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Chapter 1

Introduction

1.1 Why spectral value sets?

Spectral analysis plays a basic role in many areas of applied mathematics and, in particular,

in control theory. On the other hand, often mathematical models do not represent exactly the

dynamics of a physical plant. Consequently, since the spectrum of an operator may be highly

sensitive to perturbations, whenever knowledge of the spectra is a vital requirement, one should

not only examine the spectrum of the model operator but also the spectrum of nearby ones.

In perturbation theory and numerical analysis there are a number of results available which yield

bounds for the variation of the spectrum of a perturbed matrix or operator

A; A+�

in terms of the perturbation. Typical examples of this kind of theorems are the Gershgorin

Circles Theorem [27, Theorem 7.2-1] and the Bauer-Fike Theorem [27, Theorem 7.2-2].

\Bauer-Fike like" theorems are especially interesting for applications in control theory and nu-

merical analysis. The reason is that in the bounds are given in terms of the maximal size of the

perturbation. Their drawback is that these bounds may be very conservative, specially in the

case of highly nonnormal matrices and/or operators. Moreover, they have another limitation:

if, as it is common in applications, some of the entries of the matrix A are �xed a priori, there

is no easy way to incorporate this information in the bounds.

In order to study such problems Hinrichsen and Pritchard suggested the use of structured per-

turbations [44]

A; A+D�E: (1.1)

By introducing perturbation structures through the matrices D and E, it is often possible to

perturb just those entries of A which are uncertain or, for example, to introduce some kind of

scaling in the perturbation.

We want to illustrate the 
exibility and convenience of the perturbation structures (1.1) with

one example. Consider a linear time invariant system

_x = A0x+Du

y = Ex

1
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where A0; D; E are matrices of appropriated dimensions. A usual task is the design of a feedback

matrix F0 such that the closed loop system

_x = Ax; A := A0 +DF0E

has poles in a predetermined domain Cg of the complex plane. We note immediately that, even

if we are able to �nd such a F0, small errors in the implementation of the control can destroy its

good properties. Thus, it is natural to ask how sensitive is the spectrum of A to small errors �

on the matrix F0. This question can be tackled by investigating whether the spectra of matrices

of the form

A0 +D(F0 +�)E = A0 +DF0E +D�E = A+D�E

remains in the desired region Cg for reasonably small perturbation sizes.

These ideas motivate the following mathematical approach [42].

De�nition 1.1.1 Let

(A;D;E) 2 Ln;l;q(K ) := K
n�n

� K
n�l

� K
q�n ;

where K = C ;R, and denote by �(A) the spectrum of A. Let � > 0. The associated spectral

value set of level �, �K(A;D;E; �), is the set

�K(A;D;E; �) =
[

�2Kl�q ; k�k<�

�(A +D�E): (1.2)

In the sequel, we shall say that the spectral value sets are unstructured if l = q = n and the

matrices D and E are the identity matrix.

1.2 Brief historical remarks

Before we go to mathematics, let us make some comments on the history of spectral value sets.

The unstructured real case �R(A; I; I; �) was studied by Hinrichsen and Pritchard as early as

in [45]. In that paper some bounds were found and the behavior of the sets under similarity

transformations of A was investigated. In [42] Hinrichsen and Kelb proved a theorem which

permitted the characterisation and calculation of �R(A;D;E; �) when l = 1. Later, in [43], the

same authors analysed the general case �R(A;D;E; �) in the 2-norm using the formula developed

by Qiu and et al. [63] for the real stability radius: it turns out that the main role in the analysis

of real spectral value sets in the 2-norm is played by the function

f : C n �(A)! R+; s 7! inf

2(0;1]

�2

�
ReG(s) �
 ImG(s)


�1 ImG(s) ReG(s)

�
; G(s) := E(sI � A)�1D;

where �2(P ) denotes the second singular value of any matrix P . This function, which is not

even continuous, is the subject of current investigations [52], [4]. Its evaluation is di�cult.

On the other hand, complex spectral value sets �C (A;D;E; �) were analysed in [42] and this

dissertation should be understood as a natural extension of the results obtained in this pa-

per. Finally, we stress that complex spectral value sets are important wherever the notion of
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spectrum of non-normal matrices or operators are used, in particular, in numerical analysis.

Unstructured complex spectral values sets �C (A; I; I; �) have been analysed independently by

Godunov [25], Trefethen [79] and others, under the names of spectral portraits or pseudospec-

tra. The pseudospectra has found application in the stability analysis of the method of lines

[68], in the stability of spectral methods [67], in hydrodynamical stability [66] and in the study

of the transitory behavior of the solution of linear di�erential equations [68].

1.3 Concerns and structure of the thesis

In this thesis we consider complex spectral value sets (K = C ). We shall address the following

topics:

1. In Chapter 2 a characterisation of the function

 : C n �(A) ! R+; s 7! kE(sI �A)�1Dk;

is given and some of its properties are investigated. With the help of these results, we

characterise �C (A;D;E; �) and its boundary.

2. Chapter 3 deals with the calculation of spectral value sets. First the existing algorithms are

brie
y reviewed, then we present a new algorithm for calculating spectral value sets under

complex perturbations. Examples which show the e�ectiveness of the proposed method

are also presented.

3. Spectral value sets can also be de�ned when A, D, and E are linear operators acting

on Banach spaces, so Chapter 4 deals with spectral value sets of in�nite dimensional

systems. We study some of their properties and give a characterisation of these sets in

terms of the norm of the associated transfer function s 7! G(s), G(s) = ER(s;A)D, where

R(s;A) denotes the resolvent operator of A. This characterisation is an in�nite dimensional

analogue of the results obtained in [42] for the matrix case. Furthermore, in this chapter

we study two related objects: closedness radius and Cg-stability radius.

4. One of the di�culties in the in�nite dimensional case is the evaluation the quantity kG(s)k.

The natural approach in solving this problem is to approximate the operators by �nite

dimensional ones. Thus, we investigate conditions which must be imposed on A, D, E

and on the approximation methods which guarantee uniform approximations of the map

s 7! kG(s)k in given compact sets of C . With this aim in mind, Chapter 5 presents some

abstract approximation results useful in the study of the approximation schemes to be

presented in Chapter 6.

5. The aim of Chapter 7 is to show applications of the theory developed in the thesis. These

investigations imply solving di�cult numerical problems, thus the examples will be also a

test for the quality and performance of our numerical algorithm.

In the �rst section of this chapter we analyse robustness issues of delay operators under

certain structured perturbations. We shall see that our theory can be applied to this case

in a straightforward manner.



4 Spectral Value Sets. E. Gallestey

The second part of this chapter is more ambitious and deals with spectral value sets of

the Orr-Sommerfeld operator [19]. The Orr-Sommerfeld operator plays a central role in

hydrodynamical stability theory and the investigation of stability and robustness issues of

this highly non-normal operator is a classical problem of applied mathematic. Recently,

the topic has received new momentum with the introduction in this �eld (Reddy et.al.

[66]) of \pseudospectra" ideas. Up until now, only the e�ect of unstructured bounded

perturbations has been investigated. As an application of our theoretical results we shall

study the robustness of the Orr-Sommerfeld operator to certain structured perturbations

which take into account neglected nonlinearities. We shall see that new interesting results

can be achieved with the help of spectral value sets.



Chapter 2

Spectral Value Sets in Finite

Dimensional Spaces

The aim of this chapter is to characterise spectral value sets �C (A;D;E; �) in the matrix case.

We begin with a known result due to Hinrichsen and Kelb [42] which relates spectral value sets

with the map obtained by considering the operator norm of a certain transfer function. Further,

we investigate the properties of this map and relate them with those of �C (A;D;E; �) and its

boundary @�C (A;D;E; �).

For completeness we recall the de�nition of operator (or induced) norms: if the vector spaces C l

and C q are provided with norms k � kC l and k � kCq , respectively, the operator norm of a matrix

� 2 C
l�q with respect to k � kC l and k � kCq is de�ned as

k�k = sup
kykCq=1

k�ykC l : (2.1)

2.1 Preliminaries

The foundations for investigations related to the sets �C (A;D;E; �) were built by Hinrichsen

and Kelb in [42]. As a main result they proved a theorem which is the backbone of our work.

This theorem, presented here in its original form, makes clear the close relationship between

spectral value sets and the operator norm of the transfer function

G : �(A)! C
q�l ; s 7! E(sI �A)�1D; (2.2)

where

�(A) := C n �(A)

denotes the resolvent set of A. In the sequel cl (
) means closure of a subset 
 in C .

Theorem 2.1.1 Let (A;D;E) 2 Ln;l;q(C ) and G(s) = E(sI �A)�1D be the associated transfer

function. Additionally, let � > 0 and k � k be any operator norm on C
q�l . Then

1: �C (A;D;E; �) n �(A) is a bounded open subset of C and

�C (A;D;E; �) = �(A) [ fs 2 �(A); kG(s)k > ��1g: (2.3)

5
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2: The boundary of the set �C (A;D;E; �) n �(A) in �(A) is given by

@(�C (A;D;E; �) n �(A)) = fs 2 �(A); kG(s)k = ��1g =: C�: (2.4)

3: �C (A;D;E; �) is the union of �(A) and of those connected components of C n cl (C�) which

contain at least one pole of G(s).

Remark 2.1.2 We do not prove Theorem 2.1.1. One reason is that a more general version of

it will be proved in Chapter 4.

Remark 2.1.3 Theorem 2.1.1 is extremely important: it gives a computable formula for the

calculation of spectral value sets.

Remark 2.1.4 The set C� de�ned in (2.4) is called the spectral contour of level �. Point 3 in

Theorem 2.1.1 yields a rule for determining �C (A;D;E; �) from knowledge of C�.

Remark 2.1.5 The reader should be careful with intuitive ideas on the sets C�. Although they

are called \contours", they might have holes at certain points of �(A)!

2.1.1 Reduced spectral value sets #C (A;D;E; �)

It is well known [16, Theorem 17.5] that not every eigenvalue of A is automatically a pole of the

transfer function G(s) = E(sI � A)�1D. This is the reason for the somewhat involved results

\modulo �(A)" of Theorem 2.1.1. We could obtain more compact statements by assuming

controllability and observability of the triplet (A;D;E). Unfortunately, this assumption is not

natural in this context and we must take this fact into account in our results.

Nevertheless, a detailed analysis shows that considering noncontrollable and/or unobservable

modes of A is not useful. Indeed, if an eigenvalue � of A is a noncontrollable and/or unob-

servable mode of the triplet (A;D;E) then � cannot be \moved" by means of the structured

perturbations. In other words, � is invariant to such perturbations. This is a consequence of

well known results on static linear feedback design [51, p. 205].

In view of these arguments we propose an alternative approach. Let

(Amin; Dmin; Emin) 2 Lk;l;q(C ); k � n; (2.5)

be a minimal realisation of G [16, De�nition 21.12]. The following objects are important for our

discussion:

P (G) := �(Amin); �(Amin) := C n P (G): (2.6)

The set P (G) is well de�ned because minimal realisations are similar [51, Theorem 6.2-4]. Note

also that P (G) � �(A).

De�nition 2.1.6 Let (A;D;E) 2 Ln;l;q(C ) and G(s) = E(sI�A)�1D be the associated transfer

function. Additionally, let � > 0 and (Amin; Dmin; Emin) 2 Lk;l;q(C ), k � n; be a minimal

realisation of G. The reduced spectral value set of level �, denoted #C (A;D;E; �), is the set

#C (A;D;E; �) := fs 2 C :  (s) > ��1g; (2.7)
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where

 : C ! R+ [ f+1g; s 7!

�
kEmin(sI �Amin)

�1Dmink if s 2 �(Amin)

+1 if s 2 P (G)
: (2.8)

Note that G � 0 implies #C (A;D;E; �) = ; for every � > 0. Furthermore, it follows from

De�nition 2.1.6 and Theorem 2.1.1 that

P (G) � #C (A;D;E; �); #C (A;D;E; �) � �C (A;D;E; �):

Moreover,

�C (A;D;E; �) = [�(A) n P (G)] [ #C (A;D;E; �) (2.9)

and in the case where P (G) = �(A) we have �C (A;D;E; �) = #C (A;D;E; �).

Also we rede�ne the notion of \spectral contour" making it more appealing. The set

C� := fs 2 C :  (s) = ��1g (2.10)

is called spectral contour of level �. It can be shown that @#C (A;D;E; �) = C�.

In our opinion it helps to make the things clearer if through this section we consider reduced

spectral value sets instead of spectral value sets in the sense of the original de�nition. We

stress that �C (A;D;E; �) and #C (A;D;E; �) are identical modulo �(A) n P (G). Moreover, for

calculations the expression of �C (A;D;E; �) given in (2.3) is easier to apply than (2.9). Thus,

the use of #C (A;D;E; �) will be restricted to the theoretical considerations given below. In

concrete examples, if �C (A;D;E; �) = #C (A;D;E; �), we shall prefer the �rst notation.

2.1.2 Example: companion matrix

Before we begin with a formal study of the spectral value sets, let us develop some intuition

about �C (A;D;E; �) with the help of an example. Consider the matrices

A =

0
BBBBBBBB@

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

5040 �13068 13132 �6769 1960 �322 28

1
CCCCCCCCA

(2.11)

D = I7; E = I7: (2.12)

Here, and in the sequel, In denotes the n� n identity matrix.

The matrix (2.11) is well known in numerical analysis [83]: it is the companion matrix of the

monic polynomial with roots 1; : : : ; 7. Clearly, the transfer function corresponding to (A; I7; I7)

is

G(s) = (sI7 �A)�1; s 2 �(A);
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Figure 2.1: Spectral value sets of the matrices (2.11) and (2.12).

and P (G) = �(A).

In Figure 2.1 we depict �C (A;D;E; �) = #C (A;D;E; �) for some values of � and the matrix

norm given by the largest singular value. For clarity in the pictures, the concrete values of � are

omitted. Two pictures are presented, the second being a zoom of the �rst one. The spectrum

of A is represented by crosses. A detailed description of the method used in these calculations

is given in Chapter 3.

In Figure 2.1 one observes that

1. As � increases from zero to in�nity the corresponding (reduced) spectral value sets grow

and take di�erent forms: for small values of � the sets are a sort of oval regions around

the eigenvalues, while with increasing �, these regions merge until the set #C (A;D;E; �)

becomes a connected open bounded subset of C .

2. The sets #C (A;D;E; �) are open and bounded.

3. The interior of the oval region situated at the left in the second picture, does not contain

poles of G. Thus, according to Point 3 of Theorem 2.1.1, we conclude that this set does not

belong to #C (A;D;E; �). It follows that #C (A;D;E; �) is not necessarily simply connected

even for large values of �.

4. The spectral contours C� possess some kind of smoothness properties.

Our aim in the sequel is to show that these \experimental results" are, in fact, representative

and largely correct.

2.2 Properties of � 7! #C (A;D;E; �)

The key point in the investigation of #C (A;D;E; �) is to understand the behavior of the function

displayed in (2.8). The function (2.8) corresponding to the matrices (2.11), (2.12) is depicted

in Figure 2.2 in form of a three dimensional plot in logarithm scale. Again, we make some
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observations based on our previous experiment. The aim is to attract the attention of the reader

to the most important features.

−5
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Figure 2.2: Function  in the rectangle [�5; 9]� [�3; 3].

1.  is a continuous function. The set P (G), in this case equal to �(A), can be easily

recognized as peaks in the graph. In a neighborhood of � 2 P (G),  (s) becomes large,

while it tends to zero as jsj ! 1.

2.  may have minima in C but has no maxima away of P (G), where it is equal to +1.

Further,  seems to enjoy some di�erentiability properties.

In this section we show that these experimental observations are correct and relate them to

the properties of #C (A;D;E; �) listed in the preliminaries. We proceed in each subsection as

follows: �rst, we prove a property of  and thereafter we interpret this property with regard to

the corresponding (reduced) spectral value sets.

2.2.1 Monotonicity

In Proposition 2.2.1 we state a simple property of the map � 7! #C (A;D;E; �).

Proposition 2.2.1 The set valued map � 7! #C (A;D;E; �) is monotonic, i.e.,

�1 < �2 =) #C (A;D;E; �1) � #C (A;D;E; �2):

Proof : By De�nition 2.1.6, if s 2 #C (A;D;E; �1) then  (s) > ��11 . Thus

 (s) > ��12 ; for any �2 > �1

and we conclude that s 2 #C (A;D;E; �2) as well. �

Remark 2.2.2 This result holds also for � 7! �C (A;D;E; �).
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2.2.2 Openness and boundedness

The fact that for every � > 0 the set #C (A;D;E; �) is open and bounded has been stated

implicitly in Theorem 2.1.1. Nevertheless, we state and prove it here for completeness. For the

proof, we shall need a lemma which is a direct consequence of the fact that the rational transfer

function G has poles at P (G) and is strictly proper.

Lemma 2.2.3 The function  de�ned in (2.8) is continuous. Moreover,

lim
jsj!1

 (s) = 0: (2.13)

With the help of this lemma we can show

Proposition 2.2.4 For every � > 0, the set #C (A;D;E; �) is an open bounded subset of C .

Proof : Let s0 2 #C (A;D;E; �). Then, by de�nition,  (s0) > ��1. Since  is continuous, there

exists a neighborhood O(s0) � C such that  (s) > ��1 for every s 2 O(s0). Thus, O(s0) �

#C (A;D;E; �) and the openness of #C (A;D;E; �) follows. The boundedness of #C (A;D;E; �) is

a consequence of (2.13). �

Remark 2.2.5 De�nition 2.1.6 implies that the set of zeros of G(�), i.e.,

Z(G) := fs 2 C : G(s) = 0g (2.14)

does not belong to #C (A;D;E; �) for any value of � > 0:

Z(G) \ #C (A;D;E; �) = ;; 8 � > 0:

We conclude that the connected components of #C (A;D;E; �) are, in general, not simply con-

nected. However, since G is a rational matrix function, Z(G) is a �nite set of isolated points

whenever G 6� 0:

Z(G) = fsi 2 C ; i = 1; : : : ; kZ(G)g; kZ(G) <1:

Finally, we note that the set Z(G) di�ers from the usual de�nition of zero of a transfer function

used in control theory. The usual de�nition accounts, roughly speaking, just for rank losses of

G [51, p. 448].

2.2.3 Upper semicontinuity

The results of this paragraph are based on the subharmonicity of  on open subsets of �(Amin)

[10, De�nition 5.9].

De�nition 2.2.6 Let 
 be an open domain in C . f : �
! R is called subharmonic in 
 if

1. f is continuous on �
.
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2. For any s0 2 
 and any � > 0 such that the open disc js � s0j < � is contained in 
, the

inequality

f(s0) �
1

2�

Z 2�

0

f(s0 + rei�)d�

holds for every 0 < r � �.

We need the following theorem [41, Theorem 3.13.1].

Theorem 2.2.7 Let X be a Banach space and 
 a open bounded subset of C . Consider a

function f : �
 ! X holomorphic in 
 and continuous on �
. Then kfk is a subharmonic

function in 
.

Theorem 2.2.7 can be applied to the function de�ned in (2.8).

Proposition 2.2.8 Let 
 � C be an open bounded set such that �
 � �(Amin). Then the function

 (2.8) is subharmonic in 
.

Proof : G is holomorphic on �(Amin) and C
q�l endowed with an operator norm is a Banach

space. Thus, Theorem 2.2.7 implies the subharmonicity of  in 
. �

Subharmonic functions are well known in Complex Analysis. As the name suggests, these are

functions which have harmonic majorants. In this work we are interested only in one elementary

property of the subharmonic functions: the fact that, in analogy to harmonic functions, a

Maximum Principle holds [10, Corollary 5.9].

Theorem 2.2.9 Let 
 be a bounded domain in C and @
 be its boundary. Suppose f is sub-

harmonic in 
. Then

sup
s2


f(s) = max
�2@


f(�):

So we have

Corollary 2.2.10 Under the hypothesis of Proposition 2.2.8 the following equality holds

sup
s2


 (s) = max
�2@


 (�):

Corollary 2.2.10 is of crucial importance for the next chapter. Moreover, it also implies

Corollary 2.2.11  has no local maxima unless it is constant. The last can occur only if G � 0.

Proof : The �rst statement is, clearly, a consequence of Corollary 2.2.10. On the other hand,

the second assertion can be proved as follows. We must show that  can not be a constant

di�erent from zero through some open 
 � �(Amin). Indeed, let us suppose that this is the case.

We choose some s0 2 
 and vectors u and y of suitable dimensions and of norm equal to one

such that

 (s0) = kG(s0)k = jy�G(s0)uj > 0; s0 2 
; (2.15)
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and see that the scalar function

g : �(Amin)! C ; s 7! y�G(s)u;

is holomorphic. Moreover, since  is constant, s 7! jy�G(s)uj of g has a local maximum at s0.

Using classical complex analysis we see that g must be constant through �(Amin). Finally, due

to (2.13), we conclude that g is identically equal to zero. This contradicts (2.15). �

Remark 2.2.12 We shall see in Chapter 4 that this property does not necessarily hold for

transfer functions of in�nite dimensional systems.

With regard to spectral value sets Corollary 2.2.11 implies

Proposition 2.2.13 Let G 6� 0. Then the map � 7! #C (A;D;E; �) is upper semicontinuous in

the sense of Hausdor� [3, p. 25], i.e., for every � > 0 there exists a � > 0 such that

#C (A;D;E; �̂) � O�(#C (A;D;E; �)); 8 �̂ 2 (�� �; �+ �); (2.16)

where \O�" denotes an �-neighborhood of a set.

Proof : Let � > 0 be �xed and consider an �-neighborhood O�(#C (A;D;E; �)) of the reduced

spectral value set #C (A;D;E; �). By Proposition 2.2.1, the map � 7! #C (A;D;E; �) is mono-

tonic. Thus, for every � > 0, �� � > 0, we have the relationship

#C (A;D;E; �� �) � #C (A;D;E; �) � O�(#C (A;D;E; �)):

It follows that only increments of � are of interest.

Now, let us suppose that there exist � > 0 and � > 0 such that for every � > 0

#C (A;D;E; �+ �) 6� O�(#C (A;D;E; �)): (2.17)

Simple considerations using the continuity of  show that (2.17) implies the existence of a point

s0 2 C such that

 (s0) = ��1; but s0 62 O�(#C (A;D;E; �)):

It follows that we can �nd a neighborhood O(s0) of the point s0 which does not intersect

#C (A;D;E; �):

O(s0) \ #C (A;D;E; �) = ;:

Thus, by de�nition,

 (s) � ��1; 8 s 2 O(s0)

and we conclude that s0 is a local maximum of  . This is a contradiction to Corollary 2.2.11.

�

Remark 2.2.14 Proposition 2.2.13 is the formal statement of the following (intuitively) ob-

vious fact: the sets #C (A;D;E; �) do not \expand" suddenly for small increments of �. Fur-

thermore, the possible existence of local minima of  implies that the connected components of

#C (A;D;E; �) are not necessarily simply connected.
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2.2.4 Asymptotic properties

Let us study now the asymptotic properties of the map � 7! #C (A;D;E; �), that is, its behavior

for small and large values of �. The expected result is

1. For small sizes of the perturbations, the reduced spectral value sets are small regions

around the eigenvalues of Amin.

2. For large � we expect #C (A;D;E; �) to occupy large regions of the complex plane.

Useful formulae

In order to study the function  in a small neighborhood of the poles P (G) and at in�nity, we

shall make use of results on the resolvent operator of Amin:

R(s) := (sI � Amin)
�1; s 2 �(Amin):

Let �i 2 P (G) = �(Amin) and let �i be a (positively oriented) Jordan contour which surrounds

�i and contains no other points of �(Amin) in its interior region. Then the matrix

Pi :=
�1

2i�

Z
�i

R(s)ds (2.18)

is called the spectral projector associated to �i. Further,

Di := (Amin � �iI)Pi;

is called the nilpotent matrix associated to �i. These matrices do not depend on the choice of

�i.

Let d be the number of di�erent eigenvalues of Amin. Then there are d matrices Pi and Di,

i = 1; : : : ; d and it holds that R(s) is given by [53, I.5.3]

R(s) =

dX
i=1

 
Pi

s� �i
�

li�1X
k=1

Dk

i

(s� �i)k+1

!
; 8 s 2 �(Amin); (2.19)

where li is the maximal size of a Jordan block associated with �i.

Finally we write down the series expansion of R(s) in a neighborhood of in�nity [53, I.5.2]:

R(s) =

1X
k=0

Ak

min

sk+1
: (2.20)

This series converges absolutely for every s 2 C such that

jsj > 
(Amin) := max
s2�(Amin)

jsj:

The expressions (2.19), (2.20) give us useful representations of G(s).
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#C (A;D;E; �) in a neighborhood of a pole

Let us suppose, for simplicity, that the spectrum of Amin 2 C
k�k consists of simple eigenvalues.

Then, by (2.19), we have

G(s) =

kX
i=1

EPiD

s� �i
; s 2 �(Amin): (2.21)

Since we have chosen Amin to be the system matrix of a minimal realisation of G, all the EPiD,

i = 1; : : : ; k, are di�erent from zero. Then, for each i = 1; : : : ; k, the dominant term in the

sum (2.21) in a small enough neighborhood O(�i) � C of the eigenvalue �i is the ith summand.

Thus, we conclude that the ��1 level curves of  which lie in O(�i) can be approximated by a

circle with center in �i and radius �kEPiDk. The proposition below is the formal statement of

this (intuitively obvious!) fact.

Proposition 2.2.15 Suppose that the eigenvalues of Amin 2 C
k�k are simple. Further, for a

given � > 0, de�ne

#0
C
(A;D;E; �) := [

k

i=1fs 2 C : js� �ij < �kEPiDkg:

Then the set valued map � 7! #C (A;D;E; �) is such that

lim
�!0

1

�
dH(cl (#C (A;D;E; �)); cl (#

0
C
(A;D;E; �))) = 0:

where dH(�; �) denotes the Hausdor� distance (De�nition A.0.9, Appendix A).

The proof of this result is omitted because it would be very technical and, at least in our opinion,

of less interest. However, its main idea is quite instructive and is discussed below. For a �xed

i 2 f1; 2; : : : ; kg consider an open bounded set 
 � C such that

�i 2 
 and �
 � C n (�(Amin) n f�ig) :

Then there exists M <1 with the property (see (2.21))

max
s2�


k

kX
j=1

j 6=i

EPjD

s� �j
k < M <1:

Now, one multiplies (2.21) by �(s��i), where � 2 (0; 1=M) and s 2 C�\
. Note that C�\
 6= ;

for � small enough. Then, after some straightforward transformations, one obtains the following

inequalities:
�kEPiDk

1 + �M
� js� �ij �

�kEPiDk

1� �M
:

These relationships can be written as

�kEPiDk � o(�) � js� �ij � �kEPiDk+ o(�); (2.22)
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Figure 2.3: Behavior of #C (A;D;E; �) for small perturbations.

where

o : R+ ! R+; lim
�!0

o(�)

�
= 0:

The inequalities (2.22) \prove" Proposition 2.2.15.

Figure 2.3 illustrates this result for the matrices (2.11), (2.12) in a neighborhood of the eigenvalue

�5 = 5. The spectral contours C� are represented by continuous lines while the circles of interest

are depicted using dotted lines. The spectral projector P5 has been calculated using Matlab

code written by the author. It has been found that kP5k � 1:1664� 106. One observes that for

� � 10�7, the spectral contours C� match the circles js� 5j = �kP5k.

#C (A;D;E; �) in a neighborhood of in�nity

In this case the situation is more complicated and we have not been able to state sharp results

(like Proposition 2.2.15) of a reasonable degree of generality. Nevertheless, we give here an

analysis which should help to understand the general situation. Our approach is essentially the

same used in the former subsection: to �nd suitable series development of G. The di�erence is

that we must work with the set of zeros of G: in�nite and Z(G).

We begin with the investigation of spectral value sets of large sizes. First, we apply (2.20) in

order to obtain a series development for G at in�nity. The result is that, for any s 2 C such

that jsj > 
(Amin), the series

G(s) = E

 
1X
k=0

Ak

min

sk+1

!
D (2.23)

converges absolutely.

Let us suppose, for simplicity, that ED 6= 0. Further, let us introduce the function

Gr : �(Amin)! C
q�l ; s 7! EAmin(sI �Amin)

�1D: (2.24)
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Then it follows from (2.23) and (2.20) that

sG(s) = ED +E

 
1X
k=1

Ak

min

sk

!
D = ED +EAmin

 
1X
j=0

Aj

min

sj+1

!
D = ED +Gr(s):

In other words, for a given � > 0 and s 2 C� \ fz 2 C ; jzj > 
(Amin)g we have

�kEDk � �kGr(s)k � jsj � �kEDk+ �kGr(s)k: (2.25)

Note that C� \ fz 2 C ; jzj > 
(Amin)g is not empty for � large enough. Moreover, let us assume

that the matrix E is invertible. Then, by (2.24),

kGr(s)k � �kG(s)k; where � := kEAminE
�1
k;

and it follows from (2.25) and �kG(s)k = 1 that

�kEDk � � � jsj � �kEDk+ �: (2.26)

The inequalities (2.26) show that for � large enough a connected component of C� lies in the

region fs 2 C ; �kEDk � � � jsj � �kEDk+ �g.

Let us consider now spectral value sets near the zeros of G. This is important because, by

Remark 2.2.5, for any � > 0 some small neighborhood of Z(G) remains in C n #C (A;D;E; �).

We proceed by the same scheme: we write down Taylor series of G around the elements of Z(G):

G(s) = Gi0(s� si) +Gi1(s� si)
2 + : : : ; 8 si 2 Z(G): (2.27)

Clearly, in a small neighborhood O(si) � C of each si 2 Z(G), the function G can be approxi-

mated by the �rst nonzero summand of the series (2.27). We conclude that the corresponding

spectral contours are approximated by certain circles. We omit the details.

Figure 2.4 depicts the situation for the matrices (2.11), (2.12) when the spectral norm is used.

The continuous lines represent level curves of  and the dotted ones those of ED

jsj
. Note that in

the case of these matrices kEAminE
�1
k = kAk = 20455. Furthermore, Z(G) = ;.

2.2.5 Smoothness of spectral contours

Our aim in this section is to investigate the analyticity (or lack of it) of the spectral contours

C� = fs 2 C :  (s) = ��1g:

Our approach is to analyse the smoothness of  with respect to the variables x and y, x+iy 2 
,

where 
 is some open subset of �(Amin).

Let us begin with some initial considerations on general norms. For each s 2 �(Amin), the

function  is given by

 (s) := max
kuk=1

kG(s)uk: (2.28)

This is a parametric optimisation problem with constraints [29] and C� is di�cult to characterise

in this general setting. For example, usually norms are non smooth functions of the entries of
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Figure 2.4: Behavior of #C (A;D;E; �) for large perturbations.

the matrix and one would have to consider subdi�erentials, dual sets, etc. [22]. Moreover, in

order to obtain relatively \weak" results like local di�erentiability, one is obliged to assume non

degeneracy of the critical points of Problem (2.28). A characterisation of these non degenerate

critical points is not possible without further assumptions. The interested reader may consult

[50] for a treatment of these topics.

In view of these di�culties and in order to be able to make substantial statements, we shall

restrict our analysis to the case where the norms in the vector spaces are Euclidean, i.e.,

kwk2 =

 
mX
i=1

jwij
2

!1=2

; w = (w1; : : : ; wm)
T
2 C

m : (2.29)

It turns out that for this norm one can give a fairly complete characterisation of the smoothness

of  .

Preliminaries

We begin with some initial considerations. Let us consider the following action de�ned for every

matrix M 2 C
q�l :

MR=

�
ReM � ImM

ImM ReM

�
2 R

2q�2l: (2.30)

This operation, usually called reali�cation [61, p 55], has some remarkable properties.

Lemma 2.2.16 Let H 2 C
p�q and M 2 C

q�l . Then

1. (HM)R = HRMR.

2. (MR)
T = (M�)R, where ( � )

� denotes conjugate transpose while ( � )T transpose.
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3. If M is unitary then MR is orthogonal.

The proof of the �rst two assertions is straightforward and is omitted. The third assertion is

given in [27, Exercise P1.4-5]. With the help of these properties one can prove

Proposition 2.2.17 Suppose that M 2 C
q�l has singular value decomposition [73, Theorem

I.4.1]

M = U��V; (2.31)

where � has size q � l. Then MR has (real) singular value decomposition

MR= (UR)
T

�
� 0

0 �

�
VR: (2.32)

Proof : Let us apply Point 1 of Lemma 2.2.16 to (2.31). The result is

MR= (U�)R�RVR= (U�)R

�
� 0

0 �

�
VR:

Further, Point 2 of Lemma 2.2.16 implies

(U�)R = (UR)
T :

Hence, Equation (2.32) holds.

It remains to show that both UR and VR are orthogonal matrices. But this is exactly the

statement of Point 3 of Lemma 2.2.16. �

The next observation can be found in [73, Theorem I.4.2].

Theorem 2.2.18 Suppose that M 2 R
q�l, q � l, has singular values �1; : : : ; �l. Then the

symmetric matrix

H(M) :=

�
0 M

MT 0

�
2 R

(q+l)�(q+l) (2.33)

has spectrum

�(H(M)) = f��1;��2; : : : ;��l; 0; : : : ; 0| {z }
q�l

g:

The theorem below belongs to the well developed perturbation theory of real symmetric matrices

[59].

Theorem 2.2.19 Let 
 be an open connected subset of Rk and Sq be the set of real symmetric

matrices of size q � q. Suppose that

R : 
! Sq

is a di�erentiable mapping, that is, the components rij of R are of class C1 on 
. Let � : 
! R

be a continuous function such that, for every ! 2 
, �(!) is an eigenvalue of R(!) with constant

multiplicity. Then �(�) is a di�erentiable function.
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With the help of the machinery developed above we can investigate the smoothness of  in the

case when the vector norms under consideration are Euclidean. Indeed, it is well known [73,

Theorem 2.10] that with this choice of the vector norms the operator norm on C q�l is given by

kMk = �1(M);

where �1(M) denotes the largest singular value of M 2 C
q�l . Thus, essentially, we must inves-

tigate the analyticity of the largest singular value of an holomorphic matrix function. In the

sequel, we identify C with R
2. Further, we shall write, with certain abuse of notation,  (x; y)

and/or  (s), s = x+iy depending on the context. The same convention holds for other functions.

Smoothness of C�

We begin by noting that the transfer matrix

G(s) = Emin(sI �Amin)
�1Dmin; 8 s 2 �(Amin);

where (Amin; Dmin; Emin) 2 Lk;l;q(C ), (k � n), is a minimal realisation (2.5), can be written as

[13, p. 91]

G(s) =
1

p(s)
Q(s); s 2 �(Amin); (2.34)

where p(s) is the characteristic polynomial of Amin and Q(�) is certain matrix polynomial of

degree � k � 1. It follows that

kG(s)k =
1

jp(s)j
�(s); 8 s = x+ iy 2 �(Amin);

with � de�ned by

� : R2
! R+; (x; y) 7! kQ(x; y)k: (2.35)

The function (x; y) 7! jp(x+ iy)j is di�erent from zero and di�erentiable with respect to x and y

in �(Amin). Thus, we conclude that it is enough to characterise the smoothness of �. This shall

be our inmediate goal.

For simplicity in the notation let us set

M : R2
! S2(l+q); (x; y) 7! H(QR(x; y)); (2.36)

where H(�) is the matrix function de�ned in (2.33) and the subscript \R" denotes reali�cation,

see (2.30).

Proposition 2.2.20 Let 
 � R
2 be an open connected set such that the largest eigenvalue of

M (2.36) has constant multiplicity in 
. Then � is di�erentiable in 
 and, consequently, so is

 in 
 n P (G).
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Proof : Indeed, it follows from Proposition 2.2.17 that

�(x; y) = kQ(x; y)k = �1(Q(x; y)) = �1(QR(x; y)):

Moreover, by Theorem 2.2.18,

�1(QR(x; y)) = �max(H(QR(x; y))) = �max(M(x; y));

where �max denotes the largest eigenvalue. Now, we observe that M(x; y) is real and symmetric

for every par (x; y). Moreover, its entries are polynomials in the real variables x and y. Thus,

our statement is a direct implication of Theorem 2.2.19. �

Remark 2.2.21 The fact that simple singular values of rational matrices are smooth functions

of x and y is known, see [55] and [49]. Our proof, however, is di�erent and includes the case of

multiple identical singular values.

We discuss now the implications of Proposition 2.2.20 with regard to the analyticity of the

spectral contours C�. For this we introduce the following notations: 
S denotes the set of points

where  is smooth, while 
NS denotes the complement of 
S in �(Amin). Recall that the spectral

contours are given by

C� = f(x; y) 2 R
2 :  (x; y) = ��1g:

First, we consider the case where C� � 
S. The simplest situation is when ��1 is a regular value

[2, p. 4] of  , i.e.,

grad (x; y) 6= 0; 8 (x; y) 2 C�:

In this case  is smooth in a neighborhood of C� and each connected component of C� is a smooth

curve [2, p. 4]. Moreover, since C� is bounded we have that these components are di�eomorphic

to a circle [2, Lemma 2.4]. Figure 2.5 depicts this situation for the matrices (2.11), (2.12) in a

neighborhood of the eigenvalues �5 = 5 and �6 = 6.
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Figure 2.5: Smooth spectral contours
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The behavior of C� at points where the gradient of  is equal to zero also deserves attention. At

these points the spectral contours may have bifurcations [2, De�nition 4.4] and several smooth

curves intersect each other [2, Theorem 4.6], [14]. This constellation can be observed in Figure

2.5 at neighborhood of the point (5:5; 0).

Another structure is observed when the slopes of the level curves coincide at the point where

the gradient of  is zero. Now, the spectral contours do not intersect itself and one obtains a

\cusp". The spectral contour labeled with 00000 in Figure 2.6 is an example of this situation. The

data used there is

A = diag(�1; 1); D = E = I2: (2.37)

Finally, we note that a point (x; y) where the gradient is equal to zero may also be a local

minimum of  . In this case, there exists a neighborhood O(x; y) � R
2 such that

C� \ O(x; y) = f(x; y)g:

Non smoothness of C�

We �nish our analysis with a characterisation of 
NS. This set is important because at the

points where C� intersects 
NS,  is non di�erentiable and the normal to the curves in C� can

be discontinuous or even not exist. For simplicity, we shall assume that

the singular values of Q(�) are pairwise non identical functions (2.38)

for the rest of the section.

Proposition 2.2.20 suggests that in order to know where  is non smooth, it is necessary to

characterise the points where the multiplicity of �1(Q(�)) = �max(M(�)) might change. In other

words, due to (2.38), we must �nd out where the singular values of Q are not simple.

We have that the singular values of Q(x; y) at a point (x; y) 2 R
2 are the positive solutions of

the equation

P (�; x; y) := det(�2I �Q�(x+ iy)Q(x+ iy)) = 0: (2.39)

Clearly, P (�; x; y) is a polynomial function in three real variables. Now, if at some point (x; y) 2

R
2 the multiplicity of a singular value is bigger than one, we are in presence of a multiple root

�0 of Equation (2.39). It follows that �0 is also root of the derivative of P with respect to �:

P (�0; x; y) = 0;

@P

@�
(�0; x; y) = 0:

(2.40)

We see that (2.40) is a system of two polynomial equations in two real variables which, again

because of (2.38), have no common factors. We conclude that the solutions of (2.40) de�ne

algebraic curves in R2. The set 
NS is a subset of these curves.

Let us consider now the question on the number of intersections of a spectral contour C� with

the set 
NS. We shall see that, at least in general, for a �xed � > 0 the corresponding spectral
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Figure 2.6: Non smooth spectral contours

contour C� may intersect 
NS only at �nite number of points. In fact (in the 2-norm) C� is

given by

C� = fs 2 C : ��1jp(s)j = �1(Q(s))g: (2.41)

Thus, if C� intersects 
NS the following equations must be satis�ed simultaneously (see (2.40)

and (2.41))

p(x� iy)p(x + iy)� �2�20 = 0;

P (�0; x; y) = 0;

@P

@�
(�0; x; y) = 0;

(2.42)

This is a system of three polynomial equations in three real variables, which \generically" has

only �nitely many solutions. If the polynomials (2.42) have common factors, then C� � 
NS.

Figure 2.6, which depicts spectral contours corresponding to the matrices (2.37), illustrates our

result. Simple calculations show that for these matrices

 (x; y) =

�
maxf(x2 � 2x+ 1 + y2)�

1

2 ; (x2 + 2x+ 1 + y2)�
1

2 g if (x; y) 2 �(A)

+1 if (x; y) 2 �(A)

and, consequently, that


NS = f(0; y) 2 R
2; y 2 Rg;

i.e., the imaginary axis. Moreover, the set 
NS is intersected at most twice by each of the

spectral contours.



2.3. SUMMARY 23

2.3 Summary

In this chapter the properties of spectral value sets �C (A;D;E; �) have been investigated. It

has been shown that the sets are open and bounded for every � > 0 and monotonic and upper

semicontinuous as set-valued functions of �. Furthermore, we studied their behavior for small

and large sizes of the perturbations and the smoothness of the spectral contours C� in the 2-norm.
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Chapter 3

Calculation and Visualisation of

Spectral Value Sets

Essentially, spectral value sets are a graphical tool for robustness analysis. Thus, there is need

for reliable and e�cient tools for their calculation and visualisation. Our aim in this chapter is

to present a new numerical method for this purposes: the SH algorithm. We begin with a short

\state of the art" review of this kind of calculations. Thereafter, we shall discuss our approach.

3.1 Existing methods

Most of the work in this area has been done for the unstructured complex case (E = D = I,

K = C ) and using the 2-norm in the spaces C l and C
q . In this section only this norm will be

considered. Let us now discuss the di�erent methods which are being used for the calculation of

�C (A;D;E; �).

3.1.1 Grid method

This is the method used for the generation of the graphics of Chapter 2. The Grid method is

the most accurate and robust algorithm, but also the one with the highest computational cost.

The quantity kG(s)k = �max(G(s)) is calculated on a grid covering the set of interest in C and

C� is visualised by feeding the data into a contour plotter [42].

In the unstructured case (pseudospectra) [79]

�C (A;D;E; �) = �C (A; I; I; �)

one may simplify the calculations by observing that

kG(s)k = k(sI � A)�1k = ��1min(sI �A); (3.1)

where �min denotes the smallest singular value. This method has been the widely used by Tre-

fethen and his coauthors in their investigations. It is reliable and robust but still computationally

expensive. See [79] for references.

Much work has been done in order to reduce the number of \
ops" required in these calcula-

tions. Marques and Toumazou [57], [56] have successfully applied the Lanczos method in the

25
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calculation of �min(sI � A) for large matrices. Lui [54] used inverse iteration and a technique

known as continuation which usually gives better initial vectors for the Lanczos algorithm. Toh

and Trefethen [76] have used approximations of A obtained by Arnoldi iterations in order to

reduce the order of the matrices which have to be dealt with. Recently Braconnier and Higham

[8] combined Lanczos Method, Chebyshev acceleration and continuation in one algorithm and

improved the performance in calculating �min(sI � A). Fortran versions of this algorithm have

been developed by Braconnier [7]. The same author has also written codes in PVM [23] which

can be used in parallel computations of the pseudospectra.

3.1.2 Random perturbations

The method described in this paragraph is straightforward, but inaccurate. Nevertheless, it has

the advantage that it approximates �C (A;D;E; �) at a relatively low computational cost. It is

applicable to both K = C ;R and any operator norms.

The method starts by generating a sequence of random �i 2 K
l�q , i = 1; ::; N , such that

k�ik = �, for every i. Then for large N an approximation of �C (A;D;E; �) is given by the set

�N
rand

(A;D;E; �;N) := [
N

i=1�(A+D�iE):

It is clear that

�rand(A;D;E; �;N) � �C (A;D;E; �);

but, usually, these approximations are far from being tight.

Figure 3.1 is a typical example of this kind of calculation. It represents �rand(A; I32; I32; 1; 60)

and the exact �C (A; I32; I32; 1), where

A := pentoep(32; 0; 1=2; 0; 0; 1) 2 R
32�32 (3.2)

is taken from the Test matrix toolbox for Matlab [40]. The graphics were generated by

means of the functions ps and pscont of the same toolbox. One sees that the approximation of

�C (A;D;E; �) is rather inexact. Nevertheless, since these graphics give an idea of the mobility

of �(A) under \typical" perturbations of A, the analysis of these graphics can be useful for

practical purposes. Graphics obtained with this method have appeared already in [45], [42].

Another variant of this method is the following. Again one generates random matrices �i,

i = 1; : : : ; N , but now the matrices have entries �1� i. The matrices should then be normalised

in order to obtain the desired size of the perturbations. In this case one often obtains better

approximations than when just \pure" random matrices are used. Finding a satisfactory expla-

nation to this experimental fact would be interesting. Figure 3.2 represents the result of this

method applied to the matrix (3.2). Note that in this example no improvements are observed.

This approach has been used in [79].

3.1.3 Path following

The approach suggested by Bruehl in [9] deserves special mention. He determines C� by �nding

the lines �min(sI � A) = �. The goal is reached by using a predictor-corrector algorithm [2]. In

this way there is no need for a large number of evaluations of �min. The drawback of the method

is that in presence of a topologically complicated structure of C�, for example when �C (A; I; I; �)

is not simply connected, the algorithm is likely to fail.
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Figure 3.1: First variant of the random perturbations method: �rand(A; I; I; 1; 60) and

�C (A; I; I; 1)

3.2 The SH algorithm

The calculation of �C (A;D;E; �) remains a di�cult task and further investigations leading to

more e�cient algorithms are required. Previously, with the exception of the Path Following

Method, all e�orts of the numerical community in the pseudospectra area have been dedicated

to diminishing the cost of calculation of �min(sI�A). We propose the use of the subharmonicity

of the norm of G(s), in particular Corollary 2.2.10, in order to reduce the global number of

evaluations of kG(s)k.

Corollary 2.2.10 can be applied to the calculation of �C (A;D;E; �) in the following way. Let


 � �(A) be an open bounded set such that �
 � �(A) and let

M := max
�2@


kG(�)k:

Then from Theorem 2.1.1 it follows that

if M < ��1 =) 
 \ �C (A;D;E; �) = ;: (3.3)

We propose to use this fact as the basis of a new algorithm. Given an initial set R0 � C , grids

are generated by an iterative procedure and one decides, using (3.3), whether or not a given set

remains of interest for the next iteration. The method will have the additional advantage that it

does not rely on the properties of a speci�c norm, as do methods based in the calculation of the

smallest singular value. In the sequel we call this method SH algorithm (signifying subharmonic).

3.2.1 Outline

Let (A;D;E) 2 Ln;l;q(C ), � > 0 and � > 0, where � is a small parameter which corresponds

to the desired �nal accuracy of the calculation. As before, G(s) = E(sI � A)�1D denotes the

associated transfer function.
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Figure 3.2: Second variant of the random perturbations method: �rand(A; I; I; 1; 60) and

�C (A; I; I; 1)

In an iterative procedure, we shall search for a union of rectangles in the complex plane which

approximates �C (A;D;E; �). Let Ri = [
ni

j=1Ri;j be the ith approximation of �C (A;D;E; �),

where each Ri;j is a rectangle in C . The general idea of the SH method is the following.

Point 3.2.1 Given Ri, we �nd Ri+1 by subdividing each Ri;j, j = 1; : : : ; ni into l congruent

subrectangles Ri+1;j, j = 1; : : : ; l, and discarding some of the Ri+1;j for the next iteration.

The elimination is made according to a rule which applies Corollary 2.2.10.

Point 3.2.2 If Ri+1;j does not contain an eigenvalue of A then it is a set of subharmonicity of

kGk. Hence, Corollary 2.2.10 can be applied: if

Qi+1;j := max
s2@Ri+1;j

kG(s)k < ��1

then

Ri+1;j \ �C (A;D;E; �) = ;

and the rectangle Ri+1;j can be discarded for the next iteration.

Since the use of a minimisation algorithm for the calculation of Qi+1;j can be very expensive, we

only calculate a lower bound.

Point 3.2.3 Let Vi+1;j be the set of vertices of Ri+1;j. Then we approximate Qi+1;j by

Mi+1;j := max
s2Vi+1;j

kG(s)k:

We need some stopping criteria for the iterations. We have selected the size of the rectangles

Ri;j. Suppose that H(Ri;j) denotes the area of Ri;j. Since by construction

H(Ri+1;j) =
H(Ri;k)

l
; j = 1; : : : ; ni+1; k = 1; : : : ; ni;
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R R i+1i

Figure 3.3: Predictor step. The rectangles of Ri are subdivided and some of the small rectangles

are discarded (drawn with dashed lines).

we use

Point 3.2.4 If H(Ri+1;j) < �, then stop the iterations.

We call the actions above the predictor step. Figure 3.3 demonstrates how the predictor step

could work. Still some work is needed. Due to the error introduced by substituting Qi+1;j with

Mi+1;j, some \useful" Ri+1;j may be discarded. Thus a corrector step is needed.

Point 3.2.5 Suppose that after N iterations the predictor step is done. Then we inspect the

boundary of RN and generate the congruent neighboring rectangles R
0

N;j
. In RN are incorporated

those R
0

N;j
which are not discarded by the rule described in Point 3.2.2. The boundary of the

resulting RN is again analysed until no new R
0

N;j
is accepted.

Figure 3.4 illustrates the functioning of the corrector step.

At the end of these operations, �C (A;D;E; �) is contained inRN up to grid precision. RN and the

data about the values of kG(s)k are fed in a contour plotter in order to visualise �C (A;D;E; �).

Below a pseudocode of the algorithm appears. A free boundary of Ri;j is a side of Ri;j which is

part of the boundary of Ri.

Pseudocode of the SH algorithm.

1. Initialisation.

1.1. Given (A;D;E) 2 Ln;l;q, � > 0, � > 0, R0 = [
n0

j=1R0;j.

1.2. Calculate �(A) (or part of it), set i = 0.

2. Predictor step.

2.1. Set Ri+1 = ;, ni+1 = 0.
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R RNN

Figure 3.4: Corrector step. The neighboring rectangles have been drawn with dashed lines. Note

that some of them are included in the \second" RN .

2.2. for j = 1; ni

2.2.1. Subdivide Ri;j in l subrectangles Ri+1;j, j = 1; ::; l.

2.2.2. for j = 1; l

2.2.2.1. Process Ri+1;j

2.3. if (H(Ri+1;j) > �))

�
i = i+ 1

goto 2:1

2.4 N = i+ 1

3. Corrector step.

3.1. for j = 1; nN

3.1.1. Using NN;j , EN;j , WN;j , SN;j (see Function Process), detect the free bound-

aries of RN;j

3.1.2. For every free boundary F , Process RF , its neighboring rectangle.

4. Visualisation.

4.1 Feed the data into a contour plotter.

5. Stop.

The function Process used above \selects" the useful rectangles according to our selection rules.

Its pseudocode looks as follows.

Pseudocode of the function Process.

1. Find Mi;j = maxs2Vi;j kG(s)k.
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2. Calculate the boolean variable Ui;j .

Ui;j =

8<
:

1 if Mi;j > ��1;

1 if �(A) \Ri;j 6= ; ;

0 otherwise ;

3. if (Ui;j = 1))

�
Ri = Ri [Ri;j

ni = ni + 1

4. Find the free boundaries of Ri;j. The information is stored in the boolean variables Ni;j , Ei;j,

Wi;j , Si;j respectively.

5. Return.

Adjacent rectangles have common vertices. Therefore, in order to avoid repeated calculations of

kG(s)k, we store the vertices Vi;j which have already been calculated. For the sake of clarity we

have omitted these and other technicalities in the explanation.

3.2.2 Discussion

At this point it is worth making some comments. They should contribute to a better under-

standing of the algorithm.

First, we say some words about the corrector step. One can wonder why would the corrector step

give di�erent conclusions to the predictor step. The reason is the following. As mentioned before,

the substitution of Qi+1;j with Mi+1;j may result in actually useful rectangles Ri+1;j be lost for

the next iterations. The corrector step solves this defect of the predictor step by investigating

the boundary of RN . It incorporates in RN useful rectangles R
0

N;j
which were not contained in

RN�1 during the predictor step. This reasoning leads us to a conclusion which deserves special

mention.

Remark 3.2.6 By virtue of the corrector step, the SH method is able to enlarge R0, so that

when �C (A;D;E; �) extends outside of R0, �C (A;D;E; �) is still determined.

We shall illustrate this fact with one example in Section 3.3.

A good question to ask is whether or not a corrector step should be made for each Ri or just

for RN . The answer is that our experiments show that the inclusion of a corrector step at each

iteration does not generally result in an acceleration of the algorithm. In our implementation

we have decided to make a corrector step only for RN .

On the other hand, another important remark is the following. All the rectangles Ri;j 2 Ri are

subdivided. At a �rst glance, since we are trying to identify a \boundary" C�, one might think

that it is enough just to subdivide those rectangles of Ri which lie in the boundary of Ri. But

this is not the case. In fact, minima of kG(s)k are likely to exist and, therefore, new \internal"

components of C� can appear in later iterations. See [42] for one example. As a byproduct we

obtain an important feature of the SH method.

Remark 3.2.7 The quantity kG(s)k is calculated in all grid nodes which lie in �C (A;D;E; �).

Since

�C (A;D;E; �1) � �C (A;D;E; �); 8 �1 < �;
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data generated for a given value of � can be used, without changes and just by means of the

function contour of Matlab, for the visualisation of �C (A;D;E; �1) for any �1 2 (0; �).

Finally, we say some words about the use of the spectrum of A in the SH algorithm. It might be

thought that our method becomes useless whenever �(A) is di�cult to calculate. But this is not

the case. Indeed, let �m denote the machine precision used. Then, when one applies a backward

stable numerical eigenvalue algorithm, QR for example, the answer consists of complex numbers

which lie in the region of the complex plane in which kG(s)k � O(��1
m
) [24]. It is easy to see,

that these \pseudoeigenvalues" are accurate enough for our algorithm to succeed.

3.2.3 Performance

The calculation of �C (A;D;E; �) is computationally very intensive. For example, in the un-

structured case (E = D = I) the operation cost of the Grid method is about O(mn3), where

m denotes the number of nodes in the grid used and n is the order of A. Lui [54] reports op-

erations costs of O(n3 + mn2) when continuation techniques are used. In the structured case

the costs are even larger, since in this case G(s) must be calculated at each point. In general, a

straightforward grid method has a cost

Pgrid = mS(n);

where S(n) = O(nk) is the estimate of the cost of a simple evaluation of kG(s)k. Here k takes

some value in the interval [2; 3], depending on the method used.

The operation cost P of the SH method can be decomposed into two components P = P1 + P2.

P1 is associated with the calculation of kG(s)k in the required points, while P2 is related to

the logical operations implied in the generation and further manipulation of the sets Ri. Let us

estimate P through the costs of the predictor step.

Let R0 be the initial set of interest and suppose that �C (A;D;E; �) � R0. Introduce the notation

� :=
H(�C (A;D;E; �))

H(R0)
;

where H(�C (A;D;E; �)) and H(R0) represent the areas of �C (A;D;E; �) and R0 respectively.

Using this notation an estimate of P1 is given by

P1 = �mS(n):

In this formula m is the number of nodes contained in a uniform grid in R0 of resolution �, where

� is the parameter introduced in Section 3.2.1.

In contrast to P1, P2 does not depend on n. It is easy to see that � and R0 de�ne the maximal

possible number of iterations, which we denote by N . The next observation is that P2 = O(nT ),

where nT is the total number of rectangles nT manipulated during the iterations. Further, using

the notation of Section 3.2.1, we obtain that

nT =

NX
i=0

ni � (N + 1)nN � (N + 1)�m:
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Here we have used the fact that the last iteration i = N is the one which has the largest ni. It

is easy to see that nN is closely related to the number of nodes of the regular grid, which are

inside �C (A;D;E; �). This fact allows us to conclude that nT � �m.

We thus have arrived at the following estimate for P

P = �m(S(n) +O(N + 1)): (3.4)

The relative performance Prel of the SH method with respect to a standard grid method is then

given by

Prel =
P

Pgrid
= �(1 +

O(N + 1)

S(n)
):

The last equality shows that whenever � is small and n is large the proposed algorithm should

perform better than the standard ones. In Section 3.3.3 we shall show, through one example,

that the constant implied in O(N + 1) is not very large.

The corrector step can involve, at least theoretically, relatively large number of operations.

This can occur if the length of C� is large with respect to the area of �C (A;D;E; �) and is an

unavoidable cost if the initial rectangle R0 was a bad guess. Moreover, note that since RN is

corrected with the smallest rectangles, the total operation cost depends, to a certain extent,

on the resolution of the grid chosen, i.e., on the parameter �, or equivalently, on the maximal

number of iterations N allowed. Experiments show that the use of large N (N > 7) is not

advisable whenever no information about the actual size of �C (A;D;E; �) is available. However,

for reasonable choices of R0 and N , we have not found examples where the execution time of

the corrector step is larger than 10% of the time used by the predictor step.

3.3 Examples

We investigate the speed and reliability of the SH algorithm, comparing it with the usual Grid

method. Our implementation is a C++ code which uses the NAG Library [58] for most of the

matrix operations. In our implementation l = 4 (see Point 3.2.1) and simple lists have been used

to form and store the Ri. All computations were performed on a Sun SPARCserver-1000 and

the unit roundo� is 2�53 � 1:11� 10�16. The pictures are generated with the aid of the function

contour from Matlab 5.2. Equation (3.1) has been used whenever pseudospectra should be

calculated.
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3.3.1 Matrix Grcar

Let us begin with a well known example, the Grcar matrix [28]. Consider a matrix A of the

form

A =

0
BBBBBBBBBBB@

1 1 1 1

�1 1 1 1 1

�1 1 1 1
. . .

. . .
. . .

. . .
. . .

. . .

�1 1 1 1 1

�1 1 1 1

�1 1 1

�1 1

1
CCCCCCCCCCCA
2 R

64�64:

We calculated the unstructured spectral value set �C (A; I64; I64; 0:002), with R0 the rectangle

de�ned by the corners (�0:5; 0); (2:5; 3). In the upper part (Im s � 0) of Figure 3.5 the results

of the calculation of our algorithm (with N = 6) are depicted. The lower part is the output of a

Matlab implementation of the usual Grid method. The points in the upper part are the vertices

of the rectangles RN;j , j = 1; : : : ; nN .

−0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

Figure 3.5: �C (A; I64; I64; 0:002) of Grcar matrix.

In Table 3.1 it can be seen that the SH algorithm made only 2725 evaluations of kG(s)k versus

4225 by the Grid method. This represents a saving of about 35%. The times used by both

algorithms are in the same relation. The behavior and performance of the SH algorithm observed

in this example is typical for cases where the initial rectangle R0 is larger than the actual

�C (A;D;E; �) of interest.

3.3.2 Matrix Fish

The aim of this example is to show the ability of our algorithm to enlarge the initial set R0 when

R0 does not contain the whole �C (A;D;E; �) of interest. With A given by the pentadiagonal
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Grcar Matrix (N = 6)

Grid Method SH Method

Num. Eval 4225 2725

Time 1280 sec 806 sec

Table 3.1: Performances for the Grcar Matrix (n = 64).
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Figure 3.6: �C (A; I32; I32; 0:001) of the Fish matrix.

Toeplitz matrix [40]

A = pentoep(32; 0; 1=2; 1; 1; 1) 2 R
32�32;

the set �C (A; I32; I32; 0:001) has been calculated by the standard Grid method and the SH

algorithm. In both cases the same initial R0 was chosen: a rectangle given by the corners

(0:5; 0)(2:5; 1:5).

Fish Matrix (N = 6)

Grid Method SH Method

Num. Eval 4225 3187

Time 235 sec 164 sec

Table 3.2: Performances for the Fish Matrix (n = 32).

In the lower part of Figure 3.6 the result of applying the Grid method is depicted. The output

of our algorithm (with N = 6) is represented in the upper part. As can be seen, the \tail" and

the \head" of the \�sh" have been perfectly recovered.
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Table 3.2 depicts the performances of both methods. It can be seen that, although a larger

region of the complex plane has been investigated, the SH algorithm has better performance

statistics than the standard Grid algorithm.

3.3.3 Wilkinson matrix

With the example of this paragraph we want to illustrate

� the remarkable e�ect of using structured perturbations on the spectral value sets, and

therefore, in the correct estimation of the robustness of the matrix A under study.

� that the performance of the SH algorithm is still good for small matrices and relatively

large values of � , (see Equation (3.4)).

−100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

Figure 3.7: �C (A; I; I; 1) of the Wilkinson matrix (N = 7).

An interesting application of structured perturbations, and therefore of the SH algorithm, is the

study of the root sets of polynomials [42]. This goal can be reached by investigating the spectral

value sets of the corresponding companion matrices using structures given by suitable matrices

D and E. With regard to this problem, the approach used in [75] is worth of being mentioned.

Roughly speaking, the authors studied the pseudospectra (D = E = I) of a matrix obtained by

certain preconditioning of the companion matrix. Nevertheless, we �nd that using structured

spectral value sets is more natural and appealing.

We choose again (Chapter 2, Equation (2.11)) as study object the Wilkinson polynomial of

degree 7, i.e., the monic polynomial with roots 1 = 1; : : : ; 7. This problem has matrices of small

dimensions and thus, is also well suited to illustrate the second target of this paragraph. Figure

3.7 depicts �C (A; I7; I7; 1) and Table 3.3 represents the performances of both the SH algorithm

and the Grid method. Note that although the matrix is small and � is relatively large, our

algorithm still performs better than the standard one. This result shows that the constant

implied in the O(N + 1) of Formula (3.4) is not very large.
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Wilkinson Matrix. Experiment 1 (N = 7)

Grid Method SH Method

Num. Eval 16641 12403

Time 33 sec 29 sec

Table 3.3: Performances in Experiment 1.

Let us calculate now �C (A;D;E; 1) using the structures

D =
�
0 0 0 0 0 0 1

�T
; E = I7:

Note that now only perturbations of the bottom row are now allowed, which corresponds to

perturbations of only the coe�cients of the underlying polynomial. This is, perhaps, the ideal

setup for studying the root sets of polynomials. Figure 3.8 depicts �C (A;D;E; 1). One can

2 4 6 8 10 12 14
−6

−4

−2

0

2

4

6

Figure 3.8: �C (A;D;E; 1) of the Wilkinson matrix (N = 7).

observe the striking di�erence in size and form of �C (A; I; I; 1) with respect to �C (A;D;E; 1).

This example illustrates the importance of the use of perturbation structures. Again, the SH

algorithm performs better that the Grid method.

Wilkinson Matrix. Experiment 2 (N = 7)

Grid Method SH Method

Num. Eval 16641 11128

Time 20 sec 17 sec

Table 3.4: Performances in Experiment 2.
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3.4 Summary

This chapter has dealt with the calculation of spectral value sets �C (A;D;E; �) in the matrix

case. After a brief review of the existing method for the calculation of �C (A;D;E; �), A new al-

gorithm, the SH algorithm, has been presented. It exploits the subharmonicity of kGk proved in

Proposition 2.2.8. The method draws its e�ciency from the fact that, using the Maximum Prin-

ciple for subharmonic functions, subsets of 
 are discarded which are not part of �C (A;D;E; �),

saving calculations of kG(s)k. The idea has been implemented using rectangles as basic subsets.

The SH algorithm is also able to enlarge the initial set 
 when it is smaller than �C (A;D;E; �).

Finally, numerical examples have been discussed which illustrate the advantages of the new

method. Last, but not least, one of the examples has also shown the importance of the use of

structured perturbations.



Chapter 4

Spectral Value Sets in In�nite

Dimensional Spaces

Our aim now is to extend the notion of spectral value sets to an in�nite-dimensional setting. An

immediate di�culty is that for unbounded operators on in�nite-dimensional spaces the spectrum

is a much more complicated object than the spectrum of a matrix. It is usual to restrict

considerations to closed operators. We will also require that the model and perturbed operators

are closed and so we will have to investigate under what conditions the property of closedness is

preserved under perturbations. Note that in other contexts it may be more appropriate to place

further restrictions on the operators. For example, if one were considering dynamical systems

one might require that the model and perturbed operators are generators of strongly continuous

semigroup. Nevertheless, we do not consider these questions here and our assumptions are just

those needed for a meaningful treatment of spectral value sets.

In this chapter we shall de�ne spectral value sets and a closedness radius. We shall see that a

characterisation of the sets and a lower bound for the radius can be given in terms of the norm

of a transfer function as it was done in [42] in the �nite dimensional case.

We remark that our work on spectral value sets is closely related to the results of numerical

analysts on pseudospectra of closed operators. Trefethen's paper [77] and more recently Harrabi's

[32] and [33] are good examples of the attention which these ideas are receiving by the numerical

community.

4.1 Preliminaries

In this short section we de�ne the framework for the sequel: we shall introduce some notations,

de�nitions and objects that are going to play a central role in the rest of the dissertation.

4.1.1 Some notations

Our aim here is to introduce some standard notations, de�nitions and results which are going

to be used through this work.

1. X, Y , U , V , W , : : : denote Banach spaces unless otherwise stated.

2. k � kX denotes the norm in the Banach space X.

39
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3. X� denotes the dual space of X, i.e., the set of all bounded linear forms in X.

4. A, D, E, R, S, T , : : : denote linear operators acting in Banach spaces unless otherwise

stated.

5. Ker(T ) denotes the null space of a linear operator T : X ! Y , i.e., Ker(T ) := fx 2 X :

Tx = 0Y g.

6. Rg(T ) denotes the range of a linear operator T : X ! Y , i.e., Rg(T ) := fy 2 Y : : y =

Tx; x 2 Xg.

7. L(X;Y ) denotes the set of all linear operators on X to Y with domain D(T ) � X.

8. L(X;Y ) denotes the set of all bounded operators in L(X;Y ). We write L(X) for L(X;X).

9. K(X;Y ) denotes the set of all compact operators in L(X;Y ), where we shall write K(X)

for K(X;X).

10. C(X) denotes the sets of all closed linear operators in X.

11. �(T ) � C denotes the resolvent set of T 2 C(X).

12. �(T ) := C n �(T ) denotes the spectrum of T 2 C(X).

13. R(s; T ), s 2 �(T ), denotes the resolvent operator of T 2 C(X). If there is no possibility of

confusion, we write R(s) for R(s; T ).

4.1.2 Main de�nitions and assumptions

We assume that X, X, U , Y are complex Banach spaces, A is a closed linear operator in X:

A 2 C(X)

with domain

D(A) � X; D(A) = X;

while D : U ! X and E : X ! Y are bounded operators:

D 2 L(U;X); E 2 L(X;Y ):

We provide D(A) with the corresponding graph-norm

kxkD(A) = (kxk2
X
+ kAxk2

X
)
1

2 : (4.1)

Since A is closed in X, its domain D(A) endowed with this norm is complete and hence a Banach

space. Our fundamental assumption is

D(A) � X � X with continuous dense injections. (4.2)
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4.1.3 The transfer function

For any s 2 C in the resolvent set �(A), the linear operator sI �A : D(A)! X is bounded and

surjective as an operator from the Banach space D(A) into the Banach space X and hence, the

inverse (sI � A)�1 : X ! D(A) is bounded by the open mapping theorem:

R(s) = (sI � A)�1 2 L(X;D(A));

(D(A) being endowed with the graph norm). So the transfer function

G(s) := E(sI �A)�1D 2 L(U; Y ); s 2 �(A): (4.3)

is well de�ned. Actually we have

Lemma 4.1.1 G : �(A)! L(U; Y ) is analytic on �(A).

Proof : We must show that for every s0 2 �(A), there exists an open neighborhood O(s0) �

�(A), such that, for every s 2 O(s0), G(s) is given by an absolutely convergent series of the form

G(s) =

1X
k=0

(s� s0)
kGk(s0); Gk(s0) 2 L(U; Y ); k = 1; 2; : : : :

In fact, for any s0 2 �(A) and any s 2 C satisfying js� s0j kR(s0)kL(X) < 1 the following series

converges absolutely [15, Equation A.4.5]

R(s) = R(s0) [I + (s0 � s)R(s0)]
�1

= R(s0)

"
I +

1X
k=1

(s0 � s)kR(s0)
k

#
:

Choosing s 2 C such that even

js� s0j kR(s0)kL(X;D(A)) < 1

the series is absolutely convergent in L(X;D(A)). Since the restriction of E : X ! Y to D(A)

is continuous we see that

E(sI � A)�1D = ER(s0)D +

1X
k=1

(s0 � s)kER(s0)
k+1D

is absolutely convergent in L(U; Y ). Thus G : �(A)! L(U; Y ) is analytic. �

4.1.4 Auxiliary lemma

We shall need the following lemma. Although fairly well known we prove it for completeness.

Lemma 4.1.2 Suppose Y; Z are Banach spaces and

M 2 L(Y; Z); N 2 L(Z; Y );

then (IZ +MN) has bounded inverse (IZ +MN)�1 if and only if (IY +NM) has. In this case

(IZ +MN)�1M =M(IY +NM)�1: (4.4)
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Proof : Assume (IY +NM)�1 2 L(Y ). We have

M(IY +NM) = (IZ +MN)M:

Hence,

M = (IZ +MN)M(IY +NM)�1: (4.5)

Let us introduce the auxiliary operator

L := IZ �M(IY +NM)�1N 2 L(Z):

Then, using (4.5), we see that

(IZ +MN)L = (IZ +MN)� (IZ +MN)M(IY +NM)�1N = (IZ +MN)�MN = IZ:

So (IZ +MN) : Z ! Z is surjective. Now suppose (IZ +MN)z = 0, then

(IY +NM)Nz = N(IZ +MN)z = 0:

But since (IY + NM) : Y ! Y is invertible this implies Nz = 0 and this together with

(IZ +MN)z = 0 implies z = 0. It follows (IZ +MN) : Z ! Z is injective. The invertibility

of (IZ +MN)Z ! Z (as a bounded linear operator on Z) now follows from the open mapping

theorem. Finally (4.4) follows now from (4.5). �

4.2 Characterisation of spectral value sets

Our aim is to study the variations of the spectrum �(A) under structured perturbations

A; A� = A+D�E; � 2 L(Y; U):

with D(A�) := D(A) by de�nition. The operatorsD; E are �xed and describe both the structure

and unboundedness of the perturbations, whilst � is arbitrary.

De�nition 4.2.1 Let A 2 C(X), D 2 L(U;X), E 2 L(X;Y ). Suppose that (4.2) holds and that

a number � > 0 is given. Then the associated spectral value set of level �, denoted �(A;D;E; �),

is de�ned to be

�(A;D;E; �) =
[

�2L(Y;U); k�k<�;A�2C(X)

�(A�):

The point spectral value set of level �, denoted �P (A;D;E; �), is given by

�P (A;D;E; �) =
[

�2L(Y;U); k�k<�;A�2C(X)

�P (A�):

where �P (A�) denotes the point spectrum of A�.
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4.2.1 Closedness radius

We pursue a characterisation of spectral value sets, but note that in the de�nition there is a

requirement that A� be closed. We, therefore, analyse for which � > 0 the condition k�kL(Y;U) <

� implies that the perturbed operator A� is closed. The supremal value of � for which this

implication is valid is called closedness radius.

De�nition 4.2.2 The closedness radius r(A; D; E) is given by

r(A; D; E) = inffk�kL(Y;U); � 2 L(Y; U)

such that A� with domain D(A) is not closedg:

We set r(A; D; E) =1 if A� is closed for all � 2 L(Y; U).

The \stability of closedness" problem has been treated by Kato in [53, Chapter IV] using the

concept of relative-boundedness. Let T and S be linear operators with the same domain space

X and such that D(T ) � D(S). Suppose that the following inequality holds

kSxkY � akxkX + bkTxkY ; 8x 2 D(T ); (4.6)

where a and b are real nonnegative constants. If this is the case one says that S is T -bounded.

The in�mum b0 of the numbers b (with a suitable a depending upon b) for which (4.6) holds is

called T -bound of S. Note that the T -bound of S is zero if S 2 L(X;Y ). The following theorem

holds [53, Theorem IV.1.1].

Theorem 4.2.3 Let S; T 2 L(X;Y ), where X and Y are Banach spaces, and let S be T -bounded

with T -bound smaller than one. Then R := T + S is closed if and only if T is closed.

An immediate corollary of this theorem is

Corollary 4.2.4 Suppose X = X. Then r(A; D; E) =1.

The reason for this is that, under these conditions, D�E 2 L(X) and thus, its A-bound is zero.

In this section we obtain a rather di�erent result. It takes into account the presence of structure

in the perturbations.

Proposition 4.2.5 Suppose s 2 �(A). If

k�kL(Y;U) < kG(s)k�1
L(U;Y )

; (4.7)

then A� is closed and s 2 �(A�).

Proof : Suppose that (4.7) holds. Then kG(s)�kL(Y ) < 1 and so IY � G(s)� has bounded

inverse. But

IY �G(s)� = IY �E(sIX �A)�1D�

and by (4.2), we have

EjD(A) 2 L(D(A); Y ); (sIX � A)�1D� 2 L(Y;D(A)):
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Hence applying Lemma 4.1.2 with Z = D(A), M = (sIX � A)�1D� and N = EjD(A) we have

that

ID(A) � (sIX �A)�1D�(EjD(A))

has bounded inverse as well. But since s 2 �(A), this implies that

sIXjD(A) � A�D�(EjD(A)) = sIXjD(A) � A�jD(A) : D(A)! X

is boundedly invertible and so

(sIX �A�)
�1
2 L(X;D(A))

and thus

s 2 �(A�):

Moreover, an operator and its inverse are closed simultaneously [53, III.5.2]. Thus, we have that

sIX �A� 2 C(X) and as a consequence A� must also be closed. This completes the proof. �

As an immediate consequence we have the following estimate.

Theorem 4.2.6 Suppose that �(A) 6= ;, then

r(A; D; E) � sup
s2�(A)

kG(s)k�1
L(U;Y )

=

�
inf

s2�(A)
kG(s)kL(U;Y )

��1
=: ��: (4.8)

Remark 4.2.7 The number �� above will be found in most of the statements of this chapter. In

most applications (in particular, in the �nite dimensional case) the in�mum of kG(s)kL(U;Y ) on

�(A) will be zero. Thus, �� = 1 and we have r(A; D; E) = 1. Note, however, that �� may be

�nite.

We investigate now the relationship between our results on "stability of closedness" and Theorem

4.2.3. We would like to deduce this theorem from our theory. However, we shall see that only a

weaker result can be obtained.

Only the case where A is unbounded will be considered. The reason is that if A 2 L(X), then

D(A) = X and consequently X = X as well. Thus, by Corollary 4.2.4, we are always in the

scope of Theorem 4.2.3. So, let A 2 C(X) be such that

sup
x2D(A)

kxkX=1

kAxkX =1: (4.9)

We de�ne U = X, X = Y = D(A), D = IX, E = ID(A). By de�nition, � 2 L(Y; U) i�

k�kL(Y;U) = sup
x2D(A)

k�xkX

[kxk2
X
+ kAxk2

X
]
1

2

<1:

Thus, saying � 2 L(Y; U) is equivalent to state that � is A-bounded with A-bound equal to

k�kL(Y;U). We apply Proposition 4.2.5 now. In this case, the transfer function G(s) 2 L(U; Y )

is just (sI � A)�1 : X ! D(A), s 2 �(A) and one obtains the following bound for its norm:
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k(sI �A)�1kL(X;D(A)) = sup
y2X

y 6=0

k(sI �A)�1ykD(A)

kykX
= sup

x2D(A)

x6=0

kxkD(A)

k(sI � A)xkX

= sup
x2D(A)

x6=0

(kxk2
X
+ kAxk2

X
)
1

2

k(sI � A)xkX
� sup

x2D(A)

x6=0

(kxk2
X
+ kAxk2

X
)
1

2

jsjkxkX + kAxkX

= sup
x2D(A)

kxkX=1

(1 + kAxk2
X
)
1

2

jsj+ kAxkX
� inf

z2�(A)
sup
��0

(1 + �2)
1

2

jzj + �
=: �:

(4.10)
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Figure 4.1: Graphics of y(z; �) =
(1+�2)

1
2

jzj+�
for jzj < 1 and jzj > 1

Simple considerations (see Figure 4.1) using (4.9) convince us that

sup
��0

(1 + �2)
1

2

jzj + �
� 1:

Thus, � � 1 and it follows, by (4.10), that

inf
s2�(A)

k(sI �A)�1kL(X;D(A)) � 1:

Hence,

�� :=

�
inf

s2�(A)
k(sI � A)�1kL(U;Y )

��1
� 1: (4.11)

Now, by Theorem 4.2.6, it follows that A� = A+� is closed whenever

k�kL(Y;U) < ��:
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Remark 4.2.8 It is readily seen that there is a gap between this result and Theorem 4.2.3: our

theory does not give information about the closedness of A� if the A-bound of � belongs to the

interval [��; 1).

Remark 4.2.9 The bound (4.8) may be conservative even in the unstructured case U = Y =

X = X, E = D = IX. Indeed, since A +� is always closed for A 2 C(X) and � 2 L(X), the

closedness radius r(A; IX ; IX) is in�nite. On the other hand, one can construct examples where

inf
s2�(A)

kR(s;A)kL(X) > 0: (4.12)

In that case, �� would be �nite. The reader should note, however, that (4.12) might hold only

in \exotic" situations. For example, an important operator class for which (4.12) is forbidden

is the class of A 2 C(X) which are in�nitesimal generators of C0-semigroups. This follows from

the Hille-Yosida Theorem [15, Theorem 2.2.12].

4.2.2 Spectral value sets

Let us return to our main topic: spectral value sets. The next proposition is another step towards

its characterisation. It contains a sort of converse statement to Proposition 4.2.5.

Proposition 4.2.10 Suppose s 2 �(A) and kG(s)k�1
L(U;Y )

< ��. Then there exists, for every

" > 0, a disturbance � 2 L(Y; U) with

kG(s)k�1
L(U;Y )

� k�kL(Y;U) < kG(s)k�1
L(U;Y )

+ "

such that A� is closed and s 2 �P (A�).

Proof : Let u 2 U with kukU = 1 be such that

kG(s)uk�1
Y
< minfkG(s)k�1

L(U;Y )
+ "; ��g:

Then there exist (by the Hahn-Banach Theorem) a linear form y� 2 Y � of dual norm ky�kY � = 1

such that

y�G(s)u = kG(s)ukY :

De�ne � 2 L(Y; U) by

� = kG(s)uk�1
Y
uy�:

Then, it is easy to check that �G(s)u = u and k�kL(Y;U) = kG(s)uk�1
Y
, while by Corollary 4.2.6

we can ensure that A� is closed.

Let x = (sI � A)�1Du, then x 2 D(A) and x 6= 0 since otherwise u = �E(sI � A)�1Du =

�Ex = 0. But D�Ex = Du = (sI � A)x and so A�x = sx. The proof is complete. �

As a consequence of the previous propositions we obtain a characterisation of the spectral value

sets in terms of the superlevel sets of kG(�)kL(U;Y ).
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Theorem 4.2.11 Let A 2 C(X) , D 2 L(U;X), E 2 L(X;Y ). Suppose also that (4.2) holds.

If

0 < � < ��;

then

�(A;D;E; �) = �(A) [ fs 2 �(A) : kG(s)kL(U;Y ) > ��1g (4.13)

Moreover,

�(A;D;E; �) \ �(A) = fs 2 �(A); kG(s)kL(U;Y ) > ��1g = �P (A;D;E; �) \ �(A):

(4.14)

Proof : \� in (4.13)": If s 2 �(A;D;E; �) \ �(A) then s 2 �(A�) for some � 2 L(Y; U) with

0 < k�kL(Y;U) < �. It follows from Proposition 4.2.5 that

k�kL(Y;U) � kG(s)k�1
L(U;Y )

and hence

kG(s)kL(U;Y ) � k�k�1
L(Y;U)

> ��1:

\� in (4.13)": Now assume s 2 �(A) and kG(s)kL(U;Y ) > ��1. By Proposition 4.2.10 there exists

� 2 L(Y; U) such that A� is closed, s 2 �P (A�) and k�kL(Y;U) < �, hence s 2 �P (A;D;E; �).

This proves the remaining part and hence equality in (4.13).

The �rst equation in (4.14) follows from (4.13). Using this equality the previous argument shows

the inclusion � between the second and third sets in (4.14). The converse inclusion � is trivial.

�

As a consequence of the theorem we obtain that �(A;D;E; �) is the disjoint union of the closed

set �(A) and the open set �(A;D;E; �) \ �(A). Moreover, we obtain the following corollary.

Corollary 4.2.12 Suppose 0 < � < ��. Then

�(A;D;E; �) � �(A) [ fs 2 �(A) : kG(s)kL(U;Y ) � ��1g =
\

�<~�<��

�(A;D;E; ~�):

(4.15)

Furthermore, the union of all spectral value sets for the values 0 < � < �� consists of all points

of the complex plane where kG(s)kL(U;Y ) does not take its minimum:

[
0<�<��

�(A;D;E; �) = C n

�
� 2 �(A); kG(�)kL(U;Y ) = inf

s2�(A)
kG(s)kL(U;Y )

�
(4.16)

In particular, if kG(�)kL(U;Y ) does not have a global minimum on �(A) then the union of all the

above spectral value sets is the whole complex plane.
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Proof : By Theorem 4.2.11 and by the continuity of G(�) on �(A) we have

�(A;D;E; �) = �(A) [ fs 2 �(A); kG(s)kL(U;Y ) > ��1g

� �(A) [ fs 2 �(A); kG(s)kL(U;Y ) � ��1g:

This proves the �rst inclusion in (4.15). Further, if s0 2 fs 2 �(A) : kG(s)k � ��1g then, for

any ~� 2 (�; ��),

s0 2 fs 2 �(A); kG(s)kL(U;Y ) > ~��1g � �(A;D;E; ~�):

This proves the inclusion \�" for the second equation in (4.15). Finally, let

s0 2
\

�<~�<��

�(A;D;E; ~�):

Then either s0 2 �(A) or, by the previous theorem,

s0 2 fs 2 �(A) : kG(s)k > ~��1g for all ~� 2 (�; ��):

Hence kG(s0)kL(U;Y ) � ��1 and this concludes the proof of (4.15).

It follows directly from the previous theorem that a global minimum � 2 �(A) of kG(�)kL(U;Y )

will not be contained in any spectral value set �(A;D;E; �) with � < ��. On the other hand,

if kG(s0)kL(U;Y ) > ���1 then there exists � < �� such that kG(s0)kL(U;Y ) > ��1 and so s0 2

�(A;D;E; �) by (4.13). This proves (4.16) and the �nal statement of the corollary. �

Remark 4.2.13 Corollary 4.2.12 makes clear an important di�erence between the �nite dimen-

sional case and the in�nite dimensional one: we have not been able to prove that the closure of

�(A;D;E; �) is equal to

�(A) [ fs 2 �(A); kG(s)kL(U;Y ) � ��1g; (4.17)

but just that it is a subset of (4.17). With regard to this observation the following facts are

worth mentioning. For the unstructured case we have, see [33], that if s 7! kG(s)k is not locally

constant (i.e., s 7! kG(s)kL(U;Y ) is not constant in any open subset 
 of �(A)), then equality in

(4.15) holds. In this case, the map � 7! �(A;D;E; �) is upper semicontinuous, as it was in the

matrix case (Proposition 2.2.13). Further, in [6, Theorem 5.1] the authors proved that the norm

of the resolvent of bounded operators in Lp spaces can not be locally constant. It is unclear

whether this property holds in general.

Remark 4.2.14 Again we make a comment with respect to the closedness radius in the un-

structured case. In Remark 4.2.9 we have pointed out that (4.8) can be conservative. However,

Equation (4.16) tells us that this bound is enough for purposes related to spectral value sets.

Indeed, even if �� is �nite, for � > 0 such that � < ��, the corresponding spectral value sets

�(A;D;E; �) will cover the whole plane minus the set where the in�mum of kGk is achieved, see

Equation (4.16).
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4.2.3 Cg-stability radius

Spectral value sets are closely related to the following problem. In certain applications, for

example in control design by linear feedback, many desirable properties can be expressed by

the requirement that A has its spectrum in a prescribed open subset Cg of the complex plane.

Hence, it is of interest to determine the robustness of this property of �(A), i.e., �(A) � Cg,

with respect to perturbations of the form D�E, where D, � and E are de�ned as in the sections

above. A natural measure for this robustness is the following

De�nition 4.2.15 Let Cg be an open subset of the complex plane and suppose that �(A) � Cg.

The number

r(A;D;E;Cg) = inffk�kL(Y;U) j�(A+D�E) 6� Cgg

is called Cg-stability radius.

Figure 4.2 illustrates the situation. A useful characterisation of r(A;D;E;Cg) can be easily
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Figure 4.2: Set Cg and the spectral value set �(A;D;E; �) for � = r(A;D;E;Cg).

obtained by means of Theorem 4.2.11.

Theorem 4.2.16 Let A 2 C(X), D 2 L(U;X), E 2 L(X;Y ) and (4.2). Further, let us assume

that the limit limjsj!1 kG(s)kL(U;Y ) exists and is �nite. Finally, let Cg � C be an open set such

that �(A) � Cg. Then the following formula holds

r(A;D;E;Cg) =

"
sup
s2@Cg

kG(s)kL(U;Y )

#�1
; (4.18)

where @Cg denotes the boundary of Cg.

Proof : If G � 0 the assertion is trivial. Thus, let us suppose that G 6� 0. Then it follows from

Proposition 4.2.5 that

r(A;D;E;Cg) � inf
s2CnCg

kG(s)k�1
L(U;Y )

:
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On the other hand, the proof of Proposition 4.2.10 implies that for every s 2 C n Cg(� �(A) )

and every " > 0, there exists a disturbance � 2 L(Y; U) such that

C n Cg 3 s 2 �(A+D�E)

and

kG(s)k�1 � k�kL(Y;U) < kG(s)k�1 + ":

We conclude that

r(A;D;E;Cg) = inf
s2CnCg

kG(s)k�1
L(U;Y )

=

"
sup

s2CnCg

kG(s)kL(U;Y )

#�1
: (4.19)

Since �(A) � Cg, G(s) is analytic in C n �Cg. Now, applying the Maximum Principle to C n �Cg

[41, p. 100], we obtain (4.18) from (4.19). �

We stress that the Cg-stability radius is not (at least directly) related with usual concepts of

\stability" in dynamical systems theory like growth bounds for the corresponding semigroups

e(A+D�E)t. Here, the terminology \stability" means just the robustness of the property "�(A) �

Cg" with respect to perturbations of the nominal operator A.

4.3 Summary

In this chapter we have de�ned and characterised spectral value sets for in�nite dimensional

systems which satisfy certain mild assumptions. Moreover, related objects like closedness radius

and Cg-stability radius have also been studied. Essentially, we have proved that the key quantity

for the analysis is, as in the �nite dimensional case, the function s 7! kER(s;A)DkL(U;Y ).



Chapter 5

Abstract results on convergences of

operators

In the previous chapter we have shown that accessing the norm of the transfer function G(s) =

ER(s;A)D is the key for the calculation of closedness radius, spectral value sets and Cg-stability

radii. However, in contrast to the matrix case, for most operators acting in in�nite dimensional

spaces, it is impossible to get formulae for these norms or even for the transfer function. The

natural way is then to generate �nite dimensional approximations of the transfer function. With

this aim in mind we present in this chapter some abstract convergence results related to projec-

tion methods and/or discrete operators. These results build the foundation of the rest of this

dissertation. Our approach is based on the works [12], [81], [82] and [1].

5.1 Preliminaries

Before we may go to the main statements we must introduce some notations and make some

\tuning" comments.

5.1.1 Notations

Approximation shall be the central topic in the sequel. Thus, we need special notation for

sequences and convergences: with certain abuse of notation, we denote by \(qN)N2N 2 Q" a

sequence with elements qN in the set Q for every N 2 N.

Let us recall now some standard de�nitions [53, III.3.1].

De�nition 5.1.1 Suppose that T; (TN )N2N 2 L(W;V ). Then

1. TN converges strongly to T , to be denoted

TN
s
�!
V

T;

if

lim
N!1

k(TN � T )wkV = 0; for all w 2 W:

51
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2. TN converges in norm to T , to be denoted

TN
n

�!
L(W;V )

T;

if

lim
N!1

kTN � TkL(W;V ) = 0:

In the sequel we shall make use of the following objects.

� For any x = (x1; x2; : : : ; xn) 2 C
n , jxj :=

�P
n

j=1 jxj j
2
� 1

2

.

� For given numbers a and b such that �1 < a < b <1, 
 := (a; b).

� N0 := f0g [ N.

� For any � 2 N0 , D
� := d

�

d!�
.

� Ck(
; C n): Vector space of all continuous C n-valued functions x on 
 such that for all

� 2 N0 with � � k, the function D�x exists and is continuous on 
.

� Ck(�
; C n): Vector space of all bounded functions x 2 Ck(
; C n) such that for all � 2 N0

with � � k, the functions D�x can be extended so as to be bounded and continuous on �
.

Ck(�
; C n) is a Banach space equipped with the norm

kxkk;1 := max
��k

sup
!2


jD�x(!)j:

� L2
r
(
; C n): Vector space of all (in 
) Lebesgue measurable C n-valued functions with respect

to the weight function

r : 
! R;

Z



r(!)d! <1:

L2
r
(
; C n) is a Banach space endowed with the norm

kxkL2r(
;Cn ) :=

�Z



r(!)jx(!)j2d!

� 1

2

<1:

� L2(
; C n): Vector space of all (in 
) Lebesgue measurable C n-valued functions such that

kxkL2 :=

�Z



jx(!)j2d!

� 1

2

<1: (5.1)

� Hk(
; C n): Vector space of all x 2 L2(
; C n) such that the functions D�x, � < k, are

absolutely continuous and Dkx is in L2(
; C n). Hk(
; C n) is a Banach space equipped

with the norm (see (5.1))

kxkk;L2 :=

 X
��k

kD�xk2
L2

! 1

2

: (5.2)
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� Hk(�
; C n): Vector space of all x 2 Hk(
; C n) such that the functions D�x, � < k, can be

extended so as to be absolutely continuous on �
. Hk(�
; C n) is a Banach space equipped

with the norm (5.2).

� Hk

0 (
�
; C n): Closure of the subspace of Hk(�
;) formed by the x 2 Hk(�
; C n) such that

D�x(a) = D�x(b) = 0, � < k.

Remark 5.1.2 Hk(
; C n) is the completion of Ck(�
; C n) with respect to the norm (5.2) [15, p.

578].

In this work, unless otherwise stated, by \subspace" (of a Banach space) is meant \closed linear

subspace".

5.1.2 Standard convergence theorems

The following theorem will be frequently used in the sequel [12, Banach-Steinhaus Theorem]

Theorem 5.1.3 Let T; (TN )N2N 2 L(W;V ). Then

TN
s
�!
V

T;

i�

1. The sequence (TN )N2N is uniformly bounded, i.e.,

sup
N2N

kTNkL(W;V ) �M:

2. limN!1 k(TN � T )wkV = 0 for all w in some set W0 dense in W .

We shall also use the following lemma [53, Lemma III.3.8]

Lemma 5.1.4 Suppose that

T; (TN )N2N 2 L(W;V ); S; (SN )N2N 2 L(V; U):

Then, if

TN
s

�!
V

T and SN
s

�!
U

S;

it follows that

SNTN
s
�!
U

ST:

Finally, we give a simple but useful result [53, Problem III.3.10].

Lemma 5.1.5 Let (TN )N2N; T 2 L(W;V ) be such that

TN
s

�!
V

T:

Further, let (wN )N2N 2 W be a sequence with the property

lim
N!1

kwN � wkW = 0

for some w 2 W . Then

lim
N!1

kTNwN � TwkV = 0:
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5.1.3 Normwise convergence of a product

We continue this preliminary considerations with an important lemma which will become our

main tool in the analysis to be carried out in the next chapter.

Lemma 5.1.6 Let T 2 K(W;V ) and S 2 L(V; U). Suppose that sequences

(TN )N2N; TN :W ! V; N 2 N

(SN )N2N; SN : V ! U; N 2 N

are given such that

TN
n
�!
L(W;V )

T and SN
s
�!
U

S:

Then

SNTN
n
�!
L(W;U)

ST:

Proof : First, we note that by the Banach Steinhaus Theorem (SN )N2N is uniformly bounded,

i.e.,

kSNkL(V;U) < M <1; 8N 2 N: (5.3)

Without loss of generality we may consider that kSkL(V;U) < M . We must show that for every

� > 0, there exists N� 2 N such that

kSTw � SNTNwkU < �

for every N > N� and every w 2 OW , where

OW := fr 2W ; krk = 1g:

In fact, let w 2 OW . Then we have

kSTw � SNTNwkU = k(S � SN )Tw + SN (T � TN )wkU

� k(S � SN )TwkU + kSN (T � TN )wkU : (5.4)

From TN
n

�!
L(W;V )

T and (5.3), it follows that there exists an N1� such that

kSN (T � TN )wkU �Mk(T � TN )wkV < �=3 for N > N1�:

Furthermore, since T 2 K(W;V ), the set T (OW ) is relatively compact. Thus, there exists a

�nite number N2� of vi 2 V , i = 1; : : : ; N2�, such that for every w 2 OW , there is some vi with

kTw � vikV �
�

6M
:
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Thus,

k(S � SN )TwkU � k(S � SN )vikU + k(S � SN )(Tw � vi)kU

� max
j=1;:::;N2�

k(S � SN )vjkU + 2MkTw � vikV

� max
j=1;:::;N2�

k(S � SN )vjkU + �=3:

It remains only to see that SN
s
�!
U

S implies that there exists a N3� <1 such that

max
j=1;:::;N2�

k(S � SN )vjkU � �=3 for N > N3�:

The proof is completed by choosing

N� = max
1;2;3

Ni�:

�

A similar statement, that for bounded T and compact S,

TN
s
�!
V

T and SN
n
�!
L(V;U)

S ) SNTN
n
�!
L(W;U)

ST

is false as the following counter-example shows. Consider the Banach space W := `2, i.e., the

set of sequences of real numbers w := (wi)i2N such that

kwk :=

 
1X
i=1

jwij
2

!1=2

<1;

and de�ne the sequences of operators

TNw := (wN ; wN+1; wN+2; : : : ); SNw := (w1;
w2

2
;
w3

3
; : : : ) =: Sw:

Then, TN
s

�!
W

T := 0, S is compact [15, Example A.3.23] and SN
n

�!
L(W )

S. Nevertheless, the

sequence

SNTNw = (wN ;
wN+1

2
;
wN+2

3
; : : : )

does not converge in norm to the null operator ST = 0. Note also that for the sequence

TNSNw = (
wN

N
;
wN+1

N + 1
;
wN+2

N + 2
; : : : )

we have

TNSN
n

�!
L(W )

0:

The following trivial example shows that the assumption on the compactness of T is essential.

Suppose that for some (SN )N2N; S 2 L(W ) it holds that

SN
s

�!
W

S
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but not

SN
n
�!
L(W )

S

and let T = IW , TN = IW , N 2 N, where IW is the identity operator inW . One sees immediately

that

TN
n

�!
L(W )

T:

However, the statement

SNTN = SN
n
�!
L(W )

S = ST

does not hold. The reason for the theorem to \fail" is, of course, that the identity operator IW
is not compact.

5.1.4 Uniform convergence of operator valued functions

Lemma 5.1.7 Let (SN (s))N2N; S(s) 2 L(W;V ) for each s 2 K, where K � C is a compact set.

Furthermore, let us assume that there exists M > 0 such that

kS(s1)� S(s2)kL(W;V ) � M js1 � s2j; 8s1; s2 2 K;

kSN (s1)� SN (s2)kL(W;V ) � M js1 � s2j; 8s1; s2 2 K:
(5.5)

Finally, suppose that

SN (s)
n

�!
L(W;V )

S(s); 8 s 2 K: (5.6)

Then, this convergence is uniform in s 2 K.

Proof : We must show that for every � > 0, there exists N(�) 2 N such that for every N > N(�)

the following inequality holds

kS(s)� SN (s)kL(W;V ) < �; 8 s 2 K:

Indeed, since K is compact, for every � > 0, it has a �nite cover of diameter � := �=(3M), i.e.,

one can �nd n� elements sj 2 K, j = 1; : : : ; n�, such that for every s 2 K, there exists an

i 2 f1; : : : ; n�g for which js� sij < �.

Let s 2 K and choose si such that js� sij < �. It is easy to see that

kS(s)� SN (s)kL(W;V ) � kS(s)� S(si)kL(W;V ) + kS(si)� SN (si)kL(W;V ) +

kSN (si)� SN (s)kL(W;V ): (5.7)

Now, using (5.5), we obtain bounds for the �rst and third summands of (5.7):

kS(s)� S(si)kL(W;V ) � �=3; kSN (s)� SN (si)kL(W;V ) � �=3: (5.8)

Finally, by (5.6), there exists a number N1(�) 2 N such that

kS(sj)� SN(sj)kL(W;V ) < �=3; 8 j 2 f1; : : : ; n�gg; N > N(�): (5.9)
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Now, it is easy to see that for N > N(�), the inequalities displayed in (5.7), (5.8) and (5.9) give

us

kS(s) � SN (s)kL(W;V ) < �; 8N > N(�):

Since s 2 K was arbitrarily chosen, the proof is complete. �

The following proposition will be useful in the next chapter.

Proposition 5.1.8 Let T 2 K(U;W ) and (TN )N2N be such that

TN
n
�!
L(U;W )

T:

Furthermore, let K � C be a compact set and suppose that we are given operator valued functions

(SN (s))N2N; S(s) :2 L(W;V ); 8 s 2 K;

such that (5.5) holds and

SN (s)
s

�!
V

S(s); 8 s 2 K:

Consider the operator valued functions

QN(s) := SN (s)TN ; Q(s) := S(s)T; 8N 2 N; 8 s 2 K:

Then

QN(s)
n

�!
L(U;V )

Q(s); 8 s 2 K; (5.10)

Moreover, this convergence is uniform in s 2 K.

Proof : Equation (5.10) follows by a straightforward use of Lemma 5.1.6. It remains to show

the uniformity of this convergence. By Lemma 5.1.7, we must show that there exists a constant

M0 > 0 for which

kQ(s1)�Q(s2)kL(U;V ) � M0js1 � s2j; 8s1; s2 2 K;

kQN(s1)�QN(s2)kL(U;V ) � M0js1 � s2j; 8s1; s2 2 K:

But this is rather obvious. First, we observe that since TN
n

�!
L(U;W )

T , the sequence (TN )N2N is

uniformly bounded. Further, since we have assumed (5.5) it holds that

kQ(s1)�Q(s2)kL(U;V ) � M js1 � s2jkTkL(U;W ); 8 s1; s2 2 K;

kQN (s1)�QN(s2)kL(U;V ) � M js1 � s2jkTNkL(U;W ); 8 s1; s2 2 K:

Making

M0 :=M maxfkTkL(U;W ); sup
N2N

kTNkL(U;W )g

ends the proof. �
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5.2 On convergence of discrete operators

The aim of this section is to introduce the concept of discrete operators. We shall also show how

to obtain normwise and strong convergence using discrete operators.

5.2.1 Discrete operators

The concept of discrete operator [12] can be introduced as follows. Let W and V be Banach

spaces. Suppose that two sequences (WN )N2N and (VN )N2N of �nite dimensional subspaces in

W and V , respectively, are given and, with them, sequences of projections

(�W
N
)N2N; �W

N
: W ! WN ; N 2 N (5.11)

(�V
N
)N2N; �W

N
: V ! VN ; N 2 N: (5.12)

Further, let us denote by

�W
N
: WN ! W; � V

N
: VN ! V; N 2 N (5.13)

the corresponding natural embeddings. Finally, let us suppose that we are given a sequence of

linear operators

TN :WN ! VN ; N 2 N: (5.14)

Note that for each N 2 N, TN has matrix representation with respect to given bases in WN and

VN .

De�nition 5.2.1 Suppose that a framework (5.11), (5.12), (5.13), (5.14) is given. The operator

sequence, denoted (TN )N2N,

TN := � V
N
TN�

W

N
; 8N 2 N; (5.15)

is called discrete sequence. Furthermore, its elements TN , de�ned by a relationship (5.15) are

called discrete operators.

Remark 5.2.2 Note that we use here the notion of projection in a nonstandard sense. Indeed, a

projection � (ofW onto Ŵ ), is usually an operator � 2 L(W ) such that �2 = � (idempotent) and

Rg(�) = Ŵ , where Ŵ is a (closed linear) subspace of W [53, Section 1.3.4]. On the other hand,

for us a projection is a closed linear operator � :W ! Ŵ , such that the operator � � : W ! W

is a projection of W into W in the usual sense with Ŵ = �(W ). Here � : Ŵ ! W denotes the

natural embedding of the subspace Ŵ into W . The reason for this unusual terminology is that

it �ts more easily into the usual framework of regular convergence to be introduced later.

5.2.2 Normwise convergence

The following proposition shows how to obtain convergence in norm with the help of discrete

sequences.
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Proposition 5.2.3 Let W and V be Banach spaces and consider some T 2 K(W;V ). Suppose

that sequences of projections and embeddings

(�W
N
)N2N; �W

N
: W ! WN ; �W

N
: WN !W

(�V
N
)N2N; �V

N
: V ! VN ; � V

N
: VN ! V

are given such that

�W
�

N
�W

�

N

s

�!
W �

IW � ; � V
N
�V
N

s

�!
V

IV ;

where �W
�

N
:= (�W

N
)�, is the adjoint operator to �W

N
and �W

�

N
:W �

! W �
N
, which is a projection

ofW �, the dual space ofW , ontoW �
N
, the dual space ofW �

N
. Then the discrete sequence (TN )N2N

given by

TN := � V
N
TN�

W

N
; TN := �V

N
T �W

N
; N 2 N (5.16)

is such that

TN
n
�!
L(W;V )

T:

Proof : By the Banach Steinhaus Theorem

k � V
N
�V
N
kL(V ) < M <1; 8N 2 N:

Thus, we have

kT � TNkL(W;V ) = kT � � V
N
TN�

W

N
kL(W;V )

� k(IV � � V
N
�V
N
)TkL(W;V ) + k �

V

N
�V
N
kL(V )kT (IW � �W

N
�W
N
)kL(W;V )

= k(IV � � V
N
�V
N
)TkL(W;V ) +Mk(IW � � �W

�

N
�W

�

N
)T �kL(V �;W �);

where the equality of the norms of a bounded operator and its adjoint [53, III.3.3] has been

used. Since T 2 K(W;V ) so is T � 2 K(V �;W �) [53, Theorem III.4.10]. Using Lemma 5.1.6 we

see now that both summands converge to zero. �

Remark 5.2.4 Conditions of the type

�W
�

N
�W

�

N

s

�!
W �

IW �

hold often in applications. For example, whenever (�W
N
)N2N is a sequence of orthogonal projec-

tions in a Hilbert space W and �W
N
�W
N

s

�!
W

IW .

5.2.3 Strong convergence

We continue with a simple proposition. It is similar to Proposition 5.2.3, but addresses strong

convergence.
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Proposition 5.2.5 Let W and V be Banach spaces and consider some T 2 L(W;V ). Suppose

that sequences of projections and embeddings

(�W
N
)N2N; �W

N
: W ! WN ; �W

N
: WN !W

(�V
N
)N2N; �V

N
: V ! VN ; � V

N
: VN ! V

are given such that

�W
N
�W
N

s
�!
W

IW ; � V
N
�V
N

s
�!
V

IV :

Then the sequence (TN )N2N,

TN := � V
N
TN�

W

N
; TN := �V

N
T �W

N
; N 2 N

is such that

TN
s
�!
V

T:

Proof : First, we note that by the Banach Steinhaus Theorem

k � V
N
�V
N
kL(W ) �M <1; 8N 2 N:

We may suppose , without loss of generality, that kTkL(W;V ) < M as well. Let w 2 W . Then

k(T � TN )wkV � k(IV � � V
N
�V
N
)TwkV + k � V

N
�V
N
T (IW � �W

N
)wkV

� k(IV � � V
N
�V
N
)TwkV +M2

k(IW � �W
N
�W
N
)wkW :

The proof is completed by using the strong convergence of both projections to the identity. �

5.3 Discrete-regular convergence

Our aim in this section is to make clear how strong convergence of resolvent operators can be

achieved. For this we study here the concept of (discrete-) regular convergence for operators in

L(W;V ). We also show how regular convergence can be achieved with the help of projection

methods. Clearly, these results may be applied to operators in L(X), while for general closed

operators A 2 C(X), one converts the corresponding domains D(A) into Banach spaces by means

of the graph norm. Note that we do not try to give an extensive treatment of the topic, our

de�nitions and lemmas are just adapted to our situation.

5.3.1 Preliminaries

We begin by recalling some standard results. For example, the following de�nitions [12, III.5.3.b],

[81, De�nition 2.1.1].

De�nition 5.3.1 A sequence (vN )N2N 2 V is called relatively compact in V whenever every

subsequence (vN )N2N1, N1 � N, contains a convergent (in V ) subsequence (vN )N2N2, N2 � N1 .
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We use below the notion of discrete operator introduced in De�nition 5.2.1.

De�nition 5.3.2 Let T 2 L(W;V ), whereW and V are Banach spaces. We say that a sequence

of discrete operators (TN )N2N 2 L(W;V ) converges regularly to T , to be denoted

TN
r

�!
L(W;V )

T;

if

1. TN
s

�!
V

T .

2. The following regularity condition is satis�ed: each sequence (wN )N2N in W such that

(a) (wN )N2N is bounded and wN 2 WN , 8N 2 N, and

(b) (TNwN )N2N is relatively compact in V ,

is itself relatively compact in W .

The following lemma is useful in checking regular convergence.

Lemma 5.3.3 Let T 2 L(W;V ), where W and V are Banach spaces and (TN )N2N 2 L(W;V ).

Suppose that (TN )N2N satis�es the assumptions:

i. TN
s

�!
V

T .

ii. Every bounded sequence (wN )N2N in W such that wN 2 WN , 8N 2 N, has the following

property: if N1 � N is such that (TNwN )N2N1 is convergent, then there exists N2 � N1

such that (wN )N2N2 converges.

Then

TN
r

�!
L(W;V )

T:

Proof : Only Point 2 of De�nition 5.3.2 must be proved. Indeed, let (wN )N2N 2 W be such

that (a) and (b) in De�nition 5.3.2 above holds. Consider any subsequence (wN )N2N1, N1 � N.

Then, due to 2:(b), there exists N2 � N1 such that (TNwN )N2N2 converges. Further, by (ii),

there exists N3 � N2 for which (wN )N2N3 is convergent. It follows that (wN )N2N is relatively

compact. �

Regular convergence in L(W;V ) can be used for convergence studies related to the class of

bounded Fredholm operators.

De�nition 5.3.4 An operator T 2 L(W;V ) is called (bounded) Fredholm operator, to be de-

noted T 2 F(W;V ), if its range Rg(T ) is closed in V , codimRg(T ) <1 and dimKer(T ) <1.

De�nition 5.3.5 Let T 2 F(W;V ). The index ind(T ) of T is the (�nite) number

ind(T ) := dimKer(T ) � codimRg(T ):
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The set of all operators T 2 F(W;V ) such that ind(T ) = 0 shall be denoted by F0(W;V ). The

set F0(W;V ) has a nice characterisation [81, pp. 653].

Lemma 5.3.6 An operator T 2 F0(W;V ) i� it is representable as a sum T := R � S, where

R 2 L(W;V ) has bounded inverse R�1
2 L(V;W ) and S 2 K(W;V ).

The statement below can be found in [81, Theorem 1, pp. 655].

Lemma 5.3.7 Let T 2 F0(W;V ) be such that Ker(T ) = f0g. Then Rg(T ) = V and T�1 2

L(V;W ).

The following result ([81, Theorem 1, pp 655]) show why regular convergence and operators in

F0(W;V ) are important for us.

Proposition 5.3.8 Let T 2 F0(W;V ) be such that Ker(T ) = f0g. Furthermore, suppose that

projections and embeddings are given which satisfy

�W
N
�W
N

s
�!
W

IW ; � V
N
�V
N

s
�!
V

IV :

Consider the subspaces of W and V , respectively, given by

WN = �W
N
W; VN = �V

N
V; 8N 2 N;

and, with them, a sequence

TN : WN ! VN ; 8N 2 N;

such that TN 2 F0(WN ; VN ) for N large enough. Finally, suppose that

� V
N
TN�

W

N

r
�!
L(W;V )

T:

Then, also for N large enough, the inverses T �1
N

exist in L(VN ;WN ) and

�W
N
T
�1
N
�V
N

r

�!
L(V;W )

T�1: (5.17)

Remark 5.3.9 By de�nition, the convergence in (5.17) implies

�W
N
T
�1
N
�V
N

s

�!
W

T�1:

The following proposition will play an important role in the next chapter. It is a direct conse-

quence of [80, Theorem 4.17, pp 69].

Proposition 5.3.10 Let W and V be Banach spaces and suppose that projections and embed-

dings are given such that

�W
N
�W
N

s

�!
W

IW ; � V
N
�V
N

s

�!
V

IV :

These projections de�ne subspaces

WN = �W
N
W; VN = �V

N
V; 8N 2 N:
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Let 
 � C be open and bounded and suppose that the operator valued functions

T : 
! F0(W;V ); TN : 
! F0(WN ; VN ); N 2 N

are analytic and such that T (s) is boundedly invertible for every s 2 
. Moreover, we assume

that

� V
N
TN (s)�

W

N

r

�!
L(W;V )

T (s); 8 s 2 
:

Finally, let us suppose that for each compact set K � 
 the following inequality holds

sup
N2N

max
s2K

kTN (s)kL(WN ;VN ) <1:

Then, again for each compact set K � 
, there exists a N0 = N0(K) 2 N such that TN (s) is

boundedly invertible for every s 2 K and every N > N0. Moreover,

sup
N>N0

max
s2K

k(TN (s))
�1
kL(VN ;WN ) <1: (5.18)

5.3.2 Conditions for regular convergence in L(V ).

We are specially interested in conditions under which projection methods yield regular con-

vergence. We shall give a result which guarantees regular convergence of bounded Fredholm

operators. For this, we introduce a \device" which allows a rather general treatment of the

topic: nice sequences.

Let WN ; VN � V be �nite dimensional subspaces of a Banach space V for each N 2 N. Suppose

that sequences of projections and embeddings

(�W
N
)N2N; �W

N
: V ! WN ; �W

N
: WN ! V

(�V
N
)N2N; �V

N
: V ! VN ; � V

N
: VN ! V

are given such that

�W
N
�W
N

s
�!
V

IV ; � V
N
�V
N

s
�!
V

IV : (5.19)

De�nition 5.3.11 The sequence (PN )N2N given by

PN :WN ! VN ; PN := �V
N
jWN

; N 2 N; (5.20)

is called nice, to be denoted (PN )N2N 2 N , if for su�ciently large N 2 N the inverses

P
�1
N

: VN !WN ;

exist and the sequence formed by kP�1
N
kL(WN ;VN ), N su�ciently large, is uniformly bounded.

Nice sequences are important due to the following fact [12, Exercise 4.11].
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Lemma 5.3.12 Let (PN )N2N 2 N . Then, the operators

QN : V ! WN ; v 7! P
�1
N
�V
N
v; (5.21)

are well de�ned for N large enough and are projections of V into WN . Moreover, if (5.19) holds

then

�W
N
QN

s
�!
V

IV : (5.22)

Proof : Obviously, �W
N
QN 2 L(V ) for every N 2 N. Further, the identities

�W
N
QN �

W

N
QN = �W

N
P
�1
N
�V
N
�W
N
P
�1
N| {z }

PNP
�1

N
=IVN

�V
N
= �W

N
P
�1
N
�V
N
= �W

N
QN :

show that �W
N
QN is idempotent and thus, that (QN )N2N is a sequence of projections (in our

sense!, see Remark 5.2.2). It remains to show (5.22). Indeed, it follows from (5.19) that (�V
N
)N2N

is uniformly bounded. Furthermore, by assumptions, (P�1
N
)N2N, N su�ciently large, is also

uniformly bounded. Thus, see (5.21),

k �W
N
QNkL(V ) < M <1; N su�ciently large:

Since

�W
N
�W
N

= �W
N

QN �
W

N| {z }
P
�1

N
�V
N
jWN

=IWN

�W
N

= �W
N
QN �

W

N
�W
N
;

we have the identity

IV � �W
N
QN = (IV � �W

N
QN )(IV � �W

N
�W
N
):

Thus, for any v 2 V

k(IV � �W
N
QN )vkV � (1 +M)kv � �W

N
�W
N
vkV :

By (5.19), the second factor above tends to zero when N !1 and we obtain (5.22). �

Remark 5.3.13 Note that if (�V
N
)N2N = (�W

N
)N2N, they de�ne a nice sequence (PN )N2N 2 N.

The next proposition is based on [1, Theorem IV.15.3]. The concept of nice sequences introduced

in De�nition 5.3.11 plays a fundamental role in it.

Proposition 5.3.14 Let V be a Banach space and T 2 L(V ) be of the form

T := IV � S; (5.23)

where S 2 K(V ). Furthermore, let (WN )N2N, (VN )N2N be sequences of �nite dimensional sub-

spaces of a Banach space V . Suppose that sequences of projections and embeddings

(�W
N
)N2N; �W

N
: V ! WN ; �W

N
: WN ! V

(�V
N
)N2N; �V

N
: V ! VN ; � V

N
: VN ! V
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are given such that (5.19) hold. Finally, suppose that the sequence of operators (PN )N2N given

by (5.20) belongs to N . Under these conditions, the sequence (TN )N2N de�ned by

TN := � V
N
TN�

W

N
; TN := �V

N
T �W

N
; N 2 N; (5.24)

is such that

TN
r

�!
L(V )

T:

Proof : The �rst condition for regularity follows by Proposition 5.2.5 and T 2 L(V ).

The second condition can be veri�ed as follows, see Lemma 5.3.3. Let (wN )N2N, with wN 2 WN ,

be a bounded sequence in V such that

lim
N!1

vN = v 2 V; (5.25)

where

vN := TNwN = �V
N
(IV � S)wN 2 VN ; N 2 N: (5.26)

Then, by (5.26), we have that

PNwN = �V
N
wN = vN + �V

N
SwN = �V

N
(vN + SwN ); N 2 N: (5.27)

Using the notation (see (5.21))

QN := P
�1
N
�V
N
; N su�ciently large;

and applying P�1
N

to (5.27), we obtain

wN = QN (vN + SwN ); N su�ciently large:

We have that S 2 K(V ) and (wN )N2N is bounded. Thus, (SwN )N2N has a convergent sub-

sequence (SwN )N2N1, N1 � N. We denote its limit by vS . Furthermore, by (5.25), (vN )N2N1
converges to v. It follows that

lim
N!1

N�N1

�W
N
wN = lim

N!1

N�N1

�W
N
QN (vN + SwN ) = v + vS:

In establishing the last equality we have used (Lemma 5.3.12)

�W
N
QN

s
�!
V

IV

and Lemma 5.1.5. We have shown that (wN )N2N1 converges to w := (v + vS) 2 V which

completes the proof. �

Remark 5.3.15 For bounded operators in Hilbert spaces and with (�V
N
)N2N = (�W

N
)N2N being

orthogonal projections, a convergence result somewhat similar to Proposition 5.3.14 has been

known under the name of quasitriangular convergence [31].
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Remark 5.3.16 A result similar to Proposition 5.3.14 can be obtained for unbounded operators

of the form

T := (IV0 � S)R�1; (5.28)

where

S; R 2 K(V0)

with R�1 unbounded on V0. In order to see this, one notes that considering the equation

Tz = x; z 2 D(T ); x 2 V0;

is equivalent to solve for

u 2 V := V0 � V0

the equation

Fu =

�
0

x

�
;

where

F :=

�
IV0 �R

0 IV0 � S

�
= IV �

�
0 �R

0 �S

�
:

One sees immediately that F has the form (5.23) required in Proposition 5.3.14.

5.3.3 Conditions for regular convergence in L(W;V ).

Let us return now to the general situation. The proposition below is the analog to Proposition

5.3.14. It gives su�cient conditions for regular convergence in L(W;V ).

Proposition 5.3.17 Let T 2 F0(W;V ). Furthermore, suppose that projections and embeddings

are given such that that

� V
N
�V
N

s
�!
V

IV : (5.29)

Finally, let WN := R�1VN , N 2 N, and de�ne the sequence of projections

�W
N

: W ! WN ; w 7! R�1 � V
N
�V
N
Rw; N 2 N: (5.30)

where R is derived from a representation of T in accordance with Lemma 5.3.6. Under these

conditions, the sequence (TN )N2N 2 L(W;V ) de�ned by

TN := � V
N
TN�

W

N
; TN := �V

N
T �W

N
; N 2 N; (5.31)

is such that

TN
r

�!
L(W;V )

T: (5.32)
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Proof : We begin by proving that

�W
N
�W
N

s
�!
W

IW : (5.33)

Indeed, consider some w 2 W . Then

k �W
N
�W
N
w � wkW � kR�1

kL(V;W )k �
V

N
�V
N
Rw �RwkV = kR�1

kL(V;W )k( �
V

N
�V
N
� IV )RwkV

and the second factor above tends to zero due to (5.29).

Having proved that, we see that the �rst condition for regularity in L(W;V ), i.e., TN
s

�!
V

T ,

follows by Proposition 5.2.5.

In order to prove the second condition of regularity we need some initial considerations. Recall

that for T we have �xed a representation T := R�S, where R and S enjoy the properties given

in Lemma 5.3.6. Consider the operator

Q := TR�1 = IV � SR�1
2 L(V ):

Using (5.30), it is easy to see that

TN = � V
N
�V
N
QR�W

N
�W
N

= � V
N
�V
N
Q� V

N
�V
N
R = QNR; ; N 2 N;

where

QN := � V
N
QN�

V

N
; QN := �V

N
Q� V

N
N 2 N:

Let us show that QN

r

�!
L(V )

Q. For this, we shall use Proposition 5.3.14. Indeed, SR�1
2 K(V ).

Furthermore, by assumptions

� V
N
�V
N

s

�!
V

IV :

Thus, by Proposition 5.3.14 and Remark 5.3.13, it follows that

QN

r

�!
L(V )

Q: (5.34)

Now, let us return to the proof of the second condition for regularity. For this, Lemma 5.3.3 will

be used. Let (wN )N2N be a bounded sequence in W with wN 2WN , N 2 N, and such that

lim
N!1

TNwN = lim
N!1

QNRwN = v 2 V: (5.35)

Since R is bounded, (RwN )N2N is also bounded (in V ) and, by the de�nition of (VN )N2N,

RwN 2 VN for all N 2 N. Further,

lim
N!1

QN(RwN ) = v 2 V: (5.36)

Since QN

r

�!
L(V )

Q, Equation (5.36) implies that there exists a subsequence N1 � N such that

lim
N!1

N2N1

RwN = vR 2 V:

Finally, we use the bounded invertibility of R in order to obtain

lim
N!1

N2N1

wN = R�1vR 2 W:

The proof is complete. �
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Remark 5.3.18 In Proposition 5.3.17, the assumptions on the sequences of projections (�W
N
)N2N

and (�V
N
)N2N are symmetric in the following sense: if

�W
N
�W
N

s

�!
W

IW (5.37)

and

�V
N
: V ! VN ; �V

N
:= R �W

N
�W
N
R�1; N 2 N; (5.38)

then (5.32) holds for the sequence de�ned by (5.31). This fact is easily seen by observing that,

for the sequences of projections (5.37) and (5.38), the relationships displayed in (5.29) and (5.30)

also apply.

Remark 5.3.19 Proposition 5.3.17 can be strengthened if W and V are Hilbert spaces. Indeed,

it is well known [26, Chapter XIV.2] that the condition imposed on T , i.e., T 2 F0(W;V ), hold

for its adjoint T � 2 L(V;W ) as well. Thus, if we assume that (�V
N
)N2N is a sequence of orthogonal

projections such that (5.29) holds, we obtain, eventually using the \symmetry" mentioned in

Remark 5.3.18, regular convergence of the corresponding adjoint operators.

Remark 5.3.20 In Proposition 5.3.8 the sequence (TN )N2N was required to be such that TN 2

F0(WN ; VN ) for N large enough. The following simple arguments show that this condition is

satis�ed automatically by the sequence (TN )N2N de�ned in (5.31). Indeed, T = R�S 2 F0(W;V ),

where R and S enjoy the properties of Lemma 5.3.6. Thus, we see that

TN := �V
N
T �W

N
= RN � SN ; N 2 N;

where

RN := �V
N
R �W

N
; SN := �V

N
S �W

N
; N 2 N:

Clearly,

RN 2 L(WN ; VN ); R
�1
N
2 L(VN ;WN ); SN 2 K(WN ; VN ); N 2 N:

Thus, TN 2 F0(WN ; VN ) for every N 2 N. It follows that (5.17) holds under the conditions of

Proposition 5.3.17.

Remark 5.3.21 The following simple result is worth mentioning. It is a direct consequence of

[82, Proposition 3.5, Theorem 4.1, Remark 3.1]: if

R 2 L(W;V ); R�1
2 L(V;W ); (RN )N2N 2 F(WN ; VN ); S 2 K(W;V )

then

RN

r

�!
L(W;V )

R; SN
n

�!
L(W;N)

S ) RN � SN
r

�!
L(W;V )

R� S:

Note that the convergence SN
n

�!
L(W;V )

S can be achieved if the projections (�W
N
)N2N are orthogonal,

see Proposition 5.2.3.
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5.3.4 Regular convergence in L(W;Va)

The results given above make use of the existence of a sequence (WN )N2N of subspaces of W

and projections onto them with the property

�W
N
�W
N

s
�!
W

IW :

In some sense this is a natural and simple condition. However, in applications, the Banach

space W is often the domain D(A) of some A 2 C(X) endowed with the graph norm. In this

situation, �nding (or handling) the sequences (�W
N
)N2N can be di�cult, for instance, if boundary

conditions must be satis�ed. We present here an approach which avoids this di�culty. For the

sake of simplicity, and because our description covers most of the interesting cases, we formulate

these results for the class of ordinary di�erential operators. For certain generalisations see [81]

and [82].

Let us introduce the spaces

W := Hm([a; b]; C ); V := L2([a; b]; C ); Z :=W \Ker(L): (5.39)

where

L : W ! C
m ; w 7!

0
B@
L1w
...

Lmw

1
CA ;

Lkw =

m�1X
i=0

�
�ikw

(i)(a) + �ikw
(i)(b)

�
; k = 1; : : : ;m:

(5.40)

where both the �-s and the �-s are real or complex constants. Now, consider the operator

T : Z ! V; w 7! w(m)
�Cw;

Cw :=

m�1X
i=0

ui(t)w
(i); a < t < b;

(5.41)

where the ui, i = 0; : : : ;m� 1, are continuous functions in [a; b]. Since

C 2 L(Hm((a; b); C ); H1((a; b); C ))

and the embedding

� : H1((a; b); C ) ! L2((a; b); C )

is compact [20, Theorem V.4.17], one sees easily that C 2 K(W;V ). Thus, if the operator

Tm : Z ! V; w 7! w(m) (5.42)

is boundedly invertible it follows, by Lemma 5.3.6, that

T 2 F0(Z; V ):
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Further, we consider the extension T0 [53, Example III.2.7] of the operator T de�ned by:

T0 : W ! V; w 7! w(m)
�Cw;

and introduce the \augmented" operator:

Ta :=

�
T0
L

�
:W ! Va;

where L is the operator (5.40) which de�nes the boundary conditions and

Va := V � C
m : (5.43)

It holds [82, pp 690]

Lemma 5.3.22 Suppose that T�1
m

2 L(V; Z). Then

Ta 2 F0(W;Va) and Ker(Ta) = f0g:

As a consequence T�1
a

2 L(Va;W ).

Due to Lemma 5.3.22, and by means of suitable sequences of projections, we may apply Propo-

sition 5.3.17 in order to obtain regularly convergent approximations of Ta. The following simple

results make possible the application of this approach in the approximation of T�1.

Lemma 5.3.23 Let T�1
m
; T�1 2 L(V; Z) and Ia : V ! Va be de�ned by

Iav :=

�
v

0m�1

�
; 8 v 2 V: (5.44)

Then T�1 and T�1
a
Ia represent the same operator in L(V; Z).

Proof : Both T�1 and T�1
a
Ia are de�ned on the whole V . Further, consider some v 2 V . Then

there exists a unique w := T�1v 2 Z. It is enough to show that for any v 2 V , the solution wa

of the equation

Tawa = Iav (5.45)

is unique and such that wa = w. Indeed, by Lemma 5.3.22, T�1
a

2 L(Va;W ). Thus, the

existence and uniqueness of wa in W is clear. Further, the \�rst row" of Equation (5.45) states

that T0wa = v, while the \last" one states wa 2 Ker(L). But, this is exactly the solution of

Tw = v for v 2 V . �

The preparation above allows us to state the following proposition.

Proposition 5.3.24 Let W , V and Va be given by (5.39) and (5.43). Suppose that T�1
m
; T�1 2

L(V; Z). Furthermore, let us assume that (WN )N2N is a sequence of subspaces of W and that

projections and embeddings

�W
N

: W !WN ; �W
N
: WN ! W; N 2 N;
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are given such that

�W
N
�W
N

s
�!
W

IW :

Finally, let

VN := TWN ; VaN := TaWN ; N 2 N;

and

�V
N
:= T �W

N
�W
N
T�1; �Va

N
:= Ta �

W

N
�W
N
T�1
a
; N 2 N: (5.46)

Then, the sequence (TaN )N2N, de�ned by

TaN := � V a
N
TaN�

W

N
; TaN := �V a

N
Ta �

W

N
; N 2 N;

is such that TaN 2 F0(WN ; VaN) for N large enough, and

�W
N
T
�1
aN
Ia�

V

N

r

�!
L(V;Z)

T�1:

Proof : By Lemma 5.3.22, Ta 2 F0(W;Va) with Ker(Ta) = f0g and T�1
a

2 L(Va;W ). On the

other hand, Proposition 5.3.17 guarantees the convergence

TaN
r

�!
L(W;Va)

Ta:

It follows (Proposition 5.3.8, Remark 5.3.20) that TaN 2 F0(WN ; VaN) for N 2 N and

�W
N
T
�1
aN
�Va
N

r
�!

L(Va ;W )
T�1
a
:

Thus,

�W
N
T
�1
aN
�Va
N
Ia

r

�!
L(V;W )

T�1
a
Ia: (5.47)

On the other hand, we have the identity

�Va
N
Ia = Ta �

W

N
�W
N
T�1
a
Ia| {z }

T�1

= Ta �
W

N
�W
N
T�1 = TaT

�1T �W
N
�W
N
T�1 = TaT

�1�V
N
= Ia�

V

N
;

which, together with Lemma 5.3.23 and (5.47), proves the relationship

�W
N
T
�1
aN
Ia�

V

N

r

�!
L(V;Z)

T�1:

�

Remark 5.3.25 The advantage of this approach over the former one is, clearly, that the as-

sumptions on the sequence (WN )N2N are not so restrictive: the subspaces of (WN )N2N are not

assumed to lie in Ker(L).
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5.3.5 Convergence of eigenelements

We �nish this section with results on the approximate solution of eigenvalue problems.

Let A 2 C(X) with resolvent set �(A) and let � 2 �P (A) be an isolated eigenvalue with �nite

algebraic multiplicity m. Suppose that a bounded domain 
 � C , 
 \ �(A) = � is given such

that @
 � �(A) is a (positively oriented) recti�able closed simple curve. The spectral projector

associated to � is de�ned by

P
 =
1

2i�

Z
@


R(s)ds: (5.48)

Now, let (AN )N2N be a sequence in C(X) such that @
 � �(AN ) for N large enough. Then, a

sequence of spectral projectors can be also de�ned

PN
 =
1

2i�

Z
@


R(s;AN)ds: (5.49)

For convenience we use the notations P
 and PN
 for the spectral projections. However, the

reader should be aware of the fact that these projectors do not depend on 
, but on the part

of the spectrum which lies in it. We have used already the notion of spectral projections in

Chapter 2, Equation (2.18).

With these notations the following proposition can be stated.

Proposition 5.3.26 Let A 2 C(X) be such that the natural embedding � : D(A) ! X is

compact. Suppose that a bounded domain 
 � C , whose boundary @
 is a recti�able closed

simple curve, is given with the property:

�(A) \ 
 = f�g; (5.50)

where � 2 �P (A)(= �(A)) has algebraic multiplicity m. Finally, let us suppose that a discrete

sequence (AN)N2N is given such that

AN

r

�!
L(D(A);X)

A:

Then,

1. s � �AN

r
�!

L(D(A);X)
s � �A; 8 s 2 �(A).

2. For N large enough, �(AN ) \ 
 = f�
(N)
1 ; : : : ; �

(N)
m g, counting their multiplicities, and

lim
N!1

j�
(N)
i

� �j = 0; i = 1; : : : ;m:

3. The subspaces PN
X and P
X converge in gap [53, Chapter IV.2.1].

Proposition 5.3.26 can be found in the literature [12, Table 5.1] and [12, Summary p. 238].

Similar results have been stated in [80, Theorem 55 and 62]. See also [82, Theorem 6.3].
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Remark 5.3.27 If � is a simple eigenvalue (m = 1) and X is a Hilbert space, the eigenprojec-

tions P
 take the form [15, Lemma 2.5.7.f]

P
 = h � ;  i�;

where � and  are eigenvectors associated to � of A and �� of its adjoint A�, respectively. These

vectors are related through the equalities [15, Lemma 2.5.7.f]

h� ;  i = 1

and are sometimes called biorthogonal. Moreover, Item 3 of Proposition 5.3.26 reduces to

lim
N!1

k�(N)
� �kX = 0;

and

 (N) s
�!
X

 ; (5.51)

where �(N) and  (N) are, again, the eigenvectors associated to �N of AN and ��N of A�
N
, respec-

tively.

Finally, if there is regular convergence of the corresponding adjoint operators (see Remark

5.3.19), (5.51) becomes

lim
N!1

k (N)
�  kX = 0:

For generalised eigenvalue problems, i.e.,

Rx = �Sx; R; S 2 L(W;V ); (5.52)

we have a similar result [81, pp 683]. Below we give a reformulation of [82, Theorem 6.3]. In its

statement we will use the notation �(R;S) for the spectrum of Problem (5.52), i.e., the set of

� 2 C such that R� �S has no bounded inverse de�ned on the whole V .

Proposition 5.3.28 Let R 2 L(W;V ), R�1
2 L(V;W ), S 2 K(W;V ), and Ker(R��0S) = f0g

for some �0 2 
 � C . Here 
 is a bounded domain for which

�(S;R) \ 
 = �

holds and whose boundary @
 is a recti�able closed simple curve, where � is an element of

�(R;S) with algebraic multiplicity m. Let us suppose that sequences of projections (�W
N
)N2N,

(�V
N
)N2N and embeddings ( �W

N
)N2N, (�

V

N
)N2N are given and, using them, de�ne the following

sequences of discrete operators

RN := � V
N
RN�

W

N
; RN := �V

N
R �W

N
; N 2 N;

SN := � V
N
SN�

W

N
; SN := �V

N
S �W

N
; N 2 N:

Finally, suppose that

RN � �SN
r
�!
L(W;V )

R� �S; 8� 2 
:

Then, the eigenelements of the generalised eigenvalue problems

Rx = �Sx

RNxN = �NSNxN :

are such that the statements 2 and 3 of Proposition 5.3.26 and Remark 5.3.27 hold with �(RN ;SN )

for �(AN ).
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5.4 Summary

The aim of this chapter has been to build the foundation for the approximation of spectral value

sets of in�nite dimensional operator by spectral value sets of �nite dimensional ones. Essentially,

the chapter has dealt with the following approximation concepts: strong, normwise and discrete-

regular convergence. We began by discussing elementary properties of these convergences and

proving certain useful results. Thereafter, we have shown how these types of convergences can

be achieved by means of discrete operators. Finally, we have discussed some implications of

regular convergence for eigenvalue problems.



Chapter 6

Approximation of Spectral Value Sets

We have mentioned already that, while the results of Section 4.2 are theoretically satisfactory,

they are useful in applications only if the values of the norm of the transfer function associated

with (A;D;E) can be obtained. In e�ect, the existence of the transfer function on the resolvent

set is guaranteed under our assumptions. But, since the transfer function is usually not explicitly

known, we cannot apply the formula in Theorem 4.2.11 to determine the spectral value sets. In

Chapter 3 we developed e�cient algorithms for calculating spectral value sets in the matrix case.

Further, in Chapter 5 we have discussed several abstract approximation results on convergence

of discrete operators. How could we use all this machinery for the calculations of �(A;D;E; �)

in the in�nite-dimensional setting? The answer to this question is given in the following.

6.1 Preliminaries

Essentially, our aim in this section is to motivate the use of discrete operators and/or sequences

for the calculation of spectral value sets of in�nite dimensional systems.

6.1.1 Norm of discrete operators

Let us suppose that we are given a framework as in (5.11), (5.12), (5.13), (5.14):

WN 2 W; �W
N

:W ! WN ; �W
N
:WN ! W; N 2 N;

VN 2 V; �V
N
: V ! VN ; � V

N
: VN ! V; N 2 N;

where W and V are given Banach spaces. Further, let

TN := � V
N
TN�

W

N
; TN : WN ! VN ; N 2 N;

be a sequence of discrete operators, see De�nition 5.2.1. We recall that each TN , N 2 N, allows a

matrix representation and, thus, its norm kTNkL(WN ;VN ) can be computed with standard matrix

methods. Further, one observes that if WN and VN are provided with the norms induced by W

and V respectively, then the norm of TN is given by

kTNkL(W;V ) = kTNkL(WN ;VN ); N 2 N:

75
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This fact makes discrete operators remarkable in our context. Indeed, by Theorem 4.2.11, the

sets �(A;D;E; �) can be studied by looking at the norm of the corresponding transfer function

G. Since the norm of discrete operators can be computed in a straightforward manner, we

would substitute the calculation of kG(s)kL(U;Y ) by the \easy" calculation of kGN (s)kL(U;Y ),

where (GN (s))N2N is, for each s of interest, a sequence of discrete operators which approximates

in some sense G(s).

6.1.2 The role of normwise convergence

In view of Corollary 4.2.12 and Equation (4.15), we should examine whether the upper level

sets of s 7! kGN (s)kL(U;Y ) approximate (in the sense of the Hausdor� metric) those of s 7!

kG(s)kL(U;Y ).

It is easily seen that strong convergence of the transfer functions is not a condition which could,

in general, guarantee this. In fact, from the Banach Steinhaus Theorem it follows that if

TN
s

�!
V

T;

then

lim inf
N!1

kTNkL(W;V ) � kTkL(W;V ):

Thus, if the approximations are such that

GN (s)
s

�!
Y

G(s); 8 s 2 �(A);

then the upper level sets of kGN (�)kL(U;Y ) may converge to sets which are just upper bounds of

�(A;D;E; �).

On the other hand, Corollary A.0.15, Appendix A, shows that, given a locally connected compact

set K � C , in order to approximate upper level sets of s 7! kG(s)k associated to regular values

of kGk (De�nition A.0.13) and contained in K, it su�ces to have uniform convergence in K:

lim
N!1

max
s2K

j kGN (s)kL(U;Y ) � kG(s)kL(U;Y )j = 0: (6.1)

Since

jkGN (s)kL(U;Y ) � kG(s)kL(U;Y )j � kGN (s)�G(s)kL(U;Y );

one has that

lim
N!1

kGN (s)�G(s)kL(U;Y ) = 0 uniformly in s 2 K

implies (6.1). This leads us to the consideration of the following problem.

Problem 6.1.1 Find conditions guaranteeing that a sequence of discrete operators (GN (�))N2N
be such that

lim
N!1

kGN (s)�G(s)kL(U;Y ) = 0 (6.2)

uniformly on compacts subsets K � �(A) .
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Remark 6.1.2 Note that the solution of Problem 6.1.1 gives only su�cient conditions for the

desired convergence. As an illustration we mention the following fact. Consider Toeplitz opera-

tors

T = T (a) : X ! X; X = l2(N; C )

with piecewise continuous symbol

a : �! C ; � = fs 2 C ; jsj = 1g;

the associated in�nite matrix and its �nite dimensional truncations:

T = (ti�j)i;j2N; TN = (ti�j)i;j2N ; N = f1; : : : ; Ng:

In this case, one has only strong convergence of the corresponding discrete operators TN to T .

However, for any � > 0, the unstructured spectral value sets �(TN ; IN ; IN ; �) converge towards

the corresponding unstructured spectral value set �(T; I; I; �). On the other hand, one should

say that this convergence is in some sense \anomalous": the spectra of the TN do not, in general,

approximate the spectrum of T , see [5].

6.1.3 Compactness of the transfer function

Our is aim is to �nd conditions leading to the solution of Problem 6.1.1, and in particular, such

that (6.2) holds. In this case we must be aware of the following fact [53, Theorem III.4.7].

Lemma 6.1.3 K(W;V ) is closed in L(W;V ) with respect to the norm topology.

This lemma has the following implications. Since for each s 2 �(A) the transfer functions

GN (s) are discrete operators, and hence compact, in order to have convergence in norm to the

transfer function G(s), a necessary condition is the compactness of G(s) itself. Thus, we can

solve Problem 6.1.1 only under conditions which guarantee the compactness of G(s) for every

s 2 �(A).

Lemma 6.1.4 Suppose that A 2 C(X), D 2 L(U;X), E 2 L(X;Y ) and that (4.2) holds, i.e.,

D(A) � X � X with continuous dense injections.

Let us assume that the embedding

� : D(A)! X is compact, (6.3)

then G(s) 2 K(U; Y ) for each s 2 �(A).

Proof : First, note that the product of a compact operator with a bounded one is again a

compact operator [53, Theorem III.4.8]. Thus, the proof follows from G(s) = E �R(s)D, i.e.,

U !
D

X !
R(s)

D(A)!
�

X !
E

Y;

� 2 K(D(A); X) and the boundedness of the rest of the operators. �
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As we shall now see, assuming (6.3) has important implications for the resolvent R(s) and the

spectrum �(A) of A.

Lemma 6.1.5 The compactness of

� : D(A)! X

is a necessary and su�cient condition for

R(s) 2 K(X;X); 8 s 2 �(A): (6.4)

Moreover, � 2 K(D(A); X) implies that the spectrum �(A) is a set of isolated eigenvalues with

�nite algebraic multiplicities.

Proof : First, we note the following. For any s; s0 2 �(A), we have the identity [53, I.(5.5),

III.6.1]

R(s) = R(s0)[IX � (s� s0)R(s)]:

R(s) is in L(X). Thus, this equality shows that if for some s0 2 �(A), R(s0) 2 K(X;X), then

R(s) 2 K(X;X) for every s 2 �(A).

Suppose R(s0) 2 K(X;X) for some s0 2 �(A). Then, from

(s0I �A) 2 L(D(A); X) and � := R(s0)(s0I �A);

it follows that

� 2 K(D(A); X):

Conversely, suppose that � 2 K(D(A); X) and consider some s0 2 �(A). Then

R(s0) 2 L(X;D(A))

and we conclude, by [53, Theorem III.4.8], that

� �R(s0) 2 K(X;X) =) R(s0) 2 K(X;X):

Now, proving the assertion made on �(A) is simple. Consider the injection

�X : X ! X:

The operator �X is continuous by (4.2) and thus bounded. Further, we have just shown that

R(s) 2 K(X;X) for all s 2 �(A). Thus, �X �R(s) 2 K(X). We may now obtain the mentioned

properties of �(A) from [53, III.6.8 and Theorem III.6.29]. �

Remark 6.1.6 Condition 6.3 is often satis�ed in applications. For example, the following em-

beddings are compact.

1. � : Ck+1(�
; C n)! Ck(�
; C n), k 2 N0 [20, Theorem V.1.1].

2. � : H1(
; C n)! L2(
; C n) [20, Theorem V.4.17].

3. � : Hk(
; C n)! Hk1(
; C n) for k1 < k; k; k1 2 N0 [20, Theorem V.4.18].

The notations used above were introduced in Section 5.1.1.
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6.2 On the approximation of transfer functions

We go now towards the statement of the most important approximation result. As before, let

us assume that X, X, U , Y are complex Banach spaces, A 2 C(X) with domain D(A) and

D(A) � X � X with continuous dense injections, while D 2 L(U;X) and E 2 L(X;Y ).

The following notations are going to be useful:

1. F := R(s0)D 2 L(U;X) for some �xed s0 2 �(A).

2. H(s) := ER(s)jX 2 L(X;Y ) for every s 2 �(A).

Note that using those notations and the resolvent identity [53, III.6.1, I.5.2]

R(s) = [IX � (s� s0)R(s)]R(s0) (6.5)

the transfer function G(s) := ER(s;A)D, for s 2 �(A), can be written as

G(s) = G(s0)� (s� s0)H(s)F = EF � (s� s0)H(s)F; s 2 �(A):

Let K � �(A) be a compact set. Essentially, we shall deal with three operator sequences:

(FN )N2N 2 L(U;X); (EN )N2N 2 L(X;Y );

(HN (s))N2N 2 L(X;Y ); s 2 K:

Note that under these conditions the \transfer functions"

GN (s) = ENFN � (s� s0)HN (s)FN ; s 2 K; N 2 N;

are well de�ned in L(U; Y ).

6.2.1 Main result

We are now ready for the formulation of the main result of this section. It gives su�cient

conditions for the solution of Problem 6.1.1.

Theorem 6.2.1 Suppose that A 2 C(X), D 2 L(U;X), E 2 L(X;Y ) and that (4.2) holds.

Furthermore, let K � �(A) be a given compact set and s0 2 K be �xed. Let

F := R(s0)D and H(s) := ER(s)jX ; s 2 K:

and consider the corresponding transfer function

G(s) := ER(s)D = EF � (s� s0)H(s)F; s 2 �(A):

Further, let us suppose that we are given operator sequences

(FN )N2N 2 L(U;X); (EN )N2N 2 L(X;Y );

(HN (s))N2N 2 L(X;Y ); s 2 K;

which, under these conditions, de�ne L(U; Y )-valued functions

GN (s) := ENFN � (s� s0)HN (s)FN ; N 2 N; s 2 K:

Finally, let us suppose that
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1. F 2 K(U;X).

2. FN
n
�!
L(U;X)

F .

3. HN (s)
s
�!
Y

H(s), 8 s 2 K.

4. EN

s
�!
Y

E.

Then

GN (s)
n

�!
L(U;Y )

G(s); 8 s 2 K: (6.6)

Moreover, if, additionally, there exists M > 0 independent of N such that

kHN (s1)�HN (s2)kL(X;Y ) < M js1 � s2j; 8 s1; s2 2 K; (6.7)

then the convergence in (6.6) is uniform in s 2 K.

Proof : We have

GN (s0) = ENFN
n

�!
L(U;Y )

EF = G(s0); (6.8)

HN (s)FN
n
�!
L(U;Y )

H(s)F; 8 s 2 K; (6.9)

where both statements follow by a straightforward use of Lemma 5.1.6. Further, we see that

kG(s)�GN (s)kL(U;Y ) � kG(s0)�GN (s0)kL(U;Y ) +

js� s0jkH(s)F �HN (s)FNkL(U;Y ); 8 s 2 K: (6.10)

Since js� s0j is uniformly bounded in K, (6.6) follows using (6.8), (6.9) and (6.10).

The last statement of the theorem, i.e. the uniform convergence, can be proved using Proposition

5.1.8. Indeed, it is easily seen that, for every s1; s2 2 K,

kH(s1)�H(s2)kL(X;Y ) � kEkkR(s1)�R(s2)kL(X)

� js1 � s2jkEkkR(s1)kL(X)kR(s2)kL(X)

� M1js1 � s2j;

where

M1 := kEkmax
s2K

kR(s)k2L(X):

Since we have assumed (6.7), we may apply Proposition 5.1.8 to the convergence (6.9) and obtain

HN(s)FN
n

�!
L(U;Y )

H(s)F; 8 s 2 K; uniformly in s 2 K (6.11)

Now, using (6.11) and (6.10), we see that the convergence in (6.6) is also uniform in s 2 K. �
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Remark 6.2.2 Using the resolvent identity (6.5), it can be easily shown that if R(s0)D 2

K(U;X) for some s0 2 �(A), then R(s)D 2 K(U;X) for every s 2 �(A). This fact is important

for applications, since it means that one has freedom in choosing the point s0 2 K for which the

compactness of R(s0)D is to be proved.

Remark 6.2.3 The operator D : U ! X is bounded. Thus, by Lemma 6.1.5, the compactness

of the embedding � : D(A) ! X is a su�cient condition for the compactness of F := R(s)D :

U ! X for all s 2 �(A). We have seen in Remark 6.1.6 that the compactness of these embeddings

is not rare in applications. Moreover, if the operator D is compact, this also implies that

F 2 K(U;X). We conclude that Condition 1 in our theorem is not as restrictive as one would

think at �rst sight.

Remark 6.2.4 We have already seen (Proposition 5.2.3) that the norm of a bounded operator

and of its adjoint coincide. In other words,

kG(s) �GN (s)kL(U;Y ) = kG�(s)�G�

N
(s)kL(Y �;U�):

That means that considering the adjoint operators can be advantageous in some applications.

For example, if E 2 K(X;Y ) whereas D 62 K(U;X). Of course, in that case the conditions of

Theorem 6.2.1 must be formulated for the adjoints operators rather than for the original A, D

and E. We omit the details.

6.2.2 Some corollaries

We shall consider below some useful corollaries of Theorem 6.2.1. In their statements we use

the following notation: for a sequence (AN )N2N 2 C(X) such that D(A) � D(AN ) for N 2 N,

we shall denote strong convergence of resolvents in a subset 
 of the resolvent set �(A) with the

symbol

R(s;AN)
s
�!
X

R(s;A); 8 s 2 
; (6.12)

i.e., for each s 2 
 we have

1. s 2 �(AN) for N large enough (depending upon s) and

2. limN!1 kR(s;AN)x�R(s;A)xkL(X) = 0, for all x 2 X.

Lemma 6.2.5 Let K be a compact subset of �(A). If

R(s;AN)
s

�!
X

R(s;A); 8 s 2 K; (6.13)

then, there exists a �nite N(K) 2 N such that

K � �(AN ); 8N > N(K):

Proof : Indeed, consider some s0 2 K and let N be large enough so that s0 2 �(AN). Then

fs 2 C : js� s0j < kR(s0; AN )k
�1
L(X)g � �(AN ):

The assertion follows immediately using the compacity of K and the fact that, due to (6.13), the

sequence (R(s;AN))N2N is uniformly bounded in N and s in the compact set K ([53, Theorem

VIII.1.1]). �
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Remark 6.2.6 In other words, if the set 
 in (6.12) is a compact subset of �(A), then we may

assume, without loss of generality, that K � �(AN ) for all N 2 N. In the sequel we shall be

making this assumption.

Corollary 6.2.7 Suppose that A 2 C(X), D 2 L(U;X), E 2 L(X;Y ) and that (4.2) holds.

Furthermore, let K � �(A) be a given compact set and s0 2 K be �xed. Let

F := R(s0)D and H(s) := ER(s)jX ; s 2 K:

and consider the corresponding transfer function

G(s) := ER(s)D = EF � (s� s0)H(s)F; s 2 �(A):

Further, let us suppose that we are given operator sequences

(AN )N2N 2 C(X); D(A) � D(AN ); N 2 N;

(DN )N2N 2 L(U;X); (EN )N2N 2 L(X;Y )

which de�ne L(U; Y )-valued functions

GN (s) := ENR(s;AN)DN = ENFN � (s� s0)HN (s)FN ; N 2 N;

for s 2 K \ �(AN), where

FN := R(s0; AN )DN ; HN(s) := ENR(s;AN)jX ; N 2 N:

Finally, let us suppose that

1. F 2 K(U;X).

2. FN
n
�!
L(U;X)

F .

3. R(s;AN)jX
s
�!
X

R(s)jX , 8 s 2 K.

4. EN

s
�!
Y

E.

Then

GN (s)
n
�!
L(U;Y )

G(s); 8s 2 K: (6.14)

Moreover, this convergence is uniform in s 2 K.

Proof : In order to use Theorem 6.2.1 only Condition 3 and Equation (6.7) remain to be proved.

But this is easy. By Lemma 6.2.5, there exists N(K) 2 N such that K � �(AN) for N > N(K).

Thus, the operators HN (s) are well de�ned in the whole K for N > N(K). Further, using

Lemma 5.1.4 we obtain that

HN(s) = ENR(s;AN)jX
s

�!
Y

ER(s)jX = H(s); 8 s 2 K;
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i.e., Condition 3. For the proof of (6.7) we observe that

kHN (s1)�HN (s2)kL(X;Y ) = kEN [R(s1; AN )�R(s2; AN)]kL(X;Y )

� js1 � s2jkENkL(X;Y )kR(s1; AN )kL(X)kR(s2; AN)kL(X);

where again the resolvent identity (6.5) has been used. Further, since by assumption EN

s

�!
Y

E,

the sequence (EN )N2N is uniformly bounded. Thus, the proof is complete if we show that there

exists M > 0 with the property

kR(s;AN)kL(X) �M; 8 s 2 K; 8N > N(K):

But this follows from [53, Theorem VIII.1.1]. �

The following simple corollary of Theorem 6.2.7 is important for applications.

Corollary 6.2.8 Suppose that the assumptions of Corollary 6.2.7 hold but, in place of Condi-

tions 1, 2 and 3, we assume that

1. U = X, D := DN := IX.

2. R(s0) 2 K(X;X).

3. R(s0; AN )
n

�!
L(X;X)

R(s0).

Then

GN (s)
n
�!
L(U;Y )

G(s); 8s 2 K:

Moreover, this convergence is uniform in s 2 K.

Proof : The only point to prove is Condition 3 of Corollary 6.2.7. But this follows immediately

from the fact that if R(s0; AN )
n

�!
L(X;X)

R(s0), for some s0 2 �(A), then R(s;AN)
n

�!
L(X;X)

R(s) for

every s 2 �(A) [53, VIII.1.1]. �

6.3 On approximation of the resolvent of Riesz operators

Corollary 6.2.8 is specially interesting in the case of unstructured perturbations, i.e., E = D =

IX, U = Y = X = X. However, it is readily seen that the condition

R(s;AN)
n

�!
L(X;X)

R(s)

is a very strong requirement on the approximation scheme. For instance, one knows [53, Theorem

IV.2.25]
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Lemma 6.3.1 Let T; TN 2 C(X), N 2 N, with nonempty resolvent and denote the gap between

T and TN [53, Chapter IV.2.2] by �̂(T; TN ). Then

lim
N!1

�̂(T; TN )! 0

i� the following conditions hold

1. Each s 2 �(T ) belongs to �(TN) for N large enough.

2. R(s; TN)
n
�!
L(X;X)

R(s; T ), while it is su�cient that this be true for some s 2 �(T ).

As regards our problem Lemma 6.3.1 can be interpreted as follows. The desired uniform approx-

imation of the resolvent can be reached only under very restrictive conditions on the approxi-

mation method, namely, convergence in gap. How restrictive this condition can be, is illustrated

by the following fact [53, Theorem IV.2.23.a].

Lemma 6.3.2 If T 2 L(X;Y ), limN!1 �̂(T; TN )! 0 i� TN 2 L(X;Y ) for N large enough and

TN
n

�!
L(X;Y )

T .

In spite of this, we shall show in the sequel that for an important class of in�nite-dimensional

operators, namely Riesz operators, the \unstructured" version of Problem 6.1.1 can be solved

satisfactorily.

6.3.1 Preliminaries

We begin with some de�nitions.

De�nition 6.3.3 A sequence of vectors (�i)i2N in a Hilbert space X is called a Riesz basis in

X if the following two conditions hold:

(a) cl (span
i�1f�ig) = X.

(b) There exist positive constants m and M such that for arbitrary N 2 N and arbitrary

scalars �i, i = 1; : : : ; N , the following inequalities hold

m2

NX
i=1

j�ij
2
� k

NX
i=1

�i�ik
2
�M2

NX
i=1

j�ij
2:

It can be easily shown [15, Lemma 2.3.2.b] that in this case each element x 2 X has a unique

representation

x =

1X
i=1

hx ;  i i�i; (6.15)

where ( i)i2N is the biorthogonal sequence corresponding to (�i)i2N, i.e.,

h�i ;  j i = �ij: (6.16)
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See Remark 5.3.27. Moreover, it holds that [15, Lemma 2.3.2.b]

m2

1X
i=1

j hx ;  i i j
2
� kxk2 �M2

1X
i=1

j hx ;  i i j
2: (6.17)

The following lemma gives a useful characterisation of a Riesz basis [15, Exercise 2.21.a].

Lemma 6.3.4 A sequence of vectors (�i)i2N in a Hilbert space X forms a Riesz basis in X i�

it is similar to an orthonormal basis (ei)i2N of X, i.e., there exists a bounded invertible operator

T 2 L(X) such that �i = Tei, i = 1; : : : ;1.

We may de�ne now the main objects of this section: Riesz operators.

De�nition 6.3.5 A closed linear operator A in a Hilbert space X is called Riesz operator in X,

to be denoted A 2 R(X), if

1. �(A) = f�i; i = 1; 2; : : : g, where each �i is a simple eigenvalue of A. The sequence (�i)i2N
has no accumulation points in C .

2. The eigenvectors (�i)i2N form a Riesz basis of X.

Remark 6.3.6 Note that this de�nition di�ers slightly from De�nition 2.3.4 in [15]. Here we

do not allow the existence in C of accumulation points of the spectrum.

A Riesz operator A has the following properties [Theorem 2.3.5][15].

1. D(A) = fx 2 X;
P

1

i=1 j�ij
2
j hx ;  i i j

2 <1g.

2. Ax =
P

1

i=1 �i hx ;  i i�i, x 2 D(A), ( i)i2N given as in (6.16).

3. R(s) : X ! X is compact and is given by

R(s)f = (sIX � A)�1f =

1X
i=1

1

s� �i
h f ;  i i�i; f 2 X: (6.18)

As for Riesz basis, it is easily proved that [15, Exercise 2.21.c]

Lemma 6.3.7 An operator A 2 R(X) i� it is similar to a closed operator Q whose eigenvectors

form an orthogonal basis for X, i.e., there exists a bounded invertible operator T 2 L(X),

T�1 : D(A)! D(Q), such that A = TQT�1.

6.3.2 Approximation of the resolvent operator

Now we shall show how results on spectral approximation of linear operators can be useful for

the uniform approximation of the resolvent of Riesz operators on compact sets K � �(A).

For the sake of clarity in the exposition we shall numerate the eigenvalues of A (remember that A

is Riesz and hence �(A) is a numerable set of eigenvalues). Suppose that some \initial" compact

set K � C is given such that �(A) \K is not empty. Since A 2 R(X), we know that

�(A) \K = f�i 2 �(A); i = 1; : : : ; LKg; where LK <1: (6.19)
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We begin the numeration of �(A) with the eigenvalues of �(A) \ K. Furthermore, we consider

increasing �-neighborhoods of K and numerate the rest of the eigenvalues consecutively as they

\begin" to lie in these neighborhoods. This numerating system, although clearly imperfect, is

enough for our purposes.

Lemma 6.3.8 Suppose that A 2 R(X) and let K � �(A) be a compact set. Denote by RL(s)

the operator given by

RL(s)x := R(s)PL = PLR(s); x 2 X; (6.20)

where PL denotes, for every L 2 N, the spectral projection associated to the �rst L eigenvalues

of A (see Equation (5.48)). Then

RL(s)
n
�!
L(X;X)

R(s); 8 s 2 K;

with uniform convergence in s 2 K.

Proof : Since A 2 R(X), we know that

� LPL
s

�!
X

IX ;

where � L is the corresponding embedding. In view of this, the statement follows easily from

R(s) 2 K(X) and Corollary 6.2.8 with \RN(s) � R(s)" and \(PL)L2N" playing the role of

\(EN)N2N". �

Remark 6.3.9 Note that

PLR(s)f =

LX
i=1

1

s� �i
h f ;  i i�i; f 2 X:

Lemma 6.3.8 is a nice result because it shows a method leading to convergence in norm of

the resolvent operators. In particular, it shows that truncations of the series (6.18) are the

\canonical" candidates for approximations of R(s).

In applications, however, the eigenfunctions and eigenvalues of A, or even its resolvent R(s;A),

are seldom known. Thus, Lemma 6.3.8 is satisfactory only from the theoretical point of view.

We need a more \realistic" approach; for example, the next proposition.

Proposition 6.3.10 Suppose that A 2 R(X) and that an operator sequence (AN )N2N 2 C(X)

is given with the following property: If 
0 � C is a bounded domain such that

�(A) \ 
0 = f�1; : : : ; �mg

then,

1. For N large enough,

�(AN ) \ 
0 = f�
(N)
1 ; : : : ; �(N)

m
g: (6.21)
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2. Each of the eigenvalues �
(N)
i

, i = 1; : : : ;m, is simple and

lim
N!1

j�
(N)
i

� �ij = lim
N!1

k�
(N)
i

� �ikX = lim
N!1

k 
(N)
i

�  ikX = 0; i = 1; : : : ;m:

(6.22)

where, for each i = 1; : : : ;m, �i and �
(N)
i

denote eigenvectors corresponding to �i and �
(N)
i

,

respectively, while  i and  
(N)
i

are biorthogonal with respect to �i and �
(N)
i

, see (6.16).

Let K be a compact subset of �(A) and denote by N(K) a number for which

K � �(AN ); 8N > N(K):

(N(K) is �nite due to (6.21), (6.22)).

Then, for every � > 0, one can choose a bounded domain 
 � C (depending upon �) with the

following properties: its boundary @
 is a recti�able closed simple curve, K � 
, and there exists

N̂(K) > N(K) such that

kR(s;AN) �N
PN
 �R(s)kL(X) < �; 8 s 2 K; N > N̂(K): (6.23)

Here PN
 denotes the eigenprojection (see (5.49))

PN
 =
1

2i�

Z
@


R(s;AN)ds:

and �N
 the embedding of the corresponding sum of eigenspaces into X.

Proof : Indeed, by Lemma 6.3.8, there exists a number L(K) 2 N such that

kR(s)�RL(K)(s)kL(X) < �=2; 8 s 2 K;

where RL(s) is given by (6.20). Let 
 � C be a bounded domain such that @
 is a recti�able

closed simple curve, K � 
, and

�(A) \ 
 = f�1; : : : ; �L(K)g:

See Figure 6.1. For any s 2 
 and N > N(K) we have then

kR(s)�R(s;AN) �N
PN
kL(X) � kR(s)�RL(K)(s)kL(X) + kRL(K)(s)�R(s;AN) �N
PN
kL(X)

� �=2 + kR(s) � 
P
 �R(s;AN) �N
PN
kL(X);

where P
 := PL(K) and � 
 := � L(K), respectively. The proof is done if we are able to prove that

for N large enough

kR(s) � 
P
 �R(s;AN) �N
PN
kL(X) < �=2; 8 s 2 K: (6.24)

By [53, Equation III.6.35], and since the eigenvalues �i, �
(N)
i

, i = 1; : : : ; L(K), are all simple,

one sees, increasing N if necessary, that

R(s) � 
P
 :=

L(K)X
i=1

1

s� �i
P i


;

R(s;AN) �N
PN
 :=

L(K)X
i=1

1

s� �
(N)
i

P i

N
;
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Figure 6.1: Sets K and 
. The crosses represent �(A) \ 
.

where

P i


 := h � ;  i i�i; P i

N
 := h � ;  
(N)
i

i�
(N)
i
; i = 1; : : : ; L(K);

and �, �i,  i and �
(N)
i

, �
(N)
i

,  
(N)
i

, i = 1; : : : ; L(K), are the eigenelements of A and AN , re-

spectively, corresponding to 
. The eigenprojections P i


, P
i

N
 have been explicitly written down

using the corresponding scalar product.

Then with these notations we have

k(R(s) � 
P
 �R(s;AN) �N
PN
) � kL(X) �

L(K)X
i=1

k
1

s� �i
P i


 �
1

s� �
(N)
i

P i

N
kL(X);

(6.25)

for all N > N(K) and every s 2 K. Furthermore, using (6.22), we can prove, for each i =

1; : : : ; L(K), the convergences

P i

N


n

�!
L(X;X)

P i


;

1

s� �
(N)
i

s

�!
X

1

s� �i
; 8 s 2 K;

and, by Proposition 5.1.8, we obtain

1

s� �
(N)
i

P i

N


n

�!
L(X;X)

1

s� �i
P i


; 8 s 2 K; i = 1; : : : ; L(K); (6.26)

uniformly in s 2 K. A straightforward use of (6.26) and (6.25) ends the proof. �

Remark 6.3.11 The resolvent R(s;A) of a Riesz operator is compact. Thus, the embedding

� : D(A)! X is also compact [12, Proposition 2.37] and we may �nd in Proposition 5.3.26 and

Remark 5.3.27 su�cient conditions to be imposed on a discrete sequence (AN )N2N in order to

satisfy the assumptions of Proposition 6.3.10.

Remark 6.3.12 Essentially, what we have done in Proposition 6.3.10 is to approximate in norm

the compact transfer function

G(s) := R(s;A)P
; s 2 �(A):
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Doing this makes sense because, since we have chosen 
 as in Lemma 6.3.8, the functions G(�)

and R(�; A) are very close on K.

Remark 6.3.13 In applications the determination of 
 may be a complicated and costly \trial-

and-error" process.

6.4 Projection Schemes

The aim of this section is to develop approximation schemes able to generate sequences of discrete

operators which satisfy the conditions of Theorem 6.2.1 and Corollary 6.2.7. As main tool we

shall use the results of Chapter 5.

Indeed, we see that Proposition 5.2.3 gives su�cient conditions on the projections for

FN
n

�!
L(U;X)

F

as required in Theorem 6.2.1 and Corollary 6.2.7. Further, Proposition 5.2.5 addresses the strong

convergence

EN

s
�!
Y

E:

On the other hand, the third condition in Theorem 6.2.1 and Corollary 6.2.7, respectively, i.e.,

HN (s)
s

�!
Y

H(s); 8 s 2 K;

R(s;AN)jX
s

�!
X

R(s)jX ; 8 s 2 K;

is more di�cult to handle. The case where R(s) and/or H(s) can be explicitly obtained is

perhaps the only one which is easy to solve. Indeed, if these operators are known, with the help

of suitable sequences of projections and Proposition 5.2.5, we may generate discrete sequences

with the desired properties. Unfortunately, this is rarely the case. Thus, in order to develop a

general approach, we use the results of Chapter 5 related to discrete-regular convergence.

6.4.1 Preliminaries

We begin with some words about notation. Here we shall deal with discrete operators and their

corresponding �nite dimensional versions. So, in order to avoid a \notational over
ow", we shall

denote them with the symbols: AN and AN , DN and DN , EN and EN .

We recall that our underlying framework is

A 2 C(X); D 2 L(U;X); E 2 L(X;Y ) and (4.2):

The problem to be solved is: given a compact set K � �(A), to construct a sequence of discrete

operators (\transfer functions") (GN (s))N2N with the property

GN (s)
n

�!
L(U;Y )

G(s); 8 s 2 K;
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uniformly in s 2 K. Moreover, since we plan to use Theorem 6.2.1, we shall assume that

F := R(s0)D 2 K(U;X) for some s0 2 K;

where by Remark 6.2.2, the point s0 2 �(A) is any point in K. Sometimes, we shall also make

use of the L(X;Y )-valued function

H(s) := ER(s)jX ; s 2 �(A):

Finally we also introduce the linear operator Â de�ned by

Â : D(Â)! X; Âx := Ax; 8x 2 D(Â); (6.27)

where D(Â) is de�ned by

D(Â) := fx 2 D(A) such that Ax 2 Xg: (6.28)

Lemma 6.4.1 The operator Â is closed in X: Â 2 C(X). Furthermore, �(Â) = �(A).

Proof : We must show that the graph �(Â) [53, III.5.2] of Â is closed in X �X. Indeed, let us

suppose that (xN )N2N is a sequence in D(Â) such that

lim
N!1

(xN ; ÂxN ) = (x; y) 2 X �X:

We must prove that (x; y) 2 �(Â) (i.e., x 2 D(Â), y = Âx). The pairs (xN ; ÂxN)N2N are

elements of �(A) for every N 2 N, they form a convergent sequence and A 2 C(X). Thus,

(x; y) 2 �(A). It follows that x 2 D(A) and y = Ax. Using the de�nition of D(Â) and y 2 X,

see (6.28), we conclude that x 2 D(Â) � X.

The second statement can be proved as follows:

1. �(A) � �(Â): Let s 2 �(A). Then, see (6.27), (6.28), the operator

R
0

(s; Â) : X ! X; x 7! (sIX � Â)�1x

is well de�ned for every x 2 X . Moreover, since sIX � Â is closed in X, R
0

(s; Â) 2 C(X)

as well. It follows, by the closed graph theorem [53, Theorem III.5.20], that R
0

(s; Â) is in

L(X). Thus, R(s; Â) = R
0

(s; Â) and s 2 �(Â).

2. �(Â) � �(A): Let s 2 �(Â) and � denote the (continuous) embedding of X into X, see

(4.2). Further, consider the set X
0

:= �X � X. Then the operator

R
0

(s;A) : X
0

! X; x 7! � R(s; Â)x;

is bounded. Moreover, by [53, Extension Principle III.2.2], R
0

(s;A) can be extended to

cl X
0

= X with conservation of the norm. This extension is clearly R(s;A) and it follows

that R(s;A) 2 L(X) and s 2 �(A).

�

Finally, we recall the resolvent identity (6.5)

R(s) = [IX � (s� s0)R(s)]R(s0); s; s0 2 �(A);

which was frequently used in the proof of Theorem 6.2.1.
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6.4.2 Projections and discrete operators

Our immediate goal here is to introduce the sequences of subspaces, projections and discrete

operators which will be used through this section.

Let us suppose that D(Â), X , Y , U are separable Banach spaces and consider sequences of �nite

dimensional subspaces

(UN )N2N; (ZN )N2N; (XN )N2N; (YN )N2N

of

U; D(Â); X; Y;

respectively. We assume that dimX = 1 and that dimZN and dimXN grow as N ! 1; we

do not exclude, however, the possibility that U and/or Y are �nite dimensional, in which case

the sequences of subspaces (UN )N2N and/or (YN)N2N are taken stationary and equal to U and

Y , respectively. The "canonical" choice for (XN )N2N will be XN = AZN , but other choices are

also possible.

Usually the subspaces UN , ZN , XN and YN will be de�ned via sequences of projections:

�Z
N
: D(Â)! ZN ; �X

N
: X ! XN

�U
N
: U ! UN ; �Y

N
: Y ! YN :

(6.29)

We shall also need the natural embeddings of the �nite dimensional subspaces into the corre-

sponding spaces, i.e.,

� Z
N
: ZN ! D(Â); �X

N
: XN ! X;

� U
N
: UN ! U; � Y

N
: YN ! Y: (6.30)

Using all these projections and embeddings we may de�ne sequences of discrete operators

(FN )N2N; (PN )N2N; (AN)N2N; (HN (s))N2N; (EN )N2N

by the formulas

FN : U ! X; FNu := �X
N
FN�

U

N
u; u 2 U;

PN : D(Â) ! X; PNz := �X
N
PN�

Z

N
x; z 2 D(Â);

AN : D(Â) ! X; ANz := �X
N
AN�

Z

N
z; z 2 D(Â);

HN (s) : X ! Y; HN (s)x := � Y
N
HN (s)�

X

N
x; x 2 X;

EN : X ! Y; ENx := � Y
N
EN�

X

N
x; x 2 X;

(6.31)

where the �nite dimensional operators are just

FN : UN ! XN ; FN := �X
N
F � U

N
; N 2 N;

PN : ZN ! XN ; PN := �X
N
�̂ � Z

N
; N 2 N;

AN : ZN ! XN ; AN := �X
N
Â � Z

N
; N 2 N;

HN (s) : XN ! YN ; HN (s) := �Y
N
H(s) �X

N
; N 2 N;

EN : XN ! YN ; EN := �Y
N
E �X

N
; N 2 N;

(6.32)
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In the formulas above we have used the continuous embedding

�̂ : D(Â)! X: (6.33)

6.4.3 Projection framework

Our plan now is to show how and under which conditions the discrete operators de�ned in (6.31)

satisfy the conditions of Theorem 6.2.1 and/or Corollary 6.2.7.

In the following we often use the expression \e-computable operator" to mean that the corre-

sponding matrix expressions of the operators (6.32) can be explicitly calculated. In general, at

least the operators Â, D and E must be of this sort. However, R(s) and H(s) could fail to be

e-computable. In such cases, one must �nd a way to construct the sequence (HN (s))N2N with

the information available. Since we shall not be able to treat all the possible cases, we shall

study in detail only some of them.

Case 1: H(�) is e-computable.

This is a straightforward case: one only needs to impose some \natural" conditions on the

projections.

Proposition 6.4.2 Let A 2 C(X), D 2 L(U;X), E 2 L(X;Y ) and suppose that (4.2) holds.

Further, let K � �(A) be a given compact set and suppose that R(s0)D 2 K(U;X) for some

s0 2 K and that both F = R(s0)D and H(s) = ER(s)jX, s 2 K, are e-computable. Finally, let

us assume that sequences of projections and embeddings are given such that

�U
�

N
� U

�

N

s
�!
U

IU�; �X
N
�X
N

s
�!
X

IX ; � Y
N
�Y
N

s
�!
Y

IY : (6.34)

Then, the sequences (FN )N2N, (HN (s))N2N, s 2 K, and (EN )N2N de�ned in (6.31) generate a

discrete operator sequence

GN (s) = ENFN � (s� s0)HN (s)FN = � Y
N
GN(s)�

U

N
; s 2 K; N 2 N;

where

GN (s)N := ENFN � (s� s0)HN (s)FN ; N 2 N; (6.35)

such that

GN (s)
n

�!
L(U;Y )

G(s); 8 s 2 K;

uniformly in s 2 K.

Proof : We shall use Theorem 6.2.1. For this we must check its Conditions 2, 3, 4 and Equation

(6.7). Indeed,

1. FN
n

�!
L(U;X)

F : follows by Proposition 5.2.3.
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2. HN (s)
s

�!
Y

H(s), 8 s 2 K: follows by Proposition 5.2.5.

3. EN

s

�!
Y

E: follows by Proposition 5.2.5 as well.

In order to prove Equation (6.7) we note that for any s1; s2 2 K we have

HN (s1)�HN (s2) = � Y
N
�Y
N
E[R(s1)jX �R(s2)jX ] �

X

N
�X
N

= �(s1 � s2) �
Y

N
�Y
N
ER(s1)jXR(s2)jX �

X

N
�X
N
:

Since, by assumptions, both ( � Y
N
�Y
N
)N2N, ( �

X

N
�X
N
)N2N are strongly convergent sequences, they

are uniformly bounded. Moreover, E 2 L(X;Y ) and since K � �(A) = �(Â) is compact, there

exists M0 <1 such that kR(s)kL(X) < M0 for all s 2 K. Thus, if

M := maxf sup
N2N

k � Y
N
�Y
N
kL(Y ); sup

N2N

k �X
N
�X
N
kL(X); M0; kEkL(X;Y )g:

we obtain

kHN(s1)�HN (s2)kL(X;Y )g �M5
js1 � s2j:

�

Figure 6.2 illustrates the interrelation between subspaces and operators. Note that the diagram

is not commutative.

�

�

? ?

�

�

?

U

UNXNYN

Y X

�Y
N

�X
N

�U
N

F

FN
HN (s)

EN

E

H(s)

Figure 6.2: Interrelation between subspaces and operators when H(�) is e-computable.

Case 2: H(�) is not e-computable

This a more di�cult and interesting case. The general approach is to consider the regular

convergence

AN

r

�!
L(D(Â);X)

A

in L(D(Â); X), where (AN )N2N is de�ned as in (6.31). This makes sense because, since the

operator Â is closed in X , see Lemma 6.4.1, we may provide its domain D(Â) with the graph

norm

kxk
D(Â) =

�
kÂxk2

X
+ kxk2

X

�1=2
; x 2 D(Â);
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and so D(Â) becomes a Banach space. Note, however, that also other norms may meet the

requirement of converting D(Â) into a Banach space. The (continuous) embedding

�̂ : D(Â)! X

and the sequence (PN )N2N of discrete operators

PN = �X
N
PN�

Z

N
; PN := �X

N
�̂ � Z

N
; N 2 N;

introduced already in (6.31), (6.32), will play an important role in our approach. At last, recall

that, by Lemma 6.4.1, �(A) = �(Â).

Proposition 6.4.3 Let A 2 C(X), D 2 L(U;X), E 2 L(X;Y ) and suppose that (4.2) holds.

Further, let K � �(A) be a given compact set such that 0 2 K and suppose that

F := R(0; A)D 2 K(U;X); �̂ 2 K(D(Â); X): (6.36)

Furthermore, let us assume that

�X
N
�X
N

s
�!
X

IX; �U
�

N
� U

�

N

s
�!
U

IU�; � Y
N
�Y
N

s
�!
Y

IY ;

and de�ne

�Z
N
: D(Â)! ZN ; �Z

N
= Â�1 �X

N
�X
N
Â; N 2 N:

Then, the sequences (FN )N2N, (PN )N2N, (AN )N2N, (EN )N2N de�ned in (6.31) generate discrete

operator sequences

HN (s) := �X
N
HN (s)�

X

N
; s 2 �(AN ); N 2 N;

GN (s) := � Y
N
GN(s)�

U

N
; s 2 �(AN ); N 2 N;

where

SN (s) := (sPN �AN )
�1; N 2 N; (6.37)

HN (s) := ENPNSN (s); N 2 N; (6.38)

GN(s)N := ENFN � sHN (s)FN ; N 2 N; (6.39)

such that

GN (s)
n

�!
L(U;Y )

G(s); 8 s 2 K;

uniformly in s 2 K.

Proof : As in the proof of Proposition 6.4.2 we obtain immediately

FN
n

�!
L(U;X)

F; EN

s

�!
Y

E: (6.40)

Thus, in order to use Theorem 6.2.1, only the following statements remains to be proved:

HN(s)
s

�!
Y

H(s); 8 s 2 K; (6.41)
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and the existence of an M > 0 such that

kHN (s1)�HN (s2)kL(X;Y ) < M js1 � s2j; 8 s1; s2 2 K; 8N 2 N: (6.42)

Let us prove them. We have 0 2 K � �(A). Thus, by Lemma 6.4.1, 0 2 �(Â). It follows that

Â�1
2 L(X;D(Â)) and, due to (6.36), we conclude that

s �̂ � Â 2 F0(D(Â); X); 8 s 2 K:

Now, we apply Propositions 5.2.5 and 5.3.17 and obtain

PN
s

�!
X

�̂ ; (6.43)

sPN �AN

r
�!

L(D(Â);X)

s �̂ � Â; 8 s 2 �(A): (6.44)

As in the proof of Proposition 5.3.17, we can show that

� Z
N
�Z
N

s

�!
D(Â)

I
D(Â):

Moreover, since K � �(A) is compact, it is a simple matter to show that the operator functions

TN : K ! F0(ZN ; XN ); s 7! sPN �AN ; N 2 N;

T : K ! F0(D(Â); X); s 7! s �̂ � Â

satisfy the conditions of Proposition 5.3.10. Thus, according to this proposition, there exists a

N0 = N(K) such that the operators sPN � AN are invertible for all s 2 K and all N > N0.

Finally, by Proposition 5.3.8 and Lemma 5.1.4, we conclude that

�X
N
PNSN�

X

N

s

�!
X

�̂ (s �̂ � Â)�1 = R(s; Â); 8 s 2 �(A):

The last relationship, together with EN

s

�!
Y

E and (again) Lemma 5.1.4, implies (6.41).

It remains to show Equation (6.42). For this one observes that for SN (s) we have an identity

similar to (6.5), i.e., for every s1; s2 2 K

SN (s2) � SN (s1) = �SN (s1)PNSN (s2)(s2 � s1); (6.45)

which is easily obtained from the equality

�PN(s2 � s1) = (s1PN �AN )� (s2PN �AN ):

Thus,

HN (s1)�HN (s2) = �ENPNSN (s1)PNSN (s2)(s1 � s2); 8N > N0: (6.46)

Clearly, the uniformly boundedness of the operator sequences in the RHS of (6.46) would prove

(6.42). Let us show that this is case. Indeed, it follows from (6.40) and (6.43) that the sequences

(EN )N2N and (PN )N2N are uniformly bounded. On the other hand, we obtain from Proposition

5.3.10 (see the inequality in (5.18)) that

sup
N>N0

max
s2K

kSN (s)kL(XN ;ZN ) <1:

These arguments, together with (6.46), ensure that Equation (6.42) holds. The proof is complete.

�
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?? ?? ?

� - ��

� - ��

D(Â) XX UY F�̂ ÂE

FNANEN PN

�U
N

�X
N

�Z
N

�X
N

�Y
N

YN XN ZN XN UN

Figure 6.3: Interrelation between subspaces and operators when H(�) is not e-computable.

The situation is depicted in Figure 6.3.

Remark 6.4.4 The calculation of the matrices (FN )N2N can be simpli�ed if D 2 K(U;X). In

that case one generates the sequence of discrete operators (DN )N2N given by

DN := �X
N
D�U

N
; DN := �X

N
D � U

N
; N 2 N:

Then DN

n
�!
L(U;X)

D by Proposition 5.2.3 and it is easy to see, using Lemma 5.1.6, that the \new"

(FN )N2N is such that

FN := PNSN (s0)DN

n

�!
L(U;X)

R(s0; Â)D =: F:

Moreover, using the identity (6.45), we see that the formulas (6.37) for (GN (�))N2N take a simpler

form, namely,

GN (s) = ENPNSN (s)DN ; 8 s 2 K: (6.47)

Remark 6.4.5 Let us suppose, for simplicity, that D 2 K(U;X). If the sequence (PN )N2N, see

(6.31), is such that the inverses P�1
N

exist for N large enough then, one has the following identity

PNSN (s) = PN (sPN �AN )
�1

=
�
sIXN

�ANP
�1
N

��1
:

Let us introduce a new discrete sequence

ÂN := ANP
�1
N
; N 2 N:

It is obvious now that (see (6.47))

GN(s) = ENR(s; ÂN )DN ; 8 s 2 K; 8N 2 N:

and, by Proposition 6.4.3, that

GN (s)
n

�!
L(U;Y )

G(s); 8 s 2 K;
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uniformly in s. Thus, the triplets (ÂN ;DN ; EN )N2N solve Problem 6.1.1 and consequently, if �

is a regular value of kGk (De�nition A.0.13), their associated spectral value sets converge to the

spectral value sets of the given in�nite dimensional operators (A;D;E) :

�(ÂN ;DN ; EN ; �) \K �!
N!1

�(A;D;E; �) \K:

This is a nice result. Note, however, that the inverses (P�1
N
)N2N may not exist and still the

approximation method may work. In the following chapter we will see an example of this sort.

Case 3: Approximation by means of \nice" sequences

The norm in D(Â) used in the previous section can be restrictive and uncomfortable in applica-

tions. Thus, it is interesting to know that, under certain circumstances, the \di�cult" regular

convergence in L(D(Â); X) can be substituted by the \easier" regular convergence in L(X). Of

course, there is a price to pay: one must impose new conditions on A. A description of this

possibility is the aim of this section.

The framework of projections and discrete sequences to be used here is essentially the same

as before, see (6.29), (6.30), (6.31), (6.32). There is only one but important exception which

makes the whole di�erence: the sequences of projections (�Z
N
)N2N and embeddings ( � Z

N
)N2N are

rede�ned to be

�Z
N
: X ! ZN ; � Z

N
: ZN ! X; N 2 N: (6.48)

The subspaces (ZN)N2N are in �̂D(Â), see Equation (6.33) for the de�nition of �̂ . Compare also

with (6.29) and (6.30) and note that the Banach space D(Â) does not appear now. Furthermore,

the sequences (PN )N2N and (AN )N2N of (6.31) are not de�ned. Their role is played by other

discrete sequences which will be introduced immediately.

First, by means of (6.48) and (6.29), we de�ne the operators

PN := �X
N
PN�

Z

N
; PN := �X

N
jZN : N 2 N; (6.49)

Note that, in some sense, they are similar to the operators (PN )N2N of the previous case. Fur-

thermore, in Chapter 5 we showed that if (PN )N2N 2 N (De�nition 5.3.11) then the sequence

(QN )N2N; QN := P
�1
N
�X
N
: X ! ZN ; N 2 N;

consists, for each N 2 N, of projections of X into ZN . Moreover, if the convergences

� Z
N
�Z
N

s

�!
X

IX; �X
N
�X
N

s

�!
X

IX;

take place then

� Z
N
QN

s
�!
X

IX :

Note that these convergences are meant in the norm of X and not in the norm of the Banach

space D(Â).
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Due to the property of \niceness", the inverses of (PN )N2N, de�ned in (6.49), form a uniformly

bounded sequence. Thus, the following sequence is well de�ned:

AN : X ! X; ANx := �X
N
AN�

X

N
x; x 2 X;

where

AN : XN ! XN ; AN := �X
N
ÂP�1

N
�X
N
; N 2 N:

Using these notations we can state the following proposition.

Proposition 6.4.6 Let A 2 C(X), D 2 L(U;X), E 2 L(X;Y ) and suppose that (4.2) holds.

Further, let K � �(A) be a given compact set and suppose that F := R(s0)D 2 K(U;X) for

some s0 2 K. Moreover, suppose that Â (6.27) is of one of the forms

1. Â = IX � S, S 2 K(X).

2. Â = (IX � S)R�1, S 2 K(X), 1 2 �(S), R 2 K(X), R�1 exists, but is unbounded.

Finally, suppose that we are given sequences of projections and embeddings such that

� Z
N
�Z
N

s
�!
X

IX ; �X
N
�X
N

s
�!
X

IX ;

�U
�

N
� U

�

N

s

�!
U

IU�; � Y
N
�Y
N

s

�!
Y

IY ;

(PN )N2N 2 N :

Then, the sequences of discrete operators (AN)N2N, (FN )N2N, (EN )N2N de�ned above generate

discrete operator sequences

HN (s) := �X
N
HN (s)�

X

N
; s 2 �(AN ); N 2 N;

GN (s) := � Y
N
GN(s)�

U

N
; s 2 �(AN ); N 2 N;

where

SN (s) := (sIXN
�AN )

�1; N 2 N;

HN(s) := ENSN (s); N 2 N;

GN (s)N := ENFN � (s� s0)HN (s)FN ; N 2 N;

such that

GN (s)
n
�!
L(U;Y )

G(s); 8 s 2 K;

uniformly in s 2 K.

The proof of this proposition is similar to the proof of Proposition 6.4.3. The only di�erence is

that the regular convergence

sIX � AN

r
�!
L(X)

sIX � Â

is proved by means of Proposition 5.3.14 or, with certain care, by Remark 5.3.16. We omit the

details. The operators and spaces are represented in Figure 6.4.
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?

� - �

?

??

� - �

?

UY X X FE Â

UNXN XNYN
FNEN AN

�U
N

�Y
N

�X
N

�Z
N

PN

ZN

Figure 6.4: Interrelation between subspaces and operators when PN 2 N .

Remark 6.4.7 Results somewhat similar to Proposition (6.4.6) have been independently ob-

tained in [46] using the concept of quasitriangular convergence mentioned in Remark 5.3.15.

Remark 6.4.8 The nice point in this case is that we always have three operator sequences

(AN )N2N, (FN)N2N and (EN )N2N which solves Problem 6.1.1 and, consequently, if � is regular it

holds that

�(AN ;FN ; EN ; �) \K �!
N!1

�(A;D;E; �) \K (6.50)

in the sense of the Hausdor� metric.

6.4.4 Remarks on the computation of �nite dimensional operators

In applications the subspaces UN , ZN , XN and YN will usually be de�ned via some bases. We

shall show a standard method which may help in obtaining the necessary sequences of projections.

As illustration, consider, for each N 2 N, bases in ZN and XN

z
(N)
i

2 ZN ; x
(N)
i

2 XN ; i = 1; : : : ; N; N 2 N

Further, consider the dual bases in Z�
N
and X�

N
, i.e., the elements of the dual spaces Z�

N
and

X�
N
, respectively, such that

h z
(N)
i

; z
(N)�
j

i = �ij hx
(N)
i

; x
(N)�
j

i = �ij

i = 1; : : : ; N ; j = 1; : : : ; N:

The linear functionals

z
(N)�
j

: ZN ! C ; x
(N)�
j

: XN ! C ; j = 1; : : : ; N

can be extended [1, pp 344-345] with conservation of the norm to the whole D(Â) and X,

respectively. Using these notations, we may de�ne projections

�Z
N
: D(Â)! ZN ; �X

N
: X ! XN
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by the expressions

�Z
N
z =

NX
i=1

h z ; z
(N)�
i

i z
(N)
i

; �X
N
x =

NX
i=1

hx ; x
(N)�
i

ix
(N)
i
:

The same procedure is used for generating the corresponding projections

�U
N
: U ! UN ; �Y

N
: Y ! YN :

Now, the corresponding matrices of (6.32) can be calculated as follows

FN := (fN
ij
) = ( hFu

(N)
j

; x
(N)�
i

i );

PN := (pN
ij
) = ( h z

(N)
j

; x
(N)�
i

i );

AN := (aN
ij
) = ( h Âz

(N)
j

; x
(N)�
i

i );

HN (s) := (hN
ij
) = ( hH(s)x

(N)
j

; y
(N)�
i

i );

EN := (eN
ij
) = ( hEx

(N)
j

; y
(N)�
i

i ):

(6.51)

In words: one takes each element of the basis, applies the desired operator and project the

resulting vector into the corresponding �nite dimensional space.

Remark 6.4.9 Note that in the formulas (6.51), the dual basis (z
(N)�
i

)N2N was not used. This

means that, for the calculations, there is not need in constructing them explicitly. The same

holds for (u
(N)�
i

)N2N

6.5 Summary

In this chapter the results obtained in Chapter 5 have been used in order to prove theorems

leading to the approximation in norm of transfer functions of in�nite dimensional systems. It

has also been shown that this convergence is uniform in compact subsets of the resolvent set.

Furthermore, the approximation results have been specialised to the case of Riesz operators,

where we have shown that the norm of their resolvent operator can be approximated well enough

as to permit the calculation of pseudospectrum (unstructured spectral value sets). Finally, we

applied the approximation results to the particular case of discrete operators and showed how

calculations should be carried out.



Chapter 7

Applications

The aim of this chapter is to illustrate with some examples how the calculation of spectral

value sets for operators in Banach spaces can be carried out. For this, we will make use of

the main results of the previous chapters: the results on the relationship between level curves

of the norm of the transfer function and the spectral value sets, basically Theorem 4.2.11, the

approximation schemes of Chapter 5, for example Proposition 6.4.3, and, last but not least, the

SH algorithm developed in Chapter 3. Two examples will be considered: delay equations and

the Orr-Sommerfeld operator.

7.1 Delay operators

One usual assumption in the mathematical description of a causal physical process is that the

behavior of the process depends only on the present state of the system. However, there exist

situations where this assumption is not satis�ed. In those cases one is forced to take into account

information about the past of the system as well and this leads to the consideration of delay

di�erential equations, see, for example [17] for an extensive treatment of this topic.

As for the usual situation, robustness and stability are important issues which should be inves-

tigated. Spectral value sets can be useful tools in this context and the aim of this section is to

develop a suitable framework which enable these investigations. We proceed as follows: �rst,

in the preliminaries, we introduce the necessary mathematical objects, that is, we select a state

space description for the delay di�erential equations. Furthermore, since this state space descrip-

tion is in�nite dimensional, we show how the approximation results of the previous chapters can

be applied here. Finally, we illustrate the obtained results with one example.

7.1.1 Preliminaries

Let us consider the delay di�erential equation

_z(t) = Lzt :=

kLX
i=1

Liz(t� hi) +

Z 0

�h

L0(�)z(t + �)d�; t > 0; (7.1)

zt(�) := z(t + �); � 2 [�h; 0]; (7.2)

where

101
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z(0) := x0 2 C
n ;

z(�) := x1(�) a.e. on [�h; 0); x1 2 L2([�h; 0); C n)
(7.3)

and h > 0 is �xed, 0 = h1 < � � � < hkL = h, Li 2 C
n�n , i = 1; : : : ; kL, and L0 2 L

2([�h; 0]; C n�n).

It is well known that for every initial condition of the form (7.3) there exists a unique function

z(�) on [0;1) that is absolutely continuous and satis�es (7.1) almost everywhere [15, Section

2.4], [47].

Suppose now that the operator L is uncertain and that this uncertainty can be adequately

modelled by perturbations of (7.1) of the form

L; L+D0�M; (7.4)

where D0 2 C
n�l is a �xed matrix, � 2 C

l�q , k�k < �, with � < 1 given apriori and M is a

linear operator from C([�h; 0]; C n) into C q of a form analogous to L, i.e.,

Mzt :=

kMX
i

Miz(t � ri) +

Z 0

�h

M0(�)z(t + �)d�; zt 2 C([�h; 0]; C
n);

where 0 = r1 < � � � < rkM = h, Mi 2 C
q�n, i = 1; : : : ; kM , andM0 2 L

2([�h; 0]; C q�n). Note that

M 2 L(C([�h; 0]; C n); C q ) [71]. It is readily seen that these structures permit the application of

a wide range of perturbations to the operator L.

Example Suppose L reduces to a sum of a �nite number of points delays, i.e.,

Lzt :=

kX
i=1

Liz(t � hi);

If the matrices Li are uncertain, it is natural to consider perturbations of the form D0 = In and

Mzt :=

kX
i=1

Miz(t� hi);

with given matrices Mi 2 C
n�n, i = 1; : : : ; k. By choosing di�erent Mi one can specify the type

and size of the uncertainty which is allowed for each matrix Li. �

We explain now how this problem can be handled within the framework developed in Chapter

4. First of all, we need a state space description of System (7.1). One approach is to use (see

(7.3))

x(t) = (z(t); zt) 2 X := C
n
� L2([�h; 0]; C n):

The evolution in time of x(t) de�nes the strongly continuous semigroup S(t) of bounded linear

operators in X de�ned by [71]

S(t)x = (z(t); zt) 2 X; x 2 X; t � 0; (7.5)
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where z(t), t � 0, is the unique solution of (7.1) with initial condition (7.3). The in�nitesimal

generator A of S(t) is given by

Ax :=

�
Lx1
d

dt
x1

�
;

D(A) := fx := (x0; x1) 2 X jx1 2 H1([�h; 0]; C n); x0 = x1(0)g:

(7.6)

Obviously, the behavior of a solution z(�) to (7.1) is determined by the properties of the operator

A in (7.6).

As usual, we shall focus our attention on the spectrum of A. In particular, we are interested

in its robustness with respect to perturbations D and E with clear interpretation in terms

of the original data (7.1). Some general properties of �(A) are the following: it is discrete,

the multiplicity of each eigenvalue is �nite and for every � 2 R, there are only �nitely many

elements of �(A) in C+
�
:= fs 2 C ; Re s > �g. Moreover, the spectrum of A has the following

representation

�(A) = f� 2 C ; det(F(s)) = 0g;

where F(s) : C ! C
n�n denotes the matrix function

F(s) := sIn � L(es�In); (7.7)

and In denotes the n� n identity matrix [47]. Furthermore, the resolvent

R(s;A) : X ! X

is a compact operator and is given by [47]

R(s)(�0; �1) = x

where x = (x0; x1) is

x0 = F (s)�1
�
�0 + L

�Z 0

�

es(���)�1(�)d�

��

x1(�) = es�x0 +

Z 0

�

es(���)�1(�)d�; � 2 [�h; 0]:

We now introduce perturbation structures by means of suitable operators D and E. We choose

them so that they contain the same information as the perturbations given in (7.4). For this,

we de�ne U = C
l , Y = C

q , and

X := fx = (x0; x1) 2 C
n
� C([�h; 0]; C n)g: (7.8)

The operators D : U ! X and E : X ! Y are given by

D : U ! X; Du :=

�
D0u

0

�
2 X;

E : X ! Y ; Ex := Mx1 2 Y:

(7.9)
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Our aim is to study the mobility of �(A) under perturbations with the structures (7.9). Namely,

we consider �(A�) with A� given by

A� := A+D�E: (7.10)

Note that A� is the in�nitesimal generator of the semigroup corresponding to the perturbed

operator (7.4).

Following the \spirit" of the previous chapter we see that the conditions

1. D(A) � X � X with continuous dense injections,

2. D : U ! X is bounded,

3. E 2 L(X;X),

hold. Thus, Theorem 4.2.11 can be applied and we obtain that, in order to calculate the sets

�(A;D;E; �), we must look for those regions of the complex plane where the corresponding

transfer function

G(s) := ER(s)D; s 2 �(A);

has the property kG(s)kL(U;Y ) > ��1. In this case the transfer function G takes a simple form

which, if only point delays in the operator M are allowed, looks as follows

G(s) :=

 
kMX
i=1

Mie
s�ri

!
F(s)�1D0: s 2 �(A): (7.11)

We stress that in this situation considering unstructured perturbations of the nominal operator

(7.6) makes no sense. In this situation, it is only meaningful to consider perturbations with clear

interpretations in terms of System (7.1).

7.1.2 Approximation in the case of delay system

The problem on the approximation of delay operators has been matter of extensive investigations,

see for example [71], [47], [48] and references therein. Our results are, essentially, extensions

of those obtained by Ito and Kappel in [48]. Nevertheless, there are di�erences between our

approach and the others mentioned. The aim in those papers was to approximate the semigroup

S(t) (introduced in (7.5)) uniformly over �nite intervals of time. Furthermore, the authors

considered, if any, only output operators of �nite rank, i.e.,

E : X ! C
p ; Ex := E0x

0; E0 2 C
q�n; x = (x0; x1) 2 X:

Although our investigations are related to those papers, they pursue other goals. First, we have

to deal with a more general class of output operators E, namely E 2 L(X;Y ) of the form (7.9).

Secondly, we are not interested in the approximation of the semigroup S(t), but in a scheme able

to approximate the transfer function G in norm and uniformly in s in any compact K � �(A),

see Problem 6.1.1.

In [47] the authors used with satisfactory performances an approximation scheme based on

projections of D(A) onto subspaces formed by the span of linear splines and projections of X
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onto the span of step functions. Later, in [48], they showed that schemes based on other piecewise

polynomials work as well.

We use a similar approach here but with one di�erence: following the approach of Subsection

6, we shall not approximate the operators A, D and E in X, but in X. Our approximation

scheme will make use of linear splines in X, while quadratic splines are going to be utilised in

D(Â), where D(Â) is the subspace of D(A) de�ned in (6.28). Note that in this case (see (7.6)

and (7.8)) D(Â) is just

D(Â) = fx = (x0; x1) 2 D(A) jx
1
2 C1([�h; 0]; C n)g:

Note also that D : U ! X is compact. Thus, we shall apply Proposition 6.4.3 together with

Remark 6.4.4 in order to achieve the desired results. We shall use a projection scheme which

�ts in the framework of Figure 6.4.

Subspaces and projections

The projection scheme to be described here is based on the theory of B-splines. The monograph

[72] is the main reference.

For a given N 2 N, we introduce a uniform mesh [72] with respect to the interval [�h; 0], i.e.,

tN
k
:= �kr; k = 0; : : : ; N; r :=

h

N
: (7.12)

Let us consider N + 1 linear splines

fe
(N)

k
g
N+1
k=1 ; e

(N)

k
(t) := N2(�

t

r
� k + 1); t 2 [�h; 0];

where

N2(�) :=

8<
:

� for 0 � � � 1;

2� � for 1 � � � 2;

0 elsewhere

and N + 2 quadratic splines given by

fb
(N)

k
g
N+1
k=0 ; b

(N)

k
(t) := 0:5 �N3(�

t

r
� k + 2); t 2 [�h; 0];

where

N3(�) :=

8>><
>>:

�2 for 0 � � � 1

�2�2 + 6� � 3 for 1 � � � 2

�2 � 6� + 9 for 2 � � � 3

0 elsewhere

They are represented in Figure 7.1.2. It is well known that fe
(N)

k
g
N+1
k=1 and fb

(N)

k
g
N+1
k=0 are bases

in the spaces of linear and quadratic splines with simple knots [72, Example 4.3] corresponding

to the uniform mesh (7.12). This can be seen, for example, from the fact that these spaces
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Linear splines for N=6 and h=−1
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Quadratic splines for N=5 and h=−1

Figure 7.1: Bases of linear and quadratic splines for N = 6 and N = 5, respectively.

have dimension N + 1 and N + 2, respectively, [72, Theorem 4.4] and the linear independence

of fe
(N)

k
g
N+1
k=1 and fb

(N)

k
g
N+1
k=0 .

Now, following [47], one introduces

Z1
N
� C1([�h; 0]; C n); X1

N
� C([�h; 0]; C n);

which are the spaces spanned by the columns of

[b
(N)
0 In; b

(N)
1 In; : : : ; b

(N)

N+1In] and [e
(N)
1 In; e

(N)
2 In; : : : ; e

(N)

N+1In];

respectively. Furthermore, as in [47], we introduce

ZN := Z0
N
� Z1

N
= QZ1

N
� D(Â);

XN := C
n
�X1

N
� X;

where Q denotes the operation f ! (f(0); f). It can be easily proved that the columns of

fB
(N)
i
g
N+1
i=0 :=

h
Q(b

(N)
0 In); Q(b

(N)
1 In); : : : ; Q(b

(N)

N+1In)
i
;

fE
(N)
i
g
N+1
i=0 :=

��
In
0

�
;

�
0n

e
(N)
1 In

�
; : : : ;

�
0n

e
(N)

N+1In

��

are bases in ZN and XN , respectively. These spaces have dimension n(N +2). See [71] and [48]

for similar formulae.

Remark 7.1.1 The matrix In above accounts for the dimension n present in the state x, see

(7.5): one uses N + 2 splines for the approximation of each of the n \coordinates" of x.
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A dual basis ff
(N)
i
g
N+1
i=0 with respect to the basis in XN given by the columns of fE

(N)
i
g
N+1
i=0 is

given by the linear \functionals" [72, Example 4.40]

f
(N)
i

x =

�
(x0)T for i = 0;

(x1(tN
i�1))

T for i = 1; : : : ; N + 1;

for every x = (x0; x1) 2 X. Note that f
(N)
i

x 2 C
1�n and that the relationship

f
(N)
i

E
(N)
j

= �ijIn; i; j = 0; : : : ; N + 1;

holds in a trivial way.

Having de�ned these bases, we may introduce projections

�X
N
: X ! XN ; N 2 N;

de�ned by

�X
N
x :=

N+1X
i=0

f
(N)
i

(x)E
(N)
i

; 8x 2 X: (7.13)

The fact that

�X
N
�X
N

s
�!
X

IX

is implied by [72, Lemma 6.59, Corollary 6.21]. Further, let us assume that 0 2 �(A). Then, by

the de�nitions of the spaces ZN , XN and of the operator Â we observe that

XN = ÂZN � X; 8N 2 N;

and all this means that

�Z
N
:= Â�1 �X

N
�X
N
Â; N 2 N; (7.14)

is a projection of D(Â) onto ZN for every N 2 N. From the proof of Theorem 5.3.17, we know

that

� Z
N
�Z
N

s

�!
D(Â)

I
D(Â):

In this case the sequences of spaces (UN )N2N and (YN )N2N are chosen stationary and equal to U

and Y , respectively. Hence, the projections �U
N
, �U

�

N
and �Y

N
are just the identity matrices in C l

and C q , respectively, and the strong convergences

� U
N
�U
N

s

�!
U

IU ; �U
�

N
� U

�

N

s

�!
U�

IU�; � Y
N
�Y
N

s

�!
Y

IY (7.15)

hold trivially.
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Discrete operators

Above, as in [48], we have assumed that 0 2 �(A). Further, the system of projections (7.13),

(7.14), (7.15) �t into the projection framework of Case 2 in Section 6.4.3. Thus, by simple

inspection we see that the conditions of Proposition 6.4.3 hold in this case and we conclude that

the projections (7.13), (7.14) and (7.15) generate discrete operators with the necessary properties

for the solution of Problem 6.1.1. Furthermore, an additional simpli�cation is given by the fact

that D 2 K(U;X), because we may use the formulas for (GN (s))N2N displayed in Remark 6.4.4,

Equation (6.47). The description of the approximation method is complete with

Proposition 7.1.2 Consider the following sequences of discrete operators, where the notation

d := n(N + 2) will be used.

1. PN : D(Â) ! X, PN := �X
N
PN�

Z

N
, PN := �X

N
�̂ � Z

N
, N 2 N, where �̂ : D(Â) ! X is the

corresponding embedding. For each N 2 N, the sequence (PN )N2N, PN : ZN ! XN , has

matrix representation with respect to the bases fB
(N)
i
g
N+1
i=0 and fE

(N)
i
g
N+1
i=0 given by

PN =

0
BBBBBB@

0:5 0:5 0 : : : : : : : : :

0:5 0:5 0 : : : : : : : : :

0 0:5 0:5 0 : : : : : :

: : : : : : : : : : : : : : : : : :

: : : : : : : : : 0:5 0:5 0

: : : : : : : : : 0 0:5 0:5

1
CCCCCCA

 In 2 C

d�d :

2. AN : D(Â) ! X, AN := �X
N
AN�

Z

N
, AN := �X

N
Â � Z

N
, N 2 N, where for each N 2 N, the

sequence (AN )N2N, AN : ZN ! XN , has matrix representation with respect to the bases

fB
(N)
i
g
N+1
i=0 and fE

(N)
i
g
N+1
i=0 given by

AN :=

0
BBBBBB@

A
0
N

A
1
N

: : : : : : : : : A
N+1
N

r�1 �r�1 0 : : : : : : : : :

0 r�1 �r�1 0 : : : : : :

: : : : : : : : : : : : : : : : : :

: : : : : : : : : r�1 �r�1 0

: : : : : : : : : 0 r�1 �r�1

1
CCCCCCA

 In 2 C

d�d ;

A
i

N
= L(bN

i
); i = 0; : : : ; N + 1:

3. DN : U ! X, DN := �X
N
DN�

U

N
, D := �X

N
D � U

N
, N 2 N, where for each N 2 N, the

sequence (DN )N2N, DN : UN ! XN has matrix representation

DN :=

0
BBB@
D0

0n
...

0n

1
CCCA 2 C

d�l :
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4. EN : X ! Y , EN := � Y
N
EN�

X

N
, EN := �Y

N
E �X

N
, N 2 N, where for each N 2 N, the

sequence (EN )N2N, EN : XN ! YN has matrix representation given by

EN :=
�
E
0
N
; : : : ; E

N+1
N

�
2 C

q�d

E
i

N
=M(eN

i
); i = 0; : : : ; N + 1:

Then, the sequence of discrete operators (GN (s))N2N, s 2 �(A), given by

GN (s) := � Y
N
GN(s)�

U

N
; 8 s 2 �(A); N 2 N;

GN (s) := ENPN (sPN �AN )
�1
DN ; 8 s 2 �(A); N 2 N;

(7.16)

is such that

GN (s)
n
�!
L(U;Y )

G(s); 8 s 2 �(A):

Moreover, this convergence is uniform in s 2 K, for any compact K � �(A).

The matrices above have been written down following the method of Section 6.4.4. See [71] and

[48] for other formulas of this type.

7.1.3 Example: Damped oscillator

In this subsection we consider an example in which the transfer function G(s) = ER(s)D can

be explicitly calculated. Our aim is to compare the approximated spectral value sets with the

exact ones and, in this way, to develop some intuition about the convergence process.

Consider the perturbed delay equation

��(t) + 2 _�(t) + 6�(t) + �(t � 1) + � _�(t� �) = 0:

Here � is a �xed delay, 0 � � � 1, and the term � _�(t � �) is the perturbation with � 2 C

unknown. Setting z = [� _�]T this equation can be re-written as

_z(t) = Lz� (t) +D0�Mz(t);

where the operator L is given by (compare with Equation (7.1))

Lz(t) = A0z(t) + A1z(t� 1)

and

A0 =

�
0 1

�6 �2

�
; A1 =

�
0 0

�1 0

�
;

D0 = [0 1]T ; Mz(t) = [0 1]z(t� �):

It was shown in the preliminaries that the above expressions can be associated with an abstract

equation on X := C
2
� L2([�1; 0]; C 2), namely

_x(t) = Ax(t) +D�Ex(t);
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where

Ax(t) =

�
A0x

1(t) + A1x
1(t� 1)

d

dt
x1(�)

�
x = (x0; x1) 2 D(A) � C

2
�H1([�1; 0]; C 2);

and

D = [D0 0]T ; Ex(t) = [0 1]x1(t� �);

for x = (x0; x1) 2 X := C
2
� C([�1; 0]; C 2). We must approximate the transfer function of the
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Figure 7.2: Approximation of �(A;D;E; �)

system

_x(t) = Ax(t) +Du(t);

y(t) = Ex(t):

In order to do this, we shall use the projection method explained in the previous subsection.

The exact transfer function of the original system can be calculated, see (7.11), and is given by

G(s) =
e��s s

s2 + 2s+ 6 + e�s
: (7.17)
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Note that

lim
Re s!+1

kG(s)kL(U;Y ) = 0;

so, the stability radius for closedness r(A;D;E) =1. Moreover, Proposition 7.1.2 ensures that

the spectral value sets of the delay system can be approximated arbitrarily closely. For the

calculations the SH algorithm of Chapter 3 has been used.

We calculated the level curves of

s 7! kGN (s)kL(UN ;YN ); s 2 K;

where K is the rectangle given by the corners (�15;�40) and (5; 40), for three di�erent values

of �: 2:4; 0:4; 0:2. The delay was taken � = 0:25. In Figure 7.1.3 the continuous lines are those

based on the approximate transfer functions (7.16), while the dotted ones correspond to the

exact contours computed by Formula (7.17). In all cases they form a sort of elliptic region of

the complex plane. The convergence of the approximant is relatively slow and in order to get

the actual sets near the imaginary axis it was necessary to compute approximations of high

order (N > 100). Nevertheless, the graphics illustrate the result proved before, namely, the

approximation of the sets �(A;D;E; �).

7.2 The Orr-Sommerfeld operator

The stability analysis of parallel laminar 
ows has a long history. In particular, the 
ow of a

viscous 
uid in a channel formed by two in�nite parallel planes, usually called Poiseuille 
ow, has

attracted the attention of mathematicians and physicists for more than a century. The example

of this section is related to this topic: we shall study spectral value sets of the associated Orr-

Sommerfeld operator.

7.2.1 Preliminaries

The nominal 
ow, whose stability must be investigated, is described by the following evolution

(Navier-Stokes) equations

@u

@t
+ u

@u

@z
+ v

@u

@y
= �

@p

@z
+

1

R
�u (7.18)

@v

@t
+ u

@v

@z
+ v

@v

@y
= �

@p

@y
+

1

R
�v (7.19)

@u

@z
+
@v

@y
= 0: (7.20)

Here � := @
2

@z2
+ @

2

@y2
is the Laplace operator, z denotes the direction of the pressure gradient

parallel to the planes, y the distance normal to them measured from the channel center, u, v

the corresponding velocity components, p the pressure, t the time and R the Reynolds number.

The boundary conditions are

u(t; z;�1) = v(t; z;�1) = 0:
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The basic 
ow, represented in Figure 7.2.1, is given by

U(y) = 1� y2; V = 0; P = �
2

R
z: (7.21)

A linearisation the Navier-Stokes equations (7.18), (7.19), (7.20) about the exact solution (7.21)

z

1

-1

y

U(y)=1-y 2

V=0

Figure 7.3: Poiseuille 
ow.

leads to the Orr-Sommerfeld equation. First, one introduces a stream function  , i.e., a function

such that

u =
@ 

@y
; v = �

@ 

@z
:

In terms of  , Equation (7.20) is satis�ed automatically and eliminating the pressure the Navier-

Stokes equations become

@� 

@t
+
@ 

@y

@� 

@z
�
@ 

@z

@� 

@y
=

1

R
�� ;

@ 

@z
(t; z;�1) =

@ 

@y
(t; z;�1) = 0:

The stream function  has as remarkable property that it is constant along the current lines

de�ned by the solution of (7.18), (7.19), (7.20). In the case of (7.21) the associated stream

function is

 0(y) := y � y3=3 + c; (7.22)

where c is an arbitrary constant.

In order to analyse the evolution in time of small time varying perturbations to (7.21), one

assumes that the perturbation is of sinusoidal form along the direction z. This situation is

mathematically described by a decomposition

 (t; z; y) =  0(y) + �(t; y)e{�z ;
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where � is real and positive,  0 is the stream function of the nominal 
ow (7.22), and �(t; y) is

assumed to be small. Note that now complex solutions are allowed. Clearly, � must satisfy the

boundary conditions:

�(t;�1) =
@�

@y
(t;�1) = 0:

Using these expressions, one obtains the following equation for �(t; y):

@��

@t
=

�
1

R
��� {�(U� �

@2U

@y2
)

�
� + {�(

@�

@y
� �

@

@y
)(��)e{�z ; (7.23)

� :=
@2

@y2
� �2; (7.24)

�(t;�1) =
@�

@y
(t;�1) = 0: (7.25)

In the linear stability theory, the last term in (7.23) is neglected and one studies the resulting

linear operator (at this stage written just formally)

A := ��1

�
1

R
��� {�(U� �

@2U

@y2
)

�

in order to make stability statements. Note that A is parameterised through R and �.

For physical as well as for theoretical reasons it is convenient to study A in the Banach space X

de�ned by [62]

X := H1
0([�1; 1]; C ): (7.26)

The norm in X

kxkX :=

Z 1

�1

(j
@x

@y
j
2 + �2jxj2)dy

is usually called energy norm. See also [62, p. 223] where this space is denoted by L
(1)
2;0. Inte-

grating by parts one sees that

kxk2
X
= �

Z 1

�1

x�Mxdy = �hMx ; x iL2([�1;1];C) ; (7.27)

where

M : D(M)! L2([�1; 1]; C ); x 7!
@2x

@y2
� �2x; (7.28)

where

D(M) := H1
0 ([�1; 1]; C ) \H

2([�1; 1]; C ):

As an operator in L2([�1; 1]; C ), M has the following properties [15, Example A.4.26].

1. �(M) = f~�i := �(�2 + i2�2); i 2 Ng. The eigenvalues are simple.
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2. M�1 exists, is selfadjoint and compact. Moreover, its eigenfunctions (~eN )N2N form an

orthonormal basis in L2([�1; 1]; C ).

De�nition 7.2.1 The linear operator

A : D(A)! D(M); x 7! M�1Sx;

S :=
1

R
M2

� {�(UM �
@2U

@y2
);

D(A) := fx 2 H4([�1; 1]; C ); x(�1) =
@x

@y
(�1) = 0g:

(7.29)

is called Orr-Sommerfeld operator.

Most of the investigations related to the Orr-Sommerfeld operator have had the following pattern:

one makes predictions about the stability of the 
ow (7.21) based on the location of the spectrum

of the Orr-Sommerfeld operator (7.29). One expects the basic 
ow (7.21) to be stable for

low Reynolds numbers R (high viscosity and/or low velocities), while for large R, instability

(turbulence) should be observed. Usually one looks for the lowest (critical) Reynolds number

Rc for which �(A) "leaves" the left half of the complex plane for some value of �. Accurate

calculations give the estimation Rc = 5772 for � = 1:02 [19].

However, the results of this approach are not in good agreement with the experiments. In fact,

turbulence has been observed for R � 1000 [19, pp 452], where as an interesting fact we mention

that laminar 
ows can be observed at substantially higher values of R (R � 8000) than the

theoretical value Rc = 5772 [19, pp 453]. Explaining these discrepancies has been one of the

hardest problems in the theory of hydrodynamical stability [19], [37]. The results of this section

are also related to this problem.

7.2.2 Spectral properties

The spectral properties of the Orr-Sommerfeld operator have been matter of extensive inves-

tigations. It is known that the spectrum �(A) is purely discrete [19, pp 156] and there are

satisfactory methods for their calculation [60] so long as R is not too large. Moreover, the eigen-

functions of A are complete in X [62]. Note that the completeness of a function system does not

mean that it is a basis. See [53, V.2.5] for the de�nition of these concepts.

It would be interesting to know whether the Orr-Sommerfeld operator is a Riesz operator or

not, see De�nition 6.3.5. We show here that the answer to this question is, at least in some

sense, positive. The key is the following theorem. Note that it is simply a reformulation of [53,

Theorem V.4.15, Remark V.4.16.c].

Theorem 7.2.2 Let X be a Hilbert space, T be a selfadjoint operator in X, with compact re-

solvent and simple eigenvalues � � � < �2 < �1. Further, suppose that its eigenvalues have the

property

lim
i!1

�i � �i+1 =1:

Let (Pi)i2N be the eigenprojections of T , so that

Pi = h � ; ei iX ei; i 2 N:
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Finally, consider some T -bounded operator S. Then, T + S is closed with compact resolvent.

Moreover, there exists L 2 L(X) with L�1 2 L(X) such that the eigenprojections (Qi)i2N of

T + S can be indexed as fQ0j; Qig, j = 0; : : : ;m <1, i = n+ 1; n+ 2; : : : , in such a way that

the equalities

mX
j=0

Q0j = L

 
nX
i=0

Pi

!
L�1; Qi = LPiL

�1; i > n; (7.30)

hold.

The results obtained in [62] make possible the application of these ideas to the Orr-Sommerfeld

case. Essentially, the authors have proved all the facts we need for our purposes. For clarity in

the exposition we state some of them in the following lemma.

Lemma 7.2.3 The operator

T : D(A)! D(M); x 7!
1

R
M�1M2x;

where M is given by (7.28), has selfadjoint extension �T in X. Further, �T is selfadjoint, has

(selfadjoint) compact resolvent and its eigenfunctions (ei)i2N form a basis in X. Finally, its

spectrum �( �T ) consists of simple eigenvalues (�i)i2N such that

lim
i!1

�i � �i+1 =1: (7.31)

These statements can be found along the paper [62] as the authors proved that the Orr-

Sommerfeld operator satis�es the assumptions of the main theorem [62, p.220]. In particular,

it is proved [62, p. 224, Equation (20), � = 0] that �T is the unbounded operator given by the

inverse of the selfadjoint compact operator

R1 : X ! X; [R1x](y) =
1

R

Z 1

�1

�
@g1

@�
(y; �)

@x

@�
(�)

�
d� +

1

R
�2
Z 1

�1

[g1(y; �)x(�)] d�;

where g1(y; �) is certain Green function such that both g1 and
@g1

@�
are continuous; more exactly,

it is the solution of [62, p. 223, Equation (15), � = 0]

M2g1(y; �) = �(y � �); g1(�1; �) =
@g1

@�
(�1; �) = 0;

with �(y� �) denoting the usual Dirac function. The assertion (7.31) is in [62, p. 226; Equation

(23), p.225], while the rest follows from the standard theory of selfadjoint compact operators,

see [53, V.3.8].

Theorem 7.2.4 The Orr Sommerfeld operator A (7.29) has closed extension �A in X. More-

over, if the Reynolds number R and the wave number � are such that �( �A) is a set of simple

eigenvalues, then

�A 2 R(X):
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Proof : By (7.29), A can be expressed as

A = T + S1;

where

T : D(A)! D(M); x 7!
1

R
M�1M2x;

S1 : D(M)! D(M); x 7! �{�M�1(UM �
@2U

@y2
)x:

By Lemma 7.2.3, �T exists and satis�es the conditions of Theorem 7.2.2. Further, the existence

of �S1 is proved in [62, pp. 226]. It is the operator in L(X) given by [62, pp. 226, Equation (28)]

[ �S1x](y) = �{�U(y)x(y) + 2{�

Z 1

�1

�
g2(y; �)

@U

@�
(�)

@x

@�
(�)

�
d� + 2{�

Z 1

�1

�
g2(y; �)

@2U

@�2
(�)x(�)

�
d�;

where g2(y; �) is the solution of [62, p. 223, Equation (16), � = 0]

Mg2(y; �) = �(y � �); g2(�1; �) = 0;

with �(y � �) denoting the usual Dirac function. Thus, �A exists and is given by

�A = �T + �S1:

Moreover, by Theorem 7.2.2, �A has compact resolvent and, consequently, by Lemma 6.1.5,

�( �A) is a set of eigenvalues (�i)i2N with no other limit point than in�nite. By assumption, these

eigenvalues are all simple. In other words, �A satis�es the �rst condition for being Riesz operator.

It remains to show that the eigenfunctions of �A form a Riesz basis: we have assumed that �( �A)

contains only simple eigenvalues. As a consequence, the eigenprojections (Qi)i2N have rank one

and can be written as

Qi := h � ;  i iX �i; i 2 N;

where �i and  i, i 2 N, are the eigenfunctions and their adjoints, respectively. Further on, by

Theorem 7.2.2, there exists a L 2 L(X) with L�1 2 L(X) such that the eigenprojections (Qi)i2N
of �A can be indexed in such a way that Equation (7.30) holds. Moreover, since the eigenvalues

are all simple, m = 0, n = 0, and we obtain for every x 2 D(A) the following equations:

Qix = hx ;  i iX �i = LPiL
�1x = hL�1x ; ei iX Lei = hx ; (L�1)�ei iX Lei; i 2 N;

where (ei)i2N denote the eigenfunctions of �T . Hence,

�i = Lei; i 2 N:

By Lemma 7.2.3, the eigenfunctions (ei)i2N form an orthogonal basis in X. Thus, (�i)i2N is

similar to a Riesz basis and, using Lemma 6.3.4, we see that (�i)i2N forms a Riesz basis in X.

We conclude that �A 2 R(X). �
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Remark 7.2.5 The obvious bound for �(A) = �( �A) given by

�i 2 fs 2 C ; js� �ij < k �S1kL(X)g; i 2 N;

where as before (�i)i2N denotes the spectrum of T , shows that the eigenvalues of A are simple

at least for R small enough. In our calculations, the eigenvalues of A have been always simple.

Moreover, the simplicity of �(A) is usually assumed [66] in studies related to the Orr-Sommerfeld

operator. However, this property of �(A) seems not to hold for every R [36].

Remark 7.2.6 The completeness of the eigenfunctions of Orr-Sommerfeld operator belongs to

the well documented facts of the theory of hydrodynamical stability. On the other hand, their

property of being basis of X has not been so widely known [39]. To the best of our knowledge,

this is the �rst time that this fact appears in the literature.

Remark 7.2.7 In the case of nearly parallel shear 
ows [38], the corresponding \Orr-Sommerfeld"

operator has the form T + S1, where T is the same as before and the \new" �S1 is a T -compact

operator [53, IV.1.3]. It follows that Theorem 7.2.4 is true also in this case. Note that the

completeness of the eigenfunctions have already been established in [38].

7.2.3 Unstructured perturbations

A recent school of thought has brought new life into the problem on the discrepancies between

experiment and theory. The reasoning is as follows. The Orr Sommerfeld operator is highly non-

normal. Thus, there is a potential for transient growth of initially small perturbations even if all

the eigenmodes decay exponentially. Interesting references where this point of view is developed

are [30], [78], [35], [65] and [21] among others. The most important paper in our context is the

paper by Reddy et.al. [66], where pseudospectra ideas are explicitly used.

In fact, in the paper as a measure for the transient behavior, Reddy et.at. [66] studied the

pseudospectra (Figure 7.4) and numerical range of A. They gave lower bounds for the critical

Reynolds number Rc (Rc � 82:2) which agree with former theoretical and experimental results.

As usual, they restricted their analysis to the even modes of A. A detailed discussion of Figure

7.4 is given later.

In order to calculate the pseudospectra, because the norm of R(s;A) can not be computed

explicitly, the authors of [66] approximated s! kR(s)kL(X) using the projection scheme of [37].

This method, which was originally designed for the calculation of eigenvalues and eigenfunctions

of A, is based on collocation in Chebyshev points of expansions in Chebyshev polynomials

with explicit enforcement of the boundary conditions. In the terminology of Chapter 6, the

authors generated discrete operators (AN )N2N and approximate the pseudospectra of A with the

pseudospectra of (AN )N2N. We give some details on this scheme below.

It is important to know whether these approximations generate correct pictures. In [66], at

least in a strict mathematical sense, this convergence was not proved. The authors showed

it experimentally: they calculated the contours using two di�erent discretisation schemes and

observed that for large N the contours become identical and stationary, see Figure 7.4.

It should be noted that the approximation in this case is much more di�cult and involved than in

the case of Section 7.1. The reason is that the Orr-Sommerfeld operator is an integro-di�erential

operator and thus, projection methods are di�cult to apply in a straightforward manner.
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Figure 7.4: Unstructured spectral value sets of the Orr-Sommerfeld operator for R = 3000,

� = 1, � = 10�1; : : : ; 10�8 and N = 15; 30; 45; 60.

7.2.4 Approximation scheme

Our immediate aim is to work out an approximation scheme which can be useful for the approx-

imation of the spectral value sets related to the Orr-Sommerfeld operator. Our approach is to

combine the results of Section 5.3.4 with Proposition 6.3.10. The description of the approxima-

tion scheme takes place in several steps.

Spaces and \augmented" operators. The �rst step is to introduce the spaces

W := H4([�1; 1]; C ); V := L2([�1; 1]; C ); Va := V � C
4 :

As in Section 5.3.4, we consider the operators (see (7.29))

M0 :W ! V; x 7!

�
@2

@y2
� �2

�
x;

S0 :W ! V; x 7!

�
1

R
M2

0 � {�

�
UM0 �

@2U

@y2

��
x;

and the (boundary condition) operator

L :W ! C
4 ; x 7! col

�
x(1);

@x

@y
(1); x(�1);

@x

@y
(�1)

�
: (7.32)
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We introduce also the \augmented" operators

Ma :=

�
M0

L

�
:W ! Va; Sa :=

�
S0
�aL

�
: W ! Va; (7.33)

where �a 2 �(T ) is a nonzero constant with a role to be made clear later.

Approximating sequence. Our plan is to use Proposition 6.3.10. Thus, we must �nd an

operator sequence (AN )N2N such that its eigenelements approximate the eigenelements of A, see

the assumptions of Proposition 6.3.10. In the solution of this problem we shall use the fact that

the eigenvalue problems

Sx = �Mx; x 2 D(A)

and

Ax :=M�1Sx = �x; x 2 D(A);

actually coincide.

The main point is Lemma 7.2.8. In its statement and in the sequel we shall use the notation

�(R;S) for the spectrum of a generalised eigenvalue problem Rx = �Sx.

Lemma 7.2.8 �(Sa;Ma) = �(A) [ �a. The eigenvectors of (Sa;Ma) and A corresponding to

�(A) coincide as well.

Proof : Similar functional-theoretical arguments to those used for the Orr-Sommerfeld operator

[19, pp. 156] show that the spectrum �(Sa;Ma) has only eigenvalues. Moreover, it is clear that

�(A) � �(Sa;Ma). We must show that (Sa;Ma) has no spectrum other than �(A)[ �a. Indeed,

consider the equation

Sa�a = sMa�a; �a 2 W; s 2 �(A): (7.34)

We must �nd out for which s 2 �(A), this equation has unique solution �a = 0. We proceed as

follows: Equation (7.34) means

S0�a � sM0�a = 0; (7.35)

(�a � s)L�a = 0: (7.36)

1. If s = �a, (7.36) holds for every �a 2 W and thus (7.35) has nonzero solutions, because it

is a di�erential equation with no boundary conditions. It follows �a 2 �(Sa;Ma).

2. If s 6= �a, Equation (7.36) means �a 2 D(A). Since s 2 �(A), �a = 0 is the unique solution

of (7.35). We conclude that s 2 �(Sa;Ma).

The proof is complete. �

Let us continue with the exposition. Clearly, it holds that

Sa 2 L(W;Va); S�1
a
2 L(Va;W ); Ma 2 K(W;Va):

Thus

Sa � sMa 2 F0(W;Va); 8 s 2 C :
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Suppose that we are given a sequence of orthogonal projections (�W
N
)N2N such that

�W
N
�W
N

s

�!
W

IW : (7.37)

Consider also

�Va
N

:= Sa �
W

N
�W
N
S�1
a
; N 2 N: (7.38)

Then, by the proof of Proposition 5.3.24 and Remark 5.3.21, it follows that

SaN � sMaN

r
�!

L(W;Va)
Sa � sMa; s 2 C ; (7.39)

where

MaN := � Va
N
Ma�

W

N
; MaN := �Va

N
Ma �

W

N
; N 2 N; (7.40)

SaN := � Va
N
Sa�

W

N
; SaN := �Va

N
Sa �

W

N
; N 2 N: (7.41)

Moreover, by Remark 5.3.19, the adjoint operators converge regularly as well.

Now, using Proposition 5.3.28, we obtain that the eigenelements of the problem

SaNxaN = �NMaNxaN

approximate those of Sax = �Max and hence, by Lemma 7.2.8, those of Sx = �Mx.

Finally, we note that if the matrices (MaN )N2N are invertible for N su�ciently large, then one

can de�ne a sequence (AN )N2N given by

AN :=M
�1
aN
SaN ; N 2 N; (7.42)

which is the desired operator sequence of Proposition 6.3.10.

Discretisation procedure We have learned in the previous section that all we need here for

a satisfactory application of our approximation results is a sequence of orthogonal projections

(�W
N
)N2N such that (7.37) holds and such that the projections (7.38) can be calculated.

However, there is another approximation scheme which, due to its accurate approximations of

the eigenelements of A at a comparatively low computational costs [60], has become standard in

calculations related to the Orr-Sommerfeld operator. Note that approximation of the eigenele-

ments is the main requirement in Proposition 6.3.10. This scheme, which we call "Herbert's

method" [37], belongs to the class of spectral methods [11], and does not use (7.38).

Herbert's method is based on the following objects. First, as projections (�W
N
)N2N one takes

orthogonal projections (with respect to the inner product in W ) onto the span of polynomials of

degree � N . Further, let

VN :=WN ; N 2 N;

and let us denote by (�V
N
)N2N the sequence of operators which map every continuous function

in [�1; 1] onto its interpolatory N -th degree polynomial at the Chebyshev points

yj = cos(
j�

N
); j = 0; : : : ; N:
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The properties of the elements of (�V
N
)N2N are quite complicated. Although they are idempotent

((�V
N
)2 = �V

N
), they are not projectors in the usual sense. The reason is that they are not

closed (and hence not bounded) neither in V = L2([�1; 1]; C ) nor in L2
r
([�1; 1]; C ) with weight

r(y) = 1=
p
1� y2 [1, Exercise 15.20]. Actually, one has [74, Theorem 14.3.2]

�W
N

s

�!
L2r([�1;1];C)

� ;

where

� : C([�1; 1]; C ) ! L2
r
([�1; 1]; C )

is the canonical (continuous) embedding. Now, we may introduce the sequence

�Va
N

=

�
�V
N

L

�
; N 2 N: (7.43)

Note that

dimRg(�Va
N
) = N + 5; dimRg(�W

N
) = N + 1; N 2 N: (7.44)

Herbert's method, used also in [37] and [66], chose (�W
N
)N2N, (�

Va

N
)N2N as main building block

of their discretisation procedure. In order to calculate the corresponding �nite dimensional

operators (see Section 6.4.4) one must �x basis in WN and VN ; here Chebyshev polynomials are

the usual choice. Let us give some details. Consider the expansion

x(y) =

NX
i=0

xiTi(y) 2 WN ; N 2 N;

where fxig are the expansion coe�cients and fTig are the �rst N + 1 Chebyshev polynomials.

The main part of the discretisation is to �nd the family of matrices

fD(l)
g 2 C

(N+1)�(N+1)

which convert the expansion coe�cients fxig to the values fx
(l)(yj)g, l = 1; : : : ; 4. The matrices

are de�ned by

D
(l)
ji

= T
(l)
i
(yj); j; i = 0; 1; : : : ; N: (7.45)

Having these matrices, the �nite dimensional operators (SaN )N2N, (MaN )N2N can be computed

using an involved, although straightforward, procedure.

Due to the treatment of the boundary conditions (see also (7.44)) the matrix representations of

(SaN )N2N and (MaN )N2N are in C (N+5)�(N+1). At �rst glance this is a problem because we need

the inverses of the operators MaN . The dilemma is solved as follows. By Proposition 5.3.17,

SaN ; MaN 2 F0(WN ; VaN ), N 2 N. Thus, all these matrices have rank N +1. In order to obtain

square matrices one neglects the rows 0, 1, N�1, and N of SaN andMaN which, from \heuristic

reasons", contain redundant information. Indeed, these lines correspond to collocation points

near the boundaries and this information is already represented in the matrices by the operator

L (7.32).
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Another important point is the constant �a given in (7.33) which is set equal to a complex number

far away from the compact set K where the pseudospectrum must be calculated. Finally, energy

norm calculations are achieved by means of \weighting matrices" B so that

kxkX = kBxkL2([�1;1];C) :

The corresponding operator norms can also be calculated using this approach. Appendix A of

[66] gives a detailed description of the calculation of weight matrices B. See also [37] and [64]

for more details on the whole Herbert's method.

The main question now is whether the spectral value sets of the �nite dimensional operators

associated to Herbert's method converge to the spectral value sets of the Orr-Sommerfeld op-

erator. As we mentioned before, to the best of our knowledge there is not formal proof of this

fact. Vainikko [82, Section 8] proved that a slight modi�cation of the projections (�W
N
)N2N,

(�Va
N
)N2N, namely by projecting W onto WN+5 rather than on WN , is able to provide regular

convergence when applied to ordinary di�erential operators of the type of Section 5.3.4. Note

that with this choice the matrix representations of the �nite dimensional operators are automat-

ically square. We have not been able to prove the same fact for the Herbert's method, whereas

the main di�culty is (7.44) and the elimination of rows to be made later. Nevertheless, since

the eigenelements of A are successfully approximated by this scheme, see [60] [37], we believe

that regular convergence (7.39) does take place here as well. We stress that we could use other

sequences of projections so that we would then be in a position to prove regular convergence; for

example, Vainniko's scheme. However, we shall not do that because former experience with those

schemes shows that, numerically speaking, those \better" projections do not perform as perfectly

as Herbert's method [37] which, nowadays, is the �rst choice in hydrodynamical stability [70],

[18].

Calculation of �(A; IX ; IX ; �). The compact K of interest is the region of the complex plane

represented in Figure 7.4. As in [66], we take �a = �200. Since we know that the eigenelements
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Figure 7.5: Sets K and 
 in the Orr-Sommerfeld case together with �(AN ) and �(ANPN
).

(spectrum, eigenvectors and the corresponding biorthogonal vector) converge, we may carry out

the calculation of �(A; IX ; IX; �)\K (Figure 7.4) by the scheme of Proposition 6.3.10. In other
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words, one approximates the norm of R(s;A) by the norm of R(s;AN)PN
, where we have used

the notations of Section 6.3. As open domain 
 we have chosen


 := fs 2 C : js+ 1:7 + 0:5ij < 2:4g; (7.46)

see Figure 7.5.

With the help of the Matlab code mentioned in Chapter 2 we were able to calculate the eigenpro-

jections PN
 accurately. Indeed, in Figure 7.5 we represented �(ANPN
) (symbol 'o') together

with �(AN ) \ 
 (symbol '+'). As it was expected, one observes that

�(ANPN
) = �(AN ) \ 
 [ f0g:

We conclude that the pictures of Figure 7.4 are correct.

7.2.5 Structured perturbations

In order to explain the discrepancies between spectral analysis of A and the experimental results

we propose a new approach. It will stress the usefulness of an analysis based on spectral value

sets.

Let us illustrate our ideas by means of Figure 7.4. In fact, Reddy's graphs show that the

spectrum �(A) is extremely sensitive to perturbations and that the sets �(A; IX ; IX ; �) cross the

imaginary axis (with small �s) for Reynolds numbers much lower that Rc. This suggests that,

due to small perturbations, the Poiseuille 
ow may become unstable \earlier" as predicted by

the eigenvalues alone.

Moreover, we believe that these results can be improved. In fact, an adequate representation

of the e�ect of nonlinearities and other uncertainties can be better carried out using structured

perturbations. As illustration we shall consider the following ones. They take into account the

nonlinearities which are present in Equation (7.23). We de�ne (see (7.26))

U = X; X = D(M) equipped with the graph norm; Y = L2([�1; 1]; C )

(7.47)

and (see (7.28))

D : U ! X; u 7! P
u; (7.48)

E : X ! Y; x 7!Mx; (7.49)

where 
 is the domain (7.46) and P
 is the corresponding spectral projection. One sees imme-

diately that

D(A) � X � X with continuous dense injections

D : U ! X is compact

E : X ! Y is bounded.

This is a framework which satis�es the requirements given in Section 4.1.

We can not calculate kE(sI�A)�1DkL(U;Y ) explicitly and the use of approximations is obligatory.

In the previous section we have already considered approximations to A and D. The new
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operator to be approximated is (7.49) and it is clear that we should use the operators (MaN )N2N
introduced before. Note that we already used these matrices in the construction of (AN )N2N.

We shall not try to state convergence results as we did in the previous section, see Proposition

7.1.2. The reason is that the approximation scheme we are using here, in particular, the sequence

(7.43) and especially the \elimination of rows" explained afterwards, do not �t in our main

convergence results, for example Proposition 6.4.3.
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Figure 7.6: Structured spectral value sets of the Orr-Sommerfeld operator for R = 3000, � = 1,

� = 10�3; : : : ; 10�8 and N = 15; 30; 45; 60.

In Figure 7.6 we give some computational results for such perturbations. These pictures have

been obtained using the SH algorithm of Chapter 3. Note that they become stationary for

N � 45.

Let us compare these new pictures with the ones, corresponding to unstructured perturbations,

represented in Figure 7.4. Both �gures represent the results for the case R = 3000, � = 1. The

crosses represent points in �(A) and the contours are the boundaries of the spectral value sets for

di�erent values of �. These are 10�1; : : : ; 10�8. The relevant sets in the two �gures are marked

with the numbers 1; : : : ; 8 etc. Around some points in �(A) the contours are not visible for the

scale used, indicating that they hardly move for the above class of perturbations. As � increases

the sets associated with a given eigenvalue expand and then merge with other sets associated

with other eigenvalues.

The graphs are qualitatively similar and show the high sensitivity of �(A). Nevertheless, the

quantitative di�erences between the two cases is striking. For example, in the �rst picture of
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Figure 7.4, we see that perturbations at level � � 10�2 may destabilise the system, whereas in

the structured case destabilisation occurs at the level � < 10�4. One sees that as � increases the

di�erence between the two sets becomes even larger.

Figure 7.7 gives more insight into the problem. It represents the Cg-stability radii (see De�nition

4.2.15) for both unstructured and structured perturbations and di�erent values of R. Here Cg

is just the left half of the complex plane. In order to calculate the stability radii we computed

the H1-norm of the transfer function R(s;AN)PN
 and MaNR(s;AN)PN
, respectively. The

computations were carried out using the function normhinf of the computing package "Matlab"

and approximations of order N = 60. These curves show that the robustness of �(A) diminishes

when R becomes larger and that our structured perturbations have stronger destabilising e�ects

than unstructured perturbations. We have included in this picture the (obvious) upper bound

for r(AN ; I; I; Cg) given by the quantity

d�(�(AN ); @Cg) = sup
�2�(AN )

Re�:

Since this bound is exact for normal operators, this graph shows that the non-normality of A

increases exponentially with R.

Moreover, a detailed analysis of Figure 7.7 shows \mysterious" changes in the slopes of the

curves at Reynolds numbers 500 � R � 3000. Are there important physical reasons behind of

this behavior? Future investigations should clarify this question.

We believe that these pictures prove that spectral value sets analysis can shed light into problems

of hydrodynamical stability.
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Appendix A

Convergence of level curves

Our aim here is to show that convergence of functions in the chordal metric implies convergence of

the corresponding level curves in the sense of Hausdor� distance. We begin with some de�nitions.

De�nition A.0.9 Let K1 and K2 be nonempty bounded closed subsets of a metric space K.

Then the Hausdor� metric dH is de�ned as

dH(K1; K2) := maxfd�(K1; K2); d
�(K2; K1)g;

where

d�(A;B) = sup
x2A

d(x;B)

d(x;B) = inf
y2B

d(x; y)

and d is the metric on K.

Let Ĉ := C + [f1g. Then for two points a; b 2 Ĉ , we denote by �(a; b) the chordal distance

between a and b:

�(a; b) =
ja � bjp

(1 + jaj2)(1 + jbj2)
; (a; b both �nite)

�(a;1) = �(1; a) =
1p

1 + jaj2
;

�(1;1) = 0:

Further, let R̂+ := R+ [ f+1g. The notation C(K; R̂+) will be used for the set of continuous

functions from the metric space K into R̂+.

De�nition A.0.10 Suppose that f; g 2 C(K; R̂+). The chordal distance between f and g is

de�ned by

d�(f; g) = sup
s2K

f�(f(s); g(s))g:

127
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We say that (fN )N2N converges on K to f in the sense of the chordal metric, denoted by fN !
K

f ,

if

lim
N!1

d�(fN ; f) = 0:

We shall also use the concept of uniform convergence. We say that (fN )N2N converges on K

uniformly to f , to be denoted fN � f , if

lim
N!1

max
s2K

jfN (s)� f(s)j = 0:

We continue with a simple lemma whose proof appears in [34]. In its enunciation and in the rest

of this chapter we shall use the notations f�1 and f�1
N

for 1
f
and 1

fN
, respectively.

Lemma A.0.11 Let f; (fN )N2N 2 C(K; R̂+) and 0 < r <1. If fN !
K

f , then

1. fN � f on fs 2 K : f(s) � rg.

2. f�1
N
� f�1 on fs 2 K : f(s) � rg.

Conversely, if there exist A; B � K, A \ B 6= ;, such that

fN � f on A and f�1
N
� f�1 on B;

then

fN !
A\B

f:

This lemma has the following useful corollary.

Corollary A.0.12 Let K � Ĉ be compact. Then fN !
K

f i� for every s 2 K there exists an

�-neighborhood V�(s) of s such that either (fN )N2N or (f�1
N
)N2N converge uniformly on V�(s) to

f or f�1, respectively.

De�nition A.0.13 Let K � Ĉ , f 2 C(K; R̂+). We say that � > 0 is regular for f , if for any

s 2 K such that f(s) = �, and any �-neighborhood V�(s) of s, there exists sl; sb 2 V�(s)\K such

that f(sl) < � and f(sb) > �.

Roughly speaking, � is regular if there are no local extrema in the set fs 2 K; f(s) = �g. For

example, if f is non constant and meromorphic in an open set K � C , the numbers � > 0 such

that there exist s 2 K with jf(s)j = � are regular for jf j.

The main result in this chapter is the theorem below. It makes apparent the relationship between

convergence in the sense of the chordal metric and convergence of the corresponding level curves

in the sense of the Hausdor� metric.

Theorem A.0.14 Let K be a compact and locally connected subset of a metric space. Suppose

that f , (fN )N2N are elements of C(K; R̂+) such that

fN !
K

f:
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Furthermore, suppose that � > 0 is regular for f . Let D� and DN

�
, be the �-level curve in K of

f and fN , respectively, i.e.,

D� = fs 2 K : f(s) = �g; DN

�
= fs 2 K : fN (s) = �g:

Then

lim
N!1

dH(D
N

�
; D�) = 0: (A.1)

Proof : Introduce the notation

Sr = fs 2 K : f(s) � rg; r > 0;

where by de�nition the set fs 2 K : f(s) = 1g is contained in Sr. We also note that the

regularity condition for � implies @S� = D�.

We will �rst show that for every � > 0 there exists N1 2 N such that the relation N > N1 implies

d�(DN

�
; D�) < �: (A.2)

Let V� be an �-neighborhood of D�:

V� = fs 2 K; d(s; s0) < � for some s0 2 D�g:

The set S� [ V� is open. Thus E := K n (S� [ V�) is closed. It follows that maxs2E f(s) < �.

Since fN � f on E (Lemma A.0.11), there exists N1 2 N such that for N > N1, fN (s) < � for

all s 2 E. Hence,

DN

�
� S� [ V�; N > N1: (A.3)

We have now two cases:

KE

Vε

ESρ

Dρ

Vε

Figure A.1: Sets in the proof of Theorem A.0.14. D� is represented by the thick line and V� by

the shaded zone.
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1. First case: @V� \ S� = ;. First, we prove

S� � V�: (A.4)

In fact, suppose (A.4) does not hold. Then there exists a s0 2 S� with s0 62 V�. Since

@V� \ S� = ;, we have s0 62 @V�, i.e., s0 2 V
C

�
, where V C

�
is the (open) complement in K of

cl (V�). Let us denote by S
s0
�

the connected component of s0 in fs 2 K; f(s) > �g. Note

that Ss0
�
exists because K is locally connected. Moreover, since fs 2 K; f(s) > �g is open

in K, Ss0
�

is open in K as well. Now, it is clear that

Ss0
�
\ V C

�
6= ;

and is open in K. Moreover, since @Ss0
�
� D� � V�, one has that the set

Ss0
�
\ V� 6= ;

and is open in K too. One also notes

V� \ V
C

�
= ;; K = @V� [ V� [ V

C

�
:

The last three relationships imply that

Ss0
�
=
�
Ss0
�
\ V�

�
[
�
Ss0
�
\ V C

�

�
The sets V� and V

C

�
are open sets in K with empty intersection. It follows that Ss0

�
is not

connected. Thus, we have a contradiction and (A.4) holds.

Expression (A.4) together with (A.3) imply that DN

�
� V� and, consequently, that (A.2)

holds.

2. Second case: @V�\S� 6= ;. Let us de�ne ~S := S� nV� 6= ; and ~� := min
s2 ~S f(s). Obviously,

~S � S~�. Moreover, since @S� = D� � V�, we have that ~� > �. We apply now Lemma

A.0.11. It tells us that f�1
N
� f�1 on ~S. Then f�1

N
< 1

�
on ~S for all N su�ciently large.

Hence,

DN

�
� V� [ (K n S�)

for all N su�ciently large. Combining this with (A.3) we obtain DN

�
� V� for all N

su�ciently large and consequently (A.2).

Our proof is complete if we show that d�(D�; D
N

�
) < � for N large enough.

Let s0 2 D�. Since � is regular, in each �=2-neighborhood V�=2(s0) of s0 in K, one can �nd points

s0l; s0b in V�=2(s0) such that f(s0l) < � and f(s0b) > �. Thus, by Lemma A.0.11, there exists an

N(s0) with the property that for all N > N(s0) one can �nd points slN ; sbN in V�=2(s0) for which

fN(slN ) < � and fN (sbN ) > �. By continuity and the connectness of V�=2(s0), the equations

fN(s) = �, N > N(s0) have a root sN in V�=2(s0). Hence,

d�(fsNg; D
N

�
) < � for all s 2 V�=2(s0) \D�; N > N(s0):



131

Because D� is compact, this implies

d�(D�; D
N

�
) < �

for all N su�ciently large. The last inequality together with (A.2) gives

dH(D�; D
N

�
) � �:

The proof is complete. �

By Corollary A.0.12, uniform convergence implies chordal convergence. Thus, we have

Corollary A.0.15 LetK be a compact and locally connected subset of a metric space. f; (fN )N2N 2

C(K; R̂+), fN � f , � > 0 be regular for f . Let D� and DN

�
be the �-level curves in K of f

and fN , respectively. Then DN

�
�!
N!1

D� in the Hausdor� metric. Moreover, with some addi-

tional e�ort it can be proved that (A.1) remains valid if we replace D� and Dn

�
by S� and the

corresponding Sn
�
, respectively.

The proof of Theorem A.0.14 is mainly due to Ribalta [69].
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