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Abstract

Due to globalization and competition in the manufacturing sector, companies are faced with
challenges to produce a high variety of products with short life circles while maintaining a
cost-e�ective level of production. Despite su�ering from high work in process (WIP), long
lead time and low reliability of delivery time especially in the presence of unpredictable
events (e.g. demand �uctuations, machine breakdowns), the highly �exible job shop or-
ganization still plays an important role in today’s manufacturing systems. In order to re-
spond to volatile market demands quickly and �exibly, capacity adjustments represent one
of the major proactive approaches to balance capacity and load for improvement of manu-
facturing control performance. Such adjustments are typically achieved by labor-oriented
approaches via, e.g., �exible sta�s and working time, which are comparably expensive and
not a sustainable solution in a long term consideration.

In this thesis, we consider a machinery-based capacity adjustment via Recon�gurable
Machine Tools (RMTs) to compensate for unpredictable events. Since WIP is essential for
all key performance indicators in job shop systems, we propose to control the WIP level
directly to track a planned or an acceptable level. To this end, RMTs are utilized to eliminate
or periodically shift bottlenecks within the process. To include these tools e�ectively on
the operational and tactical layers, we propose a complementing feedback approach using
nonlinear model predictive control (NMPC) to identify the potential of RMTs for a better
compliance with logistics objectives and a sustainable demand oriented capacity allocation.
To this end, we build a discrete state space model of a job shop system with RMTs including
nonlinearities, recon�guration delays as well as disturbances. To e�ectively utilize RMTs
concerning capacity adjustment, we formulate a set of recon�guration rules to resolve the
integer assignment of RMTs via the �oor operator as well as the well known genetic and
branch and bound algorithm.

Independent from the approach, stability of the closed-loop is of utmost importance,
especially in the presence of demand �uctuation along with possibly frequent recon�gu-
rations. To this end, we employ MPC schemes with and without terminal conditions for
evaluation and comparison of their closed-loop performance. More specially, we �rst quali-
tatively analyze the asymptotic stability property in a continuous optimization case without
considering integer constraints and recon�guration delays with and without endpoint con-
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Abstract VI

straints, respectively. In the presence of integer constraints and recon�guration delays, we
�rst consider the terminal cost and terminal region method for practical stability where ul-
timate boundedness must be guaranteed in the designed terminal region. Yet, such terminal
region is di�cult to construct in the time-varying case. Also, due to the lack of explicit char-
acterization on the practical region, the results may be over conservative. To this end, we
quantitatively analyze practical stability in accordance with trajectory-dependent approach
to estimate the degree of suboptimality and adapt the prediction horizon online. Further-
more, we analyze the in�uence of the recon�guration delays on key performance indicator
such as, e.g., setting time, during the transient phase, and on the steady-state performance
via the size of the practical stability region. Due to the existence of recon�guration delays,
the cost value may increase locally even before reaching the practical stability area. To
cover this issue, we propose to combine the adaptive NMPC approach with the principle
of �exible Lyapunov functions that allow the value of cost functional to increase locally
but with an average decrease in future steps. Last, a sensitivity analysis for the closed-loop
performance is carried out including initial conditions, prediction horizon, recon�guration
delay and stage cost.

We demonstrate the e�ectiveness and plug-and-play availability of the proposed method
for a four-workstation job-shop system and compare it to a state-of-the-art method. Uti-
lizing numerical simulations, we show that the WIP can be practically asymptotically sta-
bilized by usage of RMTs. We provide theoretical and practical instructions concerning
implementation of the proposed method for manufacturers to help them improve opera-
tional reliability and shop �oor control performance, and achieve a sustainable, e�ective
and e�cient capacity allocation policy.



Zusammenfassung

Aufgrund der Globalisierung und des Wettbewerbs im verarbeitenden Gewerbe stehen Un-
ternehmen vor der Herausforderung, eine große Vielfalt an Produkten mit kurzen Leben-
szyklen unter Beibehaltung eines wirtschaftlichen Produktionsniveaus herzustellen. Trotz
des Risikos hoher Auslastungen (WIP), langer Vorlaufzeiten und geringer Zuverlässigkeit
in der Lieferzeit, insbesondere bei unvorhersehbaren Ereignissen (z.B. Bedarfsschwankun-
gen, Maschinenausfälle), spielt die hoch�exible Auftragsorganisation in den heutigen Ferti-
gungssystemen nach wie vor eine wichtige Rolle. Um schnell und �exibel auf unbeständige
Marktanforderungen reagieren zu können, stellen Kapazitätsanpassungen einen der proak-
tiven Ansätze dar, um Kapazität und Last auszugleichen und die Leistung der Fertigungss-
teuerung zu verbessern. Solche Anpassungen werden typischerweise durch arbeitsorien-
tierte Ansätze erreicht, z.B. durch �exible Mitarbeiter und Arbeitszeiten, die vergleich-
sweise teuer und langfristig keine nachhaltige Lösung sind.

In dieser Arbeit betrachten wir eine maschinenbasierte Kapazitätsanpassung über Recon-
�gurable Machine Tools (RMTs), um diese unvorhersehbaren Ereignisse auszugleichen. Da
WIP für alle Key Performance Indicators in Job-Shop-Systemen unerlässlich ist, schlagen
wir vor, das WIP-Level direkt zu steuern, um ein geplantes oder akzeptables Level zu er-
reichen. Zu diesem Zweck werden RMTs eingesetzt, um Engpässe innerhalb des Prozesses
zu beseitigen oder periodisch zu verschieben. Um diese Instrumente e�ektiv auf der op-
erativen und taktischen Ebene einzubinden, schlagen wir einen ergänzenden Feedback-
Ansatz mit Hilfe von Nonlinear Model Predictive Control (NMPC) vor, um das Potenzial von
RMTs für eine bessere Einhaltung der logistischen Ziele und eine nachhaltige bedarfsorien-
tierte Kapazitätszuweisung zu identi�zieren. Zu diesem Zweck erstellen wir ein diskretes
Zustandsraummodell eines Job-Shop-Systems mit RMTs einschließlich Nichtlinearitäten,
Rekon�gurationsverzögerungen sowie Störungen. Um RMTs hinsichtlich der Kapazitätsan-
passung e�ektiv zu nutzen, formulieren wir einen Satz von Rekon�gurationsregeln, um die
ganzzahlige Zuordnung von RMTs über den Etagenbetreiber sowie den bekannten genetis-
chen, verzweigten und gebundenen Algorithmus zu lösen.

Unabhängig vom Ansatz ist die Stabilität des geschlossenen Regelkreises von größter Be-
deutung, insbesondere bei Nachfrageschwankungen und möglicherweise häu�gen Rekon-
�gurationen. Zu diesem Zweck verwenden wir MPC-Schemata mit und ohne Endbedin-
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Zusammenfassung VIII

gungen zur Bewertung und zum Vergleich der Closed-Loop-Performance. Insbesondere
analysieren wir zunächst qualitativ die asymptotische Stabilitätseigenschaft in einem kon-
tinuierlichen Optimierungsfall, ohne Ganzzahlbeschränkungen und Rekon�gurationsver-
zögerungen mit bzw. ohne Endpunktbeschränkungen zu berücksichtigen. Bei Vorliegen
von ganzzahligen Beschränkungen und Rekon�gurationsverzögerungen betrachten wir zu-
nächst die Endkosten- und Zielbereichsmethode für praktische Stabilität, bei der die Be-
schränkung in der entworfenen Terminalregion gewährleistet sein muss. Allerdings ist
ein solcher Zielbereich im zeitvariablen Fall schwer zu konstruieren. Auch aufgrund des
Fehlens einer expliziten Charakterisierung der praktischen Region können die Ergebnisse
zu konservativ sein. Zu diesem Zweck analysieren wir quantitativ die praktische Stabil-
ität nach dem trajektorieabhängigen Ansatz, um den Grad der Suboptimalität zu schätzen
und den Vorhersagehorizont online anzupassen. Darüber hinaus analysieren wir den Ein-
�uss der Rekon�gurationsverzögerung auf wichtige Leistungsindikatoren wie z.B. die Ein-
stellzeit während der Übergangsphase und auf die stationäre Leistung über die Größe des
praktischen Stabilitätsbereichs. Aufgrund von Rekon�gurationsverzögerungen kann der
Kostenwert noch vor Erreichen des praktischen Stabilitätsbereichs lokal steigen. Um dieses
Problem zu lösen, schlagen wir vor, den adaptiven NMPC-Ansatz mit dem Prinzip der �ex-
iblen Lyapunov-Funktionen zu kombinieren, die es ermöglichen, bei einer durchschnit-
tlichen Abnahme der Kosten in den zukünftigen Schritten den Wert der funktionalen Kosten
lokal zu erhöhen. Schließlich wird eine Sensitivitätsanalyse für die Closed-Loop-Perfor-
mance durchgeführt, die Ausgangsbedingungen, Vorhersagehorizont, Rekon�gurationsver-
zögerungen und aktuelle Kosten beinhaltet.

Wir demonstrieren die E�ektivität und Plug-and-Play-Verfügbarkeit der vorgeschlage-
nen Methode für ein Job-Shop-System mit vier Arbeitsplätzen und vergleichen sie mit dem
aktuellen Forschungsstand. Anhand numerischer Simulationen zeigen wir, dass das WIP
durch den Einsatz von RMTs praktisch asymptotisch stabilisiert werden kann. Wir geben
theoretische und praktische Anweisungen zur Umsetzung der vorgeschlagenen Methode
für Hersteller, um ihnen zu helfen, die Betriebssicherheit und die Leistung der Fertigungss-
teuerung zu verbessern und eine nachhaltige, e�ektive und e�ziente Strategie der Kapaz-
itätszuweisung zu erreichen.
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1 Introduction

1.1. Motivation

Nowadays, manufacturing companies are confronted with the challenges to rapidly react
to dynamical, unpredictable market changes driven by global competition while maintain-
ing cost-e�ciency, high quality as well as a diversity level of production. That leads to a
signi�cant increase in dynamics and complexity [7]. Manufacturers as well as researchers
agree that the ability of a company to cope with market demand �uctuation is primarily
determined by capacity. Generally, the capacity in the production can be divided into three
aspects: the capacity of time, the capacity of space, and the capacity of manufacturing [8].
In particular, the last one is de�ned as the maximum rate of production and the ability to
yield production. Due to introduction of new kinds of products, machine breakdowns, un-
reliable deliveries or rush orders, the capacity is a�ected and changed over time [9, 10],
which renders manufacturing processes to be more complex and dynamic. Typically, the
required capacity is estimated during the planning and structuring phase of the design of
a manufacturing site and statically �xed on the strategic long term level. Unfortunately,
only rough data regarding future demands can be used, which typically leads to functional
shortages or unused capacities.

To deal with the resulting performance degradation and to achieve a good shop �oor
performance, capacity adjustment is one of the major e�ective tools in industrial manufac-
turing and logistic processes to react on �uctuations in demand [11]. Even small modi�ca-
tions during a high load period may improve performance signi�cantly [12]. Generally, an
adjustment of capacities is done by purchasing new equipment or reallocating work force
or utilities to temporarily increase/decrease the capacity, e.g. via �exible operators or ex-
tra hours, which are not long-term sustainable and are expensive especially in the western
countries where the labor cost is high [13, 14]. In this thesis, we propose a machinery-
based approach to adjust capacity via recon�gurable machine tools (RMTs), i.e. we adapt
the number of RMTs assigned to speci�c tasks on the shop �oor. As an additional degree

1
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of freedom with respect to capacity adjustment, RMTs exhibit quite competitive features in
the industrial manufacturing system relying on its strong ability to �exibly change capacity
and functionality. This recon�gurability and �exibility can be exploited best within manu-
facturing systems with high product diversity at small lot sizes, which is the case, e.g., for
job shop systems [11, 15].

Figure 1.1.: Types of demand �uctuation [3]

1.2. Researchqestion

Due to the frequent changes in demand, cf., Figure 1.1 and possible machine failures, the job
shop production processes exhibit highly dynamic and turbulent behavior, typically su�er
from high work in process (WIP) and occurrence of bottlenecks which seriously disturb the
normal operation. As WIP is essential for all key performance indicators, we propose to
control the WIP level directly to the planned or an acceptable level through utilizing capac-
ity adjustment via RMTs to eliminate or periodically shift bottlenecks within the process
[4]. As an enabler for capacity adjustment through changing modulars to perform di�erent
operational requirements, RMTs can be allocated to workstations to balance capacity and
load in case of bottleneck. However, due to the inherent recon�guration delay including
the installation time, recon�guration time and ramp-up time, recon�gurable control with
respect to RMTs is not just a simple machine allocation but with non-symmetric. In the recon-
�guration phase, the number of RMTs with an increase requirement does not change, in the
contrast, the capacity of already recon�gured machines and the whole system’s capacity
immediately decrease which impacts on the system performance, extends the throughput
time or even may destabilize the system. Controlling such recon�guration becomes a build-
ing block on dependability of feedback control [16].
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Business
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Optimization & Control

(Operational level)

Figure 1.2.: Production planning, scheduling, and control hierarchy

As job shop systems typically are coupled constrained multi-input multi-output (MIMO)
processes with disturbance, they are intractable for traditional proportional integral deriva-
tive (PID) controllers, which have been successfully applied to single-input single-output
(SISO) systems [13, 17]. Also, the capacities of all shop �oors shall be considered at once to
avoid shortages and unused capacities of di�erent shop �oors. Therefore, a central control
instance is appropriate, especially with prediction functionality.

Faced with complex and dynamic manufacturing environment, keeping the manufac-
turing process as stable as possible is of utmost importance for manufacturers to facilitate
increased production, lower energy costs and achieve a high reliability of delivery time
[18, 19, 20]. Typically, the basic stability refers to general predictability and consistent
availability in terms of manpower, machines, materials and methods, which is also called
4Ms. In this thesis, we focus on the latter three elements on the operational layer where
the manufacturing process control is integrated in an enterprise planning and control hi-
erarchy [21, 22], cf., Figure. 1.2. As a result, we cannot determine the order release rates
to any of the workstations. That is di�erent from workload control in which the WIP can
be controlled by means of changing order release rate (materials) to the shop �oor [23, 24].
Instead, we employ control (methods) to internally dynamically adjust capacity via RMTs
(machines) to maintain WIP in the manufacturing process for a given order release rate,
which is a prerequisites for achieving a good shop �oor performance. Through the possi-
ble minimum recon�guration e�ort under constraints, our aim is to guarantee the stability
of the closed-loop system with possible frequent recon�guration, and steer the system state
(WIP) to the desired levels after disturbance (e.g. rush order, demand �uctuation in quantity
or product variety). That is, we not only guarantee the steady-state performance but also
pursuit the transient performance.
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Considering all the above factors, the main research question along with several sub-
questions are given:

Given the operational layer, how can the WIP be asymptotically stabilized by usage of
RMTs?

Q 1. How can RMTs be integrated in a WIP based model of a job shop system?

Q 2. How can the model be complemented by operational key performance indicators
(KPIs) to allow for predictive planning?

Q 3. How to guarantee the asymptotic stability?

1.3. Research objectives

The research objectives of this project are summarized as follows:

• Improve the potential of current processes to �exibly react on these �uctuations in
the medium and short term via RMTs on the operational layer to eliminate or shift
bottleneck via capacity adjustment.

• Develop and formulate a set of recon�guration rules for the determination of the
triggered RMTs in accordance with di�erent KPIs.

• Develop a closed-loop system with RMTs for capacity adjustment to achieve the
damping of negative e�ects of external demand �uctuations for a smooth operation
on the shop �oor.

• Improve the operational reliability of the logistic e�ciency through guaranteeing
stability of dynamic manufacturing process with the possible but necessary frequent
recon�guration.

1.4. Outline of thesis and research contribution

The research aims at a systematic analysis of the potential of RMTs and the development
of control strategies utilizing the dynamics of the manufacturing and logistic process for
a sustainable demand oriented capacity allocation. The development of control strategies
will be parameterized and analyzed in a simulation model. The results will allow us to re�ne
the individual selection and parameterization of control strategies for the speci�c in�uence
on logistics key performance indicators. The main research structure of thesis is sketched
with Figure 1.3, and the detailed structure of this thesis is given as follows:



1.4. Outline of thesis and research contribution 5

Chapter 6
Q 3.

Control

Planning
Q 2.

Chapter 5

ModellingChapter 4
Q 1.

Asymptotically stabilizing WIP by

usage of RMTs in job shop system

Figure 1.3.: Main research structure of thesis

• Chapter 2 is driven by system theory with literature review which includes the mod-
elling methods of manufacturing process, approaches of capacity control as well as
development of recon�gurable manufacturing system and RMTs.

• Chapter 3 is the brief introduction about mathematical theory including stability,
control, and optimization. As a theoretic foundation, it is indispensable for the later
implementation of the proposed method.

• In Chapter 4, we integrate the new class of RMTs into a shop �oor for capacity ad-
justment and built up a discrete state space model under reasonable assumptions. In
addition, we introduce a general recon�guration rule for the determination of the
triggered RMTs, which is applicable to any types of controller, especially for those
without prediction functionality.

• In Chapter 5, we propose a real time applicable closed loop control law utilizing model
predictive control (MPC) with RMTs to maintain WIP in the presence of demand
�uctuations. To resolve the integer assignment of RMTs, we propose three di�erent
approaches - the straightforward way via �oor operator, deterministic branch and
bound (B&B), and stochastic genetic algorithm (GA). Relying on the capability of
dealing with the relationship between prediction horizon with recon�guration delay
via MPC, we formulate a tailored recon�guration rule concerning WIP tracking based
on a priority strategy for the determination of the trigged RMTs in the framework
of MPC setting. Also, we provide an algorithm with respect to counting times of
recon�guration whiling taking recon�guration cost into account. Last, some ideas
are given to reduce the computational burden.

• In Chapter 6, we systematically analyze the stability in both of qualitative and quan-
titative ways via two categories of stabilizing MPC controllers. We �rst qualitatively
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analyze the asymptotic stability property in case of continuous variables with and
without terminal endpoint constraints, respectively. Further, in the presence of inte-
ger constraints and recon�guration delays, we consider the terminal cost and termi-
nal region method for practical stability where ultimate boundedness must be guar-
anteed in the designed terminal region which is di�cult to construct in the time-
varying case. Then we quantitatively analyze practical stability in accordance with
the trajectory-dependent approach to online estimate the degree of suboptimality in
both a posterior and a priori ways. Since recon�guration delays may lead to local
instability, we �rst approximately analyze the closed-loop trajectory and show that
the closed-loop trajectory would converge to the practical stability region. Then we
propose to combine the adaptive NMPC approach with the principle of �exible Lya-
punov functions that allow the value of cost functional to increase locally but with
an average decrease in future steps.

• Chapter 7 provides numerical results including validation of the proposed method in
Chapter 6, interpretation of simulation results and sensitivity analysis. In case of con-
tinuous usage of RMTs, we compare the closed-loop performance between MPC with
terminal endpoint constraints with PID. Later, considering integer constraints and re-
con�guration delays, we compare PID-�oor (i.e., PID with �oor operator), MPC-�oor
(i.e., MPC with �oor operator), MPC-B&B (i.e., MPC with branch and bound) and
MPC-GA (i.e., MPC with genetic algorithm) concerning tracking performance, com-
putational time, etc. Furthermore, a posterior suboptimality estimate is computed to
show practical stability. The in�uence derived by the recon�guration delay is quanti-
tatively analyzed in terms of the transient performance (e.g. settling time) and the size
of practical region in the steady-state phase. The sensitivity analysis is carried out
including initial conditions, prediction horizon, dynamic �ow control. Last, through
a simple case, we show how the �exible Lyapunov function works in case of local
instability.

• In Chapter 8, we conclude our work and provide instructions concerning implemen-
tation of the proposed method for manufacturers to help them improve operational
reliability and shop �oor control performance, and achieve a sustainable, e�ective
and e�cient capacity allocation policy. After our conclusion, an outlook is presented
for further possible research directions.



2 The State of the Art

This chapter presents the review of related references. Section 2.1 is a brief introduction
on types of manufacturing system. In Section 2.2, several modelling approaches of man-
ufacturing processes are reviewed. Then, a manufacturing control model incorporating
logistic objectives (e.g., WIP) is presented in Section 2.3. To e�ectively regulate the WIP,
capacity control from the view of output control is introduced, which includes control the-
oretic approaches in Section 2.4.1 as well as the development of recon�gurable manufactur-
ing systems (Section 2.4.2) along with RMTs for implementing �exible capacity adjustment
(Section 2.5).

2.1. Types of manufacturing system

Manufacturing systems are considered as the industrial backbone of countries, especially
in the context of Industry 4.0. The evolution of manufacturing systems along with fu-
ture enabling directions was comprehensively reviewed in [25]. Typically, manufacturing
systems include �ve general categories, i.e., project shop, �ow line, continuous manufac-
turing system, batch process and job shop. The position of products manufactured in the
project shops are �xed due to their size or/weight during the manufacturing process, e.g.,
aircraft and ship building industries. Its production scale is the lowest one among all types
of manufacturing systems. A �ow line is used to produce high volumes of products at
high production rates and low costs. Its WIP is low and manufacturing lead time is short.
Since the machines are designed for speci�c operations, only the speci�ed products can be
produced. In a batch process, the products are manufactured sequentially over a series of
workstations and di�erent batches can be produced. Continuous manufacturing systems
are analogous to �ow lines which produce a low variety but large volume of products, yet
the raw material are liquids, powders, gases, etc.

To meet individual requirements of products, a job shop production system is one ef-
fective organization to manufacture a variety of products of small lot sizes at a reasonable

7
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cost by utilizing the best suitable technology for every job [26]. It is organized via multi-
ple workstations, which typically consist of machines o�ering identical functionality. Most
researches concentrated on studying job shop scheduling problems by using optimization
methods including mathematical theory or meta-heuristic methods to improve on certain
performance criteria, e.g., minimizing the total completion time for all jobs or minimizing
the makespan [27, 28, 29, 30, 31]. Yet, the performance during the optimization period can-
not be guaranteed if the system is subject to unpredictable events during operations (e.g.,
demand �uctuation, machine breakdown), and the exact schedule may often be infeasible
[24]. Additionally, these unexpected disturbances may render job shop systems to be more
complex and dynamic as they may lead to bottlenecks of one machine or workstation or
results in high WIP, long lead time, low capacity utilization and low reliability of due date
[12]. In turn, these issues may results in instability of the system and impose high pressure
on the shop �oor control.

In order to shorten lead time and improve the reliability of delivery time, one could
release orders earlier, which is intended to increase output rates. Doing so, however, may
destabilize the system, cause unbounded growth of WIP, additional inventory cost, require-
ment of large storage space and even loss of consumers [32]. Alternatively, manufacturers
can o�er discounts for consumers as compensation for possible delivery delay. This reac-
tive solution is ine�ective and may be infeasible if the due date is a hard constraint. Thus, a
real time control to compensate the above issues is indispensable. In order to alleviate the
resulting performance degradation and to achieve a good performance of the shop �oor
control, the critical task is to match time-phased capacity requirements with the available
capacities which can be achieved via e.g., capacity adjustment [11].

2.2. Modeling and control of manufacturing

process

Typically, job shop systems are utilized within dynamic environments and are subject to
internal and external disturbances [19]. External ones, such as rush orders may cause the
product variety and quantity to be changed. Internal ones, on the other hand, such as ma-
chine breakdowns, production rates, etc., may in�uence downstream production stages.
Additionally, dynamic job shops are complex in design as future conditions cannot be an-
ticipated given historical data. Hence, it is important to predict and control the dynamic
behavior to maintain the performance criterion at each decision point and keep the process
alive. In operational planning and control for manufacturing systems, several di�erent ap-
proaches are known to predict and improve the dynamic behavior of such systems, which
includes queuing network theory, discrete event simulation (DES), system dynamics (SD)
and control theoretic approaches [17].
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2.2.1. Non-control theoretic approaches

Queuing network theory is a common approach to analyze and evaluate the performance
of production systems and represents a mathematical abstraction from real production sys-
tems. However, this approach generally is typically loaded at the scheduling layer for the
analysis of the steady-state behavior of a production system, and is not applicable to study
the detailed behavior of the dynamics [33]. In general, most real production systems show
a multivariable property and negative feedback loops under transient conditions, which
are too complex to analytically derive a mathematical formulation using queuing network
analysis.

Based on discrete inherent properties, DES is one of the most commonly applied tech-
niques for analyzing and understanding dynamic production systems, and can be seen as a
representation of real system [34]. The process �ow and the on-screen movement in DES
can be valuable tools in providing increased understanding of a process [35]. It has the ca-
pability to perform a detailed analysis of a speci�c system or linear process and change the
state variables instantaneously at separate points in time [36]. Yet, DES entails rather high
modeling e�orts and is limited to time frames. It is not typically capable of predicting the
dynamic behavior under transient conditions and cannot be utilized to design strategies to
modify or mitigate the negative in�uence of perturbations without a closed loop.

SD is an alternative methodology, which allows decision-makers to model a variety of
scenarios and observe how the system could perform under di�erent conditions. Particular,
capturing the information �ow and o�ers of feedback for dynamic processes can be ana-
lyzed by SD [37]. A major point of system dynamics is that the structure of a system can
be modi�ed to improve performance. In [38], the authors developed a comprehensive dy-
namic model for real-time production and planning control system in an arbitrary job-shop
via SD. Yet, this technique typically does not provide analytical solutions and then cannot
identify the transient dynamic behavior. A good transient performance is very important
in any dynamic turbulent environment and a sensitivity analysis is always carried out in
the transient phase (e.g., setting time) besides the steady-state [39]. Additionally, using DES
and SD approaches, a heuristic or a trial and error method has to be applied repeatably to
derive a good solution, which represents an open loop scheme only. Unfortunately, these
approaches fail to address the permanent and stochastic nature of the problem at hand.

2.2.2. Control theoretic approaches

Control theory provides various tools to analyze control process dynamics and has been
widely applied in mechanical systems or chemical processes for many years. Yet, only
a couple of researchers studied on the usage of feedback control in manufacturing sys-
tems. One major reason may be that the lack of su�cient data for feedback information
involved in modeling production systems — hence the outcomes had limited applicability
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in production control. However, the development of Radio Frequency Identi�cation (RFID)
technology and other sensor systems in the framework of Internet of things (IoT) render
closed-loop control to be practically applicable [40, 41, 42].

Control theory methods in production were recognized in [43], where the authors re-
viewed respective applications for with the production-inventory problem. They indicated
that there is a big potential in manufacturing for predicting demand and providing the re-
quired feedback information, especially for deterministic models at an aggregated level.
A comprehensive review of control theory on production lines was presented in [44]. It
included that classical control theory such as block diagram algebra, bode plots, transfer
function, z transform and optimal control that use Dynamic Programming and Pontrya-
gin Maximum Principle, etc. [45, 46]. In [47], the authors summarized the application of
control theory in the dynamic modeling and control of supply chain systems. The control
theoretical modeling of the transient behavior in the context of production planning and
control was surveyed in [17]. The recent study of control on the �eld of inventory, manu-
facturing and queuing systems has been comprehensively reviewed in [48]. A quiet recent
survey of control theory application on modern production and logistics systems, supply
chains and Industry 4.0 was conducted in [49]. With the advanced physical equipment and
maturely developed control theory methods, there are many possibilities and potentials to
apply appropriate control techniques in modern manufacturing, cf., Figure 2.1.

Reference
(Target level) Error Controller

(Decision)
Delay

(Lead time)

Input

Sensor

Disturbance
(Demand)

Measured output

Plant
(Process)

Output

Figure 2.1.: Interpretation of control theory applied in manufacturing process

2.3. Logistics objectives in a manufacturing

control model

In order to help practitioners to better understand the relationship between manufacturing
control with logistics objectives, a manufacturing control model was built incorporating
four performance indicators – low WIP inventories, low throughput time, high machine
utilisation and high delivery reliability, cf., Figure 2.2. The aim of control theory method on
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manufacturing control is to regulate the controlled variables (e.g., WIP) to the desired levels
by the de�ned actuating variables even if disturbances occur [4]. As WIP is a key and es-
sential variable in the manufacturing processes control, which indirectly in�uences other
indicators, we focus on controlling WIP directly.

Order
release

Actual
input

Capacity
control

Actual
output

WIP

WIP

Throughput
time

Utilization

Sequencing Actual
sequence

Backlog

Schedule reliability

Sequence
deviation

Planned
output

Planned
sequence

Objectives

Controlled variables

Actuating variables

Tasks
Di�erence

Figure 2.2.: A manufacturing control model based on [4]

2.3.1. Work in process

Work in process (WIP) in manufacturing refers to the orders already being processed at
workstations and those which are still waiting to be processed. Since WIP ties up capital
and belongs to non-reinvesting cost and the capacities of bu�er for storing WIP is typically
small, it needs to be optimized and controlled [40]. Generally, WIP is regulated through
adjusting the order release rate to achieve a stable production process and improve the
shop �oor control performance. Many methods have been developed, e.g., constant WIP
control [50], decentralized WIP-oriented manufacturing control [51] and workload control
[23, 24, 52, 53]. Yet, the probability of high load periods was not decreased by using order
release control in the form of input control [53], cf., Figure 2.2. On the other hand, capacity
control from the view of output control has not received much attention. As a crucial ac-
tuating variable, the actual output rate (cf., Figure 2.2) determined by any capacity control
in�uences both WIP and backlog control variables and therefore signi�cantly impacts all of
the logistic objectives [4]. Typically, capacity planning is concerned with resources and fac-
tors which a�ect the decision of manufacturer to produce products including equipments,
manpower, time, etc. The goal of capacity control is to reach the best optimal policy on per-
formance indicators and resources utilization to meet customer demand while considering



2.4. Approaches of capacity control 12

the constraints in kinds of operational objectives. In [12], the authors demonstrated that
during a high load stage, even a slightly decrease in WIP via capacity adjustment would
alleviate the strain and improve the production and scheduling e�ectiveness.

Apart from WIP, there exists other performance indicators. Throughput time refers to the
time period from order released to the shop �oor until its completion. In made to order pro-
duction, throughput time is the lower limit for the delivery time to customers. Improving
the schedule reliability and achieving a short delivery time is important for both of man-
ufacturers and consumers. Utilization represents that usage of workforce (e.g., manpower,
machines). Typically, if the WIP is higher, then the utilization is comparatively better due
to su�ciently many arrival orders to be processed without waiting time. Yet, if customer
demand is greater than the available capacity of a bottleneck, then this signi�cantly im-
pacts on production e�ciency and stability [54]. Moreover, the machine utilization before
a bottleneck workstation decreases, which leads to lost sales and pro�ts. At the same time,
it leads to a long lead time and low reliability of due dates for the overall system. Regarding
the area of optimal WIP, it has been studied with the help of logistics characteristics curves
for one work system [55] and further extended to production networks [56]. Note that the
optimal area of WIP is typically achieved by adjustment of the order release rate to obtain a
comparatively short throughput time along with a comparatively high machine utilization
[56]. In this thesis, we only focus on the operational layer. As a consequence, we cannot
in�uence the order release rates to any of the workstations. Instead, given the expected
WIP level, our task is to utilize capacity adjustments via RMTs to balance capacity and load
in case of bottlenecks.

2.4. Approaches of capacity control

In general, approaches of capacity control that focus on working times are divided into
backlog control, plan oriented capacity control, due date oriented capacity control, output
rate maximizing capacity control and inventory based capacity control [4, 11]. Yet, the cost
of labor oriented approaches is relatively high and it is not a sustainable solution in a long-
term consideration. Alternatively, capacity control via machinery can be accomplished by
control-theoretical approaches and recon�gurable manufacturing systems [11].

2.4.1. Capacity control via control-theoretical approaches

Control-theoretical approach as a very strong powerful tool for analysis and control of
manufacturing process was introduced in Section 2.2.2. In this thesis, our aim is not to go
through all performance indicators available for job shop control. Instead, we only consider
how to e�ectively regulate WIP. More speci�cally, we restrict ourselves to controlling WIP
of each workstation to the desired values via capacity control. For this arena, we conduct
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a review of the related literature and present the representative works.
Utilizing a funnel model and logistics operating curve, [57] built up a continuous �ow

model for the description of dynamic job shop systems. Moreover, they designed a WIP
controller in conjunction with a backlog controller to control WIP and eliminate the back-
log through adjusting order release rate and capacity. The results indicated that the con-
vergence of backlog and mean WIP level with control was faster than in the uncontrolled
case in the presence of an unplanned urgent order. In [58], using transfer function and
proportional capacity control, the authors developed a dynamic closed-loop model of a
multi-workstation system without information sharing and further extended it to a cou-
pled closed-loop capacity adjustment with information sharing to control WIP [59]. In
[10], continuous time modeling and simulation methods concerning local capacity control
were evaluated via a discrete state space model setting and further compared with DES.
The results indicated that there was a subtle di�erence in terms of mean and variation of
WIP and lead time, which showed that the control theoretic approach provides an addi-
tional research possibility on manufacturing process control [57, 58, 60]. However, due to
lack of representation of individual orders and machines, such �delity of regulating WIP
by using a control-theoretic model would decrease at extreme operating conditions, e.g., at
low WIP level, or require large capacity adjustments [61]. Nevertheless, using a trial-and-
error method and a theoretical analysis can improve the potential �delity of such dynamic
models and therefore can be applied in the design of large production control network. [62]
introduced a class of production network in the form of a discrete-time singular. They em-
ployedH∞ control for capacity changes with time-delay. The WIP level in each workstation
was maintained and the system’s asymptotic stability was guaranteed by an appropriate
Lyapunov function. In [63], an optimal adaptive WIP regulation scheme was proposed in
accordance with the coordination of multiple capacity adjustments modes under di�erent
adjustment periods and delays. [64] applied the concept of bond graphs to the manufac-
turing system and introduced a model of multi-product job shop system. The system was
designed to maintain a desired WIP level by means of a proportional controller. [65] fur-
ther utilized bond graph and presented a dynamic multi-product model, which was driven
by MPC for the frequency analysis. In [66], the authors systematically summarized the
traditional methods in production line control, e.g. base stock, Kanban, constant WIP, dy-
namic WIP and learning agents. A comparative analysis of the such methods was carried
out. Thereafter, they also presented a collaborative control theory approach to maintain
throughput while reducing the required level of WIP. The study pointed out that the latter
was superior to the previous relying on optimization of the system performance with the
updated system states.

The above reported works gained fruitful results and signi�cantly improved shop �oor
control performance. However, the potential of recon�gurable manufacturing systems
along with recon�gurable machine tools for capacity adjustment was ignored.
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2.4.2. Reconfigurable manufacturing systems

Recon�gurable machine systems (RMSs) was �rst proposed by Yoram Koren at University
of Michigan. These are �exible by construction and designed to rapidly change production
capacity and functionality with a part family in response to market requirements [67, 68].
Such systems show signi�cant impact on sustainable manufacturing to improve the respon-
siveness to market changes while remaining cost-e�ective [69]. The characteristic of RMS
include modularity, scalability, integrability, convertibility, diagnosability and customiza-
tion [1]. Scalability and convertibility refer to the ability of �exibly changing the capacity
and functionality, which are achieved through modularity, integrability, and diagnosability.
Typically, the scalability of RMS can be achieved more easily to achieve than convertibility
as the latter will result in production interruption [70]. Last characteristics, customization
means that the system and machine �exibility are not broadly like FMS but limited and
customized to a speci�c product family. In [71], a �uid dynamic model analogy for RMS
was developed by a control theoretic approach. The stability was ensured by the bounded
recon�guration rate and the response delay to demand variations. Considering risk and
uncertainty in the RMS before investment, the feasibility of the construction of an RMS on
a tactical level was evaluated by the fuzzy analytical hierarchical process in [72]. Inspired
by the delayed product di�erentiation, a concept of delayed RMS was proposed in [70]. The
authors constructed a new basic RMS structure to maintain part of production activities via
semi-�nished products to reduce the production loss.

In order to enhance the responsiveness in the dynamic production environments and to
react to external demand, companies push forward from �exibility to recon�gurability [73],
e.g., recon�guring their products and processes in the RMS. Recon�gurability is a very im-
portant property, which is de�ned as the ability to permanently change its components in a
�exible and cost-e�ective way to accomplish prede�ned objectives [7, 74, 75]. The achieve-
ment of recon�gurability in RMS includes three hierarchical levels shown in Figure 2.3. On

System level Line/cell level Machine level

Basic modules

Auxiliary modules

Figure 2.3.: Structure of a recon�gurable machine system
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the system level, recon�gurability is achieved by adjusting the number of manufacturing
lines. Through adding and removing or changing the positions of these machines, the re-
con�gurability at line level is achieved. Regarding the machine level, the core component
and key enabler of RMS is the so-called RMT which is customized to perform a variety of
operations by �exibly adding or removing its auxiliary modules associated with the usage
of basic modules when and where needed, owning a plug and play characteristics. The RMS
may consist of dedicated machines, CNC machines, and RMTs. Investment and con�gura-
tion of these machines are determined by managers on a strategic and planning level. For
instance, the optimal portfolio of recon�gurable and dedicated capacity under uncertainty
was investigated on a planning level in [76]. It indicated that the percentage of Dedicated
Machine Tools (DMTs) and RMTs should be driven by the relative cost to maximize the
portfolio as well as by the prediction on how often new products would be introduced and
by the expected level of demand.

The development of RMS along with RMTs plays an important role in the context of
Industry 4.0 and increasingly attracts a lot of researchers to contribute on it. Faced with
changeable customer demand, the core is the con�guration design of manufacturing sys-
tem. In [77], a con�guration management and a sequential approach for production plan-
ning in RMS was proposed to optimize allocation of resources. In [78], an optimal con�gu-
ration planning method was introduced to enhance �exibility in a dynamic manufacturing
system. The capacity scalability and functionality of RMS changes could be realized by
using mixed integer linear programming. In [79], the authors proposed a recon�guration
point decision method for the best recon�guration time in RMS. In [80], the authors pro-
posed an IoT-based RMS to solve the recon�guration planning problem. The four main
components – people, process, data and things in the framework of IoT corresponds to op-
erator, recon�guration, RMT and di�culty of recon�guration, respectively. The authors
built a mathematical model by Plant Simulation to determine the most e�ective con�gura-
tions while minimizing the recon�guration cost and time. Recent developments and future
directions of RMS were comprehensively introduced in [81], which is strongly linked to
Industry 4.0.

The study of RMS gained a lot of fruitful results but mainly focused on the system level.
The approaches of recon�gurable manufacturing systems regarding capacity adjustment
still remains on a rather abstract modelling level [11, 82]. Considering the limited space,
investment and high reliability of delivery time, recon�guring an existing RMT is of pref-
erence compared to replacing the entire RMT [5]. Therefore, in this thesis, we focus on the
machine level and exploit the potential of RMT concerning capacity adjustment and com-
bine it with a control theoretic model of job shop systems to achieve logistics objectives.
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2.5. Reconfigurable machine tools

In the view of machine equipments, traditional machine tools such as DMTs and Flexible
Machine Tools (FMTs) cannot meet the requirements to compensate for frequent demand
�uctuations. DMTs are designed to produce a single product at a high rate of production,
which is achieved by utilizing all tools simultaneously. The only way to enhance the ca-
pacity is to purchase additional equipment. While this covers for peaks in demand, these
tools may stay idle or remain underutilized at normal demand levels. FMTs can produce a
variety of products according to respective demands, but are very expensive and typically
their full functionality is not exploited which results in unnecessary costs due to software
development and installation. As they are not designed for structural changes, thy are not
suitable to react to persistent market �uctuations. Hence, considering a manufacturer’s
point of view, a sustainable machine tool is required which allows for increasing �exibility,
improving the productivity, reducing energy consumption, shortening delivery times and
enhancing responsiveness in the presence of demand �uctuations [83].

Aiming to ful�ll these wishes, RMTs were developed as a new class of machine tools,
which combine the high throughput of DMTs and �exibility of FMTs [84], cf. Table 2.1.
These machines are designed modularly for customized operation requirements and may
be cost-e�ectively, quickly and permanently recon�gured in an open-architecture, which
renders them ideally suited for a machinery based capacity adjustment in the presence of
short or mid-medium �uctuation in demand [56, 84], cf., Figure. 1.1. In contrast to rebuild-
ing, recon�guration as the key factor to handle the exceptions and performance deteriora-
tions in manufacturing systems [85] does not focus on the preparation of the machine to
complete an order, but to adapt the structure, technology and functionality including the
functional capacity of the manufacturing site.

Table 2.1.: RMT combines features of dedicated and CNC machines [1]

Dedicated RMT/RMS CNC/FMS

System structure Fixed Adjustable Adjustable

Machine structure Fixed Adjustable Fixed

System focus Part Part family Machine

Productivity High Medium Low

Scalability No Yes Yes

Flexibility No Customized General

Cost Low Medium High

Simultaneous operating tools Yes Yes No
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The illustration of a work�ow of a manufacturing process with RMTs is given in Fig-
ure 2.4. In the �rst place, the customers launch order requests to industry and place the
orders. Second, technicians convert these orders into design requirements and send them
to designers who are responsible for establishing the manufacturing system to satisfy the
requirement. Third, operators adjust the manufacturing system and handle those orders on
the shop �oor. Last, when the parts are completed, they will be delivered to the customers.
In this thesis, we consider the operational layer which is the case of the third step. Recent
development of RMTs was investigated in [86], indicating that the contributions mainly in-
clude the three �elds: architecture design, con�guration design with optimization as well as
system integration and control. Within this thesis, we cannot consider all references avail-
able concerning study of RMTs. Instead, we choose some key contributions which were
published in the high level journals. Also, we pay attention to the development of RMTs,
especially for the recent years.

Figure 2.4.: Work�ow of a manufacturing process with RMTs [5]

2.5.1. Architecture design

In order to ful�ll a variety of operations to meet productivity and functionality, the designed
RMTs have to take the mechanical requirements including kinematic viability and structure
sti�ness into account. The modular design of RMTs on hardware level was conducted in
[87, 88, 89, 90, 91, 92]. The control and mechanical requirements of RMT was presented in
[84, 93, 94, 95]. Several types of RMTs have been developed for the design of manufacturing
processes, such as module 3-axis RMT, arch type RMT, which allow the implementation of
multiple operations [96, 97].
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2.5.2. Configuration design with optimisation

In [98], the authors optimized the production process plan associated with the con�gura-
tions of RMTs via a genetic algorithm to improve production capacity and reduce produc-
tion cost. In [99], the authors investigated the optimal design of dedicated and recon�g-
urable manufacturing systems for adapting to a variable market demand with the mini-
mization of investment costs. Such kind of combinatorial optimization problem is NP-hard,
which can be solved by meta-heuristics strategies to achieve suboptimal solutions, e.g.,
genetic algorithm, particle swarm optimization, ant colony optimization, etc. In [97], the
authors developed a hybrid generic design AND-OR tree and AND-OR graph for the opti-
mal design of a recon�gurable process and of con�gurations of RMTs. The solutions were
later identi�ed by a multi-objective hybrid optimization. To balance the trade-o� between
economy and responsiveness, [100] applied the non-dominated sorting genetic algorithm
to solve a multi-objective optimization problem for the optimal selection of machine con-
�guration. The performance index indicated cost, operational capability and machine re-
con�gurability. Then these obtained solutions were further analyzed and ranked by the
“technique for order preference by similarity to ideal simulation” approach.

In [69], relying on production capability of RMTs, the authors studied a single prod-
uct line to satisfy demand changes. The production capacity was increased or decreased
through adding or removing auxiliary modules for performing di�erent operations, and
also purchasing new RMTs to increase capacity while minimizing recon�guration cost and
capital investment cost. To exploit the best con�guration, a mixed integer linear program-
ming problem was formulated. Two cases concerning cost management were presented to
demonstrate the e�ciency of the proposed method. In [5], based on graph theory method, a
tree-based decision approach for the determination of a con�guration design of RMTs was
proposed. The satisfactory con�guration was conducted to meet operational requirements
while minimizing cost and maximizing recon�gurability. The most satisfactory con�gura-
tion from the feasible design space could be derived based on the performance indicators.
In [101], the authors built a multi-objective optimization model incorporating con�gurabil-
ity, cost and process accuracy for RMTs design. A modi�ed fuzzy-Chebyshev programming
approach was proposed which allows to dynamically adjust objective weights in the search
space. The derived solution was obtained by particle swarm optimization.

2.5.3. System integration of control

In [102], the authors formulated recon�gurability of RMTs in a discrete event system re-
garding its corresponding con�gurations. A polynomial-time algorithm was proposed for
the construction of a recon�guration supervisor. The con�guration states were monitored
by means of supervisor control and allowed controller modi�cations during time run. In
[103], an intelligent Fuzzy PID controller was designed to provide a viable solution in an
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open-architecture control system for RMTs. The controller was able to guarantee stabil-
ity, to achieve set point tracking and also to provide a certain robustness over a range of
operating conditions and parameters changes. In [104], using quantitative feedback the-
ory with arti�cial neural networks, a robust controller was designed for running recon-
�gurable micro-machine tools under di�erent operation points with parametric uncertain-
ties. In [15], a hybrid system which consists of DMTs and RMTs was analyzed in terms of
productivity and make span by means of discrete event simulation. Taking into account
frequent recon�guration cost, the responsiveness of RMT was measured and evaluated by
operational capability and machine recon�gurability metrics [105]. The recon�guration
time was much less than the time to repair a broken machine, usually less than two hours
[11], which showed that recon�guration is an e�ective strategy to handle exceptions or
short-term �uctuations in terms of production system performance [85]. This recon�gura-
bility and �exibility can be exploited best within manufacturing systems with high product
diversity at small lot sizes, which is the case, e.g., for job shop systems [11].

2.6. Capacity control with RMTs in job shop

systems

The potential of RMTs for capacity adjustment was �rst exploited in job shop systems in
conjunction with workforce �exibility in [11], which is referred as “throughput time har-
monising capacity control (THCC)” to react to demand �uctuations in the presence of bot-
tlenecks. Further, the proposed method was evaluated in real time and compared to the
real-world data from a manufacturing company and the due-date oriented capacity control
method in terms of mean throughput time, mean inventory range, mean utilization, adher-
ence to due date and makespan. The results indicated that using THCC method outper-
formed the other two for all performance indicators. As discussed before, capacity control
on machinery can be achieved by either using control theoretic approaches or recon�g-
urable machine tools. Taking the respective advantages of both approaches, i.e., capacity
control via RMTs conducted in a control theoretic model, on the one hand, production �ex-
ibility and responsiveness can be accomplished by RMTs under unpredictable events. On
the other hand, the inherent characteristics of recon�gurability with changeable capacity in
RMSs/RMTs allows to apply control theory method to identify a good con�guration. Based
on the captured production data in a closed-loop feedback, RMTs can recon�gure to �uc-
tuations in demand [86]. In [106], capacity adjustment with RMTs was �rst implemented
by a PID control method, which aimed at maintaining WIP on a planned level in a four-
workstation job shop system. The achievement of a desirable dynamic transition behavior
was attained. Yet, this method cannot handle constraints e�ectively and additional mea-
sures to decouple the MIMO process are required. Further, considering the uncertainties
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and disturbances in the dynamic manufacturing process, the authors modeled a job shop
system with RMTs and decomposed it into two operators for the design of robust stabilizing
controllers [60]. Afterwards, they designed a tracking controller with respect to WIP. The
tracking performance could be ensured in the presence of bounded uncertainty by robust
right coprime factorization. The advantage of this method is to naturally handle coupling
e�ect between the workstation. Once the robust controllers was analytically derived, it was
ready to be used in the nonlinear dynamic process. Yet, such operator controllers are very
di�cult to be derived and also cannot e�ectively deal with constraints.

In order to reduce the negative e�ects and achieve a high quality of shop �oor control
performance, in this thesis, we will use a predictive technique with a time planning horizon
(i.e., MPC) to control the manufacturing process with RMTs for capacity adjustments. Since
MPC is capable of incorporating the system dynamics including recon�guration delays, the
key performance indicators and the constraints of the process into a feedback law, it is ready
to be used and expected to improve the operational reliability.

2.7. Summary

In order to cope with �uctuations in case of bottlenecks, capacity adjustment is an e�ec-
tive proactive measure and generally achieved by �exible working hours. Yet, this is not
a sustainable solution especially in the western countries with a requirement of high-paid
wages. As a new type of promising machine tools, RMTs can change their capacity and
functionality when and where needed to meet production requirements in a cost-e�ective
way, which is especially bene�cial for job shop systems [11]. In a turbulent dynamic man-
ufacturing environment, the potential of RMTs as well as new of possibilities regarding
planning and control of the capacity shall be urgently exploited and employed. To this end,
the development of RMTs, of modelling strategies of manufacturing process and of capacity
control approaches were introduced. The control-theoretical approach can be used to un-
derstand and analyze the fundamental behaviors in both steady-state and transient phases.
Combining capacity �exibility of RMTs with control theoretic approaches, both capacity
and load can be e�ectively balanced with a quick response to demand �uctuations.



3 Definitions and Preliminaries

In Chapter 2, we showed that RMTs may be applied as an additional degree of freedom
for capacity adjustment in job shop systems to maintain WIP in the presence of demand
�uctuations. Yet, RMTs are only an enabling technology on the operational level. To render
capacity adjustment e�ective and ensure sustainable quality and preferable performance in
the future industrial manufacturing, it is necessary to complement these tools with respec-
tive modeling and control strategies to improve e�ciency and reduce risks with respect
to changing con�gurations. Thus, the goal of this chapter is to present the basic concepts
with respect to optimization (Section 3.2), control and stability (Section 3.3), and in particu-
lar the stability of MPC (Section 3.5), which is basically cosponsoring to the main research
route, cf., Figure 1.3. As a mathematical foundation and tool, this will be used to address the
integer assignment of RMTs in Chapter 5 based on the introduced optimization techniques
from Section 3.2 and analyze the stability of closed-loop system controlled by MPC with
RMTs in Chapter 6 based on the knowledge introduced in Section 3.5.

Notation: Through this thesis, we denote the natural numbers including zero by N0 and
the nonnegative reals by R≥0. For a vector x ∈ Rn, n ∈ N, ‖x‖ =

√∑n
j=1 x

2
j is represented

as the 2-norm. For sets ΩA and ΩB , we denote the set subtraction ΩA \ ΩB := {x ∈
Rn|x ∈ ΩA, x /∈ ΩB}. For a square matrix P ∈ Rn×n, we denote λmax(P ) and λmin(P )
as the maximum and minimum eigenvalue of the matrix, respectively. We denote P> as
the transpose matrix of P and denote its derivative as ∂x>Px

∂x
= (P + P>)x. For a variable

x ∈ R, the �oor operator b·c is de�ned as bxc := max{a ∈ Z : a ≤ x}. For vectors
x ∈ Rn, y ∈ Rn, b ∈ Rn, we have ∂‖x−b‖2

∂x
= x−b
‖x−b‖2

, ∂‖x‖2
∂x

= 2x, ∂y>x
∂x

= y. For A ∈ Rm×n,
B ∈ Rm×n, a ∈ R, x ∈ Rn, we have positivity of matrix norm ‖A‖ ≥ 0, and ‖A‖ = 0
i� A = 0, homogeneity:‖aA‖ = |a|‖A‖, triangle inequality: ‖A + B‖ ≤ ‖A‖ + ‖B‖
and ‖A − B‖ ≥ ‖A‖ − ‖B‖, subordinance: ‖Ax‖ ≤ ‖A‖‖x‖. If m = n, we also have
submultiplicativity: ‖AB‖ ≤ ‖A‖‖B‖.
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3.1. Basic concepts of discrete time control

systems

In this thesis, the system considered is of discrete time form and will be modelled in detail
in Chapter 4.

De�nition 3.1 (Discrete time control system)
Consider a general discrete time control system

x(n+ 1) = f(x(n), u(n)) (3.1)

with n ∈ N and f : Rp × Rm → Rp. x ∈ X ⊂ X ∈ Rp and u ∈ U ⊂ U ∈ Rm are the
system state and the control action within corresponding constraints, respectively. Here,
X is a closed and convex set and U is a compact set, not necessarily convex.

De�nition 3.2 (Equilibrium)
A pair (x∗, u∗) that satis�es f(x∗, u∗) = x∗ with x∗ ∈ X and u∗ ∈ U is called equilibrium
point for the system (3.1).

De�nition 3.3 (Discrete time dynamical system)
Consider a function f : X→ X, n ∈ N, the system

x(n+ 1) = f(x(n)) (3.2)

is called discrete dynamical system.

If the control input u in (3.1) is a function of state x, then (3.1) can be transformed into
the form of (3.2) which is independent of u. Since controllers like model predictive control
are state feedback control laws, we will analyze the stability of such resulting dynamical
systems in Section 3.3.

De�nition 3.4 (Positive control invariant sets)
A set Ω ∈ Rp is called positive control invariant set for the described system (3.1) if there
exists a control input u ∈ U such that f(x0, u) ∈ Ω holds for any initial current value x0 ∈
Ω. A set Ω ∈ Rp is called positive invariant set for dynamical system (3.2), if f(x0) ∈ Ω
holds for any x0 ∈ Ω.

3.2. Nonlinear programming

Discrete time optimal control problems can be transformed to standard nonlinear program-
ming by discretization [107]. Thus, before reaching the control layer, we �rst go for the
optimization and planning layer and introduce some basic concepts concerning nonlinear
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programming and further mixed integer nonlinear programming which refers to the integer
assignment of RMTs.

De�nition 3.5 (Nonlinear programming)
The problem

min f(x) (3.3)

s.t. cj(x) ≤ 0, j = 1, 2, · · · ,m, (3.4)

hk(x) = 0, k = 1, 2, · · · , l. (3.5)

is called nonlinear programming, if at least one of the functions f : Rp → R, cj : Rp → R,
hk : Rp → R is nonlinear. The goal is to determine variable x to minimize the given objec-
tion function f(x) in the presence of inequality constraints (3.4) and equality constraints
(3.5).

De�nition 3.6 (Feasible points)
The points x ∈ Rp are called feasible if it satis�es the constraints (3.4) and (3.5).

De�nition 3.7 (Global optimal solution)
Suppose X is the set of all feasible points. If there exists x? ∈ X such that f(x) ≥ f(x?) for
all x ∈ X, then x? is called global optimal solution.

De�nition 3.8 (Local optimal solution)
Suppose X is the set of all feasible points, if for a set S ∈ X, there exists x? ∈ S such that
f(x) ≥ f(x?) for all x ∈ S, then x? is called local optimal solution.

De�nition 3.9 (Positive-(semi) de�nite matrix)
A matrix M ∈ Rp×p is called positive-de�nite if x>Mx > 0 holds for all x ∈ Rp\{0}. It is
positive semi-de�nite if x>Mx ≥ 0 holds for all x ∈ Rp.

De�nition 3.10 (Lagrangian function and Lagrangian multipliers)
A Lagrangian function of the nonlinear programming problem (3.3), (3.4), (3.5) is given by
L(x?,µ, λ) := f(x?)+µ>c(x?)+λ>h(x?) are called Lagrangian multipliers, whereµ ∈ Rm,
λ ∈ Rl.

Now, we brie�y introduce the Karush-Kuhn-Tucker (KKT) conditions, which play a sig-
ni�cant role in the nonlinear programming.

De�nition 3.11 (KKT conditions–�rst order optimality conditions)
Given a nonlinear programming problem [De�nition 3.5], assume f(x), c(x) and h(x) are
all twice continuously di�erentiable functions. If f(x) attains a local minimum at x? subject
to the constraints (3.4) and (3.5), then there exist Lagrange multipliers µ, λ such that the
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following conditions hold:

∂f(x?)
∂xi

+
m∑
j=1

µj
∂cj(x?)
∂xi

+
l∑

k=1
λk
∂hk(x?)
∂xi

= 0, Stationarity (3.6)

µjcj(x?) = 0, Complementary slackness (3.7)

µj ≥ 0, Dual feasibility (3.8)

cj(x?) ≤ 0, Primal feasibility (3.9)

hk(x?) = 0. Primal feasibility (3.10)

for i = 1, 2, · · · , p, j = 1, 2, · · · ,m and k = 1, 2, · · · , l. Note that the KKT conditions
are only necessary but not su�cient. That is, if a local minimum exists, it must satisfy
the KKT conditions. Yet, those x that satisfy the conditions are not necessarily a local
minimum. To be su�cient for optimality, we need to additionally check the Second Order
Su�cient Conditions (SOSC). Yet, if the solved optimization problem is convex, then the
KKT conditions are necessary and also su�cient. Note that the aim of this thesis is not
to deeply go into optimization algorithms but use these techniques to solve the allocation
of RMTs on the shop �oor, which typically refers to solving a convex integer optimization
problem. Regarding the details concerning SOSC and also the constraints quali�cations
that �nd a local minimum to satisfy KKT conditions, we refer to [108, 109].

De�nition 3.12 (Quadratic programming)
Quadratic programming is a special case of nonlinear programming, in which the objective
function f(x) is quadratic and the constraints are linear, i.e.,

min f(x) = 1
2x
>Qx+ q>x+ d (3.11)

s.t. Ax ≤ b.

where x ∈ Rp, q ∈ Rp, Q ∈ Rp×p , A ∈ Rm×p and b ∈ Rm, d ∈ R.

De�nition 3.13 (Least square problem)
Given a matrix A ∈ Rm×p, m ≥ p, x ∈ Rp, b ∈ Rm, a>j are the rows of A, a least square
problem is an optimization problem without constraints and the associated objection func-
tion is a sum of squares in the form of

min f(x) =
m∑
j=1

(a>j x− bj)2 = ‖Ax− b‖2
2 (3.12)

= x>A>Ax− 2b>Ax+ b>b.

For the linear least squares problem (3.12), the analytic solution can be derived with x =
(A>A)−1A>b [108]. Regarding the nonlinear standard least squares, the numerical solution
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can be obtained with Levenberg-Marquardt or Gauss-Newton algorithm [109]. Note that
the constrained least squares problem is a special case of quadratic programming problem
and can be used for tracking purposes in metric spaces for dynamical system (3.3)

f(x) = ‖x− x∗‖2
2 =

p∑
j=1

(xj − x∗j)2, (3.13)

where x− x∗ represents the distance between current state to the equilibrium.

De�nition 3.14 (Convex optimization problem)
Given the objective function (3.3) and the associated constraints (3.4), for x, y ∈ Rp and
α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0, if the following inequalities

f(αx+ βy) ≤ αf(x) + βf(y) (3.14)

cj(αx+ βy) ≤ αcj(x) + βcj(y) (3.15)

hold and (3.5) are a�ne, then it is called a convex optimization problem [108].

3.2.1. Mixed-integer nonlinear programming

For solving the general nonlinear convex optimization problems, a lot of algorithms have
been developed, e.g., Sequential Quadratic Programming (SQP), or Interior-Point (IP) Method
[109]. Yet, in our case, the assignment of RMTs in job shop refers to an integer programming
problem. Thus, based on the introduced nonlinear programming, we further brie�y intro-
duce mixed-integer nonlinear programming, which requires both of continuous and dis-
crete variables to solve the optimization problem with the nonlinear object function and/or
constraints [110]. In reality, a variety of practical applications can be transformed to mixed-
integer (non) linear programming problem, such as job planning and scheduling problems
[111, 112], control of hybrid system [113], unmanned aerial vehicles [114], or piecewise
a�ne systems [115, 116]. Since this kind of problem typically cannot be solved in polyno-
mial time, it represents an NP-hard combinatorial problem. Its mathematical expression is
given by:

min f(x) (3.16)

s.t. cj(x) ≤ 0, j = 1, 2, · · · ,m

hk(x) = 0, k = 1, 2, · · · , l

x ∈ X, xi ∈ Z ∀i ∈ I.

where x ∈ Rp, f : Rn → R, c : Rp → Rm are twice continuously di�erentiable functions
and I ⊆ {1, · · · , p} is a set of all indexes. If f(x), c(x), h(x) are convex, cf., Figure 3.1,
then the optimization problem (3.16) is called convex mixed-integer nonlinear program-
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ming [117, 118]. Methods to solve this type of optimization problem include branch and
bound [119], generalized Benders Decomposition [120] and Outer Approximation [121].
Concerning the non-convex mixed-integer nonlinear programming problems where either
the objective function and/or the constraints are non-convex, cf., Figure 3.2, the feasible
region is in general non-convex which results in many possible minima [108, 122]. This
reveals a global optimization problem and is very hard to be solved and veri�ed. Due to
less complexity and computational cost to derive near-optimal solutions, meta-heuristic
methods [123] have been widely applied in practice e.g., genetic algorithm, particle swarm
optimization, ant colony algorithm, simulated annealing, tabu search, etc.

3.3. Stability of discrete time control systems

As we discussed before, due to the capability of �exibly changing capacity and functionality,
RMTs can improve the shop �oor performance with possibly frequent recon�gurations.
Here, we present some basic concepts concerning stability, particular for the stability of
MPC which is the type of controller that will be used throughout this thesis.

Lyapunov stability plays an important role in the stability analysis of control systems,
especially for nonlinear systems. It allows us to analyze the stability property by using the
concept of energy dissipation without solving ordinary di�erential equations. Therefore, it
is widely applied and accounted to be predominant in the development of control theory
[124]. Here, the stability term we considered is related to initial conditions. Concerning the
bounded input bounded output (BIBO) stability, we refer to [124]. To analyze stability of
(non)linear systems, comparison functions are an e�ective and strong tool concerning the
convergence property of a closed loop of a nonlinear dynamical systems.

De�nition 3.15 (Comparison functions)
A function α : R≥0 → R≥0 is of classK if α is continuous, strictly increasing and α(0) = 0.
class K∞ is unbounded.
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A function ϕ : R≥0 → R≥0 is of class L , if ϕ is continuous, non-increasing and its limit is
zero.
A function β : R≥0×R≥0 → R≥0 is of class KL , if β(·, n) ∈ K for all n ∈ R≥0, cf., Figure
3.3, and β(s, ·) is strictly decreasing in its second argument with limn→∞ β(s, n) = 0 for
all s ∈ R≥0, cf., Figure 3.4.

3.3.1. Asymptotic stability

De�nition 3.16 (Asymptotic stability)
Suppose a system (3.1) and a control u(·) to be given such there exists a forward invariant
set Y ⊂ X. If there exists a function β ∈ KL such that

‖x(n)− x∗‖ ≤ β(‖x0 − x∗‖, n) (3.17)

holds for all x0 ∈ Y and all n ∈ N0, then the control u(·) asymptotically stabilizes x∗, cf.
Figure 3.5.

De�nition 3.17 (Control Lyapunov Function)
Given the system (3.1) with x∗ ∈ Y ⊆ X, a function V : Rn → R≥0 is called a control
Lyapunov function if there exist functions α1, α2, α3 ∈ K∞ and a control input u ∈ U such
that

α1(‖x− x∗‖) ≤ V (x) ≤ α2(‖x− x∗‖),∀x ∈ X (3.18)

V (f(x, u))− V (x) ≤ −α3(‖x− x∗‖),∀x ∈ Y (3.19)

hold for all x ∈ Y \ x∗.

Based on converse theorem [125], the stability de�ned in De�nition 3.16 can be induced
by a existing control Lyapunov function de�ned in (3.18) and (3.19). From (3.19), we can
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obtain that V is strictly decreasing along with solutions away from x∗, then we can con-
struct a β̄ ∈ KL , such that V (x(n)) ≤ β̄(V (x(0)), n), then we can get α1(‖x(n) −
x∗‖) ≤ V (x(n)) ≤ β̄(V (x(0)), n) ≤ β̄(α2(‖x(0) − x∗‖), n). Therefore, ‖x(n) − x∗‖ ≤
α−1

1 (β̄(α2(‖x(0)− x∗‖), n), where, β(r, n) := α−1
1 (β̄(α2(r), n) ∈ KL .

Remark 3.18
The Lyapunov function condition (3.19) is not necessary condition for (3.17) to hold [126, 127].
That is, if ‖x(n) − x∗‖ → 0 can be induced as n → ∞, the Lyapunov function does not
necessarily strictly decrease but may show with possible local increases [128], which is termed
as the so-called �exible control Lyapunov functions [129]. In our case, this phenomenon may
occur when we take recon�guration delays into account.

In most cases, asymptotic stability may not be achieved, such as in the application of
sampling system, quantization system and also in the presence of uncertainty [125, 130,
131, 132]. In this case, what we aim to show is that the state is con�ned to a bounded
region around the equilibrium, which is termed as practically asymptotically stable. For
instance, in our case, the assignment of RMTs as controlled variables are restricted to be
integer. Due to imposing integer constraints, WIP trajectories are expected to be practically
asymptotically stable.

3.3.2. Practical asymptotic stability

De�nition 3.19 (Practical asymptotic stability)
Suppose a system (3.1) and a control u(·) to be given such there exists a positive control
invariant set Y ⊆ X. If there exists function β ∈ KL and positive constant δ such that

‖x(n)− x∗‖ ≤ max{β(‖x0 − x∗‖, n), δ} (3.20)

holds for all x0 ∈ Y and all n ∈ N0 and some δ ≥ 0, then the system (3.1) is said to be
practically asymptotically stable. If δ = 0, then the system (3.1) is asymptotically stable. If
Y = X = Rn, then the system (3.1) is said to be globally practically asymptotically stable,
cf. Figure 3.6.

De�nition 3.20 (Practical Control Lyapunov Function)
Given the system (3.1) with x∗ ∈ Y ⊆ X, a function V : Rn → R≥0 is called a practical
control Lyapunov function if there exists functions α1, α2, α3 ∈ K∞ and a control input
u ∈ U and some constant ϑ ≥ 0, such that the following inequalities

α1(‖x− x∗‖) ≤ V (x) ≤ α2(‖x− x∗‖),∀x ∈ X

V (f(x, u))− V (x) ≤ −α3(‖x− x∗‖) + ϑ, ∀x ∈ Y (3.21)

hold for all x ∈ Y \ x∗.
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Theorem 3.21 (Estimated practical stability region)
Let V is a practical control Lyapunov function and there exists some positive constant ϑ > 0.
Assume that Y = V −1[0, %] := {x ∈ X|V (x) ≤ %} ⊆ X is a positive invariant set with
% > τ := α2 ◦ (α−1

3 (ϑ) + ϑ), and D := V −1[0, τ ]. Then the system (3.1) is practically
asymptotically stable on Y , and V (x) is a truncated control Lyapunov function on Y \D with
radius of ultimately boundedness δ = α−1

1 ◦ α2 ◦ (α−1
3 (ϑ) + ϑ).

The proof can be found in [133].

Remark 3.22 (Finite time to the practical stability region)
From the practical control Lyapunov function (3.21), we have α3(‖x − x∗‖) ≥ ϑ. Based on
the results presented in Theorem 3.21, since D ⊆ Y ⊆ X, there exists a constant ε > 0,
such that ∀x1 ∈ X \ Y and x2 ∈ Y \ D make α3(‖x2 − x∗‖) ≤ α3(‖x1 − x∗‖) − ε

holds. Then we can get −α3(‖x1 − x∗‖) + ε ≤ −α3(‖x2 − x∗‖) ≤ −ϑ. Last, we can
conclude V (x+

1 ) − V (x1) ≤ −α3(‖x1 − x∗‖) + ϑ ≤ −ε, ∀x1 ∈ X \ Y , i.e. for the initial
current value x0 ∈ X \ Y , it will be able to reach the region Y in a �nite time. We call
TY := {n ∈ N|x(n) ∈ Y } is the minimum time to reach the region Y [134]. Similarly, we
call TD := {n ∈ N|‖x(n)− x∗‖ ≤ δ} is the minimum time to reach the Bδ . From (3.21), we
know the system trajectories are steered to Bδ as behavior like strictly asymptotic stability on
Y \D, i.e. V (x(n+ 1)) ≤ V (x(n)) holds for n ∈ [0, TD− 1] until reach the ball Bδ and then
will stay inside the ball, i.e. V (x) ≤ τ . Thus, V (x(n+ 1)) ≤ max{V (x(n)), τ}, ∀n ∈ N0.

3.4. Types of controller

After introducing the concepts of stability, in this section we review the development of
controllers which will be applied to the manufacturing process with RMTs to accomplish
capacity adjustment. A number of di�erent controllers have been developed, such as PID,
linear quadratic regulator (LQR), MPC, sliding model control, Lyapunov-based control,
operator-based control, optimal control, adaptive control, etc. [48, 60, 135, 136, 137]. In
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this thesis, we mainly concentrate on the former three and particularly emphasize the im-
portance of MPC which will be applied throughout this thesis, cf., Section 2.6.

3.4.1. Proportional integral derivative

PID controller has been widely applied in industrial processes [135, 138]. This controller
is usually designed in the frequency domain via Laplace transform instead of time domain.
The implementation of PID feedback controller depends on the error e(·) derived from the
di�erence between reference r(·) with output y(·), which in continuous time reveals

u(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

d

dt
e(t) (3.22)

or in discrete time:

u(k) = kpe(k) + ki
k∑
i=1

e(i)T + kd(
e(k)− e(k − 1)

T
) (3.23)

where T is sampling time. The P (Proportional) part of the controller, which is proportional
to the current error, has the ability of amending the error. Typically, the higher the pro-
portional constant is, the faster the response is. Yet, only using a P controller may result
in steady-state error. To this end, the I part is required for eliminating the latter. How-
ever, this will limit the response speed and a�ect the stability of the system. Generally, the
speed of the response will be increased along with the decrease of integral gain. The D
part has the capability to incorporate the change of the error and improve the stability of
system by compensating the phase lag caused by I part. The combination of the respective
parameters setting of this controller signi�cantly in�uences the system performance, and
may even render the system unstable if inappropriate parameters are selected. Thus, before
a PID controller is implemented, the optimal combination of such parameters needs to be
tuned repeatedly to achieve a desirable performance. The existing methods for parameter
tuning include trial and error, process reaction curve technique, Ziegler-Nichols method,
etc., [135]. This type of controller is well understood. Yet, it is typically applied in SISO
systems and is not designed from the view of minimization of energy consumption. Cur-
rently, a research focus on PID is the transition from the classical traditional integer order
to fractional order, i.e. PIλDµ [139] to improve performance.

3.4.2. Linearqadratic regulator

In the �eld of optimal control theory, Pontryagins Maximum Principle (PMP) and Dynamic
Programming (DP) are the two famous methods [46, 140]. The former is an extension of
the well-known calculus of variations. A boundary value optimization problem with con-
straints is numerically solved by an indirect method, which is termed as “�rst optimize,
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then discretize”. The main drawback is that di�erential equations with strong nonlinear-
ity are di�cult to solve and are di�cult to handle active inequality constraints [140]. The
latter attempts to derive an explicit feedback law o�-line. Based on Bellmans principle of
optimality, a multi-step optimization problem over a long horizon is split up into many sub-
problems. This method provides a comprehensive insight into the mathematical problem
and considers all information concerning the optimal control problems. Optimality can be
guaranteed by an exhaustive search of all the control and state grids. Yet, it provides an
exact solution at the expense of computational complexity and may be di�cult to be ap-
plied in practice due to the curse of dimensionality. Thus, both approaches may be �ne for
planning, yet they are computationally intractable for real time control. However, if the
cost function is quadratic and system is linear, then the in�nite optimization problem can
be simpli�ed into solving an Riccati equation, which is known as linear quadratic regulator
(LQR). A basic derivation for LQR feedback control law is given in Appendix A.3. LQR is
widely applied in the �eld of optimal control and also provides a way for the design of ter-
minal cost for stability purpose in the framework of MPC [141]. Unfortunately, this method
cannot handle constraints.

3.4.3. Nonlinear model predictive control

Model predictive control (MPC) is an control method based on optimization to generate
a static state feedback for a possibly nonlinear dynamical system, which is approximately
optimal with respect to a given performance index, subject to constraints and used as a
closed loop implementation of optimal control [107]. Although the method is demanding
from both a computational and modeling point of view, MPC has been widely applied for
mechanical or chemical systems [136, 142], inventory management in supply chains [143,
144] and has grown mature over the last decades [107].

Linear MPC has been maturely developed and widely used in the process control for
many years. The reasons can be summarized as follows. Firstly, the system identi�cation
is relatively easy to be derived based on the measurable process data. Secondly, the linear
models exhibit desirable behavior in the neighborhood of the operating point. Due to that,
some nonlinear models with weak nonlinearities can be transformed into linear models by
linearizion for analysis and control. Yet, this method is not always feasible. For instance,
batch processes are not staying at the steady-state but in a transient mode for a long time,
often frequently in�uenced by the market demand. That leads to frequent changes in op-
eration points. In this case, a gain scheduling technique can be adopted and the process
operation will be divided into a set of operating regions. In each region, the model is iden-
ti�ed and the controller is automatically updated [142]. This seamless switching between
linear controllers needs to be cautiously implemented. Note that although the system is
linear, the closed-loop dynamic by MPC is actually nonlinear due to the constraints. The
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stability of closed-loop system cannot be simply analyzed by poles due to nonlinearity.
Unlike linear model predictive control, nonlinear model predictive control (NMPC) is

applicable for both linear and nonlinear systems, linear and nonlinear constraints, and typ-
ically requires to solve a nonconvex optimization problem. Since almost all systems in na-
ture are essentially nonlinear, we employ NMPC as a general method. The work principle
of this algorithm is intuitively described with Figure 3.7.

For the given performance index ` : X × U → R≥0, the idea of MPC is to approximate
the solution of the in�nite horizon optimal control problem

J∞(x0, u) =
∞∑
k=0

`(x(k), u(k)) (3.24)

subject to the dynamics (3.1) and constraints x ∈ X, u ∈ U. The optimal value function
corresponding to (3.24) is given by V∞(x0) = infu∈U J∞(x0, u). Based on the dynamic
programming principle we obtain

V∞(x0) = inf
u∈U
{`(x0, u) + V∞(f(x0, u))}

and can derive an optimal feedback control law

κ∞(x(n)) = argmin
u∈U

{`(x(n), u) + V∞(f(x(n), u)}

by using Bellman’s principle of optimality. Since this optimal control problem is typically
computationally intractable and may not be analytically solved for nonlinear systems and /
or in the presence of inequality constraints [145], MPC circumvents solving Bellman’s opti-
mality equation by truncating the in�nite optimization problem with a �xed �nite receding
time window and iteratively solving an open-loop optimization problem with a given initial
conditions, a three step procedure arises: In the �rst step, the current state of the system is
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derived. Thereafter, a computationally complex truncated optimal problem

min JN(x0, u) =
N−1∑
k=0

`(x(k), u(k)) (3.25)

subject to x(k + 1) = f(x(k), u(k)),

x(0) = x0

x(k) ∈ X ∀k ∈ {0, . . . , N}

u(k) ∈ U ∀k ∈ {0, . . . , N − 1}

with �nite prediction horizon N is solved to obtain a corresponding optimal control se-
quence. To solve such problems, direct approaches like SQP, IP Methods or heuristics are
well established. Moreover, in contrast to the PMP and DP, the NMPC shows reduced com-
putation burden regarding warm start. After solving this optimal control problem (3.25),
an optimal open-loop control sequence u∗(0), u∗(1), · · ·u∗(N − 1) and the associated tra-
jectory x∗(1), · · · x∗(N) are obtained. For simplicity of exposition, we assume that the
minimizer u?(·) := argminu∈U JN(x0, u) of (3.25) is unique. In the third and last step,
only the �rst element of this control sequence is applied as a feedback control law (i.e.,
κN(x) = u?(0)), rendering the procedure to be iteratively applicable. Then, for a given
initial value x0 = x(0), we obtain the closed-loop solution

x(n+ 1) = f(x(n), κN(x(n))), x(0) = x0, n ∈ N0. (3.26)

An illustrated example concerning the open-loop and closed-loop trajectory is given in
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Figure 3.8.: Di�erence between open-loop and closed-loop trajectory

Figure 3.8 with N = 3. For each time instant, the open-loop trajectory represented by the



3.5. Stability and feasibility of nonlinear model predictive control 34

blue line has three steps but the closed-loop trajectory highlighted by the red dashed line
only has one step 1, iteratively running the same procedure of the next time instants.

Note that optimality in each iteration is not su�cient to guarantee stability in the sense
of De�nition 3.16 (e.g., [147]). Therefore, it is crucial to verify the stability of the resulting
closed-loop control system. Generally, the classical Lyapunov function is designed o�-line
to ensure that condition (3.19) holds. In the MPC setting, we can utilize the optimal value
function VN(x0) = JN(x0, u

?(·)) as Lyapunov function. For the optimal control problem
(3.25), based on dynamic programming, we obtain that:

VN(x0) = inf
u∈U
{`(x0, u) + VN−1(f(x0, u))},∀x0 ∈ X (3.27)

Furthermore, assume u? is the attained optimal control sequence, we have

JN(x0, u
?) = VN(x0) = `(x0, u

?(0)) + VN−1(f(x0, u
?(0))) (3.28)

and the MPC closed-loop feedback law is expressed by

κN(x) = argmin
u∈U

{`(x, κN(x)) + VN−1(f(x, κN(x)))}. (3.29)

3.5. Stability and feasibility of nonlinear model

predictive control

To guarantee the stability of system controlled by MPC, in this section, we introduce two
classes of stability methods: terminal endpoint constraints, terminal cost and terminal re-
gion [141, 148, 149, 150], as well as without terminal conditions [107, 126, 130, 133, 151, 152].

3.5.1. Terminal endpoint constraints

The simplest way is to modify the original optimization problem (3.25) is to impose the
stabilizing terminal endpoint constraints x(N) = x∗ [148]. To show stability we require
the following assumptions hold.

Assumption 3.23
For x∗ ∈ X there exists u∗ ∈ U such that f(x∗, u∗) = x∗.

Assumption 3.24
The stage cost ` : X × U → R≥0 satis�es `(x∗, u∗) = 0 and `(x, u) > 0 for all u ∈ U if
x 6= x∗.

1The one step feedback law is used in this thesis. Regarding the multistep feedback law, we refer to [146].
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Theorem 3.25
If the viability Assumption 3.23 and the Assumption 3.24 for the reversed VN−1(x) ≥ VN(x)
hold, and if there exist functions α1, α2 and α3 ∈ K∞ such that

α1(‖x− x∗‖) ≤ VN(x) ≤ α2(‖x− x∗‖) (3.30)

α3(‖x− x∗‖) ≤ inf
u∈U

`(x, u) (3.31)

hold, then κN is asymptotically stabilizing. In addition, the performance estimate

J∞(x, κN) ≤ VN(x)

holds for x ∈ XN , where XN := {x ∈ X|UN(x) 6= ∅}.

The proof can be found in [107].

3.5.2. Terminal cost and terminal region

In order to alleviate the requirement of the strictly terminal equality constraints and reduce
computational burden, a dual mode control was designed. That is, the MPC controller is
only implemented outside of the neighborhood of the equilibrium point. A local feedback
controller is used for the system once the state reached the neighborhood of the equilib-
rium point. Using this kind of method requires switching the controllers [153]. Further,
a terminal cost and a terminal region were designed to guarantee the stability, which was
termed as quasi-in�nite optimization method [141, 154]. The idea is, that the designed local
controller is never applied but only used to construct a local Lyapunov function F (x(N))
such that the optimal value function is decreasing. The modi�ed optimization problem is
given as:

min JN(x0, u) =
N−1∑
k=0

`(x(k), u(k)) + F (x(N)) (3.32)

subject to x(k + 1) = f(x(k), u(k)),

x(0) = x0

x(k) ∈ X ∀k ∈ {0, . . . , N};x(N) ∈ XF ⊂ X

u(k) ∈ U ∀k ∈ {0, . . . , N − 1}

Assumption 3.26
For each x ∈ XF , there exists a terminal control sequence uF , such that f(x, uF ) ∈ XF ,
F : XF → R≥0 such that the following inequality holds

F (f(x, uF )) + `(x, uF )− F (x) ≤ 0 (3.33)
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Theorem 3.27
Consider the optimization problem (3.32), if the Assumption 3.26 holds with resultingVN−1(x) ≥
VN(x), and if there exist functions α1, α2, and α3 ∈ K∞ such that (3.30), (3.31) hold, then
the nominal system is asymptotically stable with the associated closed-loop feedback law κN .
Additionally, for each x ∈ XN , the inequality J∞(x, κN) ≤ VN(x) holds.

Compare to using terminal endpoints constraints only, this method may reduce the com-
putational burden with possible shorter prediction horizon. Yet, the additional analytical
e�ort for o�ine computing the terminal region is challenging and still needs a large pre-
diction horizon to guarantee large feasible sets. Due to the modi�cation of the original
control problem for stability, using terminal conditions are not often used in industry due
to long horizons and excessively increasing computational requirements [155]. Regarding
the stability constraint methods, we refer to the excellent surveys [149, 150].

Remark 3.28 (Feasibility)
Similar to the zero terminal constraints, feasibility is automatically ensured when the initial
states and control sets are feasible [149]. Yet, the required prediction horizon for feasibility is
typically unknown and needs to be checked iteratively.

3.5.3. Without terminal conditions

Considering problem (3.25) without additional terminal cost and/or terminal constraints,
we introduce the so-called unconstrained MPC scheme which may exhibit a larger op-
eration region, alleviate the computational burden and improve the system performance
[107, 130, 151]. Yet, this method needs the assumption of asymptotically controllability
with respect to the cost functional or running cost. The stability can be guaranteed with a
su�cient large prediction horizon [151, 156].

Theorem 3.29
Consider f : X × U → X , a running cost ` : X × U → R≥0 and an optimal value function
VN : X → R≥0. If there exists an admissible feedback control law κN : X → Uandα ∈ (0, 1],
N ∈ N such that the relaxed Lyapunov inequality [157]

VN(x) ≥ α`(x, κN(x)) + VN(f(x, κN(x))) (3.34)

holds and there exists α1, α2, α3 ∈ K∞ such that (3.30), (3.31) hold, then the MPC closed-loop
control system is asymptotically stable. In addition, we obtain:

αV∞(x) ≤ αV κN
∞ (x) ≤ VN(x) ≤ V∞(x) (3.35)

Lemma 3.30
Consider function VN : X → R≥0, f : X × U → X , a feedback law κN : X → U , N ∈ N,
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α ∈ (0, 1], and ` : X × U → R≥0. If

VN(f(x, κN(x)))− VN−1(f(x, κN(x))) ≤ (1− α)`(x, κN(x)) (3.36)

holds for all x ∈ X, then the relaxed Lyapunov inequality (3.34) holds.

Assumption 3.31 (Asymptotic controllability)
Assume there exist γ > 0 such that

V2(x) ≤ (γ + 1)V1(x) and (3.37)

Vk(x) ≤ (γ + 1)`(x, κk(x)), k = 3, · · · , N (3.38)

hold for all x ∈ X, then (3.36) holds.

Proposition 3.32
Consider N ≥ 2 and suppose Assumption (3.31) holds. Then the following inequality holds:

(γ + 1)N−2

(γ + 1)N−2 + γN−1VN(x) ≤ VN−1(x) (3.39)

The proof of Theorem 3.29 and Lemma 3.30 and Proposition 3.32 were given in [156].

Proposition 3.33
Consider γ > 0 with N ∈ N such that (γ + 1)N−2 − γN > 0. If Assumption 3.31 holds, then
the inequality

V κN
∞ (x) ≤

1
α︷ ︸︸ ︷

(γ + 1)N−2

(γ + 1)N−2 − γN
V∞(x) (3.40)

holds with the derived α and the relate accuracy estimate

V κN
∞ (x)− V∞(x)

V∞(x) ≤ γN

(γ + 1)N−2 − γN
(3.41)

The proof is brie�y given in Appendix A.2. In order to ensure the derived α ∈ (0, 1], the
prediction horizon N is chosen su�ciently large such that (γ + 1)N−2 − γN > 0, i.e.,

N > 2 log(γ + 1)
log(γ + 1)− logγ . (3.42)

Through the above analysis for the stability of unconstrained MPC, the key point is to check
the asymptotic controllability Assumption 3.31 with respect to the optimal value function.
Yet, Assumption 3.31 is hard to check. There are two alternatives to adapt it, one is using
exponential controllability condition (3.43). Another is to only consider the points that
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visited by the closed-loop trajectory x(n) to estimate the degree of suboptimality α online
[130]. We would like to point out that the latter provides a way for the design of an adaptive
horizon MPC based on the derived online estimate of suboptimality degree. We will discuss
this method in conjunction with a �exible Lyapunov function in Section 6.2.6 which allows
for a local increases but with an ensured decrease in future steps.

Proposition 3.34 (Exponential controllability)
Assume there exists a function W : X → R≥0, a constant h > 0. For all x ∈ X and all
u ∈ U , `(x, u) ≥ hW (x) holds. In addition, assume there exists a control sequence u∗ ∈ U, a
constant C > 0, σ ∈ [0, 1) such that

`(x(n), u∗(n)) ≤ CσnW (x) (3.43)

holds along with corresponding solution x(n) and x(0) = x. Then γ = C
h(1−σ) − 1.

Regarding the proof, we refer to [156].

Remark 3.35
Note that actually the u in (3.43) does not need to be optimal.

Alternatively, we can use linear program to compute the degree of suboptimality [107].

Assumption 3.36
For each initial value x ∈ X, `∗(x) := infu∈U `(x, u), assume there exist suitable functions
J1, J2 ∈ K∞, such that

J1(‖x− x∗‖) ≤ `∗(x) ≤J2(‖x− x∗‖) (3.44)

holds. In addition, if there exists an admissible control u ∈ U, such that

`(x(k), u(k)) ≤ Cσk`∗(x), k = 0, 1, · · · (3.45)

holds with given real overshoot constants C ≥ 1 and decay rate σ ∈ (0, 1), then

VN(x) ≤ γN`
∗(x) with γN =

N−1∑
k=0

Cσk = C
1− σN
1− σ . (3.46)

Lemma 3.37
If Assumption 3.36 holds, then the performance index αN depending on horizon N can be
computed via

αN = 1− (γN − 1)∏N
k=2(γk − 1)∏N

k=2 γk −
∏N
k=2(γk − 1)

. (3.47)
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The technical proof regarding the compute of αN can be found in [Chapter 6 [107]] or in
[158].

Theorem 3.38
If Lemma 3.37 holds, then there exists a α ≥ αN ∈ (0, 1] satisfying (3.34). In addition, if
there exists α1, α2, α3 ∈ K∞ such that (3.30), (3.31) hold, then the nominal closed-loop system
controlled by NMPC feedback law κN is asymptotically stable with the optimization N ∈ N .
Also, the performance estimate holds for each x ∈ X, V κN

∞ (x) ≤ VN(x)/α ≤ V∞(x)/α.

The proof can be found in [107].

Remark 3.39 (Feasibility)
Recursive feasibility for unconstrained MPC can be expected on the viability kernel for a su�-
cient large N , and under additional assumptions if the state constraint set X is not viable, see
[Theorem 7.20 [107]] for details. If X is viable, then recursive feasibility may be inherited from
optimality and stability of closed-loop system.

3.6. Summary

In this chapter, we �rst introduced some basic concepts concerning optimization, control and
stability. Further, we introduced three common applied controllers, and emphasized on the
importance ofMPC and presented with andwithout terminal conditions for stability guarantee.
Regarding to the detailed comparison of these two categories of stabilizing methods, we refer
to [Chapter 7 [107]].



4
Modeling of A Job Shop System
with RMTs for WIP Control

Fluctuations in demand along with requirements of low cost, high quality, individual cus-
tomization and short lead time render manufacturing systems more complex and dynamical
[159]. Manufacturers expect the production process to be as stable as possible and robust
against disturbances to avoid signi�cant performance deterioration [160]. RMTs can pro-
vide �exible and robust capacity adjustment to compensate for unpredictable events and
adapt to di�erent operating conditions in a cost-e�ective way. In order to render the pro-
duction system to be more productive and predictive, the critical task is to analyze the dy-
namic behavior of manufacturing processes with RMTs. Thus, an appropriate mathematical
model and corresponding control strategies are prerequisites for the comprehension of the
complexity of a manufacturing system under either static or dynamic circumstances [57].

Generally, there are two categories of approaches to build a mathematical model. One
is the experimental approach that deliberately applies known collected input data (e.g.,
manipulated variables, disturbance) and the observed state or output data (e.g., WIP) to
generate a model by simulation. The other uses an analytical approach, in which the model
is built based on the adequately understanding of the dynamic behavior of the physical
process, which is basically described by di�erence (di�erential) equations. Such modelling
of production-inventory systems was e�ectively demonstrated for both discrete time and
continuous time domains [161]. In this thesis, we adopt the former and focus on state space
models, which are discrete in time but continuous in states, possibly nonlinear and subject
to control inputs and disturbances (Section 4.2). Additionally, we proceed with a deep look
into the property of RMTs in terms of their inherent uncertain recon�guration delays which
in�uence the dynamics and performance of the system (Section 4.3).

Parts of this chapter have been published in [6, 162].
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4.1. Assumptions for establishing model

In this thesis, manufacturing systems with a high percentage of parallel machines are of
particular interest, which is one characteristics of a job shop system. Due to small lot sizes
and a large variety within series, respective companies will pro�t from the usage of recon-
�gurable machine tools and corresponding control strategies. Since high volume products
can be manufactured cost e�ciently with a high productivity by means of dedicated ma-
chines, and diversity of customized product at a low quantity can be e�ectively guaranteed
via recon�gurable machines, we consider both of RMTs and DMTs for each workstation.
This kind of combination and co-existence in industrial practice is natural and frequent
[163]. Given the planned investment of RMTs and DMTs, we focus on the operational
layer and aim to improve shop �oor control performance through internal intended capac-
ity adjustment via assignment of RMTs. Note that in the recon�guration stage, the system
capacity decreases with loss of productivity. If the recon�guration time is prolonged too
long, the system may be rendered unstable inducing a performance degradation. The re-
con�guration time is therefore expected to be as short as possible to recover the operating
functionality to complete the speci�c tasks. For such a setting, the following assumptions
are reasonable and used within the thesis:

A 1. The percentage of recon�gurable machines is �xed and limited.

A 2. The capacity of RMTs is in excess or redundant to achieve robustness against
disturbance via �exible capacity adjustment [164].

A 3. All RMTs can perform the tasks for all workstations, but is only allowed to operate
one speci�c task at a time.

A 4. Any recon�guration is completed in less then two hours [11].

A 5. All capacities of bu�er are limited.

A 6. The transportation time between workstations is negligible.

A 6. The sequencing policy is First In First Out (FIFO).

4.2. Discrete state space model for WIP control

We consider a simple �ow model of a job shop system with p workstations. The job shop
is given by a fully connected graph G = (V, P ), where the set of vertexes V = {1, . . . , p}
represents the workstations and P the p× p �ow probability matrix between the worksta-
tions.
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P =



p11 p12 · · · p1p

p21
. . . · · · p2p

... ... . . . ...
pp1 pp2 · · · ppp

 .

jth workstation (j=1,2,3...p)

i1j(n)
i2j(n)...
ipj(n)

oj1(n)
oj2(n)...
ojp(n)

i0j(n)

oj0(n)

Figure 4.1.: jth workstation in multi-workstation production system

Figure 4.1 shows the relationship between inputs and outputs for one workstation in a
manufacturing system. The jth workstation can receive tasks from the initial stage or any
of the p workstations, and then send its products to any workstation or the �nal stage.
i1j · · · ipj represent the input rates of each workstation to workstation j, i0j represents
the rate of order release to workstation j. oj0, oj1 · · · ojp represent the respective output
rates. Each of the workstations features nDMT identical DMTs, which may operate with
production rate [0, rDMT ]. The number of RMTs is controlled by the input variable u and
each RMT may operate with production rate [0, rRMT ]. The work in process level WIPj is
de�ned as the number of orders waiting to be processed at workstation j, hence its rate of
change is given by the di�erence between rates of input and output orders I and O. Based
on Figure. 4.1, we obtain

Ij :=
p∑
l=0

ilj and Oj :=
p∑
l=0

ojl.

To link outputs to the inputs, we impose the following:

Assumption 4.1 (Flow conservation)
The job shop system is mass conservative, that is for given �ow probability matrix P we
have

Ij(n) =
p∑
l=1

pljOl(n)
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for each workstation j with plj ≥ 0 for all l = 1, · · · , p.

We like to note that Assumption 4.1 is appropriate here for two reasons: First, loss of prod-
ucts within the job shop system can be included by modifying the �ow probabilities be-
tween the workstations. And secondly, the assumption rules out dissipation, which similar
to friction in a mechanical system eases the task of stabilizing a system. Hence, Assump-
tion 4.1 represents the more di�cult case and all following results also apply to the case
with dissipation.

Assumption 4.2 (Operational layer)
The order release rates i0j(n) to each workstation j are determined externally and must
therefore be considered as disturbances dj(n) := i0j(n).

Utilizing Assumptions 4.1 and 4.2, the time dependent dynamics of WIPj can be evaluated
via its previous value, the inputs from other workstations, the di�erence between self-loop
input with output of itself, and the disturbance, i.e.

WIPj(n+ 1) = WIPj(n) + Ij(n)−Oj(n)

= WIPj(n) + i0j(n) +
p∑
l=1

pljOl(n)−Oj(n) (4.1)

= WIPj(n) +
p∑
l=1
l 6=j

pljOl(n) + (pjj − 1) ·Oj(n) + dj(n).

Here, the orders are used as the dependent variable rather than hours of work content, and
the production rate is given in orders per hour [59].

Relying on the capability of �exible changing capacity via RMTs, we like to include it
into the workstations. Thus, we link system (4.1) to the number of machine tools operating
within the workstations. Note that from an economic point of view it only makes sense
to buy new machinery if the current capacity is insu�cient to deal with all orders. This
typically leads to high WIP levels, which allow us to rewrite the output as

Oj(n) = nDMTrDMT + u(n)rRMT (4.2)

Such �delity of regulating WIP by control-theoretic approach would decrease at the ex-
treme operating conditions, e.g., at low WIP level, or requirement of large capacity ad-
justment [61]. Our idea is to guarantee such �delity of a feedback, i.e. to ensure that all
workstations operate close to prede�ned WIP levels. If this property can be shown for a
feedback at hand, then the assumption of a high WIP level can be shown to hold. More
formally, the latter assumption reads:

Assumption 4.3 (High WIP level)
At any time instant n, the WIP levels in all workstations are at least as high as the total



4.3. A general reconfiguration rule 44

machine capacity, i.e. (4.2) holds.

To prove that Assumption 4.3 holds, one way is to show that there exists a feedback such
that the closed loop renders the set y = {(WIP1, · · · ,WIPp)|WIPj ≥ Oj, j = 1, · · · , p}
is a control forward invariant of (4.1). To this end, let x = (WIP1, . . . ,WIPp) ∈ X ⊂ X

represent the WIP level of all workstations and u = (u1, . . . , up) ∈ U ⊂ U denote the
vector of RMTs assigned to all workstations. Here, the sets X and U allow us to incorporate
possibly wanted constraints on the WIP level and the total number of RMTs ∑p

j=1 uj(n) ≤
m ∈ N0. Utilizing Assumption 4.3, then from (4.1) we obtain

x(n+ 1) = x(n) + P ·
(
nDMTrDMT + u(n)rRMT

)
+ d(n)

=: f(x(n), u(n), d(n)). (4.3)

The aim is to control the number of RMTs to balance the capacity in the job shop system
to meet the required demand and maintain WIP level to be a desired level.

Corollary 4.4
Consider system (4.1) and a prede�ned reference value x∗j . If for the control u(·) a set Y ⊂ X
is forward invariant such that

y ≥ nDMTrDMT + u(n)rRMT ∀y ∈ Y, n ∈ N0 (4.4)

holds, then Assumption 4.3 holds.

In practical terms, inequality (4.4) ensures that for any chosen time instant n the WIP
level is high enough such that all machine tools within a workstation work at full capacity.
Forward invariance in turn means the control u ensures, that the bu�ers of all workstations
will be re�lled such that full capacity utilization in the next time step is guaranteed. Actu-
ally, these high load situations are very common even under the assumptions of stationarity
and moderate utilization, especially in job shop systems [12].

4.3. A general reconfiguration rule

Note that in (4.3), the input variable u does not contain the reaction time referring to the
recon�guration delay. Typically, the recon�guration e�ort consists of recon�guration time,
ramp-up time and recon�guration cost [74]. Here, the combination of the former two is
considered as recon�guration delay, which is taking place by system recon�guration to
re-arrange an equipment to compensate the capacity. That is, the capacity may not be
compensated instantaneously due to such delay until the recon�guration completed, the
recon�guration is regarded as an interruption to the original production activities with the
resulting production loss at some extent in the recon�guration phase.
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We like to note that the trigger of recon�gured RMTs for each workstation is subject to
the respective adjacent control states. That is, the recon�guration is only triggered if the
required number of RMTs is higher than the previous value, i.e. uj(n) > uj(n− 1) in, e.g.,
case a) of Figure 4.2. Consequently, the completion of such a recon�guration is delayed

∗0 1 2 3 4 n

1
2
3
4

u

∗
∗ ∗
∗
∗
∗

a) Repeated assigning

∗0 1 2 3 4 n

1
2
3
4

u

∗ ∗
∗
∗

∗

b) Repeated de-assigning

∗

0 1 2 3 4 n

1
2
3
4

u

∗
∗

∗∗

c) Firstly de-assigning and
then assigning

∗0 1 2 3 4 n

1
2
3
4

u

∗
∗

∗
∗
∗

d) Firstly assigning and
then de-assigning

Figure 4.2.: Illustrate example of recon�gurable rule [6]

by rd. If the required number of RMTs is lower than or equal to the previous value (i.e.
uj(n) ≤ uj(n − 1) ), then there is no recon�guration delay. Algorithm 1 summarizes this
behavior, which is illustrated in Figure 4.2. We like to point out that the cases c) and d)
are interesting and complex due to their uncertainties within the recon�guration. In case
c), the solid line represents the utilized RMTs is decreasing, the dashed line shows that the
trigged recon�guration starts at time instant 2 and ends at time instant 4. In this case, the
question is whether the reduced RMTs may be already recon�gured to other workstations.
If more RMTs are needed for their own workstations, then this workstation has to wait
for available RMTs due to the recon�guration delay. In case d), the dashed line represents
a request for recon�guration, which will completed at time instant 3. However, the solid
line shows that no recon�guration is necessary as at time instant 3 the updated required
number of RMTs is identical to the value at time instant 0. The system becomes much more
complicated with the resulting relevant e�ects derived from the recon�guration.

In the above, we consider the WIP as the state variable. Alternatively, we could use a
coordinate transformation and set the total input orders xi and output orders xo as state
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Algorithm 1 Recon�guration Rule in the General Case
Require: Time instant n, planned input uj(n) and previously applied input uj(n − 1),

recon�guration delay rd and bu�er τj(·)
1: if uj(n− 1) = ∅ or τj(·) = ∅ for some j ∈ {1, . . . , p} then
2: for j = 1 to p do
3: Set uj(n− 1) = 0
4: for k = 1 to rd do
5: Set τj(k) = 0
6: end for
7: end for
8: else
9: for j = 1 to p do

10: if uj(n) > uj(n− 1) then
11: τj(rd) = uj(n)
12: else
13: for k = 0 to rd do
14: τj(n+ k) = uj(n)
15: end for
16: end if
17: Set uj(n) = τj(0)
18: for k = 0 to rd − 1 do
19: τj(k) = τj(k + 1)
20: end for
21: end for
22: end if
Output: Applied input uj(n) and updated bu�er τj(·)

variables and derive the associated state space model (4.5).xi(k + 1)
xo(k + 1)

 =

I 0
0 I

xi(k)
xo(k)

+

P>

I

u(k) +

i0(k)
0

 (4.5)

WIP(k) =
[
I −I

]xi(k)
xo(k)

+ d(k) (4.6)

In doing so, we could intuitively compute the number of total input and output orders along
with the calculation of lead time by �nding the integer ι that make xi(k − ι) ≤ xo(k) <
xi(k − ι+ 1) hold [165]. The details of this modelling can be found in [2].

4.4. Summary

In order to better understand the fundamental dynamic behavior in both transient and
steady-state phases, we use an analytical approach and built a discrete time state space
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model of a job shop system with RMTs to maintain WIP to the planned level. Taking re-
con�guration delays into account, we formulate a general recon�guration rule (Algorithm
1) to re�ect the dynamics with the implemented control actions. Note that this scheme is
typically applicable for those controllers in which the control action is based on the past
and current informations only (e.g., PID). As a consequence, the closed-loop performance
may deteriorate with the lagged control due to recon�guration delays. Such chain reactions
caused by recon�guration delays can be naturally considered in the framework of MPC via
prediction of future trajectory, which allows us to make appropriate decisions in advance
to reduce the negative e�ects. In next section, we will show how to deal with such delays
in the framework of MPC.



5
Optimization and Planning to
Maintain WIP via RMTs

In Chapter 4, we introduced a job shop model with RMTs for maintaining WIP. Yet, the re-
con�guration delays render the dynamics to be complex. Controlling such recon�guration
problems is a building block for feedback control. This is similar to fault-tolerant control,
which also refers to recon�guration problems that can be addressed by the respective re-
con�guration approaches, e.g., fault hiding, optimization based control schemes, learning
control, etc. [166]. MPC is a control method based on optimization, which allows to directly
integrate the complex dynamics, constraints and performance indexes through solving an
optimization problem. Hence, it is a readily applicable to balance capacity and loads in
job shop systems via RMTs in the presence of demand �uctuations. The theoretical part
of this algorithm was introduced in Section 3.4.3. The aim of this chapter is to integrate
MPC with integer programming for resolving the assignment of RMTs in accordance with
the formulated recon�guration rules. This chapter is structured as follows: In Section 5.1,
based on MPC, we propose three integer control strategies to solve the integer assignment
– �oor operator, B&B and GA. Further, in Section 5.2, we formulate a tailored recon�gura-
tion rule for controlling WIP (Algorithm 3) in the framework of MPC, which can explicitly
deal with constraints including recon�guration delays through solving an open-loop opti-
mization problem. Also, we present a rule (Algorithm 4) in Section 5.2.2 for truly counting
times of recon�guration, which is helpful when production cost is considered as one of the
performance indicators.

Parts of this chapter have been published in [6].

5.1. Integer programming within model

predictive control

In the framework of MPC, the recon�guration delay outlined in Algorithm 1 needs to be
integrated in the optimization problem accordingly to truly re�ect the dynamics. This can
be achieved by applying Algorithm 1 in each step of the optimizer to the entire sequence

48
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u(·). Details will be presented after the introduction of the following integer operators.
Combined, we obtain the modi�ed MPC method outlined in Algorithm 2. Note that if the
state x is not available through direct measurement or the measurement is inaccurate due
to random noise, we can use its estimated value x̂ derived from Kalman �lter or moving
horizon estimation [167] as the actual initial value in practice.

Algorithm 2 Basic model predictive control method
1: Given N ∈ N.
2: for n = 0, . . . do
3: Measure current WIP levels x̂(n) and set x0 := x̂(n)
4: Compute control inputs u(n) by solving optimal control problem (3.25)
5: Apply κN(x̂(n)) = u?(0) to workstations
6: end for

While Algorithm 2 is correct from a control point of view, we still need to ensure that
the number of RMTs in each workstation is a positive integer and the sum of number of
RMTs in the system is limited and �xed. Since a discrete time optimal control problem
with constraints can be transformed into a standard nonlinear programming problem by
discretization, most MPC solvers utilize continuous optimization routines such as SQP or IP
methods. However, problem (3.25) requires a mixed integer routine [115]. This simple ad-
ditional constraint renders the optimization problem to be NP-hard, and the computational
burden will be increased exponentially along with the increase of the prediction horizon
and the system dimension.

Integer programming is a kind of optimization problem that requires all of the variables
to be integers. This type of problem has a signi�cance in reality, e.g., to optimally allocate
available resources. To address the integer MPC control problem, we propose three dif-
ferent approaches. The straightforward way is to completely neglect the integer property
within the optimization problem, i.e., to consider U ⊂ Rp

≥0. This change allows us to utilize
fast continuous optimization approaches which typically results in a non–integer optimal
control sequence u?(·). To ensure the integer property, the �oor operator can be employed
after the line 4 of Algorithm 2 to round the solutions down to the nearest integers, i.e.,
u?(0) = bu?(0)c. Note that due to its simplicity this method is practicable and widely
applied in the design of controllers. Yet, due to the truncated control e�ort, the derived
solution may signi�cantly di�er from the optimal one. As a result, this method may induce
performance deterioration, tardy convergence and even render the system to be unstable.

To address the latter issues, we combine integer programming within the MPC to resolve
the assignment of RMTs. Typical examples of such methods are of deterministic (e.g., B&B)
and meta-heuristic nature (e.g., GA).
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5.1.1. Branch and bound

Branch and bound (B&B) is a widespread deterministic method to address combinatorial
optimization problems, cf., e.g., [168]. The integer property of variables is �rstly relaxed
to obtain a continuous one, which can be solved by using standard techniques, e.g., SQP.
Then, the variables are �xed one by one generating a solution tree. For each problem,
upper and lower bounds are derived, which allows to cut branches and speedup the solution
process. Due to cutting, the method is much faster than full enumeration. In contrast to
the �oor operator, it allows to integrate both a performance criterion and constraints and
yields an optimal solution. In [169], the authors integrated an SQP solver with a basic
branch and bound to solve the integer nonlinear programming problems. The core idea is
to possibly early branch the search-tree after a single QP iteration of the SQP solver. In the
MPC context, this optimality property allows to employ standard techniques for showing
stability of the closed loop system [107]. The combination of MPC with B&B was applied
on a variety of applications, such as collision avoidance, multilevel cascaded H-Bridge static
synchronous compensator, building cooling supply control, etc. [170, 171, 172]. Due to the
branching and cutting approach, it is less sensitive to the initial guess than standard solvers
for continuous problem. Yet, it still su�ers from the curse of dimensionality, which leads
the method to be computationally intractable for large scale problems.

5.1.2. Genetic algorithm

To overcome the scalability issue, di�erent types of meta-heuristics were devised such as
particle swarm optimization (PSO) and genetic algorithm (GA) [123]. In contrast to ana-
lytical methods, meta-heuristics utilize techniques typically based on random search and
educated guesses. As a result, the results heavily depend on their con�guration and may
not be optimal and even vary when applied repeatedly. Nevertheless, heuristics methods
were widely applied in practice, especially in the case that an optimal solution cannot be
found in a reasonable time by deterministic methods while solving a large class of opti-
mization problems. Hence, it is necessary to balance the trade-o� between optimality and
computational burden, cf., [173] that combine exact method with meta-heuristics to solve
an NP-hard optimization problem.

Due to the its algorithm simplicity and fast search capability, PSO was applied for in-
teger programming in [174] and combined with NMPC on an FPGA for fast optimization
[175]. Yet, this algorithm merely considers the individual particles in the speci�ed range in
the optimization routine but neglects the relationship of mutual restraints. Although this
disadvantage can be addressed by adding a penalty function, it may easily fall into a local
optimum. Here, we consider using GA, which starts with a set of initial random solutions
called population, cf., Figure 5.1. Then, it applies a process, which is analog to biological
evolution, to �nd an approximately optimal solution through selection, crossover and mu-



5.1. Integer programming within model predictive control 51

tation operators iteratively [176]. In particular, we consider the implementation presented
in [177]. We like to point out that :

• The length of a chromosome is depends on the length of the prediction horizon and
system dimension, cf., Figure 5.1. Note that uN−1,p represents the pth element in the
N − 1th column of open-loop control sequence.

• The recon�guration rule – Algorithm 3 will be incorporated in the evaluation of �t-
ness function.

x x · · · x x x · · · x · · · x x · · · x

p

u01 u02 · · · u0p

...

x x · · · x x x · · · x · · · x x · · · x

uN−1,1 uN−1,2 · · · uN−1,p

N

Figure 5.1.: Illustration of chromosome coding of GA within MPC setting

5.1.3. Strategies for reducing computational cost

Since machine con�guration involves solving an NP-hard optimization problem, this ag-
gravates the online computational burden and may be computationally intractable. Con-
sidering the exponential computational load for large prediction horizons and/or system
dimension, we may not obtain the best solution in a reasonable time. In case of fast NMPC
implementation, the exact optimal solution from the nonlinear programming is not neces-
sary and can be replaced with a suboptimal solution [178].

To reduce the computation load, there are two strategies.

• A.1 Without improving the algorithm itself.

• A.2 Improve the computational algorithm.

A.1. This category use the idea of stopping criteria (i.e., terminating the iterations of the
optimization routine by incomplete optimization based on, e.g., a priori desired α ∈ (0, 1]
[179], which is related to total closed-loop performance. This strategy will be discussed with
Algorithm 7 in Section 6.2.4. In this case, we do not need to �nd the global or even local
minimum. We only aim for a feasible solution that provides a su�cient decrement in the
cost function [180]. This situation is also commonly applied in embedded systems, which



5.1. Integer programming within model predictive control 52

requires a fast solution [175]. Another way to reduce the computation burden is merely
forcing u∗(0) to be integer. That is, compared to the exhaustively search all the elements
within the horizon u∗(k) ∈ Z, k = {0, 1, · · · , N − 1}, we only consider the �rst elements
u∗(0) ∈ Z in the optimization routine and allow the other elements to be continuous,
u∗(k) ∈ R, k = {1, · · · , N − 1}. Obviously, in doing so, it would drastically reduce the
computational load and an acceptable solution may be derived. The performance may not
be signi�cantly deteriorated. Yet, the optimality and feasibility may be lost. We would
like to point out that since GA adopt a random search technique regardless of discrete or
continuous variables, thus, this method is preferred to be used in B&B, cf., Table 7.4, which
you can observe that the computational load from MPC-B&B is signi�cantly decreased.

Start

Initial population,
parameter setting

Creat chromosomes
with random genes 5.1

Evaluate chromosomes
by �tness function

Tournament selection
for reproduction

Laplace crossover

Power mutation

Evaluate chromosomes
by �tness function
for new generation

Stopping
criteria?

Best solution found

Yes

No

Figure 5.2.: Flow chart of MPC-
GA

A.2 The orientation of this thesis is not immediately
concerned with computational techniques but demon-
strate the e�ectiveness of the proposed method. How-
ever, the following representative papers provide fruitful
results to be learned for future research with large sys-
tem dimensions or/and long prediction horizon in prac-
tice. Taken the online computational burden into ac-
count, an explicit MPC strategy was investigated for lin-
ear systems and also mixed logical dynamical systems
[113, 181]. The core of this algorithm is that the explicit
state-feedback law can be computed o�ine with the
polyhedral partition of the feasible states, which allow
for less online computation time to reach the optimal so-
lution. However, the required storage space would dra-
matically increase with the system dimension and com-
plexity of the partition. Considering the limitations from
both of explicit MPC and online computation, [182] in-
troduced a new approach that combines both of them for
linear systems. In their work, a piecewise a�ne approx-
imation of the optimal solution was computed o�ine to
be used to warm-start an active set linear programming
method. The results indicated that the warm-start out-
performs either a pure o�ine or online method. A fast
mixed nonlinear model predictive control algorithm was
implemented by Outer Approximation instead of B&B in
[121]. In [183], the authors proposed a multi-stage robust
NMPC strategy, which could provide a fast and sustain-
able solution in real-time while considering uncertainty.
Last, a computationally e�cient MPC method was pro-
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posed for linear systems with integer inputs or �nite input sets. They formulated the opti-
mization problem to be an integer least-squares problem and then solved with B&B in the
form of a modi�ed sphere decoding [184, 185, 186, 187].

5.2. Reconfiguration rule within integer

predictive control setting

In Section 4.3, we introduced a recon�guration rule in a general setting (Algorithm 1), which
is applicable to those control algorithms without prediction functionality, e.g., PID. In this
case, the control actions u is executed after the determination of the uncertain recon�g-
uration delay rd. However, this would become much more complicated when combining
these recon�guration cases with MPC. We have to deal with the relationship between pre-
diction horizon with the step of recon�guration delay, i.e, the variables of the entire con-
trol sequence in the optimizer needs to be updated based on the comparison of adjacent
states within the horizon of recon�guration delay. Furthermore, due to the limited avail-
able RMTs, we propose a priority strategy based on our primary goal–maintaining WIP for
each workstation.

5.2.1. Reconfiguration rule based on priority of WIP
tracking

Respective details are given in Algorithm 3 below. Note that the recon�guration delay is
typically less than 2 hours. For simplicity without loss of generality, thus here we assume
rd = 1 and use the following abbreviations in Algorithm 3:

• uj(n) is the �rst element of control sequence uj(·) of the MPC framework.

• uj(n − 1) is the previously applied control element, which will be updated relying
on the comparison of adjacent control states in the scope of prediction horizon N .
This update is necessary and signi�cant concerning the real system dynamics and
implementing the real value to the system. It may decrease the in�uence caused by
the recon�guration delay.

• If some idle RMTs exist, then we sort the required increases of RMTs reqrmt for all
workstations and determine a priority.

Note that the line 27-30 of the Algorithm 3 concerning the triggered RMTs means that
when there is a requirement for increasing the number of RMTs, there must exists a delay
and therefore the current control value is not changed but the previous value is used until
the recon�guration is completed. Yet, this is too conservative. To explain it, we sketch an
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Algorithm 3 Recon�guration rule within solving problem (3.25) in the MPC setting with
integer operators
Require: Time instant n, planned input uj(·), previously applied input uj(n− 1), and the

maximum value of RMTs m, prediction horizon N , and system dimension p.
1: if uj(n− 1) = ∅ for some j ∈ {1, . . . , p} then
2: for j = 1 to p do
3: Set uj(n− 1) = 0
4: end for
5: end if
6: for ι = 0 to N − 1 do
7: reqrmt(ι) = 0
8: end for
9: for ι = 0 to N − 1 do

10: for j = 1 to p do
11: if uj(n+ ι) > uj(n− 1) then
12: ∆uj(ι) = uj(n+ ι)− uj(n− 1)
13: reqrmt(ι) = reqrmt(ι) + ∆uj(ι)
14: end if
15: end for
16: totalprevious=

p∑
j=1

uj(n− 1)

17: for j = 1 to p do
18: if uj(n+ ι) > uj(n− 1) then
19: if totalprevious==m then
20: urealj (ι) = uj(n− 1)
21: else if m− reqrmt(ι) < totalprevious < m then
22: [reqrmt,index]=sort (∆u(:, ι),’descend’)
23: reqrmtrank = 0
24: for j = 0 to p− 1 do
25: reqrmtrank = reqrmtrank + ∆u(index(j + 1))
26: if reqrmtrank ≥ m− totalprevious then
27: for γ = 1 to j do
28: ureal1index(γ)(ι) = uindex(γ)(n− 1)
29: urealindex(γ)(ι) = uindex(γ)(n− 1) + ∆uindex(γ)

30: uindex(γ)(n− 1) = urealindex(γ)(ι); urealindex(γ)(ι) = ureal1index(γ)(ι)
31: end for
32: for γ = j + 1 to p do
33: urealindex(γ)(ι) = uindex(γ)(n− 1)
34: end for
35: end if
36: end for
37: else
38: ureal1j (ι) = uj(n− 1), urealj (ι) = uj(n− 1) + ∆uj(ι)
39: uj(n− 1) = urealj (ι), urealj (ι) = ureal1j (ι)
40: end if
41: else
42: urealj (ι) = uj(ι)
43: uj(n− 1) = urealj (ι)
44: end if
45: end for
46: end for
Output: Applied input urealj (·) and updated uj(n− 1) for next iteration
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example via Figure 5.3 where u(n − 2) stands for the previous previous value, u(n − 1)
represents the previous value, u(n + 0) is the current value, the others are the rest of the
optimal control sequence within prediction horizon N . In the case 2), we �nd u(n + 0) >
u(n− 1), it means that there exists an increase request with respect to usage of RMTs, but
actually here no delay occurred due to u(n + 0) ≤ u(n− 2). Hence, the required increase
in RMTs could be immediately compensated by the workstation itself. In contrast to that,
in the case 1), u(n+ 0) > u(n−1)&u(n+ 0) > u(n−2), that means the recon�guration is
indeed triggered and the required RMTs have to wait until the recon�guration is completed
from other workstations.
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2

1

0

u(n− 1)

2

1

0

0
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1
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2
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· · ·

· · ·
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u(n+N − 1)
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Figure 5.3.: Comparison of adjacent states for the triggered recon�guration

Remark 5.1
Note that 2 u(n + 0), u(n − 1), u(n − 2) needs to be iteratively updated for an interac-
tive comparison along with the shifted control step i within the prediction horizon N , i =
0, 1, · · · , N − 1. Specially, u(n− 2) is actually the historical maximum value that among all
control sequence within horizon N and also the already visited values. That is, for each itera-
tion, with the shift of step i within prediction horizonN , the historic maximum previous value
u(n − 2) at ith step within N is given by max{u(l)}, n = 2, 3 · · · , i = 0, 1, · · · , N − 1. In
order to better understand this situation, we illustrate case 3) in Figure 5.3 as an example with
N = 2: Here, we observe that now the “current value u(n+ 1)”> “u(n+ 0)– previous value ”
and also u(n+ 1) > u(n− 1) – “previous previous value ”, but u(n+ 1) = u(n− 2)“historic
previous value ”. In this case, no recon�guration occurs.

5.2.2. Counting times of reconfiguration for production cost

Considering these complicated cases, we extend the Algorithm 3 to Algorithm 4, which
may improve the closed-loop performance with a less conservative control input. Another

2Actually, u as a vector consists of all control inputs from p workstations. For simplicity, we use u instead
of uj , j = 1, · · · , p for adjacent state comparison of each workstation.
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advantage is that it allows us to �gure out how many times of a recon�guration is actu-
ally triggered to achieve tasks. To this end, we modify Algorithm 3 which mainly focus
on the cases with increasing requirement. That is, line 27-33 is the situation where that
there exists some available RMTs but not enough to respond to all increase requirements.
Based on priority rule, if those workstations acquiring RMTs from themselves, then there
is no recon�guration delay. 3The same analysis goes to the line 38-39 where there exists
enough RMTs available for the increasing requirements but we still should �gure out the
assignment direction. That is, increasing requirements within a workstation comes without
delay, but assigned to other workstation with delay. Regarding the last case with increase
requirement (i.e., line 19-20), there must exists a delay due to previously fully utilizing
RMTs. This systematical analysis is important if the recon�guration cost is considered as
one of the performance indicators. We like to highlight that once an RMT is assigned to an-
other workstation, then the historic maximum previous value for this workstation will be
reset to the current value which as the new historic maximum previous value. For instance,
in Figure 5.3, the arrow means that although “current value u(n+N−1)”≤ “u(n+0) – his-
toric maximum previous value”, the recon�guration delay indeed exists because this RMT
was already assigned to another workstation. In this case, the historic maximum previous
value is 0 instead of 1.

Algorithm 4 Improvement of Algorithm 3 for controlling WIP along with counting times
of recon�guration
Require: The rolling updated historic maximum previous value u(n− 2).

1:
...

2: for γ = 1 to j do
3: if urealindex(γ)(ι) > uindex(γ)(n− 2),% There is a delay, has to wait until recon�guration

completed form other workstations, count recon�guration times then
4: ureal1index(γ)(ι) = uindex(γ)(n− 1);
5: uindex(γ)(n− 2) = uindex(γ)(n− 1), % Update historic maximum previous value
6: urealindex(γ)(ι) = uindex(γ)(n− 1) + ∆uindex(γ)

7: uindex(γ)(n − 1) = urealindex(γ)(ι); % Update previous value for next comparison
urealindex(γ)(ι) = ureal1index(γ)(ι) % Actual applied value

8: else
9: urealindex(γ)(ι) = uindex(γ)(n− 1) + ∆uindex(γ)

10: uindex(γ)(n− 1) = urealindex(γ)(ι);
11: end if
12:

...
13: end for
Output: Applied input ureal

3The modi�cation for line 38-39 is similar to the former, it is omitted in Algorithm 4.
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5.2.3. Possible unnecessary triggered reconfiguration

Algorithms 3 and 4 are designed to control WIP as the primary goal. Yet, due to the lim-
ited available RMTs and priority, the temporary unused RMTs may be assigned to other
workstations although the current workstation has an increased requirement. In this case,
the recon�guration cost will increase. For instance, in Figure 5.4, due to a priority rule, the
unused one RMT in WS1 is assigned to WS2 although WS1 also needs one more RMT.

1 2 3 4

1 2 3 4

1 2 3 4
u(n− 1)

u(n)

ureal(n)

Working
Idle

WS

Priority1<Priority2

Figure 5.4.: Triggered recon�guration based on WIP priority with possibly increased cost

Now, we summarize recon�guration rules in kinds of scenarios.

• From view of customer

– Recon�guration is triggered based on maintaining WIP by a priority rule to re-
duce lead time and improve the reliability of delivery time. It may cause frequent
but necessary recon�guration which may lead to an increase of recon�guration
cost.

• From view of manufacturer

– The determination of recon�guration is based on considering production cost
including inventory cost and recon�guration cost. In this case, one simple way
is to add4u in the design of the stage cost with a penalty for the recon�guration
λ1, i.e.,

`(x(k), u(k),4u(k)) = ‖x(k)− x∗‖2
2 + λ · ‖u(k)− u∗‖2

2 + λ1 · ‖4u(k)‖2
2.

• From view of both of customer and manufacturer

– Since this refers to multi-objective optimization which typically including con-
�icting objectives, we refer to multi-objective MPC [188] and multi-objective
GA [189].

We would like to point out that under global competition, manufacturers in general prefer
to meet the customer requirements at the expense of additional cost. Also, if the due date
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is delayed due to a bad shop �oor control performance, then manufacturers have to com-
pensate consumers with a certain discount. This is why we focus on controlling WIP to the
desired value in case of bottlenecks as a primary goal for the improvement of shop �oor
control performance, especially in the presence of frequent �uctuations in demand.

5.2.4. Prediction horizon and step of reconfiguration delay

The control interval T (sampling time) plays an important role in MPC which relates to
closed-loop performance and computational cost. In this thesis, the control interval and the
recon�guration delay are assumed to be one hour. Based on such a setting, the recon�gura-
tion rule is formulated while considering the relationship between prediction horizon with
recon�guration delay. We would like to point out that since in the recon�guration stage
the capacity of whole system along with those recon�gured machines is decreasing, it is
crucial to consider the chain reaction caused by such a delay and make appropriate deci-
sions with respect to the triggered recon�guration. Intuitively, a longer prediction horizon
would be preferable. Yet, as we mentioned before, this would dramatically aggravate the
computational burden for an NP-hard optimization problem. In some cases, improving the
prediction horizon may not lead to an improved closed-loop performance [190, 191]. Thus,
the “minimal” prediction horizon should be proportional to the recon�guration delay such
that

Nmin = rd/T + 1 (5.1)

holds. But we like to point out that both parameters in (5.1) impact the closed-loop per-
formance. Given recon�guration delay rd, the shorter the control interval T is, the longer
N needs to be chosen to include rd. Given rd and T , this constructed Nmin is obtained but
also needs to be satis�ed with stability conditions (3.42) requiring a su�cient large N . To
our best of knowledge, there are no related techniques available that allow us to analyti-
cally analyze the stability incorporating all these three parameters. Nevertheless, we can
compute the degree of suboptimality online for implicitly showing stability. In particular,
extending the one step relaxed Lyapunov inequality (3.34) to k steps, we may keep the sta-
bilizing minimal N unchanged with the concept of a �exible Lyapunov function that allow
local increases but with a decrease in future steps. This part will be discussed in Chapter 6.

5.3. Summary

In order to e�ectively control WIP via RMTs under unpredictable events, we employ MPC
to achieve a sustainable capacity allocation due to the capability of explicitly handling con-
straints. In addition, we formulate a set of recon�guration rules to trigger determination of
RMTs in the framework of MPC, which allows us to reduce the negative e�ects caused by
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recon�guration delay through the usage of predictive future information, and help manu-
facturers to make appropriate decisions in advance to avoid performance deterioration. To
address the integer assignment of RMTs on the shop �oor, we propose three control strate-
gies – MPC-�oor, MPC-B&B and MPC-GA. The �rst solution is easy to implement but may
destabilize the system due to the truncated control e�ort. MPC-B&B is able to guarantee
optimality of the derived solution but at the expense of computational cost. MPC-GA may
provide a non-optimal but acceptable solution in a reasonable time. With the increase of
system dimension and prediction horizon, the computational load would exponentially in-
crease and be predominant, rendering MPC-GA to be the preferable option. In next chapter,
we will show conditions such that the controlled system is stable despite possibly frequent
recon�gurations.



6
Stability of A Job Shop System
with RMTs for WIP Control

A digitalited manufacturing process is a core assumption in the context of Industry 4.0
[20]. Stability, accuracy and rapidity are the three requirements for a control system design.
Among them, stability is the prerequisite and is of utmost importance to steer a production
process as stable as possible in a long term consideration. In [192], the authors studied the
classical automatic pipeline, inventory and order-based production control system in the
form of a discrete time state space model. The stability analysis was conducted and re-
sults indicated that the system may be unstable without a closed-loop feedback of the WIP.
In [193], the robustness and stability were considered for a dynamic job shop scheduling
problem subject to machine breakdowns by means of a hybrid GA. In [194], an intelligent
control system was designed for tuning the process to mitigate chattering.

Typically, stability is discussed in terms of the Lyapunov stability or strictly asymptotic
stability. However, these concepts are unrealistic in a variety of real time applications, e.g.,
temperature control, inventory control, power electronics control, etc., where strict asymp-
totic stability may be lost. Practical asymptotic stability extends the concept of asymptotic
stability and has a signi�cance for control system with quantization errors [127], sampling
control system [130] as well as investigations of interconnections of nonlinear system by
small-gain theorems [195].

In this thesis, the process stability we considered refers to performance indicators (e.g.,
WIP) which converge to desired values or acceptable stability regions. Once a trajectories
enters a neighborhood of the equilibrium, it will remain there. In [19], a comparison regard-
ing stability regions was conducted from both perspectives (macroscopic and microscopic),
i.e., continuous modeling by mathematical theory and simulation results from DES. The
authors indicated that such an approximation made by a mathematical model is suitable
and e�ective for stability analysis. According to the speci�cation of the arrival rate, this
method allows to determine stability parameters for a production network with less time
consumption compared to a repeated trial and error approach. However, only state stabil-
ity information was discussed, the tracking control problem was not taken into account. In
[196], the authors adopted the classical PID control into a disturbed and time-delayed job

60
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shop system with RMTs for capacity control. The tracking performance was achieved and
stability was guaranteed and analyzed by Nyquist criterion. However, the constraints were
not truly treated but a factional approach was considered, which may lead to non-optimal
solutions and performance deterioration.

In this thesis, we employ MPC to maintain a prede�ned WIP level by usage of RMTs
in the presence of disturbance along with the possible recon�gurations and to analyze the
closed-loop system stability. To this end, we qualitatively and quantitatively analyze and
guarantee stability via two types of stabilizing controllers – using MPC with and without
terminal conditions. More speci�cally, we �rst qualitatively analyze the asymptotic stabil-
ity property in case of continuous variables without considering integer constraints and
recon�guration delays with and without endpoint constraints, respectively. Further, we
quantitatively analyze practical stability using terminal cost and terminal region and with-
out such terminal conditions. Last, considering that the existence of recon�guration delay
may lead to local instability, we propose to combine adaptive MPC method with the princi-
ple of �exible Lyapunov functions that allow the optimal value function to increase locally
but with an ensured decrease in future steps.

Parts of this chapter have been published in [32, 162].

6.1. Asymptotic stability without integer

constraints and delays

We compared three stability methods in terms of design, controller performance, feasibility
and numerical e�ort in Section 3.5. In terms of applicability in practice, the terminal end-
point constraints and unconstrained MPC scheme are easy understandable and preferable
for practitioners because only a cost function and a desired equilibrium need to be de-
signed [47, 147, 197]. For example, in [198], the authors �rstly used the zero terminal state
constraint to guarantee the stability of a batch process which is formulated as a two dimen-
sional system. In [199], the authors studied a supply chain network by means of sequential
distributed MPC. The terminal equality constraints imposed in the local MPC inherently
recursively satis�ed the overall system. In [200], the authors used MPC with endpoint
constraints to ensure the validity of the derived solutions in the operation region under
the variation of initial measurable conditions of an industrial batch process. In [201], an
adaptive MPC with zero terminal state constraint was designed for a production-inventory
system to be capable of identifying the process dynamics in real time. This method was easy
to implement with the routinely collected data from manufacturing companies and was a
very powerful tool for managers to make quick responses to demand variations. In [202],
the authors applied MPC with endpoint constraint in a industrial machine tool servo drive
system for reference tracking. The tracking performance and stability were guaranteed and
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the results outperformed cascaded PID control in terms of tracking accuracy.
The unconstrained MPC, which follows the original attribute of the control objective

without any additional imposing terminal conditions, is commonly applied in industry. In
[203], regulation of nonholonomic mobile robots to the desired position and orientation was
performed with MPC. The asymptotic stability was guaranteed by a tailored non-quadratic
stage cost and a su�cient prediction horizon. In [130], a arm/rotor/platform (ARP) model
was conducted by MPC without using stabilizing constrain or cost. The tracking perfor-
mance was ensured and the stability was implicitly guaranteed by a characteristic value α
along with the visited closed-loop trajectory.

Hence, due to its simplicity, we �rst adopt the simple terminal endpoint constraint method
in case of without integer constraints and recon�guration delays. Our goals include the fol-
lowing points: �rst, in absence of integer constraints and recon�guration delays, the stabil-
ity will be analyzed qualitatively. Thereafter, we aim to show e�ectiveness of the proposed
method in the basic case, which serves as a cornerstone and will be extended for analyzing
the system performance in the presence of integer constraints and recon�guration delays.
Third, we additionally compare its performance with the unconstrained MPC scheme, es-
pecially as the latter paves the way for analytically approximately estimating the practical
stability region in Section 6.2.5.

6.1.1. Terminal endpoint constraints

De�nition 6.1
Suppose a system (4.3), a prede�ned reference value x∗ and a control u(·) to be given such
there exists a forward invariant set Y ⊂ X. If there exists a function β ∈ KL such that

‖x(n)− x∗‖ ≤ β(‖x0 − x∗‖, n) (6.1)

holds for all x0 ∈ Y and all n ∈ N0, then the control u(·) asymptotically stabilizes x∗.

To achieve the goal of asymptotic stability, we propose to utilize MPC introduced in
Chapter 5. Here, we impose and employ the standard assumptions presented in Assumption
3.23 and 3.24. Our goal is to steer the WIP level of each workstation to the desired value x∗

while considering the state and control constraints

x(N) = {x∗}, 0 ≤ uj(n) and
p∑
j=1

uj(n) ≤ m (6.2)

To this end, we imposed the stage cost function (6.4), which satis�es Assumption 3.23 with

u∗ = −P
−1 · d− nDMT · rDMT

rRMT . (6.3)
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For technical reasons, we require

Assumption 6.2
The �ow probability matrix P between the workstations is invertible.

Then we can utilize our dynamics (4.3) together with Assumption 6.2 to show the following:

Proposition 6.3
Consider Problem 3.25 for the job shop system (4.3) together with the stage costs

`(x(k), u(k)) = ‖x(k)− x∗‖2
2 + λ · ‖u(k)− u∗‖2

2 (6.4)

and λ > 0 for some prede�ned desired equilibrium (x∗, u∗). Then Theorem 3.25 holds for
N = 2 with

α1(s) = α3(s) = s2

α2(s) = (1 + λ‖θ1‖2
2 + ‖θ2‖2

2 + λ‖θ3‖2
2)s2

where

θ1 = (4λ · Id + 2(rRMT )2P>P )−1(−2rRMTP> + −P
−1

rRMT · 2λ)

θ2 = Id + rRMTPθ1

θ3 = P−1 + rRMTθ1

rRMT .

Moreover, the stabilizing MPC feedback is given by

κ2(x) = θ1(x− x∗) + u∗.

The weighting coe�cient λ in stage cost (6.4) represents the penalty for control e�ort.
Obviously, the smaller λ is, the more quick convergence is reached. In this thesis, the
weighting coe�cients concerning the WIP tracking error for each workstation are assumed
to be equal. If one speci�c workstation has a high priority and expect to be steered to the
desired value quickly, it can be achieved by enhancing the associated coe�cient.

Proof of Proposition 6.3: [Terminal endpoint constraint]
Given the running cost (6.4), α1(s) = α3(s) = s2 satisfy asymptotic Lyapunov function
conditions (3.18) and (3.19). Hence, only the bound α2(‖x − x∗‖) ≥ VN(x) needs to be
established. Based on Lemma 6.4, we conclude that if V2(x) ≤ α2(‖x − x∗‖) holds, then
VN(x) ≤ α2(‖x− x∗‖) holds for any N ≥ 2. Through f(x, κ1(x)) = x∗, we obtain

κ1(x) = P−1(x∗ − x)− nDMT · rDMT − P−1d

rRMT ,
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then with (6.3), we have

V1(x) = ‖x− x∗‖2
2 + λ · ‖ − P−1(x− x∗)

rRMT ‖2
2. (6.5)

Based on the dynamic programming principle, we getV2(x) = `(x, κ2(x))+V1(f(x, κ2(x))).
Now, combine with system dynamic (4.3) and (6.5), we get

κ2(x) = argmin
u∈U

(`(x, u) + V1(f(x, u))

= argmin
u∈U

‖x− x∗‖2
2 + λ · ‖u− u∗‖2

2

+ ‖(x− x∗ + P · nDMTrDMT ) + d+ rRMT · P · u‖2
2

+ λ · ‖ − P−1(x− x∗ + P · nDMTrDMT + d)
rRMT − u‖2

2.

Next, we set

a1 := rRMT · P

a2 := x− x∗ + P · nDMTrDMT + d

a3 := −P
−1(x− x∗ + P · nDMTrDMT + d)

rRMT (6.6)

and obtain

κ2(x) = argmin
u∈U

[‖x− x∗‖2
2 + λ · ‖u− u∗‖2

2

+ ‖a2 + a1 · u‖2
2 + λ · ‖a3 − u‖2

2]. (6.7)

Hence, we have

∂κ2(x)
∂u

= 2λ(u− u∗) + 2a>1 (a2 + a1 · u)− 2λ(a3 − u)

= (4λ · Id + 2a>1 a1)u+ 2a>1 a2 − 2λ(a3 + u∗) = 0
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Since a3 = −P−1(x−x∗)
rRMT + u∗, then

u =(4λ · Id + 2a>1 a1)−1(−2a>1 a2 + 2λ(a3 + u∗))

=(4λ · Id + 2a>1 a1)−1(−2a>1 (x− x∗ + P · nDMTrDMT + d) + 2λ(−P
−1(x− x∗)
rRMT + 2u∗))

=

θ1︷ ︸︸ ︷
(4λ · Id + 2a>1 a1)−1(−2a>1 + −P

−1

rRMT · 2λ)(x− x∗)+

(4λ · Id + 2a>1 a1)−1(4λu∗ − 2a>1 (
−a1u∗︷ ︸︸ ︷

P · nDMTrDMT + d))

=θ1(x− x∗) + u∗ (6.8)

As the problem is convex, u is the unique optimal solution according to the MPC scheme,
which in turn allows us to set κ2 = u. Utilizing the closed loop system dynamics via (4.3)
and κ2, we have

f(x, κ2(x)) = x+ P · nDMTrDMT + d+ rRMTP (θ1(x− x∗) + u∗). (6.9)

Then we substitute (6.9) into (6.5) and utilize (6.3) to obtain

V1(f(x, κ2(x)) = ‖(Id + rRMTPθ1)(x− x∗) +
=0︷ ︸︸ ︷

(PnDMTrDMT + d+ rRMTPu∗) ‖2
2+

λ · ‖(P−1 + rRMTθ1)(x− x∗)
rRMT +

=0︷ ︸︸ ︷
nDMTrDMT + P−1d+ rRMTu∗

rRMT ‖2
2. (6.10)

Last, we substitute (6.3) into (6.10), which then reads

V2(x) = `(x, κ2(x)) + V1(f(x, κ2(x))) (6.11)

= ‖x− x∗‖2
2 + λ‖θ1(x− x∗)‖2

2 + ‖
θ2︷ ︸︸ ︷

(Id + rRMTPθ1)(x− x∗)‖2
2

+ λ · ‖

θ3︷ ︸︸ ︷
(P−1 + rRMTθ1)

rRMT (x− x∗)‖2
2

≤ ‖x− x∗‖2
2 + λ‖θ1‖2

2‖x− x∗‖2
2 + ‖θ2‖2

2‖x− x∗‖2
2 + λ‖θ3‖2

2‖x− x∗‖2
2

= (1 + λ‖θ1‖2
2 + ‖θ2‖2

2 + λ‖θ3‖2
2)‖x− x∗‖2

2

Therefore, we may de�ne the bound

α2(s) = (1 + λ‖θ1‖2
2 + ‖θ2‖2

2 + λ‖θ3‖2
2)s2. (6.12)

Hence, V2(x) is a Lyapunov function and the assumptions of Theorem 3.25 hold.
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Lemma 6.4
Consider the optimal control problem (3.25) with prediction horizonN ∈ N and the additional
terminal condition x(N) = x∗ and suppose that Assumptions 3.23 and 3.24 hold. Then for
each N ≥ 2 and each x ∈ XN−1 we have VN−1(x) ≥ VN(x).

Theorem 3.25 provides the general background for our task of asymptotically stabilizing
a job shop system with RMTs. Hence, our aim now is to prove that the terminal endpoint
constraints method applies to our case. The particular di�culty with MPC is that a suitable
prediction horizon N is typically unknown, yet if N reveals a stabilizing control, then also
the feedback with N + j for j ∈ N stabilizes the closed-loop [Lemma 6.4, [148]]. Here, we
show that forN = 2, the solution of problem (3.25) can be computed explicitly without the
requirement of an optimization routine. Therefore, also all feedbacks with N ≥ 2 asymp-
totically stabilize the closed-loop, which renders the method to be applicable in general.

Due to the additional terminal endpoint constraints, recursive feasibility is guaranteed
automatically, i.e., if the initial state and initial control sequence within prediction hori-
zon of the job shop system adhere all constraints, then there always exists a solution to
problem (3.25) and the MPC procedure can be applied without running into a dead end
[107].

Remark 6.5 (Stage cost and closed-loop stability)
In practice, a typical choice for stage cost is the quadratic form which penalizes the distance
to some desired equilibrium, e.g., (6.4). Note that the designed stage cost for stabilization may
not necessarily re�ect perfect performance [156], e.g. low energy consumption. Thus, there is
a trade o� between closed-loop stability and good performance. For instance, in our case, if we
use terminal endpoint constraints method and the designed stage cost (6.4) without u∗, then
the stabilization at equilibrium point (x∗, u∗) will be impossible because of that the system is
a�ne, also see [Example 6.31 [107]] in which reducing the overshoot constant by a “good” stage
cost can reduce the required N for stability. Note that the stage cost designed here with u∗ is
to achieve asymptotic stability via terminal equilibrium constraints. Later as we take integer
constraints into account, asymptotic stability cannot be achieved using this method, so the
stage cost needs be designed without u∗. We like to note that `may represent any performance
indicator or a scalarized combination of several indicators. For multi-objective extensions, we
refer to [188].

6.1.2. Unconstrained MPC scheme

In this section, we additionally employ unconstrained MPC for comparison with MPC with
terminal endpoint constraints. Also, this will be as a cornerstone for further steps to analyze
practical stability in the presence of integer constraints and recon�guration delays. Now,
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recall the system dynamics again

x(n+ 1) = x(n) + rRMT · P · u(n) + P · nDMTrDMT + d

with the same stage cost de�ned in (6.4). Since the computation burden grows rapidly
along with the increase of prediction horizon, it is not desirable to apply larger ones than
necessary to guarantee the relaxed Lyapunov inequality (3.34) hold. Therefore, in the case
of unconstrained MPC, we still �rst consider the shortest possible prediction horizon N =
2. Assume u∗ ∈ U, `∗(x) = infu∈U `(x, u) = ‖x− x∗‖2

2 satis�es (3.44). Also, we obtain the
feedback law via without terminal conditions

κ2(x) = argmin
u∈U

(`(x, u) + V1(f(x, u))

= argmin
u∈U

(‖x− x∗‖2
2 + λ · ‖u− u∗‖2

2 + ‖a2 + a1 · u‖2
2).

Hence, we have

∂κ2(x)
∂u

= 2λ(u− u∗) + 2a>1 (a2 + a1 · u).

Then we obtain

u = (2λ · Id + 2a>1 a1)−1(

0︷ ︸︸ ︷
∂κ2(x)
∂u

+2λu∗ − 2a>1 a2)

= (2λ · Id + 2a>1 a1)−1(2λu∗ − 2a>1 (x− x∗ − PrRMTu∗))

= (2λ · Id + 2a>1 a1)−1((2λ · Id + 2a>1

a1︷ ︸︸ ︷
PrRMT )u∗ − 2a>1 (x− x∗))

=
Φ1︷ ︸︸ ︷

−(2λ · Id + 2a>1 a1)−1 · 2a>1 (x− x∗) + u∗ (6.13)

Similar to terminal endpoint constraints, u(n) = Φ1(x(n)− x∗) + u∗ ∈ U may not hold
with constraints, (e.g., at initial high WIP). To this end, we inductively de�ne a feedback
Φ2 := −q · a−1

1 · Id, q ∈ (0, 1) such that u(n) = Φ2(x(n)− x∗) + u∗ ∈ U hold. Then we set
‖Id + a1Φ1‖2 :=∞ if u(Φ1(x)) /∈ U and de�ne

Φ := argmin
Φ1,Φ2

{‖Id + a1Φ1‖2, ‖Id + a1Φ2‖2}. (6.14)

The closed-loop trajectory in the case of unconstrained MPC is then given by

x(n) = ((Id + PrRMTΦ))n(x0 − x∗) + x∗. (6.15)
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Consequently, we use the feedback law (6.13) and (6.15)

`(x(k), u(k)) = ‖x(k)− x∗‖2
2 + λ‖u(k)− u∗‖2

2

= ‖x(k)− x∗‖2
2 + λ‖Φ(x(k)− x∗) + u∗ − u∗‖2

2

≤ (1 + λ‖Φ‖2
2)‖x(k)− x∗‖2

2

≤
C︷ ︸︸ ︷

(1 + λ‖Φ‖2
2)

σ︷ ︸︸ ︷
(‖Id + rRMT · P · Φ‖2

2))k
`∗(x0)︷ ︸︸ ︷

‖x(0)− x∗‖2
2 (6.16)

If overshoot C is su�ciently close to 1, then no matter what the decay rate σ ∈ (0, 1) is,
we can always ensure stability with the shortest possible prediction horizon N = 2 [107].
Also, based on the controllability condition regarding the stage cost (6.16), we do not need
to compute and check Assumption 3.31. Instead, utilizing the result presented in the Lemma
3.37, we can compute γN from (3.46) and then obtain the associated performance index αN
depending on N via (3.47) [158]. Here, we choose N = 2, then we have γ2 = C(1 +σ) and
α2 = 1− (γ2 − 1)2. To verify 0 < α2 ≤ 1, it is equivalent to ensure 1 ≤ γ2 < 2. Now we
set Φ2 := Φ and put it into (6.17). Given the system parameters a1 which consists of �ow
matrix P and production rate of RMT rRMT , through choosing λ ∈ (0, 1) and q ∈ (0, 1),
we can show

γ2 = C(1 + σ) = (1 + λ‖Φ2‖2
2)(1 + ‖Id + a1 · Φ2‖2

2))

= (1 + λ‖ − q · a−1
1 · Id‖2

2)(1 + ‖Id + a1 · −q · a−1
1 · Id‖2

2)) (6.17)

and therefore

1 ≤ (1 + λ · q‖a−1
1 ‖2

2)(1 + (1− q)2) < 2 (6.18)

to hold.
The current case study represents a straightforward proof of concept, which will be ex-

tended to incorporate recon�guration delays and integer programming methods for ad-
dressing the assignment of RMTs. Note that in practice the perfect tracking (De�nition 6.1)
is almost surely impossible, but needs to be extended to practical stability, cf. [107, Chap-
ter 2]. Apart from operators who may interfere within the processes, the latter is due to
two facts: For one, any recon�guration cannot immediately completed but with a delay
time (e.g., installation time). And secondly, the assignment of RMTs for each workstation
is inherently to be integer, whereas typical feedbacks consider convex sets. To cope with
both problems in a long term, we propose to employ MPC as a control scheme, which is
able to explicitly handle constraints through solving an optimization problem. To make the
�rst step into this direction and show e�ectiveness of the proposed method, in this section,
we consider the basic system dynamics in case of continuous variables and compare MPC
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to the standard PID implementation, the comparison results of which will be presented in
Section 7.1.

In our case, the cost function we used is of quadratic form and we show that stability
can be guaranteed even with the shortest prediction horizon by unconstrained MPC. This
is very signi�cant for analyzing practical stability in the context of integer constraints and
recon�guration delays. Particularly, the latter may lead to a locally increasing Lyapunov
function even before reaching the practical stability region, cf., Remark 3.18. Also, we
like to point out that in some cases, the quadratic cost may fail in MPC since a su�cient
prediction horizon for stability does not exist even if the system is �nite time controllable,
cf., [203, 204].

6.2. Practical stability with integer constraints

and reconfiguration delays

Since strict asymptotic stability cannot be achieved with integer constraints in general, the
best we can hope for is that the closed-loop trajectory will converge to a neighborhood of
the equilibrium, which is termed as the acceptable or practical stability region [18, 130].
This concept is similar to robust control invariant sets, in which the system state is con-
�ned in the presence of bounded uncertainties or disturbances [125, 205]. There are two
categories of techniques for addressing the robust stability issue. The �rst class is the so-
called robust MPC method, which mainly includes min-max approaches [206, 207], tube-
based methods [208, 209] and multi-stage strategies [183]. In the min-max approach MPC,
the worst case costs for all possible disturbances are taken into account. For tube-based
method, the initial state is also considered as a decision variable together with the control
sequence to ensure satisfaction of the constraints subject to a set of bounded disturbances.
In the multi-stage MPC, the uncertainty is explicitly taken into account via using a sce-
nario tree, which leads to a non-conservative robust control. The other category is called
stochastic MPC, in which chance constraints are included to enable the systematic trade-
o� between achieving control objectives and an admissible level of closed-loop constraint
violation in a probabilistic sense [210, 211].

In this thesis, since the assignment of RMTs is limited to be integer, the controlled WIP
trajectory cannot perfectly track a reference but instead may show oscillations around such
an equilibrium. Compared to continuous control, the discretization of inputs can be viewed
as a bounded “disturbance”, which is inherently connected to the system model. In this way,
we utilize the inherent robustness of MPC relying on its internal receding optimization
strategy without any modi�cation to the nominal controller instead of the aforementioned
robust MPC approach, unless the e�ect caused by external disturbance is more signi�cant
than the “disturbance” caused by integer constraints [212]. Thus, practical stability has
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the advantage of executing an MPC scheme which is robust against a certain extend of
perturbations [213]. The inherent robustness had been veri�ed in the case that the optimal
value function is continuous which may fail in the presence of state constraints [214, 215].

To the best of our knowledge, regarding the practical stabilization property of MPC, there
is a lack of an explicit characterization of the stability region, which is typically handled by
extensive closed-loop simulations. Using terminal endpoint constraints may be intractable
and impracticable with integer constraints to allow x∗ = f(x∗, u∗) to hold [213, 216]. As a
remedy, there are two solutions available. One is to replace the terminal endpoint constraint
with a terminal region so that the feasibility of the optimization problem is guaranteed, i.e.,
the controlled WIP trajectory would be con�ned within an acceptable region rather than an
exact target point, which is termed as practical stability region and will be compassed in the
designed terminal region. A good interpreted example is the application of �nite control
inputs MPC in power electronics in which the candidate control variables are �xed to be
from a �nite set of real numbers [127, 212, 217]. Asymptotic practical stability is guaranteed
by using terminal cost and the associated terminal region with N = 1. Yet, as the worst
case derived form the bounded quantization error of control input sets is considered, the
estimate of practical stability region is conservative.

The other solution is still in the framework of unconstrained MPC scheme. More speci�-
cally, we follow the method proposed in [130] and adopt the trajectory dependent approach
to quantitatively estimate the degree of suboptimality α online for stability. Although this
method cannot rigorously guarantee stability, it is still a powerful tool to analyze closed-
loop stability and performance of a feedback controller for a speci�c closed-loop trajectory.
That is, we only consider the points x(n) ∈ X visited by the closed-loop trajectory rather
than all x ∈ X. Using this method provides a chance to adaptively change the predic-
tion horizon N based on a given stability and suboptimality estimate. In particular, since
the recon�guration delays may render the Lyapunov function to increase locally before
the practical stability region is reached, we can combine adaptive horizon MPC with the
principle of a �exible Lyapunov function.

6.2.1. Terminal cost and terminal region

Before we introduce the terminal cost and terminal region method, we would like to present
some results with respect the discrete LQR optimal control problem, because the construc-
tion of the terminal cost (additional Lyapunov function) is based on the solution of discrete
Algebraic Riccati Equations (DARE). Although there are a lot of references that used termi-
nal cost and terminal regions within the stability analysis is, the systems they studied are
almost all linear, without additive terms, and with continuous variables [127, 141, 147]. Yet,
in our case, the system considered is with additive terms, and required the control variables
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are integer. Now, we consider a class of discrete a�ne linear time-invariant systems :

x+ = f(x, u) = Ax+Bu+ c (6.19)

where x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, u ∈ Rm, c ∈ Rn, n ∈ N0, and x+ is the successor
state. Set x̃ := x−x∗, ũ := u−u∗ where a pair (x∗, u∗) is an equilibrium point. We assume
the following:

Assumption 6.6
There exists u∗ ∈ Rm such that x∗ = f(x∗, u∗) hold, i.e., c+ (A− Id)x∗ +Bu∗ = 0.

Then through (6.19), we obtain:

x+ − x∗ = A(x− x∗) +B(u− u∗) + c+ Ax∗ − x∗ +Bu∗

x̃+ = Ax̃+Bũ+ c+ (A− Id)x∗ +Bu∗

x̃+ = Ax̃+Bũ (6.20)

Consider the discrete in�nite horizon optimal control problem (6.21)

J∞(x̃(k), ũ(k)) :=
∞∑
k=0

`(x̃(k), ũ(k)) :=
∞∑
k=0

x̃(k)>Qx̃(k) + ũ(k)>Rũ(k) (6.21)

with the system dynamics (6.20), where Q is semi-positive de�nite matrix Q ≥ 0, R is
positive de�nite matrix and R > 0. Assume the pair (A,B) is stabilizable. Then it can be
solved via the discrete Riccati equation

P = A>PA− A>PBK +Q. (6.22)

The static feedback control law ũ = −Kx̃ is obtained with the derived K = (B>PB +
R)−1B>PA. Since u is restricted to be integer, we set the terminal control law uF =

L (u) =
u︷ ︸︸ ︷

ũ+ u∗−e, L : Rn → Zn, where e is regarded as a discretization error caused by
integer constraints and recon�guration delays. Then the system dynamic (6.20) is expressed
as:

x̃+ = Ax̃+BuF = Ax̃+B(ũ+ u∗ − e) =
Ak︷ ︸︸ ︷

(A−BK) x̃−B(e− u∗) (6.23)

In addition, the �nal terminal cost is de�ned as F (x̃) = ‖x̃‖2
P , where P is positive de�nite.
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Then considering Assumption 3.26, we have

F (x̃+)− F (x̃) + `(x̃, uF )

=‖Ax̃+BuF‖2
P − ‖x̃‖2

P + ‖x̃‖2
Q + ‖uF‖2

R

=‖Akx̃−B(e− u∗)‖2
P − ‖x̃‖2

P + ‖x̃‖2
Q + ‖ −Kx̃+ u∗ − e‖2

R

=(Akx̃−B(e− u∗))>P (Akx̃−B(e− u∗))− x̃>Px̃+ x̃>Qx̃+

(−Kx̃+ u∗ − e)>R(−Kx̃+ u∗ − e)

=x̃>A>k PAkx̃− x̃>A>k PB(e− u∗)− (e− u∗)>B>PA>k x̃+ (e− u∗)>B>PB(e− u∗)−

x̃>Px̃+ x̃>Qx̃+ x̃K>RKx̃− x̃>K>R(u∗ − e)− (u∗ − e)>RKx̃+ (u∗ − e)>R(u∗ − e)

=x̃>(A>k PAk − P +Q+K>RK)x̃+ x̃>(K>R− A>k PB)(e− u∗)+

(e− u∗)>(RK −B>PAk)x̃+ (e− u∗)>(B>PB +R)(e− u∗) (6.24)

Since K = (B>PB +R)−1B>PA, then 4

RK −B>PAk = 0 (6.25)

K>R− A>k PB = 0 (6.26)

A>k PAk − P +Q+K>RK = 0 (6.27)

Now (6.24) can be expressed as:

F (x̃+)− F (x̃) + `(x̃, uF ) ≤ ‖B>PB +R‖2 · ξ2 ∀x ∈ XF. (6.28)

Here, ‖e−u∗‖2 ≤ ξ. Since λmin(Q)‖x̃‖2 ≤ ‖x̃‖2
Q = x̃>Qx̃ ≤ λmax(Q)‖x̃‖2 and `(x̃, uF ) ≥

α3(‖x̃‖2) = λmin(Q)‖x̃‖2, we have

4F (x) = F (x̃+)− F (x̃) ≤ −λmin(Q)‖x̃‖2 + ‖B>PB +R‖2 · ξ2. (6.29)

According to 4F (x) ≥ 0, we can de�ne the smallest invariant Bδs = {x̃ ∈ XF |‖x̃‖2 ≤
δs =

√
‖B>PB+R‖2
λmin(Q) · ξ}, which is marked in red in Figure6.1. It means that the Lypunov

function inside Bδs is monotonically increasing, e.g., F (x(7)) < F (x(8)) in Figure 6.2.
Consequently, the trajectory may move out of Bδs but is still con�ned within Bδm based on
(6.30), e.g., x(8) ∈ Bδs and x(9) ∈ Bδm in Figure 6.2. According to (6.23), such maximal
outward region is de�ned as

δm ≤ ‖Akδs −B(e− u∗)‖2 ≤ ‖Ak‖2δs + ‖B‖2‖e− u∗‖2

≤ (‖Ak‖2

√√√√‖B>PB +R‖2

λmin(Q) + ‖B‖2)ξ (6.30)

4Induction process is in Appendix A.4.
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Note that inBδm\Bδs , the Lyapunov function is monotonically decreasing, e.g., F (x(12)) <
F (x(11)). The control invariant is �nally set as Bδm = {x̃ ∈ XF |‖x̃‖2 ≤ δm}, where the
terminal region is de�ned as

XF :=
{
x ∈ Rn : ‖x− x∗‖2 ≤ δF = maxu∈U(‖u− u∗‖2)

‖K‖2

}

x2

x1

XF

Bδm

Bδs

Figure 6.1.: Minimal and maximum invariant
sets within terminal region

n0

XF

Bδm

Bδs

1 2 3 4 5 6 7 8 9 10 11 12

4F (x) > 0

4F (x) < 0

F (x(n))

Figure 6.2.: Relationship amongBδs ,Bδm andXF

Remark 6.7
The designed local controller is not implemented but only required to show practical stability
along with the constructed terminal region and ultimate invariant sets. Also, Bdm ⊂ XF

must be guaranteed by the chosen of parameters in (6.30) which in�uences the size of the
practical stability region. We would like to point out that in the FCS-MPC, the discretization
error e can be approximated by the bound ξ based on a �nite set of real numbers [212]. If we
use this method and consider the worst case for the bound (6.30), the result would be much
more conservative. Consequently, the associated terminal region that encompasses a practical
stability region is enlarged. This stability constraints may be in con�ict with hard constraints,
which may let the terminal control law loose e�ect, cf., Figure 6.3, where B2

δm and X2
F are

over conservative regions compared to B1
δm and X1

F . In this case, choosing a set of appropriate
parameters in (6.30) becomes much more complicated. Note that such a terminal region is
di�cult to construct in the time-varying case because linearization and the LQR technique do
not lead to an Algebraic Riccati Equation.

To this end, in next section, we quantitatively analyze practical stability by the trajectory-
dependent approach to estimate the degree of suboptimality in the framework of uncon-
strained MPC scheme.
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x2

u /∈ U

x1

X2
F

B2
δm

X1
F

B1
δm

Figure 6.3.: Relationship between terminal region and practical stability region

6.2.2. Unconstrained MPC scheme

Proposition 6.8
Consider a feedback control law: κN : X → U and the associated closed-loop trajectory x(·)
according to (3.26). Assume that

VN(x(n)) ≥ VN(x(n+ 1)) + min{α(`(x(n), κN(x(n)))− ε), `(x(n), κN(x(n)))− ε}
(6.31)

holds with some α ∈ (0, 1], ε > 0 and all n ∈ N0. For all time instants n ∈ [n1, n2],
`(x(n), κN(x(n))) ≥ ε holds. We de�ne VN(x(n2 + 1)) := V ε

N and ¯̀(x(n), κN(x(n))) :=
max{`(x(n), κN(x(n)))− ε, 0}, as well as the associated optimal value via

V̄ κN
N (x(n)) :=

n2∑
j=n

¯̀(x(j), κN(x(j))), n ∈ [n1, n2]

Then the estimate

αV̄ κN
N (x(n)) ≤ VN(x(n))− V ε

N ≤ V∞(x(n))− V ε
N , n ∈ [n1, n2] (6.32)

holds for the feedback controller.

The proof has been given in [130]. Proposition 6.8 indicates that in the time interval n ∈
[n1, n2], like [0, 6] and [10, 12] in Figure. 6.4, `(x(n), κN(x(n))) decreases monotonously.
The procedure with respect to estimate of α in an a posteriori way is given in Algorithm 5.
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Figure 6.4.: Illustration for Proposition 6.8
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Figure 6.5.: Local increase before reaching ε

Algorithm 5 Practical estimate of the degree of suboptimality α in a posterior way
Require: ε.

1: Given N ∈ N, set αmin = 1
2: for n = 0, . . . do
3: Measure current WIP levels x(n) and set x0 := x(n)
4: Compute control inputs u(n) by solving optimal control problem (3.25)
5: Obtain the optimal control sequence u?n(·)
6: Set VN(x0) = JN(x0, u

?
n(·)), κN(x(n)) = u?n(0)

7: Compute the closed-loop dynamics (3.26) to get x(n+ 1)
8: Set x0 = x(n+ 1) and recompute (3.25) via step 4
9: Set VN(n+ 1) = JN(x0, u

?
n+1(·))

10: if `(x(n), κN(x(n))) >= ε then
11: Set α = VN (x(n))−VN (x(n+1))

`(x(n),κN (x(n)))−ε

12: if α > 1 then
13: Set α = 1 % The estimates in practical case become conservative and may be

more than 1
14: end if
15: if α < 0 then
16: Print ”the solution may be unstable”
17: end if
18: else
19: Set α = 1 % Due to reaching into the practical stability region
20: Set αmin = min{α, αmin}% Update the estimate of closed-loop system
21: end if
22: Apply κN(x(n)) = u?n(0) to workstations
23: end for
Output: αmin – The minimum of suboptimality degree of the visited states



6.2. Practical stability with integer constraints and reconfiguration delays 76

Compared to the a posterior estimate method which needs to compute an additional
optimal control problem VN(n+1) (i.e., line 8 in Algorithm 5), in what follows, we introduce
an a priori way, which allows us to conduct such an estimate at the current time instant.
Here, we only present the basic assumptions and the derived Algorithm 6 concerning the
a priori estimate of α. Regarding the detailed proof and comprehensive analysis, we refer
to [130].

Assumption 6.9
Given N ≥ 2, N ∈ N, if there exists some γ > 0 and ε > 0 such that the following
inequalities

V2(xuN (N − 2, x(n)) ≤ max{V1(xuN (N − 2, x(n)) + ε, (γ + 1)V1(xuN (N − 2, x(n))+

(1− γ)ε} and

Vk(xuN (N − k, x(n)) ≤ max{`(xuN (N − k, x(n)), κk(xuN (N − k, x(n)) + (k − 1)ε,

(γ + 1)`(xuN (N − k, x(n)), κk(xuN (N − k, x(n)))) + (k − 1− γ)ε}

hold for all k = 3, · · · , Nand all n ∈ N. (6.33)

If Assumption 6.9 holds, then the condition (6.31) is satis�ed. Compared to the former, we
need to additionally compute V1(xuN (N −2, x(n))), which is termed as one-step optimiza-
tion problem and can be solved by Levenberg-Marquardt or the Gauss-Newton algorithm
[218]. Note that there may be a tradeo� between ε and γ, cf., [156]. Using an a priori esti-
mate based on Assumption 6.9 may yield a rather conservative estimate compared to the a
posterior estimate. In order to remedy this, the Assumption 6.9 was extended incorporating
an additional parameter N0 where 2 ≤ N0 ≤ N to improve the accuracy of estimate, cf.,
[Assumption 19 [130]]. This “best” N0 is unknown which is closely related to computa-
tional cost due to solving N0 − 2 additional optimal control problem with the associated
feedback law κj, j = 1, · · · , N0 − 1. Yet, if the designed stage cost is independent of u,
then it is unnecessary to compute u. In this case, di�erent N0 can be simply evaluated for
the maximization of α based on the derived closed-loop trajectory [130]. The associated
algorithm concerning the practical priori estimate including N0 was given in [Algorithm
3.40 [218]].

We would like to point out that since the upper bound of N0 is determined by N , the
longer N is, the more opportunities obtained for achieving a “good” estimate through test-
ing N0. A comparison concerning the a posterior estimate and the a priori estimate was
conducted in terms of required prediction horizon for closed-loop performance and com-
putational time (cf., [page 331 [107]]), the results showed that due to the derived more
conservative estimate, using the a priori estimate typically need a largeN to improve α for
performance guarantee (i.e., α > ᾱ). Yet, this may be intractable if the prediction horizon
itself for stability is required to be ”su�ciently” large to ensure α > 0, cf., [example 10.14
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[107]] in which N = 70 is needed at its initial value. We would like to point out this may
occur in our case in which the initial WIP is at a high level. As a consequence, the short pre-
diction horizons may result in an negative estimate of degree of suboptimality. To improve
the closed-loop performance and guarantee the stability, a large N may be needed in the
period of high WIP load. Yet, this would in turn drastically aggravate computational bur-
den referring to solving an NP-hard optimization problem. Considering the computational
cost along with the increase of the length of prediction horizon for stability, the strict one
step decreased Lyapunov inequality condition can be extended and replaced with a �exible
Lyapunov function including k steps, which may eases this tight situation and guarantee
the system stability with a possibly short prediction horizon. We will discuss this in Section
6.2.6.

Algorithm 6 Practical estimate of the degree of suboptimality α in a priori way
Require: ε

1: Given N ∈ N, set αmin = 1
2: for n = 0, . . . do
3: Set γ = 0, compute V1(xuN (N − 2, x(n)))
4: if V2(xuN (N − 2, x(n))) > V1(xuN (N − 2, x(n))) + ε or V1(xuN (N − 2, x(n))) > ε

then
5: Set γ = V2(xuN (N−2,x(n)))−V1(xuN (N−2,x(n)))−ε

V1(xuN (N−2,x(n)))−ε

6: end if
7: for k = 3, · · · , N do
8: if Vk(xuN (N − k, x(n)))− `(xuN (N − k, x(n)), κk(xuN (N − k, x(n))))>(k− 1)ε

or `(xuN (N − k, x(n), κk(xuN (N − k, x(n)))) > ε then
9: Set γk = Vk(xuN (N−k,x(n)))−`(xuN (N−k,x(n)),κk(xuN (N−k,x(n))))−(k−1)ε

`(xuN (N−k,x(n)),κk(xuN (N−k,x(n))))−ε

10: Set γ = max{γ, γk}
11: end if
12: end for
13: if γ = 0 then
14: Set α = 1, Print ”Practical region reached”
15: else
16: Set α = (γ+1)N−2−γN

(γ+1)N−2

17: if α < 0 then
18: Print ”Solution may be unstable”
19: end if
20: Set αmin = min{α, αmin}
21: end if
22: end for
Output: αmin
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Also, we would like to point out that the optimized variables must be integer in this
thesis. The aforementioned one step optimization problem is similar to the one used in the
�nite input set MPC with horizon N = 1. Yet, the cost functional includes an additional
terminal cost and terminal region constraint. In doing so, we typically need to solve an
additional optimization problem although the stage cost is independent of u [127].

6.2.3. Estimate of ε

The decay rate of the tracking error represents the transient response of closed loop perfor-
mance, and the size of practical stability region stands for the steady-state error. Note that
the latter is determined by system parameters (e.g., production rate of RMT and �ow prob-
ability matrix) together with the disturbance caused by discretization of input, cf., (6.42).
The approximately selected ε typically needs to ensure that `(·, ·) is monotonically decreas-
ing in the time periods like [0, 6] and [10, 12] in Figure 6.4. We would like to point out that
determination of ε is not trivial, in particularly due to integer constraints and recon�gura-
tion delays. For instance, if RMTs in the job shop system do not have to be recon�gured
in the steady state phase, the practical region determined by ξm in (6.42) is identical to the
value derived without recon�guration delays. Otherwise, the practical region derived with
recon�guration delays is typically larger due to lagged control actions, cf., Figure 7.16. To
estimate ε especially with unknown external disturbance is an extraordinary task. Cur-
rently, such an ε is constructed by extensive simulations together with analysis of designed
stage cost.

6.2.4. Incomplete optimization with NP-hard for stability

In Section 6.2, we discussed practical stability with integer constraints. Since the derived
solutions refer to solving an NP-hard optimization problem, the latter may be intractable if a
long prediction horizon is required for stability or improving performance. To this end, we
consider using an incomplete optimization strategy. One way to reduce the computational
cost and guarantee the stability is making use of the a priori characteristic value α ∈ (0, 1],
cf., Algorithm 7, to search a feasible solution.

Note that in the �rst iteration we still insist on achieving the optimal solution as a root
and then focus on (non)-optimal solutions at the next steps. The stability proof regarding
such incomplete optimization is given in [Proposition 7.25 [107]]. Note that in Step 8 of
Algorithm 7, the solutions satisfying the inequality may not be found at some time instants
with the given α. In this case, we complete the iterative optimization and use the derived
optimal solution.
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Algorithm 7 Incomplete NP-hard optimization based on a priori desired degree of subop-
timality α

1: Given N ∈ N. ε
2: if n = 0 then
3: Measure current WIP levels x(n) and set x0 := x(n)
4: Solve the optimal control problem (3.25) and obtain the optimal control sequence

u?n(·) and the corresponding cost value JN(x0, u
?
n(·))

5: Set κN(x(n)) = u?n(0) as the feedback law to workstations
6: end if
7: for n = 1, . . . do
8: Measure current WIP levels x(n) and set x0 := x(n)
9: Solve the optimal control problem (3.25) and compute control inputs u∗n(·) by only

ensuring JN(x0, u
∗
n(·))+min{α(`(x(n−1), κN(n−1)−ε), `(x(n−1), κN(n−1))−

ε)} ≤ JN(x(n−1), u?n−1(·)) with a priori α ∈ (0, 1] by terminating the optimization
routine

10: Apply κN(x(n)) = u∗n(0) to workstations in the next sampling period and iteratively.
11: end for

Proposition 6.8 shows that with a stabilizing feedback law κN , `(x(n), κN(x(n))) can be
ensured to decrease monotonically before reaching the practical stability region to ensure
α ∈ (0, 1] via the constant ε. In Figure 6.5, however, we can observe that `(x(5), κN(x(5))) >
`(x(4), κN(x(4))), and this phenomenon may happen when we consider the recon�gura-
tion delays in our case. If we still utilize the �xed ε, then α may be negative. As a result,
using the adaptive MPC technique, the prediction horizon is increased immediately to im-
prove the performance and hence forth α. Alternatively, we could enlarge ε to ensure α to
be non-negative. However, if this local instability occurs far away from the planned level,
this estimate would be too conservative and may even be useless, e.g., (fake enlarged region
of α = 1 without necessity of improving performance.) Undoubtedly, we hope such region
to be as small as possible, which represents a good tracking performance with small steady-
state error. In this case, one simple but applicable way is to redesign the stage cost by a
trial and error procedure via numerical simulations to ensure monotonicity before reach-
ing the practical stability region. Alternatively, we could relax the classical conservative
Lyapunon fuction and use the principle of a �exible Lyapunov function [128]. The details
of the latter will be discussed in Section 6.2.6. This phenomenon also had been pointed out
in Remark 3.18 that the decreased cost function in the Algorithm 7 is not a necessary con-
dition for (6.34). Regarding it, we cite the following de�nition with respect to attractivity
and stability [107].

De�nition 6.10
Given a set Y ⊂ X, the closed-loop trajectory x+ = f(x, κN(x)) is said to be attractive
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on Y if for each x ∈ Y , limn→∞ ‖x(n) − x∗‖ ≤ δ. In addition, the closed-loop system is
practically stable on Y if there exists α1 ∈ K, ξ(n) > 0, n ∈ N such that

‖x(n)− x∗‖ ≤ α1(‖x0 − x∗‖) + ξ(n) (6.34)

This will be veri�ed in (6.39), where β(·, n) ∈ K.

6.2.5. Analytical approximate estimate of practical region

In Section 6.1.2, the optimal feedback law u(n) = Φ(x(n)−x∗)+u∗ ∈ U (6.13) was derived
by unconstrained MPC with continuous variables. Taking integer constraints into account,
this is not the case. Particularly, the monotonicity of the Lyapunov stability condition (3.19)
may not hold under the recon�guration delays, cf., Figure 6.5. Nevertheless, in the pres-
ence of integer constraints and recon�guration delays, if the closed-loop trajectory can be
convergent as n → ∞, i.e., (6.34) holds, then the Lyapunov function can be used to allow
local increases [128, 129]. Here, the idea is to regard the discreteness of inputs as a disturbance
compared to using continuous variables and show practical stability [219]. Now, recalling the
system dynamics (4.3) and utilizing the expression of u∗ (6.3), we have

x(n+ 1) =x(n) + rRMT · P · (Φ(x(n)− x∗) + u∗ + ξi+r(n)) + P · nDMT · rDMT + d

=x(n) +
a1︷ ︸︸ ︷

rRMT · P ·Φ(x(n)− x∗)) +
w(n)︷ ︸︸ ︷

rRMT · P · ξi+r(n) +
=0︷ ︸︸ ︷

rRMT · P · u∗ + P · nDMT · rDMT + d (6.35)

Here, ξi+r(n) is the bounded “disturbance” caused by integer constraints and recon�gura-
tion delays compared to the solution derived from continuous variables. Through (6.35),
we have

x(n+ 1)− x∗ = (Id + a1Φ)(x(n)− x∗) +
w(n)︷ ︸︸ ︷

a1 · ξi+r(n) (6.36)



6.2. Practical stability with integer constraints and reconfiguration delays 81

and proceed using induction

x(1)− x∗ = (Id + a1Φ)(x(0)− x∗) + w(0)

x(2)− x∗ = (Id + a1Φ)(x(1)− x∗) + w(1)

= (Id + a1Φ)((Id + a1Φ)(x(0)− x∗) + w(0)) + w(1)

= (Id + a1Φ)2(x(0)− x∗) + (Id + a1Φ)w(0) + w(1)
...

x(n)− x∗ = (Id + a1Φ)n(x(0)− x∗) + (Id + a1Φ)n−1 ·
w(0)︷ ︸︸ ︷

a1 · ξi+r(0) +

+ (Id + a1Φ)n−2 ·
w(1)︷ ︸︸ ︷

a1 · ξi+r(1) + · · · (Id + a1Φ)n−n ·
w(n−1)︷ ︸︸ ︷

a1 · ξi+r(n− 1) (6.37)

Consequently,

‖x(n)− x∗‖2 ≤ ‖(Id + a1Φ)‖n2‖‖x(0)− x∗‖2 + ‖Id + a1Φ‖n−1
2 · ‖w(0)‖2+

‖Id + a1Φ‖n−2
2 · ‖w(1)‖2 + · · ·+ ‖w(n− 1)‖2 (6.38)

Set ξm = max{‖w(k)‖2}, k = 0, 1, · · ·n− 1. Then we have

‖x(n)− x∗‖2 ≤ ‖(Id + a1Φ)‖n2‖‖x(0)− x∗‖2 + (‖Id + a1Φ‖n−1
2 + · · ·+ ‖Id + a1Φ‖n−n2 )ξm

≤
β(‖x(0)−x∗‖,n)︷ ︸︸ ︷

‖(Id + a1Φ)‖n2‖x(0)− x∗‖2 +

ξ(n)︷ ︸︸ ︷
1− ‖(Id + a1Φ)‖n2
1− ‖(Id + a1Φ)‖2

ξm (6.39)

Given a1, we have shown the system with continuous variables would be asymptotically
stabilized via (6.17). Since our aim is to show the closed-loop trajectory can be convergent
as n→∞, the tracking error is assumed to be small enough such that u(Φ1(x)) ∈ U (6.13)
holds. Now, set Φ1 := Φ = −(2λ · Id + 2a>1 a1)−1 · 2a>1 , then

Id + a1Φ = Id + a1 · (−(2λ · Id + 2a>1 a1)−1 · 2a>1 )

= Id− (2λ · Id + 2a>1 a1)−1(2a>1 a1)

= Id− (2λ · Id + 2a>1 a1)−1(2λ · Id + 2a>1 a1) + 2λ · Id(2λ · Id + 2a>1 a1)−1

= λ · Id(λ · Id + a>1 a1)−1 (6.40)

Under constraints, in order to guarantee the asymptotic stability, ‖Id + a1Φ‖2 ∈ (0, 1)
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must hold. Based on (6.40), we show

‖Id + a1Φ‖2 = λ · ‖(λ · Id + a>1 a1)−1‖2

≥ λ

‖λ · Id + a>1 a1‖2
≥ λ

λ+ ‖a>1 a1‖2
(6.41)

Then, ‖Id + a1Φ‖2 ∈ (0, 1) holds. Then when n→∞, (6.39) is simpli�ed as

lim
n→∞

‖x(n)− x∗‖2 ≤

δ︷ ︸︸ ︷
ξm

1− ‖(Id + a1Φ)‖2
(6.42)

6.2.6. Local instability with reconfiguration delays

We discussed that the existence of recon�guration delays may lead to a non-monotonous
Lyapunov function. Consequently, the estimate α in (6.31) may be negative even before
reaching the practical stability region. In production systems, this local instability may be
acceptable depending on the requirements of manufacturers. To simplify the structure of
controller and save computational cost without possibly increasing the prediction horizon
too often, we introduce the concept of a �exible Lyapunov function.

6.2.6.1. Flexible Lyapunov function

If we are able to show VN(x(n)) ≤ τ or lim
n→∞

‖x(n) − x∗‖2 → δ as n → ∞, cf., Theorem
3.21, then the Lyapunov function is allowed to increase locally but with an average decrease
in future steps [129].

De�nition 6.11
There exists a set of parameters νj > 0, j = 1, · · · , k − 1 such that

<0︷ ︸︸ ︷
νk−1 · (VN(x(n+ k))− VN(x(n))) + · · ·+ ν1 · (VN(x(n+ 2))− VN(x(n)))

+
>0︷ ︸︸ ︷

(VN(x(n+ 1))− VN(x(n))) < 0 (6.43)

holds, then VN(·) is called �exible Lyapunov function.

For simplicity, we consider the basic three steps (6.44)

ν1 · (VN(x(n+ 2))− VN(x(n))) + (VN(x(n+ 1))− VN(x(n))) < 0 (6.44)

to show how condition (6.43) works with di�erent penalties on the decrease of cost via
the illustrated examples, cf., Figure 6.6 and 6.7, respectively. On the left side, ν1 = 1
represents 1

2(VN(n+ 1) +VN(n+ 2)) < VN(n), see the connected inclined lines in Figures
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6.6. Similarly, on the right side, the penalty with ν1 = 2 relaxes the decreased amplitude of
VN(n + 2) − VN(n) that render (6.43) to hold. Through this simple case, we can �nd that
the �exible Lyapunov function property is closely determined by those coe�cients.

n0

τ

1 2 3 4 5 6 7 8 9 10 11 12

VN(x(n))
ν1 = 1

Figure 6.6.: One step increase but with an av-
erage decrease in future two steps

n0

τ

1 2 3 4 5 6 7 8 9 10 11 12

VN(x(n))
ν1 = 2

Figure 6.7.: One step increase but with a small
penalty on the decreased costs

Compared to the general applied �exible Lyapunov function [128], we would like to
point out that in their work either V (x(n + 1)) or V (x(n + 2)) can be less than V (x(n))
such that condition (6.44) holds for searching a Lyapunov function. Here, the optimal cost
functional VN is set as Lyapunov function. In our case, we only consider condition (6.43)
when VN(n + 1) > VN(n) occurs with the resulting negative estimate α. This method is
also di�ers from [220] in which the a priori stability and suboptimality threshold ᾱ belongs
to ᾱ ∈ (0, 1). In this way, once α < 0, the prediction horizon is instantaneously increased
to guarantee the stability and improve the closed-loop performance via adaptive horizon
NMPC [218].

For the general setting (6.43), given a set of parameters νj , condition (6.43) may also
exhibit di�erent results with di�erent steps k. For example, in Figure 6.8, if we choose
k = 2, then condition (6.43) does not hold because of VN(x(1)) < VN(x(2)) < VN(x(3)),
see the points encompassed in the red ellipse. In contrast to that, if this step is extended by
one to k = 3, then we observe that VN(x(4)) < VN(x(1)). As a result, the condition (6.43)
is satis�ed.

The above case we discussed is with respect to the prolongation of k for satisfying the
�exible Lyapunov function condition. The right side (cf., Figure 6.9) is the inverse case that
prolongation of k may be counterproductive. That is, in the red circle, condition (6.43) may
hold within 3 steps under a certain of parameters but may fail due to a large increase of
VN(x(4)).

Through these two illustrated examples, the main idea we want to show is that given a
�xed step k and a �nite set of νj , we should not verify condition (6.43) at the time instant
n + k which may be too late to bring unexpected results. To cope with it, we adopt the
receding strategy to iteratively check it. That is, if condition (6.43) is satis�ed at any time
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instants before n+k, then we immediately discard of the inspections of the next steps. This
strategy is similar with the principle of MPC itself that uses a rolling time window.

n0

τ

1 2 3 4 5 6 7 8 9 10 11 12

VN(x(n))

Figure 6.8.: Prolongation of k satis�es �exible
Lyapunov equation

n0

τ

1 2 3 4 5 6 7 8 9 10 11 12

VN(x(n))

Figure 6.9.: Prolongation of k may render �ex-
ible Lyapunov function fail

6.2.6.2. Relaxed and flexible Lyapunov ineqality

Generally, the relaxed Lyapunov inequality is used for analyzing the stability via estimates
of suboptimality in each step. In this thesis, we extend it to k steps through using the
principle of a �exible Lyapunov function. Considering the possible local instability and
computational burden, we iteratively check condition (6.43) for the further determination
of increasing prediction horizon to improve the closed-loop performance. Again, we �rst
consider the simple case (6.45) within three steps and then extend it to the general one. For
simplicity of exposition, we assume ν1 = 1

<0︷ ︸︸ ︷
(VN(x(n+ 2))− VN(x(n))) +

>0︷ ︸︸ ︷
(VN(x(n+ 1))− VN(x(n))) < 0 (6.45)

Note that we are only concerned with local instability before reaching the practical sta-
bility region. Therefore, the �exible Lyapunov function is only triggered in the area of
`(x(·), u(·)) ≥ ε. In order to be easily understood, we sketch Figure 6.10 for interpreting
all possible cases. For saving space, we use αNn+j, j = 1, · · · , k − 1 in Figure 6.10. Assume
VN(x(n+ 1))− VN(x(n))) > 0 occurs with the resulting αNn < 0. At the next time instant
n+ 1, we have three possible situations, one for αNn+1 < 0 and two for αNn+1 > 0 depending
on the position of VN(n+ 2). If αNn+1 > 0, we have

VN(x(n+ 2)) ≤ VN(x(n+ 1))− αN(n+ 1)`(x(n+ 1), κN(x(n+ 1))− ε). (6.46)
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Note that we set αN(·) = 1 if αN(·) > 1 in case of practical stability. Now we utilize the
upper bound of VN(n+ 2) and substitute (6.46) into (6.45) to obtain

−αN(n+ 1)(`(x(n+ 1), κN(x(n+ 1)))− ε) + 2(VN(x(n+ 1))− VN(x(n))) < 0.
(6.47)

Similar to the a priori estimate, we could judge the condition (6.45) with all available infor-
mation (6.47) at the time instant n + 1. Note that if this condition holds, then we do not
need to evaluate condition (6.45) until n + 2 with the derived VN(x(n + 2)). Otherwise,
we still need to determine the relationship between VN(x(n+ 2)) with VN(x(n)) at n+ 2,
which can be considered as an a posterior check. The detailed discussion is presented in
Algorithm 8. Now we extend (6.46) and (6.47) to the general setting. If αN(n+ k− 1) > 0,
we have

VN(x(n+ k)) ≤ VN(x(n+ k − 1))− αN(n+ k − 1)`(x(n+ k − 1), κN(x(n+ k − 1))− ε)
(6.48)

Substituting (6.48) into (6.43), we have

− νk−1 · αN(n+ k − 1)(`(x(n+ k − 1), κN(x(n+ k − 1)))− ε) + (νk−1 + νk−2)·

(VN(x(n+ k − 1))− VN(x(n))) + · · ·+ ν1 · (VN(x(n+ 2))− VN(x(n))+

(VN(x(n+ 1))− VN(x(n)) < 0 (6.49)

tn n+ 1 n+ 2 n+ 3 · · · n+ k

αN
n < 0

αN
n+1 < 0

αN
n+1 > 0

αN
n+1 > 0

VN(x(·))

αN
n+2 < 0

αN
n+2 > 0

αN
n+2 > 0

· · ·

αN
n+k−1 < 0

αN
n+k−1 > 0

αN
n+k−1 > 0

Possible cases

Actived points for (6.43)

Further checked points

Figure 6.10.: General case for determination of �exible Lyapunov function within k step

Using the similar principle, Algorithm 8 can be extended to the general case, cf., Figure
6.10, where red marks represent the �exible Lyapunov function to hold. For simplicity,
we use blue marks to represent the two situations: One from αNn+j−1 < 0, it means that
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VN(x(n+ j− 1)) < VN(x(n+ j)). The other from αNn+j−1 > 0 which stands for VN(x(n+
j−1)) > VN(x(n+j)). But for both cases, VN(x(n+j)) > VN(x(n)), j = 1, · · · , k, which
needs to be checked further in the framework of �exible Lyapunov inequality condition
(6.43).

Algorithm 8 Online estimate via relaxed and �exible Lyapunov function k = 2
1: Given N , νj , k
2: for n = 0, 1 . . . do
3: Execute the Algorithm 6 for a priori online estimate
4: if αN(n) < 0 (line 17 in algorithm 6) then
5: First keep prediction horizonN unchanged, store computed value VN(n) and con-

tinue running algorithm 6 to the next time instant n+ 1
6: if αN(n+ 1) > 0 then
7: Inequality (6.46) holds. Check condition (6.45) through (6.47) utilizing the upper

bound of VN(x(n+ 2))
8: if Condition (6.47) holds then
9: Condition (6.45) is satis�ed, �exible Lyapunov function works

10: else
11: Continue to the next time instant n+2 and compute VN(x(n+2)) and check

(6.47)
12: if (6.47) holds then
13: Conclude VN(x(n + 2)) < VN(x(n)) < VN(x(n + 1)), �exible Lyapunov

function works
14: else
15: Conclude VN(x(n)) ≤ VN(x(n+ 2)) < VN(x(n+ 1)), increase N to N̄ to

improve αN
16: end if
17: end if
18: else
19: VN(x(n)) < VN(x(n+ 1)) ≤ VN(x(n+ 2)), increase N to N̄ to improve αN
20: end if
21: end if
22: end for

νj and k are two factors for the determination of �exible Lyapunov function condition.
Given the step k, if the computational cost is predominant and we do not want to increase
N often, then one simple way is setting ν1 < ν2 < · · · νk−1. Yet, it is still related to the
matched decreased / increased cost values in (6.43). For sake of safety and to make (6.43)
hold, a strong assumption concerning �exible Lyapunov condition is given in Assumption
6.12. Additionally, since we adopt the iteratively checking strategy, in this way, the increase
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of N is only triggered when VN(x(n+ ĵ)) > VN(x(n)), for all ĵ = 1, · · · , k.

Assumption 6.12
Given the step k and regardless of νj , at least one of the decreased Lyapunov cost VN(x(n+
j)− VN(x(n)), j = 2, · · · , k holds.

The prerequisite for using �exible Lyapunov function is to ensure VN(x(n)) → τ as
n → ∞. It means that even though we do not change the horizon N for improving the
performance, we still conclude that there exists a �nite step k̄ < k = ∞ that renders
VN(x(n + k̄)) < VN(x(n)) to hold through iteratively checking. Yet, this is impractical.
Similarly, if we set the prediction horizon N to∞, this local instability may not occur. It
seems that there exists a relationship between N and k. The longer N is, the shorter step
k can be. Inversely, the shorter N is, the longer step k may be required such that condition
(6.43) holds. Considering those local instability phenomenons may be mainly attributed to
the inadequate horizon with recon�guration delays. Given a �nite k, if the �exible Lya-
punov function is not satis�ed, then the prediction is increased to improve performance.
Now, one question naturally arise. Under the increased N̄ , does the performance improve?.
More speci�cally, does VN̄(x(n+ ī)) < VN(x(n)) holds, for N̄ > N? Since all information
in (6.43) to be checked are the visited values, the computational time will not be aggra-
vated. However, we cannot give the accurate information regarding the new N̄ but have to
iteratively check it. In this way, the performance cannot be guaranteed.

To cope with it, we combine the adaptive NMPC with �exible Lyapunov function that
evaluates condition (6.43) at the current time instant n with future information and adap-
tively changes N such that this condition holds.

6.2.6.3. Adaptive NMPC with flexible Lyapunov function

De�nition 6.13 (Flexible Lyapunov function)
Given a �nite step k ≥ 2 and a set of coe�cients νj > 0, j = 1, · · · , k − 1. If VNn(x(n +
1)) − VNn(x(n)) occur with the resulting αNn < 0 before reaching the practical stability
region, assume there exists Nn ≥ 2, Nn ∈ N0 such that

<0︷ ︸︸ ︷
νk−1 · (VNn(x(n+ k))− VNn(x(n))) + · · ·+ ν1 · (VNn(x(n+ 2))− VNn(x(n)))

+
>0︷ ︸︸ ︷

(VNn(x(n+ 1))− VNn(x(n))) < 0 (6.50)

holds, where x(·) is closed-loop trajectory, VNn : N0×X→ R≥0, then VNn is called �exible
Lyapunov function.

In order to verify (6.50), the disadvantage is that we have to compute additional mul-
tiple optimal control problems at n (e.g. VNn(n + 1), · · · , VNn(n + k)). But the advan-
tage is that we do not need to compute all these values at once but can iteratively check
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them technique. If the condition (6.50) does not hold with the current Nn, then increase
Nn by one Nn ← Nn + 1 and check (6.50). Note that typically under a longer horizon
with the expected improved performance, the needed checked step to make (6.50) holds
may be reduced, which also saves computational time in another light. After a �nite step
Nn ← Nn + i, condition (6.50) will be satis�ed, cf., Remark 3.22. Using this strategy to
adaptively change N , the closed-loop performance is guaranteed. Yet, it may su�er from
computational complexity especially with a large Nn. Regarding the computational cost
from increasing Nn, the main di�erence between this method with adaptive NMPC [218]
is that when αNn(n) < 0 this method is used to solve mutiple additional optimal control
problem with Nn, the conditions may be satis�ed without increasing Nn.

6.3. Summary

In this chapter, we systematically analyzed the stability qualitatively and quantitatively via
two categories of stabilizing MPC controllers. We summarize the main results as follow:

1. With continuous variables and without integer constraints and recon�guration delays
for asymptotic stability

• Terminal endpoint constraints are easy to be implemented and recursive feasibility
can be guaranteed. Yet, the additional terminal constraints may weaken the operating
region and deteriorate the overall performance. Although the stability may be guar-
anteed for a short prediction horizon, it typically needs a large prediction horizon to
guarantee a large feasible sets of initial conditions. However, forcing x∗ = f(x∗, u∗)
is almost surely impossible to be achieved with the discretization of inputs when we
take integer constraints into account.

• Without using terminal conditions requires a controllability condition with respect to
the optimal cost functional or the stage cost. Stability can be ensured by a su�ciently
large prediction horizon and this “su�cient” may be achieved with the possible short-
est prediction horizon (6.17). This is signi�cant in dealing with NP-hard optimization
problems where the computation burden is predominant.

2. With integer constraints and recon�guration delays for practical (asymptotic) stability

• Using terminal cost and terminal region still typically requires a large prediction hori-
zon to guarantee a large feasible set of initial conditions and may be impossible while
solving the NP-hard optimization problem. Also, the terminal region needs to be pre-
computed o�-line and the practical stability region has to be compassed within the
designed terminal region.

• Using a trajectory-dependent approach in the context of unconstrained MPC scheme,
online estimating the degree of suboptimality allowed us to quantitatively analyze the
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in�uence of the recon�guration delays on key performance indicator such as, e.g.,
setting time, during the transient phase, and on the steady-state performance via the
size of the practical stability region. Particularly, we were able to integrate the adap-
tive NMPC with �exible Lyapunov function for handling the possible local instability
phenomenon caused by recon�guration delays, but it may su�er from computational
complexity.



7 Numerical Results

After the development and implementation of a prototype application, a respective imple-
mentation needs to be tested thoroughly, which is basically corresponding to Chapter 6. In
Section 7.1, according to the derived stability results in case of continuous assignment of
RMTs for controlling WIP from Section 6.1, we �rst demonstrate the e�ectiveness of pro-
posed method via comparison between MPC with terminal endpoint constraints and PID.
After that, a sensitivity analysis is carried out which includes initial conditions, the length of
prediction horizon and the dynamic �ow control. Then, we additionally present results for
unconstrained MPC for comparison with MPC with terminal endpoint constraints, which
forms a cornerstone for considering practical stability. After the quantitative analysis with
continuous variables, we quantitatively conduct the comparison concerning WIP tracking
and usage of RMTs by means of di�erent integer control strategies associated the MPC and
also via PID as the benchmark in Section 7.2.1. Furthermore, for the closed-loop trajectory
controlled by MPC, we show practical stability via an a posterior estimate of the degree
of suboptimality in Section 7.2.2. Based on such estimate, we quantitatively analyze the
closed-loop in terms of transient and steady state performance in the cases with and with-
out recon�guration delays in Section 7.2.3. Similarly to the former, a sensitivity analysis
is conducted in the presence of integer constraints and recon�guration delays in Section
7.2.4. Last, in Section 7.2.4.3, through a simple case, we demonstrate that the recon�gu-
ration delays may render the system to be unstable and show how the �exible Lyapunov
function works combined with adaptive MPC and the relationship between a “good” stage
cost with stability.

Parts of this chapter have been published in [6, 162].

90
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7.1. Asymptotic stability without integer

constraints and delays

To complement and check our theoretical �ndings presented in Section 6.1.1, we consider
an example of a job shop manufacturing process that is sketched in Figure 7.1, which is
composed of four workstations (1-turning, 2-drilling, 3-milling, 4-grinding) and each work-
station contains several DMTs and RMTs. While DMTs can only operate in its own speci�c
workstations, RMTs may be reassigned to other workstations by recon�guration. The re-
spective dynamics are given by (4.3) with parameters setting in Table 7.1.

Table 7.1.: The variables de�nition in the job shop system

Variable Description
x(0) = [40 40 40 30]> Work in process (WIP) level

rDMT = 3 Production rate of DMT
rRMT = 2 Production rate of RMT

nDMT = [5 4 5 2]> Number of DMTs for each workstation
u = [2 1 2 1]> Number of RMTs for each workstation

m = 6 Maximum value of RMTs in system
x∗ = [25, 22, 25, 16]> Planned work in process (WIP)

The production rates of machines are arti�cial numbers, but ensure rRMT < rDMT . Since

Initial stage

i01 i02

p13 = 0.6

p12 = 0.4

p21 = 0.5

p23 = 0.5

p34 = 0.4

WS1
RMTs

WS2
RMTs

WS3
RMTs

WS4
RMTs

Final stage

Figure 7.1.: Job shop manufacturing systems with RMTs
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WIP items are bounded capital, manufacturers aim to keep them working at full speed by
keeping WIP on a balanced level, especially in case of disturbances. To this end, the order
release rate for workstation 1 is superimposed with a sin function with amplitude of 30 %
and a period of 10 hours for the approximation of volatile customer demand [26]. The �ow
matrix P is described in the Figure 7.1 with external input rates d(n) := [i01(n) i02(n) 0 0]>,
where i02 = 6,

i01(n) =

10 + 3| sin(0.1πn)|, n ∈ (20 30]

10, else
(7.1)

The stage cost is given in (6.3) and the penalty weighting coe�cient λ is equal to 0.1.

7.1.1. Comparison between standard PID and MPC

Given the results from Proposition 6.3 for MPC and implementation for PID [196], both
are readily applicable for job shop systems with RMTs. Upon implementation, using MPC
one does not have to worry about closed-loop stability along with the choose of prediction
horizon length, which shows usability without expert knowledge. In contrast to stability,
PID requires internal knowledge of the key performance indicators applied to evaluate the
feedback as well as good command of how to appropriately adapt the PID parameters to
perform well for these indexes. Manually tuning these parameters to achieve a good per-
formance in the coupled MIMO system may be complex. To cope with it, one can apply
optimization methods, e.g., PSO [221] or iterated linear matrix inequalities [222]. For MPC,
no further knowledge are required as KPIs are directly used as cost criterion, and are op-
timized by design. As PID cannot handle the constraints on the total number of RMTs, we
employed a truncation function

uj(n) =



uj(n), if
p∑
j=1

uj(n) ≤ m

m
p∑
j=1

uj(n)
uj(n), else (7.2)

such that PID always adheres to this constraint. Through extensive simulations to reduce
oscillations as much as possible, the parameters of the PID controller were tuned manually
and set to kp = 0.5, ki = 0.01 and kd = 0.

In order to increase the basin of attraction, we chose N = 16 for terminal endpoint con-
straints MPC and compared the results with PID. The simulation results are sketched in
Figure 7.2. As expected, in Figure. 7.2 we observe that the proposed method is capable of
tracking the desired WIP value for each workstation. The allocation of RMTs is displayed
in Figure. 7.3. From Figure. 7.3, we observe that for both MPC and PID, the number of RMTs
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assigned to particular workstation is identical from time instant n = 34 onwards. Compar-
ing this to the WIP levels in Figure. 7.2, we �nd that MPC is tracking the desired values x∗j
nicely for each workstation j = 1, . . . , 4. PID, on the other hand, shows an o�set, which we
were unable to solve despite extensive tuning of the control parameters. For n ∈ [0, 33] in
Figure 7.3, we observe that both controllers result in a very di�erent assignment of RMTs,
which however is not well re�ected in standard comparison errors. Here, we considered
integral absolute error (IAE), integral square error (ISE), integral absolute control (IAU)
and integral square control (ISU) to analyze the results displayed in Figure 7.2 and 7.3, cf.
Table 7.2 for details.

Table 7.2.: Comparison between standard PID and MPC with di�erent performance indicators

IAE IAU ISE ISU

PID

WS1 199.40 77.41 1496.40 97.02
WS2 161.06 40.25 1032.42 37.80
WS3 254.92 74.51 2245.99 104.74
WS4 162.59 37.10 866.20 31.85

MPC

WS1 155.24 76.83 1882.57 100.05
WS2 165.45 39.73 2163.74 33.81
WS3 83.10 73.47 622.92 103.40
WS4 62.36 36.38 400.50 39.38

Considering the di�erences in the assignments, time instants n = 0 and n = 22 are of
particular interest: At n = 0, PID chooses almost identical assignments of RMTs for all
workstations, whereas MPC moves RMTs to workstations 3 and 4 only. As a result, the
WIP levels for workstations 3 and 4 in the MPC case drop signi�cantly faster than for PID,
whereas WIP levels for workstations 1 and 2 are only slightly higher, cf. Figure 7.2. At



7.1. Asymptotic stability without integer constraints and delays 94

n = 22, both PID and MPC reacted to the change of the input rate. The following curve
is almost identical for both controllers and approximates a sin function, which is to be
expected given the nature of the input rate change. In contrast to PID, however, MPC starts
with a very strong peak in workstations 1, 2 and 3.

Based on these results, we conjecture that the di�erence between PID and MPC seen
in Figures. 7.2 and 7.3 at n = 0 could be reduced signi�cantly by choosing di�erent PID
control parameters for each workstation. As this is unnecessary for MPC, we conclude that
from a practitioners point of view MPC is more easily accessible. Regarding n = 22 and
the deviation from the desired values observed for PID, MPC – at least for this example
setting – also shows improved performance. Additionally, we conjecture that this plug
and play property will allow us to straight forward integrate the integer constraints and
recon�guration delays, whereas for PID these may cause serious problems in stability.

7.1.2. Sensitivity analysis

7.1.2.1. Initial conditions

To test our proposed method, we additionally simulated and implemented di�erent ini-
tial conditions. In the Figure 7.5, the results are illustrated exemplarily for the WIP tra-
jectory of workstation 1. In Figure 7.5, the black lines represent using an disturbance
d1 := [10 10 0 0]>, which cannot be stabilized due to capacity limitations. The red lines
stands for d2 := [8 10 0 0]> and the blue line represents d3 := [10 6 0 0]>. In both
cases, our proposed method is able to stabilize the system. In Figure 7.4, we see that the
method is capable to deal with di�erent initial values, here 1) x(0) = [30 30 30 20]>, 2)
x(0) = [40 30 20 30]>, 3) x(0) = [40 40 40 30]>, and 4) x(0) = [50 40 50 40]>, respectively,
and stabilize the system accordingly.

Remark 7.1
Note that the additional terminal condition x(N) = x∗ has to be controllable and reachable
in �nite time. In the context of planning and control of manufacturing processes, it is crucial
to identify the admissible set of the external input rate d which may include disturbance for
manufacturers. Based on equation (6.3), u∗ ∈ Umust be attained within the constraints. That
means the determination of d must be resulting in a feasible solution u with the �xed given
system parameter settings. If d is contained in a region for which a feasible solution exists,
then any initial condition trends to a stable solution. This provides a clear understanding for
manufacturers that how much the external input rate they can deal with under the limited
available resource to achieve the asymptotic stability.
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Figure 7.4.: WIP levels for di�erent initial conditions

7.1.2.2. Dynamic flow control

Further, we consider the case of a dynamic �ow from [2] which includes the product mix
handled by the workstations and which leads to the modi�cation of o�-diagonal values of
P given by (7.3), e.g.,

p2
21(n,O1(u(n)), d(n)) := i202(n)

p3
12O1(n) + i202(n)

p3
12(n,O2(u(n)), d(n)) := iγ01(n)

p2
21O2(n) + iγ01(n) γ ∈ {1, 3}

p3
23(n,O1(u(n)), d(n)) := p3

12O1(n)
p3

12O1(n) + i202(n)

p2
13(n,O2(u(n)), d(n)) := p2

21O2(n)
p2

21O2(n) + i01(n)

p1
13(n,O2(u(n)), d(n)) := iγ01(n)

p2
21O2(n) + iγ01(n) γ ∈ {1, 3}

p3
34(n,O2(u(n)), d(n)) := p3

23O2(n)
p3

23O2(n) + (p1
13 + p2

13)O1(n)
(7.3)
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which are determined by the respective output rate and external input rate.

Table 7.3.: Process �ow of each product [2]

Product

type

Arrival

rate

Workstation

sequence

Probability of

Product �ow

1 i101 1 3 - - p1
13 → p1

30

2 i202 2 1 3 - p2
21 → p2

13 → p2
30

3 i301 1 2 3 4 p3
12 → p3

23 → p3
34 → p3

40

Respective results are illustrated in Figure 7.6. Here, we observe that – despite avail-
ability of all information regarding workstation outputs – the resulting trajectories show
oscillations. Therefore, the closed-loop system is not asymptotically stabilized but showed
practical asymptotic stability for the chosen prediction horizon N = 16 only. For a com-
plete stability proof in the case of time varying dynamics, also time varying Lyapunov
arguments would be required, which is out of the scope of this thesis. Yet the simulation
indicates that the applicability of MPC in the time varying case is not perfectly straight
forward and requires further analysis.

7.1.2.3. Prediction horizon

Using the terminal endpoint constraints method is easy to be implemented, yet, one disad-
vantage is that typically a large prediction horizon is required to guarantee a large feasible
set. This is �ne with continuous variables which shows less computational requirement.
Yet, for discrete variables, enormous numerical di�culties will arises with large N for sta-
bility and feasibility. To this end, we additionally compare terminal endpoint constraints
MPC with unconstrained MPC scheme, cf., Figure 7.7 in which the prediction horizon is
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chosen as N = 2. We observe that the former has a larger control e�ort and therefore may
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Figure 7.7.: Comparison between with and without terminal endpoint constraints

su�er the feasibility with short horizon (e.g. u2(2) is negative). In order to ensure feasibility
using terminal endpoint constraints, we increase the basin of attraction and set N = 16,
which was previously applied for comparison with PID. The control e�ort obtained without
terminal conditions is more cautious and slow than the former.

Now, considering the case study with parameters setting presented in Table 7.1 and Fig-
ure 7.1. Assume the derive feedback law u(n) = Φ1(x(n) − x∗) + u∗ ∈ U (i.e., (6.13))
holds, based on the asymptotical controllability condition (6.16), we have ‖Φ1‖2 = 1.0800,
C := 1 +λ‖Φ1‖2

2 = 1.11664 > 1 and 0 < σ := ‖(Id + rRMT ·P ·Φ1‖2
2) = 0.01817104 < 1.

Based on the computation of αN via (3.47), asymptotic stability is guaranteed and we obtain
the performance index α2 = 1− (γ2 − 1)2 = 0.98125004, where γ2 = 1.13693051.

The above applies the asymptotic controllability with respect to running costs to show
stability. Now, we additionally check the controllability with respect to optimal value func-
tion (3.31) with N = 2. Then, we have `(x, κ2(x)) = ‖x − x∗‖2

2 + λ‖Φ1(x − x∗)‖2
2,

V1(x) = ‖x− x∗‖2
2, V1(f(x, κ2(x))) = ‖(Id + rRMTPΦ1)(x− x∗)‖2

2,and

V2(x) = `(x, κ2(x)) + V1(f(x, κ2(x))) ≤ (1 +
γ︷ ︸︸ ︷

λ‖Φ1‖2
2 + ‖Id + rRMTPΦ1‖2

2)`(x, u)
(7.4)

which shows that Assumption 3.31 holds, cf., [Remark 4.3 in [156]]. Then,α = (γ+1)N−2−γN
(γ+1)N−2 =

0.98182598, where 0 < γ = σ + C − 1 = 0.13481104 < 1. Here, α is computed slightly
di�erent compared to the former α2. But for both cases, we can guarantee α ∈ (0, 1] and
hence forth stability. Also, the estimate between the in�nite horizon feedback controller is
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given by

V κ2
∞ (x)− V∞(x)

V∞(x) ≤ γN

(γ + 1)N−2 − γN
= 0.01851043 (7.5)

Yet, constraints violation occur, e.g, at initial high WIP level



Φ1︷ ︸︸ ︷
0.5671 0.2569 −0.0231 −0.0078

0.1994 0.5686 −0.0216 −0.0073

0.4276 0.4350 0.4662 −0.0112

0.1669 0.1663 0.1803 0.4828


×



x(0)−x∗︷ ︸︸ ︷
40− 25

40− 22

40− 25

30− 16


+



u∗︷ ︸︸ ︷
0.625

0.25

0.5

0.2


=



u/∈U︷ ︸︸ ︷
13.3000

13.0496

21.5802

15.1606


Nevertheless, we have shown that stability still can be guaranteed via (6.17) with N = 2.
Now, we set Φ2 := Φ = −0.05 · a−1

1 · Id, ‖Φ2‖2=0.0624. Then, this control law is feasible
whiling considering the worst case at initial high WIP level and we have



Φ2︷ ︸︸ ︷
0.0312 0.0156 0 0

0.0125 0.0312 0 0

0.0250 0.0250 0.0250 0

0.0100 0.0100 0.0100 0.0250


×



x(0)−x∗︷ ︸︸ ︷
40− 25

40− 22

40− 25

30− 16


+



u∗︷ ︸︸ ︷
0.625

0.25

0.5

0.2


=



u∈U︷ ︸︸ ︷
1.3750

1.0000

1.7000

1.0300


Then we get 0 < σ := ‖Id + a1 · Φ2‖2

2 = 0.9025 < 1, choose λ = 0.1, then C =
1 + λ‖Φ2‖2

2 = 1.00039, γ2 = C(1 + σ) = 1.9032 and α2 = 1 − (γ2 − 1)2 = 0.1842,
which is much smaller than the former with α2 = 0.98182598. This is also re�ected in
Table 7.5, which shows α2 at the initial high WIP stage with strong constraint limitations
is smaller than the latter ones (e.g. around the practical stability region). The reason is
attributed to Φ1 such that u(Φ1(x)) ∈ U holds. Then, α2 is directly derived from Φ1 with a
larger estimate. From another point of view, the estimate for all x ∈ X is too conservative
and (7.5) cannot be accurately estimated. Later, we will quantitatively estimate degree of
suboptimality online, which is particularly conducive to the design of adaptive horizon
NMPC.

Remark 7.2
While the solution derived from optimization typically outperforms the decision based on
worker experience, the computational cost grows with the dimension of the system and may
be intractable, i.e. the best solution may not found in a reasonable time. Within a job shop
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system, this may be the case if the initial state of the job shop system is far from the desired
equilibrium. In this case, decentralized or distributed control could be as alternatives applied
for the high order system [223, 224, 225], which are out of the scope of this thesis.

7.2. Practical stability with integer constraints

and reconfiguration delays

Based on Section 7.1 , we extend the research and consider a NP-hard optimization problem
for the assignment of RMTs while considering recon�guration delay to maintain WIP for
each workstation. The closed-loop predictive control system including integer operators is
built, cf. Figure 7.8 for a respective block diagram. The description concerning elements
(e.g. GA, Algorithm 1, etc) were introduced in Chapter 5. The parameter setting concerning
stage cost and system dynamics are identical to the former de�ned in Section 7.1 but we
shift the demand �uctuation period to [35, 45] for a better representation that such the
�uctuation is occurring at the steady state stage.

x∗ x(n)

Controller
Algorithm 1

PID

MPC

System

Floor
operator

ConstraintsCost
function Algorithm 3

Optimizer
GAB&B

Figure 7.8.: Di�erent control strategies for controlling WIP by integer assignment of RMTs
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7.2.1. Comparison of different integer control strategies

According to the analysis concerning stage cost and stability presented in Remark 6.5, we
change the stage cost as

`(x(k), u(k)) = ‖x(k)− x∗‖2
2 + 0.1 · ‖u(k)‖2

2 (7.6)

and keep other system settings (e.g., P ) unchanged. We consider the shortest possible
prediction horizon N = 2, simulate the process using MATLAB and obtain the results
shown in Table 7.4. Here, MPC1, MPC2 and MPC3 represent MPC with �oor operator,
branch and bound and genetic algorithm, respectively. To assess the performance of the
controllers, we employ the mean value of WIP µ(WIP ) and its standard deviation σ(WIP )
as well as the mean value of utilized RMTs in the system µ(RMT). As benchmark, we
additionally implement a PID controller together with the �oor operator, cf. [226, 227] for
details. As N = 2 according to the literature [107] and also in our simulations reveals

Table 7.4.: Comparison between standard PID and di�erent integer control strategies based on MPC
N = 2 PID MPC1 MPC2 MPC3 MPC2

u?(0)

µ(WIP )

WIP1 29.8871 32.2314 28.4981 28.0647 28.5314
WIP2 24.2600 30.3400 25.3933 25.6733 25.3800
WIP3 30.8567 28.2767 26.1567 25.8767 26.1367
WIP4 19.9573 19.3600 17.0467 16.8867 16.8800

σ(WIP )

WIP1 5.3645 5.0129 5.6422 5.0149 5.6781
WIP2 5.5420 4.9867 5.6820 6.3205 5.6762
WIP3 8.7065 4.0782 2.9088 2.6326 2.7466
WIP4 5.4342 2.6071 2.4226 2.4222 2.3599

µ(RMT)

WS1 1.4500 1.0492 1.0492 1.0667 1.0667
WS2 0.9833 0.5738 0.5574 0.5667 0.5667
WS3 1.4333 1.0328 1.0328 1.0500 1.0500
WS4 0.7333 0.5246 0.5246 0.5333 0.5333

CPU time (s) 1.274 24.857 1031.312 503.020 328.343

the worst performance for MPC, we limited ourselves to this case. Note that choosing a
larger prediction horizon N typically improves the performance of the controller, yet from
Table 7.4 we observe that MPC with even onlyN = 2 for any choice of integer optimization
method outperforms PID.

From Table 7.4 we additionally observe that the results concerning the key performance
indicators µ(WIP ), σ(WIP ) and µ(RMT) are almost identical if branch and bound or a
genetic algorithm is applied. Yet, we observe a signi�cant improvement of both approaches
as compared to the �oor operator concerning the mean WIP level µ(WIP ) and its �rst
standard deviation σ(WIP ), whereas the mean number of utilized RMTs µ(RMT) almost
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remain at the same level as compared to MPC with �oor operator. However, using PID
controller requires a higher control e�ort to maintain the WIP level.

On the downside, however, the computation time employing B&B or GA is drastically
increased. Moreover, the computational complexity especially of B&B would grow expo-
nentially if the prediction horizon is prolonged. We like to note that the computational time
can be signi�cantly reduced if only u?(0) is considered as an integer optimization variable,
cf., Section 5.1.3. To this end, we additionally simulate this case and present the results at
Table 7.4 called MPC2

u?(0). We observe that the number of utilized RMTs is a little higher
than MPC2, the performance is also acceptable. In Figure 7.9, we include the closed loop
trajectories for the given scenario using the di�erent controllers.
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Figure 7.9.: Comparison of WIP level in each workstation by di�erent methods with N = 2

Here, we observe that the closed loop trajectories for MPC with B&B and with GA co-
incide almost perfectly and converge towards a practical stability region near the planned
WIP level restricted in the scope of one unit of rRMT , cf. Figure 7.10. Also, we observe
that the tracking error of workstation 3 and workstation 4 are locally increasing. The con-
vergence of x{3,4}(n) → x∗{3,4} may be non-monotone. Yet, VN is ensured to be strictly
monotonically decreasing at those time instants, cf. Figure 7.11 with red markers. Note
that VN may be also locally increasing under recon�guration delay with di�erent system
dynamics, see Section 7.2.4.3 for detailed discussion. We like to note that due to the iterative
nature of the MPC algorithm, the violation of integer control constraints is healed implic-
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Figure 7.10.: Di�erence between current WIP value with planned value for each workstation

itly. Yet, standard techniques for showing stability [107] may not apply as each solution
may be infeasible. Also, asymptotic stability may not be reached, cf. [107] for details on the
stability properties.

n

0 10 20 30 40 50 60

V
N

0

200

400

600

800

1000

1200

1400

1600

1800

Figure 7.11.: Optimal value function for N = 2

In Figure 7.9, we additionally observe that the settling time for PID or MPC in combina-
tion with the �oor operator is signi�cantly larger compared to optimization based integer
operators. Based on this observation, we conjecture that the usage of the �oor operator is
not applicable to frequent recon�guration requirements and, if the frequency becomes too
high, it may actually destabilize the system.



7.2. Practical stability with integer constraints and reconfiguration delays103

To support the latter, Figure 7.12 displays the usage of RMTs in the workstations by ap-
plying MPC together with B&B. Here, the time period is divided into three parts, settling
time period 1©, stable period 2© and �uctuation period 3©. We observe that after the set-
tling time only a few RMTs are required within the workstations, which are alternately
assigned and reassigned. Also, we can observe that the number of utilized RMTs increases
due to demand �uctuation at time period n ∈ [35, 45] 3©. After a short time, the system is
practically stable again. The variations of employed RMTs correspond with the changes in
WIP controlled by MPC with B&B (i.e., MPC-B&B). We like to note that if the RMTs are
fully exploited at both of the adjacent time instants, the RMTs of operating conditions must
be identical. Also, if the number of previously utilized RMTs is equal to the maximum m,
then there are no idle RMTs left to be assigned. From Figure 7.12, we observe that one RMT
previously employed in the workstation 4 is assigned to workstation 1 with recon�guration
delay. This behavior re�ects and satis�es the real constraints, which are addressed in the
Algorithm 3.

Figure 7.12.: Number of RMTs by B&B associated with MPC for each workstation

Combined, our case study indicates that applying MPC with any type of integer control
strategy is superior to PID. Amongst the considered alternatives, B&B as well as GA show
better and almost identical performance regarding the considered indexes. Hence, due to
computational requirements, the combination of genetic algorithm and MPC appear to be
a promising control alternative. Note that due to the non-optimal solution, the practical
stability region derived by MPC with GA is typically larger than MPC-B&B.
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7.2.2. Practical stability via an a posterior suboptimality
estimate

To show practical stability for the closed-loop trajectory controlled MPC-B&B withN = 2,
cf., Figure 7.9, we follow the method proposed in [130] to compute an online estimate the
degree of suboptimality for implicitly guaranteeing practical stability. Considering the ini-
tial conditions and a possibly shorter prediction horizon, we use an a posterior estimate
instead of an a priori estimate, see detailed discussion in Section 6.2.2 together with Fig-
ure 7.19. In order to analyze the in�uence caused by recon�guration delays in terms of
transition and steady-state performance, we �rst present the results in case of integer con-
straints but without delays. Here, we select two segments of time intervals – transition
phase n ∈ [1, 20] and steady-state stage n ∈ [31, 50] which includes the demand �uctua-
tion period [35, 45], respectively. According to Algorithm 5 with the selected ε = 2.8, the
results are given in Table 7.5. The marked values represent reaching into the practical sta-
bility region for the �rst time. Then it will stay there due to condition (6.31). The variations
of local estimate α and closed-loop estimate αmin are illustrated in Figure 7.13. We observe
that α ∈ (0, 1] 5 holds for all time instants, which implicitly ensures practical stability.

Similar to the estimates in Table 7.5, we further present the results with consideration of
integer constraints and recon�guration delay in Table 7.6. The marked values also stand
for �rstly reaching into the practical region, which becomes larger due to recon�guration
delay via observation on `(·, κ2(·)) and the truncate constant ε is determined as ε = 5.0.
The dynamic variation of estimates is illustrated in Figure 7.14, which you can observe that
α ∈ (0, 1] is satis�ed for the entire simulation period.

5Actually, due to the conservative estimate in case of practical stability, α in the area of `(·, κN (·)) > εmay
be larger than 1. In this case, we could simply set α = 1. But here we prefer to keep the original value to
distinguish those “real” 1 that entering into the practical stability region.
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Table 7.5.: A posterior estimate of degree of suboptimality without recon�guration delay in case of
practical asymptotic stability

n α V2(·) `(·, κ2(·))
1 0.3313 1730.7600 972.0000
2 0.2625 1409.6800 759.7600
3 0.2668 1211.0000 651.1200
4 0.2853 1039.0000 560.8800
5 0.3068 878.8000 478.1200
6 0.3264 732.9600 401.6800
7 0.3614 602.7600 322.4800
8 0.4052 483.6000 271.2800
9 0.4385 374.8000 213.3200
10 0.4800 282.4800 162.4800
11 0.5706 205.8400 121.0000
12 0.6647 138.4000 85.8400
13 0.7187 83.2000 53.5600
14 0.9023 46.7200 30.6400
15 1.1148 21.6000 17.0800
16 1.6029 5.6800 5.5200
17 1.0000 1.3200 0.1600
18 1.0000 2.8000 1.3600
19 1.0000 3.0000 1.8400
20 1.0000 3.3200 1.1600

n α V2(·) `(·, κ2(·))
31 1.0000 3.6800 2.6800
32 1.0000 1.0000 1.0000
33 1.0000 1.0000 1.8054×10−15

34 1.0000 3.1200 1.1200
35 1.0000 3.0000 2.3200
36 1.0000 2.3600 0.6800
37 3.0053 4.5416 3.0800
38 1.0000 3.7001 2.4616
39 1.0000 3.3804 1.9385
40 1.0000 1.8028 1.6419
41 1.0000 1.2630 0.1609
42 1.0000 2.6326 2.1021
43 1.0000 1.5874 0.6305
44 1.0000 3.3009 1.9570
45 1.0000 4.7074 2.7439
46 7.4640 4.4894 2.9635
47 1.0000 3.2694 1.8260
48 1.0000 2.4269 1.7435
49 1.0000 2.2494 0.6835
50 1.0000 2.3494 1.6660

7.2.3. Analysis of reconfiguration delays on closed-loop
performance

Now, the interesting question regarding the impact caused by recon�guration delay on
closed-loop performance including transient and steady-state arises. To this end, we com-
pare the results concerning the usage of RMTs and WIP tracking for both cases, cf, Figures
7.15 and 7.16.

1 . In the transient phase n ∈ [0, 20], we observe that the usage of RMTs with recon-
�guration delays are lagged, cf., Figure 7.15. In contrast, without recon�guration delay a
faster convergence than the other is observed because the triggered RMTs can be utilized
instantaneously without considering the recon�guration logical limitation, cf., Figure 7.16.
This is also re�ected through out the results of suboptimality estimate in the Table 7.5 and
7.6, which shows that the estimates derived without delay are larger than the other for
each time instant. Also, the former enters into the practical region (at step 17) faster than
the latter (at step 20), cf., Remark 3.22 concerning the �nite time to the practical stability
region.
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Table 7.6.: A posterior estimate of degree of suboptimality with recon�guration delay in case of
practical asymptotic stability

n α V2(·) `(·, κ2(·))
1 0.3121 1740.9600 971.8000
2 0.1546 1439.2000 770.9600
3 0.0914 1320.8000 669.2400
4 0.2226 1260.1000 651.9600
5 0.2604 1160.6000 609.0400
6 0.2399 958.7400 508.0200
7 0.3273 838.0800 451.3200
8 0.3116 691.9800 388.1600
9 0.1434 572.5800 304.1200
10 0.3206 529.7000 268.6600
11 0.4348 445.1600 262.2400
12 0.3927 333.3000 183.6200
13 0.5016 263.1600 150.3800
14 0.4827 190.2400 113.6800
15 0.5981 137.7800 77.2600
16 0.8068 94.5600 61.5200
17 0.9229 48.9600 34.0400
18 1.1768 22.1600 15.5200
19 2.0427 9.7800 7.3400
20 1.0000 5.0000 2.8400
21 1.0000 3.4200 2.2600
22 1.0000 2.7400 1.4600
23 1.0000 3.1200 1.4800

n α V2(·) `(·, κ2(·))
31 1.0000 3.6800 2.6800
32 1.0000 1.0000 1.0000
33 1.0000 1.0000 2.8399×10−27

34 1.0000 3.1200 1.2000
35 1.0000 3.0000 2.3200
36 1.0000 2.3600 0.6800
37 1.0000 4.5416 3.0800
38 1.0000 6.7205 1.5616
39 4.3126 8.4080 6.1590
40 1.0000 3.4099 3.2491
41 1.0000 1.2630 0.1609
42 1.0000 2.6326 2.1021
43 1.0000 1.5874 0.6305
44 1.0000 3.3009 1.9570
45 1.0000 5.6099 1.8439
46 1.0000 10.0144 4.7660
47 4.2973 7.7919 6.2485
48 1.0000 2.4269 1.7435
49 1.0000 2.2494 0.6835
50 1.0000 2.3494 1.6660
51 1.0000 2.2494 0.6835
52 1.0000 3.9894 1.8660
53 1.0000 2.4269 2.4235

2 . In the steady-state phase (e.g., n ∈ (20, 60]), if there is no �uctuation with the required
triggered recon�guration (e.g., n ∈ (20, 35]), the usage of RMTs u(n) and the practical
region would be identical. Yet, this is too optimistic and typically the expansion of the
practical stability region with delay is larger than the other. The reason is attributed to the
unavoidable possibly demand �uctuation on the steady-state stage (e.g., n ∈ [35, 45]). To
cope with such disturbances, RMTs may need to be reassigned to keep / adapt to the original
/ new operational conditions (e.g., di�erent desired WIP level), respectively. For either case,
due to the weakened and lagged control e�orts in the presence of recon�guration delay, the
practical region would be enlarged, cf., Figure 7.16. Also, the designed truncated constant
ε has to be set larger (i.e., from ε = 2.8 to ε = 5.0) to guarantee α ∈ (0, 1]. Otherwise, the
estimate α at some time instants may become negative with an inappropriate ξ, e.g. n = 37,
α(37) = −7.7820 in Figure 7.17. As a result, Algorithm 6.5 does not hold any longer. After
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Figure 7.15.: Comparison of usage of RMTs with and without recon�guration delay

the �uctuation, all WIP trajectories are maintained to the desired levels and the usage of
RMTs would be same because at that time there are no more recon�gurations needed and
RMTs are operating at their workstations without reassignment. We like to point out that
at n = 32 and n = 33, the usage of RMTs are equal to 0 for both cases, cf., Figure 7.15. In
addition, the WIP level at n = 33 is almost identical to the target value, cf., Figure 7.16. As
a result, according to (7.6), the derived value of stage cost at n = 33 is almost equal to 0,
cf., Table 7.5 and 7.6.

n

0 10 20 30 40 50 60

||
x
(n

)-
x

*
||

0

5

10

15

20

25

30

35

without delay

with delay

Figure 7.16.: Comparison of WIP tracking
with and without delay

n

0 10 20 30 40 50 60

α
m
i
n

-8

-6

-4

-2

0

2

α

-10

0

10

20

30

40

Figure 7.17.: Estimate under recon�guration
delays but with ε = 2.8



7.2. Practical stability with integer constraints and reconfiguration delays108

7.2.4. Sensitivity analysis

Similar to the sensitivity analysis conducted in Section 7.1.2 in case of continuous variables,
we consider it in the presence of integer constraints and recon�guration delay.

7.2.4.1. Initial conditions

Likewise, we choose the same initial conditions setting that de�ned in Section 7.1.2.1, i.e.,
1) x(0) = [30 30 30 20]>, 2) x(0) = [40 30 20 30]>, 3) x(0) = [40 40 40 30]>, and 4)
x(0) = [50 40 50 40]>, respectively. Unlike Figure 7.4, which showed that strict asymptotic
stability can be achieved, Figure 7.18 shows the WIP trajectories can only be practically
asymptotically stabilized with a slight oscillation around the target values. Actually, this
derived results are expected since the perfect asymptotic stability is impossible under the
discretization of input control.
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Figure 7.18.:WIP levels for di�erent initial conditions in practical case

Through Table 7.6, we show that practical stability can be ensured via the less conserva-
tive a posteriori estimate under the initial conditions–case 3). Similarly, we can use the a
posteriori estimate to study the property of practical stability for all other cases. Yet, here
we do not go through the same procedure again for all initial conditions. Instead, based
on the investigated case 3), we additionally consider case 1) in which the initial condition
is not so far away to the planned level which may allow us to guarantee the stability with
a short N in an a priori estimate way, cf., Remark 7.2. To this end, we choose N = 3 to
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compare the a posteriori estimate (blue line) and the a priori estimate (red line) for these
two di�erent initial conditions and show how conservative the latter is. In Figure 7.19, for
case 1), we observe that for both estimates, α ∈ (0, 1] can be satis�ed. For case 3), however,
α is less than the former for each case and α derived from using an a priori estimate even be
negative at the high load period [0, 13] which requires a long N to guarantee the stability.
Nevertheless, along with the variation of system dynamics (i.e., the controlled trajectory is
not far away to the desired level), then using an adaptive NMPC technique naturally allows
to switch to a shortN based on a stability suboptimality estimate for saving computational
cost, cf., [220].
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Figure 7.19.: Variation of α for di�erent situations

7.2.4.2. Dynamic flow control

In Section 7.1.2.2, we studied the dynamic �ow control with continuous variables, and the
results indicated that the closed-loop trajectory shows a slight oscillation under the time-
varying dynamics. Based on it, we extend this case with the consideration of integer con-
straints and recon�guration delay. Such dynamic �ow control allows us to monitor the
number of produced products in real time while controlling WIP. As expected, WIP can be
practically stabilized by usage of RMTs, cf., Figures 7.20 and 7.21. We would like to point
out that in the time period between [35, 45], there exists a demand increase concerning the
quantity of product 1 and product 3. The RMTs are re-assigned expect workstation 2. Be-
cause the increasing orders are released to the system through workstation 1 which puts
much burden on workstation 1, 3, 4 due to the product �ow sequence (cf., Table 7.3) and
the parameters setting (cf., Table 7.1). As there are only two DMTs within workstation 4,
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an increased number of RMTs is required to keep productivity. Also, the total produced
numbers of products P̂ 1, P̂ 2 and P̂ 3 are given in Figure 7.20, see more details in [2].

7.2.4.3. Prediction horizon

As we know, the prediction horizon MPC plays an important role in terms of stability and
closed-loop performance. But it is always discussed in case of continuous variables. With
integer constraints, the computation burden would experientially increase especially with
an a posteriori suboptimality estimate for implicitly guaranteeing stability. Particularly,
the inherent recon�guration delay may render the system to be locally unstable, which we
concluded in Section 7.2.3. To cope with it, we enlarge ε by extensive simulation such that
the practical Lyapunov inequality condition (6.31) still holds. Yet, this local instability oc-
curs at the steady-state stage with a small amplitude �uctuation. In this case, appropriately
enlarging ε is a simple but applicable way to guarantee the practical stability. Yet, such
an estimate of ε is not trivial especially with unknown external disturbance, which may
lead to an useless estimate with inappropriate ε, see the detailed discussion in Section 6.2.3.
To this end, we consider the �exible Lyapunov function combined with an adaptive MPC
method, cf., De�nition 6.13. The advantage of this method is that it allows for such local
instabilities to exist but with a required decrease in future steps to converge to the practical
stability region.

As we discussed before, the prerequisites to use �exible Lyapunov function is to be able
to show ‖x(n) − x∗‖ → δ as n → ∞. Based on the derived theoretical results from
Section 6.2.5 and the given system parameters setting (e.g., `(·, ·), P ) which is identical to
the previous setting in Section 7.2.1 but the external input rate is now changed to i01(n) =
10 + 3sin(0.3πn) and i02(n) = 6, n = 0, 1, · · · for representing the dynamic processes.
More speci�cally, we study the case where a local instability occurs at transient phase and
the current initial value is far way from the planned level. As a result, we cannot simply
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Figure 7.22.: Comparison of optimal value
function with and without delay
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Figure 7.23.: Computing time with N = 2
with �exible Lyapunov function

enlarge ε, and based on the system setting, we have


a1:=rRMT ·P︷ ︸︸ ︷
−2.0000 1.0000 0 0

0.8000 −2.0000 0 0

1.2000 1.0000 −2.0000 0

0 0 0.8000 −2.0000





Id+a1Φ︷ ︸︸ ︷
0.0651 0.0549 0.0247 0.0083

0.0549 0.0682 0.0246 0.0083

0.0247 0.0246 0.0267 0.0090

0.0083 0.0083 0.0090 0.0241


Using (6.42), we obtain

lim
n→∞

‖x(n)− x∗‖2 ≤
ξm

1− ‖(Id + a1Φ)‖2

δ︷ ︸︸ ︷
= 1.1558 · ξm (7.7)

where ‖(Id + a1Φ)‖2 = 0.1348, ξm = max{‖w(k)‖2}, k = 0, 1, · · ·n− 1. From (6.37), we
know w(k) :=a1 · ξi+r(k) that can be computed online through calculation of ξi+r(k) – the
bounded “disturbance” caused by integer constraints and recon�guration delays compared
to the solution derived from continuous variables.

After it, the parameters in the �exible Lyapunov function condition (6.50) need to be
designed before implementing. For simplicity but without loss of generality, based on As-
sumption 6.12 and the chosen step k = 5, we �rst employ MPC-B&B method with the initial
prediction horizon N = 2 to study the dynamic process in the framework of a �exible Lya-
punov function combined with adaptive MPC.

In order to show such local instability is caused by the recon�guration delay, we also
present the results with integer constraints but without delay for comparison. The sim-
ulation result is illustrated in Figure 7.22 which shows the delay renders the V2 to non-
monotonically decrease even before reaching the practical stability region (e.g., (V2(x(2)) <
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V2(x(3))) with resulting α2(2) < 0. Yet, at n = 2, given the step k = 5, we iteratively check
the �exible Lyapunov function condition by means of computing additional optimal con-
trol problems within the step k and �nd V2(x(2 + 3)) < V2(x(2 + 0)), cf., Figure 7.22,
which shows that the �exible Lyapunov function condition holds. Then, we do not need
to compute the left optimal control problems within k (i.e., V2(2 + 4) and V2(2 + 5)), and
the prediction horizonNn is kept unchanged and is used as the initial guess concerning the
prediction horizon for the next iteration. Meanwhile, in Figure 7.23, we present the comput-
ing time at each time instant which shows that the computing time via �exible Lyapunov
function is higher. This result is exactly corresponding to the Figure 7.22 in which the �ex-
ible Lyapunov function is only triggered when local instability occurs with the resulting
increasing computing time.

Now the question arises whether the closed-loop performance improves and stability can
be guaranteed by increasing N at the expense of computational cost in the presence of in-
teger constraints and recon�guration delay. To this end, we additionally employ MPC-B&B
method with N = 3 and N = 4 for comparison in terms of WIP tracking performance,
computing time and closed-loop stability. In Figure 7.24, we observe that closed-loop track-
ing performance with N = 2 and N = 3 are almost identical. In the contrast to that, the
case with N = 4 shows a faster convergence to the practical stability region. Yet, for each
case, the monotonicity of VN cannot be guaranteed, cf., Figure 7.25, and the computational
cost increases along with the increase of N together with iteratively evaluating the �exi-
ble Lyapunov function, cf. Figures 7.26 and 7.27. That is to say, in some cases, increasing
N may not improve the performance and cannot get rid of local instability caused by the
inherent recon�guration delay. To simplify the structure of controller and to not change
Nn often, we prefer to use a short N but with a relative long step k in the framework of
�exible Lyapunov function combined with adaptive MPC for achieving acceptable perfor-
mance. There are several points to support it. The �rst is that since the computational cost
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Figure 7.26.: Computing time with N = 3

n

0 5 10 15 20 25 30

T
im

e
 [
s
]

0

50

100

150

200

250

300

350

400

450

500

using flexible Lyapunov condition

without using flexible Lyapunov condition

Figure 7.27.: Computing time with N = 4

is exponentially increasing with the system dimension and length of prediction horizon,
the time consumed by solving an optimal control problem with a large N is typically more
than the time from solving multi small scale optimization problems. Second, as mentioned
before, although with a relative long k, we do not need to compute all these additional op-
timal control problems at once but can check them iteratively. Third, if no k exists, then
the Nn is required to be su�ciently large such that the �exible Lyapunov function (6.50)
holds, which drastically aggravates the computational load and may render this method
infeasible.

As we know, there are two critical components which are highly connected to the MPC
closed-loop performance and stability. One is the importance of prediction horizon N . For
instance, given a stage cost and system dynamics, a su�ciently large N is required for
stability (3.42). The other is the stage cost. In this section, the stage cost is chosen as6

`(x(k), u(k)) = ‖x(k)− x∗‖2
2 + 0.1 · ‖u(k)‖2

2. (7.8)

Under the time-varying external input rate i01 = 10 + sin(0.3πn), n = 0, 1, · · · , integer
constraints and recon�guration delays, monotonicity of VN may not be guaranteed even
for a larger N . Considering the system setting (e.g., product �ow matrix P ) along with the
respective control burden, through a repeated trial and error procedure we replace it by the
following:

`(x(k), u(k)) = 3 · (x1(k)− x∗1)2 + 2 · (x2(k)− x∗2)2 + 1.5 · (x3(k)− x∗3)2

+0.5 · (x4(k)− x∗4)2 + 0.1 · ‖u(k)‖2
2. (7.9)

with di�erent penalty weighting coe�cient for each workstation. Then, V2 is strictly de-
creasing before reaching the practical stability region, cf., Figure 7.28. The reason may be
due to its associate stage cost `(x(k), u(k)) with a small overshoot, cf., Figure 7.29 [107].

6(7.8) is called “stage cost 1 ” and (7.9) called “stage cost 2” in the following Figures.
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stage costs

Note that the system designed for stability does not guarantee perfect closed-loop perfor-
mance, cf., Figures 7.30 and 7.31 which represent the variation of x – (WIP ) tracking and u
– usage of RMTs for each workstation with di�erent stage cost, respectively. For example,
at the beginning, due to much penalty imposed on workstation 1 in case of with the stage
cost (7.9), more RMTs are assigned to workstation 1 with the resulting deceased WIP1.
In contrast to that, there is no RMTs assigned to workstation 4 due to the less penalty on
workstation 4. As a consequence, WIP4 increases. Concerning the relationship between
closed-loop performance and stability, see Remark 6.5.

7.3. Summary

In this chapter, according to the derived theoretical results from Chapter 6, we evaluated our
proposed method through numerical case studies of a four workstation job shop system. In
Section 7.1, we qualitatively analyzed the asymptotic stability with continuous assignment
of RMTs in the cases with and without terminal endpoint constraints. In order to ensure the
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feasibility of the former, we increased the basin of attraction and choose N = 16 while the
latter only needsN = 2. Then, we compared the applicability of MPC with standard PID in
terms of WIP tracking and usage of RMTs, and observed that applying MPC directly showed
better results as compared to PID, which was tuned manually. This showed the plug-and-
play property of MPC. In Section 7.2, with integer constraints and recon�guration delays,
we compared di�erent integer control strategies–PID with �oor operator, MPC with �oor
operator, MPC with GA and MPC with B&B. The results indicated the latter two are almost
identical and outperformed the former two.

In Section 7.2.2, for the trajectory controlled by MPC-B&B method, we analyzed the
closed-loop stability and adopted the trajectory-dependent approach that estimates esti-
mate the degree of suboptimality online. Further, we quantitatively analyzed the in�uence
caused by recon�guration delay on both transient and steady-state performance. The re-
sults showed that the existence of a recon�guration delay leads to a slower convergence
to the steady state and enlarges the size of practical stability region when �uctuation oc-
curs on the steady state period. In order to guarantee practical stability, we enlarged ε
to ensure α ∈ (0, 1]. Further, through comparing the initial conditions via Figure 7.19 in
Section 7.2.4.1, we demonstrated that the a posteriori estimate is less conservative but at
the expense of computational cost, while the a priori estimate has less computation burden
presents a more conservative estimate and is more dependent with the operating range of
the job shop system, which in practice is de�ned by responsible managers in conjunction
with choosing the prediction horizon.

In Section 7.2.4.3, we analyzed the role of the prediction horizon on closed-loop stabil-
ity in the presence of integer constraints and recon�guration delay. The results showed
that increasing N may not improve performance and may not get rid of local instability
caused by recon�guration delay. After demonstrating that the closed-loop trajectory will
be convergent to the practical stability region, in Section 7.2.4.3, we combined the �exible
Lyapunov function with the adaptive MPC method, which allows VN to increase locally
but with a ensured decrease in future steps. At the end of this chapter, we discussed the
relationship between the “good” stage cost and stability, and designed a tailored stage cost
by trial and error method to ensure the monotonicity of VN before reaching the practical
stability region in the presence of integer constraints and recon�guration delay.

Through numerical results, we showed that RMTs allow to adjust capacity and function-
ality of a job shop system e�ectively in the presence of demand �uctuations to maintain the
WIP levels for each workstation, which we controlled by optimally reallocating RMTs using
MPC. Thus, MPC represents a readily available and plug-and-play applicable tool to include
RMTs into job shop systems. Under the complex time-varying dynamics with integer con-
straint and recon�guration delay, an accurate prediction horizon and a good stage cost are
very di�cult to be constructed to guarantee the monotonicity of VN before reaching the
practical stability region. Here, combining a �exible Lyapunov function with the adaptive
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MPC method simpli�es the structure of controller without changing the prediction horizon
too often and possibly reduce the computational burden with a short prediction horizon,
which shows �exibility and applicability in practice.



8 Conclusion and Outlook

8.1. Conclusion

According to the evolution of the market demand, there is a big trend to personalize prod-
ucts with shorter lifecycle, high variety and decreased production volumes for single vari-
ants. Relying on their high �exibility, job-shop production systems still retain their im-
portance. Yet, this kind of system su�ers from high work in process (WIP) with resulting
bottlenecks which leads to long lead times and low reliability of due dates. In order to
achieve a high quality of shop �oor control performance in the turbulent industrial manu-
facturing environment, capacity adjustment as one e�ective measure is generally achieved
by labor-oriented methods (e.g., overtime), which are already established in practice. Yet,
the respective cost is relatively high and therefore not a sustainable solution in a long-term
consideration. As an additional degree of freedom of capacity control, recon�gurability
as a key enabler for handling exceptions and performance deteriorations in manufactur-
ing operations have been developed and accomplished via recon�gurable machine tools
(RMTs). This type of equipment is modularly designed for a part family of customized
products in an open architecture environment. An increased production �exibility can be
achieved by usage of these real time recon�gurable machines which allow a convertible,
scalable and pro�table personalized manufacturing process with small lot sizes. Moreover,
the developed Internet of Things (IoT) with Radio Frequency Identi�cation (RFID) tech-
niques provide accurate information on the shop �oor which renders closed-loop control
to be practically applicable.

In this thesis, relying on the capability of �exibly changing capacity and functionality,
we focused on machine level and considered a machinery-based approach via RMTs for
capacity adjustment to compensate the unpredictable events in a rapid responsiveness and
cost-e�ective way. As WIP is an essential variable that in�uences other performance in-
dexes, we built up a discrete space state model of a job shop system with RMTs to maintain
WIP to the planned level for each workstation. Compared to workload control in which

117
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WIP could be adjusted by the rate of order release to the shop �oor, we focused on the
operational layer and therefore cannot determine the order release rate but internally im-
plement capacity adjustment via RMTs to eliminate or shift bottlenecks to maximize the
production process e�ciency. In order to take full advantage of RMTs, we systematically
formulated a set of recon�guration rules for the determination of the triggered RMTs based
on di�erent objective function from the view of customers and manufacturers, respectively.
For the former, the recon�guration rule was obtained based on the goal of controlling WIP
to the desired values for the improvement of reliability of due dates. In this case, due to the
limited available RMTs, a priority policy was derived according to the tracking conditions,
which may result in possible frequent recon�guration, cf., Algorithm 3 (in the Page 54). For
the latter, if the due date is not compulsively required, manufactures may prefer to consider
production cost including inventory cost and recon�guration cost as the primary goal to
optimize and plan the operation of manufacturing process. After the analysis of the model-
ing layer, we considered the optimization and planning layer and proposed three strategies
– �oor operator, branch and bound (B&B) and genetic algorithm (GA) for resolving the inte-
ger assignment of RMTs. Last, on the control layer, we employed model predictive control
(MPC), which allowed us to incorporate the system dynamics (modelling layer), perfor-
mance indicators and constraints (planning layer) in a uni�ed manner through solving an
open-loop optimization control problem (3.25) (in the Page 33). After development and im-
plementation of the proposed method, we compared them with the state of the art method
PID as the benchmark. From the results, we concluded that under integer constraints and
recon�guration delay, the WIP cannot e�ectively be controlled by traditional PID with �oor
operator. MPC with B&B and MPC with GA showed competitive results and were capable
of tracking WIP with a good performance in both of transient and steady-state. With the
increase of system dimension and/or prediction horizon, the optimal solutions may not be
obtainable in a reasonable time. Here, MPC with GA showed competitive results due to
its fast search ability and found acceptable solution rendering it to be of preference. Since
the solutions are derived through solving a NP-hard optimization problem incorporating
complicated recon�guration policies, it typically outperforms experienced workers.

In order to maintain WIP to the planned level and achieve a high reliability of due date
to earn the trust of customers, the manufacturers hope to realize and keep their production
process as stable as possible, especially in the presence of demand �uctuation along with the
possible frequent but necessary recon�guration via RMTs for capacity adjustment. In do-
ing so, it may destabilize the system due to lost productivity in the recon�guration phases.
Relying on the property of prediction functionality, MPC is naturally capable of dealing
with the relationship between prediction horizon and recon�guration delay for a better
performance. Yet, since MPC truncates the in�nite optimization problem with a �xed �nite
receding time window and iteratively solves an open-loop optimization problem with given
initial conditions, optimality and stability from the original in�nite optimization problem
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may be lost. To this end, considering the applicability in practice, we �rst adopt MPC with
terminal endpoint constraints and unconstrained MPC scheme in case of continuous as-
signment of RMTs without integer constraints and recon�guration delay. The asymptotic
stability can be qualitatively guaranteed. Further, since there is a lack of the explicit charac-
terization of the stability region in case of a practical implementation of MPC, based on the
relaxed dynamic programing (6.31) (in the Page 74), we further quantitatively analyzed the
practical stability via online estimating the degree of suboptimality to show the practical
stability in the presence of integer constraints and recon�guration delay, cf., Algorithm 5
(in the Page 75) or Algorithm 6 (in the Page 77). Since the system with practical stability has
the advantage of executing an MPC scheme which is robust against a certain extend of per-
turbations, we used the inherent robustness due to the iteratively receding strategy. More-
over, we analyzed the impact caused by recon�guration delay on the closed-loop in terms
of transient and steady-state performance, and pointed out that such delay may render
the Lyapunov function to be non-monotonous even before reaching the practical stability
region. To cope with it, we either repeatedly design the stage cost with an appropriate pre-
diction horizon to guarantee the Lyapunov function is monotonically decreasing outside of
the practical stability region or we make use of the principle of a �exible Lyapunov function
that allows the cost functional to increase locally but with an average decrease in future
steps. For the latter, the tight classical one step Lyapunov stability inequality is extended to
k step. Integrating adaptive MPC with the principle of a �exible Lyapunov function allow
us to evaluate the closed-loop performance and stability via online estimating the degree
of suboptimality and simplify the structure of the controller without changing the predic-
tion horizon too often, possibly reducing the computational burden with a short prediction
horizon, which shows �exibility and applicability in practice.

In the framework of Industrial 4.0, as a new promising equipment and a powerful en-
abler, RMTs will exhibit competitiveness for producing value-added and highly customised
products. With the aid of enabling IoT, RMTs can be utilized e�ectively to adhere to quick
and accurate information exchanges. MPC as control method based optimization can pre-
dict the future developments while explicitly considering constraints – input, output, state
and even the recon�guration delays. Given the goal of controlling WIP, combining MPC
and RMTs for capacity adjustment will economically allow for a better compliance with
logistics objectives and a sustainable demand oriented capacity allocation. Also, based on
the plug-and-play property of MPC, the operators are able to simply change di�erent oper-
ating points online, i.e., there is no need to repeatably tune parameters as in the PID case to
achieve a good performance, which shows practical applicability of the proposed method.

8.2. Outlook

There are some directions that could be starting points for the future research.
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• Modeling

MPC has a high requirement on model which signi�cantly in�uence the controller’s
performance. Relying on the advanced sensor techniques for real time monitoring
the manufacturing process with uncertainty, there is a possibility to build dynamic
models based on captured data which can be used by big data techniques from the do-
main of machine learning, which is similar to system identi�cation in the framework
of control theory [228, 229]. This is signi�cant for optimizing shop �oor operations
and improving e�ectiveness of production schedules.

• Planning and optimization

Allocation of RMTs via MPC to balance capacity and load is actually a NP-hard op-
timization problem which is closely connected to system dimension and the length
of prediction horizon for stability and/or closed-loop performance. In practice, the
best solution may not be obtained in a reasonable time via deterministic methods
especially for the non-convex mixed-integer optimization problems. Since they de-
rive acceptable solutions Meta-heuristic methods are widely applied in applications
which is of interest for this direction. Particularly, due to that fast solving speed,
heuristics can be combined with a �exible Lyapunov function argument when the
derived sub-optimal solution leads to local instabilities.

• Control and stability

To show stability, we used a trajectory-dependent approach to online estimate the
degree of suboptimality in an a posteriori way. From Figure 7.19 (in the Page 109),
we conclude that the a posteriori estimate is a less conservative estimate but at the
expense of computational cost. In contrast to that, the a priori estimate shows less
computational burden but with a more conservative result and is more dependent
with initial conditions, typically require a large N for stability. In turn, it also aggra-
vates the computational burden. Taking both advantages may be applicable when the
designed stage cost is independent of u [130]. In this way, no additional computing
burden arises from using the a priori estimate, and we can compute the suboptimality
estimate only based on the computed closed-loop solutions. If this evaluated estimate
α is negative (e.g., initial conditions far away for the planned level), then we switch
to using the a posteriori estimate and get a less conservative value. If this a posteriori
estimate is still negative, then we use the �exible Lyapunov function, cf., Algorithm 8
(in the Page 86) as an example that combines the a priori estimate and the a posterior
estimate through utilizing the upper bound VN(n+ 2). Also, the additional parame-
ter N0 can be used for more accurate a priori estimate and will be considered in the
framework of adaptive MPC with �exible Lyapunov function.
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A Appendix

Implementation

All the numerical experiments were implemented on MATLAB 2014b in the operation sys-
tem Ubuntu 16.04 with processor Intel® Core™ i5-5200U CPU @ 2.20GHz × 4. The core op-
timization NMPC routine could be found at http://www.nmpc-book.com. The GA
function is available in the global optimization toolbox. The BNB20 function could be down-
loaded freely online via the linkhttps://de.mathworks.com/matlabcentral/
fileexchange/95-bnb. Parts of code are as follows:

1 %fmincon function is called by BNB20 function for solving ...

mixed-integer nonlinear proramming in the framework of MPC, ...

p-system dimension, N-prediction horizon, u-Number of RMTs, ...

V-Optimal function vaule. The detailed interpretation for ...

other paramters can be found in the above mentioned information.

2 index=ones(p ·N, 1);
3 options=optimset('fmincon');

4 [u,V]= BNB20(@(u) costfunction(runningcosts, ...

5 terminalcosts,system, N, T, t0, x0, ...

6 u, atol_ode_sim, rtol_ode_sim, type),u0,index',lb, ub,A, ...

b, Aeq, beq, ...

7 @(u) nonlinearconstraints(constraints, ...

terminalconstraints, ...

8 system, N, T, t0, x0, u, ...

9 atol_ode_sim, rtol_ode_sim, type),setts, options)

141

http://www.nmpc-book.com
https://de.mathworks.com/matlabcentral/fileexchange/95-bnb
https://de.mathworks.com/matlabcentral/fileexchange/95-bnb


A.1. Terminal endpoint constraints 142

1 % GA is used for slving mixed-integer nnonlinear programming in ...

the framework of MPC, p-system dimension, N-prediction horizon

2 index=1 : p ·N;
3 options = gaoptimset(options, ...

4 'PlotFcn', {@gaplotbestf, @gaplotstopping}, ...

5 'MutationFcn', @mutationadaptfeasible, ...

6 'Tolcon', '', 'TolFun','','Generations','');

7 [u,V,exitflag,output] = ga(@(u) costfunction(runningcosts, ...

8 terminalcosts, system, N, T, t0, x0, ...

9 u, atol_ode_sim, rtol_ode_sim, ...

type),index,A,b,[],[],lb,ub,@(u) ...

nonlinearconstraints(constraints, terminalconstraints, ...

10 system, N, T, t0, x0, u, ...

11 atol_ode_sim, rtol_ode_sim, type),index,options)

A.1. Terminal endpoint constraints

In Section 6.1.1, we showed the asymptotic stability can be analytically guaranteed with the
explicitly derived feedback law κ2 if the Assumptions 3.23 and 3.24 hold. Below, we present
a more general way for analysis of asymptotic stability but with additional assumptions A.1
and A.2. As discussed before, the main challenge is to make VN(x) ≤ α2(‖x− x∗‖) holds.

Assumption A.1
There exists a control sequence u∗(k) such that `(x∗(k), u∗(k)) ≤ α̃2(‖x0 − x∗‖) holds,
k = 0, 1, · · ·N − 1. Then

VN(x0)) = J(x0, u
?(·)) = ∑N−1

k=0 `(x?(k), u?(k)) ≤ Nα̃2(‖x0 − x∗‖) (A.1)

where x0 = x(0), α2(s) = Nα̃2(s) ∈ K.

Assumption A.2
There exists a sequence of positive numbers ϑk such that ‖u∗(k)−u∗‖ ≤ ϑk‖x0−x∗‖, and
ηk > 0 such that ‖x∗(k)− x∗‖ ≤ ηk‖x0 − x∗‖, where k = 0, 1, · · ·N − 1.

For simplicity of exposition and based on coordinate transformation, we set x := x−x∗,
u := u− u∗, below. The inequality holds when k = 0, for all ηk ≥ 1,

Proof. Assume ‖x∗(k)‖ ≤ ηk‖x(n)‖, x(n) = x0 holds for all 0 ≤ k ≤ N − 2. Now we
extend and prove it also holds at k + 1. Recall a class of linear a�ne dynamics x+ =
f(x, u, d) = Ax(k) + Bu(k) + d(k), we have ‖x∗(k + 1)‖ = ‖Ax∗(k) + Bu∗(k) + d(k)‖,
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where, ‖x∗(k)‖ ∈ XN and assume ‖d(k)‖ ≤ %‖x(n)‖, then

‖x∗(k + 1)‖ ≤ ‖A‖‖x∗(k)‖+ ‖B‖‖u∗(k)‖+ ‖d(k)‖

≤ (‖A‖ηk + ‖B‖ϑk + %)‖x(n)‖ := ηk+1‖x(n)‖. (A.2)

Consequently, given the following stage cost, we have

`(x(k), u(k)) = ‖x(k)‖2
Q + ‖u(k)‖2

R

≤ λmax(Q)‖x(k)‖2
2 + λmax(R)‖u(k)‖2

2

if Assumption A.2 holds, then

`(x(k), u(k)) ≤ (η2
kλmax(Q) + ϑ2

kλmax(R))‖x(n)|22 := α̃2(‖x(n)‖). (A.3)

Then, Assumption A.1 holds and VN(x) ≤ α2(‖x− x∗‖) holds.

A.2. Proof for Proposition 3.32

Proof. From the Proposition 3.32, we can obtain

VN(x)− VN−1(x) ≤ γN−1

(γ + 1)N−2VN−1(x) (A.4)

Based on the Assumption 3.31, we have

Vk−1(f(x, κk(x))) = Vk(x)− `(x, κk(x)) ≤ (γ + 1)`(x, κk(x))− `(x, κk(x)) = γ`(x, κk(x))

Set k = N , we obtain VN−1(f(x, κN(x))) ≤ γ`(x, κN(x)). Now, according to (A.4) and set
x := f(x, κN(x))), we have

VN(f(x, κN(x)))− VN−1(f(x, κN(x))) ≤ γN

(γ + 1)N−2VN−1(f(x, κN(x))) (A.5)

≤ γN

(γ + 1)N−2 `(x, κN(x)) (A.6)

Then according to (3.36), we can conclude that

α = 1− γN

(γ + 1)N−2 = (γ + 1)N−2 − γN

(γ + 1)N−2 (A.7)
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A.3. Linearqadratic regulator

Consider a class of linear time-invariant discrete time systems

x+ = Ax(n) +Bu(n) (A.8)

with x ∈ Rn, A ∈ Rm×n, B ∈ Rm×p, u ∈ Rp, n ∈ N0 and the following cost functional

JN(x, u) =
N−1∑
k=0

x>(k)Qx(k) + u>(k)Ru(k) + x>(N)QNx(N) (A.9)

with N ∈ N0, symmetric positive semi-de�nite matrices Q ∈ Rn×n and QN ∈ Rn×n, and a
symmetric positive de�nite matrixR ∈ Rp×p, the goal is to �nd an optimal control sequence
{u(0), · · · , u(N − 1)} such that (A.9) is minimal with the known initial state x(0). Based
on the Bellmans principle of optimality, we now compute the optimal control sequence in
a reverse way. That is, we �rst compute u(N − 1) and de�ne the resulting cost functional
as C1:

C1(x(N − 1)) = min
u(N−1)

u>(N − 1)Ru(N − 1) + x>(N)QNx(N)

Given the system dynamic, u(N−1) can be analytically derived by a linear state feedback:

u(N − 1) =

KN−1︷ ︸︸ ︷
−(BTQNB +R)−1B>QNAx(N − 1) (A.10)

Then,

C1(x(N − 1)) =(Ax(N − 1) +BKN−1x
>(N − 1))QN(Ax(N − 1)+

BKN−1x(N − 1)) + (x>(N − 1))K>N−1RKN−1x(N − 1)

=x>(N − 1)

PN−1︷ ︸︸ ︷
(A+BKN−1)>QN(A+BKN−1) +K>N−1RKN−1

x(N − 1) (A.11)

Similarly, based on Bellman’s optimality principle, we can compute u(N − 2)

C2(x(N − 2)) = min
u(N−2)

u>(N − 2)Ru(N − 2) + x>(N − 1)QN−1x(N − 1) + C1(x(N − 1))

(A.12)

Again based on system dynamics and the obtained C1(x(N − 1)), u(N − 2) can be likely
expressed as u(N − 2) = KN−2x(N − 2). Consequently, u(k) = Kkx(k), where Kk =
−(B>Pk+1B + R)−1B>Pk+1A. Assume Pk = Pk+1, Pk can be derived through solving so



A.4. Induction process for (6.25)-(6.27) 145

called discrete time algebraic Riccati equation.

Pk = A>PkA+ A>PkBKk +Qk (A.13)

A.4. Induction process for (6.25)-(6.27)
Since K = (B>PB +R)−1B>PA, Ak = A−BK , then (6.25) is induced as follow:

RK −B>PAk = RK −B>P (A−BK)

= RK −B>PA+B>PBK (A.14)

= (R +B>PB)K −B>PA

= (R +B>PB)(B>PB +R)−1B>PA−B>PA = 0

and induced (6.26) is expressed as:

K>R− A>k PB

= K>R− (A−BK)>PB

= K>R− A>PB +K>B>PB

= K>(R +B>PB)− A>PB

= A>PB(B>PB +R)−1(B>PB +R)− A>PB = 0

and the last (6.25) is:

A>k PAk − P +Q+K>RK

= (A−BK)>P (A−BK)− P +Q+K>RK

= A>PA− A>PBK −K>B>PA+K>B>PBK − P +Q+K>RK (A.15)

Substitute discrete Riccati equation (A.13) into (A.15) , then (A.15) is simpli�ed as:

A>k PAk − P +Q+K>RK

= −K>B>PA+K>B>PBK +K>RK

= K>

(A.14)=0︷ ︸︸ ︷
(RK +B>PBK −B>PA)

= 0
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