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N . . . . . . . . . Natural numbers

Z . . . . . . . . . Whole real numbers

R . . . . . . . . . Real numbers

R+ . . . . . . . . Positive real numbers

T . . . . . . . . . Torus R/Z

C . . . . . . . . . Complex numbers

R̂ . . . . . . . . . Dual group of R, which is identifiable with R itself

i . . . . . . . . . Imaginary unit

R . . . . . . . . . Real part

I . . . . . . . . . Imaginary part

f, g, h,φ,ψ . . . Functions

f̂ , ĝ, ĥ, φ̂, ψ̂ . . . Spectrum resp. Fourier transform of functions

G,H . . . . . . . Locally compact (Lie) groups

g,h . . . . . . . . Lie algebras

G/H . . . . . . . Group G modulo group H

π . . . . . . . . . Unitary irreducible representation of a locally compact group

ker . . . . . . . . Kernel of a homomorphism

im . . . . . . . . Image/Range of a mapping

dom . . . . . . . Domain of a mapping

supp . . . . . . . Support of a function

ess sup ∣f ∣ . . . . Ess. supremum of f ; inf { c ∈ R+ ∣ µ (∣f ∣−1
(c,∞)) = 0 }

inf ∣f ∣ . . . . . . Infimum of f ; inf
x∈dom(f)

∣f(x)∣.

tr(T ) . . . . . . Trace of T ; ∑k T kk ∶= ∑k ⟨Tek , ek ⟩, with ONB (ek)k.
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H . . . . . . . . . Hilbert space
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L2(Rn) . . . . . Hilbert space of n-dimensional square-integrable functions

L∞(X, dµ) . . . Essentially bounded functions over X; ess sup ∣f ∣ < ∞

C(X) . . . . . . Continuous functions over topological space X

C0(X) . . . . . . Subspace of C(X), vanishing at infinity resp. the boundary ∂X

C∞(X) . . . . . Space of smooth functions over X

[A,B] . . . . . . Commutator of operators A and B; [A,B] ∶= AB −BA

F . . . . . . . . . Fourier transform; Ff ∶= ∫Rn e−i2π⟨ ⋅ , x ⟩ f(x) dx

Tα . . . . . . . . Translation operator; Tα ∶ f ↦ f(● − α)

Mα . . . . . . . . Modulation operator; Mα ∶ f ↦ F∗TαFf = e2πi⟨ α , ● ⟩f

σ . . . . . . . . . Diffeomorphism from Rn to Rn

Jσ . . . . . . . . Jacobian matrix of σ; (Jσ)kj ∶=
∂σj

∂pk

div(σ) . . . . . . Divergence of σ; div(σ) = ∑k ∂σk
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Ŵσ . . . . . . . . "σ-warping" operator; (Wσf)(x) ∶= ∣det(Jσ−1(x))∣
1/2
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Tα . . . . . . . . Warped Translation operator; Tα ∶ f ↦ F∗Ŵ∗σMαWσFf
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Ich kann die ganze Prozedur nur als einen Akt der
Verzweiflung charakterisieren, da ich von Natur aus
friedlich bin und alle zweifelhaften Abenteuer ablehne.

— Max Planck [81]

1
Initiation

EPIPHANY hit MAX PLANCK, in his endeavour to evade the conse-
quences of the Ultraviolettkatastrophe, encouraging him to take a small, yet
momentous step - the introduction of the elementary Wirkungsquantum, h.

Ever since this monumental step and the establishment of the celebrated equation

E = h ⋅ ν, (1.1)

linking energy and frequency of what is nowadays known as a photon, implicitly
stated in [70], slowly but surely the understanding gained traction, that the
emergence of a fundamental quanta of action necessarily demands a restructuring
of physics. Although most of the contemporary physicists and chemists - among
them Planck himself - did not immediately believe in a true quantization of the
world, the revolution was inevitable.

It took an Einstein to realize in his work on the photo effect [22] in 1905, his
annus mirabilis, that these quanta were not just a Rechentrick, as Planck called
it, but implied a real quantization of the world - an idea which ultimately raised
him among the Nobel laureates in 1921.

The implications of this realization, in particular the philosophical consequences,
shook the world of physics to its very foundations and led to a paradigm shift in
the years to come. Quanta began to pervade all of science and were eventually
used to discretize phase spaces into cells, interpreted as that very subset of phase
space a single particle occupies. As early as 1913, Otto Sackur [73] realized that
for each particle and each dimension the size of these elementary phase space cells,
had to be of the order of the elementary quanta of action, h, anticipating some
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1. Initiation

of the revolutionary ideas which later led to the introduction of the mesmerizing
term Unbestimmtheit by Werner Heisenberg in 1927.

In [42], Heisenberg introduced a relation to describe the mutual incompatibility
of quantum measurements, although still on a more heuristic level. In fact, in the
celebrated paper, Heisenberg gave the qualitative statement

q1 ⋅ p1 ∼ h, (1.2)

where q1 and p1 are uncertainties in the variables of position and momenta,
respectively. This relation is equivalent to the said decomposition of phase space into
cells of size ∼ h and reveals that for each degree of freedom in the configuration space
of a particle, its position and momentum cannot both be simultaneously determined
to arbitrary precision, with the product of their respective “indeterminacies” being
of the order of Planck’s elementary quantum.

In the same year, Kennard [46] finally derived the world-renown uncertainty in-
equality

∆q ⋅∆p ≳ h̵, (1.3)

with ∆q and ∆p denoting the uncertainties in position and momentum for each
degree of freedom of configuration space.

In 1923 [17], Louis de Broglie - inspired by the quanta of light, as introduced
by Einstein - introduced waves of matter, where the associated equation

λ = h
p , (1.4)

essentially states that particles with momentum p can show wave-like behavior of
wavelength λ and vice versa. This idea was later generalized by Erwin Schrödinger
in his wave mechanics, in which to each particle is assigned a wave-function, ψ.
The famous Schrödinger equation

− ih̵∂tψ(x, t) = Ĥψ(x, t), (1.5)

then, determines the evolution of a particle’s wave-function, ψ, over time in a
deterministic way.

In the years to come, Heisenberg, Born, Schrödinger, von Neumann and others
further developed non-relativistic quantum theory, which later was generalized
by Paul Dirac to the relativistic case, out of which the more general quantum
field theories arose.

2



1. Initiation

Since a particle exhibits wave- as well as particle-like behavior - depending on
the form of its associated phase space cell of size ∼ h - and Schrödinger’s equation
determines its evolution, it is natural to ask whether it is possible to find a specific
wave function, such that its associated phase space cell is as classical as possible, in
the sense that it is as concentrated as possible around a classical point in phase
space and such that measurements of observable quantities as well as its evolution
over time is “optimal”. The answer to this question is affirmative and establishes
the so-called wave-packets, or classical coherent states. These classical coherent
states are optimal in the sense that their indeterminacies in q and p attain the lower
bound of the uncertainty principle and thus are as classical (point-like) as possible.

In 1944, Dennis Gabor [35] noted that the mathematics of quantum mechanics
may also be utilized in information theory to decompose a given signal into atoms.
These atoms extract the information from a certain cell in phase space to a (complex)
number. More concretely, the atom is represented by a function, well localized in
time and frequency simultaneously - a two-dimensional phase space - and maps,
when integrated against a signal, the signal’s content within this region to a number.
This number, then, characterizes the said signal within that specific subset of
phase space - a quantum of information. Consequently, these associated numbers
define a function from the the set of phase space cells to the complex numbers,
representing the signal on phase space. Although the idea was very influential, D.
Gabor did not explicitly compute any decompositions and considered the phase
space decomposition, respectively the set of associated functions, to resemble a
basis in the sense of linear algebra.

Eight years later, Duffin and Schaeffer [21] enhanced the toolbox by loosening
the concept of a basis to what is nowadays known as frames, by abdicating the
necessity of linear independence of the basis vectors and thus introducing redundancy.
Combining the atomic decompositions of Gabor in phase space with the redundancy
of Duffin and Schaeffer’s frames, puts the coherent states and wave packets of
Schrödinger on a mathematical footing.

In the following decades, Glauber [37], Aslaksen and Klauder [5], Daubechies
[11–14] and finally Ali et al. [1] developed the theory even further, culminating
in the broad term of wavelet theory, encompassing a vast knowledge base about
quantum mechanics and signal analysis.

3



1. Initiation

In 2010, Maass et al.[59] posed the juicy question

Do uncertainty minimizers attain minimal uncertainty?

in which they showed that a certain uncertainty principle - related, but differing
from the classical one above (1.3) - is not as meaningful as it seemed to be, since
the lower bound could be made arbitrarily small.

In [78], Stark and Sochen systematically developed a program to categorize the
dependency of the lower bound of the inequality for general pairs of generators of
locally compact groups, proving that this conceptual inconsistency is not an isolated
phenomenon for the “ax+b”-group but rather common among the Lie groups of
practical interest, with the Heisenberg group embodying the exception.

This observation eventually yielded the research project UNLocX [83], funded
by the Future and Emerging Technologies (FET) programme, within the Seventh
Framework Programme for Research of the European Commission, of which this
thesis is a late offshoot. Among other objectives, the research revolved around
the establishment of optimal uncertainty principles and the identification of its
equalizing waveforms, which is also one of the objectives of this monograph.

The raison d’être of this thesis is, inter alia, the installation of (continuous)
frames in the sense of signal analysis, adapted to a coordinate system in phase space,
specifically chosen for an application. The coordinate systems that are considered,
arise via cotangent lifts of diffeomorphisms and the frames are defined as phase
space translates of a probe, such that the chosen probe has a specific location
in phase space - its associated phase space cell. The chosen coordinate system,
respectively its associated Hamiltonian flows, then, shifts - and deforms - these
phase space cells along the coordinate lines to tessellate the phase space in such a
manner that eventually each point of phase space is contained within such a cell.
A decomposition of a given signal with respect to this frame defines a coefficient
mapping, such that each coefficient is a quantum of information, in the sense of
Gabor, assigned to a given phase space cell. In accordance with quadratic phase
space distributions like the Wigner-Ville distribution and the Rihaczek distribution, a
new “warped distribution” will be introduced, having correct marginal distributions
and giving a novel method at hand to define and calculate a spectrogram-like
distribution for semi-direct product groups.

Further, two concurring types of uncertainty principles are established, specifi-
cally adapted to these coordinate systems in phase space. The “minimal uncertainty
solutions” of these uncertainty principles are optimal in the sense that they declare
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1. Initiation

a waveform to be optimal if its phase space picture is adapted to those coordinate
lines in a precise manner.

The story of research is the story of literature research, since there already
exists a vast knowledge base about most of the topics covered in this thesis on
top of which this monograph’s program is build.

As far as signal analysis, time-frequency analysis and wavelet theory is concerned,
the books [1, 26, 27] give a comprehensive state-of-the-art overview, up to the year
of printing, and include a plethora of topics, ranging from rigorous treatments of
linear signal transforms through associated uncertainty principles to the concepts
of localization operators, respectively multipliers, and the following years brought
mainly deeper elaborations and generalizations of these concepts. Since this thesis
is mainly concerned with the three concepts above, this is a good place to comment
on the differences of this thesis to the one in these collections.

This monograph shall give an alternative approach to linear signal transforms
like the wavelet transform and the Short-Time Fourier Transform, which are usually
developed using (locally compact) group-theoretical arguments. This requirement is
abandoned to gain more flexibility and define transforms solely via a loose collection
of one-parameter flows of a certain diffeomorphism - the spectral diffeomorphism.

Moreover, the most general uncertainty principles are usually derived from a
pair of two non-commuting self-adjoint operators - associated with a locally compact
group -, defining a function to be optimal if an associated inequality is equalized.
Although this concept is maintained in this program, the operators are very specific
ones, namely quantized Hamiltonians corresponding to coordinate functions of a
certain symplectic diffeomorphism - the spectral cotangent lift.

Further, the concept of localization operators, defined via multiplication oper-
ators weighting the coefficients of a signal transform, is carried over to that of a
spectral quantum frame multiplier, again being independent of any locally compact
group structure.

In [2], the authors introduced the notion of a quantum frame, meaning a quantized
variant of a classical frame of reference. It is this term, which is seized in this
monograph to describe a related but different term - a quantum frame shall denote
a frame in the sense of Duffin and Schaeffer, such that the frame-vectors have a
well-defined phase space localization associated with a coordinate system in phase
space, chosen for a particular application to emphasize certain properties of signals.

5



1.1. Outline

1.1 Outline

In the second chapter, a very short trip from the foundations of classical mechanics
through the quantum mechanical reinterpretation to frames in the sense of signal
analysis will be taken. The reason is two-fold. Firstly, this is indicated as a lot
of the arguments within the later chapters rely on the preliminaries of physics -
classical and quantum - and its language. Secondly, this is a neat way to fix the
notation without using a prevalent chapter of boring notational formalities. It is,
however, symptomatic that not all topics can be covered, demanding nevertheless
a short section about notations - following this one - and an appendix, in which
various preliminaries as well as other miscellaneous fixations shall be given.

The third chapter is devoted to the development of a theory of spectral diffeomor-
phisms and its entourage. Essentially, a spectral diffeomorphism is a diffeomorphism
in the usual sense, defined on the Fourier domain; that is, on the vector space
dual of the reals, which indexes the exponential waves that make up the Fourier
transform. This is often referred to as the spectrum - whence the diffeomorphism’s
prefix. A diffeomorphism deforms a differentiable manifold in a manner which is
“manageable” in the sense that its local behavior is known and can be described
using analytical methods. These methods will be used to design “spectral quantum
frames” which are adapted to coordinate lines in phase space, arising from a spectral
diffeomorphism and correspond to well-localized phase space cells. As a matter of
fact, a diffeomorphism gives rise to differentiation and integration with respect to
an enormous load of coordinate systems on the respective differentiable domain it is
defined on. It is this fact, which is utilized to develop assertions which can be used
to derive two differing generalized uncertainty principles in the subsequent chapter.

With each spectral quantum frame arises a possibility to localize and weight
certain subsets of phase space, giving rise to spectral quantum frame multipliers.
Finally, a quadratic distribution - the “warped distribution” - is defined, which
characterizes a function’s support in the warped phase space domain and leads
via convolution to an analogue of a spectrogram.

Chapter four, then, gives the derivation of these two generalized uncertainty
principles. The first principle is a generalization of the classical principle of
uncertainty adapted to coordinate systems in phase space, associated with spectral
diffeomorphisms. A function is said to be optimally adapted to these coordinate lines
in the sense of this principle, if its phase space picture aligns optimally with respect
to all coordinate lines as nicely as possible. This means that a waveform tries to

6



1. Initiation

“nestle” as widely as possible along all coordinate lines and refuses to stray far from
these lines. Starting off from a generalized principle with respect to two-dimensional
sub-planes of phase space, this principle is generalized to an n-dimensional version,
incorporating all phase space coordinates and consequently leading to a system of
differential equations whose simultaneous solutions exist, if a certain matrix - the
spectral diffeomorphism’s Jacobian - is diagonal. If they exist, these waveforms are
optimally adapted to all coordinates in phase space simultaneously, in contrast to
the usual approach leading to waveforms for individual sub-principles only.

The second generalized uncertainty principle is complementary to the first, as a
waveform is said to be optimal in its sense if and only if it refuses to be aligned along
coordinate lines and manages to minimize its spread along the coordinates. As before,
a principle for two-dimensional sub-manifolds of phase space is given and thereafter
generalized to a true n-dimensional version. The n-dimensional principle finally leads
to a coupled system of ordinary differential equations, whose solutions - if existent -
resemble genuine uncertainty equalizers for all coordinate lines simultaneously.

Finally, the fifth chapter is devoted to the utilization of the machinery assembled
in the previous chapters and gives a surprising property of the warped distribution,
namely that the convolution of certain warped distributions for spectral diffeo-
morphisms, arising from semi-direct product groups, resembles a spectrogram-like
distribution. It is furthermore shown that the theory encompasses transforms
and uncertainty principles, well-known in the community of signal analysis and
physics such as

(i) the Short-Time Fourier Transform,

(ii) the one-dimensional Wavelet Transform,

(iii) the SIM(1,1)-Transform, or

(iv) the SIM(2)-Transform.

1.2 Notation

In this thesis, all physical constants, in particular Planck’s constant, h, shall be
of no interest and hence set to unity; of course, this can be interpreted as the
utilization of natural units, c = h = kB = 1, if one prefers this point of view.

To increase readability, we will indicate the end of theorems, definitions, corol-
laries, examples and so on with ◆ and proofs are closed with ∎.

7



1.2. Notation

If not stated otherwise to be “up to sets of measure zero”, equality of sets A = B
is defined to be element-wise, that is, A equals B if and only if each element of
A is also in B and vice-versa. The set which contains each element of A, which
is not in B, is denote as A/B ∶= {x ∈ A ∣x ∉ B }.

For a subset E ⊂X, we will write Ec ∶=X/E for the complement of E in X and
a neighborhood of a point x ∈ X is a subset N ⊂ X containing it: x ∈ N ⊂ X.

The domain and image of a function are written dom(f) and im(f), respectively.
If a function maps into a group G, we may speak of the set of points in its domain
that are mapped to the neutral element, which is said to be its kernel

ker(f) ∶= {x ∈ dom(f) ∣ f(x) = e ∈ G } ,

which is a subgroup of its domain, if the domain of f is a group, too. The complement
of the kernel is its support, usually considered for mappings from a topological
space into a normed space, which is defined as

supp(f) ∶= {x ∈ dom(f) ∣ f(x) ≠ 0 } .

By an inequality like ϵ > 0 we imply that ϵ is a real (and positive) number, ϵ ∈ R+.
The supremum and infimum are defined as

sup
x∈dom(f)

∣f(x)∣ ∶= inf { c ∈ R+ ∣ dom(∣f ∣−1
) ∩ (c,∞) is empty }

and

inf
x∈dom(f)

∣f(x)∣ ∶= sup{ c ∈ R+ ∣ dom(∣f ∣−1
) ∩ [0, c) is empty }

and for measurable functions, defined on a measure space (X,Σ, µ), these ex-
trema are generalized to be essential extrema. That is, defined up to sets of
µ−measure zero, yielding

ess sup
x∈dom(f)

∣f(x)∣ ∶= inf { c ∈ R+ ∣ µ (dom(∣f ∣−1
) ∩ (c,∞)) = 0 } .

To avoid clutter, we will occasionally drop the domain, if it is clear from the con-
text.

A partial sign as ∂x indicates a partial derivative as ∂xf ∶= ∂
∂xf and a dot

indicates a time derivative, that is, ẋ ∶= ∂tx.
λ will denote (n-dimensional) Lebesgue measure, where its dimension should be

clear from the context, and if E ⊆ Rn is measurable, λ(E) is its measure.

8



1. Initiation

When writing integrals involving measures, we will be free to drop the integration
variable if no misunderstanding could arise, that is,

∫
X
f dν ∶= ∫

X
f(x) dν(x)

and sometimes even drop the integration domain if it is clear from the context.
The same will be done for sums like

∑
k

fk ∶=
n

∑
k=1

fk or ⊕k Hk ∶= ⊕
n
k=1Hk,

whenever the limits are clear from the context. For reasons to become clear in the
next lines, we will write inner products to be linear in the second factor, that is,

⟨f , g ⟩ = ∫ f g dν,

which closely resembles the finite-dimensional case ⟨ v , w ⟩ ∶= vTw, where w is
interpreted as a column vector and vT is a complex conjugated row vector. The
isometrical involution on a locally compact group will be denoted as

f ↦ f∗.

We furthermore introduce a notation, which is very convenient when it comes to
operator-function pairings - a pairing we are about to encounter in great abundance.
Let T be a not necessarily bounded operator, ψ ∈ D(T ) and f a function in the
pre-dual of the image of T . Then, we will use the shorthand

⟨Tψ , f ⟩ =∶ Tψ f,

that is, Tψ is defined to be the mapping

Tψ ∶ f z→ ⟨Tψ , f ⟩ = Tψf.

Given an operator-valued function x ↦ T (x), we may now express this conveniently
as

(Tψf)(x) ∶= ⟨T (x)ψ , f ⟩ .

The true power of this shorthand unfolds, when it comes to group representations and
the generalization of such, which will be used in this thesis. Then, wavelet transforms,
matrix coefficients and conjugation representations may all be represented in the
same way. Let π be a unitary group representation, then

(πψf)(x) ∶= ⟨π(x)ψ , f ⟩

9



1.2. Notation

is the associated transform of f with “window” ψ. Let P denote some appropriate
operator and the group act on it by conjugation P (x) ∶= π(x)Pπ(x)∗, then

(Pψf)(x) ∶= ⟨P (x)ψ , f ⟩ = ⟨π(x)Pπ(x)
∗ψ , f ⟩ .

The trace of an operator or a matrix, T , is denoted with tr(T ). From time to
time, Dirac’s bra-ket notation will be adopted, as is custom in the community of
quantum physicists. We’ll write ∣Ψ ⟩ ∶= Ψ ∈ H for a state and ⟨Ψ ∣ ∶= ⟨ψ , ● ⟩ for
its “dual” in order to express rank-one projectors as

f ↦ ∣ψ ⟩⟨ψ ∣f ∶= ⟨ψ , f ⟩ψ.

Whenever we work in finite dimensions and explicit indices are in order, we
will moreover use the notation of co- and contravariant tensors. In our notation, a
contravariant vector has an upper index and will correspond to a column vector as

vi ∶=
⎛
⎜
⎝

v1

⋮

vn

⎞
⎟
⎠

whereas a covariant vector has a lower index and defines a co-vector

vi ∶= (v1 ⋯ vn)

A tensor of higher rank, then, necessarily has more than one index which can
be upper, lower or both. A matrix, M , acting on some vector, v, is represented as

(Mv)i =∶ ∑
j

M i
jv
j.

We will, however, not use metrics other than Kronecker delta to contract
tensors and will refrain from using Einstein’s summation convention and thus
never drop the summation symbol.

The transposed inverse of a matrix J will be denoted with

(J−1)T = (JT )−1 =∶ J−T .

For variables on phase space, we will be free to use (q, p), (x, ξ) or (x, y), where
the first emphasizes its relation to mechanics, the second to time-frequency analysis
and the third to a neutral set, bearing no special qualities.
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Natura non facit saltus.

— Carolus Linnæus [84]

2
Quantization

CONTINUA and INFINITIES are mathematical concepts, put on firm
grounds by Georg Cantor, Richard Dedekind and others [53] and om-
nipresent in mathematics and mathematical physics.

Whether the emergence of these mathematical abstracta is imperative in the physical
universe surrounding us, is still up to debate and shall not be of concern in this
monograph. What is certain, however, is the occurrence of observable quantities,
having purely discrete spectra - the quanta. It is these quanta, as well as the
universality of perspectives, that this chapter is devoted to.

The world looks different from different perspectives - if not, there is a symmetry.
This seemingly obvious fact is worth a few words, as it is a ubiquitous theme in
this monograph. In classical physics, the frame of reference is a means to formalize
this concept and the Galilean transformation in Newtonian mechanics as well
as the Lorentz transformation in relativistic mechanics describe the respective
changes of perspectives.

Mathematically, these transformations are coordinate transformations between
families of grids, having certain characteristics assumed to be of relevance for the
correct description of physical events. As a matter of fact, the physical phenomena
- space-time events, as these are called in special relativity -, which constitute our
world, should be independent of the observers perspective, and thus events and
physical laws are presupposed to be covariant with such a coordinate change.

Albert Einstein’s theory of general relativity [23] drives this point home, where
the perspective is assumed to be dependent on the curvature of space-time and
a frame of reference is distorted through the mere presence of mass and energy.

11



2. Quantization

This curvature is derived from and manifests itself through a pseudo-metric tensor
and a change of perspective inscribes the space-time manifold with a fresh set of
coordinates which accordingly also alters said (pseudo)metric tensor. It is this
change of perspective and the associated alteration of the metric which leads to the
sensation of a constant gravitational field in a frame which is constantly accelerated
and, thus, distorted. This is Einstein’s equivalence principle.

The permissible coordinate transformations in general relativity are less re-
strictive than in the case of special relativity and, in fact, the only restriction
is that these transforms are diffeomorphisms, which deform space-time in an
invertible and differentiable manner.

In general, the structure preserving morphisms on differentiable manifolds,
Definition A.73 (Differentiable manifolds), are referred to as diffeomorphisms.

Definition 2.1 (Diffeomorphism). Let X and Y be differentiable manifolds. A
homeomorphism σ ∶X → Y which is continuously differentiable and has a continu-
ously differentiable inverse is a diffeomorphism. ◆

In classical mechanics, the state of a system is given as a point in an abstract
phase space, the permissible coordinates of which are called canonical and inscribe
the phase space with pairs of conjugate coordinates. The associated coordinate
transformations that map one set of canonical coordinates to another are accordingly
called canonical transformations or symplectic diffeomorphisms. These symplec-
tomorphisms, as these are often called, are diffeomorphisms preserving pairs of
conjugate coordinates and are the ones that are of interest in the course of this
chapter.

When speaking of signals, one usually means a “set of data”, containing interesting
as well as irrelevant data and the challenging task is to separate these and extract
what is of relevance. The explicit process of separating the wheat from the chaff,
however, is dependent on how a signal is mathematically represented. Superficially,
a signal is represented as an abstract function

f ∶X → Y, x ↦ f(x),

associating to each x ∈X a value f(x). This abstract concept can be made concrete
in various ways, depending on the signal under consideration. For an exemplary
audio signal, the domain is time, X = R, and the value f(x) is the loudness at
time x, which is a real value, too. To be even more concrete, the signal’s values
represent the momentary deflection of, say, a speaker’s membrane from its idle state.

12



2. Quantization

Since the membrane is doomed to obey the laws of physics, common sense tells
us that the membrane’s deflection cannot change by an arbitrarily large amount
in a short duration, so the membrane’s deflection necessarily depicts a continuous
path between two positions, since there are no true quanta leaps outside of the
quantum world - natura non facit saltus.

This property - continuity - is a very desirable one in regard to any signal,
since then no matter what the domain of or data contained in f is, a small
change in x only leads to a small change in f(x). Unfortunately, the quantum
revolution made clear that the above is an indulgence in wishful thinking, since
the vibrations of a clamped membrane is necessarily a clamped quantum oscillator,
whose excitements are quantized.

Mathematically, this manifests itself in the fact that the continuity of the
signal cannot always be guaranteed. Moreover, for continuous functions, there
exists a continuous mapping

f ↦ f(x), x ∈ Rn,

which “measures the content” of f at the point x ∈ Rn, i.e., it evaluates f at the
point x. Whenever we are interested in further information on f around x - the
role-model being the “frequency” of f at the instant of time x -, it is clear that we
cannot extract any further information from f(x), since it is just a single complex
value. Thus, the information concerning the occurring frequencies must be encoded
in a neighborhood of the point x, rather than the point x itself. This points to
the general fact that in order to gain further information than just the apparent
number-value of a function at some point, we have to take the neighborhood of
that point into account, that is, the information is coherent.

Therefore, and because the continuity of the signal cannot always be guaranteed,
we are forced to abstract the concept of a function to that of an equivalence
class of such, that is, a measurable function, vanishing at infinity. The reason for
the abstraction of functions to equivalence classes of these, is the fact that the
topological dual of the measurable functions not necessarily contains the point-
evaluation functionals. Rather, functionals

l ∶ f z→ l(f) ∈ C

are defined as measures, which the measurable functions are integrated against.
This motivates the following definition.

13



2. Quantization

Definition 2.2 (Signal). A signal shall denote a complex-valued, measurable
function - or an equivalence class of such - defined on some Lebesgue space of
square-integrable equivalence class of functions, that is,

f is a signal ⇐⇒ f ∈ L2(X, dν;C), (2.1)

for some locally compact abelian group (X, dν), for which we may define a
commutative Gelfand transform via Pontryagin duality, Definition A.30 (Pontryagin
duality).

In fact, we will solely use Rn - being its own dual - as the domain, for which
said Gelfand transform boils down to the Fourier transform. ◆

This brings us to the next standing assumption of this chapter. Although there
are more general domains that can be conceived, we henceforth claim that the
relevant information of n−dimensional signals and functions that we shall consider
may be indexed by (not necessarily countable) families of points, resp. subsets
of the 2n−dimensional phase space.

Definition 2.3 (Phase Space). Let Rn be a configuration space and R̂n its dual,
then either its cotangent bundle

X ∶= T ∗Rn ≃ Rn × R̂n (2.2)

or a subset thereof

X ⊂ Rn × R̂n (2.3)

shall denote the phase space. ◆

Our definition of the phase space support of a function rests upon the possibility
to distinguish between local and global behavior of a function for the purpose of
which we will make heavy use of the Fourier transform.

Definition 2.4 (Fourier Transform). The Fourier transform

f̂(ξ) = ∫
Rn
f(x) e−2πi⟨ ξ , x ⟩ dx , ξ ∈ Rn, (2.4)

maps functions on L1(Rn), to functions on C0(Rn) and can - using Plancherel’s
formula - be extended to a unitary map, F , on L2(Rn).

Then, Ff is no longer defined in a pointwise sense but interpreted as

⟨f , g ⟩L2(Rn) = ⟨Ff , Fg ⟩L2(R̂n) , (2.5)

that is, it is defined via Plancherel’s theorem, Theorem A.42 (Plancherel).
When restricting the Fourier transform to one parameter only, i.e.,

Fkf(x1, . . . , ξk, . . . , xn)=∫
R
f(x1, . . . , xk, . . . , xn) e

−2πi⟨ ξk , xk ⟩ dxk, ξk ∈ R, (2.6)

the properties, as stated above, still hold. ◆
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2. Quantization

In particular, this monograph is devoted to the decomposition of a vector space
of signals into linear subspaces which have a well-known localization in phase space.
That is, if we decompose the phase space into non-overlapping tiles, we wish to
associate to each of these tiles a subspace of functions, whose phase space support
is completely contained within this tile.

Heuristic 2.5 (Phase space decomposition). Let X denote phase space, S the
vector space of signals and Df the image of a function f ∈ S on phase space. Then,
ideally we wish to find for all tiles τ ⊂X an associated subspace Sτ ⊆ S such that
all signals in S have phase space support in τ , i.e.,

f ∈ Sτ ⊆ S ⇒ supp(Df) ⊆ τ.

◆

In fact, a classical phase space is an even-dimensional symplectic (differentiable)
manifold, Definition A.73 (Differentiable manifolds), whose structure arises from
a nowhere vanishing two-form, called the symplectic form.

Definition 2.6 (Symplectic Form). Let Ω be a differential two-form on phase space
and Γ, Λ denote the set of vector fields and one forms on phase space, respectively.
Then, if

(i) Ω is closed ⇐⇒ dΩ = 0 ,

(ii) alternating ⇐⇒ Ω(v,w) = −Ω(w, v) ⇒ Ω(v, v) = 0 , ∀v,w ∈ Γ ,

(iii) and non-degenerate ⇐⇒ Ω identifies Λ with Γ ,

it is a symplectic form. ◆

In order to do explicit calculations on symplectic spaces, we need a local
representation of these, for which the next theorem comes in handy.

Darboux’s Theorem 2.7. Assume that Ω is a symplectic form. Then, there exists
a local chart - that is, a local coordinate system -, such that

Ω ∶=
n

∑
i=1

dpi ∧ dqi. (2.7)

The corresponding local coordinates are the Darboux coordinates. ◆

Proof. Cf., e.g. [15]. ∎
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2. Quantization

This moreover means that all symplectic manifolds of the same dimension may
be identified, at least in local Darboux coordinates.

Let now (ϕ,U) be a local Darboux chart of phase space, with ϕ ∶= (pi, qi). Then,

ϕ(U) ⊂ Rn ×Rn

and, in this chart, the symplectic form may be expressed as

Ω(w, v) ∶= wTJv ,

where

J = (
0 In
−In 0 ) .

In a sense, symplectic diffeomorphisms, as defined in Proposition 2.9 (Symplec-
tomorphism), are a non-linear analogue to a symplectic matrix.

Proposition 2.8 (Symplectic Matrix). For a matrix S, the following are equivalent

(i) S is a symplectic matrix

(ii) Ω(Sw,Sv) = Ω(w, v),

(iii) J is conjugation invariant under S,

STJS = SJST = J,

(iv) S is a block matrix of the form

S = (
A B
C D

) ,

with ATD −CTB = In and ATC and BTD are symmetric matrices. ◆

Proof. See, e.g. [15]. ∎

Symplectomorphisms, mapping the set of canonical coordinates to itself, consti-
tute a group, in fact a subgroup of the infinite-dimensional group of diffeomorphisms
of a differentiable manifold. Whether a diffeomorphism is symplectic and thus in
the symplectic subgroup, is characterized by its action on the manifolds cotangent
bundle in the following sense.

Proposition 2.9 (Symplectomorphism). For a diffeomorphism σ, on a differen-
tiable manifold M , the following are equivalent

(i) σ is a symplectic diffeomorphism,

(ii) σ∗Ω = Ω(σ(●), σ(●)) = Ω, that is, the symplectic form is invariant under (the
pullback of) σ,

(iii) the Jacobian matrix, Jσ, is a symplectic matrix, for all (x, y) ∈ M. ◆

Proof. Again, see, e.g. [15]. ∎
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2. Quantization

2.1 From Classical States to Quantum States

2.1.1 Classical Mechanics

In classical mechanics, a system’s state is represented as a point in phase space,
(q, p) ∈ R2n, and its dynamics is determined by equations of evolution.

Classical States

Classical mechanics is deterministic in the sense that, assuming, for example, a
system of n particles in a three-dimensional space, the system’s state is determined
completely by the 3 ⋅ n positions and 3 ⋅ n momenta of the particles in question.

That is, knowing the exact positions, masses and directions in which the particles
are heading, as well as the existing forces at an instant of time, it is possible to
determine the positions and momenta of all particles for all time. More concretely,
the state of the system is given by (q, p) ∈ R3n × R̂3n, where

q ∶= (q1, . . . , q3n) ∈ R3n and p ∶= (p1, . . . , p3n) ∈ R̂3n

are the positions and momenta, respectively. The setX = R3n×R̂3n, the cotangent
space of R3n, is the phase space, the space of all possible states the system can
attain, where R̂3n is the topological dual of the configuration space R3n, describing
the momenta of the n particles. Here, R̂3n can be identified with R3n ≃ R̂3n itself.

Classical Observables and Evolution

The system’s evolution over time may be expressed in various ways, usually derived
from a Hamiltonian or Lagrangian. In Hamilton’s mechanics, the Hamiltonian,
H ∶ X → R, is a real and smooth function on phase space, usually interpreted
as the total energy of the system.

Definition 2.10 (Hamiltonian). The Hamiltonian of a classical mechanical system
is the observable for its energy and is, in the simplest case, given by the sum of
kinetic, T , and potential energy, V , that is

H ∶= T + V,

is the total energy of the system, called the Hamiltonian. ◆

When the system does not exchange energy with its surroundings, the energy
necessarily stays constant and the Hamiltonians contour lines therefore coincide
with the systems flow in time, for else it changed its energy, which contradicted the
assumption of energy conservation. Thus, the flow is orthogonal to the Hamiltonian’s
gradient, determining Hamilton’s differential equations.
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2.1. From Classical States to Quantum States

Definition 2.11 (Hamilton’s Equations). Let H ∈ C∞(R2n) be a Hamiltonian,
then

(q̇i, ṗi) = (
∂H

∂pi
,−
∂H

∂qi
), i = 1, . . . , n, (2.8)

are Hamilton’s equations which define the system’s flow.
That is, the Hamiltonian vector field XH , which determines the flow, is

XH ∶= (
0 In
−In 0 )∇H , with ∇H ∶= (

∂H
∂q
∂H
∂p

) ,

and In denoting the n-dimensional identity matrix
⎛
⎜
⎝

1
⋱

1

⎞
⎟
⎠

.

In differential geometry, vector fields are represented by differential operators,
acting on smooth functions. Thus, the above may be rephrased as a differential
operator of the form

XHf ∶=
∂H

∂pi
∂qf −

∂H

∂qi
∂pf, f ∈ C∞(R2n),

and this is also how vector fields will be represented in this monograph. ◆

As a system without observable quantities other than its total energy is a boring
one, we further introduce general observables of the system as real and smooth
functions on the phase space, whose point evaluation

O ↦ O(q, p), O ∈ C∞(X),

gives the observable quantity of the state. By virtue of these point evaluations,
we may reinterpret the states of the system as Dirac delta functionals, which,
when integrated against, evaluate the observables at the system’s state in the
sense of distributions. That is, writing e(q,p) for the evaluation functional, given as
distributional integration against a Dirac delta functional, centered at (q, p), we have

System is in state (q, p) ∈X ⇐⇒ (q, p) ≃ e(q,p) ∶ O ↦ O(q, p),

where the map

e ∶X → C∞(X)∗ , (q, p) ↦ e(q,p)

associating to a point its evaluation functional is an injective map into the dual of
the space of observables. Since the evaluation functionals are multiplicative, i.e.,

e(p,q)(f ⋅ g) = (f ⋅ g)(p, q) = f(p, q) ⋅ g(p, q) = e(p,q)(f) ⋅ e(p,q)(g),
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2. Quantization

and C∞ is invariant under pointwise multiplication, the observables constitute a
commutative algebra and can thus be observed simultaneously, respectively shortly
after each other, without disturbing each other.

By loosening the definition and smearing the differences between the system’s
Hamiltonian and the system’s observables, we may define a plethora of other
(Hamiltonian) flows this way. There are an infinite number of possible Hamiltonian
flows, but in a two-dimensional phase space, the most common ones are given by

(i) the observable of momentum

P ∶ (q, p) ↦ p, with XP ∶= ∂q,

inducing a flow of constant speed in q-direction,

(ii) the observable of position

Q ∶ (q, p) ↦ q, with XQ ∶= −∂p,

inducing a flow of constant speed in p-direction, as well as

(iii) the observable of energy of a harmonic oscillator

H ∶ (q, p) ↦ 1
2 (q

2 + p2) , with XH ∶= −q∂p + p∂q,

inducing a circular symmetric flow around the origin.

Apart from the ubiquitous ones above, there are other interesting ones, like

H̃ ∶ (q, p) ↦ q ⋅ p, with XH ∶= −p∂p + q∂q, (2.9)

resulting in a flow along the contour lines, depicted in Figure 2.1a, or

H̃ ∶ (q, p) ↦
q

2 + cos(p) , with XH ∶= −
1

2 + cos(p)∂p +
q ⋅ sin(p)
(2 + cos(p))2∂q, (2.10)

with a flow along the contour lines shown in Figure 2.1b.
Another approach to and in a sense a generalization of Hamilton’s mechanics

is via the Poisson structure of phase space.

Definition 2.12 (Poisson Bracket). Let (q, p) be Darboux coordinates on phase
space X. Then, the Poisson bracket

{ , } ∶ (F,G) ↦ {F , G} , (2.11)
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2.1. From Classical States to Quantum States

is representable as

{F , G} = ∑
i

∂F

∂qi
∂G

∂pi
−
∂F

∂pi

∂G

∂qi
. (2.12)

Poisson’s bracket is a derivation and thus follows Leibniz’s rule,

{ab , c} = {a , c} b + a{ b , c} ,

is bilinear,

{αa + βb , c} = {αa , c} + {βb , c} and { c , αa + βb} = { c , αa} + { c , βb} ,

antisymmetric,

{a , b} = −{ b , a} ⇒ {a , a} = 0,

and, moreover, Jacobi’s identity

{a , { b , c}} = {{a , b} , c} + { b , {a , c}}

holds. ◆

Note that the last identity above turns the Poisson bracket into a Lie bracket.
Therefore, an associated Poisson algebra, which is a set of functions defined on
phase space, closed under the Poisson bracket, is a Lie algebra.

The peculiarity of the Poisson bracket is that, for canonical coordinates, it holds
that

{ qi , pj } = δ
i
j,

and a canonical transformation - a symplectomorphism - is defined to be a trans-
formation for which this relation is invariant, that is,

(q, p) ↦ S(q, p) is a symplectomorphism ⇔ S∗ {F , G} = {F , G} ,

where S∗ {F , G} ∶= {F ○ S , G ○ S } denotes the pullback of the Poisson bracket un-
der S.

Moreover, Hamilton’s equations may be elegantly expressed as

q̇i ∶=
∂H

∂pi
= { qi , H } and ṗi ∶= −

∂H

∂qi
= {pi , H } , i = 1, . . . , n, (2.13)

which can be checked directly. This means that Poisson’s bracket induces the
(infinitesimal) symplectic flow, with respect to its second parameter, and gives
another method of determining whether a quantity is invariant under a flow; often
referred to as a symmetry of the system.

20



2. Quantization

-4 -3 -2 -1 Q 1 2 3 4
-4

-3

-2

-1

P

1

2

3

4

(a) Contour lines of (q, p) ↦ q ⋅ p
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(b) Contour lines of (q, p) ↦ q
2+cos(p)

Figure 2.1: Contour Lines

Definition 2.13 (Symmetry). A symmetry shall denote a group of transformations,
under which an equation is invariant. ◆

In the physics community - especially in quantum field theory -, the Hamiltonian
approach to symmetries is uncommon, as symmetries of this kind are usually
expressed via the Lagrangian (density) and the principle of stationary action, which
plays no role in this program and will therefore not be discussed.

Nonetheless, from a physicist’s point of view, [69, Ch. 2] or [68], this is
intrinsically linked to

Noether’s Theorem 2.14. To each continuous symmetry, there corresponds a
preserved quantity. ◆

A quantity - in this case the value of an observable, evaluated for a specific
state - which is preserved under a symmetry group, is necessarily conserved for the
infinitesimal flow. Using Poisson’s approach to mechanics, a flow along the contour
lines of G is induced by { ● , G} and an observable, F , which is conserved under
the flow, induced by G, thus has a vanishing Poisson bracket with G

F is conserved under G ⇐⇒ {F , G} = 0.

From this, we conclude immediately the almost trivial fact that the flow induced
by an observable preserves the same

{G, G} = 0.
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2.1. From Classical States to Quantum States

That is, the symplectic flow along the contour lines preserves the value of the
observable and thus the flow is given by a symmetry group, which manifests itself as

• conservation of momentum by translational symmetry,

((q, p) ↦ p) z→ −∂q,

• conservation of energy by time symmetry,

((q, p) ↦ (p2 + q2)/2) z→ −p∂q + q∂p,

• etc.

From a signal analyst’s point of view, however, there is no need to have physical
pendants or even names for these kinds of symplectic maps, since - as we will
see below - merely the possibility to flow along contour lines of these generalized
Hamiltonians is what is wished for.

All these Hamiltonian flows share the all-important property of being symplectic
diffeomorphisms and, as such, leave invariant the symplectic form as defined above.
This means that the symplectic area of a subset of phase space under consideration
is kept invariant and, moreover, the 2 ⋅ n-dimensional volume is kept constant. The
former is the defining property of a diffeomorphism to be symplectic, while the latter
is well known in classical mechanics and symplectic geometry under the name of

Liouville’s Theorem 2.15. Let (M,ω) be a symplectic manifold and σ a sym-
plectic diffeomorphism on M , then σ preserves volume. ◆

In fact, even more is true. In 1985, Gromov unveiled his non-squeezing theorem
[40], stating that the volume-conservation of canonical transformations is merely
one of the more apparent characteristics of symplectic diffeomorphisms, guaranteed
by Liouville’s theorem, and there’s a more subtle and astonishing property.

Gromov’s Theorem 2.16. Gromov’s non-squeezing theorem [40] highlights that
canonical transformations cannot squeeze a ball of radius r into a cylinder of smaller
radius, if the cylinder is perpendicular to a plane of conjugate variables, e.g.,

Ci ∶= { (x1, y1, ..., xn, yn) ∈ R2n ∣x2
i + y

2
i ≤ r } .

That is, it is impossible for symplectic diffeomorphisms to squeeze a phase space
subset such that its area in the planes of conjugate coordinates decreases below their
initial value. ◆
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This is surprising, as it is easy to imagine the ball being squeezed to a long
needle until it fits inside the cylinder and has not been anticipated until 1985. In
light of Gromov’s non-squeezing theorem, before moving to the quantum realm, a
short remark about the connection between classical and quantum is in order.

Remark 2.17 (Classical vs. Quantum). According to De Gosson and Hiley [16],
the non-squeezing theorem is - in a sense - a classical analogue of the uncertainty
principle in quantum mechanics.

De Gosson realized that the connection between classical and quantum mechanics
is deeper than it is perceived in the community of mathematical physics. He showed
that there is a way to derive Schrödinger’s equation from the classical equations of
Hamilton, without taking recourse to any quantum arguments.

Although he introduced an arbitrary parameter, h̵, without any physical sig-
nificance, the path taken is legitimate and unearthed a more fundamental nexus
between classical and quantum - at least from a mathematical point of view. ◆

2.1.2 Quantum Mechanics

Just like classical mechanics, quantum mechanics may be expressed in various ways,
usually named pictures, expressing the quantum mechanical states, observables and
its equations of evolution in seemingly different but mathematically equivalent ways.

Quantum States and Observables

In the Schrödinger, Heisenberg and Dirac pictures, the (pure) state of a system, which
was formerly defined as a tuple of 2 ⋅n numbers, is now represented by a normalized
vector in an abstract projective Hilbert space, H. The observables are lifted to
self-adjoint operators on this Hilbert space - which may be unbounded - and the
Hamiltonian flow is replaced by strongly continuous one-parameter groups of unitary
operators - the quantum symmetries of the system -, acting on the Hilbert state space.

In contrast to the classical case, the state of the system, respectively the
observable quantities of the system, cannot be determined perfectly, since the
state is modeled by a probability wave, which implies a certain uncertainty in the
predictability of a measurement’s outcome.

We will henceforth concentrate on the Schödinger picture, but note in passing
that the same could developed within the framework of the other pictures.

In the spatial representation of the Schrödinger picture for a quantum system,
consisting of a single particle in ordinary three-dimensional space,

∣ψ(x⃗, t)∣
2 dx dy dz
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2.1. From Classical States to Quantum States

represents the probability of finding a particle in the spatial cube dx dy dz,
centered at x⃗ ∶= (x, y, z) ∈ R3, at time t ∈ R, where

∥ψ∥ = 1, ψ(●, t) =∶ ψt ∈ L
2(R3, dx dy dz), ∀t ∈ R,

is the system’s state represented in spatial or ∣x ⟩-representation. A particle’s
momentum is also given by a probability density and if

ψ̂(p⃗, t) ∶=∭
R3
ψ(x⃗, t) e−2πi⟨ p⃗ , x⃗ ⟩ dx dy dz (2.14)

is the Fourier transform of ψ - its spectrum - in its three spatial dimensions, then

∣ψ̂(p⃗, t)∣
2 dpxdpydpz

represents the probability of the particle to have a momentum in the “momentum
cube” dpxdpydpz, centered at p⃗ = (px, py, pz) ∈ R̂3, at the instant of time t.
A consequence of this is that the waveform ψ - as well as its Fourier transform ψ̂ -
already encodes both the spatial and momentum representation, although they are
only defined on either the configuration space, R3, or the space of momenta R̂3 and
thus either ψ or ψ̂ each suffice for each and every measurement of observables.
This is a general fact, whenever the state is represented with respect to the
(generalized) Eigenbasis of an observable, having non-degenerate spectrum, but
this shall not concern us here.

This is in strong contrast to the classical formalism, in which a particle’s position
and momentum is known exactly and given by the coordinate (q, p).

The observable properties of a given system in state ψ is given by a measurement
process which, again, mathematically resembles an evaluation functional. These
evaluation functionals, however, are themselves not defined as point evaluations of
continuous functions, but as elements of the dual of the space of the observables
in question, which are now given by self-adjoint operators.

Given an observable T , the outcome of a measurement of T , while the system
is in the (pure) state ψ, is the evaluation mapping

eψ ∶ T z→ eψ(T ) ∶= ⟨Tψ , ψ ⟩ ,

which is the expectation value, that is, the value we expect when measuring the
observable T with respect to the system’s probability wave function ψ. To each
function corresponds a rank-one projector defined as follows.
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2. Quantization

Definition 2.18 (Rank-One Projector). Let ψ, f ∈ H be a functions in the Hilbert
space H. Then,

Pψ ∶ H → {λ ⋅ ψ ∣λ ∈ C } , f ↦ ∣ ψ̃ ⟩⟨ ψ̃ ∣f ∶= ψ̃ ⋅ ⟨ ψ̃ , f ⟩ , (2.15)

with ψ̃ ∶= 1
∥ψ∥ψ, defines the rank-one projection operator of ψ, projecting onto the

one-dimensional subspace, spanned by ψ. ◆

By loosening the definition above, we end up with an operator which is no
longer a projection, but still of rank one.

Definition 2.19 (Rank-One Operator). Let ψ,φ, f ∈ H be a functions in the Hilbert
space H. Then,

Pψ,φ ∶ H → {λ ⋅ ψ ∣λ ∈ C } , f ↦ ∣ψ ⟩⟨φ ∣f ∶= ψ ⋅ ⟨φ , f ⟩ , (2.16)

is rank-one operator. ◆

Rewriting the expectation value as

eψ(T ) = tr [ T ∣ψ ⟩⟨ψ ∣] ,

we see that we may define the states to be rank-one projection operators

Pψ ∶= ∣ψ ⟩⟨ψ ∣, with tr [PψPφ] = ∣⟨ψ , φ ⟩∣2 .

As in the classical case, we have an injection

ψ
∼
z→ eψ,

identifying the states with the evaluation functions as a subset of the dual space
of the algebra of observables.

Quantization of a classical System

The process of quantization of a classical system now associates to a classical system a
quantum system, in which the rules of the game are necessarily changed although the
behavior of the classical system shall be reflected as much as possible. If no particles
are to be created, nor destroyed, and no Lorentzian invariance by incorporating
special relativity is needed, the classical approach of quantum mechanics, which
takes Hamiltonian mechanics, as above, as a starting point and is now often called
the first quantization, suffices. This quantization is not unique, but the most
common ways this is done is either via coherent state quantization - which we will
postpone - or using canonical quantization, a.k.a. the Weyl correspondence [15].
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2.1. From Classical States to Quantum States

Definition 2.20 (Weyl Correspondence). Let O ∈ C∞(X) denote a (real-valued)
classical observable. Then, the Weyl correspondence

O
∼
z→ Ô,

associates to O a self-adjoint integral operator

O z→ ∫
Rn
e2πi⟨ x−y , ξ ⟩ O (x+y2 , ξ) dξ =∶ k(x, y), (2.17)

to be interpreted as a map from a symbol - an observable on phase space - to an
integral kernel, converging at least in the sense of distributions.

Conversely, let T ∈ L(H) be a linear operator with kernel K, then

W(T )(x, ξ) ∶= ∫
Rn
K(x − y

2 , x +
y
2) e

2πi⟨ y , ξ ⟩ dy (2.18)

is its Weyl symbol, which is again real-valued if T is self-adjoint, a.k.a., the Weyl
map.

The Weyl symbol of a rank-one operator is its (cross) Wigner-Ville distribution

W(∣f ⟩⟨g ∣)(x, ξ) ∶= ∫
Rn
f(x − y

2) g(x +
y
2) e

2πi⟨ y , ξ ⟩ dy, (2.19)

where the type of convergence of the last two integrals above depend on the function
spaces of f , g and K. ◆

In this regard, we shall give an explicit definition of the Wigner-Ville Distribution
for a function, which can be defined via its associated rank-one projector.

Definition 2.21 (Wigner-Ville Distribution). The Wigner-Ville distribution of a
function is the Weyl symbol of its rank-one projector

Wf(x, ξ) ∶= W(∣f ⟩⟨f ∣)(x, ξ) ∶= ∫
Rn
f(x − y

2) f(x +
y
2) e

2πi⟨ y , ξ ⟩ dy. (2.20)

◆

With this at hand, there is still missing some ingredient to explicitly calculate
the quantized operators for often occurring observables like the canonical ones, p,
q and polynomials in these. This is where the symmetric correspondence rule
comes handy [63].
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2. Quantization

Definition 2.22 (Symmetric Correspondence Rule for Polynomials). Let O ∶= pnqN

be a polynomial observable, then the Weyl correspondence associates to it an
operator which is the average of all possible orderings of the polynomials. Or, using
one of the two of McCoy’s formulas, this means

pnqN ↦
n

∑
k=0
(
n
k
)P kQNP n−k,

respectively

pnqN ↦
N

∑
k=0
(
N
k
)QkP nQN−k. (2.21)

This will be referred to as the symmetrization rule. ◆

Example 2.1 (Hamiltonian). By the Weyl correspondence, to the classical Hamil-
tonian,

H ∶= T + V,

of a single-particle system of unit-mass m = 1, with T and V again denoting the
kinetic and potential energy, is assigned the self-adjoint operator

f ↦ Ĥf ∶= − 1
(2π)2 ∆f + V ⋅ f, f ∈ dom(Ĥ),

with the Laplace operator ∆ and V the potential, now reinterpreted as an operator
of multiplication. ◆

In later chapters, we need a specific type of quantized observable and the
following corollary summarizes all of the relevant features of the quantization
scheme, which will be needed.

Corollary 2.23 (Quantization). Let O, (Ok)k be real-valued, analytic observables
on R2n, independent of the q coordinates. Then, for all qk, k = 1, . . . , n, (k is a
contravariant index and not a power) we have

(i) Ô ⋅ qk = 1
2(Ôq̂

k + q̂kÔ)

(ii) and ∑̂kOkqk = ∑k
1
2(Ôkq̂k + q̂kÔk).

Moreover,

(iii) the Weyl correspondence is linear,

(iv) the operator of a symbol, depending only on the q coordinates, is a multiplica-
tion operator in the spatial domain, and
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2.1. From Classical States to Quantum States

(v) the operator of a symbol, depending only on the p coordinates, is a multiplica-
tion operator in the frequency domain. ◆

Proof. (iii), (iv) and (v) are obvious from the definition. To see (i), note that, since
O is analytic and only depends on the p coordinates, there exist (cjn), such that

O ⋅ qk =
n

∑
j=1
∑
i

cji(pj)
iqk,

and from McCoy’s second formula (2.21) and the linearity of quantization, we get

Ô ⋅ qk =
n

∑
j=1
∑
i

cji (̂pj)
iqk

= 1
2

n

∑
j=1
∑
i

(cji(p̂j)
iq̂k + q̂kcji(p̂j)

i)

= 1
2(Ôq̂

k + q̂kÔ),

which proves (i). (ii) follows from (i), again by linearity. ∎

Another very common quantization principle, used in the theory of pseudo-
differential operators, is the Kohn-Nirenberg correspondence, developed in great
generality for specific classes of functions on X, dubbed symbol classes, but since
there is no explicit dependence on any specific symbol classes, like, e.g., the important
Hörmander Classes in the later chapters, no definition is given.

Definition 2.24 (Kohn-Nirenberg Correspondence). Let O ∈ C∞(Rn), then

(Ô(x,D)f)(x) ∶= ∫
Rn
O(x, ξ)e2πi⟨ ξ , x ⟩f̂(ξ) dξ (2.22)

is the pseudo-differential operator, assigned to the symbol O.
Conversely, let T ∈ L(H) be a linear operator with kernel K, then

R(T )(x, ξ) ∶= ∫
Rn
K(x,x + y) e2πi⟨ y , ξ ⟩ dy

∶= ∫
Rn
K(x, y) e2πi⟨ y , ξ ⟩ dy e−2πi⟨ x , ξ ⟩

(2.23)

is its Kohn-Nirenberg symbol on phase space.
The Kohn-Nirenberg symbol of a rank-one operator is the (cross) Rihaczek

distribution

R(∣f ⟩⟨g ∣)(x, ξ) ∶= ∫
Rn
f(x) ĝ(x + y) e2πi⟨ y , ξ ⟩ dy

∶= f(x) ĝ(ξ) e−2πi⟨ x , ξ ⟩,
(2.24)

where the type of convergence of the last two integrals above are again dependent
on the function spaces of f , g and K. ◆
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2. Quantization

Again, an explicit definition of the Rihaczek Distribution makes sense, hence the
following

Definition 2.25 (Rihaczek Distribution). The Rihaczek distribution of a function
f is the Kohn-Nirenberg symbol of its rank-one projector

Rf(x, ξ) ∶= R(∣f ⟩⟨f ∣)(x, ξ) = f(x) f̂(ξ) e
−2πi⟨ x , ξ ⟩. (2.25)

◆

And for the sake of completeness, the following definition gives the difference
between the two quantization schemes above - the ordering.

Definition 2.26 (Ordered Correspondence Rule for Polynomials). Let O ∶= pnqN

be a polynomial observable, then the Kohn-Nirenberg correspondence associates to
it an operator which is ordered as

pnqN ↦ P nQN .

◆

Unitary Flows

The canonical quantization scheme allows to assign a self-adjoint operator to each
Hamiltonian in the same sense as we assign Hamiltonian vector fields to it. This map

̂ ∶ C∞(T ∗M) → L(H) , H ↦ Ĥ

now enables us to use Schrödinger’s epic equation

−
1

2πi∂tψ(x, t) = Ĥψ(x, t) (2.26)

and Stone’s theorem, to further identify the Hamiltonian to a group of strongly
continuous unitary operators, Ut, which solve Schrödinger’s equation in the sense
of operators, see, e.g. [72, Thm. 13.38] .

Stone’s Theorem 2.27. Let T be a self-adjoint operator on dom(T ) ⊆ H and
U(H) denote the group of unitary operators on H. Then,

R ∋ t z→ e−2πiT t ∈ U(H)

is a strongly continuous unitary group representation of (R,+), that is, a one-
parameter group of strongly continuous unitary operators, passing through the
identity element at t = 0.
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2.1. From Classical States to Quantum States

Conversely, if (Ut)t∈R is a one-parameter group of strongly continuous uni-
tary operators, then there exists a unique operator T , defined and self-adjoint on
dom(T ) ⊆ H, such that

e−i2πTtf =∶ Utf, f ∈ dom(T ),

in fact, by differentiating we get

∂tUtf = −i2πTUtf, f ∈ dom(T ),

by which we may recover T via passing t → 0, guaranteed by its strong continuity .
The operator T will be referred to as the (infinitesimal) generator of the corre-

sponding symmetry group, that is, of the unitary flow Ut. ◆

Alternatively, a functional calculus, as in Definition A.58 (Borel Functional
Calculus), can be used to establish this correspondence.

Thus, the family of operators, defined by

ψ(x, t) ∶= Utψ0(x),

for some appropriate ground state ψ0, solve (2.26), since we have

−
1

2πi∂tUtψ0 = ĤUtψ0.

We may now assign two different but connected objects to each Hamiltonian
- its Hamiltonian vector field and its Weyl operator. Let

P ∶ (q, p) ↦ p , Q ∶ (q, p) ↦ q

be the canonical coordinate functions on the two-dimensional phase space, then

XP ∶= −∂q, XQ ∶= ∂p

are the corresponding Hamiltonian vector fields, inducing the system’s flow in
phase space and

P̂ f ∶=
1

2πi
∂f

∂x
, Q̂f ∶= x ⋅ f
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Figure 2.2: Flow Lines

are the associated self-adjoint generators, represented in the spatial domain. Using
Stone’s Theorem 2.27, to these self-adjoint operators we may now assign the well-
known operator families of translation

UP (t)f ∶= e
−i2πP̂ tf = e−∂xtf = f(⋅ − t)

and modulation

UQ(t)f ∶= e
−i2πQ̂tf = e−i2πxt ⋅ f,

which represent the associated symmetry groups. Figure 2.2a shows the correspond-
ing flow lines of the Hamiltonian vector fields XP and XQ.

When restricting to a half-plane of the two-dimensional phase space, e.g. when
dealing with systems having a positive-valued configuration space only, a further
pretty natural choice is the Hamiltonian

D ∶ (q, p) ↦ p ⋅ q.

Applying the same steps as above to D, we get the Hamiltonian vector field

XD ∶= q∂q − p∂p

and the self-adjoint generator

D̂ ∶= 1
2(P̂ Q̂ + Q̂P̂ ) =

1
2πi(

1
2 + x∂x),
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Figure 2.3: Flow Lines

represented on the spatial domain, where we followed the symmetrization rule.
Solving Schrödinger’s equation for D̂, leads to the unitary group of dilation operators

(UD(t)Ψ)(x) ∶= e−t/2Ψ(e−t ⋅ x).

Figure 2.2b shows the corresponding flow lines of the Hamiltonian vector fields XP

and XD and Figure 2.3 depicts the flow lines of XP together with the Hamil-
tonian vector fields

XS1(q, p) ∶= −
1

2 + cos(p)∂p +
q ⋅ sin(p)
(2 + cos(p))2∂q

and

XS2(q, p) ∶= −
1

1.25 − sin(p)∂p +
q ⋅ cos(p)

(1.25 − sin(p))2∂q,

corresponding to the Hamiltonians

S1 ∶ (q, p) ↦
q

2 + cos(p) and S2 ∶ (q, p) ↦
q

1.25 − sin(p) .

Just like the Hamiltonian has its iron both in the fire of classical as well as
quantum mechanics, the Poisson bracket plays a role in both descriptions, too. The
quantization scheme(s) above have initially been introduced to associate with a given
classical system a certain quantum system, which as closely as possible resembles
the classical one. This is especially apparent, when considering the Poisson bracket.
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2. Quantization

Recall that in the classical description, a system of coordinates is canonical, iff

{ qi , pj } = δ
i
j,

and a transformation is canonical, resp. a symplectomorphism, if

S∗ {F , G} = {F ○ S , G ○ S } = {F , G} ,

holds for each pair of F,G from the Poisson algebra. In an adequate quantization,
the Poisson bracket should be mapped to the commutator

{F , G} z→ 2πi [ F̂ , Ĝ ] , (2.27)

where F̂ , Ĝ are the quantized observables and a pair of (quantized) observables are
canonical if and only if an analogue of Poisson’s relation above holds.

Definition 2.28 (Commutator). Let S,T be operators, such that im(S) ⊂ dom(T )
and im(T ) ⊂ dom(S), then

[S,T ]f ∶= (ST − TS)f , f ∈ dom(S) ∩ dom(T ) ∩ dom([S,T ]), (2.28)

defines its commutator. ◆

The quantized version of Poisson’s canonical relation above now is the so-called
canonical commutation relation.

Definition 2.29 (Canonical Commutation Relation). Let (Pi)i and (Qj)j be self-
adjoint. Then

[Pi,Q
j]f ∶= 1

2πiδ
j
i f, f ∈ dom(Pi) ∩ dom(Qj), (2.29)

is the canonical commutation relation; the CCR. ◆

Apart from the CCR, the commutator now gives another criterion, whether
an observable quantity, S, is invariant under the unitary flow, induced by some
generator T , namely

S is invariant under the unitary flow of T ⇐⇒ [S , T ] = 0.

Since to each Hamiltonian corresponds a group of symplectomorphisms of
classical mechanics, as the flow of its Hamiltonian vector field - the classical
symmetry -, as well as a group of unitary evolution operators - the quantum
symmetry -, via the Weyl correspondence, Schrödinger’s equation and Stone’s
theorem, it is in fact not far-fetched to seek an inverse connection between the
unitary flow of a quantum state in H and the symplectic flow of some image - which
is yet to be determined - of this state on phase space. That is,
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2.2. From Classical Frames to Quantum Frames

Heuristic 2.30 (Phase space flow). Let Dψ denote the image of the quantum state
ψ on phase space and H a Hamiltonian on phase space. Let moreover ϕH(x, t)
denote its symplectic flow on phase space, generated by the Hamiltonian vector field
XH , that is,

∂tϕH(x, t) ∶=XH(ϕH(x, t)).

Let furthermore UH(t) be its unitary evolution group.
Then there should be some nexus such that

DUH(t)ψ(x) ∼Dψ(ϕ(x, t)).

◆

It turns out that this is indeed the case and that the theory of coherent states,
along with its associated (de-)quantization method(s), is the right tool to show
that the heuristic rule above is in fact a strict one.

2.2 From Classical Frames to Quantum Frames

The theory of coherent states [1], as developed by Schrödinger [74], Sudarshan
[80], Glauber [37] and Klauder [49–51], associates to each (classical) point of
phase space a finite-rank projection operator - usually of rank one - in such a
way that the operator-valued integral of these projections, with respect to some
measure on phase space, converges to a bounded, positive and invertible operator
on the Hilbert space of states.

The whole theory is independent of phase space and can be defined as follows [1].

Definition 2.31 (Abstract Coherent States). Let (X,µ) be a measure space and

F ∶= {φx ∣x ∈ (X,µ) } ⊆ H

a family of functions in the Hilbert space H, then F is a coherent state system if
and only if there exists a bounded, positive operator A, possessing a densely defined
inverse, such that

A ∶= ∫
X
∣φx ⟩⟨φx ∣ dµ(x), (2.30)

converges in the weak sense. ◆

Note that the operator A in the definition above need not have a bounded
inverse A−1, if so, the coherent state system is a frame, by which we shall mean
a redundant generalization of a Hilbert space basis.
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Definition 2.32 (Continuous Frame). Let (X,µ) be a measure space and

F ∶= {φx ∣x ∈ (X,µ) } ⊆ H

a family of functions in the Hilbert space H, then F is a continuous frame if and
only if there exist 0 < A ≤ B < ∞, such that

A ∥f∥
2
≤ ∫

X
∣⟨φx , f ⟩∣

2 dµ(x) ≤ B ∥f∥2 , f ∈ H. (2.31)

The frame is tight if and only if A = B and may then be characterized by its
resolution of the identity

A−1
∫
X
∣φx ⟩⟨φx ∣ dµ(x) = 1H, (2.32)

where the integral converges in the weak sense.
With spec(A) denoting the spectrum of A, by choosing

A ∶= inf spec(A) and B ∶= sup spec(A),

this definition coincides with Definition 2.31 (Abstract Coherent States) for a
boundedly invertible resolution operator A. ◆

Before moving to the definition of a quantum frame, there is one final gen-
eralization of a frame, which will play some (minor) role during the course of
the later chapters.

Definition 2.33 (Frames of Rank N). Let {φix ∣x ∈ (X, dν), i = 1, . . . ,N } consti-
tute a frame in the sense that

A ∶= ∫
X
∑
i

∣φix ⟩⟨φ
i
x ∣ dν(x) (2.33)

is a positive, bounded operator with bounded inverse. Then it is called a frame of
rank N , if, for each x ∈X, the set

{φix ∣ i = 1, . . . ,N }

is linearly independent. As before, it is a tight frame of rank N , if A = λ1H, λ ∈ C,
and normalized tight if λ = 1. ◆

35



2.2. From Classical Frames to Quantum Frames

Whenever only the decomposition with respect to x ∈X is considered - ignoring
the individual dependencies on the i -, the rank-N definition above lacks a certain
uniqueness, as then the map

F ∶ x ↦ ∑
i

∣φix ⟩⟨φ
i
x ∣,

which defines a function taking its values in the positive rank-n operators over
H, becomes the main matter of interest. Then, whenever N > 1, these are not
uniquely defined, since there is a certain freedom in choosing, for each x ∈ X,
the vectors φix giving rise to F (x).

As a matter of fact, these degrees of freedom lead to the equivalence of frames, as a
given frame of rankN is simply a specific choice of basis vectors for each point x ∈X.

Definition 2.34 (Frame Equivalence). Assume that {φix ∣x ∈X, i = 1, . . . ,N } is
a frame of rank N and denote with F the corresponding rank-N operator-valued
function

x ↦ F (x) ∶= ∑
i

∣φix ⟩⟨φ
i
x ∣.

Then, the set { φ̃ix ∣x ∈X, i = 1, . . . ,N } is Gauge equivalent, if for each x ∈ X

there exists a unitary operator U(x) ∈ U(N) giving rise to

φ̃ix = ∑
k

U i
k(x)φ

k
x.

◆

Proposition 2.35 (Equivalence). Gauge equivalent rank-N frames share the same
projectors. ◆

Proof. Let {φix ∣x ∈X, i = 1, . . . ,N } and { φ̃ix ∣x ∈X, i = 1, . . . ,N } be gauge equiv-
alent frames of rank N , with F (x) and F̃ (x) denoting their projectors. Denote
with U(x) ∈ U(N) the relating field of operators, we have

F̃ (x) ∶= ∑
i

∣ φ̃ix ⟩⟨ φ̃
i
x ∣ = ∑

i

∣ ∑
k

U i
k(x)φ

k
x ⟩⟨∑

k′
U i
k′(x)φ̃

k′
x ∣

= ∑
i,k,k′

U i
k(x)∣φ

k
x ⟩⟨ φ̃

k′
x ∣U

k′
i (x)

= ∑
k,k′
∑
i

U i
k(x)U

k′
i (x)∣φ

k
x ⟩⟨ φ̃

k′
x ∣

= ∑
k,k′

δk
′
k ∣φ

k
x ⟩⟨ φ̃

k′
x ∣ = ∑

k

∣φkx ⟩⟨ φ̃
k
x ∣ = F (x)

∎
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2. Quantization

Since a frame - of whatever rank - is a generalization of a basis in the sense that
it is possible to decompose the whole space of states, H, with respect to subspaces
associated with each of the projectors ∣φi ⟩⟨φi ∣, that is,

⊕
x∈X

im(∑
i

∣φix ⟩⟨φ
i
x ∣) is dense in H ⇐⇒ ⊕

x∈X
⊕
i

φix is dense in H,

it is the perfect tool to decompose our space of states into subspaces, assigned
to subsets of phase space.

This motivates the following

Terminology 2.36 (Quantum Frame). By a quantum frame we shall mean a frame
in the sense of Definition 2.32 (Continuous Frame), for which

(i) (X,µ) denotes phase space with some yet undetermined measure,

(ii) which is adapted to some application-dependent coordinate system in phase
space, which need not be canonical, and

(iii) such that each of the projectors localizes along the coordinate lines of the
chosen frame of reference in a well-concentrated manner.

This, then, enables us to speak of the quantization of a classical frame of reference. ◆

Of course, this terminology is very vague and its clarification is what the
rest of this monograph is all about. The first two of the three points in the
last definition are what the next chapter is devoted to, whereas chapter 4 is
dedicated to the third point above.

2.3 From Quantum Frames to Signal Analysis
Frames

In the 1st chapter, it was noted that D. Gabor introduced the mathematics of
quantum mechanics into signal analysis in the sense that with each phase space cell
is associated a waveform which, by integration against a signal, extracts a specific
complex number from this signal, which characterizes the signal within this region of
phase space. By anticipating the uncertainty principle, which will be introduced in
4th chapter, this region of phase space - and thus the information contained within
it - is determined and its minimal size controlled by the uncertainty principle.

Terminology 2.37 (Quantum of Information). A quantum of information shall
denote an indivisible piece of information, contained within a region of phase
space. ◆
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Coherent state map

Let now F be a normalized tight frame - and thus a system of coherent states -,
whose characteristic localizations in phase space is known and let S denote the space
of signals. We may then decompose a function, in fact the whole reservoir of relevant
functions, with respect to certain subsets of phase space. This decomposition can
be understood in two closely related ways.

• Mapping a function to another function on phase space

f ↦ ⟨φx , f ⟩ , x ∈X,f ∈ S,

such that each x contains a quantum of information (which may be redundant),
contained within the neighborhood of x, where the specific neighborhood and
how certain parts contribute is dependent on φx

• Mapping the function to another function in S,

PE ∶ S → S, f ↦ fE

which contains only that information of f which was essentially contained
within the region E ⊆X

The former is more general in the sense that, whenever F is a frame, the latter
is a reconstruction of the former after setting all values in the complement of
E to zero, that is,

PEf ∶= ∫
E
⟨φx , f ⟩φx dµ(x),

converging with respect to some relevant topology - usually the weak one.
Thus, since the relevant information about f for a particular application is

encoded in the function

x ↦ ⟨φx , f ⟩ , x ∈X,

it makes sense to shift the focus from the resolution property of frames to the linear
map

f ↦ π{φ}f ∶= {⟨φx , f ⟩}x∈X ,

which maps a function to another function, defined on phase space.
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2. Quantization

Proposition 2.38 (Coherent state map). Let F ⊆ H be a normalized tight quantum
frame. Then, the linear map

π{φ} ∶ H → L2(X, dµ), f ↦ π{φ}f ∶= {⟨φx , f ⟩}x, (2.34)

called the coherent state map, or coefficient mapping, is unitary.
Using the weakly converging integral

f ∶= ∫
X
⟨φx , f ⟩φx dµ(x), f ∈ H, (2.35)

it is possible to reconstruct f from its coefficients ⟨φx , f ⟩. ◆

Proof. Since the frame is normalized tight, it holds that

∫
X
∣φx ⟩⟨φx ∣ dµ(x) = 1H,

and thus

∫
X
∣⟨φx , f ⟩∣

2 dµ(x) = ⟨f , f ⟩ , f ∈ H,

proving unitarity of the coherent state map. By polarizing the last identity we have

∫
X
⟨φx , f ⟩ ⟨h , φx ⟩ dµ(x) = ⟨h , f ⟩ , f, h ∈ H,

⇔ ⟨h , ∫
X
⟨φx , f ⟩φx dµ(x) ⟩ = ⟨h , f ⟩ , f, h ∈ H,

which shows the weak convergence of the reconstruction integral. ∎

Corollary 2.39 (Rank-N Coefficient function). Let F ⊆ H be a normalized tight
frame of rank N . Then, the coefficient function

H → CN ⊗L2(X, dν) ≃ L2(X, dν;CN) , f ↦ {⟨φix , f ⟩}x,i

associates to each f a vector-valued function on X.
The reconstruction of f is given by

∫
X
∑
i

φix ⟨φ
i
x , f ⟩ dν(x) = f, f ∈ H,

to be interpreted in the weak sense. ◆

Proof. The coefficient function is a definition and the reconstruction formula is
immediate from

∫
X
∑
i

φix ⟨φ
i
x , f ⟩ dν(x) = ∫

X
∑
i

∣φix ⟩⟨φ
i
x ∣f dν(x)

= ∫
X
∑
i

∣φix ⟩⟨φ
i
x ∣ dν(x)f

= f,

where we used the resolution of the identity of the normalized tight frame and
convergence at least with respect to the weak operator topology. ∎
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2.3. From Quantum Frames to Signal Analysis Frames

Corollary 2.40 (Reproducing Kernel Hilbert Space). Let F ⊆ H be a frame with
resolution operator A. Then, to it corresponds the reproducing kernel

k(y, x) ∶= ⟨φy , A
−1φx ⟩ ,

giving rise to a reproducing kernel Hilbert space, H{φ}, on (X, dµ).
Moreover, this reproducing kernel Hilbert space is the image of the coherent state

map, that is,

π{φ} ∶ H → H{φ}, f ↦ π{φ}f,

with H{φ} ∶= π{φ}H being the r.k.H.s. ◆

Proof. Using the frame property, we have the weak identity

A−1
∫
X
⟨φx , f ⟩φx dµ(x) = f, f ∈ H,

and thus, after applying the coherent state map again, it follows that

⟨φy , A
−1
∫
X
⟨φx , f ⟩φx dµ(x) ⟩ = ∫

X
⟨φx , f ⟩ ⟨φy , A

−1φx ⟩ dµ(x)

= ∫
X
k(y, x) ⟨φx , f ⟩ dµ(x)

= ⟨k(y, ●) , π{φ}f ⟩

= ⟨φy , f ⟩

which proves the claim. ∎

In analogy to the spectrogram of the Short-Time Fourier Transform and the
scaleogram, for the Wavelet Transform, to each (normalized tight) frame is assigned
a quadratic representation, which - in lack of a better name - is herein referred
to as frameogram.

Definition 2.41 (Frameogram). Let F be a normalized tight frame. Then, the
squared modulus of its coefficients

f ↦ ∣⟨φx , f ⟩∣
2
, (2.36)

is its frameogram. ◆
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2. Quantization

Localization

In the 4th chapter, the localization properties of frames, respectively their prototype
functions, φ will be examined. It is the coherent state map,

x ↦ ∣φx ⟩⟨φx ∣, x ∈X, (2.37)

as defined above, associating to each point in phase space a projection operator
of rank one, on which a whole theory of quantization may be built. Composing
(2.37) with the Weyl or Kohn-Nirenberg map

x ↦ W(∣φx ⟩⟨φx ∣) = Wf(● − x), x ∈X,

respectively

x ↦ R(∣φx ⟩⟨φx ∣) = Rf(● − x), x ∈X,

we find that the (coherent states) quantization scheme maps a single point in
phase space to a distribution, centered at x. By abuse of geometrical language,
quantization “smears” a classical state around its classical position - and thus
introduces an uncertainty in its phase space. However, since we are interested in
the process of decomposing phase space with respect to functions having no a priori
kinship to quantum states, we will not dwell any longer on the quantum nature of
any of these and take a first step towards a phase space decomposition.

Clearly, this “smearing uncertainty” depends on the associated projector, which
suggests the following definition.

Definition 2.42 (Phase Space Localization). Let X denote phase space and

F ∶ x ↦ ∑
i

∣φix ⟩⟨φ
i
x ∣, x ∈X,

a positive operator valued function on X. Let moreover D denote a map, associating
to an operator of finite rank, a function on phase space. Then

x ↦ D(F (x))

shall denote the (F -dependent) quantized phase space cell, assigned to x. ◆

It is this kind of localization, which will be elaborated on in chapter 4; specif-
ically with respect to the theory of spectral diffeomorphisms, as developed in
the next chapter.
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2.3. From Quantum Frames to Signal Analysis Frames

Remark 2.43 (A note on Quantization). In signal processing, the word quantization
has a different but related meaning, namely quantizing a continuous value via a
sample-and-hold circuit in an analog-to-digital converter.

When a time-varying signal is digitized, it needs to be sampled which, ultimately,
takes more than single instant of time to accomplish. Thus, the circuit does not
measure the quantity, in this case a voltage, instantaneously but some weighted
average over a certain time-interval, where the weight - the “window” - depends on
the device itself. In the simplest idealized case of a switch followed by an (ideal) RC
low-pass and an A/D-Converter, it is an increasing exponential waveform followed
by a decreasing one. On the other hand, if in parallel a second device is attached,
which changes its polarization while the sampling step is in progress, the A/D-device
may sample two streams simultaneously where the former samples the lower and
the latter samples the higher frequency part, effectively doubling the sampling
frequency as both streams may be superimposed to half the sampling time-constant.

Therefore, for each sample-step, the circuit digitizes a certain, circuit-dependent
quantum of information in the sense of Terminology 2.37 (Quantum of Information)
and the phase space of the analog signal, which is to be sampled, undergoes a
quantization in the sense of the “phase space smearing” above and each sampling
step is a coherent state map with a time-shifted window, depending on the device.

A quantization in signal processing is therefore, in an obvious sense, related to
quantization in quantum mechanics. ◆
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Panta rhei.

— (attributed to) Heraklit

3
Symplectomorphization

UBIQUITOUS in MATHEMATICS, and hence in this monograph, is
the concept of morphisms. In this chapter, a very special morphism, the
symplectic diffeomorphism, will play the lead.

In order to decompose phase space in a manner which is adapted to certain
applications, we are in need of a machinery, to make this process transparent and
easily generalizable. Since the signals we shall decompose are initially not defined
on phase space but on a Lagrangian subspace of phase space - like the time or
frequency domain in case of a two-dimensional phase space -, it is desirable to
have a method at hand which assigns a symplectomorphism in phase space to each
diffeomorphism on some Lagrangian subspaces [61, Ch. 6].

Meet the Cotangent Lift:

Theorem 3.1 (Cotangent Lift). Let σ ∶ M → M be a diffeomorphism on the
manifold M , and let T ∗M denote the cotangent bundle of M . Then

Σ ∶ T ∗M → T ∗M , (q, p) ↦ (σ(q), J−Tσ (q)p) , q ∈M, p ∈ T ∗xM, (3.1)

is a symplectomorphism and will be referred to as cotangent lift or symplectomor-
phization of the diffeomorphism σ. ◆

Proof. The Jacobian of Σ is

(
Jσ
C J−Tσ

) ,

with C ∶= ∂
∂q(∑k p

k ⋅ (JT
σ−1)

●
k(σ(●))) = ∑k p

k ⋅ Hσ−1
k
(σ(●))Jσ, where H● denotes

the (symmetric) Hessian matrix. Consequently, JTσ C = ∑k pk ⋅ JTσHσ−1
k
(σ(●))Jσ,
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3. Symplectomorphization

being the sum of symmetric matrices, is symmetric. Thus, by Proposition 2.8
(Symplectic Matrix)(iv), the Jacobian of Σ is a symplectic matrix and, therefore, by
Proposition 2.9 (Symplectomorphism)(iii), it is a symplectomorphism. ∎

Since in the later chapters we will often use the index notation for Jacobian
matrices, we can use this proof as a warm-up and show another proof.

Second proof of Theorem 3.1. From Darboux’s Theorem 2.7 it follows that one can
always find local coordinates such that the symplectic form can be represented as

Ω ∶= ∑
i

dqi ∧ dpi

and thus, since the components of the Jacobian (Jσ(q))ij are scalars, we have

Σ∗Ω = ∑
i

(dσ(q))i ∧ (d(J−Tσ (q)p))i

= ∑
i

(∑
j

(Jσ(q))
i
jdqj) ∧ (∑

k

(J−1
σ (q))

k
i dpk)

= ∑
i,j,k

((Jσ(q))
i
j(J

−1
σ (q))

k
i )dqj ∧ dpk

= ∑
j,k

δkj dqj ∧ dpk

= ∑
k

dqk ∧ dpk = Ω,

where in the second line it was used that (J−Tσ (q))ik = (J−1
σ (q))

k
i . ∎

Using the cotangent lift above, we assign to each diffeomorphism on a manifold
a specific symplectomorphism, preserving canonical coordinates. In fact, we will
bring a specific type of diffeomorphism into focus.

Definition 3.2 (Spectral Diffeomorphism). Let T ∗Rn ∶= Rn × R̂n denote the
cotangent bundle of the Euclidean manifold Rn, with R̂n denoting its dual. Then,
R̂n is a differentiable manifold and a diffeomorphism

σ ∶ dom(σ) ⊆ R̂n → im(σ) ⊆ R̂n

will be referred to as a spectral diffeomorphism or spectral warp. ◆

Since these kinds of diffeomorphisms necessarily deform the domains of functions
and measures, it is inevitable that with each spectral diffeomorphism comes along a

(i) a spectral cotangent lift to the subset Rn × dom(σ) of phase space,

(ii) two kinds of symplectic flows, induced by the spectral cotangent lift,
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3. Symplectomorphization

(iii) three spectral measure spaces, defined on dom(σ), im(σ) and Rn × im(σ),

(iv) two spectral unitary dilation operators,

(v) two spectral reservoirs, interpreted as signals and “admissible windows” and
represented as abstract Hilbert spaces of equivalence classes of functions,
square-integrable with respect to the former two measures above,

(vi) a reproducing kernel Hilbert spaces of genuine functions on Rn× im(σ), square-
integrable with respect to the latter of the three measures above,

(vii) two quadratic phase space distributions,

(viii) and various mappings interconnecting these.

This chapter is devoted to the definition of these companions of a spectral
diffeomorphism and the last but one chapter of this text to the affiliation of this
program with the various transforms in harmonic analysis and signal processing,
often arising from group theory.

3.1 Symplectomorphisms induced by Spectral Dif-
feomorphisms

Lemma 3.3 (Spectral Cotangent Lift). Assume that σ is a spectral diffeomorphism.
Then

Σσ(q, p) ∶= (J
−T
σ (p)q, σ(p)), (q, p) ∈ Rn × dom(σ) (3.2)

is a cotangent lift, called the spectral cotangent lift. ◆

Proof. Since the classical phase space, Rn × R̂n, is self-dual, we may reinterpret Rn

as the dual of R̂n and thus phase space may be reinterpreted as the cotangent bundle
of R̂n, i.e., Rn× R̂n ≃ T ∗R̂n. Thus, the cotangent lift also applies to diffeomorphisms
on R̂n. ∎

Definition 3.4 (Spectral Measure Spaces). If σ is a spectral diffeomorphism and Σ
is the standard Borel-Sigma algebra of R̂n, denote with Σdom and Σim the induced
Borel Sigma-Algebra of dom(σ) ⊆ R̂n and im(σ) ⊆ R̂n respectively. Consider
dom(σ) as a subspace of R̂n and equip it with the standard Lebesgue measure dx
in n dimensions. Let im(σ) be equipped with the measure dν, which depends on
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3.1. Symplectomorphisms induced by Spectral Diffeomorphisms

the structure of im(σ), but is absolutely continuous with respect to the Lebesgue
measure on im(σ) ⊆ R̂n, to wit,

dν ∶= dν
dy dy,

where dν
dy is the Radon-Nikodym derivative, Definition A.16 (Radon-Nikodym), of ν

with respect to dy.
Then,

(dom(σ),Σdom , dx) and (im(σ),Σim , dν),

are measure spaces and the latter is Borel isomorphic to

(dom(σ), σ−1(Σim ), dσ),

where dσ ∶= dν ○σ is the pullback measure, Definition A.18 (Pullback of a measure),
of dν under σ.

Moreover, we have the measure space

(Rn × im(σ),Σ ×Σim , dµ)

with dµ(x, y) ∶= dxdν(y) and dν as above. ◆

Definition 3.5 (Spectral Reservoirs). Let σ denote a spectral diffeomorphism,
defined on dom(σ) ⊆ R̂n. Then, we associate with it the following two Hilbert
spaces.

(i) A Hilbert space of (equivalence classes of) functions, interpreted as signals,
whose spectra are supported on dom(σ) and are square-integrable with respect
to the standard Lebesgue measure on dom(σ)

Sσ ∶= { f ∈ L
2(Rn) ∣ f̂ ∈ L2(dom(σ), dx) } (3.3)

(ii) A Hilbert space of (equivalence classes of) functions, interpreted as admissible
windows for an associated transform, whose spectra are supported on dom(σ)
and are square-integrable with respect to dσ(ξ) ∶= dν ○ σ

Aσ ∶= { f ∈ L
2(Rn) ∣ f̂ ∈ L2(dom(σ),dσ) } . (3.4)

◆
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3. Symplectomorphization

Proposition 3.6 (Measure Mappings). Let σ be a spectral diffeomorphism and Sσ,
Aσ as above. Then

ιA→S ∶ Aσ → Sσ, ψ ↦ F
∗
√

dσ
dξFψ (3.5)

and its inverse

ι−1
A→S = ιS→A ∶ Sσ → Aσ, f ↦ F

∗ (
√

dσ
dξ )

−1
Ff. (3.6)

are unitary mappings from the space of signals to the space of admissible windows
and vice versa. ◆

Proof. For ιA→S , see

∥ιA→Sψ∥
2
Sσ
∶= ∫

dom(σ)
∣
√

dσ
dξ ψ̂∣

2
dξ

= ∫
dom(σ)

∣ψ̂∣
2 dσ

dξ dξ

= ∫
dom(σ)

∣ψ̂∣
2 dσ = ∥ψ∥2Aσ

and

∥ιS→Af∥
2
Aσ
∶= ∫

dom(σ)
∣(
√

dσ
dξ )
−1f̂ ∣

2
dσ = ∫

dom(σ)
∣f ∣

2
(dσ

dξ )
−1dσ

= ∫
dom(σ)

∣f ∣
2 dξ = ∥f∥2Sσ

,

for its inverse. Note that this is a special case of Lemma A.69 ∎

As is always the case with coordinate transforms or “deformations” of a function’s
domain, an action on the domain gives rise to an action on the function space
over the domain, which will be baptized as warping.

Proposition 3.7 (Spectral Warping Transform). Assume that σ is a spectral
diffeomorphism. Then, with

jσ ∶= ∣detJσ ∣1/2 ,

(i) the spectral warping transforms

Ŵσ ∶ L
2(dom(σ), dξ) → L2(im(σ), dξ), f̂ ↦ jσ−1 ⋅ f̂ ○ σ−1 (3.7)

and

̂̃
Wσ ∶ L

2(dom(σ), dσ) → L2(im(σ), dξ), f̂ ↦ f̂ ○ σ−1. (3.8)

are unitary.
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3.1. Symplectomorphisms induced by Spectral Diffeomorphisms

(ii) Furthermore, by extending functions, defined on the domain or the image of σ
to all of Rn by defining them to be zero on the complements, we may conjugate
the spectral warping transforms above with the Fourier transform, to get

Wσ ∶ Sσ → L2(Rn, dx), f ↦ F∗ŴσFf (3.9)

and

W̃σ ∶ Aσ → L2(Rn, dx), f ↦ F∗ ̂̃WσFf . (3.10)

◆

Proof. For (i), the calculations

∥Ŵσf∥
2
L2(im(σ), dx) = ∫im(σ)

∣jσ−1 ⋅ f ○ σ−1∣
2 dx

= ∫
dom(σ)

∣f ∣
2
j2
σ−1dσ

= ∫
dom(σ)

∣f ∣
2 dx = ∥f∥L2(dom(σ), dx)

and

∥Ŵσf∥
2
L2(im(σ), dx) = ∫im(σ)

∣f ○ σ−1∣
2 dx

= ∫
dom(σ)

∣f ∣
2 dσ = ∥f∥L2(dom(σ),dσ)

show that these maps are unitary. Finally, (ii) follows, since the unitary operators
constitute a group, the Fourier transform is unitary and composition of unitary
maps is a unitary map again. ∎

Remark 3.8. The operators W above are actually unitary representations of the
group of diffeomorphisms sharing a common domain, i.e.,

Wσ1○σ2 = Wσ1 ○Wσ2 , dom(σ1) ⊆ im(σ2)

as well as

W∗σ = W
−1
σ = Wσ−1 and Wσ ○Wσ−1 = Wσ○σ−1 ∶= W1 ∶= 1 .

The same holds for W̃. ◆

Whenever a translation is defined on the image of σ, another interesting operator
arises as the conjugation of the translation operator with the spectral warping
operators above.
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3. Symplectomorphization

Lemma 3.9 (Spectral Dilation Operators). Let σ be a spectral warp, with im(σ)
having the structure of a locally compact abelian group, with multiplication being
written additively and translational invariant (Haar) measure dx. Let moreover
f ∈ Sσ, ψ ∈ Aσ and Tα ∶ f ↦ f(● + α) denote the translation operator on the locally
compact abelian group im(σ). Then, using

jσ ∶= ∣detJσ ∣1/2 ,

we have that

(D̂σαf̂)(x) ∶= (W
∗
σTαWσf̂)(x)

= jσ(x)jσ−1(σ(x) + α)f̂(σ−1(σ(x) + α))

and

(
̂̃
Dσαψ̂)(x) ∶= (Ŵ

∗TαŴψ̂)(x)

= ψ̂(σ−1(σ(x) + α))

are unitary operators.
Conjugating these with the Fourier transform, we get the operators

Dσα ∶= F
∗D̂σαF and D̃σα ∶= F

∗ ̂̃DσαF ,

which are again unitary. ◆

Proof. Since the translation action on a locally compact abelian group is well-defined
and the associated Haar measure is invariant, translation is a unitary operation.
Finally, since all other operators are unitary, their composition is unitary again,
which concludes the proof. ∎

Remark 3.10 (Dilation Operators). Note that in the case of a “traditional”, one-
dimensional dilation of the x ↦ ea ⋅ x, as e.g., it is used in the wavelet transform,
the operator D̃σα above reads

(D̃αψ)(t) = e
−αψ(e−αt) and (̂̃Dαψ̂)(ξ) = ψ̂(eαt),

as opposed to the more usual version,

(Dαf)(t) = e
−α/2f(e−αt) and (D̂αf̂)(ξ) = eα/2f̂(eαt),

having symmetric normalization factors. The former is the way to go for admissible
wavelets, since these are defined on Aσ, for which the D̃σα are unitary. ◆
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3.2. Hamiltonians induced by Spectral Diffeomorphisms

3.2 Hamiltonians induced by Spectral Diffeomor-
phisms

Having defined the cotangent lift of the spectral diffeomorphism - its “symplec-
tomorphization” - and its spectral dilation operators, it is worthwhile, before
heading to the first main theorem of this chapter, to discuss the implications,
as these are not obvious.

Start with the standard phase space, R2n, and equip it with the canonical
coordinates, given by (q, p). Then, as laid out in the previous chapter, the coordinate
functions induce flows along their respective contour lines - symmetries of the system
-, meaning that (q, p) ↦ q induces flows in p direction for constant values of q and
(q, p) ↦ p induces flows in q direction for constant values of p - that is, flows along
their respective coordinate lines. A symplectic map like the one above now maps
these standard canonical coordinates to another set of canonical coordinates

(q, p) ↦ (J−Tσ (p)q, σ(p)) , (q, p) ∈ Rn × dom(σ),

and accordingly, the induced flows are along the contour lines of the Hamiltonians

(q, p) ↦ (J−Tσ (p)q)
i and (q, p) ↦ σj(p), i, j = 1, . . . , n.

As discussed, via the Weyl correspondence, Schrödinger’s equation and Stone’s
theorem, to each of these symplectic flows corresponds a family of unitary operators,
playing the role of a quantized variant of these, acting on states in a Hilbert space.
The dilation operators in Lemma 3.9 (Spectral Dilation Operators) above, now are
exactly these quantized flows of the former kind, i.e., of the Hamiltonians

(q, p) ↦ (J−Tσ (p)q)
i, i = 1, . . . , n,

acting on the Hilbert spaces Sσ, in the case of Dσα, and on Aσ, for D̃σα.
Thus, strictly speaking,

(i) to each spectral diffeomorphism on a 2n-dimensional phase space, correspond
n spectral dilation operator, one for each q coordinate, that is,

(q, p) ↦ (J−Tσ (p)q)
i =∶H i ⇒ Dσ

i

αi or D̃σi

αi ,

where H i ∶= (J−1
σ (p

′)q′)i is the i-th Hamiltonian, inducing the unitary flow via

ψ ↦ e−2πiĤiαi

ψ =∶ Dσ
i

αiψ, (3.11)
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3. Symplectomorphization

(ii) and another family of unitary flows, one for each p coordinate, defined as

ψ ↦ e−2πiĤjβjψ =∶ T
σj

βj
ψ, (3.12)

where Hj ∶= σ(p′)j, the j-th component of σ, is the j-th Hamiltonian.

Lemma 3.11 (Spectral-warped Translation Operator). Assume again that σ is a
spectral warp and ψ ∈ Sσ or ψ ∈ Aσ.

Then

(̂T σβ ψ)(ξ) ∶= W̃
∗
σMβW̃σψ̂(ξ)

= ψ̂(ξ)e−2πi⟨ σ(ξ) , β ⟩, β ∈ Rn, ξ ∈ dom(σ),

is the unitary flow, associated with

(x, ξ) ↦ σ(ξ), (3.13)

interpreted as a vector-valued Hamiltonian. ◆

Proof. Unitarity is immediate from

∫ ∣ψ̂(ξ)e
−2πi⟨ σ(ξ) , β ⟩∣

2 dν = ∫ ∣ψ̂(ξ)∣
2 dν,

where dν is either dx or dσ. ∎

Theorem 3.12 (Hamiltonian). Let σ be a spectral diffeomorphism. Then

(q, p) ↦ (J−Tσ (p)q)
i =∶H i and (q, p) ↦ σj(p) =∶Hj, i, j = 1, . . . , n,

are Hamiltonians which induce the canonical unitary flows

ψ ↦ e−2πiĤiαi

f =∶ Dσ
i

αif, f ∈ Sσ, (3.14)

and

ψ ↦ e−2πiĤjβjf =∶ T
σj

βj
f, f ∈ Sσ. (3.15)

Both flows can also be defined on Aσ. ◆

Proof. Combine Lemma 3.9 (Spectral Dilation Operators) and Lemma 3.11 (Spectral-
warped Translation Operator) to find the expressions for the unitary flows. The
final claim is due to the fact, that the map ιS→A maps Sσ unitarily into Aσ. ∎
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3.2. Hamiltonians induced by Spectral Diffeomorphisms

With this in mind, it is almost trivial to show that we may utilize the composition
of the unitary families of operators above to define an action on some prototype
function, such that its associated phase space distribution is shifted along the
contour lines such that each point on phase space is reached.

Remark 3.13 (Panta rhei). Indeed, that is what a set of coordinates can actually
be defined to be. A grid, such that starting from an arbitrary point on the coordinate
lines, the chosen origin, we may reach every point on the grid, for which it is defined
- in our case, this is the set Rn × dom(σ). We define the coordinates with respect to
the chosen origin, by “flowing” along the 2 ⋅ n coordinate lines for specific amounts
of time, determined by the unique tuple of 2 ⋅ n numbers.

This, of course, continues to hold for the quantized version of phase space,
since the quantized phase space cell, as defined in Definition 2.42 (Phase Space
Localization), associates to each classical point an “ensemble” of other points, each
of which now flows along the coordinate lines it is located on. Thus, still, each and
every point in the local coordinate chart is reached - once, for each point in the
quantized phase space cell. This introduces a redundancy in the description of the
system, which is ultimately a manifestation of the quantum mechanical uncertainty
principle. ◆

Before defining the all-important unitary action, by which we will build frames,
associated with a spectral warp, another observation is needed, as the next chap-
ter relies on it.

Lemma 3.14 (Spectral Hamiltonians). Let σ be an analytic spectral diffeomorphism
and

Ai ∶= (J−Tσ (p)q)
i, B′i ∶= σi(p), Bi ∶= pi (3.16)

the (canonical and non-canonical) Hamiltonians, then the quantized Hamiltonians,
represented in the Fourier domain, are

Âif̂ = −1
2πi∑

k

(1
2∂pk
(jik(p)) + j

i
k(p)∂pk

)f̂ (3.17)

B̂if̂ = pif̂ (3.18)
B̂′if̂ = σi(p)f̂ , (3.19)

where jik ∶= (J−T )ik, are the components of the transposed inverse of the Jacobian,
Jσ, the k in xk is an upper index and not a power and f is assumed to be in the
appropriate domains of these operators. ◆
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3. Symplectomorphization

Proof. Since σ is analytic, the components of the Jacobian are analytic functions,
for which Corollary 2.23 (Quantization)(ii) applies and since the components of
the Jacobian are are depended on p only, these quantize to multiplication operators
on the Fourier domain. Thus, setting jik(p) ∶= (J−T (p))ik, which is a multiplication
operator on the Fourier domain, and noting that qk quantizes to q̂k ∶= −1

2πi∂pk
on the

Fourier domain, we get

Âif̂ ∶= ̂(J−Tσ (p)q)
if̂

∶= ∑
k

̂jik(p)q
kf̂

= 1
2∑

k

(ĵik(p)q̂
k + q̂kĵik(p))

= −1
2πi

1
2∑

k

(jik(p)∂pk
+ ∂pk

jik(p))

= −1
2πi

1
2∑

k

(2jik(p)∂pk
+ ∂pk

(jik(p)))

= −1
2πi∑

k

(1
2∂pk
(jik(p)) + j

i
k(p)∂pk

).

Bi and B′i are immediate, since these only depend on p and thus, they are only
reinterpreted as operators of multiplication on the Fourier domain. ∎

Corollary 3.15 (Commutators of Spectral Hamiltonians). Let σ be an analytic
spectral diffeomorphism, J ∶= Jσ its Jacobian and Âi, B̂i, B̂′i its quantized Hamiltoni-
ans. Then,

(i) [ Âi , B̂′k ] = −1
2πiδ

i
k, i, k = 1, . . . , n, and

(ii) [ Âi , B̂k ] =
−1
2πi(J

−T )ik, i, k = 1, . . . , n. ◆

Proof. To see (i) and (ii), we represent the Ai in the Fourier domain and take some
function, ρ, on the same domain to calculate

[ Âi , ρ] = −1
2πi∑

m

[ 1
2∂pm(j

i
m(p)) + j

i
m(p)∂pm , ρ]

= −1
2πi∑

m

[jim(p)∂pm , ρ]

= −1
2πi∑

m

jim(p) [∂pm , ρ ]

= −1
2πi∑

m

jim(p)∂pm(ρ).

Now, for (i), set ρ ∶= B′k ∶= σk(p) and resubstitute jim ∶= (J−T )im to find
−1
2πi∑

m

jim(p)∂pm(σk(p)) =
−1
2πi∑

m

jim(p)(J
T )mk (p)

= −1
2πi∑

m

(J−T )im(p)(J
T )mk (p)

= −1
2πi∑

m

(J−T )im(p)(J
T )mk (p)

= −1
2πiδ

i
k.
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3.2. Hamiltonians induced by Spectral Diffeomorphisms

(ii) follows by setting ρ ∶= Bk ∶= pk and
−1
2πi∑

m

jim(p)∂pm(pk) =
−1
2πi∑

m

jim(p)δ
m
k

= −1
2πij

i
k(p)

= −1
2πi(J

−T )ik(p).

∎

Before moving on, two examples shall demonstrate the above for the n-dimensional
Weyl-Heisenberg group and the simple n-dimensional affine group.

Example 3.1 (Weyl-Heisenberg group). For the Weyl-Heisenberg group, the
diffeomorphism is the identical one, that is, σ ∶ (p1, . . . , pn) ↦ (p1, . . . , pn), with

Jσ = J
−T =
⎛
⎜
⎝

1
⋱

1

⎞
⎟
⎠
.

Thus, the Hamiltonians boil down to the canonical ones

Âif̂ = −1
2πi∂pi

f̂ (3.20)
B̂if̂ = pif̂ (3.21)
B̂′if̂ = pif̂ (3.22)

along with the canonical commutation relations

(i) [ Âi , B̂′k ] = −1
2πiδ

i
k, i, k = 1, . . . , n, and

(ii) [ Âi , B̂k ] =
−1
2πiδ

i
k, i, k = 1, . . . , n . ◆

Example 3.2 (Affine group). For the n-dimensional “ax+b” group, we have that
σ ∶ (p1, . . . , pn) ↦ (log p1, . . . , log pn) and thus

Jσ =
⎛
⎜
⎝

1
p1

⋱
1
pn

⎞
⎟
⎠

and

J−Tσ =
⎛
⎜
⎝

p1
⋱

pn

⎞
⎟
⎠
.

From this, it follows that the spectral Hamiltonians are

Âif̂ = −1
2πi

1
2(pi∂pi

+ ∂pi
pi)f̂ =

−1
2πi(

1
2 + pi∂pi

)f̂ (3.23)
B̂if̂ = pif̂ (3.24)
B̂′if̂ = log(pi)f̂ (3.25)

with the commutation relations
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3. Symplectomorphization

(i) [ Âi , B̂′k ] = −1
2πiδ

i
k, i, k = 1, . . . , n, and

(ii) [ Âi , B̂k ] =
−1
2πiδ

i
kB̂k, i, k = 1, . . . , n ,

where the commutation relations in (i) resemble the canonical commutation relations,
since the operators Âi and B̂′k are unitarily equivalent to the canonical ones. ◆

Now, we may introduce a unitary action, which translates a prototype function
in phase space, along (canonical) coordinates.

Proposition 3.16 (Canonical Unitary Action). As usual, assume that σ is a
spectral warp and that T ,D are the associated spectral translation and dilation
operator. If furthermore ψ ∈ Aσ and f ∈ Sσ, then

π ○Σ(β,α)ψ = T σβ Dσαf, α, β ∈ Rn, (3.26)

and

π̃ ○Σ(β,α)ψ = T σβ D̃σαψ, α, β ∈ Rn, (3.27)

are unitary. ◆

Proof. The unitarity of both is immediate from the group property of unitary
operators. ∎

This action is in fact a unitary and projective group representation, unitarily
equivalent to a representation of the Weyl-Heisenberg group. This is a simple
consequence of the

Stone-von Neumann Theorem 3.17. [71] Let T 1 and T 2 be self-adjoint and
fulfill the canonical commutation relation, then T 1 and T 2 are unitarily equivalent
to 1

i2π∂x and x.
Put another way, let e−2πiT 1α and e−2πiT 2β be strongly continuous unitary one-

parameter groups, then if

e−2πiT 1αe−2πiT 2β = e−2πiβαe−2πiT 2βe−2πiT 1α,

holds, then these operators are unitarily equivalent to the (projective) Schrödinger
representation of the Weyl-Heisenberg group and thus there exists a unitary inter-
twining operator W, such that

We−2πiT 1αW∗ =∶ e−2πi 1
i2π

∂xα and We−2πiT 2βW∗ =∶ e−2πixβ .

◆
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3.2. Hamiltonians induced by Spectral Diffeomorphisms

Corollary 3.18 (Unitary Equivalence). The unitary action π ○Σ is a projective
unitary group representation of the Weyl-Heisenberg group. ◆

Proof. Since the spectral cotangent lift of σ is a symplectomorphism, we have

{ (J−1
σ (p)q)

i , σ(p)j } = { q
i , pj } = δ

i
j,

which, along with heuristic equation (2.27), suggests that the quantized operators
̂(σ(q))i and ̂(Jσ(p)q)j also fulfill

2πi [ ̂(J−1
σ (p)q)

i , σ̂(p)j ] = 2πi [ q̂i , p̂j ] = ±δij.

Indeed, this follows from Corollary 3.15 (Commutators of Spectral Hamiltonians).
The Stone-von Neumann Theorem 3.17, then, tells us that there exists an

intertwining operator, W, under which this representation is unitary equivalent
to a (projective) representation of the Weyl-Heisenberg group, which was to be
proven. ∎

Although this was used in the proof of Corollary 3.15 (Commutators of Spectral
Hamiltonians), it is nonetheless worthwhile to note that the arising intertwining
operator in the last proof above is in fact the spectral warping transform, Wσ, and
therefore, for each pair of conjugate and, thus, non-commuting operators, we have

Wσe
−2πi ̂(Jσ(p)q)jβW∗σ =∶ e

−2πi 1
i2π

∂xα and Wσe
−2πi ̂(σ(q))iβW∗σ =∶ e

−2πixβ .

Although, as used above, the canonically conjugate coordinates to J−1
σ (p)q are

given by σ(p), reflected by invariance under Poisson’s bracket

{ (J−1
σ (p)q)

i , σ(p)j } = { q
i , pj } = δ

i
j,

we shall not only use the spectral translation operator, T σβ , but also the “standard”
translation operator

T 1
β ∶= Tβ = e

−2πi⟨ p̂ , β ⟩,

given as the quantized unitary flow of the standard coordinate p. The reason for
this is that although the canonical ones are in a sense the optimal choice, some
applications demand that signals may be decomposed into “spectral channels”,
meaning that the “form” of the projector’s phase space distribution should not
change through translation along the spatial coordinate.

Thus, another proposition is in order.
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3. Symplectomorphization

Proposition 3.19 (Non-canonical Unitary Action). Let σ be a spectral warp, Dσα
be the associated spectral dilation, ψ ∈ Aσ, f ∈ Sσ and let furthermore Tβ denote the
standard translation operator. Then we define

πσ(β,α)f = TβD
σ
αf, α, β ∈ Rn, (3.28)

and

π̃σ(β,α)ψ = TβD̃
σ
αψ, α, β ∈ Rn, (3.29)

which are, again, unitary operators. ◆

Proof. Again, since unitary operators constitute a group, the claim follows. ∎

Although we try to minimize the algebraic preconditions, since we want to
translate in the image of the spectral diffeomorphism, everything works as nicely
as possible, if we restrict to cases for which there exists a locally compact abelian
group structure on im(σ).

Now, here comes the first main theorem for the chapter. In the following theorem,
the actions, unitary on Aσ, are used to build frames. Almost all of what follows stems
from the fact that to each spectral warp is assigned a pair of spectral quantum frames.

Theorem 3.20 (Spectral Quantum Frames). Let σ be a spectral diffeomorphism,
with im(σ) constituting a locally compact abelian group and denote its Haar measure
with dν. Let moreover φ ∈ Aσ, with

cφ ∶= ∥φ∥
2
Aσ
= ∫

dom(σ)
∣φ∣

2 dσ = ∫
im(σ)

∣φ ○ σ−1∣
2 dν. (3.30)

Then, the following holds.

(i) With the measure dµ(x, y) ∶= dx dν(y) on Rn × im(σ), the family

Fσ ∶= { π̃σ(x, y)φ ∣ (x, y) ∈ (Rn × im(σ), dµ) } (3.31)

is a continuous tight frame for Sσ, with frame bounds A = B = cφ , called the
spectral quantum frame.

(ii) With the measure dx dy on Rn × im(σ),

Gσ ∶= { π̃ ○Σ(x, y)φ ∣ (x, y) ∈ (Rn × im(σ), dx dy) } (3.32)

is a continuous tight frame for Aσ, with frame bounds A = B = cφ, called the
canonical spectral quantum frame. ◆
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3.2. Hamiltonians induced by Spectral Diffeomorphisms

Proof. Suppressing the integration domains, a straight-forward calculation gives

∬ ⟨ π̃σ(b, a)φ , f ⟩ ⟨ π̃σ(b, a)φ , h ⟩ dµ

=⨌ φ̂(σ−1(σ(ξ) + a))φ̂(σ−1(σ(ξ′) + a))f̂(ξ)ĥ(ξ′)e−2πi⟨ ξ−ξ′ , b ⟩ dξ dξ′ db dν

=∬ ∣φ̂(σ−1(σ(ξ) + a))∣
2
f̂(ξ)ĥ(ξ) dξ dν

=∬ ∣φ̂(σ−1(a))∣
2
f̂(ξ)ĥ(ξ) dξ dν

=∫ ∣φ̂(ζ)∣
2 dσ(ζ)∫ f̂(ξ)ĥ(ξ) dξ

=∥φ∥
2
Aσ
⟨f , h ⟩Sσ

= cφ ⟨f , h ⟩Sσ
,

which shows that

c−1
φ ∬ ∣ π̃σ(b, a)φ ⟩⟨ π̃σ(b, a)φ ∣ dµ(b, a) = 1Sσ

is a resolution of the identity, which - by Definition 2.32 (Continuous Frame) -
identifies it as a continuous frame having a resolution operator which is a multiple
of the identity.

To see (ii), note that

⟨π ○Σ(x, y)φ , f ⟩ ∶= ⟨ W̃∗σTxMyW̃σφ , f ⟩Aσ

∶= ⟨TxMyW̃σφ , W̃σf ⟩L2(Rn)

∶= ⟨TxMyφ̃ , f̃ ⟩L2(Rn) ,

for f ∈ Aσ, φ̃ ∶= W̃σφ ∈ L2(Rn) and f̃ ∶= W̃σf ∈ L2(Rn). Then, using a shortened
calculation like the one above

∬ πφf πφh db da

=⨌ φ̂(σ−1(σ(ξ) + a))φ̂(σ−1(σ(ξ′) + a))

×f̂(ξ)ĥ(ξ′)e−2πi⟨ σ(ξ)−σ(ξ′) , b ⟩dσ(ξ)dσ(ξ′) db da

=⨌
̂̃φ(y + a)̂̃φ(y′ + a)

̂̃
f(y)
̂̃
h(y′)e−2πi⟨ y−y′ , b ⟩ dy dy′ db da

=∬ ∣̂̃φ(y + a)∣
2 ̂̃
f(y)
̂̃
h(y) dy da

=∥φ∥
2
Aσ
⟨ f̃ , h̃ ⟩

L2(Rn) = cφ ⟨f , h ⟩Aσ
,

which again shows that

c−1
φ ∬ ∣ π̃ ○Σ(b, a)φ ⟩⟨ π̃ ○ σ(b, a)φ ∣ db da = 1Aσ

is a resolution of the identity. ∎
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Corollary 3.21 (Spectral Quantum Frames of Rank N). Let again σ be a spectral
diffeomorphism, with im(σ) constituting a locally compact abelian group and denote
its Haar measure with dν. Let moreover φi ∈ Aσ, i = 1, . . . , n, with

cφi ∶= ∥φi∥
2
Aσ
= ∫

dom(σ)
∣φi∣

2 dσ = ∫
im(σ)

∣φi ○ σ−1∣
2 dν. (3.33)

Then, the following holds.

(i) With the measure dµ(x, y) ∶= dx dν(y) on Rn × im(σ), the family

Fσ ∶= { π̃σ(x, y)φi ∣ (x, y) ∈ (Rn × im(σ), dµ), i = 1, . . . , n } (3.34)

is a continuous tight frame of rank N for Sσ, with frame bounds A = B = ∑i cφi,
called the spectral quantum frame of rank N .

(ii) With the measure dx dy on Rn × im(σ), the family

Gσ ∶= { π̃ ○Σ(x, y)φi ∣ (x, y) ∈ (Rn × im(σ), dx dy), i = 1, . . . , n } (3.35)

is a continuous tight frame of rank N for Aσ,with frame bounds A = B = ∑i cφi,
called the canonical spectral quantum frame of rank N . ◆

Proof. For (i), note that

∬ ∑
i

⟨ π̃σ(b, a)φi , f ⟩ ⟨ π̃σ(b, a)φi , h ⟩ dµ

=∑
i
∬ ⟨ π̃σ(b, a)φi , f ⟩ ⟨ π̃σ(b, a)φi , h ⟩ dµ

=∑
i

⟨f ,∬ ∣ π̃σ(b, a)φi ⟩⟨ π̃σ(b, a)φi ∣ dµ h ⟩
Sσ

=∑
i

⟨f , h ⟩Sσ
∥φi∥

2
Aσ
= ⟨f , h ⟩Sσ

(∑
i

cφi) ,

where the last line follows from Theorem 3.20 (Spectral Quantum Frames).
A similar argument

∬ ∑
i

⟨̃̃π ○Σ(b, a)φi , f ⟩ ⟨̃̃π ○Σ(b, a)φi , h ⟩ dµ

=∑
i
∬ ⟨̃̃π ○Σ(b, a)φi , f ⟩ ⟨̃̃π ○Σ(b, a)φi , h ⟩ dµ

=∑
i

⟨f ,∬ ∣ π̃ ○Σ(b, a)φi ⟩⟨ π̃ ○Σ(b, a)φi ∣ dµ h ⟩
Aσ

=∑
i

⟨f , h ⟩Aσ
∥φi∥

2
Aσ
= ⟨f , h ⟩Aσ

(∑
i

cφi) ,

shows (ii). ∎

59



3.2. Hamiltonians induced by Spectral Diffeomorphisms

Corollary 3.22 (Spectral Reproducing Kernel Hilbert Spaces). Let σ be a spectral
warp and Fσ and Gσ the associated spectral quantum frames, with πσψ and πΣ

ψ

denoting the respective coherent state maps. Then

Hσ ∶= π
σ
ψ(Sσ) and HΣ ∶= π

Σ
ψ(Aσ), (3.36)

are the associated spectral reproducing kernel Hilbert spaces. ◆

Proof. This follows from Theorem 3.20 (Spectral Quantum Frames) and Corol-
lary 2.40 (Reproducing Kernel Hilbert Space). ∎

Before moving on, a few final observations concerning the canonical one of
the spectral quantum frames are in order, since it resembles essentially a warped
Short-time Fourier transform.

Corollary 3.23 (Spectral-warped STFT). Assume that σ is a spectral warp, f,ψ ∈
Aσ and denote with Wσ the associated unitary spectral warping transform. Then,
the coherent state map

f ↦ πΣ
ψf(b, a), (3.37)

associated with the canonical spectral quantum frame Gσ is a spectral warped
Short-time Fourier transform, such that

πΣ
ψf(b, a) ∶= STFTW̃σψ

(W̃σf) (3.38)

holds. ◆

Proof. This follows from

f ↦ πΣ
ψf(b, a) = ⟨ W̃

∗
σTbTaW̃σψ , f ⟩

= ∫
dom(σ)

e2πi⟨ b , σ(ξ) ⟩ψ̂ (σ−1(σ(ξ) + a)) f̂(ξ) dσ(ξ)

= ∫
im(σ)

e2πi⟨ b , ξ′ ⟩(ψ̂ ○ σ−1)(ξ′ + a) (f̂ ○ σ−1)(ξ′) dξ′

= ∫
Rn
TbMaψ̃(x) f̃(x) dx,

with f̃ ∶= Wf and ψ̃ ∶= Wψ. ∎

The following definition gives the generalization of the STFT for the case of
a possibly sampled - to wit, discrete - phase space [26, 27].
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Definition 3.24 (Gabor Frame). Let g ∈ L2(Rn, dx) and a, b ∈ Rn. Then, whenever

G(g, a, b) ∶= {Tb⋅nMa⋅mg ∣n,m ∈ Zn } (3.39)

constitutes a frame, it will be referred to as a Gabor frame. For vanishing a, b, the
convention

G(g,0,0) ∶= {TβMαg ∣α,β ∈ Rn } (3.40)

defines a continuous Gabor frame, whose coherent state map is the well-known
Short-Time Fourier Transform. ◆

This brings us to the final corollary of this section. It essentially says that in
order to define a phase space tessellation along the canonical coordinates, given
by the spectral cotangent lift, all that is needed is a Gabor frame for the standard
coordinates. Then, the symplectomorphization of the spectral diffeomorphism, Σ,
respectively its quantized variant, the spectral warping transform Wσ, maps this
standard Gabor frame to a unitarily equivalent one, but with localization properties
adapted to the canonical reference frame, defined by Σ(q, p).

Corollary 3.25 (Warped Gabor Frame). Assume that σ is a spectral diffeomorphism
and G(g, a, b) a Gabor frame for L2(Rn), in the sense of Definition 3.24 (Gabor
Frame). Then

Gσ(g, a, b) ∶= { W̃
∗
σ Tb⋅nMa⋅mg ∣n,m ∈ Zn } (3.41)

is a frame for Aσ.
Moreover, if a = b = 0, this frame coincides with the canonical spectral quantum

frame Gσ for the window ψ ∶= W̃∗σg. ◆

Proof. Since, by Proposition 3.7 (Spectral Warping Transform), W̃σ maps Aσ
unitarily to L2(Rn), we have by implication that W̃∗Tb⋅nMa⋅mg constitutes a frame
for Aσ.

This continues to hold for the case a → 0 and b → 0. Then,

Gσ(g,0,0) ∶= { W̃∗σTβMαW̃σ(W̃
∗
σg) ∣α,β ∈ Rn }

= {W̃∗σTβTαW̃σψ ∣α,β ∈ Rn } ,

= {T σβ D
σ
αψ ∣α,β ∈ Rn } ,

with ψ ∶= W̃∗σg, which is exactly the definition of Gσ. ∎
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3.3. Multiplier arising from Spectral Diffeomorphism

3.3 Multiplier arising from Spectral Diffeomor-
phism

Since to each spectral diffeomorphism corresponds a spectral quantum frame which
is adapted to the associated coordinate system in phase space, there is a straight-
forward definition of a multiplier - id est, a phase space localization operator - for
these frames, cf. [11, 26, 27] for details on these kinds of operators. These phase
space localization operators weight the coefficients that are associated with a phase
space cell and can thus be used to alter the phase space content of a signal.

Ipso facto, these operators do have especially fetching localization properties, if
the associated window function is also adapted to the chosen coordinate system,
as developed in the next chapter.

Proposition 3.26 (Spectral Quantum Frame Multiplier). Let σ be a spectral
diffeomorphism and Fσ and Gσ the associated spectral quantum frames, defined on
Rn × im(σ). Let furthermore m be a function on Rn × im(σ). Then, the at least
weakly convergent operator-valued integrals

Mm
Fσ
∶= ∫

Rn×im(σ)
m(x, y)∣φx,y ⟩⟨φx,y ∣ dx dν, (3.42)

and

Mm
Gσ
∶= ∫

Rn×im(σ)
m(x, y)∣φx,y ⟩⟨φx,y ∣ dx dy, (3.43)

define bounded operators on Sσ, respectively Aσ, whenever m ∈ L∞(Rn×im(σ), dx dν),
respectively m ∈ L∞(Rn × im(σ), dx dy). ◆

Proof. The coherent state maps of both continuous frames above are multiples
of an isometry and thus bounded operators Sσ → Hσ with bounded inverses
(defined on their images) Hσ → Sσ, respectively Aσ → Hσ and Hσ → Aσ. Since a
multiplication with an essentially bounded m ∈ L∞(Rn× im(σ), dx dy), respectively
m ∈ L∞(Rn×im(σ), dx dν), defines a bounded operator on Hσ, and the composition
of bounded operators is again a bounded operator, the claim follows. ∎

There is no good reason to restrict the discussion to frames, such that to each
point of phase space is assigned only a single window and thus - when acting on a
signal - only a single quantum of information. It is a natural step to extend this
discussion to sets of functions, respectively projectors, which assign more degrees
of freedom to each point in phase space. This means
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3. Symplectomorphization

(i) For each point in phase space, the projectors become operators of higher rank
and thus may extract more than a single quantum of information

(ii) The coefficient functions become vector-valued, πφf ∶X → CN ,

(iii) The phase space localization operators, respectively the frame multipliers,
no longer act by pointwise multiplication but are lifted to fields of matrices
which may rotate the vector-valued coefficient functions and reduce to the
localization operators in the usual sense only when they are diagonal matrices
at each point.

The rest of this section is devoted to this slight extension.

Lemma 3.27 (Spectral Quantum Frame Multiplier of Rank N). Let Fσ and Gσ

be the quantum frames of rank N , assigned to the spectral diffeomorphism σ. Let
X ∶= Rn × im(σ) and

M ∶X → Mat(N) , x ↦ M(x)

be a matrix-valued function on X. Then,

f ↦ ∫
X
∑
i

φix [∑
j

(M(x))ij ⟨φ
j
x , f ⟩] dx dν(y) (3.44)

and

f ↦ ∫
X
∑
i

φix [∑
j

(M(x))ij ⟨φ
j
x , f ⟩] dx dy (3.45)

define frame multiplier of rank N , which are bounded operators on Sσ and Aσ,
respectively. ◆

Proof. Since we may rewrite the above as

∫
X
∑
i

φix [∑
j

(M(x))ij ⟨φ
j
x , f ⟩] dx dν(y)

=∑
i,j
∫
X
φix [(M(x))

i
j ⟨φ

j
x , f ⟩] dx dν(y)

and

∫
X
∑
i

φix [∑
j

(M(x))ij ⟨φ
j
x , f ⟩] dx dy

=∑
i,j
∫
X
φix [(M(x))

i
j ⟨φ

j
x , f ⟩] dx dy,

we immediately see that these are finite sums of operators, which by Proposition 3.26
(Spectral Quantum Frame Multiplier) are bounded operators; but finite sums of
bounded operators are bounded operators, which finishes the proof. ∎
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3.3. Multiplier arising from Spectral Diffeomorphism

For specific choices of the matrix field, we have interesting special cases, the
most direct is characterized by the following

Corollary 3.28 (Multiple Frame Multiplier). Let everything as in Lemma 3.27
(Spectral Quantum Frame Multiplier of Rank N). In the special case that the
matrices are diagonal, for each x ∈X, the multiplier is representable via a sum of
standard multipliers as

f ↦ ∫
X
∑
i

φix M
i(x) ⟨φix , f ⟩ dν(x). (3.46)

◆

Proof. This follows from Lemma 3.27 (Spectral Quantum Frame Multiplier of Rank
N) as it is a special case. ∎

Note that since the rank-N projectors

f ↦ ∑
i

∣φix ⟩⟨φ
i
x ∣f

span N -dimensional subspaces for each x ∈ X, the matrix field M , used in the
construction of the multiplier above, may rotate these in a manner to make apparent
certain properties of f not easily accessible in the rank-one setting and the following
gives three interesting examples of these types of operators.

Example 3.3 (Rank-two Multiplier). Let F be a frame of rank two and M ∶X →

Mat(2) a matrix-valued function as used below.

• M ∶= (
m1 0
0 0) ⇒ The multiplier projects on the first components at each

point and boils down to a standard multiplier,

f ↦ ∫
X
m1(x)∣φ

1
x ⟩⟨φ

1
x ∣ + 0 dν(x) f .

• M ∶= (
m1 0
0 m2

) ⇒ The multiplier weights each component, at each point

x ∈X, individually,

f ↦ ∫
X
m1(x)∣φ

1
x ⟩⟨φ

1
x ∣ +m2(x)∣φ

2
x ⟩⟨φ

2
x ∣ dν(x) f .

• M ∶= (
0 ±1
1 0 ) ⇒ The multiplier “rotates” the fiber over each point,

f ↦ ∫
X
∣φ1

x ⟩⟨φ
2
x ∣ ± ∣φ

2
x ⟩⟨φ

1
x ∣ dν(x) f .

◆
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3. Symplectomorphization

3.4 A Quadratic Phase Space Representation

One of the main goals of this program is to ensure that signals may be decomposed
with respect to (spectral) quantum frames, whose projectors have a well-controlled
phase space localization.

The quasi-standard in this case is the Wigner-Ville distribution

f z→ Wf(t, ξ) ∶= ∫
Rn
f(x + t/2)f(x − t/2)e2πi⟨ x , xi ⟩ dx, (t, ξ) ∈X, (3.47)

which will play a significant role in the next chapter. There is, however, a whole
family of other (quadratic) phase space distributions, all related to the Wigner-
Ville distribution in the sense that these may be represented as a Wigner-Ville
distribution, convolved (in the standard, abelian manner) with a convolution kernel,

f z→ Dκf (t, ξ) ∶= ∫ Wf(x, y) κ(t − x, ξ − y) dx dy, (t, ξ) ∈X, (3.48)

where the distribution is completely characterized by this convolution kernel, see, e.g.
[39] for a review. Another well-known but less used distribution is the Rihaczek map

f z→ Rf(t, ξ) ∶= f(t)f̂(ξ)e
−2πi⟨ ξ , t ⟩, (t, ξ) ∈X, (3.49)

which is the one that is generalized below.
With each spectral warp, we may associate two warped variants of the Rihaczek

distribution.

Definition 3.29 (Spectral Warped Distributions). Let σ be a spectral warp, jσ ∶=
detJ−1

σ and f ∈ Sσ, ψ ∈ Aσ. Then

Dσ
f (x, y) ∶= jσ(y) ⋅ f(x)f̂(σ

−1(y))e−2πi⟨ σ−1(y) , x ⟩, (x, y) ∈ Rn × im(σ), (3.50)

and

D̃σ
ψ(x, y) ∶= ψ(x)ψ̂(σ

−1(y))e−2πi⟨ σ−1(y) , x ⟩, (x, y) ∈ Rn × im(σ), (3.51)

will be referred to as the warped distribution, on Sσ and Aσ, respectively.
◆

For each of these distributions, the following holds.

Proposition 3.30 (Warped Distributions). Let σ be a spectral warp and Dσf , D̃σψ
as above. Let all equalities hold up to measure zero, that is, almost everywhere with
respect to the respective measure spaces .Then,
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3.4. A Quadratic Phase Space Representation

(i) Dσ
f has the marginal densities

∫
im(σ)

Dσ
f dν = ∣f(x)∣2 (3.52)

∫
Rn
Dσ
f dx = jσ(y) ∣f̂(σ−1(y))∣

2 (3.53)

and

∫
im(σ)

∫
Rn
Dσ
f dx dν = ∥f∥2Sσ

. (3.54)

(ii) D̃σ
ψ has the marginal densities

∫
im(σ)

D̃σ
ψ dν = ∣F∗(j−1/2

σ ⋅ ψ̂)(x)∣
2
, (3.55)

∫
Rn
D̃σ
ψ dx = ∣ψ̂(σ−1(y))∣

2 (3.56)

and

∫
im(σ)

∫
Rn
D̃σ
ψ dx dν = ∥ψ∥2Aσ

. (3.57)

◆

Proof. The proofs are trivial and follow immediately from integrating the distribu-
tions with respect to the relevant measures. ∎

In fact, these distributions can be used to define a “spectral frameogram”, that is,
an analogon to the classical spectrogram from time-frequency analysis, but adapted
to the coordinates, defined by the spectral diffeomorphism.

Corollary 3.31 (Spectral Frameogram). Let σ be a spectral warp.With f ∈ Sσ and
ψ ∈ Aσ, we have

⟨Dσ
πσ(β,α)ψ , D

σ
f ⟩ = ∣π

σ
ψf(β,α)∣

2
, (3.58)

which is a form of a frameogram for the associated spectral quantum frame. ◆
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3. Symplectomorphization

Proof. Using ψ(β,α) ∶= πσ(β,α)ψ, the calculation

⟨Dσ
πσ(β,α)ψ , D

σ
f ⟩

=∬ ψ(β,α)(x)ψ̂(β,α)(σ−1(y))e−2πi⟨ σ−1(y) , x ⟩jσ(y) ⋅ f(x)f̂(σ−1(y))e−2πi⟨ σ−1(y) , x ⟩ dx dν

=∫ ψ(β,α)(x)f(x) dx∫ jσ(y) ⋅ ψ̂(β,α)(σ
−1(y))f̂(σ−1(y)) dν(y)

=∫ ψ(β,α)(x)f(x) dx∫ ψ̂(β,α)(ξ)f̂(ξ)dξ

=∫ ψ(β,α)(x)f(x) dx∫ ψ̂(β,α)(ξ)f̂(ξ)dξ

=∫ ψ(β,α)(x)f(x) dx∫ ψ(β,α)(x)f(x) dx

= ∣πσψf(β,α)∣
2
,

proves the claim. ∎
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Location, Location, Location.

— Real estate mantra

4
Localization

UNCERTAINTIES are OMNIPRESENT, yet rarely a thing to desire,
in particular when it comes to measurements of fundamental qualities
such as positions or momenta.

In the previous chapters, spectral quantum frames, associated with a coordinate
system in phase space, were defined. This chapter is devoted to the localiza-
tion properties of these frames, id est, to the determination of its localization
within phase space.

As is ubiquitous in this monograph, the motivation for the consideration of
these sets of frames is the decomposition and alteration of signals and quantum
states with respect to “arbitrary” phase space cells. As was already stated, the
uncertainty principle sets a lower bound on the phase space concentration of
functions and its associated projectors.

In this chapter, the true localization properties of frames, defined on phase
space, respectively their associated template will be examined. In the previous
chapter, transforms were considered, which decompose a given signal with respect
to subsets of phase space.

Terminology 4.1 (Phase Space Cell). A phase space cell shall denote a subset of
the phase space of size ∼ 1. ◆

To each rank-one projector corresponds a certain elementary phase space cell
and hence to each phase space cell, is assigned a subspace of the universe of signals
which are to be analyzed. It is in this manner that we shall refer to a window as
having a certain phase space localization. Utilizing the theory of discrete frames,
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4. Localization

this may be rephrased as follows. The phase space is tessellated, such that the
phase space cells of the rank-one projectors of a frame cover the whole phase space.

Heuristic 4.2 (Phase Space Location). A function ψ is well localized around a
phase space point (p, q) ∈ X, if there exists a phase space cell B ⊂ X such that
supp(Dψ) ∼ B, where Dψ is some phase space distribution of the function ψ, which
is yet to be determined. ◆

It is the purpose of this chapter, to make the heuristic idea above a concrete one.
There have been numerous attempts to quantitatively define the true localization

of a given function, respectively its associated projector. We have already met the
most prominent ones, as the most well-known ones are the Wigner distribution,

Wψ(x, ξ) ∶= ∫
Rn
ψ(x − y

2) ψ(x +
y
2) e

2πi⟨ y , ξ ⟩ dy. (4.1)

the Rihaczek distribution

Rψ(x, y) ∶= ψ(x)ψ̂(y)e
−2πi⟨ x , y ⟩ (4.2)

and the spectrogram

SPECφψ(x, y) ∶= ∣πφψ(x, y)∣
2
, (4.3)

where the variables (x, y) ∈X are interpreted as points in phase space and φ should
be well localized in phase space, for this argument to make sense.

The first two above are quadratic and actually equivalent in the sense that there
exists an isomorphism mapping one into the other.

Lemma 4.3 (Wigner vs Rihaczek). Let Wψ denote the Wigner distribution of the
function ψ ∈ L2(Rn), then

Rψ(x, y) = ∫
R2n

e−2πi⟨ (x,y) , (x′,y′) ⟩ e−πi⟨ (x,y) , (x
′,y′) ⟩Ŵψ(x

′, y′) dx′ dy′ (4.4)

is the Rihaczek distribution of ψ and the mapping is invertible as

Wψ(x, y) = ∫
R2n

e−2πi⟨ (x,y) , (x′,y′) ⟩ e+πi⟨ (x,y) , (x
′,y′) ⟩R̂ψ(x

′, y′) dx′ dy′ (4.5)

◆

Proof. See, e.g. [39] ∎
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(a) Wigner distribution of Gaussian.
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(b) Wigner distribution of 32nd Hermite func-
tion.

Figure 4.1: Wigner distributions of Hermite functions.

The spectrogram is special in the sense that it is linear and depends on a window.
It is actually a “smeared” version of the signal’s Wigner distribution - and, thus,
in light of Lemma 4.3 (Wigner vs Rihaczek) also of the Rihaczek distribution -,
where the smearing is given as a convolution with the Wigner (resp. Rihaczek)
distribution of the window. That is,

ψ z→ ∫ Wψ(x, y) Wφ(x′ − x, y′ − y) dx dy ∶= ∣πφψ(x′, y′)∣2 (4.6)

respectively

ψ z→ ∫ Rψ(x, y) Rφ(x′ − x, y′ − y) dx dy ∶= ∣πφψ(x′, y′)∣2 (4.7)

defines the spectrogram.
The spectrogram is the instrument of choice, whenever the function is not well

localized around a single point, as then its quadratic behavior overlaps parts of
the signal of different regions of phase space. E.g., if a function decomposes into
two separate parts, ψ = f + g, then

Wψ =Wf+g =Wf +Wg +W (f, g),

where W (f, g) is a cross-term, encoding the nonlinear behavior which may overlap
with the supports of Wf and Wg.

In the course of this chapter and the next, the arguments shall be strengthened
by various plots of phase space localizations. Whenever possible - that is, when the
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(a) Spectrogram of 32nd Hermite function.
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(b) Spectrogram of the sum of the projection
operators of the first 32 Hermite functions.

Figure 4.2: Spectrogram of Hermite functions.

distributions are localized and connected -, these plots will be given in terms of the
Wigner distribution. In all other cases, the spectrogram will be given in order to
make the support in phase space clear. To illustrate this, we use the well-known
Hermite functions. The standard example of a well localized function in phase space
is the Gaussian waveform, plotted in Figure 4.1a, which is the “0th Hermite function”.

Its support is concentrated to a small phase space cell and thus, the Wigner
distribution gives a clear picture of what is happening. The Hermite functions are the
eigenfunctions of the Harmonic oscillator with each Hermite function of higher degree
occupying an annulus of phase space, further away from the origin. In Figure 4.1b,
the Wigner distribution of the 32nd Hermite function is depicted, which seems to
show that the whole region around the origin is allocated by a single function.
Figure 4.2a, however, makes clear that this is an artifact of the “quadraticity” of
the Wigner distribution. That is, the sum of the Wigner distributions of the first
32 Hermite functions - as well as the sum of their spectrograms - sum up to a
disc in phase space, as plotted in Figure 4.2b.

This is a consequence of Lemma 4.36 (Phase Space Distributions of Rank-
N Operators) below.

4.1 Uncertainty Principles

In quantum mechanics, the principle of uncertainty arose as a means to quantita-
tively describe the incompatibility of simultaneous measurements of position and
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4. Localization

momentum. This is expressed via the classical uncertainty principle mentioned in
the first chapter, which, by a little abuse of notation, may be expressed as

∆(f)∆(f̂) ≳ h̵ , (4.8)

where ∆(f) and ∆(f̂) are measures of the concentration of the function f in the
spatial as well as the spectral domain. We will find a more explicit expression
below, but let’s elaborate on this a little more.

For a motivating warmup, one may consider an audio signal. Then, it is clear
that measuring the frequencies around an instant in time demands the incorporation
of a certain time-interval, since frequencies are spread in time by nature and the
proper identification of an occurring frequency takes an amount of time, related
to the frequency’s period. Another phenomenon, which is easily understood to be
reasonable, is the following. The determination of the speed, resp. the momentum,
of an object demands that an object has to travel an amount of space in a certain
time to calculate its speed. So, decreasing the space traveled more and more
inevitably leads to inaccuracies in the calculation of its speed and increasing the
space traveled means that the object’s position is smeared along its path, since
during the measurement it has been at each and every point along the path, limiting
the determination of its actual position.

From a mathematical point of view, whenever f and its Fourier transform, f̂ ,
are both absolutely integrable, the calculation

F{f(a ●)}(y) =∫ f(ax)e−i⟨ y , x ⟩dx

=∫ f(x)e−i⟨ y , x/a ⟩d(x/a)

=
1
a ∫

f(x)e−i⟨ y/a , x ⟩dx

=
1
a
f̂(y/a)

shows that compressing a function in time or space by factor a is - up to a
multiplicative factor a−1, which preserves the integral’s value - equivalent to spreading
its Fourier transform by the very same factor. Thus, the better localized the
function becomes in the time resp. space domain, the more “unlocalized” its
Fourier transform, f̂ , becomes. Due to the properties of the Fourier transform, the
same holds in the opposite direction. Since dilating a function does not lead to
a better combined localization, we cannot take an arbitrary function and squeeze
it, but rather need to look for a function, having good resp. the best combined
localization in the first place.
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4.1. Uncertainty Principles

The quantification of this uncertainty between these “conjugate” measurements
first brings us to a more general phenomenon. A comparable trade-off between two
measurements occurs in different situations in physics and mathematics. In general,
the product of the variances of two self-adjoint operators, which do not commute,
calculated for the same function, is greater than or equal to a certain bound. We
will first state this general uncertainty principle and afterwards specialize to the
time-frequency case discussed above, see, e.g. [30].

Theorem 4.4 (Uncertainty Principle for Self-Adjoint Operators). Let A, B be
self-adjoint operators, α, β ∈ R and

ψ ∈D(A) ∩D(B) ∩D(AB −BA),

then

∥(A − α)ψ∥2 ∥(B − β)ψ∥2 ≥
1
2 ∣⟨ (AB −BA)ψ , ψ ⟩∣ (4.9)

with the inequality becoming an equality if

(A − α)ψ = −iµ(B − β)ψ, µ ∈ R, (4.10)

making ψ a minimizing waveform. ◆

This theorem shows that in order to find an optimal function for a pair of
self-adjoint operators, which has “minimal uncertainty”, we only need to solve a
single equation. But, although this theorem is well-known and very prominent
in the literature, we shall state the well-known proof of this theorem, as this will
be used often in the course of this chapter.

Proof of Theorem 4.4 (Uncertainty Principle for Self-Adjoint Operators). The Cauchy-
Schwarz Theorem A.41 (Cauchy-Schwarz), provides us with

∥(A − α)ψ∥
2
2 ∥(B − β)ψ∥

2
2 ≥ ∣⟨ (A − α)ψ , (B − β)ψ ⟩∣

2

=R (⟨ (A − α)ψ , (B − β)ψ ⟩)
2

+ I (⟨ (A − α)ψ , (B − β)ψ ⟩)
2
,

where equality holds if and only if (A − α)ψ = λ(B − β)ψ, λ ∈ C, i.e., if (A − α)ψ
and (B − β)ψ are linearly dependent. Furthermore

∣⟨ (A − α)ψ , (B − β)ψ ⟩∣
2
≥ ∣I⟨ (A − α)ψ , (B − β)ψ ⟩∣

2

= ∣
⟨ (A − α)ψ , (B − β)ψ ⟩ − ⟨ (B − β)ψ , (A − α)ψ ⟩

2i ∣

2

,
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4. Localization

with equality if and only if ⟨ (A − α)ψ , (B − β)ψ ⟩ is purely imaginary. Combining
both, we find

∥(A − α)ψ∥
2
∥(B − β)ψ∥

2
≥ I⟨ (A − α)ψ , (B − β)ψ ⟩

2

=
1
4 ∣⟨BAψ −ABψ , ψ ⟩∣

2
,

with equality if and only if

(A − α)ψ = −iµ(B − β)ψ, µ ∈ R,

that is, iff (A −α)ψ and (B − β)ψ are purely imaginary multiples of each other. ∎

In the famous case of time and frequency, respectively position and momentum,
mostly known for its philosophical implications and referred to as the “Heisenberg
uncertainty principle”, the operators above are given by A ∶= x, which “measures”
the spatial positions or instants of time, and B ∶= 1

2πi
∂
∂x , measuring momenta

or frequencies.

Theorem 4.5 (Classical Uncertainty Principle). Let f ∈ L2(Rn), then

∥(xj − β)f∥2 ∥(xk − α)f̂∥2 ≥
1

4π ∥f∥
2
δjk, (4.11)

with ∥(xj − α)f∥2 ∥(xk − β)f̂∥2 =
1

4π iff j = k and for each k, f is a “Gaussian” of
the form

fα,β,µ(x) ∶= e
2πx(µα−iβ)e−πµx

2
, µ ∈ R+, α, β ∈ R. (4.12)

◆

Proof. Let A = xj − β and B = 1
2πi

∂
∂xk
− α, then

(AB −BA)f = i
1

2π (
∂

∂xk
xj − xj

∂

∂xk
) f = {

i
2πf, j = k
0 , else

,

and applying Theorem 4.4 (Uncertainty Principle for Self-Adjoint Operators) for
j = k leads to (4.11) with equality for

−iµ(xk − β)f = (
1

2πi
∂

∂xk
− α) f.

Solving this first order partial differential equation for f gives

fα,β,µ(x) ∶= e
2πx(µα−iβ)e−πµx

2
, µ ∈ R+, α, β ∈ R.

which finishes the proof. ∎

The principle above comprises only pairs of self-adjoint operators, whose viability
is limited. In fact, there are two ways to generalize the principle above to an n-
dimensional pendant, the first of which utilizes tensor products, the second uses
the language of vector fields.

75



4.1. Uncertainty Principles

Higher Dimensions

The principles hold for each two-dimensional symplectic subspace, associated with
L2(R), and thus the tensor construction enables us to write the whole space as

L2(Rn) ≃⊗
k

L2(R) (4.13)

where the linear combinations of the pure tensors, ⊗kfk, are dense in L2(Rn)

and one further needs to take the Hilbert space completion with respect to the
norm on L2(Rn). The inner product and the induced norm of the tensor-product is

⟨⊗
k

fk ,⊗
k

gk ⟩
L2(Rn)

∶= ∏
k

⟨fk , gk ⟩L2(R) and ∥⊗kfk∥ ∶= ∏
k

∥fk∥ , (4.14)

respectively linear combinations of the above for non-pure tensors.
It is easy to check, that this inner product yields the norm of L2(Rn) ,

⟨⊗kfk , ⊗kgk ⟩L2(Rn) ∶= ∏
k

⟨fk , gk ⟩L2(R)

=∏
k
∫
R
fk(xk)gk(x) dxk

= ∫
R
. . .∫

R
(∏
k

fk(xk))(∏
k

gk(xk)) dx1 . . . dxn

= ∫
Rn
fg dx,

again, with the obvious extension by linearity. There are in fact only very few cases,
in which an element of such a tensor product is pure and even if one starts out with
a pure tensor, ⊗kfk, this form is not necessarily preserved by the action of linear
operators, but those operators that actually do, are of the very intuitive form

T ∶=⊗
k

Tk ∶ L
2(Rn) → L2(Rn),⊗kfk → ⊗kTk ⊗k fk = ⊗k(Tkfk), (4.15)

with each Tk acting on and preserving the structure of a specific factor L2(R), for
each k.

It turns out that the operators Q̂k and P̂k can be utilized to build

Q̂ ∶= ⊗
k

Qk ∶= ⊗
k

xk and P̂ ∶= ⊗
k

Pk =⊗
k

1
2πi

∂

∂xk
(4.16)

and it is these tensor products of operators that are the patron of the next theorem.
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Theorem 4.6 (Classical Uncertainty Principle for Tensor Products). Let everything
as in Theorem 4.5 (Classical Uncertainty Principle). Let moreover

Q̂ ∶= ⊗
k

Qk ∶= ⊗
k

xk and P̂ ∶= ⊗
k

Pk =⊗
k

1
2πi

∂

∂xk
(4.17)

and α,β ∈ Rn, lifted to a tensor product of multiplication operators, such that

Q̂ − α ∶= ⊗k(Q
k − αk)

and the same for P and β. Then

∥(Q̂ − α)f∥
L2(Rn) ∥(P̂ − β)f∥L2(Rn) ≥

1
⋅(4π)n ∥f∥

2
L2(Rn) (4.18)

Furthermore, if fk denote the equalizing waveforms for each of the uncertainty
principles, interpreted as elements of L2(R), then their tensor product,

L2(Rn) ∋ f0 ∶= ⊗kfk ∈ ⊗kL
2(R),

is the equalizer of (4.18) and reads

f0(x) ∶= Ce
−πµ∣x∣2e−2π⟨ x⃗ , µ⃗α−iβ⃗ ⟩. (4.19)

◆

Proof. Let f ∶= ⊗kfk be a linear superposition of elementary tensors, then

∥(Q̂ − α)f∥
L2(Rn) ∥(P̂ − β)f∥L2(Rn)

=∥⊗k(Q̂k − αk)fk∥
L2(Rn)

∥⊗k(P̂k − βk)fk∥L2(Rn)

=∏
k

∥(Q̂k − αk)fk∥
L2(R)

∥(P̂k − βk)fk∥L2(R)

≥∏
k

∣⟨Qkfk , Pkfk ⟩L2(R)∣

≥ 1
2n ∏

k

∣⟨ [Pk , Q
k ] fk , fk ⟩L2(R)∣

= 1
2n ∏

k

∣⟨ 1
2πifk , fk ⟩L2(R)∣

= 1
2n

1
(2π)n ∣∏

k

⟨fk , fk ⟩L2(R)∣

= 1
⋅(4π)n ∥f∥

2
L2(Rn)

and since each of the factors in the inequalities above are equalized for a Gaussian,
a tensor product of Gaussians equalizes the generalized tensor principle

f0(x) ∶= (⊗kfk)(x)

∶= Ce−πµ∣x∣
2
e−2π⟨ x⃗ , µ⃗α−iβ⃗ ⟩.

∎
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Although the generalization is straight-forward, the outcome is not satisfactory,
since

(i) it is not clear how this principle can be further generalized for cases in which
more than individual pairs of operators have non-vanishing commutators and,
even more strikingly,

(ii) the lower bound contains the factor 1
(4π)n , which, reinstalling Planck’s constant

for a moment, reads ( h4π)n ∶= (
h̵
2)
n. It is, however, known since 1913 - as stated

in the first chapter -, that for each degree of freedom of the configuration space,
the elementary phase space cell is of size of the elementary Wirkungsquantum
independent of the other degrees of freedom. Thus, the lower bound should
be ∼ n ⋅ h̵2 , since there is no constraint on concentration on non-symplectic
subspaces.

It turns out, that the generalization of the classical principle above, using the
language of vector fields - which is well-known in the literature -, is the way to go.
Without further preliminary skirmishing, it is easy to see that

L2(Rn) → Cn ⊗L2(Rn), f ↦ P⃗ f ∶= 1
2πi∇⃗f (4.20)

and

L2(Rn) → Cn ⊗L2(Rn), f ↦ Q⃗f ∶= x⃗f (4.21)

on L2(Rn), turn f into vector fields and that the Hilbert space Cn ⊗ L2(Rn)

has the inner product

⟨ h⃗ , g⃗ ⟩Cn⊗L2(Rn) = ∑
k

⟨hk , gk ⟩L2(Rn) ,

which brings us the following theorem.

Theorem 4.7 (Classical Uncertainty Principle in n Dimensions). Let everything
as before, α,β ∈ Rn and

P⃗ f ∶= 1
2πi∇⃗f and Q⃗f ∶= x⃗f. (4.22)

Then

∥P⃗ f − α⃗f∥ ∥Q⃗f − β⃗f∥ ≥ n
4π ∥f∥

2
, (4.23)

with equality if and only if

f(x) ∶= Ce−πµ∣x∣
2
e−2π⟨ x⃗ , µ⃗α−iβ⃗ ⟩. (4.24)

◆

78



4. Localization

Proof. Using Cauchy-Schwarz, we get

∥P⃗ f − α⃗f∥ ∥Q⃗f − β⃗f∥ ≥ ∣⟨ P⃗ f − α⃗f ,
⃗

Qf − ⃗βf ⟩∣

= ∣∑
k

1
2πi ⟨ (∂xk

− αk)f , (xk − βk)f ⟩L2(Rn)∣

≥ ∣∑
k

1
2

1
2πi ⟨ [∂xk

, xk ] f , f ⟩L2(Rn)∣

= ∣∑
k

1
2

1
2πi ⟨1f , f ⟩L2(Rn)∣

= n4π ∥f∥
2

and equality holds, if and only if

( 1
2πi∇⃗ − α)f = i

⃗µ(x − β)f,

with µ ∈ Rn. Setting x̃ ∶= µ(x − β) − iα, we have that

∇⃗f = −2π ⃗̃xf,

which, using the Ansatz f(x) ∶= eg(x) reads

∇g = −2π ⃗̃x.

Thus, −2π ⃗̃x is a conservative vector field, with potential g. The solution, then, is
given by a line integral of the form

g(x) = −2π∫
c
⟨ ⃗̃x , d⃗x ⟩ + g(x0),

along a path c, starting at some point x0 and ending at x. Re-substitution of f
then gives

f(x) ∶= eg(x) = eg(x0)e−2π ∫c⟨ ⃗̃x , d⃗x ⟩.

Computing the integrals and re-substitution of x̃ then finishes the proof. ∎

4.2 Uncertainty Principles for Spectral Diffeomor-
phisms

In order for the coherent state map of a spectral quantum frame to localize
information of a signal as concentrated as possible around a phase space point and
to be adapted to the chosen coordinates, it is necessary that the window, φ, is as
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4.2. Uncertainty Principles for Spectral Diffeomorphisms

localized as possible in phase space. Since the spectral quantum frames are adapted
to a specific coordinate system in phase space, chosen to fit the application, the
localization of the prototypical probe, used to decompose phase space, should be
adapted to the chosen coordinate system, as well.

Hereafter, two opposing themes shall be examined. The first is the “classical”
idea that a function is optimally adapted to a coordinate system around a given
point, if its phase space picture is centered at that very point and it aligns with
the coordinate lines, running through that point, as nicely as possible. That is, a
function tries to stretch along all coordinate lines simultaneously and the optimal
function is the one which optimizes this balancing act, without diverging to much
from any of the coordinate lines. The second is a new form of localization and is -
although still adapted to a frame of reference in phase space -, a completely opposing
state of affairs. By a little abuse of language, a function is thought to be optimal, if
it is as “unaligned” as possible with respect to all coordinates. This means, that
the optimal function can be interpreted as “aligned along the canonical conjugate
coordinate” of each of the individual coordinates of the chosen frame of reference.

Although these notions seem to be mutually exclusive, there is a specific case,
in which both of these notions coincide!

In the previous section, the generalized version of the uncertainty principle for
two non-commuting observables was presented and the special case for canonical
coordinates in quantum mechanics was calculated. The optimal waveform, the
Gaussian, is optimally adapted to the canonical coordinates in the sense that it
is as concentrated as possible around a classical point on phase space and at the
same time it aligns as good as possible along the classical rectangular coordinate
lines. But the coordinate system is a canonical one, so the canonically conjugate
coordinates are simply a relabeling of the operators involved and thus, the Gaussian
also holds the scepter for the new conjugated principle.

That these two seemingly opposing facts - the optimal concentration around
a point and optimal alignment along the coordinate lines - coincide, turns out to
be a specialty of canonical coordinates - underlining once again the peculiarity of
canonical coordinates and the Gaussian waveform.

Concerning the second and new principle, another approach shall be mentioned.
As stated in the initial chapter, in [59], it was noted that the classical uncertainty
principle - which in this monograph is the principle of optimal alignment - does
not necessarily lead to fixed lower bounds. For the special case of the affine “ax+b”
group, it was shown that the lower bound can be made arbitrarily small, which
ultimately led to the research project UNLocX [83].
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4. Localization

In [58], the authors introduced the notion of “adjoint observables” - essentially a
canonically conjugate operator to an observable -, defined via the commutator, which
is an alternative approach to the problem, posed in [59]. These adjoint observables
lead to a principle, closely related to the one developed in this monograph.

The key was that to each (self-adjoint) observable, T , which generates the
one-parameter subgroup (e−2πiT t)t∈R of G, corresponds an adjoint observable, T̆ ,
(non-uniquely) defined by the canonical commutation relation

[T , T̆ ] = 1
2πi . (4.25)

The descriptive name was chosen in order to emphasize the fact that these
do represent a measurement process, measuring the “position” of the state in
the direction which the one-parameter subgroup translates the state. Note that
the name was given, using a bit of notational abuse, since these operators are
neither necessarily observables in the mathematical sense of self-adjoint operators
nor in the sense of quantum mechanics of measuring a quantum property of the
state. As a matter of fact, when no quantum mechanical probability distributions
on measurable quantities - given by diagonalization of quantum observables - is
needed, it may be enough to speak of symmetric operators, which admittedly lack
the essential fact that their adjoints have the same domain, but can be defined
more easily be imposing restrictions on their respective domains, e.g., such that
boundary terms in partial integration vanish.

4.2.1 Optimal Alignment

Before defining a generalized version of the uncertainty principle for a generalized
coordinate system in phase space, a quick look on eigenfunctions of the quantized
versions of coordinate functions is appropriate and since this is a motivation,
no proofs are given.

Let P be one of the coordinate functions in the two-dimensional phase space.
Then, its quantized operator, represented in the time domain, is given by

P̂ = 1
2πi∂x

and its - generalized - eigenfunctions are the exponential waves

P̂ e2πiξx = ξe2πiξx.
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(b) Eigenfunctions of P ∶ (q, p) ↦ p
- exponential waves -

Figure 4.3: (Distributional) Spectrograms of Eigenfunctions.

In phase space, these exponential waves align perfectly along the contour lines
of the coordinate function P , where each of the eigenfunctions corresponds to
exactly one of coordinates values, that is,

P ∶= ξ ⇒ e2πiξx aligns perfectly along ξ and vanishes elsewhere.

Let now Q be the other coordinate function in the two-dimensional phase space.
Then, its quantized operator, represented in the time domain, is given by

Q̂ = x

and its - generalized - eigenfunctions are the Dirac deltas

Q̂δx = xδx.

In phase space, these Dirac deltas align perfectly along the contour lines of
the coordinate function Q, where each of the eigenfunctions corresponds, again,
to exactly one of coordinates values, that is,

Q ∶= x ⇒ δx aligns perfectly along x and vanishes elsewhere.

Figure 4.3 depicts spectrograms of eigenfunctions of P and Q, as referenced
above, and Figure 4.4 shows the same for two non-canonical coordinate systems
in phase space, defined in (2.9) and (2.10).
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4. Localization

There seems to be a pattern, which indeed continues to hold for more general
coordinate functions. Let A and B be coordinates on the two-dimensional phase
space, such that the coordinate lines are not closed, since closed coordinate lines
lead to periodicity, which in turn leads to compact operators after quantization,
having discrete spectrum [85]. This is the ultimate mathematical reason for the
quantized energy spectrum of the harmonic oscillator - its contour lines are closed.

Then, each of these coordinate functions partitions the phase space X, that is,

X ∶= ∪a∈im(A)A
−1(a) and X ∶= ∪b∈im(B)B

−1(b),

where the images im(A) and im(B) are exactly the spectrum of the quantized
operators and to each value of the spectrum corresponds a generalized eigenfunction,
aligning with the associated coordinate line in phase space.

This means, ignoring issues of convergence and other subtleties, we have the
purely formal decomposition of the coordinate functions A and B into integrals

A ∶= ∫
im(A)

a ⋅ χA−1(a) da and B ∶= ∫
im(B)

b ⋅ χB−1(b) db,

where χA−1(a) is the characteristic function of the contour-line of A of height a,

χA−1(a)(q, p) ∶= {
1 , A(q, p) = a
0 , else

and analogously for χB−1(b). Now, reinterpreting im(A) as spec(Â), we have the
correspondence

A ∶= ∫
im(A)

a ⋅ χA−1(a) da ∼
z→ Â ∶= ∫

spec(A)
a dPa ∼ ∫

spec(A)
a ∣a ⟩⟨a ∣ da

where now dPa is the projection-valued measure, projecting onto subsets of the
spectrum and ∣a ⟩⟨a ∣ is a purely formal expression for a generalized projector
onto the “eigenspace” of a.

A second reason for the demand for non-closedness of the coordinate lines is the
uncertainty principle, which states that each (generalized) function occupies at least
a region of h̵ in phase space. If the lines are non-compact, and thus have infinite
extend, the uncertainty principle is defied, leading to “infinitesimally” thin lines
in phase space, like for the Dirac deltas or the exponential waves. But, since the
ultimate aim is to quantize phase space, such that to each classical point corresponds
a phase space cell, which aligns with the coordinate lines, the generalized functions
above, that are “infinitesimally thin” in phase space, are to be abandoned. We
wish to decomposes phase space in a manner, which is optimal for the application,
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(b) Eigenfunctions of S ∶ (q, p) ↦ q
2+cos(p) .

Figure 4.4: (Distributional) Spectrograms of Eigenfunctions.

where the application determines the classical frame (of reference) in phase space,
and via the process of quantization also the optimal quantum frame, consisting
of atoms, aligned optimally along concurring coordinate lines.

This, then, motivates the following notion.

Terminology 4.8 (Optimal Alignment). A function’s representation on phase
space is said to be optimally aligned in the sense of a chosen frame of reference, if it
is as aligned to both coordinate lines of each two-dimensional subspace of conjugate
variables as a specific inequality, an uncertainty principle, admits.

The rest of this section is devoted to the specification of this terminology. ◆

As a function cannot be an eigenfunction of two Hamiltonians simultaneously,
unless these have the same projection-valued measure, we need a possibility to
determine those functions, which minimize the trade-off between the deviations
of optimal alignment, that is, a function which is a compromise between the
eigenfunctions of both operators.

A generic approach in quantum mechanics to this, but usually without reference
to any coordinate functions or any phase space localization, is the Ladder approach,
cf. e.g. [64], associating to the self-adjoint operators A and B - in the case above
the quantized coordinate functions -, the operator

L̂ ∶= Â + iB̂
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4. Localization

and its adjoint

L̂∗ ∶= Â − iB̂.

Definition 4.9 (Generalized Ladder and Number Operators). Let Â and B̂ be two
self-adjoint operators, then

L̂ ∶= Â + iB̂ (4.26)

and its adjoint

L̂∗ ∶= Â − iB̂. (4.27)

will be referred to as the generalized Ladder operators.
The composed operator

N̂ ∶= L̂∗L̂ ∶= Â2 + B̂2 − i [ B̂ , Â ] , (4.28)

is called the (generalized) Number operator. ◆

Remark 4.10 (Ladder). For the canonical operators of the CCR in their spatial
representation - corresponding to the canonical phase space coordinates p and q -,
reading

P̂ ∶= 1
2πi∂x and Q̂ ∶= x,

the operators L̂ and L̂∗ are the actual Ladder operators for the quantum harmonic
oscillator, called the lowering operator (L̂) and the raising operator (L̂∗), respectively.
In quantum field theory - lifting fields of numbers to fields of operators [60, 64,
69] - these are the annihilation and creation operators, that create and annihilate
particles in the various decoupled Fourier modes of the quantized fields. ◆

The operator L̂ now has complex spectrum and the associated generalized
coherent states are defined by

(Â + iB̂)∣α + iβ ⟩ = (α + iβ)∣α + iβ ⟩.

This definition is, up to some constant, µ, equivalent to the general uncertainty
principle for two non-commuting self-adjoint operators, since we may rewrite this as

(Â − β)∣α + iβ ⟩ = −i(B̂ − β)∣α + iβ ⟩.

The generalized eigenfunctions of L̂ therefore minimize, for some specific constant
µ = 1, the general uncertainty principle of Â and B̂, as stated in Theorem 4.4 (Un-
certainty Principle for Self-Adjoint Operators), and the ground state - respectively
vacuum state in quantum field theory - is determined by setting α = β = 0.

We’ll also need a shifted version of these.
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4.2. Uncertainty Principles for Spectral Diffeomorphisms

Lemma 4.11 (Shifted Generalized Ladder Operators). Let α,β ∈ R, then, the
generalized Ladder operators of

Â − α and B̂ − β

are

L̂αβ ∶= L̂ − (α + iβ) and L̂∗αβ ∶= L̂
∗ − (α − iβ).

Moreover, the associated Number operator becomes

N̂αβ ∶= N̂ − 2(αÂ + βB̂) + α2 + β2

∶= Â2 + B̂2 − i[B̂, Â] − 2(αÂ + βB̂) + α2 + β2.

◆

Proof. The proof is direct

L̂αβ ∶= (Â − α) + i(B̂ − β) = (Â + iB̂) − (α + iβ)

and analogous for L̂∗. For N̂ , as in (4.28), find

N̂αβ = ((Â − iB̂) − (α − iβ))(Â + iB̂) − (α + iβ)

= (Â − iB̂)(Â + iB̂) − (α − iβ)(Â + iB̂) − (α + iβ)(Â − iB̂) + (α − iβ)(α + iβ)

= N̂ − 2αÂ − 2βB̂ + α2 + β2,

which was the claim. ∎

Spectral Diffeomorphisms

Let now σ be a spectral diffeomorphism and

Ai ∶= (J−1
σ (p)q)

i, B′i ∶= σi(p), Bi ∶= pi

the associated spectral Hamiltonians. Then, by Theorem 3.14 (Spectral Hamilto-
nians), to these correspond the self-adjoint operators

Âi =
−1
2πi∑

k

(1
2∂pk
(jik(p)) + j

i
k(p)∂pk

)

B̂i = pi

B̂′i = σi(p).

From these, we now build the spectral warped Ladder operators L̂j and L̂′j.
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Definition 4.12 (Spectral-warped Ladder Operators). Let σ be an analytic spectral
diffeomorphism and

Âi =
−1
2πi∑

k

(1
2∂pk
(jik(p)) + j

i
k(p)∂pk

)f (4.29)

B̂i = pi (4.30)
B̂′i = σi(p), (4.31)

the associated quantized spectral Hamiltonians. Then

L̂j ∶= Âj + iB̂j =
−1
2πi∑

k

(1
2∂pk
(jik(p)) + j

i
k(p)∂pk

)f + ipj, (4.32)

will be called the warped Ladder operator, and

L̂′j ∶= Âj + iB̂
′
j =

−1
2πi∑

k

(1
2∂pk
(jik(p)) + j

i
k(p)∂pk

)f + iσj(p), (4.33)

referred to as the canonical warped Ladder operator, both represented on the Fourier
domain. ◆

Returning to our discussion of coordinates on phase space, we turn the ob-
servations above into a proposition.

Definition 4.13 (Optimal Aligned Waveform For Pairs Of Conjugate Variables).
Let (Ak)k and (Bk)k be (not necessarily canonical) coordinate functions on the
2n-dimensional phase space. Denote with

(Âk)k and (B̂k)k

their self-adjoint quantized pendants, represented on the Fourier domain. Then, a
waveform, φ̂, is sait to be optimally aligned to the phase space coordinates above
in the sense of Terminology 4.8 (Optimal Alignment), and around a classical point,
(αk, βk), in each of the n symplectic subspaces of phase space, if it fulfills

(Âk + iµB̂k)φ̂ ∶= (α + iµkβ)φ̂, k = 1, . . . , n. (4.34)

where the parameter µk ∈ R determines whether the function aligns better along
the Bk or the Ak coordinate. ◆

Proposition 4.14 (Uncertainty Minimization). The waveform φ̂ is optimally
aligned in the sense of 4.13 if it equalizes the uncertainty inequality

∥(Âk − α)φ̂∥ ∥(B̂k − β)φ̂∥ ≥
1

4π ∣⟨ [Â
k, B̂k]f , f ⟩∣ ,

as given in Theorem 4.4 (Uncertainty Principle for Self-Adjoint Operators) and the
parameter µk ∈ R determines whether the function aligns better along the Bk or the
Ak coordinate. ◆
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Proof. From Theorem 4.4 (Uncertainty Principle for Self-Adjoint Operators), we
know that φ̂ equalizes

∥(Âk − α)φ̂∥ ∥(B̂k − β)φ̂∥ ≥
1

4π ∣⟨ [Â
k, B̂k]f , f ⟩∣

if

(Âk − α)φ̂ = −iµk(B̂k − β)φ̂,

which is (4.34).
Finally, to see the claim about µ, the equation above essentially equates the

deviations from being eigenfunctions, that is, if (Âk−α)φ̂ = 0, than φ is a generalized
eigenfunction of Â, and if (B̂k − β)φ̂ = 0, than φ is a generalized eigenfunction of B̂.
Thus, for µ = 1, this deviations are of the same order. Thus, µ is the constant of
proportionality between both deviations and the bigger µ, the more φ̂ deviates from
being an eigenfunction of Âk and the more closely it resembles an eigenfunction of
B̂k. ∎

The proposition above does not make clear what happens for arbitrary pairs of
generators, nor does it give explicit inequalities. Of course, one could argue that
not only pairs of the same indices are relevant but all pairs, (Ai,Bk), for which
the quantized Hamiltonians do not commute. Indeed, this makes sense, which
brings us to our generalized uncertainty principle.

Theorem 4.15 (Uncertainty Principle of Optimal Alignment). Let σ be a spectral
diffeomorphism and Ai, Bk the spectral Hamiltonians.

Then

∥(Âi − α)f∥Sσ
∥(B̂k − β)f∥Sσ

≥ 1
4π ∣⟨ (J

−T
σ )

i
kf̂ , f̂ ⟩FSσ

∣ , i, k = 1, . . . , n. (4.35)

Moreover, the inequality turns into an equality, if and only if

f̂ = Ce−2πµ ∫ pkdσie2π(µβ−iα)σie
−1

2 ∑n ∫ ∂pn(
σ−1

n

∂σi
)dσi

, (4.36)

for some µ ∈ R+. ◆

Proof. Use Corollary 3.15 (Commutators of Spectral Hamiltonians) to find

[ Âi , B̂k ] = −
1

2πi(J
−T
σ )

i
k

and then apply Theorem 4.4 (Uncertainty Principle for Self-Adjoint Operators).
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To see the form of the equalizing function, use Theorem 4.4 (Uncertainty
Principle for Self-Adjoint Operators) again, and find

(Âi − α)f̂ = −iµ(B̂k − β)f̂

⇔ Âif̂ = −i(µB̂k − µβ + iα)f̂

⇔ 1
2∑
n

∂pn(
∂σ−1

n

∂σi
)f̂ +∑

n

(
∂σ−1

n

∂σi
)∂pn f̂ = −2π(µB̂k − µβ + iα)f̂

⇔ ∑
n

(
∂σ−1

n

∂σi
)∂pn f̂ = −2π(µB̂k − µβ + iα)f̂ −

1
2∑
n

∂pn(
∂σ−1

n

∂σi
)f̂

⇔ ∂σi
f̂ = −2π(µpk − µβ + iα)f̂ − 1

2∑
n

∂pn(
∂σ−1

n

∂σi
)f̂

As usual, the form of this differential equation suggests that an exponential Ansatz
is appropriate. Assuming f̂ is positive on all of dom(σ), we substitute f̂ = eg and
get

∂σi
eg = −2π(µpk − µβ + iα)eg − 1

2∑
n

∂pn(
∂σ−1

n

∂σi
)eg

⇔ ∂σi
g = −2π(µpk − µβ + iα) − 1

2∑
n

∂pn(
∂σ−1

n

∂σi
)

⇔ g = ∫ (−2π(µpk − µβ + iα) − 1
2∑
n

∂pn(
∂σ−1

n

∂σi
) )dσi + log(C)

= −2πµ∫ pkdσi + 2π(µβ − iα)σi − 1
2∑
n
∫ ∂pn(

∂σ−1
n

∂σi
)dσi + log(C).

Thus, after re-substitution, we arrive at

f̂ = Ce−2πµ ∫ pkdσie2π(µβ−iα)σie
−1

2 ∑n ∫ ∂pn(
∂σ−1

n

∂σi
)dσi

,

which was the claim. ∎

Even though the proof contained a lengthy calculation, it is not as rewarding
as one might hope for, mainly for the following two reasons.

(i) the expression for the equalizing waveform is an ugly one, in the sense
that it is in-transparent, whether the various sub-principles are compatible or
mutually exclusive. And (ii), in order to define the “perfect” function, adapted to
all coordinate lines simultaneously as good as possible, it is highly questionable,
whether the description via pairs of non-commuting observables, like in the theorem
above, is the right way to do it.

In fact, one can show, that there are cases in which no waveform exists, which
equalizes all of the inequalities simultaneously, see, e.g., [9], for a counter-example
in the case of the SIM(2) group (which is a special case of the uncertainty principle
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4.2. Uncertainty Principles for Spectral Diffeomorphisms

above, as we will see in the next chapter, which will be dedicated to applications).
This points to the fact that for more general cases one should search for differential
equations involving all generators at the same time instead of concentrating on
sub-cases individually, while keeping fingers crossed to hope that these individual
solutions miraculously conspire to a general solution.

In the end, this can only be expected, if the cases do really decompose into inde-
pendent parts - completely analogous to the case of irreducible sub-representations
or other instances of the general divide-and-conquer approach in mathematics.

In fact, one of these special cases, for which this is possible, is when the principles
and their solutions are restricted to each of the factors of a tensor representation.
Which is the one, the next corollary is all about - the case of a diagonal Jacobian.

Corollary 4.16 (Diagonal Jacobians). Let everything as in Theorem 4.15 (Uncer-
tainty Principle of Optimal Alignment). Let moreover the Jacobian (and hence its
transposed inverse), be a diagonal matrix. Then

∑
k

∥(Âk − αk)f∥Sσ
∥(B̂k − βk)f∥Sσ

≥ 1
4π ∣⟨div(σ−1)f̂ , f̂ ⟩FSσ

∣ . (4.37)

Moreover, if fk denote the equalizing waveforms for each of the uncertainty
principles associated with the diagonal entries of the Jacobian, we have that its
tensor product,

Sσ ∋ f0 ∶= ⊗kfk,

is the equalizer of (4.37) and is the optimally aligned waveform for pairs of conjugate
variables in Proposition 4.14 (Uncertainty Minimization). ◆

Proof. Since the Jacobian is diagonal, only alike indices contribute. For each
k = 1, . . . , n, we have

∥(Âk − αk)f∥Sσ
∥(B̂k − βk)f∥Sσ

≥ 1
2 ∣⟨ −

1
2πi(J

−1
σ )

k
kf̂ , f̂ ⟩FSσ

∣

= 1
4π ∣⟨ (J

−1
σ )

k
kf̂ , f̂ ⟩FSσ

∣

Adding all inequalities - and using the same f -, we get

∑
k

∥(Âk − αk)f∥Sσ
∥(B̂k − βk)f∥Sσ

≥∑
k

1
4π ∣⟨ (J

−1
σ )

k
kf̂ , f̂ ⟩FSσ

∣

≥ 1
4π ∣⟨∑

k

(Jσ−1)kkf̂ , f̂ ⟩
FSσ

∣

= 1
4π ∣⟨ tr(Jσ−1)f̂ , f̂ ⟩FSσ

∣

= 1
4π ∣⟨div(σ−1)f̂ , f̂ ⟩FSσ

∣ ,
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where we used the convexity of the modulus and the last line is due to trJσ−1 =∶

div(σ−1).
Finally, since the Jacobian is diagonal, each σ−1

k is dependent on ξk only, that is,
σ−1
k (ξ⃗) = σ

−1
k (ξk), which means that all f̂k are only dependent on ξk also, since

(B̂k − βk)f̂k = −iµ(Âk − αk)f̂k

involves only the ξk coordinate. So, by defining the function

f̂0(ξ⃗) ∶= (⊕kf̂k)(ξk) =∏
k

f̂k(ξk),

we have that

((B̂k − βk) + iµ(Âk − αk))f̂0 =((B̂
k − βk) + iµ(Âk − αk))∏

j

f̂j

=(∏
j≠k
f̂j) ((B̂

k − βk) + iµ(Âk − αk)) f̂k

=(∏
j≠k
f̂j) ⋅ 0 = 0,

for each k = 1, . . . , n. Hence, f0 still equalizes all k uncertainty principles, and thus

∑
k

∥(Âk − αk)f0∥Sσ
∥(B̂k − βk)f0∥Sσ

= 1
4π ∣⟨div(σ−1)f̂0 , f̂0 ⟩FSσ

∣ ,

which finishes the proof. ∎

Remark 4.17 (Diagonal Jacobians). Note that the case of diagonal Jacobians
includes those for which the Jacobians contains one non-zero entry for each row
and columns, as by a reordering of the components of σ, these can be brought into
diagonal form.

This essentially amounts to a permutation of the coordinates. ◆

In Corollary 4.16 (Diagonal Jacobians), the explicit form of the equalizing
function has not been stated, which is due to the fact that it needs a further
ingredient and will be given in the following corollary.

Corollary 4.18 (Equalizing Waveform for Diagonal Jacobians ). Let σ be a spectral
diffeomorphism, having a diagonal Jacobian. Then, the individual equalizers have
the form

f̂k = C ⋅ ∣
∂σk

∂pk
∣
1/2
e−2πµk ∫ pkdσke2π(µkβk−iαk)σk , (4.38)
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and thus the equalizing function attains the rather pleasant form

f̂0 = C ∣det(Jσ)∣
1/2
e−2π∑k µk ∫ pkdσke2π∑k(µkβk−iαk)σk

= C ∣det(Jσ)∣
1/2
e−2π ∫ ⟨ µ⃗p , d⃗σ ⟩e2π⟨ µβ−iα , σ ⟩, (4.39)

where ∫c ⟨ µ⃗p , d⃗σ ⟩ denotes a line integral along some path, c, starting from a fixed
point and ending at ξ⃗.

Its pendant on Aσ is

ψ̂0 ∶= Ce
−2π ∫ ⟨ µ⃗p , d⃗σ ⟩e2π⟨ µβ−iα , σ ⟩. (4.40)

◆

Proof. Since only alike indices contribute, due to the diagonality of the Jacobian,
we have that each entry of the Jacobian is independent of the others and thus, the
inverse function theorem applies to each of the diagonal entries individually. Thus
∂σ−1

k

∂σk
○ σ = (∂σk

∂pk
)−1 is the inverse function of ∂σk

∂pk
for each k. Therefore,

∑
n

∂pn(
∂σ−1

n

∂σk
○ σ) = ∂pk

(
∂σ−1

k

∂σk
○ σ) = ∂pk

(
∂σk

∂pk
)−1 = −

∂pk
(
∂σk

∂pk
)

(
∂σk

∂pk
)2

.

Integrating with respect to dσk, we get

−∫

∂pk
(
∂σk

∂pk
)

(
∂σk

∂pk
)2

dσk = −∫
∂pk
(
∂σk

∂pk
)

(
∂σk

∂pk
)2

∂σk

∂pk
dpk = − ∫

∂pk
(
∂σk

∂pk
)

(
∂σk

∂pk
)

dpk

= − log ∣∂σk

∂pk
∣.

Inserting into the expression for the equalizer, we get

f̂k(ξk) = Ce
−2πµk ∫ pkdσke2π(µkβk−iαk)σk(ξk)e

−1
2 (− log ∣∂σk

∂pk
∣)

= C ⋅ ∣∂σk

∂pk
∣
1/2
e−2πµk ∫ pkdσke2π(µkβk−iαk)σk(ξk).

Finally, taking the tensor product of all individual equalizers, we arrive at

f̂ ∶= (⊗kf̂k) =∏
k

f̂k

= C∏
k

∣
∂σk

∂pk
∣
1/2
e−2πµk ∫ pkdσke2π(µkβk−iαk)σk

= C∏
k

(∣
∂σk

∂pk
∣
1/2
) e−2π∑k µk ∫ pkdσke2π∑k(µkβk−iαk)σk

= C ∣det(Jσ)∣
1/2
e−2π ∫c⟨ µ⃗p , d⃗σ ⟩e2π⟨ µβ−iα , σ ⟩,
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where ∫c ⟨ µ⃗p , d⃗σ ⟩ is interpreted as a path integral along some path, starting at a
fixed point and ending at ξ⃗.

Finally,

ψ̂0 ∶= ̂ιS → Af = Ce
−2π ∫c⟨ µ⃗p , d⃗σ ⟩e2π⟨ µβ−iα , σ ⟩,

which was to be demonstrated. ∎

Although the principle above is nice in the sense that it incorporates all of the
non-commuting observables and a proof that there exists a simultaneous equalizer
for all of the sub-principles, it is a somewhat “botchy” inequality as no explicit
treatment of a true n-dimensional uncertainty principle is given, which we try to
catch up on in the next theorem. In the proof of Corollary 4.32 (Diagonal Jacobians),
the fact was used, that the tensor product of all individual equalizers is an equalizer
of the extended principle. The principle shows what to expect of a general principle,
if it existed. Since the Hamiltonians Âk induce flows along the rectangular grid in the
symplectically “warped” phase space, it makes sense to define a vector field for these

̂̃
W∗σ∇

̂̃
Wσψ̂ ∈ Cn ⊗FAσ,

which leads to

(∇(ψ̂ ○ σ−1)) ○ σ = J−Tσ ∇ψ̂, (4.41)

since vector fields transform tensorially.
Pictured in phase space, these derivatives are along the coordinate lines, defined

by the spectral diffeomorphism respectively its cotangent lift. Thus, these curvilinear
derivatives induce the Hamiltonian flows along these coordinate lines and equating
with −2πµ⃗ξψ̂ gives

J−Tσ ∇ψ̂ = −2πµ⃗ξψ̂,

respectively

J−Tσ ∇ψ̂ = −2π(µ⃗ξ − β⃗ + iα⃗)ψ̂, (4.42)

when we include the constants. Above, we have been rather sloppy, since the
fundamental differential object, assigned to a function is not its gradient but its total
differential, which is definable for every differentiable function on a differentiable
manifold. The definition of a gradient, on the other hand, demands the existence of
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4.2. Uncertainty Principles for Spectral Diffeomorphisms

a non-degenerate two-form by means of which one may identify a differential form
with a vector field. Although dom(σ) as a subspace of R̂n can be equipped with
the standard two-form from Euclidean space, it makes sense to restate the above as

∇ψ̂ = −2πJTσ (µ⃗ξ − µ⃗β + iα⃗)ψ̂,

by the invertibility of a diffeomorphism’s Jacobian and get

dψ̂ = −2π∑
k

∑
j

∂σj
∂ξk
(µjξj − µjβj + iαj)ψ̂ dξk, (4.43)

which is a one-form.

Definition 4.19 (Weighted Diffeomorphism). Let σ be a spectral diffeomorphism
and µ ∈ Rn, then

(σµ)k ∶= (µkσk)k (4.44)

shall denote the weighted diffeomorphism. ◆

Lemma 4.20 (Symmetry Condition). Let Jσ be the Jacobian of the diffeomorphism
σ and define σµ ∶= (µkσk)k. Then, there exists a solution ψ, such that

dψ̂ = −2π∑
k

∑
j

∂σj
∂ξk
(µjξj − µjβj + iαj)ψ̂ dξk. (4.45)

if the Jacobian matrix of the weighted diffeomorphism σµ is a symmetric matrix,

Jσµ = J
T
σµ
, (4.46)

and if dom(σ) is simply-connected. ◆

Proof. Using the Ansatz ψ̂ = eg, with ξ⃗ = (x1, . . . , xn), leads to

dg = −2π∑
k

∑
j

∂σj
∂xk
(µjξj − µjβj + iαj)dxk,

which is an equation for an exact form - interpretable as a conservative vector field -
and its potential. There exists a potential, g, for −2π∑k∑j

∂σj

∂xk
(µjξj−µjβj+iαj)dxk

if it is a closed form,

d(−2π∑
k

∑
j

∂σj
∂xk
(µjξj − µjβj + iαj)dxk)

= d(−2π∑
k

∑
j

∂σj
∂xk
(µjξj)dxk)

=0,
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and the domain is simply-connected. Since we assume the space to be simply-
connected, only its closed-ness is left to be proven. Since dxj ∧ dxk = −dxk ∧ dxj,
we have

d(−2π∑
k

∑
i

∂σi
∂xk

µixi dxk) = −2π∑
i

∑
k

∑
j

∂j (
∂σi
∂xk

µixi) dxj ∧ dxk

= 2π∑
i

∑
k

∑
j>k
(∂j (

∂σi
∂xk

µixi) − ∂k (
∂σi
∂xj

µixi)) dxk ∧ dxj,

which vanishes if and only if

∑
i

∂j (
∂σi
∂xk

µixi) −∑
i

∂k (
∂σi
∂xj

µixi) = 0,

that is

∑
i

∂j (
∂(µσ)i
∂xk

xi) = ∑
i

∂k (
∂(µσ)i
∂xj

xi)

for all j, k = 1, . . . , n. Explicitly, this means that

∑
i

(
∂(σµ)i
∂xj∂xk

xi +
∂(σµ)i
∂xk

∂xi

∂xj
) = ∑

i

(
∂(σµ)i
∂xk∂xj

xi +
∂(σµ)i
∂xj

∂xi

∂xk
)

⇔ ∑
i

(
∂(σµ)i
∂xj∂xk

xi) +∑
i

(
∂(σµ)i
∂xk

δji ) = ∑
i

(
∂(σµ)i
∂xk∂xj

xi) +∑
i

(
∂(σµ)i
∂xj

δki )

⇔ ∑
i

(
∂(σµ)i
∂xk

δji ) = ∑
i

(
∂(σµ)i
∂xj

δki )

⇔
∂(σµ)j
∂xk

=
∂(σµ)k
∂xj

by the commutativity of partial derivatives. But this means that

Jσµ = J
T
σµ
,

which was the assertion. ∎

Note that the closed-ness of the one-form in the proof above means, reinterpreted
as a vector field, that it fulfills the integrability condition

∂n(−2πJTσ µ⃗ξ)j = ∂j(−2πJTσ µ⃗ξ)n. (4.47)

Using this lemma, we may now generalize the uncertainty principle a step
further, although the discussion following it shows that its usability is narrow and
will thus not be pursued any further hereafter.
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Theorem 4.21 (Optimal Alignment for Weighted Jacobians). Let σ be a spectral
diffeomorphism with simply-connected domain and symmetric weighted Jacobian, as
demanded by Lemma 4.20 (Symmetry Condition), and let further ψ ∈ Aσ. Then,

∥( −1
2πiJ

−T
σ ∇− α⃗)ψ̂∥ ∥(ξ⃗ − α⃗)ψ̂∥ ≥

1
4π ∣⟨div (σ−1)ψ̂ , ψ̂ ⟩∣ , (4.48)

with α⃗, β⃗ ∈ Rn, is the generalized uncertainty principle for symmetric Jacobians and

ψ̂(ξ) ∶= C(ξ0)e
−2π ∫c⟨ ξ⃗ , dσµ ⟩e2π⟨ µβ−iα , σ ⟩, (4.49)

for some path, c, starting at ξ0 and ending at ξ, is the equalizing waveform.
As usual, a final map

ψ ↦ ιA → Sψ =∶ f,

gives the solution

f(ξ) ∶= ∣det(Jσ)∣
1/2
eg(ξ0)e−2π ∫c⟨ ξ⃗ , dσµ ⟩e2π⟨ µβ−iα , σ ⟩, (4.50)

on Sσ. ◆

Proof. Cauchy-Schwarz gives

∥( −1
2πiJ

−T
σ ∇− α⃗)ψ̂∥ ∥(ξ⃗ − α⃗)ψ̂∥ ≥ ∣⟨

−1
2πiJ

−T
σ ∇ψ̂ , ξ⃗ψ̂ ⟩∣

= ∣ −1
2πi∑

k

⟨ (∑
j

(
∂σ−1

j ○σ
∂ξk

∂ξj
) − βk)ψ̂ , (ξk − αk)ψ̂ ⟩∣

and using the same arguments as has been used in the derivation of the uncertainty
principles above, we have

∣ −1
2πi∑

k

⟨ (∑
j

(
∂σ−1

j ○σ
∂ξk

∂ξj
) − βk)ψ̂ , (ξk − αk)ψ̂ ⟩∣ ≥

RRRRRRRRRRR

−1
2πi∑

k,j

1
2 ⟨ [

∂σ−1
j ○σ
∂ξk

∂ξj
, ξk ] ψ̂ , ψ̂ ⟩

RRRRRRRRRRR

= 1
4π

RRRRRRRRRRR

⟨∑
k,j

∂σ−1
j ○σ
∂ξk
[∂ξj

, ξk ] ψ̂ , ψ̂ ⟩
RRRRRRRRRRR

= 1
4π

RRRRRRRRRRR

⟨∑
k,j

∂σ−1
j ○σ
∂ξk

δjk ψ̂ , ψ̂ ⟩
RRRRRRRRRRR

= 1
4π ∣⟨∑

k

∂σ−1
k ○σ
∂ξk

ψ̂ , ψ̂ ⟩∣

= 1
4π ∣⟨ trJ

−1
σ ψ̂ , ψ̂ ⟩∣

= 1
4π ∣⟨div (σ−1)ψ̂ , ψ̂ ⟩∣ ,
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and thus

∥( −1
2πiJ

−T
σ ∇− α⃗)ψ̂∥ ∥(ξ⃗ − α⃗)ψ̂∥ ≥

1
4π ∣⟨div (σ−1)ψ̂ , ψ̂ ⟩∣ .

To find the equalizing waveform, we note that the steps in the derivation of the
inequality are the same as above and thus, equality is attained for some ψ ∈ Aσ,
fulfilling

−1
2πiJ

−T
σ ∇ψ̂ = −i(µ⃗ξ − β⃗ + iα⃗)ψ̂,

which leads to

∇ψ̂ = −2πJTσ (µ⃗ξ − β⃗ + iα⃗)ψ̂,

and using the Ansatz ψ̂ = eg, again, we end up with

∇g = −2πJTσ (µ⃗ξ − β⃗ + iα⃗),

which is an equation for a conservative vector field and its potential. But, by
Lemma 4.20 (Symmetry Condition), there exists a solution, g, if and only if the
weighted Jacobian is symmetric and the domain is simply-connected; which is
assumed to hold, so there’s a solution and the potential may be found by a line
integral of the form

g(ξ) = −2π∫
c
⟨JTσ (µ⃗ξ − β⃗ + iα⃗) , d⃗ξ ⟩ + g(ξ0),

again for some path, c, from ξ0 to ξ. Noting that

⟨JTσ (µ⃗ξ − β⃗ + iα⃗) , d⃗ξ ⟩ = ⟨ µ⃗ξ − β⃗ + iα⃗ , Jσd⃗ξ ⟩

= ⟨ µ⃗ξ − β⃗ + iα⃗ , d⃗σ ⟩ ,

and re-substituting for ψ̂, gives

ψ̂(ξ) = eg(ξ) = eg(ξ0)e−2π ∫c⟨ ξ⃗ , dσµ ⟩e2π⟨ µβ−iα , σ ⟩,

which was the main point to be demonstrated. Since the principle above was
formulated on Aσ, a final ψ̂ ↦ ιA → Sψ̂ =∶ f̂

gives the solution

f̂(ξ) ∶= ∣det(Jσ)∣
1/2
eg(ξ0)e−2π ∫c⟨ ξ⃗ , dσµ ⟩e2π⟨ µβ−iα , σ ⟩, (4.51)

on Sσ, which finishes the proof. ∎
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Unfortunately, there is no fixed ordering in the components of a spectral
diffeomorphism, and, therefore, all re-orderings of its Jacobian’s are possible, which
somewhat limits the usability of the theorem above, as different orderings lead
to completely different solutions, partially nonsensical. The following example
shall make this clear.

Let σ be the identical diffeomorphism in two-dimensions,

σ ∶ (x, y) ↦ (x, y),

then its Jacobian is the identity and solving

dg(ξ) = −2π ((1x + 0y)dx + (0x + 1y)dy) = −2π(x dx + y dy),

gives

g(ξ) = −2π(x2/2 + y2/2) + log(C).

A re-substitution f̂ ∶= eg gives

f (̂ξ) = eg(ξ) = Ce−π(x
2+y2),

which is a reasonable solution.
Swapping the components,

σ ∶ (x, y) ↦ (y, x),

however, gives

Jσ(x, y) ∶= (
0 1
1 0)

and solving

dg(ξ) = −2π ((0x + 1y)dx + (1x + 0y)dy) = −2π(y dx + x dy),

gives

g(ξ) = −2π(xy + yx) + log(C),

After a re-substitution f̂ ∶= eg, we have

f (̂ξ) = eg(ξ) = Ce−4π(x⋅y),

which is nonsensical.
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Remark 4.22 (A Note on Implication). (i) It is worthwhile to stop here for a
moment and discuss the meaning of the minimizing waveforms above. To
begin with, the solutions above, if they exist, do not necessarily equalize the
individual principles - they do, if the Jacobian is diagonal -, since these are
no longer independent of each other. As a matter of fact, a derivative along
the curvilinear coordinate given by, say, σk, is not necessarily constraint to
a single, two-dimensional symplectic subspace of phase space and thus, an
uncertainty principle only makes sense, if it incorporates all of the domains
affected by this derivation, which are exactly the ones, for which the Jacobian
does not vanish. The equation (4.51), written as a linear system of coupled
ordinary differential equations, reads

∂f
∂ξ1
= −2π (∂σ1

∂ξ1
(µ1ξ1 − µ1β1 + iα1) + ⋅ ⋅ ⋅ +

∂σn

∂ξ1
(µnξn − µnβn + iαn)) f

⋮ ⋮ ⋮
∂f
∂ξn
= −2π (∂σ1

∂ξn
(µ1ξ1 − µ1β1 + iα1) + ⋅ ⋅ ⋅ +

∂σn

∂ξn
(µnξn − µnβn + iαn)) f

, (4.52)

which is the system, the solution function f ∈ Sσ (or ψ ∈ Aσ) solves individually.

(ii) Moreover, when doing signal analysis, one is interested in a waveform, ψ,
which not only equalizes an uncertainty principle but is also admissible, which
in the language of this monograph reads ψ ∈ Aσ.

The construction above, however, reveals that this is not necessarily com-
patible, as the differential equations, which a minimizing waveform has to
satisfy, are derived from the generators, which are - by construction - defined
on Sσ and not on Aσ. That is, the Hamiltonians Âi generate flows, which are
unitary on Sσ, but not on Aσ; B̂′k and B̂k are actually the same operators
on both spaces and thus do not contribute to a better understanding here.
Taking the loss of anticipating some of the later results, an example for the
one-dimensional wavelet transform shall make this clear. Let Â ∶= −1

2πi(
1
2 + ξ∂ξ)

be the infinitesimal generator of dilation, defined on the Fourier domain,
inducing the flow

(e−2πi( −1
2πi (

1
2+ξ∂ξ))tf̂)(ξ) = et/2(eξ∂ξtf̂)(ξ) ∶= et/2f̂(etξ), f ∈ Slog, (4.53)

which is unitary on Slog,

∥e−2πi( −1
2πi (

1
2+ξ∂ξ))tf̂∥

Slog

= ∥f̂∥Slog
, f ∈ Slog,
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but not on Alog. Let further B̂ ∶= ξ be the generator of spatial or temporal
translation, again defined on the Fourier domain. Then, for ξ > 0, some
adequate α, β and f̂ , we have

(Â − α)f̂ = −iµ(B̂ − β)f̂

⇔ ( −1
2πi(

1
2 + ξ∂ξ) − α)f̂ = −iµ(ξ − β)f̂

⇔ ξ∂ξf̂ = (
1
2 − 2πiα + 2πµβ − 2πµx) f̂ ,

which is solved by

f̂(ξ) ∶= ξ−1/2e−2πµξξ2πµβe−2πiα. (4.54)

This function is, a priori, for well-chosen constants, thought to be defined on

Slog ∋ f ∶= { f ∈ L
2(Rn) ∣ f̂ ∈ L2(R+, dξ) }

by construction - since the operators act on this space in the sense that their
induced unitary flows act on Sσ.

Although it is possible to tweak the constant, such that f is also an admissible
wavelet, this is not the way to go for more general relations. It is more natural
- and correct - to use ιS→A, from Proposition 3.6 (Measure Mappings) to map
this waveform to the space of the admissible wavelets, which in the case of
the wavelet transform means

f̂ ↦ ι̂S→Af = (
d log
dξ )

−1/2f̂

= ξ+1/2f̂

= e−2πµξξ2πµβe−2πiα, (4.55)

which cancels the factor ξ−1/2, which is exactly (d log
dξ )

1/2. Even more is true.
The waveform (4.55),

ψ̂(ξ) = e−2πµξξ2πµβe−2πiα ∈ Alog (4.56)

is the solution to

ιS→A(Â − α)ιA→Sψ̂ = −iµιS→A(B̂ − β)ιA→Sψ̂

(
d log
dξ )

−1/2(Â − α)(d log
dξ )

1/2ψ̂ = −iµ(d log
dξ )

−1/2(B̂ − β)(d log
dξ )

1/2ψ̂

⇔ (
d log
dξ )

−1/2( −1
2πi(

1
2 + ξ∂ξ) − α)

d log
dξ

1/2
ψ̂ = −i(d log

dξ )
−1/2µ(ξ − β)d log

dξ
1/2
ψ̂

⇔ ( −1
2πiξ∂ξ − α)ψ̂ = −iµ(ξ − β)ψ̂,

100



4. Localization

which now equates the appropriate - unitarily equivalent, but nonetheless
different - generators defined on Aσ, on which they induce the appropriate
unitary flows.

Summarizing, solving

( −1
2πiξ∂ξ − α)ψ̂ = −iµ(ξ − β)ψ̂, (4.57)

leads to an admissible wavelet on Alog, ready to be used for the wavelet
transform, whereas a solution to the equation

( −1
2πi(

1
2 + ξ∂ξ) − α)f̂ = −iµ(ξ − β)f̂ , (4.58)

is not a priori in the space of admissible wavelets and therefore a final map

Slog ∋ f ↦ ιS→Af ∈ Alog

ought to be done. ◆

With the experience above at hand, we may now prove the following special case.

Corollary 4.23 (The Canonical Case). Let σ be an analytic spectral diffeomorphism,
dim(dom(σ)) = n and (L′k)k ∶= Âk + iµkB̂′k the canonical warped Ladder operators.
Then,

∑
k

∥(Âk − αk)f∥Sσ
∥(B̂′

k
− βk)f∥

Sσ

≥ n
4π ∥f̂∥

2
Sσ

(4.59)

and the simultaneous equalizer is a warped Gaussian of the form

f̂0(ξ) ∶= C ∣det(Jσ)∣
1/2
e−π∣σµ(ξ)∣2e2π⟨ µ2β−iα , σ ⟩, (4.60)

with ∣σµ(ξ)∣2 ∶= ∑k µ2
kσ

2
k(ξ).

Setting C = 2
n
4 ,µ ≡ 1 and α = β = 0 we get the normalized, simultaneous ground

state of all Ladder operators, which reads

f̂0(ξ) ∶= 2n/4 ∣det (Jσ)∣
1/2
⋅ e−π∣σ(ξ)∣

2
, ∥f∥Sσ

= 1, (4.61)

with its admissible pendant reading

ψ̂0(ξ) ∶= 2n/4e−π∣σ(ξ)∣2 , ∥ψ∥Aσ
= 1. (4.62)

◆
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4.2. Uncertainty Principles for Spectral Diffeomorphisms

Proof. The proof is surprisingly simple, but nonetheless somewhat lengthy. Since
the warped canonical Ladder operator

(L′k)k ∶= Â
k + iB̂′k,

consists of pairs of canonically conjugate operators, we have by Theorem 3.15
(Commutators of Spectral Hamiltonians) that the associated matrix of commutation
relations - which replaces the Jacobian in this context - is diagonal and in fact
the − 1

2πi -multiple of the identity. Hence, the same arguments as in Corollary 4.16
(Diagonal Jacobians), only with Bk ∶= pk replaced by the canonical B′k ∶= σk, lead to
the expression

∑
k

∥(Âk − αk)f∥Sσ
∥(B̂′

k
− βk)f∥

Sσ

≥ 1
2 ∣⟨∑

k

[ Âk , B̂′
k
] f̂ , f̂ ⟩

FSσ

∣

= n
4π ⟨ f̂ , f̂ ⟩FSσ

.

Moreover, using µ2
k to get a nicer formula, we get

f̂k(ξk) = Ce
−2πµ2

k ∫ σkdσke2π(µ2
kβk−iαk)σke

1
2 log ∣∂σk

∂pk
∣

= C ⋅ ∣∂σk

∂pk
∣
1/2
e−2π ∫ µ2

kσkdσke2π(µ2
kβk−iαk)σk

for the individual equalizers. Since ∫ σkdσk = 1
2σ

2
k, this becomes

f̂k(ξk) = C ⋅ ∣
∂σk

∂pk
∣
1/2
e−πµ

2
kσ

2
k(ξk)e2π(µ2

kβk−iαk)σk(ξk)

and taking the tensor product of all individual equalizers, again, we arrive at

f̂(ξ⃗) ∶= (⊗kf̂k)(ξk) =∏
k

f̂k(ξk)

= C∏
k

∣
∂σk

∂pk
∣
1/2
e−πµ

2
kσ

2
k(ξk)e2π(µ2

kβk−iαk)σk(ξk)

= C ∣det(Jσ)∣
1/2
e−π∑k µ

2
kσ

2
k(ξk)e2π∑k(µ2

kβk−iαk)σk(ξk)

= C ∣det(Jσ)∣
1/2
e−π∣σµ(ξ)∣2e2π⟨ µ2β−iα , σ ⟩

Setting the constants to C = 2n/4,µ = 1 and α = β = 0, we arrive at

f̂0 ∶= 2n/4 ∣det (Jσ)∣
1/2

e−π∣σ∣
2
,

and

ψ̂0(= ιS → Af̂0( = ∣det (Jσ)∣−
1/2
f̂0

= 2n/4e−π∣σ∣2 .
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Normalization can be checked easily by

∥f0∥
2
Sσ
∶= 2n/2∫

dom(σ)
∣det (Jσ)∣ e−2π∣σ(ξ)∣2dξ

= 2n/2∫
dom(σ)

e−2π∣σ(ξ)∣2dσ ∶= ∥ψ0∥Aσ

= 2n/2∫
im(σ)

e−π∣
√

2y∣22n/2 dy

= 2n/2∫
Rn
e−π∣y∣

22−n/2 dy = 1,

where we used the well-known Gaussian integral

∫
R
e−πx

2 dx = 1,

exactly n times. ∎

By abuse of language, one could say that the optimally aligned waveform
resembles the unique phase space cell - corresponding to a square-integrable function
-, which aligns along both coordinate lines. In the next section, it shall be made
clear that this does not necessarily lead to optimally concentrated phase space cells
around some chosen point of phase space but quite the opposite. There’s even
another way of looking at those waveforms, torn between two coordinate directions.

Let X be a two-dimensional symplectic subspace of phase space and the
Hamiltonians A and B be two smooth coordinate functions, defined on X. Then,
as these are coordinates, through each point in this symplectic plane goes exactly
one coordinate line - that is, a contour line - of each of the coordinate functions.
Pick an abstract point x ∈X and let (α,β) ∶= (A(x),B(x)) be its local coordinates
with respect to A and B. Then, that same abstract point becomes the origin
if we readjust the coordinates to

Ã ∶= A − α and B̃ ∶= B − β,

that is,

Ã(x) = A(x) − α = A(x) −A(x) = 0 and B̃(x) = B(x) − β = B(x) −B(x) = 0.

Squaring those Hamiltonians now gives us a means to describe the distance from
the origin - x ∈ X - in the sense of the coordinates defined by A and B, that is,

dist2
0(q, p) ∶= Ã

2(q, p) + B̃2(q, p).

The interpretation is the following. If a point lies exactly along the coordinate
line, defined by Ã(0), its (squared) distance from it is 0 and if it is not, the amount
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4.2. Uncertainty Principles for Spectral Diffeomorphisms

by which it goes astray is penalized by the squared distance, in the sense of the
coordinate A. The same holds for B and thus a “cuddly” waveform, which tries
to nestle along both coordinate lines, is also the one which concentrates the best
within this generalized parabola, which is made up from “sub-parabolas” - one
for each probably curved coordinate. The orientation of each of this sub-parabola
is “canonically orthogonal” to the coordinate line in the sense that each “gains
height” when straying from the contour line. Then, owing to the uncertainty
principle, it is impossible for a function to be concentrated to a single point and
thus it is smeared over phase space, where this phase space smearing is optimally
adapted to the (A,B)-parabola above.

The following trivial lemma and the corollary following it, show that this is
actually an equivalent way of expressing this.

Lemma 4.24 (Binomials). Let a, b ∈ R, then

a2 + b2 ≥ 2a ⋅ b, (4.63)

with equality if and only if a = b. ◆

Proof. (a − b)2 ≥ 0 ⇐⇒ a2 + b2 ≥ 2ab and (a − a)2 = (b − b)2 = 0. ∎

Corollary 4.25 (Phase Space Parabola). Let X be a two-dimensional symplectic
subspace of phase space and A and B (not necessarily canonical) coordinates on
X. Let (α,β) be the (A,B) coordinates of some point on X and Â, B̂ such that
∥(Â − α)f∥ = ∥µ(B̂ − β)f∥.

Then, the following are equivalent

(i) f is the uncertainty equalizer for Â and B̂,

(ii) f is an eigenfunction of N ∶= L∗L, corresponding to the infimum of its spectrum
(which is zero).

◆

Proof. Since L ∶= (Â − α) + iµ(B̂ − β), we get

∥Lf∥
2
= ⟨L∗Lf , f ⟩ = ⟨ ((Â − α) − iµ(B̂ − β))((Â − α) + iµ(B̂ − β))f , f ⟩ (4.64)

= ⟨ (Â − α)2f , f ⟩ + ⟨µ2(B̂ − β)2f , f ⟩ + iµ ⟨ [B̂, Â]f , f ⟩

≥ 0,

by the non-negativity of the norm. Rearranging, we have

∥(Â − α)f∥
2
+ ∥µ(B̂ − β)f∥

2
≥ iµ ⟨ [Â, B̂]f , f ⟩
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and Lemma 4.24 (Binomials) gives that

∥(Â − α)f∥
2
+ ∥µ(B̂ − β)f∥

2
≥ 2 ∥(Â − α)f∥ ∥µ(B̂ − β)f∥

with equality if and only if ∥(Â − α)f∥ = ∥µ(B̂ − β)f∥, which was a prerequisite.
Thus,

2 ∥(Â − α)f∥ ∥µ(B̂ − β)f∥ = ∥(Â − α)f∥2 + ∥µ(B̂ − β)f∥2

≥iµ ⟨ [Â, B̂]f , f ⟩ ,

and taking the absolute value, we get

∥(Â − α)f∥ ∣µ∣ ∥(B̂ − β)f∥ ≥ ∣µ∣2 ∣⟨ [Â, B̂]f , f ⟩∣ , (4.65)

which is exactly the uncertainty inequality for (Â − α) and (B̂ − β), after canceling
the factor ∣µ∣. Thus, those functions for which (4.65) holds an equality coincide
with those, for which (4.64) holds an equality.

Moreover, since the lower bound is attained, we have that it coincides with
inf(spec(L∗L)), which equals 0. ∎

In the next section, we will make the same approach as in this section, but
with all coordinates replaced by their canonical conjugate coordinates, which will
lead to another uncertainty principle.

4.2.2 Optimal Concentration

Above, the argument has been used, that eigenfunctions of the Ladder operators
try as hard to be aligned along the induced flow lines in phase space as possible
and that a minimizing waveform strays the least from these paths. Although these
waveforms are, in a sense, the best one could hope for, these do not lead to a
decomposition of phase space into cells which are as concentrated around a single
point as possible. One could even argue that they are trying to do the opposite
- stretching as thinly along the flow lines as possible.

In this section, another uncertainty principle will be used to find waveforms -
again being initially defined on Sσ by construction and thus not resembling admissible
wavelets a priori - which have the opposite property. While still being associated
with the flow lines, these waveforms minimize their spread along each of the contour
lines and thus try to linger around a point as packaged as Lord uncertainty admits.

In the aftermath of the previous section, we noted that an optimal aligning
waveform also lies within a phase space parabola, defined via the chosen coordinates
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4.2. Uncertainty Principles for Spectral Diffeomorphisms

and that the orientation of this parabola is “canonically orthogonal” to the coordinate
lines. From this, we may now argue that, instead of defining parabola which penalize
going astray from a contour line, we now make the phase space point itself the
epicenter of our arguments and give a penalty for the distance along each of the
coordinate lines. Since the coordinate lines themselves measure “distances” by
“numbering” the coordinate lines which partition the space, there is no direct way
of expressing a distance along a coordinate. The closest one could come to doing
such a thing is in defining a canonically conjugate coordinate, with respect to a
given coordinate, and “count” the number of canonically conjugate coordinate lines
crossed, while traveling along a contour line. Indeed, this is what is done in this
section and will ultimately lead to new uncertainty principles.

Let Ak and Bj be coordinates on phase space, then, by

{Ak , Ãk′ } = δ
k
k′ and {Bj , B̃

j′ } = δj
′
j , j, j′, k, k′ = 1, . . . , n (4.66)

we define sets of conjugate coordinates, where { , } is Poisson’s bracket.

Terminology 4.26 (Optimal Concentration). A function’s representation on phase
space is said to be optimally concentrated in the sense of a chosen frame of reference, if
it is as aligned to both canonically conjugate coordinate lines of each two-dimensional
subspace of conjugate variables as a specific inequality, an uncertainty principle,
admits.

As before, the rest of this section shall make this terminology more precise. ◆

Completely analogue to the modus operandi in the previous section, one may
now define the generalized parabola - by means of which distances in phase space
could be measured -, as well as the associated quantized operators, from which the
generalized Ladder operators and its eigenfunctions can be found.

So let’s stop doing the talk and do the walk.

Definition 4.27 (Conjugate Ladder). Assume that Ak and Bj are coordinates on
phase space and define their canonically conjugate coordinates Ãk′ and Ãj′ by

{Ak , Ãk′ } = δ
k
k′ and {Bj , B̃

j′ } = δj
′
j , j, j′, k, k′ = 1, . . . , n. (4.67)

Then, L̃ will be called a conjugate spectral Ladder operator, if it results in the
replacement of its constituting quantized operators by the quantized operators of
their conjugate counterparts and

Ñ ∶= L̃∗L̃ (4.68)

is the conjugate generalized Number operator. ◆
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Spectral Diffeomorphisms

We have already met all actors in this subsection, since in order to define the
uncertainty principle for spectral diffeomorphisms, all we have to do is to find
the conjugate coordinates, associated with the coordinates defined by the spectral
cotangent lift. This could not be easier, since the cotangent lift itself, being a
symplectomorphism, pairs conjugate variables.

Lemma 4.28 (Conjugate Variables for Spectral Warps). Let Σ be the spectral
cotangent lift

Σ(q, p) ∶= (J−T (p)q, σ(p)) (4.69)

and set, as usual,

Ak(q, p) ∶= (J−T (p)q)k, k = 1, . . . , n, and Bj(q, p) ∶= pj, j = 1, . . . , n. (4.70)

Then, these coordinates have the conjugate canonical counterparts

Ãk(q, p) ∶= σk(p), k = 1, . . . , n, and B̃j ∶= qj, j = 1, . . . , n. (4.71)

◆

Proof. Since the cotangent lift is a symplectomorphism, it is clear that

Ãk(q, p) ∶= σk(p)

is the canonically conjugate coordinate to Ak. B̃j ∶= qj follows since (qj, pk) are the
standard canonically coordinates. ∎

These conjugate variables can themselves be regarded as Hamiltonians on phase
space and, in complete analogy to what has been done before, quantized. This,
then, necessarily leads to commutator relations, controlling the incompatibility
of simultaneous observation.

Lemma 4.29 (Canonically Conjugate spectral Hamiltonians). Let σ, Σ and

Ak(q, p) ∶= (J−T (p)q)k, k = 1, . . . , n, (4.72)

and

Bj(q, p) ∶= pj, j = 1, . . . , n, (4.73)

107



4.2. Uncertainty Principles for Spectral Diffeomorphisms

as well as

Ãk(q, p) ∶= σk(p), k = 1, . . . , n, (4.74)

and

B̃j ∶= qj, j = 1, . . . , n (4.75)

as before. Then

̂̃Ak(q, p) ∶= σk(p), k = 1, . . . , n, (4.76)

and

̂̃Bj ∶= − 1
2πi∂pj , j = 1, . . . , n, (4.77)

are the quantized conjugate Hamiltonians and

(i) [ ̂̃Ak , ̂̃Aj ] = 0, j, k = 1, . . . , n,

(ii) [ ̂̃Bk , ̂̃Bj ] = 0, j, k = 1, . . . , n,

(iii) [ ̂̃Ak , ̂̃Bj ] = − 1
2πi(Jσ)

j
k, j, k = 1, . . . , n,

are their commutation relations. ◆

Proof. Since the σk are only dependent on p, from Corollary 2.23 (Quantization) it
follows that these quantize to multiplication operator on the Fourier domain and
thus their commutators vanish, which proves (i). The correspondence qj ↦ − 1

2πi∂pj

has already turned up multiple times and since partial derivatives commute, their
commutators vanish also and thus (ii) holds true.

To see (iii), note that

[− 1
2πi∂pj , σk] f = −

1
2πi (∂pj(σkf) − σk∂pjf)

= − 1
2πi (

∂σk
∂pj

f) = − 1
2πi(Jσ)

j
kf,

holds, whenever f ∈ dom(σ) ∩ dom(∂pj). ∎

With this at hand, we are now able to define a new uncertainty principle for
spectral diffeomorphisms, which will be the main theorem for this section.
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Theorem 4.30 (Uncertainty Principle of Optimal Concentration). Let σ be a spec-
tral diffeomorphism and denote with ̂̃Aj and ̂̃Bk its quantized conjugate Hamiltonians.
Let furthermore f ∈ Sσ and αk, βj ∈ R, for all j, k = 1, . . . , n. Then

∥(
̂̃Ak − αk)f∥Sσ

∥(
̂̃Bj − βj)f∥

Sσ

≥ 1
4π ∣⟨ (Jσ)

j
kf̂ , f̂ ⟩FSσ

∣ , j, k = 1, . . . , n. (4.78)

Moreover, the waveform f0 ∈ Sσ, given by

f̂0(ξ) = Ce
−2πµ ∫ σk dxj

e2πx(µαk−iβj), (4.79)

equalizes (4.78), for some µ ∈ R+. ◆

Proof. Use Theorem 4.4 (Uncertainty Principle for Self-Adjoint Operators) and
Lemma 4.29 (Canonically Conjugate spectral Hamiltonians) to get the expression
for the uncertainty principle. For the equalizing waveform, find that Theorem 4.4
(Uncertainty Principle for Self-Adjoint Operators) gives us that this holds true if
and only if there exists a constant µ ∈ R, such that

(
̂̃Bj − βj)f = −iµ( ̂̃Ak − αk)f.

Using Lemma 4.29 (Canonically Conjugate spectral Hamiltonians) again, we get

( −1
2πi∂pj − βj)f = −iµ(σk − αk)f,

which is solved by

f̂0 ∶= Ce
−2πµ ∫ σk dxj

e2πx(µαk−iβj), (4.80)

for some C. ∎

From the last theorem it trivially follows that the same arguments as in Corol-
lary 4.25 (Phase Space Parabola) apply, which gives the following short corollary.

Corollary 4.31 (Conjugate Phase Space Parabola). Let everything as in Corol-
lary 4.25 (Phase Space Parabola), with the coordinates replaced by their canonically
conjugate ones, ̂̃A and ̂̃B. Then, the following are equivalent

(i) f is the uncertainty equalizer for ̂̃A and ̂̃B,

(ii) f is the eigenfunction of the conjugate number operator Ñ ∶= L̃∗L̃, with the
lowest spectral value 0. ◆

Proof. The proof goes exactly as in Corollary 4.25 (Phase Space Parabola), with
each operator replaced by its canonically conjugate sidekick. ∎
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As in the case of the “classical” uncertainty principle, one cannot expect that
for all possible spectral diffeomorphisms there exists a function which equalizes
all of the above inequalities simultaneously.

There is, however, a special case for which all works well - namely, again, the
lovely case of a diagonal Jacobian.

Corollary 4.32 (Diagonal Jacobians). Let everything as in Theorem 4.30 (Un-
certainty Principle of Optimal Concentration). Let moreover the Jacobian be a
diagonal matrix. Then

∑
k

∥(
̂̃Ak − αk)f∥Sσ

∥(
̂̃Bk − βk)f∥

Sσ

≥ 1
4π ∣⟨div(σ)f̂ , f̂ ⟩FSσ

∣ . (4.81)

Moreover, if fk denote the equalizing waveforms for each of the uncertainty
principles associated with the diagonal entries of the Jacobian, we have that

Sσ ∋ f0 ∶= ∏
k

fk

is the equalizer of (4.81) and has, expressed on FSσ, the beautiful form

f̂0(ξ) ∶= Ce
−2π∑k µk ∫ σk(ωk) dωke2π⟨ ξ , µα−iβ ⟩

= Ce−2π ∫c⟨ σ⃗µ , d⃗ω ⟩e2π⟨ ξ , µα−iβ ⟩, (4.82)

where ∫c ⟨ σ⃗σ , d⃗ω ⟩ denotes a line integral along some path, c, starting from a fixed
point and ending at ξ.
As before, to f0 corresponds the admissible window

ψ̂0(ξ) ∶= C ∣det(Jσ)∣−
1/2
⋅ e−2π ∫c⟨ σ⃗µ , d⃗ω ⟩e2π⟨ ξ , µα−iβ ⟩, (4.83)

ready to be used in a coherent state map. ◆

Proof. Everything, except for the form of the equalizer, goes exactly as in Corol-
lary 4.16 (Diagonal Jacobians), with σ replaced by σ−1 and all Â and B̂ replaced
by their canonically conjugate counterparts ̂̃A and ̂̃B, respectively.

Thus, quod esset demonstrandum is (4.82) and (4.83). To see these, note that

f̂0(ξ) ∶= Ce
−2π∑k ∫ (µkσ(ωk)k−µkαk+iβk) dωk

= Ce−2π ∫c⟨ σ⃗µ , d⃗ω ⟩e2π⟨ ξ , µα−iβ ⟩

follows from taking the product of all the f̂k and writing it in a form, involving
a path integral, ending at ξ. It is defined on Sσ since the operators involved are
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“conjugate canonical quantizations” of coordinates which correspond to operators,
inducing unitary flows on Sσ.
And, finally, by applying the map ιS → A, we arrive at

ψ̂0(ξ) ∶= ιS → Af̂0(ξ) = C ∣det(Jσ)∣−
1/2
⋅ e−2π ∫c⟨ σ⃗µ , d⃗ω ⟩e2π⟨ ξ , µα−iβ ⟩, (4.84)

which finishes the claim. ∎

Having defined the special case of diagonal Jacobians, one might think - analogous
to the principle for waveforms optimally aligned along various curvilinear coordinates
simultaneously - that this special case can be further generalized to non-diagonal
cases, given that the weighted Jacobian is symmetric.

This time, the derivations are along the rectangular grid on Sσ, that is, on the
standard Fourier domain and a pullback of the standard vector field µ⃗y⃗ from the
warped domain to the rectangular grid, leads to an equation of the form

−1
2πi∇⃗f̂ = −i(µ⃗σ − µ⃗α + iβ⃗)f̂ , (4.85)

suggested to be the equation for an n-dimensional equalizing waveform on Sσ for
symmetric weighted Jacobians, having a solution if the associated one-form is exact,
respectively closed and its domain simply-connected.

Theorem 4.33 (Optimal Concentration for Weighted Jacobians). Let everything as
in Corollary 4.32 (Diagonal Jacobians), except the restriction to a diagonal Jacobian.
Let dom(σ) be simply-connected, the weighted Jacobian, Jσµ, be symmetric and let
furthermore f ∈ Sσ. Then,

∥( −1
2πi∇− β⃗)f̂∥ ∥(σ⃗ − α⃗)f̂∥ ≥

1
4π ∣⟨div (σ)f̂ , f̂ ⟩∣ (4.86)

is the generalized uncertainty principle for symmetric Jacobians and

f̂(ξ) ∶= C(ξ0)e
−2π ∫c⟨ σ⃗µ , d⃗ξ ⟩e2π⟨ ξ , µα−iβ ⟩, (4.87)

for some path, c starting at ξ0 and ending at ξ, is the equalizing waveform on Sσ
and

ψ̂(ξ) ∶= (̂ιS → Af)(ξ) = C(ξ0) ∣det(Jσ)∣−
1/2
e−2π ∫c⟨ σ⃗µ , d⃗ξ ⟩e2π⟨ ξ , µα−iβ ⟩, (4.88)

is its admissible counterpart. ◆
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Proof. The proof goes along the same lines as above and therefore, a shortcut shall
suffice. We have

∥( −1
2πi∇− β⃗)f̂∥ ∥(σ⃗ − α⃗)f̂∥ ≥

1
2π ∣∑

k

⟨ (∂ξk
− βk)f , (σk − αk)f ⟩∣

≥ 1
4π ∣∑

k

⟨
∂σk
∂ξk

f , f ⟩∣

≥ 1
4π ∣⟨div(σ)f , f ⟩∣

and this inequality is equalized if and only if

−1
2πi∇⃗f̂ = −i(µ⃗σ − µ⃗α + iβ⃗)f̂ ,

which leads, with eg =∶ f̂ , to

∇g = −2π(µ⃗σ − µ⃗α + iβ⃗).

This equation is solvable if and only if the domain is simply-connected and if it
fulfills the integrability condition

−2π∂ξn(µjσj) = −2π∂ξj
(µnσn),

that is, if the Jacobian of the weighted diffeomorphism is symmetric. Since the
space is assumed to be simply-connected and Jσµ to be symmetric, it is, therefore,
solved by

f̂(ξ) ∶= C(ξ0)e
−2π ∫c⟨ σ⃗µ , d⃗ξ ⟩e2π⟨ ξ , µα−iβ ⟩, (4.89)

with c a path from ξ0 to ξ.
The statement about its admissible counterpart is trivial. ∎

Before moving on, it makes sense to cherish the resemblance of the two com-
plementing uncertainty principles and their equalizers above. With α = β = 0, in
the case of waveforms optimally aligned along coordinate lines, the uncertainty
inequality reads

∥ −1
2πiJ

−T
σ ∇ψ̂∥ ∥ξ⃗ψ̂∥ ≥

1
4π ∣⟨div (σ−1)ψ̂ , ψ̂ ⟩∣ (4.90)

whereas

∥ −1
2πi∇f̂∥ ∥σ⃗f̂∥ ≥

1
4π ∣⟨div (σ)f̂ , f̂ ⟩∣ (4.91)

for the principle of optimal concentration. For the canonical case, both inequalities
coincide, since σ = σ−1 = 1 and Jσ = J−1

σ = In and div(σ) = div(σ−1) = n .
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4. Localization

Assuming that µ can be chosen such that the weighted diffeomorphism has a
symmetric Jacobian, the equalizing waveforms in the space of signals, respectively
in the space of admissible waveforms, of the first principle read

f̂(ξ) ∶= ∣detJσ ∣
1/2
C(ξ0)e

−2π ∫c⟨ ξ⃗ , dσµ ⟩ and ψ̂(ξ) ∶= C(ξ0)e
−2π ∫c⟨ ξ⃗ , dσµ ⟩, (4.92)

whereas

f̂(ξ) ∶= C(ξ0)e
−2π ∫c⟨ σ⃗µ , d⃗ξ ⟩ and ψ̂(ξ) ∶= ∣detJσ ∣−

1/2
C(ξ0)e

−2π ∫c⟨ σ⃗µ , d⃗ξ ⟩ (4.93)

for the second. In the beautiful case of canonically conjugate variables, both princi-
ples coincide and the minimizing waveform is the σ-warped Gaussian. Captivating.

4.3 A Principle for the Affine Group

Another concept of localization arises from a Lie group structure [6, 65] as follows.
To comply with standard terminology, the notation is slightly altered and greek
letters are used as indices.

The Lie algebra of a Lie group gives a coordinate system on the connected
component of the identity via left- or right-invariant vector fields. Thus, each point
can be parallel transported along the resulting flow lines - corresponding to the
one-parameter subgroups of a Lie group -, by virtue of which the differentiable
manifold of a Lie group has a natural coordinate system. Then, one may pass to
the tangent space of the identity, TeG - equivalent to its Lie algebra -, to describe
the manifold, at least in some open neighborhood of the identity, on which the
exponential map is a homeomorphism. Since the tangent space at the identity
component is a vector space, one may equip it with an inner product and by means
of left (or right) action of the group, translate this inner product to all points
reachable from the identity, to define an inner product for each point of the whole
connected component of the identity. That is,

gp(v,w) ∶= ⟨dL−1
p v , dL−1

p w ⟩

= ⟨ (dL−1
p )
∗dL−1

p v , w ⟩

= ⟨M(p)v , w ⟩ , p ∈ G,

where v and w are vector fields on G, dLp is the differential of translation and
M(p) ∶= dL∗

p−1dLp−1 is a matrix-valued function (a (1,1)-tensor field), which for
some fixed inner product, ⟨ , ⟩, on TeG completely characterizes the metric. This
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4.3. A Principle for the Affine Group

metric now defines a right- (or left)-invariant Riemannian structure on the manifold,
often written in a form of the line element, akin to

(ds)2 ∶= ∑
µ,ν

gµ,ν dxµ dxν , (4.94)

by which one may measure distances of points along the paths of the associated
flows. That is,

d(b;a) ∶= ∫
c

√

∑
µ,ν

gµ,ν dxµ dxν = ∫
1

0

√

gc(t)(ċ(t), ċ(t)) dt, (4.95)

is the distance from a to b, where c is the “shortest path” between a =∶ c(0) and
b =∶ c(1) in the sense of this integral. These shortest paths are known as geodesics
and are a means to generalize the concept of a straight line to curved spaces
such as Lie group manifolds. Solving the associated Euler-Lagrange equations,
Definition A.79 (Euler-Lagrange Equations), for the integral

E ∶= ∫
1

0
gc(t)(ċ(t), ċ(t)) dt, (4.96)

which is the action, related to the distance integral above, gives the geodesic equa-
tion(s)

d2cλ

dt2 +∑µ,ν
Γλµν

dcµ
dt

dcν
dt = 0 , λ = 1, . . . , n, (4.97)

for a curve (cλ)λ, with the Christoffel symbols Γλµν , Definition A.80 (Christoffel
symbols).

Returning to the Affine group example, we find that the matrix M above,
by which we define the metric, is

M(x, y) ∶= dL∗(x,y)−1dL(x,y)−1

= (

1
y

1
y

)

∗

(

1
y

1
y

)

= (

1
y2

1
y2
) ,

which induces the metric

(ds)2 ∶= dx2 + dy2

y2 . (4.98)

But this is the hyperbolic metric of the Poincaré half-plane, H, which gives us the
whole power of hyperbolic geometry at hand to proceed even further, cf. e.g. [4, 77].
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(0,1) ∈ H and hyperbolic circles.

Figure 4.5: The Hyperbolic Plane.

The arising distance function of the Poincaré half-plane, induced from this metric,
is

d(x, y;x′, y′) ∶= cosh−1
(1 + (x − x

′)2 + (y − y′)2

2yy′ ) , (x, y), (x′, y′) ∈ H, (4.99)

and gives a method by which we may decide whether two points have the same
distance from another point and thus describe generalized circles on the manifold
to define “geodesically circular” symmetric functions on the manifold.

It is a well-known fact that the geodesics of the Poincaré half-plane are given by
half-circles, orthogonal to the x-axis, as well as straight lines, parallel to the
y-axis, that is, either

x = const or (x − x0)
2 + y2 = r2 , x, x0 ∈ R, y, r > 0. (4.100)

Starting from a fixed point and flowing along each geodesic, we arrive at the
set of points equidistant from the starting point, which constitutes a generalized
circle for this kind of geometry.

Interestingly, although the hyperbolic metric is different from the Euclidean
one, the set of points equidistant to another point on the half-plane is again a
circle, just like in ordinary Euclidean spaces. Its center, however, is different, as the
infinitesimal line segments get stretched, respectively squeezed, depending on the
y-coordinate. Indeed, flowing from the point (0,1) ∈ H towards the point (0, ϵ) ∈ H
takes the same “amount of time” as flowing from (0,1) ∈ H to (0,1/ϵ) ∈ H, and
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4.3. A Principle for the Affine Group

in fact an “infinite amount of time” to reach a point like (0,0) ∈ H on the x-axis
- it is actually not even part of the set.

Figure 4.5a plots some hyperbolic geodesics and Figure 4.5b shows two hyperbolic
circles around the point (0, 1) ∈ H, along with isomorphic geodesics (of equal length)
through the point (0,1) ∈ H.

Optimal localization in the sense of this - in fact of any - geometry suggests that
a well localized function should be geodesically symmetric and therefore constant
along these generalized circles. That is, for a function which is centered at (0, 1) ∈ H,
its values on points, equidistant from this center, should be the same

fopt(x, y) ∶= f̃(d(x, y; 0,1)), (x, y) ∈ H,

and thus it should be a function of geodesic distance to the point (0,1) ∈ H only.
That is, the function should only depend on

d(x, y; 0,1) ∶= cosh−1
(1 + x

2 + (y − 1)2
2y )

= cosh−1
(1 + x2

2y +
1
2y − 1 + 1

2y))

= cosh−1
(1

2(
x2

y + y +
1
y)) , (4.101)

for (x, y) ∈ H. Thus, an optimally localized window function - in the sense of the
wavelet transform - should have a (hyperbolical) circular symmetric localization
on the group manifold. Although this does not fix the window uniquely, it is a
hint as to what one should expect.

A first step might be the analogy to Euclidean spaces, in which the geodesic
distance from the origin, or, to be more precise, the geodesic flow, is utilized in
the definition of the heat kernel

x⃗ ∈ Rn ↦ e−
∣x⃗∣2
2t .

That is, starting at time t = 0 from a single point, c ∈ H, interpreted as a heat source,
the heat spreads symmetrically along the geodesics and the heat distribution, at
time t > 0, is thus akin to the Euclidean heat kernel.

In fact, the identification of the heat kernel for a given geometry is an interesting
topic on its own and whole books have been written on it [6].

Adopting Claude Shannon’s Ansatz [75], that a nice (centered) function should
link entropy with variance, that is,

H(∣f ∣
2
) ∶= −∫ log ∣f(x)∣2 ∣f(x)∣2 dx !

= λ∫ ∣x∣
2
∣f(x)∣

2 dx, λ ∈ R+,
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4. Localization

with the well-known family of Gaussian solutions, e−c∣x∣2 , c ∈ R+, for which

H(e−c∣x∣
2
) ∶= −∫ log e−c∣x∣2 e−c∣x∣2 dx

= c∫ ∣x∣
2
e−c∣x∣

2 dx.

holds, suggests that a first shot at a minimizing waveform may be

(x, y) ↦ e−c⋅d(x,y;0,1)2 , (x, y) ∈ H,

as it resembles the Euclidean nexus for the hyperbolic case

H(e−c⋅d(x,y;0,1)2) ∶= −∫ log e−c⋅d(x,y;0,1)2 e−c⋅d(x,y;0,1)2 dx

= c∫ d(x, y; 0,1)2 e−c⋅d(x,y;0,1)2 dx,

with ∫ d(x, y; 0,1)2 e−c⋅d(x,y;0,1)2 dx being an analogue to the Euclidean variance.
In fact, the heat kernel for the hyperbolic geometries has been identified, see,
e.g., [38], with

k(r, t) ∶=

√
2

(4πt)3/2 e
−t/4
∫

∞

r

se−s
2/(4t)

√
cosh s − cosh r

ds, (4.102)

being the one for n = 2. Although the resemblance to the Euclidean case is tempting,
it is not clear (i) how to show that this function is an optimally localized reproducing
kernel for the group and (ii) how to find a window function whose image on the
group is (akin to) the kernel, as suggested above.

We can, however, take recourse to the fact that an optimally localized function
should be geodesically symmetric and as compressed around its center as possible.
Thus, there is a chance that the optimal window is an eigenfunction of the quantized
operator, associated with the phase space symbol of the distance function, pulled
back to phase space under the map

(b, a) ↦ (b,1/a) , db da ↦ db d(1/a) =∶ db da
a2 (4.103)

which identifies phase space with the affine group manifold [1, Sec. 12.4].
Recalling that a Hamiltonian function, as well as its quantized Hamiltonian

operator, induces a flow along its contour lines, the Hamiltonian

s(x, y) ∶= 2 coshd(x,1/y) ∶= x2y + y + 1/y, (x, y) ∈ H, (4.104)

should induce a flow along the pullback of the hyperbolic circles, equidistantly
from the point (0,1) ∈ H and the eigenfunctions of the quantized Hamiltonian are
constant along these curves - varying only by a phase-factor along the curves.
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4.3. A Principle for the Affine Group

Remark 4.34 (Symmetric Functions). Above, we rather used 2 coshd to get a
nice symbol. In the end, a factor of 2 should not do any harm and cosh is strictly
increasing on the positive half-line, which is the image of the distance function,
since distances are necessarily non-negative. The only thing which changes in our
construction, are the eigenvalues which are not relevant for our construction so long
as we make sure, that the symmetric function we choose - our distance function -,
has smaller values near the center and increases with distance from the origin. This
restriction is needed in order to make sure that the eigenfunction, corresponding to
the lowest eigenvalue, is localized around the central point (0,1) ∈ H. ◆

Using the symmetric quantization scheme from Definition 2.22 (Symmetric
Correspondence Rule for Polynomials), leads to

x2y + y + 1/y z→ 1
3((

−1
2πi∂y)

2y + ( −1
2πi∂y)y(

−1
2πi∂y) + y(

−1
2πi∂y)

2) + y + 1
y

= 1
3⋅(4π2)(−3∂y − 3y∂2

y) + y +
1
y

= − 1
(4π2)∂y −

1
⋅(4π2)y∂

2
y + y +

1
y =∶ T̂ , (4.105)

which is a self-adjoint operator L2(R̂, dx) =∶ FSlog, diagonalizable by a family of
functions, geodesically symmetric in the group manifold.

The operator T̂ is an interesting one since this is not the first time this operator
turns up. As a matter of fact, the path of diagonalization has already been taken
by Daubechies and Paul in [14], although by another construction.

In that paper, the construction relied on the induced flow of e2πiT t not on phase
space itself, but on the homeomorphic group manifold, that is, the Poincaré half-
plane.

We will take our own approach to this and not rely on the results in [14],
so let’s move on.

On first sight, it is not obvious how to diagonalize the operator T̂ , but its
construction suggests that there is a chance that it commutes with the affine
Number operator, N ∶= L∗L - and thus their eigenfunctions coincide -, since both
rely on specific coordinates on the manifold. In the case of the abstract Number
operator, those coordinates are given by the contour lines of Hamiltonians which
induce the flow along exactly those paths, which the one-parameter subgroups
of the affine group induce. This is also a good chance to explicitly construct a
spectral warped Number operator, as defined above.
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Example 4.1 (Affine Number Operator). Let A ∶= q ⋅ p and B ∶= p be the affine
coordinates and α,β ∈ C some yet undetermined numbers. Then

Â ∶= q̂p = (q̂p̂ + p̂q̂)/2 = − 1
2πi(

1
2 + p∂p), (4.106)

B̂ ∶= p̂ ∶= p (4.107)

and the shifted spectral Ladder operator becomes

Lαβ ∶= (Â + iB̂) − (α + iβ) = (−
1

2πi(
1
2 + p∂p) + ip) − (α + iβ),

where all operators are represented on the Fourier domain.
The associated number operator is

Nαβ ∶= −
1

4π2p
2∂2
p − (

1
2π2 −

α
iπ)p∂p − (

1
2π + 2β)p + p2 + (α2 + β2 − 1

16π2 +
α

2πi)

∶= p(− 1
4π2p∂

2
p − (

1
2π2 −

α
iπ)∂p − (

1
2π + 2β) + p + α2+β2− 1

16π2 +
α

2πi
p ) , (4.108)

which looks like a mess. We can, however, compare it with (4.105) to find that
if we set the parameters to α = i

4π - note the imaginary unit i - and β = ±1, and
substitute x = q and y = p, we have

Nαβ ∶= y (−
1

⋅(4π2)∂y −
1

⋅(4π2)y∂
2
y + y +

1
y + (

1
2π ± 2))

∶= y (T̂ + ( 1
2π ± 2)) . (4.109)

Since the Number operator is a positive operator, we have that

Nαβ f̂ = y (T̂ + (
1

2π ± 2)) f̂ ≥ 0. (4.110)

After getting rid of the factor y - which is legitimate since y > 0 and actually exactly
i[Â, B̂] - and rearranging, we arrive at

T̂ f̂ ≥ (∓2 − 1
2π)f̂ , (4.111)

which becomes an eigenequation for T̂ , if we enforce equality and makes sense if we
choose +2 on the right-hand side, for else the spectrum were negative.

Before moving on, the mysterious imaginary unit in α should be discussed.
Inserting α, we get

̂̃A = Â − α = − 1
2πi(

1
2 + p∂p) −

i
4π

= − 1
2πi(

1
2 + p∂p) −

−1/2
2πi

= − 1
2πi(p∂p), (4.112)
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which is the generator of dilation on Alog!. Therefore, the function f , if it exists,
will actually be a wavelet, defined on Alog. But we know that for a function for
which

Lαβψ = ((A − α) + i(B − β))ψ = 0, ψ ∈ Alog,

it necessarily also holds that

Nαβψ = L
∗
αβLαβψ = 0, ψ ∈ Alog.

We have therefore recovered the situation of Theorem 4.21 (Optimal Alignment
for Weighted Jacobians) and have

(A − α)f = −i(B − β)f

⇔ − 1
2πi(p∂p)ψ̂ = −i(p − 1)ψ̂
⇔ p∂pψ̂ = −2π(p − 1)ψ̂
⇔ ∂pψ̂ = (

2π
p − 2π)ψ̂, (4.113)

with solution

ψ̂(p) ∶= C ⋅ p2πe−2πp. (4.114)

This is a specific choice for the (admissible!) general solution of the uncertainty
principle for the affine group, as found in (4.56), by setting the parameters (of
(4.56)) to µβ = 1 and α = 1.

Returning to (4.111), we find that the function ψ̂ is an eigenfunction of T̂ in
the sense that it equalizes (4.111),

T̂ ψ̂ = λψ̂,

and has eigenvalue λ ∶= 2 − 1
2π ◆

This points to a bigger picture. Namely, that the geodesically circular symmetric
functions on a Lie group and especially the “ground” or “vacuum” state are specific
choices of the solutions to the standard uncertainty principle of the infinitesimal
generators of the Lie group and thus are always optimally concentrated in the sense
of geodesic distances of the given geometry of the Lie group manifold, as defined
by the associated Riemannian metric. This connection seems even more likely for
Lie groups, for which Kirillov’s orbit method works [48].

The author, however, has not yet been able to locate a proof for it, nor prove it
himself - be it due to a lack of time or a lack of competence -, so this is a conjecture.
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Conjecture 4.35 (Geodesically Circular Symmetric Functions). Let G ∶= Rn ⋊

H be a well-behaved semi-direct product Lie group, with dimH = n and (π,Hπ)
denoting some unitary and irreducible representation, for which Ak and Bk are the
corresponding infinitesimal generators on H of H and Rn, respectively.

Then, for the minimizing waveforms for which

(Ak − αk)fαβ = −i(Bk − βk)fαβ, f ∈ dom(Ak) ∩ dom(Bk),

holds, there exists some choices αk, βk ∈ C, such that the fαβ also correspond to the
optimal geodesically circular symmetric functions on the Lie group manifold, in the
sense of geodesic circles equidistant from the neutral element of G. ◆

So far, the emphasize has been on the localization properties of functions in a
way which reflects only whether a function has some sort of information or “energy”
contained within a neighborhood of a phase space point, where the details of that
neighborhood are determined by the “window”, respectively its associated rank-one
projector. This naturally led to the localization properties of that window and its
projector, respectively the uncertainty principles above, and ultimately gave rise
to phase space localization operators, a.k.a. frame multiplier.
The next section gives a slight generalization to rank-N operators.

4.4 On Phase Space Localization of Rank-N Frames

As a matter of principle, no matter the size of the associated phase space subset, the
amount of information gained per rank-one projector is necessarily a single quantum
of information. Thus, it is not far to seek a decomposition of functions with respect
to arbitrary phase space tilings, with each tile being associated with one or more
(complex) numbers, completely characterizing a function within this tile.

A somewhat idealized situation would be the following. The phase space X
is tessellated into countable number of arbitrarily small tiles τi ⊂ X, such that
⋃i τi =X. To each τi we assign a “projection operator”, Pi, defined on a reservoir
of interesting functions R, such that their sum resolute the identity on R, that is,

∑
i

Pi = 1R.

Although this seems like a good start, it is of no use without the possibility to
characterize a function’s content within these individual tiles of the phase space,
which is not apparent from the map

f ↦ Pif,
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Figure 4.6: Multiple Wigner distributions of warped Gaussians in phase space, adapted
to the coordinate system associated with σ(x) = log2(x).

as the image is again a function, not a number. Thus, either a composition with
a (not necessarily linear) functional

Pif ↦ F (Pif) ∈ C

is needed, which is clearly not unique, or a further decomposition of the operator
Pi is needed. The latter boils down to the decomposition of the projectors into a
sum of finite-rank projectors - ideally of rank one -, by writing

Pi ∶= ∑
j∈Ji

∣ϕji ⟩⟨ϕ
j
i ∣,

where convergence is, again, assumed with respect to the weak operator topology,
as the ultimate interest is in numbers. Now, the action of Pi decomposes into
an analysis and a synthesis step, that is,

f ↦ ∑
j∈Ji

ϕji ⟨ϕ
j
i , f ⟩ ,

which suggests that, for fixed i - which ultimately labels a phase space tile - the vector

j ↦ ⟨ϕji , f ⟩ ,

characterizes f within the tile τi ⊂ X. In a perfect world, this vector would
moreover have finite rank and thus arbitrary phase space decompositions were
possible and computable in finite time. The uncertainty principle, once again being

122



4. Localization

∑
i Wf i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-8 -6 -4 -2 Q 2 4 6 8
0

|f |2

1

0 |f̂ |2 1

-8

-6

-4

-2

P

2

4

6

8

(a)

∑
i Wf i

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-8 -6 -4 -2 Q 2 4 6 8
0

|f |2

1

0 |f̂ |2 1

-8

-6

-4

-2

P

2

4

6

8

(b)

Figure 4.7: Multiple Wigner distributions of warped Gaussians in phase space, adapted
to the coordinate system associated with σ(x) = 1.25 ⋅ x + cos(x).

the spoilsport, however, makes things more complicated - and more interesting.
For the sum of the projectors above to be ideally localized in phase space up
to arbitrary precision, an infinite number of terms is needed. Since an infinite
number of computations for each of the phase space tiles is absurd, the restriction
to projection operators of finite rank is the way to go, which naturally lead to
the definitions of rank-N quantum frames above.

The following lemma characterizes the Wigner distribution of rank-N operators.

Lemma 4.36 (Phase Space Distributions of Rank-N Operators). Let M be a
rank-N operator of the form

M ∶= ∑
i

λi∣φ
i ⟩⟨φi ∣. (4.115)

Then, the Weyl symbol distribution of M is given by

W (M) ∶= ∑
i

λiWφi . (4.116)

In particular, for a rank-N projection operator its Wigner distribution is the sum
of the Wigner distributions of its rank-one projectors. ◆

Proof. As the Wigner distribution of an operator is its Weyl symbol, which is
representable via a trace, the claim follows from the linearity of the trace

tr(T(x,ξ)∑
i

λi∣φ
i ⟩⟨φi ∣ ) = ∑

i

λi tr (T(x,ξ)∣φi ⟩⟨φi ∣ ) = ∑
i

λiWφi ,
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where the interchange of trace and sum is permitted whenever the sum converges,
which is trivially the case for finite sums. ∎

The addressed fact that there is a gauge freedom in each fiber of X - the
N -dimensional vector space over each point of the base manifold -, suggests that
the combined localization properties of the individual rank-ones, which make up
the rank-N projectors, should be gauge invariant, too. Indeed.

Lemma 4.37 (Gauge Equivalence of Localization). Let F be a frame of rank N
and F (x) the rank-N projectors for each x ∈X. Then, the localization properties of
F (x) are well-defined, that is, the phase space cell associated with F (x) is gauge
invariant. ◆

Proof. Since our concept of localization hinges on quadratic phase space represen-
tations and, by Lemma 4.36 (Phase Space Distributions of Rank-N Operators),
the phase space distribution of a rank-N operator is the sum of its N rank-one
distributions, it suffices to show that for each U(x) ∈ U(N), the sum of the
distributions is invariant. But, since, for each x ∈X, the operator U(x) commutes
with T(x′,ξ′), we necessarily have

tr(T(x′,ξ′)U(x)∑
i

∣φix ⟩⟨φ
i
x ∣U(x)

∗ ) = tr(U(x)T(x′,ξ′)∑
i

∣φix ⟩⟨φ
i
x ∣U(x)

∗ )

= tr(T(x′,ξ′)∑
i

∣φix ⟩⟨φ
i
x ∣ )

= ∑
i

Wφi ,

by the invariance of the trace under unitary conjugation. ∎

In the previous chapter, it was noted that with each spectral diffeomorphism
comes along a pair of spectral quantum frames, by means of which multipliers
may be introduced, which localize or weight different coefficients. Since to these
coefficients correspond a certain phase space cell, a multiplier can be seen as a
means to change the importance - to weight - each quantum of information of
phase space of a given signal. We now know that if with each point in phase
space is associated an operator of higher rank, its phase space picture is given by
the sum of its constituting rank-ones. Thus, using optimally localized functions
associated with a coordinate system in phase space leads to localized phase space
cells, containing various quanta of information.

In Figure 4.6, Figure 4.7 and Figure 4.8, multiple Wigner distributions of
“warped Gaussians” - for two spectral diffeomorphisms, defined in the next chapter
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Figure 4.8: Multiple Wigner distributions of warped Gaussians in phase space, adapted
to the coordinate system associated with σ(x) = 2 ⋅ x + sin(x).

-, along with coordinate lines are depicted. These show that the associated phase
space localization can be made to be aligned along the coordinates. In this regard,
also the sum of the projectors of the first 32 Hermite functions - including the “0th

Hermite function”, a.k.a. the Gaussian -, can be used as a “rank-33 quantum probe”
associated with the rectangular coordinate grid in phase space. These assign to
each point in phase space a circular phase space cell, as depicted in Figure 4.2b,
containing 33 quanta of information.
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Hoper Edei Deixai - Quod Erat Demonstrandum ∎

— Euclid [41]

5
Application

HITHERTO, the EMPHASIS has been on the development of the ab-
stract theory of spectral diffeomorphisms, its associated frames and
connected localization principles in phase space.

Since theory without practice is meaningless, this scriptum is yet missing a significant
ingredient - it is time for concretization.

The theory of spectral diffeomorphisms and its associated symplectomorphisms
encompasses a great number of linear signal transforms, omnipresent in the literature
of signal analysis. In this chapter, various examples of spectral diffeomorphisms,
along with their cotangent lifts, will be elaborated and the associated transforms
will be identified.

But, in order to do so, a quick refresh on dual orbits, arising from locally
compact semi-direct product groups is needed, if only to fix some notation. Confer,
e.g., [1, 31, 34] for virtuous treatments of the theory of locally compact groups
and further material.

5.1 Dual Orbits of Semi-Direct Product Groups

We start with a proposition, summarizing most of the obvious facts.

Proposition 5.1 (Semi-Direct Product Group). Let G ∶= Rn ⋊H be a semi-direct
product, with Rn denoting the abelian Euclidean group and (H,dν) some connected
abelian Lie group, with dim(H) = n and Haar measure dν. Then
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5.1. Dual Orbits of Semi-Direct Product Groups

(i) the multiplication and inversion laws are given by

(b, a)(x,h) = (a.x + b, ah), (x,h), (b, a) ∈ Rn ×H, (5.1)

and

(x,h)−1 = (−h−1x,h−1), (x,h) ∈ Rn ×H, (5.2)

(ii) the left and right Haar measures are given by

dµL(x,h) = det(h)−1 dx dν, (x,h) ∈ Rn ×H, (5.3)

and

dµR(x,h) = dx dν, (x,h) ∈ Rn ×H, (5.4)

with

dµR(x,h) = dµL((x,h)−1), (x,h) ∈ Rn ×H, (5.5)

(iii) the modular function, which is a Radon-Nikodym derivative, Definition A.16
(Radon-Nikodym), reads

∆(x,h) ∶= dµL(x,h)
dµR(x,h)

= det(h)−1, (x,h) ∈ Rn ×H, (5.6)

(iv) for some F ∈ L1(G, dµL), the isometric involution, Proposition A.67 (Isomet-
ric Involution), on G is given by

F ∗(x,h) =∆−1(x,h)F (−h−1x,h−1), (x,h) ∈ Rn ×H,

=det(h)F (−h−1x,h−1), (x,h) ∈ Rn ×H.
(5.7)

◆

Proof. (i) is part of the definition of a semi-direct product group. (ii) can be checked
directly by

dµL((b, a)(x,h)) = dµL(a.x + b, ah)

= det(ah)−1d(ax + b) dν(ah)

= det(h)−1 det(a)−1 det(a) dx dν(h)

= det(h)−1 dx dν(h)
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and

dµR((x,h)(b, a)) = dµR(h.b + x,ha)
= d(h.b + x) dν(ah)
= dx dν(h)

and

dµL((x,h)−1) = dµL(−h−1x,h−1)

= det(h−1)−1d(−h−1x) dν(h−1)

= det(h)det(h−1) dx dν(h)
= dx dν(h).

(iii) follows immediately from (ii) via

∆(x,h) ∶= dµL(x,h)
dµR(x,h)

,

=
det(h)−1 dx dν(h)

dx dν(h) ,

= det(h)−1.

To see (iv), note that

∫
G
∣F ∗(x,h)∣ dµL = ∫

G
∣det(h)F (−h−1x,h−1)∣ dµL(x,h)

= ∫
G
∣det(h)F (x,h)∣ dµL((x,h)−1)

= ∫
G

det(h) ∣F (x,h)∣ dµR(x,h)

= ∫
G
∣F (x,h)∣det(h) dµR(x,h)

= ∫
G
∣F (x,h)∣ dµL(x,h),

where we used (i), (ii) and (iii). ∎
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5.1. Dual Orbits of Semi-Direct Product Groups

Let now G ∶= Rn⋊H be such a semi-direct product, with Rn denoting the abelian
Euclidean group and (H, dν) some connected abelian Lie group, with dim(H) = n
and Haar measure dν. Let furthermore H act freely via matrices on Rn as

x ↦ h.x, x ∈ Rn, h ∈H, (5.8)

where an action is said to be free if the stabilizer of each point is trivial, that
is, if there are no fixed points of the action.

Then, via dual pairing with R̂n,

⟨ ξ , h.x ⟩ = ⟨hT .ξ , x ⟩ , x ∈ Rn, ξ ∈ R̂n, (5.9)

H also acts on R̂n with the induced dual action

ξ ↦ h−T .ξ, ξ ∈ R̂n, h ∈H, (5.10)

where the inversion of h is needed in order to assure that it is a group action

(h′ ○ h)−T .ξ0 = h
′−T .(h−T .ξ0). (5.11)

Since the groups we shall consider are abelian, h′ and h necessarily commute and
thus this fact is superfluous and can be relaxed, if the calculations benefit from it.

Then, from these two actions, there arise two unitarily equivalent group repre-
sentations of H, Definition A.60 (Unitary representations), acting on L2(Rn, dx),
ρ, as well as on L2(R̂n, dξ), ρ̂, defined as

(ρ(h)f)(x) ∶= deth−1/2f(h−1.x) and (ρ̂(h)f̂)(ξ) ∶= deth1/2f̂(hT .ξ) (5.12)

and the quasi-regular representations of G, π and π̂, defined by

(π(b, h)f)(x) ∶= deth−1/2f(h−1.(x − b)), f ∈ L2(Rn, dx) (5.13)

and

(π̂(b, h)f̂)(ξ) ∶= deth1/2f̂(hT .ξ)e−2πi⟨ ξ , b ⟩, f̂ ∈ L2(R̂n, dξ). (5.14)

The representation ρ - and thus by equivalence ρ̂ as well - of H and the quasi-
regular representation π (and π̂) are irreducible, Definition A.71 (Irreducibility), if
and only if the dual action of H is transitive on R̂n, meaning that it only has a
single orbit, Definition A.23 (Orbits of group actions). In general, R̂n foliates into
orbits of H - each of which has associated an irreducible unitary representation
-, such that the orbit space

R̂n/G ∶= {O ⊆ R̂n ∣ ∃ξ0 ∈ O ∶ G.ξ0 ∶= O } , (5.15)
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partitions R̂n and the orbit space may possess some measure µ with which one may
do non-commutative harmonic analysis, speak of direct integrals of representations,
decompose a regular representation of a locally compact group into the discrete and
continuous series and much more; for short - from this point, a lot of non-trivial
representation theory departs.

Since the program of spectral diffeomorphisms tries to circumvent most of the
restricting group structure to gain more generality and uses only diffeomorphisms
and families of one-parameter groups - which do not necessarily constitute a group
as a whole -, it suffices to concentrate on a single dual orbit of the group H and the
associated irreducible representation of G, (π,Hπ). The same steps may then be
applied to each of the orbits and its associated irreducible representations, provided
the orbits have the same dimension as the group. Schur’s Lemma A.72, then, tells
us that the only operators which commute with the whole image of an irreducible
representation, within the unitary operators over the representation space Hπ, are
multiples of the identity and given a cyclic and admissible vector, φ, Definition A.71
(Irreducibility), we may decompose the representation space via the set

{π(x)φ ∣x ∈ G } , (5.16)

giving a first step towards continuous frames.

Then, since the action of H on this orbit, say O, is both free and transitive,
the orbit is a principal homogeneous space of H, Definition A.31 (Homogeneous
Spaces), and the map

H ∋ h ↦ h−T .ξ0 ∈ O, ξ0 ∈ O, h ∈H, (5.17)

is a homeomorphism from H to the orbit, if and only if H is σ-compact [31]. Note
that the element, ξ0, is associated with the neutral element of H and thus may
serve as an origin on O. Since the group is assumed to be abelian and connected,
its Lie algebra, h, is abelian, too, and the exponential map is a homeomorphism.

Then, we may represent any element of H by the local coordinates, h(α1, . . . , αn),
defined by the Lie algebra. And since it is abelian, we have

exp(−2πi∑
k

αkXk) =∏
k

e−2πiαkXk , (5.18)

where α ∈ Rn and the {Xk ∣k = 1, . . . , n } are a basis of generators on the Lie algebra.
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5.1. Dual Orbits of Semi-Direct Product Groups

Now, here is the main takeaway of the above said.

Theorem 5.2 (Spectral Diffeomorphisms for Dual Orbits). Let G ∶= Rn ⋊H be a
locally compact semi-direct product group, (H, dν) a connected abelian Lie group,
with dim(H) = n and Haar measure dν, assumed to be σ-compact. Let H act freely
and transitive on the dual orbit

O0 ∶= {h
−T .ξ0 ∣h ∈H } ⊆ R̂n, (5.19)

for some fixed ξ0 ∈ R̂n. Denote

σ−1(h) ∶= h−T .ξ0 and σ(ξ) ∶= hξ, s.t. ξ = h
−T
ξ .ξ0 (5.20)

and dσ(ξ) ∶= (dν ○ σ)(ξ).
Then, σ is a spectral diffeomorphism and the machinery of this thesis applies. ◆

Proof. See, e.g., [31, Prop. 2.44], for a proof that the map

h ↦ h−T .ξ0 =∶ σ
−1(h)

is a homeomorphism. Supplying both spaces - the group and the orbit - with the
Borel σ-algebra, we get measurable spaces, where the group can be equipped with
its natural translation invariant Haar measure, dµ, to get a true measure space.
The orbit, then, may be equipped with the pullback measure dσ(ξ) ∶= (dν ○ σ)(ξ)
and the homeomorphism becomes a measurable mapping.

The mapping is furthermore a diffeomorphism since the group is a Lie group
and thus a differentiable manifold. Therefore, it acts on differentiable manifolds
in a differentiable way, which makes way for diffeomorphisms. And, finally, it is
a spectral diffeomorphism, since it acts on the dual space of Rn and thus we may
apply a spectral cotangent lift, to set the spectral warping machine in motion. ∎

Since the image of σ is H, we have that

σ−1(a−1h) = (a−1h)−T .ξ0 = a
Th−T .ξ0 = a

Tσ−1(h), a, h ∈H, (5.21)

and

jσ(h) = det(J−1
σ ) = det(h−T ) = det(h)−1, (5.22)

and therefore

det(Jσ) ○ σ = det(h) ○ σ. (5.23)
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The associated spectral warped distribution, as introduced in Definition 3.29
(Spectral Warped Distributions), can be seen as being defined on G ∶= Rn × H,
that is, we have that

Dσ
f (x,h) =∶Df(x,h), (x,h) ∈ Rn ×H, (5.24)

and

D̃σ
φ(x,h) =∶ D̃φ(x,h), (x,h) ∈ Rn ×H, (5.25)

are functions on G and we may introduce a convolution, Definition A.64 (Convolu-
tion), on G. Further, for the latter distribution, we may define the involution

D̃∗φ(x,h) ∶=∆−1(x,h)D̃φ((x,h)−1)

=∆−1(x,h)D̃φ(−h−1x,h−1)

= (det(h))+1D̃φ(−h−1x,h−1)

(5.26)

which gives the following.

Corollary 5.3 (Frameogram for Semi-Direct Product Groups). Let G ∶= Rn ⋊H be
a locally compact semi-direct product group, (H, dν) a connected abelian Lie group,
with dim(H) = n and Haar measure dν, assumed to be σ-compact. Let H act freely
and transitive on the dual orbit

O0 ∶= {h
−T .ξ0 ∣h ∈H } ⊆ R̂n, (5.27)

for some fixed ξ0 ∈ R̂n. Denote

σ−1(h) ∶= h−T .ξ0 and σ(ξ) ∶= hξ, s.t. ξ = h−Tξ .ξ0 (5.28)

and dσ(ξ) ∶= (dν ○ σ)(ξ). Let furthermore f ∈ Sσ and φ ∈ Aσ, with Df and D̃φ

denoting their respective warped distributions. Then

Df ∗ D̃
∗
φ = ∣π

σ
φf ∣

2
. (5.29)

◆
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Proof. In order to prove (5.29), we do a lengthy calculation.

(Df ∗ D̃
∗
φ)(b, a)

=∫
G
D̃∗φ((x,h)

−1(b, a)) Df(x,h) dµL(x,h)

=∫
G

∆−1D̃φ(((x,h)−1(b, a))−1)Df(x,h) dµL(x,h)

=∫
G

∆−1D̃φ((b, a)−1(x,h))Df(x,h) dµL(x,h)

=∫
G

det(a−1h)D̃φ(a−1(x − b), a−1h)Df(x,h) dµL(x,h)

=∫
G

det(a)−1 det(h)φ(a−1(x − b))φ̂(σ−1(a−1h))e−2πi⟨ σ−1(a−1h) , a−1(x−b) ⟩

× det(h)−1 ⋅ f(x)f̂(σ−1(h))e−2πi⟨ σ−1(h) , x ⟩ dµL(x,h)

=∫
G

det(a)−1φ(a−1(x − b))φ̂(aTσ−1(h))e−2πi⟨ aT σ−1(h) , a−1(x−b) ⟩

× f(x)f̂(σ−1(h))e−2πi⟨ σ−1(h) , x ⟩ dµL(x,h)

=∫
Rn×H

det(a)−1φ(a−1(x − b))φ̂(aTσ−1(h))e−2πi⟨ σ−1(h) , x−b ⟩

× f(x)f̂(σ−1(h))e−2πi⟨ σ−1(h) , x ⟩ det(h)−1 dx dν(h)

=∫
Rn×H

det(a)−1φ(a−1(x − b))φ̂(aTσ−1(h))e−2πi⟨ σ−1(h) , b ⟩

× f(x)f̂(σ−1(h))det(h)−1 dx dν(h)

=∫
Rn

det(a)−1φ(a−1(x − b)) f(x) dx

× ∫
im(σ)

φ̂(aTσ−1(h))f̂(σ−1(h))e−2πi⟨ σ−1(h) , b ⟩ det(h)−1 dν(h)

=(πσφf)(b, a)∫
dom(σ)

φ̂(aT ξ)f̂(ξ)e−2πi⟨ ξ , b ⟩ det(J−1
σ ) dσ(ξ)

=(πσφf)(b, a)∫
dom(σ)

φ̂(aT ξ)f̂(ξ)e−2πi⟨ ξ , b ⟩ det(J−1
σ )det(Jσ)dξ

=(πσφf)(b, a)∫
dom(σ)

e2πi⟨ ξ , b ⟩ φ̂(aT ξ) f̂(ξ)dξ

=(πσφf)(b, a)(π
σ
φf)(b, a)

= ∣(πσφf)(b, a)∣
2

(5.30)

This calculation was indeed lengthy! ∎

5.2 Explicit Phase Space Decompositions

5.2.1 The Trivial Case

Before looking at some special cases, there is one peculiar case which is the
most beautiful.
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(b) Wigner distribution of a Gaussian.

Figure 5.1: Phase space, associated with σ(x) = x.

Example 5.1 (Identity). Let f ∈ L2(Rn). When we are willing to accept the fact
that each point in the spatial domain, as well as each point in the Fourier domain,
is equally important, there is no need to apply any spectral diffeomorphism and
thus, by setting σ = σ−1 = 1 , we have that

Jσ = J
−T
σ =

⎛
⎜
⎝

1
⋱

1

⎞
⎟
⎠
. (5.31)

Figure 5.1a plots the associated phase space tessellation and Figure 5.1b shows
the Wigner distribution of a Gaussian, which is the optimal waveform - for both
uncertainty principles -, adapted to the rectangular grid.

The arising quantum frames are the continuous Gabor frame and the associated
coherent state map is the well known

Definition 5.4 (Short-Time Fourier Transform). Let f,ψ ∈ S1 = A1 , then

f ↦ ⟨T 1
β D̃

1
αψ , f ⟩ = ∫

Rn
e2πiα(x−β)ψ (x − β) f(x) dx, (5.32)

is the Short-Time Fourier Transform. ◆
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spectral dilated with σ(ξ) ∶= 1(ξ) = ξ. The dotted line shows dσ

dξ =
dξ
dξ ≡ 1.

Localization

Both notions of localization coincide and thus the equalizing waveform for optimal
alignment as well as optimal concentration is given by

f̂(x) = e−2π∑k ∫ xk d1 k(x)

= e−2π∑k ∫ 1 k(x) dxk

= e−π∣x∣
2
,

(5.33)

where the constants are chosen trivially. ◆

5.2.2 The Half-Line

To get a taste for a more non-trivial use case, we will take “a closer look” at
what will ultimately lead to what is known as the wavelet transform. A transform,
which can be understood as a mathematical microscope and is thus - by its very
definition - the paragon of “looking more closely”.

The Logarithm

Let f be a measured audio signal.

Example 5.2 (Logarithm). Speaking of audio signals, their values are real, the
spatial domain is time and the relevant information about the occurring frequencies

136



5. Application

-4 -3 -2 -1 Q 1 2 3 4
-4

-3

-2

-1

P

1

2

3

4

(a) Rectangular phase space tessellation
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(b) Curved phase space tessellation

Figure 5.3: Phase space tessellation, associated with σ(x) = log2(x).

is supported on the positive frequency axis only, since there is no physical equivalent
of a negative vibration.

Moreover, since audio signals are assumed to have finite energy, by a little abuse
of notation, it holds

f is an audio signal ⇒ f̂ ∈ L2(R+,dx).

It therefore makes sense to map the positive half-axis R̂+ onto the whole reals R̂
by utilizing the logarithm - and, of course, its inverse, the exponential -, which is a
diffeomorphism,

log ∶ R+ → R, log−1
= exp ∶ R → R+,

for it is known to model this correspondence. Of course, the actual base of the
logarithm is of no relevance and may thus be chosen at will. For numerical reasons
and its connection to octaves, a popular choice is the log2, but in general, one is
free to use

logb ∶ R+ → R, log−1
b = b

● ∶ R → R+, log−1
b (x) = b

x,

for any real b > 0.
What makes the logarithm, respectively its inverse, the exponential function,

as the underlying morphism so special, is that it maps a translation, that is, an
addition in the warped domain to a dilation, i.e., a multiplication, in the “unwarped”

137



5.2. Explicit Phase Space Decompositions

-4 -3 -2 -1 ξ 1 2 3 4

0

|ψ̂k|
2

4

Figure 5.4: Superimposed spectra of warped Gaussians, ψk ∶=
√

∣
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−π(log2∣ξ∣−k)2 ,

spectral dilated with σ(ξ) = log2 ∣ξ∣. The dotted line shows ∣d log2
dξ ∣.

original domain and vice versa. That is, the induced spectral dilation operator is
a dilation operator in the standard sense of a dilation - in fact, this is where its
name was derived from. Figure 5.4 illustrates this fact, for some well-localized g - a
Gaussian waveform - in the warped domain and where the base of the logarithm
was chosen to be 2, in order to increase the readability.

This is the first of four cases we shall consider, to which Theorem 5.2 (Spectral
Diffeomorphisms for Dual Orbits) applies. Let H ∶= R, acting via

ξ ↦ eαξ, ξ ∈ R+, α ∈ R, (5.34)

on R+. Then, with ξ0 = 1, we have that

α ↦ eαξ0 = e
α =∶ σ−1(α) (5.35)

is a spectral diffeomorphism from H ∶= R = im(σ) to dom(σ) =∶ R+. It is straight-
forward to check that the left-invariant measure on R ⋊H is dµL(x, y) ∶= dx dy

ey ,
whereas the right invariant measure and the modular function are dµR(x, y) ∶= dx dy
and ∆(y) ∶= e−y.

As for the frameogram, associated with the logarithm - the scaleogram -, we
need to be more pedantic when it comes to the spectral diffeomorphism above and
re-instantiate the inversion from (5.10) and redefine the above as

α ↦ e−αξ0 = e
−α =∶ σ−1(α), (5.36)
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in order to derive the frameogram. Since Corollary 5.3 (Frameogram for Semi-
Direct Product Groups) is very general, this shall be the only explicit derivation of
a spectral frameogram via warped distributions in this chapter.

The warped distributions are defined as

D
log
f (b, a) ∶= e

−af(b)f̂(e−a)e−2πie−ab (5.37)

and

(D̃
log
ψ )

∗(b, a) ∶=∆−1(a)D̃log
ψ ((b, a)

−1)

=∆−1(a)D̃log
ψ (−

b
ea ,−a)

= e+aψ(− b
ea )ψ̂(e+a)e

−2πie+a(− bea )

= eaψ(− b
ea )ψ̂(ea)e2πib (5.38)

and convolution gives

(D
log
f ∗ (D̃

log
ψ )

∗)(b, a)

=∬ e−yf(x)f̂(e−y)e−2πie−yxey−aψ(−
b−x
ey

e(a−y) )ψ̂(e(a−y))e
2πi b−xey dµL

=∬ e−af(x)f̂(e−y)e−2πie−yxψ( x−b
eye(a−y) )ψ̂(eae−y)e2πie−y(b−x) dµL

=∬ e−af(x)ψ(x−bea )f̂(e−y)e
−2πie−yxψ̂(eae−y)e2πie−y(x−b) dx dy

ey

=∫ e−af(x)ψ(x−bea ) dx∫ f̂(e−y)ψ̂(eae−y)e−2πie−yb dy
ey

=∫ e−af(x)ψ(x−bea ) dx∫ f̂(ξ)ψ̂(eaξ)e−2πiξb dξ

= ∣πlog
ψ f(b, a)∣

2
,

(5.39)

which is the scaleogram.

The spectral cotangent lift is defined by

Σlog(x, ξ) ∶= (
d log(ξ)

dξ
−1
⋅ x, log(ξ)) = (ξ ⋅ x, log(ξ)), (5.40)

and the associated Hamiltonians are

A(x, ξ) ∶= ξ ⋅ x and B′(x, ξ) ∶= log(ξ), B(x, ξ) ∶= ξ, (5.41)

where A induces dilation and B′, respectively B, denote the Hamiltonians inducing
the warped and standard translations, respectively. In Figure 5.3a, a phase space
decomposition by rectangles of size ∼ 1

4 , induced by the logarithmic spectral
diffeomorphism is depicted.
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(b) Centered Warped Gaussian

Figure 5.5: Wigner distributions of warped Gaussians in phase space, adapted to the
coordinate system associated with σ(x) = log2(x).

To each of the rectangles could in principle correspond an elementary phase
space cell of a single “quantum state”. Figure 5.3b by contrast, depicts another
phase space tessellation, this time by curved phase space cells, again of size ∼ 1

4 ,
optimally adapted to the cotangent lift of the logarithm and thus constitutes a
warped Gabor frame decomposition. In that regard, Figure 5.5a and Figure 5.5b
show the Wigner distribution of two associated logarithmically-warped Gaussians
in phase space.

By using the identity d log ∶= dx
x we find that the associated reservoir of admissible

windows is

Alog ∶= { f ∈ L
2(R) ∣ f̂ ∈ L2(dom(log ), dx

x ) } , (5.42)

from which we recover the well-known admissibility condition

ψ is admissible ⇐⇒ ∫
dom(log )

∣ψ̂(ξ)∣
2 dξ
ξ ⇐⇒ ψ ∈ Alog. (5.43)

The induced spectral dilation operators are defined as

(D̂log
α f̂)(ξ) ∶=

√
d log(ξ)

ξ f̂(exp(log (ξ) + α)) = eα/2f̂(eαξ), (5.44)

for f ∈ Slog and

(
̂̃
Dlog
α ψ̂)(ξ) ∶= ψ̂(exp(log (ξ) + α)) = ψ̂(eαξ), (5.45)
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for ψ ∈ Alog. Writing T log
b and Tb for the warped and the standard translation

operators, respectively, we end up with the spectral quantum frames

Flog ∶= {TβD̃
log
α ψ ∣β,α ∈ R } , ψ ∈ Alog, (5.46)

and

Glog ∶= { T
log
β D̃

log
α ψ ∣β,α ∈ R } , ψ ∈ Alog, (5.47)

where the latter is canonical and essentially a logarithmically warped Gabor frame.

Definition 5.5 (Wavelet transform). Let f ∈ Slog, ψ ∈ Alog and π̃log(β,α) = TβD̃
log
α ,

then

f ↦ (πlog
ψ f)(β,α) ∶= ⟨TβD̃

log
α ψ , f ⟩ = ∫

dom (log)
e−2πiξβψ̂ (eαξ) f̂(ξ) dξ

= ∫
R
e−αψ (e−α(x − β)) f(x) dx

(5.48)

is the wavelet transform. ◆

If the form of the wavelet need not necessarily be invariant under spatial trans-
lations, the following generalization of the wavelet transform to a logarithmically
warped Short-Time Fourier transform, makes sense. Of course, giving up the
“covariance” of the wavelet with respect to spatial translations means giving up on
the interpretation of the wavelet transform as a mathematical zoom for analyzing,
e.g., fractal structures.

Definition 5.6 (Logarithmic Short-Time Fourier Transform). Let f ∈ Alog and
ψ ∈ Alog, then

f ↦ ⟨T log
β D̃

log
α ψ , f ⟩ = ∫

dom(log )
e−2πi log ξβψ̂ (eαξ) f̂(ξ)d log(ξ)

= ∫
R
e2πia(x−β)ψ̃ (x − β) f̃(x) dx,

(5.49)

with ψ̃ ∶= Wlogψ and f̃ ∶= Wlogf , is the logarithmically warped Short-Time Fourier
Transform. ◆

Localization

For the logarithm, respectively the wavelet transform, the notions of localization do
indeed differ.

The equalizing waveform, on Slog, for the principle of optimal alignment, is

Slog ∋ f̂(ξ) = (
d log

dx )
1/2e−2π ∫ ξ d log (ξ)e2π(µβ−iα) log(ξ) (5.50)
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And, for α = 0, β ⋅ µ = C = 1,

f̂(ξ) = e−2π ∫ 1 dx ∣ξ∣
−1/2

e2π(1) log(ξ) (5.51)
= e−2πξξ2π ∣ξ∣

−1/2
, (5.52)

we recover the equalizing waveform, already encountered twice in this thesis. Its
admissible counterpart is

Alog ∋ ψ̂(ξ) = e
−2πξξ2π, (5.53)

with the same constants.
The equalizing waveform, on Slog, for the principle of optimal concentration, is

Slog ∋ f̂(ξ) = Ce
−2π ∫ log(ξ) dξe2π⟨ ξ , µα−iβ ⟩

= Ce−2π(ξ log(ξ)−ξ)e2π⟨ ξ , µα−iβ ⟩
(5.54)

and its admissible counterpart reads

Alog ∋ ψ̂(ξ) = Cξ
+1/2e−2π(ξ log(ξ)−ξ)e2π⟨ ξ , µα−iβ ⟩. (5.55)

◆

Other Diffeomorphisms on the Half-Line

Speaking of audio signals, which are usually intended to be perceived by the ears of
human beings or other species in the biological kingdom Animalia, the emphasis on
the (positive) frequency spectrum with all frequency bands being considered equally
important might not be the right thing to do. This idea is, for example, taken for
the design of the wavelet transform, which we already discussed above, where the
frequencies are consolidated into sub-bands with logarithmically increasing size.
More application-oriented transformations are taken by the ideas of the constant-Q
scale, the Bark scale and the ERB scale, which will be discussed next.

Example 5.3 (Constant-Q scale). The CQ scale associates the origin in the CQ
domain to some predefined frequency ξ0 and integer steps in the CQ domain
correspond to doubling the frequency every B-th step. That is, if σCQ is the
diffeomorphism, the point k ∈ Z ⊂ R = im(σCQ) corresponds to 2k/Bξ0 ∈ R+ =
dom(σCQ). The explicit formula for the CQ diffeomorphisms are

σCQ(ξ) ∶= log2(ξ/ξ0) ⋅B and σ−1
CQ(z) ∶= 2z/B ⋅ ξ0 (5.56)

and the only real difference between the CQ scale and the classical log scale is that
the corresponding axes are stretched by factors B and ξ0, respectively.

142



5. Application

To define the associated transform, only the spectral dilation operator on AσCQ

shall be given, the rest should be clear by now. Letting the dependence on B and
ξ0 implicit, we have

(D̃
σCQ
α ψ)(x) ∶= 2−α/Bψ(2−α/Bx), (5.57)

respectively

(
̂̃
D
σCQ
α ψ̂)(ξ) ∶= ψ̂(2α/Bξ), (5.58)

which gives us the following definition

Definition 5.7 (Constant-Q transform). Let f ∈ SσCQ
, ψ ∈ AσCQ

and πσCQ(β,α) =

TβD̃
σCQ
α , then

f ↦ (π
σCQ

ψ f)(β,α) ∶= ⟨TβD̃
σCQ
α ψ , f ⟩ = ∫

domσCQ

e−2πiξβψ̂ (2α/Bξ) f̂(ξ) dξ

= ∫
R

2−α/Bψ (2−α/B(x − β)) f(x) dx
(5.59)

is the Constant-Q transform. ◆

Definition 5.8 (CQ-warped Short-Time Fourier Transform). Let f ∈ AσCQ
and

ψ ∈ AσCQ
, then

f ↦ ⟨T
σCQ

β D̃
σCQ
α ψ , f ⟩ = ∫

domσCQ

e−2πi log2(ξ/ξ0)Bβψ̂ (2α/Bξ) f̂(ξ)dσCQ(ξ)

= ∫
R
e2πia(x−β)ψ̃ (x − β) f̃(x) dx,

(5.60)

with ψ̃ ∶= WσCQ
ψ and f̃ ∶= WσCQ

f , is the CQ-warped Short-Time Fourier Transform.
◆

◆

Example 5.4 (BARK scale). The Bark scale [82] is an application-oriented fre-
quency scale, on which equal distances correspond to equal perceptual distances
in the human ear, without stretching the positive axis to the whole reals. That is,
there exists a mapping

σbark ∶ R+ → R+, ξ ↦ σbark(ξ) (5.61)

which deforms the frequency axis in such a way that equidistant steps on the
deformed axis correspond to equidistant frequency steps to the human ear. Of
course, this “scale” was defined empirically, so one cannot expect that an absolutely
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Figure 5.6: BARKscale σbark(ξ) vs. frequency ξ

valid mathematical formula exists, which models this connection, even less when we
restrict ourselves to diffeomorphic mappings. For the definition of this morphism,
there are more proposals than one. Two of them, proposed in [82], are

σ̃bark(ξ) = 13 atan (7.6 ⋅ 10−4 ⋅ ξ) + 3.5 atan ((ξ/7500)2) , (5.62)

and

σbark(ξ) =
26.81ξ

1960 + ξ − 0.53, (5.63)

where the latter one has a simple inverse, given by

σ−1
bark(z) = 1960 0.53 + z

26.28 − z (5.64)

and is plotted in Figure 5.6.
This is the first time we have a diffeomorphism for which the associated

dilation operator does not look very tidy, since the diffeomorphism is no group-
homomorphism. This, however, does no harm, except for a more filthy looking
formula

(
̂̃
D
σCQ
α ψ̂)(ξ) ∶= ψ̂

⎛

⎝
1960

0.53 + (( 26.81ξ
1960+ξ − 0.53) + α)

26.28 − (( 26.81ξ
1960+ξ − 0.53) + α)

⎞

⎠
,

which gives us the following definition.
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Figure 5.7: ERBscale σERB(ξ) vs. frequency ξ

Definition 5.9 (Bark transform). Let f ∈ Sσbark
, ψ ∈ Aσbark

and πσbark(β,α) =

TβD̃
σbark
α , then

f ↦ (πσbark

ψ f)(β,α)

∶= ⟨TβD̃
σbark
α ψ , f ⟩

= ∫
domσbark

e−2πiξβψ̂
⎛

⎝
1960

0.53 + (( 26.81ξ
1960+ξ − 0.53) + α)

26.28 − (( 26.81ξ
1960+ξ − 0.53) + α)

⎞

⎠
f̂(ξ) dξ

(5.65)

is the Bark transform. ◆

Definition 5.10 (Bark-warped Short-Time Fourier Transform). Let f ∈ Aσbark
and

ψ ∈ Aσbark
, then

f ↦ ⟨T σbark

β D̃σbark
α ψ , f ⟩

= ∫
domσbark

e−2πiσbark(ξ)βψ̂ (σ−1
bark(σbark(ξ) + α)) f̂(ξ) dσbark(ξ)

= ∫
R
e2πia(x−β)ψ̃ (x − β) f̃(x) dx,

(5.66)

with ψ̃ ∶= Wσbark
ψ and f̃ ∶= Wσbark

f , is the bark-warped Short-Time Fourier
Transform. ◆

◆

Example 5.5 (ERB scale). The ERB scale [36, 66], for Equivalent Rectangular
Bandwidth, with diffeomorphism

σERB(ξ) =
1000

24.7 ⋅ 4.37 ln(1 + 4.37 ⋅ ξ
1000 ) (5.67)

≈ 9.265 ⋅ ln (1 + 4.37 ⋅ 10−3 ⋅ ξ) , (5.68)
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and inverse

σ−1
ERB(z) =

ez/9.265 − 1
4.37 ⋅ 10−3 (5.69)

is another such scale, emphasizing again those parts of the frequency spectrum that
are most relevant for the human ear. Or, more specifically, the human ear has a
frequency filter bank, consisting of different band-passes, which are - although not
necessarily physical correct - modeled to be rectangular band-passes.

In [67] the authors introduced the so-called “ERBlet”-transform, which is a
discrete transform, applying these ideas in linear audio processing. Although it
is a discrete transform, by using the diffeomorphism, σERB, which deforms the
frequency axis such that the interesting features of the spectrum of f are distributed
in equally spaced distances, it seems possible to design a continuous analogue of
this transform, such that sampling this transform in equidistant steps leads to the
classical ERB transform.

Again, no nice formula can be given, so we will, if only to avoid clutter, refrain
from inserting the explicit expressions of the diffeomorphism into the transform
below and shall be content with the following expression

(
̂̃
DσERB
α ψ̂)(ξ) (5.70)
∶= ψ̂ (4.37−1 ⋅ 103 (exp (9.265−1 ( 1000

24.7⋅4.37 ln (1 + 4.37⋅ξ
1000 ) + α)) − 1)) . (5.71)

Definition 5.11 (ERB transform). Let f ∈ SσERB
, ψ ∈ AσERB

and πσERB(β,α) =

TβD̃
σERB
α , then

f ↦ (πσERB

ψ f)(β,α) ∶= ⟨TβD̃
σERB
α ψ , f ⟩

= ∫
dom (σERB)

e−2πiξβψ̂ (σ−1
ERB(σERB(ξ) + α)) f̂(ξ) dξ

(5.72)

is the continuous ERB transform. ◆

Definition 5.12 (ERB-warped Short-Time Fourier Transform). Let f ∈ AσERB
and

ψ ∈ AσERB
, then

f ↦ ⟨T σERB

β D̃σERB
α ψ , f ⟩

= ∫
dom (σERB)

e−2πiσERB(ξ)βψ̂ (σ−1
ERB(σERB(ξ) + α)) f̂(ξ) dσERB(ξ)

= ∫
R
e2πia(x−β)ψ̃ (x − β) f̃(x) dx,

(5.73)

with ψ̃ ∶= WσERB
ψ and f̃ ∶= WσERB

f , is the ERB-warped Short-Time Fourier
Transform. ◆

◆
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(b) Curved phase space tessellation

Figure 5.8: Phase space tessellation, associated with σ1(x) = 2 ⋅ x + sin(x).

Localization for CQ, ERB and BARK

Again, for all of the three cases above, the notions of localization do differ. We
will assemble all three cases and write σ.

The equalizing waveforms, on Sσ, for the principle of optimal alignment, are

Sσ ∋ f̂(ξ) = ∣
dσ
dx ∣

1/2
e−2π ∫ ξ dσ(ξ)e2π(µβ−iα)σ(ξ) (5.74)

and their admissible counterparts are

Aσ ∋ ψ̂(ξ) = e
−2π ∫ ξ dσ(ξ)e2π(µβ−iα)σ(ξ) (5.75)

with the same constants.
The equalizing waveform, on Sσ, for the principle of optimal concentration, is

Sσ ∋ f̂(ξ) = Ce
−2π ∫ σ(ξ) dξe2πξ(µα−iβ) (5.76)

and its admissible counterpart is

Aσ ∋ ψ̂(ξ) = C ∣
dσ
dx ∣
−1/2

e−2π ∫ σ(ξ) dξe2πξ(µα−iβ) (5.77)

5.2.3 A Miscellaneous Example on the full line

Example 5.6 (A Miscellaneous Example). Assume we are interested in all the
harmonic frequency-bands which are multiples of a given ground frequency and
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Figure 5.9: Phase space tessellation, associated with σ2(x) = 1.25 ⋅ x + cos(x).

thus we wish to give more credit to those bands than for others. Then, a spectral
diffeomorphism, spreading those frequencies we are interested in and squeezing the
uninteresting ones, similar to

σ1(ξ) ∶= 2ξ + sin(ξ) or σ2(ξ) ∶= 1.25ξ + cos(ξ) (5.78)

does the trick. The one-dimensional Jacobians, that is, the derivatives, and its
inverses are

dσ1
dξ ∶= 2 + cos(ξ) and (dσ1

dξ )
−1
∶= 1

2+cos(ξ) (5.79)

and

dσ2
dξ ∶= 1.25 − sin(ξ) and (dσ2

dξ )
−1
∶= 1

1.25−sin(ξ) (5.80)

and the corresponding Hamiltonian vector fields are

X1(q, p) ∶= −
1

2 + cos(p)∂p +
q ⋅ sin(p)
(2 + cos(p))2∂q (5.81)

and

X2(q, p) ∶= −
1

1.25 − sin(p)∂p +
q ⋅ cos(p)

(1.25 − sin(p))2∂q. (5.82)

Figure 5.8a depicts the associated phase space tessellation of σ1 into rectangular
boxes and Figure 5.8b shows the same with curved phase space cells, as associated
with the warped STFT. Figure 5.9a depicts the associated phase space tessellation
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(b) Translated Warped Gaussian

Figure 5.10: Wigner distributions of warped Gaussians in phase space, adapted to the
coordinate system associated with σ1(x) = 2 ⋅ x + sin(x).

of σ2 into rectangular boxes and Figure 5.9b shows the same with curved phase
space cells. All tessellations are into boxes of size ∼ 1

4 .
Figure 5.10a and Figure 5.10b show the Wigner distribution of two associated

σ1-warped Gaussians in phase space and Figure 5.11a and Figure 5.11b show the
same for σ2-warped Gaussians in phase space.

Although this should have become clear by now, for the sake of thoroughness,
in the following we will give the associated transforms and localization properties
of σ1 =∶ σ.

Definition 5.13 (σ Transform). Let f ∈ Sσ, ψ ∈ Aσ and πσ(β,α) = TβD̃σα, then

f ↦ (πσψf)(β,α) ∶= ⟨TβD̃
σ
αψ , f ⟩

= ∫
domσ

e−2πiξβψ̂ (σ−1(σ(ξ) + α)) f̂(ξ) dξ
(5.83)

is the σ transform. ◆

Definition 5.14 (σ-warped Short-Time Fourier Transform). Let f ∈ Aσ and ψ ∈ Aσ,
then

f ↦ ⟨T σβ D̃
σ
αψ , f ⟩

= ∫
domσ

e−2πiσ(ξ)βψ̂ (σ−1(σ(ξ) + α)) f̂(ξ) dσ(ξ)

= ∫
R
e2πia(x−β)ψ̃ (x − β) f̃(x) dx,

(5.84)

with ψ̃ ∶= Wσψ and f̃ ∶= Wσf , is the σ-warped Short-Time Fourier Transform. ◆
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Localization

The equalizing waveforms on Sσ, for the principle of optimal alignment, are

Sσ ∋ f̂(ξ) = C ∣
dσ
dx ∣

1/2
e−2πµ ∫ ξ dσ(ξ)e2πσ(ξ)(µα−iβ)

=
√

2 + cos(ξ)Ce−2πµ(ξ2+ξ sin(ξ)+cos(ξ)−1)e2π(2x+sin(x))(µα−iβ)
(5.85)

and its admissible counterpart is

Aσ ∋ ψ̂(ξ) = Ce
−2πµ ∫ ξ dσ(ξ)e2πσ(ξ)(µα−iβ)

= Ce−2πµ(ξ2+ξ sin(ξ)+cos(ξ)−1)e2π(2x+sin(x))(µα−iβ).
(5.86)

The equalizing waveform, on Sσ, for the principle of optimal concentration, is

Sσ ∋ f̂(ξ) = Ce
−2πµ ∫ σ(ξ) dξe2πξ(µα−iβ)

= Ce−2πµ(ξ2+1−cos(ξ))e2πξ(µα−iβ)
(5.87)

and its admissible counterpart is

Aσ ∋ ψ̂(ξ) =
1√

2+cos(ξ)Ce
−2πµ(ξ2+1−cos(ξ))e2πξ(µα−iβ). (5.88)

◆

5.2.4 The Plane

When dealing with more picturesque two-dimensional data, such as images, this
idea may be applied as well.

Example 5.7 (Independent Logarithms). The most direct application is the simple,
two-dimensional wavelet transform, which - stubbornly following the exact same
arguments as in the one-dimensional case - may not be readily found to be as
suitable as above, but a slight adjustment will take care of this.

Although not very common, let nonetheless f ∈ L2(R2) be a signal with
interesting features contained in the positive frequency quadrant

Q++ ∶= { (x, y) ∈ R̂2 ∣x > 0, y > 0 } (5.89)

only. Then, two-dimensional log-warping, that is, warping in each direction
independently, σ ∶= (log, log), takes the Q++ quadrant to R2. Completely analogue
to the one-dimensional case, equidistant steps in the warping domain, im(σ) = R2,
correspond to exponentially scaled ones on dom(σ) = Q++.
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Figure 5.11: Wigner distributions of warped Gaussians in phase space, adapted to the
coordinate system associated with σ2(x) = 1.25 ⋅ x + cos(x).

The Jacobian and its transposed inverse are given by

Jσ(ξ1, ξ2) = (
1
ξ1

1
ξ2

) Ô⇒
−1
2πiJσ(ξ1, ξ2) =

⎛
⎜
⎝

[
̂̃A1 , ̂̃B1 ] [

̂̃A1 , ̂̃B2 ]

[
̂̃A2 , ̂̃B1 ] [

̂̃A2 , ̂̃B2 ]

⎞
⎟
⎠

(5.90)

and

J−Tσ (ξ1, ξ2) = (
ξ1

ξ2
) Ô⇒

−1
2πiJ

−T
σ (ξ1, ξ2) = (

[ Â1 , B̂1 ] [ Â1 , B̂2 ]

[ Â2 , B̂1 ] [ Â2 , B̂2 ]
) (5.91)

Thus, the spectral cotangent lift is

Σ(ξ;x) =(σ(ξ);J−Tσ (ξ)x) (5.92)
=(log (ξ1), log (ξ2)); ξ1x1, ξ2x2). (5.93)

From this, we find that the Hamiltonians

Ai(ξ;x) ∶= (J−Tσ (ξ)x)i and Bj(ξ;x) ∶= σj(ξ), (5.94)

are

A1 ∶= ξ1x1 and A2 ∶= ξ2x2 (5.95)

and

B1 ∶= log (ξ1) and B2 ∶= log (ξ2), (5.96)
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where the latter induce the warped translations and are thus only interesting for
the warped Gabor case. The former two Hamiltonians lead to the Hamiltonian
vector fields

XA1 = − [ξ1∂ξ1] + [x1∂x1] (5.97)

and

XA2 = − [ξ2∂ξ2] + [x2∂x2] . (5.98)

Since the extension from the one-dimensional case is immediate, we will jump
to the definition.

Definition 5.15 (The two-dimensional Wavelet Transform). Let f ∈ Sσ and ψ ∈ Aσ
be in the appropriate domains. Then

f ↦ ⟨Tb⃗D̃
log
α1 D̃

log
α2 ψ , f ⟩

∶=∬
R+×R+

ψ̂ (eα1(ξ1 − b1), eα2(ξ2 − b2)) f̂(ξ1, ξ2) dξ1 dξ2,

=∬
R2
e−(α1+α2)ψ (e−α1(x1 − b1), e−α2(x2 − b2)) f(x1, x2) dx1 dx2

(5.99)

is the two-dimensional wavelet transform . ◆

Definition 5.16 (Logarithmic STFT in 2D). Let f ∈ Alog and ψ ∈ Alog, then

f ↦ ⟨ T̃ log
b⃗
D̃log
α1 D̃

log
α2 ψ , f ⟩ = ∬R2

e2πi⟨ α⃗ , x⃗−b⃗ ⟩ψ̃ (x⃗ − b⃗) f̃(x) dx, (5.100)

with ψ̃ ∶= Wlogψ and f̃ ∶= Wlogf , is the logarithmic Short-Time Fourier Transform
in 2D. ◆
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The extension to n dimensions is straight-forward without any rude awakenings
and the same holds for its localization measures, which is the next topic.

Localization

Again, the notions of localization differ, but the Jacobian is diagonal, so we have
perfect equalizers, given as two-dimensional tensor-products of the one-dimensional
logarithmic case, namely the following.

The equalizing waveform, on Slog, for the principle of optimal alignment, is

Sσ ∋ f̂(ξ) = ∣ξ1ξ2∣
−1/2
(ξ1ξ2)

2πe−2πξ1ξ2e2π⟨ µβ−iα , σ(ξ) ⟩ (5.101)

and its admissible counterpart is

Aσ ∋ ψ̂(ξ) = (ξ1ξ2)
2πe−2πξ1ξ2e2π⟨ µβ−iα , σ(ξ) ⟩ (5.102)

with the same constants.
The equalizing waveform, on Sσ, for the principle of optimal concentration, is

Sσ ∋ f̂(ξ) = Ce
−2π∑k(ξk log(ξk)−ξk)e2π⟨ ξ , µα−iβ ⟩ (5.103)

and its admissible counterpart is

Aσ ∋ ψ̂(ξ) = C ⋅ ∣ξ1ξ2∣
+1/2

e−2π∑k(ξk log(ξk)−ξk)e2π⟨ ξ , µα−iβ ⟩ (5.104)

◆

When speaking of images and other two-dimensional data, there is no restriction
on the positive quadrant for any relevant data, since the frequency data now encode
the directions of, say, edges in an image which are definitely not restricted to
certain directions. Decomposing an arbitrary f ∈ L2(R2) into four components,
each supported on one of the four frequency quadrants only, that is,

f ↦ (f1, f2, f3, f4), with f̂k ∈ L
2(Qk), (5.105)

we can still apply the same steps as above, which we will leave alone, as it
results in four identical copies of the one above, with each having an extra
index for its quadrant.

Unfortunately, the viability with respect to anisotropic features like sharp
edges in varying directions is highly questionable and thus the utility of a more
“anisotropic” frequency domain is desirable. Without a doubt, one of the most
relevant coordinates for the incorporation of directions are the polar coordinates,
which is our next concern.

153



5.2. Explicit Phase Space Decompositions

−

5

2
π −2π −

3

2
π −π −

1

2
π ξ 1

2
π π 3

2
π 2π 5

2
π

0

|ψ̂k|
2

2

Figure 5.13: Superimposed spectra of warped Gaussians, ψk ∶=
√

dσ2
dξ e

−π(σ2(ξ)−k2 )
2
,
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The Log-Polar Diffeomorphism

Let f ∈ L2(R2), having real values only. It then suffices to describe the signal via
half of the Fourier domain, since the values are point-symmetric to the origin.

Example 5.8 (Polar Coordinates). Let f have significant anisotropic features, like
“edges” in a picture, that need to be characterized along with their occurring spatial
positions. Say, we want to find the position and “directions” of edges. To this end,
we deform the Fourier plane via the diffeomorphism

σpol ∶

⎧⎪⎪
⎨
⎪⎪⎩

(R/{0}) ×R → R × (−π2 ,
π
2 )

(x, y) ↦ (log(
√
x2 + y2),atan(y/x))

(5.106)

which is the well-known polar mapping, where we furthermore applied a log-warping
to the positive radial component in order to map it to the whole real axis for the
same reasons as in the one-dimensional wavelet transform above. And for the same
reasons as pointed out in the wavelet example, the base of the logarithm is a degree
of freedom here.

Note that the diffeomorphism itself takes care of the symmetry

σpol(−x,−y) = (log(
√
(−x)2 + (−y)2), atan((−y)/(−x))) (5.107)

= (log(
√
x2 + y2), atan(y/x)) = σpol(x, y), (5.108)

so if we not restrict our domain to either side of R2, σpol is not injective and thus
a point (log(

√
x2 + y2), atan(y/x)) ∈ im(σpol) corresponds to {(x, y), (−x,−y)} ⊂

dom(σpol).
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Figure 5.14: Translation vs. Polar-Scaling

To illustrate this, we define the “rectangular window”, i.e., an indicator function,

Ψ(x, y) ∶= φ (log2(
√
x2 + y2)) ⋅ η (atan(y/x))

with

φ(r) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 , −1 < r ≤ 0
0 , else

and η(θ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 , −π8 < θ ≤
π
8

0 , else
.

Translating it in the image-domain, im(σpol), and pulling it back to the Cartesian
coordinates in the Fourier domain leads to a radially-circular scaling. This is
shown in Figure 5.14 for six exemplary shifting values, plotted in various colors for
identification of corresponding pairs.

Remark 5.17 (atan 2). It is worth noting that, since tan−1 is injective only on the
half circle, it is possible to use the atan 2 function, if it is important to explicitly
distinguish between the values on the left and right half-circle, which definitely is
the case if the signal under investigation is complex valued.
This atan 2 function is an extension of the classical atan, such that its image is
im(atan 2) = (−π,π], instead of im(atan) = (−π/2, π/2) for the classical one. Its
explicit definition is given by

atan 2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

+atan ( yx) , x > 0,
+atan ( yx) ± π , x < 0,

+π2 , y > 0 ∧ x = 0,
−π2 , y < 0 ∧ x = 0,

undefined , x = y = 0.
◆
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The inverse of the polar diffeomorphism is easily recognized to be

σ−1
pol ∶ R × (−π/2, π/2) → (R/{0}) ×R, (α, θ) ↦ (eα cos(θ), eα sin(θ)) (5.109)

and, in fact, this the second of the four cases, to which Theorem 5.2 (Spectral
Diffeomorphisms for Dual Orbits) applies.

Let H ∶= R × SO(2), acting as

(R̂2,H) ∋ (ξ, (α, θ)) ↦ eα (
cos(θ) sin(θ)
− sin(θ) cos(θ))

T

.ξ (5.110)

on R̂2 and set ξ0 ∶= (
1
0), then

σ−1(α, θ) ∶= eα (
cos(θ) sin(θ)
− sin(θ) cos(θ))

T

ξ0

= (
eα cos(θ) −eα sin(θ)
eα sin(θ) eα cos(θ) )(

1
0)

= (
eα cos(θ)
eα sin(θ))

(5.111)

and we have recovered the diffeomorphism.
The Jacobian and its transposed inverse are given by

Jσ(ξ1, ξ2) =
⎛

⎝

ξ1
ξ2

1+ξ2
2

ξ2
ξ2

1+ξ2
2

−
ξ2

ξ2
1+ξ2

2

ξ1
ξ2

1+ξ2
2

⎞

⎠
Ô⇒

−1
2πiJσ(ξ1, ξ2) =

⎛
⎜
⎝

[
̂̃A1 , ̂̃B1 ] [

̂̃A1 , ̂̃B2 ]

[
̂̃A2 , ̂̃B1 ] [

̂̃A2 , ̂̃B2 ]

⎞
⎟
⎠

(5.112)

and

J−Tσ (ξ1, ξ2) = (
ξ1 ξ2
−ξ2 ξ1

) Ô⇒
−1
2πiJ

−T
σ (ξ1, ξ2) = (

[ Â1 , B̂1 ] [ Â1 , B̂2 ]

[ Â2 , B̂1 ] [ Â2 , B̂2 ]
) (5.113)

Thus, the spectral cotangent lift is

Σ(ξ;x) =(σ(ξ);J−Tσ (ξ)x) (5.114)
=(log(

√
ξ2

1 + ξ
2
2),atan( ξ2

ξ1
); ξ1x1 + ξ2x2, ξ2x1 − ξ1x2). (5.115)

From this, we find that the Hamiltonians

Ai(ξ;x) ∶= (J−Tσ (ξ)x)i and Bj(ξ;x) ∶= σj(ξ), (5.116)

are

A1 ∶= ξ1x1 + ξ2x2 and A2 ∶= ξ2x1 − ξ1x2 (5.117)
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and

B1 ∶= log(
√
ξ2

1 + ξ
2
2) and B2 ∶= atan( ξ2

ξ1
), (5.118)

where the latter induce the warped translations and are thus only interesting for the
warped Gabor case. The former two Hamiltonians induce the Hamiltonian vector
fields

XA1 = [ξ1∂ξ1 + ξ2∂ξ2] − [x1∂x1 + x2∂x2] (5.119)

and

XA2 = [ξ1∂ξ2 − ξ2∂ξ1] + [x1∂x2 − x2∂x1] , (5.120)

where the first is an infinitesimal symplectic flow, circular symmetric “away from
the origin” for the ξ coordinates and circular symmetric towards the origin in x

coordinates. The second induces a rotation around the origin in both the x and ξ

coordinates. This is in accordance with the expectations, since this is essentially
why this spectral diffeomorphism is interesting and leads to the SIM(2)-transform,
which will be defined below.

But before doing so, by quantizing the Hamiltonians, using the symmetric
quantization rule, we get

ξ1x1 + ξ2x2 = A
1 z→ Â1 = 1

2 [(ξ1
−1
2πi∂ξ1 +

−1
2πi∂ξ1ξ1) + (ξ2

−1
2πi∂ξ2 +

−1
2πi∂ξ2ξ2)]

= − 1
2πi [(

1
2 + ξ1∂ξ1) + (

1
2 + ξ2∂ξ2)]

(5.121)

and

ξ2x1 − ξ1x2 = A
2 z→ Â2 = 1

2 [(ξ2
−1
2πi∂ξ1 +

−1
2πi∂ξ1ξ2) − (ξ1

−1
2πi∂ξ2 +

−1
2πi∂ξ2ξ1)]

= − 1
2πi [ξ2∂ξ1 − ξ1∂ξ2] ,

(5.122)

where Â1, represented on the Fourier domain, is the infinitesimal generator of
unitary dilation in two dimensions,

e−2πiÂ1α = e
((1

2+ξ1∂ξ1)+(
1
2+ξ2∂ξ2))α, (5.123)

which induces a two-dimensional unitary dilation on Sσ. The Hamiltonian Â2

generates rotation around the origin, that is,

e−2πiÂ2θ = e(ξ2∂ξ1−ξ1∂ξ2)θ, (5.124)

is unitary on FSσ and rotates the Fourier domain around the origin.
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Again, this is what we expected and proceed towards the definition of the
associated spectral quantum frames.

The associated corresponding operator,

Wσpol
∶ L2(dom(σpol)) → L2 (R × (−π/2, π/2), dα dθ) ∶= L2(im(σpol)), (5.125)

on the Fourier domain, acts as

(Wσpol
f̂)(α, θ) =

√
dλ(σ−1

pol(α, θ))

dα dθ f̂(σ−1
pol(α, θ))

=

√

∣det(Jσ−1
pol
)(α, θ)∣ ⋅ f̂(σ−1

pol(α, θ))

= eαf̂(eα cos θ, eα sin θ),

(5.126)

and its pendant on the space of admissible windows is

W̃σpol
∶

⎧⎪⎪
⎨
⎪⎪⎩

Aσpol
→ L2(im(σpol))

ψ ↦ ψ̂(eα cos θ, eα sin θ),
(5.127)

where the equalities hold almost everywhere. Conjugating a translation with this
warping operator leads to the associated spectral dilation operator

(
̂̃
D
σpol

(α,θ)f̂)(x, y) = f̂ (e
αRθ(x, y)) , (5.128)

where Rθ is the two-dimensional rotation in the Fourier plane. We already know
that to this spectral warp is assigned a spectral frame, so the remaining mystery
is its coherent state map. Composing with one of the translation operators and
conjugating with the Fourier transform leads to

π̃σpol(β1, β2;α, θ) ∶= Tβ⃗D̃
σpol

(α,θ), (5.129)

for standard translation and

π̃ ○Σpol(β1, β2;α, θ) ∶= T
σpol

β⃗
D̃
σpol

(α,θ), (5.130)

for the warped translation, which gives the following.

Definition 5.18 (The SIM(2) transform). Let f ∈ Sσpol
be real-valued and ψ ∈ Aσpol

,
then

f ↦ (π
σpol

ψ f)(β⃗, α, θ)

=∬
R2
e−2πi⟨ ξ⃗ , β⃗ ⟩ψ̂ (eα(ξ1 cos θ − ξ2 sin θ), eα(ξ2 cos θ + ξ1 sin θ))

× f̂(ξ1, ξ2) dξ1 dξ2 (5.131)

=∬
R2
e−2αψ (e−α((x − β1) cos θ − (y − β2) sin θ), eα((y − β2) cos θ + (x − β1) sin θ))

× f(x, y) dx dy

is the SIM(2) transform. ◆
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Definition 5.19 (Polar-warped STFT in 2D). Let f ∈ Aσpol
and ψ ∈ Aσpol

, then

f ↦ ⟨ T̃
σpol

b⃗
D̃
σpol
α ψ , f ⟩ = ∬

R2
e2πi⟨ α⃗ , x⃗−b⃗ ⟩ψ̃ (x⃗ − b⃗) f̃(x) dx, (5.132)

with ψ̃ ∶= Wσpol
ψ and f̃ ∶= Wσpol

f , is the polar-warped Short-Time Fourier transform
in 2D. ◆

Localization

Again, the notions of localization differ, the Jacobian is non-diagonal and thus we
cannot expect to have perfect equalizers, given as tensor-products of any lower-
dimensional sub-solutions. Therefore, the general principle applies and the optimal
waveform, for the principle of optimal alignment, has to fulfill the following system
of differential equations, with ξ = (x, y), reading

⎛

⎝

∂ψ̂
∂x
∂ψ̂
∂y

⎞

⎠
= −2π (

x
x2+y2 −

y
x2+y2

y
x2+y2

x
x2+y2

)(
(µxx − µxβx + iαx)ψ̂

(µyy − µyβy + iαy)ψ̂
) . (5.133)

Unfortunately, the domain is not simply-connected, as it is the punctured plane
R2/ {0}, so there is no guarantee for a solution.

Hoping for the best, however, it is easy to see that choosing µ ∶= µx = −µy, we
get

⎛

⎝

∂ψ̂
∂x
∂ψ̂
∂y

⎞

⎠
= −2πµ(

x
x2+y2

y
x2+y2

y
x2+y2 −

x
x2+y2
)(
(x − βx)ψ̂

(y − βy)ψ̂
) − 2πi(

x
x2+y2

y
x2+y2

y
x2+y2 −

x
x2+y2
)(
αxψ̂

αyψ̂
) (5.134)

that is, the weighted Jacobian becomes symmetric, and thus the general principle
applies. Setting µx = −µy, αx = αy = 0, and βx = 1/2, βy = 0, leading to a solution,
centered at the point (0,1/2), this system is solved by

ψ̂(ξ) = e
−2π(∫ µ

x2+y2

x2+y2 dx+∫ µ
xy−yx
x2+y2 dy)

e
+2πµ1

2 (∫
x

x2+y2 dx+∫
y

x2+y2 dy)

= e
−2π(∫ µ

x2+y2

x2+y2 dx+∫ µ
xy−yx
x2+y2 dy)

e2πµ log(
√
x2+y2)

= Ce−2πµx
√
x2 + y2

2πµ
,

(5.135)

respectively its counterpart

f̂(ξ) = 1√
x2+y2Ce

−2πµx
√
x2 + y2

2πµ
, (5.136)

on Sσpol
, which cannot be taken seriously as a reasonable waveform for doing signal

analysis in two-dimensions, so one should stick to partial equalizing waveforms.
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After setting the constants to zero - which is legitimate since the spectra of the
operators are the full line -, the system of differential equations for the principle of
optimal concentration is

⎛

⎝

∂f̂
∂x
∂f̂
∂y

⎞

⎠
= (
−2πµx log(

√
x2 + y2)f̂

−2πµy atan ( yx)f̂
) , (5.137)

which, for µx = −µy, is solved by the waveform

f̂(ξ) ∶= e−2π(µx ∫ log(
√
x2+y2) dx+µy ∫ atan( yx ) dy)

= Ce
−2πµx(x2 log(x2+y2)+y atan(xy )−x)e−2πµy(−x2 log(x2+y2)+y atan( yx ))

= Ce−2π(µx−µy)(x2 log(x2+y2))e2πµxxe
−2πy(µx atan(xy )+µy atan( yx ))

= Ce−2πµ(x log(x2+y2)−x)e
−2πyµ(atan(xy )−atan( yx ))

(5.138)

respectively its admissible counterpart

ψ̂(ξ) =
√
x2 + y2 ⋅Ce−2πµ(x log(x2+y2)−x)e

−2πyµ(atan(xy )−atan( yx )) (5.139)

on Aσpol
, which again does not make sense, this time because it does not solve

the associated system of differential equations, due to the space being not simply-
connected.

Regarding the individual equalizers, we note that

∑
n

∂pn (
σ−1

n

∂σi
) = ∑

n

∂pn ((J
−T )in) = (

2
0) . (5.140)

Thus, we get the following equalizing waveforms for the principle of optimal
alignment:

ψ̂1,1(ξ) = Ce
−2πµ ∫ xdσ1e2π(µβ−iα)σ1e−

1
2 ∫ 2dσ1

= Ce−2πµ ∫ xdσ1e2π(µβ−iα)σ1e−σ1

= C
√
x2 + y2e−2πµ(x log(

√
x2+y2)−y atan( yx )+x)e2π(µβ−iα) log(

√
x2+y2) (5.141)

ψ̂1,2(ξ) = C
√
x2 + y2e

−2πµ(y log(
√
x2+y2)−xatan(xy )+y)e2π(µβ−iα) log(

√
x2+y2) (5.142)

ψ̂2,1(ξ) = Ce
−2πµ ∫ xdσ2e2π(µβ−iα)(atan(y/x))

= Ce−2πµ(xatan( yx )−y log(
√
x2+y2))e2π(µβ−iα)(atan(y/x)) (5.143)

ψ̂2,2(ξ) = Ce
−2πµ ∫ ydσ2e2π(µβ−iα)(atan(y/x))

= Ce
−2πµ(−y atan(xy )+x log(

√
x2+y2))

e2π(µβ−iα)(atan(y/x)), (5.144)
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all on Sσ and the usual alterations apply to find the associated functions on Sσ.
For the principle of optimal concentration, we jump again straight to the

formulas:

f̂1,1(x, y) = Ce
−2πµ ∫ log

√
y2+x2 dxe2πx(µα−iβ)

= Ce−2πµ(x(log
√
y2+x2−1)+y atan(x/y))e2πx(µα−iβ) (5.145)

f̂1,2(x, y) = Ce
−2πµ ∫ atan(y/x) dxe2πx(µα−iβ)

= Ce−2πµ(y log
√
y2+x2+xatan(y/x))e2πx(µα−iβ) (5.146)

f̂2,1(x, y) = Ce
−2πµ ∫ log

√
y2+x2 dye2πy(µα−iβ)

= Ce−2πµ(y(log
√
y2+x2−1)+y atan(x/y))e2πy(µα−iβ) (5.147)

f̂2,2(x, y) = Ce
−2πµ ∫ atan(y/x) dye2πy(µα−iβ)

= Ce−2πµ(−x log
√
y2+x2+y atan(y/x))e2πx(µα−iβ) . (5.148)

◆

The Log-Shear Diffeomorphism

Instead of the very natural polar coordinates, we may introduce scale-shear coordi-
nates to describe the Fourier domain; of course, again only for half-space.

Example 5.9 (Shear Coordinates). As before, we wish to be able to mask out
certain features with specific “directions” and size resp. scale. Note that the term
direction should now be taken with a grain of salt, as its “directed-ness” is a little
biased and not as directly transferable to, say, some angle θ as above. This should
become more clear below.

Again, we resort to exponential scaling and define

σsh(x, y) = (log(x), yx) and σ−1
sh(α, s) = (e

α, eαs) . (5.149)

This is the third case to which Theorem 5.2 (Spectral Diffeomorphisms for Dual
Orbits) applies. Let H ∶= R ×R, acting as

(R̂2,H) ∋ (ξ, (α, s)) ↦ eα (
1 s

1)
T

.ξ (5.150)
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on R̂2 and set again to ξ0 ∶= (
1
0), then

σ−1(α, θ) ∶= eα (
1 s

1)
T

ξ0

= (
eα

eαs eα
)(

1
0)

= (
eα

eαs
)

(5.151)

and we have recovered the diffeomorphism.
Apart from the logarithmic scaling, this diffeomorphism associates lines, parallel

to the α-axis in im(σsh), to lines through the origin in the original Fourier domain.
To illustrate this, we define, as before, a rectangular window

Ψ(x, y) ∶= φ (log2(x)) ⋅ η (y/x)

with

φ(α) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 , −1 < α ≤ 0
0 , else

and η(s) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 , −1
2 < s ≤

1
2

0 , else
.

Shifting this function in the image-domain, im(σsh), corresponds to scaled shearing
in Cartesian coordinates. An illustration of this is given by Figure 5.15, again
exemplary for six shifting values, plotted in various colors for identification of
corresponding pairs. For comparison with Figure 5.14, the same shifting values as
well as colors have been chosen.

The Jacobian and its transposed inverse are given by

Jσ(ξ1, ξ2) = (

1
ξ1

0
−
ξ2
ξ2

1

1
ξ1

) Ô⇒
−1
2πiJσ(ξ1, ξ2) =

⎛
⎜
⎝

[
̂̃A1 , ̂̃B1 ] [

̂̃A1 , ̂̃B2 ]

[
̂̃A2 , ̂̃B1 ] [

̂̃A2 , ̂̃B2 ]

⎞
⎟
⎠

(5.152)

and

J−Tσ (ξ1, ξ2) = (
ξ1 ξ2
0 ξ1

) Ô⇒
−1
2πiJ

−T
σ (ξ1, ξ2) = (

[ Â1 , B̂1 ] [ Â1 , B̂2 ]

[ Â2 , B̂1 ] [ Â2 , B̂2 ]
) . (5.153)

Thus, the spectral cotangent lift is

Σ(x; ξ) =(σsh(ξ);J−Tσsh
(ξ)x)

=(log(ξ1),
ξ2
ξ1

; ξ1x1 + ξ2x2, ξ1x2). (5.154)
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Figure 5.15: Translation vs. Non-Parabolic Shear-Scaling

From this, we find that the Hamiltonians

Ai(x; ξ) ∶= (J−Tσ (ξ)x)i and Bj(x; ξ) ∶= σj(ξ), (5.155)

are

A1(x; ξ) ∶= ξ1x1 + ξ2x2 and A2(x; ξ) ∶= ξ1x2 (5.156)

and

B1(x; ξ) ∶= log(ξ1) and B2(x; ξ) ∶= ξ2
ξ1
, (5.157)

where, as in the polar case, the latter induce the warped translations and are thus
only interesting for the warped Gabor case. The former two Hamiltonians induce
the Hamiltonian vector fields

XA1 = [ξ1∂ξ1 + ξ2∂ξ2] − [x1∂x1 + x2∂x2] (5.158)

and

XA2 = ξ1∂ξ2 − x2∂x1 , (5.159)

where the first is again a infinitesimal symplectic flow, circular symmetric “away
from the origin” for the ξ coordinates and circular symmetric “towards the origin”
in x coordinates. The second induces a shear in negative x1 direction for x and
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5.2. Explicit Phase Space Decompositions

positive ξ1 direction for the ξ coordinates. Quantizing the Hamiltonians, using the
symmetric quantization rule, we get
ξ1x1 + ξ2x2 = A

1 z→ Â1 = 1
2 [(ξ1

−1
2πi∂ξ1 +

−1
2πi∂ξ1ξ1) + (ξ2

−1
2πi∂ξ2 +

−1
2πi∂ξ2ξ2)]

= − 1
2πi [(

1
2 + ξ1∂ξ1) + (

1
2 + ξ2∂ξ2)]

(5.160)

and

ξ1x2 = A
2 z→ Â2 = − 1

2πiξ1∂ξ2 , (5.161)

where Â1, represented on the Fourier domain, is as before the infinitesimal generator
of unitary dilation in two dimensions

e−2πiÂ1α = e
((1

2+ξ1∂ξ1)+(
1
2+ξ2∂ξ2))α, (5.162)

inducing a two-dimensional unitary dilation on Sσsh
, and the Hamiltonian Â2

generates a shear, that is,

e−2πiÂ2s = eξ1∂ξ2s, (5.163)

in positive ξ1 direction and is unitary on FSσsh
.

Again, the map σsh ↦ W̃σsh
lifts the diffeomorphism to the level of functions,

with the associated operator

(W̃σsh
f)(α, s) ∶= f(σ−1

sh(α, s)) = f(e
α, eαs), (5.164)

to be read in the sense of almost everywhere equivalence. To define the action of the
spectral dilation operator - induced by the Hamiltonians above -, we write σ ∶= σsh
and calculate

σ−1(σ(x, y) + (a, s)) ∶= σ−1 (log(x) + a, y
x
+ s)

= σ−1 (log(xea), y + xs
x
)

= (eax, eax
y + xs

x
)

= (eax, ea(y + xs)) ,

(5.165)

which gives us the associated spectral dilation operator

(
̂̃
D
σsh

(α,s)ψ̂)(x, y) = ψ̂(e
αx, eα(y + sx)). (5.166)

As usual, we define the operator πσsh(β⃗, α, s) ∶= Tβ⃗F
∗ ̂̃Dσsh

(α,s)F and for some ψ ∈ Aσsh
,

we get a transform

πσsh

ψ ∶ Sσsh
→ L2(R2 × im(σsh)), f ↦ ⟨πσsh(β⃗, α, s)ψ , f ⟩ , (5.167)

which we will baptize as the non-parabolic shearlet transform, as there does not
seem to be a definition in the literature. Confer, e.g, [10] for a treatment of the
parabolic version.
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Definition 5.20 (Non-Parabolic Shearlet Transform). Let f ∈ Sσsh
be real-valued

and ψ ∈ Aσsh
. Let moreover

σsh(x, y) ∶= (log(x), y/x)

be the shear-diffeomorphism. Then,

f ↦ (πσsh

ψ f) (β⃗, α, s)

∶= ⟨Tβ⃗D̃
σsh
α,sψ , f ⟩

=∬
dom(σsh)

e−2πi⟨ ξ⃗ , β⃗ ⟩ψ̂ (eαξ1, eα(ξ2 + sξ1))f̂(ξ1, ξ2) dξ1 dξ2

(5.168)

is the non-parabolic shearlet transform. ◆

Definition 5.21 (Non-Parabolic Shear-warped STFT in 2D). Let f ∈ Aσsh
and

ψ ∈ Aσsh
, then

f ↦ ⟨ T̃ σsh

b⃗
D̃σsh
α,sψ , f ⟩

=∬
dom(σsh)

e−2πi⟨ σsh(ξ⃗) , β⃗ ⟩ψ̂ (eαξ1, eα(ξ2 + sξ1))f̂(ξ1, ξ2) dσsh(ξ1, ξ2)

=∬
R2
e2πi⟨ α⃗ , x⃗−b⃗ ⟩ψ̃ (x⃗ − b⃗) f̃(x) dx,

(5.169)

with ψ̃ ∶= Wσsh
ψ and f̃ ∶= Wσsh

f , is the non-parabolic shear-warped Short-Time
Fourier transform in 2D. ◆

What differentiates this transform from the standard (parabolic) shearlet trans-
form, as found in the literature, is the commutativity of the shearing and scaling
translations, along with some other minor adjustments, arising from this difference.
In the next section, these minor adjustments will be made precise and finally lead
to the parabolic shearlet transform.

Localization

Again, the notions of localization differ, the Jacobian is non-diagonal and thus we
cannot expect to have perfect equalizers, given as tensor-products of any lower-
dimensional sub-solutions. Therefore, the general principle applies and the optimal
waveform, for the principle of optimal alignment, has to fulfill the following system
of differential equations, with ξ = (x, y), reading

⎛

⎝

∂ψ̂
∂x
∂ψ̂
∂y

⎞

⎠
= −2π (

1
x −

y
x2

0 1
x

)(
(µxx − µxβx + iαx)ψ̂

(µyy − µyβy + iαy)ψ̂
) . (5.170)

165



5.2. Explicit Phase Space Decompositions

Unfortunately, the Jacobian cannot be made symmetric and thus the admissible

waveform

ψ̂(ξ) ∶= e−2π(∫ µx−µy(
y
x )

2 dx+µy ∫
y
x dy)

= Ce−2π(µxx+µy
y2

x +µy
y2

2x )

= Ce−2πµxxe−2π 3
2µy

y2

x ,

(5.171)

respectively its counterpart

f̂(ξ) = 1
xCe

−2πµxxe−2π 3
2µy

y2

x (5.172)

on Sσsh
are no explicit equalizing waveform for the uncertainty principle and the

partial equalizers are the way to go.

Again, the spectra of the operators are the full line and after setting the

constants to zero, the system of differential equations, for the principle of optimal

concentration, reads

⎛

⎝

∂f̂
∂x
∂f̂
∂y

⎞

⎠
= (
−2πµx log(x)f̂
−2πµy yx f̂

) , (5.173)

which cannot be symmetrized also and thus the waveform

f̂(ξ) ∶= e−2π(µx ∫ log(x) dx+µy ∫
y
x dy)

= Ce−2πµx(x log(x)+x)e−2πµy
y2

2x
(5.174)

respectively its admissible counterpart

ψ̂(ξ) = xC ⋅ e−2πµx(x log(x)+x)e−πµy
y2

x (5.175)

on Aσsh
are again no solutions and partial equalizers are the next best thing.

For the individual uncertainty principles, we have, as in the polar case, that

∑
n

∂pn (
σ−1

n

∂σi
) = ∑

n

∂pn ((J
−T )in) . = (

2
0) . (5.176)

Thus, we get the following equalizing waveforms for the principle of optimal

166



5. Application

alignment:

ψ̂1,1(x, y) = Ce
−2πµ ∫ xd loge2π(µβ−iα) loge−

1
2 ∫ 2d log

= Ce−2πµxe2π(µβ−iα) log(x)e− log ∣x∣

= C ∣x∣
−1
e−2πµxx2π(µβ−iα) (5.177)

ψ̂1,2(x, y) = Ce
−2πµ ∫ yd loge2π(µβ−iα) loge−

1
2 ∫ 2d log

= Ce−2πµy log(x)e2π(µβ−iα) log(x)e− log ∣x∣

= C ∣x∣
−1
e−2πµy log(x)x2π(µβ−iα) (5.178)

ψ̂2,1(x, y) = Ce
−2πµ ∫ xd(y/x)e2π(µβ−iα)(y/x)

= Ce−2πµ(∫ x
−y
x2 dx+∫ x

1
x dy)e2π(µβ−iα)(y/x)

= Ce−2πµ(−y log ∣x∣+y)e2π(µβ−iα)(y/x) (5.179)

ψ̂2,2(x, y) = Ce
−2πµ ∫ yd(y/x)e2π(µβ−iα)(y/x)

= Ce−2πµ(∫ y
−y
x2 dx+∫ y

1
x dy)e2π(µβ−iα)(y/x)

= Ce−2πµ(3y2

2x )e2π(µβ−iα)(y/x), (5.180)

all on Sσ and the map ι takes these to their admissible pendants.
For the principle of optimal concentration, we again shall be content with

presenting the formulas for the equalizing waveforms on Sσ:

f̂1,1(x, y) = Ce
−2πµ ∫ logx dxe2πx(µα−iβ)

= Ce−2πµ(x logx−x)e2πx(µα−iβ) (5.181)

f̂1,2(x, y) = Ce
−2πµ ∫

y
x dxe2πx(µα−iβ)

= Ce−2πµy log(x)e2πx(µα−iβ) (5.182)

f̂2,1(x, y) = Ce
−2πµ ∫ logx dye2πy(µα−iβ)

= Ce−2πµy logxe2πy(µα−iβ) (5.183)

f̂2,2(x, y) = Ce
−2πµ ∫

y
x dye2πy(µα−iβ)

= Ce−2πµy
2

x e2πy(µα−iβ). (5.184)

◆
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The Log-Hyperbolic Diffeomorphism

Before heading to a final non-abelian generalization, one last abelian application
shall be discussed. This time, with a more physical background.

Example 5.10 (Hyperbolic Coordinates). In particle physics, a (free) particle of
mass m is interpreted as an elementary excitation of a (tensor-valued) relativistic
quantum field, with each component fulfilling the Klein-Gordon equation

(−h̵2∂2
t + h̵

2c2
∑
k

∂2
k)ψ(t, x) − (mc

2)2ψ(t, x) = 0, (t, x) ∈ R1+3,

with 1 + 3 meaning that we have 1 temporal and 3 spatial variables, respectively

(−( 1
2π∂t)

2 +∑
k

( 1
2π∂k)

2)ψ −m2ψ = 0,

if we set h = c = 1 and let the variables implicit [60, 69].
While we will not need and further discuss the Klein-Gordon equation, it is

related to - and, via quantization, can in fact be derived from - the relativistic
energy-momentum relation

E2 − c2p2 = (mc2)2

respectively

±
√
ν2 − k2 =m,

if we use E = hν, p = hk and finally set h = c = 1. This relation defines higher-
dimensional hyperbolas - the mass-shells - in the energy-momentum (E,px, py, pz),
respectively the frequency-wavenumber (ν, kx, ky, kz) domain and in fact tells us
that a relativistic quantum field of mass m, and thus its quanta, the particles, are
constrained to have their Fourier-domain support restricted to this mass-hyperbola.

Remark 5.22. Note that for a particle, in 1+3-dimensional spacetime, having spin
and various charges, there are more degrees of freedom that need to be considered
and the particle lives in a tensor product space, where only the spatiotemporal
degrees of freedom are determined by the Klein-Gordon equation and the other
factors are representation spaces of various Lie groups (resp. algebras), like SU(2)
for isospin and SU(3) for the color-charge of quarks or

GSM ∶= SU(3) ⊗ SU(2) ⊗U(1)

for the full gauge group of the standard model [76, 88]. ◆
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Leaving the physical interpretation aside and restricting to 1+1 dimensions, we
will decompose the two-dimensional Fourier domain into hyperbolas via

σhyp(x, y) ∶= (log (
√
y2 − x2) ,artanh(xy ))

and

σ−1
hyp(m,θ) ∶= (e

m sinh(θ), em cosh(θ)) ,

where θ is the hyperbolic angle - sometimes referred to as rapidity in special relativity
- and sinh, cosh and artanh are the hyperbolic sine, the hyperbolic cosine and the
area hyperbolic tangent, respectively.

To illustrate this, we again define the indicator function,

Ψ(x, y) ∶= φ (log2 (
√
y2 − x2)) ⋅ η (artanh(x/y))

with

φ(m) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 , −1 <m ≤ 0
0 , else

and η(θ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 , −1
2 < θ ≤

1
2

0 , else
.

Translating in the image-domain, im(σhyp), and pulling it back to the Cartesian
coordinates in the Fourier domain leads to a hyperbolic rotation along with a scaling.
This is shown in Figure 5.16 for six exemplary shifting values, plotted in various
colors for identification of corresponding pairs.

The coordinates and the arising diffeomorphism do correspond to the affine
Poincaré group Paff(1, 1) ∶= R1+1⋊(R×SO(1, 1)), where R1+1 acts via spatiotemporal
translations on itself, and R and SO(1,1) act via (exponential) scaling and
hyperbolic rotations (Lorentz boosts), respectively [1]. This is the fourth case
to which Theorem 5.2 (Spectral Diffeomorphisms for Dual Orbits) applies. To see
this, let H ∶= R × SO(1,1), acting as

(R̂2,H) ∋ (ξ, (m,θ)) ↦ em (
cosh(θ) sinh(θ)
sinh(θ) cosh(θ))

T

.ξ (5.185)

on R̂2 and set ξ0 ∶= (
0
1), then

σ−1(m,θ) ∶= em (
cosh(θ) sinh(θ)
sinh(θ) cosh(θ))

T

ξ0

= (
em cosh(θ) em sinh(θ)
em sinh(θ) em cosh(θ))(

0
1)

= (
em sinh(θ)
em cosh(θ))

(5.186)
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Figure 5.16: Translation vs. Hyperbolic-Scaling

and we have recovered the diffeomorphism.
The Jacobian and its transposed inverse are given by

Jσ(ξ1, ξ2) =
⎛

⎝

−
ξ1

ξ2
2−ξ2

1

ξ2
ξ2

2−ξ2
1

ξ2
ξ2

2−ξ2
1
−

ξ1
ξ2

2−ξ2
1

⎞

⎠
Ô⇒

−1
2πiJσ =

⎛
⎜
⎝

[
̂̃A1 , ̂̃B1 ] [

̂̃A1 , ̂̃B2 ]

[
̂̃A2 , ̂̃B1 ] [

̂̃A2 , ̂̃B2 ]

⎞
⎟
⎠

(5.187)

and

J−Tσ (ξ1, ξ2) = (
ξ1 ξ2
ξ2 ξ1

) Ô⇒
−1
2πiJ

−T
σ = (

[ Â1 , B̂1 ] [ Â1 , B̂2 ]

[ Â2 , B̂1 ] [ Â2 , B̂2 ]
) (5.188)

Thus, the spectral cotangent lift is

Σ(ξ;x) =(σ(ξ);J−Tσ (ξ)x) (5.189)
=(log(

√
ξ2

2 − ξ
2
1),artanh( ξ1

ξ2
); ξ1x1 + ξ2x2, ξ2x1 + ξ1x2). (5.190)

From this, we find that the Hamiltonians

Ai(ξ;x) ∶= (J−Tσ (ξ)x)i and Bj(ξ;x) ∶= σj(ξ), (5.191)

are

A1 ∶= ξ1x1 + ξ2x2 and A2 ∶= ξ2x1 + ξ1x2 (5.192)

and

B1 ∶= log(
√
ξ2

2 − ξ
2
1) and B2 ∶= artanh( ξ1

ξ2
), (5.193)
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where the latter induce the warped translations and are thus only interesting for the
warped Gabor case. The former two Hamiltonians induce the Hamiltonian vector
fields

XA1 = [ξ1∂ξ1 + ξ2∂ξ2] − [x1∂x1 + x2∂x2] (5.194)

and

XA2 = [ξ1∂ξ2 + ξ2∂ξ1] + [x1∂x2 + x2∂x1] , (5.195)

where the first is an infinitesimal symplectic flow, circular symmetric “away from
the origin” for the ξ coordinates and circular symmetric towards the origin in
x coordinates. The second induces a hyperbolic rotation in both the x and ξ

coordinates.
Quantizing the Hamiltonians, using the symmetric quantization rule, we get

ξ1x1 + ξ2x2 = A
1 z→ Â1 = 1

2 [(ξ1
−1
2πi∂ξ1 +

−1
2πi∂ξ1ξ1) + (ξ2

−1
2πi∂ξ2 +

−1
2πi∂ξ2ξ2)]

= − 1
2πi [(

1
2 + ξ1∂ξ1) + (

1
2 + ξ2∂ξ2)]

(5.196)

and
ξ2x1 + ξ1x2 = A

2 z→ Â2 = 1
2 [(ξ2

−1
2πi∂ξ1 +

−1
2πi∂ξ1ξ2) + (ξ1

−1
2πi∂ξ2 +

−1
2πi∂ξ2ξ1)]

= − 1
2πi [ξ2∂ξ1 + ξ1∂ξ2] ,

(5.197)

where Â1, represented on the Fourier domain, is again the infinitesimal generator of
unitary dilation in two dimensions,

e−2πiÂ1m = e
((1

2+ξ1∂ξ1)+(
1
2+ξ2∂ξ2))m, (5.198)

which induces a two-dimensional unitary dilation on Sσ. The Hamiltonian Â2

generates a hyperbolic rotation, that is,

e−2πiÂ2θ = e(ξ2∂ξ1+ξ1∂ξ2)θ, (5.199)

and is unitary on FSσ.
The associated corresponding warping operator,

Wσhyp
∶ L2(dom(σhyp)) → L2(im(σhyp)), (5.200)

on the Fourier domain, acts as

(Wσhyp
f̂)(m,θ) =

√
dλ(σ−1

hyp(m,θ))

dm dθ f̂(σ−1
hyp(m,θ))

=

√

∣det(Jσ−1
hyp
)(m,θ)∣ ⋅ f̂(σ−1

hyp(m,θ))

= emf̂(em sinh θ, em cosh θ),

(5.201)
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and its pendant on the space of admissible windows is

W̃σpol
∶

⎧⎪⎪
⎨
⎪⎪⎩

Aσhyp
→ L2(im(σhyp))

ψ ↦ ψ̂(em sinh θ, em cosh θ),
(5.202)

where the equalities hold almost everywhere. Conjugating a translation with this
warping operator leads to the associated spectral dilation operator

(
̂̃
D
σhyp

(m,θ)f̂)(x, y) = f̂ (e
mHθ(x, y)) , (5.203)

where Hθ ∶= (
cosh(θ) sinh(θ)
sinh(θ) cosh(θ)) is the two-dimensional hyperbolic rotation in the

Fourier plane. Composing with one of the translation operators and conjugating
with the Fourier transform leads to

π̃σhyp(β1, β2;m,θ) ∶= Tβ⃗D̃
σhyp

(m,θ), (5.204)

for standard translation and

π̃ ○Σhyp(β1, β2;m,θ) ∶= T
σhyp

β⃗
D̃
σhyp

(m,θ), (5.205)

for the warped translation, which gives the following.

Definition 5.23 (The SIM(1,1) transform). Let f ∈ Sσhyp
be real-valued and

ψ ∈ Aσhyp
, then

f ↦ (π
σhyp

ψ f)(β⃗,m, θ)

=∬
R2
e−2πi⟨ ξ⃗ , β⃗ ⟩ψ̂ (em(ξ1 cosh θ + ξ2 sinh θ), em(ξ2 cosh θ + ξ1 sinh θ))

× f̂(ξ1, ξ2) dξ1 dξ2 (5.206)

=∬
R2
e−2mf(x, y)

× ψ (e−m((x − β1) cosh θ + (y − β2) sinh θ), em((y − β2) cosh θ + (x − β1) sinh θ))
× dx dy

is the SIM(1,1) transform. ◆

Definition 5.24 (Hyperbolic-warped STFT in 2D). Let f ∈ Aσhyp
and ψ ∈ Aσhyp

,
then

f ↦ ⟨ T̃
σhyp

b⃗
D̃
σhyp
α ψ , f ⟩ = ∬

R2
e2πi⟨ α⃗ , x⃗−b⃗ ⟩ψ̃ (x⃗ − b⃗) f̃(x) dx, (5.207)

with ψ̃ ∶= Wσhyp
ψ and f̃ ∶= Wσhyp

f , is the hyperbolically-warped Short-Time Fourier
transform in 2D. ◆

172



5. Application

Localization

Again, the notions of localization differ, the Jacobian is non-diagonal and thus we
cannot expect to have perfect equalizers, given as tensor-products of any lower-
dimensional sub-solutions. Therefore, the general principle applies and the optimal
waveform, for the principle of optimal alignment, has to fulfill the following system
of differential equations, with ξ = (x, y), reading

⎛

⎝

∂ψ̂
∂x
∂ψ̂
∂y

⎞

⎠
= −2π (

− x
y2−x2

y
y2−x2

y
y2−x2 − x

y2−x2
)(
(µxx − µxβx + iαx)ψ̂

(µyy − µyβy + iαy)ψ̂
) . (5.208)

Again, the domain is not simply-connected.
Choosing µ ∶= µx = µy, we get

⎛

⎝

∂ψ̂
∂x
∂ψ̂
∂y

⎞

⎠
= −2πµ(

− x
y2−x2

y
y2−x2

y
y2−x2 − x

y2−x2
)(
(x − βx)ψ̂

(y − βy)ψ̂
) − 2πi(

− x
y2−x2

y
y2−x2

y
y2−x2 − x

y2−x2
)(
αxψ̂

αyψ̂
) (5.209)

and thus, the (weighted) Jacobian is again symmetric. Setting µx = µy = µ,
αx = αy = 0, and βx = 1/2, βy = 0, leading to a solution, centered at the point (0, 1/2),
this system is solved by

ψ̂(ξ) = e
−2π(∫ µ

y2−x2

y2−x2 dx+∫ µ
xy−yx
y2−x2 dy)

e2πµ log(
√
y2−x2)

= e−2π(∫ µ dx)e2πµ log(
√
y2−x2)

= Ce−2πµx
√
y2 − x2

2πµ
,

(5.210)

respectively its counterpart

f̂(ξ) = 1√
y2−x2Ce

−2πµx
√
y2 − x2

2πµ
, (5.211)

on Sσhyp
.

Again, after setting the constants to zero - which is legitimate since the spectra
of the operators are the full line -, the system of differential equations for the
principle of optimal concentration is

⎛

⎝

∂f̂
∂x
∂f̂
∂y

⎞

⎠
= (
−2πµx log(

√
y2 − y2)f̂

−2πµy artanh (xy )f̂
) , (5.212)

which, for µx = µy = µ, is solved by the waveform

f̂(ξ) ∶= e
−2π(µx ∫ log(

√
y2−x2) dx+µy ∫ artanh(xy ) dy)

= Ce
−2πµ(x log(

√
y2−x2)−x+y artanh(xy ))e

−2πµ(x log(
√
x2−y2)+y artanh(xy ))

= Ce
−2π(x(log(

√
y2−x2)+log(

√
x2−y2)−1)+2y artanh(xy ))

(5.213)
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respectively its admissible counterpart

ψ̂(ξ) =
√
y2 − x2 ⋅Ce

−2π(x(log(
√
y2−x2)+log(

√
x2−y2)−1)+2y artanh(xy )) (5.214)

on Aσhyp
.

As before, due to the form of the equalizers above, one should stick to the

individual equalizers, for which, again, we have

∑
n

∂pn (
σ−1

n

∂σi
) = ∑

n

∂pn ((J
−T )in) = (

2
0) . (5.215)

Thus, we get the following equalizing waveforms for the principle of optimal

alignment:

ψ̂1,1(ξ) = Ce
−2πµ ∫ xdσ1e2π(µβ−iα)σ1e−

1
2 ∫ 2dσ1

= Ce−2πµ ∫ xdσ1e2π(µβ−iα)σ1e−σ1

= C
√
y2 − x2e

−2πµ(x log(
√
y2−x2)−y artanh(xy )+x)e2π(µβ−iα) log(

√
y2−x2) (5.216)

ψ̂1,2(ξ) = C
√
x2 + y2e−2πµ(y log(

√
x2−y2)−xartanh( yx )+y)e2π(µβ−iα) log(

√
y2−x2) (5.217)

ψ̂2,1(ξ) = Ce
−2πµ ∫ xdσ2e2π(µβ−iα)(artanh(x/y))

= Ce−2πµ(xartanh( yx )−y log(
√
y2−x2))e2π(µβ−iα)(artanh(x/y)) (5.218)

ψ̂2,2(ξ) = Ce
−2πµ ∫ ydσ2e2π(µβ−iα)(artanh(x/y))

= Ce
−2πµ(−y artanh(xy )−x log(

√
y2−x2))

e2π(µβ−iα)(artanh(x/y)), (5.219)

all on Sσ and the usual alterations apply to find the associated functions on Sσ.

For the principle of optimal concentration, we jump again straight to the

174



5. Application

im(σsh)
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Figure 5.17: Parabolic Translation vs. Parabolic Shear-Scaling

formulas:

f̂1,1(x, y) = Ce
−2πµ ∫ log

√
y2−x2 dxe2πx(µα−iβ)

= Ce−2πµ(x(log
√
y2−x2−1)+y artanh(x/y))e2πx(µα−iβ) (5.220)

f̂1,2(x, y) = Ce
−2πµ ∫ artanh(x/y) dxe2πx(µα−iβ)

= Ce−2πµ(y log
√
y2−x2+xartanh(x/y))e2πx(µα−iβ) (5.221)

f̂2,1(x, y) = Ce
−2πµ ∫ log

√
y2−x2 dye2πy(µα−iβ)

= Ce−2πµ(y(log
√
y2−x2−1)+xartanh(y/x))e2πy(µα−iβ) (5.222)

f̂2,2(x, y) = Ce
−2πµ ∫ artanh(x/y) dye2πy(µα−iβ)

= Ce−2πµ(x log
√
x2−y2+y artanh(x/y))e2πx(µα−iβ) . (5.223)

◆

5.2.5 A Non-Abelian Generalization

Above, we noted that the (non-parabolic) shearlet transform has a pendant for which
the abelian translation in the warped domain is replaced by a non-commutative
one. In order for the arising integrals to be invariant as in the abelian case,
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5.2. Explicit Phase Space Decompositions

the warped domain needs to be equipped with a measure, invariant under this
non-commutative translation, but it is possible to take care of this, by lifting
the action to a unitary translation, having a normalizing constant, defined via a
Radon-Nikodym derivative. We shall only consider the two-dimensional case for
the shearlet transform, in which translation is defined as

λα′,s′ ∶ (α, s) ↦ (α + α
′, e−α

′/2(s + s′)). (5.224)

It is straight-forward to check that a composition with σsh and its inverse gives

(x, y) ↦ (eα
′
x, eα

′/2(y + xs′)) (5.225)

and lifting this action to a unitary operator gives

ψ ↦ e−α/4ψ ○ σ−1
sh ○ λα′,s′ ○ σsh. (5.226)

As in the non-parabolic case, we define a rectangular window

Ψ(x, y) ∶= φ (log2(x)) ⋅ η (y/x)

with

φ(α) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 , −1 < α ≤ 0
0 , else

and η(s) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 , −1
2 < s ≤

1
2

0 , else
,

to illustrate this. Parabolically shifting this function in the image-domain, im(σsh),
corresponds to parabolic scaled shearing in Cartesian coordinates. An illustration
of this is given by Figure 5.17, again exemplary for six shifting values, plotted in
various colors for identification of corresponding pairs.

The following characterizes the arising (parabolic) Shearlet Transform.

Theorem 5.25 (Parabolic Shearlet Transform). Let f ∈ Sσsh
be real-valued and

ψ ∈ Aσsh
. Let moreover

σsh(x, y) ∶= (log(x), y/x) (5.227)

be the shear-diffeomorphism. Let furthermore

λα′,s′ ∶ (α, s) ↦ (α + α
′, e−α

′/2(s + s′)) (5.228)

be non-abelian translation and let dνsh ∶= dαds denote the standard measure, with
dσ ∶= dνsh○σ denoting its pullback measure, Definition A.18 (Pullback of a measure),
to dom(σ).
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Then,

f ↦ ⟨ e−α/4ψα,s , f ⟩

=∬
dom(σsh)

e−2πi⟨ ξ⃗ , β⃗ ⟩e−α/4ψ̂ (σ−1(λα,s(σ(ξ))))f̂(ξ1, ξ2) dξ1 dξ2

=∬
dom(σsh)

e−2πi⟨ ξ⃗ , β⃗ ⟩e−α/4ψ̂ (eαξ1, eα/2(ξ2 + sξ1))f̂(ξ1, ξ2) dξ1 dξ2,

(5.229)

the parabolic shearlet transform, is a multiple of an isometry, that is,

∥⟨ e−α/4ψα,s , f ⟩∥
2
L2(R2×im(σ),dxdνsh)

= ∥ψ∥
2
Aσ
∥f∥

2
Sσ
. (5.230)

◆

Proof. Only the claim about its isometric property needs to be proven, as the rest
are definitions. Eventually dropping the integration domains to avoid clutter, we
have

∥⟨ e−α/4ψα,s , f ⟩∥
2
Hσ

∶=⨌
R2×im(σ)

∣⟨ e−α/4ψα,s , f ⟩∣
2 db dνsh

=⨌
R2×im(σ)

∫
dom(σ)

∫
dom(σ)

e−α/4ψ̂ (σ−1(λα,s(σ(ξ))))

×e−α/4ψ̂ (σ−1(λα,s(σ(ξ))))f̂(ξ)f̂(ξ
′)e−2πi⟨ ξ−ξ′ , b ⟩ dξ dξ′ db dνsh

=⨌ ∣e−α/4ψ̂ (σ−1(λα,s(σ(ξ))))∣
2
∣f̂(ξ)∣

2 dξ dνsh

=⨌ e−α/2 ∣ψ̂ (σ−1(log(x) + α, e−α/2( yx + s)))∣
2
∣f̂(ξ)∣

2 dξdαds

=⨌ e−α/2 ∣ψ̂ (σ−1(α, e−α/2s))∣
2
∣f̂(ξ)∣

2 dξdαds

=⨌ e−α/2 ∣ψ̂ (σ−1(α, s))∣
2
∣f̂(ξ)∣

2 dξe+α/2dαds

=⨌ ∣ψ̂ (σ−1(α, s))∣
2
∣f̂(ξ)∣

2 dξdαds

=∬ ∣ψ̂ (σ−1(α, s))∣
2 dαds∫ ∣f̂(ξ)∣

2 dξ

=∬ ∣ψ̂ (ξ)∣
2 dσ ∥f∥2Sσ

=∥ψ∥
2
Aσ
∥f∥

2
Sσ
,

(5.231)

which was the claim. ∎
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Milk is for babies. When you grow up,
you have to drink beer.

— Arnold Schwarzenegger

6
Termination

HEREAFTER, as the program of spectral diffeomorphisms and its
applications has been finally laid out, a short recapitulation of this
thesis’ main contents shall be presented.

Afterwards, to round out this monograph, a glance at possible extensions and
enhancements of this program are given.

6.1 Conclusion

In this thesis, a theory of so-called spectral diffeomorphism has been elaborated.
Starting from a diffeomorphism on the dual of the Euclidean space Rn, a spectral
cotangent lift assigns to this diffeomorphism a specific symplectomorphism on phase
space Rn × R̂n, to which in turn a canonical coordinate system is assigned. These
coordinates are used to define flows on phase space by means of which the phase
space picture of a prototype function is shifted along the coordinate lines, such that
each point of phase space is eventually reached by the shifted phase space picture
of the prototype function.

Since the uncertainty principle restricts the amount to which the phase space
picture of functions can be concentrated, with each such function is associated a
“phase space cell”. By integrating a signal against a prototype function, we get a
number, interpreted as a quantum of information of that very function, characterizing
the signal’s content within the associated phase space cell. Using these phase space
translates of such a probe, the notion of a quantum frame, associated with a classical
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frame in phase space is defined, by means of which a reservoir of interesting functions
may be decomposed and - using a weighting function in phase space - altered. Since
the phase space cells are images of symplectomorphism, the initial form of the phase
space cell, assigned to the template function, is of relevance.

To define these, two complementing uncertainty principles - the “duo ottimale”
-, associated with coordinate systems in phase space, are introduced, by means
of which the specific form of the phase space cell can be optimized. The two
principles are complementary in the sense that one of it - in this thesis referred
to as the principle of optimal alignment - measures the deviation from the chosen
coordinate lines and thus leads to waveforms, “snuggling” with the coordinate
lines. The other principle, the principle of optimal concentration, optimizes with
respect to the canonically conjugate coordinates and leads to more “concentrated”
waveforms. Both uncertainty principles assign to the quantized Hamiltonians of
the coordinate functions, respectively their canonically conjugate variables, an
inequality. The lower bounds of these inequalities are dependent on the Jacobian
matrix, respectively its inverse, of the spectral diffeomorphism.

Just as for the “classical uncertainty principle” for multi-dimensional configura-
tion spaces assigned to (pairs of) generators of a Lie algebra, there do not necessarily
exist waveforms, simultaneously optimizing all of the individual principles. There
are, however, special cases - those, for which the Jacobian matrix is diagonal. In
these special cases, the system of differential equations decouple and the principles
restrict to factors of a tensor-product. Thus, the tensor product of the optimal
waveforms for each principle is an optimal waveform for all principles simultaneously.

Finally, some examples are presented to exert the dull theory of spectral
diffeomorphisms. The diffeomorphisms considered include, but are not limited to,

(i) the logarithm, giving rise to the wavelet transform,

(ii) the log-polar diffeomorphism, associated with the SIM(2) transform,

(iii) the log-hyperbolic diffeomorphism, associated with the affine Poincare group
in 1+1 dimensions, and

(iv) the log-shear diffeomorphism, giving rise to a non-parabolic variant of the
shearlet transform.
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6.2 Advancements

The obvious points to generalize the program of this thesis are

(i) the rather straight-forward generalization from Rn and its associated cotangent
bundle - its phase space - to locally compact abelian groups and the associated
Pontryagin duality, Definition A.30 (Pontryagin duality), and its generalized
Fourier transform, Definition A.48 (Generalized Fourier transform), a.k.a.,
the Gelfand transform, and

(ii) the generalization of the affine uncertainty principle via a confirmation or a
rejection of Conjecture 4.35 on page 121.

Further, the program may be generalized by not restricting the coordinate systems to
those arising via cotangent lifts of a spectral diffeomorphism, but using arbitrary ones.
This abstraction could shed more light on the merits and demerits of this program.

As far as practical applications are concerned, the appendix contains information
on implementations of linear signal transforms, arising as generalized coherent state
maps of spectral diffeomorphisms and it is these sample implementations which
could be further refined, extended or put to use in fields of application not consider
by, or going over the head of, the author.

Finally, it still seems to be an open problem whether there exist differential
systems such that its - unique, normalized - solution is a simultaneous equalizer for
a multi-dimensional uncertainty principle, associated with a coordinate system in
phase space and hence a lot of work can be done on this compelling subject.
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Never memorize something that you can look up.

— (attributed to) Albert Einstein

A
Mathematical Preliminaries

SCIENCE is a CONSTRUCT, built upon the shoulders of giants and to
vast for mortals to be conceivable in its entirety. For that very reason, it
is vital to learn from those who have looked further ahead then oneself.

In this regard, it is only natural to depend on various sources, serving as a point
of departure for research.

Recommendable references are [43, 55] for differential geometry and its appli-
cations, [15, 61] for classical mechanics and symplectic geometry and [30, 64, 69]
are good references for quantization and quantum mechanics in general. Further,
[3, 30, 31, 44, 54, 72, 85] are highly recommendable treaties of functional analysis,
topology, (linear) algebra and its applications and [13, 26, 27, 34, 39] for time-
frequency analysis in particular.

A.1 Topology and Measure Theory

Definition A.1 (Topology). A topology for a set X is a set, T , consisting of
subsets of X, referred to as open sets, such that

(i) ∅, X ∈ T ,

(ii) (Ek)k≤n ⊂ T ⇒ ⋂nk=1Ek ∈ T ,

(iii) (Ek)k∈N ⊂ T ⇒ ⋃k∈NEk ∈ T ,

that is, it is a family of subsets containing the empty set and X itself as well as
all finite intersections and countable unions. A set, which is the complement of an
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open set is defined to be a closed set and a set, along with a topology defined on it,
is referred to as a topological space.

Just like the term space is borrowed from geometry, since now an abstract idea
of closeness is at hand, the elements x ∈ X of the space are referred to as points.
Whenever it is clear from the context, the reference to the topology T is dropped
and X is said to be the topological space. ◆

Definition A.2 (Nets and Convergence). Let (X,TX) be a topological space and
let (xi)i∈I ⊆ X be a net, that is, a subset of X which is parametrized by a set I,
having a total ordering, ≤, that is,

∀i, j ∈ I either i ≤ j or j ≤ i. (A.1)

We may thus speak of limits and say that (xi)i converges to x, written

xi → x or lim
i→∞

xi = x ∈X, (A.2)

if for all open sets O ∈ TX containing x, there exists an index NO ∈ I, such that
xi ∈ O for all i > NO, to wit

xi → x ⇐⇒ ∀TX ∋ O ∋ x ∃NO ∈ I s. t. xi ∈ TX ∀i > NO. (A.3)

Common domains are I ∶= R and I ∶= N, where in the latter case one speaks of
converging sequences. ◆

Definition A.3 (Countability). Let (X,TX) be a topological space. Then, X is
said to be

(i) first countable if, for all x ∈X, there exists a countable subset of its topology
B ⊆ TX , such that each neighborhood N of x contains at least one set of B,
that is,

∀x ∈X, ∃Bx ⊆ TX s. t. ∀N ⊆X, x ∈ N, ∃U ∈ Bx ∶ U ⊆ N (A.4)

(ii) second countable if there exists one countable subset of its topology B ⊆ TX
such that, every open set of X can be written as a union of elements of B,
that is, if the topology has a countable basis.

Note that second countability implies first countability but not vice versa. ◆

Definition A.4 (Separability). A topological space (X,TX) is said to be
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(i) T0, or Kolmogorov, if each pair of points x, y ∈ X are topologically distin-
guishable, meaning that there exists open sets, containing x but not y et vice
versa.

(ii) T2, or Hausdorff, if it is T0 and each pair of in-equivalent points can be
separated by disjoint open neighborhoods, that is,

∀x, y ∈X,x ≠ y ∃Nx,Ny ∈ TX s. t. x ∈ Nx, y ∈ Ny and Nx ∩Ny = ∅. (A.5)

The importance of the first axiom is that if a space is not T0, then there are points
that cannot be distinguished from each other so that, from a topological point of
view, they are identical. The Hausdorff axiom guarantees that limits of converging
sequences are unique and thus that topological problems may be tackled by means
of convergence of nets and sequences. ◆

Definition A.5 (Continuous and open mappings). A mapping between two topo-
logical spaces, f ∶ (X,TX) → (Y,TY ), is

(i) continuous if the inverse image of every open set is open

O ∈ TY Ô⇒ f−1(O) ∈ TX (A.6)

(ii) open if the image of every open set is open

O ∈ TX Ô⇒ f(O) ∈ TY . (A.7)

By a slight abuse of language, we may say that f is continuous if and only if
f̃ ∶ TX → TY is a“topological surjection” and open if and only if f̃ ∶ TX → TY is a
“topological injection”. One speaks of a homeomorphism, if f is

(iii) continuous, open and bijective.

As is always the case with isomorphisms, from a topological point of view, spaces
being homeomorphic to each other may be considered one and the same space and
thus may be identified. ◆

Definition A.6 ((Local) Compactness). Let (X,TX) be a topological space. Then,
a set E ⊆X is said to be

(i) compact, if every open cover has a finite subcover

(Ok)k∈N ⊂ TX , ⋃
k∈N

Ok ⊇ E Ô⇒ ∃(ki)i∈I , ∣I ∣ ∈ N ∶ ⋃
i∈I
Oki
⊇ E (A.8)
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(ii) locally compact, if every point of it has a compact neighborhood. ◆

Definition A.7 (Equivalence relation). Let E be a set and x, y, z ∈ E. A relation
R ⊂ E ×E, written xRy =∶ x ∼ y, is an equivalence relation, if it is

(i) reflexive: x ∼ x,

(ii) transitive: x ∼ y ∧ y ∼ z ⇒ x ∼ z

(iii) symmetric: x ∼ y ⇔ y ∼ x.

The universe of all elements that are equivalent is referred to as an equivalence class
and under the equivalence relation ∼, the set E partitions into a set of equivalence
classes E/ ∼, decomposing E into disjoint sets. The quotient map

q ∶ E → E/ ∼, x ↦ q(x) =∶ [x]∼ (A.9)

is therefore a surjection, identifying all elements of E that are equivalent with
respect to ∼. ◆

Definition A.8 (σ-algebra and measurable spaces). Let X be a set and Σ a family
of subsets of X. Then, Σ is a σ-algebra if and only if

(i) ∅, X ∈ Σ,

(ii) (Ek)k∈N ⊂ Σ ⇒ ⋂k∈NEk ∈ Σ,

(iii) (Ek)k∈N ⊂ Σ ⇒ ⋃k∈NEk ∈ Σ,

(iv) E ∈ Σ ⇒ Ec ∈ Σ.

The set, along with a σ-algebra, is referred to as a measurable space (X,Σ) and the
sets E ∈ Σ as measurable sets. ◆

Measurable mappings are now defined to be those mappings between measurable
spaces that preserve the measurable structure.

Definition A.9 (Measurable mappings). A mapping

f ∶ (X,ΣX) Ð→ (Y,ΣY ) (A.10)

between measurable spaces is a measurable mapping if and only if the inverse image
of every measurable subset of Y is a measurable subset of X, that is, iff

E ∈ ΣY ⇒ f−1(E) ∈ ΣX . (A.11)
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By a slight abuse of language, we may say that f is measurable if and only
if f̃ ∶ ΣX → ΣY is a “measurable surjection” and inverse measurable if and only
if f̃ ∶ ΣX → ΣY is a “measurable injection”. One moreover speaks of a measure-
isomorphism, if f is bijective and bi-measurable, i.e., measurable with measurable
inverse.

As always with isomorphisms, measurable spaces that are measure-isomorphic
to each other may be considered one and the same space, at least from a measure-
theoretic point of view, and thus may be identified. ◆

Definition A.10 (Measure). Let (X,Σ) be a measurable space. A mapping

µ ∶ Σ Ð→ R+ ∪ {∞}, E z→ µ(E), (A.12)

is a measure, if and only if

(i) the empty set has zero measure

µ(∅) = 0,

(ii) measurable sets have non-negative measure

E ∈ Σ ⇒ µ(E) ≥ 0,

(iii) and the measure is σ-additive, or countably additive, if

(Ek)k∈N ⊂ Σ, Ek pairwise disjoint ⇒ µ(⋃
k∈N

Ek) = ⋃
k∈N

µ(Ek).

If the measure maps to more general sets, it is renamed appropriately, like signed,
complex, vector-valued or operator-valued measure. ◆

Definition A.11 (Borel sets). Let X be a topological space. Then, the smallest
σ-algebra, containing the open sets of X, is called its Borel σ-algebra, B, and
the measurable subsets are named Borel sets. Thus, the Borel sets are generated
by the open sets by completing the set of open sets with countable sections and
complements. The tuple (X,B) is referred to as a Borel space. ◆

Definition A.12 (Borel measure). A measure, defined on the Borel σ-algebra of
some topological space is a Borel measure. ◆

Definition A.13 (Radon measure). Let µ be a Borel measure on the measurable
space (X,Σ).
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(i) It is inner regular if measurable sets can be approximated by compact ones,
that is, if

µ(E) = sup{µ(C) ∣C ⊆ E and C is compact } , (A.13)

for all E ∈ Σ.

(ii) It is locally finite if for all x ∈ X there exists an open neighborhood Nx ∋ x,
such that µ(Nx) < ∞.

A locally finite and inner regular Borel measure is referred to as a Radon
measure. ◆

Definition A.14 (Absolute continuity of measures). Let (X,Σ) be a measurable
space and ν and µ measures on it. Then, ν is said to be absolutely continuous with
respect to µ, written ν << µ, if and only if each zero-set of µ is also a zero-set of ν.
That is, denoting the corresponding sets of zero-sets by Zν and Zµ, we have

ν << µ ⇔ Zν ⊇ Zµ. (A.14)

◆

Since the fact that each zero-set of µ is also a zero-set of ν does not exclude the
case that each zero-set of ν is also a zero-set of µ, it may very well be the case that
both zero-sets coincide, which turns µ and ν into equivalent measures.

Definition A.15 (Equivalence of measures). As before, let (X,Σ) be a measurable
space and ν and µ measures on it. Then, ν and µ are said to be equivalent, ν ∼ µ,
if and only if the zero sets Zν and Zµ coincide. That is, each zero-set of µ is also a
zero-set of ν and vice versa

ν ∼ µ ⇔ µ << ν << µ ⇔ ν << µ << ν ⇔ Zν = Zµ. (A.15)

It is easy to check that this is an equivalence relation and thus we may partition
the set of all measures on (X,Σ) into equivalence classes, consisting of measures
with identical zero-sets. ◆

Definition A.16 (Radon-Nikodym). Let (X,Σ, µ) be a measure space, with σ-
algebra Σ, and let µ be absolutely continuous with respect to another measure ν,
that is, every set having zero-measure with respect to ν has zero-measure with
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respect to µ, usually written µ≪ ν. Then, the Radon-Nikodym theorem assures
the existence of a ν-measurable density function ∆, such that

µ(Γ) = ∫
Γ

∆(x) dν(x), (A.16)

for all measurable Γ ∈ Σ. Note that (i) both measures need to be defined on the
same σ-algebraand (ii) that it is (pointwise) invertible if the measures are moreover
equivalent. ◆

Definition A.17 (Push-forward of a measure). Let (X,ΣX , µ) be a measure space,
(Y,ΣY ) a measurable space and σ ∶ X → Y a measurable mapping from X to Y .
Then, the following holds:

(i) for every measurable set A ∈ ΣY , we have σ−1(A) ∈ ΣX , and

(ii) the pair (σ,µ) induces a push-forward measure

ν ∶= µ ○ σ−1 ∶ ΣY → R+ (A.17)

on Y , turning it into the measure space (Y,ΣY , ν). ◆

Definition A.18 (Pullback of a measure). Let (X,ΣX) be a measurable space,
(Y,ΣY , ν) a measure space and σ ∶ X → Y a mapping from X to Y , having a
measurable inverse. Then, the following holds:

(i) for every measurable set A ∈ ΣX , we have σ(A) ∈ ΣY , and

(ii) the pair (σ, ν) induces a pullback measure

µ ∶= ν ○ σ ∶ ΣX → R+ (A.18)

on X, turning it into the measure space (X,ΣX , µ). ◆

Definition A.19 (Lebesgue measure). A Lebesgue measure is a “translation
invariant” Radon measure on the locally compact group Rn and thus an example of
a Haar measure from Theorem A.61. ◆
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A.2 Algebra

Definition A.20 (Group). Let X be a set, equipped with a binary operation
○ ∶ (x, y) ↦ x ○ y, such that

(i) ○ is closed, ○ ∶ G ×G→ G,

(ii) ○ is associative, (a ○ b) ○ c = a ○ (b ○ c) = a ○ b ○ c,

(iii) X has an identity, e ○ g = g ○ e = g

(iv) each g ∈X has an inverse, g−1g = gg−1 = e,

then (X, ○) =∶X is a group. If the group multiplication is commutative, it is said to
be an abelian group.

If the group is moreover equipped with a topology such that the multiplication
and inversion are continuous maps, the group is a topological group and the product
G ×G is equipped with the product topology. ◆

Definition A.21 (Topological groups). Let G be a topological group with TG
denoting its topology. If TG is (locally) compact, first or second countable, Hausdorff,
etc., the group G is said to be a (locally) compact, first or second countable,
Hausdorff, etc. topological group. ◆

Definition A.22 (Group action). Let G denote a topological group, X a topological
space G acts on and . ∶ G ×X → X, (g, x) ↦ g.x the associated continuous group
action. Then, the action is tagged to be

• transitive, if for all x, y ∈X, there exists a g ∈ G such that g.x = y,

• faithful, if for all g, h ∈ G, there exists a x ∈X such that g.x ≠ h.x,

• free, if the stabilizer of each x ∈X is trivial, to wit, if the mapping
G→X,g ↦ g.x is injective, for all x ∈X. ◆

If the action of the group is restricted to a specific element x ∈X, the question
arises what elements of X may be “reached” by the action of the group on
the element x.
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Definition A.23 (Orbits of group actions). Let G act on X and x ∈X, then

G.x ∶= { y ∈X ∣ y = g.x, g ∈ G } (A.19)

is the orbit of x under G.

An orbit O ⊆X is said to be

(i) free, whenever the corresponding group action is free, and

(ii) open, if the orbit is open in the topology of X. ◆

An important property of group actions and their orbits is that these decompose
a G-space X into disjoint orbits.

Proposition A.24 (Partitions induced by group actions). Let G act on X as
x ↦ g.x, then X partitions into G-orbits. That is, the orbit space G/X, or X/G,
decomposes X, such that

∀O ∈ G/X, O is a an orbit and ⋃
O∈G/X

O =X . (A.20)

Note that this defines an equivalence relation

x ∼ y ⇐⇒ y ∈ G.x and x ∈ G.y . (A.21)

◆

Definition A.25 (Group homomorphisms). Let G and H be groups and g, g1, g2 ∈

G. A mapping σ ∶ G → H, g ↦ σ(g), with

σ(g1g2) = σ(g1)σ(g2) and σ(g−1) = σ(g)−1 (A.22)

is a group homomorphism. Thus, a group homomorphism respects the algebraic
structure of the group and maps groups into homomorphic groups. ◆

As is the case for general mappings between sets, there is an important special
case of homomorphisms, identifying two groups as a whole, rendering both - at
least from an algebraic point of view - indistinguishable.

Definition A.26 (Group isomorphism). A group isomorphism is a homomorphism,
which is bijective.

Since the identical mapping is trivially a group isomorphism and since isomor-
phisms are invertible, being isomorphic is reflexive and symmetric. Moreover, since
it is clear that if G is isomorphic to H and H is isomorphic to K, then also G is
isomorphic to K, making it transitive. Being isomorphic is therefore an equivalence
relation, partitioning all groups into equivalence classes of isomorphic ones. ◆
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Definition A.27 (Characters). Homomorphisms, σ ∶ G → C, from a group G into
the multiplicative group of complex numbers of modulus one, are referred to as
characters. ◆

Those characters are interesting in their own right, since these are groups, too.

Theorem A.28 (Group of Characters). The set of all characters ξ ∶ G → C from
G to the multiplicative group of complex numbers of modulus one is a group. ◆

Proof. Let σ, ξ ∶ G → C be arbitrary characters from the group G to the torus.
Then, since the torus is a multiplicative sub-group of the complex numbers

x ↦ ξ(x) ⋅ σ(x), x ∈ G, (A.23)

defines another character, since the product is again an element of the torus. Thus

ρ(x) ∶= (ξ ○ σ)(x) ∶= ξ(x) ⋅ σ(x), x ∈ G, (A.24)

is a character. Moreover, the inverse (ξ(x))−1 exists and is again a value of the
torus, turning ξ−1(x) ∶= (ξ(x))−1 into a character, too. Finally, since

(ξ−1 ○ ξ)(x) = (ξ(x))−1 ⋅ ξ(x) = 1, x ∈ G, (A.25)

ξ−1 is the inverse of ξ and

e(x) ∶= (ξ−1 ⋅ ξ)(x), x ∈ G, (A.26)

is the group identity.
Note that the modular function of a locally compact group is necessarily a

character of G. ∎

Definition A.29 (Dual group). Let G be a locally compact group, then the group
of characters are dubbed as its dual group Ĝ. ◆

It is a well-known fact that a locally compact abelian groups G is its own
“double dual”. This means, that Ĝ is the dual group of G and ̂̂G ∶= G is the dual
of its dual. This nexus became known as the

Definition A.30 (Pontryagin duality). Let G be a locally compact abelian group.
Then Ĝ is its dual group, which is again a locally compact abelian group, and G

itself is the dual group of its dual group. That is, ̂̂G = G, making it an important
special pair of groups. ◆
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Definition A.31 (Homogeneous Spaces). Let G be a locally compact σ-compact
group and X a locally compact space on which G acts transitively via

x ↦ g.x . (A.27)

Then, all of X is given by a single orbit of some fixed fiducial point x0 ∈X under
G. If

S0 ∶= { g ∈ G ∣ g.x0 = x0 } (A.28)

is the stabilizer of x0 under G, then X and the quotient space G/S0 are homeomor-
phic. Such spaces are called homogeneous.

The homogeneous space is principal, if the action is moreover free, meaning that
its stabilizer is trivial, and thus G itself is homeomorphic to its orbit. ◆

Theorem A.32 (Lie groups). (i) A Lie group is a topological group which has
the structure space of a differentiable manifold.

(ii) Each (finite-dimensional) Lie group is a locally compact group and thus is
equipped with an invariant measure - its Haar measure.

(iii) To each Lie group we can assign a Lie algebra and to each Lie algebra we can
associate a connected and simply-connected Lie group.

(iv) For each Lie group G, its universal cover, G̃, is isomorphic to its Lie algebra
g and the quotient G̃/G is discrete.

(v) Each Lie group, G, has a connected component (of the identity), G0, being a
normal Lie group, with discrete (countable) quotient G/G0. ◆

A.3 Functional Analysis
Definition A.33 (Topological vector space). Let V be a set. Then, whenever the
set V is closed under addition and multiplication by complex numbers

αv1 + βv2 ∈ V, ∀ v1, v2 ∈ V and α,β ∈ C, (A.29)

it is referred to as a C-vector space. If V is further equipped with a topology, it is a
topological vector space if and only if the above actions are continuous mappings.

Since 0 ∈ C is a complex number, 0 ⋅ v ∈ V is a vector, too, known as the
zero-vector 0, and since −v ∶= (−1) ⋅ v ∈ V , each vector has an inverse, with

−v + v = 0 ∈ V. (A.30)

◆
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Definition A.34 (Topological vector spaces of continuous functions). Let X be a
topological space. Then, C(X) denotes the topological vector space of continuous
functions from X to C. If X is moreover locally compact, we may define the
subspace of continuous functions that vanish at infinity, C0(X), as well as the
subspace of continuous functions with compact support, Cc(X).

Finally, if k ∈ N and X is a differentiable manifold, then Ck(X), Ck
0 (X)

and Ck
c (X) denote the corresponding vector subspaces of k-times continuously

differentiable functions. If k = ∞, the functions are infinitely differentiable and we
speak of smooth functions. ◆

Definition A.35 (Norm). Let V be a C-vector space, x, y ∈ V and λ ∈ C. A norm

∥⋅∥ ∶ V → R+, x ↦ ∥x∥ , (A.31)

is a mapping with the following properties.

(i) It is non-negative

∥x∥ ≥ 0. (A.32)

(ii) It is absolutely homogeneous

∥λx∥ = ∣λ∣ ∥x∥ . (A.33)

(iii) It is sub-additive

∥x + y∥ ≤ ∥x∥ + ∥y∥ . (A.34)

(iv) It is definite

∥x∥ = 0 ⇔ x = 0. (A.35)

If the last property only holds in the direction of

x = 0 ⇒ ∥x∥ = 0, (A.36)

we call it a semi-norm. A vector space, equipped with a (semi-) norm is referred to
as a (semi-) normed space. A normed space is a topological vector space, where the
open balls are given by open balls of the form

Bϵ(x) ∶= { v ∈ V ∣ ∥v − x∥ < ϵ } . (A.37)

What makes normed spaces so useful is that these are all first countable
Hausdorff topological vector spaces and thus we have an algebraic structure as
well as a topological one and all continuity issues may be conveniently tackled with
(converging) sequences. ◆
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Since now there is a distance defined on a topological vector space - a metric, to
be precise -, we may encounter the concept of a sequence which in a sense has some
sort of “inner convergence”. Meaning that the elements, (fn)n∈N, “approach each
other”, as n → ∞, which is precisely the definition of a Cauchy sequence.

Definition A.36 (Cauchy sequence in normed spaces). Let V be a normed space.
Let (vn)n∈N ⊆ V be a sequence, for which it holds that for all ϵ > 0, there exists
Nϵ ∈ N, such that the distance between vn and vm is smaller than ϵ, whenever
n,m > Nϵ. That is, if

∀ϵ > 0 ∃Nϵ s.t. ∥vn − vm∥ < ϵ, ∀n,m > Nϵ, (A.38)

this sequence is a Cauchy sequence. ◆

As already pointed out above, these sequences have a certain kind of special
convergence and a normed space that is considered to be some sort of “complete”,
in the sense of the vectors it contains, should contain the limits of these sequences,
as these are very natural ones.

Definition A.37 (Completeness). A normed space, in which every Cauchy sequence
converges, is said to be complete. ◆

Definition A.38 (Banach space). A complete normed space is said to be a Banach
space. ◆

Definition A.39 (Inner product). Let V be a C-vector space, x, y, z ∈ V . Then,
an inner product

⟨ ⋅ , ⋅ ⟩ ∶ V × V Ð→ C (A.39)

is a mapping with the following properties.

(i) It is sesqui-linear, meaning complex-conjugated linear in the first and linear
in the second argument. That is,

⟨αx + βy , z ⟩ = α ⟨x , z ⟩ + β ⟨y , z ⟩ (A.40)

and

⟨ z , αx + βy ⟩ = α ⟨ z , x ⟩ + β ⟨ z , y ⟩ . (A.41)

(ii) It is Hermitian

⟨x , y ⟩ = ⟨y , x ⟩. (A.42)
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(iii) It is positive definite

⟨x , x ⟩ ≥ 0 (A.43)

and

⟨x , x ⟩ = 0 ⇔ x = 0 . (A.44)

A vector space with an inner product is known as an inner product space, sometimes
instead referred to as a pre-Hilbert space.

The inner product defines a norm

∥x∥ =
√
⟨x , x ⟩, (A.45)

turning every inner product space into a normed space. ◆

Definition A.40 (Hilbert space). A complete vector space, equipped with an inner
product, is a Hilbert space. ◆

Just like in the classical case of Cn, the inner product is bounded.

Cauchy-Schwarz Theorem A.41. Let V be an inner product space and v,w ∈ V ,
then

∣⟨ v , w ⟩∣ ≤ ∥v∥ ∥w∥ , (A.46)

known as the Cauchy-Schwarz inequality. ◆

Proof. Let v,w ∈ V . Then, the standard proof, as found in almost every book about
linear algebra and functional analysis, goes as follows. From

0 ≤ ∥w − ⟨ v , w ⟩ v
∥v∥

2 ∥

2

= ∥w∥
2
− 2 ∣⟨ v , w ⟩∣2 1

∥v∥
2 + ∥

⟨ v , w ⟩ v

∥v∥
2 ∥

2

= ∥w∥
2
− ∣⟨ v , w ⟩∣

2 1
∥v∥

2

we find that

∣⟨ v , w ⟩∣
2

∥v∥
2 ≤ ∥w∥

2

⇔ ∣⟨ v , w ⟩∣
2
≤ ∥w∥

2
∥v∥

2

and taking square roots finishes the proof. ∎
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Plancherel’s Theorem A.42. Let f, g ∈ L2(Rn), and f̂ , ĝ the respective Fourier
transforms. Then

⟨ f̂ , ĝ ⟩ = ⟨f , g ⟩ (A.47)

and in particular

∥f̂∥ = ∥f∥ , (A.48)

showing that the Fourier transform is an isometry - in fact a unitary operator - on
L2(Rn, λ). ◆

Definition A.43 (Linear operators). Let X,Y be normed spaces. Then,

T ∶X → Y, x ↦ Tx (A.49)

is a bounded (linear) operator, if and only if it is linear and, for all x ∈ X, there
exists M such that

∥Tx∥Y ≤M ∥x∥X . (A.50)

The infimum of all such M is defined to be the norm of T

∥T ∥OP ∶= sup
x∈X

∥Tx∥Y
∥x∥X

. (A.51)

In particular, every bounded operator is continuous and, unless stated otherwise,
an operator is assumed to be linear. ◆

Definition A.44 (Isometries and unitary operators). Let X,Y be normed spaces
and T ∶X → Y an operator. If

∥Tx∥Y = ∥x∥X , ∀x ∈X, (A.52)

the operator is said to be an isometry, which for inner product spaces X,Y is
adapted to mean

⟨Tx , Ty ⟩Y = ⟨x , y ⟩X , (A.53)

i.e., it preserves angles (and distances). If, moreover, X and Y are Hilbert spaces
and T is a bijection, it holds that

T ∗Tx = x, ∀x ∈X, (A.54)

where T ∗ is the adjoint to T , defined as

⟨Tx , y ⟩Y = ⟨x , T
∗y ⟩X , ∀x ∈X, y ∈ Y. (A.55)

A bijective isometry between Hilbert spaces is referred to as a unitary operator. ◆
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Definition A.45 (Linear functionals). A linear operator

T ∶X → C, (A.56)

mapping into the underlying field of complex numbers, is a (linear) functional. ◆

Definition A.46 (Continuous functionals and the topological dual). Let F be a
topological vector space. Then, the set of all C-linear and continuous functionals

l ∶ F → C, f ↦ l(f) (A.57)

is its topological dual F ∗. ◆

Definition A.47 (Weak topology). If f ≠ g in the topology of F , then there exists
a l ∈ F ∗, such that l(f) ≠ l(g). In other words, the map

F Ð→ (F ∗ → C), f z→ (l(f))l∈F ∗ (A.58)

is injective.
As far as measurements are concerned, after having defined the topological dual

of F by means of the topology on F , we may forget the topology on F and speak
of the weak topology of F , defined with respect to its topological dual F ∗. That is,
(fn)n converges to f in the weak sense, if and only if (l(fn))n converges to l(f) in
the sense of C, for all functionals l:

fn
w
Ð→ f ⇔ l(fn) Ð→ l(f), ∀l ∈ F ∗. (A.59)

◆

Integrating a function f on a locally compact group against the characters,
resembles a mapping from L1(G,µ) to L∞(Ĝ, µĜ) .

Definition A.48 (Generalized Fourier transform). Let (G,µ) be a locally compact
abelian group, with dual (Ĝ, µĜ) and f ∈ L1(G,µ). Then,

L1(G,µ) → L∞(Ĝ, µĜ), f ↦ ∫
G
f(x) ξ(x) dµ(x) =∶ f̂(ξ), ξ ∈ Ĝ, (A.60)

exists and if f̂ ∈ (L1 ∩L∞)(Ĝ, µĜ), then there is an inverse

f̂ ↦ ∫
Ĝ
f̂(ξ) x̂(ξ) dµĜ(ξ), x̂(ξ) ∶= ξ(x), x ∈ G. (A.61)

Note that if (f, f̂) is such a pair, then necessarily f ∈ (L1 ∩ L∞)(G,µ) and f̂ ∈

(L1 ∩L∞)(Ĝ, µĜ) . ◆
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Definition A.49 (Dirac Delta). Dirac’s delta distribution, δx, is defined as

f(x) = ∫
E
δxf dx, x ∈ E, (A.62)

where the integral is defined, whenever f is continuous in an open neighborhood of
x. ◆

Definition A.50 (Types of convergences for operators). Let X,Y be normed spaces,
with Y ′ denoting the topological dual space of Y , and Tn, T ∶ X → Y , n ∈ N , be
linear, bounded operators. Then (Tn)n is said to converge to T

(i) in norm, if ∥Tn − T ∥OP → 0, as n → ∞.

(ii) strongly, if ∥Tnf − Tf∥Y → 0, as n → ∞, for all f ∈X.

(iii) weakly, if ∣l(Tnf) − l(Tf)∣ → 0, as n → ∞, for all f ∈X and l ∈ Y ′.

If Y is one-dimensional, the family of operators Tn become functionals and are
said to converge to T with respect to

(i) norm topology, if sup
f∈X,∥f∥X=1

∣Tn(f) − T (f)∣ → 0, as n → ∞.

(ii) weak* topology, if, for all f ∈X, ∣Tn(f) − T (f)∣ → 0, as n → ∞. ◆

Definition A.51 (Test functions). The test functions are the smooth functions of
compact support

D(Rn) ∶= {φ ∈ C∞0 (Rn) ∣ supp f is compact } , (A.63)

i.e., as a set D(Rn) ∶= C∞c (Rn), equipped with the topology induced by the family
of semi-norms

∥φ∥α ∶= ∥D
αφ∥∞ , Dα =Dα1 ⋅ ⋯ ⋅Dαn . (A.64)

That is,

φn → φ as n→∞ ⇐⇒ ∥φn − φ∥α → 0 as n→∞, ∀α ∈ Nn. (A.65)

◆

Definition A.52 (Distributions). Let D(Rn) denote the test functions. Then, the
topological dual of D(Rn) is the topological vector space of distributions D′(Rn),
equipped with the weak*-topology. ◆
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Definition A.53 (Schwartz space). The Schwartz space consists of smooth func-
tions vanishing at infinity and decay faster than the inverse of any polynomial.
Let

xα ∶= xα1 ⋅ ⋯ ⋅ xαn and Dβ ∶=Dβ1 ⋅ ⋯ ⋅Dβn , (A.66)

then

∥φ∥α,β ∶= ∥x
αDβφ∥∞ , α, β ∈ Rn, (A.67)

are the semi-norms that induce the locally convex topology of the Schwartz space

S(Rn) ∶= {φ ∈ C∞0 (Rn) ∣ ∥φ∥α,β < ∞,∀α,β ∈ R
n } . (A.68)

◆

Definition A.54 (Tempered distributions). Let S(Rn) be the Schwartz space. The
topological dual of S(Rn) is the topological vector space of tempered distributions
S ′(Rn), equipped with the weak*-topology.

A tempered distribution is sometimes referred to as a generalized function, if it
is formally treated as (an extreme case of) a normal function, e.g., the limit of a
sequence of L2(Rn), merely converging in the sense of distributions. ◆

Definition A.55 (Self-Adjointness). An operator T ∶ H → H is self-adjoint if and
only if it is symmetric,

⟨Tf , g ⟩H = ⟨f , Tg ⟩H , (A.69)

and its image coincides with its domain, im(T ) = dom(T ). ◆

Definition A.56 (Projection-Valued Measure). Let (X,ΣX) be a measurable space
and P ∶ ΣX → L(H) a measure, taking its values in the linear operators on some
Hilbert space H. Then, P is a projection-valued measure, or PVM, if it is self-adjoint,
idempotent and P (X) = 1H. For a projection-valued measure and f, g ∈ H, the
map

ΣX ∋∆ z→ ⟨P (∆)g , f ⟩ ∈ C (A.70)

defines a complex measure, which is a real and positive multiple of a probability
measure, if f = g. ◆
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Theorem A.57 (Spectral Theorem for Self-Adjoint Operators). Let T ∶ dom(T ) ⊆
H → H be an operator, unbounded or not but self-adjoint on its domain, and let
spec(T ) denote its spectrum, then there exists a projection-valued spectral measure,
P , such that

T ∶= ∫
spec(T )

λ dPλ, (A.71)

with convergence at least in the weak sense. ◆

Definition A.58 (Borel Functional Calculus). Let T be a self-adjoint operator, E
its projection-valued measure and f ∶ spec(T ) → C a Borel-measurable function,
defined on the spectrum of T . Then

f(T ) ∶= ∫
spec(T )

f(λ) dPλ (A.72)

defines the Borel functional calculus on the spectrum of T . ◆

Definition A.59 (Commutator). Let S,T be operators, such that im(S) ⊆ dom(T )
and im(T ) ⊆ dom(S), then

[S,T ]f ∶= (ST − TS)f , f ∈ dom(S) ∩ dom(T ) ∩ dom([S,T ]) (A.73)

defines its commutator. ◆

Definition A.60 (Unitary representations). Let (G,µL) be a locally compact group
and H a Hilbert space. A homomorphism

π ∶ G → U(H) (A.74)

from G into the group of unitary operators over H is said to be a unitary represen-
tation. ◆

Theorem A.61 (Haar measure). Let G be a locally compact group and define
ΣG to be its Borel σ-algebra, built from its locally compact topology. Then, there
exist non-negative Radon measures, µL and µR, that are invariant under the left,
respectively right, action of the group on itself. That is, let x ∈ G and E ⊂ G

measurable, then

µL(xE) = µL(E) and µR(Ex) = µR(E). (A.75)

Both of these measures are unique, up to a scalar, and known as the left respectively
right Haar measure. ◆
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Theorem A.62 (Modular function). Let G be a locally compact group, then there
exist left and right invariant Haar measures, µL and µR, and these are equivalent.
The Radon-Nikodym derivative of µL with respect to µR

dµL
dµR

=∆G (A.76)

is uniquely defined and dubbed the modular function of G.
Groups for which the modular function is trivial are called unimodular, whereas

all others are referred to as non-unimodular ones. ◆

Definition A.63 (Lp spaces over locally compact groups). Let G be topological
group with left Haar measure µL. We define the Lebesgue spaces over the locally
compact group G as

Lp(G,µL) ∶= { f ∶ G → C ∣ ∥f∥pp ∶= ∫
G
∣f ∣

p dµL < ∞ } , (A.77)

for 1 ≤ p < ∞, respectively as

L∞(G,µL) ∶= { f ∶ G → C ∣ ∥f∥∞ ∶= ess sup ∣f ∣ < ∞ } , (A.78)

if p = ∞. ◆

The multiplication rule on the group itself lifts to another multiplication on
the space of functions defined on it.

Definition A.64 (Convolution). Let f, g ∶ (G,µL) → C, then

(f ∗ g)(x) ∶= ∫
G
f(y) g(y−1x) dµL(y) (A.79)

is the convolution of f and g and f ∗ g =∶ h is again a complex-valued function,
h ∶ (G,µL) → C, defined on G. ◆

Lemma A.65 (Integrability). Let (G,µL) be a locally compact group and

f, g ∶ G → C (A.80)

be absolutely integrable, then f ∗ g is integrable, with

∫
G
f ∗ g dµL = ∫

G
f dµL∫

G
g dµL . (A.81)

◆
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Proof. We have

∫
G
(f ∗ g)(x) dµL(x) ∶= ∫

G
∫
G
f(y)g(y−1x) dµL(y) dµL(x)

= ∫
G
∫
G
f(y)g(x) dµL(y) dµL(x)

= ∫
G
f(y) dµL(y)∫

G
g(x) dµL(x),

(A.82)

by the left translation invariance of the Haar measure µL and since the absolute
integrability allows us to exchange the integration, by Fubini’s theorem. ∎

Theorem A.66 (Convolution algebra). If f, g ∈ L1(G,µL), then even more can be
said about the convolution of f and g, namely

f, g ∈ L1(G,µL) Ô⇒ f ∗ g ∈ L1(G,µL) . (A.83)

This turns L1(G,µ) into an algebra, that is, a vector space, along with a
multiplication rule defined on it. Note that this not necessarily includes inverses
and a neutral element of multiplication. ◆

Since each group element has an inverse, it makes sense to define the “involution”
- meaning self-inverse - of a function.

Proposition A.67 (Isometric Involution). Let G be a locally compact group, with
left Haar measure µL and modular function ∆.

Then,

∗ ∶ Lp(G,µL) → Lp(G,µL), f∗(x) ∶=∆−1/p(x)f(x−1) (A.84)

is the isometric involution on Lp(G,µL), where ∆−1/p(x) is understood to be trivial,
∆−1/p(x) ≡ 1, if p = ∞. The involution is

(i) self-inverse, that is,

(f∗)∗ = f, (A.85)

(ii) and isometric

∥f∗∥p = ∥f∥p . (A.86)

◆
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Proof. (i) is true, since ∆ is a homomorphism and thus

f∗∗(x) = f∗(x−1)∆(x)−1/p = f(x)∆(x−1)−1/p∆(x)−1/p = f(x) . (A.87)

(ii) follows from

∥f∗∥
p
p = ∫

G
∣f(x−1)∣

p ∆(x)−1 dµL(x) = ∫
G
∣f(x)∣

p dµL(x) . (A.88)

∎

Corollary A.68 (Non-isometric Involution). Let f ∈ Lp(G,µL) and define

∗ ∶ Lp(G,µL) → Lp(G,µR), f∗(x) ∶= f(x−1), (A.89)

to be the involution, then

∥f∗∥Lp(G,µL) = ∥f∥Lp(G,µR) , resp. ∥f∗∥Lp(G,µL) = ∥f∆−1/p∥
Lp(G,µL)

. (A.90)

◆

Proof. Since dµL(x−1) = dµR(x), x ∈ G, we find

∥f∗∥
p
Lp(G,µL) = ∫G

∣f(x−1)∣
p

dµL(x)

= ∫
G
∣f(x)∣

p dµL(x−1)

= ∫
G
∣f(x)∣

p dµR(x)

= ∥f∥
p
Lp(G,µR) ,

(A.91)

and from ∆−1 ⋅ dµL = dµR it follows that

∥f∗∥
p
Lp(G,µL) = ∫G

∣f(x)∣
p dµR(x)

= ∫
G
∣f(x)∣

p ∆−1(x) dµL(x)

= ∥f∆−1/p∥
p

Lp(G,µL)
.

(A.92)

∎

Lemma A.69 (Isometries, induced by measure-equivalence). Let (X,Σ, µ) be a
measure space and let there be an equivalent measure ν, that is, µ≪ ν ≪ µ, with
Radon-Nikodym derivative dµ

dν = ϕ. Then, for any f ∈ Lp(X,Σ, µ) the map

ιµ↦ν ∶ L
p(X,Σ, µ) → Lp(X,Σ, ν) , f ↦ ϕ

1
p ⋅ f (A.93)

is an isometrical bijection between Lp(X,Σ, µ) and Lp(X,Σ, ν) with its obvious
inverse ιν↦µ ∶ f ↦ ϕ−

1
p ⋅ f and the understanding that, for p = ∞, we mean

ϕ
1
p = ϕ−

1
p ≡ 1. ◆
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Proof. This fact follows from

∥ιµ↦ν f∥
p
Lp(X,Σ,ν) = ∫

X
∣ϕ

1
p (x) ⋅ f(x)∣

p
dν(x)

= ∥f∥
p
Lp(X,Σ,µ)

and dµ = ϕ dν. ∎

Definition A.70 (Cyclicity). A vector η ∈ Hπ is cyclic for (π,Hπ) if and only if
the closure of its orbit under the group action is all of the representation space,

span {π(x)η ∣x ∈ G } = Hπ, (A.94)

i.e., if the linear span of π(G)η ⊆ Hπ is dense in Hπ. ◆

Definition A.71 (Irreducibility). A representation (π,Hπ) of G is irreducible, if
and only if the only invariant subspaces of π(G) are {0} and Hπ. ◆

Schur’s Lemma A.72. Let G be locally compact group and (π,Hπ) a unitary
representation of G. Then, π is irreducible if and only if for all T ∈ L(Hπ) which
commute with π, i.e., Tπ = πT , it holds that T is a multiple of the identity, T = c1,
for some c ∈ C. ◆

A.4 Differential Geometry

Definition A.73 (Differentiable manifolds). Let X be a second countable Hausdorff
topological space. If X is locally homeomorphic to a subset of the n-dimensional
Euclidean space, that is, for all x ∈X there exists a neighborhood x ∈ Nx ⊆X and a
homeomorphism

φNx ∶ Nx → im(φNx) ⊆ Rn, (A.95)

X is said to be a manifold of dimension n. A set of charts Φ, consisting of (local)
homeomorphisms between a subset of the manifold and a subset of Rn, is an atlas
if the union of all pre-images cover the manifold and it is possible to transition
between charts that have non-vanishing intersections on the manifold.

A manifold is a differentiable manifold if the atlas is differentiable, that is, if all
transitions between charts like

φ2 ○ φ
−1
1 , φ1, φ2 ∈ Φ, (A.96)

are differentiable and have differentiable inverses. If the transitions are moreover
smooth, it is called a smooth manifold. ◆
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Definition A.74 (Path-connectedness). A space is path-connected if each two
points can be joined by a path. ◆

Definition A.75 (Simply connectedness). A space is simply connected, if it is
path-connected and every closed curve is contractible to a point. ◆

Definition A.76 (Differential Forms). A differential form, ω, on a differentiable
manifold is

(i) exact , iff there exists a potential, such that ω = dν, and

(ii) closed, iff its exterior derivative vanishes dω = 0.

Every exact form is closed, since d ○ d = 0 and the opposite holds, if, and only if,
the space is simply-connected. ◆

Definition A.77 (Hamiltonian). The Hamiltonian of a classical mechanical system
is the observable for its energy and is, in the simplest case, given by the sum of
kinetic, T , and potential energy, V , that is

H ∶= T + V. (A.97)

◆

Definition A.78 (Lagrangian). The Lagrangian of a classical system is a way
to derive the dynamics of the system and in the simplest case defined to be the
difference of kinetic, T , and potential energy, V ,

L ∶= T − V. (A.98)

◆

Definition A.79 (Euler-Lagrange Equations). Let L(x⃗, ⃗̇x) be a time-independent
Lagrangian on the differentiable manifold X and x⃗(t) ∈X for all t in some interval.
Then,

d
dt

∂L

∂ẋµ
−
∂L

∂xµ
= 0, µ = 1, . . . , n, (A.99)

are the Euler-Lagrange equations. ◆

Definition A.80 (Christoffel symbols). Let X be a differentiable manifold and
(eµ)µ a local basis, with (∂eµ)µ denoting the associated vector field basis, then its
Christoffel symbols, Γλµν , are defined as

∇∂eµ∂eν = Γλµν∂eλ , (A.100)

and are of relevance for describing the covariant derivative and arise, e.g., in the
geodesic equations. ◆
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B
Auxiliary Material

RESEARCH and DEVELOPMENT go hand in hand and thus, this
final addendum shall provide information about the MATLAB-based gen-
eration of the plots from this monograph, as well as exemplary implementa-

tions of the established generalized coherent state maps, a.k.a. “σ-transforms”, of the
form

f ↦ πσg f,

for some signal f , window g and (spectral) diffeomorphism σ.

Numerical Phase Space Decompositions and Plot generation

All numerical computations and plots, regarding phase space decompositions,
presented in this monograph, were made with MATLAB [62]. The self-contained
code can be found on

https://github.com/dlantzberg/AuxMatlabPlots
and should run smoothly on MATLAB R2016a without any additional toolboxes.

Implementations of the σ-Transform

In order to demonstrate the usability of the established σ-transforms, various
exemplary implementations, written in MATLAB/Octave, Javascript, Java, Python
and C/C++, are provided. The former is written and tested in MATLAB R2016a
on a Windows 7 machine and the latter makes use of the C++11 standard, STL
containers and the C-Library FFTW3.3 [28, 33] and was compiled and tested with
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g++ (Ubuntu/Linaro 5.4.0-6) on Ubuntu Linux 16.04.10, as well as with g++
(GCC) 4.8.1 on Windows 7.

All implementations can be found on
https://github.com/dlantzberg

and specific implementations, like the MATLAB/Octave Version, can be directly ac-
cessed via

https://github.com/dlantzberg/SigmaTransform-Matlab ,
and the C++ implementation is located on

https://github.com/dlantzberg/SigmaTransform-Cpp .
For further information on how to use these, consult the above mentioned websites.
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