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Abstract

Every decision-maker has to cope with uncertainty in the world that is changing more and

more rapidly. The presence of uncertain inputs distinguishes today’s decision-making prob-

lems from traditional mathematical optimization problems. For decision-making problems

under uncertainty at least one of the inputs of the problem is uncertain and thus needs to be

modeled as stochastic variables. Failing to recognize and deal with uncertainty may result

in poor decisions. Modeling a decision-making problem under uncertainty as a determin-

istic problem, however, may lead to solutions, which are sensitive to perturbations in the

inputs, and thus may be infeasible, suboptimal, or even both. This circumstance motivates

the interest in building solutions to decision-making problems that are less affected by un-

certainties, i.e., robust solutions. Nevertheless, protection often comes associated with the

so-called Price of Robustness. This price corresponds to the reduced quality of the solutions

as decision-makers aim for safety.

The aspiration to create models, which are more appropriate for real applications in

which stochasticity is a major issue, is present in different optimization problems, such

as the Vehicle Routing Problem (VRP). For several years, the VRP was handled with the

assumption that all inputs of the problem were deterministic and known in advance. How-

ever, since in real-world problems stochasticity arises in many situations, decision models

for this problem changed in order to incorporated uncertainties into them, giving rise to

one of the categories of the VRP, the Stochastic Vehicle Routing Problem (SVRP). The SVRP

can be further classified into static and dynamic. The term static refers to the fact that all

routing decisions and corrective actions are preprocessed decisions, i.e., they are computed
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before the execution of the route plan. In contrast, the term dynamic refers to situations,

where all decisions are made in an ongoing manner, whenever new events arise. Exam-

ples can be the revelation of the true value of the stochastic input or a vehicle breakdown.

Although modifying the route plan dynamically allows for additional savings, it requires

technical support and may lead to loss of driver familiarity. Thus, the Static and Stochastic

VRP (SSVRP) has received more interest.

The decision-making problem under uncertainty addressed in this thesis is the Static and

Stochastic Capacitated Vehicle Routing Problem with Stochastic Demands (SSCVRPSD). In

this problem, an initial a priori route plan is designed. During plan execution, corrective

actions, i.e. detours-to-depot, are applied as each customer’s demand is revealed, if the true

total demand of a route exceeds the vehicles’ capacities. The goal is to calculate a robust

a-priori route plan, that is, an a priori route plan that will only undergo small changes

(few corrective actions) when the true demands are revealed during its implementation.

For that, we propose a mathematical formulation and a solution approach. The mathe-

matical decision model is based on a Mean Absolute Deviation (MAD) objective function.

This objective function combines two conflicting objectives, minimization of the expected

planned transportation cost (optimality) and minimization of the mean absolute deviation

of the second-stage transportation cost (robustness). In this MAD model, the variability

term is multiplied by a parameter of decision-maker’s choice ω, used to obtain a spectrum

of route plans that can be more or less robust. In this manner, the proposed formulation

not only delivers flexibility to the decision-maker to define desired safety levels, i.e. the

level of robustness, but also allows to trade off cost minimization and protection against

fluctuation in the stochastic demands. Since the MAD formulation takes the structure of a

multi-objective optimization problem, we propose a respective method called Robust Multi-

Objective (RoMO) solution approach.

For evaluating the efficiency of RoMO, we develop a benchmark dataset and seven per-

formance measures. In this stage, since we want to compare solutions of different degree

of robustness, we select different values of ω ∈ {0, 1, 5, 10}. We compare RoMO’s per-

formance with those of two other solution approaches: Deterministic Approach (DA) and
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Robust Simulation-Based (RoSi) approach. DA is the most commonly used approach to deal

with decision-making problems under uncertainty, thought it does not consider the effect

of the uncertain inputs on the feasibility and optimality of the solutions. In this approach,

the values of the stochastic inputs are assumed to be equal to their expected values so that

the linear programming formulation of the problem can be solved. On the other hand, RoSi

has similar goals as RoMO. It designs route plans of different degree of robustness based on

a decision-maker’s choice of parameter ω. The computational experiments show that the

proposed approach provides significant improvements over the deterministic approach and

over RoSi in some cases. Moreover, in a second stage, we parametrize ourMAD formulation

and change ω to ω ∈ [0, 1], to provide different weighting combinations for prioritization

of optimality and/or robustness. In this way, the parametrized decision model provides a

way of quantifying the trade-off between the two conflicting objectives, and to calculate

the route plan that best trades off optimality and robustness, i.e. the route plan with the

lowest real transportation cost.



Zusammenfassung

Entscheidungsträger müssen mit sich immer schneller verändernden Unsicherheiten in der

Welt umgehen. Das Vorhandensein unsicherer Umstände und Daten unterscheidet heutige

Entscheidungsprobleme von traditionellen mathematischen Optimierungsproblemen. Für

Entscheidungsprobleme unter Unsicherheit ist mindestens einer der Eingangswerte des

Problems unbekannt oder unsicher und muss daher als stochastische Variable modelliert

werden. WennUngewissheiten nicht erkannt und entsprechend beachtet werden, kann dies

zu Fehlentscheidungen führen. Die Modellierung eines Entscheidungsproblems unter Un-

sicherheit als deterministisches Problem kann jedoch zu Lösungen führen, die empfindlich

auf Varianzen in den Eingaben reagieren, und dahermöglicherweise unzulässig, suboptimal

oder beides sein. Dieser Umstand motiviert das Interesse, robuste Lösungen für Entschei-

dungsprobleme zu entwickeln, die weniger von Unsicherheiten betroffen sind. Diese Ro-

bustheit ist allerdings oft mit dem sogenannten Price of Robustness verbunden. Dieser Preis

beschreibt eine Verschlechterung der Lösungsgüte, bei steigender Robustheit der Lösung.

Das Bestreben, geeigneteModelle für reale Anwendungen aufzustellen, in denen Stochastik

ein Hauptproblem darstellt, findet sich in verschiedenen Optimierungsproblemen, beispiel-

sweise dem Vehicle Routing Problem (VRP). Für das VRP wurde lange Zeit davon ausge-

gangen, dass alle Eingaben des Problems deterministisch und im Voraus bekannt waren. Da

in Realität jedoch viele Situationen mit Unsicherheiten verknüpft sind, haben sich hierfür

Entscheidungsmodelle etabliert, welche Unsicherheiten einzubeziehen. Hieraus entstand

eine neue Kategorie von VRP: das Stochastic Vehicle Routing Problem (SVRP). Das SVRP

kann weiter in static und dynamic untergliedert werden. Der Begriff static bezieht sich auf
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die Tatsache, dass alle Routenentscheidungen und Korrekturmaßnahmen bereits im Vor-

feld berechnet werden und vor Ausführung des Routenplans bekannt sind. Im Gegensatz

dazu bezieht sich der Begriff dynamisch auf Situationen, in denen alle Entscheidungen fort-

laufend getroffen werden, wenn neue Ereignisse auftreten. Beispiele solcher Ereignisse

können die Feststellung des wahren Wertes einer stochastischen Variable oder das Aus-

fallen von Fahrzeugen sein. Eine kontinuierliche Anpassung des Routenplans ermöglicht

zwar zusätzliche Einsparungen, erfordert jedoch technische Unterstützung und kann zum

Verlust der Vertrautheit des Fahrers führen. Daher ist in letzter Zeit das Static and Stochas-

tic VRP (SSVRP) weiter in den Fokus gerückt.

Das in dieser Arbeit betrachtete Entscheidungsproblem ist das Static and Stochastic Ca-

pacitated Vehicle Routing Problemwith Stochastic Demands (SSCVRPSD). Bei diesem Prob-

lem wird ein anfänglicher a-priori Routenplan erzeugt. Während der Planausführung wer-

den die tatsächlichen Kapazitätsbedarfe der Kunden enthüllt. Korrekturmaßnahmen, z.B.

Umwege-zum-Depot, werden immer dann angewendet, wenn der Gesamtbedarf einer Route

die Kapazitäten der Fahrzeuge übersteigt. Das Ziel ist die Berechnung eines robusten a-

priori Routenplans, d.h. Plans der nur geringfügigen änderungen unterworfen ist (wenige

Korrekturmaßnahmen), wenn die tatsächliche Nachfrage während der Planumsetzung a-

ufgedeckt wird. Hierzu schlagen wir eine mathematische Formulierung und einen Lö-

sungsansatz für diese Formulierung vor. Das mathematische Entscheidungsmodell basiert

auf einerMean Absolute Deviation-Zielfunktion (MAD). Diese Zielfunktion kombiniert zwei

widersprüchliche Ziele: Minimierung der erwarteten geplanten Transportkosten (Opti-

malität) und Minimierung der mittleren absoluten Abweichung der Transportkosten der

zweiten Stufe (Robustheit). In diesem MAD-Modell wird der Variabilitätsterm mit einem

Entscheidungsparameter ω multipliziert, welcher es Entscheidungsträgern ermöglicht, ein

Spektrum von Routenplänen zu erstellen, die mehr oder weniger robust sein können. Auf

dieseWeise gibt die vorgeschlagene Formulierung dem Entscheidungsträger nicht nur Flex-

ibilität bei der Definition der gewünschten Sicherheitsniveaus, d.h. des Robustheitsniveaus,

sondern ermöglicht auch einen Kompromiss zwischen Kostenminimierung und Schutz vor

stochastischen Unsicherheiten. Da die MAD-Formulierung die Struktur eines multikri-
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teriellen Optimierungsproblems annimmt, schlagen wir eine entsprechende Methode vor,

die als Robust Multi-Objective (RoMO) Lösungsansatz bezeichnet wird.

Zur Bewertung der Effizienz von RoMO entwickeln wir ein Benchmark-Dataset und

sieben Leistungskennzahlen. In einem ersten Schritt variieren wir ω ∈ {0, 1, 5, 10}, um

Lösungen mit unterschiedlichem Robustheitsgrad zu erhalten. Wir vergleichen die Leis-

tung von RoMOmit zwei anderen Lösungsansätzen: Deterministic Approach (DA) und Ro-

bust Simulation-Based (RoSi). DA ist der am häufigsten verwendete Ansatz zur Lösung von

Entscheidungsproblemen unter Unsicherheit. Dabei wird jedoch nicht berücksichtigt, wie

sich die Unsicherheit in den Eingangsparametern auf die Zulässigkeit und Optimalität der

Lösungen auswirken. Bei diesem Ansatz wird angenommen, dass die Werte der stochastis-

chen Eingangsparameter ihrem Erwartungswert entsprechen, so dass das Problem mittels

linearer Programmierung gelöst werden kann. Demgegenüber hat RoSi ähnliche Ziele wie

RoMO. Beide Ansätze generieren Pläne für unterschiedliche Robusteheitsgrade, basierend

auf dem aktuell gewählten Wert für ω. Die Experimente zeigen, dass der vorgeschlagene

Ansatz gegenüber dem deterministischen Ansatz und in einigen Fällen gegenüber RoSi er-

hebliche Verbesserungen bietet. In einem zweiten Schritt wurde die MAD-Formulierung

überarbeitet, sodass durch eine Variation von ω ∈ [0, 1] verschiedene Gewichtungskombi-

nationen für die Priorisierung von Optimalität und / oder Robustheit generiert werden. Auf

diese Weise bietet das parametrisierte Entscheidungsmodell die Möglichkeit, Kompromisse

zwischen den beiden sich widersprechenden Zielen zu quantifizieren. Hierdurch kann der

Routenplan mit dem besten Trade-off zwischen Optimalität und Robustheit berechnet wer-

den, welcher im Endeffekt die niedrigsten realen Transportkosten aufweist.
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1 Introduction

For several years, optimization cared about finding the "optimal" solution for decision-

making problems under certainty subject to either single or multiple objectives. These

optimization studies operated under the assumption that all inputs necessary to solve the

problem were known and available. As researchers attempted to better represent real-life

problems faced by companies, uncertainty was incorporated by modeling the uncertain

input as a stochastic variable. Uncertainty arises in many industrial problems. A decision-

making problem under uncertainty occurs when decision-makers cannot predict with con-

fidence what the outcome of their decisions will be. In some decision-making problems the

degree of uncertainty is slight and may be overlooked if decisions can be made without

rising extra costs or service. In many other cases, omission of uncertainty during decision-

making may cause negative consequences.

Formulating a decision-making problem under uncertainty as a deterministic problem

is commonly called deterministic optimization approach. In this approach, one chosen in-

stance of the input data is supplied to a mathematical model in order to calculate the "op-

timal" decision. The chosen instance expresses the most likely estimate of the realization

of the data in the future [KY97]. That is, the value of the uncertain input in the chosen

instances is inferred to be equal to its expected (nominal) value. Such an approach does

not take into consideration the influence of the uncertain input on the quality and fea-

sibility of the solutions [BS04], and may therefore design solutions that are sensitivity to

perturbations in the stochastic input. These solutions may then become suboptimal or even

infeasible [BBC10]. This situation motivates the concern of building solutions that are less

1



1. Introduction 2

affected by the various uncertainties encountered in a decision-making problem, i.e., robust

solutions.

Several communities have their own interpretation of the term robustness and propose

different approaches to achieve it [SCPC15]. For this reason, the decision-maker must first

determine what it means for her/him to have a robust solution. Is it a solution whose fea-

sibility must be guaranteed? Or whose objective value must be guaranteed? [GMT14].

Yet, what most decision-makers refer to as a robust solution is a solution resisting as much

as possible to fluctuations on the stochastic inputs [SCPC15]. There are mainly two ap-

proaches to achieve robustness in decision-making problems under uncertainty, Stochastic

Programming (SP) and Robust Optimization (RO). SP divides the set of decisions into two

groups. Decisions that have to be taken before the realization of the stochastic inputs are

called first-stage decisions and the period when these decisions are made is called the first-

stage. Decisions that are made after the realization are called second-stage decisions and

the corresponding period is called the second-stage [BL11]. In SP, feasibility constraints are

relaxed and can thus be violated by perturbations on the inputs. First-stage decisions for

which the constraints do not hold as the real value of the stochastic input is revealed, can af-

terwards be repaired by corrective/recourse actions (second-stage decisions). In stochastic

programming models, the goal is to minimize the cost of first-stage plus the cost of second-

stage decisions [AJ15]. For SP a solution is said to be robust when it needs less corrective

actions for dealing with the real value of the stochastic input. We thus refer to this robust-

ness as recoverable robustness. On the other hand, RO assumes only a single period when

all decisions have to be taken before the uncertain input is realized. Instead of seeking to

immunize the solution in some probabilistic sense to stochastic uncertainty, RO aims at

strict robustness, i.e., RO cares about designing a solution that is feasible for any realization

of the uncertainty in a given set [BBC10].

Imposing protection by creating solutions that are (recoverable or strictly) robust con-

ducts to the so-called Price of Robustness introduced by Bertsimas and Sim [BS04]. This

price corresponds to the cost payed to allow for certain deviations within the stochastic

variables and is usually defined as the difference between the cost of the robust solution



1. Introduction 3

and the cost of the nominal solution (deterministic optimization approach). This deteriora-

tion in the "optimal" value of the robust counterpart with respect to the "optimal" value of

the deterministic problem is caused by the presence of the additional hard constraints im-

posing robustness. The Price of Robustness is a consequence of restricting the set of feasible

solutions to the (in general smaller) set of robust solutions [MDE17]. Decision-makers that

are willing to take more risk accept less protection and acquire a reduced price. In contrast,

decision-makers that have higher risk aversion seek higher protection, but are subjected

to a higher Price of Robustness. Solutions with high price are often too conservative in the

sense that we have to give up too much of optimality for the nominal problem in order to

ensure robustness [BS04]. A solution will hardly remain both robust and optimal for all

realization of the uncertainty [MVZ95]. Hence, there exists a trade-off between optimality

and robustness.

One decision-making problem in which this context is particularly true is the Vehicle

Routing Problem (VRP). The classical VRP is the decision-making problem under certainty,

where all inputs needed to solve the problem are at hand. The decision-making problem

under uncertainty is called Stochastic Vehicle Routing Problem (SVRP), where at least one

of the necessary inputs is unknown and uncertain at the planning (first) stage.

The classical VRP was initially introduced by Dantzig and Ramser [DR59] and is one

of the most important and studied problems in combinatorial optimization. It lies at the

heart of distribution management and is faced by thousands of companies and organiza-

tions engaged in the delivery and collection of goods or people each day [CLSV07]. Real-life

examples of VRP include courier delivery, waste collection, dial-a-ride services (taxis, trans-

portation of elderly and handicapped people), as well as the routing of school buses, snow

plow trucks, and maintenance engineers [GWF13]. A general definition of the goal of this

optimization problem is based on the Capacitated Vehicle Routing Problem (CVRP), which

is a category of the classical problem where constraints on the capacity of the vehicles are

included. That is why the names VRP and CVRP are used interchangeably. The definition

is given as calculate a route plan, i.e. a set of routes, to attend a set of customers with a

given vehicle fleet at minimum transportation cost, such that
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• the requirements of all customers are met;

• each route starts and ends at the depot;

• each customer is attended by a single vehicle;

• the total load allocated to each vehicle does not exceed its capacity [KB85].

Real-world applications have demonstrated that the use of computerized solution ap-

proaches for solving VRPs produces great savings in the transportation costs. One of the

reasons for the success of the application of optimization techniques in this problem is the

development of decision models that are able to consider almost all the characteristics of

VRPs arising in real-world situations [TV14]. As a result, a large number of VRP categories

has been proposed, such as VRP with Backhauls (VRPB), CVRP with Simultaneous Pickup

and Delivery (CVRPSPD), Dynamic VRP (DVRP), and Stochastic VRP (SVRP).

The Stochastic CVRP (SCVRP) arises when one or more inputs are uncertain and there-

fore modeled as stochastic variables within the problem. In contrast to the assumptions of

the classical CVRP, in the real world one or more of the elements of the VRP are uncertain.

Uncertainty exists because of the time gap that separates the stages when route plans are

planned and executed [TV14]. Uncertainty may come from different sources. The four most

common stochastic inputs studied in the literature are:

• Customer’s demand: Demands are considered stochastic when the loads to either

be picked up or delivered at customers are uncertain. The SCVRP with Stochastic

Demands (SCVRPSD) is themost studied stochastic CVRP. There aremany real-world

application problems that are best modeled as SCVRPSD. One example is the routing

of forklifts in a cargo terminal [Ber92].

• Travel time: Stochastic travel times are included in the model when traveling times

between customers are uncertain. Traveling speed are subjected to the traffic jam,

road maintenance, and/or weather conditions. In this way, a number of real world

problems can be modeled as a SVRP with Stochastic Travel Time (SVRPSTT). One

industrial example is Road Feeder Services (RFS), where a cargo operator transport

products from/to airplane(s) to/from terminal(s) [DKV11].
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• Presence of customers: Customers are treated as stochastic variables when customers

are either present or absent with a given probability. A real-life application of SCVRP

with Stochastic Customers (SCVRPSC) occurs in patient transportation, where trans-

portation requests originate from both institutions, e.g., hospitals and individuals (pa-

tients) [BLMN10].

• Service time: Service times are modeled as stochastic inputs when the service times

at customers are uncertain. A real-world problem that can be regarded as a SVRP

with Stochastic Service Times (SVRPSST) is the optimization of ground handling op-

erations in airport aprons, where the aircrafts need specific operations before/after

departure/landing, and the vehicles are required for the same operations by different

aircrafts [ACDFDG16]

Because of the importance of the time horizon in the decision-making process, the SCVRP

can be studied from two perspectives, a static and a dynamic one. From a static perspective,

all routing decisions are made before the implementation of the solution (preprocessed deci-

sions). This perspective gives rise to the Static and Stochastic CVRP (SSCVRP). The aim of

the SSCVRP is to calculate a priori robust route plan that will go through small changes dur-

ing its implementation [BSL96]. From a dynamic perspective, the Dynamic and Stochastic

SCVRP (DSCVRP) arises and all routing decisions are made in a online manner as soon as a

dynamic event happens (online decisions), for example, the revelation of one of the stochas-

tic inputs [PGGM13a]. The goal of the DSCVRP is to design a route plan in an ongoing

fashion, communicating to the vehicles which customer to serve next as soon as it becomes

idle [SM09]. Addressing the problem in a dynamic way assumes the existence of commu-

nication between the dispatcher (where the route plan is created, e.g., the headquarter of

the company) and vehicles/drivers, because the dispatchers have to periodically inform to

the drivers about the new customers assigned to them [MGRD05]. In practice, the capa-

bility to modify a solution is limited as a result of when the information on the dynamic

event becomes available and the amount of work in computing new route plans [Ord10]. In

other words, periodically taking new decisions may be infeasible when the rate of dynamic

events is high and the available time for making them is short. Holding a robust route
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plan, that can be slightly modified, has practical advantages as it can lead to better training

of drivers who become familiar with a certain area or plan and are, thus, better prepared

to manage uncertain situations or emergencies [Ord10]. Thus, solving the SCVRP with a

static strategy has received more interest.

Solving the static and stochastic CVRP involves two choices, one on the mathematical

formulation and the other on the solution approach. A mathematical formulation refers to

translating the real-world problem into a mathematical model. A solution approach (e.g.

exact methods, heuristics, and metaheuristics) is a set of routines that are followed in order

to solve the mathematical model. Similarly to any other decision-making problem under

uncertainty, the most commonly used modeling techniques for the SVPR are SP and RO. Re-

garding solution approaches, a large set of efficient solution approaches have already been

created for the classical CVRP. This is not yet the case for the stochastic problem, which is a

more complex decision-making problem due to the uncertainty introduced by the random

behaviour of the inputs [JFG+11]. Several studies on the SSCVRP have, thus, tried to reduce

the stochastic capacitated vehicle routing problem to its deterministic counterpart, so that

the resulting mathematical model can be solved with any well-established algorithm for

the deterministic problem [GWF13] [SOM08] [SS09].

Current stochastic programmingmodels for the SSCVRPSD are Chance-Constrained Pro-

gramming (CCP) and Stochastic Programming with Recourse (SPR). In CCP, an optimal

route plan is calculated to satisfy the constraints on the vehicle capacity with a given prob-

ability. On the other hand, in SPR the vehicle capacity constraints are relaxed and included

in the objective function, assuming that route failures induced by fluctuation on the de-

mands during the execution of the a priori route plan can be adjusted by recourse actions

[SCPC15]. A route failure in the SSCVRPSP happens when the total demand on a route ex-

ceeds the capacity of the associated vehicle during the implementation of the a priori route

plan. The main difficulty associated with SP models is the need to provide the probability

distributions that govern the stochastic demands. In contrast, RO acknowledge the uncer-

tain demands without making specific assumptions on the probability distributions, instead

they are assumed to belong to a deterministic uncertainty set [MPB05]. In present robust
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optimization settings for the SSCVRPSD, the min-max model has been generally adopted.

The robust min-max model seeks a solution that optimizes the worst over all demand sce-

narios in the uncertainty set, leading to the design of an overly conservative route plan.

To address the issue of over conservative robust route plans, robust optimization models

have assumed that stochastic demands belong to different structures of uncertainty set,

cf., e.g., [GWF13]. Yet, these two approaches are not the only methods used to produce

the so-desirable robustness (be that recoverable or strict) in the context of the SSCVRPSD.

When dealing with this problem other strategies, such as allocation of vehicle capacity

[JFG+11], have been applied. Nevertheless, to the best of our knowledge, no study about

the SSCVRPSD has considered the issue of trading off optimality and robustness.

Optimality and robustness are two conflicting objectives. Optimality refers to planned

(first-stage) transportation cost, that is, the transportation cost of the a priori route plan,

while robustness regards to second-stage transportation cost. The real transportation cost,

i.e., the cost that are really afforded by companies, is the sum of the first and second-stage

transportation cost. As we aim at optimality more customers will generally be served in

individual routes, leading to lower planned transportation cost. But the savings in the trans-

portation cost due to larger routes will tend to be offset by more frequent route failures and,

therefore, higher second-stage transportation cost will be incurred thanks to, for example,

an additional vehicle that is dispatched to complete an unfinished route [SG83]. The real

transportation cost is then higher. In turn, as we focus on robustness, fewer customers

will normally be attended in single routes, designing small routes. Thus, more vehicles are

required. In this case, route failures tend to not occur and the planned transportation cost

equals the real transportation cost. But as the transportation cost of the route plan increases

with the number of routes, the real transportation cost is higher in this case too. There is a

trade-off between cost minimization and protection, and a balance must be set for these two

objectives. This is the goal of this thesis. The question is How to support decision-making

process in the SSCVRPSD so that a solution that calculates the best trade-off between planned

transportation cost and second-stage transportation cost, i.e. a route plan with low real trans-

portation cost, can be obtained? The presence of this trade-off is perceptive, but a decision
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model that provides a manner for quantifying the trade-off and determining a route plan

that best trades off expected transportation cost and safety is still missing.

In other decision-making problems under uncertainty, mathematical models that seek to

trade off robustness and optimality are based on using variance as a measure of robust-

ness. The objective function of the model turns into a utility function that embodies the

expected solution cost (first-stage cost), called optimality, and a variability in the mean

value (second-stage cost), called robustness [MVZ95], establishing a mean-variance trade-

off. However, variance gives equal weight to deviations above and below the expected

value. The variance as a measure of variability that uses absolute values and thus avoids

the issue of negative differences between deviations and the mean. In this way, the Mean-

Variance (MV) objective function is unable to notice the incremental and/or reductional

trend on the second-stage costs. In some decision-making problems, it is plausible to focus

on mean-variance tradeoffs, but in other it is not [LWN+03]. In the SSCVRPSD, the MV ob-

jective function may calculate a route plan that are overly conservative. Here, we propose

a mathematical model for the SSCVRPSD that uses mean absolute deviation instead of the

variance as a measure of robustness, called Mean Absolute Deviation (MAD) formulation,

and a solution method for solving such decision model. Since the proposed formulation

takes the structure of a multi-objective optimization problem, we call the solution method

Robust Multi-Objective (RoMO) solution approach. Similar to the work of Mulvey et al.

[MVZ95], the variability term is multiplied by a parameter of decision-maker’s choice ω

to be used to obtain a spectrum of solutions that trades off optimality for robustness. In

this way, the mathematical formulation and the solution approach introduced in this thesis

acknowledge the need for the decision-maker to incorporate a measure of her/his level of

risk aversion in the objective function.

For achieving our goal, the remainder of this thesis is structured as follows: In Chap-

ter 2, we lay the foundation for the addressed decision-making problem. The decision-

making problem studied in this thesis is the most famous SVRP, the static and stochastic

capacitated vehicle routing problem with stochastic demands. Because of its ability to in-

corporate different aspects of real-world problems, several VRP classes have been presented
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and different ways have been proposed to categorize them. In this chapter, we introduce

a classical definition of the CVRP and propose a new classification for the VRP. Moreover,

instead of covering just the decision-making problem, we explore the SVRP regarding the

source of stochasticity present in the problem, the type of decision policy involved in

the decision-making process, the modeling technique applied to formulate the problem,

and the solution method used to solve the mathematical model.

In Chapter 3, we cover the second part of the literature review. We introduce approaches

adopted for handling uncertainties, mainly stochastic demands, and achieving robust-

ness in the decision-making problem. As we try to cope with uncertainties in decision-

making problems, the goal of producing robust solutions arises, i.e. solutions that are less

affected by changes on the stochastic inputs. Nevertheless, there have been different inter-

pretations on the term robustness. Therefore, we present not only the definitions proposed

by the stochastic programming and robust optimization approaches but also our own def-

inition of robustness. Apart from SP and RO, other approaches have been applied in the

literature to cope with the SSCVRPSD acknowledging robustness. A review on these papers

is presented. This chapter is concluded by pointing out what is different between our goal

and the aim of these papers.

In Chapter 4, we present the structure of the MAD formulation for the SSCVRPSD and

the stages included in the RoMO solution approach to deal with the proposed mathemat-

ical decision model. The MAD formulation is similar to a stochastic programming with

recourse model and assumes that the probability distribution of the uncertain demands can

be estimated. The parameter of choice ω included in the second term of the MAD objec-

tive function allows decision-makers to see what possible trade-offs between robustness

and optimality exists and to choose a solution that is consistent with her/his willingness

to take risk. Like other works, RoMO also makes use of efficient and well-known heuris-

tics for the classical CVRP to solve the stochastic problem. The conclusions of this chapter

are based on the contribution of our work to the literature on robust formulations for the

decision-making problem.

In Chapter 5, we demonstrate the effectiveness of our solution approach by solving the
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instances of a developed benchmark dataset and comparing RoMO solutions with solu-

tions obtained via the deterministic optimization approach and solutions obtained via

another approach that similarly to RoMO also aims at producing robustness. The determin-

istic optimization approach is the benchmark method to solve decision-making problems

under uncertainty, even though it does not consider the effect of the stochastic inputs on

the solution’s feasibility and optimality. The instances differ mainly regarding number of

customers and include locations of the depot and the customers, transportation cost, de-

mands, and vehicle capacity. For comparison purposes, we adopt ω ∈ {0, 1, 5, 10} to gener-

ate solutions of different degree of robustness and introduce seven performance measures,

probability of route failure, reliability of the route plan, expected and real number

of routes, expected and real transportation cost, and Price of Robustness. Monte Carlo

simulation and the probability distribution that models the demands are used to estimate

some of them. Moreover, we discretizeω and parametrize theMAD objective function in or-

der to perform a trade-off analysis. We conclude this chapter by stressing how our solution

approach performs and its ability to find a solution that best trades off first and second-

stage transportation cost. Morover, we highlight how RoMo improves decision-making in

optimization problems under uncertainty.

Finally, we conclude the thesis in Chapter 6 by summarizing our contributions and out-

lining directions for future research.



2 The Vehicle Routing Problem

2.1 Introduction

The literature review is devoted to two parts, to the decision-making problem, and to ap-

proaches for handling uncertainties in the decision-making problem. The first part is cov-

ered in this chapter and the second in Chapter 3. The decision-making problem is the static

and stochastic capacitated vehicle routing problem with stochastic demands. Nevertheless,

since this decision-making problem is one of several variants of the vehicle routing prob-

lem and the frontier between the categories (and all principles related to them) is somehow

fuzzy, rather than restricting this chapter to the SSCVRPSD, we provide literature on the

stochastic vehicle routing problem. Moreover, this chapter uses the CVRP a number of

times as the primary example as this is a reasonably simple variant that makes it easy to

introduce the necessary concepts.

2.2 Definition

Several definitions of the vehicle routing problem have been introduced. In this section, we

present a classical definition and use it throughout the thesis. In the most general sense, the

VRP can be defined as the problem of designing an optimal route plan to attend a set of ge-

ographically dispersed customers under the limitations of constraints. Because conditions

vary from one problem to another, objective function and constraints are changeable. Typ-

ically, an optimal route plan means the one with minimal transportation cost (distribution

11
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costs and/or vehicle acquisition costs), however, different goals can be targeted [KB85]. For

instance, service improvement is a common objective for service industries, as customer

satisfaction is often crucial. The most common constraints are on the route duration, time

window, and vehicle capacity [TV14]. Duration constraints guarantee that the total length

of every route does not exceed a defined threshold. Time window constraints ensure that

each customer is attended within a predefined time interval. Capacity constraints certify

that the total demand of any route does not exceed the vehicle capacity. When capacity

constraints are added to the classical problem, then the most studied version of the VRP

emerges, the capacitated vehicle routing problem. In this variant, the goal is to minimize

the travel times while serving all customers using a fleet of identical vehicles of limited ca-

pacities located at a single depot [Lap09]. Vehicles collect and/or deliver (goods) at all cus-

tomers. Delivery and collection problems are symmetrical with one another and equivalent

from a modeling point of view [GLS96]. CVRP belongs to the class of NP-hard combinato-

rial optimization problems, i.e., there is no known algorithm that can solve it in polynomial

time. If the size of the set of customers grows, the number of solutions to the problem grows

exponentially.

The CVRP is represented on a fully connected undirected graphG = (N,A), whereN =

(0, 1, 2, 3 . . . n) is the set of nodes (a single depot denoted as node 0) and A = {(i, j)|i, j ∈

N, i ̸= j} is the set of arcs. Therefore, there are |A| = n(n + 1)/2 arcs in the graph. The

deterministic amount of goods that has to be delivered to (or/and collected at) customer

i ∈ N is denoted as customer’s demand and is given by di, therefore, d0 = 0. The fleet of

vehicles K = {1, 2, ..., k} is considered to be homogeneous, that is, there are k vehicles of

capacity C each. The coefficient cij represents the transportation cost between node i and

j. This coefficient is calculated using cij =
√

(ix − jx)2 + (iy − jy)2, where ix and iy are

the x and y coordinates of the customer i, respectively. It is assumed that the coefficients

satisfy the triangular inequality, i.e. cij + cjk ≥ cik and that the graph is symmetric, i.e.

cij = cji. Note that an instance of the problem is defined by a complete weighted graph

G = (N,A, cij) together with the size of the fleet of vehicles |K| and the vehicle capacity

C . The decision variables xij indicate whether or not a vehicle travels from node i to node
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j. A solution y to the CVRP, called route plan, consists of a set ofK feasible routes, which

means that the number of routes is equal to the number of vehicles used in the plan. The

transportation cost of a route plan y is expressed by J(y). A feasible route p is performed by

one vehicle which leaves the depot, serves a subset R = {i1, i2, . . . , ir} ⊆ N of customers,

whose total demand does not exceedC , and returns to the depot, i.e. p = (i0, i1, . . . , ir, ir+1)

and p[0] = p[r + 1] = 0. Let S ⊆ N be an arbitrary subset of nodes. m(S) denotes the

minimum number of vehicles necessary to attend S. The value of m(S) can be calculated

by solving a Bin Packing Problem (BPP) with item set S and bins of capacity Q. For S,

let δ(S) = {(i, j) : i ∈ S, j /∈ S or i /∈ S, j ∈ S}. It became a standard to define

δ(i) := δ({i}) for singleton sets S = {i} [TV14]. Although several formulations have been

proposed for the CVRP (cf. [TV02]), in this works we use an integer two-index compact

CVRP formulation proposed by Laporte et al. [LND85] defined as follows

Definition 2.1 (Capacitated Vehicle Routing Problem)

min
y

J0(y) := min
∑
i∈N

∑
j∈N

cijxij (2.1)

s.t.
∑

(i,j)∈δ(i)
xij = 2 i ∈ N\{0}, (2.2)

∑
(i,j)∈δ(0)

xij = 2K, (2.3)

∑
(i,j)∈δ(S)

xij ≥ 2m(S) S ⊆ N\{0}, S ̸= ∅, (2.4)

xij ∈ {0, 1} i, j /∈ δ(0), (2.5)

xij ∈ {0, 1, 2} i, j ∈ δ(0). (2.6)

In this model, constraints (2.2) mean that each client is visited by one incoming and

one outgoing vehicle. Constraints (2.3) ensure that K routes are designed. Connectivity

of the route plan y and the vehicle capacity requirement are imposed by constraints (2.4)

by forcing a sufficient number of edges to enter each subset of vertexes. Since the BPP

is NP-hard, m(S) may be approximated from below by any BBP lower bound, such as
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⌈∑
i∈S di/C

⌉
[CLSV07]. Constraints (2.5) and (2.6) define the decision variables. In this

formulation if i, j > 0, then xij can only take the values 0 or 1. However, if i = 0, xij can

also be equal to 2 when a vehicle visits a single customer [LLH02].

2.3 Classification

There exists a large number of VRP categories because different setting and attributes/con-

straints and combinations of both can be added to the classical vehicle routing problem. The

Capacitated Vehicle Routing Problem with Divisible Pickups and Deliveries (CVRPDPD),

Multi-Depot Vehicle Routing Problem (MDVRP) and Heterogeneous Vehicle Routing Prob-

lem (HVRP) are just a few examples. Hence, different classifications of the VRP have been

proposed. Toth and Vigo [TV14] classify it according to the network structure (arc rout-

ing and node routing), type of transportation requests, constraints that determine whether

or not a route is feasible, fleet composition and location, inter-route constraints related

with solution feasibility, and optimization objectives. Bodin and Golden [BG81] present

a taxonomy of the VRP based on objectives, operations, costs, maximum vehicle route-

times, vehicle capacity, underlying network, location of demands, nature of demands, size

of vehicle fleet available, number of domiciles, and time to service a particular node or

arc. Psaraftis [Psa88] use two aspects, "evolution of information" and "quality of informa-

tion", to categorize VRP into four classes, static and deterministic, dynamic and deterministic,

static and stochastic, and dynamic and stochastic. Evolution of information refers to the fact

that in some problems the information available to the decision-maker may change dur-

ing runtime and divides the problems into static when inputs are known beforehand, and

into dynamic otherwise. Quality of information indicates whether possible uncertainty ex-

ists on the available data and categorizes the problems into deterministic when there is

no stochastic information about the inputs, and into stochastic otherwise. Based on this

classification, we propose a new one presented on Table 2.1. In the proposed classification,

the VRP is categorized into the same four classes as by [Psa88]. But, we use "uncertain

information" and "solution evolution" as classification aspects rather than evolution of in-
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formation and quality of information. Uncertain information relates to whether there is

stochastic information available to the decision-maker while solution evolution pictures

whether the sequence of customers to be attended on the route plan is slightly changed or

it is completely altered by the decision-maker during its execution.

Tab. 2.1: Vehicle Routing Problem Classification based on Solution Evolution and Uncertain Infor-
mation.

Uncertain Information
Deterministic Input Stochastic Input

Structure Unchanged Static and Deterministic Static and StochasticSolution Evolution Structure Changed Dynamic and Deterministic Dynamic and Stochastic

In the static and deterministic class, all necessary data is known in advance and with

certainty and routes do not change once they are being performed. These conditions apply

to the classical VRP and its variants (CVRP, VRPSPD, MDVRP, etc). This class has been

widely studied.

The dynamic and deterministic class, also called online or real-time VRP [TV14], is char-

acterized by parts or all inputs being unknown and revealed dynamically during the execu-

tion of the route plan. No historical information about the inputs is known [PWK16]. For

such problems, solutions are designed in an ongoing fashion, requiring technical support,

such as mobile phones and Global Positioning Systems (GPS), for real-time communication

between the driver/vehicles and the decision-maker [PGGM13a]. A Dynamic and Deter-

ministic VRP (DDVRP) is usually solved on an event-driven basis, i.e., every time a piece

of information becomes available. Nonetheless, for practical applications with time-critical

decisions the task of evaluating every possible decision at each time step is extremely chal-

lenging, cf., e.g., [PGGM11]. The most prominent problem in this class is the Dynamic Dial-

a-Ride Problem (DDARP) and one real-life application is the transportation of patients. In

this application, a service provider offers demand-responsive transportation for the pur-

pose of hospital consultations, medical treatments, daycare activities and/or rehabilitation

therapies. The set of nodes N is split into the pickup (origins) and delivery locations (des-

tinations). Each customer calls a dynamic transportation request, that is, a trip between an

origin and a destination of choice that needs to be executed as soon as possible. Origin and

destination could, for instance, be the patient’s home and a hospital, respectively. A service
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level requirement is linked to each trip [MBCB17]. Examples of works on this problem are

[KLPB11, BLMN10].

In the static and stochastic setting, one (or some) input is modeled as a random variable

and its true values are revealed during the execution of the route plan. The solution is de-

signed beforehand and only minor changes are applied to the a priori route plan during

its implementation. Applications in this class do not require any technical support. The

most studied problem in this class is the CVRP with Stochastic Demands (CVRPSD). One

real-life application of this problem is a waste collection system. In this example, suitable

vehicles transport solid waste from points of disposal (collection bins) to a point of treat-

ment. Therefore, in this system, customers correspond to collection bins and a single depot

corresponds to a point of treatment. The volume of waste at any collection bin, which ex-

presses customer’s demand, cannot be a priori known with certainty. Because all waste

has to be collected and the capacity of the vehicles are constrained, the vehicles may re-

quire being unloaded at the treatment location and then continue to attend the remaining

collection bins. This problem was studied by [Ism09, Ism08].

Last, in the dynamic and stochastic class, also called real-time or online VRP, similar to

the static and stochastic category one or (some) input is unknown and revealed dynamically

and stochastic knowledge about it is available. Both classes call for the design of an a priori

route plan. Nevertheless, in the static case the a priori route plan is slightly updated as

the true input values are acknowledged and in the dynamic case the a priori solution may

be completely modified. Therefore, the help of technical support may be needed in this

category. In this class, the dynamic and stochastic capacitated vehicle routing problem is

the most studied problem and one real-world application is a grocery delivery service. In

this problem, vehicles transport perishable goods from a retailer to customers’ home. The

customer selects products on a website and then chooses a time window for the delivery

to take place. The retailer estimates the number of customers that can be serviced within

a time window. This number is typically based on a combination of factors, including fleet

size and historical data on the delivery times. The time window is made unavailable to

customers as soon as the capacity is reached [Pil12]. E-grocery delivery service problems
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were studied by [AGP12, CS05].

Literature on problems that lie in the third and four classes, that is, problems that hold

stochastic information, has grown in the recent years. Themain reason is that inmost of the

practical applications all information necessary to formulate the problem is not known and

readily available, and integration of stochastic information can increase the look–ahead

capability, reliability, and robustness of an solution approach [TV14]. We continue this

chapter focusing in the SVRP, i.e., in the static and stochastic and dynamic and stochastic

classes.

2.4 Stochastic Variant

SVRPs may be catalogued based on four aspects: source of stochasticity, decision pol-

icy, modeling technique, and solution method. A source of uncertainty is any input

that is uncertain, inexact, noise or likely to change in the future [SCPC15]. A decision

policy defines whether the structure of a solution is completely updated over time. A mod-

eling technique is a framework used to model the problem and leads to how the problem

will be solved. Finally, a solution method describes how to solve the mathematical model,

which heavily depends on the modeling method [Ord10]. In the next sections, we further

describe each of these aspects and for each we present studies for exemplification. The

studies classified according to the aspects are shown in Figure 2.1.

2.4.1 Sources of Uncertainty

The stochasticity can be incorporated into the problem through different aspects. The most

studied sources of stochasticity are: presence of customer, customer’s demand, travel time,

and service time. Following, for each one of these sources of uncertainty we present char-

acteristics, examples and real-world applications of SVRPs that include it.
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2.4.1.1 Stochastic Customers

The Vehicle Routing Problem with Stochastic Customers (VRPSC) occurs when the set of

customers to be visited is not known with certainty [TV14]. In such cases, each customer

i ∈ N has a probability Pi of being present, but has a deterministic demand di. A real-life

application of this problem is courier services found in the local operations of international

shipping services [HLL06]. In this application, the parcel is collected at different customer

locations and brought back to a central depot for further processing and shipping. Service

requests appear dynamically and are assigned to apt vehicles and historical information

about them is available [GGPT99]. Hvattum et al. [HLL06], motivated by a problem faced

by one of the leading distribution companies in Norway, tackle the dynamic and stochastic

VRP where customers can call in orders during daily operations and historical data about

the customers’ locations is available. They divide the time horizon into a prespecified num-

ber of intervals v. The route plan is reoptimized every time interval considering the cur-

rently known customers and scenarios constructed using the stochastic knowledge in order

to accommodate new requests. Waters [Wat89] studies the vehicle routing problem with

some customers that may not need to be served during the execution of the a priori route

plan. He proposes and compares three strategies to adapt a priori solutions to handle cus-

tomers that do not need to be visited. In the first strategy, vehicles continue performing

their a priori route plan. In the second strategy, vehicles keep the a priori route plan, but

they skip customers that do not require to be served. In the last strategy, vehicles collect

all customers that have to be visited and reoptimize the remaining solution every time an

previously absent customer is revealed.

2.4.1.2 Stochastic Demands

Themost common stochastic parameter studied in the literature is customer demand. Apart

from the waste collection system described before, another real-life application occurs in

the delivery of petroleum products. In this application, a supplier of petroleum products

must design a route plan to replenish the inventory of a set of gas stations [DR59]. The

amount of products that each gas station needs is not known beforehand with certainty,
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yet, stochastic information about it is on hand. As the exact values of customer demands

are uncertain, the problem can be modeled as the SCVRPSD. Bernardo and Pannek [BP18]

deal with the dynamic and stochastic CVRPwith stochastic and dynamic demands. For that,

they propose an approach that addresses uncertainty by using higher moments calculated

via a set of scenarios, permitting the solution to be able to adapt to situations when the

true demand is greater than expected without losing structural properties and optimality.

Mendoza et al. [MRV16] study the SCVRPSD with duration constraints. In this problem

not only the capacity constraints (cf. (2.4)) define the feasibility of a solution but also con-

straints on the duration of routes. They introduce two strategies to deal with route-duration

constraints in the SVRPSD. In the first strategy, a probability of exceeding the maximum

duration constraint is assumed to be lower than a given threshold, while in the second, the

violations to the duration constraint are penalized in the objective function.

2.4.1.3 Stochastic Travel Times

Travel speed is influenced by the traffic jam, road maintenance, and/or weather conditions.

This means that travel time brings stochasticity to the VRP. The problem may thus be for-

mulated as the SVRPSTT. The coefficients cij , which represent transportation costs in (2.1),

may as well indicate travel costs, distances and travel times between node i and j [TV14].

These coefficients are then represented by random variables in the SVRPSTT. Real-life ex-

amples of this problem are money collection systems in bank branches. Usually, banks

dispatch vehicles to their branches to collect cash and transport it to a central office. This

operation may be carried out daily by the bank’s own vehicles or by a logistics provider.

One major issue is the fact that when cash does not return to the central office before a cer-

tain time of the day it is credited to the next day and loses one day’s interest [LLL93]. Taş et

al. [TDWK14] investigate the SVRP with stochastic and time-dependent travel times. They

formulate a new model for the problem, one that minimizes the total weighted time which

includes not only travel times but also service times. To solve it they applied two meta-

heuristics. Zhang et al. [ZCZ12] examine the dynamic and stochastic VRP with stochastic

travel times and simultaneous pickups and deliveries. The authors propose a new model to
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transform the dynamic problem into a static one and construct a metaheuristic to solve it.

2.4.1.4 Stochastic Service Times

When stochasticity is present in service times, the problem can bemodeled as the SVRPSST.

Compared to the VRPwith stochastic customers and demands, research on the VRPSST and

on the VRPSTT has received less attention [Ord10]. Real-world examples of this problem

are faced bymaintenance and repair services providers [EDG+18]. In such cases, service re-

quests are generated by the owners of the equipment due to regular maintenance or failure.

Each request specifies an estimated service time and a deadline for the start of the service.

Service times vary according to different factors such as accessibility at the customer’s lo-

cation, diagnostic of the particular service to perform and complexity of the operation to

be carried out [EDG+18]. Thus, in this SVRPSST model a random variable that indicates

the duration of the service time at each customer and constraints on the time window are

added to the classical formulation (2.1). This situation is studied by Errico et al. [EDG+18]

and Souyris et al. [SCOW13]. Both formulated the problem as a SVRPSST with soft time

windows, but while Errico et al. [EDG+18] propose a model that designs solutions that are

insensitive to the uncertainty in service times, Souyris et al. [SCOW13] develop a method

to compute the success probability of the route plans.

2.4.2 Decision Policies

The SVRP can be studied from either a static or dynamic point of view. From a static per-

spective, the goal of the problem is to design an a priori route plan on which minor alter-

ations will be applied during its execution to cope with the uncertainties. From a dynamic

perspective, the problem consists in constructing a route plan in an online manner, in-

forming the vehicles which customer to attend next [NS09, PGGM13a]. That is why the

stochastic vehicle routing problem is classified either as static or as dynamic according to

the aspect "solution evolution" in the Table 2.1.

Instead of static and dynamic perspectives, we follow the work of Ritzinger et al. [RPF16]

and refer to them as preprocessed and online decisions, respectively. Hence, if the
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stochastic VRP is classified as static it means that preprocessed decisions are made and

if the problem is classified as dynamic then online decisions are executed to solve the prob-

lem. Preprocessed decisions are decisions computed before the execution of the route plan

and define actions applied during the execution of the route plan, e.g., always perform a

detour to the depot. These decisions consider all states (e.g. all possible stochastic input re-

alizations) in advance and evaluate each state according to its performance. The evaluation

of the states is done before the vehicles start the routes, and enables accurate decision-

making based on these values during the plan execution phase. Online decisions are deci-

sions counted as soon as a dynamic event happens. By adopting online decisions, solutions

are reoptimized at predefined stages (e.g., as soon as an event occurs) with respect to the

current system state and the available stochastic information [BVH04]. To tackle the dy-

namic and stochastic VRP, Bent and Van Hentenryck [BVH04] propose a Multiple Scenario

Approach (MSA). The method starts by initializing a pool of scenarios with realizations of

customer demands based on the currently known information. If/when an event occurs,

such as the disclosure of a true value of some input or a vehicle breakdown, MSA updates

the scenario pool, solves each scenario and selects a route plan. Online decisions are made

based on this selected route plan. As new information is revealed, some scenarios might

become obsolete and are removed from the pool, leaving space for new ones. Euchi et al.

[EYC15] solve a dynamic and stochastic VRP with stochastic pickup and delivery locations

by solving one static problem per time interval. Customers are divided into time intervals

of predefined length and every time interval represents a static and stochastic VRP. All or-

ders received after a time interval is over are interpreted as being customers that were not

serviced before and the re-optimization starts with these customers.

The ability to modify a route plan and redirect a moving vehicle to a new request nearby

allows for additional savings. However, it requires real-time knowledge of the vehicle po-

sition and being able to communicate quickly with drivers to assign them new destinations

[PGGM11]. This ability is limited as a result of the availability of technical support, time

of the information disclosure, and the amount of work in computing new solutions. Many

practical problems are of high dimension and it is not possible to solve them in appropri-
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ate time after the dynamic input is revealed. In addition, modifying the routes too much

will lead to the loss of driver familiarity and preparedness, desirable features in practice

[Ord10]. In this work, we are, therefore, concerned with the static and stochastic VRP,

which means that we only execute preprocessed decisions to solve the problem and that

only a few changes are applied to the a priori route plan after the true input values are

revealed. For more information on the dynamic and stochastic VRP, readers are referred to

[RPF16, PGGM13b, GGLM03, Lar01, Psa95]. In the next sections, we present mathematical

models and solution methods used in the static and stochastic (capacitated) vehicle routing

problem.

2.4.3 Modeling Techniqes

The most common used modeling techniques in the context of the SSVRP are stochastic

programming and robust optimization. In this section, we show how these techniques

are applied in the most famous SSCVRP, the SSCVRP with uncertain demands. Apart from

the notations already introduced in 2.2, we include for the SSCVRPSD the following defi-

nition.

Definition 2.2 (Stochastic Demands)

Suppose that customer demands are known as random variables, di : Ωi → R+
0 ∀i ∈ N with

sampling space Ωi, and its exact values are only revealed at runtime.

It is important to highlight that a common and simple modeling approach is to use the

same formulation (2.1) but replace di byE[di], which is the expected demand of a customer.

In this way,m(S) is then approximated from
⌈∑

i∈N E[di]/C
⌉
. Yet, this approach does not

consider the impact of uncertainties on the quality and feasibility of the solution. It is thus

likely that as the inputs take values different from the nominal ones, constraints may be

violated, and the best route plan calculated for the nominal values may no longer be optimal

or even feasible [BS04]. SP and RO are described as follows.
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2.4.3.1 Stochastic Programming

In this section, we focus on stochastic program models. Stochastic programming was in-

troduced by Dantzig and Ramser [DR59]. Using this technique, uncertainty is formulated

in optimization problems by introducing stochastic parameters in the models [BL11]. The

random nature of uncertain inputs can cause an feasible route to become infeasible, i.e. as

true inputs are revealed, constraints may fail to hold [BS04]. This situation is referred to as a

route failure. Considering, for instance, the SSCVRPSD, a route failure may occur any time

a customer’s demand exceeds the associated vehicle remaining capacity [PGM10]. When

a route fails, recourse (also called corrective) actions (decisions) must be implemented.

Stochastic programming models are obtained by first defining when the true values of the

uncertain inputs are revealed. Based on this, decision variables are determined in stages ac-

cording to when inputs become known. The a priori decisions are the first-stage decisions,

which must be taken initially, before all information is available, and the recourse (correc-

tive) decisions represent the actions made in the second stage and onwards. These deci-

sions point to how route plans are changed as new information becomes available [TV14].

There are two types of stochastic programming models, two-stage models and multi-

stage models. In two-stage models, the variables are partitioned into two sets [DLL93],

while in multi-stagemodels, the decision variables are separated into t > 2 sets with t being

the number of stages considered in the problem. We do not cover multi-stage SP models in

this thesis, since we are concerned with the SSCVRP and these models are usually applied

in the dynamic and stochastic problem setting. Two-stage programs are the most studied

stochastic program models [Sha]. Once the first and second-stage decisions variables are

determined, there exist two general modeling approaches to formulate the SSCVRP using

a two-stage SP technique, chance-constrained program and stochastic program with

recourse [OAW16]. The conceptual difference between both approaches lies in the goal of

the first stage [PGM10]. CCP aims at designing an a priori route plan of lowest cost while

ensuring an upper bound on the probability of a route failure, regardless of the expected

cost of the second stage. In turn, in the SPR, the goal is to minimize the cost of the a priori

route plan plus the expected cost of the second-stage actions, i.e., the total expected cost
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[DLL93].

In the literature on chance-constrainted models, the probability of failure is usually as-

sumed to be given and specified in advance [NC18]. The decision-maker provides a param-

eter value giving the acceptable probability of failing to meet the constraints [OAW16]. In

order to avoid recourse costs, it is usually chosen a very small threshold α for the failure

probability. A typical small probability is 5% [BL11]. In SSCVRP with stochastic demands,

the constraints that are subject to failure are the capacity constraints. Using a probability

of failure of 5% means that a vehicle can collect the total demand of its assigned route with

a probability of 95%. In other words, 95 route plans out of 100 are reliable. Given the nota-

tions used in section 2.2 andDefinition 2.2, we can therefore introduce a chance-constrained

model for the SSCVRPSD for a given threshold α

Definition 2.3 (Chance Constrained SSCVRPSD)

min
y
J(y) := min

∑
i∈N

∑
j∈N

cijxij (2.7)

s.t. P
( ∑

(i,j)∈δ(S)
xij ≥ 2m(S)

)
≥ 1− α, S ⊆ N\{0}, S ̸= ∅, (2.8)

(2.2), (2.3), (2.5) and (2.6).

It can be notice that the only difference between this model and Definition 2.1 is that the

set of constraints (2.4) is replaced by a set of probabilistic constraints that can be violated

with probability α. m(S) is approximated from
⌈∑

i∈N E[di]/C
⌉
.

Noorizadegan and Chen [NC18] argue that small α may lead to unnecessary extra cost

and that choosing the right value is therefore a critical decision. They perform a sensitiv-

ity analysis for route reliability level and study its impact on the routing decisions and on

the objective values. For that, they consider α as a decision variable (α = 0.01, 0.05, 0.10,

0.15, 0.20, 0.25, 0.30) and use Monte Carlo sampling to generate scenarios of customer de-

mands, computing the total expected cost (first and second-stage costs), the expected failure

cost (second-stage cost) and their standard deviation. The results show that large α (e.g.
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0.25 and 0.30) reveals high total expected cost and standard deviations and that very small

α (e.g. 0.01) increases total expected cost without improving reliability. The authors con-

clude the number of routes (vehicles) does not always change as α is varied. This implies

it is not necessary to increase the fleet size to reach high degrees of reliability. They state

that reliability can be increased by improving customers’ assignment.

Dror et al. [DLL93] show that under mild assumptions chance-constrained SSCVRPSD

can be reduced to deterministic CVRPs. They also demonstrate that given a set of customers

that are served on a single route the probability of failure at the mth customer on this

route and no route failure occurred before is P (∑m−1
i=1 di ≤ Q <

∑m
i=1 di), for a number

of common probability distribution. Given that di are random variables with coefficient of

variation not exceeding one, the probability of failure is monotonically increasing in the

range of 1, . . . ,m⋆, wherem⋆ = maxm{µm} ≤ Q, µ = E[di]. With this result in mind and

assuming that the total demand on a route rarely very much exceeds the vehicle capacity,

they argue that failures are generally few and often tend to happen towards the end of the

route.

According to Morales [Mor06], the main drawback of CCR models is that, although they

manage the probability of failure, the failure’s location is neglected and its cost is thus

not taken into account. Routes of same sequence of customers and failure probability can

have quite different total expected costs, depending on the possible failure locations. That

is why most of the literature on SSCVRPSD follows the SPR approach instead. In SPR,

some feasibility constraints are relaxed and included in the objective function, assuming

that violations induced by random events after the implementation of first-stage decisions

can be repaired by recourse actions [SC15]. In this modeling approach, the decision-maker

must define a recourse policy describing what actions to take in order to repair the solution

after a failure [OAW16]. The recourse model frames the a priori route plan as here-and-now

decisions that are chosen before the uncertain demands are realized, whereas the recourse

decisions are taken once the demands are observed [GWF13]. In SPR models, the first and

second-stage costs are optimized, that is, the a priori route plan cost (first-stage cost) plus

recourse actions cost (second-stage cost). Considering the notations presented in 2.2 and
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Definition 2.2, a SPR for the SSCVRPSD based on Birge and Louveaux [BL11] is represented

as follows:

Definition 2.4 (Stochastic Program with Recourse SSCVRPSD)

min
y

J(y) := min
a
J(a) + E[Q(a, b)] (2.9)

s.t. (2.2), (2.3), (2.4), (2.5) and (2.6).

where Q(a, b) is the optimal value of the second-stage problem

min
γ
q(γ; a, b) (2.10)

s.t. z ∈ Z(γ, b) (2.11)

Here a represents the first-stage decisions that must be taken initially, before all infor-

mation is available. These are routing decisions. The function J(a) evaluates the objective

function for the first-stage decisions. The source of uncertainties is represented by b. In

general, b and its realizations b are vector-valued. The corrective decisions are represented

by γ, which are evaluated using the function q(· ) that can be parameterized by a and b.

This model highlights that the major difference from a deterministic formulation is the

second-stage value function. If that function is given, then a stochastic program is just

an ordinary nonlinear program [BL11]. The second-stage cost is problem dependent and

is related to the particular choice of possible corrective actions [SKGJR17]. It can thus be

said that the corrective action is a modeling choice, resulting in different variants of a SPR

model. For the SSCVRP with stochastic demands there are two recourse policies commonly

used, Detour-to-Depot (DD) and Preventive Restocking (PR) [SM09, TCG07].

In DD, the vehicle returns to the depot to load (unload) when its capacity is depleted (or

exceeded). Instead of detour-to-depot, Oyola et al. [OAW16], Morales [Mor06] andHjorring

et al. [HH99] call it stockout and classify it into two types, normal and exact. A normal

stockout, means the vehicle does not have enough goods to serve the current customer,
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so after restocking at the depot, the route is resumed starting at the customer where the

route failed. On the other hand, an exact stockout means the residual capacity is precisely

equal to the current customer’ demand and after restocking, if this customers is not the last

customer in the route, the vehicle will resume the trip at the next customer in the route. In

other words, this recourse action is executed by visiting the depot after visiting customer i

and before visiting customer j by following arcs (i, 0) and (0, j) instead of following the arc

(i, j) in the a priori route plan [SOM08]. Oyola et al. [OAW16] show that the most common

recourse action in the literature is the detour-to-depot and argue that its widespread use

may be related to the fact that it is very simple to understand and to model. Juan et al.

[JFG+11] use a set of scenarios

S = {sj = (dj
1, d

j
2, d

j
3 . . . , d

j
n) | j = 1, . . . , sc}, (2.12)

such that each scenario sj defines one demand dj
i for every customer i ∈ N , in order

to compute the second-stage cost. The recourse model with detour-to-depot is obtained

by introducing an additional binary recourse variable rk
i to indicate whether the vehicle

capacity is depleted (or exceeded) at customer i in scenario k while the a priori route plan

is executed. The objective function of the SPR with detour-to-depot becomes then

min
y

J(y) := min
a
J(a) + 1

sc

sc∑
k=1

∑
j∈S

rk
i 2ci0. (2.13)

In PR, an en route replenishment may be performed before a route fails. It gives the op-

tion after each visit of choosing between visiting the next customer in the route or traveling

back to the depot to replenish, even if the vehicle capacity has not been reached [OAW16].

The reason is that it may be less costly to travel to the depot to restock from the current

customer than to wait for a route failure at a customer further away from the depot [BP18].

Considering the notations introduced in 2.2 and stochastic customer demands di that fol-

lows a discrete probability distribution pik = P (di = k), k = 0, 1, 2 . . . K ≤ Q, Yang et

al. [YMB00] propose a stochastic model with preventive replenishment for the SSCVRPSD.

For that, they first assume that after the service completion at customer i the vehicle has a
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remaining load q and that Ji(q) denotes the total expected cost from node i onwards. The

total expected cost of the a priori route plan is thus J0(Q). If Li represents the set of all

possible loads that a vehicle can have after service completion at customer i, then, Ji(q) for

q ∈ Li satisfies

Ji(q) = minimum{J1
i (q), J2

i (q)}, (2.14)

where

J1
i (q) = di,i+1 +

∑
k:k≤q

Ji+1(q − k)pi+1,k +
∑

k:k>q

[2di+1,0 + Ji+1(q +Q− k)]pi+1,k, (2.15)

J2
i (q) = di,0 + d0,i+1 +

K∑
k=1

Ji+1(Q− k)pi+1,k, (2.16)

with the boundary condition fn(q) = dn,0, q ∈ Ln. In this model, J1
i (q) and J2

i (q) represent

the total expected costs of the two choices at customer i, proceeding directly to the next

customer or performing a PR, respectively. Bianchi et al. [BBC+06] argue that the optimal

choice is of threshold type. Given the a priori route plan, for each customer i ∈ N there

is an amount threshold hi such that, if the residual load after serving i is greater than or

equal to hi, then it is better to advance to the next customer on the route, otherwise it is

less costly to perform a preventive restocking.

There are, nevertheless, some stochastic models in which the corrective actions do not

involve routing decisions. Instead a penalty for late/early arrivals or the extra time cost

of the driver can be part of the total expected cost when time windows and stochastic

service time are taken into consideration [OAW16, TDWK13]. Chepuri and Homem-de-

Mello [Che05] model a SSCVRPSD considering that after a route fails no corrections are

applied and unvisited customers will not be attended. According to them, this is a situation

faced by many companies while dealing with emergency deliveries when penalties must be

paid to the unserved customer. Stewart and Golden [SG83] claim there is a penalty when

a constraint fails (e.g. cost of sending another vehicle or customer dissatisfaction) related
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to making that constraint feasible. They present a model for the SSCVRPSD that includes

a penalty in the first-stage cost for each unit of demand left unsatisfied. Similarly, Laporte

et al. [Lap92a] introduce a formulation for the SSVRPSTT that adds an extra unit of time

to the a priori route plan total expected time for every time the travel time exceeds the

deadline.

2.4.3.2 Robust Optimization

Robust optimization is a modeling approach in which the uncertainty is not stochastically

modeled, but instead deterministically and based on a set [BBC10]. RO first identifies poten-

tially realizable input instances for the problem, without trying to assign probabilities to the

different instances, and then looks for a solution that performs well even in the worst case

of the identified input data. Rather than trying to protect the solution in some probabilistic

way against uncertainty, in RO the decision-maker calculates a solution that is feasible for

any realization of the uncertainty in a given set [BBC10, KY97].

There are three important decisions in the application of the robust optimization tech-

nique, structure of the data uncertainty, Robust Optimization Criterion (ROC), and problem

formulation. Data uncertainty may be structured as a convex set, such as a convex hull, a

box, or an ellipsoid [GWF13] or using discrete/continuous scenarios [SCPC15]. In the lat-

ter, potentially realizable values are generated to each input of the problem, i.e. data are

defined as a set of possible values called scenarios. ROC defines the optimization goal, i.e.

the objective of the robust optimization approach. Their use mainly depends on the type

of problem. The most used are min-max, min-max regret, min-max relative regret, lexico-

graphical criteria, α-robustness and bw-robustness. Based on the way the uncertain data

is modeled and what ROC is chosen, a problem formulation is selected in order to obtain

a model able to generate robust solutions. A solution is called robust if it is a solution of

minimum value for the ROC, among all feasible solutions. The concept of robustness is

discussed in Chapter 3.

Considering the SSCVRPSD, these three decisions are made. First, let the stochastic de-

mands belong to a uncertain set Q ⊂ Rn
+, i.e. the uncertainty set Q contains all possible
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demand instances. Second, assume the min-max as the ROC. Finally, third, adopt the no-

tations presented in 2.2 and Definition 2.2. Then, a set of K routes (route plan) y is called

robust if ∑i∈yk
di ≤ Q for all k ∈ K and d ∈ Q, that is, if y satisfies the vehicle capacity

constraints for all anticipated demand realizations. Let Y be the set of feasible solutions for

the problem. This leads to the classical robust min-max model defined as

Definition 2.5 (Robust Min-Max SSCVRPSD)

min
y∈Y

⎧⎪⎪⎨⎪⎪⎩
max
d∈Q

J(y)

(2.2), (2.3), (2.4), (2.5) and (2.6)

⎫⎪⎪⎬⎪⎪⎭ . (2.17)

The robust min-max model seeks a solution that optimizes the worst scenario over all

scenarios in Q. One can easily reformulate this model for when the customer demands are

modeled by a set of discrete scenarios,

S = {sj = (dj
1, d

j
2, d

j
3 . . . , d

j
n) | j = 0, . . . , s}, (2.18)

such that each scenario j defines one demand dj
i for every customer i ∈ N . The objective

function of the robust min-max model becomes then

min
y∈Y

max
sj∈S

J(y) (2.19)

The ability to obtain efficient robust solution for the robust SSCVRPSDmodel will depend

not only on how the customer demands aremodeled, but also on the CVRP formulation used

(e.g. two-index compact, Miller-Tucker-Zemlin (MTZ), Set Partitioning, etc.), on the cor-

relations assumed between the uncertainty coefficients [Ord10], and on the ROC. Eufinger

et al. [EKB62] assume that the uncertain travel times reside in a set of scenarios, opt for

min-max-min as the ROC, and use a MTZ formulation to propose a robust model for the

SSCVRPSTT. In this model, k different solutions are calculated, instead of one, such that the

worst-case over all scenarios of the respectively best solution in each scenario is optimized.

The idea has a practical motivation, when a company has to serve the same customer every



2.4. Stochastic Variant 31

day it can calculate optimal k route plans only once. Then, at the beginning of a working

day, when the real scenario is known, the optimal route plan can be selected and executed.

Solano et al. [SCPC15] model the uncertain arc costs as discrete scenarios, optimize a lex-

icographic min-max criteria and use a MTZ formulation to develop a robust model for the

SSCVRP with stochastic arc costs. The lexicographic min-max RO criteria performs lexico-

graphic comparison between feasible solutions, it uses not only the worst-cost scenario but

also the other scenarios, from the worst to the best, to break ties when two scenarios give

the same worst cost. The lexicographic min-max refines min-max criteria, since it selects

a unique set of outcomes, but not necessarily a unique solution. Wu et al. [WHB17] also

model the uncertain arc costs as discrete scenarios and use a MTZ formulation for develop-

ing a robust model for the SSVRP with stochastic arc costs. For the objective of the robust

optimization, they propose a ROC that selects a route plan, which performs better than the

solution provided by the min-max objective on a majority of scenarios.

2.4.4 Solution Methods

A solutionmethod, also called algorithm, is a set of operations that are applied in a decision-

making problem, so that the problem can be solved. Solution methods are designed accord-

ing to the problem formulation. For the classical CVRP efficient solutionmethods have been

built. Yet, tackling the static and stochastic problem remains a challenging topic [JFG+11]

because it is a more complex problem due to the introduced uncertainty [WHB17]. A com-

mon practice is to try to reduce the static and stochastic CVRP to its deterministic counter-

part (via reformulation, decomposition or etc.) and then make use of efficient algorithms

developed for the classical CVRP. A large number of solution methods are available for the

static and deterministic CVRP [SOM08]. Providing classification schemes for the solution

methods used not only in the CVRP but in any combinatorial optimization problem is a

hard task because there are several characteristics and concepts involved in various meth-

ods. The particularities among solution methods have become more unclear and many

hybrids have been developed. However, following a number of works, such as Oyola et al.

[OAW17], we broadly classify solution approaches into two groups, exact solutionmeth-
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ods and heuristics. Heuristics are also sorted into three classes: constructive heuristics,

improvement heuristics and metaheuristics. Rather than presenting a detailed expla-

nation of every available implementation and a comparison among solution methods, in

this section, we briefly describe every one of these groups and classes and provide exam-

ples of their applications in the context of the SSCVRP.

2.4.4.1 Exact Solution Methods

Exact solution methods are algorithms that are capable of solving an optimization problem

to optimality, i.e. guarantee the optimal solution is found, if it is given to themethod enough

time and memory storage. Because any bounded combinatorial optimization problem, such

as the VRP, has a finite number of feasible solutions, it would theoretically be possible

to enumerate and evaluate all feasible solutions in order to find an optimal one [Win04].

But this finite number usually is very large. A full enumeration of all feasible solutions is

therefore time consuming. That is why exact algorithms use clever techniques so that only a

fraction of the feasible solution area needs be examined, avoiding full enumeration [Rop06].

Most of the exact solution methods proposed for the SSVRP are based on extensions of the

Integer L-Shaped Method or Branch-and-Price algorithms [GWF13].

The Integer L-Shaped Method was developed by Laporte and Loveaux [LL93] and has

enabled researchers to solve several categories of the SSVRP formulated as a SPR model.

It assumes that the recourse function cost Q(a, b) (2.4) can be computed given a feasible

route plan y and that a finite lower bound L on Q(a, b) is available. The method works on

a so-called current problem (CP) that is obtained by relaxing the stochastic problem. The

SSVRP is relaxed by relaxing both the integrality (2.5), (2.6) and the sub-tour elimination

(2.4) constraints and by replacing the expected recourse function cost by a lower bound

θ. The CP is then modified by dynamically adding constraints to prevent sub-tours and to

further improve the relaxation. The steps for the L-Shaped Method [LLH02] are described

bellow.

• Step 0. Set the iteration counter t equal to zero and add the bounding constraint

(θ ≥ L) in the initial CP. Set the objective value of the best solution found so far
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equal to∞. The only pendent node corresponds to the initial CP.

• Step 1. Select a pendent node from the list. If there is none stop.

• Step 2. Increase the count t := t+ 1 and solve CP, finding an optimal solution.

• Step 3. Check for any constraints violation and then include at least one violated

constraint. A lower bounding functional may also be generated and added. Return

to Step 2. Otherwise, if the objective value of the CP is greater than or equal to the

objective function of the best solution found so far, the current node is fathomed and

the method returns to Step 1.

• Step 4. Branch on a fractional variable if the solution is not integer. Add the corre-

sponding subproblems to the pendent nodes and returns to Step 1.

• Step 5. Compute the total expected cost of the recourse function for the optimal

solution of the current problem. Add it to the objective function value. Compare the

objective function value of the CP to the objective function value of the best found

solution. Set the best value as the optimal objective function value.

• Step 6. Fathom the current node if the lower bound (θ) is greater than or equal to its

actual expected recourse cost and return to Step 2. Otherwise, impose the optimality

cut and go to Step 2. The optimality cut forces the method to move to a solution

different from the CP.

In Laporte and Louveaux [LL98] the L-shaped method was used to solve four different

SSCVRP, with stochastic travel times, with stochastic customers, with stochastic demands,

and with both stochastic customers and demands. The computational experiments show

that the SSCVRP could only be solved to optimality for small size instances. Hjorring and

Holt [HH99] apply the same L-shaped method to find a optimal route plan for SSCVRPSD

with only one vehicle. However, they use general optimality cuts, instead of the specific

optimality cuts used in [LL98]. They argue that if general optimality cuts are generated, it

may be possible to reduce the number of feasible solutions (nodes) that must be evaluated

and the resulting specific optimality cuts that should be created, while the optimality of the
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final solution is still guaranteed. Based on this argument that by using general optimality

cuts the L-shaped method does not need to enumerate all integer solutions in-between the

lower and upper bound, Chang [Cha05] also uses the general optimality cuts in a L-shaped

method to find optimal solutions for a SSCVRPwith time windows and stochastic demands.

According to Christiansen and Lysgaards [CL07] the best results obtained by the L-

shaped method are on instances with non-constrained vehicle capacities, i.e. instances of

small expected customer demands relative to the capacity of the vehicles. As the capacity

constraints becomemore restrictive, the effectiveness of the L-shaped-basedmethods seems

to diminish. On the other hand, branch-and-price solution methods benefit from more ca-

pacity constrained VRPs because these tighter constraints decrease the feasible solution

space of the column generation subproblem and potentially limit the number of feasible

routes that need to be considered [GDG14]. The branch-and-price algorithm is a variant of

a branch-and-bound method in which the bounding part is done by using column genera-

tion. The idea of branch-and-bound is to construct a proof that a solution is optimal based

on successive partitioning of the solution space [PK98]. The "branch" refers to the parti-

tioning process while "bound" means to lower bounds that are used to construct a proof of

optimality without exhaustive search. The method maintains a binding solution, i.e. the

known feasible solution of lowest cost, and a set of nodes, i.e. a set of linear relaxed prob-

lems. Initially the set of nodes contains the subproblems without any branching decisions.

A node corresponding to a relaxed problem is solved using column generation [DDS91].

Branch-and-price method is used by Christiansen and Lysgaards [CL07] to solve a SSCVRP

with stochastic demands to optimality and by Taş et al. [TGD+14] to optimally solve the

SSVRP with soft time windows and stochastic travel times.

2.4.4.2 Heuristics

Due to computational challenges, there are many stochastic problems with no exact solu-

tion method known to work for reasonable sized problems. Since real instances are much

larger, this creates the need for heuristics [OAW17]. Differently to exact algorithms, heuris-

tics do not guarantee to find an optimal solution for the optimization problem, instead they
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aim at finding a feasible solution of reasonable quality in a shorter computational time

[Rop06]. Moreover, because the model parameters of the decision-making problem usu-

ally are only an estimation of the real data, the optimal solution becomes one of no great

concern [MRS12]. Several heuristics have been developed for the deterministic and for

the stochastic VRP [GRT+16, SCPC15]. In this work we categorize them into three types

described bellow.

Constructive heuristics build a solution from scratch. At each iteration, one solution

component is added to the solution according to a set of rules defined beforehand. They are

usually called greedy because the solution component that is added is the one that achieves

the maximal myopic benefit [SC15]. Two constructive heuristics applied in the VRP are the

Clarke and Wright (C&W) method and the Sweep method.

C&W [CW64], also called savings algorithm, is the most used constructive heuristic for

the VRP. The reason is its simplicity and the ease with which it can be adapted to handle

variations of the VRP [SG83]. Many variants of this solution method have been proposed

and applied to different classes of the VRP [Rop06]. The algorithm begins with a solution

formed by a set of single routes to every customer (0−i−0). Cost savingsSij = c0i+c0j−cij

can be obtained by satisfying the demands of customers i and j using one vehicle. These

savings are sorted in decreasing order. C&W then merges the routes (connecting customers

i and j) that provide a better impact on the total cost J(y) (2.1), i.e. the highest saving

Sij , without violating the capacity constraints. The procedure continues until no further

merges are possible. Dror and Trudeau [DT86] use a modified savings algorithms to solve

the SSCVRP with stochastic customer demands. Mendoza et al. [MCG+11] propose a C&W

algorithm to tackle a generalization of the SSVRPSD, called multicompartment CVRPSD

(MC-CVRPSD). The only difference between this problem and the SSCVRPSD is that in the

latter, each customer orders different products that must be transported by independent

vehicle compartments.

The Sweep method was proposed by Gillett and Miller [GM74]. In this method, cus-

tomers’ locations are represented in a polar coordinate system (θi, ρi), where θi is the angle

and ρi is the ray length [Lap92b] with the depot as (0,0). The algorithm begins by ranking
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the customers in increasing order of their θi. It then sweeps the customers into clusters

either clockwise or counterclockwise. For that, it starts from the first customer in the rank

and adds this customer to a cluster. Customers are swept to a cluster as long as the cluster

can be served by a single vehicle. After the capacity constraint is reached a new vehicle is

selected and the remaining customers are swept into a new cluster [Lap09]. When all cus-

tomers were assigned to a cluster, the algorithms finishes by calculating a route for each

cluster in order to create a route plan. The Sweepmethod is used by Goodson et al. [GOT12]

to generate a initial candidate route plans for the SSCVRP with stochastic demands.

Constructive heuristics are usually followed by an improvement heuristic [CGH+05].

Improvement heuristics, also referred as local search heuristics, examine a neighbourhood

of a feasible solution in order to find an improving solution. Most classical improvement

heuristic work in a descent mode until a local optimum is reached [CGH+05]. These meth-

ods take a initial feasible solution as input and then try to improve it exploring its neigh-

bourhood by applying successive small changes to it. At every iteration, the heuristic keeps

a current solution and may modify it based on the evaluation of the effect of changing the

solution. When one of the changes leads to a better solution, this solution becomes the cur-

rent solution. This process is repeated [Rop06] until no improving solutions can be found

in the neighbourhood [SCPC15].

One of the best known local search heuristics is the K-Opt Local Search proposed by Lin

[Lin65]. In this heuristic, the operator k defines how many arcs in the current route plan

are exchanged to possibly create a improved solution. An exchange is either inter-route

when it occurs between a pair of routes or intra-route when it occurs between a pair of

customers. In the 2-opt local search with intra-route improvement, two arcs are swapped in

only one route. Let y be a route plan for the VRP. The neighbourhood of y, defined byN(y),

contains all route plans created by swapping two arcs in y. Two arcs, (i, i+1) and (j, j+1),

are replaced by two other arcs, (i, j) and (i + 1, j + 1), and the reversal of path p(j, i + 1)

[EYC15]. If this change brings a solution of improved objective function value, the current

route plan is substituted and the local search continues. The k-opt local search is used by

Erera et al. [ESU09] and Marinakis et al. [MMS15]. Erera et al. [ESU09] apply intra-route
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and extra-route exchanges with k = 1 for improving the solutions obtained for the SSVRP

with Time Windows (SSVRPTW) with both stochastic customers and demands. Marinakis

et al. [MMS15] adopt an 1-opt intra-route local search heuristic to enhance solutions for

the SSCVRPSD.

Another commonly used improvement heuristic is the LargeNeighbourhood Search (LNS)

method first presented by Shaw [Sha98]. The LNS consists in building and exploring the

neighbourhoods of a given solution. At each iteration, it first removes u customers from

a route (usually called destroying part) and then reinserts them (called repairing part) in

different positions into the route plan in order to find a better route plan [WHB17]. Sev-

eral rules can be used for choosing the customers to be removed and how to reinsert them

[Rop06]. An crucial decision in this method is how many customers (u) are removed and

reinserted into the route plan, i.e. the degree of destruction. When only a few customers

are extracted, the method explores small neighbourhoods. On the other hand, if a large

number of customers are deleted of the route plan, the repairing phase stands for repeated

optimizations from zero. Wu et al. [WHB17] apply a LSN-based procedure to improve

solutions obtain for the SSVRP with stochastic travel time. Lei et al. [LLG11] develop an

extension of the LNS for the SSCVRPTWwith both stochastic demands and time windows.

Improvement heuristics may not only be employed in order to reinforce constructive

heuristics but also as intensification components in metaheuristics [SCPC15]. A meta-

heuristic is a problem-independent solution method, often nature-inspired, that supplies

a set of rules (or strategies) to develop heuristic algorithms [SS09, BDGG09]. Different to

classical improvement heuristics, metaheuristics incorporate mechanisms to continue the

exploration of the search space after a local optimum is found [CLSV07]. In order to es-

cape local optima, metaheuristics allow for intermediate deteriorated and even infeasible

solutions [CGH+05]. A efficient metaheuristic can provide good solutions in reasonable

computation times [CLSV07]. That is why optimization solution methods have converged

to metaheuristics [CGSA14].

Good surveys on metaheuristics for the CVRP are provided by Gendreau et al. [Gen08],

Golden et al. [GWKC98] and Toth and Vigo [TV14]. Metaheuristics for the classical CVRP,
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and similarly for the SSCVRP, can be generally divided into population-based and local

search metaheuristics. Population-based evolve a population of solutions which may be

combined together in the hope of generating better ones. One example of this category

is Genetic Algorithms [TV14]. Genetic Algorithms (GA) are a family of solution methods

inspired by the theory of evolution by means of natural selection. The framework of this

metaheuristic was proposed by Holland [Hol92]. In this metaheuristic, solutions are repre-

sented by chromosomes, also called individuals. The GA begins with an initial population

of chromosomes and then improves it in a way that the goodness (or fitness) value of the

individuals in the population increases. The idea is that individuals that are more adapted

to the environment, i.e. higher "fitness", have a better change to live [Whi94]. At each

iteration a new generation of individuals is created by means of crossover and simple mu-

tation. First, two parent chromosomes are selected and two offspring from these parents

are created using a crossover operator [AMM16]. A random mutation to each offspring is

then applied. The weaker individuals are deleted from the population and replaced by new

offsprings [CGH+05], improving the overall fitness of the population. Applications of GA

in the SSVRP can be found in [AMM16, SS09, AT06]

On the other hand, local search metaheuristics, like improvement heuristics, explore the

solution space by moving at each iteration from a solution to another solution in its neigh-

bourhood. This category include Simulated Annealing (SA). The use of SA as a solution

method in optimization problems was introduced by Kirkpatrick et al. [KGV83]. Simulated

annealing is based on the thermodynamics, in the process of physical annealing with solids.

To grow a crystal, a row of materials is heated and then cool down until the crystal structure

is frozen in. When this process is done very slowly the crystalline solid reaches its most

regular possible crystal lattice configuration, i.e. its minimum lattice energy state, and is,

therefore, free of crystal defects [NJ10]. At each iteration, a neighbour solution is generate

and its objective function value is compared to the objective function value of the cur-

rent solution. Improved solutions are always accepted, while non-improved solutions are

accepted in an attempt to escape a local optimum [BBC+04]. The probability of accepting

non-improved solutions depends on a parameter, called temperature, which starts with high
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values and it is gradually decreased at each iteration [MF98]. The metaheuristic stops until

some terminal condition is satisfied. SSVRPs are solved via SA in [Goo15, GOT12, GG08].

2.5 Conclusions

The proceeding chapter examined the capacitated vehicle routing problem, more precisely

its stochastic variant, in order to outline the decision-making problem studied in this the-

sis, the static and stochastic CVRP with uncertain customer demands. A new classification

for the classical VRP is proposed based on the aspect "uncertain information" and "solu-

tion evolution". The stochastic CVRP was classified according to four aspects: source of

stochasticity, decision policy, modeling technique, and solution method, enabling us to ta-

per it down to the SSCVRPSD. There is a enormous amount of literature on each one of

these four aspects and researchers will continue to try to improve what it has already been

proposed, not only for science but also for resembling better what the real SSCVRP faced

by the companies look like.
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Robustness in The Capacitated
Vehicle Routing Problem with
Stochastic Demands

3.1 Introduction

Uncertainties affect a wide range of decisions decision-makers have to make. As presented

in Chapter 2, uncertainty in customer demands, customers’ locations, service times as well

as in travel times complicate the task of a logistics manager in planning a route plan. The

SVRP is thus more complicated to handle than its deterministic counterpart. In this way,

the stochastic problem raises concepts that the deterministic problem does not, such as

robustness. In this chapter, we first present the concept of robustness and then introduce

approaches found on the literature for achieving robustness in the decision-making prob-

lem.

3.2 Definition of Robustness and its Price

As described in Section 2.4.3, the SSCVRP problem can be modeled as a deterministic CVRP.

By doing this, one instance of the input data is fed to a mathematical model, which mini-

mizes the transportation cost in order to calculate the "optimal" route plan. In the selected

instance, the stochastic input is set equal to the most likely estimator of its realization in

the future, i.e., the expected value (nominal values) of each customer’s demand [BS04]. The

main drawback of this strategy is its inability to notice the existence of plausible instances

other than the one used to calculate the optimal solution. For these plausible instances,

the solution calculated using the nominal values might be suboptimal or even infeasible,

41
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since several constraints may be violated [MRS12]. For decision-makers that have to live

with the consequences of the decision, suboptimality or infeasibility may be unacceptable,

even though that decision is the "optimal" for the "most likely" future scenario [KY97]. This

situation leads to the goal of designing solutions that are less affected by data uncertainty,

i.e. robust solutions [SC15].

The definition of robustness is highly dependent on the decision-maker involved [SS09].

What most decision-makers refer to as a robust solution is a solution resisting as much

as possible perturbations in the uncertain inputs [SCPC15]. Robustness in optimization

problems can be related with feasibility when the decision-maker wants to guarantee that

the solution is feasible, or can be related with cost when the decision-maker wants to secure

that the objective function value does not change.

Mulvey et al. [MVZ95] differentiate two terms, solution robustness and model robustness.

Solution robustness corresponds to optimality meanwhile model robustness to feasibility.

The term solution robust appears when a solution remains "close" to optimal for any re-

alization of the uncertainty and the term model robust appears when a solution remains

"almost" feasible for any realization of the uncertainty. According to them, the notions

of "close" and "almost" are made precise through the choice of norms. Kouvelis and Yu

[KY97] also adopt these definitions of optimality robustness (solution robust) and feasibility

robustness (model robust). Sörensen and Sevaux [SS09] use the word robustness to refer to

feasibility robustness and similarly to [MVZ95] and [KY97] assume that a solution is said

to be robust when has a high performance in most or all realization of the uncertain inputs.

Bernardo and Pannek [BP18] acknowledge robustness similarly to [MVZ95] and [KY97]

but instead of solution robust and model robust they use the terms optimality and robust-

ness, respectively. To address the notion of "almost" (feasible), Liebchen et al. [LLMS09]

introduce the term recoverable robustness. According to the authors, a recoverable robust

solution is a solution that is "almost" feasible for any realization of the uncertain inputs

and therefore needs few recoveries when the real inputs are revealed. Instead of recover-

able robustness, Ben-Tal et al. [BTGGN04], Dhamdhere et al. [DGRS05] and Thiele et al.

[TTE09] adopt the names adaptive robustness, demand-robustness and two-stage robustness,
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respectively.

Another definition of robustness, which is in the end of the spectrum, is the so-called

strict robustness introduced by Soyster [Soy73]. A solution is said to be strictly robust when

it is feasible for any realization of the uncertain inputs. A drawback of such a solution is

its overly conservativeness in the respect that to find a strictly robust solution we need

to forgo too much of optimality in order to guarantee feasibility [BS04]. To protect the

feasibility of any solution against fluctuations on the stochastic inputs, we need to accept

a suboptimal solution [SOM08], i.e., a solution that has worse objective function value.

Feasibility robustness has thus a cost associated with it, which is called Price of Robustness,

introduced by Bertsimas and Sim [BS04]. Mulvey et al. [MVZ95] argue that a solution

will hardly remain both optimal and feasible for all realization of the uncertainty. In fact,

there is a trade-off between optimality and feasibility robustness [SW15]. The higher the

degree of feasibility robustness the higher the price needed to pay, and therefore the worse

the objective function value [BP18]. Several studies have been proposed to decrease the

Price of Robustness and control the degree of robustness [LLP12]. For instance, Mulvey et

al. [MVZ95] propose a decision model, in which the objective function is a utility function

that embodies the expected solution cost (optimality) and a variability in the mean value

(robustness). The second term variability is multiplied by a goal programming weight ω to

be used to derive a spectrum of answers that trades off solution for model robustness.

In this thesis we assume that a solution is called strict robust when it is able to endure

variations on the demands without the need of recourse actions, i.e., a solution that is com-

pletely insensitive to changes in the customer demands defined in a possible demand range.

While a recoverable robust solution is one that is relatively insensitive to fluctuation on the

demands, that is, little additional cost is incurred.

3.3 Approaches to Achieve Robustness

There are mainly two approaches used to achieve robustness in decision-making problems

under uncertainties, stochastic programming and robust optimization [SC15]. But their

concept of robustness is different. For SPRmodels, robustness means less corrective actions
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applied in the a priori solution when the real inputs are revealed. It allows a solution to

violate the constraints affected by uncertainties [BTN98]. In SP, the term robustness thus

denotes recoverable robustness. On the other hand, RO abstains from second-stage actions

[LLMS09], and tries to find a solution that is feasible for any realization of the uncertainty

set [ACF+13]. Therefore, RO aims at strictly robust solutions.

Stochastic programming is usually applied when uncertainty can be described by known

distributions [SCPC15], meanwhile RO is proposed to handle cases where the probability

distributions are hard to justify or estimate [AJ15]. Apart from assuming that the proba-

bility distribution modeling the demands is available, stochastic programming suffers from

another drawback. It is affected by the dimension of the problem, which impacts its com-

putational tractability [GWF13]. Birge and Louveaux [BL11] say that the complexity of

SP models increases proportionally to the number of possible realizations of the stochastic

inputs, which in turn increases exponentially with the number of stochastic inputs. Ro-

bust optimization avoids these weaknesses. First, because this approach handles the un-

certainty without making assumptions on probability distributions. It rather assumes that

the uncertainty belongs to a deterministic set [LLP12] and that all uncertain realizations

are equiprobable [EKB62]. Second, because RO usually simplifies the stochastic problem

to a version that is not more difficult to solve than the deterministic CVRP. However, it is

not always easy or even tractable to analytically determine the worst-case performance of

a given solution [SS09]. Moreover, robust optimization draws strictly robust solutions and

these solutions are often too conservative [MPB05]. The solution that has the best worst-

case performance (RO) will generally be more conservative than the one that has the best

average-case performance (SP) [SS09], being necessary to pay a higher Price of Robustness.

Methods based on stochastic programming and robust optimization are available to attain

robustness in the SSCVRPSD [SCPC15]. SP uses the probability distribution of customers’

demands to compose recoverable robust route plans and permit failures caused by fluctua-

tions on the stochastic demands to happen. It attempts to reduce the amount of corrective

actions (detour-to-depot or preventive restocking) necessary to handle these route failures.

RO adopts the range of the customers’ demands, in which they can fluctuate [LLMS09], to
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design a set of scenarios for the demands in order to calculate strictly robust route plans that

do not need any corrective actions. We presented the mathematical models for the SSCVRP

with stochastic demands used in both stochastic programming and robust optimization ap-

proaches in Section 2.4.3.1 and Section 2.4.3.2, respectively. Nevertheless, apart from SP

and RO, other ways of achieving robustness in the SSCVRSD (be that strict or recoverable

robustness) can be encountered on the literature. It is important to highlight that despite

the ability of these approaches of producing robust route plans yet not all studies that apply

them in the SSCVRPSD cite the term robustness. In the next section, we present studies on

approaches that are not only able to attain robustness but also acknowledge the concept

in the context of the SSCVRP with uncertain demands. Figure 3.1 exhibits the position of

these studies based on the approaches used.

3.3.1 Robust Optimization Method

When applying robust optimization in the SSCVRPSD the goal is to find a solution that is

insensitive (immunized) to the uncertain demands, as it is a route plan that minimizes the

worst case demand scenario [Ord10]. Therefore, as mentioned before, all studies reviewed

in this section refer to strict robustness as they mention robustness. The works of Sungur

et al. [SOM08], Lee et al. [LLP12], Gounaris et al. [GWF13], Sun and Wang [SW15], and

Gounaris et al. [GRT+16] deal with uncertainties in the demands via robust optimization.

They are reviewed as follows.

Sungur et al. [SOM08] were the first to propose a RO formulation for the capacitated

vehicle routing problem with uncertain demands. The authors adopt the MTZ formulation

and assume that the customer demand belong to three uncertainty sets (convex hull, box

and ellipsoidal). By doing that, they show that the problem (RVRP) is an instance of the

capacitated VRP and it can therefore be solved through efficient exact algorithms present

in the literature. For comparison purposes, the proposed formulation is contrasted with

a chance constrained model and a stochastic model with recourse. The robust solutions

are also compared with solutions obtained from a uniform and a non-uniform strategy of

distributing the excess capacity among all the vehicles. For that, they use a dataset with
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random, clustered and modified from literature instances and two performance measures,

ratio k and ratio δ. The ratio k measures the relative extra cost of the robust solution

with respect to the cost of the deterministic solution, which is the referred as the Price

of Robustness. In turn, the ratio δ is the relative unsatisfied demand for the deterministic

solution when it faces its worst-case scenario for the demands. The results show that all

SPR, CCR and RVRP models result in no unmet demand in all cases. For small instances,

the SPR and RVRP models design solutions of same cost, but when uncertainty becomes

higher the recourse model is more efficient. Nevertheless, the authors argue that recourse

models are more difficult to solve because of their large problem size and require specialized

algorithms. The constraint model can be more or less efficient than the proposed robust

formulation depending on the problem parameters and degrees of uncertainty. Finally,

the robust solution approach seems superior to simple strategies of distributing the excess

capacity among all vehicles.

Lee et al. [LLP12] address the static and stochastic CVRP with deadlines. They assume

the problem is under not only demand but also travel time uncertainties. Robustness is

achieved be making the solution feasible for any demand and travel time uncertainty sets

(strict robustness). The solution approach has three parts: column generation subproblem,

Desrochers’ labelling, and branching scheme. Uncertainties are encapsulated in the col-

umn generation subproblem. They consider two types of uncertainty sets with adjustable

parameters (Γ for travel times and Λ for demands) for the possible realizations of demand

and travel time. This means that a budget of uncertainty is defined by limiting the sum of

deviations of the uncertain inputs to their nominal values. The subproblem is then solved

using a robust shortest path problem with recourse constraints. Computational experi-

ments are performed on two datasets from the literature. The costs of the robust solutions

and deterministic solutions are compared to estimate the percentage increments in the op-

timal values due to the introduction of robustness of the solution, i.e. Price of Robustness.

The performance of the robust solutions obtained via the proposed algorithm is compared

with deterministic solutions using Monte Carlo simulation. The results show that a more

robust solution can be designed with only a small penalty in the objective value. Besides,
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the authors also propose some guidelines to adapt the parameters to control the robustness

of the solution in different real life situations.

Gounaris et al. [GWF13] propose four robust counterparts of deterministic capacitated

VRP formulations (two-index vehicle flow, MTZ, reformulated robust MTZ, commodity

flow, and vehicle assignment) and applied a branch-and-cut algorithm to solve them to

optimality. The demands are assumed to be supported on a polyhedron, aiming to avoid

overly conservative solutions obtained when all demands reach their worst-case values at

the same time. The authors use two broad classes of demand supports (budge and factor)

and partition the customers into four geographic quadrants. For the first demand support,

customers demands are allowed to diverge by at most α% from their nominal values and

the cumulative demand in each quadrant may not exceed its nominal value by more than

β%. Similarly, for the second demand support the customers’ demands may deviate by at

most α% from their nominal values and the cumulative demand in each quadrant may not

exceed its nominal value by more than β% as well, but demands are modeled as a convex

combination of different factors that may be interpreted as quadrant demands. The per-

formance of the solutions (objective function) obtained for each formulation are compared

using instances from the literature.

Sun andWang [SW15] provide a mixed-integer programmingmodel (E-SDROA formula-

tion) and a solution method to solve the SSCVRP with two sources of uncertainty, demands

and transportation costs. The authors suppose the coexistence of failure and successful sce-

narios. A failure scenario occurs when the real demands are higher than predicted and the

capacity of the vehicle is exceeded at runtime, otherwise a scenario is called successful. The

formulation trades off the expected value of the transportation cost in all failure scenarios

and its variation under conditions of the coexistence of failure and successful scenarios.

The first objective is multiplied by a weight ω that can reflect some matters of concern to

decision-makers at the depot, such as bidding (ω < 1) and capital budget situations (ω > 1).

Similarly, the second objective, which is the potential risk with respect to a solution caused

by sources of uncertainty, is multiplied by aweight µ that denotes the level of concern about

exceeding ω. In this way, the second term protects against potential scenarios that can in-
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cur extremely high costs and therefore represents the robustness measure. Both demands

and transportation costs are modeled as uncertainty sets and two nonnegative integer pa-

rameters, Γ and Λ are introduced for controlling the degree of uncertainty. Instances from

the literature are used for comparing the non robust solutions designed with the determin-

istic version of the problem (Γ = 0, Λ = 0) and the E-SDROA robust solutions. Significant

increments in the robustness of the solutions are achieved without much loss in optimality.

The solution method is also compared with two algorithms and it is shown that it provides

better solutions in terms of cost.

Gounaris et al. [GRT+16] present anAdaptiveMemory Programming (AMP)metaheuris-

tic to address the SSCVRPSD. The idea underlying AMP is to exploit a set of long-term

memories for the iterative construction of new route plans. This means that the method

keeps track of "elite components" of the solutions computed during the search procedure

and accounts them as building blocks for restarting and intensifying the search. Similarly

to Gounaris et al. [GWF13], they use two classes of uncertainty sets, budget and factor

instead of the generic polyhedral uncertainty set. Using designed instances based on the

literature, it is observed that including uncertainty does not significantly deteriorate the

performance of the metaheuristic. The proposed solution framework can help to improve

the performance of exact methods by comparing the performance of solutions designed

via a branch-and-cut method [GWF13] with solutions obtained by taking the best solution

calculated via the AMP heuristic and feeding it as an initial solution to the branch-and-cut

method. In this way, they are able to obtain improved best-known solutions and to solve

three benchmark instances to certified optimality. Moreover, by comparing the costs of

solutions obtained with the deterministic CVRP model with AMP solutions, it can be seen

that robust solutions are more expensive, and the bigger the uncertainty set the higher the

price.

3.3.2 Stochastic Programming

As mentioned before, SP with recourse models are also able to produce robustness (recover-

able robustness) against fluctuation on the demands in the SSCVRPSD. Since a SPRmodel for
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the SSCVRP (see 2.4) aims at minimizing both the cost of the a priori route plan and the cost

of the corrective actions needed to adjust the initial solution to the real demands [DLL93],

this implies that route plans designed via this approach are in nature robust. Chance con-

strained models might produce robust solutions as well. It is possible to develop chance

constrained models that minimize transportation cost with a certain confidence level, that

is guaranteeing that demands are fullfilled with some very high probability [Ord10]. Sun-

gur et al. [SOM08] and Ordóñez [Ord10] show that a chance constrained and a recourse

models for the SSCVRPSD can be very similar to robust optimization models via reformu-

lations. The works of Erera et al. [EMS10] and Sorensen and Sevaux [SS09] are studies that

present applications of stochastic program models in the SSCVRPSD and address (recover-

able) robustness.

Erera et al. [EMS10] study the SSCVRP with stochastic demands and duration con-

straints, called SSCVRPSD-DC. In this problem, apart from handling uncertain demands,

each route must be feasible for all demand realizations. The goal is then to design a route

plan subject to soft capacity constraints and hard constraints on route duration at minimum

total travel time. The problem is modeled as a SPR, where a detour-to-depot is defined as

the corrective action. Apart from the first and second-stage travel times, the objective func-

tion includes a penalty term for using more thanm vehicles, in case they are necessary. By

defining a high penalty value, the use of more thanm vehicles is prevented, and the num-

ber of vehicles therefore increases only when it is no longer feasible to satisfy the route

duration constraints withm routes. The solution method relies on solving an "adversarial"

optimization problem, which defines a demand realization that maximizes the actual total

duration of an a priori route, i.e. worst-case demand realization in terms of route duration.

In this way, recoverable robustness is reached. Computational experiments are performed

in order to assess the effect of including duration constraints in the SSCVRSD. For that,

they compare the results obtained via constrained and unconstrained version of the prob-

lem. The results show that enforcing route duration limits affects the structure of the route

plans and may forge the necessity of extra routes. A small increment in the total expected

travel time of more than 7% was observed. However, in some cases, as the fleet size in-
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creased, the total expected travel time decreased and this robustness achieved comes with

a small Price of Robustness around 2%.

Sorensen and Sevaux [SS09], trying to partially overcome the curse of dimensionality in

stochastic programming, propose a modified Memetic Algorithm with Population Manage-

ment (MA|PM) that uses a Sample Average Approximation (SAA) method. The idea is to

sample the stochastic input generating a set of sample scenarios in order to estimate the

objective function value. The authors apply the proposed solution method in the SSCVRP

with stochastic demands and cost and in the VRP with stochastic customers. The method

starts by generating a set of solutions that are both diverse and have a high quality. For

each designed route plan, a robustness/flexibility evaluation function (recoverable robust-

ness) value is estimated by repeatedly applying the solution to a sample of the stochastic

input and calculating the corresponding objective function value. The objective function

value is thus a sum of the expected total cost and a penalty cost. Two penalty functions are

used, one due to overtime costs payable to the drivers (if total cost of a given plan is larger

than a threshold) and the other due to loss of goodwill by the customers whose demand

are not to satisfied (if the total demand served in a given route is higher than the vehicle

capacity). The algorithms then chooses the solution that has the best robustness/flexibil-

ity evaluation function value. To assess the robustness of solutions drawn by the MA|PM,

the authors calculate the standard deviation of each solution. The computational experi-

ments demonstrate that MA|PM solutions are considerably more robust than the solutions

designed using the deterministic approach.

3.3.3 Capacity Allocation Strategy

A natural strategy to cope with uncertain demands is to save vehicle capacity in order to

be able to handle situations when the real demand is greater than the expected demand

[SOM08]. In this kind of strategy, only a percentage of the vehicle capacity is used in

the design of a priori route plan. The remaining capacity works as a buffer to deal with

fluctuations on the customers’ demands that might happen during the execution of the

a priori route plan [JFG+11]. Two studies that utilize this strategy as a way to produce
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robustness were found. They are described as follows.

Robustness addressed by Juan et al. [JFG+11] is the recoverable robustness. They pro-

pose a hybrid solution approach which combines simulation and heuristics for solving SS-

CVRPSD. Apart from saving a certain amount of vehicle capacity, called safety stock, while

designing the routes there is other idea behind the approach: to transform the issue of solv-

ing a given SSCVRP into a new issue of solving several deterministic CVRPs. For solving

every deterministic problems, only a percentage k of the vehicle capacity in considered. The

percentage k is increased up to 1 and for each k a solution is obtained. The performance

of every solution under demand fluctuation is evaluated by using Monte Carlo simulation

and the output is a short list of solutions with their corresponding properties, providing

the decision-maker a set of alternative solutions. Such properties are second-stage cost

Q(y), called by the authors expected variable cost, and expected final cost J(y) (see Defini-

tion 2.4). To calculate the second-stage the authors adopt detour-to-depot as the corrective

action. Other performance measures used in the paper are number of routes, first-stage

cost, called base cost, and estimation of the reliability. Computational experiments show

that higher values of k calculate route plans with less routes and lower first-stage cost, but

with lower reliability. It means that such solutions are less robust against demand fluctua-

tions, i.e., they need more corrective actions to cope with the real demands. These solutions

present, therefore, higher expected second-stage costs, increasing the expected final costs.

The authors say that among the alternatives solutions a good candidate for most decision-

makers would be the solution obtained with k = 0.96, since it balances the trade-offs

reliability and cost minimization.

Juan et al. [JFJ+13] propose the same hybrid solution approach, but they study the role

of parallel and distributed computing system in the context of the SSCVRP with stochastic

demands. For that, parallelization techniques are used at two different parts of the approach.

First, a parallel-execution environment is adopt for designing the set of k instances. Second,

they use several concurrent threads sharing a common memory for solving each instance.
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3.3.4 Combined Strategies

Ordóñez et al. [Ord10] present modeling alternatives for the capacitated vehicle routing

problem with different (combined or separated) sources of uncertainty (demands, travel

times, cost and customers). The authors present three conditions where the robust CVRP

reduces to a problem similar to the deterministic VRP. First, it is assumed that there is no

correlation between uncertain demands, travel times and travel costs. The resulting model

can be computed b solvingm+1 versions of the deterministic CVRP. Secondly, it is inferred

that there is only uncertainty on the customers’ demands and that uncertainty experienced

by each vehicle has an overall bound but is independent from one vehicle to another. The

unlikely situation in which all customers serviced by a vehicle present the largest possible

demand at the same time is thus excluded. Thirdly, it is presumed that there is correlated

uncertainty on the same route and a global bound on the uncertainty at all customers. For

both the second and third conditions, they show that the resulting robust counterpart is a

deterministic model with a additional number of variables and constraints and argue that a

column generation method usually used to solve the deterministic CVRP could be adapted

to solve the resulted problem. Solutions obtained using the model proposed by Sungur et

al. [SOM08] and randomly generated instances are compared with deterministic solutions,

solutions designed via stochastic models (SPR and CCP), and solutions obtained consid-

ering capacity management strategies (uniformly and nonuniformily). The performance

of the solutions are assessed by looking at unmet demands, costs and Price of Robustness.

Computational experiments indicate that it is difficult to conclude which formulation is

preferable and further conclusion should be made based on the application. They finish

the paper applying robust optimization to calculate the a-priori route plan and adjusting it

when uncertainty is realized to two routing applications: routing in large-scale bioterrorism

emergencies and courier delivery problem.

3.3.5 Other Frameworks

Moghaddam et al. [MRS12] present a new Particle Swarm Optimization (PSO) metaheuris-

tic to solve the determinisitc capacitated VRP. In this solution approach every particle is
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represented by an array of real number and the particle moves in a multidimensional space

to find the optima/near optimal position. PSO are usually designed to solve continuous op-

timization problems. That is why the authors propose a decoding method to apply PSO in

the CVRP. In order to improve the quality of the solution obtained with PSO metaheuristic

4 local search algorithms, 2-Optimal Local Search (2-OPT), Exchange 1-1, Variable Neigh-

bourhood Search (VNS) and Iterated Greedy (IG) are applied between the iterations of the

metaheuristic. The authors apply the proposed solution approach in instances from the lit-

erature and compare the solutions with those from literature. Computational experiments

show that PSO provides solutions much closer to the optimal solutions. After that, uncer-

tainty demands are considered in the problem by assuming that their probability distribu-

tion is unknown. They assume that the demands belong to an interval [di−ε· di, di +ε· di],

where ε indicates the perturbation percentage of the demands from the nominal value di.

To solve the stochastic CVRP, the PSO objective function is modified by adding an index ψ

to compared the balancing of unused capacities in different solutions. This index increases

when all routes are adjusted and have enough buffer capacities to deal with fluctuation in

the demands. The metaheuristic then looks for solutions with higher ψ, achieving robust-

ness. The performance of the modified PSO is evaluated by comparing the unmet demands

percentages for the deterministic and robust route plans and determining the Price of Ro-

bustness. The PSO robust solutions are also contrasted with exact robust optimum solutions

shown by Sungur et al. [SOM08]. Computational results demonstrate PSO designs route

plans with smaller costs, nonetheless such solutions do not meet al. l uncertain demands.

3.4 Conclusions

In this chapter, the approaches for dealing with uncertainties in the decision-making prob-

lem were introduced, more precisely approaches for coping with fluctuations on the de-

mands in the SSCVRPSD. General definitions of the concept robustness, a crucial attribute

that rises when solving uncertain decision-making problems, were discussed together with

the meaning of its price (Price of Robustness). A review of studies that cover these two top-

ics, approaches for dealing with uncertain demands in the SSCVRPSD and robustness, was
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Fig. 3.1: Positions of the Works Based on the Approach Used to Achieve Robustness

presented. It can be seen that although the interpretation of robustness (strict robustness,

or recoverable robustness, etc.) is dependent on the decision-maker involved, not so many

approaches deliver flexibility to the decision-maker to define the safety level she/he desires,

i.e. the level of robustness. The mathematical formulation proposed in this thesis acknowl-

edges the need for such flexibility by adding a weight ω that reflects the decision-maker’s

preference in the objective function. In this way, decision-makers can obtain route plans

that can be more or less robust against small changes in the demands. Thus, as we use

the term robustness in the next chapters, we refer to recoverable robustness. Our proposed

decision model is similar to a two-stage SP models, where a priori routing decisions are

made in the first-stage, while in the second, corrective actions are applied. That is why we

placed our approach for dealing with stochastic demands and achieving robustness in the

Stochastic Programming set from Figure 3.1. Nevertheless, we do not minimize the expected

value of the cost of corrective actions (second-stage transportation cost).



4

The Robust Multi-Objective Ca-
pacitated Vehicle Routing Prob-
lem

4.1 Introduction

The decision-making problem, namely the static and stochastic CVRPSD, was addressed

in a way that is different from the methods presented in Chapter 3. The SSCVRPSD was

formulated as a two-stage stochastic program with recourse, where uncertain customer

demands were modeled as discrete samples. Nonetheless, this model includes a parame-

ter of choice for decision-makers that combines the two conflicting objectives, optimality

and robustness, into a scalar one which enables the trade-off between them. In this way,

decision-makers are free to determine the amount of robustness she/he is willing to have.

Based on the proposed formulation, called MAD formulation, we designed the RoMO solu-

tion approach. Both formulation and solution approach are presented in this chapter.

4.2 Mean Absolute Deviation Formulation

One of the goals of this thesis is to develop a mathematical decision model for the SS-

CVRPSD, one that gives a decision-maker the ability to choose between minimal trans-

portation cost (optimality) and safety against demand uncertainties (robustness). In this

way, she/he is able to design route plans of different degrees of robustness. In this the-

sis, a route plan is said to be robust when it is insensitive to a range of possible demand

conditions, i.e. little additional transportation cost is incurred as demands fluctuate during

execution phase.

55
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When the probability distributions of the uncertain demands are known, this problem

can be modeled as a two-stage stochastic programming with recourse (Definition 2.4). In

this model, some feasibility constraints are relaxed and included in the objective function,

assuming that violations on the capacity constraints induced by uncertain demands after

the implementation of first stage decisions can be repaired by recourse actions [SCPC15].

Therefore, the transportation cost J(y) (expected transportation cost) is split into two costs.

Let the objective function (2.9) be changed to

min
y

J(y) := min
y
J0(y) +Q(y). (4.1)

The first term of the objective function is the transportation cost of the deterministic CVRP

formulation (2.1), i.e., the cost of the a-priori route plan calculated using the stochastic

knowledge, and represents the first-stage decisions, whereas the second term stands for the

second-stage decisions, i.e. the expected transportation cost of corrective actions applied

during execution phase. Unfortunately, we can evaluate (4.1) only a posteriori, that is, upon

completion when all real demands are revealed, or via stochastic analysis. To partially

overcome this, methods that use some form of Monte Carlo sampling of the stochastic

parameters can be used [SS09]. Like so, a set of s samples in which a sample specifies a

demand for each customer i ∈ N is defined as

Sp = {spj = (dj
1, d

j
2, d

j
3 . . . , d

j
n) | j = 0, . . . , s}. (4.2)

A set of scenarios is correspondingly described as

S = {sj = (dj
1, d

j
2, d

j
3 . . . , d

j
n, N,A) | j = 0, . . . , s}. (4.3)

All the scenarios have the same set of nodes N and set of arcs A. The distance cij between

each pair of nodes is thus identical for all scenarios. Consequently, each scenario is a deter-

ministic instance of the SSCVRPSD. s0 is called nominal scenario, within which demands

are equal to their expected values, i.e d0
i = E[di]. J0(y, sj) is the deterministic objective
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function value of solution y when applied to the scenario sj . Then,

J0(y) = {J0(y, s1), J0(y, s2), J0(y, s3), . . . , J0(y, ss)}. (4.4)

is a vector of first-stage transportation costs for solution y considering all scenarios. Ac-

cording to Sorensen and Sevaux [SS09], a typical measure for robustness is the sample

estimator of the standard deviation of the first-stage transportation costs vector

σ2(y) = 1
s− 1

s∑
j=1

(J0(y, sj)− Ĵ0(y))2, (4.5)

where

Ĵ0(y) = 1
s

s∑
j=1

J0(y, sj) (4.6)

is the sample estimator of the mean of the first-stage transportation costs vector. Mulvey

et al. [MVZ95] argue that the mean sample estimator measures optimality, whereas the

standard deviation is a measure of robustness, and that we could therefore create a utility

function that embodies a trade-off between optimality and robustness. This function

JMV (y) = Ĵ0(y) + ωσ2 ω ∈ [0,∞[ (4.7)

is called Mean-Variance (MV) objective function. The goal programming weight ω, which

combines the two objectives into a scalar one, is used to derive a spectrum of answers that

trade off optimality and robustness. Given that Ĵ0 = J0(y, s0), i.e. the mean of the vector

of first-stage transportation costs equals to the deterministic objective function value of

solution y when applied to the nominal scenario. The mean-variance objective function

then becomes

JMV (y) = J0(y, s0) + ωσ2 ω ∈ [0,∞[ (4.8)
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and (4.5) becomes

σ2(y) = 1
s− 1

s∑
j=1

[J0(y, sj)− J(y, s0)]2. (4.9)

Equivalently to the vector of first-stage transportation cost, we can calculate the second-

stage transportation costs vector

Q(y) = {Q(y, s1), Q(y, s2), Q(y, s3), . . . , Q(y, ss)}. (4.10)

and introduce Q(y, s0) as the second-stage transportation cost of solution y when applied

to the nominal scenario. The mean absolute deviation of the second-stage transportation

costs vector is the average of the absolute deviations from the central point Q(y, s0), i.e.

MAD(Q(y, sj)) = 1
s

s∑
j=1

[Q(y, sj)−Q(y, s0)]. (4.11)

Based on the MV objective function and on the MAD(Q(y)), we introduce an objective

function that tries to anticipate the second-stage transportation costs and trades off opti-

mality and robustness as well. This objective is represented by

JMAD(y) := J0(y, s0) + ω
1
s

s∑
j=1

[Q(y, sj)−Q(y, s0)]. (4.12)

Similarly to (4.8), in this multi-objective function, the first term expresses optimality and

the second robustness. The weight ω represents the parameter of choice for logistics man-

agers to modify the importance of the two aspects in the cost function. The only difference

between (4.12) and (4.8) is that instead of the standard deviation of the first-stage transporta-

tion costs vector, we use the mean absolute deviation of the second-stage transportation

costs vector. Both are measures of variability, which can represent a robustness measure.

Nevertheless, themean absolute deviation utilizes absolute values, whereas the standard de-

viation uses squares. The latter avoids the issue of negative differences between vector val-

ues and the mean and thus disables the objective function to notice the incremental and/or

reductional trend on the second-stage transportation costs ({Q(y, s1), Q(y, s2), Q(y, s3), . . . , Q(y, ss)})
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from the central point (Q(y, s0)) among the s scenarios. This comportment circumvents the

issue of designing solutions of too high degrees of robustness. Hence, despite input changes,

the plan is still structurally optimal, i.e. the number of routes as well as the route sequences

remain unchanged. In other words, MV objective function may identify route plans that are

too robust, and which could be considered unreasonable by some decision-makers. MAD

objective function avoids this.

In both MV and MAD objectives, for ω = 0 we solve the classical linear programming

formulation of the problem (see Definition 2.1). The solution obtained with the linear pro-

gramming formulation is very sensitive to the demand changes, whereas the route plan

obtained with higher ω is much less sensitive [MVZ95, BP18].

In (4.12), the second term can be interpreted as the steepness of the cost functional with

respect to input changes. Comparing undisturbed optimal solutions y⋆ and y⋆
mad for J(y)

and Jmad(y), respectively (see Figure 4.1), we know that J(y⋆
mad) ≥ J(y⋆), and typically

this inequality is strict, i.e., a robust solution corresponds to increased transportation cost

(Price of Robustness). Yet, we expect that the solution y⋆ of (2.1) has to bemodified to ỹ⋆. Our

aim is not to develop a systematic way of designing Jmad(y) such that the corresponding

solution y⋆
mad improves the performance measures, i.e. J(ỹ⋆) > J(y⋆).

Co
st

Configuration space

J(y)
robust y

optimal y

Jmad(y)

Fig. 4.1: Exemplary of Cost Development Regarding Solution y.

The computed solution will typically exhibit higher total expected transportation costs

than the one in Definition 2.1. Upon implementation, however, our numerical results, cf.

Chapter 5, indicate that the second-stage transportation cost will be lower. Thus, these two

aspects, robustness and optimality, represent trade-offs for routing solutions and must be
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balance in accordance with the goals of the company.

Given the notations presented in 2.2, the Definition 2.2, and let S be the set of scenarios

(4.3) andQ(y, sj) be the second-stage transportation cost of solution y when applied to the

scenario j. We can finally introduce the mean absolute deviation model for the SSCVRPSD

Definition 4.1 (MAD SSCVRPSD)

min
y

Jmad(y) := min
y
J0(y, s0) + ω

1
s

s∑
j=1

[Q(y, sj)−Q(y, s0)] ω ∈ [0,∞[ (4.13)

s.t. (2.2), (2.3), (2.4),(2.5) and (2.6).

Note that we do not characterize a certain tolerable bound on the disturbances, which

would lead to a worst case estimate (see Section3.2). Instead, we let the optimization mech-

anism decide, which (modified) minimum is robust in a structural sense. For this reason, we

will not state explicite bounds on tolerable disturbances, and if disturbances are too large,

they will be handled by re-planning or extra tours.

4.3 Solution Approach

Based on the mathematical decision model introduced in the previous section, we develop

a solution method to solve the decision-making problem. Since the objective function of

the MAD formulation is a multi-objective function, we call the solution method RoMO.

The proposed approach includes four stages, Inputting, Data Handling, Initial Setting, and

Solving. All steps performed in each stage are shown in 4.3.

4.3.1 Stage 1: Inputting

In the first stage, all necessary parameters for the approach are inputed, namely ω and

historical data on the uncertain customer demands. As mentioned before, the parameter of

choice ω should be chosen according to the risk level that the decision-maker is willing to

take. Higher values of parameter ω produce route plans of higher degrees of robustness.
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These solutions are less affected by changes in the demands and therefore present lower

corrective actions cost. In contrast, lower values of ω create route plans that are less robust.

4.3.2 Stage 2: Data Handling

The historical data on the stochastic demands is handled in the second stage. A Probability

Distribution Function (PDF) is fitted to every customer demand di. We assume that each

customer’s demand follows an independent probability distribution. Because of the nature

of the customers’ demands, we made few particular assumptions on the type of distribu-

tions that can be fitted to this input. First, only discrete probability distributions should be

used for fitting, since demand values are discrete. Second, as demands cannot be negative,

only non-negative distributions such as Poisson is acceptable. After fitting a probability

distribution for each stochastic demand, their corresponding parameters and the mean are

estimated. For instance, if a uniform PDF is chosen, i.e. di ∼ U(a; b), the parameters a and

b are estimated together with the mean of the distribution.

4.3.3 Stage 3: Initial Setting

In this stage, the PDFs fitted to every customer’s demand in the previous stage is used to

generate the set of samples Sp (4.2) and the set of scenarios S (4.3). This is done by means

of Monte Carlo sampling. As mentioned before, each sample contains a potential state of

the uncertain demand and each scenario is thus a static and deterministic instance of the

SSCVRPSD. s0 is the nominal scenario, where each demand d0
i is equal to the expected value

of the fitted distribution. We generate new scenarios instead of using the existing customer

demand scenarios (historical data) because in some situations using historical data as a

scenario may be impractical. For example, a new company may not have enough data for

generating a number s of scenarios.

After that, a so-called robust scenario is determined by using the set of scenarios S and
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via equation

dR
i = d0

i + ω
1
s

s∑
j=1

[dj
i − d0

i ] ∀i ∈ N. (4.14)

Every customer’s demand in the robust scenario dR
i is calculated by a linear combination

of S with the weight ω, which increases the deviation from the expected value, allowing to

create worse-case scenarios. Hence, it is possible to decide how robust a solutions can be.

The robust scenario

sR = {dR
1 , d

R
2 , d

R
3 . . . , d

R
n}, (4.15)

which is a deterministic instance of the SSCVRPSD, is then solved in the last and next

stage in order to calculate the final solution ymad which may be more or less robust against

uncertainties on the demands.

Note that we chose to calculate this robust scenario and solve it instead of calculating

s solutions, each designed for a different scenario j ∈ S, computing their second-stage

transportation cost, and finding the MAD of the second-stage transportation costs vector.

The reason is that this MAD computes transportation cost and it does not indicate any

structural property. In other words, it only shows how much cost should be added to the

first-stage transportation cost J0(y) so that the solution y can become more robust and not

how the structure of the solution, i.e. sequence of customers and number of routes, should

be changed in order to achieve robustness.

4.3.4 Stage 4: Solving

The robust instance sR designed in the previous stage is solved in the last stage. Since sR

is a deterministic instance of the SSCVRPSD, we are able to make use of the efficient well

established solution methods to solve it. Moreover, the aim of this thesis is not to propose a

new solutionmethod for the decision-making problem. For solving the problem, we employ

three heuristics, a constructive, a improvement, and a metaheuristic.

The constructive heuristic Clarke and Wright savings is applied for calculating an initial



4.3. Solution Approach 63

route plan. The pseudocode of the method is presented in Algorithm 1. After that, this

initial solution is improved by a local search heuristic. The local search used in this thesis

is the 2-opt with intra-route improvements, that is, the method performs swaps between

all combination of customers at positions u and v, within all routes calculated by the C&W

algorithm in order to find a route plan of better transportation cost. Let p be a route in

the solution ycw and J0(p) its transportation cost and p[k] and p[m] represent the customer

indexes k and m within route p. Algorithm 2 shows the 2-opt LS pseudocode. At each

iteration, the change on the route cost J0(p) that results from swapping p[k] and p[m] in

route p is computed (8). If the swap improves the transportation cost, then the exchange

is executed. Finally, the solution obtained via 2-opt LS is further improved by simulated

annealing metaheuristic (Algorithm 3). Apart from the definition of the neighbourhood

of a solution, there are another four aspects to be chosen before implementing SA: initial

temperature, cooling ratio, termination condition, and halting criteria.

Similarly to [GRT+16], [GT10], and [TK02], we use neighborhood structures based on

customer exchange moves, namely the 2-OPT LS with intra-route improvements (Algo-

rithm 2) and 1-0 and 1-1 exchange move. The 1-0 exchange move injects a customer from

its original route and inserts it after another in a different route and produces the neighbour-

hood N1(y). The 1-1 exchange move works similar to 2-OPT LS, but instead of swapping

two customers in the same route it swaps two customers in different routes. It constructs the

neighbourhood N2(y). The 2-OPT LS builds the neighbourhood N3(y). Figure 4.2 shows

the difference between the three local search operators [TQZB15]. The selection of the

operator at each iteration of the simulated annealing is random (21).

The other four parameters formed what it is called the cooling schedule. An effective

cooling schedule is a important aspect in the performance of the algorithm and a number

of studies, such as [GEE+15, CF99, NA98], have been devoted to this topic. Our goal is not to

contribute to this question, and we therefore adopt the cooling schedule that was proposed

by Osman [Osm93] and is commonly used on the literature. For specifying the parameters

on the cooling schedule we need to perform a "test cycle". The test cycle is a search over the

neighbourhood N(S) (designed by using the 1-1 operator) of the solution provided by the
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2-OPT LS method without performing the exchanges. By executing a test cycle, we obtain

the largest∆max and smallest∆min change in the objective function values, and an estimate

of the total number of feasible exchanges Nfeas. After that, we set the initial temperature

Ts = ∆max; the final temperature Tf = ∆min; the cooling ratio α = nxNfea, which is

the decrement rule for updating the temperature Tk after each iteration k; the termination

condition L = 3, which is the total number of temperature resets to be performed after the

best solution was found.

SA starts from the solution calculated by the 2-OPT LS. At each iteration, a neighbour yn

is taken from the neighborhood of the current solution yc. The transportation cost of this

neighbour J0(yn) is compared with that of the best route plan J0(yb) found so far, so that

if an improvement is achieved the neighbour becomes the current route plan and a new

best solution is found. Otherwise the neighbour with worse transportation cost is accepted

as the current solution with a small probability e
−δ
Tk . The current temperature Tk is then

updated and a new iteration begins. This is done until the stopping criteria is met, i.e. L

resets were performed since the best solution yb was found. The solution reported at the

end of the SA is robust against small changes in the input customer demands.

Algorithm 1 Clarke and Wright Savings Algorithm
INPUT: sR

OUTPUT: ycw

1: Design single routes (0− i− 0), for each i ∈ N\{0}
2: Compute the savings for merging customers i and j given by Sij = c0i + c0j − cij , for

all i, j ∈ N\{0} and i ̸= j
3: while No savings can be achieved do
4: Sort the savings in descending order
5: Starting at the top of Sij , merge the two routes that produce the highest savings,

such that
6: The customers i and j are not in the same route
7: Neither i and j are internal customers, i.e. they are the first or the last customer

in a route
8: The total demand in a route does not exceed the vehicle capacity
9: end while
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Algorithm 2 2-Opt Local Search Algorithm
INPUT: ycw

OUTPUT: y2opt

1: for All routes in ycw do
2: bestcost ← J0(p)
3: for k = 1 to k ≤ size(ycw − 1) do
4: form← (k + 1) tom ≤ size(ycw) do
5: newcost ← J0(p) + cp[u−1]p[v] + cp[u]p[v+1] − cp[u−1]p[u] − cp[v]p[v+1]
6: if newcost ≤ bestcost then
7: bestcost ← newcost

8: swap(p[k], p[m])
9: end if
10: end for
11: m← m+ 1
12: end for
13: k ← k + 1
14: end for
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Fig. 4.2: Local Search Operators
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Algorithm 3 Simulated Annealing Algorithm
INPUT: y2opt

OUTPUT: ymad

1: yc ← y2opt

2: Initialize Tmin, Tmax, α and L
3: k ← 0
4: while i ̸= L do
5: for Tk > Tmin do
6: j ← U [1, 3]
7: Generate a solution yn in the neighbourhood Nj(yc)
8: Compute ∆ = J0(yn)− J0(yc)
9: if ∆ ≤ 0 and e

−∆
Tk ≥ random[0,1] then

10: i← i+ 1
11: yc ← yn

12: else if ∆ > 0 then
13: i← 0
14: yc ← yn

15: yb ← yc

16: end if
17: Tk = Tk

(1+βkTk) , where βk = Ts−Tf

(α+n
√

k)TsTf

18: k ← k + 1
19: end for
20: end while
21: ymad ← yb
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4.4 Conclusions

This chapter treated the static and stochastic CVRP with stochastic demands as a two-stage

SPR, where a detour-to-depot is defined as the corrective action which is applied when a

failure occurs during the execution of the a priori route plan. Uncertain customers’ demands

are modeled as a set of discrete samples based on their probability distribution and via

Monte Carlo sampling. Each sample defines a deterministic instance of the problem. This

allows us tomake use of efficient heuristics for the classical CVRP that arewell stablished on

the literature to solve the instance. In contrast towhat have been presented on the literature,

the proposed MAD formulation permits deciding between optimality and robustness. The

RoMO solution method computes a priori robust route plans that allow for small changes

in demands without changing solution structure and losing optimality.



5 Computational Experiments

5.1 Introduction

This chapter is divided into three parts. First, we present the settings used in the computa-

tional experiments, namely the benchmark dataset and the performance measures. Second,

using the instances of the benchmark dataset and considering the performance measures,

RoMO’s performance is compared with the performance of two frameworks to solve the

decision-making problem. The first strategy is defined as solving the linear programming

formulation (2.1) adopting the expected values of the demands (see Section 2.4.3) as demand

input. The other method is a simulation-based solution approach. Similarly to RoMO, this

approach addresses demand uncertainty and robustness in the decision-making problem.

Finally, in the last part, we analyse the tradeoff between optimality and robustness.

5.2 Benchmark Dataset

In the literature on the static and deterministic CVRP, there are famous benchmarks com-

monly used to evaluate the performance of the solution methods. Yet, for its stochastic

counterpart, there is no commonly used benchmark [BBC+06]. Some papers use datasets

generated based on the famous deterministic dataset, others develop their own. Here, we

follow the latter approach.

When a logistics company uses the SSCVRPD with stochastic demand for designing its

operational planning system, it must compile VRP data, such as number of customers (n),

69
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Coordinates DemandsInstance Index x y PDF Data Mean

1

0 38 5

U(40, 60)

{42, 45, . . . , 58}

50

1 84 24 {51, 56, . . . , 46}
2 56 168 {40, 49, . . . , 60}
3 190 69 {49, 41, . . . , 57}
4 84 140 {53, 50, . . . , 58}
5 76 141 {50, 49, . . . , 58}
6 103 108 {52, 47, . . . , 46}
7 178 144 {42, 45, . . . , 56}
8 83 20 {60, 59, . . . , 48}
9 116 188 {42, 58, . . . , 44}
10 19 5 {54, 58, . . . , 51}
11 130 18 {47, 41, . . . , 53}
12 26 169 {49, 45, . . . , 51}
13 25 64 {60, 43, . . . , 41}
14 72 71 {49, 40, . . . , 48}
15 113 57 {53, 45, . . . , 59}
16 138 38 {42, 47, . . . , 43}
17 186 19 {48, 51, . . . , 58}
18 185 95 {59, 41, . . . , 48}
19 145 112 {52, 55, . . . , 60}

Tab. 5.1: Illustration of an Instance (Instance 1)

locations of the depot and the customers (N ), transportation cost (cij), demands (di and

i ∈ N\{0}), and vehicle capacity (C). Thus, these are the inputs that have to be included

in the benchmark dataset.

Our dataset contains a set of six instances that are different regarding number of cus-

tomers and their location and demands. The instances consist of complete graphs of N =

20, 40, 60, 80, 100 and 120 nodes. Considering that the graph is symmetric, a number of

|A| = n(n− 1)/2 arcs was generated for each instance. The customers were randomly dis-

tributed in a square, that is, the coordinates x and y of each customer are randomly chosen

in [0, 200]. The transportation costs (cij) were assumed to be equal to the Euclidean distance

between i, j ∈ N and rounded to the nearest integer, i.e. cij =
√

(ix − jx)2 + (iy − jy)2.

For all instances and i ∈ N , we considered the demands to be uniformly distributed

di ∼ U(30, 70). For the representation of the historical data on the stochastic demands

we generated 100 values of demand for each customer. We adopted that each customer re-

quests an amount of a specific good per day and that demand data from the last 100 working

days was available for every customer. Table 5.1 displays one of the created instances.
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5.3 Performance Measures

For comparison purposes, we developed seven performance measures, probability of route

failure, reliability of the route plan, expected and real number of routes, expected and real

transportation cost, and Price of Robustness. The performance measures Price of Robustness,

expected number of routes, and expected transportation cost are characteristics inherited

by a route plan. On the other hand, we needed to use Monte Carlo simulation to estimate

the probability of route failure, reliability of a route plan, real number of routes, and real

transportation cost. All the performance measures are described in the following.

5.3.1 Probability of Route Failure

Considering that a subset Sj = {i1, i2, . . . , is} ⊆ N of customers is served in a route pj , i.e.

pj = (i0, i1, . . . , is, is+1) and pj[0] = pj[s+1] = 0, a route failure occurs when the capacity

of a vehicle is exceeded while it executes its route pj , i.e.

∑
i∈Sj

di > C. (5.1)

If a route plan y contains a number k of routes, each served by one of the vehicles in the

fleet K = {1, 2, ..., k}, the number of routes that suffer a failure in this route is

η := ♯

⎧⎨⎩j ∈ K | ∑
i∈Sj

di > C

⎫⎬⎭ . (5.2)

The probability of route failure in this route plan is then

Proute(failure) := η

k
. (5.3)

To estimate the probability of route failure, we used the probability distributions that model

the demands and Monte Carlo Simulation withM = 1000, i.e.

Proute(failure) :=

M∑
m=1

η(m)

M · ♯k
. (5.4)
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5.3.2 Plan Reliability

The reliability of a route plan is defined as the probability that the plan did not suffer a fail-

ure. This means that none of the k routes in the route plan failed. Reliability was estimated

using the probability distributions that model the demands and Monte Carlo simulation

withM = 1000 trials. Adopting (5.1), we define the indicator function

χ(m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if (5.1) holds for some j ∈ K

0, else.

This allows us to approximate the reliability of a route plan y via

R(y) := 1−
⎛⎝

M∑
m=1

χ(m)

M

⎞⎠. (5.5)

5.3.3 Expected and Real Number of Routes

The number of routes that a solution calculated via anymethod that uses preprocessed deci-

sions, such as RoMO, corresponds to what we call the expected number of routes. However,

as the problem is stochastic and the proposed solution approach is deterministic, we only

know the real number of routes when all customers were attended, i.e. when all stochastic

inputs were revealed. Therefore, when one simulates the real demand, the real number of

routes can be computed. With the simulated demands we are able to deduct how many

times a failure occurs, and thus how often recourse actions need to be applied, revealing

the real number of routes. In this thesis, we assume that when a failure occurs and a detour-

to-depot is applied, then an extra route appears (a route starts and ends at the depot). Thus,

the real number of routes is equal to the planned plus extra number of routes.
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5.3.4 Expected and Simulated Route Plan Transportation

Cost

Similarly to the real number of routes, the real transportation cost is only known when all

vehicles finish serving the customers on their routes. By using the probability distributions

that model the demands andMonte Carlo simulation we are able to deduct howmany times

a failure occurs and a detour-to-depot is applied, revealing the real transportation costs. If

a route failure occurs (5.1) at position k̄, the second-stage transportation cost Q(y) is the

sum of distances traveled during the detours to the depot, i.e.

Q(y) := 2
∑
r∈k̄

cr0, (5.6)

and the real transportation cost is the sum of the planned transportation cost and recourse

transportation distance.

5.3.5 Price of Robustness

As explained before (see Section 3.2), the Price of Robustness is the price one needs to pay

in order to allow for certain deviations within the stochastic variables. It is defined as the

additional cost we incur if we apply a robust solution approach, such as RoMO, instead

of solving the CVRP as defined in Definition 2.1. Hence, if y is a minimizer for the CVRP

according to Problem 2.1 and ymad is a minimizer of Problem 4.1, then the Price of Robustness

is given by

Price := J0(y)− J0(ymad). (5.7)

Note that the calculation of this price requires solving two instances of CVRP, one defined

by the nominal scenario s0 (4.3) and the other by the robust scenario sR (see Section 4.3.3).
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5.4 Comparison between Approaches

After developing the benchmark dataset and the performance measures, we applied the

proposed solution approach on the dataset using a total of s = 40 scenarios. RoMO solved

every instance using different values of ω (ω ∈ {0, 1, 5, 10}). Thus, four final solutions

were calculated per instance, that is, one route plan per chosen ω. These four solutions

are different in the matter of level of robustness. RoMO solutions are then compared with

solutions obtained via the other twomethods. It is important to highlight that in this section

we do not want either to define a set of values for ω or an upper bound on it. We want to

analyse how solutions designed for different ω perform.

Note that the first-stage of the proposed solution approach is to fit a probability distribu-

tion in the customer demand data. To render the approach realistic, we included the fitting

for the developed benchmark dataset. For that, we assumed that we do not know the PDF

used to generated the instances. After the fitting, we obtained approximated PDF for all

customer demands, which are similar to the one used to generate the benchmark.

5.4.1 RoMO versus Deterministic Approach

As described in Section 2.4.3 and discussed in Section 3.2, the decision-making problem can

be modeled as a deterministic CVRP. By doing this, one instance of the input data is fed to

the linear programming model 2.1. In this instance, the uncertain demands are assumed to

be equal to their expected values (nominal values). We call this the Deterministic Approach

(DA) because it does not consider any stochastic information that is available about the

uncertain demands.

To implement DA, we set ω = 0 and used the MAD formulation. This means that RoMO

solutions designed forω = 0 are solutions for the classical linear programming formulation.

Therefore, as we compared the performance of solutions calculated for higher ω with of

solutions for ω = 0, we contrasted RoMO solutions with DA solutions.

From our results given in Figure 5.1 one can notice that for all instances as we increased

ω less route failures occurred. In turn, the Plan Reliability grew for higher ω in Instances

1, 2 and 3, but remained unchanged in Instances 4, 5 and 6. Route plans of same reliability
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may have very different Probability of Route Failure. For instance, in Instance 4, the route

plan obtained using ω = 1 and ω = 10 had the same reliability, but, for ω = 1 route

failures occurred in 46% of the routes and for ω = 10 this amount decreased to 23%. A

higher reliability of a route plan came associated with a price, as mentioned before, the

Price of Robustness. For all instances a growth in ω caused an increment on the Price of

Robustness. But the prices paid for robust solutions were no higher than 11% of the planned

transportation costs of the DA solutions.
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Fig. 5.1: Behaviour of the Performance Measures Route Plan Reliability and Probability of Route
Failure among the Instances

The Real Number of Routes was higher than the Planned Number of Routes for all route

plans. This means that detours to depot were applied in all route plans for all instances

to meet the real demands. For example, for Instance 1 and ω = 8, the route plan was

composed of five routes, see Figure 5.2. Nevertheless, as we simulated the real values for

the demands, the route plan became one of six routes, see Figure 5.3. Hence, one route

had failed, and therefore more routes were required to attend the same clients. Customer

12 was previously included in the planned route {0-6-5-1-12-0}, but when the real demands

were simulated the total demand of this route was higher than expected. Thus, a vehicle

needed to attend customer 12 in only one route. Nevertheless, the costs of such detours, i.e.
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second-stage transportation costs, were different among the solutions. The DA solutions

presented the worst second-stage costs. The second-stage cost declined from ω = 0 to

ω = 5 and rose again for ω = 10 in all instances. So did the Real Transportation Cost in

Instances 3, 4, 5 and 6.

We can then infer that for all instances the higher the ω the better the respective route

plan handled changes in the demands. RoMO solutions compared to DA solutions needed

less corrective actions to cope with the simulated (real) demands, and they therefore pre-

sented smaller second-stage transportation costs.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

 0

12  2

 5

 6

 0 0

15

16

11
 8

 0 0

 1

18

 3

17

 0 010

13
14

 0

 4

 9

 7

19

 0

Route 1
Route 2
Route 3
Route 4
Route 5

Fig. 5.2: Route Plan without Route Failure
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Fig. 5.3: Route Plan after Corrective Actions Were Applied

Instance n ω
Planned

Number of
Routes

Planned
Transportation

Cost

Price
of

Robustness

Real
Number of
Routes

Second-Stage
Transportation

Cost

Real
Transportation

Cost

1 20

0 4 1270 - 6 632 1902
1 4 1300 30 (0,02) 5 160 1460
5 4 1397 127 (0,10) 5 163 1560
10 4 1412 142 (0,11) 5 297 1709

2 40

0 7 1780 - 10 972 2752
1 7 1840 60 (0,03) 10 260 2100
5 7 1962 182 (0,10) 10 300 2262
10 7 1932 152 (0,08) 13 622 2554

3 60

0 10 2488 - 15 1289 3677
1 11 2638 150 (0,06) 14 681 3319
5 12 2644 156 (0,06) 15 761 3285
10 12 2720 232 (0,09) 15 746 3466

4 80

0 14 4249 - 21 2941 7090
1 14 4342 193 (0,04) 20 1079 5421
5 14 4287 138 (0,03) 20 858 5145
10 14 4748 399 (0,09) 20 1841 6389

5 100

0 17 3626 - 25 2124 5750
1 18 3752 126 (0,03) 24 1355 5107
5 18 3735 109 (0,03) 24 1100 4835
10 18 3851 225 (0,06) 24 1166 5017

6 120

0 20 4653 - 30 2610 7263
1 22 4799 146 (0,03) 29 1094 5893
5 22 4885 232 (0,04) 28 569 5454
10 23 4834 181 (0,03) 29 1305 6139

Tab. 5.2: Comparison Between RoMO Solutions and DA Solutions
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5.4.2 RoMO versus RoSi

Since the DA is the deterministic way to deal with the SSCVRPSD and thus does not con-

sider the impact of uncertainties on the quality and feasibility of the solution, we created a

solution approach, called Robust Simulation-Based (RoSi) approach, that has similar goals

as RoMO approach. It addresses uncertain demands and it is able to produce more or less

robust route plans according to a parameter of choice for decision-makers (ω). The idea be-

hind RoSi is to transform the issue of solving complex stochastic capacitated VRP into a new

issue which consists of solving a limited set of deterministic CVRPs. The main framework

of RoSi is described in Algorithm and the specific details are explained in the following.

Algorithm 4 Robust Simulation-Based Approach Pseudo Code
INPUT: n, ω, s

OUTPUT: yRoSi

1: for i = 1 to n do

2: input d0
i

3: end for

4: Save scenario s0 in the set of scenarios S

5: for j = 1 to b do

6: for i = 1 to n do

7: dj
i ← random [d0

i , (1 + ω
10)d0

i ]

8: Save scenario sj in the set of scenarios S

9: end for

10: end for

11: i← random[1, s]

12: sb ← si

13: Calculate initial solution y0 by solving scenario base sb using C&W

14: Improve initial solution y0 by using 2-opt local search

15: Save solution y0 in the set of feasible solutions Y

16: yc ← y0
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17: Initialize Tmin, Tmax, α and L
18: k ← 0
19: while i ̸= L do
20: for Tk > Tmin do
21: j ← U [1, 3]
22: Generate a solution yn in the neighbourhood Nj(yc)
23: Compute ∆ = J0(yn)− J0(yc)
24: if ∆ ≤ 0 and e

−∆
Tk ≥ random[0,1] then

25: i← i+ 1
26: yc ← yn

27: Save yc in Y
28: else if ∆ > 0 then
29: i← 0
30: yc ← yn

31: yb ← yc

32: Save yc ∈ Y
33: end if
34: Tk = Tk

(1+βkTk) , where βk = Ts−Tf

(α+n
√

k)TsTf

35: k ← k + 1
36: end for
37: end while
38: Compute F
39: for j = 1 to b do
40: for i = 0 to (F − 1) do
41: Compute J j(yi)
42: Save J j(yi) in J(yi)
43: end for
44: end for
45: for i = 0 to (F − 1) do
46: Compute mean E[J(yi)] and variance V [J(yi)]
47: end for
48: yRoSi ← solution with minimum V [J(yi)]
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First, the number of customers n, the degree of robustness ω and the number of scenarios

s to be used in the approach are defined. Following, the average values for demands are

computted (line 1). Different from RoMO, the statistical distribution for the uncertain de-

mands do not need to be known in the RoSi. This means that the decision-maker may use

any prediction for the average value. Equivalently to RoMO, a set of scenarios S (see (4.3))

is generated, such that each scenario is a deterministic instance of the stochastic problem

(line 4). But here each demand dj
i is drawn at random in [d0

i , (1+ ω
10)d0

i ], where ω represents

a deviation from the nominal scenario. Therefore, scenarios designed with different ω cor-

respond to different growing levels of fluctuation. For instance, for ω = 10 the customer

demand are doubled in the worst case. After that, the scenario base sb is selected out of

the set S (line 12). The scenario base is then used to calculate the initial solution (y0) for

the problem. Since sb is a deterministic instance of the SCVRP we are able to make use of

the efficient well established metaheuristics to solve it. We use the same heuristics used

in RoMO (see Section 4.3.4). An initial solution is calculated via C&W and improved by

a 2opt-local search. After that, SA in applied to further improve it. At each SA iteration

one new solution yn is generated in the neighbourhood of the current solution yc and the

temperature T decreases. Whether yn is accepted as the current solution or not depends

on a acceptance probability (line 24). Every time yn is accepted, the new current solution

becomes a element of a set of feasible solutions Y . This is done until the stopping crite-

rion is met (L iterations without improvement). The number of feasible solutions F is then

computed. In the next step, we use the set of feasible solutions Y and of scenarios S to es-

timate the real transportation cost J(yi) for each route plan i ∈ Y due to possible failures

(line 39). This is done by using Monte Carlo simulation. The real transportation cost of

solution yi for the scenario j, represented by J j(yi), is the transportation cost of the plan

yi when applied to scenario j. That is, Q(yi) is the cost of detours-to-depot applied to route

plan yi for attending the demands specified by scenario j when a route fails. The vector of

real transportation costs for solution yi is

J(yi) = (J1(yi), J2(yi), J3(yi), . . . , Js(yi)). (5.8)
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Each vector of costs has a sample of s observation costs, an estimation for its expected value

E[J(yi)] and variance V [J(yi)] are thus calculated (line 46) via sample estimators

Ĵ(yi) = 1
s

s∑
j=1

J j(yi), (5.9)

σ2(yi) = 1
s− 1

s∑
j=1

(J j(yi)− Ĵ(y))2, (5.10)

respectively. Finally, the route plan yRoSi, which is the solution yi with minimum variance,

is selected out of the set of feasible solutions Y as the final solution (line48). Indeed, the

solution approach optimizes the expected value of the transportation cost, and the solution,

therefore, may be sensitive to the uncertainty outcome. That is the reason why we select

the solution with minimum variance. The variance represents an estimation of the second

stage cost Q (2.9) for solution yi, so a solution that has the lowest variance among all F

solutions in the set of feasible solutions can be said to be the solution that handles best the

fluctuations on demands reproduced by the set of scenarios S, i.e. the most robust route

plan among all route plans in the set Y .

Figure 5.4 shows the phases included in both RoMO and RoSi approaches. All phases

are sorted in 6 steps: Inputting, Data Handling, Initial Setting, Solving, Evaluation, and Out-

putting. In Inputting, all necessary parameters for the approaches are provided, the differ-

ence between the approaches in this step is the fact that the RoMO utilizes historical data on

demands and the RoSi does not. As mentioned before, in the RoSi the decision-maker may

include only a prediction of the expected value for the demands. Following, only RoMO

executes data handling when a probability distribution is fit to the historical data. In the

third step, the main difference between the approaches is how the deterministic instances

of the SSCVRPSD, called scenario base in RoSi and robust scenario in RoMO, are designed.

After designing the deterministic instances, they are solved in the next step. Both RoSi and

RoMO approaches make use of the same heuristics to solve the scenario base and the robust

scenario, respectively. RoMO calculates only one solution for the robust scenario and RoSi
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calculates several solutions for the scenario base, creating a set of feasible solutions. That is

why the next step is carried only by RoSi when the set of feasible solutions is evaluated by

usingMonte Carlo simulation and a single solution is selected out of the set. In the last step,

RoMO reveals the single solution calculated in the Solving step and RoSi delivers the single

solution selected in the Evaluation step. The final solutions of both RoSi and RoMO are a

route plan that can be more or less robust depending on the chosen ω. In both approaches,

when ω = 0 we are solving the classical linear programming formulation of the problem

(see Definition 2.1).
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5.4.2.1 Simulation Experiments

For comparison purposes, for RoSi we designed a set of s = 40 discrete scenarios, where

all demands were randomly drawn in [40, 60] with average value equal to 50. We used ω ∈

{0, 1, 5, 10}, computing four solutions of different degree of robustness for every instance

as well.

Based on the probability distribution of the demands assumed in RoMO and the interval

used to draw the demands in RoSi it was possible tomeasure the upper bound on the number

of routes for every instance. As we adopt the worst case demand for a given set of discrete

scenarios (or a probability distribution) the upper bound on the number of routes represents

the number of routes that should be enough to attend all the customers. The worst case

scenario happens when all demands are equal to the highest value in the set of scenarios (or

in the distribution). The worst case means 60 for both approaches, and in this situation only

up to 300/60 = 5 customers can be served per route. Therefore, for example, for Instance

1, which has 20 customers, the upper bound on the number of routes is 4. The upper bound

on the number of routes as well as the comparison between RoMO and RoSi solutions

considering Planned Number of Routes, Planned Transportation Costs, Price of Robustness

and computational time is shown in Table 5.3.

Since we wanted to compare the performance of RoMO and RoSi solutions when fluc-

tuation on demands arise, we simulated then twice the real demands via Monte Carlo

simulation. We adopted first the same probability distribution used in RoMO, i.e. pd1 :

di ∼ U(40; 60) and then a more spread one, i.e. pd2 : di ∼ U(20; 80). The latter means that

the simulated demands vary more than in the first. Table 5.4 compares the performance

of both approaches using pd1 and pd2 by considering the Real Number of Routes and Real

Transportation Cost.

5.4.2.2 Comparison Analysis

When ω = 0 both RoMO and RoSi approaches solve the classical linear programming

formulation of the problem. That is why the solutions calculated by both approaches per

instance for such ω are in most instances alike. For the smallest instance, they designed the
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same route plan, computing equal planned number of routes and transportation cost, and

real number of routes and transportation cost. When ω ∈ {1, 5, 10} for all instances (except

Instance 1) the Robust Simulation-Based approach calculated solutions with more routes

and higher transportation costs compared to the proposed approach. It can be seen that for

RoSi the higher the ω, the higher the planned number of routes and the transportation cost

are, and that solutions designed for ω ∈ {5, 10} have more routes than the upper bound

on the number of routes. These two situations do not occur in the RoMO and affect the

Price of Robustness. The RoSi approach makes up route plans that exhibit higher Price of

Robustness because it requires more routes to attend the same amount of customers. This

indicates that this approach tries to service fewer customers in the same route in order to

be safer against a worse-case scenario.

This safety does its job in some situations. For example, considering pd1, for all in-

stances and ω ∈ {1, 5}, RoSi solutions required fewer routes to deal with the real demands.

In fact, for all ω, RoSi solutions presented same planned and real number of routes and

transportation cost. This suggests that the solutions designed by the Robust Simulation-

Based approach did not suffer any failure when the real demands were simulated, i.e. no

recourse actions were necessary. In contrast to that, all the solutions drawn by the proposed

approach needed extra routes. However, for the other omega (ω = 10) RoSi solutions did

show a higher planned (and real) number of routes and transportation cost compared to the

real number of routes and transportation cost of RoMO solutions, see Figure 5.5a and Fig-

ure 5.6a. This indicates that a higher level of robustness might not be desirable, especially

when a bad scenario does not become reality. Nevertheless, considering a worse-case sce-

nario, namely pd2, a higher degree of robustness might pay off. This is shown by Figure 5.5b

and Figure 5.6b. For ω ∈ {1, 5, 10} and all instances RoSi solutions not only required fewer

extra routes and shorter second-stage transportation cost to deal with the real demands,

but also displayed smaller real (planned plus second-stage) transportation cost compared

to RoMO solutions.

It can be seen that for the more spread probability distribution (pd2), RoSi solutions de-

signed for ω = 10 showed more routes compared to RoMO solutions and still had a smaller



5.5. Tradeoff Analysis 87

real transportation cost. This situation arises because fewer routes failed in one RoSi route

plan than in one RoMO route plan. For example, for Instance 5 (ω = 10) 28 routes were

drawn by RoSi approach to attend 100 customers (see Table 5.3), however one extra route

was necessary when the real demands were simulated (29 real routes). It means one route

in the route plan failed. On the other hand, 18 routes were designed by the RoMO to serve

the same 100 customers, but required 24 to cope with the real demands, i.e. 6 routes failed in

the route plan. Therefore, more detours-to-depot were performed and higher second-stage

transportation cost incurred (see Figure 5.6b).

In fact, Figure 5.5b and Figure 5.6b show that for RoSi solutions a growth in ω causes

a decrease in the number of extra routes and in the second-stage transportation cost. In

other words, the higher the ω the higher the level of robustness is. However, for RoMO

solutions this was not the case. Although RoMO solutions for ω ∈ {1, 5, 10} required

fewer extra routes and lower recourse distance compared to solutions for ω = 0. The

most robust RoMO solutions among all RoMO solutions, that is solutions that required

fewer extra routes and lower second-stage transportation cost, occurred either for ω = 1

or ω = 5. As we compared the real transportation cost when pd1 the most robust RoMO

solutions (ω = 1 or ω = 5) also computed the best real transportation cost among all

(RoMO and RoSi) solutions. However, when pd2 the solution with best real transportation

cost was calculated by RoSi (see Table 5.3).

Finally, pondering the computational time it can be noticed that the proposed solution

method performs better than the Robust Simulation-Based approach. But the differences

were not so significant. The longer computational time required by RoSi happens because

every solution that was generated at each SA iteration is used for computing its vector of

cost (39-44) by means of Monte Carlo simulation in the evaluation step (see Figure 5.4).

5.5 Tradeoff Analysis

Maximization of the optimality and increment of the robustness are two conflicting ob-

jectives. In the MAD formulation (4.1), optimality is represented by the first term of the

objective function, i.e. planned transportation cost and robustness is expressed by the sec-
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ond one, i.e. second-stage transportation cost. This means that the planned transportation

cost of any non-dominated solution in the Pareto front set can only be improved by deteri-

orating the second-stage transportation costs. Hence, a trade-off exists between these two

objectives. The planned and second-stage transportation costs of the solutions designed

for ω ∈ {0, 1, 5, 10} and for each instance can illustrate this trade-off. Figure 5.7 shows the

trade-off between optimality and robustness as the route plans become more robust with

respect to variations on the demands.

As predicted, we observe that as ω grew from 0 to 1, the planned transportation cost grew

and the second-stage transportation cost declined in all instances. The same happened as

ω increased from 1 to 5 in instances 1, 2, and 6. In instances 1, 3, 4, and 5, the first-stage

transportation cost augmented when ω rose from 5 to 10, but the second-stage transporta-

tion cost did not lessen. This shows that, as indicated before, a higher level of robustness

might not pay off.

Since a trade-off is observed between planned and second-stage transportation cost, the

crucial decision is to find a balance for these two costs. As mentioned before, the MAD

formulation takes the configuration of a multi-objective optimization problem, more pre-

cisely a bi-objective optimization problem, where the first objective is the minimization of

the first-stage transportation cost, and the second is the minimization of the second-stage

transportation cost. In the previous section, we did not regard the problem as a multi-

objective optimization problem and this is not the aim of this thesis. But in order to find

a solution that calculates the best trade-off between optimality and robustness, we exploit

some concepts of such problems.

A common procedure to multi-objective optimization problems is to combine the indi-

vidual objective functions into a single one via weighted sum method. Using this method

involves selecting scalar weightsWi for each individual objective function, such that

l∑
i=1

Wi = 1, (5.11)
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in order to form the objective function

U =
l∑

i=1
WiFi(x), (5.12)

where l is the number of objectives in a given problem [MA10]. The weights characterize

the decision-maker’s preferences on the conflicting objectives. Based on that, we adjusted

the objective function of the MAD formulation (Definition 4.1). The interval defined for

the decision-maker’s parameter of choice ω was changed to ω ∈ [0, 1]. The parametrized

objective function is then

min
y
Jmad(y) := min

y
ωJ0(y, s0) + (1− ω)1

s

s∑
j=1

[Q(y, sj)−Q(y, s0)] ω ∈ [0, 1]. (5.13)

To solve the parametrized MAD formulation, the weight ω was discretized into a finite

number of values, computing 19 different weighting combinations [W1 = 0.05,W2 = 0.95],

[W1 = 0.1,W2 = 0.9], . . . , [W1 = 0.95,W2 = 0.05], where W1 prioritizes optimality and

W2 robustness. For each of these combinations, we solved the six instances by applying

the same heuristics described in the solving step (see Section 4.3.4). Although in here, SA

searched for a solution y that minimized the parametrized MAD objective function (5.13),

instead of the first-stage cost J0(y). For each weight vector a single solution y was ob-

tained. For each one of the 19 solutions calculated per instance a planned and a second-

stage transportation costs were computed. As it was done before, we also simulated the real

transportation cost of each one of the 19 solutions by means of Monte Carlo simulation and

using the probability distributions that govern the demands. Figure 5.8 presents planned,

second and real transportation costs of each instance for the 19 weight combinations.

From Figure 5.8 it can be seen that asω grew, andW2 consequently decreased, the second-

stage transportation cost rose. Since we were favoring optimality, route plans selected for

such higher ω were solutions of lower first-stage transportation cost. Thus, it was expected

that the first-stage transportation cost declined as ω increased. Nonetheless, these solu-

tions needed more recourse actions during the second stage. We also observed that in all

instances the route plan with the best planned transportation cost among the 19 solutions
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Fig. 5.8: Planned, Second-Stage, and Real Transportation Cost for Parametrized ω
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was the one with the highest recourse transportation cost. This route plan turned then

into a solution with high real transportation cost. Moreover, the ω that designed the best

solution for the SSCVRPSD, that is, the route plan with the smallest real transportation

cost, was different in each instance. For example, the best route plan for Instance 1 was

calculated when ω = 0.75 and for Instance 3 when ω = 0.30.

5.6 Conclusions

In this chapter, we present the application of the RoMO solution approach in a set of de-

veloped instances and the comparison between RoMO’s performance and those of two ap-

proaches. One of the approaches (DA) treated the decision-making problem as determin-

istic and it thus does not take into account the impact of uncertainties on the quality and

feasibility of the solutions. The other (RoSi) was designed with the same goal of RoMO

and is therefore also capable of calculating solutions that are not overly conservative. For

comparison purposes, we developed seven performance measures. The Price of Robustness,

expected number of routes, and expected transportation cost were built-in features of any

route plan. The remaining performance measures were estimated by means of Monte Carlo

simulation and using the probability distribution that models the demands. The comparison

between RoMO and DA solutions showed that the proposed approach provided significant

improvements over DA. It is evident that RoMO designed robust route plans. That is, as ω

increased the Plan Reliability grew and the Probability of Route Failure, Price of Robustness

and Real Transportation Cost diminished. The robust solutions were not associated with an

high Price of Robustness. The prices payed for robust route plans were no more than 11% of

the first-stage transportation cost in all instances. This comparison points out that robust

route plans, i.e. solutions that were less sensitive to uncertainty than the linear program-

ming solution were possible at very little cost. The comparison between RoMO and RoSi

solutions demonstrated that for RoSi approach the higher the weight ω the higher the ro-

bustness of solutions designed for such ω. But increment on ω did not mean proportional

addition to robustness for the RoMO. In some cases, a higher level of robustness offered by

RoSi approach was dispensable. When we assumed customer demands pd1, RoSi solutions
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designed for ω = 1 showed the best real distance. This means that RoSi solutions designed

for higher ω ∈ {5, 10} were conservative, i.e., presented a higher level of robustness with-

out being necessary, though when demands were modelled with the more spread distribu-

tion (pd2) this robustness payed off. For this reason, when pd1 RoMO solutions performed

better than RoSi solutions considering real distances, in turn when customer demands were

modelled by the more spread probability distribution (pd2) RoSi solutions performed better.

Moreover, in this chapter, we showed that there exists a trade-off between robust and opti-

mality in the context of the decision-making problem. The existence of this trade-off was

intuitive, but the proposed formulation provided a means of quantifying the trade-off and

determining a good decision for varied levels of ω. The parametrized MAD formulation

was able to design solutions that calculate the best trade-off between first and second-stage

transportation costs, i.e. to calculate a route plan of lowest real transportation cost.



6
General Conclusions and Fu-
ture Research Directions

The decision-making problem under uncertainty addressed in this thesis was the static and

stochastic capacitated vehicle routing problem with uncertain demands. In this problem,

the routing decisions are separated into two groups, first-stage and second-stage decisions.

The first-stage decisions are made before the true values of the stochastic demands are re-

vealed, while the second-stage decisions (corrective/recourse actions) are made after the

actual values become known and intend to recover the first-stage decisions that are no

longer feasible. In the context of the SSCVRPSD, corrective actions are applied if/when a

route failure occurs, that is, if/when the true total demand on a route is higher than the

vehicle capacity. The most commonly used recourse actions are detour-to-depot and pre-

ventive restocking. In the former, the vehicle returns to the depot to load when its capacity

is depleted. Since it is preferable that the vehicle capacity is depleted at a customer located

near the depot, an en route replenishment, called preventive restocking, may be performed at

strategic nodes along the route before a route fails. Thus, these corrective actions represent

extra transportation costs. The goal of the SSCVRPSD is then to find a robust a priori route

plan of minimum transportation cost, i.e., a priori solution that allows for small changes in

demands without changing the solution structure and losing optimality. Protection against

fluctuations in the demands (robustness) typically comes at a price (Price of Robustness).

It is therefore decisive to weigh the possible decrement on the objective function value in-

volved in implementing a robust a priori route plan against the likely reduction of flexibility

in adopting the "optimal" route plan.

For that, the problem was formulated based on a mean absolute deviation objective func-

97
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tion, in which the first goal is the minimization of the expected value of the planned (first-

stage) transportation cost and the second is theminimization of themean absolute deviation

of the second-stage (corrective actions) transportation cost. The first objective is a measure

for optimality while the second for robustness. In this work, we assume that if/when a

route failure occurs, the detour-to-depot is applied. In the MAD model, the variability term

is multiplied by a parameter ω to be chosen by a decision-maker and used to obtain a spec-

trum of route plans that can be more or less robust. In this way, the MAD mathematical

formulation incorporates a measure of the decision-maker’s level of risk aversion in the

objective function. We also propose a solution method based on the MAD decision model.

Since in this solution method the SSCVRPSD is reduced to its deterministic counterpart, the

solution approach can make use of efficient and well-established heuristics for the classical

CVRP. So, solving the decision-making problem using the RoMO solution approach is no

more difficult than solving a single deterministic instance of the CVRP while satisfying all

uncertain demands.

To examine the efficiency of the proposed solution approach, we developed a benchmark

data set with six instances, seven performance measures and compared its performance

with those of two solution approaches, Deterministic Approach and Robust Simulation-

Based solution approach. DA is the most commonly used approach to deal with a decision-

making problem under uncertainty, thought it does not take into account the effect of the

uncertain inputs on the feasibility and optimality of the solutions. In this approach, the

values of the stochastic inputs are assumed to be equal to their expected values so that the

linear programming formulation of the problem can be solved. On the other hand, RoSi is a

solution approach with similar goals as RoMO. In this stage, because we wanted to compare

solutions of different degree of robustness, we selected different values of ω ∈ {0, 1, 5, 10}.

Each instance includes a number of customers, locations of the depot and the customers,

transportation cost, demands, and vehicle capacity. The performance measures were prob-

ability of route failure, reliability of the route plan, expected and real number of routes,

expected and real transportation cost, and Price of Robustness. The performance measures

Price of Robustness, expected number of routes, and expected transportation cost are char-
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acteristics inherited by a route plan. For estimating the other performance measures we

used Monte Carlo simulation together with the probability distributions that model the un-

certain demands. The computational experiments show that RoMO provided significant

improvements over DA. It is evident that the proposed method provided route plans that

are more robust than the solutions for the classical linear programming formulation. In

all instances, solutions designed for ω = 0 presented not only the lowest plan reliability

but also the highest probability of route failure and worst real transportation cost. Con-

sidering that the real transportation cost it is the true transportation cost that companies

are subjected to for attending their customers, one concludes that in uncertain situations

is better to hold a certain level of robustness than otherwise. The efficiency of RoMO so-

lutions while dealing with fluctuation in the demands was achieved at a small cost, i.e. the

Price of Robustness was lower than 11% of the transportation cost of the respective a priori

route plan in all instances. This means that RoMO solutions are not overly conservative

and therefore would not be regarded as unnecessary by decision-makers. Compared with

RoSi, which is a solution method to design solutions of different degree of robustness based

on a decision-maker’s parameter of choice ω, we noticed that RoSi solutions can be conser-

vative for higher ω when the "normal" scenario occurred. A "normal" scenario (pd1) refers

to when the probability distributions used to simulate the demands are assumed to be equal

to the fitted PDF. In this case, these solutions presented a higher level of robustness than

necessary. Nevertheless, when the "worse" scenario (pd2) occurred, i.e., probability distri-

bution with larger spread was used to simulate the demands, this robustness payed off. In

this scenario, RoSi solutions were less affected by the fluctuation in the demands compared

to RoMO solutions, requiring fewer corrective actions (extra routes). For pd1, RoMO solu-

tions designed with ω = 1 or ω = 5 were the ones with the best real transportation cost. In

contrast, for pd2, RoSi solutions calculated with ω = 10 were the route plans with the best

real transportation cost. One may then conclude that the choice between RoMO or RoSi

solution approaches depends on the degree of uncertainty present in the demands.

After comparing RoMO solutions with both DA and RoSi solutions for different degrees

of robustness, i.e. ω ∈ {0, 1, 5, 10}, we discretized the MAD formulation and changed ω
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to ω ∈ [0, 1]. 19 weighting combinations [W1 = 0.05,W2 = 0.95], [W1 = 0.1,W2 =

0.9], . . . , [W1 = 0.95,W2 = 0.05] in which W1 prioritized optimality and W2 robustness

were used. In this manner, the parametrized decision model provided a way of quantifying

the trade-off between the two conflicting objectives, first (optimality) and second-stage (ro-

bustness) transportation cost, and calculating the route plan that best trades off optimality

and robustness. For each instance of the decision-making problem, RoMOdesigned 19 route

plans, one per weighting combination. The first-stage transportation cost of each of these

solutions is a characteristic inherited by the route plan, but the second-stage transporta-

tion cost was simulated using Monte Carlo Simulation and the distribution that models the

demands. The solution that balanced best the trade-off between optimality and robustness

was the one that calculated the lowest real transportation cost (planned plus second-stage

transportation costs). Which weighting combination provided this solution depends on the

settings of the problem and thus changes from instance to instance.

In this thesis, the mean absolute deviation formulation was used to deal with the SS-

CVRPSD, however, in may be applied to other combinatorial optimization problems under

uncertaintywith appropriatemodifications. In other real-world problems, it may be unclear

when robust solutions are preferable to the solutions for the deterministic optimization ap-

proach, since this implicates balancing minimization of costs and protection. Whether the

additional protection justifies the incurred extra cost may depend on the situation. Nev-

ertheless, once the traded off solutions are available, a decision-maker can easily make a

decision on which solution is to be adopted to cope with the stochastic inputs based on

the settings of the company. The MAD formulation and RoMO solution approach can thus

provide a basis for improved decision-making in other real-world applications where the

decision-making problem is under uncertainty. We highlight that we defined a solution to

be robust if it is less affected by fluctuation of the stochastic inputs and therefore needs just

few corrective actions (detours-to-depot) during the second stage (recoverable robustness).

Although we believe that in the context of the SSCVRPSD corrections are possible to be im-

plement during the execution of the a priori route plan, for different real-world problems

this may not be the case.
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Though the proposed formulation and solution approach comes out with advantages,

they still show some limitations. First, one needs to hold historical data about the uncertain

demands in order to be able to fit a probability distribution to it. Second, these probability

distributions were assumed to be known or possible to estimate. In practice, however, it can

be difficult to precisely and accurately estimate them. It may require a long period of time

for collection of statistics of real data on the customer demands. Third, despite the fact that

companies usually have a fixed number of vehicles that are used to service their customers,

we did not fix the amount of vehicles that could be used in the decision-making problem.

Since each vehicle performs only a single route, one of the outputs of the decision model is

the size of the fleet of vehicles. Thus, an unlimited amount of routes could be performed to

attend the customers and unlimited amount of extra routes could be executed to deal with

the fluctuation in the demands. Moreover, the cost on the use of an extra vehicle, such as

hiring a new driver, was not considered.

One avenue for future research is the extension of the MAD formulation in order to cope

with other sources of uncertainties, such as stochastic travel times. It could also be inter-

esting to adopt the mean absolute deviation objective function as the robust optimization

criteria in the robust optimization framework and to compare the results provided by the

RoMO solution approach against solutions obtained by the robust optimization framework.

Another interesting comparison is the difference between the performance of RoMOwhich

is a static approach and the performance of a dynamic solution method, in which the route

plan is designed in an ongoing fashion.
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