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Abstract 

Primary production and mineralization are key processes and living organisms key 

components of the biological carbon cycle with an ecosystem. The dynamics of primary 

production and mineralization as well as organismal parameters such as density, 

biomass, structure and respiratory activity are controlled by abiotic and biotic factors, 

which can also be inter-dependently linked with each other. From a global perspective, 

the carbon cycles of the Southern and Arctic Ocean show quantitatively the largest 

dynamics on spatial scales. Therefore, this thesis focuses on spatial carbon dynamics in 

these polar ecosystems. 

Changes in the polar cryosphere and related secondary effects, associated with 

global temperature increase, can have a great impact on processes and components of 

the biological carbon cycle. For example, nutrients and particles are released into the 

marine realm by glacial and permafrost soil melt, while thinning, diminishing, retreating 

and melting sea ice leads to increased light availability but suppresses nutrient 

upwelling. These secondary effects are known to influence primary productivity, 

organismal community structures and mineralization rates. The investigation of how 

changes in polar ice conditions alter primary production, the benthic biota, and benthic 

mineralization is the overall aim of this thesis and was addressed in three manuscripts. 

The methods used in this thesis include the determination of in situ and ex situ total 

and diffusive oxygen fluxes to investigate primary production and benthic mineralization. 

Furthermore, densities, biomasses, and community structures of different size classes of 

the benthic biota were investigated as well as a set of abiotic and biotic factors. This 
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allows a descriptive and holistic ecosystem snapshot of the carbon cycle in the 

investigated polar regions. 

Within the first manuscript the impact of glacial melt-related particle release on the 

primary productivity of benthic microalgae in sediments at 6�9 m water depth in Potter 

Cove (shallow coastal Southern Ocean) was investigated. The results showed that 

glacial melt-related particle release led to a suppression of benthic microalgae primary 

production. Diatoms dominated the benthic microalgae community. Interestingly, the 

structure of the diatom community was not impacted by glacial melt-related particle 

release. The suppression of primary production was explained by a higher energy cost 

for the more frequently happening migration of diatom cells, caused by permanent 

sedimentation. The impact of increased turbidity, an additional secondary effect of 

glacial melt-related particle release, was assessed as low, owing to the very good 

adaption of Antarctic benthic microalgae to low light conditions. 

Spatial patterns of benthic mineralization in sediments at 6�9 m water depth in Potter 

Cove (shallow coastal Southern Ocean) were investigated in the second manuscript. 

The revealed pattern is impacted by glacial melt-related particle release. The benthic 

mineralization was mainly mediated by the benthic macrofauna and followed a unimodal 

correlation with increasing sedimentation. This correlation pattern was explained by 

physiological reactions of the suspension and deposit feeding community on the 

disturbance by particles. In addition, this manuscript includes the first holistic ecosystem 

snapshots of an Antarctic shallow coastal site. It thereby revealed inter-dependent 

relations between abiotic factors, biotic factors and primary production influencing 

benthic mineralization. 

The third manuscript deals with benthic mineralization in the deep sea Arctic Ocean. 

The results revealed the spatial pattern of benthic mineralization in sediments at 275�

2500 m water depth across the Fram Strait. In the highly sea-ice covered western Fram 

Strait, benthic mineralization was water depth independent, whereas in the low sea-ice 

covered eastern Fram Strait it was water depth dependent. This pattern was explained 

by the suppression of primary production in the western Fram Strait, caused by a lower 

light availability (sea-ice cover) and lower nutrient supply by the East Greenland current. 

Nevertheless, the impact of sea-ice cover faded out in water depth >1500 m. 
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Furthermore, the obtained data were used for a holistic ecosystem snapshot of the 

Arctic Fram Strait. 

The results of the three manuscripts are used to discuss, how changing ice conditions 

impact primary production, inter-dependent relations between primary production and 

benthic mineralization, and benthic mineralization in polar regions. In addition, the 

results are integrated in a discussion on changes in the carbon cycle in a future scenario 

for the Southern and the Arctic Ocean. 

In conclusion, particle release by glacial and permafrost soil melt leads to reduced 

primary production by the microphytobenthic and macroalgae community within a few 

hundred meters from the coastline in the shallow coastal regions of the Southern and 

the Arctic Ocean. In contrast, the release of nutrients, which has the same drivers as the 

particle release, leads to an enhanced pelagic primary production within tens of 

kilometers in the same regions. In addition, benthic mineralization in the shallow coastal 

polar regions can increase or decrease, depending on the intensity of sedimentation 

rates and supply of organic matter. Increasing light availability in the deep-sea regions of 

the Southern and the Arctic Ocean only leads to an enhanced primary productivity if 

these regions also receive an increase in nutrients and iron supply. Deep-sea benthic 

mineralization between 200 m and >2000 m is impacted by changes in the sea-ice cover 

(a proxy for a suppressed primary production). Below those depths, the influence of sea-

ice cover fades out and the factor water depth (a proxy for loss of organic carbon by 

pelagic mineralization) becomes dominant. 
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Kurzfassung 

Primärproduktion und Mineralisation sind die wichtigsten Prozesse des biologischen 

Kohlenstoffkreislaufes und und innerhalb eines Ökosystems sind die Organsimen die 

wichtigsten Komponenten. Die Dynamiken von Primärproduktion, Mineralisation und 

organismischer Parameter wie Individuendichte, Biomasse, Gemeinschaftsstruktur und 

respiratorische Aktivität werden zudem von abiotischen und biotischen Faktoren 

kontrolliert. Diese Prozesse, Komponenten und Faktoren können sich auch gegenseitig 

beeinflussen und ökosysteminterne Abhängigkeiten aufweisen. Aus globaler Sicht 

zeigen die Kohlenstoffkreisläufe des Antarktischen und Arktischen Ozeans die 

quantitative größten Dynamiken und stehen deshalb im Fokus dieser Dissertation. 

Aufgrund des weltweiten Temperaturanstiegs verändert sich die polare Kryosphäre. 

Die damit einhergehenden Folgeerscheinungen beeinflussen die Prozesse und 

Komponenten des biologischen Kohlenstoffkreislaufes im Antarktischen und Arktischen 

Ozean. Durch das Schmelzen von Gletschereis und Eis in Permafrostböden werden 

vermehrt Nährstoffe und partikuläres Material in den küstennahen, maritimen 

Lebensraum transportiert. In den küstenfernen Regionen des Ozeans hingegen nimmt 

die Meereisdicke und Verbreitung des Meereises ab und verschwindet zum Teil 

gänzlich, wodurch den dortigen Primärproduzenten mehr Licht zur Verfügung steht. 

Allerdings verhindert die durch Meereisschmelze verursachte Stratifikation der 

oberen Meeresschicht den Nachschub von Nährstoffen aus tieferen Meeresschichten. 

Die Untersuchung, wie stark sich die Folgenerscheinungen der sich verändernden 

Kryosphäre auf die Primärproduktion, die Lebewesen am Meeresboden und die 
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benthische Mineralisation in den Polarregionen auswirkt, ist Ziel dieser Dissertation und 

wurde in drei Manuskripten thematisiert. 

Primärproduktion und benthische Mineralisation wurden mittels in situ und 

ex situ bestimmten diffusiven und totalen Sauerstoffflüssen ermittelt. Weiterhin 

wurden Individuendichten, Biomassen und Gemeinschaftsstrukturen von Organismen 

unterschiedlichster Größenklassen bestimmt und abiotische und biotische Faktoren 

gemessen. Dies erlaubte zudem die Erstellung eines holistischen Abbildes der 

Beziehungen und Abhängigkeiten der unterschiedlichsten Parameter innerhalb des 

ökosystemalen Kohlenstoffkreislaufes in den untersuchten Polarregionen. 

Im ersten Manuskript wird der Einfluss partikulären Materials auf die Primärproduktion 

von benthischen Mikroalgen in 6�9 m Wassertiefe in der Potter Cove (flacher, 

küstennaher Antarktischer Ozean) behandelt. Das partikuläre Material wird dort durch 

Gletscherschmelze freigesetzte. Die Untersuchung zeigte, dass die Primärproduktion 

der benthischen Mikroalgen durch besagtes partikuläres Material verringert bis 

vollständig unterdrückt wird. Die benthische Mikroalgengemeinschaft in der Potter Cove 

ist von Diatomeen dominiert, deren Gemeinschaftsstruktur durch das partikuläre 

Material jedoch nicht beeinflusste wurde. Die Verringerung der Primärproduktion wird 

mit einem erhöhten Energieaufwand für die Vertikalbewegung der Diatomeen durch das 

Sediment erklärt, welche durch die permanente Bedeckung durch neue Partikel 

ausgelöst wird. Der Einfluss der erhöhten Trübung, eine weitere Folge des 

Partikeleintrages, wird als gering eingeschätzt, da antarktische, benthische Mikroalgen 

sehr gut an geringe Lichtverhältnisse angepasst sind.  

Das räumliche Verteilungsmuster der benthischen Mineralisation in 6�9 m 

Wassertiefe in der Potter Cove (flacher, küstennaher Antarktischer Ozean) wurde im 

zweiten Manuskript untersucht. Das Verteilungsmuster ist dabei durch den 

gletscherschmelzbedingten Eintrag von partikulärem Material beeinflusst. Der Großteil 

der benthische Mineralisation wird durch die benthische Makrofauna umgesetzt und folgt 

einer unimodalen Korrelation mit zunehmender Sedimentationsintensität des 

partikulären Materials. Dieses Korrelationsmuster wird durch die physiologische 

Reaktion der filtrierenden und detrivoren Makrofaunagemeinschaft auf das erhöhte 

Vorkommen von partikulärem Material erklärt. Des Weiteren beinhaltet das Manuskript 
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die erste holistische Abbildung der Abhängigkeiten unterschiedlichster Parameter 

innerhalb des biologischen Kohlenstoffkreislaufes in einem flachen, küstennahen 

Ökosystems des Antarktischen Ozeans. Dieses Abbild beschreibt, wie Primärproduktion 

und die davon abhängige benthische Mineralisation miteinander in Verbindung stehen. 

Die Ergebnisse des dritten Manuskripts zeigen das räumliche Verteilungsmuster der 

benthischen Mineralisation in 275�2500 m Wassertiefe in der Fram Straße (arktische 

Tiefsee). In der hauptsächlich eisbedeckten westlichen Fram Straße war die benthische 

Mineralisation tiefenunabhängig, während sie in der zumeist eisfreien, östlichen Fram 

Straße tiefabhängig war. Dieses Muster lässt sich durch die verringerte 

Primärproduktion in der westlichen Fram Straße erklären, welche durch die verringerte 

Lichtverfügbarkeit auf Grund der erhöhten Meereisbedeckung und des geringen 

Nährstoffangebotes verursacht wird. Der Einfluss der Meereisbedeckung auf die 

benthische Mineralisation wird jedoch ab Wassertiefen von 1500 m durch den Einfluss 

der geringeren Verfügbarkeit von organischem Kohlenstoff überdeckt, welcher wiederum 

durch pelagische Mineralisationsprozesse verursacht wird. Zusätzlich wurden 

die gewonnen Daten für eine holistische Abbildung der Abhängigkeiten von 

Primärproduktion und unterschiedlichster abiotischer und biotischer mit der benthischen 

Mineralisation in der Fram Straße verwendet. Dadurch war es möglich, auch für die 

Fram Straße die Verbindung zwischen Primärproduktion und der davon abhängigen 

benthisch Mineralisation erstmals detaillierter zu beschreiben. 

Die Ergebnisse der drei Manuskripte wurde genutzt um das grundlegendere Thema 

zu diskutieren, wie sich Primärproduktion und benthische Mineralisation und deren 

Beziehungen zueinander durch die sich verändernde Kryosphäre und damit 

verbundener Folgen in den Polargebieten beeinflusst werden. Weiterhin wurden die 

Ergebnisse genutzt um Veränderungen im Kohlenstoffkreislauf des Antarktischen und 

Arktischen Ozeans unter spezifischen Zukunftsszenarien zu diskutieren. 

Meine Dissertation zeigt, dass das durch schmelzende Gletscher und tauende 

Permafrostböden freigesetzte partikuläre Material zu einer immensen Verringerung der 

Primärproduktion von benthischen Mikro- und Makroalgen in einem Bereich von 

mehreren hundert Metern in polaren Küstenbereichen führen kann. Die mit der 

Schmelze einhergehende Freisetzung von Nährstoffen wird im Gegensatz dazu eine 
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gesteigerte pelagische Primärproduktion in einem Bereich von mehreren Kilometern 

nach sich ziehen. Die benthische Mineralisation hingegen kann sich in küstennahen, 

flachen Polarregionen in Abhängigkeit von der Quantität der Sedimentationsraten und 

der Höhe des Nährstoffeintrages ansteigen oder sich verringern. Eine erhöhte 

Primärproduktion in den küstenfernen Regionen des Antarktischen und Arktischen 

Ozeans aufgrund der erhöhten Lichtverfügbarkeit wird jedoch nur erfolgen, wenn 

gleichzeitig auch das Angebot an primärproduktionslimitierendem Eisen (Antarktischer 

Ozean) oder stickstoff- und phosphathaltigen Nährstoffen (Arktischer Ozean) ansteigen. 

Die benthische Mineralisation in der polaren Tiefsee erhöhte sich aufgrund einer sich 

stark verringernden Meereisbedeckung nur in dem Tiefspektrum zwischen 200 m bis 

1500 m. Unterhalb dieser Tiefe, nimmt der Einfluss von Meereis ab und der Faktor 

Wassertiefe (stellvertretend für den Verlust von organischem Kohlenstoff durch 

pelagische Mineralisationsprozesse) dominiert. 
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1 Introduction 

1.1 The biological carbon cycle 

1.1.1 The importance of carbon in ecology 

Ecology is the study of relationships between structure and function in nature [Odum, 

1962]. The term �structure� encompasses the composition of the biological community 

(species, numbers, biomass, life-history, dispersion, etc.), the quantity and distribution of 

abiotic materials (nutrients, water, etc.) and the range or gradient of conditions of 

existence (temperature, light, etc.) [Odum, 1968]. The term ������	
������

�����������

range of energy flows through the system, the rate of material cycling and the regulation 

of these processes by the physical environment and by organisms [Odum, 1968]. In 

addition, energy flow is the sum of production and respiration [Odum, 1968]. Hence, 

carbon is the ideal study object for ecological studies. 

Primary production by photosynthesis and mineralization as a respiration process are 

important processes within the global carbon cycle (Figure 1.1). Within the carbon cycle, 

����
�� 	�� ����� 
�� ������������ ��������� 
�� ���� ������	
��� [Odum, 1962] and owing to the 

��������� 
�� 
����	�� ����
�� ����
���� ���� �����
�� ���� �	��	�� ���� ��	
�
�	���� �


��	����

[Odum, 1968], carbon fluxes represent matter and energy flux in parallel. Furthermore, 

primary production and mineralization are mediated by the living biota. Thus, carbon 

fluxes, which originate from primary production and mineralization processes and 

involve the transformation from inorganic to organic carbon and vice versa, can be used 

to determine whether or not an and ecosystem is heterotrophic or autotrophic. 
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Figure 1.1. General and simplified carbon cycle. Primary production and mineralization are processes 
����	��� 	�
����	�� ����
�� 	��
� 
����	�� ����
�� ���� �	��� ������� �������	������ ���� ������� ���� �����������
any molecule, which can be reduced or oxidized, e.g. oxygen or sulfur. The figure is modified after 
Falkowski and Raven [2007]. 

Photosynthesis is globally the main process which transforms inorganic carbon into 

organic carbon, and from which oxygen is produced as a by-product [Field et al., 1998; 

Raven, 2009; Kirk, 2011]. During the light-independent reaction of photosynthesis, a 

carbon atom is transferred from inorganic carbon dioxide to organic Ribulose-1,5-

bisphosphate via activated Ribulose-1,5-bisphosphate-co-enzyme (RuBisCO) 

[Falkowski and Raven, 2007; Kirk, 2011]. The energy for the activation of RuBisCo 

originates from the light-dependent reaction, which precedes the light-independent 

reaction [Falkowski and Raven, 2007; Kirk, 2011]. Hence, sunlight energy is transferred 

to and preserved in organic carbon. Carbon is hereby incorporated into the living biota, 

where it is used as a structural fundament for deoxyribonucleic acid, carbohydrates, 

proteins and lipids [Bergtrom, 2015]. Therefore, carbon is an irreplaceable element 

within ���������������
����������[Odum, 1968; Bergtrom, 2015]. 

After being incorporated into primary producers, organic carbon is used as an energy 

resource by heterotrophic consumers. The increase in biomass of heterotrophic 

consumers is called secondary production. Owing to the prey-predator relationships 

among the heterotrophic consumers, organic carbon is distributed among the biota 

present in an ecosystem, forming the ecosystem food web [Pimm, 2002; Knox, 2007; 

van Oevelen et al., 2011; Marina et al., 2018]. 

The counterpart of photosynthesis in the global carbon cycle is mineralization 

(synonym to �respiration�) [Williams and del Giorgio, 2005]. To release the preserved 

sunlight energy in order to run essential biogeochemical reactions, such as nutrient 

uptake or muscular contraction, organic carbon is reduced and carbon dioxide is 

released [Williams, 1984; Canfield et al., 2005; Williams and del Giorgio, 2005]. In 
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addition, oxygen (= aerobic respiration) or other oxidized molecules (= anaerobic 

respiration of nitrate or sulfate) are utilized as electron acceptors [Williams and del 

Giorgio, 2005]. Contrasting to photosynthesis, where only one biochemical pathway 

turns inorganic carbon into organic carbon, up to 15 different biochemical pathways can 

be identified for the mineralization of organic carbon [King, 2005; Williams and del 

Giorgio, 2005]. However, each of these pathways results in the release of inorganic 

carbon. 

To quantify primary production and mineralization, carbon fluxes can be used but this 

would require the measurement of carbon dioxide concentrations. The measurement of 

carbon dioxide concentrations in high temporal resolution is mandatory for the reliable 

calculation of carbon fluxes by sensor-based systems. Though, such carbon dioxide 

sensors are still at a preliminary stage of development in seawater [Fritzsche et al., 

2017; Lochman et al., 2017], due to its complex carbon chemistry which involves the 

chemical equilibrium between carbon dioxide, carbonic acid, bicarbonate ions, and 

carbonate ions [Murray, 2004]. However, owing to the close relationship between carbon 

dioxide and oxygen within the photosynthesis and mineralization processes, oxygen 

fluxes mirror carbon fluxes. Methods to measure oxygen concentrations in seawater are 

well established [Winkler, 1888; Revsbech, 1989; Klimant et al., 1995]. Therefore, 

oxygen fluxes have often been used to quantify primary production and mineralization in 

the marine realm [Wenzhöfer and Glud, 2002; Glud, 2008; Bourgeois et al., 2017]. 

Within this thesis, oxygen fluxes (rather than carbon fluxes) have been determined from 

the environment. For the conversion of oxygen fluxes back to carbon fluxes, the Redfield 

ratio of 138 O : 106 C was used [Redfield, 1963]. The use of modified Redfield ratios 

such as 172 O : 140 C [Takahashi et al., 1985] or 170 O : 117 C [Anderson and 

Sarmiento, 1994] would only lead to minor changes of <10% of the resulting carbon flux 

[Wenzhöfer and Glud, 2002].  
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1.1.2 The biological carbon cycle in the marine realm 

In the marine realm photoautotrophic organisms, organisms which supply their energy 

demand by photosynthesis, are the main primary producers (>99%) [Raven, 2009]. 

Chemolithoautotrophic microorganisms, organisms which achieve their energy demand 

via the chemical oxidation of inorganic molecules such as hydrogen sulfide, elemental 

sulfur, ammonium and ferrous iron, only contribute substantially to the organic carbon 

supply in oxygen minimum zones and reduced ecosystems such as deep-sea cold vent 

and hot seep systems [Raven, 2009; Hügler and Sievert, 2011]. Therefore, the major 

organic carbon source for the heterotrophic community, basis for the establishment of 

the great majority of marine food webs, originates from photoautotrophic organisms 

[Pimm, 2002; Knox, 2007; van Oevelen et al., 2011; Marina et al., 2018]. 

Nevertheless, primary production in the marine realm via photosynthesis depends on 

abiotic and biotic factors. In addition to a suitable light availability being available as the 

energy source, inorganic nutrient supply, wind-induced mixing of the water column and 

temperature are further important abiotic factors controlling the quantity of primary 

production [Falkowski and Raven, 2007; Kirk, 2011; Cherkasheva et al., 2014; 

Fernández-Méndez et al., 2015]. Inorganic nutrients, particularly the concentrations of 

the key elements of nitrogen and phosphorus, do not control photosynthesis but are 

essential for primary producers to increase in biomass [Kirk, 2011]. In general, the 

molar-based Redfield ratio (16 N : 1 P) represents the nutrient demand of primary 

producers [Redfield, 1934]. Wind-induced vertical mixing of the water column transports 

pelagic primary producers frequently in and out of the optimal light conditions required 

by the photosynthetic apparatus for maximum activity [Mahadevan, 2016]. This alters 

the overall primary production rates of the present primary producer community [Kirk, 

2011; Mahadevan, 2016]. Globally, temperature controls the speed of chemical and 

enzymatic reactions on short time scales [Barry, 1914; Voet et al., 2016 ]. Though, only 

in shallow habitats in temperate regions temperature is considered as a limiting factor as 

only here fast temperature changes occur to which primary producers may not be able 

to adapt fast enough [Kirk, 2011]. Biotic factors, such as cell internal chlorophyll 

concentration, the health status of the cell, self-shading, and the phototrophic community 
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composition also impact primary production rates [Schloss et al., 1998; MacGlathery et 

al., 2001; Falkowski and Raven, 2007]. 

Both, phototrophic and heterotrophic organisms mineralize organic carbon 

(Figure 1.2) [Williams, 1984; Williams and del Giorgio, 2005]. Photoautotrophic primary 

producers as well as heterotrophic pelagic and benthic meio-, macro- and megafauna 

solely perform aerobic mineralization (with oxygen as the electron acceptor), while a 

majority of benthic microorganisms perform anaerobic mineralization (other reducible 

molecules in the roles as electron acceptors) [Glud, 2008]. Owing to Gibbs energy 

[Gibbs, 1873] and the laws of thermodynamics, aerobic mineralization provides the 

highest energy output, whereas the energy output from anaerobic mineralization is less 

and depends on the electron acceptor molecule [King, 2005]. In turn, the favorable 

electron acceptor cascade for the mineralization in the marine benthos is oxygen, 

nitrate, manganese oxide, iron oxide, sulfate and methane (Figure 1.2). 

 
Figure 1.2. Two examples of biological carbon cycles. The left-hand example show pathways of organic 
carbon (Corg) between different pelagic and benthic organismal groups and includes photosynthesis and 
mineralization (with a focus on aerobic respiration). The right-hand example from Glud [2008] includes 
only mineralization and specified the electron acceptor cascade in the benthos. 

It should be highlighted that oxygen flux measurements include aerobic and 

anaerobic mineralization, as products of the anaerobic mineralization will be reoxidized 

in the oxic zone before they leave the sediment and thereby also consume oxygen, e.g. 

hydrogen sulfide to sulfate [Williams and del Giorgio, 2005]. Mineralization depends on 

abiotic factors such as temperature, food supply, and food composition, but also on the 
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heterotrophic community structure [Williams and del Giorgio, 2005; Brey, 2010]. 

Consequently, the quantities of carbon fluxes depend on a preceding cascade of inter-

dependent factors (Figure 1.3). 

 
Figure 1.3. Cascade of inter-dependent factors controlling carbon flux quantities. 

1.2 Primary production in polar regions 

1.2.1 Spatial and temporal variability of primary production in different 

habitats of the Southern and Arctic Ocean 

On spatial and temporal scales, the quantitatively most important regions for 

worldwide marine organic carbon dynamics are the Southern and the Arctic Ocean 

[Tjiputra et al., 2013; Heinze et al., 2015], which are characterized by contrasting 

environmental conditions. The Southern Ocean surrounds the Antarctic continent, has a 

shelf depth of a maximum of 800 m, and only 2% of the Southern Ocean being shelf 

[Ainley et al., 2009; Smith, 2010]. Sea ice covers ~19 million km2 during winter and 

~3 million km2 in summer (mean values 1981�2010, Figure 1.4). Furthermore, 90% of 

Southern Ocean sea ice is first-year ice and <2 m thick [Horner et al., 1992] and the 

Southern Ocean does not experience any strong riverine influence [Smith, 2010]. The 

growth season for primary producers in the Southern Ocean is approximately from 

October to April [Lizotte, 2001]. In contrast, the Arctic Ocean is an ocean surrounded by 
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land, with a shelf depth of maximum 200 m and 30�50% of the Arctic Ocean being shelf 

area [Pabi et al., 2008; Macdonald et al., 2010]. Sea ice covers ~15 million km2 during 

winter and ~6 million km2 in summer (mean values 1981�2010, Figure 1.4). Further, the 

Arctic Ocean is characterized by 50�90% multi-year sea ice with a thickness of >2 m 

(depending on season) [Horner et al., 1992; Comiso, 2012] and the Arctic Ocean is 

strongly influenced by riverine input from the surrounding continents [Smith, 2010]. The 

growing season for primary producers in the Arctic Ocean is approximately from March 

to September in the Arctic [McMinn and Hegseth, 2004; Cherkasheva et al., 2014]. 

Aside from these differences, both polar oceans encompass similar habitats for primary 

producers: the pelagial, sea ice and glacial ice, and soft and hard bottom seafloor 

surfaces. 

 
Figure 1.4. Inter-annual changes of the sea-ice extent in the Southern Ocean (upper panel) and Arctic 
Ocean (lower panel). Images provided by www.seaiceportal.de. 
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The pelagic ecosystem of the polar environments can be subdivided into ice-covered 

regions, the marginal ice zone (MIZ), the open ocean, and shelf regions, with primary 

producers found in each of these regions [Arrigo et al., 2008a; Pabi et al., 2008]. The 

area-specific size of these regions undergoes substantial annual change, owing to the 

seasonal cycle in sea-ice cover (Figure 1.4) and sea-ice extent. 

In the Southern Ocean, pelagic primary production contributes up to 90% [Arrigo et 

al., 1998] to the total primary production, while the MIZ contributes 10�32% [Arrigo et al., 

1998; Lizotte, 2001] and the shelf ~2% [Arrigo et al., 1998]. Daily primary production 

rates vary seasonally between 7�82 mmol C m-2 d-1 in the open ocean, 

12�141 mmol C m-2 d-1 in the MIZ, and 20�328 mmol C m-2 d-1 in the shelf regions 

(Figure 1.5) [Arrigo et al., 1998, 2008a; Schloss et al., 1998]. Prominent pelagic primary 

producers in the Southern Ocean are Bacillariophyceae species of Thalassiosira 

antarctica, Corethron criophilum, Eucampia antarctica, Odonfella weissflogii [Schloss et 

al., 1998], the Bacillariophyceae genus Chaetoceros, Fragilariopsis, and the 

Coccolithophyceae Phaeocystis [Hart, 1942; Arrigo et al., 1998; Esper et al., 2010]. 

 
Figure 1.5. Annual pelagic primary production in the Southern Ocean (left) and Arctic Ocean (right). 
Figures modified from Arrigo et al. [2008a] and Pabi et al. [2008], respectively. In black areas, sea-ice 
cover prevented reliable satellite-based determination of primary production. 
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In the mostly sea-ice covered central Arctic Ocean 43�98% of the primary production 

is realized in the pelagial [Gosselin et al., 1997; Fernández-Méndez et al., 2015], which 

contributes ~24% to the total pelagic Arctic primary production [Pabi et al., 2008; 

Macdonald et al., 2010]. Annual primary production at the Arctic shelf contributes 

16�76% to the total primary production, the MIZ (encompassing shelf and deep sea 

areas) 37�46% and the open ocean 34�40% (Figure 1.5) [Pabi et al., 2008; Macdonald 

et al., 2010]. Daily Arctic pelagic primary production varies seasonally, e.g. 

2�23 mmol C m-2 d-1 in the shelf region of the Kara Sea and 0�60 mmol C m-2 d-1 in a 

Greenland fjord [Sørensen et al., 2015; Demidov et al., 2017]. Important pelagic primary 

producers in the Arctic are Bacillariophyceae of the genus Chaetoceros and 

Thalassiosira, and the Coccolithophyceae Phaeocystis [Booth and Horner, 1997]. 

Sea ice is assumed to be an extreme environment for primary producers, owing to 

low temperatures, high UV irradiation, low nutrient concentrations and low water 

availability [Leeuwe et al., 2018]. In addition, the sea-ice habitat undergoes immense 

spatial changes as it retreats and extends inter-annually (Figure 1.4). However, more 

than 300 species of diatoms and flagellates are known to inhabit the sea-ice and melt 

ponds, although some of these are also found within the ocean as phytoplankton [Booth 

and Horner, 1997]. In the Southern Ocean, sea-ice algae contribute up to 30% to the 

total primary production [Legendre et al., 1992; Lizotte, 2001]. Nitzschia stellata, 

Entomoneis kjellmanii, Berkeleya adeliensis, and Phaeocystis antarctica and species of 

the genus Fragilariopsis form large blooms under the sea ice in the Southern Ocean 

[Lizotte, 2001; Trenerry et al., 2002; Armand and Leventer, 2009]. In the central Arctic 

Ocean, sea-ice algae have been reported to contribute 3�25% to the total primary 

production [Legendre et al., 1992], although recent studies estimated a higher 

contribution of up to 57% [Gosselin et al., 1997; Gradinger, 2009; Boetius et al., 2013; 

Fernández-Méndez et al., 2015]. In the Arctic Ocean, bloom-forming under ice species 

include Nitzschia frigida and Melosira arctica [Booth and Horner, 1997; Boetius et al., 

2013] with Phaeocystis pouchetii dominating the sea-ice surface, brine and infiltration 

communities [McMinn and Hegseth, 2004]. The existence of sea-ice algae and their 

substantial contribution to the primary production indicates that sea-ice algae are well 
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adapted to the above described extreme environmental conditions [Maccario et al., 

2015]. 

Primary producers at the soft bottom seafloor are benthic microalgae, the 

microphytobenthos (MPB). The MPB mainly occurs in coastal areas of shelf regions and 

have been estimated to contribute 3�90% of the total coastal primary production [Glud et 

al., 2009; McMinn et al., 2010]. The daily primary production can range between 

0.2�198 mmol C m-2 d-1 for both, Arctic and Southern Ocean soft sediments [Dayton et 

al., 1986; Glud et al., 2009; McMinn et al., 2010; Woelfel et al., 2010; McMinn et al., 

2012]. The MPB is a diatom-dominated community [Al-Handal and Wulff, 2008a; Glud et 

al., 2009] consisting primarily of cosmopolitan species [Hop et al., 2002; Al-Handal and 

Wulff, 2008a] such as Gyrosigma fragilis and Nitzschia cf. aurariae [Al-Handal and Wulff, 

2008a; Karsten et al., 2012] and species of the genus Pinnularia, Nitzschia, Navicula 

[Glud et al., 2002]. 

Hard bottom seafloors in the polar regions (in terms of primary producers) are mainly 

inhabited by macroalgae and encrusting, coralline red algae. Macroalgae show a strong 

vertical zonation [Miller and Pearse, 1991; Amsler et al., 1995; Hop et al., 2012]. 

However, 93% of the polar macroalgae species occur in water depths of maximum 15 m 

[Kruss et al., 2017]. The primary production of macroalgae may be restricted to shallow 

environments, but where they are found contributions to total primary production may be 

high; e.g. 62% to the total primary production reported from a Greenland fjord was in the 

form of macroalgae [Rysgaard and Nielsen, 2006; McMinn et al., 2012]. Furthermore, 

macroalgae debris is an important food resource in benthic detrital food chains [Amsler 

et al., 1995; Quartino et al., 1998; Renaud et al., 2015]. About 700 species are known 

for the Southern Ocean [Knox, 2007]. The genus Desmarestia and Himantothallus 

dominates the macroalgae community and cover up to 72% of the Southern Ocean hard 

bottom seafloor [Amsler et al., 1995]. Macroalgae of the genus Enteromorpha, Ulothrix, 

Cladophora, Leptosarca, and Iridea also contribute substantially to the macroalgae 

community [Knox, 2007]. Coralline red algae are known to cover 4�60% of the hard 

bottom seafloor in the Southern Ocean (at shallow water depths) and show a primary 

production of ~1.3 mmol C m-2 thallus-1 d-1 [Miller and Pearse, 1991; Schwarz et al., 

2005]. Dominating species are Mesophyllum engelhartii, Synarthrophyton patena, 
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Lithophyllum aequable and Lithothamnoin granuliferum [Schwarz et al., 2005; Knox, 

2007]. In the Arctic Ocean, 55�70 macroalgae species occur which cover up to 39% of 

the Arctic hard bottom seafloor, depending on the investigated location [Wulff et al., 

2009; Kruss et al., 2017]. The macroalgae communities in the Arctic Ocean are 

dominated by species of Laminaria digitata, Saccharina latissimi, Ptilota gunneri, Alaria 

esculenta, and Phycodrys rubens [Hop et al., 2016]. Besides macroalgae, 1�2% of 

the Arctic hard bottom seafloor is covered by coralline red algae such as 

Phymatolithon foecundum and Phymatolithon tenue with a primary production of 

~0.35 mmol C m-2 thallus-1 d-1 [Roberts et al., 2002]. 

1.2.2 Light availability reduction in polar ecosystems 

Light is the ultimate driving force of primary production [Wassmann et al., 2004; 

Popova et al., 2010] and the polar environment provides extreme variations and 

conditions in terms of light for primary producers (Figure 1.6) [Sakshaug, 2004; Serreze 

and Barry, 2014]. 

 
Figure 1.6. Duration of daylight and darkness from 60°N to 90°N after Serreze and Barry [2014]. In the 
Southern Ocean, the light pattern is vice versa. 

On an annual basis, the light conditions change from total darkness during polar night to 

midnight sun during polar day [Serreze and Barry, 2014]. Owing to this seasonal change 

in day-light availability (Figure 1.6), the primary production season is restricted to only a 

few months in both the Southern Ocean and Arctic Ocean [Wassmann et al., 2004; 

Lizotte, 2001]. The photosynthetically active radiation intensity (PAR, 
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400�700 nm wavelengths) depends on different abiotic factors, phenomena, and events. 

Owing to the low sun angle, the maximum PAR at the North Pole is 

1200 �

� photons m-2 s-1 and 1700 �

� photons m-2 s-1 at 60°N [Sakshaug, 2004]. At 

the Antarctic coast, up to 2500 �

� photons m-2 s-1 has been reached [Holm-Hansen et 

al., 1977]. However, regularly occurring weather phenomena such as fog (typically 

occurring over sea-ice free areas in summer) and clouds decrease PAR availability at 

the oceanic surface by 60�70% and 20�90%, respectively [English, 1961; Apollonio, 

1980; Bischof et al., 1998; Knox, 2007]. 

At the oceanic surface of the Southern and Arctic Ocean, ice-covered areas receive 

only a small portion of available PAR compared to ice-free areas, owing to the light 

reflecting characteristics of the ice. The albedo (% of reflected light) alters on spatial and 

temporal scales [Nicolaus et al., 2010; Shao and Ke, 2015]. For example, multi-year 

sea-ice covered areas have an albedo of 65% and can be 80�90% if snow is topping the 

multi-year sea-ice [Perovich et al., 2002]. Snow covered one-year sea-ice has an albedo 

similar to the multi-year sea-ice [Brandt et al., 2005; Perovich and Polashenski, 2012]. 

However, as soon as melt ponds form, the albedo drops to ~40% [Perovich and 

Polashenski, 2012]. Furthermore, the albedo of grease sea-ice (slurry of small, plate-like 

crystals), nilas sea-ice (solidified grease sea-ice with a lot of bubbles and brine 

inclusions), and young �grey� sea-ice (nilas sea-ice grown to 20 cm thickness) is <30% 

[Brandt et al., 2005]. In the open ocean and in polynyas the albedo is ~7% [Perovich and 

Polashenski, 2012]. The main proportion of the spectral PAR that penetrates below sea 

ice ranges in wavelength between 450�600 nm [Nicolaus et al., 2010]. Thus, by the 

occurrence of sea-ice, less energy is available for photosynthesis. 

Calving and melting of glaciers are also events that influence light availability in polar 

habitats. Melting glaciers release particles into the water column, directly or via river 

runoff [Dierssen et al., 2002]. Furthermore, directly at the glacial front chunks of ice drop 

off, fall into the water, may hit the soft seafloor and thereby resuspend soft sediment 

seafloor particles [Barnes, 1999; Griffiths, 2010]. In turn, both events lead to an 

increased turbidity in the water column, a decrease of available PAR for primary 

producers and an increase in sedimentation rate. 
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A further reduction of light availability in the water column is caused by storms, which 

can lead to resuspension in shelf areas [Schloss et al., 1999; Lintern et al., 2013]. In 

addition, with advancing primary production in spring, the amount of particles in the 

water column increases, which can reduce the thickness of the euphotic zone (defined 

as 1% isolume of the surface PAR [Lee et al., 2007]) from 66 m to <3.5 m [Dallokken et 

al., 1994; Sakshaug, 2004]. 

1.2.3 Nutrient availability and supply in polar ecosystems 

The availability of nutrients is also an important factor influencing the primary 

production [Popova et al., 2010]. In general, the Southern Ocean contains approximately 

2�4 times higher nutrient concentrations than the Arctic Ocean [Sakshaug, 2004]. 

The Southern Ocean is assessed as being the largest high-nutrient-low-chlorophyll 

region in the global ocean [Pollard et al., 2006; Morrison et al., 2015]. Nitrogen and 

phosphorus-containing nutrients originate from the upwelling of deep water, which were 

formed in the north Atlantic, the Pacific and the Indian Ocean [Sakshaug, 2004; Morrison 

et al., 2015]. However, primary production in the Southern Ocean is limited by the 

availability of iron [Banse, 1996]. Sources of iron can be upwelling, meltwater runoffs, 

aeolian dust, release and advection from continental shelf sediments, melting icebergs 

and recycling of iron within the biological system of the oceanic surface layer [Chester, 

1990; Banse, 1996; Lefèvre and Watson, 1999; Walter et al., 2000; Haese, 2006; 

Monien et al., 2017]. The Arctic Ocean is assumed to be mostly nitrate limited 

[Sakshaug, 2004; Fernández-Méndez et al., 2015], with the exception of brackish waters 

with salinities <25 at Arctic estuaries, which are phosphate-limited [Sakshaug et al., 

1983]. The Arctic nutrient supply originates mainly from the Bering Sea, the Atlantic 

Ocean and from riverine input [Rachold et al., 2004; Sakshaug, 2004; Harada, 2015; 

Tremblay et al., 2015]. However, the riverine input is only relevant for primary production 

within a few tens of kilometers of the entrance point of river discharge to the marine 

ecosystem, and therefore mainly associated with the shelf region [Emmerton et al., 

2008; Pabi et al., 2008]. 

Owing to the described nutrient supply, primary production suppressing nutrient 

limitations are reported for the open ocean areas of the Southern Ocean and the central 
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Arctic Ocean [Arrigo et al., 1998; Pabi et al., 2008; Popova et al., 2010]. Contrasting to 

these regions, high primary production rates have been observed at the MIZ and in 

polynyas (mostly located in shelf areas) [Wassmann et al., 2006]. The MIZ is 

characterized by stratified conditions of the upper and sea surface waters, in which 

enhanced primary production takes place until nutrient built up during the winter months 

has been fully utilized [Tremblay et al., 2015] or new nutrients are supplied by vertical 

mixing processes [AMAP, 2012], e.g. by storm events. Polynyas receive nutrient 

supplies by wind-driven upwelling of deep nutrient-rich water masses [Hunt et al., 2016; 

Park et al., 2017]. Furthermore, wind and ice scouring are two events which can lead to 

resuspension of soft seafloor particles. Thereby mineralized and stored nutrients can be 

again made available for primary production [Héquette et al., 1995; Barnes, 1999; 

!�	��	����� "#$#&� '*+�	��� ��� ����� "##/?. These events are most commonly occurring in 

coastal polar regions and therefore the greatest impact of these processes on the 

primary production occurs with shelf areas @'*+�	�����������"##/?. 

1.3 Polar mineralization: From shallow coasts to the deep sea 

1.3.1 Pelagic mineralization and vertical flux of organic matter 

In this thesis, I focus on benthic mineralization. As the organic carbon produced at the 

surface needs to pass the pelagial before it reaches the benthos, a brief introduction to 

pelagic respiration and vertical carbon fluxes is given in this section. 

After carbon uptake by primary producers, organic carbon is distributed among the 

heterotrophic community of the local food web and mineralized via respiration [Azam et 

al., 1983; Gontikaki et al., 2011; Marina et al., 2018]. As a result, particulate organic 

matter (POM) and dissolved organic carbon (DOC) is produced [Pomeroy, 1974; Azam 

et al., 1983]. POM includes dead phytoplankton, phytodetritus, dead zooplankton, and 

fecal pellets [Pomeroy, 1974], whereas DOC includes carbohydrates, proteins, and 

structurally complex carboxyl-rich aliphatic matter [Repeta, 2015]. The DOC will mainly 

feed the microbial loop in the water column [Pomeroy, 1974; Azam et al., 1983]. As the 

microbial community is also a food source for pelagic organisms, DOC will be partly 

recycled into POM [Azam et al., 1983]. After formation, POM and DOC sink towards the 
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seafloor and may be mineralized in the pelagial to carbon dioxide and other inorganic 

nutrients. If pelagic mineralization occurs in the euphotic zone, carbon dioxide and 

nutrients will be recycled by primary producers [Rubin, 2003]. If POM and DOC sink 

below the euphotic zone, mineralization will continue as the material settles, with carbon 

dioxide and inorganic nutrients stored in deep ocean water masses or buried in the 

sediment [Rullkötter, 2006; Morrison et al., 2015]. 

The relationship between the described vertical carbon flux and water depth follows 

an exponential regression [Christensen, 2000; Hensen et al., 2000]. Consequently, in 

shallow coastal shelf areas, a higher portion of carbon produced in the pelagial can 

reach the seafloor. In addition, benthic primary production by MPB and macroalgae are 

further carbon sources to supply material for benthic mineralization in shallow coastal 

regions, besides pelagic and ice algae production. With increasing water depths across 

shelfs and towards the open ocean regions, more POM is mineralized in the pelagial 

and thus less is available as a food source for the benthic community. For example, 

approximately 5% of the surface primary production reaches 1000 m water depth 

[Hensen et al., 2006]. Furthermore, as primary production varies on spatial and temporal 

scales (see upper paragraph), so do vertical fluxes [Rowe et al., 1994; Hensen et al., 

2000; Wassmann et al., 2004; Bauerfeind et al., 2009]. 

Vertical carbon fluxes in the Southern and Arctic Ocean show a great spatial and 

seasonal variability. In the Southern Ocean, the annual vertical carbon flux generally 

decreases with increasing latitude [Schlitzer, 2002]. During spring and summer, vertical 

carbon fluxes in the Southern Ocean have been observed to range between 

0.03�10 mmol C m-2 d-1 [Smith et al., 2010; Rigual-Hernández et al., 2015]. However, 

unexpected high fluxes of up to 50 mmol C m-2 d-1 were found in the Atlantic sector of 

the Southern Ocean [Puigcorbé et al., 2017]. In shallower regions, the vertical carbon 

flux in summer can be up to 39 mmol C m-2 d-1 [Schloss et al., 1999; Smith et al., 2010]. 

During winter the vertical carbon flux in the open ocean may range between 

0�0.2 mmol C m-2 d-1 [Rigual-Hernández et al., 2015]. The vertical carbon flux in the 

Arctic Ocean varies from <0.04 mmol C m-2 d-1 in winter to >50 mmol C m-2 d-1 in 

summer [Wassmann et al., 2004]. In the MIZ of the Barents Sea and the Bering Sea, 

vertical carbon fluxes of 42 mmol C m-2 d-1 and 50 mmol C m-2 d-1 have been 
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reported, respectively [Wassmann et al., 2004]. Lower vertical carbon fluxes of 

J42 mmol C m-2 d-1 were reported for the eastern Arctic Fram Strait [Bauerfeind et al., 

2009]. However, on the shelfs and across the continental margins the vertical carbon 

flux can be up to 108 mmol C m-2 d-1 [Macdonald et al., 2010]. Therefore, spatial and 

temporal variations in the vertical carbon flux cover up to three orders of magnitude in 

the Southern and Arctic Ocean. 

1.3.2 Spatial and temporal variability of benthic remineralization across 

polar coasts, shelfs and in the deep sea 

After organic matter has built up by primary production and subsequently POM and 

DOC commenced mineralization in the ice or in the pelagial, the remaining organic 

carbon ultimately reaches the seafloor. Thereby, POM is the largest organic carbon 

source (>90%) [Hansell et al., 2009]. At the sea floor, if not resuspended, POM supplies 

the benthic community and will be mineralized. On large scales, benthic mineralization 

mirrors the surface primary production pattern [Wenzhöfer and Glud, 2002; Sachs et al., 

2009; Bourgeois et al., 2017]. 

��������
���
�������
���	
���XJY#�
������������\�	�������
������
�����
���	����- and 

intra-annual variability of benthic mineralization was reported to range between 

0.5�3 times the annual mean [Nedwell et al., 1993] and the spatial variability covers a 

range of up to two orders of magnitude [Woelfel et al., 2010]. Furthermore, benthic 

mineralization seems to decrease with increasing water depth at shallow coastal 

locations [Glud et al., 2002]. However, apart from three studies (Table 1.1), little is 

known about the benthic mineralization at the sediment-water interface (SWI) in shallow 

coastal environments of the Southern Ocean. At the Arctic coast, mineralization has 

been observed to vary between 0�62 mmol C m-2 d-1 at different locations [Grebmeier 

and Cooper, 1995; Devol et al., 1997; Welch et al., 1997; Glud et al., 2002; Woelfel et 

al., 2010]. 

In the Southern Ocean shelf regions (>50 
��
�J^## m water depth), spatial variability 

in the benthic mineralization covers up to three orders of magnitude (Table 1.1), while it 

only varied 2�3.5 times the annual mean [Baldwin and Smith, 2003 (1999�2000); Smith 

et al., 2006 (1990-1992)]. In Arctic shelf regions (>50 m to J"## m) benthic 
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mineralization has been reported to cover two orders of magnitude (Table 1.1, 

Figure 1.7). However, huge areas of the Lazarev Sea, Cosmonauts Sea, Davis Sea and 

_*`��	��� Sea in the Southern Ocean and the Barents Sea, the Kara Sea and the East 

Siberian Sea in the Arctic Ocean are uninvestigated regarding the benthic mineralization 

rates [Sachs et al., 2009; Bourgeois et al., 2017]. 

Table 1.1. {	�����	|��	
�� ������ ��� �	�������� �
���	
��� 	�� �����
�� XJY#� 
� ������ �����\�� ����� (>50 m to 
J800 m in the Southern Ocean ���� �
� J"## m in the Arctic), and deep sea locations (>800 m in the 
Southern Ocean and >200 m in the Arctic Ocean) in the Southern and Arctic Ocean. 

Polar region Location Mineralization 
[mmol C m-2 d-1] Reference 

Antarctic, shallow Signy Island, 
South Orkney Islands 

15�69 [Nedwell et al., 1993] 

Antarctic, shallow Marian Cove, King 
Georg Island 9�28 [Shim et al., 2011] 

Antarctic, shallow New Harbour, Ross 
Sea 0.8�1.1 [Lohrer et al., 2013] 

Arctic, shallow Kongsfjorden 
(Spitsbergen) 1.5�62 [Woelfel et al., 2010] 

Arctic, shallow Resolute Bay, Canada 5�43 [Welch et al., 1997] 

Arctic, shallow Young Sound, 
Greenland 0�15 [Glud et al., 2002] 

Arctic, shallow Chukchi Sea 3�14 [Devol et al., 1997] 

Arctic, shallow Bering Sea 5�14 [Grebmeier and Cooper, 1995] 

Antarctic, shelf Weddel Sea and 
Bellingshausen Sea 0.4�18 

[Hulth et al., 1997; Baldwin and Smith, 2003; 
Smith et al., 2006; Hartnett et al., 2008; Sachs et 

al., 2009] 
Antarctic, shelf Amundsen Sea 1.2�2.4 [Kim et al., 2016] 

Antarctic, shelf Ross Sea 0�6 [Nelson et al., 1996; Grebmeier et al., 2003] 

Arctic, shelf Eastern Greenland 
Shelf 0.5�1.3 [Piepenburg et al., 1997; Sauter et al., 2001] 

Arctic, shelf Canadian Archipelago 1.5�16 [Link et al., 2013a, b] 

Arctic, shelf Barents Sea 7�19 [Glud et al., 1998; Renaud et al., 2008] 

Arctic, shelf Laptev Sea 0.5�1.8 [Boetius and Damm, 1998] 

Arctic, shelf Chukchi Sea 3�16 [Clough et al., 2005] 

Arctic, shelf Bering Sea 11�25 [Grebmeier and Cooper, 1995] 

Arctic, shelf Beaufort Sea 2�5 [Renaud et al., 2007] 
Antarctic, deep 
sea Weddel Sea 0.1�3.8 [Hulth et al., 1997; Sayles et al., 2001; 

Grebmeier et al., 2003; Sachs et al., 2009] 
Antarctic, deep 
sea Amundsen Sea 1.3�1.8 [Kim et al., 2016] 

Arctic, deep sea Eastern Fram Strait 0.1�3.2 [Piepenburg et al., 1997; Sauter et al., 2001] 

Arctic, deep sea Western Fram Strait 0.1�1.9 [Cathalot et al., 2015] 

Arctic, deep sea Barents Sea 1.3�29 [Piepenburg et al., 1995; Renaud et al., 2008] 

Arctic, deep sea Laptev Sea 0.1�0.9 [Boetius and Damm, 1998] 

Arctic, deep sea Chukchi Sea 0.3�3.2 [Clough et al., 2005] 

Arctic, deep sea Canadian Archipelago 1.3�5 [Link et al., 2013a, b] 

Arctic, deep sea Beaufort Sea 1.5�8 [Renaud et al., 2007] 

Arctic, deep sea Central Arctic Ocean 0.3�1.1 [Clough et al., 2005; Boetius et al., 2013] 
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Figur 1.7. Benthic mineralization in the Southern and Arctic Ocean. A: Southern Ocean benthic 
mineralization expressed in water depths >1000 m (modified after Christensen [2000]). B: Benthic 
mineralization in the Southern Ocean in water depths from 17�4808 m (modified after Bourgeois et al. 
[2017]). The locations of the main Arctic rivers are indicated in the figure. The dashed black polygons 
represent areas where no empirical data have been collected. 

Benthic mineralization in the Southern Ocean deep sea (>800 m water depth) has 

been measured to be 0�9 mmol C m-2 d-1 (Figure 1.7) [Christensen, 2000]. At the polar 

front of the Southern Ocean at ~50°S latitude mineralization ranged between 
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0.3�2.1 mmol C m-2 d-1, whereas at 60�70°S latitude an average mineralization rate of 

3.9 mmol C m-2 d-1 was measured, and at 70�80° S latitude 0.5 mmol C m-2 d-1 [Wit et 

al., 1997; Rabouille et al., 1998; Christensen, 2000]. Regional differences in Southern 

Ocean deep-sea benthic mineralization ranged between 0.1�3.8 mmol C m-2 d-1 (Table 

1.1) [Hulth et al., 1997; Sayles et al., 2001; Grebmeier et al., 2003; Sachs et al., 2009]. 

The amount of organic carbon buried in the soft bottom seafloor in the Ross Sea was 

reported to be <0.5% of POM from the net community production [Catalano et al., 2010]. 

Arctic deep sea (>200 m water depth) benthic mineralization has been assessed to be 

<4.2 mmol C m-2 d-1 and decreases with increasing water depth (Figure 1.7) [Bourgeois 

et al., 2017]. However, regional differences in benthic mineralization ranged between 

0.1�8 mmol C m-2 d-1 (Table 1.1) [Boetius and Damm, 1998; Renaud et al., 2007] and 

less than 0.1% of the organic carbon reaching the seafloor is assumed to be buried 

[Cranston, 1997]. 

In general, benthic mineralization in the Southern Ocean is lower than observed in the 

Arctic Ocean. This may be explained by the food bank hypothesis, as supported 

empirically by studies conducted in the Southern Ocean [Mincks et al., 2005; Smith et 

al., 2006; Smith et al., 2012]. The food bank hypothesis states that a combination of high 

food input and low temperatures (which prevent fast degradation of organic matter) 

results in the appearance of benthic food banks which will persist and feed the benthic 

community throughout an entire year (Figure 1.8) [Smith et al., 2012]. The shelf and 

deep-sea benthic organisms in the Southern Ocean do not react with increased 

mineralization activity to large food inputs, as indicated by a lack of seasonal variability 

in macrofauna densities and bioturbation activity [Glover et al., 2008; McClintic et al., 

2008]. Therefore, food is permanently available and is mineralized constantly within an 

annual cycle. Results of ��
������-Kowalczuk et al. [2016] indicate that in Arctic fjords 

the food bank hypothesis may also be applicable. However, such a hypothesis has been 

rebutted for deep sea Arctic benthos [Boetius et al., 2013]. 
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Figure 1.8. Synoptic view on food bank hypothesis showing the seasonal vertical flux (light green arrows) 
of new organic matter (light green bars) originating mainly at the beginning of spring, the seasonal 
variation of food banks (light green with orange stripes) and the lateral (blue arrows) and resuspension 
transport just above the seabed (dark red arrows close the bottom). Figure modified after Adams et al. 
[2009]. 

1.4 Climate change associated effects on the carbon cycle in 

polar environments 

1.4.1 Recent environmental changes in the Southern Ocean 

An important parameter for assessing climate change is temperature. Increasing 

near-surface temperature trends were observed in the Antarctic [Vaughan et al., 2001; 

Turner et al., 2005], which is a result of ozone depletion in the stratosphere [Thompson, 

2002], increased heat uptake by the open ocean due to local sea-ice loss [Turner et al., 

2013; Parkinson, 2014], enhanced westerly winds [Thompson, 2002; Marshall et al., 

2006], and changes in the strength of the Southern Annual Mode [Ding et al., 2011; 

Clem and Fogt, 2013]. However, these increasing temperature trends were limited to the 

Western Antarctic and the Antarctic Peninsula [Vaughan et al., 2001; Turner et al., 2005; 

Chapman and Walsh, 2007; Steig et al., 2009], with a maximum increase of 5°C per 

decade over the period 1971�2000 [Turner et al., 2005]. Additionally, the 

sea-surface temperature increased in the entire Southern Ocean by 0.1�0.5°C per 
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decade over the period 1971�2004 [Zhang, 2007]. However, over the period 1999�2014 

temperatures around the Antarctic Peninsula decreased [Turner et al., 2016]. 

Owing to these increasing temperatures, the sea-ice extent in the Southern Ocean 

has decreased substantially around the Antarctic Peninsula, in the Bellingshausen Sea, 

and in the Amundsen Sea over the period 1979�2014 [Stammerjohn et al., 2012; Meehl 

et al., 2016]. As a consequence, the period of the sea-ice free season increased in the 

latter areas [Stammerjohn et al., 2015]. However, an increase in the sea-ice 

concentration over the period 1999�2014 has been reported by for the Antarctic 

Peninsula [Turner et al., 2016]. Nevertheless, the warming has also contributed to the 

regional retreat of glaciers [Rückamp et al., 2011; Cook et al., 2016], volume loss of ice 

shelfs [Paolo et al., 2015], and disintegration of floating ice shelves [Vaughan, 1993]. 

Owing to the melting of sea-ice and glaciers, an increase in the stratification within the 

upper pelagic zone of the Southern Ocean is predicted [Le Quere et al., 2007]. This 

would lead to a reduced pelagic primary production, due to a suppressed deep water 

nutrient supply and a lower ability to remove atmospheric carbon dioxide [Arrigo et al., 

2008a]. In contrast, a predicted poleward intensification of the westerly winds [Russell et 

al., 2006] may counteract the stratification, increase deep water nutrient supply, increase 

the facility of the ocean for atmospheric carbon dioxide uptake and therefore lead to an 

increased primary production [Arrigo et al., 2008a]. Taking these factors together into 

account, the Antarctic sea-ice extent is predicted to decrease by 17�31% [Meehl et al., 

2000], with a 25% decrease in the sea-ice extent potentially leading to an increase of 

>10% in the pelagic primary production [Arrigo and Thomas, 2004; Arrigo et al., 2008a]. 

In addition, opening shelf ice enables primary production to take place in formerly 

aphotic areas [Peck et al., 2010] and retreating glaciers offering more space for primary 

producer colonization [Deregibus et al., 2016]. Again, the situation is complex, as with 

diminishing of sea ice, also the habitat utilized by sea-ice algae will be removed [Barnes 

et al., 2009]. Therefore, the contribution of the sea-ice algae primary production to the 

total primary production will be reduced. Furthermore, particle release by glacial melting 

lowered light availability in the water column [Schloss et al., 1999; Deregibus et al., 

2016], which may suppress primary production. 
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The ice-melt induced changes to the primary producers also affect the higher levels of 

the food web. Due to the decline in winter sea ice, there has been a decrease in krill 

abundances and an increase in salp abundances [Pakhomov et al., 2002; Atkinson et 

al., 2004]. Krill and salp are key players utilizing the pelagic primary production in the 

entire Southern [Atkinson et al., 2004; Atkinson et al., 2008; Gleiber et al., 2012]. 

However, fecal pellets of salps sink faster and contain up to 100 times more carbon than 

those of krill [Gleiber et al., 2012]. Therefore, implications of climate change may lead to 

increasing vertical carbon fluxes in the Southern Ocean [Gleiber et al., 2012]. 

The opening of shelf ice was reported to be accompanied by a rapid increase in 

benthic macrofauna biomass and retreating glaciers have provided more space for 

heterotrophic consumers [Fillinger et al., 2013; Lagger et al., 2017; Seefeldt et al., 2017]. 

An increase in biomass may be correlated with an increase in mineralization [Glud et al., 

1994; Boetius and Damm, 1998; Moodley et al., 2008; Braeckman et al., 2010; Herrera 

et al., 2014]. Contrastingly, particle release by glacial melting and permafrost has led to 

substantial changes in the benthic macrofauna structure in some areas [Schloss et al., 

1999; Sahade et al., 2015; Deregibus et al., 2016] with unpredicted implications for the 

benthic mineralization. In turn, the degree to which climate change-related effects will 

lead to decreasing or increasing primary production and mineralization in the Southern 

Ocean is still under debate. 

1.4.2 Recent environmental changes in the Arctic Ocean 

Climate change related increase in temperatures was also observed in the Arctic. The 

Arctic atmospheric temperature has increased by 3°C since 1880. Due to the polar 

amplification, this is three times above the global trend of 0.85°C for the same period 

(Figure 1.9) [Manabe and Stouffer, 1980; Hassol, 2004; IPCC, 2013]. Additionally, sea-

surface temperatures globally increased by 0.11°C per decade over the period 

1971�2010, while a significant warming in water depths >700 m has not yet been 

reported [IPCC, 2013]. 
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Figure 1.9. Global and Arctic atmospheric temperature anomaly. Figure modified after 
https://tamino.wordpress.com/2016/12/14/arctic/. 

In the Arctic, the warming trend causes sea-ice thinning, a reduction in sea-ice cover, 

and a decrease of perennial sea ice [Comiso, 2002; Comiso et al., 2008; Kwok and 

Rothrock, 2009]. The annual sea-ice extent decreased by 3.7% per decade over the 

period 1979�2007 with an enhanced negative trend of 10.1% per decade between 

1996�2007 [Comiso et al., 2008]. Therefore, the sea-ice edge is progressively moving 

northwards [Vaughan et al., 2013]. In addition, owing to the low albedo of the dark water 

surface, the temperature of the upper water column is likely to increase further 

[Parkinson, 2014]. Consequently, abiotic factors such as light availability, nutrient 

distribution and surface salinity are predicted to change as a result [Anderson and Kaltin, 

2001; Overland et al., 2011; Serreze and Barry, 2011]. 

These abiotic changes affect the entire marine ecosystem in the Arctic Ocean and 

may force an alteration of the pelagic primary production [Kahru et al., 2011; 

Wassmann, 2011; Wassmann et al., 2011]. The likelihood of a general increase in 

primary production within the Arctic Ocean is still under debate. Some studies have 

argued that, with increasing melt ponds formation, which allows more light to penetrate 

into the upper water column, an increasing primary production is likely [Arrigo et al., 
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2012; Nicolaus et al., 2012; Boetius et al., 2013]. However, the growth of algae is also 

limited by the availability of nutrients [Lalande et al., 2014]. An intensified melt season 

may result in increased freshwater input into the Arctic Ocean, which favors a 

stratification of the upper water column [Peterson, 2002; Arrigo, 2013]. This would 

suppress the nutrient supply by deeper water masses and therefore prevent an 

enhanced primary production [Tremblay et al., 2015]. In addition, the growing season is 

predicted to be further restricted, due to an earlier and faster spring melt [Arrigo, 2013]. 

However, increasing wind speeds are predicted for the central Arctic Ocean, which may 

lead to an enhanced upwelling in some areas [Spreen et al., 2011]. In such a situation, 

the upwelling-related sufficient nutrient supply may support an enhanced primary 

production. Furthermore, a compositional shift in the spring phytoplankton bloom from 

diatom-dominated to coccolithophorid or Phaeocystis sp. and nanoflagellate-dominated 

communities is predicted [Bauerfeind et al., 2009; Lalande et al., 2014; Soltwedel et al., 

2015]. Such an altered algal composition may reduce zooplankton densities [Caron and 

Hutchins, 2013] and lead to increased vertical POM fluxes [Wohlers et al., 2009; 

Wassmann, 2011; Boetius et al., 2013]. However, the labile detritus flux is predicted to 

decrease [Hop et al., 2006; van Oevelen et al., 2011] and the seasonal patterns of 

vertical fluxes might also change [Wassmann, 2011]. Consequently, changing sea-ice 

conditions in the Arctic Ocean may alter the quality and quantity of primary production 

and the vertical carbon flux to the seafloor, where it can affect benthic deep-sea 

communities [Jones et al., 2014; Harada, 2015]. 

If and how these changes may alter the Arctic benthic mineralization is still under 

discussion and seems to differ strongly on local scales. Shelf and shallow coastal 

regions may experience an increase in benthic mineralization [Bourgeois et al., 2017], 

owing to an increased food supply resulting from enhanced primary production [Arrigo 

and Dijken, 2011]. This is very likely, especially for the Chukchi and the Bering Sea, 

where a strengthened Pacific inflow can supply additional nutrients for primary 

production [Findlay et al., 2015; Harada, 2015]. In contrast, a shift towards smaller sized 

phytoplankton communities might lead to lower sinking rates and an increase in pelagic 

mineralization [Li et al., 2009; Bourgeois et al., 2017]. Consequently, less food will reach 

the seafloor and affect the deep-sea benthic mineralization. However, long-term time 
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series of benthic mineralization rates, which are crucial for predicting future 

developments, are local and rare [Wassmann et al., 2011]. 

1.5 Objectives and hypotheses 

The Southern Ocean and the Arctic Ocean are quantitatively the most important 

ecosystems for worldwide organic carbon dynamics on spatial and temporal scales 

[Tjiputra et al., 2013; Heinze et al., 2015]. A key feature of polar ecosystems is the 

cryosphere, which includes different ice species, e.g. sea ice, ice shelves, glacial ice, 

and permafrost soil (frozen water-sediment mixture). Changes in the polar cryosphere, 

e.g. melting glaciers and changing sea-ice cover, may alter the light availability. As 

introduced, light availability is an important factor for primary production, on which in turn 

the benthic mineralization relies. Hence, changes in the ice conditions may lead to 

changes in the organic carbon cycle in the polar oceans. 

Glaciers melt and retreat in the Western Antarctic and across Greenland [Straneo and 

Heimbach, 2013; Paolo et al., 2015; Cook et al., 2016; Hill et al., 2018]. In the same 

areas and at the Russian, American and Canadian Arctic coasts, permafrost soils melt 

and the volumes of riverine runoffs are increasing [Peterson, 2002; Hinzman et al., 

2005; Gruber, 2012; Vonk et al., 2015; Ramos et al., 2017; Pablo et al., 2018]. The 

secondary effects of these changes have been observed to include increased release of 

particles into the marine realm, accompanied by an increased turbidity and 

sedimentation rate [Schloss et al., 1999; Dierssen et al., 2002; Vonk et al., 2015; 

Deregibus et al., 2016]. Furthermore, directly at the glacial front chunks of ice drop off, 

fall into the water, hit the soft seafloor with soft sediment seafloor particles potentially 

being resuspended, which also can lead to an increased turbidity [Barnes, 1999; 

Griffiths, 2010]. Thus, glacial and permafrost soil melt likely reduces the light availability 

in the shallow coastal Southern and Arctic Ocean. 

Substantial changes in the sea-ice cover occurred in the Amundsen Sea, 

Bellingshausen Sea, and Weddel Sea in the Southern Ocean and the central and 

western Arctic Ocean over time [Turner et al., 2005; Comiso et al., 2008; Adams et al., 

2009; Vaughan et al., 2013]. The sea ice in these regions has become thinner, more 

melt ponds have occurred in the summer seasons, sea ice retreated, sea-ice 
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concentration decreased, the melting periods have started earlier, and the freezing 

periods have started later [Comiso, 2002; Turner et al., 2005; Lüthje et al., 2006; Galley 

et al., 2008; Adams et al., 2009; Vaughan et al., 2013; Gutt et al., 2015]. The secondary 

effects of these changes include an increased light availability in the polar open oceans. 

I investigated if the above-mentioned secondary effects of changes in the cryosphere 

(turbidity and sediment accumulation, increased light availability) have a substantial 

impact on primary production and benthic mineralization in shallow and deep-sea polar 

regions. Other upcoming changes, which may also affect primary production and, owing 

to its relationship, benthic mineralization in polar ecosystems such as changing nutrient 

supply or changing wind patterns and speed, are only part of the discussion and are not 

addressed by any of the included research manuscripts. 

The following research questions were identified: 

1. To which degree does glacial melt-related particle release affect Southern Ocean 

MPB primary production in shallow coastal areas? 

2. To which degree does glacial melt-related particle release affect Southern Ocean 

benthic mineralization in shallow, coastal areas? 

3. Does the presence of sea-ice impact Arctic deep-sea benthic mineralization 

patterns? 

The following objectives were derived from these questions: 

1. Determination of primary production rates of a microphytobenthic community, 

which was exposed to different intensities of glacial melt-related particle release. 

2. Identification of key parameters which influence benthic mineralization in the 

shallow, coastal Southern Ocean and in the Arctic deep-sea. 

3. Investigation of spatial variability of benthic mineralization in the shallow, coastal 

Southern Ocean and in the Arctic deep-sea.  
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The following hypotheses are answered within the thesis chapters: 

1. Glacial melt-related particle release affects the primary production of Southern 

Ocean MPB (manuscript I in section 3) 

2. Glacial melt-related particle release affect the benthic mineralization in the 

shallow coastal Southern Ocean (manuscript II in section 4) 

3. The presence of sea-ice impacts polar deep-sea benthic mineralization patterns 

(manuscript II in section 5) 

Due to the remoteness and high seasonality of the polar ecosystems, year-round data 

acquisition is restricted to a limited amount of locations [Takahashi et al., 2009; 

Wassmann et al., 2011; Sabine et al., 2013; Bourgeois et al., 2017]. In turn, modeled 

predictions of future carbon flux dynamics need to be assessed carefully. Therefore, 

results of short-term, observational studies have been used to outline potential future 

developments regarding primary production and mineralization in the polar ecosystems 

within this thesis. 
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2 Material and methods 

2.1 Study sites 

2.1.1 Potter Cove, Antarctic Peninsula 

Potter Cove is a shallow, fjord-like inlet of Maxwell Bay in the southwest of King 

George Island/Isla 25 de Mayo, an island located at the tip of the Antarctic Peninsula 

(Figure 2.1). 

 
Figure 2.1. Map of the study site Potter Cove, including investigated locations Faro, Creek and Isla D. 

The cove is approximately 1.2 km wide and 4 km long on the northern and 3 km long on 

the southern shore site with the mouth located at the western site. ��� ������� 	�
��� 
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mouth, the seafloor lifts from >180 m in an easterly direction to a first sill at ~50 m water 

depth. After the first sill, water depth remains at ~50 m till a second sill, located roughly 

one kilometer before the glacial front, where the seafloor lifts to ~20 m water depth. 

While the seafloor of the outer cove (before the first sill in <50 m water depth) mainly 

consists of macroalgae covered hard bottom, the inner part also consists of soft 

sediment [Quartino and Zaixso, 2008; Wölfl et al., 2014; Pasotti et al., 2015]. The 

general current moves clock-wise with an average current speed of 0.03 m s-1 [Lim et 

al., 2013]. The retreating Fourcade glacier [Rückamp et al., 2011] and seasonal 

meltwater discharge, a result of permafrost and snow thawing, release a high amount of 

particles into the cove [Klöser et al., 1993; Schloss et al., 1999]. Consequently, a 

turbidity gradient occurs across Potter Cove, which starts at the glacial front and 

decreases along the southern shore site as it follows the general current [Klöser et al., 

1993; Sahade et al., 2015; Monien et al., 2017]. 

Primary producers in Potter Cove are phytoplankton, macroalgae and MPB [Klöser et 

al., 1993; Schloss et al., 1998; Al-Handal and Wulff, 2008a; Quartino and Zaixso, 2008]. 

Pelagic primary production in austral spring and summer 1991/1992 ranged between 

8 mg C m-2 d-1 and 40 mmol C m-2 d-1 and remained constant over the period 1991


2009 [Schloss et al., 1998; Schloss et al., 2012]. Monthly species-specific macroalgae 

primary production was 4
66 mg dry biomass g-1 tissue-1 d-1 during the period December 

1994 to March 1995, with 15 mg dry biomass g-1 tissue-1 d-1 of the most abundant 

macroalgae species [Quartino and Zaixso, 2008]. MPB communities inhabit the soft 

bottom of Potter Cove [Al-Handal and Wulff, 2008a; Wulff et al., 2008]. However, benthic 

carbon demand and an area-specific carbon production by macroalgae and the MPB 

have not been investigated so far. 

Two research campaigns were carried out to Potter Cove (KGI14/15, 15/01/2015


15/03/2015 and KGI16/17, 14/10/2016
31/12/2016). During the campaigns, three 

stations, namely Faro, Creek and Isla D, were investigated (Figure 2.1), located in water 

depths between 6 m and 9 m. These stations are glacial ice-free since 1995, the early 

1950s, and 2000, respectively [Rückamp et al., 2011], but are covered by sea ice during 

winter [Schloss et al., 2012]. Furthermore, the three stations experience different 

intensities of glacial melt-related particle disturbances. The amount of suspended 
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particulate matter in the water column was intermediate at Faro, lowest at Creek and 

highest at Isla D [Monien et al., 2013]. The turbidity at Faro and Creek was similar, while 

Isla D showed a higher turbidity [Deregibus et al., 2016]. The sediment accumulation 

was lowest at Faro, intermediate at Creek, and highest at Isla D [Pasotti et al., 2015]. 

The macrofauna biomasses in 15 m water depth were similar at Faro and Creek, while 

at Isla D the macrofauna biomass was lower [Pasotti et al., 2015]. Meiofauna biomass 

was highest at Creek and lowest at Isla D and the community composition of both, 

macro- and meiofauna differed strongly between the three stations [Pasotti et al., 2015]. 

2.1.2 Fram Strait, Arctic Ocean 

Fram Strait is an approximately 500 km wide passage between northeast Greenland 

and the Svalbard archipelago located in the northern Greenland Sea (Figure 2.2). With 

water depths of up to 5500 m, it is the only exchange route for intermediate and deep 

Arctic water masses [Soltwedel et al., 2005; Forest et al., 2010]. The inflow volume in 

the Fram Strait is five times larger than the inflow of Pacific water through the Bering 

Strait [Coachman and Aagaard, 1988; Roach et al., 1995; Fahrbach et al., 2001]. The 

East Greenland Current (EGC) and the West Spitsbergen Current (WSC) are the main 

currents in the Fram Strait and influence the upper 300 m waters column [Manley, 1995]. 

The EGC is located in the western Fram Strait and transports cold, less saline and 

nutrient poor (1°C, <34.4) Arctic waters [Manley, 1995] southward with a flow velocity of 

9 cm s-1 [Fahrbach et al., 2001; Hop et al., 2006]. In contrast, the WSC, located in the 

eastern Fram Strait, transports warmer, nutrient-rich Atlantic waters of higher salinity 

(>3°C, >35) [Manley, 1995] with a flow velocity of 20
50 cm s-1 northward [Hop et al., 

2006]. About 22% of the WSC is recirculated as the Return Atlantic Current (RAC). The 

remaining current bifurcates into the Svalbard Branch (SB; 33%) and the Yermak 

Branch (YB; 45%), following the Svalbard coast or flowing along the northwest flank of 

the Yermak Plateau, respectively [Schauer, 2004]. The EGC and WSC are separated by 

the East Greenland Polar Front [Paquette et al., 1985] and the latter varies between 5°E 

and 3°W [Hop et al., 2006]. Below the WSC, Norwegian Sea Deep Water enters the 

Arctic Ocean through the Fram Strait [Jones et al., 1995]. Furthermore, the Spitsbergen 

Polar Current (SPC) [Helland-Hansen and Nansen, 1909] transports cold and less 
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saline, Arctic waters masses from the Barents Sea and the Storfjorden along the west 

coast of Spitsbergen [Nilsen et al., 2016]. 

 
Figure 2.2. Map of the current system in the Arctic Fram Strait. White dotted frame = Fram Strait region, 
Black dotted frame = Storfjorden, Blue = Arctic water, Red = Atlantic water, EGC = East Greenland 
Current, WSC = West Spitsbergen Current, RAC = Return Atlantic Current, SB = Svalbard Branch, 
YB = Yermak Branch, SPC = Spitsbergen Polar Current, AB = Amundsen Basin, NB = Nansen Basin, 
BS = Barents Sea, GS = Greenland Sea. 

A high sea-ice cover is reported for the western Fram Strait and a low sea-ice cover 

for the eastern Fram Strait [Soltwedel et al., 2005; Soltwedel et al., 2015; Spielhagen et 

al., 2015]. The sea ice in Fram Strait originates from the Laptev Sea and the East 

Siberian Sea [Hansen et al., 2013]. The sea-ice cover and sea-ice extent in Fram Strait 

are relatively stable, inter- and intra-annually (Figure 2.3) [Soltwedel et al., 2005; Comiso 

et al., 2008; NOAA, 2018]. However, the mean sea-ice age becomes younger by 

0.6 years per decade [Krumpen et al., 2016], which is congruent with a decrease in the 

sea-ice thickness [Hansen et al., 2013; Renner et al., 2014; Krumpen et al., 2016]. 

The temporal and spatial distribution of primary production in the Fram Strait is highly 

variable owing to varying light conditions and nutrient supply [Smith, 1995]. In general, 

the Fram Strait can be divided into four primary productive regions: i) the coastal region 

of Spitsbergen, ii) the open ocean in the eastern Fram Strait, iii) the MIZ, and iv) the sea-

ice covered western Fram Strait. 
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Figure 2.3. Mean September sea-ice concentration in the Arctic Ocean in the years 2005, 2012, and 
2015. The mean sea-ice concentration in the Fram Strait (black frame) altered annually, but the general 
sea-ice pattern was stable: A high sea-ice cover occurred in the western Fram Strait and barely any sea 
ice occurred in the eastern Fram Strait. This general pattern remained also in years with an exceptional 
low sea-ice extent (2012). Images were provided by www.meereisportal.de. 

The onset of the primary production in the coastal region of Spitsbergen starts earlier 

than it does in the open ocean, the MIZ, or the western Fram Strait [Cherkasheva et al., 

2014]. The annual primary production in the coastal region of Spitsbergen is 

3.3
5 mol C m-2 yr-1 [Hill et al., 2013]. In the open water region, 4.2
5 mol C m-2 is 

already produced in the period between May and August [Rey et al., 2011] with the 

annual primary production reported to be 6.7
10 mmol C m-2 yr-1 [Smith et al., 1987]. A 

daily primary production of 142 mmol C m-2 d-1 is reported for the MIZ in Fram Strait 

[Niebauer, 1991]. This results in a 2- to 2.5-fold higher annual primary production 

compared to the open ocean region, assuming a primary production period of 

90
120 days [Gradinger, 2009; Cherkasheva et al., 2014]. However, the primary 

productivity in Fram Straits MIZ is still four times lower than what is observed in the MIZ 

of the Bering Sea, owing to lower nutrient concentrations [Niebauer, 1991]. Satellite-

based annual primary production estimates for the western Fram Strait have ranged 

between 2
20 g C m-2 yr-1 [Pabi et al., 2008; Hill et al., 2013]. This is similar to on-site 

measured primary production [Smith, 1995; Pesant et al., 1996]. The lower primary 

production in the western Fram Strait is a result of the low light availability, owing to a 

permanent high sea-ice cover, and the low nutrient supply, owing to the predominant 

Arctic water masses [Manley, 1995; Soltwedel et al., 2005; Krumpen, 2017]. None of the 
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mentioned studies includes primary production by ice algae. Their contribution to the 

total primary production in the Fram Strait has to date been barely investigated. 

However, ice algae patches, a strong indicator of high ice algae production [Boetius et 

al., 2013], were not found during a photo surveys of the seafloor in the western Fram 

Strait (personal comment by James Taylor). Furthermore, it seems that the contribution 

of ice algae primary production to the total primary production is low in lower latitudes 

and of more significance in the central Arctic Ocean [Gosselin et al., 1997]. 

Primary producers are dominated by diatoms, which are responsible for 

approximately 50% of the biomass that is produced in the northern North Atlantic Ocean 

[Bauerfeind et al., 1994; Bauerfeind et al., 2009]. However, the composition of the 

primary production shifts on annual base from the ice algae Nitzschia frigida in March 

[McMinn and Hegseth, 2004] to pelagic algae Chaetoceros socialis, Chaetoceros 

furcellatus, Thalassiosira nordenskioeldii, Thalassiosira antarctica, Thalassiosira hyaline 

and Fragilariopsis oceanic during the spring bloom between April and June [McMinn and 

Hegseth, 2004; Richardson et al., 2005; Cherkasheva et al., 2014]. During the summer 

months July and August, algal surface communities have been observed to be 

dominated by the genera of Chaetoceros spp., Nitzschia spp. and Thalassiosira spp. 

[Spies, 1987; Nöthig et al., 2015]. 

Approximately 30
45% of the annual primary production leaves the photic zone at the 

western coast of Spitsbergen, in the open ocean region, and in the MIZ [Sakshaug, 

2004; Hop et al., 2006; Bauerfeind et al., 2009]. However, only 2.5
2.7 g C m-2 yr-1 

reaches the seafloor [Bauerfeind et al., 2009; Lalande et al., 2016]. Thus, 5
9% of the 

total primary production is available for the deep-sea benthic community as a food and 

energy resource during the observed years. However, owing to the huge catchment area 

of particle traps located in the deep sea and the influence of lateral transport processes 

[Waniek et al., 2000; Lalande et al., 2016], the regions of origin of this settling material 

(MIZ, open ocean, coast of Spitsbergen) are difficult to assess with certainty. In the 

western Fram Strait, 2% of the primary production was exported below 1000 m water 

depth, with 1.2% reaching the seafloor [Schlüter et al., 2001]. 

The benthic community in the MIZ and the open ocean region mineralizes 

0.14
0.84 mmol C m-2 d-1 in sediments at water depths between 1000
5500�m [Cathalot 
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et al., 2015; Donis et al., 2016]. The mineralization in the western Fram Strait ranged 

between 0.1
2.7 mmol C m-2 d-1 in sediments at water depths between 45
1950 m 

[Piepenburg et al., 1997; Sauter et al., 2001]. 

The long-term ecological research (LTER) area HAUSGARTEN, located in the Fram 

Strait, was established in 1999 to identify key factors controlling deep-sea biodiversity in 

the Arctic region [Soltwedel et al., 2005]. Currently, the LTER HAUSGARTEN comprises 

21 stations located between 5°E
11°W and 78.5°N
80°N and cover water depths of 

200
5500 m. Two research campaigns were carried out to the LTER HAUSGARTEN 

with RV Polarstern (PS85, 6/6/2014
3/7/2014 and PS93.2, 22/7/2015
15/8/2015) to 

obtain relevant parameters for this thesis. During these campaigns, benthic 

mineralization rates, densities and biomasses of biota, concentrations of biogenic 

compounds, and abiotic parameters were determined at 12 stations (Figure 2.4). The 

stations included the coastal region of Spitsbergen, the open ocean in the eastern Fram 

Strait, the MIZ, and the western Fram Strait and covered water depths of 270
2500 m. 

For a detailed description of station locations and the conducted measurements, the 

reader is referred to section 5 and Table 2.1. 

 
Figure 2.4. Map of the Fram Strait including investigated stations of the LTER HAUSGARTEN [Soltwedel 
et al., 2005]. In case, stations were visited in 2014 and 2015, the sampling year is given in brackets. The 
��������������������������������������������������������������������������������� The sea-ice extent is 
the mean sea-ice extent in September for the period 1981-2010 (http://nsidc.org). 
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2.2 Used methods to determine benthic primary production, 

benthic mineralization, and influencing environmental parameters 

2.2.1 Total and diffusive benthic oxygen fluxes at soft bottom seafloors 

Benthic oxygen fluxes at soft bottom seafloors were determined in situ and ex situ 

and converted into carbon fluxes, given the close relationship between carbon and 

oxygen within the carbon cycle [section 1]. Two oxygen flux measures were determined: 

total oxygen fluxes and diffusive oxygen fluxes [Glud, 2008]. For the determination of 

total oxygen fluxes, a specific area of the soft bottom seafloor and a specific volume of 

overlying water were enclosed in a chamber and the oxygen concentration in the 

overlying water was measured over the incubation period. Diffusive oxygen fluxes were 

determined by the measurement of oxygen microprofiles across the SWI. 

For the in situ determination of total oxygen fluxes at Potter Cove, SCUBA diver 

handled benthic chambers were deployed (Figure 2.5 A). These benthic chambers were 

carefully pushed into the sediment by hand. The oxygen concentration in the overlying 

water was measured by taking water samples before and after the incubation through 

valves attached to the chamber lids using gas-tight glass syringes. Winkler titration 

[Winkler, 1888] was used to measure the oxygen concentration in the samples. For the 

in situ determination of total oxygen fluxes in the Fram Strait, autonomous benthic 

landers equipped with benthic chambers were used (Figure 2.5 B) [Reimers, 1987; Glud 

et al., 1994; Glud, 2008]. After the deployment of an autonomous benthic lander, the 

benthic chambers were pushed automatically into the sediment. The oxygen 

concentration in the overlying water was measured continuously with oxygen sensors. At 

both study sites, the overlying water was kept homogenized during the incubation period 

by a stirring cross. 

For the ex situ determinations of total oxygen fluxes at both study sites, Potter Cove 

and Fram Strait, sediment cores recovered by SCUBA divers or by a multiple corer 

(MUC) were used. The sediment cores were closed with a lid and incubated. The 

incubation was performed at in situ temperature, which lowers the risk of an artificial bias 

[Glud, 2008]. During the incubation, the overlying water was kept homogenized with a 
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magnetic stirring system. The oxygen concentration was measured with optical oxygen 

sensors. 

 
Figure 2.5. Devices used to determine oxygen fluxes across soft bottom seafloors. A: Transparent benthic 
chamber deployed in shallow sediments in Potter Cove, the photo is courtesy of Christopher Brunner; B: 
Autonomous benthic lander with benthic chamber and microprofiler measurement unit (lower and upper 
detail of B, respectively) to be deployed in Fram Strait (Arctic deep sea); C: Stand-alone microprofiler 
deployed on shallow sediments in Potter Cove, the photo is courtesy of Christopher Brunner. 

For the in situ determination of diffusive oxygen fluxes at Potter Cove, a SCUBA diver 

handled stand-alone microprofiler was used (Figure 2.5 C) [Wenzhöfer et al., 2000; 

Lichtschlag et al., 2010]. In the Fram Strait, the autonomous benthic lander was 

equipped with a microprofiler measurement unit [Reimers, 1987; Glud et al., 1994; Glud, 

2008]. At both study sites Potter Cove and Fram Strait, the measurement unit held 

electrochemical oxygen microsensors [Revsbech, 1989]. The measurement unit and 

thereby the oxygen microsensors were moved in 100 μm steps towards the soft bottom 

seafloor and thereby measured the oxygen concentration across the SWI. 

For the ex situ determination of diffusive oxygen fluxes in the Fram Strait, MUC 

recovered sediment cores were used. Similar to the ex situ total oxygen flux approach, 

sediment cores were stored at in situ temperature and the overlying water was kept 

homogenous. A micromanipulator was used to take oxygen microprofiles across the 

SWI in the sediment cores. 
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Via the change of the oxygen concentration over time (Figure 2.6 A), the total oxygen 

flux was calculated (Equation 1), in which ��2, ��, V and A represent the difference in 

oxygen concentration, the difference in time, the volume of the overlying water and the 

enclosed surface area, respectively. 

Equation 1.  ��������	
���
��� � �� ���������  

The calculation is based on the assumption of a linear decrease of the oxygen 

concentration over time (Figure 2.6 A), discrete sampling of overlying water from the 

chambers, and that the oxygen concentration does not sink below 10
15% of the initial 

starting point. 

 
Figure 2.6. A: Example of decreasing oxygen concentration during an incubation indicating 
remineralization, B: Oxygen microprofile across the sediment-water interface. An entire oxygen 
concentration depth profile is shown on the lefthand side, while on the righthand side the oxygen 
concentration depth profile shows the oxygen alteration within the diffusive boundary layer (DBL). The 
DBL is a result of the decreasing bottom current (red arrows) and the change from a turbulent (blue arrow) 
to a laminar current [Gundersen and Jorgensen, 1990; Glud 2008]. 
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A negative flux was directed towards the seafloor and indicated mineralization, while a 

positive flux was directed towards the water column and indicated net primary 

production. 

Diffusive oxygen fluxes at soft bottom seafloors were determined by the 

measurement of the oxygen concentration across the SWI. Via the linear change of the 

oxygen concentration in the resulting sediment depth oxygen microprofile, diffusive 

oxygen fluxes w������������������� �!��"��������������#�������������������������������"���

place, two approaches exist for the calculation of the diffusive oxygen flux. First, via the 

linear decrease of the oxygen concentration across the entire sediment depth oxygen 

microprofile (Equation 2, Figure 2.6 B) and second, via the linear decrease across the 

diffusive boundary layer (DBL, Equation 3, Figure 2.6 B). 

Equation 2.  ��

��������	
���
��� � ����� ��� ������ �� ! 

Equation 3.  ��

��������	
���
��� � ����! ��������� �� ! 

Within Equation 2, Ds is the molecular diffusion coefficient of oxygen in sediments at in 

situ temperature and salinity and calculated by applying Ds = D0/�2 [Schulz, 2006], with 

D0 as the molecular diffusion coefficient of oxygen in water after [Li and Gregory, 1974], 

���� $2 = 1 - ��%&2) [Boudreau, 1997]. The sediment porosity � was calculated after 

Burdige [2006] (Equation 4). 

Equation 4.  " �� #$ %$&
#$ %$& '(#)*(+���#$,, %-& �

Within equation (4), mw is the mass of evaporated water, �w is the density of the 

evaporated water, md is the mass of dried sediment plus salt, S is the salinity of the sea-

water and �s is the sediment density. In equation 2, the term [��2/��]z=0 refers to the 

linear decrease in the oxygen concentration across the entire microprofile, whereas in 

equation 3 the same term refers only to the linear decrease in the oxygen concentration 

across the DBL. The latter is assumed to not exceed 1 mm [Gundersen and Jorgensen, 

1990; Jørgensen and Marais, 1990]. A detail description of the oxygen flux 

determinations is given in section 3, 4 and 5. An overview of performed measurements 

per study site is given in Table 2.1. 
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Table 2.1. General information about performed measurements at the investigated study sites. 

 Antarctic Arctic 

Study site Potter Cove Fram Strait 

Habitat Shallow coast Deep Sea 

Water depth [m] 6
9 6
9 >200
2500 

Investigation 

Spatial variability of potential 
primary production of MPB 

related to glacial melt 
disturbances 

Spatial variability of 
biogeochemical fluxes 
related to glacial melt 

disturbances 

Spatial variability of oxygen 
fluxes related to sea-ice 

cover 

Aim 
Future scenario for Antarctic 
shallow coastal MPB primary 

production 

Future scenario for 
Antarctic shallow coastal 

benthic mineralization 

Future scenario for Arctic 
deep-sea benthic 

mineralization 
Flux type and flux 
molecule Total oxygen flux Total and diffusive oxygen 

and nutrient fluxes 
Total and diffusive oxygen 

flux 

Used approach Ex situ In situ Ex and in situ 

2.2.1 Light suppression, light availability and PAR measurement 

Light is an important factor influencing primary production directly and benthic 

remineralization indirectly via its influence on the organic matter provision [section 1]. 

Due to the strong suppression of light by sea ice [Perovich et al., 2002; Nicolaus et al., 

2010; Perovich and Polashenski, 2012] and to the relatively low nutrient content of the 

EGC (this section), sea-ice concentrations were used as a proxy for primary production 

in the Fram Strait. Daily sea-ice concentrations were calculated based on obtained 

satellite data (obtained via CERSAT at IFREMER, France) [Ezraty et al., 2007] and 

using the ARTIST Sea Ice algorithm [Spreen et al., 2008]. The sea-ice data cover a 

spatial resolution of 12.5 x 12.5 km2 around the investigated stations. 

The light availability in Potter Cove was assessed by light sensors. During benthic 

chamber incubations, HOBO Pendant� loggers (Onset, Bourne, USA) recorded the 

radiation across the wavelength of 150
1200 nm in situ close to the benthic chambers 

and on land. The ratio of in situ to land radiation was assessed as light availability at the 

seafloor. Additionally, in situ PAR measurements were performed at three locations in 

Potter Cove. At Faro and Isla D, a PAR-sensor (Odyssey Photosynthetic Irradiance 

Recording System, Data Flow Systems, Christchurch, New Zealand) was installed at the 

seafloor and measured throughout the year 2015. At Creek, a PAR sensor (LI-192, 

Li-Cor Biosciences, Lincoln, Nebraska, USA) measured for 36 h during the field 

campaign in 2016. 
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2.2.2 Sediment properties, biogenic sediment compounds, and benthic 

biota 

One objective of this study was the identification of key parameters which might 

influence benthic remineralization in polar ecosystem besides light availability. 

Therefore, a set of parameters which characterize sediment properties, biogenic 

sediment compounds and biota were determined. Required sediments of Potter Cove 

were sampled by SCUBA divers using acrylic cores or by a Van Veen grab (530 cm2 

surface area) operate from a rubber boat, whereas sediments of Fram Strait were 

sampled using a MUC or by the benthic chambers of the autonomous benthic lander. 

Syringes were used to take subsamples from acrylic cores in Potter Cove and MUC 

cores in Fram Strait in order to measure sediment properties, biogenic sediment 

compounds, and benthic biota except for macrofauna related parameters. The 

macrofauna related parameters were measured on sediments from the described 

sampling devices without taking subsamples. For a detailed description of sediment 

sampling and storage procedure of the sediment samples, the reader is referred to 

section 3, 4, and 5. 

Sediment properties measured included grain size, water content, and porosity. The 

grain size partitions were determined with a Malvern Mastersizer 2000G, hydro 

version 5.40. The Mastersizer utilizes a laser diffraction method and has a measuring 

range of 0.02
2000 μm. The sediment water content was determined by the difference 

��� ��� ��� ��� ���� ��������� ������� ���� ������ ����� �� '��� ��������� ��������� &� ����

calculated using equation 4 after Burdige [2006]. 

Biogenic sediment compounds measured included chlorophyll a concentration 

(Chl a), phaeopigment concentration (Phaeo), fucoxanthin concentration (Fuco), total 

carbon, total organic carbon and total nitrogen concentrations (TC, TOC, TN, 

respectively), phospholipid concentration, protein concentration, proportion of organic 

matter, and the bacterial enzymatic turnover rate (FDA). Chl a and Phaeo of Fram Strait 

sediment samples were analyzed by extracting them in 90% acetone and were 

measured with a TURNER fluorometer [Shuman and Lorenzen, 1975]. Chl a, Phaeo, 

and Fuco in sediments of Potter cove were analyzed using high-pressure liquid 
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chromatography (Gilson) following Wright and Jeffrey [1997]. The bulk of pigments 

(Chl a plus Phaeo) are termed chloroplastic pigment equivalents (CPE) after Thiel 

[1978]. The ratio of Chl a to Phaeo is used as an indicator of the relative age and the 

ratio of Chl a to CPE (% Chl a) as a quality indicator of the labile organic matter. TC and 

TN were measured by combustion using an ELTRA CS2000 with infrared cells. The 

TOC was measured using the same method after acidifying the sample (3 ml of 

10 M hydrogen chloride). 

Biota characterizing parameters including prokaryotic, MPB, meiofauna, and 

macrofauna densities and biomasses were assessed. Furthermore, MPB, meiofauna, 

and macrofauna taxa were identified. For the microbial density determination, the 

acridine orange direct count (AODC) method [Hobbie et al., 1977] was used to stain 

procaryotes, which were subsequently counted (Axioskop 50 microscope, Zeiss) under 

ultraviolet light (CQ-HXP-120, LEj, Germany). Prokaryotic biomass was estimated by the 

determination of the mean prokaryotic �����
��������������(������������ ����%)����������

Ltd, Tonbridge, UK) after Grossmann and Reichardt [1991], converted into biomass 

using a conversion factor of 3.0 x 10-13 g C pm-3 [Børsheim et al., 1990] and multiplied 

with the prokaryotic density. The MPB analyzes included the identification and counting 

of diatoms, which are the major component of MPB in Potter Cove [Al-Handal and Wulff, 

2008a]. Diatom valves were cleaned with 30% hydrogen peroxide and mounted in 

Naphrax after appropriate rinsing with deionized water after Al-Handal and Wulff 

[2008a]. Identification of taxa was made according to established protocols [Witkowski et 

al., 2000; Scott and Thomas, 2005; Al-Handal and Wulff, 2008a, 2008b]. Enumeration of 

diatom valves on the slides was made by counting intact valves on the whole slide using 

Zeiss Axio Image 2 compound microscope equipped with differential interphase contrast 

under 400 -fold magnification. Length and width of pennate valves and the diameter of 

centric valves were measured using a micrometer during the identification of taxa. The 

average length and width of at least 30 valves per taxon and the assumed height of 

1 μm [Edler, 1979] were used to calculate the biovolume of diatom cells after Hillebrand 

et al. [1999] and Sun and Liu [2003]. The diatom cell biovolumes were converted into 

carbon units using a conversion factor of 0.089 pg C μm-3 cell volume [Sundbäck et al., 

1996]. For meiofauna analyzes, samples were sieved over a 1000 *������+, *��������
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Both fractions were centrifuged three times in a colloidal silica solution (Ludox TM-50, 

density = 1.18 g cm-3) and stained with Rose Bengal [Heip et al., 1985]. Afterwards, the 

taxa were identified and counted. The meiofauna biomass in terms of carbon was 

determined by the combustion of single taxa. Foraminifera were not considered, as the 

extraction efficiency of Ludox for different groups of foraminifera is insufficient for a 

quantitative assessment of the group. Therefore, only metazoan meiofauna taxa were 

recorded and hereinafter the use of the term meiofauna refers only to metazoan 

meiofauna organisms. For macrofauna analyses, recovered sediments of Potter Cove 

were sieved over a 1000 μm mesh, while sediments of Fram Strait were sieved over a 

500 *������. In both cases, sediment samples were stored in seawater buffered 4% 

formaldehyde and stained with Rose Bengal [Heip et al., 1985]. Afterwards, macrofauna 

taxa were identified to the lowest possible taxonomic level (at least family level), counted 

and weighted (blotted wet weight). Ash-free dry weight (AFDW) of macrofauna taxa was 

determined by subtracting the ash weight (after combustion at 500°C) from the dry 

weight (dried for 48 h at 60°C). AFDW was converted into carbon by assuming that 50% 

of the AFDW is carbon [Wijsman et al., 1999]. From the macrofauna density (Ai) and 

biomass (Bi), together with a mobility score (Mi) and sediment reworking score (Ri) of 

each taxon, the community bioturbation potential (BPc) was calculated following Queirós 

et al. [2013]. 

In addition, a photo survey of Potter Coves sediments was conducted with a Nikon 

D750 (rectilinear Nikon 16
35 mm lens, Nauticam underwater housing, two Inon Z-240 

strobes). The photos were used to count siphons of the dominant Antarctic bivalve 

Laternula elliptica [Urban and Mercuri, 1998; Philipp et al., 2011; Harper et al., 2012]. 

Since this large bivalve retracts quickly into deeper sediments upon disturbance, Van 

Veen grab sampling is not adequate enough to estimate densities of L. elliptica. 

Therefore, the photos were used to determine the density of L. elliptica and to measure 

the siphon width (maximum distance between outer edges of the two siphons of one 

individual). Assuming a linear relationship between siphon width and AFDW, siphon 

width was converted into biomass of L. elliptica. 
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3.1 Abstract 

The Antarctic Peninsula experiences a fast retreat of glaciers, which correlates with 

an increased release of particles and related increased sedimentation and shading of 

the benthic community. We investigated how changes in the general sedimentation and 

shading patterns affect the primary production by benthic microalgae, the 

microphytobenthos. In order to determine potential net primary production and 

respiration of the microphytobenthic community, sediment cores from locations exposed 

to different sedimentation rates and shading were exposed to photosynthetic active 

radiation (PAR, 400�700 nm) of 0�70 μmol photons m-2 s-1. Total oxygen fluxes and 

microphytobenthic diatom structure, density, and biomass were determined. Our study 

revealed that the net primary production of the microphytobenthos decreased with 

increasing sedimentation and shading, while the microphytobenthic diatom density and 

composition remained similar. By comparing our experimental results with in situ 

measured PAR intensities, we furthermore assessed the microphytobenthic primary 

������	
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�	��
�������������
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����		�������������	�
��������	�������

propose that the microphytobenthic contribution to the total primary production may drop 

drastically due to Antarctic glacial retreat and correlated sedimentation and shading, with 

yet unknown consequences for the benthic heterotrophic community, its structure, and 

diversity. 

3.2 Introduction 

The Antarctic Peninsula is one of the fastest warming areas on Earth [Ducklow et al., 

2007]. As a result, glaciers in the West Antarctic [Paolo et al., 2015] and especially at 

the Western Antarctic Peninsula [Rückamp et al., 2011; Cook et al., 2016] are melting 

and retreating. As a consequence, vast amounts of particles are released into the water 

column with the start of the melting season in spring, which leads to an increased 

turbidity [Dierssen et al., 2002] and sedimentation [Schloss et al., 1999; Pasotti et al., 

2015]. Furthermore, ice scouring events, which are also related to glacial melt, lead to 

resuspension of particles from soft bottom seafloor and therefore, to an additional 

increase in the turbidity [Barnes, 1999; Griffiths, 2010]. 
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Consequently, the photosynthetic active radiation intensity (PAR, 400�700 nm 

wavelengths) for primary production can be reduced in areas influenced by glacial melt. 

This might affect especially the primary production of benthic microalgae, the 

microphytobenthos (MPB) [Dayton et al., 1986; Skowronski et al., 2009], since they are 

already dependent on the water depth-related light attenuation. The MPB are important 

primary producers, as they contribute substantially to the total primary production in the 

coastal Antarctic marine realm. For example, McMinn et al. [2010] reported that the MPB 

primary production could be responsible for up to 90% of the total primary production 

during the sea-ice free season. Diatoms dominate the Antarctic MPB community 

[Palmisano et al., 1985; Al-Handal and Wulff, 2008a] and are known to be well adapted 

to low light conditions [Palmisano et al., 1985; Rivkin and Putt, 1987; Longhi et al., 2003; 

Gómez et al., 2009], often associated with ice cover. However, the glacial melt-related 

particle release and correlated intensive shading and covering of MPB communities 

might be a new threat influencing MPB primary production. 

Owing to the retreating Fourcade Glacier [Rückamp et al., 2011] and the general 

current system [Lim et al., 2013], the benthos in Potter Cove (King George Island/Isla 25 

de Mayo) experiences different intensities of turbidity and sedimentation [Schloss et al., 

1999; Pasotti et al., 2015; Deregibus et al., 2016]. In this study, we exposed sediment 

cores from different locations to increasing PAR and measured the resulting total oxygen 

flux. Further, we determined the diatom density, which dominates the MPB community 

[Al-Handal and Wulff, 2008a], and identified the diatom community structure at each 

location to assess small-scale differences and estimated the diatom biomass. We 

conducted this study to investigate if glacial melt-related particle release and correlated 

shading and sedimentation were able to influence the primary production of an Antarctic 

MPB assemblage. To address this question, we tested the following null-hypotheses: 

1. The diatom community structure and density is comparable among areas 

experiencing different shading and sedimentation. 

2. MPB community primary production is similar among areas experiencing different 

intensities of sedimentation and shading. 

In addition, it was hypothesized that the MPB are important primary producers in Potter 

Cove, which are able to provide substantial amounts of organic carbon for the benthic 
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carbon demand [Hoffmann et al., section 4], however, without knowing the MPB primary 

production in Potter Cove. By comparing our results with in situ PAR data, measured 

over a period of one year, we discuss the hypothesis of Hoffmann et al. [section 4]. 

3.3 Material and methods 

3.3.1 Study site and sampling 

The study was conducted at the Dallmann Laboratory annex of the Carlini research 

location, located at the roughly 3 km long and 1.2 km wide Potter Cove. The cove is a 

shallow, fjord-like inlet of Maxwell Bay on King George Island/Isla 25 de Mayo (South 

Shetland Islands, Western Antarctic Peninsula). The general current is clock-wise with 

an average current speed of 0.03 m s-1 [Lim et al., 2013]. Potter Cove is regularly 

covered by sea ice during winter [Schloss et al., 2012] and experienced a fast retreat of 

the Fourcade glacier within the last decades [Rückamp et al., 2011]. The melting and 

retreating glacier and also seasonal meltwater discharge, a consequence of permafrost 

and snow thawing, release a high amount of particles into the cove [Klöser et al., 1993; 

Schloss et al., 1999]. As a consequence, a turbidity gradient was created within the cove 

[Klöser et al., 1993; Sahade et al., 2015]. Therefore, our sampled locations within Potter 

Cove, namely Faro, Creek, and Isla D, which were located in 6�9 m water depth and in 

a radius of less than 1 km distance to each other (Figure 3.1, Table 3.1), experience 

different intensities of sedimentation  and shading [Pasotti et al., 2015; Deregibus et al., 

2015; Monien et al., 2017]. 

For MPB community analyses, triplicates of small sediment cores (10 cm length, 

3.6 cm diameter) were taken at each location by SCUBA divers during a field campaign 

in November and December 2016 (Table 3.1). Additionally, for primary production 

estimates, five larger sediment cores (50�cm length, 10 cm diameter) were also collected 

by SCUBA divers (Table 3.1). One sediment core was subsampled for an additional 

MPB community sample as described above, while the four remaining sediment cores 

were used for primary production estimates. During recovery and transport to the 

laboratory, the sediment cores were kept vertical and special care was taken to leave 
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the sediment surface undisturbed. All samples were processed within 1.5 h after 

recovery. 

 
Figure 3.1. Study site Potter Cove. At Faro, Creek, and Isla D sediment cores for microphytobenthic 
analyses and primary production estimates were recovered by SCUBA divers. The position of sampled 
locations is marked with a cross. The curved, bright blue line marks the front of the Fourcade glacier. The 
bright blue arrows indicate river run-offs supplied mainly by glacier, permafrost and snowmelt water. The 
dashed blue arrows indicate the direction of the main current in Potter Cove. More detailed information 
about the locations is given in Table 3.1. 

Table 3.1. Locations, water depth at sampled locations, and date of sampling. 
 Faro Creek Isla D 

Latitude S 62° ������ 62° ����� 62° ������ 

Longitude W 58° 39.37� 58° 39.43� 58° 38.30� 

Depth [m] 8�9 8�9 6�7 

Microphytobenthic sampling [Date] 05/11/2016 11/11/2016 09/11/2016 

Sediment core sampling for primary 
production estimates Date] 22/11/2016 03/12/2016 11/12/2016 
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3.3.2 Methods 

In situ PAR measurement 

To assess whether the underwater light regime at the three locations allowed MPB 

primary production, in situ PAR measurements were conducted. Close to Faro 

(62° 13.35� S, 58° 40.47� W) and at Isla D (62° 13.31� S, 58° 38.��� W) PAR-sensors 

(Odyssey Photosynthetic Irradiance Recording System, Data Flow Systems, 

Christchurch, New Zealand) were installed approximately 0.5 m above the seafloor in 

2015. Data from Isla D only encompass the period 11/02�04/04 and 16/11�31/12, as the 

sensor was damaged probably by passing chunks of ice. The PAR-sensors were 

calibrated according to Deregibus et al. [2015] and measured with a temporal resolution 

of 30 minutes. At Creek (62° 14.��� S, 58° 39.���� W) a PAR sensor (LI-192, Li-Cor 

Biosciences, Lincoln, Nebraska, USA) measured for 36 h during the field campaign in 

2016. 

Microphytobenthic density, biomass and community structure 

The upper 0.5 cm sediment layer of an MPB sediment core was transferred into a 

scintillation vial and 5 mL GF/F filtered seawater (Whatman, UK) and 1 mL of 25% 

glutaraldehyde was added. The vial was wrapped in parafilm (Bemis Company, USA) 

and stored at 4°C until further analyses. 

For the identification and counting of diatoms, which are the major components of 

microphytobenthos in the study area [Al-Handal and Wulff, 2008a], diatom valves were 

cleaned with 30% hydrogen peroxides and mounted in Naphrax after proper rinsing with 

deionized water [Al-Handal and Wulff, 2008a]. Identification of taxa was made following 

established protocols [Witkowski et al., 2000; Scott and Thomas, 2005; Al-Handal and 

Wulff, 2008a, 2008b]. Enumeration of diatom valves on the slides was made by counting 

intact valves on the whole slide using Zeiss Axio Image 2 compound microscope 

equipped with differential interphase contrast under 400-fold magnification. In addition, 

this procedure ensures that only living cells were taken into account of the adjacent 

analyses. During the identification of taxa, the length and width of pennate valves and 

the diameter of centric valves were measured using a micrometer. The average length 

and width of at least 30 valves per taxon and the assumed height of 1 μm [Edler, 1979] 



3 Manuscript I 

 
51 

were used to calculate the biovolume of diatom cells following Hillebrand et al. [1999] 

and Sun and Liu [2003]. The diatom cell biovolumes were converted into diatom carbon 

contents using a conversion factor of 0.089 pg C μm-3 cell-1 biovolume-1 [Sundbäck et 

al., 1996]. The Shannon-�
������
����
	��
��� �!���
���
"��"
	�����
�#���
�����$� 

Carbon normalized potential primary production and light compensation point 

Four sediment cores were stored in a water bath at in situ temperature of 0.5°C. A 

magnetic stirrer was inserted into the core and the overlying water was permanently 

aerated. Thereby, the overlying water was kept homogeneous and oxygen saturated. 

Cold-light lamps (Osram Lumilux Cool Daylight L36W/865, Osram, Munich, Germany) 

were installed above the sediment cores and the emitted PAR was permanently 

controlled with a spherical PAR-sensor (US-SQS/L and ULM-500, Walz, Germany). The 

spherical PAR-sensor was placed in the water bath, adjusted to the lowest height of the 

sediment surface of the sediment cores and covered with sea-water.  

Sediment cores from Faro and Creek were exposed to PAR intensities of 0, 5, 10, 15, 

20, 25, 47 and 70 μmol photons m-2 s-1, starting with lowest PAR. Sediment cores from 

Isla D were additionally exposed to 35 μmol photons m-2 s-1. In order to enable the MPB 

to adjust to the experimental light conditions, the sediment cores were pre-incubated for 

4 h at a certain PAR. Afterwards, the cores were closed airtight with no air bubbles in the 

overlying water and the volume of the overlying water was determined. An optical 

oxygen microsensor (Pyroscience, Aachen, Germany) with a tip size diameter of 50 μm 

was installed in the lid, which allowed a continuous measurement of the oxygen 

concentration in the overlying water. On beforehand, the microsensor was calibrated at 

in situ temperature with a two-point calibration using air saturated and anoxic waters (by 

adding sodium dithionite). 

%��� ���
���	� ����������� 
����
	��� 
	� 
� ���	

�� �&'� (��� )� h and a 2 s temporal 

measurement resolution, while the overlying water was kept homogeneous by rotating 

magnets. After the incubation, the sediment core was exposed to the next higher PAR 

by adjusting the height of the cold-light lamps and the procedure for total oxygen flux 

measurement was repeated. The spare sediment core was treated similar to the other 

cores but without installing the oxygen microsensor. The PAR sensor was also covered 
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with a lid during the incubations. To avoid an oxygen oversaturation at the highest PAR, 

the overlying water of the sediment cores was aerated with helium until an oxygen 

concentration of 240 μmol O2 L
-1 was reached (70% oxygen saturation, controlled by 

above-mentioned oxygen microsensors). 

The total oxygen flux over the period of each PAR exposure was calculated using the 

formula: 

��������	
���
��� � ��./0 � 1.� � 2  

in which ��2, ��, V and A represent the difference in oxygen concentration, the 

difference in time, the volume of the overlying water and the enclosed surface area, 

respectively. Total oxygen fluxes were converted to carbon equivalents (C-flux) by 

applying the Redfield ratio of C : O = 106:138 [Redfield, 1934, 1963]. A negative flux is 

directed towards the sediment, while a positive is directed towards the water column. 

C-fluxes were plotted against PAR to create a PI-curve from which the light 

compensation point and the light-dependent primary production performance were 

derived. C-fluxes of each location were normalized to the mean diatom carbon content, 

assuming that 1 mg C cm-3 sediment-1 equals 1 mg C cm-2 sediment-1. The normalized 

C-fluxes were also plotted against the used PAR incidence intensities. The oxygen and 

carbon fluxes represent benthic community net fluxes, as microbial and faunal 

mineralization processes are included. Consequently and owing to the experimental 

conditions, the calculated primary production needs to be assessed as potential net 

primary production. 

Statistical analyses 

%�� 	��	� ���	���� *�+� ����
	
��,� !�� 
��� 	��� �"����� �(� C-fluxes and diatom carbon 

content-normalized C-fluxes differed among locations, a one-way ANOVA (type III SS) 

and a Tukey post hoc test was performed. A Shapiro-Wilk test was performed to test 

�
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	�,������
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�������	��	��	���������
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	���In case data 

were not homoscedastic, an adjusted ony-way ANOVA and a non-parametric Games-

Howell post-hoc test [Games and Howell, 1976] was performed to identify locations 

showing significant differences. The tests were performed using R Statistical Software 
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Analyses of the multivariate MPB community structure were based on square root 

transformed density data of sediment core replicates. Non�metric multidimensional 

scaling (MDS, [Kruskal, 1964]) and hierarchical cluster analysis with group average 

clustering were used to present the multivariate similarities between samples based on 

Bray�Curtis similarity. Significance of multivariate differences between locations within 

the MPB community data were tested by the ANOSIM procedure (ANalysis Of SIMilarity) 

�
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(number of all possible permutations). The SIMPER (SIMilarity PERcentage) routine was 

applied to determine the contribution of certain MPB taxa towards the discrimination 

between the locations. The tests regarding the MPB community were conducted using 

Primer v6. Results are expressed as mean values ± standard deviation. 

3.4 Results 

3.4.1 In situ PAR variability 

The in situ PAR was investigated on seasonal and daily temporal scales and as well 

as on spatial scales (Figure 3.2). The average PAR at Faro (Figure 3.2 A) in spring 

(Oct.�Nov.), summer (Dec.�Mar.), autumn (Apr.�May) and winter (June�Sept.) over the 

available period was 37 ± 43, 16 ± 19, 5 ± 6, and 3 ± 13 μmol photons m-2 s-1, 

respectively. At Isla D (Figure 3.2 B), the average PAR within the spring period (Nov.) 

was 13 ± 18 μmol photons m-2 s-1 and within the summer period (Dec. and Feb.�Mar.) 

average PAR was 5 ± 11 μmol photons m-2 s-1. The PAR measurement on a daily scale 

at Creek (10�11/11/2016, Figure 3.2 C) revealed an average PAR of 

84 ± 117 μmol photons m-2 s-1 and a maximum PAR value of >550 μmol photons m-2 s-1. 

The PAR results indicate that in Potter Cove effects of sedimentation and shading differ 

strongly among the study locations on temporal and spatial scales. 
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Figure 3.2. In situ measured photosynthetically active radiation intensities (PAR) on a seasonal scale at 
A: Faro (entire year 2015), B: and Isla D (11/02/2015�04/04/2015 and 16/11/2015�31/12/2015), and on a 
daily scale at C: Creek (10/11/2016�11/11/2016). The red line marks the light compensation point of 
26 μmol photons m-2 s-1 and the bright blue line the maximum PAR used in the experiment. 

3.4.2 Diatom community at Potter Cove 

Overall 48 diatoms species were found in the upper 0.5 cm sediment layer 

(Table S3.1) with Gyrosigma fasciola as dominant species at all three locations 

(30 ± 15% at Faro, 40 ± 20% at Creek, 44 ± 18% at Isla D). Ten pelagic species were 

found in the samples, which made up 11%, 25%, and 14% of the MPB density at Faro, 

Creek, and Isla D, respectively (Table S3.1, indicated with an asterisk). The mean MPB 

density was 4895 ± 1237 cells cm-3, 18321 ± 8727 cells cm-3, 8332 ± 6565 cells cm-3 
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���!���
����/: ± 0.24, 2.43 ± 0.28, 2.93 ± 0.82 at Faro, Creek and Isla D, respectively. 

Both, MPB densities 
��� !�� did not differ between the locations (pdensity = 0.07, 

p!� = 0.21). The ANOSIM results (Global R = 0.236, p-value = 0.058) indicated no 

differences in the MPB community structure among the three locations, which was 

confirmed by the SIMPER with similarities within groups of >50% (Table S3.2). 

3.4.3 Potential net MPB primary production in Potter Cove 

At each location, the C-flux increased with increasing PAR. Faro and Creek showed 

similar slopes, whereas the slope at Isla D was significantly lower (Figure 3.3, 

Table 3.2). The community mineralization (C-flux in darkness) at Faro, Creek, and Isla D 

was -18 ± 1 mmol C m-2 d-1, -21 ± 2 mmol C m-2 d-1, and -14 ± 2 mmol C m-2 d-1, 

respectively. The light compensation point for the MPB community was reached at 

26 μmol photons m-2 s-1 at Faro and Creek, whereas no light compensation point was 

reached at Isla D. The maximum net primary production at Faro was at 70 μmol 

photons m-2 s-1 (47 ± 16 mmol C m-2 d-1) and at Creek at 47 μmol photons m-2 s-1 

(41 ± 10 mmol C m-2 d-1). At Isla D, no net primary production was observed. 

Table 3.2. P-values of ANOVAs and Games-Howell post-hoc tests regarding sediment core specific 
slopes of C-fluxes (Figure 3.3) and diatom carbon content-normalized C-fluxes (Figure 3.4), both plotted 
against PAR. 

Flux ANOVA 
(p-value) Grouped locations Games-Howell post-hoc test 

(p-value) 

C-flux <0.001 

Faro-Creek 0.876 

Faro-Isla D 0.010 

Creek-Isla D 0.009 

Diatom carbon content-
normalized C-fluxes <0.001 

Faro-Creek 0.017 

Faro-Isla D 0.009 

Creek-Isla D 0.011 

The diatom carbon content-normalized C-fluxes also increased with increasing PAR, 

and showed significant differences regarding their slopes (Figure 3.4, Table 3.2). The 

slope steepness was highest at Faro, intermediate at Creek and lowest at Isla D, 

indicating different net primary production performances by the MPB community at the 

three locations. 
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Figure 3.3. Carbon fluxes at different PAR intensities. Negative fluxes are net respiration and positive 
fluxes net primary production of the benthic community. The linear regression for Faro, Creek and Isla D is 
y = 0.9221x - 22.72 (r2 = 0.925), y = 0.8536x - 21.59 (r2 = 0.781), and y = 0.1327x - 11.83 (r2 = 0.779), 
respectively. 

 
Figure 3.4. Carbon fluxes normalized by the mean diatom carbon content at different PAR intensities. The 
linear regression for Faro, Creek and Isla D is y = 0.208 � 5.126, y = 0.064 � 1.618, and y = 0.0178 �
 1.591, respectively. R² is similar to the regressions in Figure 3.3. 
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3.5 Discussion 

3.5.1 The impact of turbidity and sediment accumulation on the 

microphytobenthic community and their primary production in Potter Cove 

The melting Fourcade glacier releases particles into Potter Cove, both directly and 

indirectly via river run-offs [Sahade et al., 2015; Monien et al., 2017]. Owing to their 

location and the current system in Potter Cove, the investigated locations were 

permanently and naturally exposed to contrasting intensities of turbidity and sediment 

accumulation [Pasotti et al., 2015; Deregibus et al., 2016], which we define as 

3�
�	���
���4�� %���, the MPB at Faro was less disturbed, at Creek intermediately 

disturbed and at Isla D highly disturbed. We observed that the primary production 

performance of the MBP decreased with increasing disturbance while the community 

structure remained unaffected. A positive net primary production was even completely 

suppressed at Isla D. However, large brownish mats were visible at Isla D during 

summer [Hoffmann et al., section 4]. This indicates that the energy demand for growth 

and reproduction of the MPB community at Isla D seems to be covered by the 

photosynthetic apparatus throughout the sea-ice free season, even under permanent 

glacial melt-related disturbance. Thus, we assess the found primary production pattern 

is a result of the sedimentation accumulation process rather than due to the low PAR. 

Antarctic MPB is known for its exceptional adaption to low light conditions [Gómez et 

al., 2009]. The median light saturation of an MPB community at Casey station was 

reached at 66 μmol photons m-2 s-1 and 6�20 μmol photons m-2 s-1 were reported for an 

MPB community in the McMurdo Sound [Rivkin and Putt, 1987; McMinn et al., 2012]. 

The data presented in our study does not allow an estimation of the light saturation 

value. However, the estimated light compensation point of Potter Coves MPB 

community was reached at 26 μmol photons m-2 s-1, which is frequently exceed at Faro 

and Creek and rarely at Isla D. Therefore, it is unlikely that the low PAR is responsible 

for the revealed primary production pattern. 

MPB primary production might also depend on the MPB community structure, which 

can be influenced by turbidity. Longhi et al. [2003] revealed differences in the low light 
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adaption of Gyrosigma subsalinum var. antarctica and Odontella litigiosa, both species 

occurred in Potter Cove [Al-Handal and Wulff, 2008a]. Consequently, we would expect 

that low light adapted species were dominant at Isla D and thereby change the MPB 

structure. We also found Gyrosigma species and Odontella litigiosa in our samples, but 

a difference in the MPB structure between our three study locations was not observed. 

It is known that diatoms are able to migrate vertically through the sediment as a 

reaction on tides, light and endogenous factors (e.g. phototaxy, aerotaxy, geotaxy), as 

most important factors and disturbances, carbon dioxide and nutrient limitations as less 

important factors [Consalvey et al., 2004, and references therein]. The glacial melt-

related sediment accumulation steadily covers the MBP community. As a consequence, 

the diatoms have to migrate over longer distances and migrate more often to locate 

themselves to the best available light conditions. In turn, the MPB community in high 

sedimentation areas needs more energy for migration, which lowers the overall net 

primary production. This is relevant for epipelic diatoms with raphe, which are highly 

motile [Round, 1979]. Episammic diatoms are only able to move very slowly [Round, 

1979] and therefore would be completely covered by sediments for a longer period. A 

full recovery in terms of their primary production performance will take more than two 

weeks [Wulff et al., 1997], and only if sediment accumulation cease to cover the MPB 

community. Therefore, we assess the sediment accumulation as responsible factor for 

the observed primary production pattern. 

Our used approach might be biased as three of four MPB samples, which were used 

for the normalization of the C-fluxes, were recovered one month before the sediment 

cores for the primary production assessment. One additional sample was recovered 

parallel to the experimental sediment cores, however, differing from the other MPB 

samples in terms of diatom density and diatom carbon content. Whether this was due to 

temporal or spatial variability is hard to assess. Nevertheless, the diatom carbon content 

was observed to vary 3-fold and the diatom density 5.5-fold between the locations. The 

latter is within the 2- to 15-fold range of spatial variability observed in other Antarctic 

MPB communities [Dayton et al., 1986; McMinn et al., 2012]. However, in terms of 

chlorophyll concentrations and depending on water depths, temporal variability was 

observed to vary 3- to 11-fold [Dayton et al., 1986; Gilbert, 1991a]. Consequently, as 
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spatial and temporal variability of MPB densities strongly overlap, an assessment 

whether the revealed differences among the MPB samples were due to temporal or 

spatial variability was impossible. Nevertheless, as we merged MPB samples from two 

different samplings dates, our results cover both spatial and temporal variability in the 

MPB community. 

3.5.2 Microphytobenthos as important carbon source in Potter Cove 

Our study gives a first insight into the MPB primary production in Potter Cove. The 

MPB community at the locations Faro and Creek is potentially able to fully supply and 

even exceed the benthic carbon demand of 11�33 mmol C m-2 d-1 in 6�9 m water depth 

[Hoffmann et al., section 4]. This indicates the MPB community can be an important 

carbon source for the benthic community, which might be able to partly supply also 

benthic fauna in deeper water depths. Although, the carbon supply by MPB primary 

production seems to be spatially limited and undergo substantial temporal changes, as 

the average PAR exceeded the light compensation point of 26 μmol photons m-2 s-1 only 

in spring and only at Faro. However, in combination with pelagic primary production data 

[Schloss et al., 1998; Schloss et al., 2012], the benthic carbon demand might be fully 

supplied in the spring. This would indicate that Potter Cove is an autotrophic ecosystem 

in spring, whereas it is heterotrophic in summer months [Hoffmann et al., section 4].  

We assess the obtained ex situ measured net MPB primary production values as 

reliable and transferable to in situ conditions. The observed primary production by Potter 

�������*�+�������
	���������
((����	��&'�intensities was in a similar range as in situ 

measured primary production of MBP communities from McMurdo Sound [Dayton et al., 

1986], Signey Island [Gilbert, 1991b] and at Casey Station [McMinn et al., 2010; McMinn 

et al., 2012]. Furthermore, the community mineralization (oxygen flux under darkness) 

was within the same range as in situ measure mineralization rates of the benthic 

community in Potter Cove [Hoffmann et al., section 4]. 

The in situ measured PAR exceeds the maximum of 70 μmol photons m-2 s-1 used in 

our experiment and thus, we cannot assess at which PAR the light saturation would be 

reached and when photoinhibition might start. G. subsalinum and O. litigiosa, for 

example, showed maximum growth rates at 25 μmol photons m-2 s-1 and 
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100 μmol photons m-2 s-1, respectively [Longhi et al., 2003], which was also the start 

value for photoinhibition. Comparing these results with the in situ PAR conditions in 

Potter Cove indicates that the MPB might experience photoinhibition. However, McMinn 

et al. [2012] reported that photoinhibition only became evident at actinic light levels 

above 413 μmol photons m-2 s-1. This only occurred shortly at Creek, but in general in 

situ measured PAR in Potter Cove was below that value. In addition, results of Wulff et 

al. [2008] did not reveal any photoinhibition in Antarctic marine microalgae when 

exposed to 600 μmol photons m-2 s-1. Therefore, photoinhibition might have affected a 

few microalgae species, but the gross of the MPB likely grew under either ideal or low 

light conditions. 

3.5.3 Implications of glacial melt-related retreat and particle release on 

polar benthic communities 

The ongoing melt of Antarctic glaciers [Rückamp et al., 2011; Paolo et al., 2015; Cook 

et al., 2016] might lay free new settling ground for macroalgae [Deregibus et al., 2016; 

Lagger et al., 2017], benthic macrofauna [Lagger et al., 2017], and also MPB. 

Nevertheless, the melting of glaciers is related with the release of particles and as such 

lead to increased sediment accumulation [Pasotti et al., 2015; Monien et al., 2017]. 

Sediment accumulation in turn, is known to trigger changes in the macrofauna 

community [Torre et al., 2012; Sahade et al., 2015; Torre et al., 2017], changes in 

benthic mineralization [Hoffmann et al., section 4] and reduce MPB primary production 

[this section]. MPB might survive increasing sedimentation rates [Wulff et al., 1997] but 

their contribution to the overall primary production as a food resource for the 

heterotrophic benthic fauna is likely to decline strongly. 

The effect of sediment accumulation seemed to affect also MPB communities in the 

Arctic Ocean. In the Arctic Kongsfjorden, the MPB primary production was reduced at 

locations close to glacial fronts and riverine inflows (where high sedimentation rates are 

likely) compared to less disturbed locations [Woelfel et al., 2010]. In addition, the MPB 

primary production is an important carbon source in shallow coastal areas of the Arctic 

Ocean by exceeding pelagic productivity by a factor of 1.5 for water depths down to 

30 m [Glud et al., 2009; Attard et al., 2014]. Consequently, the reduction of the MPB 
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primary production is likely to increase the food competition of the benthic heterotrophic 

community in both the Southern and the Arctic Ocean, with unpredictable consequences 

in biomass, density, structure and diversity for the benthic community. 

3.6 Supplements 

Table S3.1. Diatom density [cells cm-3] of single taxa at the three locations Faro, Creek and Isla 
D. The asterisk refers to pelagic species. Location specific replicates were recovered in parallel 
roughly one month before the sediment cores for the "Extra" sample was recovered (Table 3.1). 
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Table S3.1 (continued) 
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Table S3.1 (continued) 
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Table S3.2. Results of the SIMPER analysis 

Location Faro Creek Isla D 

Similarity within group [%] 57 57 53 

Location groups Faro-Creek Faro-Isla D Creek-Isla D 

Dissimilarity between groups [%] 48 49 47 
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4.1 Abstract 

Measurements of biogeochemical fluxes at the sediment-water interface are essential 

to investigate organic matter mineralization processes but are rarely performed in 

shallow coastal areas of the Antarctic. We investigated biogeochemical fluxes across the 

sediment-water interface in Potter Cove (King George Island/Isla 25 de Mayo) at water 

depths between 6�9 m. Total fluxes of oxygen and inorganic nutrients were quantified in 

situ. Diffusive oxygen fluxes were also quantified in situ, while diffusive inorganic nutrient 

fluxes were calculated from pore water profiles. Biogenic sediment compounds 

(concentration of pigments, total organic and inorganic carbon and total nitrogen), and 

benthic prokaryotic, meio-, and macrofauna density and biomass were determined 

alongside abiotic parameters (sediment granulometry and porosity). The measurements 

were performed at three locations in Potter Cove, which differ in terms of glacial melt 

disturbance intensity. This study aims to assess the implications of glacial melt-related 

disturbances such as ice scouring and particle release on the benthic community and 

the biogeochemical cycles they mediate. Further, we discuss small-scale spatial 

���������	
� �
� ��������������� 
������ ���� ������� 	��� ������� ������� �
� ��		��� �������

shallow benthic communities. Our results showed that an intermediate glacial melt-

related disturbance can lead to an enhanced mineralization in soft sediments, while a 

high disturbance can reduce mineralization. The benthic macrofauna assemblage was 

the major benthic carbon stock (>87% of total benthic biomass) and the main 

responsible fauna for the benthic mineralization. However, the biomass of the dominant 

Antarctic bivalve Laternual elliptica, contributing 39�69% to the total macrofauna 

biomass, increased with enhanced glacial melt disturbance. This is contrary to the 

pattern of the remaining macrofauna. Our results further indicated that pelagic and 

�������
	����	����������
�������	�����������	�
���
������
���		�������������	�����������

demand. Therefore, Potter Cove is a heterotrophic ecosystem in the summer season. 

4.2 Introduction 

Continental shelves comprise only 8% of the global marine realm but are an important 

component of the marine carbon cycle [Walsh, 1991; Fennel, 2010]. Approximately 50% 
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of global benthic mineralization takes place at continental shelves [Middelburg et al., 

1998]. In shelf areas, benthic mineralization is mainly mediated by the benthic 

macrofauna community and therefore depends on their biomass, density, structure and 

functional traits [Kristensen et al. 1992; Braeckman et al. 2010], which in turn are 

influenced by food supply from primary producers and abiotic factors like sediment 

structure and water temperature [Vanreusel et al., 1995; Piepenburg et al., 1997; 

Wenzhöfer and Glud, 2002]. 

The Antarctic continental shelf contributes 1�6% to the entire area of the Southern 

Ocean [Arrigo et al., 2008a; Griffiths, 2010; Smith, 2010]. However, pelagic primary 

production at the continental shelf is approximately three times higher than at the open 

ocean and can reach up to 1600 mg C m-2 d-1 during austral summer [Arrigo et al., 

2008a]. The high amount of provided organic matter may explain the high benthic faunal 

biomass found at the Antarctic continental shelf [Smith et al., 2006]. At shallow, coastal 

sites at both Signy Island (South Orkney Islands) and Marian Cove (King George Island, 

Western Antarctic Peninsula), benthic mineralization measured as oxygen fluxes were 

12�90 mmol O2 m
-2 d-1 and therefore similar to those of temperate regions [Nedwell et 

al., 1993; Shim et al. 2011]. However, apart from these two studies, little is known about 

the benthic mineralization of primary produced organic matter at the sediment-water 

interface (SWI) in shallow coastal environments of the Antarctic. 

The Antarctic summer sea-ice extent and the sea-ice concentration are decreasing at 

unprecedented rates [Haumann et al., 2014; Turner et al., 2016]. Furthermore, glaciers 

in the West Antarctic and especially at the Western Antarctic Peninsula are melting and 

retreating [Rückamp et al., 2011; Paolo et al., 2015; Cook et al., 2016]. These 

environmental changes can alter physicochemical conditions and benthic communities. 

A calving-related increase in the ice scouring frequency, for example, can cause higher 

faunal mortality on a local scale [Conlan et al., 1998; Barnes and Souster, 2011]. 

Furthermore, during an ice scouring event, the sediment surface is dug over [Conlan et 

al., 1998; Barnes and Souster, 2011] and thereby the seafloor topography is altered 

[Woodworth-Lynas et al., 1991]. As juveniles or mobile organisms repopulate these 

areas, ice scouring can result in a patchy but diverse benthic community [Barnes, 1999], 

which experiences a permanent rejuvenation [Brown et al., 2004]. In addition, melting 
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glaciers and melting permafrost soils release mainly inorganic particles into marine 

waters [Khim et al., 2007], directly or via river runoffs, and therefore increase the 

turbidity of the water column [Dierssen et al., 2002]. Resuspension events by ice 

scouring also increase water column turbidity [Barnes, 1999; Griffiths, 2010]. As a 

consequence, less light is available for primary producers, which may result in a limited 

primary production, a decreased food supply, and ultimately in a lower benthic 

mineralization. Furthermore, particle sedimentation is an important stressor for filter 

feeders [Trush et al., 2004] such as common Antarctic ascidians [Torre et al., 2012] or 

bivalves [Philipp et al., 2011], which can lead to changes in the benthic community 

structure [Philipp et al., 2011; Torre et al., 2012]. However, when tidewater glaciers 

calve and retreat, they lay free new settling grounds. Colonization of these newly glacial 

free areas can increase the local organic carbon supply by primary producers 

[Deregibus et al., 2016] and the local biomass by heterotrophic consumers [Lagger et 

al., 2017; Seefeldt et al., 2017]. 

At Potter Cove, King George Island/Isla 25 de Mayo, benthic communities have been 

studied in relation to glacial melt [Philipp et al., 2011; Pasotti et al., 2015; Deregibus et 

al., 2016; Lagger et al., 2017; Seefeldt et al., 2017]. Directly in front of the glacier, the 

soft bottom meio- and macrofauna community biomass was reduced, while at other 

locations less influenced by glacial melt-related disturbances, an enriched biomass and 

a more diverse macrofauna community was found [Pasotti et al., 2015]. In the present 

study, we investigate the influence of glacial-melt related alterations in benthic 

communities and mediated benthic carbon and nutrient mineralization as important 

ecosystem services. We determined biogeochemical fluxes, the macro-, meio- and 

prokaryotic community, food supply, and sediment characteristics at three different 

locations, each influenced by a different intensity of glacial-melt related disturbance. We 

tested the following null-hypotheses within this study: 

1. Benthic community structure and function are similar among areas experiencing 

different intensities of melting glacier disturbance. 

2. Organic matter mineralization is similar among areas experiencing different 

intensities of melting glacier disturbance. 
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Additionally, our study aimed to assess small-scale spatial variability of mineralization 

at the Antarctic shallow coast. Further, we addressed the discrepancy in food supply to 

the benthic community by comparing primary production and benthic carbon demand. 

4.3 Material and methods 

4.3.1 Study site 

Potter Cove is a roughly 3 km long and 1.2 km wide, shallow, fjord-like bay in the south-

west of King George Island/Isla 25 de Mayo, an island located at the tip of the Antarctic 

Peninsula. The cove receives freshwater input from the Foucade glacier [Rückamp et 

al., 2011] and from seasonal meltwater discharge as a consequence of permafrost and 

snow melt. The water current moves generally clock-wise around Potter Cove, with an 

average current speed of 0.03 m s-1 [Lim et al., 2013]. The three locations included in 

the present study (6�9 m water depth, Figure 4.1, Table 4.1) are located in the inner part 

of the cove and are mainly characterized by soft sediment [Wölfl et al., 2014; Pasotti et 

al., 2015]. The locations, namely Faro, Creek and Isla D, became glacial ice-free 

between 1988 and 1995, before the 1950s, and before 2003, respectively [Rückamp et 

al., 2011], but are regularly covered by sea ice during winter [Schloss et al., 2012]. The 

three locations experienced different intensities of glacial melt-related disturbances. The 

amount of suspended particulate matter in the water column was highest at Isla D, 

intermediate at Faro and lowest at Creek [Monien et al., 2017]. The turbidity at Faro and 

Creek was similar, while Isla D showed a higher turbidity (based on interpolation of data 

from Deregibus et al. [2016]). The sediment accumulation was lowest at Faro, 

intermediate at Creek, and highest at Isla D [Pasotti et al., 2015]. At 15 m water depth, 

the youngest ice-free aged and most disturbed site (Isla D) is characterized by the 

lowest macro- and meiofauna biomass, compared to the older ice-free aged and less 

disturbed sites Faro and Creek [Pasotti et al., 2015]. The community composition of both 

macro- and meiofauna differed strongly between the three locations, with the highest 

trophic diversity found at Faro [Pasotti et al., 2015]. We measured biogeochemical fluxes 

at the sediment-water interface and sampled benthic communities and environmental 
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parameters during a field campaign in February and March 2015 (Table 4.1) at the 

Argentinean-German Dallmann Laboratory at the Argentinean Carlini research station. 

 
Figure 4.1. Study site Potter Cove. At Faro, Creek, and Isla D in situ measurements and sediment 
sampling were conducted. The position of locations is marked with a cross. The curved, bright blue line 
marks the front of the Fourcade glacier. The bright blue arrows indicate river run-offs supplied mainly by 
glacier, permafrost and snow melt. The dashed blue arrows indicate the direction of the main current. 

Table 4.1. Location, water depth, and date of sampling of the three locations sampled in Potter Cove. 

Location Faro Creek Isla D 

Latitude ����� ! ���" �����#!$%��" 62° � ! $��" 

Longitude &%�� '! ���( &%�� '!# ��( &%�� %! $��( 

Depth [m] 8�9 8�9 6�7 

In situ measurements and sampling for 
biogenic compounds [Dates] 

10/02/2015� 
12/03/2015 

28/02/2015� 
01/03/2015 

18/02/2015� 
19/02/2015 

Pore water sampling dates and number 
of sediment cores sampled 

09/02/2015: 
4 cores 

26/02/2015: 
2 cores 

 
01/03/2015: 

2 cores 

18/02/2015: 
2 cores 

 
19/02/2015: 

2 cores 
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4.3.2 Sediment properties and biogenic sediment compounds 

For the determination of sediment properties and biogenic sediment compounds, 

sediment was sampled with 3.6 cm diameter cores in five replicates by SCUBA divers. 

Sediment subsamples were taken with cut-off syringes (cross-sectional area = 1.65 cm²) 

and sliced in 1 cm intervals down to 5 cm sediment depth. Each interval was analyzed 

for various parameters including median grain size, porosity, photosynthetic pigments, 

total carbon, total organic carbon and total nitrogen. Sediment samples for 

photosynthetic pigments were stored at -80°C. Sediment samples of other parameters 

were stored at -20°C until analyses at the home laboratory. 

The median grain size was determined with a Malvern Mastersizer 2000G, hydro 

version 5.40. The Mastersizer used a laser diffraction method and had a measuring 

range of 0.02�2000 μm. Sediment porosity was determined after drying sediment 

�������� ����� �� ������� �
� �	� ����	� 	)�� ��
�� �	� �$&��!� *��� �������	� ������	
� +� )���

calculated with the following formula of Burdige [2006]: 

3 �� 45 65&
45 65& 7 (48 � (9� ��45,, 6:&  

In this equation, mw is the mass of evaporated wat��,�-w is the density of the evaporated 

water, md is the mass of dried sediment plus salt, S is the salinity of the overlying water 

����-s is the sediment density (2.66 g cm-3 [Burdrige, 2006]). To calculate mw,� -w, md 

the weight loss of wet sediment samples that were dried at 105°C was measured. 

Chlorophyll a (Chl a), phaeophytin (Phaeo) and fucoxanthin (Fuco) pigment 

concentrations were determined by HPLC (Gilson) [Wright and Jeffrey, 1997]. The bulk 

of pigments (Chl a plus Phaeo) was termed chloroplastic pigment equivalents (CPE) 

[Thiel, 1978]. The ratio of Chl a to Phaeo served as an indicator for the relative age of 

the material. The total carbon (TC) and total nitrogen (TN) were measured by 

combustion using an ELTRA CS2000 with infrared cells. The total organic carbon (TOC) 

was measured using the same method after acidifying the sample (3 ml of 10 M HCl). 

Total inorganic carbon (TIC) was calculated by subtracting TOC from TC. 
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4.3.3 Benthic community structure 

For prokaryotic density determination, the same sampling and sub-sampling 

approach was used as for the sediment properties. Each sediment interval was fixed in a 

2% formaldehyde/seawater filtered solution and stored at 4°C. The acridine-orange-

direct-count method [Hobbie et al., 1977] was used to stain prokaryotes in the sub-

samples and subsequently counted with a microscope (Axioskop 50, Zeiss) under UV-

light (CQ-HXP-120, LEj, Germany). For each sample, single cells were counted on two 

replicate filters and for 30 random grids per filter (dilution factor 4000). Prokaryotic 

biomass was estimated by the determination of the mean prokaryotic cell volume in the 


���	� 	)�� ���	���	���� )�	�� �� ./�)� ���	���0� ����� 12��	������� 3	�,� *��������,� 456�

[Grossmann and Reichardt, 1991], converted into biomass using a conversion factor of 

3.0 x 10-13 g C pm-3 [Børsheim et al., 1990] and multiplied with the prokaryotic density. 

Thereby, each mean prokaryotic cell volume represents the mean of 100 counted grids. 

For the determination of meiofauna density, biomass and identification of meiofauna 

taxa, five sediment samples were taken with small sediment cores (Ø 3.6 cm). Sediment 

samples of the first five centimeters were stored in filtered seawater buffered 4% 

formaldehyde solution at 4°C until extraction at the home laboratory. The samples were 

sieved over a 1 mm and 32 7�� ����,� ���	��
����� 	����� 	����� ��� �� ���������� �������

solution (Ludox TM-50) with a density of 1.18 g cm-3, and stained with Rose Bengal 

[Heip et al., 1985]. Afterwards, benthic meiofauna was identified on higher taxon level 

and counted. In order to determine the meiofauna biomass, the total organic carbon 

content of single taxa was measured with a FLASH 2000 NC Elemental Analyzer 

(Thermo Fischer Scientific, Waltham, USA). Calcifying organisms were acidified prior to 

the analysis. 

The benthic macrofauna was sampled with a Van Veen grab (530 cm² surface area). 

At each location, four recovered sediment samples were sieved over a 1 mm mesh and 

stored in seawater buffered 4% formaldehyde. In the laboratory, the taxa were identified 

to the lowest possible taxonomic level (at least family level), counted, weighted, and the 

Shannon-(�������������	
�������18�6�)����������	���������������!$!�9��-free dry weight 

(AFDW) was determined by subtracting the ash weight (after combustion at 500°C) from 

the dry weight (dried for 48 h at 60°C). AFDW was converted into carbon by assuming 
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that 50% of the AFDW was carbon [Wijsman et al., 1999]. The Van Veen grab sampling 

results in a strong underestimation of the density of the Antarctic bivalve Laternula 

elliptica. Therefore, two transects of eight grids (45 cm x 45 cm) were randomly placed 

on the seafloor by scuba divers and photos were taken (Nikon D750, rectilinear Nikon 

16�35 mm lens, Nauticam underwater housing, two Inon Z-240 strobes). The photos 

were used to count siphons of L. elliptica to determine their density and to measure the 

siphon width (maximum distance between outer edges of the two siphons of one 

individual) at the three locations. Assuming a linear relationship between siphon width 

and AFDW, a conversion factor was used to calculate an estimated biomass of 

L. elliptica. The calculation of the conversion relationship of the siphon width to AFDW 

was performed on data from the same L. elliptica population. From the macrofauna 

abundance (Ai) and biomass (Bi), together with a mobility score (Mi, score between 1�4) 

and sediment reworking score (Ri, score between 1�5) of each taxon (Table S4.1), the 

community bioturbation potential (BPc) was calculated with the following formula 

[Queirós et al., 2013]: 

;<= �>?;@ A@&
B

@ C
� A@ � D@ � E@ 

in which i displays the specific taxon in the sample. 

4.3.4 Biogeochemical flux measurements 

To quantify the in situ benthic organic matter mineralization, three transparent and 

three black chambers (inner diameter 19 cm, height 33 cm) were carefully pushed into 

the sediment at each location by SCUBA divers, who took special care to not disturb the 

sediment surface during the procedure. About 15 cm of sediment and 18 cm of overlying 

water was enclosed. Cross-shaped stirrers powered by a 12 V lead-acid battery kept the 

overlying water homogenous. The incubation lasted 20�22 h and included light and dark 

periods. Owing to dive security regulations, we could not perform measurements after 

sunset to distinguish between day-time and night-time oxygen fluxes. Therefore, the 

resulting fluxes are net fluxes. HOBO Pendant� loggers (Onset, Bourne, USA) were 

placed both in situ and on land to record the amount of radiation (150�1200 nm) during 

the incubation with a temporal resolution of 5 minutes. The transmission of radiation to 



4 Manuscript II 

 
74 

the seafloor was calculated based on the readings on land and in situ. The enclosed 

overlying water in the chambers was sampled through valves in the chamber lids at the 

start and end of the chamber incubation, using gas-tight glass syringes. The water 

samples were kept at in situ temperature and in darkness until further processing, which 

took place within 1.5 h after the samples were taken. 

Subsamples were taken to determine the oxygen concentration, the concentration of 

dissolved inorganic carbon (DIC) and the concentrations of phosphate, ammonium, 

nitrite, nitrate, and sulfate. Winkler titration was used to determine the oxygen 

concentration in the water sample in technical duplicates on site. For DIC analyses 

technical triplicates were poisoned with mercury-di-chloride and stored at 4°C until 

measurement after 6 months at the home laboratory. DIC samples were analyzed using 

an autosampler (Techlab, Spark Basic Marathon) with a digital conductivity measuring 

cell (VWR, digital conductivity meter, Germany) [Hall and Aller, 1992; Lustwerk and 

Burdige, 1995]. For nutrient analyses technical triplicates were filtered through a GF/F 

filter (Whatman, Maidstone, U.K.) and stored at -20°C until analysis. The samples were 

analyzed with an autosampler (CFA SAN-plus, Skalar Analytical B.V., Netherlands) for 

ammonium, phosphate, nitrite and [nitrate + nitrite] concentrations [Grasshoff et al., 

1999]. The nitrate concentration was determined by subtracting the nitrite concentration 

from the [nitrate + nitrite] concentration. 

The total oxygen uptake (TOU) by the benthic community during the incubation was 

calculated using the formula: 

FGH ��� IG0 � JIK � A  

���)�����:;2,�<,�:t and A represent the difference in oxygen concentration, the volume 

of the overlying water, the difference in time and the surface area, respectively. The 

volume of the overlying water was calculated by using the average height between the 

seafloor and the chamber lid, measured at five locations of each chamber. The TOU 

was converted to carbon equivalents (C-TOU) by applying the Redfield ratio of 

C : O = 106:138 [Redfield, 1934]. The same formula as for calculating the TOU was 

����� 	�� �������	�� 	�	��� =>�� ���� 	�	��� 
���� �
� �����
��� ��	����	�,� )�	�� :DIC ���� :Nutrient 
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���	�����
�:;2, respectively. Several total DIC flux values were omitted as the difference 

between t0 and t1 was lower than the method's detection limit of 0.05 μM. 

High resolution in situ oxygen profiles were measured using a microprofiler 

[Wenzhöfer et al., 2000; Lichtschlag et al., 2010]. The microsensors were driven from 

the water phase into the sediment with a spatial resolution of 100 μm and a temporal 

resolution of 30 seconds. On the profiler electronic unit, three custom-made 

electrochemical oxygen microsensors [Revsbech, 1989] were mounted and calibrated 

before deployment, as previously described [Wenzhöfer et al., 2000; Beer et al., 2006]. 

The microprofiler was programmed, so microsensors penetrated the SWI around noon 

at the same or the following day after the deployment. Running average smoothed 

profiles [Hoffmann et al., 2018] were used to calculate the diffusive oxygen uptake 

(DOU) over the SWI using Fick's first law: 

LGH ����L: �� �MIG0IN OP ! 

in which Ds is the molecular diffusion coefficient of oxygen in sediments at in situ 

	������	��������������	
,�����?:;2@:z]z=0 is the oxygen gradient at the SWI calculated by 

linear regression from the first alteration in the oxygen concentration profile over a 

maximum depth of 1 mm. Ds = =@A2 [Schulz, 2006], with D as the molecular diffusion 

coefficient of oxygen in water [Li an�� 2�����
,� �'B#C,� ���� AD� E� �-��1+�6� ?F�������,�

1997]. Due to hidden dropstones or hard-shelled organisms, a few microsensors broke 

at a very early stage of the profiling, which resulted in a reduced number of calculated 

diffusive fluxes per location. 

For the calculation of the diffusive flux of sulfate, DIC, and nutrients, sediment was 

sampled with cores (10 cm diameter) with pre-drilled holes at 1 cm intervals that were 

sealed with diffusion-tight tape. The pore water was extracted using Rhizons (type: core 

solution sampler, Rhizosphere Research Products, filter pore diameter of 0.1 mm) 

connected to 10 mL Luer lock syringes. The Rhizons were horizontally inserted into the 

sediment and by creating a permanent vacuum in the syringes, pore water was 

extracted. The first drops were used to rinse the syringe and then discarded. The 

extracted pore water was split for sulfate analyses (sample fixed in 5% ZnAc, stored at 

4°C), DIC analyses (sample fixed in mercury-di-chloride, stored at 4°C) and nutrient 
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analyses (frozen at -20°C). DIC and nutrients were analyzed as described above. 

Sulfate was analyzed by using non-suppressed ion chromatography with the Methrom 

761 Compact IC equipped with a Metrosep A SUPP 5 column (Methrom, Herisau, 

Switzerland). From the resulting depth profiles, diffusive fluxes were calculated using the 

same formula as for the DOU calculation, but with Ds of the specific molecule [Schulz, 

2006]. 

4.3.5 Statistical approaches 

Fluxes were calculated for each chamber using the slope of concentration over time 

(incubations; total flux) or depth (vertical profile; diffusive flux). Whenever possible, we 

tested the significance of the slopes and only significant regressions over time or 

sediment depth were used in this study. In case only two data points were available for 

the slope calculation, we assumed significant increase or decrease by considering the 

detection limits of each measurement method. 

To test whether the light or dark treatment had an influence on the total fluxes, 

Students t-tests were performed on the fluxes of black and transparent chambers. In 

������
���	���������	���	
,� 	��	���)�	����3�������� 	��	,���(����� 	)��������� 	-test was 

carried out. The Gaussian distribution of the data was assumed. Since all t-tests 

indicated that light had no effect on the total fluxes (Table S4.2), the data of the different 

chambers were pooled in all further analyses. 

To test whether single parameters differed between locations, a one-way ANOVA 

with type III SS was performed. A Shapiro-Wilk test was performed to test data 

normality, whereas a Levene's test was used to test homoscedasticity. To identify the 

locations showing significant differences, a parametric Tukey or, in case data were 

normally distributed but not homoscedastic, a Games-Howell post-hoc test [Games and 

Howell, 1976] was performed. When data were not normally distributed, absolute values 

of data were square root transformed and the Shapiro-Wilk test was repeated. In case 

transformed data did still not met the assumptions for parametric tests, a non-parametric 

Kruskal-Wallis test and a post-hoc Bonferroni test [Dunn, 1964] were performed to 

identify significant differences between the locations. 
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To visualize the variables responsible for the small-scale variability among Faro, 

Creek and Isla D, a principal component analyses (PCA) was performed on 

standardized mean values of turbidity [Deregibus et al., 2016], median grain size, Chl a, 

TC, macrofauna biomass (excluding L. elliptica), L. elliptica biomass, TOU, diffusive 

phosphate efflux, and diffusive nitrate flux. All other parameters were excluded from the 

PCA as they correlated strongly with one of the mentioned parameters (correlation >0.8, 

Pearson correlation, Table S4.3) used within the PCA. This procedure results in a more 

resilient outcome of the PCA. 

All mentioned tests were performed using R Statistical Software (version 3.4.0, 

G������*���,��$�B6�����	������H�����.�����0�?;H�������	���!,��$�BC,�.�9G0�?I�������

(�������,� �$��C,� .4���
������
�������0� ?��	���,� �$$BC� ���� .�J�JG0� ?������	,� �$�#C!�

Where replicates were available, results are expressed as mean value ± standard 

deviation. 

4.3.6 Ethics statement 

In advance of the field campaign, the Environmental and Tourism Antarctic 

Management Program of the National Direction of the Antarctic (Dirección Nacional del 

Antártico) in the Republic of Argentina, permitted the conducted research to the 

"�������
����	��	���9����/��� ��.������������		��0�1��������	!�B,�9�����<��
�	���J������

Protocol, Law 25260). This permission properly followed the regulations in force. None 

of the protected species were sampled. 

4.4 Results 

4.4.1 Comparison of abiotic and biogenic parameters 

During the incubations, the seafloor at the locations Faro, Creek, and Isla D 

experienced 13.5 hr, 14.5 hr, and 13.5 hr of light incidence, respectively. The light 

transmission to the seafloor (= light incidence at the seafloor/light incidence at land) 

during daytime was 0.5 ± 0.3%, 4.4 ± 1.8%, and 0.7 ± 0.5% at Faro, Creek and Isla D, 

respectively. 
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The median grain size and porosity at Faro was 116 ± 27 μm and 0.56 ± 0.08 over 

the first 5 cm sediment depth (Figure 4.2 A), respectively, with a sand fraction of 

61 ± 5% (Table S4.4). Creek displayed a similar median grain size and porosity 

(120 ± 9 μm and 0.51 ± 0.05, respectively, Figure 4.2 A), but a higher sand fraction of 

72 ± 4% (Table S4.4). The sediment at Isla D was finer (median grain size: 20 ± 30 μm, 

sand fraction: 17 ± 12%) and displayed a higher porosity (0.76 ± 0.12) over the first 5 cm 

sediment depth (Figure 4.2 A). 

TC, TIC, TOC, and TN contents over the first 5 cm sediment depth at Faro were 

7.2 ± 1.4 μg C mg-1 sediment-1, 4.8 ± 0.8 μg C mg-1 sediment-1, 2.3 ± 0.9 μg C mg-1 

sediment-1 and 0.5 ± 0.2 μg N mg-1 sediment-1 (Figure 4.2 B, Table S4.4), respectively, 

and the organic carbon portion (TOC/TC) was 32 ± 8% (Table S4.4). TC, TIC, and TN 

contents were significantly lower at Creek (2.6 ± 0.5 μg C mg-1 sediment-1, 

0.6 ± 0.3 μg C mg-1 sediment-1 and 0.4 ± 0.1 μg N mg-1 sediment-1, respectively) 

compared to Faro, while TOC content (2.0 ± 0.4 μg C mg-1 sediment-1) was similar 

(Figure 4.2 B, Table S4.4). Therefore, the TOC/TC ratio was twice as high at Creek 

(78 ± 11%) compared to Faro (Table S4.4). TC (5.5 ± 0.9 μg C mg-1 sediment-1), TIC 

(3.3 ± 0.4 μg C mg-1 sediment-1), TN content (0.5 ± 0.2 μg N mg-1 sediment-1) and the 

TOC/TC ratio (39 ± 10%) at Isla D had intermediate values between Faro and Creek, 

while the TOC content (2.2 ± 0.8 μg C mg-1 sediment-1) was in a similar range 

(Figure 4.2 B, Table S4.4). 

The Chl a concentration at Faro was 6.3 ± 4.6 μg g-1 sediment-1 and the Fuco and 

Phaeo concentrations were 3.1 ± 2.6 μg g-1 sediment-1 and 2.4 ± 0.8 μg g-1 sediment-1, 

respectively. The relative age of the biodegradable organic matter, represented by the 

chlorophyll a to phaeophytin ratio (Chl a/Phaeo), was 2.6. At Creek, Chl a and Fuco 

concentrations were higher (11.3 ± 9.3 μg g-1 sediment-1, 6.6 ± 5.7 μg g-1 sediment-1, 

respectively), while Phaeo concentrations were lower (1.8 ± 1.0 μg g-1 sediment-1, 

Figure  4.2 B, Table S4.4) compared to Faro. Consequently, organic matter at Creek 

had a higher Chl a/Phaeo ratio of 6.3. Chl a and Fuco concentrations, and the 

Chl a/Phaeo ratio over the first five centimeter sediment depth at Isla D were similar to 

Faro (3.0 ± 1.4 μg g-1 sediment-1, 1.3 ± 0.9 μg g-1 sediment-1, and 1.6, respectively), 
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while Phaeo concentrations (1.9 ± 0.7 μg g-1 sediment-1) were similarly low as in Creek 

(Table S4.4). 

 

Figure 4.2. Boxplots of a subset of the measured parameters. Panel A refers to sediment properties and 
biogenic sediment compounds, panel B refers to fauna community parameters and diversity indices, and 
panel C refers to total fluxes and diffusive fluxes. Macrofauna density and biomass do not include results 
of the photo survey of Laternula elliptica, due to the use of different determination approaches. 
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Median grain size increased with sediment depth at Faro, while no vertical change 

was determined for the other locations. The porosity and TC, TOC, TN, Chl a, Fuco, and 

Phaeo concentrations decreased with sediment depth at the three locations, while TIC 

concentration did not change over sediment depth. The sulfate concentration in the pore 

water also did not change over sediment depth and was ~27 mmol SO4
2- L-1 at the three 

locations (Figure S4.1). 

4.4.2 Comparison of fauna community parameters 

At Faro, the prokaryotic density was 6.1 ± 1.2 x1009 cells cm-3 of sediment and the 

prokaryotic biomass was 0.29 ± 0.44 mg C cm-3 of sediment (Table S4.4). The 

meiofauna density and the meiofauna biomass was 2368 ± 471 ind. 10 cm-2 and 

990 ± 190 μg C 10 cm-2, while the macrofauna density and macrofauna biomass 

(excluding L. elliptica) were 33574 ± 24902 ind. m-2 and 56 ± 39 g C m-2, respectively 

(Table S4.4). The photo survey revealed an estimated L. elliptica density of 

93 ± 26 ind. m-2, a L. elliptica biomass of 36 ± 9 g C m-2 and an L. elliptica individual 

biomass of 0.39 ± 0.16 g C ind.-1 (Table S4.4). 

At Creek, the prokaryotic density, prokaryotic biomass, meiofauna density, meiofauna 

biomass, macrofauna density (excluding L. elliptica), and macrofauna biomass 

(excluding L. elliptica) were similar compared those reported at Faro (Figure 4.2 B, 

Table S4.4). However, values of estimated L. elliptica density and L. elliptica biomass 

(157 ± 44 ind. m-2, 54 ± 16 g C m-2, respectively) were significantly higher at Creek 

compared to those at Faro, whereas the L. elliptica individual biomass 

(0.34 ± 0.14 g C ind.-1) was significantly lower (Table S4.4). 

At Isla D, prokaryotic biomass, meiofauna biomass, and macrofauna biomass (latter 

excluding L. elliptica; 0.19 ± 0.12 mg C cm-3 sediment, 1522 ± 240 μg C 10 cm-2, 

37 ± 33 g C m-2, respectively) were similar to those reported at Faro and Creek 

(Figure 4.2 B, Table S4.4). The macrofauna density (excluding L. elliptica, 

3074 ± 815 ind. M-2) at Isla D was similar to Faro, but significantly lower compared to 

Creek (Figure 4.2 B, Table S4.4). Furthermore, prokaryotic density, L. elliptica density, 

and L. elliptica individual biomass (4.2 ± 1.2 x1009 cells cm-3 sediment, 276 ± 50 ind. m-2, 

0.29 ± 0.10 g C ind.-1, respectively) were significantly lower compared to Faro and 
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Creek, whereas meiofauna density and L. elliptica biomass (3799 ± 719 ind. 10 cm-2, 

81 ± 15 g C m-2, respectively) were significantly higher (Figure 4.2 B, Table S4.4). The 

macrofauna community carbon stock made up >90% of the entire community carbon 

stock at each location and L. elliptica contributed with 39%, 42% and 69% to the total 

macrofauna biomass at Faro, Creek and Isla D, respectively (Figure 4.3). 

 
Figure 4.3. Mean biomasses of prokaryotes, meio- and macrofauna. Macrofauna is the major standing 
carbon stock in Potter Cove and the bivalve L. elliptica contributes a large portion to the total macrofauna 
biomass. Prokaryotic biomass refers to the sum of the first 5 cm sediment and in order to compare it with 
the biomass of the other biota size classes, the prokaryotic biomass is expressed as densities per surface. 

Meiofauna density was dominated by nematodes (98%, 87%, and 99% at Faro, 

Creek, and Isla D, respectively). Further, macrofauna density at Faro was dominated by 

the cumacean family Leuconidae sp., at Creek by the bivalve Mysella sp., and at Isla D 

by the burrowing bivalve Aequiyoldia eightsii, while macrofauna biomass was dominated 

by Aequiyoldia eightsii at each location (87%, 81%, 74% at Faro, Creek, and Isla D, 

respectively), L. elliptica biomass not included. The meiofauna taxon and macrofauna 

species richness did not differ between locations, while the Shannon-Wiener diversity 

index was highest at Creek and differed significantly from Isla D for both meio- and 

macrofauna (Figure 4.2 B, Table S4.4). The bioturbation potential of the macrofauna 

community (BPc) did not differ among the three locations (Figure 4.2 B, Table S4.4). 
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4.4.3 Comparison of biogeochemical fluxes 

Total fluxes, determined by in situ chamber incubations, showed no differences 

between transparent and black chambers. Therefore, fluxes from transparent and black 

chambers at each location were pooled. In general, only benthic oxygen influxes were 

measured in Potter Cove (from the water column to the seafloor. The TOU at Creek 

(43 ± 9 mmol O2 m
-2 d-1) exceeded Isla D�s TOU (18 ± 3 mmol O2 m

-2 d-1) significantly, 

while at Faro the TOU (33 ± 11 mmol O2 m
-2 d-1) did not differ significantly from the TOU 

of Creek and Isla D (Figure 4.2 C, Table S4.4). In situ measured oxygen profiles 

revealed an oxygen penetration depth of 3�8 mm and a DOU that ranged between 

1.5�2.4 mmol O2 m
-2 d-1 (Figure 4.2 C, Table S4.4). The DOU made up 4.0% of the TOU 

at Faro, 1.3% at Creek and 9.4% at Isla D. The C-TOU was 25 ± 9, 33 ± 7, and 

11 ± 6 mmol C m-2 d-1 at Faro, Creek, and Isla D, respectively. 

The total DIC efflux was 12�23 mmol DIC m-2 d-1 and the diffusive DIC efflux was 

0.1�0.7 mmol DIC m-2 d-1. Both DIC fluxes, total and diffusive, did not differ between the 

locations (Table S4.4). The sediment respiration quotient (RQ = total DIC/TOU) was 

0.55, 0.53, and 0.65 for Faro, Creek, and Isla D, respectively. 

Phosphate, ammonium, and nitrite were released from the sediment to the water 

column (efflux), whereas the nitrate flux was directed into the sediment (influx). 

Furthermore, the total nutrient fluxes exceeded their diffusive equivalents at least 

5.4 times (phosphate flux at Creek). For each nutrient, the highest total flux was 

measured at Creek and the lowest at Isla D, differing significantly from each other 

(Figure 4.2 C, Table S4.4). Total nutrient fluxes at Faro were either similar to both 

locations (total phosphate efflux and total ammonium efflux) or only similar to Isla D and 

differed significantly from Creek (total nitrite efflux and nitrate influx (Figure 4.2 C, 

Table S4.4). The diffusive ammonium efflux and the diffusive nitrite net efflux were 

similar at the three locations. However, the diffusive phosphate efflux was highest at 

Faro and differed significantly from Creek and the diffusive nitrate uptake was 

significantly lower at Creek, compared to Faro and Isla D (Figure 4.2 C, Table S4.4). 
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4.4.4. Relationships between abiotic and biogenic sediment parameters, 

the benthic community, and oxygen and nutrient fluxes 

The results of the PCA revealed that Faro, Creek and Isla D represented different 

habitats within the Potter Cove ecosystem (Figure 4.4). The turbidity was positively 

correlated with L. elliptica biomass and both parameters were negatively correlated with 

median grain size, TOU, macrofauna biomass (excluding L. elliptica biomass), and 

Chl a. The TC was independent of the above-mentioned parameters, but positively 

correlated with Phaeo and the diffusive nitrate flux, and negatively correlated with the 

diffusive phosphate flux (Figure 4.4). The first dimension is mainly represented by TOU, 

macrofauna biomass, and Chl a (Eigenvalues: -0.669, 0.667, -0.657, respectively) and 

distinguishes Creek from Isla D. The second dimension is mainly represented by Phaeo, 

the diffusive phosphate flux and TC (Eigenvalues: 0.668, -0.658, -0.549, respectively) 

and sets Faro aside from the other two locations. It needs to be mentioned that each 

parameter also represents other correlated parameters (S4.3 Table). 

 
Figure 4.4.: PCA results on mean values in the scaling II mode. Each parameter represents several 
measured and strongly correlated parameters (r = 0.8, Table S4.3). The angles between the arrows of two 
parameters represent relations ranging between total dependence (0° angle) and total independence 
(90° angle). Faro, Creek and Isla D display different habitats within the Potter Cove ecosystem. The 
macrofauna biomass is represented with exclusion of L. elliptica biomass. 
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4.5 Discussion 

4.5.1 The influence of glacial melt processes on the Antarctic shallow 

benthos and benthic mineralization 

Glacial melting effects include sediment release and resuspension of the sedimentary 

seafloor by ice scouring events [Woodworth-Lynas et al., 1991; Dierssen et al., 2002; 

Brown et al., 2004; Smith, 2010; Barnes and Souster, 2011]. Based on patterns in 

suspended particulate matter [Monien et al., 2017], turbidity [Deregibus et al., 2016] and 

sediment accumulation [Pasotti et al., 2015] in combination with our findings on the 

median grain size and porosity (Figure 4.2), we suggest a categorization of the locations 

in less disturbed (Faro), intermediately disturbed (Creek) and highly disturbed (Isla D). 

The highly disturbed site Isla D was characterized by the lowest densities in prokaryotes 

and macrofauna (excluding L. elliptica), the highest meiofauna and L. elliptica densities 

and biomass, and the highest macrofauna diversity (Figure 4.2 B, Table S4.4). At the 

intermediately disturbed location Creek, the highest macrofauna densities and the 

highest meiofauna taxon diversity were determined (Figure 4.2 B, Table S4.4). 

Therefore, we can reject our null-hypothesis that the benthic community structure and 

functions are similar among areas experiencing different intensities of glacial melt-

related disturbance. The differences in time since the investigated locations were ice-

free might have an additional influence on the benthic community structure [Pasotti et 

al., 2015]. It should be noted that the BPc might increase when L. elliptica density and 

biomass would be included in the BPc calculation. 

We can also reject our second null-hypothesis that organic matter mineralization is 

similar among areas experiencing different intensities of implications of a melting glacier. 

The TOU at Isla D is significantly lower than at Faro and Creek. In general, total fluxes of 

all investigated molecules were highest at the intermediately disturbed location Creek 

and lowest at the highly disturbed location Isla D. Therefore, our results indicate that an 

intermediate disturbance leads to an increased mineralization, while a high disturbance 

leads to a strong drop in the mineralization. This pattern is supported by a lower 

bioturbation potential and the smallest individuals of L. elliptica found at Isla D 

(Table S4.4), suggesting that the sediment is mixed over smaller distances [Zaklan and 
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Ydenberg, 1997; Queirós et al., 2015]. This limits the oxygenation of the sediment, 

indicated by shallower oxygen penetration depth (Table S4.4), which in the end 

suppresses the mineralization process. 

The strong relation between food supply and organic matter, macrofauna biomass 

and mineralization [Kristensen et al., 1992; Glud et al., 1994; Braeckman et al., 2010] 

and the negative impact of sedimentation (indicated by turbidity in Figure 4.4) on 

macrofauna respiration have been observed before [Philipp et al., 2011; Torre et al., 

2012]. The increased mineralization at Creek and the drastic decrease at Isla D might be 

a result of a stress reaction of the benthic community. An increase in metabolic rates at 

intermediate suspended sediment concentrations in the water column is known for the 

filter feeding ascidians Ascidia challengeri and Cnemidocarpa verrucosa, both common 

in Potter Cove [Torre et al., 2012]. Further, A. challengeri showed a decrease in its 

metabolic rate at higher sediment concentrations [Torre et al., 2012]. In addition, 

reduced metabolic rates under strong sedimentation were also reported for L. elliptica 

[Philipp et al., 2011]. 

Surprisingly, the highest abundances and biomass of L. elliptica were found at the 

most disturbed location, which is in contrast to the patterns in the remaining macrofauna 

biomass and in the overall mineralization. However, at Isla D L. elliptica contributed the 

most to the macrofauna biomass (Figure 4.3). Thus, L. elliptica seems to be better 

adapted to the strong sedimentation at this location compared to other macrofauna 

species, which is a similar finding to that of Philipp et al [2011]. This indicates that, in 

terms of spatial competition, more individuals are able to inhabit this location. With a 

food supply similar to Faro, the Isla D L. elliptica population accumulates a high 

biomass, despite reduced metabolic rates and potentially frequent ice scouring injuries 

[Philipp et al., 2011]. The negative correlation of L. elliptica biomass with TOU can be a 

result of the reworking capacity by smaller L. elliptica found at Isla D. The resulting lower 

oxygen penetration depth probably leads to more anaerobic bacterial respiration and 

consequently a reduction of the total oxygen flux. Furthermore, the individual respiration 

of L. elliptica could decrease as well, due to impairment of ciliary activity by the silt film 

covering the gill surface [Stevens, 1987; Summers et al., 1996]. 
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The limited number of investigated locations did not allow us to perform a broad scale 

test to verify whether glacial melt-related disturbances are the most influential factor 

shaping the small-scale spatial variability of biogeochemical fluxes in Potter Cove. 

Nonetheless, our study shows that glacial melt-related disturbances such as increased 

sediment accumulation and decreased light availability can locally impact the benthic 

community and the mineralization processes they mediate [Philipp et al., 2011; Lagger 

et al., 2017; this study]. 

4.5.2 Spatial variability of benthic biogeochemical fluxes at shallow 

coasts of the Western Antarctic Peninsula 

The TOU measured in this study was of the same order of magnitude as TOU values 

found at Signy Island at 8�9 m depth in austral summer (20�90 mmol O2 m
-2 d-1) 

[Nedwell et al., 1993] and Marian Cove at 30 m depth (12�36 mmol O2 m
-2 d-1) [Shim et 

al., 2011]. However, the oxygen penetration depth was up to four times deeper than the 

reported 2�3 mm for the Signy Island [Nedwell et al., 1993]. This difference could also 

be related to temporal variability, since the inter-annual differences between benthic 

oxygen fluxes can be large, e.g. 25 mmol O2 m
-2 d-1 in February 1991 and 60 mmol 

O2 m
-2 d-1 in February 1992; even if the organic matter supply was similar [Nedwell et al., 

1993]. However, the studies of Nedwell et al. [1993] and Shim et al. [2011] investigated 

the benthic oxygen flux at only one location. Our study provides a first insight into the 

small-scale spatial variability of benthic oxygen fluxes in shallow coastal Antarctic 

sediments. Within a radius of less than a kilometer, total and diffusive benthic oxygen 

fluxes can vary 2- to 3-fold, which is similar to seasonal variations [Nedwell et al., 1993]. 

This might be a result of the heterogeneous distribution of different habitats (Figure 4.4) 

in Potter Cove [Pasotti et al., 2015]. 

*���GK��
���		�������������	�����������	
��
������	����$!B������������
���)!�>	�)�����

mean that much more oxygen is consumed than DIC released. This might be caused by 

less reliable DIC analysis compared to the oxygen analysis. Despite this, such low RQs 

were also reported in the temperate Boston Harbor region [Giblin et al., 1997] and for an 

Arctic fjord [Sørensen et al., 2015]. The low RQs in these studies are explained by high 

faunal abundances and low values of near-surface sulfide concentrations [Giblin et al., 
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1997], which were also found in Potter Cove [Monien et al., 2014; Pasotti et al., 2015]. 

However, the low RQs were reported for the winter season [Sørensen et al., 2015], 

which is vice versa to our findings in Potter Cove. 

Our nutrient fluxes were in a similar range as those measured in the neighboring 

Marian Cove at 30 m water depth [Shim et al., 2011], except for 3�4 times higher 

ammonium fluxes at Creek than those measured in Marian Cove [Shim et al., 2011]. 

This indicates that nutrient fluxes of Antarctic coastal sediments from 30 m and 8 m 

water depth and from December and February can be in the same range, except for 

increased ammonium fluxes at Creek in our study. Further, sulfate concentration in pore 

water profiles is constant in the first 10 cm (Figure S4.1) indicating the absence of 

sulfide in this sediment depth and a deep aerobic and suboxic sediment layer in Potter 

Cove. This is similar to findings of Monien et al. [2014] in Potter Cove. 

4.5.3 Benthic carbon demand in Potter Cove 

Schloss et al. [1998] suggested that the water column production in Potter Cove 

would probably not be sufficient to nourish the benthic community. The total pelagic 

primary production between October 1991 and February 1992 ranged between 236�

259 mg C m-2 d-1 (= 19.7�21.6 mmol C m-2 d-1) [Schloss et al., 1998] and seems to 

remain constant over the period 1991�2009 [Schloss et al., 2012]. This is indeed lower 

than our total benthic carbon uptake at Faro and Creek, but it exceeded the carbon 

uptake at Isla D. This discrepancy might be partly related to interannual variability in the 

magnitude of the phytoplankton bloom, which depends on the timing of the sea ice 

break up. Furthermore, the calculations of Schloss et al. [1998] on pelagic primary 

production are based on measurements at two stations, located in the inner and outer 

Potter Cove, while our study resolves spatial variability only in the inner part at three 

locations. In any case, the pelagic primary production seems to be able to partly feed the 

benthic carbon demand. However, we assume that this only holds true close to the 

glacial front of Potter Cove. Other carbon sources such as microorganisms, macroalgae 

debris and microphytobenthos (MPB) may supply the benthic carbon demand in Potter 

Cove [Schloss et al., 1998]. 
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A diverse and abundant MPB community is known in Potter Cove [Al-Handal and 

Wulff, 2008a] and large, brownish MPB mats were reported and documented by SCUBA 

divers for Faro, Creek and Isla D (Figure S4.2). Further, the relatively high values for 

Fuco indicate that diatoms constituted most of the biomass of these mats (Table S4.4) 

with the majority of live diatom species found in the sediment being benthic taxa [Al-

Handal and Wulff, 2008a]. Unfortunately, no MPB production estimates exist for Potter 

Cove so far. Nevertheless, the TOU values presented in this study are net fluxes. As 

there was no difference in the TOU between transparent and black chambers 

(Table S4.1), the included MPB community seems also not able to cover the benthic 

carbon demand during our measurements. This might be the result of high turbidity in 

summer [Deregibus et al., 2016], limiting microphytobenthic production. Therefore, we 

assume that Potter Cove was a mainly net heterotrophic ecosystem during our 

campaign in austral summer. In other shallow Antarctic areas, MPB primary production 

can be highly variable on spatial scales and frequently exceeds the benthic carbon 

demand of Potter Cove [Dayton et al., 1986; Gilbert, 1991b; McMinn et al., 2010, 2012]. 

So possibly, owing to seasonal changes in the turbidity [Deregibus et al., 2016], MPB at 

Faro and Creek might be able to supply the benthic carbon demand in spring and 

autumn. 

In coastal areas, the spatial variability of the benthic carbon demand is closely related 

to the benthic carbon supply by primary production [Glud, 2008]. The latter, however, is 

influenced by light in terms of turbidity [Schloss et al., 1998] and thus by glacial melt-

related disturbances. Our findings suggest that with ongoing melting of many Antarctic 

glaciers [Paolo et al., 2015], vast shallow coastal areas will eventually face alterations in 

benthic mineralization, owing to the succession processes of assemblages of newly ice-

free areas [Pasotti et al., 2015; Deregibus et al., 2016; Lagger et al., 2017; Seefeldt et 

al., 2017], changes to the benthic community structure [Philipp et al., 2011; Torre et al., 

2012; Deregibus et al., 2016; Lagger et al., 2017; Seefeldt et al., 2017] and their 

metabolic adaptive response to sedimentation [Philipp et al., 2011; Torre et al., 2012]. 

Nevertheless, alterations of the benthic mineralization will ultimately depend on the pace 

of predicted climatic changes [Gutt et al., 2015] and the related intensity of the glacial 

melting processes developing in the affected areas. 
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4.6 Supporting information 

 
Figure S4.1. Sulfate concentration profiles from pore water extractions. The 	����.bsf0���������	���.����)�
seafloor0! 
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Figure S4.2. Photos of brownish microphytobenthic (MPB) mats at Faro, Creek and Isla D. The photos 
prove the occurrence of MPB in Potter Cove and underpin the patchiness and spatial variability of the 
MPB community.  
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Table S4.1. Ri and Mi according to Queirós et al. [2013] to calculate the bioturbation potential (BPc) of the 
macrofauna community in Potter Cove. 

Taxon Ri Mi 
Amphipoda 2 3 
Bodotriidae 2 3 
Cirratulidae 2 2 
Gastropoda 2 3 
Isopoda 2 3 
Leuconidae 2 3 
Maldanidae 3 2 
Mysella sp. 2 2 
Nannastacidae 2 3 
Nepthydae 4 3 
Nucula sp. 2 3 
Ophelina sp. 4 3 
Orbinidae 4 3 
Ostracoda 2 3 
Pennatularia 2 2 
Polynoidae 4 3 
Priapulidae 4 2 
Spionidae 3 2 
Tanaidacea 2 2 
Terebellidae 3 1 
Thyasiridae 3 2 
Travisia 4 3 
Aequiyoldia 2 3 

Table S4.2. P-values of the Levene�s test and t-test, comparing TOUs from black and transparent 
chamber incubations. 

 
Location Levene�s test t-test 

TOU 
Faro 0.73 0.79 

Creek 0.65 0.92 
Isla D 0.36 0.21 

Total DIC 
efflux 

Faro not enough observations 

Creek <0.05 
not enough 

observations 

Isla D <0.05 
not enough 

observations 
Total 
phosphate 
efflux 

Faro 1.00 0.87 
Creek 0.60 0.78 
Isla D <0.05 0.46 

Total 
ammonium 
efflux 

Faro 0.66 0.67 
Creek 0.36 0.95 
Isla D 0.61 0.74 

Total nitrite 
efflux 

Faro 0.22 0.83 
Creek 0.91 0.48 
Isla D <0.05 0.48 

Total nitrate 
uptake 

Faro 0.48 0.79 
Creek 0.78 0.57 
Isla D 0.30 0.40 
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Table S4.3. Result of Pearson correlation. 
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Table S4.3 (continued) 
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6 
0.

82
9 

0.
51

8 
0.

18
7 

0.
30

5 
0.

25
8 

0.
34

7 
0.

29
9 

0.
91

8 
1.

00
0 

Meiofauna 
density 0.

99
7 

0.
92

3 
0.

77
2 

-0
.9

42
 

0.
97

9 
0.

97
3 

-0
.9

81
 

0.
98

1 
-0

.9
65

 
-0

.9
45

 
-0

.1
33

 
-0

.9
83

 
-0

.8
58

 
0.

50
8 

0.
54

9 
0.

46
9 

0.
51

3 
-0

.9
05

 
-0

.6
64

 
1.

00
0 

Meiofauna 
biomass 0.

91
1 

0.
99

9 
0.

94
6 

-0
.9

99
 

0.
98

7 
0.

99
1 

-0
.9

86
 

0.
98

6 
-0

.8
11

 
-0

.7
71

 
-0

.4
73

 
-0

.8
56

 
-0

.6
23

 
0.

17
3 

0.
22

1 
0.

12
8 

0.
17

8 
-0

.9
96

 
-0

.8
85

 
0.

93
6 

1.
00

0 

Macrofauna 
density 
(excluding L. 
elliptica) 

-0
.9

95
 

-0
.8

49
 

-0
.6

59
 

0.
87

5 
-0

.9
34

 
-0

.9
24

 
0.

93
6 

-0
.9

36
 

0.
99

4 
0.

98
5 

-0
.0

27
 

0.
99

9 
0.

92
9 

-0
.6

40
 

-0
.6

77
 

-0
.6

05
 

-0
.6

45
 

0.
82

5 
0.

53
5 

-0
.9

86
 

-0
.8

67
 

1.
00

0 

Macrofauna 
biomass 
(excluding L. 
elliptica) 

-0
.9

96
 

-0
.8

58
 

-0
.6

71
 

0.
88

3 
-0

.9
39

 
-0

.9
30

 
0.

94
2 

-0
.9

42
 

0.
99

3 
0.

98
3 

-0
.0

12
 

0.
99

9 
0.

92
4 

-0
.6

28
 

-0
.6

65
 

-0
.5

93
 

-0
.6

33
 

0.
83

4 
0.

54
8 

-0
.9

89
 

-0
.8

74
 

0.
99

9 
1.

00
0 

L. elliptica 
density 0.

70
1 

0.
94

4 
0.

99
9 

-0
.9

26
 

0.
86

5 
0.

87
8 

-0
.8

61
 

0.
86

1 
-0

.5
47

 
-0

.4
90

 
-0

.7
59

 
-0

.6
13

 
-0

.2
99

 
-0

.1
92

 
-0

.1
44

 
-0

.2
36

 
-0

.1
87

 
-0

.9
58

 
-0

.9
93

 
0.

74
6 

0.
93

2 
-0

.6
29

 
-0

.6
41

 
1.

00
0 

L. elliptica 
biomass 0.

67
1 

0.
92

9 
0.

99
6 

-0
.9

09
 

0.
84

3 
0.

85
7 

-0
.8

39
 

0.
83

9 
-0

.5
11

 
-0

.4
53

 
-0

.7
85

 
-0

.5
79

 
-0

.2
59

 
-0

.2
33

 
-0

.1
86

 
-0

.2
77

 
-0

.2
28

 
-0

.9
45

 
-0

.9
97

 
0.

71
8 

0.
91

6 
-0

.5
96

 
-0

.6
08

 
0.

99
9 

1.
00

0 

BPc 

-0
.9

91
 

-0
.8

30
 

-0
.6

33
 

0.
85

8 
-0

.9
20

 
-0

.9
10

 
0.

92
4 

-0
.9

24
 

0.
99

7 
0.

99
1 

-0
.0

63
 

0.
99

9 
0.

94
2 

-0
.6

67
 

-0
.7

02
 

-0
.6

33
 

-0
.6

71
 

0.
80

4 
0.

50
5 

-0
.9

80
 

-0
.8

49
 

0.
99

9 
0.

99
8 

-0
.6

01
 

-0
.5

67
 

1.
00

0 

DOU 

0.
95

0 
0.

98
9 

0.
90

5 
-0

.9
95

 
0.

99
8 

0.
99

9 
-0

.9
98

 
0.

99
8 

-0
.8

71
 

-0
.8

36
 

-0
.3

73
 

-0
.9

08
 

-0
.7

05
 

0.
28

0 
0.

32
7 

0.
23

7 
0.

28
6 

-0
.9

82
 

-0
.8

28
 

0.
96

9 
0.

99
3 

-0
.9

16
 

-0
.9

22
 

0.
88

7 
0.

86
7 

-0
.9

02
 

1.
00

0 

Diffusive DIC 
flux 0.

98
7 

0.
81

6 
0.

61
3 

-0
.8

44
 

0.
91

0 
0.

89
9 

-0
.9

14
 

0.
91

4 
-0

.9
99

 
-0

.9
94

 
0.

08
8 

-0
.9

99
 

-0
.9

50
 

0.
68

6 
0.

72
0 

0.
65

2 
0.

69
0 

-0
.7

89
 

-0
.4

83
 

0.
97

5 
0.

83
5 

-0
.9

98
 

-0
.9

97
 

0.
58

1 
0.

54
6 

-0
.9

99
 

0.
89

0 
1.

00
0 

Diffusive 
phosphate flux -0

.1
69

 
0.

28
3 

0.
55

0 
-0

.2
34

 
0.

09
7 

0.
12

3 
-0

.0
89

 
0.

08
9 

0.
36

1 
0.

42
2 

-0
.9

71
 

0.
28

3 
0.

60
0 

-0
.9

09
 

-0
.8

88
 

-0
.9

27
 

-0
.9

07
 

-0
.3

26
 

-0
.6

73
 

-0
.1

05
 

0.
25

1 
0.

26
3 

0.
24

8 
0.

58
3 

0.
61

6 
0.

29
7 

0.
14

3 
-0

.3
21

 
1.

00
0 
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Table S4.3 (continued) 

Diffusive 
ammonium flux -0

.8
67

 
-0

.5
58

 
-0

.2
92

 
0.

59
9 

-0
.7

04
 

-0
.6

85
 

0.
71

0 
-0

.7
10

 
0.

94
8 

0.
96

7 
-0

.4
36

 
0.

91
9 

0.
99

8 
-0

.8
99

 
-0

.9
20

 
-0

.8
79

 
-0

.9
02

 
0.

52
0 

0.
14

0 
-0

.8
33

 
-0

.5
85

 
0.

91
1 

0.
90

4 
-0

.2
54

 
-0

.2
13

 
0.

92
5 

-0
.6

71
 

-0
.9

34
 

0.
63

7 
1.

00
0 

Diffusive nitrite 
efflux -0

.9
59

 
-0

.7
36

 
-0

.5
07

 
0.

77
0 

-0
.8

50
 

-0
.8

36
 

0.
85

5 
-0

.8
55

 
0.

99
6 

0.
99

9 
-0

.2
14

 
0.

98
5 

0.
98

2 
-0

.7
73

 
-0

.8
03

 
-0

.7
43

 
-0

.7
76

 
0.

70
5 

0.
36

8 
-0

.9
39

 
-0

.7
58

 
0.

98
2 

0.
97

9 
-0

.4
73

 
-0

.4
35

 
0.

98
8 

-0
.8

25
 

-0
.9

91
 

0.
43

9 
0.

97
2 

1.
00

0 

Diffusive nitrite 
influx 0.

94
5 

0.
70

3 
0.

46
6 

-0
.7

38
 

0.
82

4 
0.

80
9 

-0
.8

29
 

0.
82

9 
-0

.9
91

 
-0

.9
97

 
0.

26
0 

-0
.9

76
 

-0
.9

90
 

0.
80

2 
0.

83
0 

0.
77

4 
0.

80
5 

-0
.6

70
 

-0
.3

23
 

0.
92

1 
0.

72
6 

-0
.9

72
 

-0
.9

68
 

0.
43

0 
0.

39
2 

-0
.9

79
 

0.
79

8 
0.

98
4 

-0
.4

82
 

-0
.9

82
 

-0
.9

98
 

1.
00

0 

Diffusive nitrite 
net influx -0

.9
81

 
-0

.7
96

 
-0

.5
85

 
0.

82
6 

-0
.8

96
 

-0
.8

84
 

0.
89

9 
-0

.8
99

 
0.

99
9 

0.
99

7 
-0

.1
22

 
0.

99
7 

0.
96

0 
-0

.7
10

 
-0

.7
43

 
-0

.6
78

 
-0

.7
14

 
0.

76
8 

0.
45

3 
-0

.9
67

 
-0

.8
16

 
0.

99
5 

0.
99

3 
-0

.5
53

 
-0

.5
17

 
0.

99
8 

-0
.8

74
 

-0
.9

99
 

0.
35

3 
0.

94
6 

0.
99

5 
-0

.9
90

 
1.

00
0 

Diffusive nitrate 
efflux 0.

84
3 

0.
51

8 
0.

24
6 

-0
.5

61
 

0.
67

0 
0.

65
0 

-0
.6

76
 

0.
67

6 
-0

.9
32

 
-0

.9
54

 
0.

47
8 

-0
.9

00
 

-0
.9

95
 

0.
91

9 
0.

93
7 

0.
90

0 
0.

92
1 

-0
.4

79
 

-0
.0

93
 

0.
80

6 
0.

54
6 

-0
.8

91
 

-0
.8

83
 

0.
20

8 
0.

16
7 

-0
.9

06
 

0.
63

5 
0.

91
6 

-0
.6

73
 

-0
.9

98
 

-0
.9

60
 

0.
97

2 
-0

.9
29

 
1.

00
0 

TOU 

-0
.9

99
 

-0
.9

02
 

-0
.7

38
 

0.
92

3 
-0

.9
67

 
-0

.9
60

 
0.

96
9 

-0
.9

69
 

0.
97

7 
0.

96
1 

0.
08

1 
0.

99
1 

0.
88

4 
-0

.5
52

 
-0

.5
92

 
-0

.5
14

 
-0

.5
57

 
0.

88
2 

0.
62

4 
-0

.9
98

 
-0

.9
16

 
0.

99
3 

0.
99

5 
-0

.7
10

 
-0

.6
80

 
0.

98
9 

-0
.9

54
 

-0
.9

85
 

0.
15

6 
0.

86
1 

0.
95

5 
-0

.9
40

 
0.

97
9 

-0
.8

35
 

1.
00

0 

Total DIC flux 

-0
.9

99
 

-0
.8

88
 

-0
.7

16
 

0.
91

0 
-0

.9
59

 
-0

.9
51

 
0.

96
1 

-0
.9

61
 

0.
98

3 
0.

96
9 

0.
05

0 
0.

99
5 

0.
89

8 
-0

.5
78

 
-0

.6
17

 
-0

.5
41

 
-0

.5
83

 
0.

86
6 

0.
59

9 
-0

.9
96

 
-0

.9
03

 
0.

99
6 

0.
99

8 
-0

.6
88

 
-0

.6
57

 
0.

99
3 

-0
.9

45
 

-0
.9

90
 

0.
18

7 
0.

87
6 

0.
96

4 
-0

.9
51

 
0.

98
5 

-0
.8

52
 

0.
99

9 
1.

00
0 

Total 
phosphate flux 0.

91
3 

0.
63

9 
0.

38
8 

-0
.6

78
 

0.
77

3 
0.

75
6 

-0
.7

78
 

0.
77

8 
-0

.9
75

 
-0

.9
88

 
0.

34
2 

-0
.9

54
 

-0
.9

98
 

0.
85

0 
0.

87
5 

0.
82

6 
0.

85
3 

-0
.6

04
 

-0
.2

40
 

0.
88

5 
0.

66
5 

-0
.9

48
 

-0
.9

43
 

0.
35

1 
0.

31
1 

-0
.9

59
 

0.
74

3 
0.

96
6 

-0
.5

55
 

-0
.9

94
 

-0
.9

91
 

0.
99

6 
-0

.9
74

 
0.

98
8 

-0
.9

08
 

-0
.9

21
 

1.
00

0 

Total 
ammonium flux 0.

95
8 

0.
73

4 
0.

50
5 

-0
.7

68
 

0.
84

9 
0.

83
5 

-0
.8

53
 

0.
85

3 
-0

.9
96

 
-0

.9
99

 
0.

21
7 

-0
.9

85
 

-0
.9

82
 

0.
77

4 
0.

80
4 

0.
74

5 
0.

77
8 

-0
.7

03
 

-0
.3

65
 

0.
93

8 
0.

75
6 

-0
.9

81
 

-0
.9

78
 

0.
47

0 
0.

43
3 

-0
.9

87
 

0.
82

4 
0.

99
1 

-0
.4

42
 

-0
.9

73
 

-0
.9

99
 

0.
99

9 
-0

.9
95

 
0.

96
1 

-0
.9

55
 

-0
.9

63
 

0.
99

1 
1.

00
0 

Total nitrite flux 

0.
93

4 
0.

67
9 

0.
43

7 
-0

.7
16

 
0.

80
6 

0.
79

0 
-0

.8
10

 
0.

81
0 

-0
.9

86
 

-0
.9

95
 

0.
29

1 
-0

.9
69

 
-0

.9
94

 
0.

82
1 

0.
84

8 
0.

79
4 

0.
82

4 
-0

.6
46

 
-0

.2
92

 
0.

90
8 

0.
70

4 
-0

.9
64

 
-0

.9
60

 
0.

40
1 

0.
36

2 
-0

.9
72

 
0.

77
8 

0.
97

8 
-0

.5
10

 
-0

.9
87

 
-0

.9
96

 
0.

99
9 

-0
.9

84
 

0.
97

9 
-0

.9
29

 
-0

.9
40

 
0.

99
8 

0.
99

7 
1.

00
0 

Total nitrate 
flux -0

.8
86

 
-0

.5
90

 
-0

.3
30

 
0.

63
1 

-0
.7

32
 

-0
.7

14
 

0.
73

7 
-0

.7
37

 
0.

96
0 

0.
97

6 
-0

.4
00

 
0.

93
4 

0.
99

9 
-0

.8
81

 
-0

.9
03

 
-0

.8
59

 
-0

.8
84

 
0.

55
3 

0.
18

0 
-0

.8
54

 
-0

.6
17

 
0.

92
7 

0.
92

1 
-0

.2
92

 
-0

.2
52

 
0.

93
9 

-0
.7

00
 

-0
.9

48
 

0.
60

6 
0.

99
9 

0.
98

0 
-0

.9
89

 
0.

95
8 

-0
.9

96
 

0.
88

0 
0.

89
5 

-0
.9

98
 

-0
.9

81
 

-0
.9

93
 

1.
00

0 

S Macrofauna 

0.
59

0 
-0

.1
72

 
0.

12
1 

0.
22

2 
-0

.3
54

 
-0

.3
30

 
0.

36
2 

-0
.3

62
 

0.
73

8 
0.

78
1 

-0
.7

64
 

0.
68

0 
0.

89
3 

-0
.9

99
 

-0
.9

99
 

-0
.9

97
 

-0
.9

99
 

0.
12

7 
-0

.2
74

 
-0

.5
36

 
-0

.2
05

 
0.

66
5 

0.
65

3 
0.

16
1 

0.
20

2 
0.

69
1 

-0
.3

11
 

-0
.7

09
 

0.
89

5 
0.

91
3 

0.
79

3 
-0

.8
21

 
0.

73
2 

-0
.9

31
 

0.
57

9 
0.

60
5 

-0
.8

67
 

-0
.7

95
 

-0
.8

39
 

0.
89

6 
1.

00
0 

J Macrofauna 

0.
94

8 
0.

99
0 

0.
90

8 
-0

.9
96

 
0.

99
8 

0.
99

9 
-0

.9
98

 
0.

99
8 

-0
.8

67
 

-0
.8

32
 

-0
.3

80
 

-0
.9

05
 

-0
.7

00
 

0.
27

4 
0.

32
0 

0.
23

0 
0.

27
9 

-0
.9

83
 

-0
.8

32
 

0.
96

7 
0.

99
4 

-0
.9

13
 

-0
.9

20
 

0.
89

0 
0.

87
0 

-0
.8

99
 

0.
99

9 
0.

88
7 

0.
15

0 
-0

.6
66

 
-0

.8
21

 
0.

79
3 

-0
.8

71
 

0.
63

0 
-0

.9
52

 
-0

.9
42

 
0.

73
8 

0.
82

0 
0.

77
3 

-0
.6

95
 

-0
.3

05
 

1.
00

0 

H Macrofauna 

0.
93

7 
0.

99
4 

0.
92

2 
-0

.9
98

 
0.

99
6 

0.
99

8 
-0

.9
95

 
0.

99
5 

-0
.8

49
 

-0
.8

12
 

-0
.4

12
 

-0
.8

89
 

-0
.6

75
 

0.
24

0 
0.

28
7 

0.
19

6 
0.

24
5 

-0
.9

89
 

-0
.8

51
 

0.
95

7 
0.

99
7 

-0
.8

99
 

-0
.9

05
 

0.
90

6 
0.

88
7 

-0
.8

83
 

0.
99

9 
0.

87
0 

0.
18

4 
-0

.6
39

 
-0

.8
01

 
0.

77
1 

-0
.8

53
 

0.
60

2 
-0

.9
41

 
-0

.9
30

 
0.

71
4 

0.
79

9 
0.

75
0 

-0
.6

69
 

-0
.2

71
 

0.
99

9 
1.

00
0 

S Meiofauna 

-0
.4

03
 

-0
.7

67
 

-0
.9

20
 

0.
73

3 
-0

.6
32

 
-0

.6
52

 
0.

62
5 

-0
.6

25
 

0.
21

5 
0.

15
0 

0.
94

0 
0.

29
4 

-0
.0

57
 

0.
52

7 
0.

48
5 

0.
56

5 
0.

52
2 

0.
79

5 
0.

96
9 

-0
.4

62
 

-0
.7

45
 

0.
31

3 
0.

32
8 

-0
.9

35
 

-0
.9

49
 

0.
28

0 
-0

.6
66

 
-0

.2
55

 
-0

.8
32

 
-0

.1
04

 
0.

13
0 

-0
.0

83
 

0.
22

2 
0.

15
1 

0.
41

5 
0.

38
7 

0.
00

2 
-0

.1
27

 
-0

.0
51

 
-0

.0
64

 
-0

.5
00

 
-0

.6
72

 
-0

.6
97

 
1.

00
0 

J Meiofauna 

-0
.8

71
 

-0
.5

63
 

-0
.2

99
 

0.
60
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Table S4.4. Measured mean values ± standard deviation of sediment, biogenic, benthic community and 
flux parameters. For the sediment parameters, the uppermost 5 cm were considered. The letters a, b, c 
indicate significant differences (ANOVA, p<0.05) of a parameter between the locations, while NS indicate 
no significant differences. 

 Faro Creek Isla D 
Sqrt-

Transforma
tion 

Test Post-hoc 
Test 

Median grain size 
[μm] 116 ± 27 a 120 ± 9 a 20 ± 30 b - ANOVA Games-

Howell 

Portion of silt and mud 
[%] 39 ± 5 a 28 ± 4 b 83 ± 12 c - Kruskal-

Wallis Bonferroni 

Portion of sand 
[%] 61 ± 5 a 72 ± 4 b 17 ± 12 c - Kruskal-

Wallis Bonferroni 

Porosity 
0.56 ± 0.08 a 0.51 ± 0.05 a 0.76 ± 0.12 b - ANOVA Games-

Howell 

TC 
[μg C mg-1 sediment-1] 7.3 ± 1.4 a 2.6 ± 0.5 b 5.5 ± 0.9 c - Kruskal-

Wallis Bonferroni 

TIC 
[μg C mg-1 sediment-1] 4.8 ± 0.8 a 0.6 ± 0.3 b 3.3 ± 0.4 c - Kruskal-

Wallis Bonferroni 

TOC 
[μg Corg mg-1 sediment-1] 2.3 ± 0.9 NS 2.0 ± 0.4 NS 2.2 ± 0.8 NS - Kruskal-

Wallis - 

TN 
[μg N mg-1 sediment-1] 0.51 ± 0.24 a 0.37 ± 0.08 b 0.45 ± 0.16 ab - Kruskal-

Wallis Bonferroni 

TOC/TC 
[%] 32 ± 8 a 78 ± 11 b 39 ± 10 c - Kruskal-

Wallis Bonferroni 

Chl a 
[μg g-1 sediment-1] 6.3 ± 4.6 a 11.3 ± 9.3 b 3.0 ± 1.4 a X ANOVA 

Games-
Howell 

Fuco 
[μg g-1 sediment-1] 3.1 ± 2.6 a 6.6 ± 5.7 b 1.3 ± 0.9 a X ANOVA Games-

Howell 

Phaeo 
[μg g-1 sediment-1] 2.4 ± 0.8 a 1.8 ± 1.0 b 1.9 ± 0.7 b - Kruskal-

Wallis 
Bonferroni 

Prokaryotic density 
[109 cells cm-3 sediment-1] 6.1 ± 1.2 a 6.0 ± 2.1 a 4.2 ± 1.2 b X ANOVA Tukey 

Prokaryotic biomass 
[mg C cm-3 sediment-1] 0.29 ± 0.44 NS 0.25 ± 0.21 NS 0.19 ± 0.12 NS - Kruskal-

Wallis - 

Meiofauna density 
[Ind. 10 cm-2] 2368 ± 471 a 1524 ± 231 a 3799 ± 719 b - ANOVA Tukey 

Meiofauna biomass 
[μg C 10 cm-2] 990 ± 190 NS 980 ± 204 NS 1522 ± 240 NS - ANOVA Tukey 

Macrofauna density 
 without L. elliptica 
[Ind. m-2], 

33574 ± 
24902 ab 

65612 ± 
35948 a 

3074 ± 
815 b 

- ANOVA Tukey 

Macrofauna biomass 
without L. elliptica 
[g C m-2], 

56 ± 39 NS 75 ± 26 NS 37 ± 32 NS - ANOVA - 

L. elliptica density 
[Ind. m-2] 93 ± 26 a 157 ± 44 b 276 ± 50 c - ANOVA Tukey 

L. elliptica biomass 
[g C m-2] 36 ± 9 a 54 ± 16 b 81 ± 15 c X ANOVA Tukey 

�
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Table S4.4 (continued) 
Individual L. elliptica 
biomass 
[g C ind.-1] 

0.39 ± 0.16 a 0.34 ± 0.14 b 0.29 ± 0.10 c - Kruskal-
Wallis Bonferroni 

S Meiofauna 
7.8 ± 1.7 NS 7 ± 1.4 NS 6.6 ± 0.5 NS - ANOVA - 

H' Meiofauna 
0.12 ± 0.03 ab 0.44 ± 0.10 a 0.08 ± 0.01 b - Kruskal-

Wallis 
Bonferroni 

S Macrofauna 
13.3 ± 0.8 NS 14 ± 1.2 NS 13.5 ± 1.1 NS - ANOVA - 

H' Macrofauna 
1.3 ± 0.2 ab 1.2 ± 0.2 a 1.7 ± 0.1 b - Kruskal-

Wallis Bonferroni 

BPc 160205 ± 
97300 NS 

264121 ± 
111263 NS 

72678 ± 
37278 NS 

- ANOVA Tukey 

Oxygen penetration depth 
[mm] 4.5-6 8 3.5-4 - - - 

TOU 
[mmol O2 m

-2 d-1] 33 ± 11 ab 43 ± 9 a 18 ± 3 b - ANOVA Tukey 

Total DIC efflux 
[mmol DIC m-2 d-1] 18 ± 3 NS 23 ± 8 NS 12 ± 5 NS - ANOVA - 

Total phosphate efflux 
[μmol PO4 m

-2 d-1] 119 ± 106 ab 345 ± 187 a 64 ± 46 b - Kruskal-
Wallis Bonferroni 

Total ammonium efflux 
[mmol NH4 m

-2 d-1] 4.2 ± 3 ab 7.8 ± 2.7 a 2.5 ± 0.7 b X ANOVA Tukey 

Total nitrite efflux 
[μmol NO2 m

-2 d-1] 62 ± 18 a 140 ± 33 b 36 ± 12 a - ANOVA Tukey 

Total nitrate uptake 
[mmol NO3 m

-2 d-1] 0.7 ± 0.2 a 1.2 ± 0.2 b 0.5 ± 0.3 a - ANOVA Tukey 

DOU 
[mmol O2 m

-2 d-1] 1.6 ± 0.4 NS 1.5 NS 2.4 ± 0.3 NS - ANOVA - 

Diffusive DIC efflux 
[mmol DIC m-2 d-1] 0.4 ± 0.2 NS 0.1 ± 0.08 NS 0.7 ± 0.3 NS - ANOVA - 

Diffusive phosphate efflux 
[μmol PO4 m

-2 d-1] 22.1 ± 7.6 a 6.6 ± 2.5 b 10.6 ± 6.6 ab - ANOVA Tukey 

Diffusive ammonium efflux 
[mmol NH4 m

-2 d-1] 388 ± 227 NS 80 ± 18 NS 204 ± 98 NS - ANOVA - 

Diffusive nitrite net efflux 
[μmol NO2 m

-2 d-1] 1.3 ± 0.9 NS 0.6 ± 0.8 NS 1.7 ± 0.8 NS - ANOVA - 

Diffusive nitrate uptake 
[mmol NO3 m

-2 d-1] 0.073 ± 0.02 a 0.041 ± 0.009 b 0.075 ± 0.012 a - ANOVA Tukey 
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5.1 Abstract 

Arctic Ocean surface sea-ice conditions are linked with the deep-sea benthic oxygen 

fluxes via a cascade of dependencies across ecosystem components like primary 

production, food supply, the activity of the benthic community, and their functions. 

Additionally, each of the ecosystem components is influenced by abiotic factors such as 

light availability, temperature, water depth or grain size structure. In this study, we 

investigated the coupling between surface sea-ice conditions and deep-sea benthic 

remineralization processes through a cascade of dependencies in Fram Strait. We 

measured sea-ice concentrations, a set of different sediment compounds, benthic 

community parameters, and oxygen fluxes at 12 stations in the HAUSGARTEN area of 

Fram Strait in water depth between 275�2500 m. Our investigations reveal that the Fram 

Strait is bisected in a permanently and highly sea-ice covered area and a seasonally and 

low sea-ice covered area, which both are long-lasting and stable. Within the Fram Strait 

ecosystem, sea-ice concentration and water depth are two independent abiotic factors, 

controlling the deep-sea benthos. Sea-ice concentration correlates well with the 

available food, water depth with the oxygen flux, and both abiotic factors correlate with 

the macrofauna biomass. However, in water depths >1500 m the influence of the 

surface sea-ice cover fades out and the water depth effect becomes more dominant. 

Remineralization across the Fram Strait is ~1 mmol C m-2 d-1. Our data indicate that the 

portion of newly produced carbon that is remineralized by the benthos is ~2.6% in the 

seasonally low sea-ice covered Fram Strait but can be >15% in the permanently high 

sea-ice covered Fram Strait. Furthermore, by comparing a permanently sea-ice covered 

area with a seasonally sea-ice covered area, we discuss a potential scenario for the 

deep-sea benthic ecosystem in the future Arctic Ocean, in which an increased surface 

primary production can lead to increasing benthic remineralization in water depths 

<1500 m.  
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5.2 Introduction 

Benthic deep-sea remineralization depends on primary production and is as such 

closely linked with primary production patterns, known as pelagic-benthic coupling [Graf, 

1989]. The relationship, however, includes many and partly inter-dependent factors. 

Benthic deep-sea remineralization is positively correlated with surface primary 

production [Graf et al., 1995; Wenzhöfer and Glud, 2002], which is on its turn controlled 

by light availability and nutrient supply [Kirk, 2011; Cherkasheva et al., 2014; Fernández-

Méndez et al., 2015]. Though, only the annual new production leaves the euphotic zone 

[Piatt et al., 1989] and can supply the benthos with organic carbon. Benthic 

remineralization is negatively correlated to water depth [Wenzhöfer and Glud, 2002], as 

it represents a loss of organic carbon by pelagic remineralization [Rullkötter, 2006; 

Belcher et al., 2016] and thereby a loss of benthic food. After organic carbon reached 

the seafloor, it is ingested and remineralized by the benthic community. Benthic 

community parameters, e.g. biomass, density, structure, and functions of different fauna 

size classes, are controlled by food supply (and thus by primary production) and water 

depth [Piepenburg et al., 1997; Flach et al., 2002; Smith et al., 2008] but also by 

sediment properties [Wheatcroft, 1992; Vanreusel et al., 1995]. Benthic remineralization 

rates also depend on benthic community biomass [Glud et al., 1994]. Furthermore, 

benthic remineralization is enhanced if the benthic community intensifies oxygenation of 

the seafloor [Glud, 2008] and thus also depends on the benthic community structure. 

Therefore, the ecosystem processes primary production, pelagic remineralization and 

benthic remineralization, as well as the components benthic community biomass, 

density, and structure are controlled by abiotic and biotic factors and additionally create 

����������	
����������
���
�	������	����������
�����	���	
���
�������	����
	���	�����

within the deep-sea benthos. 

In the Arctic Ocean, pelagic-benthic coupling is assumed to be stronger relative to 

temperate and tropical waters [Ambrose and Renaud, 1995; Graf et al., 1995; 

Grebmeier and Barry, 2007]. A pan-arctic benthic remineralization model showed a 

better fit when water depth and benthic chlorophyll data (representing food supply from 

primary production) were taken into account, compared to a model using only water 

depth as controlling factor [Bourgeois et al., 2017]. This indicates that surface primary 
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production patterns and water depth are both relevant factors controlling benthic 

remineralization in the Arctic Ocean. The occurrence of sea ice in the Arctic Ocean, 

however, ultimately reduces the light availability and thereby suppresses primary 

production [Arrigo et al., 2008b; Bourgeois et al., 2017]. As a consequence, climate 

change-induced alterations in the sea-ice cover influence biogeochemical cycles in the 

Chukchi and Beaufort Sea [Harada, 2015]. Boetius and Damm [1998] also found a good 

correlation between sea-ice cover, benthic chlorophyll and benthic carbon 

remineralization in the Laptev Sea. However, the principal factor controlling microbial 

activity in their study was most likely the supply of labile organic matter such as 

chloroplastic pigment equivalents (CPE) [Thiel, 1978], proteins and dissolved free amino 

acids. Therefore, the strength of the relationship between sea-ice cover (controlling 

primary production) and benthic remineralization, even if assumed as direct and strong, 

needs to be considered more carefully [Renaud et al., 2008]. 

We were interested in the question, if we can link contrasting sea-ice conditions 

between the eastern and western Arctic Fram Strait [Soltwedel et al., 2005; Soltwedel et 

al., 2015; Spielhagen et al., 2015] with the deep-sea benthic oxygen fluxes over the 

cascade of dependencies. Benthic oxygen fluxes thereby represent benthic 

remineralization of carbon [Thamdrup and Canfield, 2000; Wenzhöfer and Glud, 2002; 

Smith et al., 2013]. Our study provides sea-ice concentrations, sediment properties, 

biogenic sediment compounds, benthic community parameters, and benthic oxygen 

fluxes from 12 stations across the Arctic Fram Strait in water depths from 275 m to 

2500 m. We hypothesize that the contrasting sea-ice conditions in the eastern and 

western Fram Strait lead to differences between parameters representing the cascade of 

dependencies and result in contrasting benthic oxygen fluxes. Furthermore, our results 

allow us to estimate the portion of newly produced carbon that is remineralized by the 

benthic ecosystem. Furthermore, by comparing a permanently sea-ice covered area with 

a seasonally sea-ice covered area (western and eastern Fram Strait, respectively), we 

discuss a potential scenario for the deep-sea benthic ecosystem in the future Arctic 

Ocean.  
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5.3 Material and methods 

5.3.1 Study area and field sampling 

The Fram Strait is located in the northern Greenland Sea and forms a large passage 

(ca. 500 km wide) between northeast Greenland and the Svalbard archipelago (Figure 

5.1). It provides the only exchange route of intermediate and deep water masses 

between the Arctic and the Atlantic Ocean [Soltwedel et al., 2005; Forest et al., 2010]. 

Two main currents influence the upper 300 m of Fram Strait waters [Manley, 1995]: the 

East Greenland Current (EGC) and the West Spitsbergen Current (WSC). The EGC is 

located in the western Fram Strait and transports cold, less saline and nutrient poor 

(1�������������
����������	�������� [Manley, 1995; Mauritzen et al., 2011; Graeve and 

Ludwichowski, 2017a, b]. In contrast, the WSC, located in the eastern Fram Strait, 

transports warmer, nutrient-rich Atlantic waters of higher salinity (>3°C, >34) northward 

[Manley, 1995; Mauritzen et al., 2011; Graeve and Ludwichowski, 2017a, b]. About 22% 

of the WSC is recirculated as the Return Atlantic Current (RAC). The remaining current 

bifurcates into the Svalbard Branch (SB; 33%) and the Yermak Branch (YB; 45%) 

following the Svalbard islands or flowing along the north-west flanks of the Yermak 

Plateau, respectively [Schauer, 2004]. A high sea-ice cover is reported for the western 

Fram Strait and a low sea-ice cover for the eastern Fram Strait [Soltwedel et al., 2005; 

Soltwedel et al., 2015; Spielhagen et al., 2015]. The sea-ice cover is relatively stable 

within the Fram Strait, even in the summer [Comiso et al., 2008; Soltwedel et al., 2015, 

NOAA, 2018]. However, the sea-ice age becomes younger by 0.6 years per decade 

(2001�2012) [Krumpen et al., 2016], which goes along with a decrease in the sea-ice 

thickness [Renner et al., 2014; Krumpen et al., 2016]. The onset of the spring bloom 

usually starts in Mai [Cherkasheva et al., 2014]. 

Two sampling campaigns were carried out at the long-term ecology research 

observatory HAUSGARTEN [Soltwedel et al., 2005] in the Fram Strait with RV 

Polarstern, expeditio�� � !"#$� 
�	�� %&%�3/7/2014 an�� �'���
�
	�� � !(�)*$� 
�	�� **&+�

15/8/2015. Samples were taken at five stations at the East Greenland continental slope 

(EG area) and at seven stations at the West Spitsbergen continental slope (WS area) in 

water depths between 275�2500 m (Figure 5.1, Table 5.1). Thereby the stations in the 
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EG area (namely EG I, EG II, EG III, EG IV and EG V) and in the HG area (namely SV I, 

HG I, SV IV, HG II, HG III, HG IV, and N5) form a bathymetric transect with a similar 

bottom slope of ~11.2°. The station EG IV includes two sites which are located <2 km 

from each other (Table 5.1) and the stations HG I, HG II, HG III, and HG IV were 

sampled during both sampling years, 2014 and 2015. 

 
Figure 5.1. Location of the sampled stations in the Arctic Fram Strait. White dashed line = mean summer 
sea-ice extent in September (1981�2010, http://nsidc.org). Grey arrows = general current system. 
EGC = East Greenland Current, WSC = West Spitsbergen Current, SB = Svalbard branch, YB = Yermak 
branch, RAC = Return Atlantic current. White dots = stations with station names. More station-specific 
details are given in Table 5.1. 

Sediment sampling was performed by using a multiple corer (MUC) with eight tubes 

and autonomous benthic lander systems [Reimers, 1987; Glud et al., 1994] equipped 

with three benthic chambers and a sediment profiler with oxygen sensors. A detailed list 

of the number of used samples per station for the determination of different parameters 

is given in Table S5.1. 
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Table 5.1. General station information regarding water depth, sampling date, location and station ID in the 
data archive Pangaea. Order of stations for each area follows the water depth gradient. 

Area Station name Water depth [m] Sampling date Latitude 
[dd.ddd °N] 

Longitude 
[d.ddd °E] Pangaea Station ID 

EG 

EG I 1056.3 17/06/2014 78.973 -5.290 PS85/0436-1 
EG II 1499.7 18/06/2014 78.933 -4.650 PS85/0441-1 
EG III 1943.8 19/06/2014 78.803 -3.875 PS85/0445-1 

EG IV 
2592 

31/07/2015 
78.862 -2.710 PS93/0058-12 

2518.5 78.914 -2.961 PS93/0058-17 
EG V 2557.7 20/06/2014 78.505 -2.817 PS85/0454-3 

WS 

SV I 275 06/08/2015 79.028 11.087 PS93/0066-2 

HG I 
1244.2 24/06/2014 79.133 6.1065 PS85/0470-3 
1287.7 10/08/2015 79.138 6.0835 PS93/0080-9 

HG I Lander 
1257.6 26/06/2014 79.142 6.124 PS85/0476-1 
1282.2 10/08/2015 79.134 6.092 PS93/0080-8 

SV IV 1304 08/08/2015 79.029 6.999 PS93/0074-3 

HG II 
1492.3 24/06/2014 79.132 4.906 PS85/0469-2 
1550.2 09/08/2015 79.130 4.902 PS93/0078-2 

HG III 
1904.8 24/06/2014 79.106 4.585 PS85/0468-1 
1916 08/08/2015 79.208 4.600 PS93/0077-2 

HG IV 
2402.6 22/06/2014 79.065 4.183 PS85/0460-4 
2465.2 27/07/2015 79.065 4.179 PS93/0050-19 

HG IV Lander 
2492.6 24/06/2014 79.052 4.138 PS85/0466-1 
2277.5 27/07/2015 79.083 4.337 PS93/0050-18 

N5 2548.2 03/08/2015 79.938 3.193 PS93/0060-10 

5.3.2 Sea ice data 

Daily sea ice concentrations for each of the analyzed stations were obtained from the 

Center for Satellite Exploitation and Research (CERSAT) at the Institut Français de 

,��������� �	��� -�.'�-	
���
	�� ��� -��/��� 012,./.,��� 2������ [Ezraty et al., 2007] and 

were previously published [Krumpen, 2017], except for station EG V. Sea-ice 

concentration was calculated based on the ARTIST Sea Ice algorithm developed at the 

University of Bremen, Germany [Spreen et al., 2008]. The data used in this study cover 

the period from 01/09/2001 till 31/08/2015 (long-term data) with a 12.5 x 12.5 km² spatial 

resolution around the station. Mismeasurements, which were <0.5% of the long-term 

����� ���� ����� 
��
������ 3�� ��� �-4	�
���� 	������ 5�-��� 	
� �6*"$�� ����� 	�
����)� 7�����

subsets for short-term examinations were extracted: the period a year before sampling, 

the period since the first of May till sampling, and one month before sampling. The 

period a year before sampling was 01/07/2013�30/06/2014 for stations sampled in 2014 

and 01/08/2014�31/07/2015 for stations sampled in 2015. From each dataset (long-term 

and short-term) the sea-ice cover and the percentage of days with sea-ice cover were 

extracted. 
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5.3.3 Sediment compounds and properties 

Various biogenic sediment compounds including grain size, water content, 

chlorophyll a (Chl a) and phaeopigment concentrations (Phaeo), portion of total organic 

carbon (TOC), phospholipids concentrations, protein concentrations, portion of organic 

matter, and the bacterial enzymatic turnover rate (FDA) as bacterial activity proxy were 

determined from the sediments sampled by the MUC and chambers of the autonomous 

benthic lander system. Generally, three pseudo-replicates from each MUC (sampled 

from different sediment cores, inner MUC tube diameter = 9.5 cm) were taken. Sediment 

samples of the 0�5 cm layer were taken by means of syringes with cut-off ends 

(1.17 / 3.14 cm² cross-sectional area). Samples for FDA, Chl a, and Phaeo were 

immediately analyzed on board. All other samples were shock frozen at -80°C and 

stored at -20°C until they were analyzed at the home laboratory. Sediment samples, 

taken by the benthic chambers of the autonomous lander system, were treated similarly. 

The grain size partitions were determined with a Malvern Mastersizer 2000G, hydro 

version 5.40. The Mastersizer utilizes a laser diffraction method and has a measuring 

range of 0.02�2000 μm. The water content of the sediment was determined by the 

difference in weight of the sediment before and after drying at 105°C. The bioavailability 

of phytodetritus at the seafloor was assessed by analyzing sediment-bound Chl a and 

Phaeopigments. Chloroplastic pigments were extracted in 90% acetone and measured 

with a TURNER fluorometer [Shuman and Lorenzen, 1975]. The bulk of pigments (Chl a 

plus Phaeo) are termed chloroplastic pigment equivalents (CPE) after Thiel [1978]. 

Additionally, the ratios of Chl a to Phaeo, as an indicator of the relative age of the food, 

and the Chl a to CPE (%Chl a), a quality indicator of the labile organic matter, was 

calculated. The percentage of the TOC was measured by combustion using an ELTRA 

CS2000 with infrared cells. To indicate the quantity of cell wall material, phospholipids 

were measured following Findlay et al. [1989] with modifications after Boetius and 

Lochte [1994])�  ���
��-���� ��	��
���� ��

���� ��� 8-globulin equivalents [Greiser and 

Faubel, 1988], were measured to differentiate between living organisms and detrital 

organic matter in the sediments. Hereafter, particulate proteins will be referred to only as 

proteins. The organic matter was determined as ash-free dry weight after combustion 

(2 h, 500°C). Bacterial enzymatic turnover rates were calculated using the fluorogenic 
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substrate fluorescein-di-acetate (FDA) as an indicator of the potential hydrolytic activity 

of bacteria [Köster et al., 1991]. 

5.3.4 Benthic community parameters 

For the bacterial density determination, sediment subsamples were taken with 

modified syringes (1.17 cm2 cross-sectional area) from MUC recovered sediment cores 

after oxygen flux measurements were performed and from benthic chambers. The first 

centimeter of each sample, generally holding the highest bacterial density [Quéric et al., 

2004], was stored in a 2% filtered formalin solution at 4°C. The acridine orange direct 

count (AODC) method [Hobbie et al., 1977] was used to stain bacteria in the 

subsamples and subsequently bacteria were counted with a microscope (Axioskop 50, 

Zeiss) under UV�light (CQ-HXP-120, LEj, Germany). 

For the determination of the meiofauna density and identification of meiofauna taxa, 

sediment subsamples were taken with modified syringes (3.14 cm² cross-sectional area) 

from MUC recovered sediment cores after oxygen flux measurements were performed 

and from benthic chambers. The first centimeter of each sample, usually holding the 

highest meiofauna density [Górska et al., 2014], was stored in borax buffered 4% 

formaldehyde solution at 4��)� 7��� ����-�������� �
�5��� 	5��� �� 6999� :������ �*� :��

mesh. Both fractions were centrifuged three times in a colloidal silica solution (Ludox 

TM-50) with a density of 1.18 g cm-3 and stained with Rose Bengal [Heip et al., 1985]. 

Afterwards, the taxa were identified and counted at order level. Foraminifera were not 

considered, as the extraction efficiency of Ludox for different groups of foraminifera is 

insufficient for a quantitative assessment of the group. Therefore, only metazoan 

meiofauna is recorded and hereinafter the use of the term meiofauna refers only to 

metazoan meiofauna organisms. 

After taking subsamples for bacteria and meiofauna densities, the remaining 

sediment from MUC recovered sediment cores and from the benthic chambers was 

used for macrofauna taxonomical identification, and density and biomass determination. 

For these macrofauna analyzes, only the 0�5 cm layer from MUC sediment cores and 

the entire remaining sediment from the benthic chambers was used, sieved over a 

500 :������ and stored in borax buffered 4% formaldehyde and stained with Rose 
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Bengal [Heip et al., 1985]. Afterward, macrofauna taxa were identified to the highest 

taxonomic level (at least class level), counted and weighted (blotted wet weight). 

From the macrofauna density (Ai) and biomass (Bi), together with a mobility score 

(Mi) and sediment reworking score (Ri) of each taxon, the community bioturbation 

potential (BPc) was calculated following Queirós et al. [2013]: 

QRS �>?QT 2T&
U

T C
� 2T � VT � WT 

in which i displays the specific taxon in the sample. This index represents the 

bioturbation potential of the benthic macrofauna community. 

5.3.5 Oxygen and bromide fluxes 

Immediately after the retrieval of sediment cores by the MUC, a part of the overlying 

water was removed and stored separately. At least 10 cm overlying water remained in 

the cores. The sediment of each core was carefully pushed upwards without disturbing 

the surface sediment layer until the sediment-water interface (SWI) was at a distance of 

around 10 cm from the upper edge of the core. A magnetic stirrer was added to the 

overlying water. In this position, the sediment cores were stored in a water bath at in situ 

temperature (-0.75°C) until the start of the oxygen flux measurements. 

For the determination of the ex situ diffusive oxygen uptake (DOU) at least two 

oxygen microprofiles per sediment core were measured simultaneously within 2 h after 

sampling with a vertical resolution of 100 μm. The profiling was performed by oxygen 

optical microsensors (OXR50, Pyroscience, Aachen, Germany) with a tip size of 50 μm 

in diameter, a response time of <2 s and an accuracy of ±0.02%, calibrated with a two-

point calibration using air saturated and anoxic waters (by adding sodium dithionite). The 

overlying water in the MUC cores was magnetically stirred and the water surface was 

gently streamed with a soft air stream during the profiling. The maximum penetration 

depth of the sensors during ex situ profiling was 42 mm. For in situ DOU determination 

autonomous landers were used [Reimers, 1987; Glud et al., 1994; Glud, 2008]. The 

profiling unit was equipped with electrochemical oxygen microsensors (custom made 

after Revsbech [1989]) and calibrated with a two-point calibration. As the first calibration 
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point, the bottom water oxygen concentration (water sample were taken by Niskin 

bottle), estimated by Winkler titration [Winkler, 1888], was used. As the second 

calibration point, the sensor signal in the anoxic zone of the sediment (when reached) or 

the sensor signal in an anoxic solution of sodium dithionite was used. The 

measurements started three hours after the deployment of the autonomous lander, 

allowing resuspended sediment to settle on beforehand. Profiling was performed with a 

depth resolution of 100 μm. The maximum penetration depth of the sensors during in 

situ profiling was 180 mm. Running average smoothed oxygen profiles from ex situ and 

in situ approaches were used to calculate the DOU rates across ����!;1���
�4�2
�<���

first law: 

�/X ������ ��� M./0.Y O� ! 

in which Ds is the molecular diffusion coefficient of oxygen in sediments at in situ 

temperature and salinity, and �./Z.Y �Y�[ is the oxygen gradient at the SWI calculated by 

linear regression from the first alteration in the oxygen concentration profile across a 

maximum depth of 1 mm. Ds was calculated following Schulz [2006] ���=&>?���
���=����

the molecular diffusion coefficient of oxygen in water after Li and Gregory [1974]������>?�

as 1--�0@?�� [Boudreau, 1997])� 7��� ���
����� �	�	�
��� @ was calculated following the 

equation of Burdige [2006]: 

" �� \] ^]&
\] ^]& 7 _\` � (a� ��\],b ^�&  

In this equation, mw is the mass of evaporated water, �� is the density of the 

evaporated water, md is the mass of dried sediment plus salt, S is the salinity of the 

overlying water and �� is the density of deep-sea sediment (2.66 g cm-3, after Burdige, 

[2006]). To calculate mw, ��, and md, the weight loss of wet sediment samples was 

measured by weighing wet samples, drying them overnight at 70 °C, weigh them again, 

dry the sample for 1 h at 70 °C and weigh them a second time. This procedure was 

repeated until the weights of the two dried samples differ not more than 0.05%. Over all 

samples, 4.5 ± 1.9% of the sediment mass was attributed to salt. Non-local mixing was 

observed in some microprofiles and therefore the reported DOUs for those cases are 

underestimations. However, only at eight out of 81 ex situ obtained oxygen microprofiles 
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at various stations and at one out of 34 in situ obtained oxygen microprofiles signs of 

non-local mixing were observed. 

For ex situ total oxygen uptake (TOU) measurements, sediment cores were used 

after oxygen microprofiling (see upper paragraph in this section). The sediment cores 

were closed airtight with no air bubbles in the overlying water. The distance between the 

SWI and the edge of the lid was measured for volume calculations of the overlying 

water. An optical oxygen microsensor (Pyroscience, Aachen, Germany) with a tip size 

diameter of 50 μm was installed in the lid, allowing a continuous measurement of the 

oxygen concentration in the overlying water. The sediment cores were incubated in 

darkness for >40 h and the overlying water was kept homogenized by rotating magnets 

over that period. For in situ TOU measurements, benthic chambers (K/MT 110, KUM, 

Kiel, Germany) with an inner dimension of 20x20 cm were used. These chambers were 

pushed into the sediment and thereby enclosed a sediment volume of approximately 8 L 

and an overlying water volume of approximately 2�3 L. The oxygen concentration was 

measured in the overlying water continuously with an Aanderaa optode (4330, Aanderaa 

Instruments, Norway, two-point calibrated as described in the upper section) over an 

incubation period of 20�48 h. During the measurement, the overlying water was kept 

homogenized by a stirring cross at the inner top of the chamber. TOU from both ex situ 

sediment core and in situ benthic chamber incubations were calculated using: 

�/X ��� ./0 � 1.� � 2  

in which ��2, ��, V and A represent the difference in oxygen concentration, the 

difference in time, the volume of the overlying water and the enclosed surface area, 

respectively. 

The oxygen fluxes were converted to carbon equivalents (C-DOU and C-TOU) by 

applying the Redfield ratio (C : O = 106:138; Redfield [1934]) in order to compare them 

to the carbon fixed by primary production. Modifications, as suggested by Takahashi et 

al. [1985] and Anderson and Sarmiento [1994], would result only in minor changes of 

<10% in the benthic carbon flux. 

To assess the exchange of solutes across the SWI, which results from molecular 

diffusion, physical advection, and faunal ventilation activities, sodium bromide (NaBr) 
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was added to the removed overlying water of the sediment cores to create a NaBr-

solution of similar density as seawater (1028 g L-1). The NaBr-solution was added to the 

sediment cores before the TOU incubation started. Three subsamples of water were 

taken during the incubation at three different times (t0, t1, t2) and stored at 4°C. Removed 

water volume of the subsampling at t1 was replaced with the NaBr�seawater solution. 

The bromide concentrations were measured using ion chromatography. The dilution of 

the t2-sample, due to the sampling procedure, was corrected by the known bromide 

concentration in the removed and the added water. The bromide exchange is 

represented by the bromide flux, calculated using: 

Qc�\�d��
��� � e.Qc�\�d��f��f���c������ � �1.� � 2 g 

in which ���
���
� �
��
������
�, ��, V and A represent the difference in bromide 

concentration, the difference in time, the volume of the overlying water and the enclosed 

surface area, respectively. 

5.3.6 Data analyzes 

The analyzed data were obtained during two consecutive years (Table 5.1). To test 

whether there is a significant offset between sampling years, a principal component 

analysis (PCA) was performed on standardized (x to zero mean and unit variance) 

abiotic parameters (year, water depth, sea ice cover, percentage of days with sea ice 

cover, the portion of grain size >63 μm, median grain size) and all sediment compounds 

and property parameters from the 0�1cm sediment horizon, as it was the most complete 

dataset. Additionally, a non-parametric Wilcoxon signed rank sum test was performed on 

station specific mean values of both years on water content, TOC, organic matter, Chl a, 

Phaeo, protein, phospholipids, FDA, DOU and TOU following Cathalot et al. [2015]. Both 

tests were performed only on data of stations that were sampled in both 2014 and 2015. 

To reveal significant differences in measured parameters between the EG and the 

WS area, Students t-tests were performed. If t-test assumption of Gaussian distribution 

of the data (tested with a Shapiro-Wilk test) was not met, a non-parametric Wilcoxon 

signed rank sum test was performed. In case of heteroscedasticity (tested with a 
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A�5��������������;�-�����	�����-���-test was carried out. The values from station SV I 

were excluded from the tests, due to its exceptional low water depth. 

To identify the most important parameters influencing the benthic Fram Strait 

ecosystem, a second PCA was performed in the scaling II mode on standardized (x to 

zero mean and unit variance) ex situ mean values of abiotic parameters (water depth, 

short-term sea-ice cover (year before sampling), the portion of grain size >63 μm, water 

content), biogenic compound parameters (Chl a, TOC, organic matter), oxygen fluxes 

(DOU, TOU), the benthic community (bacterial density, macrofauna biomass), and the 

BPc. All other parameters were excluded from the PCA as they correlated strongly 

(correlation >0.74, Pearson correlation, Table S5.2) with one of the mentioned 

parameters used for the PCA. This procedure results in a more resilient outcome of the 

PCA. Owing to its exceptional low water depth, the values from station SV I were also 

excluded from the PCA. For further insights and descriptions of the usage and 

interpretation of a PCA, the reader is referred to Buttigieg and Ramette [2014]. 

Water depth and sea ice have a profound impact on benthic oxygen fluxes 

[Wenzhöfer and Glud, 2002; Harada, 2015]. To investigate the influence of water depth 

and sea ice in our data, the stations were merged into two sea-ice cover categories. 

First, a ��
4�����-
����	��������
	�$������0B!����which include stations with a short-term 

(a year before sampling) mean sea-
����	��������
	���	
�C��9D)�!��	�������-	�����-ice 

�	��������
	�$� ����� 0A!���� ��
��� 
��-���� ����
	��� �
��� �� ��	��-term (a year before 

sampling) mean sea-ice concentrations of <30%. Regression analysis was used to test 

the water depth dependence of sediment compounds and property parameters, the 

benthic community parameters, the oxygen fluxes, and parameters of the macrofauna 

mediated environmental functions within the HSC and LSC categories. If the residuals 

over the slope did not follow the Gaussian distribution (tested with a Shapiro-Wilk test), 

values were transformed, either by square root or logarithmic transformation. Individual 

values that failed due to technical failure or mismeasurements were removed before 

statistical analyzes. For all above mentioned statistical treatments, R Statistical Software 

(version 3.4.0) was used. 

Analyzes of the multivariate meio- and macrofauna community structure were based 

on square root transformed density and biomass data of sediment core replicates. Non�
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metric multidimensional scaling (MDS, [Kruskal, 1964]) and hierarchical cluster analysis 

with group average clustering were used to present the multivariate similarities between 

samples based on Bray�Curtis similarity. Significant multivariate differences between 

pre-defined group structures within the meio- and macrofaunal data were tested by the 

ANOSIM procedure (ANalys
��E
�!1/
-��
���� 3����� 	���-��<����,� ����
��
�� [Clarke and 

Warwick, 1994] with 9999 permutations. The SIMPER (SIMilarity PERcentage) routine 

was applied to determine the contribution of certain meio- and macrofauna taxa towards 

the discrimination between sea-ice cover categories and water depth categories. 

Differences (p < 0.05) between HSC, LSC and water depth regarding macrofauna 

density and macrofauna biomass were examined using a two-way crossed 

PERMANOVA (PERMANOVA+ for PRIMER) [Anderson, 2005; Anderson et al., 2007] 

analys
���
�����
��$�0-�5�-���B!�$������A!�$��	��������������$�0-�5�-�F 1000, 1500, 2000, 

2500 m) as fixed factors. The significance level was set at 0.05. Significant main 

PERMANOVA tests were followed by pairwise PERMANOVA tests. Permutational P-

values (PPERM) were interpreted when the number of unique permutations was >100; 

alternatively, Monte Carlo p-values (PMC) were considered. Bray-Curtis similarity was 

used to construct resemblance matrices. Data were standardized and fourth�root 

transformed (to down-weigh the importance of the most dominant taxa) prior to the 

construction of resemblance matrices. The station SV I and the in situ stations HG I 

Lander and HG IV Lander were excluded from these test, owing to its shallow location 

(SV I) and different sampling device (benthic chambers instead of MUC). All analyzes of 

multivariate community structure were performed using the routines implemented in 

PRIMER vers. 6.1.15 [Clarke and Gorley, 2006; Anderson et al., 2007]. Results are 

expressed as means ± standard deviation.  
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5.4 Results 

5.4.1 Short- and long-term sea ice concentration comparison between the 

EG and WS area 

Short-term and long-term data of the mean sea-ice concentrations and the 

percentage of sea-ice covered days were in a similar range (Table 5.2). Both 

parameters decreased from west to east with a sharp drop between N5 and HG IV in 

each short and in the long-term dataset (Table 5.2). Therefore, the categorization into a 

high sea-ice covered area (HSC) and a low sea-ice covered area (LSC) was introduced. 

The HSC includes all East Greenland stations (EG I�V) and the most northern West 

Spitzbergen station N5, while the LSC includes the remaining West Spitzbergen stations 

(HG I�IV, SV I, and SV IV). 

As expected, the east Greenland stations showed the highest sea ice concentration 

due to the influence of the East Greenland current. The short-term sea-ice concentration 

in the EG area one year before sampling was highest at EG I with 82 ± 20% (n=364) 

and lowest at EG V with 56 ± 34% (n=364). In the WS area, sea-ice concentration was 

highest at N5 with 40 ± 31% (n=365) and lowest at SV IV with 0.1 ± 2% (n=365). The 

percentage of days, which showed sea-ice cover, during the short-term period in the EG 

area was highest at EG I, EG II and EG III (each with 100%) and lowest at EG V (93%). 

In the WS area the percentage of days, which showed sea-ice cover, during the short-

term period was highest at N5 (82%) and lowest at SV IV (>0.1%, Table 5.2). This 

pattern also occurred in the other short-term datasets and in the long-term dataset. The 

latter indicated that this pattern was stable across the Fram Strait the last 15 years 

(Figure 5.2, Table S5.3).  
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Table 5.2. Sea-ice cover (%) and % of days with sea-ice cover on different time scales across the Fram 
Strait. The values are given in mean values ± standard deviation and the number of samples is given in 
brackets. Sea-ice data a year before sampling are mean values for the period 01/07/2013�30/06/2014 for 
stations only sampled in 2014 and 01/08/2014�31/07/2015 for stations only sampled in 2015. For stations 
sampled in both years, data of both periods were combined. The date of sampling is given in Table 5.1. 
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Figure 5.2. Annual mean sea-ice concentrations from 2001 to 2015 of a subset of sampled stations. The 
sampling year at the HG stations is given, as HG stations where sampled in 2014 and 2015 and therefore, 
the given sampling year refers to the exact position from which the sea ice data were obtained. 

5.4.2 Sediment properties and benthic biogenic compounds in the EG 

and WS area 

Sediment properties and biogenic compound values at the deeper stations (>1500 m) 


������.H�����;!�����������
��������������4�)�1���	�����������--	������
	���0��6#99����

of the WS area showed higher values compared to shallow stations of the EG area 

(Table 5.3). This led to a higher variability in the WS area for most of the determined 

parameters (Figure 5.3). 

The median grain size in the EG area ranged between 13 ± 1 μm (n = 15) at EG I and 

74 ± 30 μm (n = 15) at EG V and in the WS area between 10 ± 3 μm (n = 15) at N5 and 

24 ± 5 μm (n = 30) at HG IV. The portion of sediment grain size >63 μm in the EG area 

ranged between 4 ± 2% (n = 15) at EG I and 52 ± 7% (n = 15) at EG V and in the WS 

area between 11 ± 6% (n = 30) at HG I and 25 ± 5% (n = 30) at HG IV. The water 

content in the EG area ranged between 42 ± 6% (n = 15) at EG V and 51 ± 7% (n = 15) 

at EG I and in the WS area it ranged between 51 ± 14% (n = 15) at SV I and 66 ± 5% 

(n = 30) at HG I. 
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Figure 5.3. Boxplots of sediment properties, biogenic compound values (Chl a = chlorophyll a, Phaeo = 
phaeophytin, CPE = chloroplastic pigment equivalents, TOC = total organic carbon, FDA = bacterial 
enzymatic turnover rates calculated using the fluorogenic substrate fluorescein-di-acetate), benthic 
community data and function (BPc = bioturbation potential), and oxygen fluxes (DOU = diffusive oxygen 
flux, TOU = total oxygen flux), of the East Greenland (EG) and West Spitsbergen (WS) area. For a 
detailed description of which stations were included at which site, the reader is referred to section 5.3.1. 
The number of observations is given in brackets below the area. Parameters showing significant 
differences between areas are marked with an asterisk. For comparability, the WS site does not contain 
values from SV I station. 

The porosity in the EG area ranged between 0.77 ± 0.06 (n = 15) at EG I and 0.69 ± 

0.06% (n = 15) at EG V and in the WS area it ranged between 0.88 ± 0.04% (n = 30) at 

HG II and 0.77 ± 0.06% (n = 30) at HG I. Results of all stations are listed in Table 5.3. 
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Median grain size, water content and porosity differed significantly between the WS and 

EG area, while the portion of sediment grain size >63 μm was similar (Table S5.4). 

The sediment-bound Chl a concentration ranged between 0.4 ± 0.3 μg ml-1 sediment-1 

(n = 15) at EG III and 12.7 ± 3.1 μg ml-1 sediment-1 (n = 15) at SV I (Table 5.3) and 

differed significantly between the EG and WS area (Figure 5.3, Table S5.4). A similar 

pattern was found for sediment-bound Phaeo concentrations and CPE concentration 

with over 4 times higher median values in the WS area compared to the EG area 

(Figure 5.3). The Chl a/CPE and Chl a/Phaeo ratios did not differ between the EG and 

WS area (Table S5.4), which indicates that the benthic community in both areas fed on a 

similar food quality and received the spring bloom food supply at the same time, 

respectively. Sediment-bound TOC ranged between 0.44 ± 0.04% (n = 15) at EG II and 

1.58 ± 0.27% (n = 15) at SV I and differed between the EG and WS area, similar to 

organic matter, which ranged between 3.45 ± 0.6% (n = 15) at EG II and 12.0 ± 4.2% 

(n = 30) at HG III (Table 5.3, Figure 5.3, Table S5.4). Proteins, lipids, and FDA also 

differed between the EG and WS area with 5.6 times, 2.3 times, and 1.8 times higher 

median values in the WS area, respectively (Figure 5.3, Table S5.4). 

Table 5.3. Mean values ± standard deviation and number of samples in brackets for each measured 
parameter at each station. The CPE is the chloroplastic pigment equivalent and the sum of Chl a and 
Phaeo. Chl a �CPE ratio indicates the available labile carbon source, while the Chl a �Phaeo ratio 
indicates the relative age of the carbon source. No value could be calculated for solute exchange across 
the sea-water-interface at EG II. 
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Table 5.3 (continued) 
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Table 5.3 (continued)�
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5.4.3 Benthic communities and community functions in the EG and WS 

area 

Overall, 17 meiofauna taxa and 18 macrofauna taxa were identified (Tables S5.5, 

S5.6, S5.7). The meiofauna density was dominated by nematodes (86%), the only taxon 

present at each station. Crustaceans were the second most dominant group with 4.5% 

nauplii and 3.5% Copepoda. The macrofauna density was dominated by polychaetes 

(40%), followed by Copepoda (26%), and Nematoda (12%). Polychaetes (57%) also 

dominated the macrofauna biomass, followed by Bivalvia (16%) and Porifera (14%). The 

mean values of the benthic faunal community parameters meiofauna density, 

macrofauna density and macrofauna biomass were 1.5 times, 4.6 times and 2.5 times 

higher in the WS area than in the EG area (Table S5.2), respectively, and differed 

significantly from each other (Table S5.4). Contrasting, the bacterial density was similar 

between the EG and WS area but showed a greater variability in the WS area (Figure 

5.3, Table S5.4). 

The solute exchange across the SWI, represented by the bromide flux, did not differ 

between the EG and WS area (Table S5.4). The lack of difference might have 

methodological reasons. Bromide flux incubations were performed on 40 sediment cores 

but measurements from 13 sediment cores were omitted (seven from EG area, six from 

WS area), as either the calculations revealed a positive flux or the residuals were not 

homogenously distributed across the decreasing slope of the bromide concentration 

over time or slopes were not significantly different from zero. The community 

bioturbation potential, represented by the BPc, was also similar between the EG and WS 

area (Table S5.4) but the median BPc at the WS area was 2.9 times higher than in the 

EG area (Figure 5.3). This indicates that the benthic macrofauna community in the WS 

area is potentially able to rework the sediment stronger than the benthic macrofauna 

community in the EG area. 

5.4.4 Benthic remineralization 

All oxygen microprofiles showed decreasing oxygen concentrations across the SWI 

(Figure S5.1) and steepness of oxygen gradients varied among microprofiles and across 
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various stations. Further, all sediment core incubations resulted in decreasing oxygen 

concentrations in the overlying water, with varying steepnesses among sediment cores 

and across various stations. The mean DOU in the EG area ranged between 

0.4 ± 0.1 mmol O2 m
-2 d-1 (n = 10) at EG V and 1.0 ± 0.1 mmol O2 m

-2 d-1 (n = 10) at EG 

II. In the WS area, DOUs at stations within the same water depth range as the EG 

stations ranged between 0.5 ± 0.2 mmol O2 m
-2 d-1 (n = 8) at HG IV and 

2.1 ± 0.6 mmol O2 m
-2 d-1 (n = 8) at SV IV. At the shallow station SV I the DOU reached 

3.0 ± 1.7 mmol O2 m
-2 d-1 (n = 6, Table 5.3). 

 
Figure 5.4. Log-transformed DOU data as a function of water depth at each station and linear regressions 
in the HSC and LSC categories (from ex situ values). The full line indicates a significant decrease of DOU 
with water depth in the LSC area, while the dashed line indicates that the slope did not differ significantly 
from zero. 

The mean TOU in the EG area ranged between 0.9 ± 0.3 mmol O2 m
-2 d-1 (n = 2) at 

EG I and 1.6 mmol O2 m
-2 d-1 (n = 1) at EG II. Similar mean TOU values were measured 

in the WS area, at stations within the same water depth range as the EG stations. TOU 

values ranged between 0.5 ± 0.2 mmol O2 m
-2 d-1 (n = 5) at HG IV Lander and 
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1.9 ± 0.6 mmol O2 m
-2 d-1 (n = 5) at HG I. At the shallow SV I station TOU reached 

5.1 ± 0.3 mmol O2 m
-2 d-1 (n = 3, Table 5.3). DOU differed significantly between the WS 

and EG area, while TOU was similar (Figure 5.3, Table S5.4). 

The mean DOU/TOU ratio, which describes the fraction of the total community 

mediated oxygen flux (TOU) covered by the microbial-mediated oxygen flux (DOU) 

[Glud, 2008] across the entire Fram Strait was 0.79 ± 0.30, with 0.63 ± 0.22 in the EG 

area and 0.92 ± 0.30 in the WS area, indicating that the total oxygen uptake is mainly 

microbially mediated. In the EG area, DOU values showed no correlation with water 

depth, while in the WS area the correlation of DOU with water depth was significant 

(Figure 5.4) and showed greater variability (Figure 5.3). In contrast, TOU values in the 

EG and in the WS areas showed no correlation with water depth (Figure S5.3), but 

again, the variability of TOU values was higher in the WS area (Figure 5.3). C-DOU and 

C-TOU followed the same trends as DOU and TOU, respectively, and are listed in 

Table 5.3. 

5.4.5 Relations of the benthic community, its remineralization activity, and 

environmental parameters 

The PCA, which includes only abiotic parameters (year, water depth, sea ice cover, 

the percentage of days with sea ice cover, portion of grain size >63 μm, and median 

grain size) and biogenic compounds of the first sediment centimeter (Chl a, Phaeo, 

CPE, TOC, organic matter, lipids, and proteins), revealed differences between the 

sampling years 2014 and 2015 (Figure S5.2). The difference occurred only in the 

second dimension, which explained 15.4% of the variability and is mostly influenced by 

the parameters Phaeo and CPE (Table S5.8). The non-parametric Wilcoxon signed rank 

sum test of the station specific mean values revealed no differences (p > 0.05) for any of 

the parameters between the sampling years. Furthermore, Henson et al. [2016] showed 

that it takes at least 15 years of continuous data to prove temporal trends in ocean 

biogeochemistry; and even longer in high latitudinal areas. Therefore, it is more likely 

that statistically revealed differences between sampling years reflect spatial variability 

rather than time-related differences. In turn, the data from stations sampled in 2014 and 

2015 were merged and thus this study focuses solely on spatial patterns. 
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The PCA on station specific, ex situ obtained mean values (Figure 5.5) revealed that 

water depth was positively correlated with median grain size and negatively correlated 

with the DOU, the TOU, bacterial density, and the BPc. Sea-ice concentration was 

negatively correlated with the porosity, Chl a, TOC, organic matter, and solute 

exchange. Similarly, macrofauna biomass was negatively correlated with, water depth, 

sea-ice concentration, and the median grain size. Additionally, stations of the EG area 

were strongly influenced by the sea-ice cover. The two dimensions of the plot explained 

72% of the total variability of the data. The eigenvalues indica���������IChl a���I7E��������

I/���	
����� 3
	������ 0-0.89, -0.88, -0.83, respectively) were responsible for the 

gradient along the x-�'
������IJ�����
�-�����
�����I��������������	�4��
��������������I���-


����	��������
	���(0.59, -0.57, -0.54, respectively) for the gradient along the y-axis. 

 
Figure 5.5. Visualization of PCA results on standardized ex situ mean values of abiotic parameters (water 
depth, sea-ice concentration, median grain size, porosity), biogenic compound parameters (Chl a, TOC, 
organic matter), benthic community parameters (bacterial density, macrofauna biomass), bioturbation 
potential (BPc), and oxygen fluxes (DOU, TOU). All other parameters were excluded from the PCA as 
they correlated strongly with one of the mentioned parameters (correlation >0.74, Pearson correlation, 
Table S5.2). For comparability, Station SV I was excluded from the PCA. Therefore, the figure reflects 
relations of different parameters in the Fram Strait in water depths of 1000�2500 m. 
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Across the HSC area, DOU and TOU were not linearly dependent on water depth 

(Figure 5.4, Figure S5.3, Table S5.9). The same was found for the water content, FDA, 

meiofauna and macrofauna densities, macrofauna biomass, and the solute exchange 

across the SWI. Otherwise, the fraction of sand in the sediment (% of grain size >63 

μm), Phaeo, CPE, the Chl a-Phaeo ratio, the Chl a-CPE ratio, and lipids were positively 

linearly dependent on water depth across the HSC area and the BPc was negatively 

linearly dependent on water depth. Across the LSC area, the DOU was negatively 

linearly dependent on water depth, as well as sediment water content, Chl a, Phaeo, 

CPE, FDA, bacteria density and bioturbation potential. Contrastingly, TOU, Chl a-Phaeo 

ratio, protein, meio- and macrofauna densities, macrofauna biomass, and the solute 

exchange were not water depth dependent in the LSC area. Within both sea-ice 

categories HSC and LSC, no linear water depth dependencies were found for median 

grain size, TOC, and organic matter as the residuals over the slopes did not follow the 

Gaussian distribution. This also applied for Chl a, protein, and bacteria density across 

the HSC area and for the portion of grain size >63 μm, the Chl a-CPE ratio, and lipids 

across the LSC area (Table S5.9). 

The ANOSIM (Global R = 0.122, p = 0.063) and SIMPER (33% dissimilarity) routine 

revealed no differences between the HSC and LSC area regarding the meiofauna 

community based on density. Regarding macrofauna communities based on density 

(Global R = 0.257, p = 0.007) and biomass (Global R = 0.238, p = 0.003), the ANOSIM 

revealed significant but weak differences between the HSC and LSC area. SIMPER 

routine results indicated dissimilarities of 56% for the macrofauna density and 76% for 

the macrofauna biomass between the HSC and LSC areas. The taxa which contributed 

most to the average similarity within and to the average dissimilarity between the HSC 

and LSC area are given in Table S5.10. The ANOSIM results for water depth groups 

showed that bathymetry could at least explain the dissimilarity in meiofauna 

communities based on density (Global R = 0.219; p = 0.01), even if the difference was 

weak. The SIMPER analysis, however, showed that the observed differences in 

meiofauna density regarding water depth were mainly due to the marked difference 

between the shallowest station (SV I at 275 m) and all other stations deeper than 

1000 m (dissimilarity >50%, Table S5.11). ANOSIM results for macrofauna communities 
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based on density (Global R = 0.2, p = 0.008) and biomass (Global R = 0.346, 

p = 0.0001) revealed significant but also weak differences between water depth 

categories with >50% dissimilarity between all water depth categories for macrofauna 

density (except between 1000 m and 1500 m) and macrofauna biomass (SIMPER, 

Supplement Table S11). Further, the two-way crossed PERMANOVA revealed that the 

sea-ice coverage (LSC and HSC) explains a significant (p = 0.008) portion of the 

macrofauna density variability, while the portion explained by water depth (p = 0.06) and 

by the interaction of sea-ice cover and water depth (p = 0.09) was not significant (Table 

S5.12). However, the results of the pairwise test showed that only the neighboring water 

depth classes 1000 m and 1500 m showed no significant differences (p = 0.45) while all 

other pairwise comparisons showed significant differences between water depths 

(Table S5.13). For macrofauna biomass, the two-way crossed PERMANOVA revealed 

that the interaction of sea-ice cover and water depth explains a significant (p = 0.034) 

portion of the macrofauna biomass variability, while the portion explained by the sea-ice 

cover categories (p = 0.051) and by water depth (p = 0.058) was not significant 

(Table S5.12). The results of the pairwise test showed that only the water depth classes 

1000 m and 2500 m showed significant differences (p = 0.0187), while all other pairwise 

comparisons showed no significant differences between water depths (Table S5.13). 

5.5 Discussion 

5.5.1 Linking contrasting sea-ice conditions with benthic oxygen fluxes 

The main aim of this study was to link sea-ice conditions within the Arctic Fram with 

the deep-sea benthic oxygen fluxes over a cascade of dependencies. Our results 

documented two contrasting sea-ice concentration regimes in the Fram Strait with a high 

sea-ice concentration in the western Fram Strait and a low sea-ice concentration in the 

eastern Fram Strait (Table 5.2, Figure 5.2). This is similar to sea-ice concentration 

snapshot observations by Schewe and Soltwedel [2003] and satellite observations of 

Krumpen et al. [2016]. The observed pattern can be explained by the two major current 

systems present in the Fram Strait [Schauer, 2004], the EGC transporting cold, nutrient-

poor water and sea ice from the central Arctic Ocean southwards into the EG area and 

the WSC transporting warmer, nutrient richer and sea-ice free water from the Atlantic 
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Ocean northwards into the WS area [Manley, 1995; Mauritzen et al., 2011; Graeve and 

Ludwichowski, 2017a, b]. If there were a strong link between sea-ice conditions and 

deep-sea benthic oxygen fluxes, we would expect contrasting primary production, 

benthic food supply, benthic community parameters and benthic oxygen fluxes between 

the EG and the WS area. 

The results of Pabi et al. [2008] showed that in the Fram Strait the annual primary 

production pattern followed the general sea-ice concentration pattern and that the 

annual primary production was up to 10 times larger in the WS area compared to the EG 

area. Thus, the sea-ice concentration represents the general primary production pattern 

in the Fram Strait. Thus, the sea-ice concentration represents the general primary 

production pattern in the Fram Strait. As the sampling was performed in Mid/End of June 

2014 and July/August 2015, it is very likely that the spring bloom, which usually starts in 

May [Cherkasheva et al., 2014], had finished. This is indicated by lower nutrient 

�	��������
	��� 
���������������#9����	��������	���������
��� concentrations between 

>50�300 m water depths [Graeve and Ludwichowski, 2017a, b]. The N : P ratio in the 

upper 50 m during the expeditions was six and seven in the EG and WG area, 

respectively [Graeve and Ludwichowski, 2017a, b], indicating that primary production 

was nitrate limited, similar to the permanently sea-ice covered central Arctic Ocean 

[Tremblay et al., 2012; Fernández-Méndez et al., 2015]. Furthermore, the timing of our 

sampling suggests that the increased carbon supply by the spring bloom had already 

reached the seafloor and enhanced the benthic remineralization [Graf, 1989] in both 

areas. The pattern of contrasts between the EG and WS area continued in the benthic 

food supply, which was also found by Boetius and Damm [1998] for areas with 

contrasting sea-ice cover at the continental margin of the Laptev Sea. 

Continuing the cascade of dependencies, benthic community parameters should 

follow the same pattern as the sea ice at the surface and the benthic food supply 

parameters. Indeed, there were differences between the EG and WS area regarding 

meiofauna density and macrofauna density but not in the macrofauna biomass. In 

addition, also the macrofauna community structure differed between areas with high and 

low sea-ice cover. However, only when taking sea ice and water depth into account. The 

performed PERMANOVA confirmed the influence of water depth on the macrofauna 
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community and indicated that water depth is a considerable factor besides sea-ice 

cover. Consequently, in the low sea-ice covered WS area macrofauna is mainly 

influenced by the abiotic factor water depth [Soltwedel et al., 2015], while in the highly 

sea-ice covered EG area the abiotic factor sea-ice cover co-acts or even replaces water 

depth as the most influencing abiotic factor. 

Benthic remineralization across the Fram Strait, represented by the oxygen flux, was 

not correlated with sea-ice concentrations or benthic food supply, only with water depth 

(Figure 5.5). This is in contrast to our expectations and to findings of Boetius and Damm 

[1998]. However, a PCA only shows correlations, which does not necessarily prove 

causal relationships and does not test for the significance of these relationships. 

Therefore, we tested the significance of the correlation of water depth with DOU within 

the sea-ice concentration categories HSC and LSC, which reveals a slightly different 

pattern. The regression of the DOU on water depth is only significant in the LSC 

category, but not in the HSC (Figure 5.4). Therefore, the bacterial benthic 

remineralization, which makes up ~80% of the TOU, depends on water depth in low sea-

ice covered areas, but not in the highly sea-ice covered EG area. A test, if this pattern is 

also true for the macro- and meiofauna activity, represented by the fauna mediated 

oxygen uptake (= TOU minus DOU), was assessed as not reliable owing a lower 

reproducibility of TOU values. 

A PCA displays an ecosystem snapshot of factors which likely respond on different 

time scales. For example, benthic faunal biomass, density, and structure will respond in 

a more seasonally to decadal fashion, while benthic remineralization responds on short 

time scales such as days to weeks [Graf, 1989; Renaud et al., 2008]. To acknowledge 

this, we decided to use the short-����� �������� I����� 3�
	��� ����-
�4�� 
�� ����  ��) 

Additionally, the origin of the primary production responsible for the benthic food supply 

is difficult to assess and can be located >3000 km from the Fram Strait [Lalande et al., 

2016]. In turn, the complexity of advective and vertical pelagic food input influencing 

processes in the Fram Strait is not considered in the ecosystem snapshot.  

To summarize, sea-ice cover in the Fram Strait is a proxy for light availability and 

nutrient supply and therefore represents primary production in Fram Strait. In addition, 

water depth represents a proceeding degradation state of settling organic material 
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towards the sea floor [Belcher et al., 2016]. Both processes are responsible for the food 

supply �	� ���� 3����	�)� 7����
	���� ���� 
����������� 
���	��� I���-
��� �	5���� ���� I������

�����������������	��� 
��	�������3
	�
��
���	��� 
������2����!���
�����������	���	--�������

benthic food supply. This fits earlier findings, that labile organic matter is the most 

important factor determining Arctic deep-sea benthic communities [Grebmeier et al., 

1988; Boetius and Damm; 1998; Klages et al., 2004]. Regarding benthic 

remineralization, the Fram Strait is bisectional: water depth independent in the highly 

sea-ice covered western Fram Strait and water depth dependent in the low sea-ice 

covered eastern Fram Strait. However, the impact of sea-ice on the benthic 

remineralization cannot be distinguished from the impact of water depth in water depth 

>1500 m. 

5.5.2 Primary production and benthic remineralization in the Fram Strait 

The reported oxygen fluxes within the HSC and LSC categories are comparable to 

earlier findings within the Fram Strait [Sauter et al., 2001; Cathalot et al., 2015] and the 

continental margin of the Laptev Sea [Boetius and Damm, 1998], but are slightly lower 

than the modelled results for the pan-Arctic region (Figure 5.6) [Bourgeois et al., 2017]. 

In general, the total benthic carbon remineralization across the entire Fram Strait is 

~1 mmol C m-1 d-1. 

The new primary production, the part of the total production which can fuel the 

benthos [Piatt et al., 1989], is 55 g C m-2 yr-1 [Sakshaug, 2004, and references therein] 

in the West Spitsbergen area. This is equal to 38 mmol C m-1 d-1, assuming a production 

period of 120 days [Gradinger, 2009]. Codispoti et al. [2013] reported net community 

production from nutrient depletion for the WS area of 27�32 g C m-2. These values 

reflect the annual new production and thus can be converted to 19�22 mmol C m-1 d-1 

(under the same assumption of 120 days of production). This indicates that 

approximately 2.6�5.2% of the new primary production in the WS area would be 

remineralized by the benthos. However, Lalande et al. [2016] reported that only 

2.7 g C m-2 yr-1 (= 1.9 mmol C m-1 d-1 under the same assumption of 120 days of 

production, particle trap study at HG IV) and therefore 5�14% of the primary production 

reaches the seafloor. Taking these export fluxes into account, this indicates that only 
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40% of the organic material reaching the seafloor is remineralized by the benthos in the 

West Spitzbergen area in the eastern Fram Strait. 

The net primary production in the mainly sea-ice covered western Fram Strait is 

approximately 8 g C m-2yr-1 [Codispoti et al., 2013], which is 5.6 mmol C m-1 d-1 (under 

the same assumption of 120 days of production). This is similar to the similarly sea-ice 

covered central Arctic Ocean [Codispoti et al., 2013; Fernández-Méndez et al. 2015], 

Thus, 18% of the new primary production in the EG area would be remineralized by the 

benthos. Annual POC flux values of 1�2.7 g C m-2 yr-1 (= 0.7�1.9 mmol C m-1 d-1, under 

the same assumption of 120 days of production) were reported for the ice-covered 

regions at the Greenland shelf at 80°N [Bauerfeind et al., 1997] and 1.6 g C m-2 yr-1 

(= 1.1 mmol C m-1 d-1, under the same assumption of 120 days of production) at the 

Greenland shelf at 74°N (Bauerfeind et al., 2005). These values indicate that 13�34% of 

the primary production reaches the seafloor, which is comparable to Arctic shallow shelf 

regions [Grebmeier et al., 1988; Renaud et al., 2007]. It further suggests that 50% to 

>100% of the organic material, that reaches the seafloor, is remineralized by the benthic 

organisms at the East Greenland continental margin and that this area has to be 

supplied by organic carbon from other areas. 

However, these numbers have to be interpreted with caution, as a more reliable 

calculation of the primary production across the entire Fram Strait still remains difficult. 

Satellite-based chlorophyll measurements are only available in ice-free areas when 

there are no clouds or fog [Cherkasheva et al., 2014]. Additionally, satellites only 

measure chlorophyll a in the upper water column. Therefore, to calculate the primary 

production, additional information about the mixed water depth, photosynthetically active 

radiation, water temperature, salinity, nutrient availability, the chlorophyll a to carbon 

ratio, growth rates of the different occurring algae [Sakshaug, 2004] and further 

parameters needed to be measured during the bloom period, which can be exclusively 

obtained by ship-based expeditions. The approach of Codespoti [2013] is preferable 

when primary production and benthic remineralization are compared. However, it relies 

on a good spatial resolution of nutrient profiles in the water column. Furthermore, the 

measurements of the benthic oxygen flux, crucial to evaluate the pelagic-benthic-

coupling, remain only snapshots of remineralization. The question, if the Arctic deep-sea 
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benthic oxygen fluxes follow seasonal changes, has only been sparsely evaluated 

[Bourgeois et al., 2017]. A full annual cycle of benthic remineralization is still missing and 

as such, a more reliable discussion of the pelagic-benthic-coupling and the carbon cycle 

remains difficult. 

 
Figure 5.6. Sediment oxygen uptakes in different water depths (15�4000 m) for HSC and LSC sea-ice 
categories from this study and from literature data for the Laptev Sea, Fram Strait, and Pan-Arctic region 
and related regressions. HSC regression from this study: y=-0.124ln(x)+1.7388 (R2=0.0255); LSC 
regression from this study: y=-1.119ln(x)+9.4144 (R2=0.8695); HSC regression from Sauter et al. [2001]: 
y=-0.727ln(x)+5.6587 (R2=0.5026); LSC regression from Cathalot et al. [2015]: y=-0.63ln(x)+5.534 
(R2=0.7013); HSC regression from Boetius and Damm [1998]: y=-0.172ln(x)+1.6496 (R2=0.6074); LSC 
regression from Boetius and Damm [1998]: y=-0.421ln(x)+3.4515 (R2=0.8428); pan-Arctic regression from 
Bourgeois et al [2017]: y=7.1338e-6-4x (R2=0.7288). Regression types were chosen based on best fit (R2). 
The model of Bourgeois et al. [2017] included DOU and TOU values, while all other references refer only 
to DOU values. 
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5.5.3 A future deep-sea benthic Arctic Ocean scenario 

Our results indicate that a development from a permanently sea-ice covered to a 

seasonally sea-ice covered Arctic Ocean will change the bentho-pelagic relationship 

from a sea-ice dependent towards a water depth dependent environment (Figure 5.4). 

This may go along with a predicted compositional shift in the spring phytoplankton bloom 

from diatom-dominated to coccolithophorid [Bauerfeind et al., 2009] or Phaeocystis sp. 

and nanoflagellates dominated bloom [Soltwedel et al., 2015]. An altered algal 

composition will affect zooplankton communities [Caron and Hutchins, 2013] and partly 

organic particle fluxes [Wohlers et al., 2009]. An additional predicted effect is an 

increasing annual matter flux towards the seafloor [Wassmann, 2011; Boetius et al., 

2013, this study], while the labile detritus flux is predicted to decrease [Hop et al., 2006; 

van Oevelen et al., 2011]. Therefore, the change in sea-ice cover in the Arctic Ocean 

may alter the quality and quantity of the organic matter flux to the seafloor, where it 

maybe affects benthic deep-sea communities [Jones et al., 2014; Harada, 2015]. 

However, the comparable DOU of the EG and HG site at water depth >1500 m (Figure 

5.4) indicates that the remineralization by the deep-sea benthos will possibly remain 

stable in the Arctic Ocean. 

Our scenario is only suitable if sea-ice disappears and nutrient supply increases, 

which will result in enhanced primary production. The development of future Arctic 

Ocean primary production patterns and changes is still under debate [Wassmann, 2011; 

Arrigo et al., 2012; Nicolaus et al., 2012, Boetius et al., 2013]. However, it is likely that 

the described scenario becomes true in the Chukchi Sea and the Beaufort Sea, owing to 

the predicted strengthening of the nutrient-rich Pacific inflow [Harada, 2015]. 

Furthermore, owing to an increased atlantification, an increased nutrient supply is also 

likely for the continental margin at the Barents Sea [Neukermans et al., 2018]. In 

addition, nutrient inflow by glacial and permafrost soil melt is also predicted to increase 

[Vonk et al., 2015]. However, this riverine load might only enhance primary production at 

the shelf areas and therefore is not relevant for the deep sea. An enhanced primary 

production in the western Fram Strait is unlikely, even if the light availability will increase 

as the required nutrient supply increase is not expected for this region [Mauritzen et al., 

2011]. 
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Additionally, the sea ice in the Fram Strait is already thinning [Krumpen et al., 2016]. 

This may be led to more light in the upper water column and an already higher primary 

production in the EG area, which consequently may have resulted in a higher food 

supply to the deep-sea benthos in this area and thereby biases our former-Arctic-Ocean 

perspective. However, fast sinking algae patches as reported by Boetius et al [2013] in 

the central Arctic, which would lead to increased benthic remineralization, were not 

observed during a video transect at EG IV in 2014 (pers. comm. James Taylor, Alfred-

Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, 

Germany (AWI)). A further limitation of our scenario might be, that in contrast to the HG 

stations, there are no long-term data available about the benthic environment at the EG 

stations. Thus, an assessment of ongoing changes in the EG area, similar to the HG 

stations [Soltwedel et al., 2015], and insights into the natural variability of benthic 

changes remains difficult at the moment. Nevertheless, the general sea-ice 

concentration pattern in Fram Strait was stable over the last 14 years (Figure 5.2) was 

stable. This indicates that at least the production period and therefore, the low food 

supply at the EG stations was also stable within the last 14 years. In addition, the 

scenario is only valid for areas changing from permanent to very low sea-ice cover as 

our data does not allow to estimate a scenario for an intermediate (20�60%) sea-ice 

cover. 

Despite its uncertainties, observations are currently still the best method to create 

such a scenario of future developments as consistent time series data from the entire 

Arctic Ocean, required to model reliable future predictions, are yet missing [Wassmann 

et al., 2011]. Thus, our comparative study provides new insights into the relationship 

between sea-ice cover at the surface and benthic oxygen fluxes in Fram Strait via 

surface primary production, benthic food supply, benthic community and their functions. 

We hypothesize that if surface primary and secondary production will increase due to 

the retreating sea-ice cover, the deep-sea benthos of the Arctic Ocean may shift from a 

sea-ice dependent towards a water depth dependent environment. There might be a 

slightly increased food supply and an altered macrofauna community, but 

remineralization at water depths greater than 1500 m seems to be hardly affected by 

these changes because it remains food limited. 
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5.6 Supplements 

 
Figure S5.1. Oxygen profiles at each station. The first row shows the profiles from the EG area, while the 
second to fourth rows show the profiles from the WS area. Columns are in order of water depth, with the 
shallow stations on the left-hand site. The black line in each profile represents the mean oxygen 
concentration; the grey area represents the standard deviation. Strong breaks in the profile, like in EG I, 
are explained by merging profiles of different lengths. For a better inter-comparison of the profiles, the 
depth scale in the unit millimeter below surface (bsf) is equal, with the exception of the in situ stations at 
HG I and HG IV. 

 
Figure S5.2. Visualization of the comparison between the sampling years 2014 and 2015 using a PCA. 
Each dot refers to a sediment horizon at a certain station while red arrows indicate used parameters. The 
labels of the parameters were omitted, as they are not needed for the interpretation of the figure. 
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Figure S5.3. Parameters used in PCA (Figure 5.5) displayed as a function of water depth in the HSC and 
LSC categories. A continuous line indicates a significant correlation; a dashed line indicates that the 
residuals of the regression follow a Gaussian distribution, but the correlation is not significant. No 
regression line means that no regression could be calculated because assumptions for regression were 
violated, even with transformed data (for p-values of statistical analyzes see Table S5.9). 
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Table S5.1. Number of samples for analyzes of different parameters. 
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Table S5.2. Results of Pearson correlation (Pearson R). 
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Table S5.2 (continued)�
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Table S5.3. Annual sea-ice cover values, standard deviation and the annual percentages of days with 
sea-ice cover from 01/09/2001 until 31/08/2015. The sampling year of the stations is given in brackets. It 
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Table S5.3. (continued)�
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Table S5.3. (continued)�
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Table S5.3. (continued)�
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Table S5.3. (continued)�
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Table S5.4. P-values of the Shapiro-;
-<� ������A�5������ ������!�������� �-test, Welch t-test and Wilcoxon 
signed rank sum test to identify differences between the EG and WS area. 
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0.65 <2.2-16 - - 
WS 1.9-01 
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EG 8.4-02 

0.01 - 7.9-15 - 
WS 4.6-02 

Chl a [μg/ml 
sediment] 

EG 3.0-06 
- - - <2.2-16 

WS 6.5-09 

Phaeo [μg/ml 
sediment] 

EG 2.6-06 
- - - <2.2-16 

WS 7.6-11 

CPE [μg/ml sediment] 
EG 3.0-06 

- - - <2.2-16 

WS 1.3-10 

Chl a/CPE [%] 
EG 1.7-02 

- - - 0.58 
WS 1.1-06 
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WS 2.4-08 
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Protein [μg/ml 
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- - - <2.2-16 

WS 3.4-11 
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Table S5.5. Macrofauna density in individuals m-2, values base on sediment core replicates. 
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Table S5.5. (continued)�
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Table S5.6. Macrofauna biomass in mg blotted wet weight m-2, values base on sediment core replicates. 
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Table S5.6. (continued)�
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Table S5.6. (continued)�
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Table S5.7. Meiofauna density in individuals 10 cm-2, values base on sediment core replicates. 
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Table S5.7. (continued)�
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Table S5.7. (continued)�
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Table S5.8. Eigenvalue, explained proportion and species score of the PCA to explore if data from 2014 
and 2015 differ. In dimension two, the species score of Year of Sampling is high and goes along with high 
Phaeo, CPE, and Organic matter values. This means, that on the second dimension, which explains only 
15.4% of the total variability in the dataset, the differences between the years are mostly explained by 
differences in the food supply, which in turn can be explained by the different sampling periods in 2014 
and 2015 (see Table 5.1). 

 Dim. 1 Dim. 2 
Importance of 
components 

Eigenvalue 6.4 2.2 
Proportion explained 45.9 15.4 

Species scores 

Year of sampling 0.03 -0.72 
Water depth -1.56 <0.01 
Sea-ice cover -1.54 0.11 
% of days with sea ice -1.52 0.21 
Grain size >63μm -1.06 -0.45 
Median grain size -1 1 
TOC 1.46 0.42 
Organic matter 0.53 0.88 
Chl a 1.24 -0.82 
Phaeo 1.29 -0.99 
CPE 1.3 -0.98 
FDA 0.87 -0.71 
Protein 0.96 0.83 
Lipids -0.28 -0.31 

Table S5.9. P-values of Shapiro-Wilk test and p-values of the slope of the linear regression between water 
depth and a determined parameter within the HSC and LSC categories. If the p-value of the Shapiro-Wilk 
test is < 0.05, the residuals over the slope of the linear regression did not follow the Gaussian distribution, 
linear regression analyzes were not allowed. Therefore, a significance test of the slope could not be 
performed (cases marked with an X). A p-value <0.05 of the linear regression between water depth and 
the parameter indicates a significant correlation with water depth. The table only shows parameters, for 
which at least in one sea-ice category the p-value of the Shapiro-Wilk test was >0.05. The abbreviation 
KA	4�K� ��
���� �	� �� ������-� -	4��
���
�� �����
	����
	�� 	
� ���� ����� ���� �!L��$� ��fers to a square root 
transformation. 

Parameter Sea-ice 
category 

Transformatio
n 

P-value of 
Shapiro-Wilk 

test 

P-value of 
correlation 

water depth 
vs parameter 

Grainsize fraction >63μm 
HSC Loge 0.1335 <2.2-16 
LSC Loge 6.08-5 X 

Median grain size � � � � 

Water content 
HSC Loge 0.2555 0.982 
LSC Loge 0.5499 8.03-16 

TOC � � � � 
Organic matter � � � � 

Chl a 
HSC Loge 0.02738 X 
LSC Loge 0.8455 6.27-10 

Phaeo 
HSC Sqrt 0.4688 3.64-05 
LSC Sqrt 0.2599 4.53-11 

CPE 
HSC Sqrt 0.436 5.88-05 
LSC Sqrt 0.2966 4.16-11 

Chl a/Phaeo 
HSC Loge 0.1722 6.99-06 
LSC Loge 0.1711 0.393 



5 Manuscript III 

 
153 

Table S5.9. (continued)�

Chl a/CPE 
HSC Sqrt 0.2957 5.01-06 
LSC Sqrt 5.681-3 X 

Lipid 
HSC � 0.2131 1.71-07 
LSC � 5.06-6 X 

Protein 
HSC Loge 2.981-3 X 
LSC Loge 0.1535 1.49-10 

FDA 
HSC Sqrt 0.273 0.09921 
LSC Sqrt 0.1974 0.02761 

Bacteria density 
HSC Sqrt 0.02426 X 
LSC Sqrt 0.1301 4.695-03 

Meiofauna density 
HSC � 0.4126 0.3965 
LSC � 0.4029 0.8904 

Macrofauna density 
HSC Loge 0.5036 0.3176 
LSC Loge 0.3221 0.03781 

Macrofauna biomass 
HSC Loge 0.2181 0.358 
LSC Loge 0.9267 0.0916 

Bioirrigation 
HSC Loge 0.2556 0.1884 
LSC Loge 0.4628 0.4846 

BPc 
HSC � 0.8313 3.97-04 
LSC � 0.7673 2.60-3 

DOU 
HSC Loge 0.3479 0.7941 
LSC Loge 0.219 3.45-6 

TOU 
HSC Loge 0.6604 0.8043 
LSC Loge 0.5351 0.1999 

Table S5.10. Results of SIMPER analysis regarding the sea-ice categories HSC and LSC. The table 
shows the three most contributing taxa to the within-group similarity and to the dissimilarity between the 
groups. 

Meiofauna density Macrofauna density Macrofauna biomass 

HSC LSC HSC LSC HSC LSC 

In-group 
similarity 

In-group 
similarity 

In-group 
similarity 

In-group 
similarity 

In-group 
similarity 
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Nema-
toda 81 Nema-

toda 77 Poly-
chaeta 53 Poly-

chaeta 45 Poly-
chaeta 63 Poly-

chaeta 76 

Nauplii 5 Cope-
poda 9 Cope-

poda 17 Nema-
toda 23 Bival-

via 16 Bival-
via 9 

Cope-
poda 5 Nauplii 7 Bivalvia 14 Bivalvia 10 Cuma-

cea 12 Pori-
fera 3 

Dissimilarity between groups Dissimilarity between groups Dissimilarity between groups 

Taxa Contribution [%] Taxa Contribution [%] Taxa Contribution [%] 

Nematoda 33 Copepoda 25 Polychaeta 22 

Nauplii 14 Polychaeta 15 Porifera 18 

Copepoda 13 Nematoda 14 Bivalvia 13 
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Table S5.11. ANOSIM and SIMPER results of the meio- and macrofauna community within water depth 
categories. The table shows that significant differences in the meiofauna community are only found 
between the shallow station SV I (275 m) and all other stations. Within the macrofauna community 
differences are found between 1000 m and 2000 m, additionally. The most contributing taxa regarding the 
within-group similarity within the water depth categories and the dissimilarity between the water depth 
categories are given in Table S5.10. 
Meiofauna density 
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p-value 0.01 
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R 0.92 1 0.86 0.91 0.13 0.11 0.15 -0.14 -0.06 -0.06 
p-value 0.01 0.02 0.02 <0.01 0.15 0.18 0.07 0.87 0.63 0.69 
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Depth 
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R 0.57 0.19 -0.10 0.33 -0.01 0.25 0.16 -0.04 0.16 0.24 
p-value 0.01 0.2 0.61 0.06 0.44 0.06 0.02 0.62 0.19 0.06 
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Depth 
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[%] 61 67 60 60 46 56 52 59 56 59 

Macrofauna biomass 
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R 0.39 0.56 0.49 0.78 0.27 0.38 0.50 -0.09 0.16 0.12 
p-value 0.04 0.03 0.04 0.20 0.07 0.01 <0.01 0.76 0.18 0.14 
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Depth 
category 275 m 1000 m 1500 m 2000 m 2500 m 

In-group 
similarity [%] 52 41 35 23 33 
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Dissimilarity 68 81 85 89 68 73 79 71 74 74 
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Table S5.12. Results of the two-way crossed PERMANOVA on standardized and fourth roots transformed 
����	
���������
�����������	
�����3
	����������3�����	����J��������
���
�
-��
��)�7�����������$�
��-������������-

�������4	�
���B!������A!������������������$������������epth category levels 1000 m, 1500 m, 2000 m, and 2500 
m. 

 Source df SS MS Pseudo-F P(perm) perms 

Macrofauna density 

sp 1 113.59 113.59 3.219 0.0075 9948 

de 3 168.28 56.093 1.590 0.0568 9917 

sp x de 3 157.13 52.376 1.480 0.0857 9903 

Res 21 741.09 35.29 - - - 

Total 28 1132.2 - - - - 

Macrofauna biomass 

sp 1 3116.9 3116.9 3.701 0.0511 4512 

de 3 7114.5 2371.5 2.816 0.0584 9558 

sp x de 3 6421.1 2140.4 2.542 0.0342 9905 

Res 3 2526.4 842.13 - - - 

Total 10 19235 - - - - 

Table S5.13. Results of the PERMANOVA pairwise test on standardized and fourth roots transformed 
macrofauna density and macrofauna biomass data based on a Bray Curtis similarity. 

 Groups p-value P(perm) P(MC) t 

Macrofauna density 

1000 m-1500 m 0.4546 8260 - 0.989 

1000 m-2000 m 0.0116 9427 - 1.836 

1000 m-2500 m 0.0004 9952 - 2.446 

1500 m-2000 m 0.0192 2470 - 1.841 

1500 m-2500 m 0.0072 9924 - 2.139 

2000 m-2500 m 0.0424 9938 - 1.651 

LSC-HSC 0.0048 9949 - 2.055 

Macrofauna biomass 

1000 m-1500 m 0.3311 15 0.4804 1.0314 

1000 m-2000 m 0.1196 15 0.2451 1.7717 

1000 m-2500 m 0.0187 420 0.0464 2.2335 

1500 m-2000 m No test 

1500 m-2500 m 0.115 38 0.1266 1.9021 

2000 m-2500 m 0.1619 38 0.2902 1.291 

LSC-HSC 0.0515 4488 0.0787 1.9239 
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7 Discussion 

7.1 The impact of particle release on the biological carbon cycle in 

shallow coastal polar regions 

7.1.1 Effects of particle release on primary production in shallow coastal 

polar regions 

The general temperature increase in the Southern and Arctic Ocean led to an 

increased glacial and permafrost soil melt in coastal areas of the Southern and Arctic 

Ocean [Turner et al., 2005; Vaughn et al., 2013; Vonk et al., 2015]. As a result, more 

particles, freshwater, and nutrients are transported into the marine habitats of the 

Southern and Arctic Ocean [Monien et al., 2014; Sahade et al., 2015; Vonk et al., 2015; 

Wassmann, 2015]. Secondary effects of an increased particle release are higher 

turbidity in the water column and an enhanced sediment accumulation. These secondary 

effects reduce the light availability and thus, might influence primary productivity. The 

investigated Potter Cove (Southern Ocean) is heavily influenced by the melting 

Fourcade glacier [Rückamp et al., 2011; Sahade et al, 2015; Monien et al., 2017] and 

thus, an ideal area for studying the impact of sediment accumulation on primary 

production. 

The MPB in Potter Cove is dominated by diatoms [Al-Handal and Wulff, 2008a], 

which showed a reduced primary production when exposed to high turbidities and a high 

sedimentation rates [section 3]. Directly at the glacial front, net primary production was 

even completely suppressed. Therefore, the results presented in section 3 confirmed the 
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first hypothesis of this thesis, that glacial melt-related particle release affects MPB 

primary productivity in the studied location in the Southern Ocean. An impact on the 

diatom community structure, however, was not found. 

Southern Ocean diatoms have been reported to be well adapted to low light 

conditions. Light saturation can already be reached at 11 μmol photons m-2 s-1 

[Palmisano et al., 1985; Rivkin and Putt, 1987; Gómez et al., 2009]. In Potter Cove, the 

light saturation was not investigated, but the light compensation point (net primary 

production and mineralization are balanced) of 26 μmol photons m-2 s-1 was frequently 

exceeded on annual and daily scales (Figure 3.2). Therefore, it is unlikely that the light-

suppressing impact of the increased turbidity was responsible for the reduced primary 

production. It is more likely that the enhanced sedimentation was responsible for the 

lower primary productivity [Wulff et al., 1997]. If covered with sediment, the light 

availability for MPB drops drastically towards zero. As benthic diatoms are able to 

migrate through the sediment, they may move vertically upwards with speeds between 

0.6�1.0 mm h-1 to again reach ideal light conditions [Hopkins, 1963; Harper, 1977; Hay 

et al., 1993; Consalvey et al., 2004]. Nevertheless, full recovery in terms of MPB primary 

productivity would have taken longer than two weeks [Wulff et al., 1997], and only be 

possible if sedimentation would cease. 

The degree of the reduction of MPB primary production depends on the volume and 

rate of sedimentation. A linear regression between the median sediment accumulation 

rates from Pasotti et al. [2015] and measured carbon fluxes at 70 μmol photons m-2 s-1 

[section 3], reveals a reduction of MPB primary productivity of 4.6 mmol C m-2 d-1 (= 10% 

of MPB primary production) per 0.1 g sediment cm-2 yr-1 of sediment accumulation. The 

sedimentation rates in Potter Cove ranged between 0.06�1.17 g sediment cm-2 yr-1 

[Pasotti et al., 2015]. At the shelf regions of the Arctic Ocean, sedimentation rates 

ranged between0.03�2.20 g sediment cm-2 yr-1 [Kuzyk et al., 2017]. As MPB primary 

production seems to be affected by sediment accumulation in shallow coastal regions of 

both polar Oceans [Woelfel et al., 2008; section 3], increased sedimentation rates could 

lead to a significant reduction or even a complete suppression of MPB primary 

productivity in the Southern and Arctic Ocean. 
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Within this thesis, the impact of secondary effects on MPB primary production was 

investigated. However, above-mentioned secondary effects may also affect macroalgae 

and pelagic primary production, which needs to be considered to understand the effects 

particle release on polar primary production in shallow coastal polar regions on 

ecosystem level. Polar macroalgae, as well important primary producers in shallow 

coastal polar regions [section 1], have also been reported to be well adapted to low light 

conditions [Gómez et al., 2009]. Therefore, again it is unlikely that an increased turbidity 

is responsible for a reduced macroalgae primary production. Particles may occasionally 

cover the blades of macroalgae, but hydrodynamic processes and the associated 

induced movements of the blades frequently shake free the majority of accumulated 

sediment [Roleda et al., 2008] with only long-term sediment coverage (>16 days) known 

to damage the photosynthetically apparatus of macroalgae [Roleda and Dethleff, 2011]. 

Therefore, a direct effect on the macroalgae primary production due to increased particle 

exposure at polar coasts is unlikely. However, sedimentation affected the depth 

distribution and diversity of macroalgae and prohibited the recruitment and early 

development stages of macroalgae [Spurkland and Iken, 2011; Bartsch et al., 2016; 

Zacher et al., 2016; Traiger and Konar, 2018]. This impact on early development stages 

likely reduces the contribution of macroalgae primary production to the total polar 

primary production. On the other hand, sedimentation may increase the areas where 

MPB communities are able to establish [section 4]. Hence, the contribution of the MPB 

primary production to the total primary production may increase, in case sedimentation 

rates stay moderate [section 3]. 

Phytoplankton primary production in polar regions may not be impacted by an 

increased particle release, contrasting to the benthic primary producers. Again, most 

species have been reported to be generally adapted to low light conditions [Kirst and 

Wiencke, 1995; Lacour et al., 2017]. Aside from particle release, melting glaciers and 

permafrost soils release also large amounts of nutrients and iron into the marine 

environment [Monien et al., 2014; Vonk et al., 2015; Monien et al., 2017]. This may 

enhance phytoplankton primary production in shallow coastal polar regions [Schloss, 

2017; Kim et al., in press]. Such a hypothesis is supported by findings of Pabi et al. 

[2008], which determined the highest primary production values at arctic estuaries, and 
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by Klöser et al. [1994], which observed higher primary production in the sedimentation 

plume at a glacial river runoff. A boost in MPB or macroalgae primary production due to 

the increased availability of nutrient is, however, unlikely. Their reduction in primary 

production is a result of a light suppression [section 3] and a prohibited settling success, 

respectively [Spurkland and Iken, 2011; Bartsch et al., 2016; Zacher et al., 2016; Traiger 

and Konar, 2018], both caused by particle cover. 

The described impact on polar primary production is limited to the summer season, as 

glacial and permafrost soils melt intensity undergo seasonal changes accompanied by a 

seasonal change in intensity of the particle and nutrient release [Schloss et al., 1999; 

Fisher et al., 2012; Deregibus et al., 2016; Monien et al., 2017]. Other factors influencing 

the distribution of particles in the polar shallow coastal areas may vary on daily scales 

and are influenced by the local current system, current speeds, wind speeds and wind 

directions [Klöser et al., 1994]. As a result, the spatial and seasonal limitations of glacial 

and permafrost soil melt impact on polar primary production is difficult to assess from 

observations and perhaps local models potentially illuminate the processes more 

succinctly. 

7.1.2 Effects of particle release on benthic mineralization in shallow 

coastal polar regions 

The release of particles effects primary production in shallow coastal polar regions 

and thus, a main process in the biological carbon cycle. The second main process in the 

biological carbon cycle is the mineralization of organic carbon. Owing to the relationship 

between primary production and benthic mineralization [section 4; section 7.3] and due 

to the direct impact of released particles on benthic fauna biomass, density and structure 

[Pasotti et al., 2015; Sahade et al., 2015; Lagger et al., 2017], it was investigated 

whether particle release by glacial and permafrost soil melt also affects benthic 

mineralization. 

In Potter Cove (Antarctic), shallow coastal benthic mineralization was affected by 

glacial melt-related particle release and the effects of the associated sedimentation 

[section 4]. Compared to a location impacted by low sediment accumulation rates, a 

30% enhanced benthic mineralization was observed at a location impacted by 
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intermediate sediment accumulation rates; whereas a 40% reduced benthic 

mineralization was observed at a location impacted by high sediment accumulation 

rates. Thereby, the second hypothesis of this thesis, that glacial melt-related particle 

release affects the benthic mineralization in the shallow coastal Southern Ocean, was 

confirmed. This pattern was explained by the physiological reactions of the dominating 

macrofauna [section 4]. As manuscript II was the first that addressed the topic of the 

impact of particle release on shallow, coastal benthic community mineralization in the 

Southern Ocean, the results can only be compared with studies from other shallow 

coastal locations. 

In the Norwegian Fanafjorden, benthic mineralization in 60�90 m water depths 

seemed to be not impacted by increased particle fluxes but was positively correlated 

with the particulate organic carbon content [Wassmann, 1984]. This may explain the 

increased mineralization at Creek in Potter Cove, besides the physiological reaction of 

the present macrofauna on sedimentation [section 4]. The close-by river runoff at Creek 

supplied nutrients and iron to Potter Cove [Monien et al., 2014; Monien et al., 2017] 

which enhanced primary production in the turbidity plume at Creek [Klöser et al., 1994] 

and led to an increased organic carbon supply (indicated by highest CPE values at 

location Creek) [section 4]. Hence, benthic mineralization can increase under moderate 

sedimentation rates and if more organic particles are provided [Wassmann, 1984; 

section 4 (mineralization at location Creek)]. 

At the Faroe Islands, the lowest total oxygen uptake was measured in months with 

the highest total particulate material flux (water depths: 20�60 m). However, the diffusive 

oxygen uptake did not show particularly marked variations throughout a year [Norði et 

al., 2018]. The diffusive to total oxygen flux ratio expresses the microbial contribution to 

the total mineralization [Glud, 2008]. As the microbial mineralization was stable during 

the investigated time period, the variation in the total mineralization was caused by the 

benthic fauna. Thus, the study of Norði et al. [2018] confirmed that the benthic fauna can 

react with suppressed respiration rates (and the associated reduced mineralization 

rates) in periods when a high particle flux is present. Therefore, benthic mineralization 

can decrease under high sedimentation rates [Norði et al., 2018; section 4 

(mineralization at location Isla D)]. 
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Particles released by glacial melt were >90% inorganic [Khim et al., 2007] and thus 
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organic particles, resulting from boosted primary production in the water column 

[Schloss, 2017; Kim et al., in press], might balance 
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result in higher food availability for the benthic macrofauna. This would result in 

increased mineralization rates [section 4 (at location Creek)]. At high sedimentation 

rates, however, suspension feeders and deposit feeders, which are the dominating 

benthic feeding modes in the area [Levinton, 2009], had to ingest more particles to cover 

their organic carbon demand [Lopez and Levinton, 1987]. This may lead to a reduction 

of macrofauna densities [Ellis et al., 2017]. ���������
�����	��������
��������������
�
����	��

place at the glacial front, where macrofauna mortality by ice scouring further lowers 

macrofauna densities and biomass [Pasotti et al., 2015] and thereby benthic 

mineralization [section 4]. Therefore, the inorganic carbon proportion of glacial melt-

related particle release can lead to decreasing benthic mineralization, if not balanced out 

by organic input from pelagic primary production. 

Particles released by permafrost soil melt are 65�93% inorganic and therefore can 

contain a higher percentage of organic material compared to glacial melt-related 

particles [Rachold et al., 2004; Khim et al., 2007]. When the proportion of organic 

material in the water column and at the sea floor increases, then benthic mineralization 

by suspension and deposit feeders is likely enhanced as well [Wassmann, 1984; 

section 4]. However, the proportion of organic particles released by permafrost soil 

depends on several factors, such as permafrost region, river discharge and rivers 

current speed [Vonk et al., 2015] and thus shows great spatial variation. For example, 

the organic proportion of particles in the river discharge to the Barents Sea and the Kara 

Sea have been reported to be ~30%, whereas discharges to the Chukchi Sea were 18% 

[Rachold et al., 2004]. The organic proportion of particles in the river discharge to the 

East Siberian Sea was only 7% and thus, comparable to the organic proportion of 

particle released by glacial melt [Rachold et al., 2004; Khim et al., 2007]. Thus, 

permafrost soil melt-related particle release can lead to both, increasing or decreasing 

benthic mineralization, depending on location, sedimentation rates, and proportion of 

organic content. 
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Suspension and deposit feeders dominate the macrofauna community in Southern 

and Arctic Ocean ecosystems [Saiz-Salinas et al., 1998; Starmans et al., 1999; 

Jørgensen et al., 2017; Kokarev et al., 2017; Jansen et al., 2018] and thus are mainly 

responsible for the mediated benthic mineralization community [Blackburn, 1987; Glud 

et al., 2016; Norði et al., 2018; section 4]. The bivalve L. elliptica was the dominant 

suspension feeder in Potter Cove (Antarctic) [Momo et al., 2002, section 4] and showed 

a reduced respiration under high sedimentation rates [Philipp et al., 2011]. This 

response is similar to those observed in other suspension-feeding bivalve, ascidian, 

porifera and bryozoan species [Summers et al., 1996; Kowalke et al., 2001; Philipp et 

al., 2011; Torre et al., 2012; Bell et al., 2015]. In addition, deposit-feeding bivalves and 

polychaetes [Levinton, 2009] are also affected by increasing particle release 

[Wlodarska-Kowalczuk et al., 2005]. Furthermore, increasing sediment loads in the 

water column have been reported to lead to an enhanced production of pseudofaeces in 

suspension and deposit feeders [Bayne et al., 1993; Navarro and Widdows, 1997]. 

Pseudofaeces production is associated with mucus production, which is a carbon-rich 

polysaccharide [Jørgensen, 1990]. Therefore, increased sedimentation rates may also 

lead to an enhanced release of dissolved organic carbon, which is able to stimulate the 

microbial loop and growth of primary producers [Pomeroy, 1974; Cognie and Barille, 

1990]. In conclusion, the observed changes in the benthic mineralization due to an 

increased discharge of particles to the marine environment is likely to impact shallow 

coastal benthic mineralization in both the Southern and the Arctic Ocean. 

7.2 The impact of sea ice on polar benthic mineralization 

Many studies investigated, whether changing sea-ice conditions, such as sea-ice 

thinning, longer sea-ice free periods, an increased occurrence of melt ponds, a 

decreased sea-ice concentration over time, and a retreated summer sea-ice extent may 

influence primary production in polar ecosystems [Comiso, 2002, 2012; Rösel and 

Kaleschke, 2012; Arrigo, 2013; Fernández-Méndez et al., 2015; DeJong et al., 2018; 

Leeuwe et al., 2018; Lowry et al., 2018]. As primary production and benthic 

mineralization, both important processes within the biological carbon cycle, are 

connected with each other [Graf, 1989; Boetius and Damm, 1998; Wenzhöfer and Glud, 
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2002; section 5; section 7.3], it is likely that benthic mineralization is also impacted by 

the occurrence of sea-ice. 
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reduced light availability and nutrient supply [section 5]. The resulting suppressed 

primary production led to a suppressed benthic mineralization in water depths between 

1000 m and <2000 m. In water depths #2000 m, the influence of sea ice is progressively 

reduced and water depth, as a proxy for the loss of organic carbon by pelagic 

mineralization, became dominant [section 5]. The benthic mineralization values 

presented in section 5 are the first results of a simultaneous assessment of deep-sea 

region of the western and eastern Fram Strait. The determined benthic mineralization 

rates are comparable to results of other studies, which conducted their measurements 

either in the western or the eastern Fram Strait [Piepenburg et al., 1997; Sauter et al., 

2001; Cathalot et al., 2015]. This confirms the reliability of the performed measurements. 

The results presented in section 5 thereby supported the third hypothesis of this thesis, 

that the presence of sea ice impacts polar deep-sea benthic mineralization patterns. 

In section 5, benthic mineralization between a low and highly sea-ice covered area 

could only be compared in water depths between 1000�2500 m. Results from the 

Laptev Sea indicate that sea-ice cover also suppresses benthic mineralization in 

shallower water depths of <1000 m [Boetius and Damm, 1998]. The impact of sea ice on 

benthic mineralization at the Arctic shelfs (<200 m), however, seems to be low, as 

similar benthic mineralization values were found at the shelf of the eastern Fram Strait 

(permanently sea-ice covered) and the Barents Sea shelf region (frequently sea-ice free) 

[Bourgeois et al., 2017]. As primary production is contrasting in the shelf areas of the 

eastern Fram Strait and the Barents Sea [Pabi et al., 2008], the similarity in benthic 

mineralization might be a result of advective food transport processes, which is 

supported by the complex Fram Strait current system [Hartmann et al., 2016]. 

Nevertheless, the impact of sea ice on the benthic mineralization seems to be restricted 

to water depths of >200 m to <2000 m. 

Benthic mineralization rates, however, do not solely depend on primary production 

and water depth but also on the benthic organisms. The microbial community 

contributed ~80% to the total mineralization (DOU/TOU), which is even more than in the 
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Atlantic Ocean [Wenzhöfer and Glud, 2002; section 5]. Hence, the observed pattern in 

benthic mineralization probably reflects effects of sea-ice cover on the microbial 

community. However, the prokaryotic densities did not show differences between the 

western and the eastern Fram Strait, such as the benthic mineralization. Benthic 

microbial biomasses and benthic prokaryotic community structures, factors which may 

explain the differences in the benthic mineralization patterns of high and low sea-ice 

covered areas, have been to date only investigated in the eastern Fram Strait [Jacob et 

al., 2013] but not in the western Fram Strait. The macrofauna community structure may 

also influence benthic mineralization [Brey, 2010]. And, indeed, the macrofauna 

community differed considerably across water depths of 1000�2500 m between the 

highly sea-ice covered western and the low sea-ice covered eastern Fram Strait 

[section 5]. However, the faunal community only contribution ~20% to the total benthic 

mineralization [section 5] and thus can only explain a small proportion of the differences 

between the benthic mineralization in the western and eastern Fram Strait. An additional 

factor, which influences benthic mineralization, is bioturbation [Mermillod-Blondin et al., 

2004; Braeckman et al., 2010; Quintana et al., 2015], represented by BPc [section 5]. 

BPc was well correlated with benthic mineralization rates, which indicated its likely 

impact on the process. The influence of bioturbation on benthic processes was also 

found at continental margins in the Greenland Sea [Graf et al., 1995], where food was 

transported to up to 9 cm sediment depth within a few weeks [Graf, 1989]. However, 

deep-sea sediments in polar regions are well oxygenated due to the higher oxygen 

concentrations often found in the bottom water, when compared to other Oceans [Seiter 

et al., 2005]. Furthermore, the high oxygen penetration depths of >5 mm reported in 

water depths of >1000 m [Boetius and Damm, 1998; Donis et al., 2016; section 5] also 

indicate a profound oxygenation of the sedimentary sea floor. Therefore, the impact of 

bioturbation on the benthic mineralization rates might be lower compared to less 

oxygenated regions such as the North Sea [Braeckman et al., 2010] or the Brazilian 

coast [Quintana et al., 2015]. Nevertheless, the presence of sea ice impacts deep-sea 

benthic mineralization patterns in the Arctic Ocean. Whether the suppressed primary 

production is solely responsible for the reduced benthic mineralization in sea-ice 

covered areas or if also differences in the microbial community were responsible, could 

not be identified by this thesis and would need further investigations. 
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As highlighted above, the impact of the presence of sea ice on deep-sea benthic 

mineralization is restricted to water depths of >200 m to <2000 m and thus to the 

continental margins. In the Arctic Ocean, the continental margins encompass 30% of 

entire Ocean [Smith, 2010]. In contrast, the Southern Ocean is dominated by water 

depths >2000 m [Arndt et al., 2013] and the continental margin only encompasses 2% of 

the entire Southern Ocean [Smith, 2010]. Thus, the effect of sea-ice cover on deep-sea 

benthic mineralization might substantially impact organic carbon cycling in the Arctic 

Ocean, whereas the impact on the organic carbon cycle in the Southern Ocean might be 

low. However, further investigations are needed to verify the found pattern of a 

suppressed benthic mineralization in water depths of >200 m to <2000 m in further 

regions of the Arctic Ocean and in the Southern Ocean. 

7.3 Relationships of inter-dependent abiotic and biotic factors with 

benthic mineralization 

Holistic ecological studies require the linking of structural and functional ecosystem 

components [Odum, 1962, 1968]. The former refers to the quantity and distribution of 

present biota and abiotic factors, while the latter refers to the energy and material flow 

and the regulation of both by the physical environment and organisms [Odum, 1968]. As 

a consequence, high sampling and measurement effort is necessary to obtain a holistic 

snapshot of an ecosystem. Holistic snapshots were rarely taken in remote regions such 

as the shallow coastal Southern Ocean, where strong winds might prohibit the 

necessary dives to deploy measurement devices or the Arctic deep sea, where sea-ice 

cover might prevent sampling. The studies presented in section 4 and 5 belong to this 

type of study and addressed the second objective of this thesis, the identification of key 

parameters influencing benthic mineralization in polar ecosystems. 

The holistic benthic ecosystem summer snapshot of the Fram Strait (Arctic deep sea, 

1000�2500 m water depth) revealed that sea-ice cover and water depth were 

independent abiotic factors influencing benthic mineralization [section 5]. However, both 

parameters were considered as proxies. Sea-ice cover represented a suppressed light 

availability and, owing to the current conditions in the Fram Strait (nutrient-richer Atlantic 
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water in the east, compared to nutrient-poorer polar waters in the west), also a reduced 

nutrient supply [Menlay, 1995]. As a result, sea-ice cover mirrored the primary 

production pattern in the Fram Strait [Pabi et al., 2008] and thus, was used as a proxy 

for primary production. Water depth represented the loss of organic carbon in the 

pelagial. During sedimentation, organic particles might be ingested by zooplankton 

species and might be mineralized in the water column [Chisholm, 2000; Christensen, 

2000; Sakshaug, 2004]. Both ingestion and mineralization go along with the reduction of 

organic carbon. Therefore, water depth was considered as a proxy for the amount of 

food and the food quality that reached the sea floor. Thus, both factors combined, sea-

ice cover and water depth, had a major impact on the benthic ecosystem in the Fram 

Strait and thereby on the benthic mineralization [section 5]. 

Similar to the found relationships in the Fram Strait [section 5], the independence of 

sea-ice cover and water depth was also reported in late summer for the Laptev Sea 

(37�3427 m water depth) [Boetius and Damm, 1998]. In addition, Piepenburg et al. 

[1997] also revealed correlations of inter-dependent abiotic and biotic factors with 

benthic mineralization in the western Fram Strait (40�515 m water depth), but primary 

production was not considered. Assuming sediment pigments content as another proxy 

for surface primary production, a strong correlation between benthic mineralization with 

primary production was revealed by Piepenburg et al. [1997], with water depth as a less 

important determining factor. This supports the finding presented in section 5 that water 

depth is of less importance for the benthic mineralization in highly sea-ice covered 

areas, such as the western Fram Strait. 

The holistic benthic ecosystem summer snapshot of Potter Cove (6�9 m water depth) 

[section 4] revealed that benthic mineralization was positively and well correlated with 

sediment-bound chlorophyll a concentration and macrofauna biomass (excluding 

L. elliptica) and negatively with turbidity in the water column. There is no other Antarctic 

study available using a similar approach to link inter-dependent abiotic and biotic factors 

with benthic mineralization [section 4]. Therefore, a comparison of the results with other 

Antarctic locations is not possible. However, the single link of the positive correlation of 

benthic mineralization with organic matter (equivalent to Chl a or CPE) was also 

identified by Nedwell et al. [1993] for Antarctic Signy Island (South Orkney Islands). 
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Benthic mineralization is globally also positively correlated with benthic biomass and 

bioturbation [Glud et al., 1994; Boetius and Damm, 1998; Wenzhöfer and Glud, 2004; 

Braeckman et al., 2010; Ruhl et al., 2014; Quintana et al., 2015]. Therefore, it can be 

assumed that the observed correlations are reliable. 

Key parameters and inter-dependent relations, which impact on benthic 

mineralization, however, differ strongly on large spatial scales. Organic matter supply 

and sediment composition were identified as main factors influencing the benthic 

ecosystem in the Arctic Laptev Sea [Boetius and Damm, 1998], which partly contrasts 

with findings from Fram Strait [section 5]. Furthermore, CPE and TOC were independent 

of each other in the Laptev Sea, whereas benthic mineralization was negatively 

correlated with sea-ice cover [Boetius and Damm, 1998]. In the Fram Strait, however, 

CPE and TOC were highly positively correlated, food supply (Chl a, TOC, and organic 

carbon) were negatively correlated with sea-ice cover, and benthic mineralization was 

negatively correlated with water depth [section 5]. In the southeastern Beaufort Sea 

(47�577 m water depth), benthic mineralization was positively correlated with water 

depth, while chlorophyll a was negatively correlated with benthic mineralization 

[Link et al., 2013b]. At the Saanich Inlet and its opening to the Pacific at the temperate 

west coast of Canada (97�301 m water depth), benthic mineralization was positively 

correlated with temperature and bio-irrigation, but negatively with prokaryotic 

abundances [Belley et al., 2016; Belley and Snelgrove, 2016]. Surprisingly, benthic 

mineralization was found to be independent of water depth and food quality [Belley et 

al., 2016; Belley and Snelgrove, 2016]. In Potter Cove [section 4], benthic mineralization 

was positively and well correlated with chlorophyll a and macrofauna biomass (excluding 

L. elliptica) and negatively with the turbidity in the water column. It should be highlighted, 

that in Potter Cove sea-ice cover only occurs during autumn and winter [Schloss et al., 

2012] and that water depth was similar at each of the investigated locations. Therefore, 

these parameters were not considered, which makes this study less immediately 

comparable with the Arctic studies. Nevertheless, the parameter that correlated best 

with benthic mineralization changed at each of the studied locations. Consequently, a 

generalized assumption on the relationships between inter-dependent ecosystem 
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components and processes influencing benthic mineralization may bias global benthic 

mineralization models. 

To create a holistic snapshot of an ecosystem, the parameters controlling the key 

processes within the ecosystem carbon cycle should be considered. Based on the 

results of this thesis, an appropriate set of parameters including carbon fluxes, carbon 

pools, and inter-dependent carbon cycle controlling parameters can be recommended to 

create such a holistic ecosystem snapshot (Table 7.1). These snapshots can either 

explain changes on spatial [Boetius and Damm, 1998; Link et al., 2013b] or temporal 

scales [Belley et al., 2016; Belley and Snelgrove, 2016]. To model an ecosystem, which 

is a major aim in ecology [Bick, 1999], both temporal and spatial changes need to be 

included. A frequent repetition of holistic ecosystem snapshots at one location might 

produce data suitable for integration into a simple but realistic ecosystem model. Such a 

model would indicate whether the controlling parameters undergo seasonal changes 

and would give a very detailed insight in pelagic-benthic and benthic-pelagic coupled 

relations, which is of great value for understanding ecosystems and can be used to 

predict future ecosystem developments. 

Table 7.1. Recommended list of ecosystem carbon cycle components and processes, its controlling 
factors and proxies or measurable parameters, to create a holistic ecosystem snapshot. 

Carbon cycle component Controlling factor Proxy or measurable parameter 

Primary production 

Light availability 
Sea-ice cover, turbidity, sedimentation, in situ 

PAR 

Nutrient availability Nutrient concentration in the water column and 
river runoffs 

- 
Oxygen flux, carbon flux, change of Chl a 

concentrations or other pigment concentrations 
over time, depletion of nutrients over time 

Primary producer Light availability, nutrient supply 
Chl a concentration, algae cell density, algae 

biomass 

Pelagic carbon 
mineralization 

Primary production, time for 
vertical carbon flux Water depth, currents 

- Oxygen uptake or DIC release of sinking 
particles 

Available benthic food Primary productivity, pelagic 
mineralization 

Chl a, CPE, DIC, TOC, DOC 

Carbon flux mediating biota Available food Biomass or density of prokaryotes, meiofauna, 
and macrofauna 

Benthic carbon 
mineralization 

Available benthic food, carbon 
flux mediating biota Oxygen flux, carbon flux, nutrient fluxes 

Seasonality Time, food quantity and quality 
Temperature, Chl a, CPE, TOC, organic matter, 

biomass 
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Tools to identify inter-dependent abiotic and biotic factors within the organic carbon 

cycle within this thesis and by other studies were a principal component analysis (PCA) 

and a redundancy analysis (RDA) [Boetius and Damm, 1998; Link et al., 2013b; Belley 

et al., 2016; Belley and Snelgrove, 2016]. The data acquisition and data preparation 

prior to the PCA or RDA differed among the studies. In contrast to Boetius and Damm 

[1998], well-correlated parameters were merged prior to the PCA in section 4 and 5 to 

strengthen the final output. Furthermore, satellite-based mean sea-ice coverage data 

were used, averaged over the period before sampling, while Boetius and Damm [1998] 

used visual estimates on arrival. The RDA of Link et al. [2013b] did not include 

parameters such as sea-ice cover, sediment grain size or benthic biomass. Therefore, 

an adjustment of the PCA procedures of Boetius and Damm [1998] to the approach 

presented in section 4 and 5 and the incorporation of more parameters into the RDA of 

Link et al. [2013b] might have changed their output substantially. Furthermore, the 

parameter ordination in a PCA or an RDA is based on linear correlations [Buttigieg and 

Ramette, 2014]. However, whether there is a causal relationship between two correlated 

parameters, whether this relationship is actually linear, exponential or power law and 

whether the relationship between two correlated parameters is significant, cannot be 

elucidated by a PCA. In summary, PCA and RDA are suitable tools, by which linkages of 

inter-dependent abiotic and biotic factors within the biologcial carbon cycle can be 

identified. Though, further investigations are necessary to prove the reliability of these 

linkages [Belley et al., 2016] and a direct comparison of results of different studies is 

difficult and has to be interpreted with caution. 

7.4 Potential future developments in polar carbon cycles due to 

changing ice conditions and related secondary effects 

7.4.1 A two-step scenario for the Southern Ocean 

As highlighted in the introduction of this thesis, processes and components of the 

biological carbon cycle in the Southern Ocean are impacted by climate change-induced 

alterations. A year-round data acquisition in the Southern Ocean is restricted to a limited 

amount of locations [Takahashi et al., 2009; Sabine et al., 2013] and thus, modeled 
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predictions of future carbon flux dynamics need to be assessed carefully. Therefore, I 

will outline a future scenario of potential changes regarding the biological carbon cycle in 

the Southern Ocean based on current knowledge from modeled and observational 

studies. 

In a first step, the sea-ice concentration in the Southern Ocean further decrease and 

shelf ice further loose volume and thickness [Paolo et al., 2015; Gutt et al., 2015]. These 

changes likely lead to an increased light availability in the upper Southern Ocean. As the 

continental margin and the shelf regions are well supplied by nutrients and iron due to 

upwelling processes and sediment resuspension associated with ice scouring, an 

increase in pelagic primary productivity is likely [Arrigo et al., 2008a]. As a follow-up 

consequence, benthic biomass is likely to increase [Fillinger et al., 2013; Barnes et al., 

2016], which is related to an enhanced benthic mineralization. This first step may be 

accompanied by an increase in the ice scour frequency by icebergs [Barnes et al., 

2009]. The latter might counteract the biomass increase but favor resuspension of 

nutrients and might result in a locally impoverished benthic macrofauna community and 

higher carbon export fluxes from the pelagic primary production. 

As a second step, shelf ice will turn into tidal glaciers and permafrost soil will start to 

melt [Barnes et al., 2009; Lee et al., 2017]. This will result in an increasing particle 

discharge. The related additional iron supply may further enhance pelagic primary 

production on larger spatial scales [Monien et al., 2017]. In addition, newly ice-free 

areas will be inhabited by primary producers and heterotrophic consumers 

[Deregibus et al., 2016; Lagger et al., 2017; Seefeldt et al., 2017]. MPB and macroalgae 

primary production, however, will be suppressed due to increased sedimentation rates 

[section 3; section 7.1]. Whether enhanced pelagic primary production is sufficient to 

counterbalance the reduced MPB and macroalgae primary production, as well as to 

cover the increased benthic carbon demand is debatable. Nevertheless, under the 

assumption that the results from manuscript II of this thesis are transferable to other 

coastal regions in the Southern Ocean, benthic mineralization might drop directly at 

glacial fronts by ~40% but increase at some distance (hundreds of meters) to the glacial 

front by ~30% [section 4]. With time, glaciers might redraw completely onto land and 

thus secondary effects of glacial melting will cease. A re-establishment of a more 
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diverse and less patchy macrofauna community, as assumed by Pasotti et al. [2015], is 

unlikely, as the disturbance by secondary effects of permafrost melting remains. Benthic 

mineralization at the Southern Ocean shelf and in the deep sea is likely to remain 

constant at this development step for two reasons. First, an enhanced pelagic primary 

production does not necessarily lead to an increased vertical carbon flux, as the pelagic 

food web may take up a much of the enhanced primary production [Kim et al., 2016]. 

Second, Southern Ocean benthic fauna does not react on increased food supply with 

increased metabolism or increased benthic biomass [Mincks et al., 2005; Smith et al., 

2006]. Therefore, only a reduction in food supply would affect benthic remineralization in 

shelf regions. 

The described potential future Southern Ocean scenario may take place within the 

next 100 years but with significant uncertainties in the details. Alterations in primary 

production and benthic mineralization patterns will mainly occur in the summer seasons 

when melting discharge is highest and sea-ice extent lowest. The retreat of shelf ice and 

glaciers is spatially limited to the Antarctic Peninsula [Lee et al., 2017]. Large-scale 

investigations on permafrost soil melt are largely missing from the literature and only 

reported for Casey Bay (70.5ºS, 12ºE), the McMurdo Sound (74�78ºS, 165ºE) and the 

Antarctic Peninsula (55�72ºS, 45�70ºW) [Barnes et al., 2009; Pablo et al., 2018]. In 

general, extensive large-scale variations in primary production are likely given to the 

heterogeneity of controlling factors [Priddle et al., 1992]. In addition, there are further 

existing or upcoming threats such as increasing water temperature and ocean 

acidification, which will likely also impact on primary production patterns and biodiversity 

[Gutt et al., 2015] and thereby change benthic mineralization rates. 

7.4.2 The sea-ice free Arctic Ocean in summer 

Similar to the Southern Ocean, a year-round data acquisition in the Arctic Ocean is 

also restricted to a limited amount of locations [Wassmann et al., 2011; Bourgeois et al., 

2017]. Based on the results of section 5 and on results of other modeled and 

observational studies, I will outline a future scenario of potential changes regarding the 

biological carbon cycle in a sea-ice free Arctic Ocean. 
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The Arctic Ocean is predicted to become sea-ice free in summer months [Arzel et al., 

2006; Wang and Overland, 2012; Vaughan et al., 2013]. In addition, air temperature 

may increase by 8°C [Wassmann, 2011]. With this development, the habitat currently 

utilized by sea-ice algae will disappear [section 7.1]. With the abolition of the sea-ice 

algae primary production, the available nutrients could be used for pelagic primary 

production. Photoinhibition, owing to the increased light intensity, is unlikely, as pelagic 

Arctic primary producers can cope with light intensities of >400 μmol photons m-2 s-1 

[Fernández-Méndez et al., 2015]. Further, the increased primary production along the 

MIZ will be temporally limited. In parallel, more particles and nutrients will be transported 

into the Arctic Ocean by glacial and permafrost soil melt [AMAP, 2012]. This may reduce 

the primary production of MPB and macroalgae at the shallow coasts, but favor pelagic 

primary production across the Arctic shelf within a few kilometers [section 7.1]. If pelagic 

primary production is finally substantially higher compared to present conditions is 

debatable, as pelagic primary production in these areas is already among the highest in 

the Arctic Ocean [Pabi et al., 2008]. Nevertheless, more nutrients will enter the Arctic 

Ocean through the Bering and Barents Sea [Neukermans et al., 2018; Woodgate, 2018], 

which will lead to an increased primary production in the Chukchi and Beaufort Sea, 

across the Barents Sea shelf and maybe at its continental margins [Arrigo and Dijken, 

2015; Harada, 2015; Hunt et al., 2016]. An increase in the stratification of the surface 

layers is predicted for the central Arctic Ocean, owing to sea-ice melt and increased 

precipitation [McLaughlin and Carmack, 2010; Bintanja and Selten, 2014; Bracegirdle et 

al., 2015]. This would hamper nutr�	��� �����"� �
� ��	� 
�	��
�� ������	� However, 

increasing wind speeds are also predicted for the central Arctic Ocean [Spreen et al., 

2011], which would frequently disturb the stratification development and may promote 

the upwelling of nutrients, which in turn would enhance primary production. In addition, 

the predicted in increased air temperature and advective transport from the Arctic shelfs 

may supply further nutrients to the central Arctic Ocean [Wassmann, 2011; Popova et 

al., 2013]. Therefore, an at least moderate increase of primary productivity is likely for 

the central Arctic Ocean. 

Benthic mineralization at the coast might drop due to the high sedimentation rates 

within a spatial scale of hundreds of meters [section 4]. Beyond the immediate coastal 
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area, enhanced particulate organic carbon availability is likely to be available for the 

benthos, owing to the discussed increase in primary production [section 7.1]. This and 

the physiological reaction of suspension and deposit feeders on intermediate 

sedimentation [section 4] might lead to an increase in benthic mineralization at the Arctic 

shelfs. The Arctic deep-sea benthic mineralization will be water depth dependent 

[section 5]. If the deep-sea benthic mineralization will increase, owing to the described 

enhanced primary production, is debatable. On the one hand, the phytoplankton 

community may adapt by favoring smaller species (nanoplankton) which are more 

efficient in low nutrient conditions [Ardyna et al., 2013]. Such a change would be 

accompanied by a slower particle sinking speed and in turn, more carbon would be 

mineralized in the pelagial. On the other hand, the retreat and loss of sea ice are 

accompanied by a volumetric increase of eddies [Watanabe et al., 2014], which would 

result in an increased vertical carbon flux [Harada, 2015]. The results in section 5 

however, suggest that an increase in primary production would not impact benthic 

mineralization in water depths deeper than 2000 m. 

The described scenario for the sea-ice free Arctic Ocean may develop by the mid of 

the 21st century [Arzel et al., 2006; Wang and Overland, 2012; Vaughan et al., 2013], 

and be limited to summer months. This scenario is accompanied by an early start of 

sea-ice retreat and therefore higher light intensities will reach the Arctic Ocean earlier in 

each year, which will likely result in an earlier spring bloom onset. If under-ice fauna and 

zooplankton life-cycles are not able to adapt to the new conditions, a mismatch between 

primary producers and grazers will appear [Ji et al., 2013]. This would lead to an 

increasing vertical carbon export in spring, which may favor an enhanced benthic deep-

sea mineralization during that season [Graf, 1989]. However, there are further existing or 

upcoming threats, e.g. increasing atmospheric and  water temperatures, changing wind 

patterns and wind speeds, and ocean acidification [IPCC, 2013]. These threats likely 

impact on primary production patterns and thus, on benthic mineralization rates. 
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8 Conclusion and outlook 

8.1 Conclusion 

Within this thesis, it was investigated whether polar carbon fluxes are impacted by 

secondary effects of changes in the polar ice conditions. In terms of carbon fluxes, the 

focus was set on a) primary production and b) benthic mineralization. The studied 

secondary effects included a) the reduced light availability due to an increased turbidity 

and related increased particle sedimentation caused by particle release of glacial and 

permafrost soil melt and b) the increased light availability owing to diminishing and 

retreating sea ice. The secondary effect of particle sedimentation impacts shallow 

coastal regions in the western Southern Ocean and the Arctic Ocean, while turbidity is 

assessed as a less important secondary effect. In addition, increased light availability 

mainly impacts the open ocean in the western Southern Ocean, the Beaufort Sea, the 

Chukchi Sea and the central Arctic Ocean. 

The increased turbidity reduces the light availability but does not impact primary 

production itself, owing to the strong low light adaption potential of polar primary 

producers. Nevertheless, MBP primary production can be totally suppressed when 

particles frequently cover the MPB community as more energy is needed for migration. 

Benthic mineralization is also impacted by sedimentation. However, whether 

sedimentation leads to an enhanced or reduced benthic mineralization depends on the 

quantity of particle sedimentation and the benthic supply with organic carbon by pelagic 

primary production. 
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With diminishing sea ice, the habitat for ice algae also diminishes and reduces the 

primary production contribution of ice algae to the total primary production in polar 

ecosystems. Increased light availability, owing to the diminishing and retreating sea ice, 

only results in an increased pelagic primary production, when also the nutrient supply 

increases. If the latter comes true, deep-sea benthic mineralization is expectable to 

increase only in water depth between 200 m and 2000 m. 

To summarize, the investigated secondary effect �sedimentation���������	
��
� 	����
�

on primary production and mineralization in shallow coastal polar regions, while the 

impact of the associated increased turbidity is assessed to be low. Diminishing sea-ice 

and associated secondary effects affect primary production and mineralization in deep-

sea polar regions only, if it is accompanied by an increase in nutrient supply. 

The uniqueness of this thesis lays in the holistic ecosystem approach. Most studies 

investigating climate change-related secondary effects focus on primary production, 

community structure, and faunal biomasses. The presented results in the manuscripts II 

and III [sections 4, section 5] go beyond that and are one of a few that also include 

benthic mineralization. In addition, the complex linkages of primary production, benthic 

biomass, benthic mineralization and controlling factors were also investigated. 

Therefore, this thesis gives a holistic ecological insight on carbon fluxes in polar 

ecosystems. 

In conclusion, this thesis closed the identified knowledge gaps of a) to which degree 

glacial melt-related particle release affects Southern Ocean MPB primary production in 

shallow, coastal areas, b) to which degree glacial melt-related particle release affects 

Southern Ocean benthic mineralization in shallow, coastal areas, and c) the impact of 

sea ice on polar deep-sea benthic mineralization patterns. Thereby, results of this thesis 

contribute to the development of future scenarios regarding the polar organic carbon 

flux, in case climate change-induced alterations in the cryosphere and related secondary 

effects continue. 
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8.2 Outlook 

The thesis, however, also left some questions unanswered or gained some new. In 

manuscript III [section 5], the revealed mineralization patterns in the Fram Strait could 

not be fully explained so far, as studies regarding the benthic microbial community are 

missing so far. In addition, knowledge on current velocities and current directions below 

300 m water depths would help to trace back vertical carbon fluxes in order to locate and 

��
	��
��
�����
�����
��
�������
����

�	
��������������� 

Potter Cove is located in the area of the fastest temperature increase in the Southern 

Ocean [Turner et al., 2005], which makes it an ideal field laboratory. In order to make 

reliable predictions for Southern Ocean coastal areas in case of continuing temperature 

increase and relate changes in the cryosphere and associated secondary effects, a 

model of Potter Coves ecosystem in terms of carbon fluxes should be developed. This 

will be a quite challenging task, but a basis is already given by Potter Coves food web 

model [Marina et al., 2017] and by primary production and benthic mineralization studies 

[Schloss et al, 1998, 2012; section 3; section 4]. As a next step, it should be determined, 

whether and when Potter Cove is an autotrophic or heterotrophic ecosystem. This 

includes the determination of a) the temporal changes in the MPB community structure 

and biomass, b) the in situ MBP primary production on spatial and temporal scales 

combined with sediment accumulation rates, c) the determination of area-specific 

macroalgae primary production, and d) the pelagic and benthic mineralization on 

temporal scales [Braeckman et al., in preparation]. Manuscript II [section 4] does not 

answer, whether sedimentation is the most influential factor shaping the small-scale 

spatial variability of biogeochemical fluxes in Potter Cove. To make a reliable statistical 

analysis on that question, a sufficient number of at least five locations in Potter Cove 

should be investigated regarding benthic mineralization, benthic community, and food 

availability. Thereby, each location has to be located along the sedimentation gradient. 

Additionally, this approach might allow the quantification of thresholds at which 

sedimentation rates benthic mineralization starts to increase and when it starts to drop. 

In addition, sediment trap data in a high spatial resolution are required to better 

understand the carbon sources and sinks and to better characterize the inorganic 

sedimentation. In that perspective, also carbon burial rates are missing. Furthermore, 
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the unimodal regression of benthic mineralization with increasing disturbance [section 4] 

is similar to the unimodal regression of biodiversity with increased disturbance [Grime, 

1973; Horn, 1975; Connell, 1978]. This raises the question, whether there is a general 

triangular relationship between biodiversity, mineralization, and disturbance. 

To model future developments of primary production and pelagic and benthic 

mineralization in polar regions as well as globally, especially under climate change-

related threats and associate secondary effects, long-term datasets with an appropriate 

temporal and spatial resolution are required. In polar regions, for example, such data are 

provided by the long-term observatory HAUSGARTEN (operated by AWI) and by 

stations run by the Ocean Networks Canada (http://www.oceannetworks.ca). Primary 

production data might be calculated from satellite data. However, due to technical 

limitations, primary production in and under sea ice, which contributes substantially to 

the total primary production in the Polar Oceans, cannot be calculated from satellite 

data. Therefore, a combination of remote and on-site measurements of primary 

production is mandatory. In addition, also microbial, meiofaunal and macrofaunal 

community data are required. This implies choosing a sampling approach which covers 

all relevant species in one sampling event and an appropriate number of replicates to 

allow smoother data analyzes. Regarding benthic mineralization, Bourgeois et al. [2017] 

provide a first reliable spatial model of the Arctic. Interestingly, the Arctic deep sea 

seems to be better investigated than the coastal shallow sites. Nevertheless, the study 

of Bourgeois et al. [2017] mainly provides a baseline of benthic mineralization and 

seasonal changes were only observable in few Arctic Ocean areas. The data coverage 

regarding benthic mineralization in the Southern Ocean is even worse. Only four studies 

(including manuscript II of this thesis [section 4]) are available regarding shallow coastal 

benthic mineralization and only one of the four includes a temporal resolution [Nedwell 

et al., 1993]. There are a few more studies available and upcoming on benthic 

mineralization at the Southern Ocean shelf [section 1; Holtappels et al., 2017; Link et al., 

2017]. However, the spatial and temporal resolution on benthic mineralization in the 

Southern Ocean is still too sparse to repeat the modeling approach of Bourgeois et al. 

[2017] for the Southern Ocean. Christensen [2000] modeled benthic deep-sea 

mineralization on a global scale in water depths >1000 m and included the Southern 
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Ocean. However, ground truthing measurements are missing. An appropriate tool to 

measure in situ total benthic mineralization, besides the described methods [section 2], 

is the Eddy covariance approach [Berg et al., 2003]. Owing to a better sensitivity to 

oxygen concentrations in currents [Donis et al., 2015], optodes instead of 

microelectrodes should be used [Chipman et al., 2012]. The great advantage of this 

method is its non-destructive use on soft, hard and heterogeneous sea floors in shallow 

and deep-sea regions [Berg et al., 2003; Berg et al., 2009; Attard et al., 2016] and its 

great catchment area of 10�100 m2 [Berg et al., 2007]. Especially in shallow coastal 

areas of polar regions, which are easier accessible in terms of logistical effort, the usage 

of the Eddy covariance approach is likely to lead to a fast increase of our knowledge 

about benthic mineralization on spatial scales with a good spatial resolution [Holtappels 

et al., 2017]. The reason, why the Eddy covariance approach is not used more 

frequently for ecological studies on all kinds of sea floors (soft sediment, rocks, corals, 

mixture of all three) might be the initial costs of ~60 k�, the additional required 

knowledge on hydrodynamics and transport processes in turbulent currents and an 

extensive data processing procedure (pers. comm. Moritz Holtappels, AWI). However, 

the costs are still 40% lower, compared to an autonomous benthic lander system (with a 

similar setup used in section 5). Furthermore, deployment and recovery can be made by 

hand and does not necessarily need great technical support, and with the latest 

technological improvements [Chipman et al., 2012] the obtained data are reliable and 

are in the same range as other and by now more established methods [Donis et al., 

2015, Glud et al., 2016]. 

In addition, the separated investigation of carbon cycle processes and components, 

e.g. only primary production or only benthic mineralization or only benthic biomass and 

structure, biases its understanding and hampers a holistic ecosystem snapshot of the 

carbon cycle. The project FRAM (https://www.awi.de/en/expedition/observatories/ocean-

fram.html) is a good example, how to overcome this bias. Satellites, ice-tethered 

platforms, AUVs and upwards profiling mooring devices observe surface processes. 

Moored particle traps, zooplankton observing devices, e.g. LOKI, and conductivity, 

temperature, velocity and water depth sensors observe water column process. 

Autonomous benthic landers, benthic crawlers such as the AWI TRAMPER and towed 



8 Conclusion and outlook 

 
184 

video-sleds obtain benthic data. Most of these systems can work year round and 

therefore allow the identification of temporal variabilities. Especially the rarely observed 

winter season, when barely any food supply takes place, is of great ecological interest. 

As also spatial scales are covered within FRAM, the final outcome will push forward our 

knowledge about the carbon cycle in the Arctic Fram Strait. A similar project in the 

Southern Ocean would even be of greater value. Climate change related implications, 

e.g. sea surface temperature increase, diminishing sea-ice cover, and glacial melt, were 

by now only observed in a restricted area of the Southern Ocean, but are predicted to 

extend [Barnes et al., 2009; Gutt et al., 2015]. Already existing long-term observatories 

such as LTER Palmer and McMurdo station (USA) or the IT17 (Italy) should be 

improved and extended regarding their used measurement technologies. The HAFOS 

project (Hybrid Antarctic Float Observation System) in the Weddel Sea combined with 

the usage of the non-destructive Eddy correlation approach for the determination of 

benthic mineralization would also be a suitable approach to get a deeper and (partly) 

holistic insight into the Southern Ocean carbon cycle. Indeed, a huge financial, 

technological and logistical effort is necessary to install and regularly maintain such 

infrastructures. The resulting data from the suggested projects however, would mark an 

important step towards a reliable holistic Southern Ocean ecosystem carbon cycle 

model and can be used as a baseline to compare with future data. 

Primary production and mineralization are processes based on cell internal reactions 

[section 1]. Therefore, it would be worth to investigate correlations of both processes 

with genetic activities e.g. via meta-proteomic and meta-transcriptomic analyzes. In 

combination with known correlations, such an approach would give a more detailed 

holistic ecosystem snapshot and connect the biological disciplines of genetics with 

ecology. 
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Appendix A: List of abbreviations 

AB   Amundsen Basin 
AFDW   Ash-Free Dry Weight 
ANOSIM  Analysis Of Similarity 
ANOVA  Analysis Of Variance 
AODC   Acredine Orange Direct Count method 
AWI  Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und 

Meeresforschung 
BPc   Bioturbation Potential of the benthic Community 
BS   Barents Sea 
bsf   below surface 
Corg   Organic carbon 
Chl a   Chlorophyll a concentration 
CPE   Chloroplastic Pigment Equivalents 
C-DOU  Carbon flux estimated from Diffusive Oxygen Uptake 
C-TOU  Carbon flux estimated from Total Oxygen Uptake 
DBL   Diffsuive Boundary Layer 
DIC   Dissolved Inorganic Carbon 
DOC   Dissolved Organic Carbon 
DOU   Diffusive Oxygen Uptake 
EG   East Greenland area 
EGC   East Greenland Current 
Fuco   Fucoxanthin concentration 
FDA   Fluorescein-Di-Acetate 
FRAM   Frontiers in Arctic marine Monitoring 
GS   Greenland Sea 
HAFOS  Hybrid Antarctic Float Observing System 
HG   HAUSGARTEN area 
HSC   Highly Sea-ice Covered area 
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KGI   King George Island 
LOKI   Lightframe On-sight Key-species Investigation 
LSC   Low Sea-ice Covered area 
LTER   Long-Term Ecological Research 
MDS   Multidimensional Scaling 
MIZ   Marginal Ice Zone 
MPB   Microphytobenthos 
MPB-C  Carbon content from  
MUC   Multiple Corer 
NB   Nansen Basin 
PAR   Photosynthetically Active Radiation 
PCA   Principal Component Analyzes 
Phaeo   Phaeophytin concentration 
POM   Particulate organic matter 
RAC   Return Atlantic Current 
RDA   ReDundancy Analyzes 
RQ   Respiration Quotient 
RuBisCo  Ribulose-1,5-Bisphosphate-Co-enzyme 
SB   Svalbard Branch 
SCUBA  Self-Containing Underwater Breathing Apparatus 
SF   Storfjorden 
SIMPER  SIMilarity PERcentage 
SPC   Spitsbergen Polar Current 
SV   Svalbard 
SWI   Sediment-Water Interface 
TC   Total Carbon 
TOC   Total Organic Carbon 
TIC   Total Inorganic Carbon 
TN   Total Nitrogen 
TOU   Total Oxygen Uptake 
YB   Yermak Branch 
WS   West Spitsbergen 
WSC   West Spitsbergen Current 
  



Appendix 

 
XLVII 

Appendix B: Data availability 

The data of manuscript II and manuscript III are stored at the PANGAEA� data publisher 

and are online available: 

Hoffmann, R., Braeckman, U., Wenzhöfer, F.: In situ and ex situ oxygen profiles and 

resulting diffusive oxygen uptake; in situ and ex situ total oxygen flux; benthic 

community density and biomass, bioturbation potential and solute exchange in the 

Hausgarten area, Arctic Fram Strait (2014/2015), PANGAEA, 

doi:10.1594/PANGAEA.883410, 2017. 

Hoffmann, R., Braeckman, U., Wenzhöfer, F.: In situ measured oxygen profiles in Potter 

Cove at the stations Faro, Creek and Isla D, PANGAEA, 

doi:10.1594/PANGAEA.885472, 2018. 

Hoffmann, R., Pasotti, F., Vázquez, S., Lefaible, N., Wenzhöfer, F., Braeckman, U.: 

Sediment properties, benthic biogenic compounds, benthic fauna density and 

biomasses, and benthic diffusive and total fluxes from three stations (Faro, Creek, 

Isla D) in Potter Cove, Antarctic. PANGAEA, doi:10.1594/PANGAEA.886232, 2018. 

The data of manuscript I will also be made available via the PANGAEA� data publisher 

as soon as the manuscript is submitted to the journal �������	�
�����
���	����	��	�� 
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Appendix C: Oral and poster presentations 

Oral presentations 

Braeckman, U., Pasotti, F., Hoffmann, R., Vázquez, S., Torstensson, A., Vanreusel, A., 

and Wenzhöfer, F.: Carbon cycling in shallow Antarctic benthic communities subject 

to glacier retreat, EGU Conference, 08.�13.04.2018, Vienna, Austria. 

Braeckman, U., Pasotti, F., Hoffmann, R., Vázquez, S., Torstensson, A., Vanreusel, A., 

and Wenzhöfer, F.: Carbon and nutrient cycling in shallow Antarctic communities 

subject to glacier retreat, 5th Nereis Park Conference, 08.�11.08.2017, Southampton, 

USA. 

Braeckman, U., Pasotti, F., Hoffmann, R., Vázquez, S., Torstensson, A., Vanreusel, A., 

and Wenzhöfer, F.: Unravelling the responses of shallow soft sediment assemblages 

to rapid glacier retreat in an Antarctic fjord: Carbon and nutrient cycling, XIIth SCAR 

Biology Symposium, 10.�14.07.2017, Leuven, Belgium. 

Holtappels, M., Hoffmann, R., Novak, C., Merz, E., Sahade, R., Wenzhöfer, F., and 

Richter, C.: Benthic oxygen fluxes in coastal waters at King George Island, XIIth 

SCAR Biology Symposium, 10.�14.07.2017, Leuven, Belgium. 

Hoffmann, R., Braeckman, U., Schewe, I., Krumpen, T., and Wenzhöfer, F.: Benthic 

remineralisation rates under contrasting sea-ice conditions in the deep Arctic Ocean, 

Goldschmidt Conference, 26.06.�01.07.2016, Yokohama, Japan. 

Hoffmann, R., Braeckman, U., Vázquez, S., Pasotti, F., Torstensson, A., and 

Wenzhöfer, F.: Antarctic biogeochemical fluxes influenced by melting glacier, 2nd 

European Conference on Scientific Diving, 08.�11.05.2016, Kristineberg, Sweden. 
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Poster presentations 

Hoffmann, R., Al-Handal, A.Y., Wulff, A., Deregibus, D., Braeckman, U., Quartino, M.L., 

and Wenzhöfer, F.: Potential primary production of microphytobenthos in the 

changing Potter Cove, confirmed for the Polar2018 Conference, 19.�23.06.2018, 

Davos, Switzerland. 

Hoffmann, R., Braeckman, U., and Wenzhöfer, F.: Implications of changing ice 

conditions on the benthic carbon remineralization in polar ecosystems, Helmholtz 

evaluation of the AWI by external reviewers, 22.03.2018, Bremerhaven, Germany. 

Merz, E., Hoffmann, R., Marchant, H.K., Lavik, G., Forster, S., and Wenzhöfer, F.: 

N-pathways in coastal sediments of Potter Cove, Antarctica,� KFT Symposium, 

02.�03.11.2017, Bremerhaven, Germany. 

Pasotti, F., Braeckman, U., Abele, D., Hoffmann, R., De Troch, M., Giovannelli, D., 

Manini, E., Monien, D., Sahade, R., Saravia, L.A., Tarantelli, M.S., Torstensson, A., 

Vázquez, S., Verleyen, E., Wenzhöfer, F., Wölfl, A.C., and Vanreusel, A.: Snapshots 

of soft sediment benthos influenced by glacier retreat in an Antarctic fjord: 

assemblage structure, functioning and biogeochemical cycling, XIIth SCAR Biology 

Symposium, 10.�14.07.2017, Leuven, Belgium. 

Hoffmann, R., Braeckman, U., and Wenzhöfer, F.: Effects of changing polar conditions 

on benthic oxygen consumption assessed by in situ measurements, Evaluation of the 

Max Planck Institute for Marine Microbiology by the Fachbeirat, 18.04.2018, Bremen, 

Germany. 

Braeckman, U., Pasotti, F., Hoffmann, R., Vázquez, S., Torstensson, A., Vanreusel, A., 

and Wenzhöfer, F.: Carbon cycling in Antarctic benthic communities subject to glacier 

retreat. VLIZ marine scientist day, 03.03.2017, Bruges, Belgium. 

Hoffmann, R., Braeckman, U., and Wenzhöfer, F.: Benthic oxygen fluxes at East 

Greenland and West Spitsbergen continental slopes, AWI PhD-Days, 

01.�04.06.2015, List, Germany. 

Hoffmann, R., Braeckman, U., and Wenzhöfer, F.: Oxygen dynamics and exchange 

rates in polar ecosystems, AWI PhD-Days, 05.�08.05.2014, Helgoland, Germany. 
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Appendix D: Expeditions, courses, teaching, outreach and further 
activities 

Expeditions: 

� KGI 16/17, Potter Cove, 14/10�31/12/2016, Expedition, station and dive leader, 
scientist, scientific diver 

� PS93.2, Fram Strait, 22/07�15/08/2015, Scientist 
� KGI 14/15, Potter Cove, 15/01�15/03/2015, Scientist and scientific diver 
� PS85, Fram Strait, 06/06�03/07/2014, Scientist 

Attended courses: 

Courses provided by POLMAR (graduate school): 
� Marine Biogeochemistry 
� Team Management 
� How to cope with the challenges of a Ph.D. 
� How to publish in peer-reviewed journals 
� Electronics and interfaces 
� Leadership skills 
� Introduction to ArcGIS 
� How to present on international conferences 
� Third party funding 

Additionally attended courses: 
� Oral presentation course during the Goldschmidt conference 2016 
� Introduction to Ocean data view (ODV) 
� Research Funding Information Day at the Leibnitz Centre for tropical marine 

research 
� First aid courses 

Teaching 

Unofficial supervisor for the m
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�
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�
���
�
� �����	��	����� 
� 	������!��
������ ��
��	��"� 
�� ���	�� #$�%&�'%#(�
�� ��	�

Institute for Biological Sciences, University of Rostock, Germany 
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Outreach 

Article contributions, photos and short movies, e.g.: 
� https://www.awi.de/expedition/stationen/dallmann-labor/artikel/feldlabor-mit-

poleposition.html 
� https://www.awi.de/en/science/special-groups/scientific-diving/news-from-the-

csd.html 
� https://www.fotau.uni-rostock.de/berichte/forschungsreisen/antarktis-expedition-

kgi-20162017/ 
� https://www.youtube.com/watch?v=tqLlmmkLa-s 
� http://www.senseocean.eu/firelogger-optodes-successfully-used-shallow-

coastal-antarctic-waters 

Planet e, )*�� ���� 	��
����� �+�
�	�� !��
�,��
�, released: 12/03/2017, 
https://www.youtube.com/watch?v=G-5WrlOuOAw 

Further activities 

� Ph.D. representative at the AWI Doc-Team 2014/2015 
� -�
��������	�
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�����from high latitudes to coasts to deep 

	
� ��	���	
��
�� ��	�/th YOUMARES Conference, 10�12.09.2014 in Stralsund, 
Germany 

� Contributions to the SenseOCEAN project (reports, meetings, sensor tests) 
� Scientific diving during first underwater tests of AWI TRAMPER at the maritime 

exploration pool at Deutsches Forschungszentrum für Künstliche Intelligenz 
GmbH in Bremen 

� Scientific diving as holiday replacement on Helgoland in August 2014 and Mai 
2015 
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With my very last words I would like to quote respectfully the dolphins from epilog of the movie 

�������	
������
��������	��	����������� 

��������������thanks for all the fish.� 


