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Abstract
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2018

This dissertation focuses on the structure of a particular logistics network design problem,

one that is a major strategic issue for supply chain design and management. Nowadays,

the design of the supply chain network must allow for operation at the lowest cost, while

providing the best customer service and accounting for environmental protection. Due

to business and environmental issues, industrial players are under pressure to take back

used products. Moreover, the significance of transportation costs and customer satis-

faction spurs an interest in developing a flexible network design model. To this end, in

this study, we attempt to include this reverse flow through an integrated design of a for-

ward/reverse supply chain network design, that avoids the sub-optimal solutions derived

from separated designs. We formulate a cyclic, seven-stage, logistics network problem as

an NP-hard mixed integer linear programming (MILP) model. This integrated, multi-

stage model is enriched by using a complete delivery graph in forward flow, which makes

the problem more complex.

As these kinds of problems belong to the category of NP-hard problems, traditional

approaches fail to find an optimal solution in sufficiently short time. Furthermore, con-

sidering an integrated design and flexibility at the same time makes the logistics network

problem even more complex, and makes it even less likely, if not impossible, for a tradi-

tional approach to provide solution within an acceptable time frame. Hence, researchers

develop efficient non-traditional techniques for the large-term operation of the whole sup-

ply chain. These techniques provide near optimal solutions particularly for large scale

test problems. In our case within this thesis, to find a near optimal solution, we apply
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a Memetic Algorithm with a neighborhood search mechanism and a novel chromosome

representation called ”extended random path direct encoding method” which includes

two segments. Chromosome representation is one of the main issues that can affect the

performance of a Memetic Algorithm. To illustrate the performance of the proposed

Memetic Algorithm, LINGO optimization software as commercial package serves as a

comparison for small size problems. We show that the proposed algorithm is able to effi-

ciently find a good solution for the flexible, integrated, logistics network. Each algorithm

has some parameters that need to be investigated to provide the best performance. In this

regard, the effect of different parameters on the behavior of the proposed meta-heuristic

algorithm is surveyed first. Then, the Taguchi method is adapted to identify the most

important parameters and rank the latter. Additionally, Taguchi method is applied to

identify the optimum operating condition of the proposed Memetic Algorithm to improve

the results. In this study, four factors that are defined inputs of the proposed Memetic

Algorithm, namely: population size, cross over rate, local search iteration, and number of

iterations are considered. The analysis of the parameters and the improvement in results

are both illustrated by a numerical case studies. Finally, to show the performance of the

Memetic Algorithm, a Genetic Algorithm - as a second meta-heuristic algorithm option

- is considered as regards large size cases.
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Zusammenfassung

A flexible integrated forward/reverse logistics model with random path

M.Sc. Elham Behmanesh

Doctor of Engineering

Graduate Department of Production Engineering

University of Bremen

2018

Die Dissertation behandelt die Struktur eines logistischen Netzwerkproblems, was

wichtige strategische Eigenschaften in der Lieferkette (Supply Chain) darstellt. Das De-

sign heutiger Supply-Chain-Netzwerke muss es erlauben, mit niedrigsten Kosten den

bestmöglichsten Kundenservice sicherzustellen und dabei Umweltstandards einzuhalten.

Aufgrund von ökonomischen und ökologischen Vorgaben stehen insbesondere Unternehmen

in der Pflicht, bestimmte Produkte am Ende des Lebenszyklus zurückzunehmen. Die Be-

deutung von Transportkosten und Kundenzufriedenheit motiviert die Entwicklung eines

flexiblen Netzwerkdesignmodells. Zu diesem Zweck wird in dieser Arbeit der Rückwärtsfluss

in das Forward-/Reverse-Supply-Chain-Modell mit integriert, um eine suboptimale Lösung

durch ein seperierendes Modell zu vermeiden. Dazu stellen wir ein zyklisches, siebenstu-

figes logistisches Netzwerkproblem als NP-hartes gemischt ganzzahliges Problem (MILP)

auf. Dieses integrierte, mehrstufige Modell wird durch die vollständige Modellierung des

Vorwärtsflusses erweitert, was das Problem komplexer macht. Da dieses Problem zur

Klasse der NP-harten Probleme gehört, versagen traditionelle Methoden zur optimalen

Lösungssuche in kurzer Zeit. Erschwerend trägt das integrierte Design und die Flexi-

bilität zur erhöhten Komplexität des logistischen Netzwerkmodells dazu bei, dass in den

meisten Szenarien keine optimalen Lösungen mit traditionellen Methoden in akzeptabler

Zeit zu finden sind. Daher entwickelte die Forschung effiziente, nicht auf herkömmlichen

Verfahren basierte Techniken, um die gesamte hochskalierte Supply-Chain-Kette steuern

zu können. Diese Techniken bieten nahezu optimale Lösungen speziell für große Test-

probleme. Um eine fast optimale Lösung zu finden, wenden wir einen memetischen
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Algorithmus mit einer Nachbarschaftssuche und einer neuen Darstellung von Chromo-

somen, die im Verfahren als ”Extended random path direct encoding method”, die zwei

Segmente enthält. Die passende Darstellung der Chromosome beeinflusst stark die Leis-

tungsfähigkeit von memetischen Algorithmen. Um die Leistungsfähigkeit des entwick-

elten memetischen Algorithmus zu zeigen, dient die LINGO Optimierungssoftware als

kommerzielles Paket zum Vergleich für kleine Problemgrößen. Wir zeigen in dieser Ar-

beit, dass der entwickelte Algorithmus effizient eine gute Lösung für die Problemstel-

lung des integrierten flexiblen Netzwerks findet. Um die höchste Leistungsfähigkeit des

Algorithmus’ festzustellen, ist eine Justierung der Parameter erforderlich. Daher wird

der Effekt verschiedener Parameter auf das Verhalten des Algorithmus’ zunächst unter-

sucht und die Taguchi-Methode angepasst, um die wichtigsten Parameter zu finden und

zu sortieren. Dann wird zusätzlich die Taguchi-Methode zur Identifizierung der opti-

malen Arbeitsbedingungen des entwickelten memetischen Algorithmus angewendet, um

die Ergebnisse zu verbessern. In der Studie werden vier Faktoren betrachtet, die als

Eingabeparameter für den memetischen Algorithmus dienen: Populationsgröße, Cross

Over-Rate, Anzahl lokaler Suche und Anzahl von Iterationen. Die Analyse der Param-

eter und die Verbesserung der Ergebnisse werden numerisch dargestellt. Am Schluss,

für große Szenarien, wie sie auch in der realen Welt vorkommen, wird ein genetischer

Algorithmus zum Vergleich benutzt, um die Effizienz des entwickelten memetischen Al-

gorithmus zu zeigen.
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Chapter 1

Introduction

A supply chain is a network of suppliers, manufacturers, warehouses, distributions, and

retailers. It is organized to produce and distribute products, and the respective design

issue is to determine the number, location, and capacity of the facilities as well as the

quantity of the flow between them [11]. The aim of supply chain design is minimization

of total cost [11; 46] or profit maximization [116], while satisfying customer requirements.

Each supply chain network involves decisions on three different levels: operational, tacti-

cal, and strategic, which correlates to short-, mid-, and long-term decisions respectively.

As long-term strategic decisions take priority over tactical and operational ones, network

configuration comes first in any supply chain network design and needs to be optimized

for long-lasting efficient operation of the entire supply chain. In the open-loop supply

chain, which is the traditional (forward) system, products do not return to their source.

Figure 1.1 shows the traditional supply chain network including suppliers, plants, distri-

bution centers, and retailers and customers. In this network, raw materials are shipped

from suppliers to plants and the final products are transferred from plant to customers

through distribution centers and retailers. But in today’s world, companies cannot ig-

nore reverse distribution due to strict rules of end-of-life issues [155], economic impact,

as well as accounting for reverse flow when industries can use returned products. On

the other hand, companies have to offer something to increase customer satisfaction and

keep themselves competitive. Considering all these factors in a supply chain network, a

comprehensive study at the strategic level is needed for any supply chain network.

1
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Figure 1.1: Traditional supply chain network.

1.1 Motivation and problem statement

In many countries, depending on environmental laws, companies are forced to equip their

facilities in order to make the recovery of used products possible. As an example, in the

last decade governmental legislation forced firms to collect, recover, and recycle, e.g., all

electronic goods in Europe, Japan, China and many parts of US and Canada as well as

so to the safe disposal of their end-of-life (EOL) products [155]. The importance of this

issue leads some countries to ratify an annual recovery rate [12]. Also, there are some

pick-up policies for logistics networks that reveal this procedure differs for each country

[12]. In addition to environmental damages from ignoring reverse flow, shortages in re-

sources are the second problem [59]. As a consequence, closed loop supply chains have

become a pressing topic for supply chain partners.

Environmental factors are not the only ones that spur researchers or manufacturers to

consider reverse logistic networks. In fact, the reason that recovery systems are attractive

to companies is economic impact. The reverse activity represents added economic value

that can be obtained by processing the returned products and capturing the remaining

value in the used products. Indeed, one ton of electronic computer waste contains more

gold than seventeen tons of material extracted from a gold mine [10]. It has been shown
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that the unit cost of production can decrease by 60 to 40 percent by considering reverse

activities in some industries [50]. In another example, Xerox Europe made more than 80

million dollars by applying a take back strategy for used products strategy in 1997 [126].

By considering reverse distribution, some facilities need to be established, such as collec-

tion/inspection centers to collect and inspect the products under expert supervision, as

well as disposal center to ensure a safe disposal for non-recyclable items. Also, some sec-

tions in plants need to be updated for recycling or recovery of used products. Therefore,

job creation can be considered as the other aspect of a closed loop supply chain network.

We can summarize the benefits of the extended supply chain network as follows:

• Protects the environment

• Enhances economic impact

• Avoids shortages in resources

• Creates job opportunities

The reverse activities are classified in five steps [61] as follows:

• Step 1: Collect used products from customer.

• Step 2: Assess condition of the returned products by inspection and/or separation

center.

• Step 3: Reprocess of used products into usable products.

• Step 4: Dispose of unrecoverable returns. It has to be noted that, in some cases,

recovering is not economical. These conditions can be considered as unrecoverable

returns as well.

• Step 5: Reuse the recovered items.

Depending on the condition of the returned products the recovery process may include

repairing, reassembling, remanufacturing, cannibalizing, cleaning, replacing or recycling

[205].

According to the above explanation, reverse distribution is important and needs to be

investigated in each supply chain network. Most researchers in this area focused on re-

verse flows only [175], while considering the reverse and forward flow at the same time
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can reveal better results [62; 155]. Figure 1.2 illustrates the proposed extended supply

chain network. In this study, the reverse flow including collection/inspection center as

well as disposal center is added to the traditional network. In the reverse flow, used

products are collected by collection centers and after inspection, sorting, and disassem-

bly, the recoverable products are shipped to the plant for further operation and returned

to the cycle while scrapped products are transferred to disposal centers for safe disposal.

It is important to note that the remanufacturing process can occur in a separated facility

or in the plants where new products are produced. The same idea may be considered

for collection and inspection centers. It is clear that establishing several facilities at the

same location can reduce the cost of the supply chain network, in comparison with a

separated design.

Figure 1.2: Extended supply chain network.

Fast, punctual, and accurate delivery of products plays an important role in customer

satisfaction. The ability of a supply chain to satisfy the customer’s expected delivery time

is called ”supply chain responsiveness” [172; 98], and result in greater profit for the re-

lated supply chain. Also, a shorter path can reduce transportation cost, and thus the

total cost of the network. Some researchers proposed models to optimize the supply chain
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network with regards to both topics, cost efficiency and responsiveness, simultaneously

[172; 9]. However, most of these researchers limited themselves to only considering ship-

ments between consecutive stages or just indirect shipment mechanisms [172; 9; 51]. Yet,

efficiency can be improved by all possible delivery ways (flows between facilities that are

not sequential), which allows us to skip some stages. Although a flexible delivery path

can increase the efficiency of the supply chain network, the resulting problem will be more

complex, cf. Figure 1.3 for a sketch of the delivery graph. It shows a fully capacitated

graph between plant to customer in the forward flow.

Figure 1.3: Framework of the proposed flexible supply chain network.

The benefits of the flexible supply chain can be summarized as follows:

• Enhances economic impact

• Reduces transportation cost

• Increases customer satisfaction

• Decreases delivery time

1.2 Research objectives

In real world applications, we often seek an answer to the question: How can we find

an efficient assignment strategy to satisfy the source and destination requirement with

the aim of minimizing the total cost? So, how to manage a logistic system efficiently

has become a key issue for many companies in reducing their cost and delivery time as

well as increasing customer satisfaction. On the other hand, well-managed reverse logis-

tics allows us to cope with environmental factors by reducing, recovering, and reusing

items, while also saving cost. Although industrial players are under pressure to take back
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products after their use, most of logistics networks are not equipped to handle returned

products.

To manage a logistic system efficiently, flexible and productive network design is one

of particular interest.

As the next step, we need to model the network mathematically. The model has to

address the problem as a holistic system and avoid splitting it into forward and reverse

networks. Furthermore, the model should be capable of coping with the flexibility of the

network. The mathematical model is aimed at minimizing the total cost of the network,

including transportation and operation costs. Therefore, the next question will be: How

can we model the flexible, integrated, forward/reverse logistics network mathematically?

In general, network design problems belong to the class of NP-hard problems and ap-

plying a flexible, integrated, logistics model makes the problem more complex. These

conditions lead us to formulate the subsequent question: How can we tackle this flexible,

integrated network as an NP-hard problem?

However, this increase in size, makes solving these complicated network design prob-

lems efficiently a major challenge. In the last two decades, Evolutionary Algorithms

(EAs) have been applied in this attempt and obtained noticeable success [118]. While

we can consider this ability of EAs as an advantage, most of the available Evolutionary

Algorithms do not show good performance if the problem size increase [118]. Therefore,

it is critical to present a modern Evolutionary Algorithm to study large scale optimiza-

tion problems and answer these significant questions: Which algorithm may be suitable

in terms of accuracy and efficiency as a solution methodology for the proposed flexible,

integrated, forward/reverse supply chain network?

A Memetic algorithm with specialized encoding, initialization, and local search oper-

ator is considered to optimize the design of the proposed supply chain network. Each

algorithm has some parameters that need to be investigated to increase efficiency. The

parameters involved in this methodology include: population size, number of iteration,

cross over rate, and number of local search iterations. Therefore, we face these questions:

What is the effect of these different parameters of the solution methodology on the results?

What is the most important parameter and the importance of the order?
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Based on the aforementioned descriptions, within this study we consider an integrated

forward/reverse multi-stage, single product, single period logistics network, which is en-

riched by a full delivery graph in forward flow, representing an NP-hard mixed integer

linear programming model. Figure 1.4 shows the framework of this problem graphically.

Figure 1.4: Framework of the proposed flexible supply chain network.

1.3 Research approach-an overview

The objectives provide an accurate description of the specific actions we will take in

order to reach the aims. In this section, the proposed research objectives are classified

into eight components as follows:

• 1. Overall characteristics: In this study we address a seven stages closed-loop

supply chain network including suppliers, plants, distribution centers, retailers, and

customers in forward flow and collection/inspection centers and disposal centers in
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backward flow. This network is operated on a ”single-product” and ”single-period”

model.

• 2. Integration design of forward/reverse logistics network: Reverse distri-

bution can take place through a separated design or forward and reverse flow can

be considered simultaneously as an integrated design. In this study, the integrated

design is selected for two main reasons: The first reason is to avoid sub optimal

solutions derived from separated designs. The second reason is take into account

”product life cycles” for better utilization of manufacturing resources. This idea

can be considered as a good way to increase the efficiency of the proposed supply

chain network.

• 3. Flexible delivery path: In the proposed model, we are aiming to connect the

supply chain network more productively and flexibly by applying three different

delivery paths that allow us to skip some stages. Although there are some cases

in the real world that are applying these delivery paths separately, the idea behind

considering these three delivery paths is having a fully capacitated graph between

plants and customers in forward flow. Within this situation we can decrease the

transportation cost by skipping some stages and also increase customer satisfaction

by being close to customers and reducing lead delivery time.

• 4. Mathematical modeling: After designing the network, we need to model our

network mathematically. This model has to be capable of addressing the problem

holistically, without splitting forward and reverse flow. Also, this model needs

to be capable of handle three different delivery paths, as explained before. The

mathematical model is aimed at minimizing the total cost including transportation

and operation cost, and dealing with long-term decisions. In long-term decisions,

determining the optimal number and capacity of facilities and also obtaining the

optimal distribution network is addressed. The mathematical model is considered

based on linear integer programming.

• 5. Developing a suitable solution methodology: Generally, any network de-

sign problem belongs to a category of NP-hard problems. Therefore, traditional

methods distribution failed to solve them in appropriate time. Additionally, the

presented problem is a multi-choice problem. It means we are dealing with different

subjects such as delivery paths, handling returned products, and meeting the de-

mands of customers at the same time. Furthermore, by increasing the problem size,

the problem will be even harder to solve. So we apply a meta-heuristic algorithm,
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(Memetic Algorithm in particular) to tackle this NP-hard problem. To achieve the

mentioned objectives, one of the contribution of this work is the development of a

practical solution method based on the previously developed methods. To generate

a population of individuals, we extend the ”random path direct encoding method”

[67] according to the characteristics of the proposed model. The first version of this

method applied for a forward network problem with three echelons without any

reverse flow. We aim to update the ”random path direct encoding method” named

as ”extended random path direct encoding method” by adding two more echelons

in forward flow, as well as reverse . Also, as we have flexibility in the network, the

second segment is added to this method. Developing a solution methodology by

considering a novelty in chromosome representation is one of the main focus of this

study.

• 6. Parameter analyzing: This section is divided into three parts and focuses

on parameter analyzing. In the first part, the parameters involved in the solution

methodology are introduced. Based on the numerical research, we realize that the

introduced parameters are important and need to be investigated further. There-

fore, the effect of each parameter is discussed separately. In the second part, a

ranking between these parameters is derived to show which one has the stronger

effect and needs more focus in special cases. Finding an order of effectiveness is the

main contribution of this part. As we are dealing with a strategic problem, there

is no time limitation. But still, having some information regarding the parameters

can help us to improve our results, especially for the other types of concerns (tac-

tical level). In this regard, Taguchi method is adopted to find the optimal value of

parameters.

• 7. Programming Our implementation was written in MATLAB R2015b and run

on the PC with Intel CoreTM i5 2.40GHz with 12 GB RAM.

• 8. Validation: The validation is divided into two parts. First, small size test

problems are solved by a traditional linear programming software package, LINGO

optimization software, to obtain the optimal solution. The results are considered

in comparison to the results obtained from the proposed Memetic Algorithm. So if

the optimal solution can be found by the Memetic Algorithm, we can trust it for

large size problems. As the second part, the strategy of comparing between two

meta-heuristic algorithms is taken to show the efficiency of the proposed Memetic

Algorithm. Genetic Algorithms (GAs) are the most famous Evolutionary Algo-

rithms (EAs), which are inspired by natural evolution and selection. Their main
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application is in the field of optimization. The same strategy applied for initial

population-, cross over and selection operator can be used for a classical Genetic

Algorithm as well. These reasons lead us to employ a classical Genetic algorithm

as the second meta-heuristic algorithm to compare with the proposed Memetic Al-

gorithm. On the other hand, we can show how a local search engine can lead the

algorithm to obtain better results.

1.4 Thesis outline

The structure of the thesis is as follows:

Chapter 2, entitled, ”state of the art”, is divided into two parts. In the first part,

we aim to answer the question: ”How can we find an efficient assignment strategy to

satisfy the source and destination requirement with the aim of minimizing total cost”.

To this end, a description of a forward and reverse logistics network is provided individ-

ually first. These definitions can help us to grasp their characteristics as well as existing

background, separately. In fact, by a comprehensive literature review we try to realize

that ”in which direction they need more effort?”. Furthermore, the integrated design is

carefully explained in this chapter. As the considered integrated network in this work

is enriched by an additional feature, the rest of this chapter clarifies this feature. This

feature is adding flexibility by considering different delivery paths into the network. It

needs to be mentioned that this flexibility is referring to delivery paths in the forward

distribution and employed as a full delivery graph from plant to customer. The second

part is focused on solution methodology for the described problem with the mentioned

complexity. The problem presented in this study is an NP-hard problem. Therefore,

answering the following question is required here: ”How to tackle with this NP-hard

problem?”. After finding the direction, we need to present a suitable solution methodol-

ogy and find an answer for the question: ”Which algorithm may be suitable as a solution

methodology for the proposed problem?”. As the main solution methodology consid-

ered for this study is a nature-based algorithm, historical background is first provided.

Basic concepts and definitions of the solution methodology is presented afterward. To

demonstrate that the proposed algorithm can support a variety of problems, four different

categories are illustrated to address different application of the used algorithm. Further,

we aim to compare our algorithm with another algorithm for the validation part. So, a

brief background regarding the second solution methodology and its application is first

provided.
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Chapter 3, under the title ”Modeling of the integrated, flexible logistics network”,

focuses on the mathematical model of the presented network and answers the question:

”How can we model the problem to be capable of accounting for flexible delivery path

and also integrated design simultaneously?”. First of all, the main characteristics of

the network that need to be considered in the formulation is described. Secondly, a

general model is proposed to give an overall idea. Assumptions and notations, used in

the formulation of the MILP model, are expressed thereafter. Utilizing the notation

and assumptions, the structure of the MILP model is formulated. The proposed model,

presented in this chapter, have been used for a published paper in the 7th IFAC Con-

ference on Management and Control of Production and Logistics, Bremen,

Germany, (E. Behmanesh and J. Pannek 2016), [20] as well as the Logistics Research

journal, Springer, (E. Behmanesh and J. Pannek 2016), [19].

Chapter 4, ”Proposed solution approach”, gives exposition on the solution method-

ology. A comprehensive explanation regarding updating the algorithm according to the

characteristic of the proposed problem is presented in the last section of this chapter.

A novel extension for the population of individuals generation’s method is obtained as

well as updating the local search strategy. They are defined as the main contribution

of this chapter. The overall procedure of proposed Memetic Algorithm is presented in

this chapter. Some parts of the findings of Chapter 4 have been presented and published

in the 7th IFAC Conference on Management and Control of Production and

Logistics, Bremen, Germany, (E. Behmanesh and J. Pannek 2016), [20].

Chapter 5, ” Effect of various parameters of solution methodology”, investigates the

effect of different parameters of the proposed Memetic Algorithm and aims to answer the

question: ”What is the effect of different parameters of the solution methodology on the

results”. To this end, the various parameters of the solution method are introduced first.

These parameters include population size, number of iteration, number of local search

iteration, and cross over rate. The effect of each parameter on the results of the solution

methodology is studied through out this chapter. The initial findings of Chapter 5 have

been presented in ”28th European Conference on Operation Research, Poznan,

Poland”, (E.Behmanesh and J. Pannek 2016), first and afterward have been published

in the ”Mathematical Problems in Engineering journal” (E. Behmanesh and J.

Pannek 2017), [24].
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Chapter 6, entitled ”Parameter analysis”, is designed to identify the optimum oper-

ating condition of the proposed Memetic Algorithm. In this regard, Taguchi method is

adopted to find the best level of the four considered factors, namely: population size,

cross over rate, local search iteration, and number of iteration. Applying the Taguchi

method requires six steps, which are undertaken in this chapter, through several test

problems. First, a comprehensive explanation regarding Taguchi method is provided.

Afterward, the results are generated based on the step-by step procedures involved in

the Taguchi method. Some of the results obtained in this chapter will be submitted

in a relevant journal, by the title of ”Taguchi analysis for improving optimization of

integrated forward/reverse logistics” (E. Behmanesh and J. Pannek 2017), ([23]).

Also in this chapter, we endeavour to answer the question: ”What is the most important

parameter and the importance of the order?”. In this regard, the order of mentioned

parameters was found by applying the Taguchi method, which shows the most effective

parameter and ranks accordingly. The extended version of the obtained results, regard-

ing effectiveness order, have been presented and published in the 6th International

Conference on Dynamics in Logistics Bremen, Germany, 2018, (E. Behmanesh

and J. Pannek), ([22]).

In Chapter 7, ”Numerical results of applying the proposed Memetic Algorithm”, aims

at answering the question: ”How to show accuracy and efficiency of the proposed algo-

rithm?”. The quality of the approach is assessed in two parts. For the first part, we

generated several test problems as numerical settings. Comparing the respective results

obtained by the proposed Memetic Algorithm for test cases and solutions obtained by

LINGO optimization software are the main contribution of this part. The computational

results showed that the proposed algorithm is able to efficiently find good solutions for

the flexible integrated logistics network. The initial findings of this part have been pub-

lished in the Logistics Research journal, Springer, (E. Behmanesh and J. Pannek

2016), [19].

The second part is a comparison between two different meta-heuristic algorithms. This

comparison is between the results obtained by the proposed Memetic Algorithm and a

classical Genetic algorithm. To illustrate the tradeoffs between these, four comparison

criteria are considered. These are generally focused on two aspects: objectives function

value and CPU time. One of them is responsible for comparing the results obtained by

the proposed Memetic Algorithm and the optimal solution of a commercial package. The

same procedure is considered with separated criteria, to show the performance of the

classical Genetic algorithm. The third criteria is designed to display the difference of the
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proposed MA and GA and compare them with respect to the objective function value.

And finally, the CPU times associated with the MA and GA is compared by the last

criteria.

The aim of this chapter is to illustrate the efficiency of the proposed solution method-

ology, particularly in large size test problems. Therefore, the reminder of this chapter

consists of numerical results based on the above explanation. The initial results of this

part have been presented in the 20th International Conference on Engineering

Optimization and Industrial Applications, London, United Kingdom, 2018,

and some final results will be submitted to a high impact journal, under the title of

”Memetic and Genetic algorithm for an integrated logistics network with flexible deliv-

ery path” (E. Behmanesh and J. Pannek 2018), [21].

Finally, the conclusions of this thesis and directions for future research are given in

Chapter 8.

The problem addressed in this work is an integrated design of forward and reverse logistics

enriched by three different delivery paths for a seven stage, single period, single product

closed-loop supply chain network. The proposed model presents a general network and

covers the previously described cases in the literature with less complexity. Furthermore,

considering a full delivery graph in forward flow allows us to solve the conflicting goals

of profit and responsiveness that otherwise may incur a greater cost [172].

Regarding the contributions of this study, we suggest a practical model as a decision

support system that shows how contribution between different facilities can help us to

control the entire of the supply chain network. Supporting this idea, this function cannot

be filled by a person or a single facility. It needs the contribution of all related facilities to

decrease the overall network cost and increase the efficiency of the network. On the other

hand, network design problems belong to the category of NP-hard problems, therefore,

developing an efficient solution methodology is still a critical requirement in this area. In

addition, the flexible, integrated, forward/reverse logistic network suggested in this study

is not a case-based network and because of its generic nature it can support a variety of

industries such as electronic and digital equipment industries, and automotive industries.

Therefore, progress in this area can bring multilateral profit.



Chapter 2

State of the art

2.1 Introduction

Logistics is the organization, planning, and realization of the flow of goods along the

entire product life cycle in order to meet the requirements of customers or corporations

while minimizing cost. Logistics network design addresses a select subset of facilities to be

opened, as well as designing the distribution network strategy. The network model is the

main part of the logistics network [153]. A set of nodes that are connected by transporta-

tion links is a usual way to model a logistic problem. These nodes may include suppliers,

plants, distribution centers, retailers, and customers in forward flow. A supplier is a

person or company that provides plants with raw materials. A plant is a place where a

manufacturing process takes place, which is defined as the process of converting raw ma-

terials, components or parts into finished goods. Distribution centers are responsible for

stocking goods for distribution to retailers, wholesaler or other possibilities. A retailer is

a business or person that sells products to the consumer. In contrast with a supplier who

is connected with another business, retailers are involved with the final customer directly.

In recent years, growing environmental concern pushed companies to pay more attention

to product take-back, product recovery, and the re-distribution of end-of-life products.

In this regard, Reverse logistics (RL), which refers to the return distribution activities,

has an important role in modern industries. The possible nodes in backward flow can

include: collection centers, inspection centers, and disposal centers. Collection centers

manage used products by collecting returned products from customers. In inspection

centers, if the materials or items are in proper quantity and condition, they will be sent

to the plant for remanufacturing, reusing, recycling or other processes. The scraped

products need to be transferred to disposal centers to be safely disposed of.

14
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2.2 Network characteristics, process and challenges

Focusing on the concept of a logistics network, three categories appeared in the litera-

ture. Papers belonging to the first category are involved with forward logistics networks,

while those in the second category are interested in the reverse flow only. The third

category adopts an integrated approach that considers both forward and reverse flow si-

multaneously, in order to avoid the suboptimal solutions resulting from separated designs

[62]. Therefore, we split our literature review to the research area of network design with

forward, reverse and integrated logistics network.

2.2.1 Forward logistics network

In previous studies, the design of forward and reverse logistics networks were typically

separated. In the field of forward logistics (FL), many models were developed as part of

a traditional logistics network design. The common mixed integer linear programming

(MILP) model aims for the choice of facilities to be open and the distribution network

design to satisfy the demand with minimum cost.

Yeh [219] developed a MILP model for a supplier-production-distribution networks. He

revised existing mathematical models presented by other researchers.

Altiparmak et al. [9] designed a multi-objective mixed integer nonlinear model (MINM)

for a single product of a plastic company in a forward logistics network.

While most researchers in this area limited themselves to consider a single capacity level

for each facility, Amiri [11] proposed a MILP model for a multi-stage and multi-capacity

levels forward network design. The aim of this study was to determine the number, lo-

cation, and optimal capacity of facilities as well as the best strategy for distribution.

Syarif et al. [201] also proposed a MILP formulation, though in their case for a fixed

charge and multi-stage transportation problem for a single commodity forward supply

chain model.

A two-echelon facility location problem was studied by Tragantalerngsak et al. [206]. In

this work, each facility in the second echelon was limited in capacity and could only be

supplied by one facility in the first echelon. Also, each customer is serviced by only one

facility of the second echelon.

A different two-stage distribution-planning problem was addressed by Gen et al. [71] to

minimise the total cost including transportation and opening costs.

A multi-period, multi-product fuzzy production and distribution planning supply chain

model was presented by Aliev et al. [8]. They considered a trade-off between the filtrated
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fuzzy customer demand and the profit.

Fallah-Tafti et al. [57] developed a multi-objective closed-loop supply chain network.

Uncertainty from inexact cost coefficients and customer demands were considered in this

study.

A four-echelon supply chain network with shortages was promulgated by Khalifehzadeh

et al. [97]. The aim of the study was minimizing the operation cost of the whole supply

chain and maximizing the reliability of the system through a multi-objective mathemat-

ical model.

Hinojosa et al. [84] introduced a dynamic supply chain with some characteristics, like al-

lowing the carry over of stock in warehouses between consecutive periods. The objective

was to minimize the total costs, including transportation and inventory holding costs,

for products as well as fixed and operating costs for facilities to meet the demands of

different products specified over different time periods at various customer locations.

Lin et al. [113] formulated a mixed integer linear model by including the direct ship-

ment and direct delivery of logistics network as well as inventory. The authors’s idea was

having more productivity and flexibility can increase the efficiency of the supply chain

network.

2.2.2 Reverse logistics network

Due to legislative changes regarding End-Of-Life (EOL)[155] issues as well as economic

factors [10], considering the forward logistic network and omitting any reverse flow is

impractical. A reverse logistics network describes a relationship between the end-users

and facilities where new products are produce. When these two stages are considered

simultaneously in a network it is called a closed loop network, otherwise it is called an

open loop network [187].

A general review of the current developments in reverse logistics was presented by

Pokharel and Mutha [175]. They identified three factors, that differ for reverse logis-

tics and a traditional supply chain: 1: Most logistics networks are not equipped to

handle returned product movement; 2: Reverse distribution costs may be higher than

moving the original product from plant to customer; 3: Returned products may not be

transported, stored, or handled in the same manner as in the regular channel [189].

Üster et al. [208] considered a semi-integrated network design problem and solved it by

an exact method based on Benders decomposition. In this model, there is a limitation

that any customer can only be connected to a single supply source, which renders the
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model impractical.

Lites and Dekker [116] studied a stochastic mixed integer programming (SMIP) model

by considering demand uncertainties and quality factors as important issues in the re-

verse design. The objective of the proposed model is to maximize the total profit in a

sand recycling network. They developed their model for different situations dealing with

several scenarios.

In a study by Jayaraman et al. [92], an analytical model to minimize reverse distribu-

tion costs was developed for operations of hazardous products. These products are first

transferred to collection centers and then sent to refurbishing facilities. This MILP model

limited supply of customer demand to a single distribution center. In addition, there was

a tight bound on the number of collection and refurbishing sites. The presented model

is aimed to find the optimal number and location of collection and refurbishing centers,

as well as the flow of the hazardous products.

Another recent paper that consider reverse strategy is due to Min et al. [141]. The au-

thors designed a MINLP model to minimise the overall reverse logistics costs, including

spatial and temporal consolidation of returned products. In this study, the number of

products returned to users is known. A mixed-integer nonlinear model is provided in

order to find the optimal number and locations of collection points as well as centralized

return centers.

Salema et al. [188] found focusing on generality in reverse network is a critical need. A

mixed integer model is proposed for a reverse logistics network based on the following

conditions: 1. Capacities are limited, 2. multi-product supply chains are considered, 3.

uncertainty in product demands and returns are considered. The aim of this study is the

minimization of total cost while determining the number of products and establishing a

network for each product are considered in advance.

Aras et al. [12] probe a nonlinear model to assign the locations of collection centers in a

reverse logistics network. In contrast to other studies, they proposed a model that is ca-

pable of defining the optimal buying price of used products to maximize the total profit.

Du and Evans [51] developed a bi-objective reverse logistics network by third party lo-

gistics (3PL) providers for post-sale services. The objectives of the model included the

minimization of the tardiness and the costs for location and capacity decisions in a lo-

gistics network.

Alumur et al. [10] proposed a new multi-period, multi commodity reverse logistics model

and used a reverse bill of products to receive component commonality.

There are other studies on reverse logistics, that are limited to specific applications,
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such as carpet recycling by Louwers et al. [120] and Realff et al. [178], battery recycling

by Schultmann et al. [191] as well as Kannan et al. [94], tire recycling by Figueiredo

and Mayerele [60], paper recycling by Pati et al. [167], plastic recycling by Huysman

et al. [86], bottle recycling by Shen et al. [193], sand recycling by Listes and Dekker

[116]. Notable work with a remanufacturing focus was presented by Krikke et al. [102]

on copiers and Srivastava [195] on appliances and personal computers. Currently, no

general model for reverse logistics exists.

2.2.3 Integrated logistics network

In recent years, some researches started to integrate forward and reverse networks to

close products cycles.

Lee and Dong [108] proposed an MILP model, which is capable of managing the forward

and reverse flows at the same time for end-of-lease computer products.

Ko and Evans [101] developed a MINLP model considering 3-PLS service providers to

design an integrated forward/reverse logistics network.

Fleischmann et al. [62] analyzed two cases of photocopier remanufacturing and paper

recycling and proved that optimizing the forward and return network simultaneously is

more efficient than a sequential design of both networks at the point of cost saving.

El-Sayed et al. [53] gave a mathematical model to solve an integrated forward-reverse

logistics network design under statistic demand. Experimental work from the proposed

model illustrated that there is a direct relationship between the total expected profit and

demand mean and return ratio for a given capacity of the network.

Lu and Bostel [121] designed a two-level location problem as a MILP model with three

types of facility (producers, remanufacturing centers, and intermediate centers). This

model considers forward and reverse flows and their interactions simultaneously. The

focus of this research was on remanufacturing to reduce costs of production and raw

materials.

Pishvaee et al. [171] focused on an MILP model to integrate reverse logistics activities

into the forward supply chain. To deal with uncertainty, they presented a scenario-based

stochastic optimization model to minimise the total cost including fixed opening costs,

transportation cost, processing costs, and penalties for non-utilised capacities.

Salema et al. [187] focused on designing and planning supply chains with reverse dis-

tribution. In this study, the authors focused on the strategic and tactical levels of the

supply chain. Tactical decisions are summarized in production, storage, and distribution

planning and a network design is considered for strategic decisions.
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Pishvaee et al. [172] proposed a linear multi-objective programming model to improve

the total cost as well as responsiveness of the integrated forward/reverse logistics net-

work. Within this work, they allowed for a hybrid distribution-collection facility.

The overview of the literature on logistics network design is presented in Table 2.1.

The characteristics of the logistics network proposed in this dissertation is separated in

Table 2.1 to show the similarities and differences compared to previous studies.

The proposed integrated forward/reverse logistics network applied in this study is faced

with an additional characteristic that makes the problem more complicated. This addi-

tional feature is about flexibility in delivery path for forward distribution and presented

below.

2.2.4 Flexibility in delivery path

Customer satisfaction has an important role in the success of a business. In this re-

gard, companies are trying to increase customer satisfaction that requires supply chain

responsiveness [172; 98]. Fast and on time delivery is one of the main requirement of

each consumer. While all logistics networks aim to minimize the total cost, the purpose

of reducing delivery time often conflicts with the goal of decreasing logistics costs [225].

To deal with the issue of cost efficiency and network responsiveness simultaneously, re-

searchers have proposed models to optimize both in the supply chain network [172; 9].

However, results are typically limited to shipments between consecutive stages or just

indirect shipment mechanisms [172; 9; 51]. Lin et al. [113], formulated a MILP model

by including direct shipment and direct delivery as well as inventory control for a three

stages forward logistics network. Pishvaee and Rabbani [173] studied the responsiveness

of a three stage forward logistics network when (1) direct shipment between plant to cus-

tomer is allowed and (2) direct shipment is forbidden. They proposed two mixed integer

programming models for these conditions and proved that both of these problems can be

modeled by a bipartite graph.

Based on the above review, extending the following restrictions can be considered a

potential field of research:

• Flexibility in delivery paths as a measure to shorten the delivery time is typi-

cally ignored for forward logistics network and completely ignored for integrated

forward/reverse logistics networks.

• The total number of echelons in most of the developed integrated forward/reverse
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logistics network models is not more than five echelons.

• It is still a critical need to develop an efficient solution to cope with NP-hard

problems as well as a general model to be applicable to a wide range of industries.

Reverse distribution has received growing attention throughout this decade due to

governmental legislation on environmental protection as well as resource shortages [59;

155]. Therefore, management of product return flows is becoming an essential part of

each supply chain. However, considering reverse distribution through a separated design,

resulted in sub-optimal solution, [62]. To avoid this, the integrated design is suggested

[108; 210].

According to the above reviewed literature, various facility location models based on

mixed integer programming (MIP) were considered for determining maximal profit, op-

timal number, and the capacity of facilities as well as the optimal flow between them.

To fill the presented gaps and mentioned requirements, the problem addressed in this

work as a flexible integrated logistics network includes integrated design of forward and

reverse logistics as well as flexibility in delivery paths for a closed-loop supply chain

network with seven echelons. Figure 2.1 illustrates the framework of this research graph-

ically. The model aims to minimize total cost by finding the optimal number and capacity

of facilities as well as flow between them.

Due to the complexity of the proposed network, it is essential to develop an efficient

solution methodology.

2.3 Solution method

Generally speaking, network design problems belong to category of NP-hard problems

[52; 75; 74; 93] and therefore, traditional methods can not be appropriate to be applied

to them. There are three main options to cope with NP-hard problems: probabilistic

algorithms, approximation algorithms, and meta-heuristic algorithms. Approximation al-

gorithms are effective algorithms that are capable of finding good results close to optimal

solution. By applying this kind of algorithms, distance from the results to the optimum

must be known. Since upper bounds and lower bounds are difficult to calculate in the

proposed problem, approximation algorithms are not appropriate. On the other hand,

probabilistic algorithms guarantee finding a solution close to the optimum with high
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Figure 2.1: Framework of the flexible integrated forward/reverse logistics network.

probability. They are recommended as a solution methodology for NP-hard problems

when parameters are not exact. Since meta-heuristic algorithms can reduce the search

space and increase the solution quality, they got researcher’s attention. Meta-heuristics

are divided into two categories including ”single-point based algorithms” such as Tabu

Search (TS), Simulated Annealing (SA) and Hill Climbing (HC), and ”population based

algorithms” such as the Genetic Algorithm (GA), Ant Colony Algorithm (ACA) and Par-

ticle Swarm Algorithm (PSA). In single-based meta-heuristics, the algorithm is started

to search in the search space by a single point, while in population-based algorithms, a

population of solutions is considered.

To cope with the complexity of network design problems, many solution methodolo-

gies have been presented. Yeh [219] developed an efficient hybrid heuristic, which was

enriched by applying three different local search techniques for a mixed integer linear

program. Altiparmak et al. [9] solved a mixed integer linear program with a genetic

algorithm based on a priority-based encoding method. A heuristic solution approach

based Lagrangian relaxation was presented by Amiri [11] to cope with a mixed integer

linear programming model. Syarif et al. [201] considered a spanning tree-based GA using
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Prüfer number representation to solve a mixed integer linear programming model. Some

comparison between results obtained by this method and LINDO showed the efficiency

of the proposed method. Gen et al. [71] presented a priority-based genetic algorithm

(pb-GA) with a new decoding and encoding method for a distribution-planning problem.

Also, they introduced a new crossover operator called Weight Mapping Crossover (WMX)

and analysed the effect of the latter on the computational performance. They showed the

efficiency of the proposed method with regards to solution quality and computing time

in comparison to two different GA approaches. Jayaraman et al. [92] presented a new

heuristic solution method for a mixed integer linear programming. The algorithm has

three components: random selection of potential collection and refurbishing sites, heuris-

tic concentration, and heuristic expansion. In another study, Min et al. [141] designed

a mixed integer non-linear programming model. To solve the mathematical model a GA

is adapted. Du and Evans [51] considered a hybrid-scatter search method to solve a bi-

objectives reverse logistics network. Ko and Evans [101] proposed a GA-based heuristic to

solve an NP-hard problem presented as a mixed integer non-linear programming. Lu and

Bostel [121] developed a location problem as a mixed integer linear programming. The

model was solved using Lagrangian heuristics, which requires lower and upper bounds of

the objective function. Olivares-Benitez et al. [159] formulated by a bi-objective mixed

integer linear model for a two-echelon, single-product supply chain design network. For

the solution methodology, a meta-heuristic algorithm based on greedy functions, scatter

search, and path relinking was considered. A heuristic aimed at finding order quantities

in a supply chain problem is presented by Petrovic et al. [169]. Fuzzy sets are applied

in order to simulate uncertain demands and delivery due-dates. Performance of supply

chains based on uncertain parameters was investigated using a special simulating tool. A

supply chain network with the aim of optimizing inventory allocation and transportation

routing was proposed by Kristianto et al. [104]. A fuzzy shortest path into two-stage pro-

gramming to find the global optimum solution was the main contribution of this study.

Khalifehzadeh et al. [97] solved a four-echelon supply chain network with shortage prob-

lems using a comparative particle swarm optimization algorithm. A Genetic Algorithm

provided by Bahrampour et al. [15] as a solution methodology to study a three-stage,

multi-product supply chain network model. Pishvaee et al. [172] proposed a solution

algorithm based on a new dynamic search strategy using three different local searches

to find the set of non-dominated solutions. The authors compared their pareto-optimal

solutions to recent GA results. Pishvaee and Rabbani [173] worked on a forward logis-

tics network. To tackle this NP-hard problem, a novel heuristic solution method was

considered based on a new chromosome representation derived from graph theory. Al-
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though, typically, larger models are required to represent real supply chains, researchers

developed many heuristics [219; 92; 51; 11] and meta-heuristics, such as Genetic Algo-

rithm [75; 94; 9; 74; 93; 140; 212; 49], Simulated Annealing [103; 174; 91], Tabu search

[108; 200], Memetic Algorithm [172; 148], and Scatter Search [51]. However, there is still

a critical need to increase the efficiency of solution approaches in this area, especially,

when the complexity of the model increases ([128]).

Recently, Evolutionary Algorithms (EAs), have been successfully applied to solve hard

optimization problems [201; 3; 181; 216; 209]. EAs are population-based global search

methods based on the mechanism of natural selection in biological systems. They are

able to consider many points in the search space simultaneously and multiple searches

in different areas of the fitness landscape can be conducted at the same time, while

conventional search methods use a single point. This ability provides a high chance of

global convergence and renders the approach more powerful than traditional methods.

Therefore, EAs present a good potential for global exploration.

Among them, Genetic Algorithm (GA) is recognized as the most well-known class of

Evolutionary Algorithms. Genetic Algorithms are stochastic algorithms inspired by Dar-

win’s theory of evolution. Holland, in 1975, introduced a Genetic Algorithm to cope

with combinatorial problems for the first time, and since then they have rapidly been

implemented as one of the most powerful and efficient stochastic solution search pro-

cedures for solving several network design problems [67; 69]. Genetic Algorithms are

not dealing with decision variables and they do not need any domain knowledge of the

problem. They use a structure to employ genetic information in order to find new search

directions. They are based on coding and objective function for evaluating fitness. A

population of feasible solutions is generated. Typically, these solutions are in the form

of a string or chromosome. A selection strategy is applied to choose parents from the

population. Genetic Algorithms are implemented through genetic operators. The main

genetic operators observed in nature are reproduction, cross-over, and mutation [82; 69].

Offspring solutions are created with some of the characteristics of each parent based on

these genetic operators. These operators (mutation and cross over) are named as the in-

put variables of GA. It should also be noted that the crossover operator is usually applied

as the main Genetic operator. It has the main role in the performance of a Genetic Algo-

rithm, while a mutation operator is used as a background operator. Without cross over,

all we have is local mutation. This means that, changes will happen slowly and it will

be very hard to get our population out of a local optimum. We can make a pretty huge
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jump from either of the parents by applying cross over. Mutation operators concentrate

on the surroundings of a solution and make random small changes in chromosomes. It

is not applied to make a big move in an unknown region but to move slowly. Therefore,

there is a very low possibility that a particular random mutation will be useful [99].

Applying a population of solutions in GA allows for searching in multiple directions. On

the other hand, lack of enough search intensification is often considered a disadvantage

of a pure GA as there is no operator to go deep once a good area in the search space is

found. In this regard, Moscato and Norman first introduced the so-called Memetic Algo-

rithm (MA) [149]. The word ”meme” is a neologism, introduced by Richard Dawkins for

the first time [47]. Memetic Algorithms are hybrid EAs combining local searches with

a population-based strategy that is designed to perform global optimization. For this

reason, Memetic Algorithms are known under different names, such as ”hybrid genetic

algorithm”, ”genetic local search algorithm”, ”modified genetic algorithm” and ”adapted

genetic algorithm”[149; 221; 146; 131].

GAs are based on parental features while MAs consider non-parental features as well.

A meme in a Memetic Algorithm can be an idea, behavior, activity, concept or style

that spreads from person to person. It is considered as a unit of information that repro-

duces itself while people exchange ideas [47]. Unlike genes, memes are normally modified

through individual learning during an individual’s lifetime [47] and then passed on to the

next generation. Individual learning in this context is usually obtained by local search

strategy. For this reason, ”Memetic evolution” is a combination of Evolutionary Algo-

rithms with local search strategies that use the concept of meme and gene at the same

time. This reveals a capability to balance global and local searches. MAs attempt to

explore new regions in the solution space in order to make full use of the exploration

(to search the global optimum). Then they try to converge to an optimum solution by

exploiting the local search ability. This ability helps the algorithm to improve on the best

solution it has found so far by searching nearby the current solution. Hence, [114] indi-

cates that the solutions obtained by Memetic Algorithms are better than those obtained

by different solving methods, such as Simulated Annealing (SA), Mixed Variable Evo-

lutionary Programming (MVEP), and Integer Discrete Continuous Programming (IDC-

NIP). Therefore, the proposed Memetic Algorithm is appropriate for solving the proposed

mixed-integer optimization problem. Memetic Algorithm, as stochastic algorithms, are

capable of obtaining higher-quality solutions through additional local search space ex-

ploitation than Genetic Algorithm [114].
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Recently, Memetic Algorithms (MAs) obtained increasing attention from the evolution-

ary computation community (ECC) and have shown to be promising and effective, with

considerable success for solving difficult optimization problems in numerous applications

domains [80; 87; 204]. Therefore, Memetic Algorithms have become a popular approach

for various engineering optimization problems [127; 6; 204; 110].

The MA typically contains five components [225]:

• A representation of feasible solutions to the problem.

• A way to generate a population (an initial set of feasible potential solutions).

• An evaluation function: Evaluation is association of each solution with a fitness

value to see whether it will survive. The fitness of each solution is related to the

objective function value [16]. The fitness function to be used depends on the given

problem. In this study, the objective function is minimizing the total cost which is

including transportation and operation costs.

• Memetic operators, including a reproduction, crossover, and local search. By ap-

plying a reproduction operator, solutions are copied through the selection of the

more proper solutions. Crossover combines the features of two parent chromosomes

(feasible solutions) to create two offsprings by exchanging existing properties of the

parents. Local search methods are responsible for improving the solutions to a

problem by looking for the best solution in the neighborhood of the current solu-

tion. The idea is to create improvement by making some small changes. At each

iteration, the local search operator ideally improves the solution obtained by the

reproduction and crossover operators [145].

• Parameter values which include ”population size”, as applicable to the following

question, ”how many individuals should be in the population”, ”crossover rate”

that was raised with the question, ”what is the probability that the individual will

crossover?”, ”number of local search iteration” that was proposed with the question

”How many time should the local search be run?” and ”number of iteration” that

was raised by the question, ”How many time should we repeat this procedure?”[118].

Figure 2.2 shows the classifications of solution method clearly. Memetic Algorithms

(MAs) have been successfully applied to network design problems [20; 114]. The basic

feature of MA is its capacity for multi-directional and global search by generating a
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population of solutions as well as local search to improve intensification of the search.

In this chapter, we aim to provide a background to MAs and focusing on practical

applications thereof.

Figure 2.2: Classification of solution method.

2.3.1 Historical background of Memetic Algorithm

Moscato and Norman introduced Memetic Algorithm for the first time in 1989 [148].

The idea was to avoid ”biologically constraints” that may restrict progress, as well as

to consider cultural evolution. Ten years later, MAs population-based algorithms have

become a successful optimization approach, which is applied successively in a variety of

problem domains and particularly for NP-hard optimization problems [20; 114].

Traditional population-based Evolutionary Computation (EC) methods, such as Genetic

Algorithms (GAs), Differential Evolution (DE), and Particle Swarm Optimization (PSO)

try to optimize a problem by generating a population of feasible solutions and creating

new candidate solutions by combining existing ones. In contrast, MA intrinsically em-

ploys all available knowledge of the problem under study.

The word ”Meme” was introduced in the book ”The Selfish Gene” [47] by Richard

Dawkins, in 1976. ”Meme” is an abbreviation of a Greek word, ”mimema” (meaning
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”something imitated”, American Heritage Dictionary, [137]). The role of memes in cul-

tural evolution works like genes in genetic evolution. According to Dawkin‘s description:

”Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of making

pots or of building arches. Just as genes propagate themselves in the gene pool by leaping

from body to body via sperms or eggs, so memes propagate themselves in the meme pool

by leaping from brain to brain via a process which, in the broad sense, can be called imi-

tation.”[47]

Building on the statement above, in cultural evolution information is not transmitted

unchanged between individuals. The characteristics of a meme shows that communi-

cation can process and change information. These changes happen by incorporating

heuristics, approximation algorithms, local search techniques, specialized recombination

operators, truncated exact methods, etc. Most traditional evolutionary computation

can be considered as a search strategy with the aim of optimizing through competition,

while most MAs try to optimize by cooperation and competition. The success of MAs

can be explained by applying the different search approaches they incorporate to cover

diversification as well as intensification.

2.3.2 Basic concepts and definitions of Memetic Algorithm

Before proceeding to the description of an updated MA proposed in this study, some

basic concepts and definitions are provided in this section. We extended the definition

vocabulary from [149] in this section as well as the next section.

According to [149], ”an algorithm is a detailed step-by-step procedure for solving a com-

putational problem.” A computational problem denotes a class of algorithmically doable

tasks, is a problem with an input domain set of instances. For each instance, there is a

set of feasible solutions. A feasible solution is a set of values for the decision variables

that satisfies all of the constraints in an optimization problem. An algorithm should be

capable of solving a problem and giving at least one solution that satisfies the require-

ments of the problem or, in some cases, indicate that no feasible solution exists.

In optimization, finding a solution that is aimed at minimizing or maximizing a given

function is expected where defines as a certain feasible solution either an optimal solu-

tion. For each instance, there is a finite set of solutions. Each instance from this set

reveals a value obtained by a given objective function. Also, this objective function is

responsible for preferring one or more solutions between several feasible solutions, when
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necessary.

The solution selected from a not empty finite set of solutions is called ”best solution”

when no other solution can be found that improves the value of the objective function. In

the optimization, the best solution is the one, that minimizes or maximizes the objective

function. In this regard, to apply a search algorithm, we consider a set as a search space

for a combinational problem. In optimization problems at least one optimal solution from

a finite set of solutions is represented by one element in search space. The role of the

search space is to define a region including a set of possible solutions for an optimization

problem, where the search algorithm will work. In a few cases, some configurations in

the search space may results in an infeasible solution. In this situation, the algorithm

needs to be prepared to deal with this issue. If these capabilities are present, we have a

valid representation of the problem.

2.3.3 Designing a Memetic Algorithm

It is possible to design a general scheme for a Memetic Algorithm. A Memetic Algorithm

is a population-based algorithm and therefore the first step is to generate an initial,

feasible population. This population can be provided randomly or through an efficient

mechanism according to the problem. A population-based algorithm maintains an entire

set of candidate solutions, each solution corresponding to a unique point in the search

space of the problem. It can be considered as a procedure of modifying current candidates

in order to have a set of best candidates. To this end, in each iteration, a new population

is produced using the old population. Old population is defined as the current population

of the previous iteration. Reproduction take place according to the different mechanisms

used in the population algorithm. The newly selected configuration turns into the current

generation in the next step. There are two strategies for this selection: ”plus strategy”

and ”comma strategy”. In the plus strategy, the next population is selected from old

population and new population, while in comma strategy the next population is selected

just from new population. However, typically, keeping a fraction of old population and

new generation will results in a better configuration as it can cover more area of the

search space.

The algorithm is controlled by a fitness value related to the optimization problem. This

procedure is repeated till a certain termination condition is met. Traditionally, criteria

are a pre-specified number of iterations. However, applying a number of iteration which

no further improvement in the last i iterations have not been found, is more efficient.
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Each population-based search algorithm involves the recombination operators that are

engaged by two aspects: transmit the parental features or non-parental features. Also,

some operators can focus on both of these aspects at a same time.

Crossover, as one the basic operators, is responsible for transmitting the pure parental

feature to off-springs. This operator is designed to prevent extremely fast convergence

to a suboptimal solution but not go to deep to modify the current sub-optimal solution

in order to have more intensification.

Locality is one of the key issues of local searches and it is about navigating the search

space by iteratively stepping from one solution to one of its neighbours. The quality of

each neighbour is assessed by the objective function, which is problem dependent. The

most important issue that needs to be considered when selecting the class of changes

to be applied for local search methods is the ability of the proposed method to find a

sequence of changes that can achieve all other configurations in a neighborhood without

skipping. The aim of each local search method is to detect a local optimum, which is

the best of all present neighbors within the scale of fitness value. The whole process is

repeated until a termination condition is satisfied. The purpose of local searches are to

transmit new features from the neighbourhood. In this regard, ”mutation based” local

search mechanisms are applied to NP-hard problems and have obtained good quality

solutions [55]. In MAs, it is very common to apply local searches right after inserting a

cross over operator.

Selecting the particular type of operators is dependent on the characteristics of the prob-

lem as well as the representation method. No general advice is provided for it since some

limitations are included in any cases [149].

2.3.4 Application of Memetic Algorithm

In this section, we focus on the application of Memetic Algorithms to show how this

algorithm widely used throughout different areas. As Memetic Algorithms have been

successfully employed to several facets of real world problems, we split the application

into four different categories provided in Table 2.2 to Table 2.5. It should be noted that

many researchers applied some algorithms similar to Memetic Algorithms but named

them differently. Other names used such as hybrid Genetic algorithm, modified Genetic

algorithm, adapted Genetic algorithm or Genetic local search algorithm in the literature
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can be considered as a Memetic Algorithm.

More applications include, but are not limited to: medicine [77], economics [162], oceanog-

raphy [152], mathematics [215], imaging science and speed processing [183]. New appli-

cations are being developed constantly.

A supply chain is usually represented by a network that is called a supply chain net-

work. It contains some nodes that are connected by some arcs to each other. In recent

years many studies have been done to design different supply chain networks shown in

Table 2.3. These are NP-hard problems and by adding more features such as flexibility

in delivery paths and integration in design forward and reverse flow, they get even more

complex, with a larger search space. On the other hand, with the increase of the problem

scale, the traditional techniques are facing the challenge to effectively and efficiently solve

these complicated network design problems in acceptable CPU time. In this regard, de-

veloping a non-traditional solution methodology is needed in the area of network design

problems.

Memetic Algorithms are rarely employed as the solution methodology for supply chain

network problems since they are a very recent form of meta-heuristics, but lately they

have been shown to be promising and effective with considerable success in network de-

sign problems [65; 219; 172; 158].

One application of Memetic Algorithms in a supply chain network was presented by

Pishvaee et al. [172] and aimed to minimize total cost and maximize responsiveness of

the network. A Memetic Algorithm based on a new dynamic search strategy was applied

to find the set of non-dominated solution.

A mixed integer linear programming (MILP) is proposed by Lee and Dong [108] for an

integrated forward/reverse design of a supply chain network for a specific product. A

Tabu search-based Memetic Algorithm is performed to solve the problem.

Another study by Jamshidi et al. [88] looked at an NP-hard multi-objective supply chain

problem. The aim of the research was minimizing the total cost including transportation,

holding, and backorder costs. They utilized a Memetic Algorithm with a novel decoding

method and priority-based algorithm for the coding of the solution chromosomes.

Yeh [220] worked on a multi-stage supply chain network problem. The main purpose of

the study was to develop an efficient and effective algorithm to find a near optimal solu-

tion. A Memetic Algorithm was applied to find the strategy that can reveal the lowest

cost of the physical distribution flow.
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A mixed integer non-linear production-distribution planning model is discussed by Fahimnia

et al. [56] using a Memetic Algorithm. The real data of an automotive company is con-

sidered as a real world case study for this research.

This dissertation is focused on a seven stages integrated forward/reverse supply chain

network with flexible delivery paths. The aim of this study is minimizing the total cost of

the network which is including transportation and operation cost. We use a Memetic Al-

gorithm with a novelty in decoding method and search strategy for the solution method-

ology. From the computational point of view, we incorporate the graph structure in the

chromosome representation, thereby avoiding different model and solution methodologies

as, e.g., considered by Pishvaee and Rabbani [172].

2.4 Summary and conclusion

The content of this chapter is contained in two main segments. First, we were dealing

with finding an efficient assignment strategy to satisfy all requirements from source and

destination by the aim of minimizing total cost. These requirements include increasing

customer satisfaction, reducing network cost and delivery time. Customer satisfaction

creates a positive effect on any organization’s profitability. Satisfied customers form the

foundation of any successful business as it leads to repeat purchase, brand loyalty, and

positive word of mouth. In this regard, except normal delivery that connects each stage

to another one, two additional delivery paths were applied. This full delivery graph

in forward flow allows us to solve the conflicting goals profit and responsiveness, which

otherwise may lead to greater cost ([172]). On the other hand, competition and marketing

motives, economic impact, and concerns with the environment forced companies to accept

the concept of reverse logistics. It was observed that integrated forward and reverse

networks reveal better results compared to separated designs. This work addresses the

issue of flexible integrated, multi-stage, forward/reverse logistics network designs that

aims to minimize the total cost of opening facilities and transportation, as well as optimal

capacities of facilities and assigning product flows between them in the proposed network.

The presented network is not a case-based network and because of its generic features, it

can support other industries such as electronic and digital equipment industries and

vehicle industries. But network design problems are NP-hard and adding flexibility

in delivery path and integration design makes the problem more complex and search

space even larger. Developing an efficient solution methods is still a critical need in this

area. In the second segment we focused on the available options to tackle these NP-hard
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problems. Meta-heuristic algorithms were selected as the proper solution methodology

as they reduce the search space and increase the quality of solutions. After that we

need to know ”which meta-heuristic algorithm may be suitable for the proposed flexible

integrated network”. Genetic Algorithms (GAs) had been applied for many years as

the most successful algorithms in the area of network design problems. But lack of

enough intensification was always the main weakness of GAs. Memetic Algorithms were

introduced to cover this weakness while keeping the benefits of GAs. In this step we need

a mathematical model of the problem to understand the system behavior and ability. This

model must be able to model the problem as a system in total without splitting it to two

part: forward and reverse. Also it should be capable to consider three different delivery

paths. Therefore the next question we are facing is ”How can we model the problem

mathematically?”
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Table 2.1: Reviewed articles in logistics network design

Reference type of
networks(s)

Modeling Objective Solution
method

Network
organization

Other
Characteristics

Yeh [219] Forward MILP Min cost Hybrid heuristic Supplier
production
distribution

-

Altiparmark et al. [9] Forward MINLP Min cost
max customer service
min capacity utilization

GA Supplier
production
distribution

Multi objective
supply chain network

Amiri [11] Forward MILP Min cost LR-based heuristic Production
distribution

Multi capacity
Network

Syarif et al. [201] Forward MILP Min cost GA Supplier
production
distribution

-

Tragntalerngsak et al. [206] Forward MILP Min cost LR-based branch and
bound algorithm

Production
distribution
customer

-

Gen et al. [71] Forward MILP Min cost GA Production
distribution

-

Hinojosa et al. [84] Forward MILP Min cost LR-based heuristic Plant
warehouses

Multi commodity
multi period

Lin et al. [113] Forward MILP Min cost Hybrid
evolutionary
algorithm

Plant
distribution
retailer

Inventory control
different delivery paths

Krikke et al. [102] Reverse MILP Min cost Exact method Collection-inspection
recovery
distribution

-

Üster et al. [208] Reverse MILP Min cost Exact method Collection-inspection
recovery
production
distribution

Multi products

Listes and Dekker [116] Reverse SMIP Max profit Exact method Collection-inspection
recycling

Uncertainties in demand
and returned products

Jayaraman et all. [92] Reverse MILP Min cost Heuristic Collection-inspection
recovery

-

Salema et al. [188] Reverse SMIP Min cost Exact method Factories
warehouses
disassembly

Uncertainties in demand
and returned products-
multi products

Aras et al. [12] Reverse MINLP Max profit Tabu search
based heuristics

Collection-inspection
recovery

Considering buying price
of used products

Du and Evans [51] Reverse MILP Min tardiness
Min cost

Hybrid-scatter search Recovery
production
distribution

Multi objective
supply chain network

Alumur et al. [10] Reverse MILP Max profit Exact method Inspection
disassembly
recycling
remanufacturing
refurbishing

Multi period
multi commodity
considering the reverse-
bill of products

Min et al. [141] Reverse MINLP Min cost GA Collection-inspection
recovery

Multiple time network

Lu and Bostel [121] Integrate MILP Min cost Lagrangian relaxation
based heuristic

Collection-inspection
recovery
disposal
production
distribution

Lee and Dong [108] Integrate MILP Min cost Tabu search
based heuristics

Collection-inspection
recovery
production
distribution

-

Ku and Events [101] Integrate MINLP Min cost GA Recovery
production
distribution

-

Fleischmann et al. [62] Integrate MILP Min cost Exact method Collection-inspection
recovery
production
distribution

Exact method -

El-Sayed et al. [53] Integrate SMILP Max profit Exact method Supplier
distribution
disassembly
redistribution

Uncertainties in demand
and returned products-
multi echelon
multi period

Pishvaee et al. [172] Integrate MILP Max cost
max responsiveness

MA Collection-inspection
recovery
distribution
disposal
production

Multi objective
supply chain network

Pishvaee et al. [171] Integrate SMILP Min cost Exact method Production
distribution
collectionrecovery
disposal

Uncertainties in demand
and returned products

This thesis Integrate MILP Min cost MA Supplier
plant
distribution
retailer
collection-inspection
disposal

Flexible
delivery path
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Table 2.2: Application of Memetic Algorithm

Classical NP optimization problem

Problem references

Bin packing [179; 130; 166; 192]
Graph partitioning [27; 28; 43; 134]
Max independent set [4; 83; 186]
Min generalized assignment [41; 119]
Min graph coloring [44; 63; 122]
Min number partitioning [43]
Min travelling salesman [73; 43]
Multidimensional Knapsack [42; 180; 176; 184]
Non-linear integer programming [203; 207]
Parallel machine scheduling [40; 142; 129]
Quadratic assignment [26; 131; 43; 133]
Set covering [17; 89]
Set partitioning [109]
Single machine scheduling [107; 139; 64; 96; 124]

Table 2.3: Application of Memetic Algorithm

Other combinational optimization problem

Problem references

Degree-constrained minimum spanning tree problem [199; 36]
Flowshop scheduling [150; 151; 35; 164]
Frequency allocation [95]
Kauffman NK landscapes [132]
Maintenance scheduling [29; 30; 31]
Network design [65; 219; 172; 158]
Open shop scheduling [39; 58; 111; 54]
Partial shape matching [163]
Placement problems [196; 85; 105; 190]
Production planning [48; 143]
Project scheduling [156; 177; 7; 106]
Rostering [147; 34]
Task allocation [78; 117]
Timetabling [90; 146; 32; 33]
Transportation problems [68; 157; 224]
Uncapacitated hub location [1; 125]
Vehicle routing [223; 154; 144]
Warehouse scheduling [214]
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Table 2.4: Application of Memetic Algorithm

Machine learning and robotics

Problem references

Analysis of time series [160]
Manipulator motion planning [165]
Neural network training [197]
Path planning [226]
Pattern classification [138]
Pattern recognition [5]
Time optimal control [37]

Table 2.5: Application of Memetic Algorithm

Electronics and engineering

Problem references

Aeronautic design [25]
Analogue network synthesis [76]
Circuit design [123]
Computer aided design [18]
Power planning [218]
Semiconductor manufacturing [100]
Service restoration [14]
Structure optimization [217]
System modeling [213]
Traffic control [168]
Trim loss minimization [161]



Chapter 3

Modeling of the integrated, flexible

logistics network

3.1 Introduction

To manage a logistic system efficiently is a key issue for many companies as it is con-

nected with cost, delivery time, customer satisfaction, and environmental protection. To

achieve these aims, flexible and productive networks based on integration designs are of

particular interest. From the published literature [71; 121; 171; 187], it is understood that

the integrated forward/reverse logistics problems are different from traditional logistics

models. Due to their size and complexity, these problems require more efforts to ana-

lyze. Moreover, the significance of transportation costs and customer satisfaction spurs

an interest in developing a flexible network design model that makes the problem more

complex. This study proposes an integrated logistics network model with three kinds

of delivery paths which present a fully capacitated graph in forward flow. Minimizing

the total costs, reveals a mixed integer linear program (MILP). Then, the next step will

be modeling the presented integrated forward/reverse logistics network. Therefore, this

chapter presents a comprehensive mathematical model of an integrated, flexible logistics

network. This model will represent our problem as a complete system without splitting

into forward and reverse parts and will include three different delivery paths which allow

us to skip some stages.

The initial version of the proposed model, presented in this chapter, have been used

for a published paper in the 7th IFAC Conference on Management and Control of Pro-

duction and Logistics, Bremen, Germany, (E. Behmanesh and J. Pannek 2016), [20] as

36
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well as the Logistics Research journal, Springer, (E. Behmanesh and J. Pannek 2016),

[19].

3.2 Problem definition

In this work the integrated design of forward/reverse flows is considered to avoid sub-

optimal solutions derived from separated designs. As illustrated in Figure 3.1, in the

forward flow, new products are shipped from plant to customer through distribution and

retailer centers in a pull manner to meet the demand. Customer locations are assumed

to be predetermined and fixed. Also, three kinds of shipments are used in the proposed

network to enhance the logistic network’s efficiency and flexibility, including:

Normal Delivery: Products are transported from one echelon to another.

Direct Shipment: Products are transported from plants to customers directly.

Direct Delivery: Products are transported from distribution centers to customers or

from plants to retailers directly.

The three different types of arrows and colors considered in Figure 3.1 show the

differences of these delivery paths graphically. They cover all possible alternatives for

the proposed model in forward flow, that is given as a fully capacitated graph from plant

to customer.

In the reverse flow, returned products are collected by collection/inspection centers and,

after inspection, the recoverable products are shipped to the recovery facilities, and

scrapped products are shipped to disposal centers in a push manner for safe disposal.

The objective function is to minimize the total cost consisting of transportation and

processing costs. We assume that the numbers of suppliers and their capacities as well

as number of customers and their demands are known. The numbers of potential plants,

distribution centers, retailers, collection/inspection centers and disposal centers as well

as their maximum capacities are known in advanced. Additionally, the return rate,

recovery rate and disposal rate are also known. The problem is aiming to select the

subset of plants, distribution centers, retailers collection/inspection centers and disposal

centers to be opened as well as to configure the distribution network such that it satisfies

all capacities and demand requirements and minimizes the total cost.
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Figure 3.1: Underlying structure of MILP.

3.3 Model generalization

To support the presentation of the proposed mathematical model, we consider the general

model of our problem. To this end, we consider G = (N,E) to be a digraph where

N = {1, 2, ..., n} denotes the set of all nodes and E = {(i, j)|i, j ∈ N} the set of all edges
in the closed-loop network. The cost for node i ∈ N are denoted by ci, and the unit

transportation cost on edge (i, j) ∈ E are given by cij. The respective decision variables

yi ∈ {0, 1} and xij ∈ N0 represent whether a stage i ∈ N is used and which quantity is

transported between node i and j. To determine the optimal distribution network and

capacity of each node, we minimize the transportation and operation cost of the proposed
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network, which reveals the following mixed integer minimization problem:

min
xij ,yi

∑
(i,j)∈E

cijxij +
∑
i∈N

ciyi (3.1)

s.t.
∑

(i,j)∈E
aixij � biyi

xij ≥ 0, yi ∈ {0, 1}

Next, we specialize this model to reflect the problem properties.

3.4 Assumption of the proposed model

The previously described flexible forward/reverse logistics network setting represents an

integrated supply chain with seven echelons consisting of suppliers S, plants P , dis-

tribution centers Dc, retailers, R and customers C in forward flow, as well as collec-

tion/inspection centers Co and disposal centers Di in reverse flow, cf. Figure 3.1 for a

schematic sketch. We like to point out that in accordance with Figure 3.1, we consider a

hybrid manufacturing-recovery-recycling facility as well as a hybrid collection-inspection

facility. Establishing several facilities at the same location can decrease the price of the

whole network in comparison with separated design [108; 172].

To adapt problem (3.1), we impose the following assumptions:

• There are seven echelons: suppliers, plants, distribution centers, retailers, cus-

tomers, collection/inspection centers, and disposal centers.

• The set of nodes is given by N = S ∪ P ∪Dc ∪R ∪ C ∪ Co ∪Di.

• There are no edges between facilities of the same stage, the delivery graph is com-

plete in forward flow and the return graph is simple, i.e. E = (S×P )∪ (P ×Dc)∪
(P×R)∪(P×C)∪(Dc×R)∪(Dc×C)∪(R×C)∪(C×Co)∪(Co×Di)∪(Co×P ).

• The demands of each customer are deterministic and must be satisfied.

• The number of facilities per stage and respective capacities are limited.

• All cost parameters (fixed and variable) are known in advance.
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• The transportation rates are perfect and there are no storages. Moreover, the return

rate pCm as well as the disposal and recovery rates pCo
n and (1− pCo

n ) are fixed. All

returned products from each customer must be collected.

• The inspection cost per item for the returned products are included in the collection

cost.

• The un-recyclable returned products will be sent to the disposal center. The re-

maining products are returned to the original plant.

• The required recycled materials are assumed to be of the same quality as the raw

materials bought from suppliers and any plant chooses the raw material from the

collection/inspection center over suppliers.

• Customers have no special preference. It means, price is the same in all facilities

including: plants, distribution centers, and retailers.

3.5 Notation

To support the presentation of the proposed mathematical model, we first provide a

verbal description of the model as follows:

Cost = transportation costs + Fixed opening cost. (3.2)

The notation given in Tables 3.1-3.4 are used in the formulation of the MILP model.

Table 3.1: Model indicates

Indices
i Index of Supplier (i=1,2,...,I)
j Index of Plant (j=1,2,...,J)
k Index of Distribution Center (k=1,2,...,K)
l Index of Retailer (l=1,2,...,L)
m Index of Customer (m=1,2,...,M)
n Index of Collection/Inspection Center (n=1,2,...,N)
o Index of Disposal Center (o=1,2,...,O)
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Table 3.2: Model parameters

Parameters
I Number of Suppliers

J Number of Plants

K Number of Distribution Centers

L Number of Retailers

M Number of Customers

N Number of Collection/Inspection Centers

O Number of Disposal Centers

Si Bound of products supplied by Supplier i

P j Bound of products produced by Plant j

Dck Capacity of Distribution Center k

Rl Capacity of Retailer l

Dm Demand of Customer m

Con Capacity of Collection/Inspection Center n

Dio Capacity of Disposal Center o

pCm Recovery percentage of Customer m

PCo
n Disposal percentage of Collection/Inspection Center n
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Table 3.3: Model parameters

Parameters

cSPij Unit cost of transportation from Supplier to Plant

cPDc
jk Unit cost of transportation from Plant to Distribution Center

cDcR
kl Unit cost of transportation from Distribution Center to Retailer

cRC
lm Unit cost of transportation from Retailer to Customer

cCCo
mn Unit cost of transportation from Customer to Collection/Inspection Center

cCoDi
no Unit cost of transportation from Collection/Inspection Center to Disposal Center

cCoP
nj Unit cost of transportation from Collection/ Inspection Center to Plant

cPR
jl Unit cost of transportation from Plant to Retailer

cDcC
km Unit cost of transportation from Distribution Center to Customer

cPC
jm Unit cost of transportation from Plant to Customer

cPj Fixed cost of operating Plant j

cDc
k Fixed cost of operating Distribution Center k

cRl Fixed cost of operating Retailer l

cCo
n Fixed cost of operating Collection/Inspection Center n

cDi
n Fixed cost of operating Disposal Center o
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Table 3.4: Model variables

Integer

XSP
ij Amount of products transported from Supplier i to Plant j

XPDc
jk Amount of products transported from Plant j to Distribution Center k

XDcR
kl Amount of products transported from Distribution Center k to Retailer l

XRC
lm Amount of products transported from Retailer l to Customer m

XCCo
mn Amount of products transported from Customer m to Coll/Ins Center n

XCoDi
no Amount of products transported from Collection/Inspection Center n to Disposal Center o

XCoP
nj Amount of products transported from Collection/Inspection Center n to Plant j

XPR
jl Amount of products transported from Plant j to Retailer l

XDcC
km Amount of products transported from Distribution Center k to Customer m

XPC
jm Amount of products transported from Plant j to Customer m

Binary

XP
j

{
1 if Plant j is activated for production and remanufacturing
0 otherwise

XDc
k

{
1 if Distribution Center k is activated for distribution
0 otherwise

XR
l

{
1 if Retailer l is activated for distribution
0 otherwise

XCo
n

{
1 if Collection/Inspection Center n is activated for collectiong/ inspecting
0 otherwise

XDi
o

{
1 if Disposal Center o is activated for safe disposal
0 otherwise
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3.6 Mathematical formulation

Utilizing the notation of Tables 3.1-3.4, the structure of the MILP model can be presented

as follows. The objective of this model is to minimize the total cost of the proposed supply

chain. The first part of the cost function represents the variable costs, which are given

by the direct multiplication of the transportation cost and the quantity transferred from

the origin to the destination. The fixed costs of the network is given by the second part

of cost function. This reveals the cost function as follows:

min
I∑

i=1

J∑
j=1

cSPij ·XSP
ij +

J∑
j=1

K∑
k=1

cPDc
jk ·XPDc

jk +
K∑
k=1

L∑
l=1

cDcR
kl ·XDcR

kl

+
L∑
l=1

M∑
m=1

cRC
lm ·XRC

lm +
M∑

m=1

N∑
n=1

cCCo
mn ·XCCo

mn +
N∑

n=1

O∑
o=1

cCoDi
no ·XCoDi

no

+
N∑

n=1

J∑
j=1

cCoP
nj ·XCoP

nj +
J∑

j=1

L∑
l=1

cPR
jl ·XPR

jl +
K∑
k=1

M∑
m=1

cDcC
km ·XDcC

km

+
J∑

j=1

M∑
m=1

cPC
jm ·XPC

jm +
J∑

j=1

cPj ·Xp
j +

K∑
k=1

cDc
k ·XDc

k +
L∑
l=1

cRl ·XR
l

+
N∑

n=1

cCo
n ·XCo

n +
O∑

o=1

cDi
o ·XDi

o . (3.3)

To shorten notation, we omit the bounds on the parameters in the following presentation

of the model constraints.
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For one, the capacities in each node is limited.

J∑
j=1

XSP
ij � Si; ∀i ∈ I (3.4)

K∑
k=1

XPDc
jk +

L∑
l=1

XPR
jl +

M∑
m=1

XPC
jm � XP

j · P j; ∀j ∈ J (3.5)

L∑
l=1

XDcR
kl +

M∑
m=1

XDcC
km � XDc

k ·Dk; ∀k ∈ K (3.6)

M∑
m=1

XRC
lm � XR

l ·Rl; ∀l ∈ L (3.7)

J∑
j=1

XCoP
nj +

O∑
o=1

XCoDi
no � XCo

n · Con; ∀n ∈ N (3.8)

N∑
n=1

XCoDi
no � XDi

o ·Dio; ∀o ∈ O (3.9)

Secondly, the demands of customers have to be satisfied.

J∑
j=1

XPC
jm +

K∑
k=1

XDcC
km +

L∑
l=1

XRC
lm = Dm; ∀m ∈M (3.10)

Additionally, according to assumption, only a fraction pCm is returned by customers and

a fraction pCo
n of the returned products has to be disposed off. Apart from these dissipa-

tivities, the supply chain network is conservative, i.e. in-flow and out-flow in each node
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must be identical. These conditions reveal:

I∑
i=1

XSP
ij +

N∑
n=1

XCoP
nj =

K∑
k=1

XPDc
jk +

L∑
l=1

XPR
jl +

M∑
m=1

XPC
jm ; ∀j ∈ J

(3.11)

J∑
j=1

XPDc
jk =

L∑
l=1

XDcR
kl +

M∑
m=1

XDcC
km ; ∀k ∈ K (3.12)

J∑
j=1

XPR
jl +

K∑
k=1

XDcR
kl =

M∑
m=1

XRC
lm ; ∀l ∈ L (3.13)

PC
m · (

J∑
j=1

XPC
jm +

K∑
k=1

XDcC
km +

L∑
l=1

XRC
lm ) =

N∑
n=1

XCCo
mn ; ∀n ∈ N (3.14)

O∑
o=1

XCoDi
no = PCo

n ·
M∑

m=1

XCCo
mn ; ∀n ∈ N (3.15)

J∑
j=1

XCoP
nj = 1− PCo

n ·
M∑

m=1

XCCo
mn ; ∀n ∈ N (3.16)

Finally, we require the decision variables to be non-negative or binary, respectively.

XSP
ij , XPDc

jk , XDR
kl , XRC

lm , XCCo
mn , XCoDi

no , XCoP
nj , XPR

jl , XDcC
km , XPC

jm ∈ N ∪ {0} (3.17)

XP
j , X

Dc
k , XR

l , X
Co
n , XDi

o ∈ {0, 1}; ∀j ∈ J, k ∈ K, l ∈ L, n ∈ N, o ∈ O (3.18)

3.7 Summary and conclusion

After designing the network, modeling the network mathematically comes second. This

chapter has primarily focused on developing a general model for the presented flexible,

integrated, forward/reverse logistics network based on the mixed integer linear program-

ming. Then, assumptions, limitations, and notations were provided to adapt the problem.

Afterwards, the mathematical formulation was presented to describe the model mathe-

matically. The main features of the mathematical model are: capability to model the

problem as a complete system without splitting it into forward and reverse parts, consid-

ering three different delivery paths that reveal four different options for each customer,

and finding the best path. It is aimed at minimizing the total cost including transporta-

tion and operation cost, and dealing with long- and short-term decisions. Long-term

decisions are involved in determining the optimal number and capacity of facilities and
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short-term decisions aim at optimizing the distribution network.

As this is an NP-hard problem, and applying a flexible integrated model makes the

problem more complex. Although the problem can be formulated into an integer linear

program, it is not possible to compute a suitable solution for large size problems in ac-

ceptable time. Therefore, finding a proper solution methodology is a critical need in this

area.



Chapter 4

Proposed solution approach

4.1 Introduction

So far, we formulated the cyclic seven stage logistics network design. Our model is an

NP-hard problem [52; 75; 74; 93] and it can be reformulated into an integer linear pro-

gram, but we cannot compute a suitable solution for large-scaled problems within an

acceptable time. Three main options exist: probabilistic algorithms, approximation al-

gorithms, and meta-heuristic algorithms. Since meta-heuristic algorithms can reduce the

search space and increase the solution quality, they are selected as the solution method-

ology for the proposed network. According to [20; 114], Memetic Algorithms (MAs) are

appropriate for this kind of problem and showed great success. The basic feature of MA

is a multi-directional and global search by generating a population of solutions as well as

local search to improve intensification of the search.

In this chapter we provide an adaptation of a Memetic Algorithm according to the char-

acteristic of the proposed problem. The proposed Memetic Algorithm with a novel chro-

mosome representation including two segments and a neighborhood search mechanism

is the suggested solution methodology to deal with the proposed flexible integrated for-

ward/reverse logistics network. The chapter ends by providing an overall procedure for

the proposed Memetic Algorithm.

The initial content of this chapter have been published in the 7th IFAC Conference on

Management and Control of Production and Logistics, Bremen, Germany,(E. Behmanesh

and J. Pannek 2016), [20].

48
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4.2 General formulation

Genetic Algorithms (GAs), as the most famous Evolutionary Algorithms (EAs), have

been applied to network design problems for many years [69]. They are one of the most

applicable and powerful techniques known to be problem-independent. Their strategy is

based on solving the problems through coding space. From this point of view, they are

not only techniques or algorithms, they are a kind of art to cope with difficult-to-solve

problems in industrial engineering and computer communication network systems. Re-

cent studies showed a great advancement of GAs in solving network design problems [69].

However, the pure GA often suffers from lack of capability for enough search intensi-

fication [172]. In other words, GAs are not equipped with a process to get closer to

optimal solutions [112]. In this regard, to improve the intensification of the search,

Moscato and Norman [149], introduced a Memetic Algorithm (MA) that was enriched

with a local search operator. After that, MAs have become famous as population-based

heuristic search techniques for optimization problems like GAs, with additional local

search engine to refine individuals and make the algorithm stronger [20; 114].

Given the successful application of Memetic Algorithm to network design problems, we

develop a Memetic Algorithm to tackle a flexible integrated forward/reverse logistics

network problem. This research can be considered as an application of MAs to some

difficult-to-solve network design problems. Within this work, we design a Memetic Algo-

rithm to solve a flexible integrated forward/reverse logistics network. According to the

reviewed literature and above explanation, two major issues affect the performance of

Memetic Algorithm [212], i.e. the chromosome representation and the Memetic operators.

4.2.1 Chromosome representation

Memetic Algorithms are known to be problem-independent, and the chromosome rep-

resentation is one of critical reasons for this. A chromosome must have the necessary

gene information for solving the problem. Selecting a proper chromosome representation

greatly affects the performance of meta-heuristic algorithms. Therefore, the first step of

applying MA to a specific problem is to decide how to design a chromosome.

The first approach in chromosome representation in GAs was a mapping between po-

tential solutions and binary representations including repair procedures [69]. In this

approach it was necessary to adapt the problem into a binary representation. These lim-
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itations made the approach insufficient for providing successful applications particularly

for complex problems. To overcome these weaknesses, non-binary implementations for

solution representations as the second approach have been developed for specific prob-

lems. In this approach, adaptation are considered for GAs, instead of the problem. This

adaptation contains a modification of the chromosome representation of a potential solu-

tion and applying the proper operators. An encoding method is either direct or indirect.

In the direct encoding method, the whole solution for the problem is used as a chromo-

some, while in indirect encoding, only the required part of a solution is used. After that,

a decoding procedure is applied to generate solutions according to chromosomes. In the

third approach, adaptation algorithms, as well as the problem is considered. In this ap-

proach, the algorithm is trying to create a solution based a on combination of some items

under consideration [69]. This approach has recently been successfully implemented in

the area of industrial engineering and obtained significant success [38]. Within this work,

the chromosome is divided into two segments. For the first segment of the chromosome

representation, we are using the second approach in a direct way so that computational

time can be greatly cut down, and for the second segment, we adapt the third approach

to define different delivery paths.

The tree-based representation is known to be one way for representing network prob-

lems while using the second approach. Different methods have been developed to encode

trees. One of them is matrix-encoding, which was developed by Michalewicz [136]. In

this method, the solution is presented by a |K| · |J | matrix where |K| and |J | are the

number of sources and depots, respectively. Although this solution approach has a simple

representation, applying this method requires the development of a special crossover and

mutation operator for obtaining a feasible solution as well as huge amount of memory.

Another tree-based representation is the Prüfer number. The use of the Prüfer number

representation for solving various network problems was introduced by Gen and Cheng

[66]. It requires an array of the length |K| + |J | − 2 with |K| sources and |J | depots.
Since this method may compute infeasible solutions [93], a repair mechanism has been

developed. In this regard, Jo et al. [93] presented the procedure for repairing infeasible

chromosomes. Later, Gen et al. [72] introduced determinant encoding using priority that

does not need any repair mechanism to guarantee the feasibility of solutions. Solutions

are encoded as arrays of size |K| + |J |, in which the position of each cell represents the

sources and depots and the value in cells represent the priorities.

From the literature [212], we have found that both Prüfer and determinant encoding
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are applied for the encoding of the spanning tree problem. However, as the determinant

encoding overcomes the bottlenecks of Prüfer encoding [2; 182], such as infeasible repre-

sentation, complex calculation, and low locality, we utilize determinant encoding in our

study. In the following, encoding and decoding are discussed.

4.2.2 Random path-based direct encoding method

Previous researchers in this area presented networks with integrated design or different

delivery paths and also suggested different algorithms as solution methods [172; 9; 51].

But they rarely linked these additional features to solution method. In this study we

show how the integrated problem can be merged with a Memetic Algorithm using direct

encoding. We additionally show how applying the extended random path direct encoding

method can capture the complexity of a full graph and reduce the size of the encoding

and thereby computational time by developing a two segment approach.

The delivery and recovery path can be conventionally determined by applying the ran-

dom path direct encoding method introduced by Lin et. al. [67]. In this method the

decision variables are directly coded as integer-valued numbers. Using this method com-

putation time can be greatly cut down. The other major advantages obtained through

the use of this encoding schema are: simplified and effective representation of search

space, shrinking the encoding drastically and possibility to use repeated numbers during

applying operators.

One gene in a chromosome is characterized by two factors: locus, the position of the

gene within the structure of chromosome, and allele, the value the gene takes. In this

method, each gene is initialized with a random value from its domain and it contains

M groups where M is the total number of customers. Each group represents a delivery

path in forward flow as well as recovery path in reverse flow. Due to existence of three

different delivery paths in the proposed problem, we extended the random path-based

direct encoding method by adding a second segment into the chromosome. The proposed

approach uses a novel encoding schema composed of both binary and integer values.

4.2.3 Extended random path-based direct encoding

Although applying the new delivery paths improves the flexibility and efficiency of the

supply chain network, it makes the problem more complex. In Figure 4.1 the represen-

tation of the extended random path-based direct encoding method in two segments is

shown.
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Figure 4.1: Representation of extended random path-based direct encoding method.

The first segment is encoded by using the random path-based direct encoding method

that shows the delivery path for each customer. The second segment of the chromosome

contains two parts: the first part with J locus including the guide information regarding

plant assignments in the network, and the second part of length K containing the infor-

mation of the Distribution centers. As shown in Figure 4.1, the length of chromosome is

(7∗M)+J+K whereM , J andK are the total number of customers, plants and distribu-

tion centers respectively. Each sequence of seven subsequent genes forms a group. Each

group encodes four potential delivery paths through plant, distribution center, and re-

tailer to customer as well as a recovery path from customer through collection/inspection

to disposal center or plant. The first three alleles of a group represent the reverse flow of

the network, while the next four alleles of that group show the forward flow from supplier

to customers. As an illustration, a randomly assigned ID to these facilities in the reverse

and forward flow is shown in Figure 4.1. Each locus in the second part is assigned an

integer in the set {0, 2} for plants due to the existence of three delivery options for each

plant in the network. Regarding Distribution centers, an integer from {0, 1} is chosen to

represent the two respective delivery options. The second segment is involved by deter-

mining the sort of delivery path for the selected plant as well as distribution center in

the first segment.
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It should be noted that applying this encoding approach might generate infeasible so-

lutions, which violate the facility capacity constraint, hence a repairing procedure is

needed. If the total demand of a depot from a source exceeds its capacity, the depot will

be assigned to another source with sufficient product supply so that the transportation

cost between that source and the depot is the lowest. The procedure of encoding by

extended random path-based direct encoding is shown in Algorithm 1 below.

Algorithm 1 Initialization by extended random path-based direct encoding

Input: Number of customers M
Number of collection/inspection centers N
Number of disposal centers O
Number of plants J
Number of retailers L
Number of distribution centers K
Number of suppliers I

Step 1: � (first segment)
1: for i = 0 : M − 1 do
2: chk[7 ∗ i+ 1]← random(1, N)
3: chk[7 ∗ i+ 2]← random(1, O)
4: chk[7 ∗ i+ 3]← random(1, J)
5: chk[7 ∗ i+ 4]← random(1, L)
6: chk[7 ∗ i+ 5]← random(1, K)
7: chk[7 ∗ i+ 6]← chk[7 ∗ i+ 3]
8: chk[7 ∗ i+ 7]← random(1, I)
9: end for

Step 2: � (second segment, plant delivery path)
10: for i = 0 : J − 1 do
11: chk[7 ∗M + i]← random(0, 2)
12: end for

Step 3: � (second segment, Dc delivery path)
13: for i = 0 : K − 1 do
14: chk[7 ∗M + J + i]← random(0, 1)
15: end for

Output: Chromosome chk[·]

Remark 1: According to the assumptions presented in Chapter 3, returned products

have to be directed to the original plant. To follow this limitation, the third and sixth

position of first segment of the chromosome representation for any customer, should be

identical.

Remark 2: The state for the third and sixth position of first segment belong to the
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same plant and are always identical. Therefore, 6 has been considered as the number of

each unit, instead of 7, for the implementation part. It means that for given problem

with M customers, we have the length of an encoding 6 ∗M instead of 7 ∗M for the first

segment of chromosome representation.

4.2.4 Extended random path-based direct decoding

Decoding is the mapping from chromosomes to candidate solutions of the problem. As an

example, Figure 4.2 represents an instance of a delivery and recovery path in our model.

Figure 4.2: Delivery path for a sample of gene unit.

In each gene unit, four delivery paths can be designed by applying normal delivery,

direct shipment, and direct delivery. All of them are form a neighborhood. For instance,

we can obtain the neighborhood given in Algorithm 1 from the sample of gene unit shown

in Figure 4.2 that shows the delivery path to customer 2. In this sample, consider a

network design problem composed of two suppliers, four plants, four distribution centers,

five retailers in forward flow and four collection/inspection centers and two disposal

centers in backward flow. We start with supplier 2 and continue via plant 4, distribution

center 1 and retailer 3 in forward flow as well as collection/inspection center 3, disposal

center 1 and plant 4 in the reverse flow. Due to construction, four different delivery

paths are possible, cf. Figure 4.2. The delivery and recovery path 1 occurs if normal

delivery is chosen for all stages. By skipping distribution centers, path number 2 is

selected. Similarly, path number 3 is chosen if retailers are skipped. Last, if direct

shipment is selected, the delivery path number 4 will be implemented. An important

difference between the traditional random path-based direct encoding method and the

method adopted in this paper is that we include the delivery path information through
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the second segment. The detailed decoding procedure is shown in Figure 4.3. Each locus

in this segment is assigned to an integer in the range of {0, 1, 2} for plants and {0, 1} for
distribution centers. Here, we encode Normal Delivery for plants and distribution centers

by Pj = 0 and Dck = 0 respectively, where j and k denote the ID of the plant and of the

distribution center. Moreover, Pj = 0 and Dck = 1 as well as Pj = 1 represent Direct

Delivery and Pj = 2 Direct Shipment. The paths displayed in Figure 4.3 correspond to

respective choices, i.e. we have

Path 1 ⇐⇒ Pj = 0, Dck = 0

Path 2 ⇐⇒ Pj = 1, Dck ∈ {0, 1}
Path 3 ⇐⇒ Pj = 0, Dck = 1

Path 4 ⇐⇒ Pj = 2, Dck ∈ {0, 1}.

It should be noted that because the amount of returned products shipped to each one

should be known for decoding the forward flow, decoding of the forward flow is impossible

until the reverse flow is decoded.
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Figure 4.3: Presentation of the second segment of the extended random path-based direct
encoding.

4.2.5 Evaluation

In nature, fitter individuals have higher chances of survival to the next generation. By ap-

plying nature-based algorithms it is necessary to equip the algorithm with a mechanism

that leads the fitter individuals to survive. The evaluation process as a measurement

tool is responsible for calculating a fitness value for each individual. This information is

important in comparing individuals.

In our study, the evaluation assigns a fitness value to each individual based on its achieve-

ment of the objective function carried out using (3.3), thereby inducing a measurement.
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We apply the cost function as the fitness value. This fitness value is computed for the

decoded chromosome to analyze the accuracy and efficiency of the proposed MA.

4.2.6 Selection

Selection is one of the main stages of a Memetic Algorithm, while it plays the role of ad-

viser in Evolutionary Algorithms. By selection, individuals are chosen from a population

for later reproduction. Usually, selection is applied according to the fitness value for each

individual. We use the objective value obtained from (3.3) for each individual’s fitness

value. The most popular types of selection are roulette wheel, tournament, random, and

steady state [112]. In tournament selection, several tournaments are played among a

few individuals. The individuals are chosen at random from the population. Random

selection and not attending all individuals in tournaments are the disadvantages of this

method. In random selection, an equal chance is considered for all individuals, i.e., there

is no preference for fitter individuals to survive. In steady state selection, just a few

good chromosomes are used for creating new offspring and there is no chance for other

remaining chromosomes.

In the present work, we adopt the well-known roulette wheel selection for generating

the next generation of chromosomes [115]. The roulette wheel strategy is a probabilistic

selection based on fitness. Therefore, fitter individuals have a higher chance of mating

and propagating their features to the next generation. The roulette wheel selection in

contrast the other well-known types of selection mechanism tries to decrease the role of

randomness by considering the fitness value of individuals. On the other hand, it con-

siders a chance for all individuals while applying a selection pressure to the more fit in

the population, evolving fitter individuals over time. Therefore, evaluation and selection

play a very significant role in the evolutionary algorithms.

Applying roulette wheel selection is summarized in five steps as follows:

• Calculate the fitness function for any individual [fit(1), f it(2), ..., f it(popsize)].

• Calculate the selection probability for any individual [p(1), p(2), ..., p(popsize)] (In-

dividual i will have a probability p(i) = fit(i)
∑popsize

i=1 fit(i)
to be chosen.).

• Calculate the cumulative probability for any individual [cp(1), cp(2), ..., cp(popsize)]

(Individual i will have a cumulative probability cp(i) =
∑popsize

i=1 p(i)).

• Choose a random number R between 0 and 1.
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• Select an individual according to :

if R ≤ cp(1) then individual (1) is selected.

if cp(i− 1) < R ≤ cp(i) then individual (i) is selected.

Also the pseudocode of the roulette wheel selection is available in Algorithm 2.

Algorithm 2 Pseudocode of the roulette wheel selection

Input: Number of population n
1: for i = 1 : n do
2: Calculate the fitness function fit(i)
3: end for
4: for i = 1 : n do
5: Calculate the selection probability p(i)
6: end for
7: for i = 1 : n do
8: Calculate the cumulative probability cp(i)
9: end for
10: Loop until cross over population is full
11: for j = 1 : 2 do
12: Rj ← random(1, 0)
13: if Rj ≤ cp(1) then
14: Individual (1) is selected
15: end if
16: if cp(i− 1) < Rj ≤ cp(i) then
17: Individual (i) is selected
18: end if
19: Create offspring
20: end for
21: End loop

Output: Offsprings

4.2.7 Cross over

Selection alone is not enough and cannot produce any new individuals for the population.

Crossover is the crucially important recombination of both good parents’ feature to ex-

plore new solutions within the search space. The process of applying cross over is started

by fixing the probability for crossover (parameter pc). This parameter is implemented

as an input for the algorithm and gives us the number of chromosomes (pc ∗ popsize) to
which the cross over operator will be applied. There are several types of crossover opera-

tions developed in the literature, including: one-point, two-point, uniform, blending, and

position-based cross over, cf. [71; 69; 112]. Based on the characteristics of the chromo-

some and in order to generate new feasible individuals, two-point cross over is adapted
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since other types of crossover methods, may increase the chance of generating infeasible

solutions. The other major advantage of this method is its ability to create an extensive

search in the evolutionary process. Two point crossover method applies the steps shown

in Algorithm 3. This method can guarantee the generation of feasible offspring given

feasible parents. Accordingly, the characteristics of the two-point cross over method, is

that the genes from the same position are swapped. So, feasible genes of each parent are

exchanged with feasible genes from the other one. Therefore the new obtained offsprings

are still feasible. On the other hand, two-point crossover creates an extensive search in

the evolutionary process. In this type of crossover, two selected chromosomes, called

parents, are needed. As the next step, randomly taking two positions from parents are

required. Two new chromosomes, called offspring, are created by exchanging the data of

two parents. In practical terms, this operator creates a new supply chain configuration by

exchanging facilities at a chose stage. This idea is illustrated in Figure 4.4 by an example.

After applying the crossover procedure, our next step is merging the population which

includes the crossover population (offsprings) and the initial population (candidate’s par-

ents) to make them ready for the next step. Mutation and crossover operators in GA

can help the algorithm to avoid getting trapping in a local optimal. In MA, local search

has an important role to find optimal or near optimal solutions.

Algorithm 3 Pseudocode of the two point crossover for the proposed model

Input: Number of population n
Two parents chromosome p1, p2
Crossover probability Pc

1: for k=1: (2 ∗ round(Pc ∗ n/2))do
2: Generate two random crossover points a, b
3: Swap data between the two points of parents
4: end for

Output: Two offsprings ch1, ch2
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Figure 4.4: Two point cross over method.

4.2.8 Local search

Genetic Algorithms do not have access to a process to get closer to optimal solutions.

By applying the cross over operator and selecting the best individuals among initial

populations and the cross over population, the similarity among the individuals of the

new population is increased. This reveals the similarity in the fitness values of current

individuals as well. To overcome this weakness, one possible alternative is adding new

individuals into the current population. In this regard, MA came with a local search

strategy to modify individuals by searching in the neighborhood of an incumbent solu-

tion [67]. This neighborhood has the advantages of the incumbent solution and aiming

to find an improved solution by making some small changes. Memetic Algorithm mainly

focuses on the improvement for search operators. In this algorithm, a good combination

between exploration and exploitation will increase the chance of finding better solutions.

The local search, as the vital component in the framework of MAs, is responsible for

searching the neighborhood to improve the current solution. It is always employed on

the output of the crossover operator [145]. After crossover, the population is merged and

sorted according to its fitness value. To apply a local search process, three main require-

ments are needed: (1) an initial incumbent solution, (2) a definition of a neighborhood

for an incumbent solution, and (3) a process for selecting the new incumbent solution.

At each iteration, a neighborhood of the current solution is created based on one or more
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types of changes. In the next step, the best solution from this neighborhood is replaced

by the current solution [145] and then the neighborhood search starts again according to

the number of local search iterations. If no further improvement can be found, the new

solution is called a local optima for the given neighborhood. It means there is no better

solution in the neighborhood of the current solution. There is a direct relation between

the size of a neighborhood and the quality of the obtained local optima [99]. Considering

a larger size of a neighborhood has an important role to increase the chance of finding a

good solution but needs more computation time [99].

In this study, for local search technique we apply hill climbing-based random mutation

method based on the characteristics of the chromosomes, to generate more adapted off-

spring, reduce the chance of producing infeasible solutions and improve the chance of

finding better solutions. The following four major steps describe this method in details:

• Specify a position randomly to apply mutation for a given incumbent solution.

• Create a neighborhood by replacing the selected gene with feasible possibilities

using random mutation operator [135]. The procedure of random mutation operator

is simply selecting one position in the current individual and exchange the related

selected gene by a regenerated randomly new number [221].

• Select the best member of neighborhood according to the fitness value as the off-

spring. Figure 4.5 illustrates an example of the local search based-mutation method

while the number of the chosen gene in the whole network is 4.

• Repeat this procedure according to the number of local search iterations. This

number is considered as an input parameter of MA, and was first proposed by Hart

[79]. It refers to the number of iterations of local searches during each generation

cycle. For different problems, and according to the size of problems, the values of

local search iterations need to be changed [118]. In this work, an adaptive local

search engine is applied to adjust the number of local search iterations dynamically

during the process according to the size of the considered test problems. As the

number of local search iterations for the test problems should be determined by

their size, we set the number of local search iterations increasingly according to the

number of retailers (L) for all test problems. The number of retailer is selected as

it has the highest number among all facilities for each test problem.

The detailed procedure is shown in Algorithm 4. The individual showing the best fitness

is selected.
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Algorithm 4 Pseudocode of the local search for the proposed model
Input: One parent A

Number of customers M
Number of collection/inspection centers N
Number of disposal centers O
Number of plants J
Number of retailers L
Number of distribution centers K
Number of suppliers I

1: Randomly select position a in chromosome of A
2: b← mod(a, 7)

3: X ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I if b = 0

N if b = 1

O if b = 2

J if b ∈ {3, 6}
L if b = 4

K if b = 5

4: n← round(random(30/100 ∗X, 70/100 ∗X))
5: for i = 1 : n do
6: Ai ← A
7: c← random(1, X)
8: Ai(a)← c
9: Evaluate fitness function for Ai

10: end for
11: Select best chromosome among n new instances

Output: One offspring

Figure 4.5: Local search method.
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4.2.9 Termination criteria

The termination criteria can be characterized in terms of pre-determined computing time,

pre-determined number of generations or number of generations with no improvement

[12]. In this work, we are dealing with a strategic problem. Therefore, there is no time

limitation. Thus, the proposed algorithm in this study is terminated by two termina-

tion criteria. The first one is the total number of iterations, which is controlled by the

parameter ”maxit”. The second criterion is the maximum number of iterations without

improvement. If the best solution (incumbent) does not improve within this number, the

algorithm will be stopped. This number is given by, and thus the criterion is controlled

by, the parameter ”it”.

4.2.10 Overall procedure of proposed Memetic Algorithm

The utilized algorithm in this study is designed to establish the optimum link between the

opened facilities and aims to minimize the cost while satisfied demand. The pseudocode

of the proposed solution methodology is presented by Algorithm 5.

Algorithm 5 Pseudocode of the proposed Memetic algorithm

Input: Number of population n
Number of crossover population m

1: for k = 1 : n do
2: Encode chk[·] by Algorithm 1
3: Evaluate chk[·] according to fitness function
4: end for
5: Set i← 0
6: while termination condition not satisfied do
7: for k = n+ 1 : n+m do
8: Select two parents via roulette wheel
9: Generate chk[·] by Crossover Algorithm 3
10: end for
11: Merge ch[·] = ⋃

k=1:n+m chk[·]
12: Evaluate and sort ch[·] by fitness value
13: Select first n elements of ch[·]
14: Obtain ch[·] via Algorithm 4 with ch1[·]
15: if fitness value of ch[·] is better than of ch1[·] then
16: ch1[·]← ch[·]
17: end if
18: i← i+ 1
19: end while

Output: Chromosome of optimal solution ch1[·]
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Note that as we apply only one crossover and search step before selecting the next

generation, our method belongs to the class of steady state MA. Combining the afore-

mentioned components, the flow of the proposed algorithm is as follows:

• Step 1: (Data reading) Set parameters and read in the data of a given instance.

• Step 2: (Initialization) Create an initial random population by the method of

Section 4.2.5. Repeat this process according to the population size denote by N .

Each individual in this population represents a supply chain configuration for the

presented problem, (Algorithm 1).

• Step 3: (Evaluation) Calculate the fitness value of each individual in the popu-

lation using the objective functions presented in (3.3), (Algorithm 5, step 3 and

12).

• Step 4: (Selection) Apply selection operator using roulette wheel selection pre-

sented in Section 4.2.6, (Algorithm 2).

• Step 5: (Cross over) For each selected two parents, apply two-point crossover

operation (defined in Section 4.2.7 ) to create two offsprings by respecting to the

crossover probability Pc, (Algorithm 3).

• Step 6: (Merging, sorting) The new population obtained by the cross over operator

is merged with the initial population. The fitness values of all new individuals are

calculated and the new merged population is sorted according to their fitness value,

(Algorithm 5, step 11 and 12).

• Step 7: (Segregation) The best N individuals are reserved as the initial population

for the next generation, (Algorithm 5, step 13).

• Step 8: (Local search) The first individual that is the best is selected for the

local search operator (defined in section 4.2.8 ). If an improvement in the fitness

value occurred, the new individual is exchanged for the current one, otherwise the

previous one is kept as a member of population for the next generation, (algorithm

4). This step is repeated according to the number of local search iterations.

• Step 9: (Termination) The algorithm runs until one of the stopping conditions

is satisfied. If the pre-specified stopping conditions are not satisfied (defined in

Section 4.2.9 ) the algorithm needs to go back to Step 4, (Algorithm 5, step 6).

The procedure is displayed via a flowchart in Figure 4.6 to show the overall steps of the

solution method.
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Figure 4.6: The flow diagram of the proposed MA.
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4.3 Summary and conclusion

In this chapter, we focused on presenting a solution methodology for a comprehensive

mixed integer linear programming formulation for a seven stage closed-loop network

design problem. We applied the extended direct delivery path representation-based

Memetic Algorithm. Since the basic problem is NP-hard, the combination with flex-

ibility in the delivery path makes the search space of the problem much larger, more

complex and even harder to solve. Because existing methods are unable to solve this

problem, we proposed a Memetic Algorithm approach to compute a near optimal solu-

tion for large size network design problems. Also in this chapter, we introduced a new

chromosome representation for MA to enhance its search ability for the proposed flexible

model. We explained the details of the steps involved in the applied algorithm. Each

algorithm has some parameters that need to be investigated to reveal the best perfor-

mance. In this regard having some information about the parameters involved in the

presented Memetic Algorithm helps us to lead the algorithm in more efficient way.



Chapter 5

Effect of various parameters of

solution methodology

5.1 Introduction

Network design problems are NP-hard and developing an efficient solution methodology

is still a critical need in this area. In this regard, we adapted a Memetic Algorithm,

belonging to the class of meta-heuristic algorithms, with a neighborhood search mech-

anism and a novelty in population generation to find a near optimal solution for large

size problems. In order to increase the efficiency of the proposed algorithm, some in-

formation about the parameters applied in the Memetic Algorithm, such as number of

iteration, local search iteration, population size, and cross over rate in format of a pa-

rameter analysis are required. To this end, studying the effect of these parameters is the

main contribution of this chapter.

The initial results of this chapter have been presented in the 28th European confer-

ence on operation research, Poznan, Poland, 2016 (E. Behmanesh and J. Pannek 2016)

and some of the final results of this chapter have been published in the ”Mathematical

Problems in Engineering” journal, (E. Behmanesh and J. Pannek 2017) [24].

5.2 Various parameters of solution methodology

There are some studies regarding the effect of different parameters of meta-heuristic al-

gorithms applied for logistics network design problems.

67
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Lee and Dong [108] proposed a MILP model, which can simultaneously manage the

forward and reverse distributions at the same time for end-off lease computer products.

Regarding the solution methodology, they used a Memetic Algorithm based on a Tabu

Search. They observed that the maximum number of iterations does not make a signif-

icant impact to the performance of the proposed heuristics in all the presented five test

problems. From their result, it is clear that about 80 percent of the progress towards the

optimum is obtained within 20 iterations. They also presented some results with different

number of iterations within a neighborhood search. Since this work was focusing on a

specific case study for the recovery of end-of-lease computer products, the lower bound

of total cost in the distribution network was available and adapted for the purpose of

solution comparison. The computation times for the heuristic presented in this study

increases reasonably as the problem size increases.

Syarif et al. [201] proposed a MILP formulation for a fixed-charge and multi-stage trans-

portation problem. A spanning tree based Genetic Algorithm was applied to solve this

problem. Based on their results, the cross over rate is suggested to be equal to 0.4, the

mutation rate is fixed as 0.2 and the population size is set to 100. To have more informa-

tion about the proposed algorithm, they divided each test problem into three numerical

experiments by giving different population size. They concluded that since the search

space for large size problems is so huge, it is very important to set the experiment with

reasonable population size and maximum generation in order to ensure increased chances

for good results.

Wang and Hsu [212] presented a closed-loop model with a spanning-tree based Genetic

Algorithm. In this study, the cross over rate is fixed as 0.4, the mutation rate 0.2, and for

the population they considered different numbers to observe its influence with respect to

problem size. Moreover, several conditions are settled for number of generations, com-

puting time and fitness convergence. Fitness convergence appears when all chromosomes

in the population have the same fitness value. The authors stop the evolutionary process

in their implementation when the number of iterations without improvement in fitness

value was 10. At the same time, they imposed the maximal number of generations to

be 750 as another stopping criterion. From simulations, the authors realized that in

the proposed algorithm increasing the population size improves accuracy for large size

problems only slightly while the required computation times was huge. Therefore, they

concluded that using large population size for large size test problems is not sufficient.
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The extended version of a two stage transportation problem was developed by Gen et al.

[71] to minimize total cost, including opening cost of distribution centers and shipping

cost from plant to distribution center as well as distribution center to customers. As

solution methodology, a priority-based Genetic Algorithm, was presented using a new

cross over method called Weight Mapping Crossover (WMX). Simulations were carried

out in two stages. In the first stage, the authors investigated the effect of different combi-

nations of cross over and mutation operators. The aim of this stage was to find the best

combination among the 8 possibilities given by 4 cross over and 2 mutation methods.

In the second stage, each test problem was divided into three numerical experiments to

assess the effect of population size and number of generations on the performance of the

proposed Genetic Algorithm. In addition, to show the performance of the priority-based

Genetic Algorithm, another chromosome representation, called the spanning tree-based

Genetic Algorithm using Prüfer number was considered. Statistical analysis using differ-

ent population sizes and numbers of generations showed the improved performance of the

priority-based Genetic Algorithm considering the average performance. Yet, it required

more computation time in comparison to the spanning-tree based Genetic Algorithm.

Regarding the second stage, the results showed an improvement in the quality of solu-

tion with increasing the population size as well as number of generations. The authors

mentioned that a trade-off between solution quality and computation time exists.

Experiments on Memetic Algorithms have shown that there are two major impact sources

affecting their performance [212]. One of them is chromosome representation, and the

second one determined as the Memetic operators. Here, we utilize our chromosome repre-

sentation from [19] and analyze the effect of various parameters on the Memetic operators

regarding both performance and computing time. We particularly focus on four factors

that are defined as the given inputs to the algorithm. These factors include:

• number of iterations,

• population size,

• number of local search iterations, and

• cross over rate.
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5.3 Design of experiments

Since the logistics network framework in this study differs from previous studies, we

generated six small and medium size test problems with 128, 209, 234, 468, 1006 and

1780 decisions variables, cf. Table 5.1, to assess the effect of parameters of the developed

MA, mentioned in Section 5.2. Other parameters of the logistics network were generated

randomly using uniform distributions, cf. Table 5.2. To show the performance of the pro-

posed MA, we employed the Branch-and-Bound Algorithm from LINGO15 to solve the

optimization problem. Respective results are included in Table 5.1. Each test problem

has been solved 20 times to test the robustness of the results.

Table 5.1: Settings of test problems

Problem 1 2 3 4 5 6

Supplier 2 2 2 2 3 4
Plant 2 4 3 4 6 8
Distribution 5 6 8 10 15 20
Retailer 8 10 9 16 24 32
Customer 2 2 3 4 6 8
Collection/Inspection center 2 2 3 4 6 8
Disposal 1 1 2 2 2 4
Total number of facilities 22 27 30 42 62 84
Total number of possible routes 110 218 294 432 966 1728

Solution by LINGO 2905 2345 2335 1160 4100 11365

5.4 Termination condition

Traditionally [185], termination conditions for Genetic and Memetic Algorithms include

execution time, bounds on the number of generations or the evaluations of the fitness

function, or may be triggered if the chance of achieving significant changes in the next

generations is excessively low. For the first two alternatives, we require some knowledge

about the problem or solution. In contrast to that, the third one does not require

such knowledge and may be implemented, e.g., by imposing a bound on the number of

iterations without improvement.
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Table 5.2: Parameters values used in the test problems

Parameters Range

bj, j ∈ S Uniform (200,1100)
bj, j ∈ P Uniform (100,1000)
bj, j ∈ Dc Uniform (50,900)
bj, j ∈ R Uniform (50,850)
bj, j ∈ D Uniform (100,500)
bj, j ∈ Co Uniform (20,100)
bj, j ∈ Di Uniform (20,100)
pCj 10 %
pCo
j 50 %
cij Uniform (1,3)
cj, j ∈ P Uniform (100,2500)
cj, j ∈ Dc Uniform (100,2100)
cj, j ∈ R Uniform (100,400)
cj, j ∈ Co Uniform (100,500)
cj, j ∈ Di Uniform (50,400)

5.5 Computational result

First of all, we note that our implementation was written in MATLAB R2015b and run

on the PC with Intel� CoreTM i5 2.40GHz with 12 GB RAM. For the implementation,

six test problems are considered by different sizes using Table 5.1. This section includes

four parts and each part aims to investigate effect of one parameter on the overall system.

5.5.1 Number of iteration without improvement

During our simulations, we observed that a specific maximal number of iterations without

improvement cannot be chosen uniformly for all test problems. We found for larger size

problems, with bigger search space we need to apply more iterations to enhance the chance

of finding good results. Hence, in a first step we determined the number of iterations

without improvement for each test problems specifically. To this end, we considered

several instances and selected the largest candidate for which significant improvement

may be achieved.

To assess the effect of the termination criterion on the proposed MA, we imposed a

maximum iteration number of 200 and varied the bound on the number of iterations

without improvement for the test problems. As the criterion appears to be depending on

the size of the problems, we considered different ranges for the bound, cf. Figures 5.1(a),
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5.1(b), 5.2(a), 5.2(b), 5.3(a), and 5.3(b). Table 5.3 is available to present more details.

(a) Test problem No.1 (b) Test problem No.2

Figure 5.1: Gap of the proposed MA for different bounds on the number of iterations
without improvement (Test problem No.1 and 2)

(a) Test problem No.3 (b) Test problem No.4

Figure 5.2: Gap of the proposed MA for different bounds on the number of iterations
without improvement (Test problem No.3 and 4)
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(a) Test problem No.5 (b) Test problem No.6

Figure 5.3: Gap of the proposed MA for different bounds on the number of iterations
without improvement (Test problem No.5 and 6)
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Table 5.3: Sensitivity analysis for maximum number of iterations without improvement

Test problem number 1

Max number of iteration without improvement Min-cost Max-cost Ave-cost

2 2095 3365 3028

4 2905 2945 2915

6 2905 2945 2911

8 2905 2945 2907

10 2905 2905 2905

Test problem number 2

Max number of iteration without improvement Min-cost Max-cost Ave-cost

4 2345 3545 2456

6 2345 3145 2451

8 2345 2885 2381

10 2345 2885 2378

12 2345 2885 2378

Test problem number 3

Max number of iteration without improvement Min-cost Max-cost Ave-cost

6 2335 2815 2460

8 2335 2695 2418

10 2335 2535 2360

12 2335 2535 2360

14 2335 2535 2345

Test problem number 4

Max number of iteration without improvement Min-cost Max-cost Ave-cost

5 1160 1860 1223

10 1160 1840 1208

15 1160 1730 1195

20 1160 1660 1188

25 1160 1360 1184

Test problem number 5

Max number of iteration without improvement Min-cost Max-cost Ave-cost

10 4100 5490 4325

15 4100 5490 4265

20 4100 4690 4218

25 4100 4690 4196

30 4100 4320 4282

Test problem number 6

Max number of iteration without improvement Min-cost Max-cost Ave-cost

15 11475 12755 12022

20 11475 12215 11880

25 11365 12175 11870

30 11365 12175 11822

35 11365 12175 11813
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These bar charts allow us to identify the critical range for our braking criteria. For

example, given test problem 1, choosing the maximum number of iterations without

improvement to be 10 is advantageous from an performance point of view as the algorithm

can find the optimal solution each time. But we consider this bound to be set to 6 to

assess the effect of other parameters.

Additionally, we computed the minimum, maximum, and average number of iterations

and selected the average number of iterations to fix the number of iteration for further

assessment. Note that the minimum number of iteration is not sufficient and maximum

number of iterations is too large to assess the effect of other parameters. Strictly speaking,

the number of iterations should be high enough as to obtain good results, but not too high

to avoid influencing other parameters. Setting the maximal number of iterations without

improvement at 6 reveals the average number of iterations for test problem number 1 to

be 9. Similarly, 8, 14, 20, 25 and 30 are selected as the maximal number of iteration

without improvement for test problems numbers 2 to 6. According to these selections,

we obtain 14, 22, 39, 43, and 60 as the average number of iterations respectively.

5.5.2 Number of population

Population size is often specified by the user and remains fixed [170]. In most recent stud-

ies, the population size is considered as a problem-independent, but algorithm-dependent,

variable, and 50 to 100 individuals are typically chosen. It is found that an improper

choice of the population size may lead the algorithm to be less efficient [170]. However,

there is a clear relation between the population size and the convergence speed. To see

the effect of population size on the proposed Memetic Algorithm, four different popula-

tion size settings with 40, 60, 100, and 200 individuals were considered, cf. Figures 5.4(a),

5.4(b), 5.5(a), 5.5(b), 5.6(a), and 5.6(b). More details are available in Table 5.4.
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(a) Problem No.1 (b) Problem No.2

Figure 5.4: Gap of the proposed MA for different population sizes

(a) Problem No.3 (b) Problem No.4

Figure 5.5: Gap of the proposed MA for different population sizes

(a) Problem No.5 (b) Problem No.6

Figure 5.6: Gap of the proposed MA for different population sizes
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Table 5.4: Sensitivity analysis based on different population size

Test problem number 1

Population size Min-cost Max-cost Ave-cost

40 2095 3365 2938

60 2905 2945 2909

100 2905 2945 2907

200 2905 2905 2905

Test problem number 2

Population size Min-cost Max-cost Ave-cost

40 2345 3205 2437

60 2345 2405 2375

100 2345 2405 2351

200 2345 2345 2345

Test problem number 3

Population size Min-cost Max-cost Ave-cost

40 2335 2795 2436

60 2335 2535 2370

100 2335 2535 2345

200 2335 2335 2335

Test problem number 4

Population size Min-cost Max-cost Ave-cost

40 1160 1730 1223

60 1160 1530 1208

100 1160 1360 1205

200 1160 1230 1177

Test problem number 5

Population size Min-cost Max-cost Ave-cost

40 4100 4720 4332

60 4100 4490 4265

100 4100 4300 4252

200 4100 4190 4167

Test problem number 6

Population size Min-cost Max-cost Ave-cost

40 11425 12890 12030

60 11395 12425 11883

100 11395 12125 11845

200 11365 12115 11704
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5.5.3 Number of local search iteration

Based on our simulations, we observed that a predefined number of local search iterations

may render the method to be ineffective for larger test problems. To determine the effect

of the number of local search iterations on the performance of the proposed MA, we

imposed different bounds for the test problems according to their size, cf. Figures 5.7(a),

5.7(b), 5.8(a), 5.8(b), 5.9(a) and 5.9(b). Table 5.5 shows more details for respective

results.

We increased the number of local search iterations in accordance with the size of test

problems. Since the number of echelons in each stage is increased by enlarging the size of

test problems, we linked the number of local search iterations to the number of disposal

centers O, Plant J , Distribution centers K and retailers L respectively.

(a) Problem No.1 (b) Problem No.2

Figure 5.7: Gap of the proposed MA for different number of local search iterations

(a) Problem No.3 (b) Problem No.4

Figure 5.8: Gap of the proposed MA for different number of local search iterations
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(a) Problem No.5 (b) Problem No.6

Figure 5.9: Gap of the proposed MA for different number of local search iterations
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Table 5.5: Sensitivity analysis based on different number of local search iterations

Problem number 1

Number of local search iterations Min-cost Max-cost Ave-cost

1 2905 3365 2930

2 2905 3365 2930

5 2905 2945 2909

8 2905 2945 2909

Problem number 2

Number of local search iterations Min-cost Max-cost Ave-cost

1 2345 3145 2456

4 2345 3055 2451

6 2345 3055 2381

10 2345 2405 2378

Problem number 3

Number of local search iterations Min-cost Max-cost Ave-cost

2 2335 2635 2427

3 2335 2535 2397

8 2335 2535 2377

9 2335 2535 2370

Problem number 4

Number of local search iterations Min-cost Max-cost Ave-cost

2 1160 1860 1225

4 1160 1860 1214

10 1160 1530 1211

16 1160 1530 1208

Problem number 5

Number of local search iterations Min-cost Max-cost Ave-cost

2 4100 4720 4360

6 4100 4540 4284

15 4100 4490 4277

24 4100 4490 4265

Problem number 6

Number of local search iterations Min-cost Max-cost Ave-cost

4 11795 12875 12510

8 11725 12805 12145

20 11535 12695 12068

32 11395 12425 11883
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5.5.4 Cross over rate

Cross over is a process of taking more than one parent chromosome to produce an offspring

chromosome. There is no single best setting to choose the cross over rate. It depends on

the algorithm and specific problem to which it is applied. Lowering the crossover rate

will leave more individuals unchanged in the next generation, while increasing the cross

over rate leads to an increased search space for the method. To recognize the effect of

cross over rates on the proposed Memetic Algorithm, three different cross over rates, 0.3,

0.5, and 0.7 were considered as low, medium, and high cross over rates respectively, cf.

Figures 5.10(a), 5.10(b), 5.11(a), 5.11(b), 5.12(a) and 5.12(b). Table 5.6 covers all details

of the obtained results.

(a) Problem Nr.1 (b) Problem Nr.2

Figure 5.10: Gap of the proposed MA for different cross over rates

(a) Problem Nr.3 (b) Problem Nr.4

Figure 5.11: Gap of the proposed MA for different cross over rates



Chapter 5. Effect of various parameters of solution methodology 82

(a) Problem Nr.5 (b) Problem Nr.6

Figure 5.12: Gap of the proposed MA for different cross over rates
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Table 5.6: Sensitivity analysis based on different cross over rate

Test problem number 1

Cross over rate Min-cost Max-cost Ave-cost

0.3 2095 3365 2938

0.5 2905 2945 2909

0.7 2905 2945 2909

Test problem number 2

Cross over rate Min-cost Max-cost Ave-cost

0.3 2345 3205 2419

0.5 2345 2405 2375

0.7 2345 2405 2363

Test problem number 3

Cross over rate Min-cost Max-cost Ave-cost

0.3 2335 2695 2414

0.5 2335 2535 2370

0.7 2335 2535 2355

Test problem number 4

Cross over rate Min-cost Max-cost Ave-cost

0.3 1160 1660 1231

0.5 1160 1530 1220

0.7 1160 1360 1205

Test problem number 5

Cross over rate Min-cost Max-cost Ave-cost

0.3 4100 4490 4338

0.5 4100 4490 4265

0.7 4100 4300 4259

Test problem number 6

Cross over rate Min-cost Max-cost Ave-cost

0.3 11395 12425 12048

0.5 11385 12425 11883

0.7 11375 12405 11872
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5.6 Result analysis

To analyze the proposed Memetic Algorithm, the error percentage of its solution is cal-

culated according to

Error percent =
MAaverage answer − LINGOanswer

LINGOanswer

(5.1)

Figure 5.13(a) shows the variations in runtime for increasing the number of iterations

without improvement. This behavior is similar for all six test problems and directly

connected to additional iterations of the algorithm.

(a) Runtime of the proposed MA for different num-
ber of iterations without improvement

(b) Gap of the proposed MA for different number
of iterations without improvement

Figure 5.13: Effect of different numbers of iterations without improvement

Figure 5.13(b) shows a general relation between number of iterations without im-

provement and the error percentage for all six test problems. We observe that the error

percentage is decreasing for increasing bounds. More iterations led the algorithm to im-

proved results and a decreasing error percentage.

As Figures 5.13(a) and 5.13(b) show, the solution gaps are shrinking for enlarged num-

bers of iterations without improvement. Since the latter incurs higher computing times,

this parameter should be increased only up to a tolerable computing time.

To assess the effect of the population size, Figures 5.14(a) and 5.14(b) allow us to con-

clude that the error percentage is decreasing for enlarged populations, again at the cost

of increased computing time. The comparison between with population sizes indicates

that the two population sizes 60 and 100 have an acceptable performance with respect

to the solution gap criterion and runtime. Although population size 200 has a better

efficiency regarding solution, the required computation times are huge.
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(a) Runtime of the proposed MA for different pop-
ulation size

(b) Gap of the proposed MA for different popula-
tion sizes

Figure 5.14: Effect of population sizes

Regarding the effect of the number of local search iterations, from Figures 5.15(a) and

5.15(b) we observe a general decrease in the error percentage by increasing the local

search iteration parameter as well as a general growth in runtime. The increased compu-

tation requirements are due to the additional local search steps. Because of the beneficial

(a) Runtime of the proposed MA for different num-
ber of local search iterations

(b) Gap of the proposed MA for different number
of local search iterations

Figure 5.15: Effect of different number of local search iterations

impact of this parameter on the quality of the solution, we can improve the latter at the

cost of computing time. From Figures 5.16(a) and 5.16(b) we observe that increasing the

cross over rate causes the error percentage to decrease and the runtime to increase. The

latter is due to the additional cross over operations.

The comparison between different cross over rates illustrate that the two cross over

rates 0.5 and 0.7 have an acceptable performance in terms of both solution gap and com-
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(a) Runtime of the proposed MA for different cross
over rates

(b) Gap of the proposed MA for different cross over
rates

Figure 5.16: Effect of different cross over rates

putation time.

Consequently, increasing or decreasing each parameter is based on the manager’s empha-

sizing either the accuracy or efficiency of the algorithm. For example, if the managers

set the acceptable error rate in advance, the population size of 60 can be used in all test

problems with maximum error rate of 4.5 %. On the other hand, by sacrificing efficiency,

more accurate results and lower error rates can be obtained by the variable population

size approach.

5.7 Summary and conclusions

The chapter focused on the effect of four different parameters on the behavior of the

proposed Memetic Algorithms. First, the parameters involved in the solution methodol-

ogy were introduced. Through numerical research, we realized that all these parameters

can significantly effect the results. These parameters include: population size, cross over

rate, local search iteration, and number of iterations. Then, the effect of each param-

eter is shown separately. From our experiments, we observed that, although the large

population size, cross over rate, and number of local search iterations can improve the

solution, they incur high computational time costs. The trade-off between these is to de-

tect suitable parameters in the consideration of the error percent and time. In summary,

the proposed algorithm has demonstrated its performance in terms of both efficiency and

accuracy.

Following the above discussion, if we set the acceptable error rate as well as computa-
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tional time [108; 212], the respective parameters can be determined, which is the main

idea pursued in the next chapter.



Chapter 6

Parameter analysis

6.1 Introduction

Having more information regarding the parameters involved in each evolutionary algo-

rithms helps us to increase the performance of the algorithm. However, very little effort

is spent on studying the effect of parameters on performance. After assessing the effect

of each parameter of the proposed Memetic algorithm separately in the previous chapter,

in this chapter we aim to focus on the optimum operation condition. The problem of

interest in this study deals with the strategic level. Therefore, there is no time limitation.

Still doing some further analysis regarding the parameters can help us to improve our

results, especially for the other types of problems (say at the tactical level). To identify

the optimal value of parameters of the proposed Memetic Algorithm, the Taguchi method

is adopted. In this study, four factors are considered namely: population size, cross over

rate, local search iteration, and number of iteration.

The initial content of this chapter will be submitted to a relevant journal, by the title

of ”Taguchi analysis for improving optimization of integrated forward/reverse logistics”

(E. Behmanesh and J. Pannek 2018) [23].

6.2 Parameter analysis methods

There are many methods for studying the process parameters [13]. ”One factor at a time”

and ”Design of Experiment (DOE)” are the most popular approaches being implemented

by researchers in this field.

• One factor at a time: ”One factor at a time” also known as ”monothetic analysis”

88
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is a method involving one specific condition instead of multiple factors simultane-

ously. The experiments are repeated by changing any other one factor.

• Design of Experiment: ”Design of Experiment (DOE)” is a statistical approach,

capable to determine the relationship between factors involved in a complex and

multi-variable process with few trials.

Although some researchers have shown that ”One factor at a time” can be more accurate

some times [45], it requires more running and computing time for the same estimation.

There are two major approaches to DOE [13]:

• Full factorial design: A ”full factorial design”, also known as a ”fully crossed

design”, is able to consider two or more factors. And each factor has a number of

possible levels, with all possible combinations, generated by those levels across all

those factors taken into account. This method allows to record the effect of each

factor on the response variable individually. Using this method is time-consuming,

particulary for large numbers of factors. By applying this method with k factors

and l levels for each factor, lk trials are needed.

• Taguchi method: According to the statistical theory, not every combination of

parameters need to be checked [222]. To overcome this problem, Taguchi [202]

came up with his eponymous fractional replicated designs using Orthogonal Arrays

(OAs) [198]. In this method, a small set from all the possibilities is selected. By a

comparison between these two methods, it is found that Taguchi’s method is more

efficient than the ”full factorial design” approach due to same results with lesser

number of experiments to be conducted [13].

As Taguchi’s method is more efficient [13], we applied it in this research. A summary of

this section is given in Figure 6.1.

6.3 Improving optimization using Taguchi

In order to improve the operation condition of the Memetic Algorithm regarding the

selected parameters, we applied the following steps from the Taguchi analysis [13]:

1. Identify the objective function to be optimized.

2. Identify the independent factors and numbers of levels for each.

3. Select a suitable orthogonal array and construct the simulation matrix.
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Figure 6.1: The flow diagram of the proposed parameter optimization methods.

4. Conduct the simulation matrix.

5. Examine and analyze data and predict the best parameter levels.

6. Confirm the obtained results from step 5 by simulation.

To apply the presented steps, we generated three medium size test problems (Table 6.1).

Table 6.1: Setting of test problems

Test No.1 Test No.2 Test No.3

Supplier 2 3 4
Plant 4 6 8
Distribution 10 15 20
Retailer 16 24 32
Customer 4 6 8
Collection/Inspection 4 6 8
Disposal 2 2 4
Optimal cost 1160 4100 11365
Number of facilities 42 62 84
Number of routs 456 966 1728

Since the framework of the proposed logistics network in this work is not the same as

in previous studies, all parameters were generated randomly using uniform distributions
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as given in Table 5.2:

6.3.1 Identify the objective function to be optimized

Taguchi suggested the use of a loss function for measurement. It is recommended to

transform the value of the loss function into a signal to noise ratio S/N = SNR [198].

Since the signals have a very wide dynamic range, they are mostly expressed using:

S/Nratio = −10 log
[∑n

i=1 f
2
i

2

]
. (6.1)

where fi denotes the fitness value for run number i and n defines the number of repeated

experiments. Three different categories are classified in order to analyze the S/N ratio:

”nominal is better”, ”larger is better”, and ”smaller is better” [194; 211]. As the aim of

this study is minimizing the total cost, ”smaller is better” is considered. The best results

are obtained when the total cost is minimized. This condition results in considering a

minus in (6.1) as the S/N ratio has ”the larger the better” characteristic.

6.3.2 Identify the independence factors and number of level for

each

According to a comprehensive review [170; 108; 24], there are four independent factors

that need to be investigated regarding the proposed algorithm. These factors are: pop-

ulation size, cross over rate, local search iteration, and number of iterations. As all of

these factors have a noticeable effect on the results of the proposed model, it is impor-

tant to assess all for the efficiency criterion [24]. Three different levels for each factor are

considered according to the information presented in Table 6.2.

Table 6.2: Selected parameters and levels

Parameters(factors) Level 1 Level 2 Level 3

Population size 60 100 140

Cross over rate 0.3 0.5 0.7

Local search iteration 4 8 16

Number of iteration 20 30 40
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6.3.3 Select a suitable orthogonal array and construct the ma-

trix

The Taguchi method deals with two main tools: the ”S/N ratio” and a special set of

arrays called the ”orthogonal array”. Compared to many statistical designs, the orthogo-

nal array shows a significant success [81]. This method allows us to reduce the number of

experiments while a more reliable estimation for parameter optimization can be reached.

Previous studies presented many orthogonal arrays according to the problem they are

facing. Still, selecting a proper orthogonal array is difficult, as the reported orthogo-

nal arrays in the literature are not able to cover all possibilities [81]. To overcome this

problem, some standard orthogonal arrays have been designed according to the number

of factors and levels. In order to choose an appropriate orthogonal array, a minimum

number of experiments need to be carried out first, based on the total amount of freedom

[222]:

NTaguchi = 1 +

nf∑
i=1

(Li − 1) (6.2)

where nf denotes the number of factors and L defines the number of levels of each fac-

tor. For the salient case, there are four different factors with 3 levels each, the degree of

freedom is obtained 1 + (4 ∗ 2) = 9. It means at least 9 runs need to be carried out and

another selection of an orthogonal array with more runs may be used to increase accuracy.

Here, we utilized Minitab software to find an automatic design of the orthogonal ar-

ray as well as for the analysis of experiments. Minitab is a statistics package to analyze

data and interpret the results. Minitab software suggested using L9 orthogonal array, i.e.

9 instead of 34 = 81 experiments. The details of the proper orthogonal array are shown

in Table 6.3:
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Table 6.3: The orthogonal array L9(3
4)

trial Population size Crossover rate Local search iteration Number of iteration

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

6.3.4 Conduct the matrix simulation

In accordance with the presented orthogonal array mentioned in Table 6.3, simulations

were carried out with their factors and levels. The scheme with the specified values of the

factors is demonstrated in Table 6.4. Each of these 9 experiments is repeated 10 times

to generate more reliable averaged results.

Table 6.4: Orthogonal array with the specified values

trial Population size Crossover rate Local search iteration Number of iteration

1 60 0.3 4 20

2 60 0.5 8 30

3 60 0.7 16 40

4 100 0.3 8 40

5 100 0.5 16 20

6 100 0.7 4 30

7 140 0.3 16 30

8 140 0.5 4 40

9 140 0.7 8 20
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6.3.5 Examine and analyze data to predict the best parameter

levels

According to the obtained results presented in Chapter 5, we realized that all the proposed

parameters are important and need to be investigated further. Since we are dealing with

a strategic problem, there is no time limitation. Still having some information regarding

the best values of the parameters can help us to improve our results, applicable to other

types of proceeding when time limitation is considered in advance (tactical level). On

the other hand, as there is no similar case available in literature, here Taguchi’s method

is adapted for the generated test problems presented in Table 6.1. We generated three

medium size test problems and an error percent is fixed as 0.05 that is acceptable for

most of logistics problems [212]. It means we applied the parameters obtained from [24]

that lead us to an error percent equal to or less than 0.05 percent. Once these parameters

were determined, a high number of iterations was considered. In the next step, several

runs were conducted to find the average number of iterations that the algorithm needs to

find good results (that the error percent is equal to or less than 0.05). The specific time

that these results were obtained, was recorded. The goal is discovering the best value of

the parameters once the algorithm is forced to find results, in half of the obtained specific

time, using Minitab software.

Figures 6.2(a) to 6.4(b) display the effect of the parameters on the objective function

value and S/N ratio respectively.

(a) Effect of parameters on total cost (b) Effect of parameters on S/N ratio

Figure 6.2: Problem No.1

Since the S/N ratio has the ”larger is better” characteristic, the analysis of the results

lead to the population size at level 2, cross over rate at level 3, local search iteration at
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(a) Effect of parameters on total cost (b) Effect of parameters on S/N ratio

Figure 6.3: Problem No.2

(a) Effect of parameters on total cost (b) Effect of parameters on S/N ratio

Figure 6.4: Problem No.3
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level 2 and number of iterations at level 2.

6.3.6 Confirmation simulation

Once the best level of the parameters were chosen according to the mentioned condition,

the final step needed to be implemented. The idea of the confirmation experiment is

to validate the results obtained from the experiments. A confirmation experiment was

executed 10 times with the obtained combination of parameters. The actual value of

cost obtained by Matlab, was calculated based on the experiments. The predicted value

obtained by Minitab software, was computed according to statistical data. All results

are provided in Table 6.5. The results show, the predicted value of cost obtained with

Table 6.5: Confirmation experiment data
(parameter combination Population size level 2, Cross over rate level 3, Local search
iteration level 2, Number of iteration level 2)

trial Predicted value Actual value Error percent

1 1324.67 1325 0.0002

2 4188.5 4248 0.014

3 12168.7 12375 0.016

the best level of parameters is very close to the value of the actual cost. This validates

the presented Taguchi method for predicting the optimal levels of the parameters.

6.4 Summary and conclusions

In the current chapter, we applied the Taguchi method to design the optimal parameters

of the proposed Memetic Algorithm. From the confirmation experiments, a good agree-

ment between the predicted results and the actual results is observed. Using the Taguchi

method in determining the optimal level of parameters is a new contribution of this study.

We would like to note that in another comprehensive research work we applied the

Taguchi method to identify the most important parameters as well as the ranking amongst

these parameters. We validated the obtained results in numerical experiments. The re-

sults show parameter population size has the largest effect on the outcome of the ex-

periment, while local search iteration has the least effect. The obtained results were

presented and published in the 6th International conference on Dynamics in Logistics,
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(E. Behmanesh and J. Pannek) Bremen, Germany, 2018 [22].

After doing parameter analysis and obtaining enough information regarding the param-

eters involved in the proposed Memetic Algorithms, the verification of the proposed

solution methodology using numerical experiments is the next task.



Chapter 7

Numerical results of applying the

proposed Memetic Algorithm

7.1 Introduction

Once the parameters analysis of the proposed Memetic Algorithm is completed and the

proper value for each parameter is selected, the algorithm is ready for the next stage:

implementation and verification. The goal of this chapter is to evaluate the performance

of the proposed Memetic Algorithm. Thus, the computational results obtained through

experiments are considered. To illustrate the performance of the proposed Memetic Al-

gorithm, LINGO optimization software serves as the basis of comparison for small size

problems. In the large size cases that we are dealing with in real world, a classical Genetic

Algorithm is presented to compare the results and show the efficiency of the Memetic

Algorithm.

Some parts of the initial results of this chapter have been presented in the 20th Inter-

national Conference on Engineering Optimization and Industrial Applications, London,

United Kingdom, 2018 and also published in the Logistics Research journal, Springer,

(E. Behmanesh and J. Pannek 2016), [19]. In addition, some of the final results of this

chapter will be submitted to a high impact journal, under the title of ”Memetic and

Genetic algorithm for an integrated logistics network with flexible delivery path” (E.

Behmanesh and J. Pannek 2018), [21].

98
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7.2 Proposed Memetic algorithm

In this study we considered a Memetic Algorithm with a local search engine and a new

chromosome representation. Evaluating the performance of our Memetic Algorithm is

divided into two parts in order to solve the test instances: The first one is applied for

small size problems using a commercial package (LINGO optimization software), and the

second is employing a classical Genetic Algorithm as a second meta-heuristic algorithm.

The procedure of the classical Genetic Algorithm is displayed through a flowchart in Fig-

ure 7.1 to clearly show the overall steps involved. To have a comparison between these

two, the same structure presented in Chapter 4 is considered for both algorithms. The

only difference is that the local search engine is replaced by a mutation operator in the

proposed Memetic Algorithm. Thereafter, we consider some explanations regarding the

mutation operator’s application for the classical Genetic Algorithm.



Chapter 7. Numerical results of applying the proposed Memetic Algorithm100

 

Start 

Input: 
population size, 

cross over rate, max 
iteration,… 

Generate first population 

Fitness evaluation 

Selection (roulette wheel selection) 

Merge population (cross over 
population+mutation population+copy of 

initial population) 

Fitness evaluation & Sort population 

Select the same size for next population 

Mutation (random mutation) 

Termination 
condition 

Best 
solution 

Y 

N 

Cross over (two point cross over) 

Figure 7.1: The flow diagram of the classical GA.
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The mutation operator can create offspring from pairs of individuals and aims to vary

the solution to avoid GA lead to a local optima. Then the mutation operator is repeated

according to the mutation rate. For applying this operator, a single parent is selected

and a random change is enacted on the selected parent by modifying one or more gene

values. As this operator causes a very small change, a very low rate is used most of the

time [70].

For the proposed Genetic Algorithm, a random mutation operator is used that simply

selects a gene at random and replaces it with a random number from a feasible range.

This method is selected according to the characteristic of the chromosomes. Figure 7.2

gives the illustration of the proposed random mutation.

Figure 7.2: Mutation method.

7.3 Numerical setting

Within this section, 13 numerical examples with different sizes are carried out to show

the performance of the proposed MA. The considered logistics network in this study is

not exactly the same as in previous studies. Therefore, the size of the presented numeri-

cal examples are selected randomly as shown in Table 7.1. Performance of the proposed

MA is proved via two different parts.

In the first part, we employed LINGO17 to provide optimal results for small size prob-

lems. To assess the accuracy and efficiency of the developed MA, we generated various

test problems of different sizes are compared the outcomes obtained by our MA from

Algorithm 5 with those of a branch-and-bound algorithm from LINGO17.

In the second part, a comparison between the classical GA and the proposed MA from

Algorithm 4 is considered under the same condition. Also, the structure of the GA ap-

plied in this study is the same by the proposed MA, however, the local search mechanism

is replaced by a classical mutation operator.
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Table 7.1: Settings of test problems

Problem Supplier Plants Distribution Retailers Customers Collection Disposal

1 2 3 3 4 3 2 1

2 2 2 5 8 2 2 1

3 2 4 6 10 2 2 1

4 2 3 8 9 3 3 2

5 2 4 10 16 4 4 2

6 3 6 15 24 6 6 2

7 4 8 20 32 8 8 4

8 6 12 30 48 12 12 6

9 6 14 32 54 14 14 6

10 8 16 40 64 16 16 8

11 10 18 36 80 18 18 10

12 10 20 40 84 20 20 10

13 12 24 40 96 24 24 12

The first seven test problems are small sized and the number of decisions variables

are 98, 128, 209, 234, 468, 1006, and 1780 respectively. The remaining problems are large

sized. Other parameters are generated randomly using uniform distributions according

to the information presented in Table 5.2. The proposed MA and GA were developed in

the MATLAB 2016. To test the robustness of the method each test problem has been

implemented 10 times.

The test problems are solved by the proposed MA under a constant population size

of 100, while three different population sizes: 100, 200, and 300 are considered for the

classical GA. Regarding stopping conditions, we imposed a maximum iteration number

of 200 as well as a maximum number of iterations without improvement of 6, 8, 10, 12,

20, 25, and 30 for our small size problems, respectively. For the large size problems,

we increased the latter bound by 5. Also, to standardize all test problems, we set the

number of local search iterations to be equal to the number of retailers L for each test

problem. Therefore, the local search iteration number will be proper to the size of the

test problems. The cross over rate of 0.4 is fixed for both algorithms, as well as the

mutation rate of 0.2 which were known as better parameter settings for GAs [70].
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Table 7.2: Results obtained by LINGO

Problem Problem size number of involved facilities Solution Ave time (s)

1 2 · 3 · 3 · 4 · 3 · 2 · 1 18 1920 0.05

2 2 · 2 · 5 · 8 · 2 · 2 · 1 22 2905 0.1

3 2 · 4 · 6 · 10 · 2 · 2 · 1 27 2345 0.12

4 2 · 3 · 8 · 9 · 3 · 3 · 2 30 2335 0.12

5 2 · 4 · 10 · 16 · 4 · 4 · 2 42 1160 0.14

6 3 · 6 · 15 · 24 · 6 · 6 · 2 62 4100 0.16

7 4 · 8 · 20 · 32 · 8 · 8 · 4 84 11365 0.17

8 6 · 12 · 30 · 48 · 12 · 12 · 6 126 -

9 6 · 14 · 32 · 54 · 14 · 14 · 6 140 -

10 8 · 16 · 40 · 64 · 16 · 16 · 8 168 -

11 10 · 18 · 36 · 80 · 18 · 18 · 10 190 -

12 10 · 20 · 40 · 84 · 20 · 20 · 10 204 -

13 12 · 24 · 40 · 96 · 24 · 24 · 12 232 -

7.4 Computational result

To evaluate the performance of the proposed MA and GA, LINGO17 is adapted to solve

the optimization problem. Obtained results are presented in Table 7.2. Although LINGO

provides optimal results for small size problems quickly, Table 7.2 indicates that LINGO

is inappropriate for solving the large size problems and it runs out of memory.

According to the results presented in Table 7.3, the proposed MA is able to provide

good solutions for the small size problems, which allows us to trust the algorithm for

large size problems as well. The results obtained by the classical GA with three different

sizes are presented in Table 7.4 to 7.6. We report the worst reward (maxcost), the best

reward (mincost), and the average reward (avecost), which show the robustness of the

obtained results.

To indicate the tradeoffs between the proposed MA and the classical GA, four compar-

ison criteria are considered. First, the gap between the mean of the objective function

values associated with the MA and the optimal solution obtained by LINGO optimization

software (i.e., F − GapMA−LINGO), using formula (7.1). Secondly, the same procedure

for the classical GA is determined (i.e., F −GapGA−LINGO), using formula (7.2). Third,

the gap between the mean of the objectives value’ associated with the MA and GA (i.e.,
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F − GapMA−GA), using formula (7.3), and finally the relative gap between the mean of

the CPU time associated with the MA and GA (i.e., T − GapMA−GA), using formula

(7.4). The comparison is focused on two aspects: objectives function value and CPU

time.

F −GapMA−LINGO =
FMA − F ∗

LINGO

F ∗
LINGO

(7.1)

F −GapGA−LINGO =
FGA − F ∗

LINGO

F ∗
LINGO

(7.2)

F −GapMA−GA =
FGA − FMA

FMA

(7.3)

T −GapMA−GA =
TMA

TGA

(7.4)
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Table 7.3: Results for the proposed MA with n = 100
and cross over rate= 0.4 over 10 runs

Test problem Min cost Max cost Ave cost Ave time (s)

1 1920 1920 1920 4.06

2 2905 2905 2905 5.11

3 2345 2405 2351 10.34

4 2335 2535 2355 32.7

5 1160 1340 1185 35.05

6 4100 4600 4222 97.6

7 11365 12095 11814 261.5

8 16588 18189 17300.5 2070

9 12358 15133 13330.6 2633.3

10 21585 26332 23457.8 3970

11 22056 23088 22400 10200

12 27388 29171 27982.3 14666.6

13 29039 31607 29982.3 26333.3

Table 7.4: Results for GA with n = 100, cross over rate= 0.4 and mutation rate= 0.2
over 10 runs

Test problem Min cost Max cost Ave cost Ave time (s)

1 1920 1920 1920 1.75

2 2905 2905 2905 2

3 2345 2405 2369 3.1

4 2335 2535 2415 7.59

5 1160 1530 1225 10.2

6 4190 4720 4350 20.2

7 11805 12895 12292.3 50.1

8 18324 21974 19529.6 392

9 15430 16059 15706 583.3

10 25538 31389 28033.2 828

11 25488 27574 26660 1003.3

12 31746 34649 33681.33 1983.3

13 34103 43757 37667.2 2000
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Table 7.5: Results for GA with n = 200, cross over rate= 0.4 and mutation rate= 0.2
over 10 runs

Test problem Min cost Max cost Ave cost Ave time (s)

1 1920 1920 1920 2.5

2 2905 2905 2905 3.2

3 2345 2405 2363 6.1

4 2335 2535 2395 13.36

5 1160 1360 1194 18.9

6 4100 4720 4279 42.3

7 11775 12425 12071 110.5

8 16956 18659 17742.5 744.5

9 13444 15321 14259 1126.6

10 22399 27525 25597.4 1507

11 25275 27503 26038 2000

12 30985 34602 32486 3183.3

13 33596 37277 35051.2 4010
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Table 7.6: Results for GA with n = 300, cross over rate= 0.4 and mutation rate= 0.2
over 10 runs

Test problem Min cost Max cost Ave cost Ave time (s)

1 1920 1920 1920 4

2 2905 2905 2905 4.4

3 2345 2405 2357 9.5

4 2335 2535 2375 26.1

5 1160 1340 1192 27.4

6 4100 4720 4239 84.1

7 11475 12315 11933 203.3

8 16588 18625 17410 1333

9 13166 14293 13885 2016.6

10 21686 26396 24471.6 2590

11 24827 25544 25081.3 3700

12 30142 31871 31154 6456.2

13 33006 35807 34807 8410

Table 7.7: Comparison of results from LINGO17 and the proposed MA and GA

OFV −GAP

MA− LINGO GA− LINGO

Test problem popsize = 100 popsize = 100 popsize = 200 popsize = 300

1 0 0 0 0

2 0 0 0 0

3 0.0025 0.0102 0.0076 0.0051

4 0.0085 0.0342 0.0256 0.0171

5 0.021 0.056 0.052 0.043

6 0.0297 0.0658 0.063 0.06

7 0.0395 0.0815 0.077 0.076

average (%) 1.4 3.5 3.2 2.8
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Figure 7.3: Comparison of results from LINGO17 and the proposed MA and GA

Table 7.3 to 7.6 present the comparison between the proposed MA and the classi-

cal GA. By assessing the results presented in Table 7.7, we can observe the average

F −GapGA−LINGO calculated by formula (7.2) for the first 7 test problems that are small

sized is 3.5 percent, which is almost triple that of the F−GapMA−LINGO result calculated

by formula (7.1) reported by the MA (i.e., 1.4). This indicates the high accuracy of the

proposed MA. Although the operation time is higher compared to LINGO, our imple-

mentation allows us to derive results for the large size problems. Hence, the proposed

MA demonstrated that it can prepare sufficiently accurate solutions within efficient com-

putation time for our integrated forward/reverse logistics problem with flexible delivery.

By increasing the population size to 200 and 300 this number decreased to 3.2 and 2.8

respectively.

From another point of view, as is shown in bold in Table 7.4, (4190 for test problem

number 6 and 11805 for test problem number 7) the classical GA is not able to find the

optimal solution for test problem number 6 and 7, which our proposed MA is able to find

(Table 7.3). By increasing the population size to 200, the GA can find optimal solution
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for test problem number 6, but the problem still remains for test problem number 7 even

by increasing the population size to 300 (Table 7.5 and 7.6).

A similar comparison for F − Gap is provided in Figure 7.3 between the proposed MA

and the classical GA based on the LINGO optimization software listed in Table 7.7. Ex-

cepting test problems no.1 and 2, which are both too small size problems, the proposed

MA present a good quality solution in comparison with the GA. When the MA and GA

have the same size of 100, the F − Gap of the GA is always equal or higher than MA.

By increasing population size to 200 and 300 an improvement, in the GA is observed,

however, they are not really comparable with the results obtained by the proposed MA.

On the other hand, increasing population size improves accuracy for the problems only

slightly.

Table 7.8: Comparison of objective function value between the MA and GA

F −GAP(MA−GA)

Test problem popsize = 100 popsize = 200 popsize = 300

1 0 0 0

2 0 0 0

3 0.007 0.005 0.002

4 0.025 0.016 0.008

5 0.033 0.03 0.02

6 0.035 0.032 0.03

7 0.04 0.036 0.035

8 0.12 0.051 0.038

9 0.17 0.069 0.041

10 0.19 0.091 0.043

11 0.2 0.16 0.11

12 0.2 0.16 0.11

13 0.256 0.169 0.160

average (%) 9.8 6.3 4.6
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Figure 7.4: Comparison between the proposed MA and classical GA

The results in Table 7.3 and 7.4 are based on the equal population size of 100 for

the MA and GA. The average F − GapMA−GA presented in Table 7.8 obtained through

the mentioned condition calculated by formula (7.3) is 9.8%, which shows a noticeable

difference in the objective function value between these two algorithms. To improve the

performance of the GA, population size is increased to 200. According to the results in

Table 7.8 and 7.9, this change causes the average F −GapMA−GA to be decreased to 6.3%

while the average T − GapMA−GA calculated by formula (7.4) was almost doubled. But

still, a significant gap can be seen between the F − Gap of the MA and GA. To have

more improvement, the population size of the GA is increased up to 300. The results

show the average F −GapMA−GA is reduced to 4.6 but the average T −GapMA−GA was

again doubled.

A same comparison for F − Gap is shown in Figure 7.4 between the proposed MA and

the classical GA with three different population size, provided in Table 7.8. Although

increasing in population size resulted in good improvement in the performance of the
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GA, it does not show the GA as a comparable algorithm to the proposed MA.

From another aspect, Figure 7.5 provides an example of the proposed MA and GA

convergence during 100 iteration related to problem No.7. This figure reveals that the

convergence of the MA is very sharp in comparison with the GA. The proposed MA

found the optimal solution after 70 iteration, while the GA could not find the optimal

solution in 100 iteration, even by increasing population size.

Figure 7.5: Comparison of the convergence between the proposed MA and classical GA
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Table 7.9: Comparison of CPU time between the MA and GA

CT −GAP(MA−GA)

Test problem popsize = 100 popsize = 200 popsize = 300

1 2.32 1.62 1.015

2 2.555 1.59 1.16

3 3.33 1.69 1.08

4 4.3 2.44 1.25

5 3.43 1.854 1.27

6 4.83 2.30 1.16

7 5.219 2.36 1.28

8 5.28 2.78 1.55

9 4.51 2.33 1.30

10 4.79 2.63 1.532

11 10.1 5.1 2.756

12 7.3 4.6 2.27

13 13.16 6.5 3.13

average 5.47 2.9 1.5

Generally speaking, the obtained results show that the GA cannot find an appro-

priate near optimal solution in large size problems for the proposed flexible, integrated,

forward/reverse logistics network without enriching the algorithm with a powerful local

search engine. For the presented network with a complex nature, lack of intensification

of the classical GA prevents the algorithm from finding a good solution. We showed that

the proposed Memetic Algorithm is able to efficiently find a good solution for small and

large size problems.

7.5 Summary and conclusion

In this thesis we focused on a comprehensive mixed integer linear programming formu-

lation for a seven stages closed-loop network design problem. We applied the extended

random path direct delivery path representation-based Memetic Algorithm that has been

developed in the preceding chapters. Within this chapter, we treated several numerical

examples to verified correctness of the proposed method as well as to confirm the effec-

tiveness of that using a commercial package and a classical GA. On the other hand, we
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applied the commercial solver, to show the performance of the classical GA. Considering

the scale of the test problems, the results display that the proposed Memetic Algorithm

can effectively detect solutions that are close to optimal. Also the OFV −Gap between

the GA and MA is significantly larger, which shows the efficiency and capability of the

proposed MA. At the end, the results confirm that the classical GA cannot obtain a

good solution without applying a powerful local search engine, because of the complex

nature of the proposed flexible, integrated, forward/reverse logistics network. In contrast,

our MA approach produced high-quality solutions. Therefore we believe the presented

method will be an efficient method to solve this kind of multi-stage logistics network

design problems.



Chapter 8

Recapitulation

In this chapter, the main conclusions are summarized and outlook for future research is

presented.

8.1 Conclusions

The focus of this thesis was on an integrated, flexible, multi-stages, single period and

single product, forward/reverse logistics network design problem that is formulated as

a mixed integer linear programming problem. The aim of the study is to minimize the

total cost, including transportation and operation cost, by finding the optimal number

and capacities of facilities as well as assigning products flows between them in the pro-

posed network. The considered flexible, integrated, forward/reverse logistics network can

support other industries, such as electronic and digital equipment industries and vehicle

industries, therefore developing an efficient solution methodology has multilateral profit.

On the other hand, since network design problems belong to the class of NP-hard prob-

lems, and solving this kind of problem is still a critical need in this area, many research

directions still require intensive future work.

In this study, we suggest a practical model as a decision support system that shows

how contribution between different facilities can help to control the entirety of the sup-

ply chain and increase the efficiency of the network.

The major conclusions of this work can be summarized by directly responding to the

questions posed in Chapter 1 as follows:

114
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How to find an efficient assignment strategy to satisfy the source and destination re-

quirements with the aim of minimizing the total cost?

Reducing network cost and delivery times as well as increasing customer satisfaction

are the main requirements of each network and need to be considered before designing

the network. Additionally, reverse logistics has become a particular point of interest re-

cently, due to environmental concerns as well as cost saving by reusing returned products.

To manage logistics system efficiently in terms of cost and delivery time as well as in-

crease customer satisfaction, flexibility and productively needs to be added to the system.

In this regard, we employed two additional delivery paths. Excepting normal delivery,

which is established from any stage to another one, direct delivery and direct shipment

are added to the network. In direct delivery skipping distribution center or retailer is

defined and in direct shipment, a direct path from plant to customer is designed. Each

of them, are applied separately in the real word, but considering all of them at the same

time allows us to skip some stages and make the paths shorter. Considering three differ-

ent delivery paths reveals a fully capacitated graph between plant and customer in the

proposed network. Increasing customer satisfaction and decreasing delivery time are the

advantages of applying three different delivery path.

We need to look at to the reverse distribution as industrial players are forced, but not

equipped to manage the reverse flow. A reverse distribution can be considered inde-

pendently through a separated design. By applying this approach, sub-optimal solutions

may be generated. Combinations of forward and reverse flow in the content of integration

design not only avoids the network falling into sub-optimal solutions, but also lets the

facilities share a number of resources that could help to increase the performance of each

supply chain network.

Once we assigned the framework of the considered strategy for the network, we need

to describe the system using mathematical concepts and language. Therefore, the next

question will be How we can model the flexible, integrated, forward/reverse logistics net-

work mathematically? In this regard, we applied a mixed integer linear programming to

model the proposed problem.

Flexible logistics network and integrated design can improve the flexibility and efficiency
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of the supply chain network but make the problem more complex. On the other hand,

network design problems belong to the class of NP-hard problems. Therefore, the next

question was,

How to tackle this flexible integrated network as an NP-hard problem?

The basic problem is a network design problem, which is NP-hard and the combina-

tion with flexibility in delivery path and integration in design makes the search space of

the problem much larger and more complex. Since traditional method fail to cope with

this problem, particularly for large size problems, meta-heuristic algorithms are consid-

ered to tackle the proposed NP-hard problem for large sizes. Meta-heuristic algorithms

are capable of reducing the search space and increasing the quality of solutions. By an-

swering the above question, the next question is raised:

Which algorithm may be suitable, in the sense of accuracy and efficiency, as a solution

methodology for the proposed flexible, integrated, forward/reverse supply chain network?

Meta-heuristic algorithms are divided into two main parts. The first one are ”single-

point based algorithms” such as: Tabu search, Simulated annealing, and hill climbing.

By applying these algorithm, search in the search space is started and continued using a

single point. The second group are well-known as ”population based algorithms” such as

Genetic Algorithms, Ant colony algorithms and Particle swarm algorithms. These algo-

rithms search in the search space for a population of solutions, instead of single solution.

As the quality of solutions by the multi-directional search features of population-based

algorithms are better than those generated by single-point based algorithms, population-

based algorithms are selected for this study.

Genetic Algorithms (GAs) were often one of the top options when facing network design

problems [69]. But lack of enough intensification was always a weakness of the GAs.

In this regard, a Memetic Algorithm with specialized encoding, initialization, and local

search operator is adapted to optimize the design of the proposed supply chain network.

To verify the correctness of the proposed method, two directions are considered using

numerical experiments. First for small and medium size test problems, we apply a com-

mercial package (LINGO optimization software in our study), which uses branch and

bound to find optimal results. Once the optimum results are obtained, we can check

the efficiency of the proposed algorithm by calculating an error percentage. The error
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percentage can show the gap between the results obtained by the proposed MA and

an optimal solution. The obtained error percentage proved that we can trust our MA

for large size problems. Furthermore, we showed that the method can solve larger size

problems that cannot be solved by LINGO. The other option was considered to show the

accuracy and efficiency of the proposed Memetic algorithm for large size problems.

For large size problem, a classical Genetic algorithm is considered with the same struc-

ture by the proposed MA, to contrast their performance. The only difference between

these two algorithms is the local search engine, which is replaced by a mutation operator

in the Memetic Algorithm.

Once we are using any algorithm, we need to collect information regarding the parame-

ters involved. This helped us to pursue our method effectively. Therefore, the following

questions were raised regarding improving optimization based on parameter analysis:

How can different parameters effect on the results of the algorithm? What is the most

important parameter and the importance of the order?

As the first step, we assessed the effect of the parameters of the solution methodology,

such as, population size, cross over rate, number of iterations, and number of local search

iterations. As we are dealing with a strategic problem and there is no time limitation, we

observed that large population sizes, large numbers of local search iterations, and high

cross over rates can improve the solution. However, computational time is concurrently

increased. So, if a predefined acceptable error rate as well as computation time are given

[108; 212], according to the demands of the manager, the respective parameters can be

determined.

In the second step, the Taguchi method was adapted to design the optimal parameters of

the proposed Memetic Algorithm. The analysis of the results lead to the specific number

for the mentioned parameters based on some conditions. The above results helped us

to improve optimization when we are dealing with other aspects of the problems like

considering tactical level.

In the last step of analyzing parameters, we applied the Taguchi method to find the

most important parameter and rank the latter. The results showed that population size

has the most effect while number of local search iterations has the least effect on the
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results.

8.2 Outlook

The contents of this thesis has successfully addressed an efficient approach for the pro-

posed flexible integrated supply chain network. But there are still areas that need further

improvement. For this reason, future work is recommended below:

Other objective functions, such as responsiveness, tardiness, and robustness can be con-

sidered as other goals in designing the proposed flexible, integrated, forward/reverse

logistics network design problem. The implementation of these ideas needs an updated

version of the algorithm that is capable of solve multi-objective models.

To be close to real world applications, adding inventory facility to the network and also

considering multi-product, multi-capacity, and multi-period networks can be pursued.

Uncertainty in demand, capacity of facilities, and recovery rates can be considered and

examined in a more analytical way to make the model closer to reality.

The priority-based representation can be applied to the proposed flexible, integrated,

forward/reverse logistics network, and making a comprehensive comparison between the

priority-based representation and the proposed extended random path direct encoding

method can be considered.

The efficiency of the proposed algorithm can be increased based on some changes in

the structure of the algorithm, such as applying different strategies for cross over, selec-

tion, chromosome representation, and local searches or in details such as applying local

searches on some random chromosomes or adding new population in between of imple-

mentation to create some new search directions. Moreover, for each iteration, processing

of the population itself can be paralleled by having several processors working on sub-

populations of solutions simultaneously.

The applied extended random path-based direct encoding and combinatorial local search

method can be used in other meta-heuristic algorithms, such as cloud theory-based sim-

ulated annealing algorithm. Afterwards, a comparison between the results obtained by

the new algorithms and the proposed Memetic Algorithm can be done.
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Many research directions still require intensive work in the area of closed-loop logis-

tics network design problems. Moreover, since network design problems belong to the

class of NP-hard problems, developing efficient solution methods is still a critical need in

this area.
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