonas sp.
DCM10

Alteromonas sp. 6SM1
Acinetobacter sp. 6SN9
Acinetobacter sp. 5Ms5

5 0.005-0.18

0.05-0.59
0.02-0.98
0.01-0.78

C1/GTX2,
C2/GTX3
B2/neo-STX
C4/GTX4
C3/GTX1, C4/GTX4
C3/GTX1, C4/GTX4

Gulf of St. Lawrence,
Canada

Levasseur et al. 1996

* Later classified as Moraxella sp. (Kodama et al. 1988). ** It is not noted if this is the original PST producing Moraxella sp. strain isolated by Kodama et al. (1988)
*** Gram positive 1: Mouse bioassay; 2: HPLC (Oshima 1995); 3: Thin layer chromatography; 4: Mouse Neuroblastoma Assay; 5: HPLC (Sullivan 1993); 6: Crab leg sensory
nerve bioassay; 7: Toad sciatic nerve bioassay; 8: ELISA; 9: Capillary Electrophoresis Mass spectrometry; 10: HPLC Flyn and Flynn (1996); 11: HPLC Shimizu et al. (1996).
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1.4.5 Bacterial Biotransformation of Paralytic Shellfish Toxins

It has been reported that toxin profiles of contaminated shellfish vary from that of the

causative dinoflagellate. Studies performed in the eighties demonstrated that two bacterial

isolates from shellfish were capable of biotransforming PSTs (Kotaki 1989) and it has been

shown that Vibrio and Pseudomonas spp. isolated from the viscera of marine crabs, snails,

and a marine red alga were capable of transforming hydroxysulfate carbamate derivatives to

saxitoxins through reductive elimination (Kotaki et al. 1985; Kotaki 1989). Smith et al. (2001)

have also demonstrated that bacteria isolated from both shellfish viscera and dinoflagellate

cultures are capable of metabolising PSTs through reductive elimination. This was

demonstrated by de novo appearance of GTX2 and 3 following incubation with GTX1-4 by

bacterial isolates M12 and R65. A bacterial transformation of GTX1-4 to neo-STX or STX

was not detected in this study and the reaction rates and the reaction products varied

significantly between the investigated bacterial isolates (Smith et al. 2001). The authors

suggested that the bacterial transformation of PSTs occurs during accumulation and

depuration processes in shellfish (Smith et al. 2001). However, the biological role of this

transformation could not be clarified.

1.4.6 Bacterial Tetrodotoxin Synthesis

Tetrodotoxin (TTX) is a potent marine neurotoxin originally found in the ovary and

liver of puffer fish. It has now become clear that TTX is not synthesized in puffer fish and

that this toxin is produced by certain bacteria and reaches the fish via the food chain (Kodama

et al. 1995; Gallacher et al. 1996; Narahashi 2001; Carroll et al. 2002). TTX has also been

identified in amphibians, fish, echinoderms, arthropods, mollusks, nemerteans and

platyhelmenthes (Miyazawa and Noguchi 2001). Animals bearing TTX are much more

resistant to the lethal effect in contrast to animals having no tetrodotoxin (Koyama et al. 1983;

Nagashima et al. 2002). Many species of TTX producing bacteria have been identified,

including Pseudomonas, Vibrio, Alteromonas, Shewanella, Pasteurella, Aeromonas,

Plesiomonas, and Pseudoalteromonas (Cheng et al. 1995; Gallacher et al. 1996; Ritchie et al.

2000).

Several parallels exist between saxitoxins and tetrodotoxins. Both marine neurotoxins

have different chemical structures but act in the same manner by blocking the sodium

channels of excitable membranes (Strichartz and Castle 1990; Narahashi 2001). The toxins
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have similar effects on human health, similar molecular weights and coexist in the same

animals (Kodama et al. 1983; Fusetani et al. 1983; Yasumura et al. 1986). Both toxins consist

of a range of closely related isomeric forms (Gallacher et al. 1996). Additionally, TTX is also

synthesized under laboratory conditions only in minor quantities, although in nature high

quantities of the neurotoxin were found in affected animals. Therefore, Gallacher et al. (1996)

suggested an inability to reproduce in vivo conditions in the laboratory for TTX and PSTs

producing bacteria, particularly in relation to the changes in phenotypic expression of the

bacteria which may occur upon surface attachment and upon exposure to exudates (Doucette

1995).

1.5 Toxification of Shellfish

Bivalves are ideal conveyers of PSP toxin (Li et al. 2001) because they are relatively

indiscriminate filter feeders, consume massive amounts of algae, are not generally killed by

saxitoxins, and pass the accumulated saxitoxins on to any animal that eats them (RaLonde

1996). Shellfish nerve cells are not entirely immune to the effects of saxitoxins and the degree

of tolerance influences the shellfish’s ability to feed and accumulate toxins. The concentration

of saxitoxin in shellfish is very variable. It depends on the amount of toxic algae in the water

as determined by the bloom size and patchiness, the toxin content of the individual

dinoflagellate cell, the feeding rate of the shellfish, the avoidance of toxic algae by the

shellfish and the transformation of the consumed saxitoxins by the shellfish (RaLonde 1996).

Changes in toxin profiles of shellfish tissues may arise from selective retention or

elimination of individual toxins, by epimerisation or by a variety of enzymatic conversions

through the shellfish (Bricelj and Shumway 1998) or by bacterial transformation of PSTs

(Smith et al. 2001).

The extreme toxicity of blue mussels is primarily a result of their relatively

insensitivity to high toxin accumulation that allows them to continue feeding on toxic algae,

which can lead from being initially toxin-free to exceeding the action level of 80 µg saxitoxin

level in less than a hour (Bricelj et al. 1990). Saxidomus giganteus, the butter clam, can be

highly toxic partially because their nerve cells appear to have a special resistance to STX

saxitoxin, one of the two most potent forms of the saxitoxins (Twarog et al. 1972; Beitler and

Liston 1990). In addition, the butter clam has a distinctive ability to bind chemically the

highly toxic STX saxitoxin in their siphon tissue (Beitler and Liston 1990), and can retain

PSP toxins for up to two years after initial ingestion (Hall 1982).
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The feeding behaviour of the bivalves influences also the saxitoxin content.

Crassostrea gigas, the pacific oyster, an important species for aquatic farming, tends to

consume toxic algae readily during initial contact but decreases and eventually stops feeding

when tissue toxin levels become high (Bardouill et al. 1993). Saxitoxin concentrations also

differ among various shellfish tissue. In the Pacific giant scallop, Patinopectin caurinus, the

adductor muscle seldom accumulates saxitoxins above 80 µg STX equiv./100 g mussel tissue,

but other tissues regularly have higher levels (RaLonde 1996). The maximum level of PSP

detected in shellfish from Scottish waters fluctuates on a yearly basis, with the highest level

recorded being 6000 µg STX equiv./100 g flesh from mussels obtained in 1995 (Gallacher et

al. 1998).

1.6 Monitoring of Phytoplankton in affected areas in Scotland

A monitoring program for the detection of PSTs has operated in Scotland since 1968

and was increased in scale in 1990, when record levels of toxicity were detected on the

Scottish west coast. Currently 43 inshore sites are examined; the testing frequency varies

according to the perceived risk of toxicity, based on historical data and the importance of the

area to aquaculture. High-risk sites are monitored weekly and low-risk sites at 2-week

intervals from April to September. All sites are monitored monthly, from October to March. If

toxicity is detected, sampling frequency at affected and adjacent areas is increased, and the

number of examined shellfish species is also increased (Gallacher et al. 1998). If the action

level of 80 µg STX equiv./100 g mussel tissue is exceeded, restrictions on fishing and

harvesting are imposed. A phytoplankton monitoring program was incorporated in 1996 and

has demonstrated that potentially toxic dinoflagellate species are present in Scottish coastal

waters (Kelly and MacDonald 1996).
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1.7 Aim of the thesis

Marine bacteria are suggested to play either a direct or indirect role in the occurrence

of Paralytic Shellfish Toxins in dinoflagellates and shellfish. Progress to evaluate bacterial

interactions with Paralytic Shellfish Toxin-associated dinoflagellates in the environment or

their potential involvement in the toxicity of shellfish is lacking and therefore further

investigations are needed. Molecular methods were applied to gain informations about the

bacterial communities associated with dinoflagellates, the physical interactions between

bacteria and dinoflagellates, the appearance of putatively toxic bacteria in HAB affected areas

and their possible role in toxification of bivalves.

1.8 Outline of the thesis

1.8.1 Physical associations between bacteria and dinoflagellates

One of the first steps in investigating the relationship between bacteria and

dinoflagellates is to identify the bacterial community associated with algae and their physical

association with dinoflagellates. It has been shown that several dinoflagellates possess, both

an extracellular and/or intracellular bacterial flora (Silva 1978; Rausch de Trauenberg et al.

1995; Biegala et al. 2002; Simon et al. 2002; Alverca et al. 2002). Intracellular bacteria are

suspected to synthesize nutrients for the alga, whereas the dinoflagellate supplies an optimal

habitat for the bacteria (Fenchel et al. 1993; Gordon et al. 1994; Alverca et al. 2002).

It has not been clarified in these studies, if the bacteria that were within the

dinoflagellates were alive or dead. Only living bacteria can be expected to interact in a

symbiotic relationship with their host cell and, e.g., influence their growth rate and/or toxin

profile and the quantity of toxins produced. Therefore, it is of great importance to distinguish

between bacteria that live inside the dinoflagellate cells from those that are phagocytised and

will be digested by the host dinoflagellate cell. Most dinoflagellates are at least mixotrophic

and a bacterial uptake could be another nutrient source for the alga (Hansen 1991; Schnepf

and Ellbrächter 1992; Jacobson and Anderson 1996; Skovgaard 2000).

In Publication I the bacterial population and their physical association with

dinoflagellates of the genus Alexandrium was identified and localised using two approaches.

First, fluorescently-labelled 23S rRNA probes for the major subclasses of Proteobacteria

(Manz et al. 1992) and 16S rRNA clade specific probes designed for dinoflagellate associated
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bacteria (Brinkmeyer et al. 2000) were used to determine, if Alexandrium spp. harbour an

attached or intracellular bacterial flora by fluorescence in situ hybridization (FISH) in

conjunction with confocal laser scanning microscopy (CLSM). The hybridization with

fluorescently labelled oligonucleotide probes does not differentiate between dead or alive

cells and with it does not deliver any information about intracellular living bacteria or

possible phagocytised bacteria. Therefore, in the second approach the redox dye 5-cyano-2,3-

ditolyl tetrazolium chloride (CTC) was applied succeeding the fluorescence in situ

hybridization, to identify metabolically active bacteria inside the dinoflagellate cells.

1.8.2 Field studies to investigate the presence of dinoflagellate bacteria in seawater during

PSP seasons

There is a large gap of knowledge concerning the investigations on bacteria and

dinoflagellate interactions connected to Paralytic Shellfish Toxin (PST) production by

conducting studies in the environment. To date progress in this area has been slow and limited

to a few publications relating to the detection of PST in bacterial-sized fractions in seawater

(Kodama et al. 1990a; Sakamoto et al. 1992; Levasseur et al. 1996). The complications arose

because of technical complications in determination of the bacterial groups in the marine

environment. Many marine bacteria are not culturable with known culture conditions and

hence cannot specified by conventional methods (Schut et al. 1993).

Visualising individual bacterial cells by using in situ hybridization with fluorescently-

labelled, species-specific ribosomal RNA (rRNA) probes is a suitable tool to perform such

investigations. The rRNA has regions with different degrees of conservation, which makes it

possible to develop probes for higher taxonomic groups, probes for groups of related species,

named ‘clades’, genus specific probes, probes down to species or even strain level (FAIR

Project Report 2001). In general, progress of 16S rRNA gene sequence data for identifying

bacteria associated with toxic and non-toxic dinoflagellates in the environment has been slow.

In Publication II 16S rRNA probes were used to determine the presence of bacteria

originally isolated from bloom forming species of the genus Alexandrium spp. in

environmental samples. The aim of this study was to obtain information about the seasonal

distribution of the dinoflagellate associated bacteria and if they are present during

Alexandrium spp. blooms and periods of shellfish toxicity in a HAB affected area.

Specifically fluorescently labelled 16S rRNA oligonucleotide probes recognising these

bacteria (Brinkmeyer et al. 2000) were applied to Lugol’s preserved environmental samples
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taken at designated monitoring sites at the Orkney Islands, Scotland from March to November

in 1999. At this location a yearly bloom of toxic dinoflagellates occurs and mussel beds are

closed for harvesting when toxicity levels in the mussels exceed those allowed by the EU. The

total abundance of the putatively toxic bacteria was determined by counting the number of

cells exhibiting a fluorescence signal from the 16S rRNA probes. The seasonal abundance of

the dinoflagellate associated bacteria was compared with cell counts of Alexandrium spp. and

with mussel toxicity. The monitoring of the purportedly toxic bacteria at the Orkney Islands

was repeated from March to August in 2000. In this second monitoring year (Appendix to

Publication II) samples were collected from two main sampling sites by the Scottish

sampling monitoring program, to evaluate the physical association and the simultaneous

presence of the putatively toxic bacteria in relation to Alexandrium spp. counts and mussel

toxicity.

1.8.3 Studies on the effect of a bacterial contribution to shellfish toxicity

Today, virtually nothing is known about the effect of bacteria on shellfish toxicity.

Evidence for the involvement of bacteria on shellfish toxicity has been implicated by Kodama

and colleagues (1990) who reported that PST were present in particles of a similar size

fraction (0.45-5 µm) to bacteria in seawater from Ofunto Bay, Japan, during times when

bivalve toxicity increased in the absence of toxic dinoflagellates. The same group (Sakomoto

et al. 1992) later reported that during a bloom of A. catenella, in Tanabe Bay, Japan, particles

smaller than dinoflagellates (5-20 µm) contained a considerable amount of PST, whereas no

significant toxicity was detected in dinoflagellate cells. It was concluded that these particles

could be small ciliates or flagellates, but such organisms were not observed in high numbers

at the time of sampling although many detritus or silt particles were seen in water samples.

Hence, it was speculated that these toxic particles could be detritus/silt with attached toxin

producing bacteria (Sakamoto et al. 1992). This particles can be readily accumulated by

animals, such as bivalves and possible toxify the animal. However, a definitive link between

purportedly toxic bacteria and mussel toxicity has not been established.

In (Publication III) the ability of putatively toxic bacteria to invoke toxicity in the

blue mussel, Mytilus edulis was examined. The aim of this study was to determine, if bacteria

were capable of toxifying shellfish and if so, how prevalent were such bacteria in shellfish

organs. Feeding experiments with putatively toxic bacteria were performed with different

combinations and concentrations of bacteria and together with and without silt to enable an
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attachment of the bacteria to particulate matter. In this way, differences should be determined

in the filtration rate of bacteria attached or not attached to particulate matter by the mussels.

The digestive gland, the hepatopancreas, where toxins become concentrated in mussels, was

dissected and paraffin and cryosections were made. Using oligonucleotide probes, the

presence of the fed bacteria in the tissue sections of the hepatopancreas were examined. The

toxin content of the shellfish tissue was monitored over the course of the experiment with

HPLC.

1.8.4 Reassociation experiments with putatively toxic bacteria into a toxic Alexandrium

tamarense clone

Bacteria have often been found in the physical environment of toxic dinoflagellates

(Doucette and Trick 1995; Gallacher et al. 1997; Doucette et al. 1998; Prokic et al. 1998).

Several putatively toxic bacteria have been isolated from toxic and non-toxic cultures of

Alexandrium tamarense (Ogata et al. 1990; Doucette and Trick 1995; Gallacher et al. 1997).

Hold et al. (2001b) have shown that a number of different bacterial species are associated

with dinoflagellates, some of which are common to each of the dinoflagellate cultures

examined, whereas others appear to be unique to a particular dinoflagellate. So far, only little

is known about the attachment behaviour of bacteria to algal cells (Kogure et al. 1982; Vaqué

et al. 1990; Worm and Sondergaard 1998). The authors used in their studies phase contrast

and epifluorescence microscopy for detection of bacteria attached to algae cells. Also, indirect

methods have been proposed, in which the number of attached bacteria was estimated by

subtracting the total number of bacteria collected before and after chemical treatment and

sonication of the bacterial culture (Albright et al. 1986). However, these treatments dispersed

attached bacteria in the medium. A more suitable way to monitor the attachment behaviour of

bacteria to algae is the use of fluorescence in situ hybridization together with tyramide signal

amplification (TSA-FISH) in conjunction with CLSM (Schönhuber et al. 1997 and 1999).

TSA-FISH enables a strong amplification of the hybridization signal in situ, e.g., to overcome

the autofluorescence of algae cells. Thus, it is possible to monitor the specific attachment

behaviour of bacteria to algae cells and to locate bacteria within the cells. With CLSM it is

possible to enumerate attached bacteria surrounding the entire dinoflagellate cell and also

within the dinoflagellate cells.

In Publication IV the attachment behaviour of two phylogenetically related bacterial

species PTB-1 and PTB-6 to a highly toxic A. tamarense clone was investigated, from which
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the PTB-1 bacteria were originally isolated. It should be determined if bacteria specifically

attach or become intracellular within a specific dinoflagellate strain, or if the attachment

occurs randomly. Group, genus, and species-specific eubacterial probes targeting the 16S

rRNA of these bacteria were tested on this dinoflagellate in culture to simultaneously identify,

localise and quantify the associated bacteria, either attached or intracellular.

2. Publications

2.1 List of publications

This doctoral thesis is based on the following publications:

I. TÖBE, K.; CÓRDOVA, J. AND MEDLIN, L.K.

DETERMINATION OF INTRACELLULAR AND EXTRACELLULAR ASSOCIATED

BACTERIA WITH DINOFLAGELLATES OF THE GENUS ALEXANDRIUM

J. of Plankton Research, to be submitted

II. TÖBE, K.; FERGUSON, C.; KELLY, M.; GALLACHER, S. AND

MEDLIN, L.K. 2001.

SEASONAL OCCURRENCE AT A SCOTTISH PSP MONITORING SITE OF

PURPORTEDLY TOXIC BACTERIA ORIGINALLY ISOLATED FROM THE TOXIC

DINOFLAGELLATE GENUS ALEXANDRIUM

European Journal of Phycology. 36: 243-256

IIa TÖBE, K.; FERGUSON, C.; KELLY, M.; GALLACHER, S. AND MEDLIN,

L.K.

APPENDIX TO PUBLICATION II: MONITORING OF PURPORTEDLY TOXIC

BACTERIA AT TWO PSP MONITORING SITES OF THE ORKNEY ISLANDS IN

2000

III. TÖBE, K.; SMITH, E. A.; GALLACHER, S. AND MEDLIN, L.K.

DETECTION OF BACTERIA ORIGINALLY ISOLATED FROM

ALEXANDRIUM SPP. IN THE MIDGUT DIVERTICULA OF MYTILUS EDULIS

AFTER WATER-BORNE EXPOSURE

Harmful algae, in press
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IV. TÖBE, K.; MEDLIN, L.K.; DOUCETTE, G. AND MIKULSKI, C.

REASSOCIATION EXPERIMENTS WITH BACTERIA INTO A HIGHLY TOXIC

ALEXANDRIUM TAMARENSE CLONE

Microbial Ecology, to be submitted

2.2 Statement of my part of the publications

Publication I

The experiments were planned together with all authors. The experiments were carried out

and analysed by myself. The manuscript was written by me.

Publication II and Appendix to Publication II

The experiment concept was developed together with L.K. Medlin, C. Ferguson and S.

Gallacher, performed and analysed by myself. The manuscript was written in collaboration

with L.K. Medlin. M. Kelly was involved in the collection of environment samples and

presenting Alexandrium counts from the Orkney Islands. Sampling of field samples and

detection of PSP in shellfish was conducted by the Scottish Phytoplankton Monitoring

Program of the FRS Maine Laboratory in Aberdeen.

Publication III

The experiments were planned together with L. K. Medlin, S. Gallacher and E. Smith. The

experiments have been carried out by E. Smith and me. The manuscript was written together

with E. Smith.

Publication IV

The experiments were planned and carried out in cooperation with L. K. Medlin, G. J.

Doucette and C. Mikulski. I have analysed the data and wrote the manuscript.
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2.3 Publication I

DETERMINATION OF INTRACELLULAR AND EXTRACELLULAR ASSOCIATED

BACTERIA WITH DINOFLAGELLATES OF THE GENUS ALEXANDRIUM

TÖBE, K.1; CÓRDOVA, J.L.2AND MEDLIN, L.K.1

1Alfred Wegener Institute, Department of Biological Oceanography, Am Handelshafen 12,

27570 Bremerhaven, Germany
2 Fundación Ciencia para la vida and the Millennium Institute for Fundamental and Applied

Biology, AV. Marathón 1943, Ñuñoa, Santiago and Bios ,Chile, Ingeniería Genética

S.A. Marathón 1943, Ñuñoa, Santiago, Chile

J. of Plankton Research, to be submitted

ABSTRACT

Fluorescently-labelled 16S and 23S rRNA oligodeoxynucleotide probes, group or

clade specific, respectively, were used to identify bacteria associated with Alexandrium spp.

by confocal laser scanning microscopy (CLSM). Bacteria were found to be associated with

Alexandrium tamarense, A. lusitanicum and A. andersonii, intra- and/ or extracellulary,

respectively. The presence of metabolically active intracellular bacteria in dinoflagellates of

the genus Alexandrium was documented with the use of 5-cyano-2,3-ditolyl tetrazolium

chloride (CTC). This compound is reduced by living, respiring bacteria into a water-insoluble

fluorescent formazan (CTF), which fluorescences bright red. Actively respiring bacteria were

detected intracellularly in log and stationary phase-fixed A. tamarense and A. lusitanicum by

epifluorescence microscopy (FM) and CLSM. These results support the given theory that

specific bacteria are an integral part of the physical environment of Alexandrium spp.

Key words: Alexandrium , bacteria, confocal laser scanning microscopy,

cyanoditolyltetrazolium chloride (CTC), dinoflagellates, epifluorescence microscopy, 16S

rRNA probes, 23S rRNA probes, Paralytic Shellfish Poisoning
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INTRODUCTION

Harmful algal blooms (HABs) are increasing in frequency along the coastal regions of

many oceans around the world (Alavi et al. 2001). The production of toxins in HABs

phenomena are often documented, but not always (Plumley 1997). Many of the HAB-toxin

producers are single-cell dinoflagellates that produce Paralytic Shellfish Toxins (PSTs). PSTs

are termed collectively saxitoxins (Kao 1993). Saxitoxins are neurotoxins that block

movement of sodium through nerve cell membranes, thus stopping the flow of nerve impulses

and causing the symptoms of an intoxification called Paralytic Shellfish Poisoning, leading to

paralysis and subsequent death in humans (Mosher et al. 1964; Lassus et al. 1992).

Prokaryotic cells associated with toxic microalgae are postulated to be able to synthesize

autonomously saxitoxins and thus enhance algal toxicity (Kodama et al. 1988; 1990a; Ogata

et al. 1990; Gallacher et al. 1997; Gallacher and Smith 1999; Córdova et al. 2002). Paralytic

Shellfish Toxins (PSTs) have been detected in several bacteria isolated from Alexandrium

spp. (Kodama et al. 1990; Doucette and Trick 1995; Gallacher et al. 1997; Córdova et al.

2002). However, unequivocal spectral evidence of autonomous bacterial saxitoxin production

is still lacking (Gallacher and Smith 1999).

The ecological role of the naturally occurring bacterial-algal associations has mostly

not been clarified and most of the involved bacterial have not been identified (Hold et al.

2001). One important algal-bacterial interaction is the role they play in the rise and demise of

HABs (Doucette 1995). The presence of bacteria within dinoflagellates has been

demonstrated in a number of vegetative stages of microalgae (Silva 1978; Lucas 1982;

Gordon et al. 1994; Rausch de Trauenberg et al. 1995; Doucette et al. 1998; Lewis et al.

2001). These endocytic bacteria likely synthesize nutrients for the host, for example, by

nitrogen fixation or by an increase in enzyme activity, whereas hosts supply optimal habitats

(Fenchel et al. 1993; Gordon et al. 1994).

It has not been clarified, if the bacteria, which have been found within the

dinoflagellates were alive or dead, but it is of great importance to differentiate between those,

that live inside the dinoflagellate cells and those that are phagocytised. Most dinoflagellates

are at least mixotrophic and bacterial uptake could be another nutrient source for the alga

(Schnepf and Ellbrächter 1992; Skovgaard 2000). Phagocytising organisms bear a high risk of

infection by the phagocytised micro-organisms, which resist the cell’s mechanisms of killing

and digestion (Görtz and Brigge 1998). However, Alexandrium species are not known to

phagocytose bacteria directly (Legrand and Carlsson 1998) and are generally considered to be
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mainly autotrophic. However, ciliates or phytoplankton cells have been found in food

vacuoles of A. ostenfeldii (Jacobson and Anderson 1996).

In this study, the presence of bacteria within and around the dinoflagellates by

application of 16S- and 23S ribosomal RNA (rRNA) oligodeoxynucleotide probes was

investigated. It has been shown that the marine bacteria are dominated by a - and

g-Proteobacteria and also by Cytophaga-Flavobacterium-Bacteroides bacteria (Glöckner et al.

1999) and have been found in association with different species of dinoflagellate (Lafay et al.

1995). 23S rRNA probes recognising the major subclasses of Proteobacteria (Manz et al.

1992) and 16S rRNA clade specific probes detecting dinoflagellate associated bacteria were

used to identify the bacterial community of Alexandrium spp. by fluorescence in situ

hybridization (FISH) and CLSM. Alteromonas-clade bacteria belonging to the g-subclass of

Proteobacteria, and Roseobacter-clade bacteria, belonging to the a-subclass of Proteobacteria,

are common in marine environments and are often found associated with microalgae (Lafay et

al. 1995; Doucette and Trick 1995; Gallacher et al. 1997; Hold et al. 2001; Alavi et al. 2001).

Bacteria of the genus Alteromonas are often found with toxic dinoflagellates in culture and

many strains have been reported as purportedly toxic (Buck and Pierce 1989; Tosteson et al.

1989; Doucette and Trick 1995; Onji et al. 1995; Gallacher et al. 1997; Gallacher and Smith

1999). Probes recognising bacteria of the Alteromonas-clade, and probes recognising bacteria

of the Roseobacter-clade, were designed from bacteria originally isolated from Alexandrium

spp. (Brinkmeyer et al. 2000).

The presence of metabolically active bacteria inside dinoflagellates of toxic and non-

toxic species of the genus Alexandrium was investigated by the use of 5-cyano-2,3-ditolyl

tetrazolium chloride (CTC), a monotetrazolium redox dye that produces a fluorescent

formazan (CTF) when it is chemically or biologically reduced. Rodriguez and co-workers

(1992) described the first application of CTC for microscopic visualisation of actively

respiring bacteria in native and nutrient amended environmental samples and in bacterial

biofilms formed on microscope slides. The oxidised form of CTC is nearly colourless and is

non-fluorescent, but this compound is readily reduced via electron transport activity to

fluorescent, insoluble CTF, which accumulates intracellularly (Rodriguez et al. 1992). In

microalgae, the fluorescent formazan is easily detected intracellularly by FM and CLSM,

because of its red fluorescence when illuminated by longwave UV light (>350 nm), after

differential killing procedures of the algae (Córdova et al. 2002). Córdova et al. (2002)

showed that after killing the infected dinoflagellate, intracellular bacterial still remain alive,

and reducing the CTC. Confocal laser scanning microscopy enables the possibility to detect in
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real time, the localization of the intracellular bacteria in the infected dinoflagellates, by

generating optical thin sections (< 1 µm).

MATERIAL AND METHODS

Species and culture methods. The dinoflagellates Alexandrium tamarense BAHME182

(Orkney Islands, UK, toxic), Alexandrium andersonii 012b (Golf of Naples, Italy, toxic),

Alexandrium lusitanicum BAHME91 (Laguna de Obidos, Portugal, toxic), Alexandrium

ostenfeldii KO324 (Limfjord, Denmark, toxic) and Alexandrium taylorii AY1T (Lagoon of

Marano, Italy, non-toxic) were used in this study. The dinoflagellates were maintained in

IMR/2 medium (Eppley et al. 1967) at a photon flux density of 100 µmol m-2 s-1 at 15°C and a

14:10 h light/dark photon cycle.

Fluorescence in situ hybridization (FISH). Seven mlof each dinoflagellate culture

were filtered down in duplicate from each fixation time with a Millipore filter manifold

(Millipore, Bedford, USA) onto black polycarbonate filters, (0.2 µm pore size, 25 mm

diameter [Osmonics, Minnetonka, USA]) and fixed in freshly made 4% paraformaldehyde

(PFA, pH 7.2, set up in 1 X PBS, 0.2 µm filter sterilised) for 1 h at 4°C. The filter was rinsed

in 1 X PBS, dried and dehydrated by a graded ethanol series (50, 80, 100%) for 5 minutes

each. One ml lysozyme solution (5 mg ml-1 in sterile Milli-Q) was applied to each filter and

incubated for 30 minutes at 37°C in a humid chamber to improve probe penetration through

the dinoflagellate cell walls and into the bacterial cells. The enzymatic reaction was stopped

by rinsing the filters three times for 1 minute in 5 ml sterile Milli-Q-water. The filters were

dehydrated again by a graded ethanol series (50, 80, 100%) for 5 minutes each, air dried

(Amann et al. 1995; Schönhuber et al. 1997 and 1999) and cut in four equal pieces with a

sterile razor blade. One quarter of each duplicate was used as a negative control. Each filter

quarter was hybridized together with two different fluorescently labelled oligonucleotide

probes (hybridization pattern, see Fig. 1). The fluorescence label of the oligonucleotide probe

(purchased from Interactiva, Ulm, Germany) was fluoresceinisothiocyanate (FITC), a green

fluorescence dye, cyanin 3 (CY3) a red fluorescence dye or horseradish labelled probes

(HRP) for TSA-FISH. Twenty µl hybridization buffer (20mM Tris/HCL, [pH 8.0], 0.9 M

NaCl, X% deionized formamide (concentration see Table 1), 0.01% SDS) + 2 µl labelled

oligonucleotide probe (50 ng µl–1) were added to each filter quarter. The negative control

quarter was hybridized with the hybridization solution without a probe. Labelled probe BET
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42a was hybridized with a 10-fold excess of unlabelled GAM 42a and labelled GAM 42a

hybridized with a 10-fold excess of unlabelled BET 42a to block unspecific binding sites

(Manz et al. 1992). Labelled probe ROSEO 536R was hybridized 1:1 with unlabelled ROSEO

C536R. This competitor probe matches non-target bacterial strains with 1 mismatch to the

ROSEO 536R probe (Brinkmeyer et al. 2000). Hybridizations were performed at 46°C for 2-3

h in the dark in 25 mm petri dishes, in which the lids were lined with Whatman paper and

soaked in hybridsation buffer. The hybridizations were stopped by rinsing each filter piece in

10 ml wash buffer (20 mM Tris /HCl [pH 8.0], X M NaCl, 5 mM EDTA, 0.01% SDS). The

formamide is replaced in the wash buffer by the NaCl solution with equivalent stringency

(molarity of NaCl, see Table 1). Then the filter pieces were incubated in 25 ml wash buffer

two times for 10 minutes at 48°C while shaking (Amann et al. 1990). The filters were rinsed

in sterile Milli-Q and air dried. Mounting and counterstaining of the cells was performed with

a mixture of 4’,6-diamidino-2-phenylindole, DAPI, (Sigma, USA) and the antifade Citifluor

(Citifluor Products, London, UK). Thirty µl of this mixture (1 ml Citifluor, 0.5 ml sterile

water, 1,5 µl DAPI [stock 1 µg µl-1]) were given directly onto the filter quarters. Coverslips

were placed over the filters and sealed with nail varnish. The slides were kept at –20°C in the

dark until analysed by FM and CLSM.

TSA-FISH. To determine bacteria within the dinoflagellate it is necessary to overcome

the autofluorescence of the target cells. Therefore, additionally a tyramide signal

amplification (TSA) method coupled with fluorescence in situ hybridization was performed

according to Schönhuber et al. (1997 and 1999, slightly modified). The filter pieces

hybridized with HRP-labelled probes (see Table 1) were rinsed in sterile Milli-Q and

equilibrated for 15 minutes in TNT-Buffer (0.1 M Tris-HCL, [pH 7.5], 0.15M NaCl, 0.05%

Tween 20). Forty per cent dextran sulfate (w/v, in sterile Milli-Q-water) used for reducing

unspecific staining of non-target cells during long term incubation was mixed 1:1 in 2 X

Amplification diluent of the TSA-direct Kit (NEN Life Science Product Inc., Boston, USA).

One µl fluorescein tyramide (TSA-Direct Kit) was given to 50 µl of this mixture, to create the

FT-working solution. Twenty five µl of this FT-working solution per filter quarter was used

and the filter pieces were incubated for 35 minutes at room temperature in the dark. To

remove unreacted fluorochrome-tyramide and to stop the enzyme reaction, the filter quarters

were washed twice in TNT-Buffer for 15 minutes at 55°C, rinsed in sterile Milli-Q water, air-

dried and counterstained (see above).
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Epifluorescence microscopy. To show the actively respiring bacteria by FM or CLSM,

respectively, 15 µl of the resuspended CTC samples were added on a glass slide and covered

with small coverslips. The FISH samples needed no further treatment and were analysed

directly after sealing. Epifluorescence was viewed with a Zeiss Microscope (Axioskop 2 plus,

Oberkochen, Germany) fitted for FM under oil immersion (Leica immersion oil, Oberkochen,

Germany) with the appropriate filter set (Zeiss filter sets, 03: UV G 365; 04: blue BP 450-490

nm; 05: green BP 510-560 nm ). The epifluorescence images were aquired with a X 100

objective (Plan-Apochromat, numerical aperture 1,40 Oil DIC) and analysed with the Leica

program Axio vision 3.1.

Confocal laser scanning microscopy. Optical sections were acquired with a confocal

laser scanning microscope (TSNT, 165081, Leica, Oberkochen, Germany) equipped with an

argon-krypton laser. The dinoflagellates were observed using excitation/emission lines of the

krypton argon laser: blue (excitation 488 nm, emission 522/32 nm) to visualise the

fluorescence of CTF and FITC, and green (excitation 568 nm, emission 605/32 nm) to

visualise CY3. The confocal images were acquired with a X 100 objective under oil

immersion (NA Oil Planapo, numerical aperture 1,40 x 1,70, Leica) and a X 40 objective (NA

Oil Planapo numerical aperture 1,25 x 0,75, Leica). The confocal images were analysed using

the Leica-TCSNT program.

CTC treatment of dinoflagellates. Dinoflagellates were harvested at log and stationary

phase by spinning down the cells for one minute at 1000 g. To determine viable bacteria

inside the dinoflagellate cells 1.8 ml of both log and stationary phase algal culture were each

fixed with 2% glutaraldehyde (Polysciences, Warrington PA, USA), or freshly made 2% PFA

in 1 X PBS, for varying times (5, 10, 15, 20 and 30 min). The cells were gently centrifuged

twice for 1 min in sterile seawater. The pellet was resuspended carefully in 250 µl 5-cyano-

2,3-ditolyl tetrazolium chloride (CTC, Polysciences, Inc., Warrington PA, USA), stock

solution: 1 mg ml-1 in sterile seawater, and incubated for 2 h at 15°C in the dark (Rodriguez et

al. 1992; Córdova et al. 2002). After incubation, the samples were gently centrifuged and the

pellet were resuspended in 1 ml sterile seawater. The cells were gently centrifuged again for

15 min and the pellets were resuspended in 0.5 ml sterile seawater. After a last gently

centrifugation for 5 minutes, the pellets were carefully resuspended in 150 µl seawater and

analysed by FM or CLSM. The samples could be analysed directly or stored up to several

days after CTC treatment without any loss of signal.
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RESULTS

FISH experiments. Hybridization with ALF1B, EUB 338R and the Roseobacter-clade

probe (CY3), respectively, revealed bacteria located extracellular attached to log- and

stationary phase dinoflagellates of the species Alexandrium tamarense and A. lusitanicum

(Figs. 2-6). Moreover, intracellular bacteria of the a-subclass of Proteobacteria were found

intracellularly in A. tamarense (Fig. 4). Hybridization with EUB338 revealed bacteria

attached to the cell surface of A. andersonii. Some of these attached bacteria were identified

as Alteromonas-clade bacteria. These bacteria which often produce mucilage were also found

free in the culture of this dinoflagellate (Figs.7-8). FISH with the dinoflagellate A. taylorii and

A. ostenfeldii revealed no bacteria either attached or intracellular.

Treatment of Dinoflagellates with CTC. The different fixation time series of the

dinoflagellates showed that the optimal fixing time was 20 minutes fixation with 2%

glutaraldehyde or 2% PFA to get the best fluorescence signals of intracellular bacteria. CTC-

treated Alexandrium tamarense and A. lusitanicum cells analysed by FM showed bright red

signals inside the log and also stationary dinoflagellate cells at an illumination with UV light

(excitation G 365 nm, Zeiss filter channel 3) and a bright orange signal at an illumination with

bluelight (BP 450-490 nm, Zeiss filter channel 4). These signals appeared at a high

magnification to be bacteria in the cells of A. tamarense and A. lusitanicum.  These

endocytoplasmatic bacteria were alive, because they were able to reduce CTC, which

remained intracellular, and this resulted in bright clear fluorescence signals, easily visible in

FM and CLSM. No metabolically active bacteria were observed in the nucleus of any species

and also no intracellular bacteria were found in A. taylorii, A. andersonii and A. ostenfeldii by

treatment with CTC. The bacteria found within A. tamarense and A. lusitanicum were small

cocci or rod-shaped (Fig. 9). The dinoflagellates A. lusitanicum and A. andersonii were

visibly damaged by treatment with CTC, as seen by FM and CLSM. No damage of the

dinoflagellate A. tamarense, A. taylorii and A. ostenfeldii cells were visible. However, the

bacterial cell integrity was still intact in all species noticed by FM and CLSM. The optical

thin sections (0,7 µm) generated by CLSM show intracellular bacteria in A. tamarense (Fig.

10) and A. lusitanicum (Fig. 11) especially in the outer layers of the dinoflagellate cells.
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DISCUSSION

Many dinoflagellates have been reported to possess intracellular bacteria (Silva 1978;

Lucas; 1982; Gordon et al. 1994; Seibold et al. 2001; Lewis et al. 2001; Alverca et al. 2002).

Bacteria could be also found in loose and tight associations in the physical environment of

phytoplankton (Caldwell 1977; Rothaupt and Güde 1992; Gallacher and Smith 1999).

Members of the genera Aeromonas, Alteromonas/Pseudomonas and Vibrio have been

frequently found in association with toxic dinoflagellates in culture and some isolated strains

have been reported as toxic (Buck and Pierce 1989; Tosteson et al. 1989; Ogata et al. 1990;

Doucette and Trick 1995; Gallacher et al. 1997; Babinchak et al. 1998; Gallacher and Smith

1999; Simon et al. 2002). There are very few studies in which rRNA probes have been used to

identify the bacteria associated with algae. In our study using rRNA probes, Eubacteria, the

a-subclass of Proteobacteria and bacteria of the genus Roseobacter, were identified

extracellularly attached to the cell surface of stationary phase cells of toxic Alexandrium

tamarense and A. lusitanicum strains. Roseobacter-clade bacteria were found in high numbers

associated with stationary phase A. tamarense and A. lusitanicum and free in the culture

media, whereas Alteromonas bacteria were not found attached to or within the dinoflagellates,

but sometimes found in limited numbers free in the culture medium. However, Alteromonas-

clade bacteria were found attached to the cell surface of A. andersonii. In A. tamarense

intracellular bacteria of the a-subclass of Proteobacteria were detected. No intracellular

bacteria were found in A. lusitanicum and A. andersonii. Hybridization with the used

oligonucleotide probes failed to detect associated bacteria either inside nor attached to the cell

surface of A. taylorii and A. ostenfeldii.

Also no intracellular bacteria were found in other A. tamarense strains (PLY173a and

NEPCC 407) after FISH with the universal eubacterial probe by Biegala and co-authors

(2002). The authors suggested that these strains did not contain any intracellular bacteria at

the time of sampling or that intracellular bacteria are able to change from intracellular to

extracellular locations, because they are not necessarily endocellular bacteria. (Biegala et al.

2002). However, in the same Alexandrium-strains bacteria were detected by transmission

electron microscopy (TEM), although in low abundance (Lewis et al. 2001). This shows that

great differences in the bacterial population exist between single species of Alexandrium and

should be investigated further to get more deep insights in the relationship between algae and

their associated bacteria.
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The Roseobacter-clade bacteria detected associated with toxic species of A. tamarense

and A. lusitanicum in this study are widely distributed in a wide range of marine habitats

(Rappé et al. 1997; Giuliano et al. 1999) and have been isolated from toxic dinoflagellate

(Lafay et al. 1995; Hold et al. 2001). A dominance of Roseobacter-clade bacteria, belonging

to the a -subclass of Proteobacteria, together with the occurrence of toxic and non-toxic

dinoflagellates was also described in studies investigating field material of HAB areas (Gerdts

et al. 2000; Töbe et al. 2001). Gerdts et al. (2000) reported a domination by Proteobacteria

during toxic A. tamarense blooms in the area of the Orkney Islands and the Firth of Forth in

1998. Their results indicated, that a-Proteobacteria were closely associated with the blooms

of toxic A. tamarense. Roseobacter-clade bacteria were also found as the major bacterial

group in toxic dinoflagellate of the genus Prorocentrum lima, a known diarrhoetic shellfish

poison producing dinoflagellate (Prokic et al. 1998).

It is possible that intracellular bacteria are difficult to detect by the use of

oligonucleotides, e.g., because of weak hybridization results and/or a decreased probe

penetration into the dinoflagellate cell. Only metabolic active bacteria can be expected to live

in a symbiotic relationship with their host algae cell and, e.g., influence their growth rate

and/or toxin profile and the quantity of toxins produced. Therefore, it is of great importance to

distinguish between bacteria that live inside the dinoflagellate cells from those which are

phagocytised and digested by the host cell. This was achieved with the use of the CTC

compound. CTC serves as an indicator for the detection of metabolically active bacteria

within microalgae, because it can only be reduced to the water insoluble fluorescent

formazan, when metabolically active cells, such as bacteria, reduce it by capturing electrons

derived from the respiratory chain and therefore preventing its release from the cell

(Rodriguez et al. 1992; Córdova et al. 2002). However, CTC caused sometimes a background

coloration of the dinoflagellates probably because of a residual respiratory activity of the

algae (Córdova et al. 2002) and could hide small bacteria.

Metabolically active bacteria were identified in Alexandrium tamarense and in A.

lusitanicum. However, no intracellular bacteria could be detected by FISH in A. lusitanicum

with the used oligonucleotide probes. Therefore, further characterisation of these

metabolically active bacteria by FISH applications is necessary. Nevertheless, our findings

are very important suggesting that these bacteria live as symbionts or as commensals in the

microalgae. The other investigated dinoflagellates Alexandrium taylorii, A. andersonii and A.

ostenfeldii revealed no metabolically active bacteria within the dinoflagellate cells. Our study

has made significant progress in the study of the bacteria associated with dinoflagellates.



36

Using rRNA probes it was possible to identify the genus/species of the bacteria attached to

the cell surface of Alexandrium spp. and also endocytic in A. tamarense. Moreover,

metabolically active bacteria within dinoflagellates of the genus Alexandrium were shown by

the use of the compound CTC. This data provides important information about the association

between bacteria and algae. Further characterisation of the bacterial flora of dinoflagellates is

necessary to show single bacterial species, which are associated with dinoflagellates and

whether the bacteria are located extra- or intracellular by the application of species-specific

molecular probes. Additionally, other strains of the used dinoflagellates should be screened

for attached or intracellular bacteria to compare the bacterial flora between different strains of

one dinoflagellate species. Also, subcultures of the same dinoflagellate strain needs to be

screened for bacteria to confirm our findings. With these strategies in place we can begin to

unravel the complex association between bacteria and microalgae in relation to toxin

synthesis and their role in HABs.
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Fig. 1: FISH pattern: FITC-labelled oligonucleotide probes marked in green; CY3-
labelled oligonucleotide marked in red; HRP-labelled oligonucleotides marked in
green, unerlined.

NON-EUB

338R

BET42aRoseobacter-
clade/536R

EUB 338R

ALF 1b

Alteromonas-
clade/137R

EUB 338R

EUB 338R

EUB 338R

GAM 42a

No probe



44

Table 1: Oligonucleotide probes used in this study

Probe name Sequence

5’-------------------- 3’

Target

organisms

E. coli target

sites and

rRNA position

Formamide

concentration

NaCl Molarity

wash buffer

ALF1b cgt tcg (c/t) tct gag

cca g

a-Proteobacteria 19-35

16S

20% 0.225 M

BET42a gcc ttc cca ctt cgt tt b-Proteobacteria 1027-1043

23S

35%  80 mM

GAM42a gcc ttc cca cat cgt tt g-Proteobacteria 1027-1043

23S

35%  80 mM

EUB 338R gct gcc tcc cgt agg agt Eubacteria 338-355

16S

0-20% 0.225 M

AMAC 137R tgt tat ccc cct cgc aaa Alteromonas-

clade

137-154

16S

   0%    0.9 M

ROSEO 536R caa cgc taa ccc cct

ccg

Roseobacter-

clade

536-553

16S

18% 0.262 M

ROSEO C536R caa cgc tag ccc cct

ccg

Roseobacter-

competitor probe

536-553

16S

18% 0.262 M
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22
Fig. 2: CLSM optical sections of Alexandrium tamarense, 0,7 µm thick; 568 nm excitation FISH with
EUB 338R, FITC-labelled. Arrows show hybridized bacteria attached to the cell surface of the
dinoflagellate. X40 enlargement.
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3

Fig. 3: CLSM optical sections of Alexandrium tamarense, 0,7 µm thick; 568 nm excitation FISH with
Roseobacter-clade/536R, CY3 labelled. Arrows show hybridized bacteria attached to the cell surface
of the dinoflagellate. X 40 enlargement.

3
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Fig. 4: CLSM Optical sections o f Alexandrium tamarense, 0,7 µm thick, 450-490 nm excitation. FISH with
ALF1b, HRP-labelled. Arrows show intracellular bacteria of the dinoflagellate. X 40 enlargement.
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NC

Fig. 5: CLSM optical sections of Alexandrium lusitanicum, 0,7 µm thick, 568 nm excitation. FISH
with EUB 338R, FITC-labelled. Arrows show hybridized bacteria attached to the cell surface of the
dinoflagellate. X 40 enlargement.

5
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Fig. 6: CLSM optical sections of Alexandrium lusitanicum, 0,7 µm thick, 450-490 nm excitation. FISH
with Roseobacter-clade/536R, CY3-labelled. Arrows show hybridized bacteria attached to the cell
surface of the dinoflagellate. X 40 enlargement.

6
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Fig. 7: CLSM optical sections of Alexandrium andersonii, 0,7 µm thick, 450-490 nm
excitation. FISH with EUB 338R, FITC-labelled. Arrows show hybridized mucilage
producing bacteria attached to the cell surface of the dinoflagellate. X 40 enlargement.

7
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Fig. 8: CLSM optical sections of A. andersonii, 0,7 µm thick, 450-490 nm excitation. FISH
with Alteromonas-clade137R, CY3-labelled. Arrows show hybridized mucilage producing
bacteria attached to the cell surface of the dinoflagellate. X 40 enlargement.

8
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Fig. 9: Fluorescence microscopy of Alexandrium tamarense and Alexandrium lusitanicum. Excitation: UV G 365 nm. a) A tamarense. b)
A. lusitanicum. The dinoflagellate cells were fixed without killing intracellular bacteria and visualized through treatment with CTC.
Arrows show intracellular bacterial like structures which exhibit a pink fluorescence. The dinoflagellates exhibit also a pink fluorescence,
because of a residual respiratory activity of the cells. X 100 enlargement.

9

a b
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Fig. 10: Alexandrium tamarense CLSM optical sections; 0,7 µm thick, 568 nm excitation. The dinoflagellates
were fixed without killing intracellular bacteria and visualized through treatment with CTC. Arrows show
intracellular bacterial like structures. X 100 enlargement.

10
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Fig. 11: CLSM optical sections of Alexandrium lusitanicum; 0,7 µm thick, 568 nm excitation. The dinoflagellates
were fixed without killing intracellular bacteria and visualized through treatment with CTC. Arrows show
intracellular bacterial like structures. X 100 enlargement.

11
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SEASONAL OCCURRENCE AT A SCOTTISH PSP MONITORING SITE OF

PURPORTEDLY TOXIC BACTERIA ORIGINALLY ISOLATED FROM THE TOXIC

DINOFLAGELLATE GENUS ALEXANDRIUM

TÖBE, K.1; FERGUSON, C.2; KELLY, M.2; GALLACHER, S2. AND MEDLIN, L.K.
1Alfred Wegener Institute, Department of Biological Oceanography, Am Handelshafen 12,

27570 Bremerhaven, Germany
2Fisheries Research Services Marine Laboratory, Aberdeen, Scotland, UK

European Journal of Phycology 2001. 36: 243-256

ABSTRACT

There is increasing evidence that bacterial/algal interactions play a role in Harmful

Algal Bloom (HAB) ecology. Bacteria that are associated with bloom-forming algal species,

specifically toxic dinoflagellate algae, have been implicated in the production and

biotransformation of paralytic shellfish toxins (PSTs). To clarify the role that these bacteria

may play in the production of PSTs, it is desirable to identify and localize the bacteria

associated with the dinoflagellates and enumerate them during the course of the algal blooms

that the toxic dinoflagellates produce. Because 16S rRNA-targeted probes offer the possibility

of both, we previously made and tested probes for some putatively toxic bacteria isolated

from cultures of the PSP-related dinoflagellates Alexandrium tamarense, A. affine and A.

lusitanicum. The bacteria isolated from the dinoflagellates belong primarily to the a-

proteobacterial group of Roseobacter and the g-proteobacterial group of Alteromonas. Here,

we report the successful application of these probes to Lugol's fixed seawater samples. We

detected these bacteria in high numbers in the water column when Alexandrium spp. were

both present and absent, and during periods when mussels contained PSTs.

Key words: dinoflagellates, paralytic shellfish toxins, PSP, purportedly toxic bacteria, 16S

rRNA probes
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INTRODUCTION

Paralytic shellfish poisoning (PSP) is a life-threatening illness in humans who

consume seafood contaminated with paralytic shellfish toxins (PSTs) (Kao 1993). These are

potent neurotoxins composed of the primary toxin, saxitoxin (STX), and at least 20 known

derivatives that vary in toxicity (Oshima 1995). Bivalve molluscs become contaminated with

PSTs primarily through filter-feeding some species of PST-producing dinoflagellates (viz.,

four species of the dinoflagellate genus Alexandrium, Pyrodinium bahamense var.

compressum and Gymnodinium catenatum; Cembella 1998). PSTs are also known to be

produced by three species of cyanobacteria: Aphanizomenon flos-aquae (Mahmood and

Carmichael 1986), Anabaena circinalis (Negri et al. 1997) and Lyngbya wollei (Onodera et al.

1997), and by the calcareous rhodophyte, Jania sp. (Cembella 1998).

A bacterial origin of PSTs was suggested by Silva (1982) based on the presence of

bacteria-like particles within dinoflagellate cells. A PST-producing intracellular bacterium

named ‘Moraxella’ sp. was subsequently isolated from Alexandrium tamarense (Kodama et

al. 1988; Kodama 1990) and bacteria were observed within the dinoflagellate nucleus

(Kodama et al. 1990a). This bacterium was later identified as belonging to a new genus of a-

Proteobacteria rather than to Moraxella, a g-Proteobacterium (Kopp et al. 1997). However,

claims of intracellular bacteria have not been substantiated by other researchers (Doucette et

al. 1998 and references therein), although research on Alexandrium cultures has shown the

presence of bacteria-like structures underneath the theca (A. lusitanicum; Franca et al. 1995;

1996) or attached to the theca (Prorocentrum micans; Rausch de Traubenberg and Soyer-

Gobillard 1990). Most recently, Lewis et al. (2000) and Córdova et al. (2002) have

demonstrated unequivocally intracellular bacteria in various species of Alexandrium using

several different detection methods. Since the early reports, heterotrophic bacteria isolated

both from cultures of toxic dinoflagellates and from field samples have been reported to

synthesize PSTs, with toxins detected by a number of methods both biological and chemical,

including confocal laser scanning microscopy. However, despite a large body of data,

definitive spectral evidence for PST production by bacteria remains lacking and the bacteria

are best described as purportedly toxic bacteria (Kodama et al. 1990; Ogata et al. 1990;

Doucette and Trick 1995; Gallacher and Birkbeck 1995; Levasseur et al. 1996; Gallacher et

al. 1997; Gallacher and Smith 1999 and references therein; Córdova et al. 2002).

It has also been suggested that bacteria may contribute to dinoflagellate toxicity

indirectly via mechanisms that are currently unknown, although bacterial adhesion to the
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dinoflagellate cell wall has been suggested (Gallacher and Smith 1999). It is well established

that the phenotypic properties of bacteria may be dramatically altered upon attaching to a

surface (Costerton et al. 1995). In the case of PSTs, Doucette and Powell (1998) demonstrated

that bacterial enhancement of dinoflagellate toxicity levels was contingent upon presumed

physical contact between the bacterium Pseudomonas stutzeri and the dinoflagellate A.

lusitanicum. How the bacterium might affect dinoflagellate toxicity levels if they occur

intracellularly remains conjectural. However, Alexandrium species are not known to

phagocytose bacteria directly (Legrand and Carlsson 1998). Therefore, perhaps not

surprisingly, claims of intracellular bacteria have not been widely substantiated by other

researchers (Doucette et al. 1998 and references therein). However, Córdova et al. (2002),

using a vitality test, have demonstrated that intracellular bacteria in A. catenella are alive and

can divide. It is also of interest to note that dinoflagellate bacteria have been shown to

biotransform PSTs (E. A. Smith, personal communication), although the affect of adhesion or

intracellularity on this process has not been investigated. Nevertheless, describing the spatial

relationship between bacteria and host algae is essential to understand any mechanism by

which bacteria might modulate algal toxin production, either extracellularly or intracellularly.

One of the first steps in investigating this relationship to identify the bacterial

population associated with dinoflagellates. Recent studies have shown that the dinoflagellate

microflora in laboratory culture tends to be restricted to the a-Proteobacteria (primarily

Roseobacter spp.), g-Proteobacteria (mainly Alteromonas spp.) and to the cyto-subclasses of

the Cytophaga among the Eubacteria (Hold et al. 2001a). It is also important for

understanding of bacteria/dinoflagellate interactions and PST production to conduct studies in

the environment. However, progress in this area has been slow and limited to a few

publications relating to the detection of PSTs in bacterial-sized fractions in seawater (Kodama

et al. 1990b; Sakomoto et al. 1992; Levasseur et al. 1996). Visualising individual bacterial

cells through in situ hybridization of fuorescently labelled, taxon specific ribosomal RNA

(rRNA) probes is one way of furthering these investigations. Ribosomal RNA probes are

designed that they can be used to detect strains of certain bacterial species (Amann et al.

1996).

Here we describe the use of rRNA probes (Brinkmeyer et al. 2000) for in situ

identification in field material of bacteria previously isolated from laboratory cultures of

Alexandrium tamarense (Hold et al. 2001b), including several putatively toxic bacterial

strains. The abundances of the bacteria were traced through integrated water column samples

taken at designated monitoring sites at the Orkney Islands, Scotland, by applying rRNA
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probes designed to be specific for the bacterial clade and species to which these dinoflagellate

bacteria belong (Brinkmeyer et al. 2000). The abundance of the dinoflagellate bacteria,

including purportedly toxic strains, was compared with the total counts for Alexandrium spp.

and with mussel toxicity.

MATERIALS AND METHODS

Sample sites. Integrated water samples were collected using a 10 m hose at several

different sites at the Orkney Islands (see Fig. 2), immediately fixed in acid Lugol's

preservative (Throndsen 1978) and then transferred to brown bottles. Between samplings, the

hose was flushed before the next sample was taken. Most samples were taken at Scapa Flow

and The String, whereas four other sites were randomly sampled throughout the 1999

monitoring season (see Fig. 2, Table 2). The phytoplankton-monitoring program of the FRS

Marine Laboratory in Aberdeen, UK, analysed these samples in 1999. A modification of

normal monitoring procedure was implemented in attempts to maximise the number of

bacteria recovered in the settled sample. This involved allowing the samples to settle for 1

week, after which 900 ml of supernatant was removed to give the ‘supernatant sample’. The

bottom 100 ml was allowed to settle for a further 4 h. These were examined by inverted light

microscopy and the number of Alexandrium spp. cells recorded.

For the purpose of bacterial analysis, fractions from both the settled and supernatant

(approximately 40 ml of total seawater) were examined because a preliminary study showed

that not all the bacteria present in the water column would settle after 1 week in a settling

chamber. We examined 41 samples collected approximately weekly between February and

November 1999 and stored in brown bottles at 4 °C until analysed.

Mouse bioassay. The mouse bioassay procedure was performed in accordance with the

official mouse bioassay methodology (AOAC 1990) for the detection of PSP in shellfish by

FRS Marine Laboratory as part of the Scottish monitoring program.
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Fluorescence in situ hybridization (FISH). A 4 ml aliquot of the settled water sample

plus 40 ml of the corresponding supernatant sample were well mixed to make a total seawater

sample of 40 ml and filtered at 15 kPa onto a 0.2 µm pore-size white polycarbonate

membrane (Millipore, Eschborn, Germany), diameter 2.5 cm, with a glass microfibre

supporting filter, diameter 2.5 cm (Whatman, Maidstone, UK) in a glass vacuum filter holder

(Sartorius, Göttingen, Germany). Each sample was filtered in duplicate for the in situ

hybridizations. One filter was for the hybridization of the Alteromonas-clade probe and its

taxon-specific probes. The replicate was for the hybridization of the Roseobacter-clade probe

and its taxon-specific probes. The filters were fixed in 4% paraformaldehyde (PFA) (pH 7.2,

freshly made, i.e. not older than 2 weeks, in 1 X phosphate-buffered saline, PBS) and filter

sterilized (0.2 µm), then incubated overnight at 4 °C directly in the filter chamber. The

samples were rinsed with 10 ml 1 X PBS and with 10 ml sterile distilled water. Then the filter

was dried at room temperature for 5 min. The upper side of the filter was marked with a

pencil. Each filter was dehydrated through a graded ethanol series : 50% / 80%/100% for 5

min each, then dried at room temperature and cut into four pieces. Each filter quarter was

hybridized with two different oligonucleotide probes (Table 1).

The probe combinations on the first filter from each sample were as follows:

Quarter 1: Alteromonas-clade probe/137R, labelled with cyanin 3 (CY3), a red fluorescent

dye and the eubacterial probe 338R, labelled with fluoresceinisothiocyanate (FITC), a green

fluorescent dye (Amann et al. 1995). Quarter 2: 4avs3/210R CY 3-labelled and the

Alteromonas-clade/137R probe, FITC-labelled. Quarter 3: 407-2/209R CY 3-labelled and the

Alteromonas-clade/137R probe, FITC-labelled. Quarter 4: 253-19/175 R CY 3-labelled and

the Alteromonas-clade/137R probe, FITC-labelled.

The probe combinations on the second filter from each sample were as follows:

Quarter 1: Roseobacter-clade/536R probe CY 3-labelled and the eubacterial probe 338R,

FITC-labelled. Quarter 2: 667-12/191R CY 3-labelled and the Roseobacter-clade/536R

probe, FITC-labelled. Quarter 3: 667-19/1241R CY 3-labelled and the Roseobacter-

clade/536R probe, FITC-labelled. The oligonucleotide probe 667-19/1241R is no longer

taxon-specific as determined by our most recent probe match searches done during the

preparation of this paper. Quarter 4: 407-20/1446R, CY 3-labelled and the Roseobacter-clade

536R probe, FITC-labelled.

The 5´-end labelled probes were obtained from MWG (Ebersberg, Germany).

In this manner, each filter quarter was hybridized with a taxon-specific and a higher

taxonomic probe. The hybridizations were performed in a 35 mm Petri dish. Each filter
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quarter was saturated with 20 µl hybridization buffer (20 mM Tris-HCl pH 8.0; 0.9 M NaCl;

0.01% SDS, x% formamide) + 50 ng µl-1 of each oligonucleotide probe + 50 ng µl-1 of

competitor probe, if necessary. The formamide concentration varied with each probe and is

based on the annealing temperature of the probe to its target (Table 1). Only the Roseobacter-

clade probe presents a single mismatch with its closest neighbour and must be used with a

competitor probe to block the sites of the nearest neighbours to prevent false positives from

occurring (Amann et al. 1990 and references therein). The lid of the Petri dish also contained

a filter paper, saturated with hybridization buffer to create a moisture chamber for the

hybridization. The dishes themselves were put into another box, which contained more wet

tissues to ensure enough humidity for the hybridization. The hybridizations were performed at

46 °C for 2-3 h in the dark, to prevent fading of the probes in the light. The hybridization was

stopped by adding 5 ml of wash buffer (20 mM Tris-HCl; X M NaCl (where X is the content

of NaCl, replacing the formamide in the hybridization buffer, as given in Table 1); 5 mM

EDTA, 0.01% SDS). The filter pieces were washed two times for 20 min at 48 °C with gentle

shaking. After the washes, the filter pieces were dipped in sterile distilled water and dried at

48 °C for 15 min. The filter quarters from one filter were assembled together onto a slide.

Counter-staining was performed using 25 µl 4´,6-diamidino- 2-phenylindole (DAPI) solution:

1 ml Citifluor (Citifluor Products, Canterbury, UK) + 0.5 ml sterile .distilled water + 1.5 µl

DAPI (stock solution 1 µg ml-1). The quarters were fixed with a coverslip and sealed with nail

polish. The slides were viewed with a Zeiss Microscope equipped for epifluorescence

microscopy under oil immersion with the appropriate filter set (Zeiss filter sets 02, 09 and

14). The entire filter quarter was scanned under 1000 enlargement and all bacteria exhibiting a

positive signal were counted. Because of the limited material available for analysis, we did

not replicate the counts but instead scanned and counted the entire filter rather than counting

replicate fields.

Total bacterial counts. To count the total bacterial population in the environment

sample a similar proportion of settled and supernatant sample was filtered onto a 0.2 µm pore

size black polycarbonate membrane (Millipore, Bedford, MA) as described above. The cells

on the filter were fixed in 4% PFA buffered with 1 X PBS for at least 1 h at 4 °C. The filters

were air-dried and incubated in 80% ethanol for 5 min. The ethanol bleached the black filters

and the bacteria were counted on these filters. The bacteria were counter-stained with DAPI

(as above), viewed with a Zeiss microscope equipped with epifluorescence microscopy under

oil immersion (x 100) and counted using the DAPI filter set (Zeiss 02). DAPI counts were
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used for total bacterial counts instead of using counts obtained with the EUB 338R probe

because of the small taxonomic limitations of this probe and because of the potential

difficulty in detecting cells with low rRNA content in field material.

Total bacterial counts and counts for Alteromonas- and Roseobacter-clade bacteria

were very high. Therefore, we counted at least 20 microscope fields in three different areas of

the filter pieces rather than scanning the entire filter as we did for the species-specific probe

counts, which were rarer events.

The total bacterial cell numbers per millilitre were calculated with following formula:

Bacterial numbers ml -1= Bacteria per microscope field (average) x (effective filter

surface/microscope field surface) / ml of sample filtered

Statistical analysis. To determine the correlation between the increase/decrease in the

bacteria and the increase/decrease in cells of Alexandrium spp. and mussel toxicity, we

determined the correlation coefficient according to Pearson product moment correlations

using the statistical software MINITAB. We tested both untransformed and transformed

(square root transformation) correlations of either the total counts for the Roseobacter-clade

or Alteromonas-clade bacteria with Alexandrium tamarense counts or with mussel toxicity.

To test the correlation of the taxon-specific bacteria with Alexandrium or with mussel

toxicity, we determined the correlation of all of the specific bacteria pooled together and with

4avs3 alone, because this bacterium was the most abundant of the various bacterial species

tested. Significance was tested at the 0.05 level.

RESULTS

Probes and sampling sites. Probes to bacteria obtained from PSP-producing

dinoflagellates (Brinkmeyer et al. 2000; Hold et al. 2001 b, Table 1, Fig. 1) were successfully

applied to Lugol's-fixed water samples. These samples were collected from six sites in the

Orkney Isles during 1999 as part of the Scottish phytoplankton monitoring program (Tables 2,

3; Fig. 2). The phylogenetic affiliations of the bacteria for which clade-, genus- and taxon-

specific probes were available are shown in Fig. 1. The probes were originally tested for

specificity with laboratory cultures employing dot blot and in situ hybridization formats

(Brinkmeyer et al. 2000); however some further method development was required before the
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probes could be applied to Lugol's-fixed water samples. This involved fixing the filters

containing the trapped bacteria from the water samples overnight in 4% PFA in 1 X PBS prior

to hybridization and maintaining a good moisture chamber to prevent the filters from drying.

This procedure resulted in stronger hybridization signals.

Additionally, as several weeks could elapse between collection of the water samples

and analysis, the stability of the bacterial numbers in the water samples was examined.

Repeated counts of total bacteria counter-stained with DAPI from water samples at different

intervals in a time period over 10 months showed no significant loss in the number of fixed

bacteria (see below).

FISH. The total abundance of bacteria belonging to both Alteromonas- and

Roseobacter-clades was determined by counting the number of cells exhibiting a fluorescent

signal from the 16S rRNA probes. Alteromonas- and Roseobacter-clade bacteria and several

of the taxon-specific bacteria in these clades were present in the preserved water samples.

With water samples from the two main sites (Scapa Flow and The String), the total

bacterial counts as defined using DAPI staining remained relatively stable (average cell count

± SD over the entire sampling period): The String, 2.20 x 105 cells ml-1 237 x 10; Scapa Flow,

1.43 x 105 and cells ml-1 ± 231.5. One example of the stability of cell counts at one site over

time is from Scapa Flow, where the average count ± SD over two separate counts taken

several months apart was 6.95 x 104 ± 500. In contrast the cell counts for the Alteromonas-

clade using clade-specific probes ranged over the entire sampling period from 0 to 66 x103

cells ml-1 at The String and from 0 to 63 x 103 cells ml-1 at Scapa Flow, representing 30-44%

of the total bacteria at The String and Scapa Flow. Similarly, for Roseobacter-clade bacteria

as determined by clade-specific probes, counts ranged from 0 to 48 x 103 cells ml-1 at The

String and from 0 to 54x 103 cells ml-1 at Scapa Flow or about 22-37% of the total bacterial

cells present at the two sites, respectively.

Bacteria belonging to the Alteromonas- and Roseobacter-clades occurred at low levels

at both sites in April (days 91-120), accumulated from May (days 121-151) onwards, peaked

in June (days 152-181) and dropped markedly in July (days 182-212), with only low numbers

detectable in August (days 213-243) through to November (Figs. 3, 4). For total counts of

Alteromonas-clade bacteria, peak population densities at The String occurred about 2 weeks

after peak densities at Scapa Flow (Fig. 4). Abundance of individual species basically

followed this same pattern, again with maximum bacterial numbers occurring in June with the

exception of Alteromonas at The String where two peaks in Alteromonas-clade bacteria
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occurred at Scapa Flow: one in April and another in July (Figs. 5-8), although these were an

order of magnitude lower than the maximum counts for these bacteria at The String.

Although the taxon-specific probes identified populations of both clades, the numbers

identified by the species probes were only about 1% of those detected by the clade probes.

Sites other than Scapa Flow and The String were randomly sampled during the phytoplankton

and shellfish monitoring program (Table 2). In the few samples tested, Alteromonas species-

specific bacteria were detected at two of the four sites in low numbers whereas particular

Roseobacter species were detected at one site, again in low numbers (Table 3).

At the same sites at the Orkney Islands in 1999, toxic Alexandrium spp. counts were

obtained by the Scottish phytoplankton monitoring program (Figs. 5-8). At Scapa Flow,

Alexandrium exhibited several pulses in abundance during the 1999 sampling season, with

highest counts of 240 cells L-1 on 2 June 1999 (days 153; Figs. 3-6). At The String,

Alexandrium had only one major maximum of 560 cells L-1 on 7 July 1999 (day 188; Figs. 3,

4, 7, 8; Table 4). At Scapa Flow, the highest Alexandrium count occurred as numbers of

Roseobacter-clade bacteria were increasing (Fig. 3). This resulted in a weak, significant

positive correlation between the two data-sets (Table 4). The peak in Alexandrium numbers

also coincided with a peak in the Roseobacter species probe for strain 407-20 (Fig. 5).

However, there was no significant correlation between the Alexandrium counts and the

specific Roseobacter species (Fig. 3, Table 4). The numbers of Alteromonas-clade counts

were positively correlated with increasing Alexandrium numbers, which did lead to a weakly

significant correlation between the two parameters (Fig. 4, Table 4). For specific Alteromonas

species, the highest counts occurred just after the Alexandrium peaks and were negatively but

nonsignificantly correlated (Fig. 6, Table 4).

At The String, Roseobacter-clade numbers increased as the Alexandrium numbers

increased but this correlation was not significant (Fig. 3, Table 4). With the Alteromonas-

clade bacteria the same pattern emerged as with Roseobacter-clade; however, in this instance

the two were more highly positively correlated, which led to a weakly significant correlation

between the Alteromonas-clade and Alexandrium numbers (Fig. 4, Table 4).

At The String, peaks of Roseobacter species identified by the probes preceded the

peak in Alexandrium numbers by 3 weeks to 1 month (Fig. 7), with a positive but non-

significant correlation. Highest Alteromonas species counts at The String either coincided

with the peak in Alexandrium counts or preceded it by several weeks (Fig. 8). This led to a

significant positive correlation between the Alteromonas spp. counts and the Alexandrium

numbers (Table 4). Alteromonas strain 4avs3 was negatively correlated with Alexandrium
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spp. at Scapa Flow. However, the number of times at The String when this strain was detected

was too low (only two positive dates) to permit statistical evaluation of the data.

Mussels (Mytilus edulis) from the two main water sampling sites were analysed for

PSTs. At Scapa Flow, PSTs were first detected in mussels on 6 April 1999 (day 153) when

the Alexandrium numbers first increased (Figs. 5, 6). Thereafter mussel toxicity fluctuated

alongside that of the dinoflagellate cell numbers, with the highest mussel toxicity being 60 µg

100 g-1 mussel tissue on 8 June 1999 (day 159; Figs. 5, 6). One exception to this is that

following the high Alexandrium counts on 3 May and 14 May 1999 (days 123, 134), the next

mussel sampled, on 16 May (day 136), showed no toxicity. On 8 June 1999, the second

highest numbers of Alteromonas- and Roseobacter-clade bacteria were recorded (4.3x 104

cells ml-1 and 4.6 x 104 cells ml-1), respectively. Three purportedly toxic bacteria, viz., 407-2,

4avs3 and 253-19, also reached their highest numbers on 8 June 1999 at Scapa Flow (Fig. 6).

However, of the 12 mussel samples analysed for PSTs only six were obtained on the same

day as the water samples, of which two were negative. Therefore, at The String there were

insufficient data to determine whether there was a significant relationship between the PST

concentration in mussels and the Alexandrium or bacterial counts. At Scapa Flow, bacterial

numbers detected by both clade and species probes were positively correlated with mussel

toxicity but none of these correlations was significant. The toxic bacterium 4avs3 was

negatively correlated with Alexandrium counts but positively correlated with mussel toxicity,

both non-significantly.

One month later, on 5 July 1999 (plotted two days later on day 188 in Fig. 8), the

highest amount of PSP, 89 µg 100 g-1 mussel tissue, was detected at The String, with peak

dinoflagellate numbers and Alteromonas species-specific numbers occurring 2 days later (Fig.

8). However, there were insufficiently matched data or positive shellfish samples to determine

an association either with Alexandrium or bacterial counts at The String. On 7 July 1999 (day

188), the Alteromonas-clade bacterial counts were 5.6 x 103 ml-1 and the Roseobacter bacteria

were 1.1 x 104 ml-1 but the purportedly toxic bacteria were low. Where sufficient data were

available to allow a correlation to be calculated, there were no significant correlations

between mussel toxicity and the occurrence of bacteria.
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DISCUSSION

Hold et al. (2001b) have shown that bacteria associated with laboratory cultures of

PST-producing dinoflagellates belong to the a- and g-Proteobacteria and the Cytophaga-

Flavobacter-Bacteroides. From the Proteobacteria, bacteria of the Roseobacter- and

Alteromonas-clades dominated. This study demonstrates that rRNA probes designed for these

bacteria (Brinkmeyer et al. 2000) were successfully used in their detection from Lugol's-fixed

water samples obtained from the Orkney Isles, particularly The String and Scapa Flow, during

the Scottish phytoplankton monitoring program over the period April to November 1999. The

successful application of FISH technology to samples containing Lugol's preservative has not

been reported previously and is potentially useful for analysing fresh or archived field

samples of both bacteria and algae. We have successfully detected bacteria using FISH in

samples from as far back as 1997 (data not shown), but the signal is considerably diminished

compared with that obtained in fresh samples in 1999 (Figs. 9-13). Therefore, caution must be

applied when using the technique described in this paper on archived samples, especially if

they have been settled, as not all bacterial cells will settle after 1 week. A possible alternative

approach is the use of dot blot hybridizations, as these gave stronger signals than FISH in

older samples (data not shown). It may also be possible to improve the FISH signal with a

tyramide signal amplification (TSA) method (Schönhuber et al. 1997).

At least three Alexandrium species have been reported from waters of the Orkney Isles

(A. tamarense, A . ostenfeldii and A. minutum; Elbrächter, personal communication) and,

although they do co-occur, only one species of the three will dominate at any one time

(Gerdts, personal communication). The source of these dinoflagellates is unknown; Hummert

et al. (2001) suggest that Alexandrium spp. may be carried into Orkney waters from the open

ocean by currents, as determined by drift buoy experiments conducted at single time points in

1999 and 2000 (Gerdts, personal communication). Certainly counts 100 times greater than

those reported here have been found both north-west and south-east of the Orkney Islands.

Conversely, Alexandrium cysts have been detected in the area, thereby providing potential

seed beds for the vegetative dinoflagellate cells (Macdonald, personal communication).

Nevertheless, Alexandrium spp. and shellfish contaminated with PSTs (Howard, personal

communication) occur yearly in this area, and are why this site was chosen for this study.

Our work utilised data and samples from a monitoring program that operates, and is

modified throughout the season, to meet regulatory authority requirements. We also used

clade-specific probes to the genera Roseobacter and Alteromonas and species-specific probes



66

for each clade. The Roseobacter species-specific probes were designed to bacteria closely

related to Antarctobacter heliothermus, 667-12, and to a further two bacteria more closely

related to Roseobacter sp., Roseobacter sp. Shippigan strain, 667-19, and Roseobacter

gallaeciensis, 407-20, (Brinkmeyer et al. 2000; Fig. 1). The species-specific probes for the

Alteromonas- clade consisted of probes to three different unclassified Alteromonas species

(Fig. 1). All these bacteria were previously isolated from Alexandrium cultures taken from

different parts of the world (Hold et al. 2001b).

As bacteria cross-reacting with the probes were easily detected, this would suggest

that they were actively growing members of the bacterioplankton. However, a word of

caution is warranted. As the vast majority of marine bacterial diversity remains undescribed it

is feasible that the probes may have targeted as yet unknown, perhaps closely related bacteria

with the same target sequence. Nevertheless, given that the probes were designed to the

highest possible specificity given the information currently available in GenBank databases

the observations detailed below are considered valid.

Bacteria reacting to probes for the Roseobacter- and Alteromonas-clades were

common, consisting of up to 46% of the total bacterial population. However, the numbers of

bacteria cross-reacting to the species-specific probes were approximately 1% of the number

detected by the clade probes. This indicates there is a large percentage of the bacterial

community belonging to these two clades that could not be accounted for using the taxon-

specific probes.

There was a weak significant positive relationship between Alteromonas- and

Roseobacter-clade counts and those of Alexandrium spp. at Scapa Flow. At The String there

was also a weak correlation between Alexandrium and the Alteromonas-clade counts but not

the Roseobacter-clade. Interestingly, at The String, there was also a significant relationship

between the pooled Alteromonas species-specific counts (which are purportedly toxic strains),

although the bacterial numbers were relatively low. Data were not available on the rest of the

phytoplankton community and therefore we were unable to determine whether any

relationship existed between the bacteria and other phytoplankton species. Other researchers

have shown that Roseobacter and Alteromonas bacterial clades are relatively common in the

marine environment (Glazebrook et al. 1996; Gonzalez and Moran 1997; Acinas et al. 1999),

although few have investigated their occurrence over time and in relation to dinoflagellate

species. Kerkhof et al. (1999) have shown that bacteria associated with algal bloom

populations are not the same as those found under non-bloom conditions and they inferred

from their study that certain groups of bacteria and phytoplankton were tightly coupled in
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time and space. Chilean isolates of A. catenella were infected by a variety of gramnegative

bacteria including species from the genera Pseudomonas, Aeromonas, Flavobacterium,

Pasteurella, Proteum and Moraxella-like, some of which were shown to produce PSTs

(Córdova et al. 2002). Other studies have documented the co-occurrence of similar bacterial

genera, such as Aeromonas, Pseudomonas and Vibrio, from within a bloom of dinoflagellates

producing red tides (Buck and Pierce 1989; Romalde et al. 1990). Some bacterial isolates

from the bloom and from algal cultures established from the bloom exhibited cytotoxicity

(Buck and Pierce, 1989; Romalde et al. 1990). Evans (1973, cited in Buck and Pierce 1989)

postulated a red tide cycle involving (1) initial bacterial growth simulated by organic and

inorganic nutrients, the bacterial populations then providing vitamins to stimulate red tide

blooms, (2) other bacteria growth stimulated by dying, decaying target organisms in the red

tide bloom, (3) toxins from bacteria working synergistically with the algal toxins to kill fish or

toxify shellfish and (4) the cycle perpetuating itself.

Recent investigations of bacterial interactions with HAB species have begun to reveal

the complexity of these associations. These describe how bacteria influence algal toxin

concentrations and are involved in the decline of algal blooms (see reviews in Doucette 1995;

Plumley 1997; Doucette et al. 1998; Gallacher and Smith 1999). However, little information

is available with regard to the identity of bacterial populations during the occurrence of toxic

Alexandrium species in the environment. Babinchak et al. (1998) compared bacterial

composition at the class level between toxic and non-toxic strains of A. tamarense, between

toxic species of Alexandrium and between toxic strains of the same species taken from

different geographic locations. They found different bacterial associations within each level of

comparison. Our study infers an association between bacteria of the Roseobacter- and

Alteromonas-clades and some specific Alteromonas species to numbers of Alexandrium cells.

It is noteworthy that there is a co-occurrence in time between A . tamarense and bacteria

believed to live in some kind of relationship with these algae, but these bacteria may be

specific to the hosts from which they were originally isolated, which are from other parts of

the world. Cordóva et al. (2002) also inferred from their western blot data that bacterial

infection of A. catenella was clone-specific, and their work also suggested that some

dinoflagellate clones were more susceptible to bacterial infection than others. Further

investigations are required to determine whether these specific bacteria are involved in the

increase and decline of Alexandrium and its production of PSTs. The latter is particularly

pertinent given that bacteria isolated from dinoflagellates can biotransform PSTs (Smith et al.

2001). We therefore plan to conduct further studies over an additional monitoring period
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using the probes to investigate this association in more detail. Laboratory investigations are

planned to examine the spatial relationship between the bacteria and algae using these probes

and confocal microscopy.

Questions also arise with regard to the association of bacteria with shellfish toxicity.

At the outset of this study plans also included examining the relationship between the

Alexandrium numbers, bacterial counts and the concentration of PST in shellfish. However,

the adaptive nature of the monitoring program coupled with the fact that the occurrences of

PSTs were lower in 1999 than in previous years (Howard, personal communication) meant

that there were too few samples taken on the same dates as water samples to allow any

inference to be reached. All that can be stated is that the specific bacteria were present during

periods when the mussels contained PSTs and the changes in their numbers were positively

correlated. Again further work is planned on this aspect at a later date, but it is obvious that a

well integrated sampling program must be carried out if any meaningful correlations are to be

uncovered. This is an important aspect given that bacteria isolated from shellfish have also

been shown to biotransform PSTs (Smith et al. 2001) and hence potentially influence shellfish

toxicity. In future environmental studies it would also be of interest to examine shellfish

tissue for bacteria using the probes. We have developed in situ hybridization using enzymatic,

colourimetric detection as well as conventional FISH detection for detecting Alteromonas spp.

and Roseobacter spp. in paraffin-embedded mussel hepatopancreas (Töbe et al., in prep.) and

this technique will be used in further environmental studies.

In conclusion the data presented in this paper are the most comprehensive to date with

regard to examining which bacteria, including purportedly toxic bacteria, are present in the

water column during periods of shellfish toxicity and when Alexandrium spp. are present.

This work is the first step in studying bacterial/dinoflagellate interactions in terms of PSTs in

the environment. However, conclusive evidence on the influence of bacteria in relation to the

occurrence of PSTs in dinoflagellates and shellfish awaits information on what genes are

involved in the production of PSTs and the environmental parameters that trigger them.
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Fig. 1. Phylogenetic reconstructions using the 16S rRNA gene placing the bacteria isolated from various toxic dinoflagellates near their closest

neighbours. (A) Roseobacter; (B) Alteromonas. The regions/species recognised by the rRNA probes are highlighted in bold on the trees (redrawn

from Brinkmeyer et al. 2000). A, the Roseobacter-clade from the a-Proteobacteria; G, the Alteromonas-clade from the g-Proteobacteria. See

Table 1 for the identification probes associated with the other taxa.
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Table 1. Sequences of the oligonucleotide probes used in this study, with protocol details for detection. Use the letters beside each probe in Fig. 1 to

compare the probes listed above with the taxa recognised by each probe. See Brinkmeyer et al. (2000) for details of probes shown in Fig. 1 and not

listed here.

Probe Sequence Compensating

% formamide

NaCl (M)

in wash buffer

EUB 338R (Amman et al. 1990) 5’-ACT CCT ACG GGA GGC AGC-3’ 20 0.23

A. Roseobacter-clade/536R 5’-CAA CGC TAA CCC CCT CCG-3’ 18 0.27

Competitor for Roseobacter-

clade/536R

5’-CAA CGC TAG CCC CCT CCG-3’ 18 0.27

B. 407-20/1446R 5’-GTC CGC TGC CTC AAA AGT T-3’ 10 0.45

C. 667-19/1241R 5’-TAA CCC ACT GTA GAT GCC-3’   8 0.54

D. 667-12/191R 5’-GG GCT AAT CCT TCC TTC CCC-3’ 20 0.23

G. Alteromonas-clade/137R 5’-TGT TAT CCC CCT CGC AAA-3’ 10 0.45

H. 4avs3/210R 5’-TCT CTT TGC GCC AGA GCT-3’ 10 0.45

 I. 407-2/209R 5’-CT TTG CGT GGG AGC CGG-3’ 20 0.23

 J. 253-19/175R 5’-CAA GTG CAC ATT ATG CGG-3’   0 0.9
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Table 2. Summary of sites and dates in 1999 for which bacterial or algal counts or mussel

toxicity were available for this study

Date Day no. Scapa Flow Gairsay String Cava Clestrain Yinstay

24. Feb   55 X

08. Mar.   67 X, A, M X, A

19. Mar.   78 M

20. Mar.   79 M

22. Mar.   81 X, A X, A X, A X, A

06. Apr.   96 X, A, M X, A, M

16. Apr. 106 X, A X, A

19. Apr. 109 M M

03. May 123 X, A X,A

14. May 134 X, A X, A

16. May 136 M M

27. May 147 A X, A

01. June 152 M M

02. June 153 X, A X, A

08. June 159 X, A, M X, A, M

15. June 166 X, A, M X, A, M

22. June 173 X, A, M M X, A, M

23. June 174 A X, A ,M X, A

29. June 180 X, A, M X, A, M

05.July 186 M M

07.July 188 X A X, A, M

20.July 201 A A A

27.July 208 X, A X, A

30.July 211 X, A X X X,A

17.Aug. 229 X, A

24.Aug. 236 A

07.Sept. 250 A A

24.Sept. 267 A A

27.Sept. 270 A

26.Oct. 294 X, A X, A

10.Nov. 314 X, A A X

Sites marked with an X represent those where bacterial counts were obtained on that date; those marked with an
A represent those where Alexandrium counts were obtained; those marked with an M are those where mussels
were collected for toxicity measurements. Lone Alexandrium counts do not appear in Figs. 3-8, whereas lone
mussel values on 19 and 20 March were plotted on 22 March, that on 1 June on 2 June, that on 5 July on the 7
July as a 5-15% reduction in mussel toxicity per day is reasonable if no reinfection occurs (Bricelj and Shumway
1998). Other lone mussel values were not plotted.



79

Table 3. Total counts of bacteria labelled with clade- and species-specific probes at four

infrequently sampled sites in 1999

Site Date Total counts

(cells ml-1)

Species-specific probes

(cells ml-1)

Alteromonas-clade bacteria 4 avs3                     407-2      253-19

Cava 22. Mar.   2200 0                                0               0

23. June 13300 3                              13               2

Clestrain 23. June   2600 1                              10               0

Gairsay 30. July   5700 0                                0               0

Yinstay 30. July   1200 0                                0               0

Roseobacter-clade bacteria 667-9/667-12     667-19    407-

20/667-2

Cava 22. Mar.   2300 0                                0               0

23. June 13900 39                              4               0

Clestrain 23. June   9200 0                                0               0

Gairsay 30. July 11100 0                                0               0

Yinstay 30. July   1600 0                                0               0
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Fig. 2. Detail of the Orkney Islands showing the sites where water samples and mussels were

taken and processed as described in the text.
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Figs. 3-6. Distribution of putatively toxic bacteria in water samples collected at different sites at the Orkney Islands in 1999 as determined by
probe hybridization and compared with total Alexandrium counts and mussel toxicity. Fig. 3. Clade specific counts of Roseobacter-clade
bacteria at both String and Scapa. Fig. 4. Clade specific counts of Alteromonas-clade bacteria at both String and Scapa. Fig. 5. Total counts of
bacterial strains 667-2 or 407-20, 667-19 and 667-12, which belong to the Roseobacter-clade compared with total counts of Alexandrium spp.
and with PSP concentration in mussel at Scapa. Fig. 6. total counts of bacterial strains 4avs3, 407-2 and 253-19, which belong to the
Alteromonas-clade, compared with total counts of Alexandrium spp. and with PSP concentrations in mussel tissue at Scapa.
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Figs. 7-8. Fig. 7. Total counts of bacterial strains 667-2 or 407-20. 667-19 and 667-12, which belong to the Roseobacter-clade, and compared with total
counts of Alexandrium spp. at and PSP concentrations in mussel tissue at The String. Fig. 8. Total counts of bacterial strains 4avs3, 407-2 and 253-19,
which belong to the Alteromonas-clade, compared with total counts of Alexandrium spp. and with PSP concentrations in mussel tissue at The String.
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Figs 9-16. Whole cell hybridization of bacteria taken from water samples at the Orkney Islands,

summer 1999, and filtered onto 0.2 µm white polycarbonate filter. Scale bar represents 10 µm

and can be applied to all Figures. All hybridization steps were performed at 46°C. Fig. 9. Water

samples at Scapa hybridised with the universal eubacterial probe 338R labelled with FITC. Fig.

10. Same cells hybridised with Roseobacter clade probe 536R labelled with CY3.

Fig. 11. Water samples from String hybridised with the Roseobacter-clade probe 536R labelled

with FITC. Fig. 12. Same cells hybridised with the probe 667-12/994R labelled with CY3. Fig.

13.Water samples from String hybridised with the universal eubacterial probe EUB 338R

labelled with FITC. Fig. 14. Same cells hybridised with the Alteromonas-clade probe 137R

labelled with CY3. Fig. 15. Water samples from Cava hybridised with the Alteromonas-

clade/137R probe labelled with FITC. Fig. 16. Same cells hybridised with the probe 407-2/209R

labelled with CY3.
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Table 4. Summary of Pearson correlations (R) between bacterial counts (square root-

transformed), numbers of Alexandrium and mussel toxicity

String Scapa

Correlation tested R Probability No.of

observations

R Probability No. of

observation

Total Rosebacter vs.

Alexandrium

0.354 0.15 18  0.479 0.783 19

Total Alteromonas vs.

Alexandrium

0.477. 0.045* 18  0.458 0.049* 19

Pooled Roseobacter

taxon-specific counts

vs. Alexandrium

0.017 0.949 17  0.209 0.391 19

Pooled Alteromonas

taxon-specific counts

vs. Alexandrium

0.585 0.017 16 -0.033 0.893 19

Total Roseobacter vs.

mussel toxicity

n.a. n.a.   5  0.155 0.770   6

Total Alteromonas vs.

mussel toxicity

n.a. n.a.   5  0.174 0.742   6

Pooled Roseobacter

taxon-specific counts

vs. mussel toxicity

n.a. n.a.   5  0.641 0.170   6

Pooled Alteromonas

taxon-specific counts

vs. mussel toxicity

n.a. n.a.   5  0.358 0.486   6

4avs3 vs. Alexandrium n.a. n.a.   5 -0.068 0.783 19

4avs3 vs. mussel

toxicity

n.a. n.a.   5  0.291 0.576   6

n.a., not applicable, too few data

*p < 0.05
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2.5 Appendix to Publication II

MONITORING OF PURPORTEDLY TOXIC BACTERIA AT TWO PSP MONITORING

SITES OF THE ORKNEY ISLANDS IN 2000

TÖBE, K.1; FERGUSON, C.2; KELLY, M.2; GALLACHER, S2. AND MEDLIN, L.K.1

1Alfred Wegener Institute, Department of Biological Oceanography, Am Handelshafen 12,

27570 Bremerhaven, Germany
2Fisheries Research Services Marine Laboratory, Aberdeen, Scotland, UK

INTRODUCTION

The monitoring of the purportedly toxic bacteria at the Orkney Islands was repeated

from March to August in 2000, to compare the results of two sequential years. In the second

monitoring year field samples were collected from two main sampling sites, Scapa Flow and

The String, by the Scottish sampling monitoring program (Table 1). Oligonucleotide probes

used in the second monitoring year:

Alteromonas-clade: Alteromonas-clade/137R, 4 avs3/210R (bacteria previously

isolated from A. tamarense UW2C), 407-2/209R (bacteria previously isolated from A.

tamarense NEPCC 407) and 253-19/175R (bacteria previously isolated from A. lusitanicum

NEPCC 253). Roseobacter-clade: Roseobacter-clade/536R, 66-12/191R (bacteria previously

isolated from A. affine NEPCC 667), 407-20/1446R (bacteria previously isolated from A.

tamarense NEPCC 407) and 253-11/1318R (bacteria previously isolated from A. lusitanicum

NEPCC 253).

All oligonucleotides have to have reviewed used in the 1999 survey for their specifity

in GenBank databases at regular time periods. The probe 667-19/1241R is no longer species-

specific; hence another species level probe (253-11/1318R; Brinkmeyer et al. 2000) of the

Roseobacter-clade was used in the second monitoring year. The processing of the

environmental samples in the second monitoring year and the FISH experiments were carried

out as described in Material and Methods of Publication II.
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RESULTS

Total Counts. In the year 2000, counts of all DAPI stained bacteria at Scapa Flow

remained relatively constant from the end of March until the beginning of June, when they

began to increase (Fig. 1a). A maximum was obtained at mid June 2000 (6.31 x 105 bacteria

ml-1, Fig. 1a), after which time the bacterial numbers decreased. At this time point 3.95 x 104

bacteria ml-1 of the Roseobacter-clade (6.3% of the total bacterial population) were detected

in the water column. However, no Alteromonas-clade bacteria were detected at this time

point. At The String, total bacterial numbers followed a similar pattern with the highest peak

in the end of May (9.03 x 105 bacteria ml-1, Fig. 1b). At the time of highest total bacterial

abundances the percentage of Alteromonas and Roseobacter bacteria were relatively low.

During the times of maximum total bacterial abundances, the second highest peak of

Roseobacter-clade bacteria (5.47 x 104 bacteria ml-1; 6.1% of the total bacterial population)

and the third highest peak of Alteromonas-clade bacteria (1.81 x 104 bacteria ml-1; 2% of the

total bacterial population) were observed. However, bacteria reacting to the probes of

Roseobacter and Alteromonas consisted of up to 57% of the total bacterial abundances at The

String at the end of May and up to 34% at Scapa Flow at the beginning of June.

Fluorescence in situ hybridization. Fluorescently labelled probes were successfully

applied to Lugol’s fixed field samples in the second monitoring year (Fig. 3). In the year

2000, the Roseobacter-clade bacteria reached the highest abundance at Scapa Flow in the

beginning of June (1.05 x 105 bacteria ml-1), 10 days earlier than in 1999. It was almost the

double of the value of the year 1999 (Table 2, Fig. 2a). The highest numbers of Roseobacter-

clade bacteria at The String in 2000 fluctuated, with each peak increases over the year, with

the highest peak in mid July (5.91 x 104 bacteria ml-1). The distribution of the Roseobacter-

clade bacteria at The String in 1999 showed the highest peak at the beginning of June (4.8 x

104 bacteria ml-1). In 2000, it was the second highest peak (5.47 x 104 bacteria ml-1; Table 3,

Fig. 2b). Thus, the highest distribution of these bacteria occurred over a similar time period in

1999 and 2000 at The String and Scapa Flow.

In 2000, the Alteromonas-clade bacteria showed at Scapa Flow the highest peak also at

the beginning of June (5.19 x 104 bacteria ml-1) like the Roseobacter-clade bacteria (Table 2,

Fig. 2a). But there were also no Alteromonas-clade bacteria detectable at other time periods,

when Roseobacter-clade bacteria were present in the water column. In 1999, the highest peak
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of Alteromonas-clade bacteria occurred at Scapa Flow at the mid of June (6.03 x 104 bacteria

ml-1). The Alteromonas-clade bacteria at The String in 2000 showed the highest numbers at

the end of April (3.91 x 104 bacteria ml-1). There the highest peak in 1999 occurred at the end

of June (6.6 x 104 bacteria ml-1). In this time no Alteromonas-clade bacteria were found in the

water column in 2000 (Table 3, Fig. 2b). The highest numbers of Alteromonas and

Roseobacter-clade bacteria occurred at Scapa Flow over a similar time period in both years,

but at The String a lag of two months in abundance occurred over the two monitored years.

The species-specific bacterial counts for Roseobacter and Alteromonas bacteria

showed very similar patterns for both years and at both sampling sites. In 2000, the highest

peak of the species-specific bacteria (Table 2) of the Roseobacter-clade occurred in the end of

May 2000 (bacteria 407-20 and 667-2) at Scapa Flow and also at The String. In 1999, at

Scapa Flow and also at The String bacteria 407-20 and 667-2 also showed the highest

bacterial peak. In 2000, the bacterium 253-13 showed also different peaks at The String like

the Roseobacter-clade bacteria. But in general fewer species-specific bacteria of the

Roseobacter-clade were detected than in 1999 and even though higher amounts of the

Roseobacter-clade bacteria were counted. Therefore, it is likely that other bacteria occurred in

the water column in 2000. The highest numbers of species-specific bacteria of the

Alteromonas-clade detected by applied probes were of the strain 4 avs3 at Scapa Flow and 4

avs3 and 407-2 at The String. In 1999, it was the same for Scapa Flow and for The String, but

at the latter sampling site the numbers of both bacteria were very low. The numbers of the

specific bacteria at The String in 2000 were higher than in 1999, but at Scapa Flow lower than

in 1999, the reason could be also that other bacterial species were dominant in the water

column.

Statistical Analysis. As in 1999, the bacterial counts were correlated with the counts

for Alexandrium spp. and with the values of PST in mussels harvested from the same area.

However, in 2000 there were no mussels harvested from The String and thus only

comparisons from Scapa Flow for 2000 were made (Table 4). Roseobacter- and Alteromonas-

clade bacteria were not significantly correlated with Alexandrium spp. at either site. Species-

specific bacteria of both clades were negatively correlated with Alexandrium spp. at The

String and positively correlated at Scapa Flow, but neither correlation was significant.

Roseobacter and Alteromonas-clade bacteria were not significantly correlated with mussel

toxicity nor with species-specific bacteria of either clade.
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DISCUSSION

In the second monitoring year rRNA probes designed for purportedly toxic bacteria

(Brinkmeyer et al. 2000) were again successfully used to detect these bacteria in Lugol’s

fixed water samples obtained from the Orkney Islands, at the two main sampling sites, The

String and Scapa Flow from March to August 2000.

Alexandrium spp. counts were available for both sampling sites. However, PSP

concentrations in mussel tissue were available only for Scapa Flow, because of the adaptive

nature of the monitoring program, coupled with the fact that occurrence of PST was lower in

1999 and in 2000 than in previous years (Howard, personal communication), hence fewer

mussel samples were collected.

In general, a similar temporal distribution of the putatively toxic bacteria in water

samples collected from the Orkney Islands were found in both years, although a time shift in

the main abundance of Alteromonas-clade bacteria over two month between both years was

recognised and also no Alteromonas-clade bacteria were detected in the water column, when

in the previous year high numbers were counted. However, the temporal distribution of the

Roseobacter-clade bacteria was similar in both monitoring years, although less putatively

toxic bacteria of both clades in 2000 were found. Reasons could be, e.g., the preparation of

the samples in that year. Some samples seemed to be not very well fixed and consequently a

bacterial loss could have occurred. The species-specific bacterial counts of both Alteromonas-

and Roseobacter-clade bacteria displayed a similar temporal pattern for the two years at both

sampling sites.

Additionally, as mentioned above, both years were low PSP years and for this reason

the Alexandrium associated bacteria could be less abundant in the second monitoring year. It

is not known, which Alexandrium species co-occur with the putatively toxic bacteria, because

the counted dinoflagellate cells of the genus Alexandrium were not further identified. At least

three Alexandrium species have been reported to co-occur in waters of the Orkney Islands:

Alexandrium tamarense, A. ostenfeldii and A. minutum (Ellbrächter, unpublished).

Roseobacter and Alteromonas spp. were common in the field samples, consisting of up

to 57% of the total bacterial counts at The String in the end of May and up to 34% in the

beginning of June. The number of bacteria recognised by the species-specific probes amount

only approximately 0.5% of the number detected by the clade probes. This means that a large

percentage of the bacterioplankton cross reacting with the clade probes could not be
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accounted for using the taxon specific probes. For this reason, the vast majority of marine

bacterial diversity remains undescribed.

Further investigations should be to determine the unidentified bacterioplankton, which

also co-occur with a Alexandrium bloom and mussel toxicity in this phytoplankton monitoring

area. Additional 16S rRNA oligonucleotides of bacteria originally isolated from shellfish

viscera obtained from harvesting areas in West Scotland, and from A. tamarense cultures 407-

62 and 407-68, respectively were developed (Table 5). The oligonucleotide probes, S9/297R,

407-62/1488R and 407-68/1024R were tested with laboratory cultures employing dot blot and

fluorescence in situ hybridization formats (Figs. 4-7), for the further use on environment

samples. The bacteria isolated from shellfish viscera (strains S9, M12 and QO5) belong to the

group of g-Proteobacteria, from which M12 was shown to biotransformate PSTs (Smith et al.

2001). The bacteria isolated from Alexandrium tamarense were named 407-62 and 407-68

and are members of the a-Proteobacteria. Therefore, a characterisation of further members of

the bacterial community, which co-occur with Alexandrium spp. in affected areas, is possible.

Although, this monitoring study is an important first step in studying

bacterial/dinoflagellate interactions in terms of PST in the environment, conclusive evidence

on the influence of bacteria in relation to the occurrence of PSTs and the environmental

parameters is still lacking and needs further investigations. New FISH counting methods are

necessary to screen a high quantity of environmental samples faster and easier. One

possibility is to use an automated detection system together with the FISH technique. In

future a sensitive, rapid and easy use detection method for bacterio- and phytoplankton

species will be established. The detection of the organisms will be based on sample filtration

and subsequent whole cell in situ hybridization. The cells are then detected and enumerated

using a solid phase cytometer. In this way, it would be possible to detect whole bacterial or

phytoplankton cells, to count them and to evaluate the results by fluorescence microscopy

faster than in previous times. Our final target is the adaptation and use of this method for

routine monitoring with a high sample throughput.

OVERALL CONCLUSIONS: MONITORING YEARS 1999 AND 2000

In conclusion, data presented in these monitoring studies are the most comprehensive

to date with regards to the examination which bacteria, including purportedly toxic bacteria,

are present in the water column during periods of shellfish toxicity and when Alexandrium

spp. were present. The oligonucleotide probes were successfully applied to fresh Lugol’s

fixed seawater samples. The dinoflagellate-associated bacteria were detected in high numbers
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in the water column when Alexandrium spp. was both present and absent and during periods

when mussels contained PSTs. This study infers a statistically significant association between

bacteria belonging to the Alteromonas-clade in both years and some specific Alteromonas

species to Alexandrium in 1999.
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Fig. 1: Total bacterial counts at Scapa Flow (1a) and The String (1b) determined by

DAPI staining
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Fig. 2: Alteromonas- and Roseobacter-clade counts at Scapa Flow (2a) and The String

(2b) determined by FISH and compared with total Alexandrium counts and mussel

toxicity. Breaks of the graph lines were made at times when no samples were

available, to show that the cell number did not decrease to zero.
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Table 1: Summary of sites and dates in 2000 for which bacterial or algal counts or mussel

toxicity were available for this study

Date Scapa Flow The String Date Scapa Flow The String

07. Mar A 19. Jun A, M, X A, X

23. Mar A 27. Jun A, M, X A, X

29. Mar A, X A, X 11. Jul A, M, X

10. Apr A, X A, X 17. Jul A, X A, X

17. Apr A, X A, X 18. Jul M

28. Apr A, X A, X 27. Jul A, M, X

04. May M A, X 01. Aug A, X

16. May A, M, X A, X 08. Aug A, X X

24. May A, M A 09. Aug M

30. May A, M, X A, X 16. Aug A

05. Jun A, M, X X 17. Aug A

06. Jun A, X 28. Aug A

08. Jun A, X

Abbreviations: X, Bacterial counts were obtained on that date; A, Alexandrium counts

were obtained; M, mussels were collected for toxicity measurements.
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Table 2: Values of clade-bacteria, Alexandrium spp. and mussel toxicity at Scapa Flow in
2000

Sampling in
2000 at Scapa

Alexandrium spp.
cells L-1

µg PSP /100 g
mussel tissue

Alteromonas-clade
bacteria ml -1

Roseobacter-clade
bacteria ml -1

10. Mar    100  n.a      n.a        n.a
29. Mar      80  n.a     652     9163
10. Apr   100  n.a   1296   11473
17. Apr   140  n.a         0   13459
28. Apr   320  n.a   9500   24307
04. May    n.a     0 25000   29728
16. May   260   43   7144   13742
24. May   120   45         0           0
30. May   300 137   7484   13061
05. Jun   100 155 51850 105025
08. Jun   460  n.a         0   55013
19. Jun     20   82         0   39538
27. Jun     20   42         0   43208
11. Jul     40     0         0   46834
17. Jul     80 .n.a   4344   16894
18. Jul    n.a     0      n.a         n.a
27. Jul       0     0         0   11032
08. Aug     40  n.a         0      2412
09. Aug    n.a   49      n.a         n.a
16. Aug   180  n.a      n.a         n.a
28. Aug 1160  n.a      n.a         n.a

n.a: samples not available
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Table 3: Values of clade-bacteria and Alexandrium spp. at The String in 2000

Sampling in 2000
at String

Alexandrium spp.
cells L-1

Alteromonas-clade
bacteria ml -1

Roseobacter-clade
bacteria ml -1

07. Mar      0      n.a       n.a
23. Mar    20         0         0
29. Mar     0         0   7500
10. Apr     0         0 20163
17. Apr   60 34000 31394
28. Apr   20 39118 11219
04. May 120         0 44872
16. May 120         0 20616
24. May 360         0         0
30. May 120 18194 54792
06. Jun     0         0 42363
19. Jun     0         0 13265
27. Jun 220         0 39474
17. Jul   20   4910 59131
01. Aug     0         0 19602
08. Aug     0         0   8447
17. Aug   20      n.a      n.a

n.a: samples not available
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Table 4: Summary of the Pearson correlations (R) and their significance obtained between bacterial numbers (square root-transformed), mussel

toxicity (M) and Alexandrium spp counts (A) for 2000

Correlation of bacterial counts +
Alexandrium (A) or mussel
toxicity

String-R of
transformed data

Probability
(number of
observations)

Significance at
the 0.02 level

Scapa-R of
transformed
data

Probability
(number of
observations)

Signifcance at the 0.02
level

Total Roseobacter + A 0.516 2.554 yes  0.096 0.411 (15) no
Total Alteromonas + A 0.327 1.467 (20) no, yes at 20%  0.011 0.049 (15) no
Pooled Roseobacter taxon
specific counts + A

-0.052 0.228 (21) no  0.043 0.159 (16) no

Pooled Alteromonas taxon
specific counts + A

-0.173 0.768 (21) no  0.284 1.058 (16) no

Total Roseobacter + M n.a n.a  0.421 1.601 (15) no, yes at 20%
Total Alteromonas + M n.a n.a  0.353 1.968 (15) no, yes at 10%
Pooled Roseobacter taxon
specific counts + M

n.a n.a -0.063 0.055 (16) no

Pooled Alteromonas taxon
specific counts + M

n.a n.a  0.232 0.861 (15) no

4avs3 + A n.a n.a  0.332  1.271(15) no
4avs3 + M n.a n.a  0.311 1.184 (15) no

n.a: not available because no mussels sampled (M) or all zero values (A)
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Table 5: New Probe Sequences

Probe

name

Bacterial Origin 5’----------------------3’ Target bacteria Dot Blot

Hybridization Temperature

FISH
Temperature and

Formamide concentration

407-62/1488R A.tamarense laboratory

culture 407-62

ctc ggg aaa tct cga tac 407-62 55°C 46°C, 18% FA

407-68/1024R A. tamarense

laboratory culture 407-

68

gat cgc cag tat gaa agg 407-68 55°C Not yet tested

S9/297R Shellfish viscera cuc acc cgu ccg cgu cgu S9, M12 and QO5

(all Isolates from

shellfish viscera)

63°C 46°C, 34% FA
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3

a b c d

e f g h

Fig 3. FISH with bacteria taken from water samples at the Orkney Islands, in 2000. a: Water samples from Scapa
hybridized with eubacterial probe EUB 338R labelled with FITC. b: Same cells hybridized with the Alteromonas-
clade probe 137R labelled with CY3. c: Water samples from String hybridized with EUB 338R labelled with FITC.
d: Same cells hybridized with the Roseobacter-clade probe 536R labelled with CY3. e: Water samples from String
hybridized with the Alteromonas-clade probe 137R labelled with FITC. f: Same cells hybridized with the probe 407-
2/209R labelled with CY3. g: Water samples from Scapa hybridized with the Roseobacter-clade probe 536R
labelled with FITC. h: Same cells hybridized with the probe 667-12/994R labelled with CY3. X 100 enlargement.
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a b c d

e f g h

Fig. 4. FISH with newly developed probe S9/297R. a: Bacteria QO5 counterstained with DAPI. b: Same cells
hybridized with probe S9/297R  labelled with CY3. c: Bacteria M12 counterstained with DAPI. d: Same cells
hybridized with probe S9/297R  labelled with CY3. e: Bacteria S9 counterstained with DAPI. f: Same cells
hybridized with probe S9/297R labelled with CY3. g: Bacteria 407-62 counterstained with DAPI. h: Same cells
hybridized with the probe 407-62/1488R  labelled with CY3. X 100 enlargement.
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 a       b       c         d

   QO5   M12    M 11    S9

5

Fig. 5. Specifity of the rRNA probe
S9/297R tested by dot-blot hybridization.
Different DNA concentrations from bacteria
isolated from shellfish viscera harvested in
West Scotland were bound to the nylon
membrane and hybridized with
digoxigenin-labelled 16S rRNA probe
S9/297R. 5a: Bacteria QO5 hybridized with
probe S9/297R. 5b: Non-target bacteria
M11 hybridized with probe S9/297R 5c:
Bacteria M12 hybridized with probe
S9/297R. 5d: Bacteria S9 hybridized with
probe S9/297R.

Fig. 5. Specifity of the
rRNA probe  407-
68/1024R tested by dot-
blot hybridization. DNA
from bacteria 407-68
isolated from A. tamarense
cultures was bound to the
nylon membrane and
hybridized with the
digoxigenin-labelled 16S
rRNA probe  407-
68/1024R.

407-68

6

Fig. 5. Specifity of the
rRNA probe 407-
62/1488R tested by dot-
blot hybridization. DNA
from  bacteria 407-62
i so la ted  f rom A.
tamarense cultures was
bound to the nylon
m e m b r a n e  a n d
hybridized with the
digoxigenin-labelled 16S
rRNA probe 407-
62/1488R.

7

407-62
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2.6 PUBLICATION III

Detection of bacteria originally isolated from Alexandrium spp. in the

midgut diverticula of Mytilus edulis after water-borne exposure

TÖBE, K.1, SMITH, E.A.2, GALLACHER, S. 2AND MEDLIN, L.K.1

1Alfred Wegener Institute, Department of Biological Oceanography, Am Handelshafen 12,

27570 Bremerhaven, Germany
2 Fisheries Research Services Marine Laboratory, Aberdeen, Scotland, UK

Harmful Algae, in press
Abstract

Bacteria associated with toxic dinoflagellates have been implicated in the production

of paralytic shellfish poisoning (PSP) toxins, but it has not been substantiated that bacteria are

truly capable of autonomous PSP toxin synthesis or what role bacteria may play in shellfish

toxification. In this study, different putatively PSP toxin producing bacteria originally isolated

from toxic Alexandrium spp. were exposed to the blue mussel Mytilus edulis. To document

that these bacteria accumulated in the digestive tract of the mussels hybridization techniques

that use rRNA targeted oligonuceotides for in situ identification of these bacteria were

applied. The mussel hepatopancreas was dissected and paraffin and frozen sections were

made. The dissected glands were hybridized with digoxigenin-labelled 16S rRNA

oligonucleotide probes. Results demonstrate that mussels will readily uptake and accumulate

these bacteria in the hepatopancreas. However, the mussels were not rendered toxic by the

ingestion of the bacteria as determined by HPLC with UV detection for PSP toxins and

determination of sodium channel blocking activity using the mouse neuroblastoma assay.

Thus although the role that bacteria play in mussel toxification remains unclear, methods are

now available which will aid in further investigation of this relatively unexplored area.

Keywords: Alexandrium, Mytilus edulis, bacteria, paralytic shellfish toxins, sodium channel

blocking toxins, in situ hybridization
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1. Introduction

Both wild and cultivated blue mussels Mytilus edulis Linné 1758 are exposed to a mixture of

particles and microbes and are able to accumulate them in high numbers from the surrounding water

(Hernroth et al., 2000a). Thus, the potential for the mussel to become a carrier of food borne diseases

is significant (Hernroth et al. 2000b). Paralytic Shellfish Poisoning (PSP) toxins are a group of

neurotoxins produced by some dinoflagellates species, such as Alexandrium spp. (Cembella 1998). In

humans PSP toxins block sodium channels (SCB), which can lead to paralysis and subsequent death.

Filter feeding bivalves such as mussels, cockles, oysters, and scallops, can feed on these toxic

dinoflagellates, transferring them from the gills to digestive organs where the toxins become

concentrated (Maruyama et al. 1983; Lassus et al. 1992; Pillet et al. 1995; Bricelj and Shumway 1998;

Shimizu 2000). Some shellfish depurate the toxins relatively quickly, whereas others, e.g., scallops

can retain the toxins for months and even years in the digestive glands and the gonad (Whittle and

Gallacher 2000).

In recent years, bacteria have also been implicated as a source of PSP toxins. The autonomous

production of these toxins by bacteria has been reported (Gallacher et al. 1997), yet their involvement

with shellfish toxicity has not been totally elucidated. Evidence for their involvement has been

implicated by Kodama and colleagues (1990), who reported that PSP toxins were present in particles

of a similar size fraction (0.45-5 µm) to bacteria in seawater from Ofunato Bay, N. Japan, during

times when bivalve toxicity increased in the absence of toxic dinoflagellates. Bacteria are also known

to metabolise PSP toxins, converting them from one derivative to another (Smith et al. 2001). Thus,

bacteria may be involved in both the production and modification of these toxins.

In the marine environment, bacteria can attach to phytoplankton and inorganic particles

(Doucette et al. 1998), which can be readily accumulated by animals, such as bivalves. Therefore, in

these studies, mussels were fed either a single SCB toxin (a trait associated with PSP toxins)

producing bacterium or a mixed assemblage of SCB toxin producing bacteria. Bacteria were exposed
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to the mussels in both the presence and absence of particulate matter (silt) in attempts to increase

bacterial SCB toxin production via adhesion and attachment (Doucette et al. 1998), increase bacterial

uptake rates by the mussels and subsequently increase SCB activity in the mussel flesh. The bacterial

strains used in the feeding experiments were originally isolated from toxic Alexandrium spp.

(Gallacher et al. 1997). Previously, 16S rRNA clade and species-specific oligonucleotide probes have

been developed that specifically recognise these bacteria (Brinkmeyer et al. 2000) and have been used

to track the abundance and distribution of these bacteria in the water column. (Töbe et al. 2001).

In this study, these probes were used to follow the accumulation of water-borne bacteria in the

digestive gland of Mytilus edulis as well as the duration of the bacteria in the gut.

2. Material and Methods

2.1 Feeding experimental setup.

Fresh stocks of mussels were maintained in natural seawater in an aerated tank at 12°C and fed

daily with Pavlova lutheri (Droop) Green 1975. Three days prior to exposing the mussels to sodium

channel blocking (SCB) toxin producing bacteria mussels were transferred into autoclaved 1L Kilner

jars containing sterile filtered seawater that was aerated using air stones. Seawater was changed daily

in the aerated jars in order to reduce any background bacterial flora. Exponentially growing SCB toxin

producing bacteria grown at 20°C for 24 h in 200 mL marine broth (Difco, UK) were centrifuged at

8,000 g for 10 minutes and re-suspended in sterile seawater. Aliquots (1 mL) adjusted to contain 107

cells mL-1 were added to six experimental jars each containing ten mussels. Either a single SCB toxin

producing bacterium, 407-2 (Experiment A) which belongs to the genus Alteromonas (Baumann et al.

1972) or an assemblage of different SCB toxin producing bacteria of the genus Alteromonas and

Roseobacter (Shiba 1991), 407-2 (Alteromonas-clade), 2c3 (Alteromonas-clade), 4 avs17

(Alteromonas-clade) and 253-13 (Roseobacter-clade) previously isolated from dinoflagellate cultures
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(Gallacher et al. 1997; Hold et al. 2001) were exposed to mussels, in both the presence or absence of

silt particles (< 55 µm) (Experiment B). Control samples consisted of shellfish in seawater not

exposed to bacteria and bacteria in seawater in the absence of shellfish.

Seawater (5mL) and three shellfish were collected from individual flasks at 0, 0.5, 1, 2, 3 and 6

h time intervals for bacterial counts in the water column and determination of any SCB activity in the

mussel flesh, respectively. At each time point a further mussel was collected and fixed in 4%

paraformaldehyde (PFA in 1 X phosphate buffered saline [PBS], pH 7.2 and stored for 24 h at 4°C.

The seawater was counted for the presence of bacteria using a Weber-Counting chamber.

2.2 Determination of Mussel toxicity

At each time interval mussel flesh was extracted in 0.1 M HCl, following the method described

by the Association of Official Analytical Chemists (AOAC 1990). Sample extracts were analysed

using an optimised mouse neuroblastoma assay (Gallacher et al. 1997, Hold 1999) for the detection of

SCB activity and by the HPLC method of Franco and Fernández-Vila (1993) for the detection of PSP

toxins.

2.3 Determination of bacterial toxicity

Bacterial strains were cultured for 18 h in 30 ml of marine broth (20°C; 120 oscillations min-1).

Supernatants and cells were separated by centrifugation at 10000 g for 20 min. Supernatant (20 ml)

from each isolate was stored at 4 °C until processed by using the mouse neuroblastoma assay as

previously detailed (Gallacher et al. 1997).
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2.4 Embedding of mussel tissue prior to detection of bacteria

The hepatopancreas of the mussels were dissected under sterile conditions prior to sectioning

and analysis with the probes. Two different embedding methods were used to compare which is the

most suitable one for this purpose.

Paraffin sections: Dissected hepatopancreas was fixed in 4% PFA, pH 7.2, in 1 X PBS and

stored at 4 °C overnight. The digestive glands were embedded in paraffin as described elsewhere

(Romeis 1989). The paraffin blocks were cut into 8 µm thin sections with a rotary microtome (model

1512, LEITZ, Germany) and transferred to poly-L-Lysine coated microscope slides (Sigma, USA).

Frozen sections: The digestive glands were fixed in 4% PFA, cut into 2 mm thin sections and

incubated overnight at room temperature in 30% sucrose solution in 1 X PBS. Subsequently, the

sections were stored in Oct compound (Ted Pella, USA), an embedding medium for frozen tissue

specimens, at –80°C and warmed to –20°C before use. The specimen block was cut into 10-14 µm

thin sections with a cryostat (2800 Frigocut-E, Reichert-Jung, Germany) transferred to Poly-L-Lysine

treated glass slides and dried overnight at 40°C. Slides were used immediately or stored at –80°C. In

the latter case the cryosections were warmed to room temperature and dried at 40°C for at least 2 h

prior to hybridization.

2.5 In situ hybridization on paraffin embedded and frozen tissue sections

Sections were incubated for 30 minutes at 60°C and dewaxed prior to hybridization. The slides

were dipped twice for 10 minutes each, in fresh Xylene (Merck, Germany) and rehydrated, by dipping

each slide successively for five minutes in 99% EtOH, 96% EtOH and 70% EtOH, then rinsed twice

in sterile deionized water. Each section was treated with 20 µl Proteinase K (working solution 100 µg

mL-1 in TES: 50 mM Tris-HCL, pH 7.4, 10 mM EDTA, 10 mM NaCl) for 30 minutes at 37°C in a

humid chamber. The sections were covered with siliconized coverslips (Aquasil, Pierce, USA), post-
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fixed in 0.4% formaldehyde for 5 minutes, to preserve the tissue morphology after the proteolytic

treatment, immersed in deionised water, dripped and air dried. The tissues were subsequently covered

with 5–10 µl hybridization buffer (500 µl hybridization buffer: 10 µl 50 x Denhardt’s solution, 50 µl

dextran sulfate 50% (w/v), 10 µl sonicated and denaturated salmon sperm DNA (10 mg mL-1), 100 µl

20 x SSC, 10 µl digoxigenin-labeled probe [50 ng µl-1], 70 µl deionised water, 250 µl formamide).

Non-labelled oligonucleotides (purchased from MWG, Germany) were DIG-labelled at the 3’-end of

the oligonucleotide with the DIG labelling Kit (Roche, Germany). One slide was hybridized with a

genus clade-level probe, e.g., Alteromonas/137R or Roseobacter/536R and a replicate slide with a

species-level probe (Table 1). The slides were placed in a humid chamber and incubated at the

corresponding hybridization temperature (Table 1) overnight. The slides were washed twice for 5

minutes in 2 x SSC (0.3 M NaCl, 30 mM sodium citrate, pH 7.0) at room temperature and 10 minutes

in 0.1 x SSC (15 mM NaCl, 1.5 mM sodium citrate, pH 7.0) at hybridization temperature. Each

section was equilibrated in buffer 1 (100 mM Tris-HCl, 150 mM NaCl, pH 7.5). The slides were

covered with 40 µl buffer 2 (0.5% (w/v) blocking reagent, Roche, Mannheim, Germany, in buffer 1)

incubated at room temperature for 1 h and washed quickly in buffer 1. The anti-digoxigen antibody

(Roche, Mannheim, Germany) was diluted 1:500 in buffer 2. Diluted conjugate (10-15 µl) was placed

over each section and incubated in a humid chamber at room temperature for 1 h and washed twice for

thirty minutes in buffer 1 with gentle shaking. Afterwards the slides were equilibrated in buffer 3 (0.1

M Tris-buffer pH 9.5, 0.05 M MgCl2, 0.1 M NaCl) for 5 minutes. Immediately before use, a fresh

NBT (Nitro blue tetrazolium chloride) and BCIP (5-Bromo-4-chloro-3-indolyle phosphate, toluidine

salt) working solution were prepared (dilution 1:50 in buffer 3). Twenty µl NBT/BCIP-colour-solution

was distributed onto each section, covered with siliconized coverslips and incubated in the dark

overnight at room temperature and then washed gently in buffer 3. The tissue sections were

counterstained with Neutral Red as described in Romeis (1989).
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2.6 Negative controls

Slides of control mussel tissue, which were not exposed to bacteria, were hybridized with

different probes. In addition one slide in each hybridization experiment was hybridized with a probe

cocktail containing all the ingredients without the labelled probe. Another slide was hybridized with

Non-EUB338, which has a sequence complementary to EUB338 and served as a negative control for

unspecific binding (Manz et al. 1999).

3. Results

3.1 Determination ob bacterial toxicity

The measured bacterial toxicity was 0.76 x 10-4 fmoles STX equivalents per cell for 407-2 and 1.3 x

10-4 fmoles of STX equivalents per cell for bacteria 2c3. These measurements were performed within

the time framework FAIR.

Both 4alphavs17 and 253-13 have previously shown SCB activity (Gallacher pers comm.).

3.1 Clearance rates of bacteria by Mytilus edulis

Experiment A: Bacteria 407-2. The removal of 407-2 from an initial bacterial cell density of

1.0 x 107 cells mL-1 from seawater over 6 h in experimental jars is shown in Figure 1. In the presence

of mussels, bacterial levels in the water column fell by 87% within 30 minutes and steadily declined

with less than 1% of the initial inoculum remaining after 6 h. In contrast, 96% of the bacterial cell

suspension remained after 6 h in control jars containing no shellfish visible signs of pseudofaeces
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production by the mussels was not observed in all experimental jars, nor was settling of bacteria

apparent. Mussel assimilation of the bacteria was verified using the bacterial probes.

Experiment B: Mixed assemblage of bacteria plus particulate matter (silt). Although no

attempts were made to distinguish between individual bacterial isolates in the water column, Figure 2

suggests that Alteromonas and Roseobacter-clade bacteria were rapidly removed from seawater in

experimental jars containing mussels, with the initial cell density of 1.1 x 107 cells mL-1 being

reduced by 99% within 30 minutes. Bacterial cell numbers initially increased in experimental jars in

the presence of silt, although a gradual decline in cell numbers was observed over 6 h. In these

experiments the bacterial loading slightly proliferated in the absence of mussels between 2 and 6 h.

3.2 In Situ hybridization

In general, both frozen and paraffin sections were suitable for in situ hybridization of mussel

tissue. However, the paraffin method presents improved tissue morphology than cryosections, but in

contrast is more time-consuming and arduous to produce.

Experiment A: Frozen and paraffin sections from mussels fed with the bacterium 407-2 of the

genus Alteromonas showed that the bacteria were present at each time interval in the digestive tract of

the mussels (Fig. 3a). Using the DIG-labelled probes, the examined bacteria are labelled as a blue

deposit lining the interior of the midgut diverticula. At time 30’, the presence of a ‘background’ flora

of Roseobacter was detected in the gut of the mussels, which were not exposed to Roseobacter-clade

bacteria (Fig. 4a). After the feeding experiment commenced, this background flora was replaced with

the ingested bacteria from the feeding experiment as shown in Figure 4b and c.

Experiment B: Slides prepared from mussels fed with silt and bacteria (407-2, 2c3, 4 avs17

and 253-13) showed that the fed bacteria could be found in the digestive tract of the mussel at every

sampling time (Fig. 3b-c and Fig. 4b-c). In contrast none of the negative controls (mussels not

exposed to bacteria) showed a positive signal (Fig. 3d and 4d). Hybridization of the tissue sections
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from mussels, which were fed with an assemblage of different bacteria and hybridized with the

Roseobacter-clade probe were not as strong as the Alteromonas-clade signals (Fig. 3b and 4b). The

reason is most probably the difference in the proportion of the four bacteria being fed the mussels, the

bacteria (253-11) belonging to the Roseobacter-clade being only 25% of the total bacterial cells added

to the feeding experiment. The probe signal in the gut of those mussels fed silt along with the bacteria

and dinoflagellates was also diminished in comparison to that obtained in mussels fed solely on

bacteria. This most likely occurred because of the decreased proportion of the bacteria in each liter of

water filtered by the mussels.

3.3 Mussel Toxicity

Following exposure of mussels to SCB producing bacteria, the mussel homogenate was

examined at 0 h and at time intervals of 0.5, 1, 2, 3 and 6 h for SCB activity using the MNB assay

(Gallacher et al. 1997) and for PSP toxins by HPLC (Franco and Fernández-Vila 1993). In shellfish

extracts obtained from mussels at all time intervals in both experiments, SCB activity was not

detected using the MNB assay with a detection limit of 10 nM STX (ca. 0.3 mg per 100 g of shellfish

flesh). HPLC analysis of flesh from mussels fed putatively toxic bacteria also failed to detect any PSP

toxins. The detection limit for each toxin was (ng toxin per 100 g of shellfish flesh): GTX 1, 3.73;

GTX 2, 4.4; GTX 3, 0.12; GTX 4, 1.6; STX, 7.6 and NEO, 5.02.
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4. Discussion

4.1 Clearance rates

The mussels were capable of filtering the SCB bacteria from the seawater as total bacterial

numbers were seen to decrease over time compared to controls. Previously, a study of filtration

capacity of particles in Mytilus edulis (Møhlenberg and Riisgård 1978) showed a marked decline in

the uptake of particles smaller than 7 µm, which fell to 20% at 1 µm. Also, it has been shown by Ward

and Targett (1989) that microalgal metabolites influence mussel feeding behaviour. This indicates that

the mussels have some ability of preingestive selection, presumably on the gills or the labial palps,

which is not only related to size but also, to other particle characteristics (Hernroth et al. 2000a).

4.2 In situ hybridization

Using the probes, the presence of these bacteria was recorded in the mussels showing that they

were not selectively excluded during filtration. Both embedding techniques are adequate to detect the

bacteria in the mussel’s gut, whereby the more time-consuming method show a superior tissue

morphology. In this study, the mussels did not appear to reject any of the bacteria when fed a mixed

assemblage, because our probes detected each of the bacteria in the sections of the mussels gut. In our

experiments we could trace the presence of bacteria in the gut of the mussels up to 6 hours after

feeding ceased. The signals of the clade specific probes show approximately the proportion of the fed

species (Fig. 3c and 4b). The decrease in the signal strength after 6 hours may indicate that the

bacteria were being digested by the mussel.

As we have demonstrated the successful application of the 16S rRNA species-specific probes

to detect these putatively toxic bacteria in mussels under laboratory cultures, the next step would be to

test mussels in nature in areas where mussel beds have been closed because of toxic dinoflagellates to
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see if purportedly toxic bacteria, known to be present in the water column during a toxic episode

(Töbe et al. 2001), can also be found inside the mussels from the same area. It is still poorly known if

bivalves are capable of selectively ingesting particles based on their toxin content. Li and Wang

(2001) employed a radiotracer monitoring technique to determine the selective feeding behaviour of

the mussel Perna viridis Linné 1758 and the clam Ruditapes philippinarum (Adams and Reeve 1850)

on an algal mixture containing both toxic and non-toxic Alexandrium tamarense (Lebour) Balech,

1985. The authors did not find any selective ingestion of toxic and or non-toxic alga, which indicates

that the two bivalves were not able to distinguish the particles with different PSP toxin contents.

As probes for different toxic and non-toxic dinoflagellate-clades have now been developed

(John 2002) future tracking experiments could include feeding toxic- and non-toxic Alexandrium

tamarense to Mytilus edulis, to determine if a selective ingestion of particles based on their PSP

content take place in this shellfish species. Further information about the feeding behaviour and

accumulation period of both algae and bacteria of the blue mussel are necessary to clarify the possible

role of bacteria on shellfish toxicity.
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Probe name Oligonucleotide Sequence Target organism Temperature

Genus/Clade Level Probe

Alteromonas-clade/137R

(Brinkmeyer et al. 2000)

5’-tgt tat ccc cct cgc aaa-3’ Alteromonas-clade 50°C

Roseobacter-clade/536R

(Brinkmeyer et al. 2000)

5’-caa cgc taa ccc cct ccg-3’ Roseobacter-clade 60°C

Species level Probes

407-2/209R

(Brinkmeyer et al. 2000)

5’-ct ttg cgt ggg agc cgg-3’ 407-2 bacteria 65°C

4 avs3/210R

(Brinkmeyer et al. 2000)

5’-tct ctt tgc gcc aga gct-3’ 2 c3 and 4 avs3

bacteria

55°C

253-11/1423R

(Brinkmeyer et al. 2000)

5’-acc gtc gtc ggg tag acc-3’ 253-11 and 253-13

bacteria

60°C

Non-EUB338

(Manz et al. 1999)

5’-act cct acg gga ggc agc-3’ Serves as negative

control

50°C

Table1.

Oligonucleotide probes used in this study
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Fig. 1: Percentage decrease of bacteria 407-2 from seawater exposed to mussels and not
exposed to mussels (control bacteria)
after different time intervals.
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Fig. 2: Percentage decrease of a combination of different bacteria from seawater exposed to
mussels and not exposed to mussels (control bacteria)
after different time intervals.
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Fig. 3. Light micrographs show in situ hybridization of Paraffin (P) and Frozen (F) sections of

the hepatopancreas of M. edulis after different feeding experiments. The purple/brown colour

show positive signals of the hybridized bacteria. All probes were DIG-labelled. (A)

Hybridization with species-specific probe 407-2/209R, of the Alteromonas-clade, 30‘

sampling time (F, 10 µm). (B) Hybridization with species-specific probe 4aVS3/210R of the

Alteromonas-clade, 3h sampling time (P, 8 µm). (C) Hybridization with Alteromonas/137R-

clade probe, 6 h sampling time (P, 8 µm). (D) Negative control: Hybridization with NON-

338R, 6 h sampling time (P, 8 µm). 10 X magnifications.
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A B
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Fig. 4: Light micrographs show in situ hybridization of Paraffin sections (8 µm) of the

hepatopancreas of M. edulis after different feeding experiments. Arrows show the positive

signals of the hybridized bacteria. All probes were DIG-labelled. (A). Hybridization with

Roseobacter-clade/536R probe, showing Roseobacter background flora. 30‘ sampling time.

(B) Hybridization with Roseobacter-clade/536R probe, 3h sampling time. (C) Hybridization

with species-specific probe 253-11/1423R of the Roseobacter-clade, 6h sampling time. (D)

Negative control: Hybridization without a probe, 3h sampling time. X 10 magnifications.

A B

C D

4
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2.7 Publication IV

Reassociation experiments with bacteria into a highly toxic

Alexandrium tamarense clone

TÖBE, K. 1; DOUCETTE, G. J.2; MIKULSKI, C. 2
 AND MEDLIN, L.K.1

1Alfred Wegener Institute, Department of Biological Oceanography, Am Handelshafen 12,

27570 Bremerhaven, Germany
2 National Ocean Service, Center for Coastal Environmental Health and Biomolecular

Research, 219 Fort Johnson Road, Charleston, SC 29412, U.S.A.

Microbial Ecology, to be submitted

ABSTRACT

Two bacterial loadings of purportedly toxic bacteria were reintroduced into laboratory

cultures of a highly toxic Alexandrium tamarense clone (OF 84423-D3) to monitor a possible

reassociation of these bacteria with the dinoflagellate cell. One bacterial strain (PTB-1) was

originally isolated from the A. tamarense clone used in this study and the other bacterial strain

(PTB-6) was isolated from another A. tamarense clone that is no longer available for study.

Taxon and species-specific fluorescently labelled 16S rRNA probes, previously developed to

recognise these introduced bacteria were used to detect the bacteria in Alexandrium tamarense

following a time course of 96 hours. Epifluorescence microscopy and confocal laser scanning

microscopy coupled with TSA-FISH showed that none of the reintroduced bacteria became

intracellular, the PTB-1 bacteria were found to be attached to the surface of Alexandrium

tamarense, or free in the culture and seem to form a preferred relationship with this algae,

from which the bacteria were originally isolated.

Key words: Attached bacteria, Alexandrium tamarense, putative toxic bacteria, confocal laser

scanning microscopy, Gyrodinium instriatum, fluorescence in situ hybridization, tyramide

signal amplification
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INTRODUCTION

Bacteria are an integral part of the physical environment of toxic dinoflagellates

(Gallacher et al. 1997; Doucette et al. 1998; Prokic et al. 1998) and can be found in the

phycosphere, which is a zone around algal cells, in which bacteria are influenced by algae and

vice versa (Bell and Mitchell 1972). Bacteria may be in loose or tight associations with

phytoplankton (Caldwell 1977; Rothaupt and Güde 1992; Gallacher and Smith 1999), or

inside microalgal cells (Cole 1982; Franca et al. 1995; Alverca et al. 2002). The interactions

of bacteria and algae range from symbiotic, via commensal, to parasitic interactions (Schäfer

et al. 2002) and are highly variable in space and time (Grossart 1999). In the symbiotic

relationship bacteria benefit from phytoplankton products, such as exudates (Bell et al. 1974;

Cole 1982), whereas phytoplankton profit of bacterial products, such as remineralized

nutrients (Golterman 1972), vitamins (Haines and Guillard 1974), and other growth factors

(Paerl and Pickney 1996). Bacteria that live commensalic in or around algae benefit from the

algae without having any negative effect on it (Barbeyron and Berger 1989). Bacteria may

also be parasites of phytoplankton and penetrate into the algae to lead to cell lysis and death

(Cole 1982).

Paralytic Shellfish Poisoning (PSP) is a serious illness, which is caused by the

consumption of filter feeding bivalves that are contaminated with toxins produced by several

dinoflagellates, such as the dinoflagellate Alexandrium spp. (Anderson et al. 1990; Kim et al.

1993). It has been suggested that bacteria also produce paralytic shellfish toxins (PSTs)

(Kodama et al. 1990a; Gallacher et al. 1997; Hold 1999). This remains controversial, because

a unchallengeable proof is still lacking. Bacteria attached to or associated with toxic algae

may also produce toxic substances, or influence the toxicity of the algae (Buck and Pierce

1989; Tosteston et al. 1989). Some authors reported higher toxicity in axenic cultures (Singh

et al. 1982; Dantzer and Levin 1997), whereas others reported less toxicity (Doucette and

Powell 1998). There are also many reports about the association of bacteria with toxic algae

in culture (Tosteson 1989; Doucette and Trick 1995; Lafay et al. 1995; Babinchak et al. 1998;

Prokic et al. 1998; Hold et al. 2001a; Lewis et al. 2001; Simon et al. 2002), but the role of the

bacteria in this relationship has not been resolved. Lewis et al. (2001) assumed that for

Alexandrium spp., a small number of specialised bacteria are closely associated with the

surface of the dinoflagellate and the algae could act as a carbon source for the attached

bacteria. They also showed intracellular bacteria in all growth phases and all life-cycle stages

of Alexandrium spp. (Lewis et al. 2001).
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Several putative toxic bacteria have been isolated from toxic and non-toxic cultures of

Alexandrium tamarense, a dinoflagellate that is associated with PSP outbreaks. The first

putatively toxic bacteria, referred to as the PTB strain, isolated from A. tamarense was

initially identified as a member of the genus Moraxella of the g-subclass of Proteobacteria

(Kodama et al. 1990b). The putatively toxic bacteria PTB-1, 6, and 7, originally isolated from

Alexandrium tamarense cultures from different areas in Japan, actually belong to the a-

subclass of Proteobacteria and are likely to be a new genus in that group, clearly unrelated to

the genus Moraxella (Kopp et al. 1997; Groben et al. 2000).

PTB-1 bacteria were isolated from a highly toxic A. tamarense clone, OF84423-D3,

Ofunato Bay, N. Japan, PTB-6 bacteria from a weakly toxic A. tamarense clone, PT-5,

Harimanada Bay, S. Japan (Ogata et al. 1990; Doucette et al. 1998) and PTB-7 bacteria from

a non-toxic A. tamarense clone (CU-1, Gulf of Thailand). The latter dinoflagellate was later

reclassified as A. affine (Scholin and Anderson 1994). The PTB-1 strain has been shown to

produce sodium channel blocking activity (Ogata et al. 1990). Other authors reported an

autonomous production of multiple PSTs derivates by the PTB-1 strain, confirmed by HPLC

(Doucette and Trick 1995). The toxicity of the PTB-6 bacteria has not so far been extensively

studied. This bacterial strain was also shown to be capable of PST production confirmed by

HPLC and a mouse neuroblastoma assay, respectively (Ogata et al. 1990). However,

confirmatory mass spectrometer data of the autonomous PST production by marine bacteria

are still lacking, therefore these bacteria remain only putatively toxic (Groben et al. 2000).

In this study, a possible physical re-association of putatively toxic PTB-bacteria to a

toxic Alexandrium tamarense clone was investigated, to gain more information about the

physical interactions between algae and bacteria. Group, genus, and species-specific

eubacterial probes targeting 16S rRNA were tested on the dinoflagellates in culture to localise

and identify the bacteria. Tyramide signal amplification together with fluorescence in situ

hybridization (TSA-FISH) was applied to amplificate the fluorescence signals of the

hybridized rRNA probes. This detection method uses the catalytic activity of horseradish

peroxidase (HRP) to generate a strong labelling of the nucleic acid in situ. This results in

strong signal amplification and enables the detection of rare events, such as the presence of a

single bacterium inside an autofluorescence exhibiting dinoflagellate cell. With following

confocal scanning microscopy (CLSM) bacteria can be identified, localized, and quantified,

either attached to the dinoflagellate or within the alga.
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MATERIAL AND METHODS

Organisms. Dinoflagellates Alexandrium tamarense (highly toxic strain, OF 84423-

D3, Ofunato Bay, N. Japan) and Gyrodinium instriatum (non-toxic, LME 176 a, Lisbon,

Portugal). The non-thecate dinoflagellate Gyrodinium instriatum LME 176a was used as a

positive control in this study because it contains intracellular bacteria, both in the nucleus and

in the cytoplasm (Silva and Franca 1985; Franca 1994; Alverca et al. 2002).

Bacterial strain PTB-1 (originally isolated from a highly toxic A. tamarense clone

OF84423-D3, Ofunato Bay, N. Japan) and bacterial strain PTB–6 (originally isolated from a

weakly toxic A. tamarense clone, PT-5, Harimanada Bay, S. Japan)

Maintenance and growth of organisms. The dinoflagellates were cultured in F/2

medium (Guillard 1975) The dinoflagellates were maintained in IMR/2 medium (Eppley et al.

1967) at a photon flux density of 100 µmol m-2 s-1 at 15°C and a 14:10 h light/dark photon

cycle. Relative fluorescence of the dinoflagellate cells was measured at the day of sampling in

a Turner Model 10-AU Flurometer as an indication of relative growth rate per day. Aliquots

of bacterial glycerol stocks hold at –80°C were plated on a complete seawater medium based

agar (SWC, Haygood and Nealson 1985) and incubated at 23°C. Colonies were picked and

inoculated in SWC medium, incubated overnight at 23°C while shaking at 180 rpm and their

density was photometrically determined.

Fixation and filtration of Alexandrium tamarense and PTB-bacteria. The non-axenic

Alexandrium tamarense culture were filtered through a 0.5 µm filter (Millipore, Bedford, MA,

USA) and repeatedly washed, to reduce the bacterial background of the culture. An

antibacterial treatment of the culture would have reduced the viability of this Alexandrium

tamarense strain, as determined in preliminary studies and therefore this approach was

abandoned. Two bacterial loadings of PTB-1 and PTB-6 bacteria, respectively, were used.

One inoculum at 103 and the second at 105, to investigate the effect of different bacterial

loadings on the growth of the dinoflagellates.

At a time 5 ml of the dinoflagellate/bacteria mixture was fixed in freshly made 4%

paraformaldehyde (pH 7.2, in 1 X Phosphate buffered saline, PBS, 0.2 µm filter sterilised) in

solution for 1 h at 4°C. The dinoflagellate/bacteria mixture was sampled at 0 h, 48 h, and 72 h

and after 96 h. At a time one ml fixed dinoflagellate/bacteria mixture was filtered onto white

0.2 µm pore size, 25 mm diameter (Millipore, Bedford, MA, USA), or onto black
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polycarbonate filters (Osmonics, Minnetonka, USA). The filtration on white or black filters

was made in triplicate for each experiment and sampling day. The filters were dehydrated in a

graded ethanol series (50, 80, 100%) for 5 minutes each.

Fixation and filtration of Gyrodinium instriatum and PTB-bacteria. One bacterial

loading of 105 PTB-1 and PTB-6 bacteria, was inoculated into the Gyrodinium instriatum

culture. At each sampling time 5 ml of the dinoflagellate/bacteria mixture was filtered onto

white polycarbonate filter. G. instriatum is very sensitive to PFA fixation and tended to burst,

therefore a saline ethanol fixation was conducted (Scholin et al. 1996) prior to PFA-fixation.

The filters were fixed with 3 ml freshly prepared saline EtOH (25 ml Ethanol, 2 ml dH2O, 3

ml 25X SET [3.75 M NaCl, 25 mM EDTA, 0.5 M Tris, pH 7.8, 0.2 µm filter-sterilised]),

which was added directly to the filter and incubated for 1 h at room temperature and filtered

down. Three ml hybridization buffer (189.0 ml dH2O, 48.0 ml 25X SET, 2.4 ml 10%

IGEPAL-CA630, filter-sterilised, + 0.75 ml poly A [stock 10 mg/ml]) was given onto the

filter and incubated for 5 minutes at room temperature and filtered down. After this initial

saline/ethanol fixation, the dinoflagellate/bacterial mixture was fixed in 4% PFA for 1 h at

4°C and further processed as described for the A. tamarense/bacteria samples. Sampling times

were at 0 h, 48 h and after 96 h.

Fluorescence in situ hybridization. The filters were cut into four pieces with a sterile

scalpel. For each filter piece varying probes (Table 1, Fig. 1) were used for hybridization. To

ensure a proper probe penetration into the dinoflagellate cells, the algae cells were treated

with lysozyme. One ml of a lysozyme solution (5 mg ml-1 in sterile Milli-Q) was applied to

each filter and incubated for 30 minutes at 37°C in a humid chamber. To stop the enzymatic

reaction, the filters were rinsed three times for 1 minute in 5 ml sterile Milli-Q-water and

dehydrated again by a graded ethanol series (50, 80, 100%) for 5 minutes each (Amann et al.

1995). Twenty µl hybridization buffer (20mM Tris/HCL, [pH 8.0], 0.9 M NaCl, 10%

deionized formamide, 0.01% SDS) + 2 µl labelled probe (50 ng µl –1) were added to each

filter piece. Hybridizations were performed at 46°C for 2-3 h in the dark. The filter pieces

were washed (wash buffer: 10% formamide: 20 mM Tris /HCl [pH 8.0], 0.45 M NaCl, 5 mM

EDTA, 0.01% SDS, 20% formamide: 20 mM Tris /HCl [pH 8.0], 0.23 M NaCl, 5 mM EDTA,

0.01% SDS) two times for 10 minutes at 48°C, while shaking (Amann et al. 1990) and

separated in those for TSA-FISH and in those without an enhancement of the fluorescence

signal. The filters without a signal enhancement were washed for a few seconds in sterile

Milli-Q and air dried. Cells were mounted in Citifluor (Citifluor products, London, United
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Kingdom) and counterstained with DAPI by applying a Citifluor/DAPI mixture (1 ml

Citifluor + 0.5 ml sterile water + 1.5 µl DAPI [stock 1 µg µl-1]) directly onto the filter and

incubated for 10 minutes in the dark. The filters were washed in sterile Milli-Q for five

minutes and air dried. Coverslips were placed over the dry filters and the slides were sealed

with nail varnish. For each experiments and each sampling day three filters were hybridized.

All hybridization steps were performed in the dark.

TSA-FISH: 1. Horseradish Peroxidase (HRP)-labelled probes. After the last washing

step, the filter pieces, which were hybridized with Horseradish Peroxidase (HRP)-labelled

probes were rinsed in sterile Milli-Q and equilibrated for 15 minutes in TNT-Buffer (0.1 M

Tris-HCL, [pH 7.5], 0.15M NaCl, 0.05% Tween 20). Forty per cent dextran sulfate (w/v in

sterile Milli-Q water) was mixed 1:1 in 2 X Amplification Diluent of the TSA-direct Kit

(NEN Life Science Product Inc., Boston, MA, USA). Dextran sulfate reduces the unspecific

staining of non-target cells during long-term incubation (Schönhuber et al. 1999). One µl

fluorescein tyramide (FT [TSA-Direct Kit]) was given to 50 µl of this mixture, to create the

FT-working solution. Twenty-five µl of this FT-working solution per filter quarter was

applied and the filter quarters were incubated for 30-45 minutes at room temperature in the

dark. To remove non-implemented FT and to stop the enzyme reaction, the filter quarters

were washed twice in TNT-Buffer for 15 minutes at 55°C (Schönhuber et al. 1997 and 1999),

rinsed in sterile Milli-Q water, air-dried and mounted and counterstained with Citifluor and

DAPI as mentioned before.

2. FITC labelled oligonucleotide probes. After the last washing step in the standard

FISH procedure, filters with FITC-labelled probes were rinsed in sterile Milli-Q and

equilibrated for 15 minutes in TNT-Buffer and air dried. The dry filter was blocked with 40 µl

TNB-Buffer (0.1M Tris-HCl, pH 7.5, 0.15M NaCl, 0.5% blocking reagent [Roche,

Mannheim, Germany]) per filter piece for 30 minutes at room temperature to prevent

unspecific binding of the antibody and then drained off carefully. Twenty-five µl anti-

fluorescein-HRP diluted 1:100 in TNB were added to the filter quarters, incubated for 30

minutes at room temperature and washed three times for five minutes in TNT-buffer at room

temperature, while shaking. The FT stock solution (in dimethyl sulfoxide) has to be diluted

1:50 in 1 X Amplification Diluent (NEN life science products, USA) to set up the FT-

working solution. Twenty-five µl FT working solution was applied to each filter piece and

incubated for 5 minutes at room temperature. Afterwards the filters were washed two times
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for 15 minutes in TNT-Buffer at room temperature while shaking, air dried, mounted and

counterstained as described before.

Negative controls. On filter quarter of each filter was cut again in half pieces. One

piece was hybridized with FITC labelled NON-338R which has a sequence complementary to

EUB338 and served as a negative control for unspecific binding (Manz et al. 1999). TSA-

FISH without a probe was made with the other piece to verify the received hybridization

signals. Additionally, FISH was made with the unwashed A. tamarense clone OF 84423-D3,

without inoculated bacteria to determine, if a natural background floor of PTB-1 or PTB-6,

respectively, was present in the culture. The used probes and hybridization pattern were the

same as in the hybridization of the reassociation experiments (see Table 1 and Fig. 1).

Counts of Alexandrium tamarense by epifluorescence microscopy and confocal

scanning microscopy. Slides were viewed with a Zeiss Microscope (Axioskop 2 plus,

Oberkochen, Germany) fitted for epifluorescence microscopy under oil immersion (Leica

immersion oil, Oberkochen, Germany) with the appropriate filter set (Zeiss filter sets, 03: UV

G 365; 04: blue BP 450-490 nm; 05: green BP 510-560 nm). The epifluorescence images

were aquired with a X 63 objective (Plan-Apochromat, numerical aperture 1,40 Oil DIC ) and

analysed with the Leica program Axio vision 3.1.

All dinoflagellate-cells were counted with visible bacteria attached to the

dinoflagellates and those without PTB-bacteria. Three filters were analysed for every

experiment and sampling day. To locate possible intracellular bacteria the cells were scanned

by confocal scanning microscopy. Optical sections were acquired with a Leica confocal laser

scanning microscope (TSNT, 165081, Leica, Oberkochen, Germany) equipped with an argon-

krypton laser. The dinoflagellates were observed using excitation/ emission lines of the

krypton argon laser: blue light (excitation 488 nm, emission 522/32 nm) to visualise the

fluorescence of FITC and HRP-hybridized bacteria and green light (excitation 568 nm,

emission 605/32 nm) to visualise CY3. The confocal images were acquired with a X 40

objective (NA Oil Planapo numerical aperture 1,25 x 0,75 Leica). The confocal images were

analysed using the Leica-TCSNT program.
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RESULTS AND DISCUSSION

So far, only little is known about the attachment behaviour of bacteria to algal cells

(Kogure et al. 1982; Vaqué et al. 1990; Worm and Sondergaard 1998). Hold et al. (2001b)

have shown from isolation and culture experiments that a number of different bacterial

species are associated with dinoflagellates, some of which are common to each of the

dinoflagellate cultures examined, whereas others appear to be unique to a particular

dinoflagellate. Our study showed a difference in the re-association of the PTB-1 bacteria

originally isolated from the dinoflagellate used in this study and PTB-6 bacteria originally

isolated from another related weakly toxic Alexandrium clone (PT-5).

Alexandrium tamarense cultures to which a PTB-1 inoculum of 103 and of 105,

respectively, was introduced increased similarly in numbers up to 72 h after inoculation.

Thereafter, dinoflagellate cell growth decreased. A. tamarense inoculated with PTB-6

(inoculum 103) showed an increased cell growth up to 96 h when sampling stopped. The

Alexandrium culture inoculated with PTB-6 (inoculum 105) increased in numbers until 72 h

after inoculation and then began to decrease (Fig. 2), probably because of a depletion of

nutrients in the culture media.

PTB-1 bacteria were found attached to A. tamarense cells and free in the media. TSA-

FISH produced very bright fluorescence signals, therefore had any of the introduced bacteria

reassociated intracellularly, it would have been possible to detect them because a positive

fluorescence signal would have overcome the dinoflagellate’s autofluorescence. The cell

numbers of attached PTB-1 bacteria to A. tamarense numbered from 1 to 12 bacteria per

dinoflagellate cell (inoculum 103) and from 3 to 13 (inoculum 105; Fig. 3).

PTB-6 bacteria were found free in the culture media, but rarely found attached to A.

tamarense and when found, cell numbers of associated PTB-6 bacteria to the dinoflagellate

surface ranged from 3-12 bacteria per dinoflagellate cell (inoculum 103) to 5 to 15 (inoculum

105; Fig. 3).

The numbers of attached bacteria to algae cells in culture found by other authors are in

the same range like our findings. Rausch de Trauenberg and Soyer-Gobillard (1990) found

less than ten bacterial cells on cultured cells of Prorocentrum micans during exponential and

stationary phases. Simon et al. (2002) showed that putatively toxic bacteria are able to attach

to A. tamarense in culture, especially as the culture entered stationary growth phase. The

authors monitored attachment of putative toxic bacteria to phytoplankton over a time period

of 35 days and reported from less than ten bacteria per dinoflagellate until Day 10 after their



125

125

experiment started, and an average number of 9, 16 and 30 attached bacteria at Day 34. The

authors suggested that the physiological state of dinoflagellates influenced the ability of the

investigated putative toxic bacteria to become attached to the dinoflagellate. However,

attachment of these bacteria did not induce toxin production by originally non-toxic

dinoflagellates (Simon et al. 2002).

In this study, the number of attached bacteria range in the same manner over the

course of the experiment, and did not change in the monitored incubation time. This bacterial

association to the dinoflagellate cells are probably stimulated by organic exudates produced

by the algae, and the numbers of attached bacteria could represent the optimal numbers, e.g.,

for the exchange of nutrients between both organisms.

No PTB-1 or PTB-6 bacteria were found intracellularly in A. tamarense. However,

intracellular bacteria of the a-subclass of were found intracellularly located within A.

tamarense BAHME182 by FISH and CLSM (Töbe et al. unpublished). In contrast to these

findings no intracellular bacteria were found in other A. tamarense strains (PLY173a and

NEPCC 407) after FISH by Biegala and co-authors (2002). The authors suggested that these

strains did not contain any intracellular bacteria at the time of sampling, although in

Alexandrium-strain NEPCC 407 bacteria were detected by transmission electron microscopy

(TEM), although in low abundance (Lewis et al. 2001). Thus, great differences in the

intracellular bacterial population exist between different strains of Alexandrium tamarense

and this should be investigated further to get more deep insights in the relationship between

algae and their associated bacteria.

The positive control Gyrodinium instriatum clearly showed endocytic and

extracellular attached bacteria in the cytoplasm detected by hybridization with the FITC

labelled eubacterial probe 338R, following TSA-FISH combined with CLSM. No PTB-

bacteria were found attached to the dinoflagellate or intracellularly in G. instriatum (Fig. 4-5).

The negative controls showed no unspecific binding of NON-338 to bacterial cells.

However, some dinoflagellate cells were coloured green generated by TSA alone. No PTB-

bacteria were found as a natural background flora in the washed and filtered Alexandrium

culture without inoculated bacteria, hence the detected bacteria were indeed newly-associated

bacteria.

Although the number of associated bacteria with an individual cell of A. tamarense

was in the same range in both cultures, PTB-1 bacteria re-attached more frequently to this

dinoflagellate than did PTB-6 bacteria. The cultures with the PTB-1 reintroduced bacteria

also seemed to grow slower than the culture with the reintroduced PTB-6 bacteria. This
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observation needs to be investigated further to determine if in some manner the bacteria

influenced the general health of the dinoflagellate cell.

With FISH in combination with TSA and confocal scanning microscopy we have

shown a specific attachment of the inoculated putatively toxic PTB strains to a highly toxic

Alexandrium tamarense culture on the cellular level without destroying the morphological

features of the organisms. However, further investigations on this subject are necessary to

unravel the real meaning of the physical interactions between bacteria and microalgae,

especially in environmental studies.
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Fig. 1: FISH pattern: FITC-labelled oligonucleotide probes marked in green; HRP labelled probes marked
in green, underlined; CY3-labelled oligonucleotide probes marked in red.
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Table.1: Sequences of the used oligonucleotide probes

Oligonucleotide probes Probe sequence Target strain Hybridization temperature and

Formamide concentration

PTB-all/646

(Groben et al. 2000)

5’-tct cgg act caa gac ttc-3’ PTB-clades 1 and 2 46°C, 10%

PTB-1/1014

(Groben et al. 2000)

5’-cga agg gaa aaa cga cat ct-3’ PTB-1 cluster 46°C, 10%

PTB-6 and 7/997

(Groben et al. 2000)

5’-ctc

 tgg aag tag cac caa a-3’

PTB-6 and 7 46°C, 10%

EUB338 (Amann et al. 1990) 5’-gct gcc tcc cgt agg agt-3’ Eubacteria 46°C, 20%

Non-EUB338 (Manz et al. 1999) 5’-act cct acg gga ggc agc-3’ Serves as a negative control 46°C, 20%
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Fig. 2 Relative fluorescence of Alexandrium tamarense and reintroduced bacteria as an
indication of relative growth rate at each sampling time.
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Fig. 3: a) PTB-1 bacteria hybridised with EUB 338R, CY3-labelled; b) Same cells hybridised with PTB-1
probe, FITC-labelled; c) PTB-6 bacteria hybridised with EUB 338R, CY3-labelled; d) Same cells
hybridised with PTB-6 probe, FITC-labelled; e) PTB-1 bacteria attached to A. tamarense  hybridised with
EUB 338R, CY3-labelled; f) Same cells hybridised with PTB-1 probe, FITC-labelled; g) PTB-6 bacteria
attached to A. tamarense hybridised with EUB 338R, CY3-labelled; h) Same cells hybridised with PTB-6
probe, FITC-labelled. X 63 enlargement
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Fig. 4: Epifluorescence microscopy of Gyrodinium
instriatum. a) DAPI staining of G. instriatum. b) Same
cell hybridised with EUB 338R, FITC labelled and TSA
enhancement. Arrows show endocytoplasmatic and
endonuclear bacteria. Nu: Nucleus. X 63 enlargement.
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Fig. 4: CLSM Optical sections of Gyrodinium instriatum, 0,7 µm thick,  450-490 nm excitation. TSA-FISH with EUB
338R , FITC labelled. Arrows show hybridised endocytoplasmatic and endonuclear bacteria. Nu: Nucleus. X 40
enlargement.
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3. SYNTHESIS

3.1 Bacterial flora of cultured dinoflagellates

Bacteria are an integral part of the dinoflagellates physical environment and can occur

free in the medium, attached to the dinoflagellate cell, or located within the algae cell (Silva

1978; Gordon et al. 1994; Rausch de Trauenberg et al. 1995; Lewis et al. 2001; Seibold et al.

2001; Alverca et al. 2002). These physical interactions between bacteria and algae are highly

variable in space and time (Grossart 1999). It has been shown that marine bacteria are

dominated by the subclass of a- and g-Proteobacteria and the Cytophaga-Flavobacterium-

Bacteroides (Glöckner et al. 1999), and members of these bacterial classes have been found in

association with different species of dinoflagellate (Lafay et al. 1995).

In Publication I the bacterial community from laboratory cultures of toxic and non-

toxic dinoflagellates of the genus Alexandrium by FISH and confocal scanning microscopy

(CLSM) were identified, and localised. Besides FISH, cyanoditolyltetrazolium chloride

(CTC) was used in combination with CLSM to detect metabolically bacteria inside the

dinoflagellate cells. The CTC detection method of metabolically active bacteria does not

discriminate among different bacterial groups, but this was achieved with the use of rRNA

probes. FISH with 16S- and 23S ribosomal RNA (rRNA) oligodeoxynucleotide probes

detected Eubacteria, the a-subclass of Proteobacteria and bacteria of the genus Roseobacter

attached to the cell surface of A. tamarense and A. lusitanicum. Bacteria of the a-subclass of

Proteobacteria were found in limited numbers intracellularly in A. tamarense. Alteromonas-

clade bacteria were found attached to the cell surface of A. andersonii and free in the culture

medium. Alteromonas-clade and Roseobacter-clade bacteria are common in marine

environments and are often found associated with microalgae (Lafay et al. 1995; Doucette and

Trick 1995; Gallacher et al. 1997; Hold et al. 2001a; Alavi et al. 2001). A dominance of

Roseobacter-clade bacteria with the occurrence of toxic and non-toxic dinoflagellates has also

been described in studies investigating bacteria in field material from HAB areas (Gerdts et al.

2000; Publication II and Appendix to Publication II). Gerdts et al. (2000) reported a

domination in the water column by a a-subclass Proteobacteria during toxic A. tamarense

blooms in the area of the Orkney Islands and the Firth of Forth in 1998. Their results

indicated, that Proteobacteria of the a-subclass were closely associated with the blooms of

toxic A. tamarense.
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In Publication I, FISH experiments revealed bacteria attached to several but not all

the dinoflagellates investigated. Bacteria were found attached to A. tamarense, A. lusitanicum

and A. andersonii. Additionally, intracellular bacteria were found within A. tamarense.

Hybridization with group level probes failed to detect any bacteria inside or attached to the

surface of A taylorii and A. ostenfeldii. However, the autofluorescence of A. taylorii is very

high and could have covered possible hybridization signals. It is also possible that bacteria of

A taylorii and A. ostenfeldii were not in active growth period and therefore did not have a

sufficiently high number of ribosomes, which are the targets for the binding of the labelled

oligonucleotide (Lee et al. 1993). Another reason for the different hybridization results could

be that the probes failed to penetrate the cell wall of the dinoflagellate, because these cells

could be less sensitive to lysozyme digestion, than others of the same species.

CTC serves as an indicator for the detection of metabolically active bacteria within

microalage, because it can only be reduced to the water insoluble red fluorescent formazan,

when metabolically active cells, such as bacteria, reduce it by capturing electrons derived

from the respiratory chain and therefore preventing its release from the cell (Rodriguez et al.

1992; Córdova et al. 2002). Metabolically active bacteria were found in A. tamarense and A.

lusitanicum. However, no intracellular bacteria were found in A. lusitanicum by FISH. No

metabolically active bacteria were found within A. andersonii, A. taylorii and A. ostenfeldii.

CTC caused sometimes a background coloration of the dinoflagellates probably because of a

residual respiratory activity of the algae (Córdova et al. 2002), so that small amounts of CTC

were reduced and remain associated to the cytoplasm. The FISH technique and the CTC

treatment of dinoflagellates cannot be performed concurrently and therefore on the same

dinoflagellate cell, because of the different sample preparation. Therefore, the results of both

methods can only be compared among different dinoflagellate cells of one species.

In this study, using rRNA probes it was possible to identify the genus/species of the

bacteria inside the dinoflagellate and attached to the dinoflagellates cell surface. Moreover,

metabolically active bacteria were shown within dinoflagellates of the genus Alexandrium by

the use of the compound CTC. This data provides important information about the association

between bacteria and algae and their bacterial community.
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3.2 Monitoring of a bacterial contribution to saxitoxin in the environment

It has been reported that bacteria play an important role in the production of Paralytic

Shellfish Toxins (PSTs), although the precise mechanisms remain unclear. However, if both

bacteria and the dinoflagellate play necessary roles in toxin production, it cannot be explained

how such an association co-evolved. It has been suggested that the ‘saxitoxin genes’ may

have evolved once, probably in a prokaryote, and were subsequently transferred by gene

transfer to other aquatic microorganisms (Plumley and Wei 1996; Plumley 1997 and 2001).

Nevertheless, cyanobacteria from which some species are reported to produce saxitoxins are

prokaryotes and other bacteria produce the chemically close relative tetrodotoxin, so it is

likely that the toxin is of bacterial origin.

So far, definitive evidence for PST production by marine bacteria by the provision of

spectral data and the isolation and purification of PSTs from bacteria are lacking. Quantities

of PSTs for bacteria range between 0.004 to 3.71 x 10-4 pg STX equiv. cell–1 (Gallacher and

Smith 1999). This is considerably lower than the 0.12 pg STX equiv. cell–1 reported for the

cyanobacterium Anabaena circinalis (Negri et al. 1997) and the 6-58 pg STX equiv. cell–1

reported for a range of isolated Alexandrium fundyense and A. tamarense (Anderson et al.

1994).

Interactions between algae and bacteria are commonly observed in the marine

environment, and bacteria are increasingly postulated as potentially important regulators in

processes of algal bloom initiation, maintenance and decline (Doucette 1995). Up to now, the

interactions of bacteria and HABs have not been investigated to a great extent (Doucette et al.

In summary, different members of the genus Alexandrium were screened for intracellularly

located and/or extracellularly attached bacteria by application of group or clade specific

fluorescently-labelled 16S and 23S rRNA probes. Fluorescence in situ hybridization

combined with confocal laser scanning microscopy (CLSM) revealed extracellularly

attached bacteria to the cell surface of Alexandrium tamarense, A. lusitanicum and A.

andersonii. Intracellularly associated bacteria were found in A. tamarense. Moreover, the

presence of metabolically active intracellular bacteria within log and stationary phase-fixed

Alexandrium tamarense and  A. lusitanicum was documented with the use of

cyanoditolyltetrazolium chloride in combination with epifluorescence microscopy and

CLSM.
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1999), although coupling of both organisms through the microbial loop is well-documented

(Azam et al. 1983).

Only little information is available with regard to the identity of bacterial populations

occurring with toxic Alexandrium species in the environment. The results of Publication II

and Appendix to Publication II are the most comprehensive to date with regard to

examining which bacteria including purportedly toxic bacteria, are present in the water

column during periods of shellfish toxicity and when Alexandrium spp. are present. In this

studies, rRNA probes designed for purportedly toxic bacteria (Brinkmeyer et al. 2000) were

successfully applied to Lugol's-fixed water samples obtained from the Orkney Islands in two

monitoring years. The successful application of the FISH technique to samples containing

Lugol's preservative has not been reported previously and is potentially useful for analysing

fresh or archived field samples of both bacteria and algae. Bacteria were successfully detected

using FISH in samples from as far back as 1997, but the signal was considerably lower as

compared to that obtained in fresh samples from 1999 and 2000. One possible alternative

approach is the use of dot blot hybridizations, because they give stronger signals than FISH in

older samples. It may also be possible to improve the FISH signal with a tyramide signal

amplification (TSA) method used in Publication IV. Nevertheless, bacteria cross-reacting

with the probes were easily detected, which would suggest that they were actively growing

members of the bacterioplankton.

Bacteria reacting to probes for the Roseobacter and Alteromonas-clades in samples of

the year 1999 were common, consisting of up to 46% of the total bacterial population and the

number of bacteria cross-reacting to the species-specific probes was approximately 1% of the

number detected by the clade probes. In 2000, Roseobacter and Alteromonas spp. consisting

of up to 57% of the total bacterial counts at The String in the end of May and up to 34% in the

beginning of June at Scapa Flow. However, the number of bacteria recognised by the species-

specific bacteria was only up to 0.5% of the number detected by the clade probes. This

indicates that there is a large percentage of the bacterial community belonging to these two

clades that could not be accounted for using the species-specific probes. The vast majority of

marine bacterial diversity remains undescribed, and it is possible that our probes may have

even targeted as yet unknown, perhaps closely related bacteria with the same target sequence.

In the samples of the year 1999, a weak significant positive relationship between

Alteromonas- and Roseobacter-clade counts and those of Alexandrium spp. at Scapa Flow

was obtained. At The String there was also a weak correlation between Alexandrium and the

Alteromonas-clade counts but not the Roseobacter-clade. Data were not available on the rest
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of the phytoplankton community and therefore it was not possible to determine whether any

relationship existed between the bacteria and other phytoplankton species. In 2000, the

bacterial counts were again correlated against the counts for Alexandrium and with values of

PST in mussels harvested from the same area. However, in 2000 no mussels were harvested

from The String and thus only comparisons from Scapa Flow could be made. Roseobacter-

and Alteromonas-clade bacteria were not significantly correlated with Alexandrium spp. at

either site. Species-specific bacteria of both clades were negatively correlated with

Alexandrium spp. at The String and positively correlated at Scapa Flow, but neither

correlation was significant. Roseobacter  and Alteromonas-clade bacteria were not

significantly correlated with mussel toxicity nor were species-specific bacteria of either clade.

These environment studies on Lugol’s fixed seawater samples showed that there was no

significant correlation between the number of putatively toxic bacteria cross-reacted with the

used oligonucleotide probes, and PST in mussels sampled at the same time. However, neither

year was considered to be particularly noteworthy in terms of PSP toxification.

It has been reported that PST were present in particles of a similar size fraction (0.45-5

µm) to bacteria in seawater from Ofunto Bay, Japan during times when bivalve toxicity

increased in the absence of toxic dinoflagellates. Therefore, it was hypothesised that bacteria

could be the source of the toxins detected in these shellfish (Kodama et al. 1990). However,

the presence of PSTs in shellfish in times when no toxic phytoplankton were detected in

surrounding waters is more probable generated by a different toxin source. Toxic

dinoflagellate algae can form cysts that rest in the sediment as the bloom declines (Vale and

Sampayo 2001). Alexandrium cysts have been detected in the area of the Orkney Islands,

thereby providing potential seed beds for the vegetative dinoflagellate cells (Macdonald,

personal communication). These cysts could be as toxic as the suspended vegetative forms

that are present during a toxic bloom. Shellfish being bottom dwelling filter feeders, can

continue to consume cysts during non-bloom periods and accumulate PSP toxin in this way

(Vale and Sampayo 2001). This might explain why after a bloom certain shellfish species

maintain toxicity for long periods and also why shellfish show toxicity when no Alexandrium

spp. were detected in the water column (Vale and Sampayo 2001). Additionally, some

shellfish take longer to depurinate than others and thus can remain toxic long after the

dinoflagellate cells disappear from the water column.

From this study there does not seem to be evidence to support the suggestion that

bacteria could be responsible for PST in mussels at the concentrations frequently observed in

monitoring programs.



144

144

3.3 Effect of putatively toxic bacteria on mussels toxicity

Almost virtually nothing is known about the effect of putatively toxic bacteria on

shellfish toxicity. In Publication III the presence of bacteria in the gut of Mytilus edulis up to

6 hours after feeding ceased was demonstrated. The mussels did not appear to reject any of

the bacteria when fed a mixed assemblage, because the used probes detected each of the

bacteria in the sections of the mussel’s gut. The strength of the signals of the clade specific

probes show approximately the proportion of the fed species. The decrease in the signal

strength after 6 hours may indicate that the bacteria were being digested by the mussel.

In this study the bacteria did not invoke toxicity in the mussels. However, in

preliminary investigations a known sodium channel blocking toxin producing bacterium (407-

2) render mussels toxic after feeding experiments. The concentration of this bacterium in

seawater fell by 73% in the first hour, compared to only 2% in control jars. The rapid removal

of this bacterial strain correspond to the detection of 0.84 µg STX equiv./100 g mussel flesh,

with the highest level of 1.275 µg STX equiv./100 g mussel flesh detected after 4 h

determined by the use of the Mouse Neuroblastoma Assay. Toxicity levels subsequently

dropped to 0.4 µg STX equiv./100 g mussel flesh after 6 h, with a further rise in toxicity after

24 h.

Although the bacteria in this study did not render the mussels toxic, we still can not

conclusively eliminate any influence that the bacteria may have on the dinoflagellate toxicity

and further investigations are needed. As the successful application of the 16S rRNA species-

specific probes to detect these putatively toxic bacteria in mussels under laboratory cultures

In summary, data presented in these studies are the most comprehensive to date with

regards to examine the bacterial community, including purportedly toxic bacteria,

occurring during periods of shellfish toxicity and when Alexandrium spp. were present in

the water column. The successful application of fluorescently labelled oligonucleotide

probes to Lugol’s fixed seawater samples were described for the first time in this study.

The toxigenic bacteria were detected in high numbers in the water column whether

Alexandrium spp. were present or absent and during periods when mussels contained

Paralytic Shellfish Toxins. A statistically significant association were found between

bacteria belonging to the Alteromonas-clade in both years and some specific Alteromonas

species to numbers of Alexandrium cells in 1999.
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was demonstrated, the next step would be to test mussels in nature in areas where mussel beds

have been closed because of toxic dinoflagellates to see if purportedly toxic bacteria, known

to be present in the water column during a toxic episode, can also be found inside the mussels

from the same area.

3.4 Physical interactions between bacteria and algae

Another question in bacteria/dinoflagellate interactions is, whether bacteria are

specifically associated with the dinoflagellate, or whether the associations among the

organisms occur randomly. Hold et al. (2001b) showed that a number of different bacterial

species are associated with Alexandrium spp. and Scripsiella sp. Some of these bacteria are

common to each of the investigated dinoflagellate cultures, whereas others appear to be

unique to a single dinoflagellate species. The authors suggested a species-specific association

between some bacteria and certain algal species and postulated differences in the microflora

between toxic and non-toxic dinoflagellates (Hold et al. 2001a).

In Publication IV, PTB-1 bacteria originally isolated from the Alexandrium

tamarense strain used in this study showed a preference for attachment to this dinoflagellate

when reintroduced to a culture of this dinoflagellate than did PTB-6 bacteria, which were

originally isolated from another A. tamarense clone. These findings also agree with the

findings of Simon et al. (2002) who showed that putative toxic reintroduced bacteria are able

to re-attach to Alexandrium tamarense in culture. Simon et al. (2002) further suggested that it

depended on the physiological state of dinoflagellates, if their investigated purportedly toxic

bacteria did or did not attach to the dinoflagellate. Until now the ecological meaning of these

association between both organisms has not been fully clarified and most of the involved

bacterial have not been identified (Hold et al. 2001a). It has been shown that interactions

between bacteria and microalgae in the marine environment play an important role in

processes, such as carbon fluxes and nutrient regeneration (Cole et al. 1988; Azam 1998).

In summary, putative toxic bacteria were readily filtered from the water column by

Mytilus edulis. The bacteria were detected in the hepatopancreas of the mussels up to six

hours after feeding ceased by in situ hybridization. Mussels were not rendered toxic by

the ingestion of these bacteria as determined by HPLC with UV detection for Paralytic

Shellfish Toxins and determination of sodium channel blocking activity using the Mouse

Neuroblastoma Assay. However, preliminary studies showed a toxificatio

n of mussels by a single sodium channel blocking producing bacterium (407-2).
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Bacteria are also increasingly named as potentially important regulators in processes

of algal bloom initiation, maintenance and decline (Doucette 1995). It has also been shown

that several bacteria are capable of killing various HAB species and consequently are

involved in the termination of HABs and the regulation of population dynamics of marine

phytoplankton (Doucette et al. 1998). Bacteria have also been postulated to influence the algal

toxin production, either extracellularly or intracellularly. Some authors reported an influence

of attached putatively toxic bacteria on the toxicity of dinoflagellates. Some authors report

higher toxicity in axenic cultures (Singh et al. 1982; Dantzer and Levin 1997), whereas others

reported a lesser toxicity in axenic cultures (Doucette and Powell 1998). In contrast to the

findings of Doucette et al. (1998), who suggested that putatively toxic bacteria could control

toxin production by attachment to the surface of microalgae, Simon et al. (2002) showed that

putatively toxic bacteria did not necessarily induce toxin production in A. tamarense. The

authors suggested that attachment could influence toxin production by bacteria and/or

dinoflagellates in the environment.

In Publication IV the specific attachment of the inoculated putatively toxic PTB

strains to a highly toxic Alexandrium tamarense culture on the cellular level was shown by

FISH in combination with TSA and confocal laser scanning microscopy. Further

investigations on this subject are necessary to unravel the real meaning of the physical

interactions between bacteria and microalgae, especially in environmental studies.

In summary, two bacterial loadings of purportedly toxic bacteria were reintroduced into

laboratory cultures of a highly toxic Alexandrium tamarense clone to examine a possible

reassociation of these bacteria with the dinoflagellate cell. One bacterial strain (PTB-1)

was originally isolated from the A. tamarense clone used in this study and the other

bacterial strain (PTB-6) was isolated from another A. tamarense clone. Oligonucleotide

probes, previously developed to recognise these introduced bacteria were used to detect

the bacteria in and around the dinoflagellate. Confocal laser scanning microscopy coupled

with TSA-FISH showed that none of the reintroduced bacteria became intracellular, the

PTB-1 bacteria were found to be attached to the surface of Alexandrium tamarense, and

seem to form a preferred relationship with this algae, in comparsion to the attachment

behaviour of PTB-6 bacteria.
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3.5 Future research

So far, the exact ecological role the dinoflagellate-associated bacteria play, e.g., in

their contribution to dinoflagellate toxicity or Harmful Algal Blooms, has not been fully

clarified. Such close interactions or symbioses between bacteria and microalgae need further

investigations. Up to now a conclusive answer cannot be given as to whether or not the

bacteria that live as commensals or symbionts in or attached to at least some toxic

dinoflagellates are able to synthesize PSP toxins autonomously; or if their role is to enhance

the toxicity of the algae through the supply of, e.g., precursor molecules.

Data from the two monitoring years described in Publication II and Appendix to

Publication II, suggests that there may be a relationship between Alteromonas-clade related

species and Alexandrium spp. However, these experiments are the first of their kind in

relation to toxic dinoflagellates and the results should be considered preliminary. Further

research, particularly studies that take other members of the phyto-and bacterioplankton into

account are required. New FISH counting methods are necessary to screen the high quantity

of environmental samples faster and easier. A possibility is the use of an automated detection

system together with the FISH technique. A sensitive, rapid and easy use detection method for

bacterio- and phytoplankton species should be established. The detection will be based on

sample filtration and subsequent fluorescence in situ hybridization. The cells will then be

detected and enumerated using a solid phase cytometer. Thus, it would be possible to detect

whole bacterial or phytoplankton cells, to count them and to evaluate the results by

fluorescence microscopy faster than previously. The final target is the adaptation and use of

this method for routine monitoring with a high sample throughput.

The successful application of the 16S rRNA species-specific probes to detect these

putatively toxic bacteria in mussels under laboratory cultures was demonstrated. Thus, the

next step will be to test mussels from areas where mussel beds have been closed because of

toxic dinoflagellates, to investigate if purportedly toxic bacteria, known to be present in the

water column during a toxic episode (Publication II), can also be found inside the mussels

from the same area. Another important experiment would be to feed toxic- and non-toxic

Alexandrium tamarense to Mytilus edulis, to determine if the mussel can selectively ingest

particles based on their PSP content. The genus Alexandrium is the dominant source of PSP in

contaminated bivalves (Li and Wang 2001). For this approach, probes for different toxic and

non-toxic Alexandrium-clades have been developed (e.g., John et al. 2003) and thus it would

be possible to discriminate between toxic and non-toxic strains inside the mussel gut. Further



148

148

information about the feeding behaviour and accumulation period of algae and bacteria of the

blue mussel are important to clarify the possible role of bacteria on shellfish toxicity.

Also, further characterisation of the bacterial flora of dinoflagellates is necessary to

show single bacterial species, which are associated with dinoflagellates and whether the

bacteria are located extra- or intracellular by the application of species-specific molecular

probes. Additionally, other strains of the used dinoflagellates in Publication I should be

screened for attached or intracellular bacteria to compare the bacterial flora between different

strains of one dinoflagellate species. Subcultures of the same dinoflagellate strain need to be

screened for bacteria to confirm the findings achieved in this study. Also, further re-

association experiments with different dinoflagellate strains as performed in Publication IV

should be performed.

Many questions still remain open. It cannot be concluded that bacteria are able to

produce autonomous saxitoxin and if they do, how it is possible that the bacteria produce such

large amounts detected, when in laboratory culture only minute quantities are produced.

Additionally, it has not been totally clarified, if dinoflagellates are able to synthesize

saxitoxins in the absence of bacteria. With the continuing evolution of more sophisticated

molecular tools the potential exists for considerable further advancement in our understanding

of the mechanisms involved in PST production and accumulation in shellfish. This study has

added to this data and can be used as a basis for further research in this scientific area.
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4. Summary

This doctoral thesis aimed to investigate the interactions of purportedly toxic bacteria

with toxic and non-toxic dinoflagellates in the occurrence of Paralytic Shellfish Poisoning

(PSP). The putative toxic bacteria used in this study were originally isolated from toxic and

non-toxic dinoflagellates of the genus Alexandrium. The toxins causing the symptoms of PSP

are termed collectively as saxitoxins. Dinoflagellates especially of the genus Alexandrium

produce saxitoxins and also cyanobacteria were shown to produce these neurotoxins.

Additionally, marine bacteria have been postulated to produce saxitoxins. The possible

synthesis of saxitoxins by bacteria is controversially discussed, because only minor quantities

of saxitoxins have been shown to be produced by these bacteria and confirmatory mass

spectrometer data are still lacking. Therefore, the investigated bacteria remain only putatively

toxic.

To gain more information about bacteria/dinoflagellate associations laboratory

cultures of the dinoflagellate species Alexandrium tamarense, A. lusitanicum, A. taylorii, A.

andersonii and A. ostenfeldii were examined to determine their bacterial population. 16S and

23S ribosomal probes (rRNA) were applied to determine extracellular associated bacteria,

intracellular bacteria and bacteria free in the dinoflagellate culture. Extracellular associated

bacteria of the a-subclass of Proteobacteria and of the genus Roseobacter were shown to be

associated with A. tamarense and A. lusitanicum and also found in high numbers free in

culture. Bacteria of the a-subclass of Proteobacteria were found intracellularly in A.

tamarense. Bacteria of the Alteromonas-clade were found attached to the surface of A.

andersonii and free in culture. Moreover, Cyanoditolyltetrazolium chloride (CTC) was used

to detect endocytic metabolically active bacteria in these dinoflagellates. Active respiring

intracellular bacteria were detected in A. tamarense and A. lusitanicum.

In field studies, the occurrence of putatively toxic bacteria together with Alexandrium

spp. and PSP in mussels was investigated. Lugol’s fixed field samples from the Orkney

Islands (Scotland) were screened for these bacteria in two sequential years. In this area, toxic

phytoplankton blooms do occur on a yearly basis. Fluorescently-labelled 16S rRNA probes

were applied to show the putatively toxic bacteria in situ in field samples. The used probes

recognise two clades of related bacteria and single bacterial species within these clades. For

the first time, fluorescently labelled probes were successfully applied to Lugol’s fixed

environmental samples. The purportedly toxic bacteria were detected in high numbers in the
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samples, when both Alexandrium spp. were present and absent in the water column and when

mussels contained Paralytic Shellfish Toxins (PSTs).

The direct effect of purportedly toxic bacteria on mussel toxicity was examined with

feeding experiments. The bacteria were fed to the mussel Mytilus edulis, to clarify if bacteria

were accumulated in the digestive system of the mussels and if the mussels contained PSTs

after feeding ceased. The bacteria were detected in situ by the use of digoxigenin-labelled 16S

rRNA probes in tissue sections of the mussel hepatopancreas, where PSTs become

concentrated in mussels. Measurements of mussel flesh did not show toxification after

feeding upon the putatively toxic bacteria, although the blue mussels have filtered the bacteria

in high numbers. However, it had been shown in preliminary experiments, that sodium

channel blocking toxins were present after feeding putatively toxic bacteria to blue mussels.

The physical interactions between bacteria and dinoflagellates were investigated by

conducting reassociation experiments. The study aimed to identify, if purportedly toxic

bacteria which were originally isolated from the Alexandrium tamarense clone (PTB-

1bacteria) used in this experiments, or isolated from another related A. tamarense clone (PTB-

6 bacteria), respectively, physically reassociate again with this dinoflagellate. Different

concentrations of the bacteria PTB-1 and PTB-6 were inoculated into the cultivated toxic A.

tamarense clone, and a possible reassociation was investigated by the use of fluorescently

labelled 16S rRNA probes. No intracellular reassociated PTB-bacteria were detected in the

dinoflagellates. However, a preferred extracellular attachment of the PTB-1 bacterial strain to

the A. tamarense strain was observed.
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5. Zusammenfassung

In dieser Dissertation wurden die Interaktionen von potentiell toxischen Bakterien mit

toxischen und nicht-toxischen Dinoflagellaten untersucht, um eine mögliche Beteiligung

dieser Bakterien an der Entstehung der paralytischen Muschelvergiftung zu ermitteln.

Die potentiell toxischen Bakterien wurden von toxischen und nicht-toxischen Dinoflagellaten

der Gattung Alexandrium isoliert. Die Symptome der paralytischen Muschelvergiftung

werden durch Gifte hervorgerufen, die kollektiv als Saxitoxine bezeichnet werden und die von

Dinoflagellaten, hauptsächlich der Gattung Alexandrium spp., sowie von drei

Cyanobakterien-Arten synthetisiert werden. Es wird zudem postuliert, dass diese Gifte auch

von marinen Bakterien produziert werden. Die potentielle Synthese von Saxitoxinen durch

marine Bakterien wird kontrovers diskutiert, da bisher nur sehr geringe Mengen an bakteriell

produzierten paralytischen Muschelgiften gemessen wurden und überzeugende

massenspektrometrische Daten fehlen. Aus diesem Grund werden diese Bakterien nur als

potentiell toxisch bezeichnet.

Um Erkenntnisse über die mit Dinoflagellaten vergesellschafteten

Bakteriengemeinschaften zu gewinnen, wurde die Mikroflora von Laborkulturen der

Dinoflagellaten Alexandrium tamarense, A. lusitanicum, A. taylorii, A. andersonii und A.

ostenfeldii untersucht. Fluoreszenz in situ hybridisierung (FISH) mit 16S und 23S

ribosomalen Sonden (rRNA) wurde angewendet, um extrazellulär angeheftete, intrazelluläre

und frei in der Kultur vorkommende bakterielle Populationen nachzuweisen. Bakterien der a-

Proteobakterien Subklasse und der Gattung Roseobacter wurden in Assoziation mit der

Zelloberfläche von A. tamarense und A. lusitanicum, sowie auch frei in der Kultur

nachgewiesen. Zudem wurden Bakterien der a-Subklasse der Proteobakterien intrazellulär in

A. tamarense lokalisiert. Alteromonas spp. wurde angeheftet an die Zelloberfläche von A.

andersonii und frei in der Kultur detektiert. Zusätzlich wurde Cyanoditolyltetrazoliumchlorid

(CTC) eingesetzt, mit der aktiv atmende Bakterien in der Dinoflagellaten Zelle nachgewiesen

werden können. Es konnte gezeigt werden, dass A. tamarense and A. lusitanicum,

intrazelluläre, metabolisch aktive Bakterien besitzen.

Darüber hinaus wurde das Auftreten potentiell toxischer Bakterien zusammen mit

Alexandrium spp. und der Akkumulation von paralytischen Muschelgiften in Muscheln

untersucht. Mit Lugol‘sche Lösung fixierte Wasserproben von den schottischen Orkney

Inseln wurden in zwei aufeinander folgenden Jahren auf das Vorhandensein dieser potentiell

toxischen Bakterien hin getestet. In den Gewässern vor den Orkney Inseln treten jährlich
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toxische Algenblüten auf. Fluoreszenz markierte 16S rRNA Sonden wurden eingesetzt, um in

situ die Bakterien in den Feldproben zu identifizieren. Mittels der eingesetzten Sonden

können Gruppen verwandter Bakterien und einzelne Bakterienstämme nachgewiesen werden.

Erstmalig konnte hier gezeigt werden, dass die Fluoreszenz markierten Sonden erfolgreich

auch in mit Lugol’sche Lösung fixierten Feldproben angewendet werden können. Die als

toxisch postulierten Bakterien wurden in großer Anzahl in den Feldproben identifiziert, wenn

Alexandrium spp. in der Wassersäule vorhanden und nicht vorhanden war und wenn

Muscheln paralytische Muschelgifte enthielten.

Zudem wurden die direkten Auswirkungen putativ toxischer Bakterien auf Muscheln

der Spezies Mytilus edulis untersucht, indem Fütterungsexperimente durchgeführt wurden.

Nach der Filtration von Bakterien durch M. edulis, wurde untersucht, ob sich die Bakterien im

Verdauungskanal dieser Muscheln anreichern und ob die Mollusken danach paralytische

Muschelgifte enthielten. Die Bakterien konnten in Gewebedünnschnitten der Mitteldarmdrüse

der Muscheln in situ mittels gegen die Bakterien gerichteter digoxigenin markierter16S rRNA

Sonden nachgewiesen werden. In dieser Verdauungsdrüse reichern sich die paralytischen

Muschelgifte in M. edulis an. Messungen des Muschelgewebes ergaben jedoch keine

Toxifizierung der Muscheln, obwohl die Miesmuscheln die Bakterien in hoher Anzahl

filtrierten.

Des Weiteren wurden die physischen Interaktionen zwischen Bakterien und

Dinoflagellaten untersucht, indem Reassoziationsexperimente mit toxigenen Bakterien in

einen toxischen Alexandrium tamarense Stamm durchgeführt wurden. Es wurde untersucht,

ob Bakterien, die ehemals von diesem in der Studie verwendeten A. tamarense Stamm (PTB-

1), bzw. von einem verwandten A. tamarense Stamm (PTB-6) isoliert wurden, erneut eine

Assoziation mit den Dinoflagellaten eingehen. Dazu wurden verschiedene Konzentrationen

der potentiell toxischen Bakterienstämme PTB-1 und PTB-6 in die A. tamarense Kultur

inokuliert und eine mögliche Reassoziation mittels Fluoreszenz markierter 16S rRNA Sonden

ermittelt. Eine intrazelluläre Assoziation der PTB-Bakterien konnte in diesem A. tamarense

Stamm nicht nachgewiesen werden. Es zeigte sich jedoch, dass eine spezifische Anheftung

der PTB-1 Bakterien an die Algenzellen stattgefunden hat.
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