)

Universitat Bremen
Fachbereich Mathematik und Informatik

Dissertation

zur Erlangung des akademischen Grades
Doctor rerum naturalium (Dr. rer. nat.)

Conservative Extensions and Satisfiability in
Fragments of First-Order Logic: Complexity and
Expressive Power

Mauricio Martel

Kolloquium: 01.08.2018

Gutachter:
Prof. Dr. Carsten Lutz, Universitat Bremen
Prof. Dr. Ulrike Sattler, Universitat Manchester

ii

Abstract

First-order logic is a nice language with high expressive power and a well
developed model theory, however, its satisfiability problem is undecidable. When
we think about applications requiring effective reasoning problems, it is natural to
look for fragments of first-order logic with better computational properties.

In this thesis, we investigate the decidability and computational complexity of
(deductive) conservative extensions in expressive fragments of first-order logic, such
as the two-variable fragment, the guarded fragment, and the guarded negation
fragment. Moreover, we also investigate the complexity of (query) conservative
extensions in Horn description logics with inverse roles.

Aditionally, we investigate the computational complexity of the satisfiability
problem in the unary negation fragment of first-order logic extended with regular
path expressions. We study the satisfiabiliy problem in order to obtain complexity
results for the ontology-mediated query answering problem.

Besides computational complexity results, we also study the expressive power
of a particular family of modal logics that can update the accessibility relation of
a model during the evaluation of a formula. In particular, we provide translations
into hybrid logic and compare their expressive power using appropriate notions of
bisimulations.

iii

iv

Zusammenfassung

Priadikatenlogik ist eine grundlegende Logik mit hoher Ausdrucksstéarke und
einer gut untersuchten Modelltheorie, deren Erfiillbarkeitsproblem jedoch unent-
scheidbar ist. Da in vielen Anwendungen effektive Verfahren zum Schlussfolgern
erforderlich sind, liegt es nahe Fragmente von Pradikatenlogik zu untersuchen, die
diesbeziiglich bessere Eigenschaften haben.

In dieser Arbeit untersuchen wir zuerst die Entscheidbarkeit und Berechnungs-
komplexitat von (deduktiven) konservativen Erweiterungen in ausdrucksstarken
Fragmenten der Prédikatenlogik, wie dem Zwei-Variablen-Fragment, dem Guarded-
Fragment und dem Guarded Negation-Fragment. Wir untersuchen weiterhin die
Komplexitét von (query) konservativen Erweiterungen in Horn-Beschreibungslogiken
mit inversen Rollen.

AuBlerdem erweitern wir das Unére-Negationen-Fragment der Pradikatenlogik
um reguldre Pfad-Ausdriicke und analysieren die Berechnungskomplexitit des
Erfiillbarkeitsproblems in dieser Logik. In diesem Zusammenhang erhalten wir auch
Resultate fiir das eng verwandte Problem der Ontologie-basierten Anfragebeant-
wortung in der eingefithrten Logik.

Dariiber hinaus betrachten wir eine Familie von modalen Logiken, bei denen
wéahrend der Formelauswertung der unterliegende Frame gedndert werden kann.
Wir geben Ubersetzungen von diesen Logiken in hybride Logik an und vergleichen
mit Hilfe von entsprechend definierten Bisimulationen ihre Ausdrucksstirke mit
der von hybriden Logiken.

vi

Contents

1 Introduction

1.1 Logic in Computer Science
1.2 Fragments of First-Order Logic
1.2.1 Complexity of Conservative Extensions
1.2.2 Complexity of Satisfiability and Ontology-mediated Queries . . .
1.2.3 Investigating Expressive Power
1.3 Overview of the Thesis

Preliminaries

2.1 First-Order Logic
2.2 Two-Variable, Guarded, and Unary Negation Fragments
2.3 Description Logic o
24 Modal Logic

Conservative Extensions in Guarded and Two-Variable Fragments
3.1 Deductive Conservative Extensions
3.2 Undecidability Results oL
3.2.1 The Guarded Fragment,
3.2.2 The Two-Variable Fragment
3.3 Model-theoretic Characterization
3.3.1 GFO?-Bisimulations
3.3.2 Characterization of X-Entailment
3.4 Decidability and Complexity
3.4.1 2ATAs and their Emptiness Problem
3.42 UpperBound
343 Lower Bound
3.5 Concluding Remarks

Conservative Extensions in Horn Description Logics with Inverse

Roles

4.1 Horn-ALCHIF e e e

4.2 Query Conservative Extensions and Entailment
4.2.1 Query Entailment with Inconsistent ABoxes

4.3 Model-theoretic Characterization

vii

13
13
14
15

17

55
o6
o7
o8

4.3.1 Unraveling ABoxes 63

4.3.2 Characterization of Query Entailment 65
4.4 Decidability and Complexity 70
4.4.1 Mosaic Technique 70
4.4.2 Automata-Based Technique 76
4.5 Deductive Conservative Extensions 87
451 Lower Bound, 89
4.6 Concluding Remarkso 97

5 Ontology-mediated Querying in UNFO with Regular Path Expres-
sions 99
5.1 UNFO with Regular Path Expressions 101
5.1.1 Ontology-mediated Querying 102
5.2 Model-theoretic Characterization 105
5.2.1 Normal Form 106
5.2.2 Tree-like Structures 107
5.2.3 Characterization of Satisfiability 108
5.3 Decidability and Complexity 114
5.4 OMQ Evaluation and Containment 117
5.4.1 Data Complexity 117
55 Model Checking 121
5.6 Concluding Remarks 124
6 Relation-Changing Modal Logics as Fragments of Hybrid Logics 127
6.1 Relation-Changing Modal Logics 129
6.2 Extensions of Modal Logic and Hybrid Logic 130
6.3 Translations to Hybrid Logics 131
6.4 Decidable Fragments L Lo 135
6.5 Comparing Expressive Power, 136
6.6 Concluding Remarks oL 139
7 Conclusions 141
Bibliography 143

viii

CHAPTER 1

Introduction

1.1 Logic in Computer Science

Logic plays a fundamental role in computer science. We can consider computer science
both as an engineering and a mathematical discipline. From a practical perspective,
the aim is to design algorithms to solve problems with computer programs. In contrast,
we would not be able to identify what kind of problems are solvable, or how hard it is
to solve a problem, if we do not study computer science from a theoretical perspective.
The subfield of theoretical computer science, in particular, is mathematical and abstract
in spirit, but it derives its motivation from practical applications in real life. Logic has
close ties with many subjects of computer science such as computability and complexity
theory [LP97, Pap94], automata theory [GTWO02], and databases [AHV95]. In this
thesis, we touch on these subjects and study logics that are relevant for a theoretical
study and also of practical importance.

Most of the thesis is about decidability and computational complexity results. In
computability theory, a decision problem is a problem that can be posed as a yes-no
question of the input values. There is an extensive study and classification of which
mathematical problems are decidable (or computable, or effective) and which are
not. Complexity theory, on the other hand, investigates how much time and space is
needed to solve a particular computable problem. In addition, there is an extensive
classification of computable problems into complexity classes according to how much
computation, as a function of the size of the problem instance, is needed to answer
that instance. For example, PTIME is the class of all problems that can be solved by a
deterministic Turing machine in polynomial time. Other classical complexity classes
include the class NP, PSPACE, EXPTIME, and NEXPTIME, among others. There are
different techniques to obtain complexity results, but one technique that has been
broadly used over the years consists in exploiting the relationship between logic and
automata theory.

The connections between logic and automata theory are long and fruitful. They
have come together in the 1960s through the fundamental work of Biichi, Elgot, Rabin
and others [Bii60, Elg61, Bii62, Rab69, McN66] who showed, among other results, the
equivalence of automata with logical systems such as monadic second-order logic on
finite and infinite words and trees. In the latter case, the ‘moving to trees’ involves

Chapter 1. Introduction 2

showing that the logic possesses the tree model property: if a formula ¢ is satisfiable in
a model, it is satisfiable in a tree-shaped model. Then decidability results for automata
can be used to obtain decidability results for the logics we are interested in. Given a
logical formula ¢, we build an automaton A, that recognizes the set of all models in
which ¢ holds. Assuming that A, belongs to a well-behaved class of automata, we
can decide the satisfiability problem via a reduction to the non-emptiness problem of
the automaton: ¢ has a model if and only if the language of A, is not empty. Solving
the emptiness problem of A, is usually decidable for many well-behaved classes of
automata and the exact complexity depends on the particular automaton model used.
We will use automata-techniques extensively thorough the thesis to obtain complexity
results.

Logic provides a foundation not only in theoretical areas of computer science but
also in many applied areas such as in databases, which is an area concerned with storing,
querying, and updating large amounts of data. Logic and databases are inextricably
intertwined since the early 1970s [Cod70] given that logic provides both a unifying
framework and a set of tools for formalizing and studying data management tasks.
Logic can be used as a database query language to express questions asked against
databases, and in fact, conjuctive queries and unions thereof are useful and decidable
query languages that will be of particular importance for this thesis. We will study
several query languages and the computational complexity of answering queries with
semantic background knowledge, as well as related reasoning problems. This interaction
between logic and databases is a prime example of applications of logic in computer
science.

As we have seen, several areas of computer science are related to logic. But so
far we haven’t mentioned which logic we are talking about. For a long time, logic
was associated with first-order logic (FO) [End01]. First-order logic is by now a well
understood language with high expressive power and a rich model theory. But regarding
its computational behavior, FO doesn’t seem to behave very well: its satisfiability
problem, i.e., the problem of determining whether there exists a model in which a given
formula is true, is undecidable [Chu36, Tur37]. Its model checking problem, i.e., the
problem of determining whether a given formula is true in a give model, is however
decidable and PSPACE-complete [Sto74, Var82]. On the other hand, FO sometimes
is not expressive enough as it cannot express, for example, the transitive clousure of
a relation, and this might be important for certain application scenarios. For these
reasons, when we think in areas that requiere applications with effective reasoning
problems, such as artificial intelligence, knowledge representation, or databases, first-
order logic might not be the best option. It is natural then to look for fragments with
better computational properties, and fortunately, many decidable fragments of FO have
been studied through the years. Next we discuss the fragments that are relevant for
this thesis.

1.2 Fragments of First-Order Logic

Many different logics have been studied in computer science. In particular, modal
logics [BARVO01] proved to be very useful in a number of areas where the fundamen-
tal concepts needed can be expressed in terms of graphs-like structures. The main
reason for their effectiveness is their careful balance between expressive power and
computational complexity. Indeed, several modal logics have been successfully tailored
in such a way that they are sufficiently expressive to specify interesting properties of

Chapter 1. Introduction 3

a particular application and, at the same time, provide efficient algorithms for their
main computational problems, such as satisfiability and model checking. Equivalent
formalisms from a different application area are description logics [BHLS17], a family
of knowledge representation languages that underly the Web Ontology Language OWL.
Description logics mainly fall into two categories. Expressive description logics, on the
one hand, such as ALC and extensions, aim at maximazing expressive power while
still retaining decidability of standard reasoning problems, such as satisfiability and
subsumption. On the other hand, lightweight description logics, such as ££ and DL-Lite,
aim at tractability of standard reasoning problems and at scalability to very large
ontologies, which requires to significantly reduce expressive power. Therefore, modal
and description logics aim at establishing an attractive compromise between expressive
power on one side and computational complexity on the other.

Modal and description logics are known for their robust decidability [Var96], meaning
that the decidability of basic reasoning problems, such as satisfiability and validity, is
preserved under various extensions to the syntax and semantics, for example, by the
addition of transitive clousure operators, inverse roles, fixpoint operators, or nominals.
To understand the robust decididability of modal and description logics, it is useful
to see them as fragments of first-order logic: every formula can be translated into an
equivalent first-order formula with one free variable. This translation yields a small
fragment that it is properly contained in FO?, a fragment of first-order logic with
only two variables. FO? has the finite model property, i.e, every satisfiable formula
has a finite model, and is known to be decidable [Mor75, GKV97]. But despite this
observation, FO? is highly undecidable when extended with transitive closure operators,
least and greatest fixed points, etc. [GORI7, GO99], in contrast with the respective
extensions in modal and description logics. Therefore, it seems the translation into
FO? does not give a satisfactory explanation of the robust decidability of modal and
description logics.

By taking a closer look at the translation of modal and description logic into first-
order logic (see Section 2.3 for details), one can observe that the quantifiers are used
only in a very restricted way, and this observation was what gave rise to the guarded
fragment of first-order logic (GFO) [ANv98]. The restriction to use only two variables
and only unary and binary predicates is dropped, but what is imposed instead is that all
quantifiers must be relativized by atomic formulas. The satisfiability problem in GFO is
decidable, it has the tree-like model property, i.e, if a sentence has a model then it has a
model of bounded tree width, and it also has the finite model property [ANvI8, Gra99].
Moreover, many important model theoretic properties which do not hold for FO?, but
do hold for modal and description logics, hold also for the guarded fragment [GR99].

The most recent proposal to explain the good computational behavior of modal and
description logics is based on restricting not the number of variables or the quantification
pattern, but the use of negation. The unary negation fragment (UNFO) restricts first-
order logic by constraining the use of negation to subformulas having at most one free
variable. It generalizes modal and description logics and can expresses conjunctive
queries and unions thereof (see Definition 2.3.1) as formulas in the language, which
is interesting from a database perspective. The satisfiability problem for UNFO is
decidable, it has the tree-like model property and the finite model property. Moreover,
its extension using monadic fixpoints generalizes the two-way u-calculus and also
monadic Datalog, and is known to be decidable [tCS13]. To the best of our knowledge,
UNFO extended with transitive clousure or regular path expressions has not been
studied yet, and we plan to investigate these extensions in the thesis.

Chapter 1. Introduction 4

A common generalization of both UNFO and GFO is the guarded negation fragment
(GNFO) which restricts first-order logic by requiring that all occurrences of negation
are guarded, where the guard is an atomic formula (possibly an equality statement)
containing all the free variables of the negated formula. It is known that GNFO has the
same desirable properties as modal and description logics, the unary negation fragment
and the guarded fragment. In particular, its satisfiability problem is decidable and it
has the tree-like model property as well as the finite model property. An extension of
GNFO with a guarded fixpoint mechanism is also known to be decidable [BtCS15].

All first-order fragments discussed so far will be formally introduced in Chapter 2.
In this thesis, our work can roughly be divided into two main topics. On the one hand,
we study the complexity of conservative extensions, satisfiability and ontology-mediated
queries in decidable fragments of first-order logic, such as the ones mentioned above.
On the other hand, we are also interested in studying the expressive power of modal
logics, and in particular, modal logics that can update the underlying structure. In
the following sections we introduce the topics we study in this thesis as well as the
problems we want to solve.

1.2.1 Complexity of Conservative Extensions

Conservative extensions are a fundamental notion in logic. A theory 7% is said to be a
conservative extension of a theory T if the language of T extends the language of T3
such that any consequence of T} is also a consequence of T; and any consequence of
T5, which uses only symbols from 77, is a consequence of T as well. This notion plays
an important role in mathematical logic and the foundations of mathematics as well as
in computer science and artificial intelligence. In mathematical logic, they provide an
important tool for relating logical theories such as theories of arithmetic. For example,
the result that the Bernays-Godel set theory BG (or BGC) is a conservative extension of
the Zermelo-Fraenkel set theory ZF (or ZFC) means the relative consistency of BG(C):
if ZF(C) is consistent then BG(C) is also consistent.! On the other hand, in computer
science they come up in diverse areas such as software specification [DGS93], higher
order theorem proving [GM93], and ontologies [KLWWO09]. For example, conservative
extensions can be used to define the notion of a module for ontologies: a subtheory is a
module if the whole ontology is a conservative extension of the subtheory.

In this thesis we are interested in studying conservative extensions in computer
science and artificial intelligence, and specifically in the area of ontologies. Ontologies
are logical theories that specify a vocabulary for a domain of interest and describe the
relationships between the terms in that vocabulary. Their main applications are in
knowledge representation, in semantic databases, and in the semantic web. Description
logics (DLs) play a key role as ontology languages, and there, ontologies are usually
called TBoxes. An important reason for the success of DLs as ontology languages is the
availability of a large class of reasoning services, along with implemented tool support
that is integrated into ontology development systems. Traditionally, the most important
reasoning services for DLs are consistency checking (check whether all terms in the
specified vocabulary are free of contradictions) and classification (make explicit the
is-a hierarchy between the terms of the vocabulary). These services are implemented
based on the fundamental reasoning tasks satisfiability and subsumption. Over the last
decade, though, it has become clear that these traditional reasoning services are not

!Observe that a conservative extension of a consistent theory is also consistent. If it were not, then
every consequence in the original theory as well as its negation would belong to the new theory, which
then would not be a conservative extension.

Chapter 1. Introduction 5

enough. Given that ontologies from applications can reach considerable size, additional
and more refined reasoning services are needed to support various aspects of ontology
design and management.

A typical example of an advanced reasoning service is ontology modularity and reuse:
when constructing a new ontology, it is often desirable to import a part of another,
already existing ontology with the aim of covering selected thematic subdomains
without modeling them from scratch. This raises the question whether a given subset
of an existing ontology is self-contained regarding a vocabulary of interest, that is,
whether the subset ‘says the same’ about the relevant vocabulary as the overall ontology.
An appropriate way to formalize that a subset O’ of an ontology O is self-contained
regarding a vocabulary (set of relational symbols) X is to require that O is a conservative
extension of O’ regarding the symbols in X. To be more precise, we concentrate on
deductive conservative extensions.

Definition 1.2.1 (Deductive Conservative Extensions). Let O; and O3 be ontologies
formulated in an ontology language L, and let % be a vocabulary. Then Oy U Qs is a
deductive Y-conservative extension of O; if for every sentence ¢ of L that uses only
symbols from ¥, O; U Oz |= ¢ implies O; | .

This definition gives rise to a decision problem: Deciding deductive conservative
extensions means, given two ontologies O; and Os formulated in an ontology language
L, and a vocabulary ¥, to decide whether O; U O3 is a deductive conservative extension
of O; with respect to X. As expected, conservative extensions are undecidable in first-
order logic, but it has been observed in recent years that they are decidable in many
modal and description logics [GLW06, GLWZ06, LWWO07] and that they can often
be characterized elegantly in terms of model theoretic notions [BKL'16]. Moreover,
conservative extensions have become an essential technique in DL research, and tool
support starts to become available, for example, in the form of module extractors.

In this thesis, we take the next step by studying conservative extensions in the more
general context of decidable fragments of first-order logic, such as the two-variable
fragment, the guarded fragment, and the guarded negation fragment. We believe
that studying conservative extensions in more expressive fragments is an important
endeavour from both a theoretical and practical perspective. From a theoretical point
of view, the good computational behavior of DLs regarding (deductive) conservative
extensions calls for a general explanation. We thus aim to study the following questions:

Q1 Are conservative extensions decidable in relevant fragments of FO such as FO?,
GFO, and GNFO?

Q2 What are the reasons for decidability of conservative extensions in modal and
description logics and how far can the limits of decidability be pushed?

Observe that since ontologies are logical theories (sets of logical axioms) they can
be translated into first-order logic, i.e., axioms correspond to universally quantified
implications without free variables. In this context, instead of talking about ontologies
we talk about sentences. Thus, given two sentences ; and o, and X a vocabulary,
we study whether 1 A ¢y is a (deductive) X-conservative extension of ¢q. We will
investigate questions Q1 and Q2 in Chapter 3.

On the other hand, from a practical perspective, there has been a very strong trend
in recent years to use DL ontologies for accessing data. The general approach is known
as ontology-based data access (OBDA) and is a very active field of research. Thus, the

Chapter 1. Introduction 6

recently very popular use of ontologies in OBDA and database-style applications requires
for ontology languages not to preserve the logical consequences but to provide the
same answers to queries. This gives rise to the notion of query conservative extensions.
Given an ABox A, an ontology O, a query ¢(x), and a tuple of constants a, we write
AU O E g(a) to say that all models of A and O entail g(a).

Definition 1.2.2 (Query Conservative Extensions). Let O; and Oz be ontologies
formulated in an ontology language L, and let I'; ¥ be vocabularies. Then O U Oy is a
query (I", ¥)-conservative extension of O if for all ABoxes A that use only symbols
from I', and conjunctive queries ¢ that use only symbols from 3, AU O; U Oy = ¢(a)
implies A U O; = g(a) for all tuples of constants a.

For example, in OBDA applications it is a useful reasoning service to decide whether
an ontology O that is used for query answering can safely be replaced by a smaller (and
thus computationally more efficient) subset O’. In this case, deductive conservative
extensions are too weak to formalize what we mean by ‘safe replacement’ while query
conservative extensions are sufficient.

To make conservative extensions useful for OBDA applications, we also study the
decidability and computational complexity of query conservative extensions in Horn
description logics. The core feature of these logical languages is that they are incapable
of expressing any form of disjunction. This lack of disjunction means that Horn DLs
can be translated into the Horn fragment of FO. In first-order logic, Horn clauses are
disjunctions of atomic formulas and negated atomic formulas that contain at most one
non-negated atom. Using Horn DLs often leads to computational advantages. However,
query conservative extensions in Horn DLs in the presence of inverse roles, often
considered a crucial feature, have been poorly investigated. Therefore, in Chapter 4 we
study the following question:

Q3 How can advanced reasoning support for ontologies be lifted from standard
DLs to Horn DLs involving inverse roles, thus facilitating ontology design and
maintenance for OBDA applications?

From an OBDA perspective, it is interesting that both database instances and
conjunctive queries can be expressed as formulas in the UNFO fragment. This makes
it suitable to study not only query conservative extensions, but also other reasoning
problems such as ontology-mediated query answering.

1.2.2 Complexity of Satisfiability and Ontology-mediated Queries

Another fundamental reasoning problem that we study in this thesis, other than
conservative extensions, is that of ontology-mediated query answering. In recent years,
there has been a recent trend both from academia and industry to investigate ontology-
mediated queries (OMQ), in which the data is enriched by ontologies providing semantic
and background knowledge to abstract the way in which the data is stored. More
specifically, an ontology-mediated query is a triple (O, %, q) where O is a logical sentence
called the ontology, ¥ is a set of predicate symbols called the data signature, and q is a
query.

Definition 1.2.3 (Ontology-mediated query answering). Let Q = (O, 3, q) be an
OMQ and D a database that uses only symbols from 3. We call a C dom(D) a certain

answer to Q on D if a € ans(q,2) for every structure 2 that extends D and is a

model of O, where 2 extends D if dom(D) C dom(2) and PP C P* for all predicate
symbols P. The set of all certain answers to @ on D is denoted cert(Q, D).

Chapter 1. Introduction 7

To illustrate the idea, Figure 1.1 shows a typical ontology-mediated query scenario.

()

= ontology O
?

> database D KB

|\ J

query ¢

Figure 1.1: Ontology-mediated Query Answering

Typical decision problems of interest are OMQ evaluation and OMQ containment.

Definition 1.2.4 (OMQ evaluation). OMQ evaluation is the problem to decide, given
an OMQ @ from a language L, a database D, and an a C dom(D), whether a €
cert(Q, D).

For ontology containment, we are interested in the natural special case where both
ontologies are identical and the signature consists of all predicate symbols.

Definition 1.2.5 (OMQ containment). Let Q1 = (O, 3¢y, q1) and Q2 = (O, Xgun1, G2)
be OMQs from a language L with the same number of answer variables and where g
is the full data signature, that is, the set of all predicate symbols. We say that Q1 is
contained in Qo and write Q1 C Q2 if for every database D, cert(Q1, D) C cert(Q2, D).

Description logics are among the most commonly used and well-studied ontology
languages for ontology-mediated query answering. However, it can also be useful to
consider more expressive decidable fragments of first-order logic as this serves to explore
the limits of the ontology-mediated querying approach, to provide maximum expressive
power for ontology formulation, and to put ontology-mediated querying into a more
general logical perspective. Notably, this has been done in [BGO14, BtCS15, BtCLW14],
where the guarded fragment, the unary negation fragment, and the guarded negation
fragment of FO have been used as ontology languages. In particular, UNFO and
GNFO, are attractive from the perspective of database theory because they can express
conjunctive queries and ontologies formulated in many description logics. Then both
fragments are relevant for ontology-mediated querying and, in fact, CQ evaluation under
UNFO and GNFO ontologies (and thus also under DL ontologies) can be ‘expressed’
in UNFO and GNFO as a satisfiability problem. More precisely, given an OMQ
Q = (0,%,q), where g a union of conjunctive queries and D is a »-database, then
D E (0,%,q) ift O A D A —q is unsatisfiable. Moreover, the containment of OMQs,
as presented in Definition 1.2.5, can also be ‘expressed’ as a satisfiability problem. In
this way, to study the complexity of OMQ evaluation and containment in UNFO and
GNFO, it sufficies to study the complexity of its satisfiability problem.

The UNFO fragment, in particular, was introduced in [tCS13] as well as its extension
with fixpoint operators, and the complexity of satisfiability, finite satisfiabiliy and model
checking were investigated. However, besides fixpoints, there are no other extensions
such as regular expressions or trasitive clousure operators, which are important features
of many common description logics. Therefore, it would interesting to extend UNFO
with these features to study ontology-mediated query answering. We thus aim to study
the following question:

Chapter 1. Introduction 8

Q4 What is the complexity of OMQ evaluation and OMQ containment when UNFO
is extended with regular expressions and transitive relations?

A possible way to answer this question is by exploiting the relationship between
satisfiability and ontology-mediated query answering. In fact, this is the approach
we will follow in Chapter 5 where we study the complexity of satisfiability of UNFO
extended with regular path expressions to obtain complexity results for OMQ evaluation
and OMQ containment. This is the last chapter of the thesis where we obtain complexity
results, and then move on to investigate the expressive power of a particular family of
modal logics.

1.2.3 Investigating Expressive Power

Besides computational complexity results, in this thesis we are also interested in
investigating the expressive power of logics. In general, one can think of expressive
power as follows. A formula of a language can express an abstract property of models in
which the formula is true. The more properties expressible with the language, the more
expressive power the language has. But which properties can be expressed with which
languages, and which cannot be expressed? We are also interested in the question of
how languages are related. Given two languages, Is one more expressive than the other?

As we have discussed in Section 1.2, modal and description logics can be seen as
fragments of FO? by providing a satifiability-preserving translation. This illustrates
one of the important strategies one can employ to show that two languages are equally
expressive: provide a translation from one language to the other that provides an
equivalent formula in the other language for each formula in the first language, and
vice versa. We thus can compare their expressive power using appropiate notions of
equivalence. In the case of modal logic, for example, bisimulations are the appropriate
notions. As we will see in later chapters, if two models are bisimilar, then they satisfy
the same formulas. Then to prove that one language is more expressive than another,
we have to show that there are some properties of the more expressive language that
cannot be expressed in the least expressive language, i.e., there are no equivalent
formulas. In fact, we have to show that a formula in the more expressive language
is not equivalent to any other formula in the least expressive language, but there are
infinitely many formulas. Here is where the notion of bisimulation comes into play:
if we can show that there is a formula that can distinguish between two bisimilar
elements, then the formulas that are true on these elements cannnot be equivalent as
bisimilar models satisfy the same formulas. Therefore, we will define various notions
of bisimilations thorough the thesis, tailored to the specific logics at hand. We will
also mention expressivity results in some chapters of the thesis, providing examples
and refering to the literature when necessary. However, most of the technical results
involving expressive power will be concerned with modal logics.

In Chapter 6, we move from ontology languages to modal languages and investigate
a family of modal logics named Relation-Changing Modal Logics (RCMLs). RCMLs are
extensions of the basic modal logic with dynamic operators that modify the accessibility
relation of a model during the evaluation of a formula. These languages are equipped
with dynamic modalities that are able, for example, to delete, add, and swap edges
in the model, both locally and globally. RCMLs were first introduced in [AFH12]
and further studied in [Ferl4]. Although the logics are abstract in spirit, they are
motivated by applications in dynamic epistemic logic [vDvdHKO07] and sabotage modal
logic [vBO05].

Chapter 1. Introduction 9

In [AFHM17, Mar15] we showed that RCMLs, as presented in this thesis, are
undecidable. These results rule out the logics to be useful in practical applications
where modeling dynamic scenarios is needed. Thus, it would be interesting to identify
decidable fragments. By taking a closer look at the semantics of RCMLs one can
see that they are related to hybrid logics. Since it is known that there are decidable
fragments for hybrid logics, it would be interesting to investigate if RCMLs can be
translated into hybrid logics in order to benefit from their decidable fragments. By
proving syntactic translations we would also be able to compare the expressive power
between these two families of logics and get a better understanding of their relationship.
We thus study the following questions:

Q5 Is it possible to provide translations of RCMLs to hybrid logics in order to obtain
decidable fragments?

Q6 Are RCMLs as expressive as hybrid logics? How are they related?

It seems that the ability to name states in the model and refer to those states by
their name, is a crucial feature of hybrid logics to simulate changes in the accessibility
relation of a model. We will exploit these characteristics with the aim to answer the
questions Q5 and Q6 above.

Chapter 6 differs from the previous chapters in the sense that we don’t study ontology
languages and don’t obtain complexity results. However, all languages investigated in
this thesis are fragments of first-order logic and it would be useful to understand how
they are related to each other.

HL(E,])

HE(@,)

(ReMLs| (ro?2] (GFo] (UNFO] [UC2RPQs)

Horn- ALCHIF

GFO?

BML/ALC

ELCHIF,

Figure 1.2: Comparison of expressive power.

(D Logics studied in Chapter 3.

Logics studied in Chapter 4.
() Logics studied in Chapter 5.
(D Logics studied in Chapter 6.

Chapter 1. Introduction 10

In Figure 1.2, we present a global overview of the logics relevant for the thesis by
comparing their expressive power. When a line is drawn between two languages £’ and
L, where £’ is above L, it means that £’ is at least as expressive as L, denoted £ < L';
if there is no line between them, it means they are incomparable in terms of expressive
power. The < relation indicates that we can embed one language into another via a
translation from the first language to the second one. If they are incomparable, then
none of the two languages can be embedded in the other, i.e., they are able to say
different things (see Definition 6.5.2). The colors in Figure 1.2 help to identify the
languages we investigate in this thesis.

Precise definitions of basic formalisms such as £, ALC, BML, FO?, GFO, UNFO,
GNFO, CQs and UCQs will be provided in Chapter 2. The rest of the logics will be
presented in their respective chapters. In particular, in Chapter 3 we study deductive
conservative extensions in FO? and GFO, and in their intersection GFO?. In Chap-
ter 4, we investigate query conservative extensions in Horn-ALCHZF and deductive
conservative extensions in ELHZIF| . Chapter 5 is dedicated to the study of satisfiability
and ontology-mediated queries in UNFO"™8, an extension of UNFO with regular path
expressions which can express UC2RPQs. Finally, in Chapter 6 we provide translations
of RCMLs to the hybrid logics HL(@Q,]) and HL(E,]). We give more details of the
contents of the thesis in the next section.

1.3 Overview of the Thesis

The thesis can be divided into two main parts. The first part, Chapters 3 and 4, deals
with conservative extensions in the two-variable fragment and the guarded fragment
as well as in Horn description logics with inverse roles. The second part, Chapters 5
and 6, deals with the complexity of satisfiability and expressivity in modal-like logics.
In particular, in Chapter 5 we study the computational complexity of OMQ evaluation
via satisfiability in UNFO (which can be seen as a modal logic with conjunctive queries
as modal operators) extended with regular paths expressions on binary relations. In
Chapter 6, we study modal logics that can update the accessibility relation of a model
during the evaluation of a formula and provide translations into hybrid logic. More
precisely, the thesis is structured as follows.

In Chapter 2 we introduce first-order logic and some of its decidable fragments,
namely the two-variable fragment, the guarded fragment, the unary negation fragment,
and the guarded negation fragment. We also present the basic description logics
ALC and &L as well as the basic modal logic BML. In particular, we cover syntax
and semantics of these logics, we present basic reasoning problems and discuss the
relationship between description logic, modal logic, and first-order logic. The preliminary
chapter is rather short, but serves as a foundation to understand the concepts and
definitions in the following chapters.

In Chapter 3 we study the decidability and computational complexity of deductive
conservative extensions in expressive fragments of FO, such as the two-variable fragment
and the guarded fragment. We show that conservative extensions are undecidable in
FO? and in GF and that they are decidable and 2EXPTIME-complete in the intersection
GF? of FO? and GF. The undecidability proofs are by reductions from the halting
problem for two-register machines in the case of GF and from a tiling problem in the
case of FO?. For the upper bound of GF? we rely on a model-theoretic characterization
based on a mixture of bounded and unbounded guarded bisimulations, and then we
use it as a basis for a decision procedure based on (alternating) tree automata. This

Chapter 1. Introduction 11

chapter is based on [JLMT17].

In Chapter 4 we study the decidability and computational complexity of query
conservative extensions in Horn description logics with inverse roles. We prove that
the problem is 2ExXPTIME-complete in Horn-ALCHZF (and also in Horn-ALC and in
ELT). Moreover, we obtain the same upper bound for deductive conservative extensions,
for which we also prove a CONEXPTIME lower bound. To prove the upper bound in
Horn-ALCHIF, we provide a model-theoretic characterization in terms of a mixture
of bounded and unbounded homormophisms, and then we resort to a combination of
automata and mosaic techniques to implement it. This chapter is based on [JLMS17].

In Chapter 5 we consider the natural extension of UNFO with regular expressions
on binary relations. The resulting logic UNFO™® can express (unions of) conjunctive
two-way regular path queries (C2RPQs) and ontologies formulated in DLs that include
transitive roles and regular expressions on roles. Our main results are that OMQ
evaluation under UNFO"™® ontologies is decidable, 2EXPTIME-complete in combined
complexity, and cONP-complete in data complexity, and that satisfiability in UNFO"™#
is 2ExXPTIME-complete, thus not harder than in UNFO. We additionally show that the
complexity of model checking in UNFO™®8 is the same as in UNFO, namely complete
for PNPIO(og®)] Thig chapter is based on [JLMS18].

In Chapter 6 we study relation-changing modal logics, a family of modal logics
that allow changes to the accessibility relation of a model during the evaluation of
a formula. In particular, they are equipped with dynamic modalities that are able
to delete, add, and swap edges in the model, both locally and globally. We provide
translations from these logics into hybrid logic, and while RCMLs are known to
be undecidable [AFHM17], we use our translations to identify decidable fragments.
Additionally, we also compare the expressive power of RCMLs with hybrid logics. This
chapter is based on [AFHM16, AFHM18].

Finally, we conclude in Chapter 7 giving a brief summary of the thesis.

Summary of Publications

[JLM+17] Jean Christoph Jung, Carsten Lutz, Mauricio Martel, Thomas Schneider,
and Frank Wolter. Conservative Extensions in Guarded and Two-Variable
Fragments. In 44th International Colloguium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages
108:1-108:14, 2017

[JLMS17] Jean Christoph Jung, Carsten Lutz, Mauricio Martel, and Thomas Schnei-
der. Query Conservative Extensions in Horn Description Logics with Inverse
Roles. In Proceedings of the Twenty-Sizth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, pages 1116-1122, 2017

[JLMS18] Jean Christoph Jung, Carsten Lutz, Mauricio Martel, and Thomas Schnei-
der. Querying the Unary Negation Fragment with Regular Path Expressions.
In 21st International Conference on Database Theory, ICDT 2018, March
26-29, 2018, Vienna, Austria, pages 15:1-15:18, 2018

[AFHM18] Carlos Areces, Raul Fervari, Guillaume Hoffmann, and Mauricio Martel.
Satisfiability for Relation-Changing Logics. To appear in Journal of Logic
and Computation, 2018

Chapter 1. Introduction 12

[AFHM17] Carlos Areces, Raul Fervari, Guillaume Hoffmann, and Mauricio Martel.
Undecidability of Relation-Changing Modal Logics. In Dynamic Logic.
New Trends and Applications - First International Workshop, DALI 2017,
Brasilia, Brazil, September 23-2/4, 2017, Proceedings, pages 1-16, 2017

[AFHM16] Carlos Areces, Raul Fervari, Guillaume Hoffmann, and Mauricio Martel.
Relation-Changing Logics as Fragments of Hybrid Logics. In Proceedings
of the Seventh International Symposium on Games, Automata, Logics and

Formal Verification, GandALF 2016, Catania, Italy, 14-16 September 2016,
pages 1629, 2016

CHAPTER 2

Preliminaries

This chapter briefly introduces the basic formalisms we investigate in the thesis. We
start with first-order logic and then continue with relevant decidable fragments, such
as two-variable, guarded, and unary negation fragments. We then introduce the basic
description logics ALC and EL, present their syntax and semantics as well as basic
reasoning problems, and view them as fragments of first-order logic. Finally, we
formally introduce the syntax and semantics of the basic modal logic together with
basic reasoning problems, and state its relationship with description logic and first-order
logic.

2.1 First-Order Logic

We introduce the syntax of first-order logic (FO) [End01] based on a signature X, a
set containing constant and predicate symbols, each predicate symbol with an arity.
First-order formulas over a signature X are built according to the following syntax rule:

o, = T |ti=ta| R(t1,....te) | ¢ | @At | Tzp(z)

where R € ¥ is a k-ary predicate symbol and each t; is either a constant symbol from
¥ or a variable (taken from a countably infinite supply of variable symbols). As usual,
we take V, —, <>, and V as defined symbols. Note that we admit equality but do
not allow for function symbols except for constants. The semantics of FO is given
in terms of relational structures A = (A,), where A is the domain of 2 and 7 is an
interpretation function assigning to each k-ary predicate symbol R a subset 7(R) C A*
and to each constant symbol ¢ a domain element w(c) € A. A wvaluation for A is a
function v from the set of variables to the domain. The satisfaction relation = is now
defined by induction on the structure of formulas:

13

Chapter 2. Preliminaries 14

Rv)ET always
A, v) Et1 =t iff a1 = a9, where

a; is v(t;) if ¢; is a variable and 7(t;) otherwise;
A, v) E R(t1,...,tx) iff (a1,...,ax) € 7(R), where

a; is v(t;) if t; is a variable and m(¢;) otherwise;

A, v) E - iff not (A,v) E ¢;
(2, v)):tp 0 it (2,v) = and (2A,v) |= 1
(A, v) E Jz.p(x) iff there is a € A with (A, v[z/a]) = ¢(x), where

v|z/a] replaces every occurrence of x with a.

We indicate with ¢(x) that ¢ might have free variables among x and call formulas
without free variables sentences. We say that a formula ¢(x) is satisfiable if there is a
structure 2 and a valuation v such that (2, v) = ¢(x). For sentences ¢, we drop the
valuation and just write 2 = . A sentence ¢ is valid if - is not satisfiable.

We are now ready to introduce the fragments of FO that will be studied in the
thesis.

2.2 Two-Variable, Guarded, and Unary Negation Frag-
ments

The two-variable fragment of FO, denoted FO?, is obtained by fixing two variables x
and y and disallowing the use of other variables [Sco62, Mor75].

For the purpose of introducing the next fragments of FO, we assume a countably
infinite supply of predicate symbols of any arity. We then define the grammar rules
that define the syntax of every fragment, and in all cases the semantics is the same as
FO.

The guarded fragment of FO, denoted GFO, imposes that all quantifiers must
be relativized by atomic formulas. Formulas ¢ in GFO are formed according to the
following grammar:

o == Px)|z=yleAp|eVe|p|Izlalxy)Aex,y))

where P ranges over predicate symbols and p(x,y) is a GFO formula with free variables
among x,y and «(x,y) is an atomic formula or an equality x = y that in either
casecontains all variables in x,y. The formula « is called the guard of the quanti-
fier [ANVO8, Grd99]. GFO restricts the use of quantification but allows unrestricted
use of negation, in contrast with the unary negation fragment.

The unary negation fragment of FO, denoted UNFO, restricts the negation of
formulas to having only one free variable. Formulas ¢ in UNFO are formed according
to the following grammar:

o = PX)|[rz=y|loAp|eVel|Irp|p(x)

where P ranges over predicate symbols and in the —p(z) clause, ¢ has no free variables
besides (possibly) x [tCS13]. In particular, x # y is not expressible in UNFO.

The guarded negation fragment of FO, denoted GNFO, is a generalization of both
GFO and UNFO. Formulas ¢ in GNFO are formed according to the following grammar:

p = PX)|z=yloAp|eVe|3rp|axy)A-px)

Chapter 2. Preliminaries 15

where P ranges over predicate symbols and the “guard” « is an atomic formula (possibly
an equality statement) containing all the free variables of ¢ [BtCS15].

Observe that both UNFO and GNFO allow unrestricted use of existential quantifi-
cation, and therefore, include union of conjunctive queries and monadic Datalog.

Let us now move on to description and modal logics, two related families of logics
that are also fragments of FO.

2.3 Description Logic

We use standard notation for the syntax and semantics of description logic [BHLS17,
BCM™'07]. Let Nc, Ngr, N; denote countably infinite sets of concept names, role names,
and individual names, respectively. We introduce the basic description logic ALC.
ALC-concepts are formed according to the following syntax rule:

C,D:=T|A|-C|CnND|3rC

where A ranges over N¢ and R over Ng. We use the abbreviations Vr.C' for —=3r.—C),
C U D for =(=C M —=D), and L for =T. The set of EL-concepts is defined by dropping
negation from the syntax rule of ALC-concepts.

Description logic knowledge bases are typically separated in terminological knowledge
and assertional knowledge. The former is represented in the TBox while the latter,
the data, is represented in an ABox. For L € {ALC,EL}, a general L-TBox is a set
T of concept inclusions C' T D with C, D L-concepts. A classical L-TBozx is a set
T of concept definitions A = C such that each concept name A € N¢ occurs at most
once in the left-hand side of a concept definition in 7 and C is an L-concept. We
will drop the reference to the TBox language when no confusion arises. Note that a
classical TBox is a special case of a general TBox since we can replace A = C by the
two concept inclusions A C C, C T A. An ABoz A is a non-empty set of concept and
role assertions of the form A(a) and r(a,b), where A € Nc, 7 € Ngr and a,b € N;. We
write ind(\A) for the set of individuals in \A. A DL knowledge base is a pair £ = (T, A).

The semantics of DLs is given via interpretations. An interpretation is a pair
T = (AT,-T), where A7 is a non-empty set of individuals, the domain, and -Z is an
interpretation function mapping each a € N to some domain element o € A%, each
concept name A € N¢ to a subset AZ C AT of the domain and each role name r € Ng
to a binary relation 72 C AT x AT over the domain.

We assume the unique name assumption, that is, we assume that different individuals
are interpreted by different domain elements. The interpretation function is defined for
ALC-concepts as follows:

TZ _ AI;
—|CI — AI\CI;
(cnbDY = ctnbD%
JR.C = {deAT|3Fec AT:(d,e) € RENe e CT}.

An interpretation Z satisfies or is a model of a concept C if CT = (); a concept inclusion
C C D, written Z = C C D, if CT C D?; a concept definition A = C, written
T E A=C,if AT = C%; a general TBox T, written Z =T ,if Z = C C D for all
C C DeT;an ABox A, written Z |= A, if for each assertion A(a) € A, we have a
a € AT and for each assertion r(a,b) € A, we have (aZ,b?) € rZ.

Traditional reasoning problems for DLs are concept satisfiability, knowledge base
consistency, and subsumption. We say that a concept C' is satisfiable relative to a TBox

Chapter 2. Preliminaries 16

T if there is a common model of C' and 7. A concept C' is subsumed by D relative to

a TBox T, written T = C C D, when for all models Z of T we have Z =C C D. A

knowledge base K = (T,.A) is consistent if there is a common model of 7 and \A.
Another important reasoning problem in DLs is that of conjunctive query evaluation.

Definition 2.3.1 (Conjunctive queries). A conjunctive query (CQ) is of the form
q(x) = Jy ¢(x,y), where x and y are tuples of variables and ¢(x,y) is a conjunction
of atoms of the form A(v) or r(v,w) with A € N¢, r € Ng, and v,w € xUy. We call x
answer variables and y quantified variables of q. A union of conjunctive queries (UCQ)
is a disjunction of CQs where all of them have the same answer variables.

Definition 2.3.2 (Semantics of CQs). A match of g in an interpretation Z is a function
7 :xUy — AT such that w(v) € AT for every atom A(v) of q and (7 (v), 7(w)) € r* for
every atom (v, w) of q. We write Z = q(a1,...,a,) if there is a match of ¢ in Z with
m(x;) = a; for all i < n. A tuple a of elements from N is a certain answer to g over an
ABox A given a TBox T, written T, A |= q(a), if Z |= ¢(a) for all models of T and A.

Definition 2.3.3 (CQ evaluation). CQ evaluation is the problem to decide, given a
TBox 7, an ABox A, a CQ ¢, and a tuple a € ind(A), whether T, A |= ¢(a).

As we have discussed in Section 1.2, it is possible to define an equivalence-preserving
translation of modal and description logic formulas into first-order formulas with one
free variable. In particular, the description logic ALC can be seen as a fragment of
first-order logic by providing two translations functions, 7, and m,, that inductively
map ALC concepts into first-order formulas with one free variable, x or y:

() = A@) m(d) = A(y)

r(-C) = ma(C) my(oC) = my(C)
m(CMND) = m,(C)MNmy(D) my(CND) = my(C)Nmy(D)
(@C) =) Any(C) | mERC) = Je(r(y,z) Ame(C))

For knowledge bases, observe that we can translate TBox axioms as universally
quantified (bi)-implications without free variables, and ABox assertions as ground facts.
We translate a TBox 7 and an ABox A as follows, where [z — a] is the formula
obtained from ¢ by replacing all free occurences of x with a:

™(T) = VYo A (m(C)=m(C)),

CCDeT
7(A) = A m(@lz—a A A r(ab).
C(a)eA r(a,b)eA

With this translation we can view DL interpretations as first-order interpretations
and vice versa. This not only provides an alternative way of defining the semantics
of ALC, but also tell us that ALC is a decidable fragment of first-order logic: the
translation uses only variables and y, and thus yields a formula in FO?. Similarly,
the translation uses guarded quantification, and thus yields a formula in GFO.

Description logics can be seen as cousins of modal logics, yet they have been
developed independently. We introduce next the basic modal logic and show its
relationship with description logic.

Chapter 2. Preliminaries 17

2.4 Modal Logic

We formally introduce the basic modal logic, denoted BM L, and refer to the standard
literature for more details [BARVO01, BvBWO06].

Definition 2.4.1 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. Then the set FORM of formulas of ML over PROP is defined as:

FORM =T |p| - | oAt | Op,

where p € PROP and ¢,1 € FORM. Oy is a shorthand for =O—p. Other operators are
defined as usual.

The semantics is defined in terms of Kripke models.

Definition 2.4.2 (Kripke Models). A Kripke model M is a triple M = (W, R, V),
where W is a non-empty set whose elements are called points or states; R C W xW is
the accessibility relation; and V : PROP — P (W) is a valuation. Informally we think
of V(p) as the set of points in M where p is true.

Modal logics describe Kripke structures from an internal perspective. This means
that modal formulas are evaluated at some particular point of the model. For this
purpose we use pointed models: pairs of the form (M, w), where w is a state in M; we
usually drop parentheses and call M, w a pointed model.

Definition 2.4.3 (Semantics). Given a pointed model M, w and a formula ¢ we say
that M, w satisfies ¢ (notation, M, w |= ¢) when

MwET always

M,wkEp iff weV(p)

M,w E o iff M,w

MwEeAyYy i MwpEyeand MwE Y

M,wkE=Cp it for some v e Wst. (w,v) € R, M,v = .

A formula ¢ is satisfiable if there exists a pointed model M, w such that M,w = p. A
formula ¢ is globally satisfiable in a model M if it is satisfied at all points in M, and if
this is the case we write M |= . A formula ¢ is valid if it is globally satisfied in all
models, and if this is the case we write = ¢.

As we mentioned before, modal logics are closely related to description logics. It
is not hard to see that ALC-concepts can be viewed as syntactic variants of formulas
of multimodal BML. Kripke structures can easly be viewed as DL interpretations,
and vice versa; we can then view concept names as propositional variables, and role
names as modal parameters. We formalize this relationship through the mapping 7
from multimodal BML to ALC as follows:

m(p) = A such that p € A, for p € PROP and A € N¢
m(-p) = —m(p)
(e AY) = w(p)Nw(y)
m((r)e) = Frz(e)

With this translation, modal logics can also be seen as fragments of first-order logic
and, in particular, as fragments of FO? and GFO.

Chapter 2. Preliminaries 18

The translation of DL knowledge bases is not immediate: a TBox 7T is satisfied
only in those structures where, for each C' C D, -7 (C) V w(D) holds globally, i.e., in
each point of the Kripke structure. This can be expressed in modal logic using the
universal modality. Like TBoxes, ABoxes do not have a direct correspondence in modal
logic, but they can be seen as a special case of nominals. The universal modality and
nominals will be introduced in Section 6.2.

CHAPTER 3

Conservative Extensions in Guarded and Two-Variable Fragments

In the area of description logic, deciding whether a logical theory is a conservative
extension of another theory is a fundamental reasoning task with applications in ontology
modularity and reuse, ontology versioning, and ontology summarization [BKL™16].
In these applications, it would be very useful to decide, given two sentences ¢1 and
2, whether ¢ A @2 is a conservative extension of ¢;. As expected, this problem is
undecidable in first-order logic (FO). In contrast, for many modal and description
logics, conservative extensions are often decidable [GLW06, GLWZ06, LWWO07]. The
main approach to proving decidability of conservative extensions is to first establish
a suitable model-theoretic characterization based on bisimulations, simulations, or
homomorphisms, which is then used as a foundation for a decision procedure based on
tree automata [LW11, BKL"16].

Regarding decidability, conservative extensions thus seem to behave similarly to
the classical satisfiability problem, which is also undecidable in FO while it is decidable
for modal and description logics. In the case of satisfiability, the aim to understand
the deeper reasons for this discrepancy and to push the limits of decidability to
more expressive fragments of FO has sparked a long line of research that identified
prominent decidable FO fragments such as the two-variable fragment FO? [Sco62,
Mor75], the guarded fragment GFO [ANv98, Gra99], and the guarded negation fragment
GNFO [BtCS15]. These fragments have sometimes been used as a replacement for
the modal and description logics that they generalize, and in particular the guarded
fragment has been proposed as an ontology language [BGO14]. Motivated by this
situation, and given that conservative extensions are now well understood in many
modal and description logics, we take the next step by studying the decidability and
computational complexity of conservative extensions in more expressive decidable
fragments of FO such as FO?, GFO, and GNFO. In particular, we study the first two
questions of Section 1.2.1:

Q1 Are conservative extensions decidable in relevant fragments of FO such as FO?,
GFO, and GNFO?

Q2 What are the reasons for decidability of conservative extensions in modal and
description logics and how far can the limits of decidability be pushed?

In this chapter, we show that conservative extensions are undecidable in any fragment

19

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 20

of FO that contains FO? or GFO (even the three-variable fragment thereof), and that
they are decidable and 2EXPTIME-complete in the two-variable guarded fragment
GFO?, which lies in the intersection of FO? and GFO.

To be more precise, we concentrate on deductive conservative extensions, that is,
©1 A @2 is a conservative extension of ¢ if for every sentence ¢ formulated in the
signature of @1, ¢1 A w2 |= 1 implies @1 |= 1. There is also a model-theoretic notion of
conservative extension which says that ¢ A 2 is a conservative extension of ¢y if every
model of ¢y can be extended to a model of po by interpreting the additional symbols
in ¢9. Model-theoretic conservative extensions imply deductive conservative extensions,
but the converse fails unless one works with a very expressive logic such as second-order
logic [KLWWO09]. Deductive conservative extensions are also closely related to other
important notions in logic, such as uniform interpolation [Vis96, BtCV15]. For example,
in logics that enjoy Craig interpolation, a decision procedure for conservative extensions
can also be used to decide whether a given sentence s is a uniform interpolant of a
given sentence ¢ regarding the symbols used in s.

In applications, it is often useful to consider a vocabulary ¥ of interest. Instead of
concentrating only on conservative extensions we also consider two related reasoning
problems that we call ¥-entailment and Y-inseparability, where 3 denotes a signature.
The definitions are as follows: a sentence (; >-entails a sentence s if for every sentence
¢ formulated in X, 2 = ¢ implies ¢; = 9. This can be viewed as a more relaxed
notion of conservative extension where it is not required that one sentence actually
extends the other as in the conjunction @1 A @9 used in the definition of conservative
extensions. Two sentences 1, @9 are Y-inseparable if they Y-entail each other. Note
that conservative extensions and Y-inseparability reduce in polynomial time to -
entailment (with two calls to X-entailment required in the case of X-inseparability),
and moreover, conservative extensions reduce in polynomial time to Y-inseparability.
Therefore, we obtain the same decidability and complexity results for all three problems.

We start by showing that conservative extensions are undecidable in FO? and (the
three-variable fragment of) GFO, and in fact in all fragments of FO that contain at least
one of the two; note that the latter is not immediate because the separating sentence
in the definition of conservative extensions ranges over all sentences from the considered
fragment, giving greater separating power when we move to a larger fragment. The
proofs are by reductions from the halting problem for two-register machines and a
tiling problem, respectively. We note that undecidability of conservative extensions
also implies that there is no extension of the logic in question in which consequence
is decidable and that has effective uniform interpolation (in the sense that uniform
interpolants exist and are computable). We then we show as our second main result that,
in the two-variable guarded fragment GFO?, Y-entailment is decidable and 2EXPTIME-
complete. Regarding the satisfiability problem, GFO? behaves fairly similarly to modal
and description logics. It is thus suprising that deciding ¥-entailment in GFO? turns
out to be much more challenging. However, regarding conservative extensions, the
complexity is not harder than in most modal and description logics. We observe that a
2EXPTIME lower bound from [GLWO06] for conservative extensions in description logics
can be adapted to GFO?. For the upper bound, we use an automata-based technique
as for modal and description logics, but the model-theoretic characterizations that we
present are much more complex. In GFO?, a model-theoretic characterization in terms
of an appropriate notion of (guarded) bisimulation fails. Instead, one has to demand
the existence of k-bounded guarded bisimulations, for all k, and while tree automata
can easily handle bisimulations, it is not clear how they can deal with such an infinite

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 21

family of bounded bisimulations. We solve this problem by a very careful analysis of
the situation and by providing another characterization that can be viewed as being
‘half way’ between a model-theoretic characterization and an automata-encoding of
Y-entailment. Since it is known that GFO? enjoys Craig interpolation, our results are
also relevant to deciding uniform interpolants and to a stronger version of conservative
extensions in which the separating sentence 1) can also use ‘helper symbols’ that occur
neither in ¢ nor in s.

3.1 Deductive Conservative Extensions

We consider the two-variable fragment (FO?) and the guarded fragment (GFO) of
first-order logic (FO) as introduced in Chapter 2. We generally admit equality and
disallow function symbols and constants. In FO? and fragments thereof, we generally
admit only predicates of arity one and two, which is without loss of generality [GKV97].
The k-variable fragment of GFO, denoted GFO¥ . is the set of GFO formulas involving
no more than k variables.

A signature X is a finite set of predicates. We use GFO(X) to denote the set of all
GFO-sentences that use only predicates from ¥ (and possibly equality), and likewise
for GFO?(X) and other fragments. We use sig(¢) to denote the set of predicates that
occur in the FO formula . Note that we consider equality to be a logical symbol,
rather than a predicate, and it is thus never part of a signature. We write @1 = 9 if
9 is a logical consequence of 1. The next definition introduces the central notions of
this chapter.

Definition 3.1.1. Let F be a fragment of FO, ¢1, oo F-sentences and . a signature.
Then

1. @1 X-entails p2, written ;1 =y @, if for all F(X)-sentences 1, @2 = 1 implies
©1 =

2. 1 and @9 are X-inseparable if 1 Y-entails o and o Y-entails p1;
3. 1 A w2 is a conservative extension of i if 1 sig(p1)-entails 1 A pa.

Note that logical consequence, p1 |= @2, can be expressed as a validity or (un)satisfia-
bility problem: 1 implies o is valid, or ¢1 A =9 is unsatisfiable. Then Y-entailment
could equivalently be defined as follows when F' is closed under negation: @1 X-entails
oo if for all F'(X)-sentences v, satisfiability of ¢1 A ¢ implies satisfiability of w2 A). In
other words, if ¢1 does not Y-entail ¢, there is thus an F'(X)-sentence 1 such that
p1 A is satisfiable while po A 9 is not. We refer to such i as a witness sentence for
non-X-entailment.

Example 3.1.1. (1) X-entailment is a weakening of logical consequence, that is,
©1 = 2 implies @1 =5 @2 for any X. The converse is true when sig(p2) C 3.

(2) Consider the GFO?-sentences o = Va3y(Rzy A x # y) and @9 = Vo (3y(Rzy A
Ay) A Jy(Rxy A —Ay)) and let ¥ = {R}. Let 2 be the model of ¢; that consists of an
infinite R-path with an initial element, and let B be the model of s that consists of
two infinite branching R-paths with an initial element. Then (1 ¥-entails @9 since the
two models cannot be distinguished (see Theorem 3.3.6) as GFO? cannot count the
number of R-successors. If oy is replaced by ¢} = Vaz3yRxy then ¢} does not X-entail
9 since the sentence 1) = Vxy(Rxy — x = y) is a witness for non-Y-entailment.

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 22

It is important to note that different fragments F' of FO give rise to different notions
of Y-entailment, >-inseparability and conservative extensions. For example, if ¢ and
9 belong to GFO?, then they also belong to GFO and to FO?, but it might make
a difference whether witness sentences range over all GFO?-sentences, over all GFO-
sentences, or over all FO%-sentences. If we want to emphasize the fragment F in which
witness sentences are formulated, we speak of F'(X)-entailment instead of Y-entailment
and write p1 Fp(s) 2, and likewise for F'(%)-inseparability and F(3)-conservative
extensions.

Example 3.1.2. Let ¢, @2, and ¥ = {R} be from Example 3.1.1 (2). Then
¢1 GFO?(X)-entails @2 but ¢; does not FO(X)-entail ¢2; a witness is given by
Vayiy2((Rxyr A Rryz) — y1 = y2).

Note that conservative extensions and Y-inseparability reduce in polynomial time to
Y-entailment (with two calls to X-entailment required in the case of X-inseparability).
Moreover, conservative extensions reduce in polynomial time to X-inseparability. We
thus state our upper bounds in terms of Y-entailment and lower bounds in terms of
conservative extensions.

There is a natural variation of each of the three notions in Definition 3.1.1 obtained
by allowing to use additional ‘helper predicates’ in witness sentences. For a fragment
F of FO, F-sentences @1, 2, and a signature X, we say that 1 strongly 3-entails
o if p1 Y-entails g for any ¥/ with ¥/ Nsig(p2) C X. Strong -inseparability and
strong conservative extensions are defined accordingly. Strong Y-entailment implies
Y-entailment, but the converse may fail as shown in the following example.

Example 3.1.3. GFO(X)-entailment does not imply strong GFO(X)-entailment. Let
1 state that the binary predicate R is irreflexive and symmetric and let @9 be the
conjunction of ¢y and Vz(Azx — Vy(Rzxy — —Ay)) AVz(-Az — Vy(Rzy — Ay)).
Thus, an {R}-structure satisfying ¢1 can be extended to a model of ¢y if it contains
no R-cycles of odd length. Now observe that any satisfiable GFO({R}) sentence is
satisfiable in a forest { R}-structure (see Section 3.3 for a precise definition). Hence, if
a GFO({R})-sentence is satisfiable in an irreflexive and symmetric structure then it is
satisfiable in a structure without odd cycles and so ¢1 GFO({ R})-entails 9. In contrast,
for the fresh ternary predicate @ and ¥ = Jxjzox3(Qr12223 A RT129 A RXo3 A RIsx:)
we have g = =1 but ¢ = =1 and so ¢ witnesses that ¢; does not GFO({ R, @})-entail
P2-

The example above is inspired by proofs that GFO does not enjoy Craig interpola-
tion [HMO02, DL15]. This is not accidental, as we explain next. Recall that a fragment
F of FO has Craig interpolation if for all F-sentences 11,1y with 11 |= 19 there exists
an F-sentence v (called an F-interpolant for 1,12) such that 1 = ¢ = 19 and
sig(v) C sig(y1) Nsig(ypz). F has uniform interpolation if one can always choose an
F-interpolant that does not depend on 9, but only on %; and sig(t;) N sig(y2). Thus,
given 91, ¢ and ¥ with 11 = ¢ and sig(y) C 3, then ¢ is a uniform F(X)-interpolant
of Y iff ¢ strongly F'(X)-entails ¢1. Both Craig interpolation and uniform interpolation
have been investigated extensively, for example for intuitionistic logic [Pit92], modal
logics [Vis96, DHOO, MSV15], guarded fragments [DL15], and description logics [LW11].
The following observation summarizes the connection between (strong) Y-entailment
and interpolation.

Theorem 3.1.1. Let F' be a fragment of FO that enjoys Craig interpolation. Then
F(X)-entailment implies strong F(X)-entailment. In particular, if v2 &= p1 and
sig(p1) C X, then ¢1 is a uniform F(X)-interpolant of @o iff ¢1 F(X)-entails ps.

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 23

Proof. Assume ¢; does not strongly F'(X)-entail 2. Then there is an F-sentence
¥ with sig(¢) Nsig(p2) € X such that @y = 9 and p1 A =1 is satisfiable. Let x be
an interpolant for ¢9 and ¢ in F'. Then —x witnesses that ¢; does not F(X)-entail
P2- a

The uniform interpolant recognition problem for F' is the problem to decide whether a
sentence v is a uniform F(X)-interpolant of a sentence v’. It follows from Theorem 3.1.1
that in any fragment F' of FO that enjoys Craig interpolation, this problem reduces in
polynomial time to >-inseparability in F' and that, conversely, conservative extension
in F' reduces in polynomial time to the uniform interpolant recognition problem in F'.
Neither GFO nor FO? nor description logics with role inclusions enjoy Craig interpola-
tion [HM02, Com69, KLWWO09], but GFO? does [HMO02]. Thus, our decidability and
complexity results for Y-entailment in GFO? also apply to strong Y-entailment and the
uniform interpolant recognition problem.

3.2 Undecidability Results

We prove that conservative extensions are undecidable in GFO? and in FO?, and
consequently so are Y-entailment and Y-inseparability (as well as strong Y-entailment
and the uniform interpolant recognition problem). These results hold already without
equality and in fact apply to all fragments of FO that contain at least one of GFO?
and FO? such as the guarded negation fragment [BtCS15].

3.2.1 The Guarded Fragment

We start with the case of GFO?, using a reduction from the halting problem of two-
register machines.

Definition 3.2.1. A (deterministic) two-register machine (2RM) is a pair M = (Q, P)
with Q = qo, ..., q¢ a set of states and P = Iy, ..., I;_1 a sequence of instructions. By
definition, qq is the initial state, and gy the halting state. For all i < £,

e cither I; = +(p, g;) is an incrementation instruction with p € {0,1} a register
and ¢; the subsequent state;

e or I; = —(p,qj,qx) is a decrementation instruction with p € {0,1} a register,
g; the subsequent state if register p contains 0, and ¢; the subsequent state
otherwise.

A configuration of M is a triple (¢,m,n), with ¢ the current state and m,n € N the
register contents. We write (g;,n1,n2) = (g5, m1, m2) if one of the following holds:

o Ii=+(p,qj), mp =np+ 1, and myp = nyp;
o I; =—(p,qj,qr), np =mp =0, and mi_p, = n1_p;
o Ii=—=(p,qr: 4j), np >0, mp = np — 1, and my_p = n1p.

The computation of M on input (n,m) € N? is the unique longest configuration
sequence (po, o, mo) = (p1,n1,m1) = - -+ such that pg = qo, no = n, and mg = m.
The halting problem for 2RMs is to decide, given a 2RM M, whether its computation
on input (0,0) is finite (which implies that its last state is qy).

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 24

We show how to convert a given 2RM M into GFO3-sentences o1 and 9 such that
M halts on input (0, 0) iff ¢1 A g2 is not a conservative extension of p;. Let M = (Q, P)
with @ = qo,...,qo and P = Iy,...,Iy_1. We assume w.l.o.g. that £ > 1 and that if
I; = —(p, qj, qi), then g; # qx. In 1, we use the following set X of predicates:

e a binary predicate N connecting a configuration to its successor configuration;

e binary predicates R; and Rs that represent the register contents via the length
of paths;

e unary predicates qq, ..., qs representing the states of M;
e a unary predicate S denoting points where a computation starts.

We define ¢ to be the conjunction of several GFO?-sentences. First, we say that there
is a point where the computation starts:'

FzSx AV (Sx — (qox A —Jy Roxy A =Ty Rixy))

And second, we add that whenever M is not in the final state, there is a next configu-
ration. For 0 < ¢ < £: .
Va(giz — Jy(Ney A qsy)) i Ii = +(p, q5)

Va((gx A ~FyRyry) — Jy(Nzy A qjy)) it I = —(p, ¢, q)
Vo ((giz A JyRyzy) — Jy(Naxy A qry)) if I = —(p, g5, ar)

The second sentence s is constructed so as to express that either M does not halt
or the representation of the computation of M contains a defect, using the following
additional predicates:

e a unary predicate P used to represent that M does not halt;

e binary predicates D;L Dy, D, used to describe defects in incrementing, decre-
menting, and keeping register p € {0,1};

e ternary predicates H; , Hy , H; , Hy , Hi , Hy used as guards for existential quan-
tifiers.

In fact, @9 is the disjunction of two sentences. The first sentence says that the
computation does not terminate:

Jz (Sz A Pz) AVx (Px — Jy (Nzy A Py))

while the second says that registers are not updated properly:

JoTy (Nzy A (- \/ (@zAgiy A (Dfzy v DT ay))

Ii=+(p,q5)
vV (@@ Agy A (Dyay vV DT ay))
Ii=—(p,q;,qx)
vV (@@ ngyn(Dyey v DLey))
ILi=—(p,q5,qr)

A2y (D xy — (—32 Rpyz V (=32 Rywz A 3z (Rpyz A 3xRyzx))
V3z(H{ zyz A Ryxz A Ju(HS xzy A Ryyx A Dif zx)).

!The formulas that are not syntactically guarded can easily be rewritten into such formulas.

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 25

In this second sentence, additional conjuncts that implement the desired behaviour of
D and D, are also needed; they are constructed analogously to the last three lines
above (but using guards H i and H;-). We now prove the correctness of the reduction.

Lemma 3.2.1.

1. If M halts, then o1 A pg is not a GFO?-conservative extension of 1.

2. If there exists a X-structure that satisfies 1 and cannot be extended to a model
of w2 (by interpreting the predicates in sig(y2) \ sig(¢1)), then M halts.

In the proof of Point 1, the sentence that witnesses non-conservativity describes
a halting computation of M, up to global GFO?(X)-bisimulations. This can be done
using only two variables. We split the proof of Lemma 3.2.1 into two parts.

Lemma 3.2.2. If M halts then @1 A o is not a GFO?-conservative extension of ©1.

Proof. Assume that M halts. We define a witness 1 for non-conservativity. It says
that every element participates in a substructure that represents the computation of M
on input (0,0), that is: if the computation is (qo, ng, mo), - - -, (qk, Nk, My), then there
is an N-path of length k& (but not longer) such that any object reachable in i < k steps
from the beginning of the path is labeled with ¢;, has an outgoing Ry-path of length n;
and no longer outgoing Rp-path, and likewise for Ry and m;. In more detail, consider
the Y-structure 2 with

A={0,....k}U{d; |0<i<k0<j<n}U{b;|0<i<kO0<j<my}

in which

N* = {(i,i+1) i<k}

R%[= Uzgk{(% ail)a (a?la a%)? RS (afwi—% afwi—l)}

R%[= Uigk{(iv bzl)v (ll? sz)’ SRR (b:nif% binifl)}

s* = {0}

¢ = {i|g=q}foranyqeQ.
Then let ¢ be a GFO?(3)-sentence that describes 21 up to global GFO?()-bisimulations.
Clearly 2 satisfies ¢1 A 9. It thus remains to show that o1 A @2 A ¢ is unsatisfiable.
But this is clear as there are no N-paths of length > k in any model of ¥ and since
there are no defects in register updates in any model of 1. (N

Lemma 3.2.3. If there exists a X-structure that satisfies 1 and cannot be extended
to a model of pa, then M halts.

Proof. Let 2 be a YX-structure satisfying ¢ that cannot be extended to a model
of . Then S # () and there exists an N-path labeled with states in @ starting in
S. Since 2 cannot be extended to a model of ¢y the computation starting from S is
finite. Moreover, one can readily prove by induction that no register update defects
occur since otherwise o can be satisfied. 4

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 26

The following result is an immediate consequence of Lemma 3.2.1.

Theorem 3.2.4. In any fragment of FO that extends the three-variable guarded
fragment GFO3, the following problems are undecidable: conservative extensions,
Y -inseparability, S-entailment, and strong %-entailment.

Since Point 1 of Lemma 3.2.1 ensures GFO2-witnesses, Theorem 3.2.4 can actually
be strengthened to say that GFOZ?-conservative extensions of GFO3-sentences are
undecidable.

3.2.2 The Two-Variable Fragment

Our result for FO? is proved by a reduction of a tiling problem that asks for the tiling
of a rectangle (of any size) such that the borders are tiled with certain distinguished
tiles.

Definition 3.2.2. A tiling system © = (%, H,V,Right, Left, Top, Bottom) consists of
a finite set ¥ of tiles, horizontal and vertical matching relations H,V C T x ¥, and
subsets Right, Left, Top, and Bottom of ¥ containing the right tiles, left tiles, top tiles,
and bottom tiles, respectively. A solution to © is a triple (n,m,7) where n,m € N and
7:{0,...,n—1} x{0,...,m — 1} — ¥ such that the following hold:

1. (7(i,7),7(i+1,7)) € H, for all i <n and j <m;
2. (7(i,7),7(i,7+ 1)) € V, for all i <n and j < m;
3. 7(0,7) € Left and 7(n, j) € Right, for all j < m;

4. 7(i,0) € Bottom and 7(i,m) € Top, for all i < n.

We show how to convert a tiling system ® into FO?-sentences ¢; and ¢y such that
® has a solution iff 1 A @9 is not a conservative extension of ;1. In particular, models
of witness sentences will define solutions of 2.

Let ® = (%, H,V, Right, Left, Top, Bottom) be a tiling system. The formula ¢ uses
the following set ¥ of predicates:

e binary predicates Rj, and R, (representing a grid) and Sj, and S, (for technical
reasons),

e unary predicates T for every T € ¥, G (for the domain of the grid), O (for the
lower left corner of the grid), B, B, By, and B, (for the borders of the grid).

Then ¢ is the conjunction of the following sentences:

1. Every position in the n x m grid is labeled with exactly one tile and the matching
conditions are satisfied:

Vo(Gz — \/ (Tan N\ —-T'z))
TeT T'€T, T'AT

Va(Gz —» N\ (Tz— (\/ YyRpaey>Ty)A \/ Vy(Rozy — T'y)))).
TeT (T, T")eH (T, 7")eV

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 27

2. The predicates B_,, B, By, and B mark the borders of the grid:
Vo (Gx A B,z — (—3yRpzy AVy(Ryzy — Boy) AVy(Ryyx — BLy)))
Va(Gx A -B_x — JyRpzy)
and similarly for B, By, and B,.

3. There is a grid origin:
Jdz (Ox A Bz A\ B x).

4. The grid elements are marked by G:
Vaz(Ox — Gz), Va(Gz — Yy(Rpzy — Gy)), Vz(Gx — Vy(R,zy — Gy)).

5. The tiles on border positions are labeled with appropriate tiles:

Vz(Box — \/ T(z)).
TeRight

and similarly for B, By, and B|.

6. The predicates Sy, and S, occur in ¢1: any FO2-tautology using them.

This finishes the definition of ;. The sentence @5 introduces two new unary predicates
@ and P and is the conjuntion of 3z(Ox A Qx) and

Vo (Qx — (Jy(Rpzy A Qy) V y(Ruxy A Qy) V ¢px))
where
opx = Jy(Rpay AVa(Ryyx — Px)) A Jy(Ryzy AVz(Rpyx — —Px))

Thus, ¢p describes a defect in the grid: there exist an Rp-successor y; and an R,-
successor yo of x such that every R,-successor of y; is labeled with P and every
Rp-successor of ys is labeled with = P. Informally, we can satisfy (g only if from some
element of O, there is an infinite Rj,/R,-path or a non-closing grid cell can be reached
by a finite such path. To make this precise, we introduce some notation. Let ¥/ D X
and let B be a Y/-structure. Then the Y-structure 2 obtained from B by removing
the interpretation of predicates in X'\ ¥ is called the X-reduct of B and B is called
a X'\ X-extension of . For a X-structure 2, we say that a € A is the root of a
non-closing grid cell if there are (a,b1) € R} and (a,by) € R¥ such that there does
not exist a ¢ € A with (by,¢) € RY and (bg,c) € RY. Now, we show the following
characterization of ¢s.

Lemma 3.2.5. ¢y can be satisfied in a {Q, P}-extension of a X-structure 2 iff there
exists an element of O% that starts an infinite Ry /Ry-path or a finite Ry /Ry,-path to a
root of a non-closing grid cell.

Proof.(sketch) Assume that ¢ is satisfied in a {Q, P}-extension of a X-structure
2. By definition of v, we can find an assignment of) that satisfies po such that there
is an infinite outgoing R}, /R,-path starting at an element of O%; or we can find an
assignment of (@ and) P that satisfies @9 such that there is a finite Rj/R,-path to a
root of a non-closing grid cell.

For the other direction, assume there exists an element of O* that starts an infinite
R}, /R,-path or there is a finite Ry /R,-path to a root of a non-closing grid cell. Then
1 cannot be satisfied in such a Y-structure 2. We thus define a structure B as a
{Q, P}-extension of A, and therefore, 9 is clearly satisfied in B. d

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 28

We now argue that ® has a solution iff ¢1 A @9 is not a conservative extension of
$1.
Lemma 3.2.6. If ® has a solution then o1 A o is not an FO?-conservative extension
of 1.

Proof. Assume that © has a solution (n,m, 7). We define a witness 1, first using
additional fresh unary predicates and then arguing that these can be removed. Thus
introduce fresh unary predicates P; ; for all ¢ < n and j < m. Intuitively, P; ; identifies
grid position (i, j). Set

Y = Vo (Gr =V, ;Pjr)
VAN /\ YV _‘(]Di,jx A Pi/7j/l’)
(4.5)#,5")
AVVy (Rpry <V Pijz A Py jy)
AVaVy (Ryw,y <> V; j Pijoe A Piji1y)
AVzx (Ox — P070x).

We first show that o1 A % is satisfiable. As the model, simply take the standard
n x m-grid in which all positions are labeled with P; ;, G, O, B_, etc in the expected
way, and that is tiled according to 7. It is easily verified that this structure satisfies both
1 and . It thus remains to show that o1 A wa A9 is unsatisfiable. By Lemma 3.2.5
it suffices to show that there is no model 2 of 1 A ¢ in which there exists an element
of O starting an infinite Ry, /R,-path or a finite R, /R,-path leading to a root of a
non-closing grid cell. Assume for a proof by contradiction that there exists such a model
2 and a € O*. Then we find a sequence aoRialRiag -+ with ag = a and z; € {h,v}
such that either some ay, is the root of a non-closing grid cell or the sequence is infinite.
By 1 and the first conjunct of v for each ay, there exists P; ; with a;, € be By the last
conjunct of ¥, ag € POQ}O. By the remaining conjuncts of ¢ we have k > i+ j if ai € Pflj
and it follows that there is no a; with k£ > n + m. Thus, assume some aj is the root
of a non-closing grid. Then we have (ax,b1) € R} and (ay,bs) € RY such that there
is no ¢ € A with (b1,¢) € R* and (ba,c) € R}. By %, there are 4,j with by € Pi%[rl,j
and by € Pf[jﬂ. By the second set of conjuncts of o1 there exists (by,c) € R¥. By 4,
ce Pi%lrl’j 1. But then again using 1 we obtain that (bs,c) € R} and we have derived
a contradiction.

We now show how to remove the additional predicates P; ;. To this end, we use
the binary predicates Sj, S,. In the sentence v, we replace every occurrence of P; j(x)
with a formula saying: there is an outgoing Sp-path of length i, but not of length ¢ + 1
and an outgoing S,-path of length j, but not of length j + 1. When we build a model
of 1 A1), we now need to introduce additional elements for the “counting paths”. We
make the predicate G false on all those elements and true everywhere on the grid. l:l

Lemma 3.2.7. If there exists a %-structure that satisfies 1 and cannot be extended
to a model of po, then © has solution.

Proof. Take a Y-structure 2 satisfying (1 that cannot be extended to a model of
©o2. By the conjunct of ¢ given in Item 3, O* N B* ﬂBfl # (. Take a € O*NBY ﬂBf‘.
By Lemma 3.2.5, a does not start an infinite R /R,-path or a finite R}, /R,-path leading
to the root of a non-closing grid cell. Using the conjuncts of ¢ it is now straightforward
to read off a tiling from 2. a

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 29

The following result is an immediate consequence of Lemmas 3.2.6 and 3.2.7.

Theorem 3.2.8. In any fragment of FO that extends FO?, the following problems
are undecidable: conservative extensions, X-inseparability, 3-entailment, and strong
Y.-entailment.

Note that the sentences ¢1 and @9 can be replaced by equivalent ALC-TBoxes: in
2, we can replace the conjunct 3x(Ox AQx), which cannot be expressed in ALC, by the
concept inclusion T C 3S5.(0O M Q) with S a fresh binary predicate. Consequently, the
proof of Theorem 3.2.8 also shows that FO?-conservative extensions of ALC-TBoxes are
undecidable while it follows from our results in the next section that GFO?-conservative
extensions of ALC-TBoxes are decidable.

3.3 Model-theoretic Characterization

The undecidability results established in the previous section show that neither the
restriction to two variables nor guardedness alone are sufficient for decidability of
conservative extensions and related problems. We now show that adopting both
restrictions simultaneously results in decidability of Y-entailment (and thus also of
conservative extensions and of inseparability). We proceed by first establishing a
suitable model-theoretic characterization based on bisimulations to then use it as the
foundation for a decision procedure based on tree automata. We in fact establish two
versions of the characterization, the second one building on the first one.

3.3.1 GFO2?-Bisimulations

In this section we introduce GFOZ2-bisimulations and variants thereof that will be
needed to give a model-theoretic characterization of ¥-entailment.

We start with some preliminaries. An atomic 1-type for ¥ is a maximal satisfiable
set 7 of atomic GFO?(X)-formulas and their negations that use the variable x, only. We
use atg(a) to denote the atomic 1-type for X realized by the element a in the structure
2. An atomic 2-type for ¥ is a maximal satisfiable set T of atomic GFO?(X)-formulas
and their negations that use the variables z and y, only, and contains —(z = y). We
say that 7 is guarded if it contains an atom of the form Rxy or Ryx, R a predicate
symbol. We use atg (a,b) to denote the atomic 2-type for X realized by the elements
a,b in the structure 2. A relation ~ C A x B is a GFO?(X)-bisimulation between 2
and ‘B if the following conditions hold whenever a ~ b:

1. aty(a) = atx(b);

2. for every a’ # a such that aty(a,d’) is guarded, there is a b # b such that
aty (a,a’) = at% (b, b') and a’ ~ b’ (forth condition);

3. for every b’ # b such that aty(b,V') is guarded, there is an a’ # a such that
aty (b,0') = at¥(a,a’) and a’ ~ b (back condition).

We write (2, a) ~x, (8B,b) and say that (A, a) and (B, b) are GFO?*(X)-bisimilar if there
is a GFO?(X)-bisimulation ~ between 2l and B with a ~ b. If the domain and range of
~ coincide with A and B, respectively, then ~ is called a global GFO?*(X)-bisimulation.

We continue giving a bounded version of bisimulations. For k > 0, we write
(A, a) ~& (9B,b) and say that (2, a) and (B,b) are k-GFO?(X)-bisimilar if there is a
~ C A x B such that the first condition for bisimulations holds and the back and forth

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 30

conditions can be iterated up to k times starting from a and b. More formally, let A
and B be structures, a € A, and b € B. The definition k-GFO?(X) bisimilarity is by
induction on k > 0. Then (A, a) ~% (B,b) iff aty(a) = ati(b) and (2, a) ~5 (B, b)
iff aty(a) = aty(b) and

is guarded, there exists &’ # b such that

1. for every a’ # a such that aty(a,a’)
)~ (B,)

aty (a,a’) = at¥ (b, b') and (A, d’

2. for every b’ # b such that at}(b,b') is guarded, there exists o’ # a such that
aty (b, b') = aty(a,a’) and (%, a) ~E (9B,Y).

Call structures 2 and B globally k-GFO*(X)-bisimilar if for all a € A there exists
b € B such that (2, a) ~& (%B,b) and, conversely, for every b € B there exists a € A
with (2, a) ~% (B,b). 2 and B are globally finitely GFO*(X)-bisimilar iff they are
globally k-GFO?(Y)-bisimilar for all k& > 0.

Example 3.3.1. Consider the GFO?-sentences ¢, = VaIyRry and ps = 1 A JzBx A
Vz(Bz — Jy(Ryx A By)) and let ¥ = {R}. Let 2 be the model of ¢; that consists of
an infinite R-path with an initial element. Then there is no model of @2 that is globally
GFO?({R})-bisimilar to 2 since any such model has to contain an infinite R-path with
no initial element. Yet, @9 is a conservative extension of 1 as all possible witnesses
are finite and can thus see only a finite part of the infinite backwards path. To capture
this insight, we need to consider bounded bisimulations, for arbitrarily large bounds
(see Theorem 3.3.6 below).

Expressive Power

We now show that GFO?(X)-bisimulations characterize the expressive power of GFO?()-
sentences. The proofs are standard [GO14, GO06, ANv98]. We first characterize the
expressive power of a fragment of GFO?, that we call openGFO?, and then we do it for
the general case.

Denote by openGFO? the fragment of GFO? consisting of all GFO? formulas with
one free variable in which equality is not used as a guard and which do not contain a
subformula that is a sentence. It is not difficult to prove the following result.

Lemma 3.3.1. Every GFO?-sentence is equivalent to a Boolean combination of sen-
tences of the form Yap(x), where p(x) is an openGFO? formula.

To characterize GFO? we often need structures that satisfy certain saturation
conditions. A structure 2 is w-saturated if for every finite set {ai,...,a,} C A and
every set I'(z) of FO formulas using elements of {a1,...,a,} as constants the following
holds: if every finite subset of I'(x) is satisfiable in the structure (2, ay,...,ay), then
I'(z) is satisfiable in (2, ay,...,a,). For every structure 2 there exists an elementary
extension 2’ of 2 that is w-saturated [CK90]. Mostly we only require a weaker form
of saturation. A structure 2 is successor-saturated if for any a € A and set I'(x) of
openGFO? formulas the following holds for any atomic guarded binary type 7: if for any
finite subset I of T there exists a’ # a with atg(a,a’) = 7 and 2 = ¢(a’) for all ¢ € TV,
then there exists b’ # a with atg(a,b’) = 7 and 2 = ¥(V') for all ¢» € . Observe that
structures of finite outdegree and w-saturated structures are successor-saturated.

The depth of a GFO? formula ¢ is the number of nestings of guarded quantifications
in ¢. We first characterize openGFO?.

Lemma 3.3.2. Let 2 and B be structures, ¥ a signature, and a € A, b € B.

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 31

1. The following conditions are equivalent for all k > 0:

o 2 = ¢(a) iff B = p(b) holds for all openGFO*(X) formulas ¢(x) of depth k;
o (2,a) ~5 (B,0b).

2. If (A,a) ~x (B,b), then A = p(a) iff B | @(b) holds for all openGFO?(X)
formulas p(x). The converse direction holds if A and B are successor-saturated.

The proof is standard and ommited. We also require the following link between
bounded bisimulations and unbounded bisimulations which follows from Lemma 3.3.2.

Lemma 3.3.3. Let 2 and B be successor-saturated structures, a € A, and b € B. If
(A, a) ~% (B,b) for all k >0, then (A, a) ~x (B, b).

In order to characterize GFO? we need to consider global bounded bisimulations.
The following characterization result now follows from Lemma 3.3.1 and Lemma 3.3.2.

Lemma 3.3.4. Let 2 and B be structures and ¥ a signature.
1. The following conditions are equivalent:

e A = ¢ iff B = ¢ holds for all GFO?(X) sentences p;
e A and B are globally finitely GFO?(X)-bisimilar.

2. (a) If A and B are globally GFO*(X)-bisimilar, then A = ¢ iff B = ¢ holds
for all GFO?*(X) sentences ¢. (b) The converse direction holds if 2 and B are
w-saturated.

Observe that in Lemma 3.3.4 we cannot replace w-saturation by successor-saturation
or finite outdegree.

Theorem 3.3.5. An FO-sentence ¢ is equivalent to a GFO?-sentence iff its models
are preserved under global GFO?(sig(y))-bisimulations.

Proof. One direction follows by Lemma 3.3.4 2.(a). For the other direction, let ¢ be
an FO-sentence whose models are preserved under global GFO ?(sig(¢))-bisimulations.
We want to show that ¢ is equivalent to a GFO?-sentence.

We first show that whenever two structures agree on all sentences of GFO?, they
agree on ¢. Suppose A and B satisfy the same GFO?-sentences. Without loss of
generality, we can assume that 2 and 8 are w-saturated. By Lemma 3.3.4 2.(b) we
have that 21 and B are globally GFO?(sig(y))-bisimilar. Assume now that 2 = ¢. As
the models of ¢ are preserved under global GFO ?(sig(())-bisimulations, and 2 and
B are globally GFO?(sig(¢))-bisimilar, this implies that B |= . By symmetry we get
2A = ¢ iff B = ¢ as desired.

Now assume that ¢ is satisfiable, i.e., there is a structure 2 such that 2 = ¢, and
let © be the set of all GFO2-sentences 6 such that 2 = 6. We show that © = ¢ (i.e.,
any model of © is a model of). If this were not the case then we have a structure B
such that B = © A ~¢. But because © contains each GF2-sentence or its negation we
have that 21 and B are globally GFO?(sig(¢))-bisimilar and 2 and B disagree on .
This contradicts the claim of the previous paragraph.

Since O = ¢ then, by compactness, there is a finite subset ©’ of © such that ©’ = ¢.
By construction, this implies that ¢ is equivalent to the conjunction of all the sentences
in © and therefore equivalent to a GFO?-sentence. ([

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 32

With these notions at hand we are now ready to give a model-theoretic characteri-
zation of ¥-entailment using an appropriate notion of GFO?-bisimulation.

3.3.2 Characterization of >-Entailment

In modal and description logics, global Y-bisimulations can often be used to characterize
Y-entailment in the following natural way [LW11]: ¢; Y-entails @9 iff for every (tree)
model A of ¢;, there exists a (tree) model B of ¢y that is globally X-bisimilar to 2.
Such a characterization enables decision procedures based on tree automata, but does
not hold for GFO? as shown in Example 3.3.1.

We give our first characterization theorem that uses unbounded bisimulations in
one direction and bounded bisimulations in the other.

Theorem 3.3.6. Let ©1,py be GFO2-sentences and ¥ a signature. Then o1 Fx 02
iff for every model A of ¢1 of finite outdegree, there is a model B of po such that

1. for every a € A there is a b € B such that (2, a) ~x (B, b)
2. for every b € B and every k > 0, there is an a € A such that (%, a) ~% (9B, b)

Proof. “if”. Assume that for every model 2l of ¢ of finite outdegree, there is a
model B of o as described in Theorem 3.3.6. Take a ¥-sentence ¢ such that o1 A is
satisfiable. We have to show that @2 A1) is satisfiable. We find a model 2 of (o1 A4 that
has finite outdegree. By assumption, there is a model 25 of o that satisfies Conditions 1
and 2 of Theorem 3.3.6. It suffices to show that 25 satisfies 1. But this follows from
Lemma 3.3.4.

“only if”. Assume that ¢; 5 ¢2. Let 2 be a model of ¢; of finite outdegree.
Let T' denote the set of all GFO?(X) sentences ¢ with 2 |= 1. Then p; A AT is
satisfiable for every finite subset IV of T'. As 1 Ex ¢2, 2 A ATV is satisfiable for every
finite subset I of I". By compactness {2} UT is satisfiable. Then there exists an
w-saturated model B of {p2} UT'. By w-saturatedness, for every a € A there exists
b € B such that 2 = ¢(a) iff B = ¢(b) holds for all formulas ¢(x) in openGFO?(X).
By Lemma 3.3.2, we have (2, a) ~x (*B,b), as required for Condition 1. Condition 2
follows from Lemma 3.3.2. a

Because of the use of k-bounded bisimulations (for unbounded k), it is not clear
how to use Theorem 3.3.6 to find a decision procedure based on tree automata. In the
following, we formulate a more ‘operational’ but also more technical characterization
that no longer mentions bounded bisimulations. It additionally refers to forest models
20 of 1 (of finite outdegree) instead of unrestricted models, but we remark that
Theorem 3.3.6 also remains true under this modification.

A structure 2 is a forest if its Gaifman graph is a forest. Thus, a forest admits
cycles of length one and two, but not of any higher length. A (X-)tree in a forest
structure 2(is a maximal (3)-connected substructure of 2. When working with forest
structures 2, we will typically view them as directed forests rather than as undirected
ones. This can be done by choosing a root for each tree in the Gaifman graph of 2,
thus giving rise to notions such as successor, descendant, etc. Which node is chosen as
the root will always be irrelevant. Note that the direction of binary relations does not
need to reflect the successor relation. When speaking of a path in a forest structure 2,
we mean a path in the directed sense; when speaking of a subtree, we mean a tree that
is obtained by choosing a root a and restricting the structure to a and its descendants.
We say that 2 is regular if it has only finitely many subtrees, up to isomorphism.

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 33

To see how we can get rid of bounded bisimulations, reconsider Theorem 3.3.6.
The characterization is still correct if we pull out the quantification over k£ in Point 2
so that the theorem reads “..iff for every model 2 of ¢, of finite outdegree and every
k > 0, there is.... In fact, this modified version of Theorem 3.3.6 is even closer to
the definition of Y-entailment. It also suggests that we add a marking A; C A of
elements in 2, representing ‘break-off points’ for bisimulations, and then replace k-
bisimulations with bisimulations that stop whenever they have encountered the second
marked element on the same path—in this way, the distance between marked elements
(roughly) corresponds to the bound & in k-bisimulations. However, we would need a
marking A, for any k > 0, such that there are infinitely many markers on any infinite
path and the distance between any two markers in a tree is at least k. It is easy to see
that such a marking may not exist, for example when k = 3 and 2| is the infinite full
binary tree. We solve this problem as follows. First, we only demand that the distance
between any two markers on the same path is at least k. And second, we use the
markers only when following bisimulations upwards in a tree while downwards, we use
unbounded bisimulations. This does not compromise correctness of the characterization.

We next introduce a version of bisimulations that implement the ideas just ex-
plained. Let 2 and B be forest models, > a signature, and A; C A. Two relations
Ngi’O, Ngbl C A x B form an A -delimited GFO?(X)-bisimulation between 2 and B
if the following conditions are satisfied:

1. if (A, a) ~a+° (B, b), then ath(a) = atl(b) and

(a) for every a’ # a with aty(a,a’) guarded, there is a b’ # b such that
(A, a’) NSL’i (B,b') where i = 1 if @’ is the predecessor of a and o’ € A},
and ¢ = 0 otherwise;

(b) for every b’ # b with at%(b,V’) guarded, there is an o’ # a such that
(A, a") NSL’Z‘ (B,V') where i = 1 if o’ is the predecessor of a and @’ € A,
and ¢ = 0 otherwise;

) Né*l (%, b) and the predecessor of a in 2 is not in A, , then aty(a) =
a

(a) for every a' # a with aty(a,a’) guarded, there is a b’ # b such that
(A, a’) Ngbz (B,V') where i = 0 if a is the predecessor of ¢’ and a € A},
and 7 = 1 otherwise;

(b) for every b’ # b with at%(b,V’) guarded, there is an o’ # a such that
(A, a) Ngbz (B,b') where i = 0 if a is the predecessor of ¢’ and a € A,
and ¢+ = 1 otherwise.

Then (2, a) and (B, b) are A -delimited GFO?*(X)-bisimilar, in symbols (2, a) Ngl
(B, b), if there exists an A -delimited GFO?(X)-bisimulation NSL’O, N’gl’l between A
and B such that (2, a) N’gl’o (°B,0).

Let ¢ be a GFO?-sentence. We use cl() to denote the set of all subformulas of ¢
closed under single negation and renaming of free variables (using only the available
variables x and y). A 1-type for ¢ is a subset t C cl(p) that contains only formulas
of the form #(x) and such that ¢ A 3z A t(x) is satisfiable. For a model A of ¢ and
a € A, we use tpy(a) to denote the 1-type {1(x) € cl(¢) | A = ¢(a)}, assuming that ¢
is understood from the context. We say that the 1-type t is realized in 2 if there is an
a € A with tpy(a) =t. We are now ready to formulate our final characterization.

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 34

Theorem 3.3.7. Let 1,02 be GFO?-sentences and ¥ a signature. Then 1 =x 02
iff for every regqular forest model % of w1 that has finite outdegree and for every set
A C A with A) N p infinite for any infinite X-path p in A, there is a model B of ps
such that

1. for every a € A, there is a b € B such that (,a) ~x (B,b);

2. for every 1-type t for o that is realized in B, there are a € A and b € B such
that tpg(b) =t and (A, a) ~a* (B, b).

Before we come to the proof of Theorem 3.3.7 we prove another characterization
of Y-entailment in GFO?. If U is a forest structure with a,a’ € A, then we write
a < a iff a and o are part of the same X-tree in 2 and a is a ancestor of a’ (recall
that a Y-tree in a forest structure 2 is a maximal ¥-connected substructure of 2 and
that we always assume a fixed root in trees within forest structures). For 2 and B
structures and a; € A, an a -delimited GFO?(X)-bisimulation between A and B is
defined like a GFO?(2)-bisimulation except that Conditions 2 and 3 are not required
to hold when a = a,. We indicate the existence of an a | -delimited bisimulation by
writing (2,a) ~§%- (B,b). This requires a; < a. We now give a characterization of
Y-entailment using forest models in which we replace the bounded backward condition
by an unbounded condition.

Theorem 3.3.8. Let @1, ps be GFO?-sentences and X a signature. Then o1 F=x, 02
iff for every regular forest model 2 of @1 that has finite outdegree there is a model B of
2 such that

1. for every a € A there is a b € B such that (2, a) ~x (B, b)
2. for every b € B, one of the following holds:
(a) there is an a € A such that (A, a) ~x (B,b);

(b) there are ay,ag,ai,...,ay,ay,--+ € A such that ay < ap < a; < -+ and,
for alli >0, a; < a; and (A, a}) ~5+ (B, b).

Proof. We first observe that (i) every (successor-saturated/finite outdegree) struc-
ture 2 can be unfolded into a globally GFO?(X)-bisimilar (successor saturated/finite
outdegree) forest model B, and consequently, (ii) every satisfiable GFO? formula is
satisfiable in a regular forest model of finite outdegree. Then, using the proof of
Theorem 3.3.6 and the observations (i) and (ii), one can easily prove the following
variant of Theorem 3.3.6 based on forest models:

Fact 1. Let @1, 2 be GFO?-sentences and ¥ a signature. Then 1 Fx e iff for every
regular forest model 2 of ¢; that has finite outdegree there is a (successor saturated)
forest model B of @9 such that

1. for every a € A there is a b € B such that (A, a) ~x (B,b)
2. for every b € B and every k > 0, there is an a € A such that (2, a) ~% (B,b).

To show Theorem 3.3.8 it therefore suffices to show that for every regular forest model
2 of ¢ that has finite outdegree and every successor-saturated forest model B of 3,
Condition 2 in Fact 1 is equivalent to Condition 2 of Theorem 3.3.8.

Thus, let 2 and B be as described. The interesting direction is to prove that if
Condition 2 in Fact 1 holds then Condition 2 of Theorem 3.3.8 holds. Thus, assume

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 35

that Condition 2 in Fact 1 holds. Take b € B. We may assume it is a root b of a X-tree
in B. Then there are ag, a1, --- € A such that for all k, (2, a;) ~% (B,b). If infinitely
many of the a; are identical, then there is an a € A such that (A, a) ~& (B,b) for all
k>0, thus (2, a) ~x (B,b) by Lemma 3.3.3 and we are done. Therefore, assume that
there are infinitely many distinct a;. By ‘skipping’ elements in the sequence ag, a1, ...,
we can then achieve that the a; are all distinct.

Two nodes a,a’ € A are downwards isomorphic, written a ~| ', if they are the
roots of isomorphic subtrees. For a forest structure 2, a € A, and i > 0, we denote by
2|1 the path structure obtained by restricting 2 to those elements that can be reached
from a by traveling at most ¢ steps towards the root of the tree in 2 that a is part of
(including a itself). For a,a’ € A and i > 0, we write a &; a’ if there is an isomorphism
¢ from A} to 2l|23 with ¢(a) = @’ such that ¢ ~| ¢(c) for all c. Since 2 is regular, A
contains only finitely many equivalence classes for each ;. By skipping a;’s, we can
thus achieve that

%) a; ~p a; for all 4, k, 7 with £ <7 and j > 1.
J

This also implies that each a; is at least i steps away from the root of the tree in 2
that it is in (since there are infinitely many a;, they must be unboundedly deep in their
respective tree, and it remains to apply (*)). Let ¢; denote the element of A reached
from a; by traveling ¢ steps towards the root. Since 2l is regular, there must be an
infinite subsequence ay,,ay,, ... of ag,ay,... such that ¢, ~| ¢y, for all 7, j.

Choose some a| € A with a; ~| ¢, for all i (equivalently: for some 7). We can
assume w.l.o.g. that each ay, is in the subtree rooted at a; and that when traveling ¢;
steps from ay, towards the root of the subtree that a, is in, then we reach exactly a .

Let 2* be the structure obtained in the limit of the neighborhoods 2[\220 , .A|(1ul e
That is, we start with the subtree of 2 rooted at ay,, renaming as, to a*, and then
proceed as follows: after the i-th step, the constructed structure is isomorphic to the
subtree of 2 rooted at a; via an isomorphism that maps a* to a,, and the root to aj;
by (*), we can thus add a path of predecessor to the root of the structure constructed so
far, and then add additional subtrees to the nodes on the path as additional successors,
making sure that the obtained structure is isomorphic to the subtree of 2 rooted at a
via an isomorphism that maps a* to ay,,, and the new root to a,. By construction,
(A, a*) ~& (B,b) for all k > 0 and thus Lemma 3.3.3 yields (A*,a*) ~x (B,b).

Take some ay,. We aim to show that (2, ag) ~5 (%B,b). Let ¢ be the element
reached from a* in A* by traveling ¢; steps upwards and recall that a, is the element
reached from ay, in A by traveling ¢; steps upwards. By construction of 20*, we find
an isomorphism from the subtree in 2* rooted at ¢ to the subtree in 2 rooted at a
that takes ¢ to a; and a* to a;. From (20*,a*) ~x (‘B,b), we thus obtain the desired
a | -delimited X-bisimulation that witnesses (2, a;) ~5- (B, b).

It remains to show the existence of the required elements ay, af, . .., that is, to show
that there is a path through the subtree of 2 rooted at a; such that each ay, is either
on the path or can be reached by branching off at a different point of the path. This
can be done in the following straightforward way. Starting at a, we define the path
step by step. In every step, there must be at least one successor which is the root of
a subtree that contains infinitely many ay,’s since 2 has finite outdegree. We always
proceed by choosing such a successor. This almost achieves the desired result, except
that not all ay, are reachable from a distinct node on the path by traveling downwards.
However, there are infinitely many nodes on the path from which at least one ay, can be
reached by traveling downwards, so the problem can be cured by skipping ay,’s. (N

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 36

We are now in a position to prove Theorem 3.3.7. We require the following extended
version of k-GFO2-bisimilarity which respects the successor relation in forest structures.
Let 2 and B be forest structures, a € A, and b € B. The definition is by induction
on k> 0. Then (2, a) ~5™ (B,b) iff at}(a) = ati(b) and (A, a) ~55C (B, b) iff
aty (a) = aty(b) and

1. for every a’ # a such that at}(a,a’) is guarded there exists b’ # b such that
aty (a,a’) = atg(b,b') and b’ is a successor of b in B iff @’ is a successor of a in A

and (A, a') ~5™C (B, V)

2. for every b/ # b such that aty(b,V') is guarded there exists a’ # a such that
aty (b,b') = aty(a,a’) and a’ is a successor of a in 2 iff ¥/ is a successor of b in B
and (A, a') ~55C (B,).

Proof.[Theorem 3.3.7] («=) It suffices to show that for every m > 0 and every regular
forest model 24 of 1 that has finite outdegree there exists a model B of g9 such that A
and B are globally m-GFO?(X)-bisimilar. Assume m > 0 and a regular forest model 2
of 1 that has finite outdegree is given. Let m’ be the maximum of m and the guarded
quantifier depth of p9. Then f(m,py) denotes the maximal number of nodes in any
3 U sig(¢2)-forest model € which are pairwise ~™ *"_incomparable. Define A| C A
on every Y-tree with root r in 2l in such a way that a € A iff the distance between r
and a is kf(m, @2) for some k > 0. Let B be a forest shaped model of 9 satisfying the
conditions of Theorem 3.3.7. One can easily modify B in such a way that in addition
to the conditions given in the theorem

(%) every l-type t for g that is realized in B is realized in the root of a 3-tree in B
and for every root r of a X-tree in B there exists a € A such that (U, a) NSL (B,).

To show (x) first pick for every a € A a b € B with (2, a) ~x (B,b). Let Sy be the
set of b’s just picked and let 25, be the disjoint union of the structures induced in B by
the 3-trees whose roots are in S7. Next pick for every 1-type t for @9 that is realized in
B a b € B that realizes t. Let S be the set of b’s just picked and let B2 be the disjoint
union of the structures induced in B by the Y-trees whose roots are in Ss. Finally,
we add (recursively) witnesses for guarded existential quantifiers not involving binary
predicates from ¥ to the disjoint union B’ of B; and B,. In detail, take for any b in
%’ its copy b’ in B and assume ¢ in 9B is such that {R | (¥',c) € R® or (¢,b) € R®}
is non-empty and contains no predicate in X. Then add to B’ a copy of the X-tree
in B’ whose root c realizes the same 1-type for o as ¢’ and connect ¢ to b by adding
for all binary predicates R the pair (b, c) to the extension of R if (¢',¢) € R® and the
pair (c,b) to the extension of R if (¢/,b’) € R®. We apply this procedure recursively to
the new structure (in a fair way) and obtain the desired structure as the limit of the
resulting sequence of structures.

We now modify B in such a way that the resulting structure is still a model of
@2 but in addition globally m-GFO?(X)-bisimilar to 2. Consider the structure 9B,
induced by the Y-tree with root r in B. If there exists an a € A with (U, a) ~x (B,r)
then we do not modify B, and set ‘BY = ‘B,.. If no such a exists, then we modify B,
in such a way that every b in the resulting Y-tree is m-GFO?(X)-bisimilar to some
a € A. Note that we only know that there exists a € A such that (2, a) Ngi (%8, 7). By
construction of A, this implies that (A, a) and (B,r) are f(m, ps)-GFO?(X)-bisimilar.
Thus, it suffices to modify B, in such a way that every node b in the X-tree becomes
m-GFO?(X)-bisimilar to some ¥’ in the original B, with distance < f(m,p2) —m

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 37

from 7. To ensure that o is still satisfied we make sure that the following stronger
condition holds: every node b in the X-tree rooted at 7 is m/-GFO2-bisimilar to some
v in the original B, with distance < f(m,p2) —m' from r. The construction is by
a standard pumping argument. For a,b € B we say that a blocks b if a < b and
(B,a) ~"'"< (9B, b) and there is no b’ < b such that there is an o/ with o/ < ¥/
and (B, a’) ~"' 51 (B b'). The universe B* of B is the set of words ag - - - a,, with
ap, . ..,a, in BY and ag = r such that either a;y; is a successor of a; or there is a
successor b;1 of a; such that a;11 blocks b;y;. Let tail(ap...a,) = ap. For every
unary R and w € A¥ we set w € R¥ if tail(w) € R* and for every binary R we set for
w € AY: (w,w) € R¥* if (tail(w), tail(w)) € R* and for wb € A%:

o (w,wb) € R* if (tail(w),b) € R* or there is an a such that b blocks a and
(tail(w),a) € R¥;

o (wb,w) € R if (b,tail(w)) € R¥ or there is an a such that b blocks a and
(a, tail(w)) € R¥.

We now replace B, by B} in ‘B. In more detail, take the disjoint union B of all B,
r the root of a ¥-tree in B. Then add (recursively) witnesses for guarded existential
quantifiers not involving binary predicates from ¥ to B¢ take for any w in B% and any
I-type t for @9 that is realized in some node c in B such that {R | (tail(w),c) € R® or
(c,tail(w)) € R®} is non-empty and contains no predicate in ¥ the root ' of a structure
Y such that r’ realizes ¢ in BY%. Then add to B¢ a new copy of BY and connect r’
to b by adding for any binary predicate R the pair (r,7') to R®4 if (tail(w),c) € R®
and the pair (1/,7) to R¥4 if (c, tail(w)) € R®. We apply this procedure recursively to
the new structure (in a fair way) and obtain the desired structure B’ as the limit of

the resulting sequence of structures.

(=) Assume that ¢1 F5 @2. Let 2 be a regular forest model 2 of ¢; that has
finite outdegree and let A; C A be such that A| N p is infinite for any maximal infinite
Y-path p in 2. By Theorem 3.3.8, there is a model B of o such that

1. for every a € A there is a b € B such that (A, a) ~x (B,b)
2. for every b € B, one of the following holds:

(a) there is an a € A such that (2, a) ~x (B,b);

(b) there are a,,ag,a1,...,ah,a}, - € A such that a; < ag < a3 < --- and,
for all i > 0, a; < a} and (2, a}) ~5+ (B, b).

Let t be a 1-type for ¢s realized by some b € B. We have to find an a € A such that
(2, a) NgL (B, b). If there is an a € A such that (2, a) ~x (B,b) then we are done as
(A, a) Ngl (%B,b) follows. Otherwise there are a, ,ag,a1,...,a,,a}, - € A such that
al <ag < ay <--- and, for all i > 0, a; < @} and (2, a}) ~5 (B,b). Then let p be
a X-path containing a |, ag,a1,.... Ay Np is infinite and so we can choose an a; such
that there are at least two elements of A; on the path from a; to al. It follows from
the definition of NSL that (2, a}) Ngl (°B,b), as required. a

Regularity and finite outdegree are used in the proof of Theorem 3.3.7, but it follows
from the automata constructions in Section 3.4.2 that the theorem is still correct when
these qualifications are dropped.

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 38

3.4 Decidability and Complexity

We show that Y-entailment in GFO? is decidable and 2EXPTIME-complete, and thus
so are conservative extensions and Y-inseparability. The upper bound is based on The-
orem 3.3.7 and uses alternating parity automata on infinite trees. Since Theorem 3.3.7
does not provide us with an obvious upper bound on the outdegree of the involved
tree models, we use alternating tree automata which can deal with trees of any finite
outdegree, similar to the ones introduced by Wilke [Wil01], but with the capability to
move both downwards and upwards in the tree.

3.4.1 2ATAs and their Emptiness Problem

A tree is a non-empty (and potentially infinite) set of words 7" C (N '\ 0)* closed under
prefixes. We generally assume that trees are finitely branching, that is, for every w € T,
the set {¢ | w-i € T} is finite. For any w € (N'\ 0)*, as a convention we set w - 0 := w.
If w = ngny ---ng, we additionally set w - —1 := ng---ng_1. For an alphabet O, a
©-labeled tree is a pair (T, L) with T' a tree and L : T — © a node labeling function.

A two-way alternating tree automata (2ATA) is a tuple A = (Q, ©, qo, 9, 2) where
Q is a finite set of states, © is the input alphabet, qo € Q is the initial state, § is a
transition function as specified below, and Q : Q@ — N is a priority function, which
assigns a priority to each state. The transition function maps a state ¢ and some input
letter 6 € © to a transition condition §(q,0) which is a positive Boolean formula over
the truth constants true and false and transitions of the form ¢, (—)q, [~]q, g, Og
where ¢ € Q. The automaton runs on O-labeled trees. Informally, the transition ¢
expresses that a copy of the automaton is sent to the current node in state ¢, (—)q
means that a copy is sent in state ¢ to the predecessor node, which is then required
to exist, [—]¢ means the same except that the predecessor node is not required to
exist, &g means that a copy is sent in state ¢ to some successor, and Og that a copy
is sent in state ¢ to all successors. The semantics is defined in terms of runs. Let
A=(Q,0,q,6,Q) be a 2ATA and (T, L) a ©-labeled tree. A run for A on (T,L) is a
T x @Q-labeled tree (T}, r) such that:

e c€T, and r(e) = (¢,q);

e For all y € T, with 7(y) = (z,¢) and 0(g, L(z)) = ¢, there is an assignment v of
truth values to the transitions in ¢ such that v satisfies ¢ and:

— if v(p) = 1, then r(y') = (z,p) for some successor y’ of y in T};

— if v((=)p) = 1, then = # ¢ and there is a successor y’ of y in 7, with
r(y/) = (- —1,p)
— if v([~]p) = 1, then = ¢ or there is a successor 3’ of y in T, such that
r(y) = (z-—1,p);
— if u(Op) = 1, then there is a successor 2’ of z in T and a successor 3’ of y in
T, such that r(y') = (2/,p):

— if v(Op) = 1, then for every successor a’ of in T, there is a successor y’ of
y in T, such that r(y') = (2/, p).

Let v = igi1 - -+ be an infinite path in T}. and denote, for all j > 0, with g; the state
such that r(ig---i;) = (x,q;). The path v is accepting if the largest number m such
that Q(g;) = m for infinitely many j is even. A run (7,,r) is accepting, if all infinite

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 39

paths in 7, are accepting. Finally, a tree is accepted if there is some accepting run for
it.

We use L(A) to denote the set of all ©-labeled trees accepted by A. It is standard
to verify that 2ATAs are closed under complementation and intersection. We now show
that the emptiness problem for 2ATAs can be solved in time exponential in the number
of states. For proving this, we reduce it to the emptiness problem of the standard
two-way alternating tree automata over trees of fixed outdegree [Var9s].

We start by introducing strategy trees similar to [Var98, Section 4]. A strategy
tree for a 2ATA A is a tree (T,7) where 7 labels every node in 7' with a subset
T(z) C 2@ (NUI{-1})xQ that is, with a graph with nodes from Q and edges labeled with
natural numbers or —1. Intuitively, (¢,7,p) € 7(z) expresses that, if we reached node x
in state ¢, then we should send a copy of the automaton in state p to x - i. For each
label ¢, we define state(¢) = {q | (¢,7,¢") € (}, that is, the set of sources in the graph
¢. A strategy tree is on an input tree (T', L) if T =T", qo € state(r(g)), and for every
x € T, the following conditions are satisfied:

1. if (¢,4,p) € 7(x), then z -i € T}
2. if (q,i,p) € 7(x), then p € state(r(z - 7));

3. if g € state(7(x)), then the truth assignment v, , defined below satisfies 6(g, L(x)):

—

p) = 1iff (¢,0,p) € 7(2);
(—)p) =11iff (¢,—1,p) € 7();
[—]p)=1if z =eor (¢,—1,p) € 7(x);

<

q?z

(a)
(b)
c)
)
)

<

q?x

<

(
(d

(
(
g
Vg,2(Op) = 1 iff there is some ¢ with (g¢,4,p) € 7(x);
(e) vgu(Op) =1iff (q,4,p) € 7(x), forall w-i € T
A path § in a strategy tree (T, 7) is a sequence = (u1,q1)(u2,q2) - -+ of pairs from
T x @ such that for all £ > 0, there is some i such that (qs,4,q/+1) € 7(ug) and
g1 = uyg - 4. Thus, § is obtained by following moves prescribed by the strategy tree.
We say that § is accepting if the largest number m such that Q(g;) = m, for infinitely
many i, is even. A strategy tree (T, 7) is accepting if all infinite paths in (T, 7) are
accepting.

Lemma 3.4.1. A 2ATA accepts a ©-labeled tree (T, L) iff there is an accepting strategy
tree for A on (T, L).

Proof. The “if”-direction is immediate: just read off an accepting run from the
accepting strategy tree.

For the “only if”-direction, we observe that acceptance of an input tree can be
defined in terms of a parity game between Player 1 (trying to show that the input is
accepted) and Player 2 (trying to challenge that). The initial configuration is (&, qo)
and Player 1 begins. Consider a configuration (x,q). Player 1 chooses a satisfying truth
assignment v of d(q, L(x)). Player 2 chooses a transition a with v(«) =1 and the next
configuration is determined as follows:

e if @ = p, then the next configuration is (z, p),

e if & = (—)p, then the next configuration is (x - —1,p) unless = ¢ in which case
Player 1 loses immediately.

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 40

o if & = [—]p, then the next configuration is (z - —1,p) unless x = ¢ in which case
Player 2 loses immediately;

e if & = Op, then Player 1 chooses some ¢ with = -i € T' (and loses if no such ¢
exists) and the next configuration is (x - i, p);

e if &« = Op, then Player 2 chooses some i with = -7 € T (and loses if no such i
exists) and the next configuration is (x - i, p).

Player 1 wins an infinite play (xo,qo)(z1,q1) - if the largest number m such that
Q(q;) = m, for infinitely many 4, is even. It is not difficult to see that Player 1 has a
winning strategy on an input tree iff A accepts the input tree. Observe now that the
defined game is a parity game and thus Player 1 has a winning strategy iff she is has a
memoryless winning strategy [EJ91]. It remains to observe that a memoryless winning
strategy is nothing else than an accepting strategy tree. a

Based on the previuos lemma, we show that, if L(A) is not empty, then it contains
a tree of small outdegree.

Lemma 3.4.2. If L(A) # 0, then there is a (T, L) € L(A) such that the outdegree of
T is bounded by the number of states in A.

Proof. Let (T,L) be a O-labeled tree and 7 an accepting strategy tree on 7.
We construct a tree 7 C T and an accepting strategy tree 7/ on (T”, L) where L'
is the restriction of L to T'. Start with 77 = {e} and 7' the empty mapping. Then
exhaustively repeat the following step. Select an « € T” with 7/(z) undefined, in a fair
way. Then construct 7/(z) as follows:

1. for every (q,i,p) € 7(x) with i € {—1,0}, include (q,,p) in 7/(z);

2. for every p € @, choose an i such that (g,i,p) € 7(x) for some g, if existant. Then
add z -4 to T" and include (¢, 7, p) in 7/(z) for all (¢, j,p) € 7(z);

3. further include (g,%,p) in 7/(x) whenever z -i € T and (q,j,p) € 7(z) for all j
withax-j€T.

Clearly, T has the desired outdegree. It remains to show that 7/ is an accepting strategy
tree on (T, L’). Observe that the following properties hold for all x € T", and p,q € Q:

(i) (¢,i,p) € T(x) iff (¢,4,p) € T/ (x), for i € {—1,0};

(i) (q,i,p) € 7(x) for some i > 0 with = -i € T iff (q,7,p) € 7/(x) for some j > 0
with z-j € T.

Observe that we have qg € state(7/(¢)), by Points (i) and (ii) and since gy € state(7(¢)).
It can be verified that Conditions 1 and 2 of a strategy tree being on an input tree are
satisfied due to the construction of 77 and 7’. For Condition 3, take any z € T" and
q € state(7'(x)). As g € state(7(x)), we know that the truth assignment v, , defined
for 7 satisfies (¢, V(2)). Let vy, be the truth assignment for 7/,¢,z. It suffices to
show that, for all transitions «, vy .(a) = 1 implies v, ,(a) = 1. By Point (i), this is
the case for transitions of the form p, (—)p, [—|p. For a = Op, we know that there is
some i, p with (g,4,p) € 7(x). By Point (ii), we know that (¢,,p) € 7/(x) for some i’
with = - 4" € T', and thus, v; ,(a) = 1. For a = Op, we know that (g,i,p) € 7(x) for
all ¢ with x - i € T. By construction if 7/, it follows that (q,i,p) € 7(x) for all i with
x -1 €T, as required.

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 41

We finally argue that 7/ is also accepting. Let 8 = (u1,q1)(ug,q2) - -+ be an infinite
path in (77,7"). We construct an infinite path 8’ = (u}, q1)(ub, g2)(ub, q3) - -+ in (T, 7)
as follows:

o uh = ur;

o if iy =wu; - € with £ € {—1,0}, then uj_ ; = uj - L.

)

o if ujpy1 = u; - £ for some ¢ > 0 with (¢, ¢, gi+1) € 7/(x), then, by Point (ii), there
is some ¢ with (¢;, ¢, qi+1) € 7(z) and = - ¢ € T". Set u;y1 = u; - .

Since every infinite path in (T, 7) is accepting, so is ', and thus S. a

We are now ready to reduce the emptiness problem of 2ATAs to the emptiness of
alternating automata running on trees of fixed outdegree [Var98], which we recall here.
A tree T is k-ary if every node has exactly k successors. A two-way alternating tree
automaton over k-ary trees (2ATA¥) that are ©-labeled is a tuple A = (Q, 0, o, J,)
where @ is a finite set of states, © is the input alphabet, qo € @ is an initial state, J is
the transition function, and Q2 : Q — N is a priority function. The transition function
maps a state ¢ and some input letter 6 to a transition condition 6(q,0), which is a
positive Boolean formula over the truth constants true, false, and transitions of the
form (i,q) € [k] x Q where [k] = {—1,0,...,k}. A run of A on a O-labeled tree (T, L)
is a T x Q-labeled tree (T}, r) such that

L. 7(e) = (g,90);

2. for all z € T,.,r(x) = (w, q), and §(g, 7(w)) = ¢, there is a (possibly empty) set
S={(m1,q1),...,(Mmn,qn)} C [k] X Q such that S satisfies ¢ and for 1 <i <n,
we have x -1 € T, w - m; is defined, and 7,.(x - i) = (w - my, ¢;).

Accepting runs and accepted trees are defined as for 2ATAs. The emptiness problem
for 2ATA*s can be solved in time exponential in the number of states [Var9s].

Theorem 3.4.3. The emptiness problem for 2ATAs can be solved in time exponential
in the number of states.

Proof. Let A = (Q,0,q,6,Q2) be a 2ATA with n states. We transform A
into a 2ATA™ A" = (Q',0/,q),0',), running over n-ary ©'-labeled trees, where
Q =Qv{q),q, ¢} and © = O x {0,1}. The extended alphabet and the extra states
40,4, qr are used to simulate transitions of the form [—|p. We make sure that the
additional component labels the root node with 1 and all other nodes with 0, and based
on this use g, to check whether we are at the root of the input tree.

Formally, we proceed as follows. For all ¢ € @, 0 € ©, and b € {0,1} obtain
8'(q,(0,b)) from 0(q,) by replacing ¢ with (0, ¢q), (—)q with (—1,q), [—]g with (0,¢,) V
(—1,q), ¢q with Vi—,(7, ¢), and Og with Aj“(7,q). To enforce the intended labeling in
the second component and the correct behaviour for g, we set:

false Fh=0
/ / _
0 (QO7 (97 b)) - { (O,QO) A /\?:1(1.7 q/) otherwise
k (s 1\ ifn
8(d,(0,0) = { Niz1(i,q) ifb=0

false otherwise

true ifb=1
false otherwise

&'(qr, (0,0)) = {

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 42

Using Lemma 4.4.6 it is straightforward to verify that L(A) # 0 iff L(A") # (). Since
the translation can be done in polynomial time and the emptiness problem for 2ATA*s
is in EXPTIME, also emptiness for 2ATAs is in EXPTIME. 4

3.4.2 Upper Bound

We aim to show that given two GFOZ?-sentences ¢; and ¢, and a signature X, one can
construct a 2ATA A such that L(A) = 0 iff 1 Fgpo2(s) 2. The number of states of
the 2ATA A is polynomial in the size of 1 and exponential in the size of @9, which
yields the desired 2EXPTIME upper bounds.

Let 1, 9, and 3 be given. Since the logics we are concerned with have Craig
interpolation, we can assume w.l.o.g. that X C sig(y1). With O, we denote the set
of all pairs (7, M) where 7 is an atomic 2-type for sig(¢1) and M € {0,1}. For
p= (1, M) € ©, we use p' to denote 7 and p? to denote M. A O-labeled tree (T, L)
represents a forest structure 2 r) with universe Ay) =T and where w € A%
if A(y) € L(w) and (w,w’) € R*™L) if one of the following conditions is satisfied:
(1) w = w' and Ryy € L(w)'; (2) w' is a successor of w and Rzxy € L(w')'; (3) w is a
successor of w’ and Ryx € L(w)!. Thus, the atoms in a node label that involve only
the variable y describe the current node, the atoms that involve both variables z and y
describe the connection between the predecessor and the current node, and the atoms
that involve only the variable x are ignored. The M-components of node labels are
used to represent a set of markers A; = {w € A1z | L(w)? = 1}. Tt is easy to see
that, conversely, for every tree structure 2 over X, there is a ©-labeled tree (T, L) such
that 27) = 2.

To obtain the desired 2ATA A, we construct three 2ATAs A;, As, A3 and then
define A so that it accepts L(A;) N L(Az) N L(As). The 2ATA A3z only makes sure that
the set A; C A(r) is such that for any infinite X-path p, A1 Np is infinite (as required
by Theorem 3.3.7), we omit details. We construct A; so that it accepts a ©-labeled
tree (T, L) iff A7 1) is a model of 1. The number of states of A; is polynomial in the
size of ¢ and independent of o.

Lemma 3.4.4. Let @1 be a GFO?-sentence. There is a 2ATA Ay that accepts a
O-labeled tree (T, L) iff 27,1y is a model of 1.

We assume that in all subformulas of ¢; of the form Jy(a(x,y) A ¢(x,y)) and
Vy(a(x,y) = ¢(x,y)), y consists of exactly one variable and «a(x,y) is a relational
atom with two variables or an equality atom. This can be done w.l.o.g. because
each sentence Jryp(z,y) can be rewritten into Jx(x = = A Jyp(z,y)), each sentence
Jz(a(z) Ap(x)) with « a relational atom can be rewritten into Jz(x = z A ax) Ap(x)),
and likewise for universal quantifiers. We further assume that ¢; has no subformulas of
the form Jz(x = y A p(z,y)) with x # y; such formulas are equivalent to ¢ly/z], that is,
the result of replacing in ¢ all occurrences of « with y. The result of these assumptions
is that each formula Jy(a(x,y) Ap(x,y)) takes the form Jz(x = x A(x)) or Jzp(x,y),
and likewise for universally quantified formulas. We define A; = (Q1,0, ¢y, 61,1)
where

Q1= {qcp(x) | QO(I') € CI(‘PI)} U {Qw(x,g)ﬂﬂo(g,y) ’ (,0(.’1,', y) S CI((PI)}
and (2 assigns two to all states except those of the form ga;(z=zay(z)), 10 Which it

assigns one. The underlining in states of the form g,) and gy (g, serves as a marking
of the variable that is bound to the tree node to which the state is assigned. We define

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 43

the transition function d0; as follows, for each o = (7, M):

true if Ayer
01(qaz, 0) = { false otherwise

true if Ay ¢
false otherwise

Dip(2) © Dy(=)

<q—\AZ7

/—/H

01 (Q<p Yorh(2)) O

o1 (QHZ (z=2zAY(2)) Ay (2) v < 1>QHz(z=zl\w(z)) \% <>(]Hz(z:z/\w(z))

o) =
o) =
) =
01(@vz(z=2m0(2))) = Q(2) N =0z (z=2m(2)) AN BQvz(z=z—a(2))
01(q32 p(2,2), T) = CQp(z2) V Qo2 2)
01(Qv2r p(z,2)>) = Oyz2) N (= 2)

true if Rxy €7
01(qRzzr,0)) = { false otherwise

true if Ryrer
) / = i
1(qRrz2, 0)) { false otherwise
true if Rey ¢ 7
false otherwise

51(QﬁRzg’> G)) = {

true if Ryx ¢ 7
false otherwise

61 (QﬁRgz’v U)) = {

01(Qp(z,2)o(2,2)5 T) = Qop(z,27) © Qp(z,2")
01(Qy(2,2)0(2)1 T) = Qp(z,21) © (—1)y(2)
01(Qp(z,2)0 (1), T) = Q<pzz ° Qy(z)
01(dp(2)op(=1), 0) = (= 1)) © dy(=)

where o ranges over O, z, 2’ range over {z,y}, and o ranges over {A,V}. With p(Z/, 2),
we mean the result of exchanging in ¢(z, 2’) the variables z and 2/, and ¢(z, 2/) denotes
the negation normal form of the negation of ¢(z, 2’).

We now construct Ao, the most interesting automaton.

Lemma 3.4.5. There is a 2ATA As that accepts a ©O-labeled tree (T, L) iff there is
a model B of po s.t. Conditions 1 and 2 from Theorem 3.5.7 are satisfied when 2L is
replaced with A(p 1.

The general idea of the construction of As is to check the existence of the desired
model B of @9 by verifying that there is a set of 1-types for g from which B can be
assembled, represented via the states that occur in a successful run. Before we can give
details, we introduce some preliminaries.

A 0-type s for o is a maximal set of sentences ¥() € cl(¢2) such that v A s is
satisfiable. A 2-type A for s is a maximal set of formulas ¢ (x,y) € cl(¢2) that contains
—(x = y) and such that w9 A Jzy A(z,y) is satisfiable. If a 2-type A contains the atom
Rzy or Ryx for at least one binary predicate R, then it is guarded. If additionally
R € X, then it is 3X-guarded. Note that each 1-type contains a (unique) 0-type and
each 2-type contains two (unique) 1-types. Formally, we use A, to denote the 1-type
obtained by restricting the 2-type A to the formulas that do not use the variable y,
and likewise for)\, and the variable x. We use TP,, to denote the set of n-types for ¢o,
n € {0,1,2}. For t € TPy and a A € TP2, we say that \ is compatible with t and write

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 44

t ~ X if the sentence o A Jzy(t(xz) A A(z,y)) is satisfiable; for t € TP; and T'C TPy a
set of guarded 2-types, we say that T is a neighborhood for t and write t ~ T if the
sentence

2 Nz(t@) A N\ Ty, y) AVy) (ReyV Ryz) = \/ Mz, y)))
AET Resig(p2) XET

is satisfiable. Note that each of the mentioned sentences is formulated in GFO? and
at most single exponential in size (in the size of ¢1 and ¢3), thus satisfiability can be
decided in 2EXPTIME.

To build the automaton As from Lemma 3.4.5, set As = (Q2, ©, qo, 02, 22) where
QQ is

{g0, L} UTPoU {t, 17, t, 1), te, ', 84, 8] [t € TPy, i € {0,1}} U
{0 A XML X € TPy, i € {0,1}},

Q) assigns two to all states except for those of the form ¢, to which it assigns one.

The automaton begins by choosing the O-type s realized in the forest model B of
2 whose existence it aims to verify. For every Jzp(x) € s, it then chooses a 1-type ¢
in which ¢(z) is realized in 8 and sends off a copy of itself to find a node where ¢ is
realized. To satisfy Condition 1 of Theorem 3.3.7, at each node it further chooses a
1-type that is compatible with s, to be realized at that node. This is implemented by
the following transitions:

(52(Q0,U) = \/ (S/\ /\ \/ t?)

s€TPy Jzp(x)es tETPq|
sU{p(z)}Ct
do(s,0) = DOsA \/ t
teTPq,sCt
So(t’ o) = (=D)t"votr'vil

where s ranges over TPy. When a state of the form ¢ is assigned to a node w, this
is an obligation to prove that there is a GFO?(X)-bisimulation between the element
w in A7 1) and an element b of type t in B. A state of the form t? represents the
obligation to verify that there is an A -delimited GFO?(X)-bisimulation between w
and an element of type t in B. We first verify that the former obligations are satisfied.
This requires to follow all successors of w and to guess types of successors of b to be
mapped there, satisfying the back condition of bisimulations. We also need to guess
successors of b in B (represented as a neighborhood for t) to satisfy the existential
demands of ¢ and then select successors of a to which they are mapped, satisfying the
“back” condition of bisimulations. Whenever we decide to realize a 1-type t in B that
does not participate in the bisimulation currently being verified, we also send another
copy of the automaton in state ¢’ to guess an a € A,y that we can use to satisfy
Condition 2 from Theorem 3.3.7:

Sa(t, (r,M)) = e A0t A\ A(CAVA) ifr, =xt
Tit=T A\eT

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 45

do(t, (,M)) = false if 7y #st
do(ty, (1,M)) = true if 7 is not Y-guarded
So(ty, (1, M)) = \/ Ay if 7 is ¥-guarded
ARAAT=5A
do(ty, (1, M)) = true if 7 is not X-guarded
do(ty, (1, M)) = \/ [—1]A, if 7 is 3-guarded
AERANT=5 A~
S\ (T,M)) = N if \ is X-guarded and 7 =5 A
d2(A, (T, M)) = false if A is ¥-guarded and 7 #x A
o (A, (T, M)) =)\; if A\ is not X-guarded
(A, (1, M) = (=1)A, if \ is Y-guarded and 7 =5 A~
do(M, (1, M)) = false if A is ¥-guarded and 7 #x A~
(M, (1, M)) =)\; if A\ is not X-guarded

where 7, =y, ¢t means that the atoms in 7 that mention only y are identical to the
Y-relational atoms in ¢ (up to renaming z to y), 7 =, A means that the restriction of
A to Y-atoms is exactly 7, and A\™ is obtained from A by swapping x and y. We need
further transitions to satisfy the obligations represented by states of the form t°, which
involves checking A -delimited GFO?(X)-bisimulations. Recall that such a bisimulation
consists of two relations NQL’O and NQL’I, each of which behaves essentially like a
GFO?(X)-bisimulation except in some special cases that pertain to the A -marking of
one of the involved structures, which in this case is the structure 2y). To deal with

NSL’O and NQL’l, we take copies ¢” and ¢* of every state ¢ that is of the form ¢, ¢|,
t1, A, and A4, and also copies of the above block of transitions, modified in a suitable
way to take care of the special cases. This is implemented for Ngl’o by the following

transitions:

S0 (1, M) = A0 A \/ AN VA ifr,=xt

Tit=T A\eT

So(t0, (1, M)) = false if 7, #x t
(52(t8, (r,M)) = true if 7 is not X-guarded
52(758, (r,M)) = \/)\2 if 7 is ¥-guarded

ALRAAT=35A
(52(16%, (r,M)) = true if 7 is not X-guarded
52(t$, (r,M)) = \/ [—1])\34 if 7 is X-guarded

AERAAT=5 A~
SN, (1, M)) =)\2 if A is ¥-guarded and 7 =35 A
5N, (1, M)) = false if A is X-guarded and 7 #x A
5\, (1, M)) =)\; if A\ is not X-guarded
(52(/\2, (r,M)) = (-1)(\y)& if A is X-guarded and 7 =5 A~
(52(/\$7 (r,M)) = false if A is ¥-guarded and 7 #x A\~
52(>\$, (r,M)) = Xé if A\ is not X-guarded
62 (t&7 (7-7 M)) = M

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 46

L?l

.. A
The transitions for ~*" are as follows:

St (r,1)) = (EAtATEEA N N\ (OA VM) ifr, =xt
T|t~T AT
V(A (=1)q1)
St (1,0) = (EAGADOA N AN VM) ifr, =xt
T|t~T AT
V(A (=1)q1)
So(tt, (1, M) = (—1)qo if 1, #s t
d2(qL, (1,0)) = false
02(qL, (7,1)) = true
52(@, (r,M)) = true if 7 is not -guarded
52(@, (1, M)) \/)\; if 7 is ¥-guarded
AtRAAT=5A
52(@, (1, M)) true if 7 is not -guarded
52(7%, (1, M)) \/ [—1])\21/ if 7 is ¥-guarded
AERANT=5 A~
S\ (1, M)) =)\; if A is X-guarded and 7 =5 A
S\, (1, M)) = false if A is X-guarded and 7 #x A
S(A\L (1, M)) =)\; if A\ is not X-guarded
52(/\%, (r,M)) = (—1>/\?5 if A is ¥-guarded and 7 =5 A~
52(>\%, (r,M)) = false if A is ¥-guarded and 7 #x A~
52()%, (r,M)) =)\Z if A is not X-guarded

Lemma 3.4.6. Ay satisfies the condition from Lemma 3.4.5.

Proof. “<”. Let (T, L) be a O-labeled tree and let B be a model of 2 such that
Conditions 1 and 2 of Theorem 3.3.7 are satisfied when 2 is replaced with 27 1) (and
when A is the set described by the second component of the L-labels). We argue that
B can be used to guide a run of Ay on (7, L) so that it is accepting.

In this run, As starts with choosing the 0-type s realized by 9. Then, for each
Jzp(x) € s, we guide As to proceed in state t’, where ¢ is the 1-type of some element
b € B with B = ¢(b). By Condition 2 of Theorem 3.3.7, there is a w € A,y such
that tpg(b) =t and (A7), w) ~AL (%,b). In the search state t’, we guide the run to
reach w and switch to state t° there. The automaton also sends a copy in state s to
each node w € A(p). By Condition 1 of Theorem 3.3.7, there is a b € B such that
(Rr,L),w) ~x (B,b). We guide the run to proceed in state ¢, the 1-type of b.

At this point, the automaton needs to satisfy two kinds of obligations:

1. states t true at a node w € Ay, representing the obligation to verify that there
is a b € B with 1-type t and such that (7, 1y, w) ~x (B,b) and

2. states t° true at a node w € A(r,1) representing the obligation to verify that there
is a b € B with 1-type t and such that (A7 1, w) NSL (°B,b).

Note that we have guided the run so that the required bisimulations indeed exist and
therefore we can use them to further guide the run. We only consider Case 1 above,
thus concentrating on states of the form t, ¢|, ¢4, A, and A\4. Suppose the automaton
is in state t at node w. By the way in which we guide the run, there is then a b€ B
with 1-type ¢t and such that (27, 1), w) ~x (B,b). We guide the run to select as T

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 47

the set of all guarded 2-types A such that B = (JyA(x,y))(b). For each such A, there
must be a b’ € B and a v € Aip) with B = A(b,0') and (A1 1),v) ~x (B,0') where
v is either the predecessor of w or a successor of it. In the former case, we guide the
automaton to switch to state Ay and in the latter, we guide it to execute GA. When
the automaton was sent in state | to a successor v of w, then there must be a b’ € B
such that (%47 1), v) ~x (B,b) and B = A(b, V') for some guarded 2-type A. Guide the
run to choose A. The decision to be taken for states ¢ is handled very similarly.

“=" Let (T,L) be a ©-labeled tree that is accepted by As. Then there is an
accepting run (7}, r) of As on (T, L). We show how to use (T}, r) to construct a model
B of py such that Conditions 1 and 2 of Theorem 3.3.7 are satisfied when 2/ is replaced
with (7). Along with B, we construct the following objects:

e a GFO?(X)-bisimulation ~ between A(p 1) and B which witnesses that Condition 1
of Theorem 3.3.7 is satisfied,

e two relations ~*49 and ~4+:! that form an A -delimited GFO?(X)-bisimulation
between 27) and B, where A} C Ry 1) is the subset defined by the second
component of L, and which witness that Condition 2 of Theorem 3.3.7 is satisfied,
and

e a function p that assigns to each element of B the 1-type that we aim to realize
there.

Throughout the construction, we make sure that the following invariants are satisfied:
1. if (w, b) € ~, then the label (w, u(b)) occurs in (7}, 7);
2. if (w,b) € ~A17 i € {0,1}, then the label (w, u(b)°) occurs in (T}, 7).

The start of the construction is as follows:

e for each label (w,t) that occurs in (7)., r), introduce an element b of B, add (w, b)
to ~, and set u(b) = t;

e for each label (w,t°) that occurs in (7},7), introduce an element b of B, add
(w,b) to ~A10 and set pu(b) = t.

We then iteratively extend B, ~, ~41:0 ~AL1 and 4, obtaining the desired structure

and bisimulations in the limit. In each step, process every b € B that has not been
processed in a previous round. There are three cases.

Case (a). There is a (w,b) € ~. By Invariant 1, we find a node = € T, such that
r(z) = (w, u(b)). We perform two steps:

e For every predecessor or successor v of w in T" with at%(T 0 (w,v) guarded, there

must be a 2-type A such that p(b) = A, (v, \y) occurs as a label in (7}.,7), and
atg(T 0 (w,v) =5 \. Extend B with a new element V', extend the interpretation

of the predicates in B such that at(w,v) =5 A, set u(b') = A, and extend ~
with (v,).

e There must be a set T of guarded 2-types such that ¢t ~ T and for every A € T,
there is a predecessor or successor v of w in T" such that p(b) = A, (v, \y) occurs

as a label in (7},7), and atg(T L)(w,v) =y, A. Extend B with a new element

b (for every \), extend the interpretation of the predicates in B such that
ath (w,v) =x A, set u(b') = Ay, and extend ~ with (v,d').

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 48

Case (b). There is a (w,b) € ~4+0. By Invariant 2, we find a node x € T} such that
r(x) = (w, 1(b)?). We can now proceed exactly as in Case (a) except that, in both
subcases, we add (v, b) to ~ALLf v is a predecessor of w and v € A, and to ~4+0
otherwise.

Case (c). There is a (w,b) € ~411. By Invariant 2, we find a node « € T} such that
r(z) = (w, u(b)'). If the predecessor of w is not in A, then we again proceed as in
Case (a) except that, in both subcases, we add (v,b') to ~4+0 if v is a sucessor of w
and w € A, and to ~A+1 otherwise. If the predecessor of w is in A, then we we also
proceed as in Case (a), but do not add (v,b’) to any of the constructed bisimulations.

Case (d). None of the above cases applies. Then we proceed as in Case (a), again not
adding (v, b) to any of the constructed bisimulations.

It can be verified that, as intended the structure B obtained in the limit is a model
of 9, that the relation ~ is a GFO?(X)-bisimulation, and that ~419 ~AL1 form an
A -delimited GFO?(X)-bisimulation. 0

Recall that we define the overall 2ATA A so that it accepts L(A;) N L(Az) N L(A3).
Using Theorem 3.3.7, it can be verified that, as intended, 1 Fgpo2(s) ¢2 iff L(A) = 0.
Note that for the “only if” direction, we have to show that L(A) # () implies that
there is a regular forest model of ¢y that satisfies the negation of the conditions in
Theorem 3.3.7. As is the case for other kinds of tree automata, also for the 2ATA A it
can be shown that L(A) # () implies that A accepts a regular O-labeled tree (7', L).
The corresponding structure 2((7 ;) must then also be regular.

Theorem 3.4.7. In GFO?, Y-entailment and conservative extensions can be decided in

time 221)(‘%2‘410%‘%1‘), for some polynomial p. Moreover, Y-inseparability is in 2EXPTIME.

Note that the time bound for conservative extensions given in Theorem 3.4.7 is
double exponential only in the size of p9 (that is, the extension). In ontology engineering
applications, o will often be small compared with ;.

3.4.3 Lower Bound

We show that T-entailment, Y-inseparability, and conservative extensions in GFO?
are 2EXPTIME-hard. The proof is by reduction of the word problem for exponentially
space bounded alternating Turing machines (ATMs). The construction is inspired by
the proof from [GLWO06] that conservative extensions in the description logic ALC are
2ExXpPTIME-hard, but the lower bound does not transfer directly since we are interested
here in witness sentences that are formulated in GFO? rather than in ALC.

Definition 3.4.1. An ATM is of the form M = (Q,0,T",qp,A). The set of states
Q=Q3YQvW{q,} W{q} consists of existential states from Q3, universal states from
Qv, an accepting state q,, and a rejecting state q,; O is the input alphabet and I' D ©
the work alphabet that contains a blank symbol O ¢ ©; gy € Q3 is the starting state; and
the transition relation A is of the form A C Q xI'x Q xTI' x {L, R}. We write A(q, a)
for {(¢',b, M) | (¢,a,q',b, M) € A} and assume that A(g,b) = 0 for all ¢ € {qq, g} and
bel.

A configuration of an ATM is a word wquw’ with w,w’ € I'* and ¢ € Q. The intended
meaning is that the one-side infinite tape contains the word ww’ with only blanks
behind it, the machine is in state ¢, and the head is on the symbol just after w. The
successor configurations of a configuration wquw’ are defined in the usual way in terms

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 49

of the transition relation A. A halting configuration (resp. accepting configuration) is
of the form wquw’ with q € {qq, ¢} (resp. ¢ = qa)-

A computation tree of an ATM M on input w is a tree whose nodes are labeled
with configurations of M on w, such that the descendants of any non-leaf labeled by
a universal (resp. existential) configuration include all (resp. one) of the successor
configurations of that configuration. A computation tree is accepting if the root is labeled
with the initial configuration gow for w and all leaves with accepting configurations.
An ATM M accepts input w if there is a computation tree of M on w.

Take an exponentially space bounded ATM M whose word problem is 2EXPTIME-
hard [CKS81]. We may w.l.0.g. assume that the length of every computation path of
M on w € O" is bounded by 22". We can also assume that for each ¢ € Qv U Q5 and
each a € I, the set A(q,a) has exactly two elements. We assume that these elements
are ordered, i.e., A(g,a) is an ordered pair ((qz,br, M1), (qr,br, Mg)). Furthermore,
we assume that M never attempts to move left on the left-most tape cell.

Let w = ag---a,—1 € ©F be an input to M. In the following, we construct GFO?
sentences 1 and g such that ¢; A @2 is a conservative extension of ¢; if and only if
M does not accept w. Informally, the main idea is to construct ¢; and @2 such that
models of sentences that witness non-conservativity describe an accepting computation
tree of M on w. In such models, each domain element represents a tape cell of a
configuration of M, the binary predicate N indicates moving to the next tape cell in
the same configuration, and the binary predicates L and R indicate moving to left and
right successor configurations in accepting configuration trees. Thus, each node of the
computation tree (that is, each configuration) is spread out over a sequence of nodes in
the model. We actually assume that every non-halting configuration has two successor
configurations, also when its state is existential. This can of course easily be achieved
by duplicating subtrees in computation trees. The following predicates are used in 1:

e a unary predicate P to mark the root of computation trees;
e binary predicates N, R, L, as explained above;

e unary predicates Cy, ..., Cp,_1 that represent the bits of a binary counter which
identifies tape positions;

e a unary predicate F' that marks the topmost configuration in the configuration
tree;

e unary predicates S, a € I', to represent the tape content of cells that are not
under the head;

e unary predicates S; 4, ¢ € @ and a € I, to represent the state of a configuration,
the head position, and the tape content of the cell that is under the head;

e unary predicates S? and S? ,, with the ranges of ¢ and a as above, to represent
the same information, but for the previous configuration in the tree instead of for

the current one;

e unary predicates Y7 g o n and Yr g, ¢ € Q, a €', M € {L, R}, to record the
transition to be executed in the subsequent configurations;

e unary predicates Yj , a7, with the ranges of ¢,a, M as above, to record the
transition executed to reach the current configuration.

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 50

Va(Pz — po=o(z)) (1)
Va(po<on—1(z) = (FyNzy AVy(Nzy — ooi+(2,))) (2)
Va (po=on_1(z) = ByLzy AVy(Lzy — ¢co=o(y)) A JyRzy AVy(Rzy — cpczo(y)())))
3
Va((Pz — Fz) AVy(Nzy — Fy)) (4)
ve \/ (SazA A ~Ssx) (5)
a€lU(QxT) Be(TU(QXT))\{a}
vz \/ (SKaA A -Shx) (6)
ael'U(@xT) Be(TU(@XT))\{a}
Vo ((Fz A po=o(z)) = Sgo,a02) (7)
Vo ((Fz A po=i(z)) = Sa;1) for1<i<n (8)
Va((Fz A posn(z)) = Soz) 9)
VJU(q,aL — YL T, T N Yr TRT)) if A(q, a) = (TL,TR), q € Qv (10)
VSU(g,aT — YL T A Yr T.T) (YL7TRx VAN YR,TRx))) (11)
if A(q7 a’) = (TLvTR)a q € Q3
Va(Yprz — Yy(Nzy — Ypry)) (12)
Vo (Yprz — Yy(Pry — Yry)) (13)
Va (Yrz — Vy(Nay — Yry)) (14)
Va((Yoama A Sp yx) — Sax) (15)
Va((Yoarx A Sz A Jy(Nay A S y)) — Sqpr) (16)
Va((Yga,ra A Spx A Jy(Noy A S ,1y)) — Spr) (17)
Va ((qaRx/\Sfx/\Ely(Ny:r/\Sq a/y)) — SypT) (18)
Va((Yga,z A Sz A y(Nyz A Sy) — Spr) (19)
Vo ((Jy(Nay A Spy)) A SPa A Jy(Nyz A Spy)) — Sax) (20)

Vr—Sy, o (21)

Figure 3.1: The conjuncts of the sentence 1.

The sentence ¢y uses some additional unary predicates, including Cy,...,C] _

1 to
implement another counter whose purpose is explained below.

The sentences @1 and g are shown in Figures 3.1 and 3.2, respectively, where ¢ and
¢’ range over Q, a,b,t’ over ', M and P over {L, R}, T, Ty, Tr over Q@ xI' x {L, R}, and
a over 'U(Q xT'). The formula pc—;(z), which is easily worked out in detail, expresses
that the value of the binary counter implemented by Cy, ..., Cy—1 has value exactly ¢
at x, and likewise for po<i(z) and pc>i(x), and for the primed versions in 9 which
refer to the counter implemented by Cy, ..., C) _;. The formula pcyy(x,y) expresses
that the counter value at y is obtained from the counter value at x by incrementation
modulo 2". Again, we omit the details.

Let us walk through ¢ and @9 and give some intuition of what the various conjuncts

are good for. In ¢, Lines (1) to (4) ensure that at an element that satisfies P, there is

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 51

JrxPx — JxDx (22)
Va(Dz — (Mz A por—o(x))) (23)
Vo ((Dx A Sqx) = Zax) (24)

(

Va((Mxz A po=on_1(z) N pcrcon_1(x) A Zox) — (
Fy(Lay N My A Zoay N pori s (2,9)) V Jy(Rey A My A Zay A peri(2,9)))

Va((Mz A por—an_1(x) A Zgz) = Jy(Nazy A -Shx)) (

Figure 3.2: The conjuncts of the sentence o.

an infinite tree of the expected pattern: first 2" — 1 N-edges without branching, then a
binary branching of an L-edge and an R-edge, then 2" — 1 N-edges without branching,
and so on, ad infinitum. Of course, a computation tree will be represented using only
a finite initial piece of this infinite tree. These conjuncts also set up the counter C
so that it identifies the position of tape cells and the marker F' so that it identifies
the topmost configuration in the tree. Line (5) says that every cell is labeled with
exactly one symbol and that the state is unique (locally to one cell; there is no need to
express the same globally for the entire configuration), and Line (6) says the same for
the representation of the previous configuration. Lines (7) to (9) make sure that the
topmost configuration in the infinite tree is the initial configuration of M on input w.
Lines (10) and (11) choose transitions to execute and Lines (12) to (14) propagate this
choice down to the subsequent configurations. Assume that the predicates of the S? and
SP . indeed represent the previous configuration, Lines (15) to (20) then implement the
chosen transitions. Line (21) says that we do never see a rejecting halting configuration.

Now for ¢s. Essentially, we want to achieve that a sentence is a witness for non-
conservativity if and only if it expresses that its models contain (a representation of) an
accepting computation tree of M on w whose root is labeled with P. This is achieved
by designing 9 so that, whenever a tree model of 1 contains only instances of P that
are not the root of such a computation tree, then this model can be extended to a
model of g9 by assigning an interpretation to the additional predicates in 3. Note that
1 already enforces that, below any instance of P, there is a tree that satisfies almost
all of the required conditions of an accepting computation tree. In fact, the only way in
which that tree cannot be an accepting configuration tree is that the predicates S? and
SP . do not behave in the expected way, that is, there is a configuration and a cell in this
configuration that is labeled with S,, & € TU(Q x I'), and in one of the two subsequent
configurations the same cell is not labeled with S2. We thus design (3 so that it can be
made true whenever the model contains such a defect. In Line (22), we select the place
where the defect is. Line (23) ensures that the counter C’ starts counting with value
zero at that place, and that the marker M is set there, too. Line (24) memorizes the
content « of the cell in the upper configuration involved in the defect. Lines (25) to (27)
propagate downwards the memorized content and make sure that, at the corresponding
cell of at least one subsequent configuration (which is identified using the counter C),
we do not find S%.

Lemma 3.4.8.

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 52

1. If M accepts w, then 1 A o is not a GFO?-conservative extension of ©1.

2. If there exists a sig(p1)-structure that satisfies 1 and cannot be extended to a
model of 1 A @o, then M does not accept w.

Proof.(sketch) For Point 1 assume that M accepts w. Then there is an accepting
computation tree of M on w. Let ¥ = sig(¢1). We can find a GFO?(X)-sentence 1,
which expresses that the model contains a (homomorphic image of a) finite tree which
represents this configuration tree and whose root is labeled with P. We can also find
a GFO?(X)-sentence 1, which expresses that nowhere in the model there is a defect
situation. It can be verified that i1 A 19 is satisfiable w.r.t. 1, but not w.r.t. s
because @2 requires the existence of a defect situation whenever the extension of P is
non-empty.

For Point 2 assume that 2l is a sig(¢1)-structure that satisfies 1. If P* = (), then
the desired model 9B is obtained from 2l by interpreting all predicates in sig(y2) \ sig(p1)
as empty. Otherwise, take some a € P*. We can follow the existential quantifiers in
1 to identify a homomorphic image of an infinite tree in 2l with root a whose edges
follow the expected pattern and that is labeled in the expected way by the counter C.
Since 2 is a model of ¢1, an initial piece of the identified tree represents an accepting
computation tree of M on w provided that the predicates SE behave as expected, that
is, if there is no defect of the form described above. Since M does not accept w, there
must thus be such a defect, that is a path of length 2™ that links a cell of a configuration
with the corresponding cell of a subsequent configuration such that the former is labeled
with S, but the latter is not labeled with S%. All the elements of the path (with the
possible exception of the start point and the end point) are labeled with a different
value of the counter C' and must thus be distinct. Consequently, we can interpret the
counter C’ and the other symbols in ¢ to extend 2 to a model of ¢o, as desired. l:l

The following result is an immediate consequence of Lemma 3.4.8.

Theorem 3.4.9. In any fragment of FO that contains GFO?, the problems ¥ -entailment,
Y-inseparability, conservative extensions, and strong X-entailment are 2EXPTIME-hard.

3.5 Concluding Remarks

We have shown that conservative extensions are undecidable in (extensions of) GFO
and FO?, and that they are decidable and 2EXPTIME-complete in GFO?2. It thus
appears that decidability of conservative extensions is linked even more closely to the
tree model property than decidability of the satisfiability problem: apart from cycles of
length at most two, GFO? enjoys a ‘true’ tree model property while GFO only enjoys
a bounded treewidth model property [Gri99] and FO? has a rather complex regular
model property that is typically not even made explicit [Mor75].

As future work, it would be interesting to investigate whether conservative extensions
remain decidable when guarded counting quantifiers, transitive relations, equivalence
relations, or fixed points are added, see e.g. [Pra07, Kie06, GW99]. Furthermore,
it would be interesting to know where is the limit of decidability: Are conservative
extensions decidable in FO? when the separating formulas are formulated in ALC, modal
logic, or something weaker? How low do we have to go to make it decidable? Also, Are
conservative extensions decidable in GFO when the second formula @2 can only use
fresh relations that are at most binary? And can we come up with decidable separability

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments 53

notions for GFO and FO? that are not defined in terms of logical consequences, but in
terms of natural model-theoretic characterizations? These kind of questions deserve
further investigation. Moreover, it would also be interesting to investigate a finite
model version of conservative extensions.

Deductive conservative extensions, as studied in this chapter, aim at preserving the
logical (non)-consequences of sentences. A crucial difference between onotology-based
data access and more traditional ontology reasoning, though, is that this kind of
entailment (and related satisfiability) questions play only a peripheral role while query
answering becomes the central reasoning task. In these scenarios, the notion of query
conservative extensions is of main importance. This is the topic of the next chapter.

Chapter 3. Conservative Extensions in Guarded and Two-Variable Fragments

54

CHAPTER 4

Conservative Extensions in Horn Description Logics with Inverse Roles

In the past years, access of incomplete data mediated by description logic (DL) ontologies
has gained increasing importance [PLCT08, BO15]. The main idea is to specify domain
knowledge and semantics of the data in the ontology, resulting in more complete
answers to queries. Significant research activity has led to efficient algorithms and
tools for a wide range of DLs such as DL-Lite [CDL"07], more expressive Horn-DLs
[EOS*12, TSCS15, BHLW16], and “full Boolean” DLs such as ALC [KG13, ZCNT15].

In contrast to query answering, which is by now well-understood, there is a need
to develop reasoning services for ontology engineering that are tailored towards query-
centric applications and support tasks such as ontology versioning and module extraction
from ontologies. For example, if one wants to safely replace an ontology with a new
version or with a smaller subset of itself (a module), then the new ontology should
preserve the answers to all queries over all ABoxes (which store the data) [KWZ10].
The same guarantee ensures that one can safely replace an ontology with another
version in an application [KLWW12]. In both cases, ontologies need to be tested not
for their logical equivalence, but for giving the same answers to relevant queries over
relevant datasets.

This requirement can be formalized using conservative extensions. In the following,
we use the DL term TBozx instead of ontology. A TBox To 2 Ty is a (I, X)-query
conservative extension of a TBox T, where I' and ¥ are signatures of concept/role
names relevant for data and queries, respectively, if all ¥-queries give the same answers
w.r.t. 71 and T, for every I'-ABox. Note that the subset relationship 75 D 77 is
natural when replacing a TBox with a module, but not in versioning, so we might
not want to insist on it. In this more general case, 71 and T3 are called (T, X)-query
inseparable. Conservativity and inseparability of TBozxes, as defined above, are useful
when knowledge is considered static and data changes frequently. Variants of these
notions for knowledge bases (KBs), which consist of a TBox and an ABox, can be used
for applications with static data [WWT*14, ABCR16].

We also consider the basic notion of query entailment: 77 (', X)-query entails Ta if
all Y-queries give at least the answers w.r.t. 71 that they give w.r.t. 73, on any I'-ABox.
Query inseparability and conservativity are special cases of entailment as seen in the
previous chapter. As a query language, we concentrate on conjunctive queries (CQs);
since we work with Horn-DLs and quantify over the queries, this is equivalent to using

95

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 56

unions of CQs (UCQs) or positive existential queries (PEQs). CQ entailment has been
studied for various DLs [KPS*09, LW10, KLWW12, BLR"16], also in the KB version
[BKR ™16, BLR"16] and for OBDA specifications [BR15], see also the survey [BKLT16].
Nevertheless, there is still a notable gap in our understanding of this notion: query
entailment between TBoxes is poorly understood in Horn DLs with inverse roles, often
considered a crucial feature, for which there do not seem to be any available results.
Therefore we study the last question of Section 1.2.1:

Q3 How can advanced reasoning support for ontologies be lifted from standard
DLs to Horn DLs involving inverse roles, thus facilitating ontology design and
maintenance for OBDA applications?

Inverse roles have been found particularly challenging, and this is for a reason:
it has been observed in [BKL 16, BKR'16] that standard techniques for Horn DLs
without inverse roles fail when inverse roles are added. In fact, for Horn-DLs without
inverse roles query entailment can be characterized by the existence of homomorphisms
between universal models [LW10, BKL'16]. The resulting characterizations provide an
important foundation for decision procedures, often based on tree automata [BKLT16].
In the presence of inverse roles, however, such characterizations are only correct if we
require the existence of n-bounded homomorphisms, for any n [BKLT16, BKR"16]. It
is not obvious how the existence of such infinite families of bounded homomorphisms can
be verified using tree automata (or related techniques) and, consequently, decidability
results for query conservative extensions in Horn-DLs with inverse roles are difficult
to obtain. The only result we are aware of concerns inseparability of KBs, and it is
proved using intricate game-theoretic techniques.

In this chapter, we develop decision procedures for query entailment and related
problems in Horn DLs with inverse roles. The main idea is to provide a more refined
characterization, mixing unbounded and bounded homomorphisms and using bounded
homomorphisms only in places where this is strictly necessary. We can then deal with
the “unbounded part” using tree automata while the “bounded part” is addressed by
precomputing relevant information using a mosaic technique. In this way, we establish
decidability and a 2EXPTIME upper bound for query entailment (and thus inseparability
and conservativity) in Horn-ALCHZF. Together with lower bounds from [BLR"16],
we get 2EXPTIME-completeness for all fragments of Horn-ALCHZF that contain ELT
or Horn-ALC.

We additionally study the case of deductive entailment between TBoxes, i.e., the
question whether 77 entails at least the same concept and role inclusions as well as
functionality assertions over 3 as T5. This problem too has not previously been studied
for Horn DLs with inverse roles. We consider ELHZF| -TBoxes and show that deductive
entailment is equivalent to a restricted version of query entailment. We obtain a model
theoretic characterization, a decision procedure, and a 2EXPTIME upper complexity
bound. We also give a CONEXPTIME lower bound.

4.1 Horn-ALCHIF

We introduce Horn-ALCHZF, a member of the Horn-ALCQOT family of DLs whose
reasoning problems have been widely studied [HMS07, KRH07, EGOS08, Kaz09, LW12,
ILS14]. Let N¢, Ng, N be sets of concept, role, and individual names. A role is either
a role name 7 or an inverse role r~. As usual, we identify (r~)~ and r, allowing to

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 57

switch between roles names and their inverses easily. A concept inclusion (CI) is of the
form L C R, where L and R are concepts defined by the syntax rules

RR :=T|L|A|-A|RNR |-LUR|3r.R|Vr.R
LL==T|L|A|LNL|LuL'|3rL

with A ranging over concept names and r over roles. A role inclusion (RI) is of the
form r C s with r, s roles and a functionality assertion (FA) is of the form func(r) with
r a role. ELT -concepts are expressions that are built according to the syntax rule for
L above, but do not use “LI”.

A Horn-ALCHIF TBozx T is a set of Cls, Rls, and FAs. An ELHIF, TBox is a
set of EL7,-Cls, Rls, and FAs. To avoid dealing with rather messy technicalities that
do neither seem to be very illuminating from a theoretical viewpoint nor too useful from
a practical one,' we generally assume that functional roles cannot have any subroles,
that is, r C s € T implies func(s) ¢ 7. We conjecture that our main results also hold
without that restriction.

The semantics is defined as usual in terms of interpretations Z = (A%, -Z) complying
with the standard name assumption, i.e., a’ = a for all a € N; (see Section 2.3). An
interpretation Z is a model of a TBox T if it satisfies all inclusions and assertions in it,
and likewise for ABoxes. A is consistent with T if 7 and A have a common model.

A signature X is a set of concept and role names. A Y-ABox is an ABox that
uses only concept and role names from 3, and likewise for X-ELZ | -concepts and other
syntactic objects.

Generally and without further notice, we work with Horn-ALCHZF TBoxes that
are in a certain nesting-free normal form, that is, they contain only CIs of the form

TCA AC 1, A\/MACB, AC 3B, ACVr.B,

where A, B, A1, Ao are concept names and r, s are roles. It is well-known that every
Horn-ALCHZF TBox T can be converted into a TBox 77 in normal form (introducing
additional concept names) such that 7 is a logical consequence of 7' and every model
of T can be extended to one of 7' by interpreting the additional concept names, see
e.g. [BHLW16]. As a consequence, all results obtained in this chapter for TBoxes in
normal form lift to the general case.

4.2 Query Conservative Extensions and Entailment

We introduce the central notions studied in this chapter.

Definition 4.2.1. Let I', ¥ be signatures and 71, 72 Horn-ALCHZF TBoxes. We say
that 71 (T, X)-CQ entails T2, written T; |:S% T, if for all I'~ABoxes A consistent with
71 and 73, all £-CQs ¢(x) and all tuples a C ind(A), 73,4 = g(a) implies 71, A = g(a).
If in addition 771 C T3, we say that 73 is a (I, X)-CQ conservative extension of Tp. If
T }:19% T2 and vice versa, then 77 and 75 are (I, 3)-CQ inseparable.

If 71 b&lg% T2 because T2, A = q(a) but 71, A ~ g(a) for some I'~ABox A consistent
with both 7;, £-CQ ¢(x) and a, we call the triple (A, ¢,a) a witness to non-entailment.

'E.g., out of 439 available ontologies in BioPortal [MP17], only 21 (< 4.8%) contain the described
pattern. A significant fraction of the occurrences of the pattern appear to be due to modeling mistakes.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 58

Example 4.2.1. Let 77 = {PhDStud C JadvBy.Prof,adv C adey } and Ty =
T1 U {func(advBy)}, ¥ = {Prof} and I' = {PhDStud, adv}. Then T; I#F 5, T2 because
of the witness ({PhDStud(john), adv(mary, john)}, Prof(z), mary) as illustrated below.

@ PhDStud
ABox: {PhdStud(john),adv(mary, john)}

adv adVBy Query: Prof(mary)

‘ @ T2, A = Prof(mary) but T1, A = Prof(mary)
Prof

A CQ q is tree-shaped if it does not contain atoms of the form r(z,z) and the
undirected graph (x Uy, {{v,w} | r(v,w) is an atom in ¢}) is a tree; tree-shaped CQs
are thus connected and may contain multi-edges. A tree-shaped CQ q is strongly
tree-shaped or an stC(Q if the root is the one and only answer variable and g has no
multi-edges, that is, for any distinct variables z, 2’ in ¢, there is at most one role atom
that contains both z and 2’.

In addition to the notions introduced in Definition 4.2.1, we also consider (I', ¥)-
stCQ entailment, denoted |:StCQ and defined in the obvious way by replacing CQs with
stCQs.

4.2.1 Query Entailment with Inconsistent ABoxes

If we drop from Definition 4.2.1 the condition that A must be consistent with both
71 and 73, then we obtain an alternative notion of CQ entailment that we call CQ
entailment with inconsistent ABozxes. While this new notion trivially implies CQ
entailment in the original sense, the converse fails.

Example 4.2.2. Let T =0, Ta={A1MAyC L} and I' = {4;, A2}, ¥ = {B}. Then
T |—F 5 T2 but ’7’1 does not (T', X)-CQ entail 75 with inconsistent ABoxes, witnessed
by ({A1(a), A2(a)}, Fyr(y,y), a).

We need to deal with the question whether any I'-ABox that is inconsistent with
some TBox 75 is inconsistent with another TBox 7;. We say that 71 I'-inconsistency
entails Ta, written Tq):% T, if for all I'-ABoxes A: if A is inconsistent with 75, then
A is inconsistent with 77.

The following lemma relates the two notions of CQ entailment.

Lemma 4.2.1. CQ entailment with inconsistent ABoxes can be decided in polynomial
time given access to oracles deciding CQ entailment and CQ evaluation.

Before proving Lemma 4.2.1 we give some preliminaries. For interpretations 7, Zo
and a signature ¥, a Y-homomorphism from Z; to Zs is a total function h : ATt — AZ2
such that (1) h(a) = a for all a € Ny, (2) h(d) € AT2 for all d € ATt, A € Nc N, and
(3) (h(d),h(d")) € T2 for all (d,d’') € r’*, r € Nk N 2. If there is a ¥-homomorphism
from 77 to Iy, we write 71 —y, Zo.

Let 7 be a Horn-ALCHZF TBox in normal form and A an ABox consistent with
T. A type for T is a set t C sub(7T) N N¢ such that 7 =[]t C A implies A € ¢ for all
concept names A. For a € ind(A), let tpy(a) = {A | T, A = A(a)} be the type of a
relative to T. When a € ind(A), t,t" are types for T, and r is a role, we write

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 59

o a~TAtif T, A 3r.[]t(a) and t is maximal with this condition, and
o t~T t'if T =[]t C Ir.[]t and ¢ is maximal with this condition.

A path for A and T is a finite sequence m = argty - - - tp—17p—1tn, n > 0, with a € ind(A),

ro, ..., n—1 roles, and ti,...,t, types for 7 such that
(i) @ ~]~ 11 and, if func(rg) € T, then there is no b € ind(A) such that 7, A =
ro(a, b);

(ii) for every 1 <14 < n, we have t; “")Z; ti+1 and, if func(r) € T, then r;_y # r; .

When n > 0, we use tail(7) to denote t,,. Let Paths be the set of all paths for A and 7.
The universal model Z7 4 of T and A is defined as follows:

ATTA = Paths

AT A ={a cind(A) | T, Al Ala)} U
{re AT\ ind(A) | T k= |tail(7) C A}

rITA = {(a,b) € ind(A)? | s(a,b) € A, T =sCr}U
{(m,mst) | wst € Paths and T s C r} U
{(wst,7) | mst € Paths and T s~ Cr}

We also need universal models of a TBox 7 and a type t, instead of an ABox. More
precisely, we define Z7; = Z7 4, where A; = {A(a) | A € t} for a fixed a € N;. If an
interpretation Z is a common model of a TBox T and ABox A, then we also write
Z = (T,A) and call Z a model of (T,.A). The following is standard to prove [BO15].

Lemma 4.2.2. For every Horn-ALCHIF TBox T in normal form and ABox A
consistent with T, the following hold:

(1) Ira = (T, A).

(2) For all models I of (T, A), we have I 4 — I.

(3) For all types t,t" for T with t Ct', we have 1 — Ly .

(4) T, A= qa) iff I 4 = q(a), for all CQs q(x) and tuples a of individuals.

Now we are ready to prove Lemma 4.2.1. We proceed in two steps: first, we show
how to deal with inconsistency entailment; second we show how to use this type of
entailment to deal with CQ entailment with inconsistent ABoxes.

For the first step, we can reduce inconsistency entailment to CQ entailment because,
if A is inconsistent with 7, then either (a) Zr 4 contains a B-instance for some B
with BC L € T, or (b) A contains a “fork” {r(a,b),r(a,c)} that is prohibited by
func(r) € T. We write 71 ™% 75 if for all T-ABoxes A = {r(a,b),r(a,c)}: if A
is inconsistent with 75, then also with 77. Thus, if we have a witness ABox A for
T1 i T2, then A is inconsistent with T either by Case (a) — which we can detect via
CQ entailment if we allow a fresh concept name in the CQ and slightly modify the
TBoxes — or by Case (b), which implies 77 otk 75.

Lemma 4.2.3. Let I' be a signature and let T1 and To be Horn-ALCHIF TBoxes.
Furthermore, let A be a fresh concept name and 7;‘4 be obtained from T; by replacing
each occurrence of L with A and adding the axioms 3s.AC A and ds—.A C A for every
role s occurring in T;, for i = 1,2. Then the following are equivalent.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 60

(1) Ti =t To
(2) T Frin T and TR T
(3) TA LR T4 and Ti ™ T

Note that we only need the equivalence between (1) and (2) to prove Lemma 4.2.1.
However, we will need (3) later to prove Lemma 4.5.1. Indeed, (2) and (3) are obviously
equivalent given the primitive query signature { A} and the propagation of A throughout
the T4

Proof.

“1 = 2” We prove the contrapositive. Assume 7;* I;rélg? Ay T4 or T ok 75, In
case T1 [;éfi’rk T2, every witness ABox is a witness for Ty I;é% T> too.

In case 7;* b&g? A} 75! is violated, consider a witness (A, ¢,a). Since A is the only
symbol allowed in ¢, all atoms of ¢ have the form A(z) for arbitrary variables z. If ¢
consists of several atoms, then it is disconnected and we can omit all but one atom
from ¢ and still have a witness (see also proof of Lemma 4.3.2, Property d). Hence
we can assume w.l.o.g. that ¢ is of the form (i) ¢(x) = A(x) or (ii) ¢() = Jy A(y) and,
furthermore, that A and thus the universal models Z7; 4 are connected. (Due to the
“propagation” of A in the 7;, we can even assume that ¢ is of the form (i) only, but that
does not matter in the following argumentation.) We now have:

e A is inconsistent with 7s:

Assume to the contrary that A is consistent with 75 and consider the universal
model Z7, 4 for T3 and A (Section ??). Clearly, for all domain elements d of
Ir1; 4, we have Tp = |_|th7,2 ,(d) C L. Since A is fresh and by the definition of

T we get T - ﬂthTQ,A (d) C A. Now Lemma 4.2.2 (1) for 7 implies that

I7,.4 E (T3, A); hence I, 4 satisfies all axioms in 75! that have been taken over
from 7 without modification, i.e., all axioms that are not of the form B C A.
But axioms of the latter form are also satisfied because 75" = [tpz, ,(d) EA

for every domain element d. Hence Z7;, 4 = (75, A). Now, since Z7; 4 has no
A-instance, we cannot have 75, A |= g(a) for any {A}-query ¢; contradicting the
assumption that (A, ¢,a) is a witness.

o A is consistent with 7i:

Since (A, q,a) is a witness, we have Lraa K~ q(a) by Lemma 4.2.2 (4). Due

to the additional axioms in the definition of 7'1‘4, which “propagate” A into
every domain element of the connected (see above) universal model 17-1A7 A4 We

have T4 |—|th7 N A(d) C A for all domain elements d. Since A is fresh,
7,
we have T; = ﬂthT N A(d) C 1. With the same reasoning as above, we get
7

Lra g E (71,A); hence A is consistent with 77.
Consequently Tq I;é% T2, as desired.
“2 = 3”. This is immediate because 7;*):19? Ay 75" implies T4):?t?g} T

“3 = 1”. We prove the contrapositive. Assume 77 i Tz, i.e., there is a [-ABox A that
is is inconsistent with 75 but consistent with 7;. We need to show that 7;% bé?t({jg} T

or 71 [;é%?rk Ts.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 61

From A being inconsistent with 75, we first conclude that one of the following two
properties must hold.

(i) There is some d € B124 with BC 1 € Ts.
(ii) A contains a “fork” A~ = {r(a,b),r(a,c)} such that A~ is inconsistent with 7.

Indeed, if neither (i) nor (ii) holds, then we have Z7; 4 = (72,.A), contradicting the
inconsistency of A with Ta: First, Zr; 4 |= A follows directly from the construction of
Zt;.4. Second, I7; 4 |= T can be shown analogously to the (omitted) standard proof
of Lemma 4.2.2 (1), via a case distinction over the axioms in 73, using “not (i)” and
“not (ii)” instead of the assumption that A is consistent with 75.

Now first assume that (ii) holds. Since A is consistent with 77, so is A~. Hence
Ti P T

In case (ii) does not hold, (i) must hold. To show that 74 bésrt({;g} T, consider the
stCQ g = A(x) and some a € ind(A) to which the element d from (i) is connected in
I, 4, Le., if d € ind(A), then choose a = d; otherwise choose a such that d is in the
subtree Z7, 4|q,. We then have:

e A is consistent with 73:

Since T3 does not contain | and .A does not contain forks as in (ii), A is consistent
with 734 is consistent, as witnessed by the universal model I7—2A’ 4 (we again refer
to the standard proof of Lemma 4.2.2 (1); except that the FA case in the ABox
part of Lra 4 is now due to “not (ii)”).

e A is consistent with 7;:

It is not difficult to see that Zr;, 4 = (774, A): From Zp, 4 = (T1,.A), it follows
that Z7; 4 is a model of A and satisfies all axioms in 73 that 7;* shares with
T1. The modified axioms B C A with B C 1L € 7; are satisfied, too, because
77,4 cannot have any B-instances. Finally, the additional propagation axioms
are satisfied because Z7; 4 has no A-instance as A is fresh.

o T3 AE q(a):

Due to (i), we have Z1; 4 = 3y B(y) for some B C L € 7;. Hence Lraa =
Jy B(y), which follows from the construction of both universal models (in fact
the only difference between I7-2A7 4 and Z7, 4 is that some domain elements of

I7—2A’ 4 may be A-instances). Hence 1-7-2147 4 has a B-instance in the subtree Z7; 4lq

and thus, by construction, an A-instance. By the “propagation” of A in 7'2A, we
have that a is an instance of A in Zra a; hence Zra 4 = A(a) =q.

o T, A~ q(a):

Follows from Z7; 4 = (T4, A) (as shown above) and Z7; 4 % q(a) (given the lack
of A-instances).
a

Proposition 4.2.4. Fork entailment Ty = Ty can be (Turing) reduced in polynomial
time to stCQ evaluation.

Proof. Perform 2|T'| many ABox consistency checks by evaluating the stCQ A(a)
on both 7;, where A is a concept name that does not occur in any of the 7;. d

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 62

For the second step, we can now reduce CQ entailment with inconsistent ABoxes to
the disjunction of our original notion of CQ entailment and inconsistency entailment.
We need an additional notion: Given a TBox T and signatures I', ¥, we say that 7 is
(T, X)-universal if
(%) for all I'~ABoxes A and ¥-CQs ¢(x) and all tuples a C ind(.A) with |a| = |x],
we have T, A = g(a).

Lemma 4.2.5. Let I', X be signatures and let T1 and T3 be Horn-ALCHIF TBoxes.
Then T (T',X)-CQ entails To with inconsistent ABoxes iff one of the two following
conditions holds.

(1) TiFrs o and T B T2

(2) Ti is (T, ¥)-universal.

Proof. We prove both implications via contraposition.

“=". Assume (1) and (2) are both false, i.e., 7; is not (I', ¥)-universal and either
(a) Ty bélg% Tz or (b) T1 ¢ Ta. In case (a), Ti trivially does not (', ¥)-CQ entail
75 with inconsistent ABoxes. In case (b), consider a witness I'-ABox A. Since 7; is
not (I, ¥)-universal, there is a I'~ABox A’, a ¥-CQ ¢(x) and a tuple a C ind(A") with
|a] = |x| such that 77, A" i~ g(a). We assume w.l.o.g. that A and A" use distinct sets
of individuals. We set A" = AU A" and have:

o T3, A” = q(a) because A is inconsistent with 72 and so is A”.

o Ti, A" |~ q(a): let J be the disjoint union of the universal model Z7; 4 and the
model Z witnessing 71, A’ - ¢(a). Clearly J = (71, A”) but J I~ q(a).

Hence 77 does not (T', ¥)-CQ entail 73 with inconsistent ABoxes, as desired.

“<" Assume 7; does not (I', ¥)-CQ entail 73 with inconsistent ABoxes and consider
a witness (A, g,a). Then it is immediate that (2) does not hold. Furthermore, if A is
consistent with both 77 and 75, then 73 bélg% T>. Otherwise A must be inconsistent with

75 but consistent with 77; hence Tq b&% To. Therefore (1) does not hold either. a

Proposition 4.2.6. (I',X)-universality can be (Turing) reduced in polynomial time to
stCQ evaluation.

Proof. It suffices to check Condition () above (i) for all singleton I'~ABoxes
{A(a)} and all single-atom ¥-CQs B(z) or r(x,), and (ii) for all two-element I'-ABoxes
{r(a,b)} and all £-CQs as in (i) but with possibly two distinct answer variables. o

Lemma 4.2.1 is now a direct consequence of Lemmas 4.2.3 and 4.2.5, and Propo-
sitions 4.2.4 and 4.2.6. Consequently and since CQ evaluation is in EXPTIME in
Horn-ALCHIF [EGOS08], all complexity results obtained in this chapter also apply
to CQ entailment with inconsistent ABoxes.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 63

4.3 Model-theoretic Characterization

We aim to provide a model-theoretic characterization of query entailment that will be
the basis for our decision procedure later on. The first step towards this characterization
consists in showing that non-entailment is always witnessed by tree-shaped ABoxes
and tree-shaped CQs with at most one answer variable. Here, an ABox A is tree-
shaped if it does not contain an assertion of the form r(a,a), the undirected graph
G4 = (ind(A), {{a,b} | r(a,b) € A}) is a tree, and for any a,b € ind(A), A contains at
most one role assertion that involves both a and b.

4.3.1 Unraveling ABoxes

To obtain tree-shaped ABoxes or CQs, we use unraveling, which needs to be more
cautious in the presence of inverse roles and functionality. In particular, we need to
ensure that, whenever a role is functional in an ABox, then so it is in its unraveling. We
define an unraveling for Horn-ALCHZF similar to the one for Horn-ALCZF in [LW12].

Let A be an ABox. The unraveling U9 of A at an individual a € ind(.A) is the
following ABox:

e ind(U%) is the set of sequences byroby - --7,—1b, With n > 0, where by = a,
b; € ind(A) for all 0 < i <mn, ri(b;,biy1) € Aforall 0 <i<mn,and (bj—1,r;,_,) #
(bi+1,7i) (the latter inequality is needed to ensure preservation of functionality).

e The concept assertions in U% are all assertions of the shape C(a) such that
a=by-by_17p—1by € ind(A) and C(b,) € A. The role assertions in U9 are all
assertions of the shape r(bg - - b,—1,«) such that a = bg - - - by—17,—1by, € ind(A).

The following is standard to prove [LW17, LW12]:

Proposition 4.3.1. Let T be a Horn-ALCHIF TBox, A an ABozx, and a € ind(A).
If A is consistent with T, then so is UY.

It is easy to see that 77 I;éS% 7o if there is a I'-role r and a X-role s with 73 =r C s
but 71 = r C s. We write Tp %IE T3 if there are no such r and s. Clearly, 7T; ':113712 T>
can be decided via |I'| - |X| many Horn-ALCHZF subsumption tests, thus in EXpTIME
[Tob01]. Tt is thus safe to assume T;):113,12 T2 when deciding CQ entailment, which we
will generally do from now on to avoid dealing with special cases.

The following result shows that non-entailment is always witnessed by tree-shaped
ABoxes and tree-shaped CQs with at most one answer variable.

Lemma 4.3.2. Let 71 and T3 be Horn-ALCHIF TBoxes with Tq —13}2 T If T 19%
T2, then there is a witness (A, q,a) where A and q are tree-shaped and |a| <1, i.e., q
has at most one answer variable. If Ty %?%Q T2, then there is such a witness where

additionally q is an stCQ.

We reformulate the lemma to make its statement more explicit.

Lemma 4.3.2, reformulated equivalently. Let 71,72 be Horn-ALCHIF TBozes
with Ty IE,IE To. If T %g% T2, then there is a tree-shaped I'-ABox A consistent with
T1 and T2, and a tree-shaped X-CQ q such that one of the following holds:

(1) q has a single answer variable and there is an a € ind(.A) such that T2, A = q(a)
but Ti, A V= q(a);

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 64

(2) q is Boolean and T2, A = q but T1, A I~ q.

If %?%Q T2, then there is a tree-shaped I'-ABox A and a tree-shaped Y-stC(Q) g
with (1).

Proof. Unrestricted CQs. Assume T; %g% Tz, ie., T2, A = gq(a) and T1, A =
q(a), for some I'~ABox A consistent with both T;, some X-CQ ¢ and some tuple a.
Lemma 4.2.2 (4) yields Z1; 4 |= ¢q(a) and Z7; 4 = g(a). We first show that the following
properties of ¢ and a are without loss of generality:

(a) Every match of ¢(x) into Z7; 4 maps every quantified variable into the anonymous
part.

(b) ¢g(x) does not contain atoms of the form r(z1,z2) with x, zo answer variables.
(c) f x = (z1,...,2,) and a = (a1, ..., an), then a; # a; for all 4, j with 1 <i < j <n.

(d) g(x) is connected.

For (a), take a match 7 of ¢ in Z; 4 and a quantified variable y such that 7(y) =b €
ind(A). Obtain ¢'(x,y) from ¢(x) by removing the quantification over y, thus making
y an answer variable. Clearly, we have Z7; 4 = ¢'(a,b) and Z7; 4 - ¢/(a,b), and thus
T2, A= ¢'(a,b) and Ti, At~ ¢'(a,b).

For (b), observe that such atoms can always be dropped, since they cannot be
inferred via 71 or Ta: Let ¢(x) = Jy (r(x1,22) A o(x,y)) with 21,29 € x, and let
1, 4 = q(a) be witnessed by the match 7 with 7(z;) = a;, i = 1,2. Construct the
CQ q(x') = Jy p(x/,y) by dropping the atom r(x1,x2) (and thus possibly removing z
and/or xg from the free variables). It is clear that Z7; 4 = ¢/(a’) for the corresponding
restriction a’ of the tuple a; thus it suffices to show that Zr; 4 £~ ¢'(a’).

From Z7, 4 = g(a) we can conclude that (aj,as) € r724. By construction of
Zt;.4 there is some I'-role " with 7/(a1,a2) € A and Tz = ' C r (which includes the
possibility ' = r, i.e., r(a1,a2) € A). Due to Ty):512 T2, we also have 71 = ' C r and
hence (ay,az) € r7iA. This implies the desired Z7; 4 = ¢(a’) because, otherwise, any
match 7 of ¢/ in Z7; 4 with 7(x;) = a;, i = 1,2, could be extended to a match of g.

This construction does not introduce any violations of (a).

For (c), observe that, whenever a; = a; for some ¢,j with 1 <i < j < n, we can
always drop z; and a;: Let x’ and a’ be x and a with z; and a; removed, and transform
¢(x) into ¢'(x’) by replacing every occurrence of z; with z;. Now T2, A |= ¢’(a’) and
T1, A}~ ¢'(a’). This construction does not introduce any violations of (a) or (b).

For (d), observe that T3, A = ¢q(a) and 71, A [~ q(a) implies T2, A | ¢/(a) and
Ti, A £ ¢'(a) for some connected component ¢’ of g. This construction does not
introduce any violations of (a), (b), or (c). While this is easy to see for (b) and (c),
Property (a) requires a closer look: If the possibly disconnected CQ ¢ satisfies (a) and
has at least one match 7 in Z7, 4, then every match of any connected component ¢’
in Z7, 4 can be extended to a match of ¢ in Z7, 4 via 7 restricted to the remaining
connected components. Since the match of ¢ satisfies (a), so does the match of ¢'.

Thus, as long as ¢ violates any of the above properties, we apply the corresponding
modification as described and in the order given. From now on, we assume that ¢
satisfies properties (a) to (d). Furthermore, they imply:

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 65

(e) q(x) does not contain a proper path between any two answer variables, which is a
non-empty sequence of atoms (21, 22), 72(22, 23), - - - , 'n(2n, 2Zn+1) With variables
21, 2nt1 € x and z; € y for 1 < i < n, and with roles r; such that z;y1 # z;_1 for
every 1 <1 < n.

To show this, assume the opposite, i.e., ¢(x) contains a proper path as above between
two answer variables z,2’. By (b) we have n > 1. By (a) and (c¢), 7 maps all z; with
1 <7 < n to the anonymous part of Z7, 4. However, there is no corresponding proper
path between any two ABox individuals in Z7, 4; a contradiction.

Assume now that ¢(x) = Jy ¢(x,y) is not tree-shaped, i,e., assume there is a cycle
r1(z1, 22),72(22, 23), . . . , " (2n, 2Znt1) with variables z; € x Uy, 21 = 2,41, and roles r;
such that z;11 # z;—1 for every 1 < i < n and 29 # z,. By (e), we have z; € y for all
1 <i<n+1. Let 7 be a match of ¢(x) in Z7, 4. By (a), 7 maps all variables to the
anonymous part of Z7, 4 which, by construction, is acyclic. Hence 7 cannot satisfy the
properties of a match; contradiction.

Assume now that x in ¢(x) contains more than one answer variable, say x # 1/,
matched by a and o’ in Z7; 4, with a # o’ due to (¢). By (d), ¢ is connected, and
thus, there is a path from x to 2’ in ¢q. Since x # 2/, there is even a proper path;
contradicting (e).

Thus, we now have that ¢ is tree-shaped and behaves as required by (1) or (2). It
remains to transform A into a tree-shaped ABox: In case ¢ is Boolean, we get from (a)
and (c) that every match of ¢ in Z7; 4 is into the anonymous subtree rooted at some
ABox individual a; in case g has one answer variable, let a = a. Consider the unraveling
U4 of A at a. Clearly, T2,U4 = q(a) and T1, U9 W~ q(a), which is still consistent with
both 7;, due to Proposition 4.3.1. By compactness, there is a finite subset B C U9
with 71, B = g(a) and Tz, B [~ g(a). Clearly, we can also assume that B is connected.

stCQs. Since stCQs are already tree-shaped and have exactly one answer variable,
the previous argument for unrestricted CQs reduces to observing Properties (a) and (c)
and unraveling the witness ABox as described. d

4.3.2 Characterization of Query Entailment

Our goal is to characterize query entailment in terms of homomorphisms between
universal models. Homomorphisms are natural because answers to CQs are preserved
under homomorphisms (both on interpretations and on ABoxes). In fact, they are
preserved even under bounded homomorphisms if the bound is not smaller than the
number of variables in the CQ.

Let 7,,Z5 be interpretations, d € AZ', and n > 0. We say that there is an n-bounded
Y -homomorphism from I to I, written Z; —% Ty, if for any subinterpretation Z] of
7, with \Azﬂ < n, we have Z| —y Zo. Moreover, we write Z; —>‘;" Ty if Ty =% I for
any n. The following characterization follows from the definition of CQ entailment,
Lemma 4.3.2, and the connection between CQs and suitably bounded homomorphisms.

Lemma 4.3.3. Let 71 and Ty be Horn-ALCHIF TBoxes with Tq 13}2 T>. Then
Ti):1(3% T2 iff for all tree-shaped I'-ABoxes A consistent with Ty and Tz, I, 4 —>‘;“
Iﬂ’A

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 66

Proof. We prove both implications via contraposition.

“e? Assume Ty I#lg(% T2 and consider a witness (A, ¢,a), By Lemma 4.3.2, we
can assume that A is tree-shaped. From Lemma 4.2.2 (4) we get Z7, 4 = ¢(a) and
Z1; A W~ q(a). If we take the finite subinterpretation Z of Z7; 4 given by a match of ¢ in
Z7;.4, then we must have T /4y I7; 4 because of Iy, 4 = q(a). Hence Iz 4 A5 T7; 4.

“=". Assume Z7, 4 74>f2i“ Z7, .4, ie., there is a finite subinterpretation Z of Zr, 4 with
Z 4 I7;,4- Let a be the ABox individuals in Z and let gz be Z viewed as a CQ
whose variables correspond to the domain elements of Z and the ABox individuals
are represented by answer variables. Then it can be verified that Z7, 4 = ¢z(a) and

Ty ¥ qz(a). a

Ideally, we would like to use Lemma 4.3.3 as a basis for a decision procedure based
on tree automata. To this end, it is useful that the ABox A and models Z7; 4 and
77,4 in the lemma are tree-shaped. What is problematic is that Lemma 4.3.3 speaks
about bounded homomorphisms, for any bound (corresponding to the bounded size
of CQs), since it does not seem possible to verify such a condition using automata.
We would thus like to replace bounded homomorphisms with unbounded ones, which
does not compromise the characterization in the case of Horn-DLs without inverse roles
[LW10, BLR"16]. However, this is not true already for ££Z TBoxes [BKLT16]:

Example 4.3.1. Let 71 = {AC 3s.B, BC Ir—.B}, To = {AC 3s.B, B C 3r.B},
I'={A}, and ¥ = {r}. The universal models are shown below.

A.B,B,.B,B
1,4 a0 v e "o e

A.B,B,. B, B
Ir.A G- 0<d o o o..

Then both Z7; 4 and Z7; 4 contain an infinite r-path; the r-path in Z7; 4 has a

final element while the one in Z7; 4 does not. Hence Z1; 4 #x Z7;,4, but T):19% T2
(see Theorem 4.3.4 below).

We now show that it is possible to refine Lemma 4.3.3 so that it makes a much
more careful statement in which bounded homomorphisms are partly replaced by
unbounded ones. It is then possible to check the unbounded homomorphism part
of the characterization using tree automata as desired, and to deal with bounded
homomorphisms using a mosaic technique that “precompiles” relevant information
about unbounded homomorphisms to be used in the automaton construction.

We start with introducing relevant notation. For a signature X, we use Z|$?" to
denote the restriction of the interpretation Z to those elements that can be reached
from an ABox individual by traveling along »-roles (forwards or backwards). Tree-
shaped interpretations are defined analogously to tree-shaped CQs (thus multi-edges
are allowed). For a TBox 7, an ABox A, and a € ind(A), we use Z7 4|, to denote the
subtree interpretation in the universal model Z7 4 rooted at a. A X-subtree in I 4 is a
maximal tree-shaped, Y-connected sub-interpretation Z of Z7 4 that does not comprise
any ABox individuals. The root of T is the (unique) element of A that can be reached
from an ABox individual on a shortest path among all element of AZ. The refined
characterization uses simulations instead of homomorphisms for the stCQ case because
they are insensitive to multi-edges. Given a signature 3 and two interpretations Z, 7,
a Y-simulation of T in J is a relation 0 C AT x A7 such that: (1) (a,a) € o for all

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 67

a € Ny, (2) if d € AT with A € ¥ and (d,e) € o, then e € A7 and (3) if (d,d’) € r*
with 7 a ¥-role and (d,e) € o, then there is some ¢’ with (e,e’) € 77 and (d',¢) € 0.
We write Z <y, J if there is a X-simulation of 7 in J.

Theorem 4.3.4. Let 71 and Ty be Horn-ALCHIF TBozxes with Tq %IE’IE To. Then

T F?% To iff for all tree-shaped I'-ABoxes A consistent with T1 and T2, and for all
tree-shaped, finitely branching models Iy of A and Ty, the following hold:

(1) I73,4I8" =s Ta;
(2) for all X-subtrees T in Iy, 4, one of the following holds:

(a) v -y Il,‘
(b) T —fin IThthl (a) for some a € ind(A).

Furthermore, Ty ':?%Q T iff I, 49" <. Iy for all A and Iy as above iff Iy, 4[$9" =5
Iﬂ’A.

To prove the second part of Theorem 4.3.4 (the stCQ case), we need a bounded
variant of simulations, analogously to bounded homomorphisms. We write Z; <% Zo
if for any subinterpretation Z7 of Z; with |A11] < n, we have 7| <y, Zo. Moreover, we
write 77 jfzi” Lo it 7y 2% Io for any n.

We begin with two useful insights about bounded homomorphisms (and simulations)
and their connection to unbounded ones. We use Z1|% to denote the restriction of Z; to
elements that can be reached by starting at d and traveling along at most n role edges
(forwards or backwards).

The first insight is straightforward.

Fact 1. Let X be a signature and Z;,Zs be interpretations such that Z; is finitely
branching.

(1) The following are equivalent.

(a) Il _>g:n ZQ

(b) For every d € ATt and every i > 0: T1|¢ —x Ip
(2) The following are equivalent.

(a) Il j%n ZQ

(b) For every d € ATt and every i > 0: T;|¢ s Tp

We will thus use Conditions (1b) and (2b) as alternative characterizations of bounded
homomorphisms and simulations.

The second insight shows that, under additional conditions, we can extract an
unbounded homomorphism from a suitable family of bounded ones.

Lemma 4.3.5. Let 71,7 be finitely branching interpretations and let I; be ¥-connected.

(1) If there are dy € AT and ey € A2 such that for each i > 0 there is a %-
homomorphism h; from 11]?0 to Iy with h;(dp) = eg, then Iy —x, Ls.

(2) If there are dy € AT and eq € A2 such that for each i > 0 there is a X-simulation
Pi ofll\?o in Iy with (dy,eq) € pi, then Ty <x Is.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 68

Proof. We only show (1); Part (2) is analogous. We are going to construct a
Y-homomorphism A from Z; to Zy step by step, obtaining the desired homomorphism
in the limit. We will take care that, at all times, the domain of h is finite and

(*) there is a sequence hg, hi,... with h; a ¥-homomorphism from Il|§l° to Zy such
that whenever h(d) is already defined, then h;(d) = h(d) for all i > 0.

Start with setting h(dp) = eg. The original sequence hg, hy from the lemma witnesses (x).
Now consider the set A that consists of all elements d € At such that h(d) is undefined
and there is an e € At with h(e) defined and such that d is reachable from e along
a Y-role edge. Since the domain of h is finite and Z; is finitely branching, A is finite.
By (%), since every d € A is reachable in one step from an element e such that h(e) is
defined, and since Zy is finitely branching, for each d € A there are only finitely many
¢/ such that h;(d) = ¢’ for some i. Thus there must be a function § : A — A%2 such
that, for infinitely many ¢, we have h;(d) = §(d) for all d € A. Extend h accordingly,
that is, set h(d) = d(d) for all d € A. Clearly, the sequence hg, h1,... from (%) before
the extension is no longer sufficient to witness () after the extension. We fix this
by skipping homomorphisms that do not respect d, that is, define a new sequence

0, P, ... by using as h the restriction of h; to the domain of Ti|% where j > i is
smallest such that h;(d) = 6(d) for all d € A. This finishes the construction. Note that
we will automatically have h(a) = a for all individual names a (as required), no matter
whether dy is an individual name or not. |

We are now ready to prove Theorem 4.3.4.

Proof. Unrestricted CQs, “if”. We show the contrapositive. Thus first assume
that 71 b&lg% T5. By Lemma, 4.3.2, there is a tree-shaped I'-ABox A consistent with
both 7;, and a tree-shaped X-CQ ¢ such that either

(1) g has a single answer variable and there is an element a € ind(A) such that

T2, A = q(a) but 71, AJ~ g(a) or
(2") ¢ is Boolean and T2, A |= ¢ but T1, A }~ q.

In case (1’) holds, ¢ is connected. Let h be a match of ¢ in Z7, 4; in particular h(z) = a.
Since ¢ contains an answer variable, we must have Z7;, 4|$?" s Z7; 4 as otherwise the
composition of h and the witnessing homomorphism shows Z7;, 4 = ¢(a), which is not
the case. Thus Condition (1) is violated for Z; = Z7; a.

In case (2') holds, consider again a match h of ¢ in Iy, 4. Let Z7, , be the
restriction of Z7; 4 to the elements in the range of h. Clearly, we have I§-2 A 45 I A
Consequently, Z7, 4 /4% Z7;. 4 where n is the number of variables in ¢, implying that

Conditions (2a) and (2b) are both false.

Unrestricted CQs, “only if”. Assume that 7y):lg% T3 and let A be a tree-shaped
I'~ABox consistent with both 7;. We first show the following;:

Claim. For all models Z; of (73,.A), we have Iz, 4 =4 7;.

Proof of claim: Assume to the contrary that Zr, 4 7L>f2i" Zy. Then I, 4 /% 1y for some
n, that is, there is a subinterpretation Z of Z7, 4 with |AZ| < n such that T /Ay Z;.
Let a be the ABox individuals in Z and let gz be Z viewed as a CQ whose variables
correspond to the domain elements of 7 and the ABox individuals are represented by
answer variables. Then it can be verified that Z7, 4 = gz(a) and Z; [~ qz(a).

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 69

Condition 1 is a consequence of Lemma 4.3.5: Fix a tree-shaped, finitely branching
model 7; = (71, A) and let Z7, 4[$°" be the disjoint union of the connected interpre-
tations Zj,...,Zx. In each Z;, we find at least one individual a; from ind(.A). Let
¢e{l,...,k}. By the claim above and Fact 1, we find a sequence hg, hi,... such that
h; is a ¥-homomorphism from Z,|{* to Z;. Note that we must have h;(ag) = a, for all 4.
Thus, Lemma 4.3.5 yields Zy —x, 7 and, in summary, Z7, A|S9" —x Z;.

Now for Condition 2. Let 7 be a Y-subtree in Z7; 4 with root dy. By the claim
above and Fact 1, there is a sequence hg, h1,... such that h; is a Y-homomorphism
from Z|% to Zr; 4.

First assume that there is an ey € AZ71-4 such that h;(dg) = eq for infinitely many 1.
Construct a new sequence h{, b, ... with h} a ¥-homomorphism from Z \?0 to Z7;,4 by
skipping homomorphisms that do not map dy to eg, that is, h} is the restriction of h; to
the domain of 7 ‘;10 where j > i is smallest such that h;(dy) = eg. Clearly, hi(dy) = eg
for all 4. Thus, Lemma 4.3.5 yields Z —x, Z7; 4 and thus, by Lemma 4.2.2 (2) Z —x 7;
for every tree-shaped, finitely branching model Z; = (73,.A).

It remains to deal with the case that there is no ey € AZ7:4 such that h;(dg) = eg
for infinitely many i. We can assume that there is an ag € ind(A) such that h;(dp) €
AT7i.4lao for all i; in fact, there must be an ag such that h;(dp) € AT .Alag for infinitely
many ¢ and we can again skip homomorphisms to achieve this for all 7. It is important
to note that the remaining homomorphisms do not necessarily map all ancestors of dg
in 7 to elements in Z7; 4lq, due to the presence of inverse roles. Now, since Z7; 4 is are
finitely branching, for all 4,n > 0 we must find a j > ¢ such that h;(dp) is a domain
element whose distance from ag exceeds n (otherwise the previous case would apply).

We can use this fact to construct a sequence hy, b}, ... with h] a ¥-homomorphism
from Z|% to Tr 4la,- It is easy to verify that this implies T —i T7; 4la,; in fact,
0, R, ... can again be found by skipping homomorphisms.

If we now fix an arbitrary (tree-shaped, finitely branching) model Z; = (771,.4), by

Lemma 4.2.2 (2) and (3) we have tpz,. (ao) C tpz, (ao) and thus ITl,thT (a0) 7
: -

Iﬂ,tpzl (ag)- Hence T Hfzi" Iﬂ,tpzl (ao) @S required.
stCQs. We need to show that the following three conditions are equivalent.
(i) 7 st T2
(ii) Z7;, 459" =5 Z; for all tree-shaped I'~ABoxes A consistent with 7; and 7z, and
for all tree-shaped, finitely branching models Z; of (77,.A).

con

(iii) Z7;,4I89" <5 Z7;.4 for all A as above.

(ii) < (iii). The “only if” direction follows from Lemma 4.2.2 (1); the “if” direction
follows from Z7; 4 =<s; Z;, which is a direct consequence of Lemma 4.2.2 (2).

(ii) = (i). This implication is analogous to the “if” direction of the case for unrestricted
CQs above, except that the witness stCQ is rooted and connected, which rules out
Case (2') and thus Condition (2).

(i) = (ii). Assume that 7;):;t%Q T2 and let A be a tree-shaped ¥-ABox consistent
with both 7;. We first show the following;:
Claim. For all models Z; of (73,.A) : T, 4" <fir 7;.

Proof of claim: Assume to the contrary that Z7, 4|9" 48" Z;. Then Z7, 4|9" A% 7 for
some n, that is, there is a subinterpretation Z of Z7; 4 with \AI| < n such that Z Ay, 7;.
We can assume w.l.o.g. that Z is connected and contains at least one ABox individual

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 70

(otherwise we just extend Z and increase n accordingly). Let a be the ABox individuals
in Z and let gz be Z viewed as a tree-shaped CQ whose variables correspond to the
domain elements of Z and the ABox individuals are represented by answer variables.
Clearly 7 = g(a) and thus Z7; 4 |= q(a); let m be a match of ¢ in Z. To transform ¢
into an stCQ, perform the following operations.

e Remove all binary atoms involving only answer variables (see Condition (b) in
the proof of Lemma 4.3.2).

e Restrict the resulting CQ to one connected component, with exactly one answer
variable z (see Condition (d) in the proof of Lemma 4.3.2); then z is the root of
the tree ¢q. Let a = w(x).

e “Split” multi-edges along the tree structure of ¢: if there are n binary atoms
involving variables z1, z5 of ¢ with 29 being a child of z; in the tree ¢, introduce
n copies of zo and its subtree, and redirect each of the n original atoms to its
corresponding copy. Apply this step exhaustively.

The result of this transformation is an stCQ ¢/, which still satisfies Z7; 4 = ¢'(a). On
the other hand, Z; £ ¢/(a) because, otherwise, a match 7 of ¢/(z) in Z; would give rise
to a simulation of Z in 7.

Having established the claim, we proceed as follows: Let a be an ABox individual in
I1, AI$". By the claim and Fact 1, there is a sequence hg, h1,... such that h; is a
¥-homomorphism from Z7, 4|¢ to Z;. Obviously h;(a) = a for all 7. From Lemma 4.3.5

we obtain Z7, 4[$?" <5 Z; as desired. a

We can now use the characterization in Theorem 4.3.4 to provide a decision procedure
for CQ entailment.

4.4 Decidability and Complexity

We prove that, in Horn-ALCHZIF, CQ entailment can be decided in 2EXPTIME.
By existing lower bounds, the former is thus 2EXPTIME-complete in all fragments
of Horn-ALCHZF that contain ELZ or Horn-ALC. Moreover, stCQ entailment in
Horn- ALCHZIF can also be decided in 2EXPTIME.

To obtain the upper bounds, we use a combination of tree automata and mosaics
to implement the characterization in Theorem 4.3.4.

4.4.1 Mosaic Technique

We start with a mosaic-based decision procedure for Condition (2b). Note that a
Y-subtree 7 in Z7, 4 can be uniquely identified by the type t3 of its root. It therefore
suffices to show the following.

Theorem 4.4.1. Given two Horn-ALCHIF TBoxes T1 and Ta and types t; for T;,

i € {1,2}, it can be decided in time 92" ITIEI T ether Irn/S" =i 7r 0, pa
polynomial.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 71

Although we cannot get rid of bounded homomorphisms in Theorem 4.3.4, a central
idea for applying a mosaic approach to prove Theorem 4.4.1 is to first replace bounded
homomorphisms with unbounded ones. To make this possible, we also replace Z7; ;, with
a suitable class of interpretations used as targets for the unbounded homomorphisms.

To illustrate, consider Example 4.3.1 and let ¢; = to = {B}. The difference between
17,4, —fn 77 4, and I7,4, —x I1 4 is that unbounded homomorphisms fail once
they “reach the root” of Z7; ;, while bounded homomorphisms can, depending on the
bound, map the root of Z7, ;, deeper and deeper into Z7; ;,, thus never reaching its
root. The latter is possible because Z7; ;, is regular in the sense that any two elements
which have the same type root isomorphic subtrees. This is of course not only true
in this example, but by construction in any universal model. To transition back from
bounded to unbounded homomorphisms, we replace Z7; ;, with a class of (finite and
infinite) interpretations that can be seen as a “backwards regularization” of Z7, ;,. In
our concrete example, we would include an interpretation where a predecessor is added
to the root of Zr7; 4, because Zr7; 4, contains an element of the same type as the root
that has such a predecessor, an interpretation where that predecessor has a predecessor,
and so on, even ad infinitum. We will now make this precise.

An interpretation Z is quasi tree-shaped if:

1. AT C ({-1}UN)*;
2. (d,e) € r* implies that e =d-cor d = e - ¢ for some ¢ € {—1} UN.

For d,e € AT, we say that e is a successor of d if e =d - ¢ for some c€ Nord=e-—1.
By this convention, quasi tree-shaped interpretations can be viewed as directed graphs.
The directedness does not correspond to the distinction between roles and inverse roles;
in particular, there can be several role edges in both directions between the same d and
e. Quasi tree-shaped interpretations can be viewed as a finite or infinite trees that need
not have a root as they can extend indefinitely not only downwards but also upwards.

Let 7 be a Horn-ALCHZF TBox and let tp(7") be the set of all types for T consistent
with 7. For every tq € tp(T), we use tp(7T,tg) to denote the set of all ¢ € tp(7") that
occur in the universal model Z7, of ¢y and 7. Furthermore, given a quasi tree-shaped
interpretation Z and an element d € AZ, the I-neighborhood of d in T is a tuple
n¥(d) = (t~, p,t,S) such that (a) t = tpz(d); (b) if there is a predecessor dy € AT of
d, then t~ = tpz(do) and p = {r | (do,d) € 7}, otherwise p =t~ = 1; (c) S is the
set of all pairs (p/,¢') such that there is a successor d’ of d such that ¢ = tpz(d') and
p/ = {7” ‘ (d, d/) (S T'I}. We write (tl_,pl,tl,sl) C (tQ_,pQ,tQ,SQ) if t1 = 1o, 51 - SQ and,
if p1 # L, then p; = pp and t] =1,

In the following, we define a class can, (7T, o) of quasi tree-shaped models of 7. To
construct a model from this class, choose a type t € tp(T,t) and define Z = ({do}, %)
such that tpz(dg) = t. Then extend Z by applying the following rule exhaustively in a
fair way:

(R) Let d € AT. Choose some e € ALTt0 such that nf(d) C nfmo (e), and add to d

the predecessor and/or successors required to achieve nf (d) =n;” ™ (e).

The potentially infinite class can, (7 ,to) is the set of all interpretations Z obtained
as a limit of this construction.

Lemma 4.4.2. Let T be a Horn-ALCHIF TBoz, to € tp(T), and T a tree-shaped
interpretation. Then T =0 Tr . iff there is a J € cany (T, to) with T —x, J.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 72

Proof. “=". Let dy be the root of Z. By Fact 1, there is a sequence hg, h1, ...
such that h; is a ¥-homomorphism from Z |§l° to Z74,. Note that the set tp(7) is finite,
and that Z7 , is finitely branching. By skipping homomorphisms, we can thus construct
a new sequence hg, b}, ... such that h} is a ¥-homomorphism from Z \?0 to I, and,

additionally, for every 0 < ¢ < j and d € AI‘?O the following properties hold:
() " (hh(d)) = my " (B (d)), and

(ii) If e is a successor of d in Z, then hj(e) is a successor of h;(d) in Z7, iff h'j(e) is a
successor of h;(d).

Guided by h}, we construct a sequence of interpretations Jo, J1,... and a sequence
4o, g1, - - - with g; a ¥-homomorphism from 7 |§l° to J; such that for all 0 < i < j and d
in the domain of Z |§l°, we have g;(d) = g;(d). Throughout the construction, we maintain
the invariant .
ny"(g:(d)) €m0 (hi(d)) (%)

for all i, d such that g;(d) is defined.

We start with Jo = ({eo}, -70) such that tp; (eg) = thT,tO(hé(dO)) and go(dp) = eg.
Clearly (%) is satisfied. Assuming that J; and g; are already defined, we extend them

d
to Ji+1 and g;41 by doing the following for every (d,d') € p* with d € ATl and
d,

d' ¢ AZi". By invariant (x) and Item (i), we have ny(g;(d)) C nfT‘tD (h}(d)) for all
J > i; thus, we can apply (R) to g;(d) and h}(d). More precisely, we obtain J;+1 by
adding a predecessor and/or successors to achieve

: T
ny* (gi(d)) = m " (i), ()
To define g;11(d’), we distinguish two cases according to Item (ii):

e 1)(d') is a successor of h)(d) for all j > i. Then there is some (p',t') in com-

ponent S of nfno (hL(d)) such that (hl(d),hi(d")) € p*Tt (p maximal) and

tPz, . (hi(d")) = t'. By (**) that pair is also in component S of n‘lji“(gi(d)).
Take a corresponding p’-successor €’ of e in J;11 and set g;11(d') = €'. Clearly
(%) is satisfied.

e 1)(d) is a successor of hj(d') for all j > i. Then ¢t~ = tpg, 0 (hi(d")) and p
is maximal with (h%(d'),hi(d)) € p*Tt. By (%), the t~- and p-component in

n{”l (gi(d)) are identical. Take a corresponding p-predecessor €’ of e in J;+1 and

set gir1(d') = €. Clearly () is satisfied.

The construction of J and h is finished by setting h = ;>0 gi and J' = U;>¢ Ji, and
defining J as the result of exhaustive application of rule (R) to J'.

“«e=% Tt suffices to show J —fin T74,-> To this end, denote with J;, i > 0, the finite
submodel of J obtained after ¢ rule applications, and with d; the root of ;. We verify
the following claim, which implies J —fi LT -

Claim. For all i > 0, we have:

(i) there is an ey € AZ7t0 with tpz, to(eg) = tp 7 (d;);

2We write Z =" 7 to denote that, for every n > 0, there are n-bounded homomorphisms from Z
to J, without restricting the signature.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 73

(ii) for all eg € ATT0 with tpz, (e0) 2 tp,(d;), we have (i, d;) — (ZT 1, €0)-

We prove the claim by induction on i. For i = 0, Points (i) and (ii) are clear by
definition of Jy. For the inductive step, consider [J;+1 and suppose (R) has been
applied to some d € A% and e € ATT+.

Observe that Point (i) is trivially preserved when d is not the root of J;. In case
d = d;, it is preserved by the condition on the choice of e in (R): e has the same type
as d; and, by construction, the predecessor €’ of e (if it exists) has the same type as
dit1.

For Point (ii), we distinguish two cases:

e The extension of J; to J;+1 has not added any predecessors to d. In particular, we
then have d;+; = d;. Let e be as in (ii), i.e., tpz, . (e0) 2 tps,(div1) = tp (di).
By induction hypothesis, there is a homomorphism h : (J;, diy1) — (Z7 .4, €0)-
We extend h to the domain of J;41 by doing the following for each newly added
successor d’ of d.

Let tpy,,,(d) =t and tpy,,, (d') =" and p maximal with (d,d’) € p7i+1. By the
choice of e in (R), e is of type t and has a p-successor of type t'. By construction
of the universal model, there is some r € p with t ~7 ¢’ and p = {s | T = r C s}.
Denote with £ = tpr, . (h(d)). The definition of a homomorphism yields ¢ C .

Thus, there is # D ¢’ such that £ ~»/ #. By definition of the universal model, h(d)
has a p-successor of type ¢’ or a p-predecessor of type ”, for #’ D #'. We extend
h by setting h(d') to that predecessor or successor, respectively.

e The extension of J; to J;11 has added a p-predecessor d’ to d. Then d = d;
and d' = d;1. Let tpy,, (d) =t and tpy,, (d') = t'. By construction of the
universal model, there is r € p with # ~7 tand p = {s | T |=r C s}. Let e
be as in (ii), that is, # := tpz_ " (eg) D t'. We then have that ¢ ~, £ for some
£ D t. By definition of the universal model, ey has a p-successor of type £ or a
p-predecessor of type £’ D t. Let this element be gy. By induction hypothesis,
there is a homomorphism h : (J;,d) = (Z74,,€0). We extend h by first setting
h(d') = ey and then extending h to all successors of d as in the previous case.

It should be clear that h, updated as above, witnesses (Ji+1, di+1) = (Z7+,, €0)- 0

We can now use Lemma 4.4.2 to devise the mosaic-based procedure for deciding the
existence of a bounded homomorphism. Let 77,75 be as in Theorem 4.3.4. We denote
with rol(7;) the set of all roles r, 7~ such that the (possibly inverse) role r occurs in 7;.
Moreover, for a set of roles p, denote with p|y; the restriction of p to X-roles.

Fix now some ¢; € tp(71). Intuitively, a mosaic for ¢; represents a possible 1-
neighborhood of some element in Z7; 4, together with a decoration with sets of types
for 72 that can be homomorphically embedded into the neighborhood. Formally, a
mosaic for ti is a tuple M = (t—, p,t, S, ¢) such that (t—,p,t,S) = nfﬂ’tl (d) for some
de ATt and £ {t~,t} U S — 2tP(72) satisfies the following condition:

(M) For all £ € £(t) we have £N'E C ¢ and, for all # € tp(73), r € rol(73) with £ ~7> ¢/,
one of the following holds for ¢ = {s € rol(72) | T2 =r C s}:

(a) ols =0;
(b) t=# L, 0ls Cp,and ¥/ € £(t7);

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 74

(c) there is (p/,t') € S with # € £(p/,¢') and o]y, C p.

To ease notation, we use ¢, to denote t~, pys to denote p, and likewise for the other
components of a mosaic M. Let M be the set of all mosaics for t; and M’ C M. An
M e M’ is good in M’ if the following conditions are satisfied:

1. for each (p,t) € Su, there is an N € M’ such that (tar,p,t) = (ty,pn,tN),
Crr(p,t) = n(tn), and Ly (tar) = n(ty)-

2. if t3; # L, there is N € M’ with (par,tar) € Sn, th; = tn, La(ty,) = ¢n(tn), and
Cr(tar) = In(parstar)-

Let My, M1,... be the sequence obtained by starting with My = M and defining
M1 to be M; when all mosaics that are not good in M; have been removed. Assume
that M, is where the sequence stabilizes.

Lemma 4.4.3. Let t; € tp(7;) fori € {1,2}. Then there is a J € cany(T1,t1) such
that I, 4,|S" = J iff My, contains a mosaic M with ty € Ly (tar).

Proof. “=". Let h be a ¥-homomorphism from Z7, ¢, [$?" to some J € can,(71,t1).
For every d € A7, denote with Tj,(d) the set of all types mapped to d by h, that is,

Ti(d) = {tpz,,, (€) | h(e) = d, e € AT2lE"},

For every element d € A7, we define a tuple M (d) = (t~, p,t,5,£) by taking:
o (t7,p,t,8) = n{ (d);
o ((t) = Th(d);

o If there is a predecessor d’ of d, then £(t~) = Ty, (d'); otherwise, set £(t~) =) (not
important);

e For every successor d' of d with tp;(d) =t and p' = {r | (d,d') € r7} add
(p',t') € S and set £(p',t') = Tp(d');

It is easy to verify that every M(d) = (t7,p,t,S,{) obtained in this way is actually
a mosaic: By definition of J, we know that (t7,p,t,S) = nfﬁ’tl (d') for some d' €
AT7i.t1. Moreover, by definition of the universal model Z, ;, and the fact that h is a
homomorphism, Condition (M) is satisfied.

Let M(J) = {M(d) | d € A7}. Tt follows from the construction that all mosaics
in M(J) are good in M(J); hence M(J) C M. Finally, let dy be the root of Zr; 4,.
By definition of M := M (h(dp)), we have to € {ps(tar).

“<”. Assume M, contains a mosaic M with t3 € £pr(tpr). We define the interpretation
J as the limit of the following process. We maintain a partial function ¢ : A7 — M,
intuitively mapping each domain element of J to the mosaic that gave rise to it.
Throughout the construction, the following invariant is preserved:

If ¢(d) = (t7, p,t,S,£), then n{ (d) = (t, p,t,S). (%)

We start with defining J as the interpretation corresponding to the 1-neighborhood
represented by M, and define g(eg) = M, where e is the “center” of that 1-neighborhood.
By definition, the invariant (x) is satisfied. Then extend J by applying the following
step exhaustively in a fair way: Choose some d € J such that ¢(d) is undefined, and:

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 75

e If d has a predecessor d’ such that g(d’) = M’ then, due to (x), there is (p,t) € Sy
such that (&, d) € p7 and tp;(d) = t. Let N € M, be the mosaic that exists
according to Condition 1 of being good for (p,t) € Sy;s. Then extend J such
that ny (d) = (ty, pn, tn, Sy) and set g(d) = N.

e If d has a successor d’ such that ¢(d’) = M’ then, due to (%), we know that
ty = tps(d) # L. Let N € M, be the mosaic that exists according to
Condition 2 of being good. Then extend J such that n{ (d) = (tx, pn,tn, SN)
and set ¢(d) = N.

It is immediate from the construction that these steps preserve (x), and that always
one of the cases applies. Moreover, by construction, any interpretation J obtained in
the limit of such a process is an element of can,(71,%1). It thus remains to construct
a Y-homomorphism h witnessing Z7, +,|$$" —s J. We proceed again inductively,

maintaining the invariant:
If h(d) is defined, then thT2’t2 (d) S gq(h(d))(tq(h(d)))~ (]L)

Let dy be the root of Z7; ;,. We start with setting h(dy) = eg, where e is as above.
By the assumption that to € f/(tpr), invariant (1) is satisfied. Now, exhaustively
apply the following step. Choose d € AT72:/E" such that h(d) is not defined but
h(d") = e is defined for the predecessor d’ of d. Let t = tPz, ., (d), t' = tpz,. . (d'), and

M' = q(d"). By definition of Zr; ,, we know that ¢ ~/2 t for some r € rol(73). Let
o={s|T ErC s} Byinvariant (f), we know that ¢’ € £3;/(tps). Thus, one of (a)—(c)
in Condition (M) applies. Since d,d’ € AT72:2/¥" we know that o|x # 0, thus only (b)
or (c) are possible. In case of (b), we extend h by setting h(d) to the predecessor of
h(d’). In case of (c), we extend h by setting h(d) to the according successor of h(d’).
Note that h extended like this satisfies the homomorphism conditions and preserves ()
due to the conditions in (b) and (c). 0

We are now in a position to prove Theorem 4.4.1.

con

Proof.[Theorem 4.4.1] By Lemma 4.4.2, we can decide Z7; 1, |$" =M Zr, 4, by checking
whether there is a J € cany,(71,t1) with Z7; 4,[S?" —s J. By Lemma 4.4.3, this can be
done by constructing the corresponding set M of mosaics for ¢;, removing all mosaics
that are not good, and checking whether the remaining set M, contains a mosaic M
with to € Tyy.

The desired upper time bound is now a consequence of the following observations:

e The size of each 1-neighborhood in Zr; 4, is bounded by ¢(|71]), for a polynomial
q.

e The number of mosaics for ¢; is bounded by 9d (ITiN22! g 5 polynomial ¢’: there
are at most 2/71/° many l-neighborhoods in Z7, ;,, and each such neighborhood

admits at most 2/7ila(I71)2"! many decorations with sets of types.

e Given a tuple (t7, p,t, S, ¢), one can decide in time 24(71D) G a polynomial, whether

(t~,p,t,S) is a 1-neighborhood. Moreover, we can decide in time 2‘3/(‘T1|'|7-2|)7 q a
polynomial, whether (M) is satisfied.

e Conditions 1 and 2 of a mosaic being good can be checked in the desired time.
a

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 76

4.4.2 Automata-Based Technique

We now develop the decision procedure for CQ and stCQ entailment in Horn-ALCHIF,
based on Theorems 4.3.4 and 4.4.1. Our main tool are alternating two-way tree
automata with counting (2ATA.), an extension of alternating tree automata over
unranked trees [GW99] with the ability to count.

2ATA. and Their Emptiness Problem

A 2ATA. is a tuple A = (Q, 0, qo, 0, 2) where Q is a finite set of states, © is the input
alphabet, qo € Q is the initial state, § is a transition function, and Q : @ — N is a
priority function. The transition function maps every state ¢ and input letter a € © to
a positive Boolean formula (g, a) over the truth constants true and false and transition
atoms of the form ¢, (—)q, [~]¢, Ong and O,q. Informally, a transition ¢ expresses that
a copy of 2 is sent to the current node in state ¢; (—)¢ means that a copy is sent in
state g to the predecessor node, which is required to exist; [—]¢ means the same except
that the predecessor node is not required to exist; ¢,q (resp., O,q) means that a copy
of ¢ is sent to n (resp., to all but n) successors. The semantics of 2ATA.. is given in
terms of runs. Let (7, L) be a O-labeled tree and 2 = (@, 0, qo,0,2) a 2ATA.. A run
of A over (T,L) is a T' x Q-labeled tree (T,,r) such that € € T, r(¢) = (¢,q0), and
for all y € T, with r(y) = (z,q) and d(q, V(z)) = 0, there is an assignment v of truth
values to the transition atoms in # such that v satisfies 8 and:

e if v(¢') =1, then r(y') = (x,q’) for some successor y’ of y in T,;

o if v((—)¢') =1, then z # ¢ and r(y') = (x - —1,¢) for some successor y’ of y in
Tr;

e if v([—]¢') =1, then x = ¢ or r(y') = (x - —1,¢’) for some successor ¥ of y in T};

o if v($nq’) = 1, then there are pairwise different 41, ... ,1%, such that, for each j,
there is some successor y' of y in T, with 7(y') = (z - i;,¢');

e if v(O,q") = 1, then for all but n successors 2’ of x, there is a successor y’ of y in
T, with r(y') = (2, ¢).

Let v = 79?1 - - - be an infinite path in 7, and denote, for all j > 0, with g; the state
such that r(i;) = (z,q;). The path v is accepting if the largest number m such that
Q(g;) = m for infinitely many j is even. A run (75, r) is accepting, if all infinite paths
in T, are accepting. 2 accepts a tree if 2 has an accepting run over it.

We use L(2) to denote the set of trees accepted by 2. It is standard to verify
closure of 2ATA . under intersection. The following is obtained via reduction to standard
alternating parity tree automata [Var98].

Theorem 4.4.4. The emptiness problem for 2ATA. can be solved in time exponential
in the number of states.

The proof is by reduction to the emptiness problem of standard two-way alternating
tree automata on trees of some fixed outdegree [Var98]. We need to introduce strategy
trees similar to [Var98, Section 4]. A strategy tree for 2 is a tree (T, 7) where 7 labels
every node in T with a subset 7(x) C 2@XNU{—1}xQ “that is, with a graph with nodes
from @ and edges labeled with natural numbers or —1. Intuitively, (¢,i,p) € 7(x)
expresses that, if we reached node x in state ¢, then we should send a copy of the

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 77

automaton in state p to = - 7. For each label ¢, we define state(¢) = {q | (¢,7,¢) € ¢},
that is, the set of sources in the graph (. A strategy tree is on an input tree (T, L) if
T =T, q € state(7(¢)), and for every z € T, the following conditions are satisfied:

(i) if (q,4,p) € 7(x), then x -7 € T}
(ii) if (¢,4,p) € 7(z), then p € state(7(x - i));
(iii) if ¢ € state(7(z)), then the truth assignment v, , defined below satisfies §(q, L(x)):

* vg2(p) =11 (¢,0,p) € 7(2);
Vg ((=)p) = 11iff (¢,-1,p) € 7(2);

o v .([—lp)=1iff v =c or (¢,—1,p) € 7(z);

o vy, (Onp) =1iff (q,4,p) € 7(x) for n pairwise distinct i > 1;

e v(O,p) = 1 iff for all but at most n values i > 1 with x - ¢ € T, we have
(¢,%,p) € 7(x).

A path 5 in a strategy tree (T,7) is a sequence 8 = (u1,q1)(u2,q2) -+ of pairs from
T x @ such that for all i > 0, there is some ¢; such that (¢;,¢;, giv1) € 7(u;) and
Uj+1 = U; - ¢;. Thus, S is obtained by moves prescribed in the strategy tree. We say
that [is accepting if the largest number m such that Q(q;) = m, for infinitely many ¢,
is even. A strategy tree (T, 7) is accepting if all infinite paths in (7, 7) are accepting,.

Lemma 4.4.5. A 2ATA. accepts an input tree iff there is an accepting strategy tree
on the input tree.

Proof. The “if”-direction is immediate: just read off an accepting run from the
accepting strategy tree.

For the “only if”-direction, we observe that acceptance of an input tree can be
defined in terms of a parity game between Player 1 (trying to show that the input is
accepted) and Player 2 (trying to challenge that). The initial configuration is (e, qo)
and Player 1 begins. Consider a configuration (z,q). Player 1 chooses a satisfying
truth assignment v of d(q, L(x)). Player 2 chooses an atom o with vy (o) = 1 and
determines the next configuration as follows:

e if @ = p, then the next configuration is (z, p),

e if @« = (—)p, then the next configuration is (x - —1,p) unless z = ¢; in this case,
Player 1 loses immediately;

e if @ = [—]p, then the next configuration is (x - —1,p) unless z = ¢; in this case,
Player 2 loses immediately;

o if a = Oup, then Player 1 selects pairwise distinct i1,...,7, with -i; € T,
for all j (and loses if she cannot); Player 2 then chooses some i; and the next
configuration is (x - i;,p);

e if @« = O,p, then Player 1 selects n values i1,...,4,; Player 2 then chooses
some £ ¢ {i1,...,i,} such that z-¢ € T (and loses if he cannot) and the next
configuration is (x - £, p).

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 78

Player 1 wins an infinite play (zo,qo)(x1,q1)--- if the largest number m such that
Q(q;) = m, for infinitely many 4, is even. It is not difficult to see that Player 1 has a
winning strategy on an input tree iff 2 accepts the input tree.

Observe now that the defined game is a parity game and thus Player 1 has a winning
strategy iff she is has a memoryless winning strategy [EJ91]. It remains to observe that
a memoryless winning strategy is nothing else than an accepting strategy tree. d

Lemma 4.4.6. If L(2() # 0, then there is some (T, L) € L(2() such that T has outdegree
at most n - C', where n is the number of states in A and C is the largest number in
(some transition <pp or Oy,p in) 0.

Proof. Let (T, L) be an input tree and 7 an accepting strategy tree on 7', and let
C be the largest number appearing in 6. We inductively construct a tree (77, L) with
T' C T and L’ the restriction of L to T” and an accepting strategy tree 7" on (7", L’).
For the induction base, we start with 7" = {¢} and 7’ the empty mapping. For the
inductive step, assume that 7/(z) is still undefined for some x € 7", and proceed as
follows:

1. For every (q,i,p) € 7(x) with ¢ € {—1,0}, add (q,4,p) € 7/ (x).

2. For every p € Q, define N, = {i > 1] (q,4,p) € 7(x),z -7 € T} and let N, C N,
be a subset of N, with precisely min(C, |N,|) elements. Then:

(a) foralli € Ny, add x-i € T
(b) for all (q,i,p) € 7(z) with i € N}, add (q,i,p) € 7'(2);
(c) for all ¢ € state(x) and i € N}, add (q,i,p) € 7'(x).

By Step 2 above, T' has outdegree bounded by |@Q| - C. It remains to show that 7/ is
an accepting strategy tree on 7”. Observe first that, by construction, gy € state(7’(g)).

We verify Conditions (i)—(iii) of a strategy tree being on an input tree. Conditions 1
follows directly from the construction. For (ii), assume that (¢,i,p) € 7'(z). By
construction, there is some ¢’ with (¢',i,p) € 7(x), and, by Condition (ii) p € state(r(x-
i)). Hence, there is some (p, j,p’) € state(7(z - i)). By construction, there is also some
(p,j',p') € state(7'(x - i), thus p € state(x - i). For Condition (iii), take any = € 7" and
q € state(7’(x)). As ¢ € state(7(z)), we know that the truth assignment v, , defined
for 7 in Condition (iii) satisfies d(g, L(x)). We show that for all transitions « with
vg,z(a) = 1, we also have vy (o) = 1, where v; , is the truth assignment defined for 7’.
By Step 1 of the construction, this is true for all « of the shape p, (—)p, and [—|p. Let
now be o = Opp, that is, there are k pairwise distinct ¢ > 1 such that (q,7,p) € 7(x).
By the choice of C', we have [Np| > k. By Step 2(c), we know that there are k pairwise
distinct i such that (q,i,p) € 7/(z), hence vy ,(«) = 1. Consider now o = Oyp, that is,
for all but at most k values ¢ > 1 with - i € T, we have (q,7,p) € 7(z). By Step 2(b),
this remains true for 7/, hence vy ,(a) = 1.

We finally argue that 7/ is also accepting. Let 8 = (u1,q1)(u2,q2) - -+ be an infinite
path in (77, 7). We construct an infinite path 8" = (u}, ¢1)(u, ¢2)(u%, q3) -+ in (T, 7)
as follows:

[.
7“1—“1,

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 79

— Let w41 = u; - £ for some ¢ with (¢;,¢,¢;+1) € 7'(x). If £ € {0,1}, we have
(¢i,¢,qi+1) € T(x), by Step 1. We set uj, ; = uj-£. If £ >0 then, by Step 2(c),
there is some ¢ with (g¢;, ¢, qi11) € 7(x) and z - ¢/ € T". Set uj | = uj - £'.

Since every infinite path in (7', 7) is accepting, so is ', and thus §. a

We are now ready to reduce the emptiness problem of 2ATA. to the emptiness of
alternating automata running on trees of fixed outdegree, which can be solved in time
exponential in the number of states [Var98g].

Theorem 4.4.4 The emptiness problem for 2ATA. can be solved in time exponential
in the number of states.

Proof. Let A = (Q, 0, qo,,2) be an 2ATA, with n states and C the largest number
in 0. We translate 2 to a 2ATA* ' = (Q’,©’, ¢}, ¢', Q) with k = n - C, the bound from
Lemma 4.4.6. Set Q' = QU{q}, q1,¢r,q1} and ©' = (OU{d }) x {0,1}. The extended
alphabet and the extra states are used to simulate transitions of the form [—]p and to
allow for input trees of outdegree less than k.

We obtain §’ from ¢ by replacing ¢ with (0,1), (—)¢ with (—1,¢) and [—]¢ with
(0,¢r) V (—1,q). Moreover, we replace

— Opq with \/Xe({l"“m) Niex (i, q), and
~ Ong with V(0.0 Nieqr,...nnx (2:0),
where, as usual, (%) denotes the set of all m-elementary subsets of a set M. To deal

with the case of smaller outdegree, we use the fresh symbol d| as follows:

true ifb=0
~ For all g € Q": 6(q,(d1,b)) :{ false i b— 1

To enforce the intended labeling in the second component and the correct behaviour
for q,, we set:

false ifb=0
qo N\ /\le(i, q1) otherwise

5 (a, (6,8)) — {/\i-“zl(i,ql) =0

false otherwise

(g0, (0,0)) = {

, _ true ifb=1
(ar, (0,0)) = { false otherwise
Using Lemma 4.4.6, it is easy to verify that L(2l) is empty iff L(2l') is empty. Moreover,
since emptiness of 2ATAFs can be checked in exponential time in the number of states,
this finishes the proof of Theorem 4.4.4. d

Upper Bound

Let 71,72 be Horn-ALCHZF TBoxes and I', ¥ signatures. We aim to show that one can
construct a 2ATA, 2 such that L(2l) = 0 iff T bélg% T2. In fact, 2 is the intersection
of four 2ATA, 2y, As, A3, As. They run over O-labeled trees with © = 290 x 201 x 202,
where ©g =T U{r~ | r € '} and ©; = sig(T;) U{r~ | r € sig(7;)} for i = 1,2. For
a O-labeled tree (T, L), we use L;, i € {0,1,2} to refer to the i-th component of L,

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 80

that is, L(n) = (Lo(n), Li(n), La(n)), for all n € T. The component L represents a
(possibly infinite) ABox A = {A(n) | A € Lo(n)} U{r(n-—1,n) | n # e,7r € Lo(n)},
where r~(a,b) is identified with r(b,a). The 2ATA. 2(; accepts a ©-labeled tree (T, L)
iff A is finite, tree-shaped (and thus connected) and includes the root of T', and it is
straightforward to construct.

Components L1, Lo give rise to interpretations Z; = (T, -11) and T, = (ind(A), -22),
where for i € {1,2}:

AL — {n|AeLin)}
it ={(n,n-—1) | r~ €Li(n)} U{(n-—1,n) | r€Li(n)}

2y verifies that 77 is a model of A and 77, which is standard, too. 203 verifies that A
is consistent with 7Tz, and Zy is Z7; 4 restricted to ind(.A). This involves computing
the type of an ABox element without having access to the anonymous (that is: non-
ABox) part of Z; 4, using a characterization of ABox entailments [BLW13] in terms of
derivation trees. Finally, 2(4 verifies that either (1) or (2) from Theorem 4.3.4 is not
satisfied. For (1), 24 sends a copy of itself to every tree Z starting at an ABox element
in Z7; 4, and attempts to show that Z cannot be homomorphically embedded into a
corresponding tree in Z;. This attempt is successful if either incompatible types are
found in the root or, recursively, there is some successor of the current type in Zr; 4
that cannot be mapped to any neighbor in Z;. Since the anonymous part of Z7; 4 is
not explicit in the input, the current type is stored in the states, and the generating
relation t ~»72 ' is “hard-coded” into the transition function. For Condition (2a), 24
non-deterministically guesses a Y-subtree Z and proceeds as in (1); Condition (2b) is
verified based on Theorem 4.4.1 by pre-computing —>f2i”. Thus the number of states of
24 is exponential in T2 (because of the types) but only polynomial in |77|. Automata
A1, Ao, A3 have polynomially many states.

In the special case of stCQ entailment, we simply replace 204 with a 2ATA, 2
that refutes the simulation condition of Theorem 4.3.4 analogously to how 2l4 refutes
Condition (1).

To obtain the desired upper complexity bounds for CQ and stCQ entailment,
we observe that, in both cases, 2 can be constructed in time polynomial in |77| and
exponential in | 73|, and the emptiness check adds an exponential blowup (Theorem 4.4.4).

Theorem 4.4.7. In Horn-ALCHIF, the following problems can be decided in time
22p(‘T2“Og‘TIU, p a polynomial: (T, X)-CQ entailment, (T, X)-CQ inseparability, and (T',X)-
CQ conservative extensions. The same holds for (I, X)-stCQ entailment, (I',X)-stCQ
inseparability, and (I',X)-stCQ) conservative extensions.

We show the following lemma which together with Theorem 4.4.4 implies Theo-
rem 4.4.7.
Lemma 4.4.8. There are 2ATA. 21,22, As, Ayg, A} such that:

— 2y accepts (T, L) iff A is finite, tree-shaped, and contains €;

— Ry accepts (T, L) iff Iy is a model of A and Ty;

— A3 accepts (T, L) iff A is consistent with T2, and Iy is I, 4 restricted to ind(A);

— Ay accepts (T, L) iff either (1) or (2) from Theorem 4.5.4 is not satisfied, when
L1, s replaced with L.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 81

— A accepts (T, L) iff To|$" As Th.

The number of states of Ay and Az is polynomial in |T1| (and independent of T3); the
number of states of Us is polynomial in |Tz| (and independent of T1), and the number
of states of A4, A}y is exponential in |Ta| (and independent of Ti). All automata can be
constructed in time polynomial in |T1| and double-exponential in |Ta|.

The construction of the automaton 2, is straightforward, so we concentrate on s,
As, and QAy.

In what follows, we use ¢¢q and Og to abbreviate <¢1¢q and Oygq, respectively. We
define 2y = (Q2, ©, qo, d2, 22) where

Q2 = {90,94} U{qa | @ € T1} U {4y, T, | p € O1} U
{qT,Bv(.IiB’QT',B7@1%B ‘ dr.B € Cl(ﬂ)}?

and (2, assigns 0 to all states. The idea of 25 is to check that the ABox is satisfied,
realized in state g4, and that every axiom TBox axiom in 77 is satisfied everywhere,

realized using states g, below. Formally, the transition function ds is given as follows,
for o = (LQ,Ll,Lz):

62(q0,0) = Ogo A qa A NaeT da
S(qa0) = N 4
pELo
02(¢func(r),0) = (g- ANOG,) V (G- N O17,)
52(QTE57) = ¢ Vgs
02(qa1n4,CB,0) = qa, Vqa, V4B
62(qaci,0) = Qa
d2(qTca0) = qa
02(qac3rB,0) = GaVarB
62(q3r.acB,0) = TpaVaB
d2(qr,B,0) Oy 5V (g~ A {—)aB)
62(@r.5,0) = OGN (G- V[-]ap)
024y 3>) 4 NaB
52(qu7 o) = G, Vg

Finally, we set for all p € ©;:

- true if pe Ly
62(qp,0) = { false if p ¢ Ly

B _ true ifpé¢ Ly
62(qp,0) = { false if pe Ly

Automaton 2(3 relies on a syntactic characterization of ABox entailment [BLW13],
which we introduce first.

Let 7 be a Horn-ALCHZIF TBox and A a tree-shaped ABox. A derivation tree for
an assertion Ap(ap) in A w.r.t. T with Ap € N¢ is a finite ind(A) x Nc-labeled tree
(T, V) that satisfies the following conditions:

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 82

1. V(E) = (ao,Ao);

2. if V(z) = (a, A) and neither A(a) ¢ Anor T T A € T, then one of the following
holds:

(i) « has successors yi,...,Yk, k > 1 with V(y;) = (a, 4;) for 1 <1i < k and
TEAM---MA;C A

(ii) = has a single successor y with V(y) = (b, B) and there isan 3rBC A€ T
and an s(a,b) € A such that T | s C r;

(iii) has a single successor y with V(y) = (b, B) and thereisa BC Ir.A €T
such that r(b,a) € A and func(r) € 7.

Note that the first item of Point 2 above requires 7 = A1 M ---M A, C A instead of
A1 MA; C AeT to ‘shortcut’ anonymous parts of the universal model. In fact, the
derivation of A from A;M---M A, by 7 can involve the introduction of anonymous
elements.

The main property of derivation trees is the following.

Lemma 4.4.9. Let T be a Horn-ALCHZF TBox and A an ABoz consistent with T .
Then for all assertions A(a) with A € Nc, and a € ind(A) we have T, A = A(a) iff
there is a derivation tree for A(a) in A w.r.t. T.

Proof. The “if”-direction is immediate, so we concentrate on the “only if”-direction.
We construct a sequence of interpretations Zy,Z1, . .. by the following procedure. We
start with setting:

Ao = ind(A)
AT = {a | A(a) € A}
rfo = {(a,b) | r(a,b) € A}
For every i > 0, we obtain Z;41 from Z; by setting Z;;1 = Z; and applying the following
rules to all d,e € A%i:
1. If d € (A1 Ax)% but d ¢ A% for some A; M Ay © A€ T, then add d € ALi+1;

2. If d € (3r.B)Yi, but d ¢ A% for some Ir.BC A € T, then add d € ATi+1;
3. If (d,e) € r%i but (d,e) ¢ s%i, for some s with 7 = r C s, then add (d,e) € sTi+1;
4. If d € A% but d ¢ (3r.B)% for some A C 3r.B € T, then:

(a) if there is e with (d,e) € r% and func(r) € T then add e € BLi+1;
(b) otherwise add a fresh domain element e with (d,e) € r%i+1 and e € BLi+1,

Let Z be defined as AT = ;50 Zi, AT = U;»g A%, and 1% = ;5o 7%, Tt is standard to
verify the following: - - B
Claim 1. T — J for all models J of T and A.

By definition of Zj, we have Z = A. Moreover, we have Z = T’ where 7' C T
is obtained from 7 by dropping all CIs of the form A C | and all FAs. Since A
is consistent with 7, there is a model J of A and T; in particular, A7 =) for all
ALC 1L €7. By Claim 1, we have T — J, and thus AZ =). For the FAs func(s),
observe that they are obeyed by A (because of consistency with 7) and that they are
preserved, by rule 4(a). Thus, Z is a model of T.

Claim 2. For all ¢ > 0, we have:

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 83

(a) For all a € ind(A): if a € A%, then there is a derivation tree for A(a) in A w.r.t. 7.

(b) If e was created because of d in Rule 4(b), then we have T = [|{A |d € AT} C
Ir.[{A | e € AL} for all r with (d,e) € rTi.

Proof of Claim 2. 1t is standard to show Part (b) of the Claim. We show Part (a) by
induction on i. By construction of Zy, it is true for i = 0. Consider Z; ;. If a € ATi+1
because of Rule 1, construct a derivation tree of type (i) from the derivation trees for
Ai(a) and Az(a) which exist due to the induction hypothesis. If a € ATi+! because
of Rule 2, there is some d € BT with (a,d) € r%i and IrBC A € T. If d € ind(A),
then there is some s(a,d) € A with 7 |= s C r, by Rule 3. We can thus construct a
derivation of type (ii) from the derivation tree of B(d), which exists due to induction
hypothesis. If d ¢ ind(A), then d was created because of a in Rule 4(b). By Part (b) of
the Claim, we have 7 = [1{A" | a € A%} C 3r.B. Hence, T = [{A' | a € AF} C 4,
and we can construct a derivation tree of type (i) for A(a). If a € A%i+1 because of
Rule 4(a), there is (d,a) € rf and d € BYi, and B C Ir.A, func(r) € T. If d € ind(A),
we can construct a derivation tree of type (iii) for A(a) from the derivation tree of
B(d) which exists by induction. If d ¢ ind(A), then d was created because of a in
Rule 4(b). By Part (b) of the Claim, we have 7 = [{4’ | a € A%} C 3r~.B. Hence,
TETHA | ae A%} C A, and construct a derivation tree of type (i) for A(a) based
on this. This finishes the proof of Claim 2 and the Lemma. 4

In the following Lemma, we characterize consistency of ABoxes with T'Boxes.

Lemma 4.4.10. Let 7 be a Horn-ALCHIF TBox and A an ABox. Then A is
consistent with T iff the following points are satisfied for all a € ind(A):

1. the following ABox A, is consistent with T :

A, ={B(a) | B(a) has a derivation tree in A w.r.t. T}

2. for all func(s) € T, there is at most one b € ind(A) with s(a,b) € A.

Proof. The “only if”-direction is immediate, so we concentrate on the “if”-direction.
Assume that all a € ind(A) satisfy both items above. By the first item, there is a model
Z, of A, and T. Since we are considering Horn-ALCHZIF, there is also a tree-model
7, with root d, € A« satisfying, for all concept names B € N¢:

(%) do € BX iff T, A, = B(a).
We construct an interpretation Z as follows. Start with Zy by taking

AT = ind(A)
A% = {a | A(a) has a derivation tree in A w.r.t. T}
0 = {(a,b) | s(ab) € AT 5 C 1)

Now, obtain Z from Zy by performing the following operation for every a € ind(.A) and
b € AZa such that (d,,b) € p* for some set of roles p which contains no role r such that
there is o’ with r(a,d’) € A. Extend Z by adding the sub-interpretation of Z, rooted
at b as a p-successor of a.

Based on (x) and the assumptions, it is straightforward to show that Z is a model
of Aand T. a

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 84

We are now ready to give the automaton (3. We take 203 = (@3, 0, qo, I3, Q3) where

Q3 = {q0,q0r } U{qa,G4 | A€ ©2NNc}U

{Qr@ranﬁ;‘lv%ﬂqﬁr ’ re @2 \ NC} U
{QT,BaqT,B | re 62 N NR,B S @2 N NC}

and 3 assigns zero to all states, except for states of the form ¢4, to which it assigns 1.
The automaton 23z ensures that, for all n € ind(A) we have:

(i) A € La(n) iff there is a derivation tree for A(n) in A,

(ii) for all n # &, r € La(n) iff there is some s such that s(n - —1,n) € A and
ToEsCr.

Intuitively, these points ensure that the represented interpretation Zy is the universal
model of 73 and A, in case A is consistent with 7. Having (i) and (ii), we can check
inconsistency of A with 75 based on Lemma 4.4.10, that is, we verify the following
conditions for all n € ind(A):

(iii) the set La(n) N N¢ is consistent with 7a;

(iv) for each s with func(s) € T, there are no n; # ng such that both s(n,ny) € A
and s(n,ngz) € A.

For Point (i), we use states g4 for the “if” part, and states g, for the “only if” part;
for Point (ii), we use states ¢, and §,, respectively. Intuitively, a state g4 assigned
to some node n is an obligation to verify the existence of a derivation tree for A(n).
Conversely, 4 is the obligation that there is no such derivation tree. Similar obligations
hold for g, and g,. For Point (iii), we precompute the set of consistent types and
check (iii) while visiting all n € ind(A). Point (iv) can be checked directly on A, that
is, independent from 75. The automaton starts with the following transitions, where
we assume o = (Lo, L1, L2):

- 53((107 U) = true lf LO — @’
— 03(qo,0) = false if Ly # () and La N N¢ inconsistent with Tz, c.f. Point (iii);

— if Lo # 0 and Lo N N¢ consistent with 73, then

03(qo, o) = Ogo A Ogor A /\ qa N /\ qa-
A€LaNN¢ AG(@QﬁNc)\LQ

B 53(Q0’F7 U) = true if LO = Q,

if Ly # 0, then
is(gro)= N d A N en AN @

funC(’I‘)E'Tz reLaNNR TE(@QONR)\LQ

O ifr—el
_ ! _ q-r 0
%(@,9) { Oigr 1 ¢ Ly

true if r ¢ Lo
false otherwise

- 63(C.7ﬁ7‘70) = {

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 85

Now, for states g4, we directly implement the conditions of a derivation tree. Finiteness
of the derivation is ensured by the priority of states of the form g4. The relevant
transitions are as follows:

— 03(qa,0) = false if Ly = 0;
~ 63(qa, o) = true if A € Ly;
—if A¢ Lo and Lo # 0, then

3(qa,0) = \V (qa, N+ Naga,) V
TolAiM--NA,CA
\V (g2 A (=)gB) V Ogs B V
Ir.BCA€T:, Tal=sCr
\V (@ A (=)gB) V Ogs-

BC3r.AeTs,func(r)eTz

true if r € Lg;
a A — 0
d3(g;", o) { false otherwise;

~ 03(qs,8,0) = ¢ N qp.

The transitions for g4 are obtained by taking the “complement” of the ones for ga.
More precisely, we define d3(q, o) = d3(q, o), where P is obtained from ¢ by exchanging
A and V, & and O, (—) and [—], and true and false, and replacing every state p with p;
see the following set of transitions.

~ 03(q4,0) = true if Ly = 0;
— 03(qy,0) =false if A € Ly;

— if A¢ Ly and Ly # (), then

03(A,0) = /\ (@a, V- Vqa,) A
TaEALIM--NARCA
A @ A [-]aB) AOG, g A
Ir.BCAeT2, Tal=sCr
A @'V [-]ap) A DG, 5

BC3r.AeTs,func(r)eTz

false if r € Lg;
- 4 _ 0,
d3(q;, o) { true otherwise;

~ 03(qs,3,0) =TV G-

Finally, states g, and g, at some node n represent the obligation to verify that the
role atom 7(n - —1,n) follows, respectively does not follow, from 7 and Az. This is
realized by the following transitions which implement Point (ii) above.

Slarn0) =\ ¢ &@G.0)= A @
Ta=sCr Tal=sCr

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 86

For the automaton 24, we take 2y = (Q4, O, qo, d4, Q4) where

Qi = {00, 01,0} U{a ¢, ¢" |t € tp(Tz)} U
t € tp(7T2), p set of sig(Tz)-roles},

{dpt 4

and 24 assigns zero to all states, except for states of the form ¢, ¢t € tp(72), to which
it assigns one. For some n € ind(A), denote with 7, the universal model of the type
{A(n) | A € La(n)} and 73. The automaton ensures that indeed (1) or (2) from
Theorem 4.3.4 is not satisfied, by verifying that there is some n € ind(.A) such that one
of the following conditions holds:

1. there is r € ¥ and n’ € ind(A) such that (n,n’) € r%2, but (n,n’) ¢ rZi;
2. JIn £ Lu;
3. there is a X-subtree J of J,, such that

(a) J #x 11, and
(b) T A8 L7, tp, (), for all m with Lo(m) # 0.

Condition 1 is straightforward (realized in state g,). For Condition 2, we use states ¢;
with ¢ € tp(72). A state ¢ assigned to a node n represents the obligation to verify that
there is no Y-homomorphism from the universal model of ¢ and 75 to Z; that maps the
root to n. This is the case if either the root cannot be mapped to n, or, recursively,
there is some p-successor t’ of ¢ in the universal model such that the universal model of
t' and 75 cannot be mapped to any p-neighbor of n. This process is finite because of
priority 1 for all ¢; with ¢ € tp(72). For Condition 3, we precompute the set Ry(t) of
all types of roots of 3-subtrees which appear in the universal model of ¢ and 73, and
the relation —fi" according to Theorem 4.4.1. Thus, the sets Ry (t) and the test for
finite homomorphisms can be used directly in the transition condition, see states ¢;
and qf’b, respectively. Using states qf’, the automaton ensures that a given root ¢ of a
Y-subtree satisfies 3(a) and 3(b).

Let t|y and p|y denote the restriction of ¢ and p, respectively, to symbols from ¥.
For o = (L1, Lo, L3), we take the following transitions:

_ Sqo Voqr ifLO#(Z)
93(g0,0) = { false otherwise

53((]17 U) =q VgV \/t/ERE(t) qf’, for t = Lo N N¢

5 true if t|x € Ly
3(qt,0) = vt/\tw;r?t’ o, Otherwise
33(qpt,0) = int ifp7ln & Ly

Pt DQﬁ,t N (=)q ifp~|n C Ly

true if p|y Z Ly

+ _
%(4p1:9) = { q if ply C Ly

83(q7,0) = O AN [=g¢ AN A G°

55, o) = true if Lo =0 or Zz, 4|§" 7/—>fE'” L7 . 110N
to false otherwise

53(qr,) = true if there is ¥-role s € Ly \ Ly

39 =9 false otherwise

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 87

The automaton 2 is a variant of 204 which drops states ¢}, ¢°, and all Ap,ts qit with
> 1 (and all according transitions), and replaces the transitions for ¢; and ¢; as
p g p q q
follows:
03(q1,0) = q-Vq fort=LasNNc
true if t|2 Z Ly
d3(qt, 0) = \/ \/ qfry,» Otherwise

/[t 2e TSP

In this way it verifies that either Condition 1 above is satisfied or the variant 2’ of
Condition 2 is satisfied, for some n € ind(.A):

1. there is r € ¥ and n’ € ind(A) such that (n,n’) € r%2, but (n,n’) ¢ rZi;
2. jn ﬁE Il'

This finishes the proof of Lemma 4.4.8.
Matching lower bounds for all problems except stCQ entailment are provided
by [BLR'16]. They hold even in the case where I' = 3.

Corollary. In any fragment of Horn-ALCHZIF that contains ELT or Horn-ALC,
the following problems are 2EXPTIME-complete: (I',3)-CQ entailment, (I',%)-CQ
inseparability, and (T',X)-CQ conservative extensions.

4.5 Deductive Conservative Extensions

Another natural notion of entailment is deductive entailment, which generalizes the
notion of deductive conservative extensions [GLW06, LWWO07, KLWW09, LW10], and
which separates two TBoxes in terms of concept and role inclusions and functionality
assertions, instead of ABoxes and queries.

Definition 4.5.1. Let X be a signature and let 7; and 75 be ELHIF, TBoxes. We
say that 71 X-deductively entails T, written T; ’:gm-tzﬂ T, if for all X-ELT | -concept
inclusions « and all ¥-RIs and 3-FAs a: 73 | a implies 7 = «. If additionally 71 C 7a,
then we say that 75 is a X-deductive conservative extension of T1. If Ty):‘;LHIJ-‘L T2
and vice versa, then 77 and T are X-deductively inseparable.

Although closely related, it is not difficult to see that deductive and query entailment
are orthogonal.

Example 4.5.1. (1) Let 71, T2 be as in Example 4.2.2 and ¥ = {A;, Ay, B}. Then
TR T, bt 7 S T,

(2) Let 7 = 0 and Tz = {A T 3r.B}, and ¥ = {4, B}. Then T; F55Q 75, but
Ti bég% T2 as witnessed by ({A(a)},3xB(x),a). However, T; |:‘;mﬂ]El Ta.

Nevertheless, the two notions are sufficiently closely related so that we have the
following.

Lemma 4.5.1. In ELHIF) , deductive entailment can be decided in polynomial time
given access to oracles for stCQ) entailment and stCQ evaluation.

Lemma 4.5.1 is an immediate consequence of the following lemma because the
additional Ty ‘:§ T2 can be reduced to stCQ entailment and stCQ evaluation via
Lemma 4.2.3.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 88

Lemma 4.5.2. Let X be a signature and T1,To ELHIF| TBoxes such that T1):15”712 Ts.
Then
TESTE T i TTEYS' R and TiEs T

Proof. We prove both implications via contraposition.

“<=” We assume that T; b&‘gmﬂfi T2. In case this is witnessed by a 3-FA func(r),
we immediately get a witness ¥-ABox = {r(a,b),r(a,c)} for T; 5 T2 and are done.

Otherwise, 71 contains all 3X-FAs from 75, and there is a witness X-CI C T D
(witness RlIs are excluded by the assumption 7;):}gz: T2). Since ELT | -concepts that
contain | are equivalent to L, the left-hand side C' cannot contain L (i.e., is an ELZ
concept) and, if D does, then C' C L is a witness. We show that such witnesses give
rise to either a witness Ac for 71 &5 Tz or a witness (Ac, qp,a) for Tq b&szt%Q T2 with
gp(z) an stCQ. 7

We first consider the case that there is a witness C C | with C an ELZ concept.
We can construct from C in the obvious way a tree-shaped X-ABox A¢ and root
a: A reflects the tree structure of C; however, to respect the ¥-FAs in 7; (and thus
those in 7T2), we need to merge the subtrees of all nodes that are r-neighbors of the
same node, whenever func(r) € 7;. Consider the universal model Z7, 4.° and observe
that a € CT72+4c from the construction of Z7; 4. Since T = C C L, we have that
T7;. A is not a model of T5. Hence, by the contrapositive of Lemma 4.2.2 (1), A¢ is
inconsistent with 73. On the other hand, since 7; = C C L, there is a model Z = T;
and an instance d € CZ. We can turn Z into a model of Ac by interpreting the ABox
individuals accordingly (“partial” unraveling might be necessary to ensure that the
standard name assumption is respected), witnessing the consistency of A with 73. We
thus have 77 %% 7> and are done.

In the second case, all witnesses C' C D consist solely of ELZ concepts C, D. We
construct the same ABox A¢ with root a from C' and transform D into a ¥-stCQ ¢p(z)
with a single answer variable that represents the tree shape of D. Now (A¢, ¢p,a) is a
witness to 71 bészt%Q T5 for the following reasons.

e Ac is consistent with 77: a model can be obtained in the obvious way from the

model witnessing 71 = C C D (possibly involving “partial” unraveling as above).

e Ac is consistent with 75: since C' C L is not a witness to 77 I#‘;mﬂ}l T2, there
must be a model Z |= T with d € CT. We claim that we can turn Z into a
model of A¢ by interpreting the ABox individuals without violating the standard
name assumption. If we assume to the contrary that this is not possible, then
there are subconcepts C1,...,C, of C corresponding to subtrees that have been
merged in the construction of A¢, such that 7 =C1M---1C, C L. However,
TifECiN---NCy C L because Ac is consistent with 77, as shown previously.
Hence C;M---MC,, C L would be a witness to 71 [#‘;EHI]'l T2, which we have
ruled out — a contradiction.

e T2, Ac = qp(a), witnessed by Z7, 4., together with a € C*724c and Ty |= C C D.

o T1,Ac F~ qp(a): take a model Z witnessing 71 = C C D and an element
d € CT\ D%. As in the previous case, we can turn Z into a model J of Ac
by interpreting the ABox individuals (again involving unraveling if necessary),
obtaining J ¥~ qp(a).

3The assumption that A is consistent with 7 is not needed for the construction of Z7 4, only for
the proof of Lemma 4.2.2 (1).

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 89

“=" Assume T; bébEtCZQ Ty or Tq béJE- Ts.

In case Ty %% T3, consider a witness X-Box A and assume w.l.o.g. that A is tree-
shaped. Let a € ind(.A) be its root. We can assume that 77 contains all 3-FAs from T
(otherwise Tq %gﬁ?ﬂ}l T2 and we are done). We turn A into a 3¥-ELZ concept C 4 in
the obvious way. Then C4 C 1 is a witness to Ty I;E;LHIH Ta:

e 75 |= C4 C L because, if there were a model Z of T3 with d € C%, we could turn it
into a model of (73,.4) by interpreting the ABox individuals accordingly (possibly
involving partial unraveling as above), which would contradict the assumption
that A is a witness to 71 &5 Ta.

o Tij=Cy C L, witnessed by Z7; 4.

In case Ty %;%Q T2, by Lemma 4.3.2 there is a witness (A, q,a) with A tree-shaped
and ¢ a >-stCQ with exactly one answer variable. We construct C'4 as above and
another ¥-ELT concept D, from ¢ in the obvious way. It can be shown analogously to

the previous case that C4 T D, is a witness to Tq I;A‘;LHIH Ts. Q

The following theorem follows from Lemma 4.5.1 and Theorem 4.4.7.

Theorem 4.5.3. In ELHIF, , the following problems can be decided in time 221)(‘72“%‘71'),
p a polynomial: deductive X-entailment, deductive X-inseparability, and deductive con-
servative extensions.

We establish a CONEXPTIME lower bound and leave the precise complexity open.

4.5.1 Lower Bound

In the description logic ££, which is ££Z without inverse roles, deductive conservative
extensions and deductive Y-entailment are EXPTIME-complete [LW10]. This raises the
question whether the upper bound for deductive entailment reported in Theorem 4.5.3
is tight. While we leave this question open, we observe that the transition from L
to ELZ does increase the complexity of deductive conservative extensions and related
problems to at least CONEXPTIME. We consider this a surprising result since in
reasoning problems that are not defined in terms of conjunctive queries, adding inverse
roles does typically not result in an increase of complexity. The following is established
by a non-trivial reduction of a tiling problem.

Theorem 4.5.4. In any DL between ELL and ELHIF, , deductive conservative exten-
stons, deductive ¥-entailment, and deductive Y-inseparability are CONEXPTIME-hard.

The proof is by reduction of a NEXPTIME-complete tiling problem, where the aim
is to tile a 2™ x 2™-grid, to the complement of stCQ-conservative extensions. This tiling
problem was introduced as a special case of the origin constrained domino problem
by Grédel [Grag89], and its NEXPTIME-hardness follows from Grédel’s Theorem 3.3.
An instance is given by a tuple P = (%,%y, H, V'), where T is a finite set of tile types,
To C T is a set of distinguished tiles to be placed on position (0,0) of the grid, and H
and V are horizontal and vertical matching conditions. Let |T| = n. A solution to P is
a function 7 : 2" x 2" — T such that

o if 7(i,j) =tand 7(i + 1,7) = ¢’ then (t,¢') € H, for all i < 2™ —1, j < 2™,

o if 7(i,j) =t and 7(i,j + 1) =t then (t,t') € V, for all i <27, j < 2" — 1,

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 90

(] 7'(0, 0) € %p.
We can assume w.l.o.g. that for every tile t € ¥, there is a t’ with (¢,¢) € V.

Let P = (%,%9, H,V). We show how to construct ELZ TBoxes 77 and 72 such that
T1UTs is a (sig(7T1),sig(71))-stCQ-conservative extension of 77 iff there is no solution
for P. Hence, stCQ-conservative extensions, (I', ¥)-stCQ entailment, and (T', ¥)-stCQ
inseparability are CONEXPTIME-hard in E£Z (and any DL that contains it as a
fragment). Since 77 and 73 are formulated in ELZ, we trivially have T; ':Slig(ﬁ) T1UTs.
Thus, hardness of deductive conservative extensions follows from Lemma 4.5.2, in all
DLs between ELZ and ELHIF| since T1 and T3 are formulated in ££7 and Lemma 4.5.2
covers deductive conservative extensions in ELHZF, . This also implies hardness of
deductive Y-entailment and of deductive Y-inseparability in the mentioned DLs.

The intuitions and correctness proofs are based on the following characterization of
stCQ-conservative extensions.

Lemma 4.5.5. Let 71 and T3 be ELI TBozes such that all role names in To are
in sig(T1). Then T U Ty is a (sig(T1),sig(7T1))-stCQ-conservative extension of Tv iff
I7,UTs,A —*sig(Ti) L71,4 for all tree-shaped sig(T1)-ABozes A.

Proof. An interpretation is strongly tree-shaped if it is tree-shaped and does not
contain multi-edges, that is, any d,d’ € AT are involved in at most one role edge. Since
71 and 7o are formulated in E£Z (and thus do not contain role inclusions), for any
tree-shaped ABox A the universal models Z7;u7;, 4 and Z7; 4 are strongly tree-shaped.
The assumption on role names in 75 made in the lemma implies that every element in
Z1,uT.A can be reached from an ABox individual by traveling only along sig(77)-roles.
Together, this implies the following:

(%) there is a sig(77)-simulation from Z7,u7; 4 to Z7;, 4 iff there is a sig(7;)-homomor-
phism from Z7,u7;,4 to I7; 4.

From Theorem 4.3.4, we get that 71 U 72 is a (sig(71),sig(71))-stCQ-conservative
extension of Ty iff I7—1U7—2’A|§g%7—1) Zsig(Ti) L71.4- But I7—1U7—2w4|§iogrz7'1) = I71,uT3,A by the
assumption on role names in 75 made in the lemma and simulations can be replaced
with homorphisms by (x). a

We will build 77 and 75 such that the same single role name r is used in 77 and 7T,
thus the assumption in Lemma 4.5.5 will be satisfied.

For a clearer presentation, we proceed in two steps. We first define 7; and 75 to be
an ELTIU-TBox, i.e., on both sides of ClIs we allow concepts of the following form:

L, L:=T|A|LnL |Lul"|3rL.

The only non-trivial use of disjunction will be on the right-hand side of a CI in 7. In
a second step, we show how to remove disjunction.

We use S to abbreviate the role composition r;r~, writing for example 35.C' for
Jr.3r~.C. Note that S behaves like a reflexive-symmetric role.* Ideally, we would
like 77 to be empty (except introducing the required symbols) and 73 to verify the
existence of an S-path in the input ABox whose individuals represent the grid positions

1We will make sure that all ‘relevant domain elements’ have an r-successor, which guarantees
reflexivity.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 91

along with a tiling, row by row from left to right, starting at the lower left corner and
ending at the upper right corner. The positions in the grid are represented in binary by
the concept names X1, ..., X9, in the ABox where X1,...,X,, indicate the horizontal
position and X, 41, ..., Xo, the vertical position. The tiling is represented by concept
names T3, t € . The verification is done by propagating a concept name as a marker
bottom up and while doing this, verifying the horizontal matching condition. Under
the assumption that an additional labeling with concept names T}, ¢t € ¥, is such that

(%) every point in the path is labeled with T} if its descendant at distance exactly 2"
(that is, the grid position immediately below it) is labeled with T3,

the vertical matching condition is also verified.

For several reasons, this program cannot quite be implemented in the desired way.
First, we still have to make sure that (%) actually holds. This is done as follows. We
install yet another labeling with concept names T, ¢t € T, such that a node is labeled
with T if it is not labeled with T;. Then T3 checks for a violation of (x) in the following
way: when the propagation reaches the final individual the verified path, the generation
of a finite anonymous S-path is triggered. That path homomorphically embeds into the
S-path in the ABox in many different ways since S is reflexiv-symmetric. In fact, for
any individual on the ABox path we can find a homomorphism such that the endpoint
of the anonymous path maps to that individual because (a) the anonymous path is
long enough to reach the first individual on the ABox path and (b) the homomorphism
can always ‘fold’ the reflexive-symmetric role S in a suitable way. At the end of the
anonymous path, we then guess (using disjunction) a tile ¢, make T} true, continue
building the anonymous path for another 2" steps (in a way such that it cannot fold),
and finally make T'; true. Let us pretend for a second that our TBoxes are formulated
in ELZ. If (x) is violated, then the guess can be made such that the anonymous path
homomorphically maps into the ABox path. Otherwise, this is not the case. Clearly,
the latter can occur only if P has a solution.

The fact that S is reflexive-symmetric allows the mentioned folding of the existential
path. However, it poses some complications in the verification of the S-path in the
ABox because we must be careful not to confuse successors with predecessors. To this
end, every grid position is actually represented by three consecutive individuals labeled
with the concept names By, By, Ba, respectively. All these individuals are labeled
identically regarding the X-counter and the concept names T;. We are going to enforce
() for the Bo-individuals and only these individuals also receive T} and T labels (any
other B; would work as well). Another problem is that 72 cannot check all possible
kinds of defects. In particular, it cannot detect the defect that an element is labeled
with more than one tile or that there are multiple successors in the ABox that have an
incompatible labeling with the counter concept names. We thus use 77 to check for
such defects. If found, it will generate a defect of the kind that 75 can verify, that is, a
violation of (x).

We start with assembling 72, which uses a single role name r via the abbreviation
S introduced above and the following concept names.

e jointly with 77:

- X1,...,X9,,X1,...,Xs, for the binary representation of the horizontal and
vertical grid positions on the ABox path

— By, By, Bs for distinguishing successors and predecessors on the ABox path
(these concept names implement a unary counter that counts modulo three)

Chapter 4.

Conservative Extensions in Horn Description Logics with Inverse Roles 92

— T3, Ty, t € T, representing tile types present/not present at individuals on

the ABox path

T}, t € ¥, representing tile types present at the descendant at distance
exactly 3 - 2" from the given individual on the ABox path

e additionally:

L as a verification marker to be propagated along the ABox path

ok;, 1 < i < 2n, to indicate that the incrementation of the counter values at
an ABox individual is correct regarding the i-th bit (the 1st bit being that
of least value)

Yi,...,Yo,,Y1,...,Ys, for counting the length of the anonymous path
Y{,...,Y!.Y),...,Y, implement another counter on the anonymous path,

used to continue extending the path by exactly 3 - 2" positions to reach the
grid position immediately below

B, B}, B) for distinguishing successors and predecessors on the anonymous
path

M;, t € T, for memorizing a tile type on the anonymous path.

T3 consists of the following Cls.

1. The initial grid position starts the propagation:

XiMn---NXy,MByN U Ty CTL
teTo

2. The verification proceeds upwards. We first verify that the counter is incremented
properly when moving upwards along the S-path in the ABox:

BoﬂXiHHS.(BQHXZ‘)H |_| HS (Bgl_lX

By X;M3S5.(Bsy HY)H I_I 3S5.(By 1
<j<i

By X; M3S.(BaMX;) |—|1§j<i 35.(B2 N

BjJrl nXx;n3s.

(

By X;n 35. (B2 X;) M |—|1§j<i 3S. (B
(
Bj+1 ﬂyi mn3s. (

where i ranges over 1..2n and j over {0,1}. These inclusions only work under
the assumption that no individual has two S-neighbors that are labeled with the
same B; but are labeled differently regarding X; and X for some j. We shall
prevent this situation later using 77.

3. We next make a verification step inside a row of the grid:

ByoMoky M- --Moky, M1, M
X;M3S.(B,NLNTy,) C L

By mokyM---Moky, M1}, M
X;M3S(BynMLNT;,)C L

By Moky M-+ Mok, NTy, Hﬂtes\{tQ}Ttl_th’Sﬂ
X, M3S.(ByNLNT,)CL

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 93

where t1,t9, t3 range over ¥ such that (¢1,t2) € H and (t3,t2) € V and i ranges
over 1..n. The use of X; on the left-hand sides ensures that we move inside a row.
In the first line, we make a move between horizontally neighboring grid positions,
verifying the horizontal matching condition. In the other lines, we move along
the three points representing the same grid position, ensuring that they are all
labeled by the same tile.”

4. We also have to consider the case where we jump from one grid row to the next,
ignoring the tiling condition:

Bomoky M- --Mok, NI
Yi HES.(BQ |_|L) CL

where t ranges over T and 4 ranges over n + 1..2n. The use of X; on the left-hand
side ensures that we are not yet in the topmost row.

5. When the final individual of the ABox path is reached (maximum counter value
and Bs-label), we make an extra step in the ABox to a By-labeled individual and
then generate the first object of an existential path:

By 3S. (B Xim---MXy, ML) C 3S.C

where
C=Y1M---NYsy,MNB,

The purpose of the extra step will be explained later on.

6. Here and in the following, we use the abbreviation
3SG) (X1, Xy, X3) := 35.(X; M 3S.(X, M 3S.X3))

for concept names X7, Xo, X3.

We continue building the path, decrementing the Y'-counter:

Y; M By C 350G (B}, B}, BY)
B;MN3S.(Bj,, NY;) CY;
BiM3S.(B},,NY;)

B,m3S.(By M |_|1§j<ZY)
BQHHS(B{)HY»HHKJ.QY)
Yi)
) E

1111
<~<\<<

B,n3s(Byny;n U
1<5<

Byn3S(B{NY;nN |_I<Y
jl

where i ranges over 1..2n and j over {0,1}. It is essential to use different B
and counter concepts Y;,Y; than in the ABox; otherwise the anonymous path
could not homomorphically embed into the ABox path in a folded way. It would
actually suffice to build a path of length 3 - (22"~1) because no violation of ()
can start in the bottommost row. However, overcounting does not compromise
correctness.

5Note that we expext to see T} labels also in row 0; this is why we assume that for every t € T,
there is a (#',t) € V; we could avoid the assumption at the cost of dealing with row 0 as a special case.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 94

7. At the end of the anonymous path, we implement a violation of (x) as described
above: we guess a tile ¢ involved in the violation, make sure that 7] holds at
the current point, start a new counter, travel exactly 3 - 2" steps (without any

folding), and verify that T holds where we arrive:

YiM---NYy MB,CY/M---NY/m
LI (T 11 M,
te‘Z(t t)
Y/ N By T 3SG).(By, By, By)
Bj+1N35.(B;nY,) LY
Bj+1M38.(B;NY;) C
BOHE'S (.82r||_|1<‘]<Z
By 38.(BnY/ |‘||‘|1<]<Z

Y;)

YY)

Byn3S.(B: Y/ L YY)
)

)

11

\§§<\@%%\%

.

1<j<i
BOTIEIS(BQI_IYI_I LIy
1<5<

Bjy1 M3S.(B; N M,

By 3S.(Bs MY/ M M) C

Yin---nY., nM,CT,

C

11

where ¢ ranges over 1..n and t over ¥. Here we use the same B; as in the ABox

to avoid folding.

This finishes the definition of 75. We now define 77, which uses the following additional

concept names.

e D for indicating the occurrence of a defect
e /y,...,Z, for an additional counter.

T1 consists of the following Cls.

1. Tiles are mutually exclusive: for all distinct ¢,t' € T:
T, MTy ED

where D starts a path that implements a violation of (%), to be implemented

below;

2. The problematic situation described at the end of Item 2 in the definition of 7
cannot occur:
3S.(B, N X;) M 3S.(Bx, N X;) ED

where k ranges over {0, 1,2} and i over 1..2n;

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 95

3. We next implement the path triggered by D:

By (Du3is.pu3is3sSpD)C zin---NzZ,NT)
Z; M By C 35(3).(B0,Bl,32)
Bj+1 n3s. (B M Z) C Z;

BOHHS(BQHZ |—||_|1<]<17
Bym3S.(Ba 11 Z; 1 |7|<ZZ
BOI_IEIS.(BQI_IZZI_I | 7

Zﬂ Z T

M1t 1
NN\NN

where 4 ranges over 1..n and t € ¥ is fixed.

Before we eliminate the disjunction used in 75, let us mention the central property of 7T;
and 75 that can be used to show correctness of the reduction. Since 7T uses disjunction,
a universal model for 73 and an ABox A is not guaranteed to exist. Instead, there
is a set of models for 72 and A that is universal in the sense that for every model Z
of T3 and A, there is a model in the set that admits a homomorphism into Z. We
refrain from giving a formal definition. Now, the central property of 7; and 75 is as
follows: P has a solution iff there is a tree-shaped sig(7;)-ABox A consistent with
71 U T3 such that, for every Z in the universal set of models for 71 U 75 and A, there is
no sig(71)-homomorphism from 7 to Z7; 4

We now show how to get rid of disjunction. The central property of 77 and 72 will
essentially be preserved, with a single universal model playing the role of the universal
set of models. The disjunctions on the left-hand sides of CIs only serve as abbreviations
and can easily be removed with only a polynomial blowup of TBox sizes. What remains
is the disjunction in Item 7 of the definition of 72. To get rid of it, we need to modify
both 77 and 7s:

e In the first line of Point 7 of the definition of 73, the disjunction is replaced with
a conjunction, generating |T| many defective chains at once:

?m---ﬂ?gng|_|3S.(Y1’r|---|—|Y7;|—|B2|—|7¥|—|Mt)
te¥

The resulting universal model is illustrated in Figure 4.1 where we assume
% = {t1,t2,t3}, showing the final individual on the ABox path, the extra step
from Item 5 of the definition of 75, the anonymous path, and the branching gadget
attached to the end of it.

o We have now generated too many paths and thus the desired homomorphism
may not exist even if (x) is violated in the ABox. We compensate by enforcing
in 77 that when a Bs-individual in the ABox path is labeled with T}/, then it’s
By-predecessor on that path roots |T| — 1 many additional paths, realizing every
possible violation of (%) except the one induced by t € ¥. This is illustrated
in Figure 4.2 where we again assume T = {t1,t2,t3}, showing a Bs-individual
labeled with T}, and the extra successors of it’s By-predecessor generated by 7.

Note that this explains the extra step in Item 5 of the definition of 75 since also
the final Bs-element of the ABox path must have a By-predecessor.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 96

anonymous - ABox

By
S
. S
Q -
v
%
é;:l// : BZyXla 7X2n
5 ‘
N I
| ' ABox path
v
S | S S
T3, T3, Ty,
length 3 - 2"

Figure 4.1: Part of the universal model of 75.

We add the following to 77, using fresh concept names M/, t € :

BO M ElS(BQ M ﬂ) E Ht’e@:\{t} ElS(
Y/n---NY, By M)

Y/ M By £ 35G).(By, By, By)
B;+1M3S(B;NY/)C Y’
B M35.(B; M Y, C
ByM3S.(BaM[Mycje; Y7)
Byn38.(B,nY{ M[My<;; Y7)
BOI_IEIS(BQITY’I_I U v
)
/)

~ .

11
R

<j<t
BOHHS(B2|—|Y|—| L y)C
1]<7,
BOI_IHS(BQI_IY'I_IMt) ;

y,n---nY, nM/ CT,

.

I 11
§

where ¢ ranges over 1..n and t over ¥.

Lemma 4.5.6. T1U73 is a (sig(7T1),sig(7h))-stCQ-conservative extension of Tr iff there
is no solution for P.

Proof. By Lemma 4.5.5, it suffices to show the following.

Claim. P has a solution iff there is a tree-shaped sig(7;)-ABox A such that there is
no sig(71)-homomorphism from Zr,y7; 4 to Z7; a.

We now sketch a proof of the claim.

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 97

anonymous - ABox

i ABox path

CZ—Vt/Q 1}/3 B27 Tt/1
3 length 3 - 2}” S
| | By
TtQ : Ttg : i ABox path

Y

Figure 4.2: Extra successors to eliminate disjunction

“=" Assume that P has a solution. Let A be the ABox that contains a single
S-path of length 3 - 2™ which correctly encodes the solution to P via the concept
names X;, X;, B;, Ty, Ty, T]. Since A correctly encodes the tiling, there is no sig(77)-
homomorphism from Z7;u7;,4 to Z7; 4; in particular, the anonymous path described
by 73 that ends in |¥| many violations of (x), each represented via a path, cannot be
mapped to Z7; 4.

“«<". Assume P has no solution and let A be a tree-shaped sig(71)-ABox. If A
contains no path of length 3-2" that is labeled in the desired way with the concept names
Xi, X, Bi, Ty, Ty, T} (and which does not necessarily satisfy ()), then the generation
of the anonymous path in Zru7; 4 is not triggered and the identity is a sig(77)-
homomorphism from Z7; ;.4 to Z7; 4. If there is such a path, then it violates (x) since
P has no solution. Consequently, the anonymous path in Z7;y7;,, 4 homomorphically
maps to Z7; 4, which is sufficient to show that there is a homomorphism from Z7;u7;,4
to I, 4. (N

4.6 Concluding Remarks

We studied the decidability and computational complexity of query conservative ex-
tensions in Horn DLs with inverse roles. This was more challenging than without
inverse roles because characterizations in terms of unbounded homomorphisms between
universal models fail, blocking the standard approach to establishing decidability. We
thus resorted to a combination of automata and mosaic techniques, proving that the
problem is 2EXPTIME-complete in Horn-ALCHZF (and also in Horn-ALC and in
ELT).

Additionally, we studied the case of deductive entailment between ELHIF| -TBoxes
and showed that it is equivalent to a restricted version of query entailment in which the
queries contain no multi-edges and their roots are the only answer variable. We obtained
a model theoretic characterization, a decision procedure, and a 2EXPTIME upper bound.
We also gave a CONEXPTIME lower bound via a reduction of an NEXPTIME-complete

Chapter 4. Conservative Extensions in Horn Description Logics with Inverse Roles 98

tiling problem.

As future work, it would be interesting to close the gap in complexity between CON-
ExpPTIME and 2EXPTIME for deductive entailment in EL£Z and ELHZIF, . Furthermore,
the results presented in this chapter show that query conservative extensions in Horn
DLs with inverse roles are closely related to query conservative extensions in Datalog.
Therefore, it would be interesting to extend the results to ontology languages from the
family of Datalog™ (also known as existential rules), in particular, to frontier-guarded
existential rules.

CHAPTER D

Ontology-mediated Querying in UNFO with Regular Path Expressions

In ontology-mediated querying, queries against incomplete and heterogeneous data are
supported by an ontology that provides domain knowledge and assigns a semantics to
the data [BO15, BtCLW14, KZ14, PLCT08]. The ontologies are often formulated in a
specialized language such as a description logic [BCM ™07, BHLS17] or an existential
rule language [BLMS11, BMRT11, CGKO08, GOPS12] while the actual query is typically
a conjunctive query (CQ) or a mild extension thereof such as a union of CQs (UCQ). It
is useful, however, to consider more expressive decidable fragments of first-order logic
(FO) as an ontology language, such as the guarded fragment (GFO), the unary negation
fragment (UNFO), and the guarded negation fragment (GNFO). These fragments
originate from the attempt to explain the good computational behaviour of modal
and description logics and to extend their expressive power in a natural way. It is
an important result that, for all these fragments, ontology-mediated querying with
UCQs remains decidable and that the complexity stays within the expected, namely
2EXPTIME in combined complexity and CONP in data complexity.

From the perspective of database theory, it is an attractive property of both UNFO
and GNFO (but not of GFO) that they can express CQs and UCQs. In ontology-
mediated querying, this allows to ‘express’ the evaluation of ontology-mediated queries
in terms of satisfiability in a natural way. It is easiest to state this for Boolean queries:
if (0,3, q) is an ontology-mediated query (OMQ) where O is an ontology, ¥ a set of
predicate symbols (that is, relation names) that may occur in the data, and ¢ a UCQ),
and D is a ¥-database, then D |= (O, 3, q) iff O A D A —q is unsatisfiable. When O is
formulated in UNFO or in GNFO, then so is OA D A—q. What is more, the containment
of OMQs can also be ‘expressed’ as a satisfiability problem in the natural case where
both OMQs contain the same ontology and X is the set of all predicates symbols; from
now on, we generally mean this case when speaking of OMQ containment. But also
beyond ontology-mediated querying, we believe that the ability to express UCQs makes
UNFO and GNFO attractive as an expressive logical backdrop for database theory.
While GNFO is attractive as UNFO as ontology language, we focus only in UNFO and
study the question introduced in Section 1.2.2:

Q4 What is the complexity of OMQ evaluation and OMQ containment when UNFO
is extended with regular expressions and transitive relations?

99

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 100

In this chapter, we study the natural extension UNFO™8 of UNFO with regular
path expressions on binary relations. The resulting logic has the attractive property
that it allows to express regular path queries [CMW87] and conjunctive two-way
regular path queries (C2RPQs) [CDLV00] as well as unions thereof (UC2RPQs). Such
queries play a central role in the area of graph databases [AG08, Bar13] and they have
also received considerable attention in ontology-mediated querying [BCOS14, BOS15a,
BOS15b, CEO07, CEO09, CEO14, ORS11]. An additional reason to consider UNFO"®
is provided by the observation that transitive roles are an important feature of many
common description logics (a role is a binary relation), but that transitive roles cannot be
expressed in UNFO. In UNFO'™®, even transitive closure of roles and regular expressions
on roles are expressible, two features that are provided by several expressive description
logics [Baa91, CDLNO1]. As a concrete example, every ontology formulated in ALCZ™®,
the extension of the common description logic ALCZ with regular expressions on roles
[Sch91], can be expressed in UNFO™8 and thus the evaluation of ontology-mediated
queries (O, X, q) where O is formulated in ALC™® and ¢ is a UC2RPQ can be ‘expressed’
as a satisfiability problem in UNFO™®; of course, the same is true when O is formulated
in UNFO"™® itself. We remark that transitive roles cannot be expressed in GFO and
GNFO either, and that adding transitive relations to GFO without losing decidability
requires to impose rather strong syntactical restrictions [ST04], especially so in an
ontology-mediated querying context [GPT13]. Adding transitive relations to GNFO
has, to the best of our knowledge, not yet been studied.

The main problem that we are interested in is evaluating OMQs in which the
ontology is formulated in UNFO™® and the actual query is a UC2RPQ. We show that
this problem is decidable, 2ExXPTIME-complete in combined complexity and CONP-
complete in data complexity. We further consider the OM(Q containment problem and
show that it is 2ExXPTIME-complete as well. We additionally show that the complexit;f of
model checking in UNFO'E is the same as in UNFO, namely complete for PNF[OUog”n)]

As explained above, both OMQ evaluation and OMQ containment can be reduced
to satisfiability in polynomial time. For studying the combined complexity of the former
and the complexity of the latter, we thus concentrate on the satisfiability problem
and prove a 2EXPTIME upper bound. Note that the addition of regular expressions
does thus not increase the complexity of this problem as satisfiability in UNFO is
also 2EXPTIME-complete [tCS13] and that the lower bound holds already when the
arity of predicates is bounded by two, as a consequence of the results in [Lut08]. Our
proof proceeds by first showing that every satisfiable UNFO"™® formula ¢ has a model
whose treewidth is bounded by the size of ¢, then establishing a characterization of the
satisfaction of C2RPQs (that occur as a building block in ¢) in such models in terms of
certain witness trees, and finally showing that this infrastructure gives rise to a decision
procedure based on two-way alternating tree automata. This ‘direct approach’ is in
contrast to the reduction to satisfiability in the p-calculus used for UNFO in [tCS13]
which seems unwieldy in the presence of regular path expressions. Note in particular
that an important reason for the relative simplicity of the reduction in [tCS13] is that
there is always a model of bounded treewidth in which any two bags overlap in at most
one element; this is no longer true in UNFO™&. To establish the CONP upper bound
on data complexity, we first observe that it suffices to consider a database satisfiability
problem (given a database D, is there a model of the fixed UNFO"™® sentence ¢ that
extends D?) and then establish a certain kind of decoration of D as a witness for D
being a positive instance, in a way such that witnesses can be guessed and verified in
polynomial time.

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 101

5.1 UNFO with Regular Path Expressions

We assume that a countably infinite supply of predicate symbols of each arity is available.
In the unary negation fragment of first-order logic extended with regular path expressions
(UNFO'™®), formulas ¢ are formed according to the following grammar:

¢ = PX)|E@@y)le=yleAp|eVe|Ire|-p()

where P ranges over predicate symbols, R over binary predicate symbols, and, in
the —p(x) clause, ¢ has no free variables besides (possibly) x. Expressions E formed
according to the second line are called (regular) path expressions and expressions ()7
according to the last clause in that line are called tests. Tests are similar to the test
operator in propositional dynamic logic (PDL) [FL79] and to node tests in XPath
[GKP02] and in some versions of regular path queries [BOS13, BKR14]. When we
write ¢(x), we generally mean that the free variables of ¢ are among x, but not all
variables from x need actually be free in ¢. For a UNFO"# formula ¢(x), we use Ve
to abbreviate —3z—p(z).

Example 5.1.1. The following are UNFO"™® formulas: Vz(3yR(z,y) A=(R-R*)(z,x))
and Jy(R*(x,y) A S*(z,y)).

A structure 2 takes the form (A, R¥, RY,...) where A is a non-empty set called
the domain and R; is an n;-ary relation over A if R; is a predicate symbol of ar-
ity n;.Whenever convenient, we use dom(2l) to refer to A. Every path expression FE is
interpreted as a binary relation E* over A: R* is part of 2, (R™)* is the converse of R,
(B1UEy)® = E} UES, (B0 B2)* = E¥ o B3, (E*)* is the reflexive-transitive closure
of E¥ and (p(z)?)* = {(a,a) | A = ¢(a)}. UNFO"™E formulas are then interpreted
under the standard first-order semantics with path expressions being treated in the
same way as binary predicates. An UNFO™® sentence p(x) is satisfiable if there is a
structure A such that 2 = ¢. Such an 2 is called a model of ¢(x).

Example 5.1.2. Reconsider the UNFO™® formulas from Example 5.1.1. It can be
verified that the first sentence is satisfiable, but not in a finite model. Thus, in
contrast to UNFO (and to propositional dynamic logic), UNFO"™® lacks the finite model
property. The second sentence expresses a property that cannot be expressed in UNFO
extended with fixed points, as studied in [tCS13], which can formally be shown using
UN-bisimulations, also defined in [tCS13]. In fact, UNFO™® and UNFO with fixed
points are orthogonal in expressive power. Another related logic is ICPDL, that is,
PDL extended with intersection and converse [GLL09]. This logic, too, is orthogonal in
expressive power to UNFO"™&. For example, the existence of a 4-clique can be expressed
as a UNFO sentence, but not in ICPDL since every satisfiable ICPDL formula is
satisfiable in a structure of tree width two.

The expressive power of UNFO™ is closely related to that of conjunctive 2-way
regular path queries. A database D is a finite structure such that for every a € dom(D),
there is an a C dom(D) and a predicate symbol P such that a € a € PP. Since a
database is a syntactic object, we refer to the elements of dom(D) as constants whereas
we speak about elements in the context of (semantic) structures. A conjunctive 2-way
regular path query (C2RPQ)) is a formula of the form ¢(x) = Jy ¢(x,y) where p(x,y) is
a conjunction of atoms of the form R(z) and E(z1, 22), R a predicate symbol and E a

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 102

two-way regular path query, that is, an expression formed according to the second line
of the syntax definition of UNFO™ but allowing only formulas ¢(x) that are C2RPQs
in tests. The variables x are the answer variables of q(x) and ¢(x) is Boolean if x = ().
A union of C2RPQs (UC2RPQ) is a disjunction of C2RPQs that all have the same
answer variables. A conjunctive query (CQ) is a C2RPQ that does not use atoms of the
form E(z1, 22). The answers to a UC2RPQ ¢(x) on a database D, denoted ans(gq, D),
are defined in the standard way, see for example [RRV17]. Note that every UC2RPQ is
a UNFO™& formula.

Example 5.1.3. Consider the following database about family relationships, using
binary predicates Child and Spouse, and written as a set of facts.

D = {Child(Nivea, Clara), Child(Clara, Blanca), Child(Blanca, Alba),
Spouse(Nivea, Severo), Spouse(Esteban, Clara)}

The following C2RPQ asks for all pairs (z,y) such that z is an ancestor of y in a line
of only married ancestors (using the shorthand R* = R - R*).

q(w,y) = (m(2)? - Child) " (z,y) where m(z) = 32’ (Spouse U Spouse™)(z, 2’)
We have ans(q, D) = {(Nivea, Clara), (Nivea, Blanca), (Clara, Blanca)}.

Let ¢(x) = Jy ¢(x,y) be a C2RPQ. We use var(q) to denote the variables that occur
in g outside of tests, that is, x Uy. We do not distinguish between ¢(x) and the set of
all atoms in ¢, writing e.g. R(z,y,z) € ¢(x) to mean that R(x,y, z) is an atom in ¢.
For simplicity, we treat an atom E(x,z) in a C2RPQ ¢(x) where E is the test ¢(y)? as
an atom of the form ¢(z); that is, w.l.o.g. we use tests not only in path expressions but
also directly as atoms of a C2RPQ. A C2RPQ ¢(x) can be viewed as a finite hypergraph
in the expected way, that is, every atom R(z) and E(z1, z2) is viewed as a hyperedge.
We say that g(x) is connected if the Gaifman graph of this hypergraph is connected.
It is interesting to observe that foundational problems concerning UC2RPQs can be
phrased as (un)satisfiability problems in UNFO™®.

Example 5.1.4.

1. The problem whether a Boolean UC2RPQ ¢() evaluates to true on a database D
(i.e., whether the empty tuple is in ans(q, D)) corresponds to the unsatisfiability
of op() A =q() where pp() is D viewed as a Boolean CQ in the obvious way.

2. The problem whether a Boolean UC2RPQ ¢; () is contained in a Boolean UC2RPQ
g2() (defined in the usual way) corresponds to the unsatisfiability of ¢1() A =g2().

Both reductions extend to the case of non-Boolean queries by simulating answer
variables using fresh unary predicates, see the proof of Lemma 5.1.1 below.

5.1.1 Ontology-mediated Querying

We are primarily interested in ontology-mediated queries (O, 3, q) where O is an
UNFO"™® sentence and ¢ is a UC2RPQ. We use (UNFO™8 UC2RPQ) to denote the set
of OMQs of this form and similarly for other ontology languages and query languages.
Let @ = (O0,%,q) be from (UNFO™ UC2RPQ) and D a database that uses only
symbols from . The certain answers to Q on D, denoted cert(Q, D), are defined as in
Section 1.2.2.

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 103

Example 5.1.5. Consider the OMQ @ = (O,%,q’) based on an extension of the
C2RPQ ¢ from Example 5.1.3, where O defines a single mother as an unmarried woman
who has a child, using additional unary predicates Female and SingleMother, and ¢’ has
an additional conjunct requiring that y is a single mother, that is:

O = Vz (SingleMother(z) <> Female(z) A Single(x) A 3y Child(z, y))

q(z,y) = q(z,y) A SingleMother(y)
Y. = {Child, Spouse, Female, Single}

Note that O is equivalent to a UNFO™® (even plain UNFO) formula obtained by elimi-
nating < in the usual way. Let D’ = D U {Female(Blanca), Single(Blanca)}, where D is
the database from Example 5.1.3. Then cert(Q, D') = {(Nivea, Blanca), (Clara, Blanca)},
but cert(Q, D) = 0.

OMQ evaluation in (UNFO"™ UC2RPQ) is a relevant problem since ontologies
formulated in many logics used as ontology languages can be translated into an equivalent
UNFO"™8 sentence in polynomial time. In particular, this is the case for the basic
description logics ALC and ALCZ [BtCLW14] and for their extensions with transitive
closure of roles [Baa91] and with regular expressions over roles [CDLNO1]. For any of
these logics L, this of course also yields a polynomial time reduction of OMQ evaluation
in (£,UC2RPQ) to OMQ evaluation in (UNFO™& UC2RPQ). Even UNFO itself has
occasionally been considered as an ontology language [BtCLW14].

For the rather common extension of the description logic ALC with transitive roles
[BHLS17], an equivalence preserving translation of ontologies into UNFO"®# sentences
is not possible since UNFO"™8 cannot enforce that a binary predicate is transitive.
However, a transitive role can be simulated using the transitive closure of a binary
predicate R (and never using R without transitive closure). In this way, one still obtains
the desired polynomial time reduction of OMQ evaluation. The same reduction can
be applied even to UNFO™8 extended with transitive relations. We use UNFO§ g, to
denote the extension of UNFO™8 where sentences take the form ¢irans A @ With pirans
a conjunction of atoms of the form trans(R), R a binary predicate symbol, and ¢ a
UNFO'™ sentence. An atom trans(R) is satisfied in a structure 21 if R¥ is transitive.

Evaluation of Boolean OMQs in (UNFOy g, UC2RPQ) reduces in polynomial time
to satisfiability in UNFOye,s since D = (O, %, q) iff op() A O A —=q() is unsatisfiable.
The reduction can be extended to non-Boolean queries by simulating answer variables
using fresh unary predicates. Because of this observation, we concentrate on deciding
satisfiability rather than OMQ evaluation.

Lemma 5.1.1. OMQ evaluation in (UNFOy e, UC2RPQ) reduces in polynomial time
to satisfiability in UNFO"€, and so does satisfiability in UNFO; 5.

Proof. We proceed in three steps: first, we reduce evaluation of Boolean OMQs in
(UNFO;5,c, UC2RPQ) to satisfiability in UNFOg;2,.; second, we reduce satisfiability in
UNFOg g, to satisfiability in UNFO'™E; third, we reduce evaluation of (general) OMQs
to the Boolean case. For the sake of a convenient notation, we denote structures (and
thus databases) as sets of facts.

(1) For the reduction from Boolean OMQ) evaluation to satisfiability, let D be a database
and Q = (0,%,q) an OMQ with O a UNFO%, formula and ¢ a Boolean UC2RPQ.
We show that

DEQ iff ppAOA—qis unsatisfiable,

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 104

where pp is D viewed as a Boolean CQ in the obvious way.

The ‘if’ direction is immediate. To prove ‘only if’, assume 2 = ¢pp() A O A —q for
some structure 2. In particular, 2 = ¢p() is witnessed by a homomorphism A from D
to 2. If h is injective, then 2 is an extension of D and thus witnesses D £~ @ as desired.
If h is not injective, we have to extend 2 iteratively, in each step taking an element a
that has two distinct preimages by, by under h, creating a fresh copy a’, duplicating all
tuples in which a participates, and updating h such that it maps b; to a and b to a’.
After exhaustive application of this step, we obtain a structure 2l that homomorphically
embeds into 2 and is UN-bisimilar [tCS13] to 2, plus an injective homomorphism b’
from D to 2'. Together with the assumption, this implies that 2" = O A —¢ and A
extends D; hence D B @Q as desired.

(2) Let ¢ be UNFO £, sentence with transitivity atoms trans(Ri),...,trans(R,).
Transform ¢ into a UNFO"™8 sentence ¢’ by dropping the transitivity atoms and replac-
ing each atom R;(z,y) with the (regular expression) atom R (z,y). It is straightforward
to show that ¢ is satisfiable if and only if ¢’ is.

(3) For the reduction from (general) OMQ evaluation to the Boolean case, let) =
(0,3, q(x)) be an OMQ in (UNFOg;2,., UC2RPQ) with ¢(x) = ¢1(x) V- - V g,,(x) such
that ¢;(x) = Jy; vi(x,y;) and x = z1,...,z,, D a database, and a C dom(D) with
a=a,...,a,. We construct a new OMQ Q' and database D’ by taking fresh unary
predicates Py, ..., P, and setting:

D' =DU{Pi(a1),...,Pu(an)}
Q' =(0,%,¢(), where
70 =d¢0V - Vgp(), with
4;() = 3xyi (pi(x,yi) A Pr(w1) Ao A Py(ay))

It suffices to prove the following claim, which is nearly straightforward.

Claim. a € cert(Q, D) < () € cert(Q', D’)

Proof of Claim. We proceed via contraposition in both directions.

‘=’ Assume () ¢ cert(Q’,D’). Then there is a structure 2 that extends D’ and
is a model of O with () ¢ ans(¢/,2(). Since 2 extends D’ it also holds that
a ¢ ans(q,2) (because otherwise the witnessing homomorphism would also
witness () € ans(¢’,2), a contradiction). Hence a ¢ cert(Q, D).

‘<=’ Suppose a ¢ cert(Q, D). Then there is a structure 2 that extends D and is a model
of O with a ¢ ans(q,2). Consider the structure A" = A U {P(a1),..., Py(an)},
which extends 2 and is a model of O (since the P; were fresh). In addition,
it holds that () ¢ ans(¢’,2') (because otherwise the witnessing homomorphism
would also witness a ¢ ans(g,2l), a contradiction). Hence () ¢ cert(Q’, D').

d

Together with Theorem 5.3.2 it thus follows that UNFO can be extended with transitive
relations without losing decidability or affecting the complexity of satisfiability and of
OMQ evaluation. This is in contrast to the guarded fragment, where in both cases
decidability can only be obtained by adopting additional syntactic restrictions. While for
satisfiability it suffices to assume that transitive relations are only used in guard positions,
even stronger restrictions are necessary for OMQ evaluation [Gra99, ST04, GPT13].

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 105

There are also other interesting reasoning problems that can be reduced to sat-
isfiability in UNFO"™®. Here we consider OMQ containment, leaving out transitive
roles for simplicity. Let Q1 = (O, Xq,q1) and Q2 = (O, 3¢, g2) be OMQs from
(UNFO™8, UC2RPQ) with the same number of answer variables and where g, is
the full data signature, that is, the set of all predicate symbols. We say that Q1 s
contained in Q2 and write Q1 C Q2 if for every database D, cert(Q1, D) C cert(Q2, D).
We observe that OMQ containment can also be reduced to satisfiability in polynomial
time.

Lemma 5.1.2. OMQ containment in (UNFO™8 UC2RPQ) reduces in polynomial time
to satisfiability in UNFO"™&.

Proof. It suffices to reduce containment between Boolean OMQs to satisfiability; the
case of general OMQs can be reduced to the Boolean case by applying the construction
described in the proof of Lemma 5.1.1, Step 3, to both input OMQs.

Let Q1 = (O, Xy, 1) and Q2 = (O, Egun, g2) be OMQs with O a UNFO™8 sentence
and g1, g2 Boolean UC2RPQs. Then the following holds:

Q1 CQy iff OAq A—go is unsatisfiable.

For the ‘if’ direction, assume Q1 € Q2. Then there is a database D with cert(Q1, D) ¢
cert(Q2, D), i.e., there is a structure 2 extending D such that A = O, A = ¢, and
A £ 2. Hence O A g1 A —qq is satisfiable.

For the ‘only if’ direction, assume that O A ¢; A —~ge is satisfiable. Then 2 = O,
A = q1, and 2 £ g2 for some structure 2. Then 2 contains some (finite) database D

witnessing Q1 € Q2. 0

There are also versions of OMQ containment that admit different ontologies in the two
involved OMQs and more restricted data signatures in place of Y, [BBP18, BHLW16,
BLW12, BL16]. These are computationally harder and a polynomial time reduction
to satisfiability cannot be expected. In fact, it follows from results in [BL16] that
this more general form of OMQ containment is 2NEXPTIME-hard already when the
ontologies are formulated in the description logic ALCZ, a fragment of UNFO, and
when the actual queries are CQs. Decidability remains an open problem. We remark
that when the actual queries in OMQs are CQs, then OMQ containment under the full
data signature can be reduced to query evaluation in a straightforward way, essentially
by viewing the query from the left-hand OMQ as a database. In the presence of regular
path queries, however, this does not seem to be easily possible.

5.2 Model-theoretic Characterization

We give a characterization of satisfiability in UNFO"™® that is tailored towards imple-
mentation by tree automata. In particular, we show that every satisfiable UNFO"®#
formula ¢ has a model whose treewidth is bounded by the width of ¢, introduce a
representation of such models in terms of labeled trees, and characterize the satisfaction
of C2RPQs in models represented in this way in terms of tree-shaped witnesses. To
simplify the technical development, in this section and the subsequent one we disallow
predicates of arity zero. Note that an atom P() can be simulated by the formula
Jz P(z), so this assumption is w.l.o.g. We work with UNFO"™®# sentences that are in
certain normal form.

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 106

5.2.1 Normal Form

We next introduce a normal form for UNFO"™2 sentences, similar but not identical to
the normal form used for UNFO in [tCS13]. For a set £ of UNFO"™® formulas with one
free variable, a C2RPQ extended with L-formulas is a C2RPQ in which all tests ¢(z)?
in atoms E(z1, 22) have been replaced with tests ¢ (z)?, 1(z) a formula from £. The
set of normal UNFO"™® formulas is the smallest set of formulas such that

1. every connected C2RPQ with exactly one free variable, extended with normal
UNFO"™® formulas, is a normal UNFO™8 formula;

2. if p(x) and ¢ (x) are normal UNFO"™® formulas, then —¢(x), ¢(z) V ¢(x), and
Jdz ¢(x) are normal UNFO'™8 formulas.

Observe that Item 1 serves as an induction start since every connected C2RP(Q without
tests (and with one free variable) is a normal UNFO"™® formula. Note that normal
formulas are closed under conjunction in the sense that the conjunction of normal
formulas ¢1(z) and ¢a(z) is a C2RPQ extended with normal UNFO™® formulas and
thus a normal formula. Thus, unary disjunction could be eliminated, but for our
purposes it is more convenient to keep it. We note in passing that using this normal
form, it is easy to observe that UNFO"™®8 has the same expressive power as C2RPQs
with exactly one free variable that admit both tests and negated tests.

The width of a normal UNFO™® formula is the maximal number of variables in a
C2RPQ that occurs in it (not counting the variables that occur in the C2RPQ only
inside tests). The atom width is defined analogously, but referring to the number of
atoms instead of the number of variables. In the context of normal UNFO™® formulas,
for brevity we speak of C2RPQs when meaning C2RPQs extended with normal UNFQO"™&
formulas. The size of a UNFO"™8 formula is the number of symbols needed to write it,
with variable symbols and predicate symbols being counted as a single symbol.

Lemma 5.2.1. Every UNFO™8 sentence ¢ can be transformed into an equivalent
normal UNFO"™® sentence ¢’ in single exponential time. Moreover, the width and the
atom width of ¢’ are at most polynomial in the size of and the path expressions that
occur in @' are exactly those in .

Proof. By Lemma 4.1 of [tCS13], we can convert any UNFO sentence ¢ in single
exponential time into an equivalent UNFO sentence ¢’ generated by the following
grammar:

p(a) ==y Pz, y) | ~o(@) | o(z) V @(z)

where Jy ¢(x,y) is a CQ that might contain equality atoms. The transformation steps
are rather straightforward and also work for UNFO™® with the only difference that
Jy ¢¥(x,y) is then a C2RPQ that might contain equality atoms. The transformation
may cause an at most single exponential blowup in formula size and it satisfies the
requirements regarding parameters formulated in Lemma 5.2.1.

We can easily eliminate equality atoms in C2RPQs by identifying variables; when
a free variable is identified with a quantified variable, we use the name of the free
variable.

It remains to make C2RPQs connected. Let Jy ¢(z,y) be a C2RPQ subformula
such that v (z,y) has the connected components ¥ (x,yo), ¥ (y1),...,¥(yk), k > 1. We
replace it with the conjunction of g = Jyo ¥ (x,yo) and ¢1 = Iy1¥(y1),..-, ¢k =
Jyr(yr), that is, with the C2RPQ ¢o?(z), ¢17(x), ..., pr?(k). Note that this C2RPQ

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 107

and all C2RPQs inside the tests are connected. In fact, in can be verified that the
resulting UNFO"™® sentence is normal according to our definition. (N

In the following sections, we replace atoms FE/(z1, 22) in the C2RPQs that occur in a
normal UNFO™® formula with atoms of the form A(z1, z2) where A is a nondeterministic
automaton on finite words (NFA) over a suitable alphabet; we call such atoms NFA
atoms. Formally, an NFA is a tuple (Q, %, A, qo, F') where @ is a finite set of states,
> a finite alphabet, A C Q) x 3 x @ a transition relation, gy €) an initial state and
F C @ a set of final states. When deciding the satisfiability of a UNFO"™# sentence
0, we will generally take ¥ to be {R, R~ | R a binary predicate in g} U {p(z)? |
©(x)? a test in po}. Clearly, all path expressions in ¢y are regular expressions over
this alphabet. Since every regular expression can be converted into an equivalent NFA
in polynomial time, we can thus w.l.o.g. assume the NFA-based presentation. Let
A=(Q,%,A, qp, F) be an NFA. Then we use A[F/F’] to denote the NFA obtained from
A by replacing F with F/ C @ and A[qo/q] for the NFA obtained from 4 by replacing
qo with g € Q. For a structure 2, an NFA A, and a,b € A, we write 2 = A(a,b) if
there are ay,...,a, € A and a word w € L(A) of length n — 1 such that a = a1, a,, = b,
(ai,a;+1) € R* if the ith symbol in w is R, (a;41,a;) € R¥ if the ith symbol in w is R~
and a; = a;+1 and A = p(a;) if the ith symbol in w is ¢(x)?. This gives a semantics
to NFA atoms. The size of a normal UNFO™® formula with NFA atoms is defined in
the same way as the size of a UNFO formula, where every NFA A = (Q, X, A, qo, F)
contributes the cardinality of) plus the cardinality of A plus the cardinality of F'.

5.2.2 Tree-like Structures

We aim to show the tree-like model property for UNFO™&. In order to achieve that we
represent tree-like models via type-decorated trees.

We start with some preliminaries. A (directed) tree is a prefix-closed subset 7' C
(N\ {0})*. A node w € T is a successor of v € T and v is a predecessor of w if w =wv-1
for some i € N. Moreover, w is a neighbor of v if it is a successor or predecessor of v.
A tree-like structure is a pair (T, bag) where T is a tree and bag a function that assigns
to every w € T a finite structure bag(w) such that

the set of nodes {w € T'| a € dom(w)} is connected in T, for each a € U dom(w)
weT

where, here and in the remainder of the chapter, dom(w) is a shorthand for dom(bag(w)).
The width of (T, bag) is the maximum domain size of structures that occur in the
range of bag. Its outdegree is the outdegree of T'. A tree-like structure (7, bag) defines
the associated structure 2d(7 pag) Wwhich is the (non-disjoint) union of all structures
bag(w), w € T'. We use dom (7, bag) as a shorthand for dom (27 pag)). As witnessed by
its representation (7', bag), the treewidth of the structure (T bag) is bounded by the
maximum cardinality of dom(bag(w)), w € T.

We will show that every satisfiable UNFO"™® sentence ¢ is satisfiable in a tree-like
structure whose width is bounded by the width of ¢¢. In UNFO, it suffices to consider
structures of this form in which bags overlap in at most one element; this is not the
case in UNFO'™®&.

Let ¢o be a normal UNFO™®8 sentence. We use sub(yg) to denote the subformulas
of o with at most one free variable, and where the free variable is renamed to . Then
cl(pp) denotes the smallest set of normal UNFO"™8 formulas that contains sub(pg) and
is closed under single negation. A 1-type for g is a subset ¢ C cl(pg) that satisfies the
following conditions:

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 108

1. p etiff ~p ¢t for all = € cl(po);
2. oV etiff petory etforall Ve clpg).

We use TP(pp) to denote the set of all 1-types for ¢y.

A type decorated tree-like structure for g is a triple (T, bag,) with (T, bag) a
tree-like structure such that only predicates from ¢y occur in the range of bag and
7 : dom(T,bag) — TP(y¢p). Let (T,bag,7) be such a structure, A an NFA, and
a,b € dom(T,bag). We write (1), 7 = A(a,b) if Jrpag) = Ala,b) with the
semantics of tests reinterpreted: instead of demanding that 2 = ¢(a’) for a test ¢o(x)?
to hold at an element a’, we now require that ¢ € 7(a’). Let p(z) = Iy ¢ (z,y) be a
C2RPQ and a € dom(7', bag). A homomorphism from ¢(x) to (T, bag,) is a function
h:{x} Uy — dom(T,bag) such that the following conditions are satisfied:

e h(x) € R*Tbo for each R(x) € p(x);

hd Ql(T,bag)v T ’: A(h(y)7 h(z)) for each A(ya Z) € gD(:L’)
A type decorated tree-like structure (7', bag,) for g is proper if:

1. for all Jzp(z) € cl(po), Iz p(x) € 7(a) iff there is a b € dom(T,bag) with
p(x) € T(b);

2. for all C2RPQs ¢(x) € cl(¢o), ¢(z) € 7(a) iff there is a homomorphism h from
o(z) to (T, bag,) such that h(z) = a.

We are now ready to give a model-theoretic characterization of satisfiability for

UNFO™8.

5.2.3 Characterization of Satisfiability

We aim to characterise the satisfaction of C2RPQs in type-decorated trees via tree-
shaped witnesses. The following lemma establishes proper type decorated tree-like
structures for g as witnesses for the satisfiability of ¢g. The proof of the ‘only if’
direction is via an unraveling procedure that constructs a type decorated tree-like
structure in a top-down manner, introducing fresh bags to satisfy C2RPQs and to
implement a step-by-step chase of paths that witness satisfaction of NFA atoms in
C2RPQs.

Lemma 5.2.2. A normal UNFO™® sentence g of size n and width m is satisfiable
iff there is a proper type decorated tree-like structure (T, bag,T) for o of width at most
m and outdegree at most n? + n such that oo € T(a) for some a.

Proof. (<) Assume a proper type decorated tree-like structure (7', bag, 7) for .
It is easily verified by induction on the structure of formulas that, for all ¥ (z) € cl(¢p)
and all a € dom(T', bag), we have A7) = ¥(a) if, and only if, 1 (z) € 7(a). Since
¢o € 7(a) for some a, we get A7 ag) = ©o-

(=) Let A = g for a UNFO™® sentence g of size n. In order to construct a
tree-like structure (7', bag), we use an unraveling technique during which we maintain a
mapping h : dom(T', bag) — A and an additional labeling F'(w) containing expressions
of the form A(b,V'), for each w € T. Throughout the construction, we preserve as
an invariant that h is a homomorphism and that for each A(b,b') € E(w), we have

b,b' € dom(w) and A = A(h(b), h(V)).

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 109

Start with choosing elements aq,...,ar € A such that, for every formula of the
form Jx(x) € cl(pp) with A = Jz(z), there is some i € {1,...,k} and A = 1 (a;).
Initialize (7, bag) by setting T' = {e,1,...,k}, bag(e) to the empty structure, and
bag(i) = A|(4,}, for every i € {1,...,k}, where | x denotes the restriction of 2 to
domain X. Moreover, set h(a;) = a; and E(¢) = E(i) = 0, for all i € {1,...,k}.
Clearly, the invariants are satisfied.

Then, apply the following steps exhaustively and in a fair way:

e Choose a node w € T', an element a € dom(w), and a C2RPQ v (z) € cl(pg) with
A = ¢(h(a)). There is a mapping [: var(¢)) — A such that S(x) = h(a), and for
each atom R(z) € 1, we have §(z) € R, and for each A(z, 2’) € ¥, A an NFA,
we have 2 = A(B(2), (7). Let B={3(2) | z € var(y))}, and create a successor
v of w where the associated structure bag(v) is obtained from 2(|p by replacing
each b € B\{h(a)} with a fresh b/, and h(a) with a. Extend h by setting h(b') = b,
for all introduced b'. Finally, set E(w) = {A(B(z), 8(2')) | A(z,2') € ¢} where b

is b/ for all b € B\ {h(a)} and h(a) is a.

e Choose a node w € T and a label A(b,b') € E(w). By the invariant for E(w), we
know that 2 = A(h(b), h(b')). Take a shortest sequence ay, ..., a, € A and word
W € L(A) of length n — 1 such that a; = h(b), a, = h(t/), and (a;,a;11) € R¥
if the ith symbol in @ is R, (a;y1,a;) € R¥ if the ith symbol in @ is R~, and
a; = aj+1 and A = ¢(a;) if the ith symbol in @ is ¢(x)?. If n < 2, then, by
construction, bag(w) = A(b, V'), so we can stop. If n > 2, let A= (Q,%, qo, A, F)
and qo, ..., qn be a sequence of states such that (¢;, a;1+1,¢i+1) € A for all ¢ with
0<i<nandgq, €F. Define B ={aj,a2,an,an-1} and B" = B\ {a1,a,}.
Then create a successor v of w, and set bag(v) to the structure obtained fom
2A|p by replacing every d € B’ with a fresh d’, a1 with b, and a,, with b'. Finally,
extend h by setting h(d') = d for all d € B’, and set E(v) to the singleton set
containing Alqo/q1, F/{qn-1}](@2,@n_1), where d is d’, for all d € B’, and a; = b
and @, =V’

By definition of the rules, the invariants regarding h and E are preserved.

Let (T™*,bag*) and h* be the tree-like structure and homomorphism, respectively,
obtained in the limit of the unraveling. We define a type decoration 7 by taking
7(a) = {Y(x) € cl(po) | A E ¥(h*(a))}, for all a € dom(T™*, bag®). It is not difficult
to verify that (p« pag) = ¥(a) iff ¥(x) € 7(a), for all a € dom(T*,bag*) and all
Y(x) € cl(pp). In particular, we have:

o if (z) € 7(a) is a C2RPQ, then A |= ¢)(h*(a)). Since steps 1 and 2 were applied
exhaustively, we know that (7« pag) = ¥(a).

e Let —¢(z) € 7(a) for a C2RPQ ¢ (z) and assume 27+ pag) = 1(a). Since h* is a
homomorphism from 2y« pae+) to A, we also have 2 = 1)(h*(a)), a contradiction
to the definition of 7.

Consequently, (T, bag*, 7) is proper. Finally, observe that the size of the bag created is
bounded by m in the first step and by 4 in the second step. For the outdegree, observe
that a bag created in the second step has outdegree 1, while a bag created in the first
step has outdegree at most n? + n. d

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 110

As the next step, we take a closer look at Point 2 of properness, that is, we
characterize carefully the existence of a homomorphism h from ¢(z) to (T, bag, 7) such
that h(x) = a in a way that is tailored towards implementation by tree automata.
This gives rise to the notion of a witness tree below. We start with introducing the
notions of subdivisions and splittings which shall help us to take care of the fact that
the homomorphic image of a query ¢(x) may be spread over several bags of a tree-like
structure, and in fact this might even be the case for a single NFA atom.

An instantiated C2RP() is a C2RPQ in which all free variables have been replaced
with constants. We write p(a) to indicate that the constants in the instantiated C2RPQ
are exactly a. When working with instantiated C2RPQs, we drop existential quantifiers,
assuming that all variables are implicitly existentially quantified. For brevity, we often
omit the word ‘instantiated’ and only speak of C2RPQs. We speak of terms to mean
both variables and constants, and we denote terms with ¢.

Let p(a) be a connected C2RPQ, A be a domain, and s > 1. A (A, s)-subdivision
of an atom A(t,t') € p(a) is a set of atoms

A[F/{q}](t,b1), Algo/q1, F/{q2})(b1,b2), ..., Algo/qr—1, F/{ar }](br—1,bx), Algo/ar] (bk, t')

where q1, ..., q; are states of A, k < s, and by, ..., b; are constants from A. A C2RPQ
Y(@') is a (A, s)-subdivision of p(a) if it is obtained from ¢(a) by replacing zero or
more NFA atoms with (A, s)-subdivisions. Let ¢(a’) be a (A, s)-subdivision of p(a). A
splitting of 1 (a’) is a sequence y(ap), ..., Ye(arg), £ > 0, of C2RPQs that is a partition
of ¥(a’) (viewed as a set of atoms) where we also allow the special case that 1y(ag)
is empty (and thus ¥ (ay),...,¥e(ay) is the actual partition). We require that the
following conditions are satisfied:

1. Y1(ay),...,¥e(ay) are connected,;
2. var(z;(a;)) Nvar(yj(a;)) € var(vo(ag)) for 1 <i < j < ¥,

3. each of ¥1(ay),...,1y(ay) contains at most one atom from each subdivision of an
atom in p(a).

Intuitively, the ¥y(a) component of a splitting is the part of ¥ (a’) that maps into
a bag that we are currently focussing on while the other components are pushed to
neighboring bags.

Example 5.2.1. Consider ¢(a) = {A(a,y),T(a,2),Q(a,y,z)} with A =
R,S. Let A = {a,b,c} and A;; = A[0/i, F/j]. An example for a (A, 2)-

subdivision of A(a,y) is {Api(a,b), A11(b,b), A11(b,y)}, which yields the following
(A, 2)-subdivision of ¢(a): ¥(a,b) = {Ao(a,b), A11(b,b), A11(b,y), T(a, z),Q(a,y,2)}.
¥ (a, b) admits a splitting into g, 1)1 as follows: 1g(a,b) = {Ap1(a,b), A11(b,b), T(a,2)}
and 1/11(6% b) = {‘All(bv y)7 Q(y7 Zs a)}

The query closure qcl(go, A, s) is defined as the smallest set such that the following
conditions are satisfied:

o if p(x) € cl(pp) is a C2RPQ and a € A, then ¢(a) € qcl(po, A, s);

e if p(a) € qcl(po, A, s), P(a’) is a (A, s)-subdivision of p(a), ¥o(ag),...,Ye(ay) is
a splitting of ¥ (a’), 1 <i < ¢, and }(a}) is obtained from ;(a;) by consistently
replacing zero or more variables with constants from A, then ¥}(a}) € qcl(o, A, s).

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 111

Lemma 5.2.3. The cardinality of qcl(po, A, s) is bounded by p - (anm)m/, where p is
the number of C2RPQs in g, a the mazimal number of states in an NFA in ¢q, d the
cardinality of A, m the width of po, and m' the atom width of q.

Proof. Each query in qcl(pg, A, s) can be obtained from a C2RPQ ¢(z) € cl(¢o)
by first dropping atoms, then replacing NFA atoms A(t, ') with an atom A’(Z,#') where
A’ is obtained from A by replacing the initial state and replacing the set of final states
with a single state, ¢ is t or a fresh constant, and ¢’ is t’ or a fresh constant, and finally
replacing existentially quantified variables with constants from A; to see this, it is
important to consider Condition 3 of splittings and to note that the ip-component of
splittings is not included in qcl(pg, A, s). Thus the number of atoms in each query in
qcl(wo, A, s) is at most m’. Furthermore, each atom can take on a?d™ variations by
replacing NFA states as described and/or replacing variables with constants. Thus each
of the p C2RPQs ¢(z) € cl(g) contributes at most (a2d™)™ C2RPQs to qcl(po, A, s).

a

We are almost ready to define witness trees. The following notion of a homomorphism
is more local than the ones used so far as it only concerns a single bag rather than the
entire tree-like structure. Let (T, bag, 7) be a type decorated tree-like structure, w € T,
A an NFA, and a,b € dom(w). We write bag(w), 7 = A(a,b) if bag(w) &= A(a,b) with
the semantics of tests reinterpreted: instead of demanding bag(w) = ¢(a’) for a test
©(x)? to hold at an element a’, we now require that p(x) € 7(a’). Let p(a) be a C2RPQ.
A homomorphism from ¢(a) to bag(w) given 7 is a function h : a U var(p) — dom(w)
such that the following conditions are satisfied:

e h(a) = a for each a € a;
e h(t) € RP%() for each R(t) € p(a);
e bag(w), 7 = A(h(t), h(t")) for each A(t,t') € p(a).

Let n be the size of ¢y, a € dom(T,bag), and ¢(z) € cl(pg) a C2RPQ. A wit-
ness tree for p(a) in (T,bag,7) is a finite labeled tree (W,o) with o : W — T x
qcl(wg, dom(T, bag), n?) such that the root is labeled with o(¢) = (w, ¢(a)) for some
w € T with a € dom(w) and the following conditions are satisfied for all u € W:

(%) if o(u) = (w,v(a)), then there is a (dom(w),n?)-subdivision ¥'(a) of 1 (a), a
splitting Yo(ag), ..., % (ay) of ¥(a), a homomorphism h from Jg(ag) to bag(w)
given 7, and successors uy, .. ., uy of u such that o(u;) = (w;, ¥(al)) for 1 <i <,
where each w; is a neighbor of w in T with a C dom(w;) and ¥;(a}) is obtained
from ¥;(a;) by replacing each variable x in the domain of A with the constant

h(z).

Informally, a witness tree decomposes a homomorphism h from ¢(z) to A7 bag into

local ‘chunks’, each of which concerns only a single bag. In particular, the splitting

Yo(ag), ..., U(ax) in (x) breaks the current C2RPQ down into components that are

satisfied in different parts of the tree-like structure.We need to first subdivide since

satisfaction of NFA atoms is witnessed by an entire path, and this path can pass
through the current node several times. Fortunately, the number of points introduced

in a subdivision can be bounded: we can w.l.o.g. choose a shortest path and such a

path can pass through w at most once for each element in dom(w) and each state of

the automaton A, thus we need at most n? points in subdivisions.

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 112

Lemma 5.2.4. Let (T,bag,7) be a type decorated tree-like structure, p(x) € cl(po)
a C2RPQ, and a € dom(T,bag). Then there is a homomorphism h from ¢(z) to
(T, bag, 7) with h(x) = a iff there is a witness tree for ¢(a) in (T, bag, 7).

Proof. (=) Let h be a homomorphism from ¢(x) to (T,bag,7) with h(z) = a.
We inductively construct a witness tree (W, o) for ¢(a) in (7, bag, 7). During the
construction, we maintain the following invariants for all nodes u € W with o(u) =

(w, ¢(a)):
(i) for all R(t) € ¥(a)), we have h(t) € R¥(Tbag);
(i) for all A(t,t") € ¥ (a), we have Ay pag), 7 = A(R(t), h(t)).

We start the construction with setting o(e) = (w,¢(a)) for some w € T with
a € dom(w), obviously satisfying (i) and (7).

Then, apply the following step exhaustively. Let © € W be an unprocessed node
in the witness tree constructed so far, and assume that o(u) = (w,?¥(a)). First,
assign to each constant a € dom(7, bag) \ dom(w) the (uniquely defined) value x(a) €
{—1,1,...,m}, m the outdegree of T', such that w - k(a) lies on the shortest path from
w to the unique world where a appears for the first time in (7, bag).

We use the mapping x to assign atoms occurring in (a subdivision of) ¢ (a) to
neighboring nodes of w, intuitively, to reflect where h maps different parts of ¢ (a).
Formally, we use queries ¥)_1(b_1),...,1¢(by), initialized with (), where ;(b;) collects
the parts of ¥(a) which are sent to w - i, for all i. We process all atoms in ¥ (a) as
follows:

1. For each atom R(t) € t(a), by invariant (7), we can fix a v € T with h(t) € R2&(®)
which has minimal distance to w. We distinguish three cases:

(a) if h(t) € R*&®) then add R(t) to ty;

(b) if h(t) C dom(w) and h(t) ¢ RP26(®) then add R(t) to ¢; where i is the
(unique) number such that w - 4 is on the shortest path to v;

(c) if h(t) € dom(w), add R(t) to 1; where i = k(h(x)) for some x € t with
h(z) ¢ dom(w). It is important to note that ¢ is uniquely defined in this
way. Indeed, assume two variables z,y € t with h(x), h(y) ¢ dom(w) and
k(h(x)) # Kk(h(y)). Then, one of w - k(h(z)) and w - k(h(y)) does not lie on
the shortest path from w to v, say the latter. However, by the connectedness
property of tree decompositions, we know that then h(y) appears in dom(w),
a contradiction.

2. For an atom A(t,t') € ¢(a), by invariant (i), we can fix sequences az, ..., a, and
50,-..,5p, and a word vy - - - vp_1 € L(A) of minimal length such that a; = h(t),
an = h(t'), so = qo, sn € F, (si,vi,841) € A, for all i € {1,...,n — 1},
(ai,aiy1) € R¥mwen) if y; = R, (a;11,a;) € R*@s7) if y; = R~ and 0(z) € 7(a;)
and a;+1 = a; if v; = 0(x)?. Let I be the set of all i € {1,...,n} such that
a; € dom(w).

If I = (), then t,t" are variables with x(h(t)) = k(h(t')). Add A(L, 1) to Yu(n@))-

Otherwise, that is, I # (), let 4y < ... < iy be a linear order of the elements in I.
If a1 ¢ dom(w) and thus 1 ¢ I, then add A[F/{s;+1}](t, ai,) t0 ¥x(a,), and, if
an ¢ dom(w) and thus n ¢ I, then add Algo/si,]|(ai,,t") to ¥y(a,). Moreover, for
each j € {1,...,k} such that v;; is not a test 6(z)? do:

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 113

o if v;; = Rand (a;;,ai;11) € RbP2&(w) then add Algo/si;, F/{si;1 H(ai;, ai;)
to to;

o if Vij = R and (ai], y al'jJr]_) ¢ Rbag(w)’ then add A[qo/sij y F/{Sij+1 }](aij,aiHl)
to 1, where i = k(a;;+1);

o ify;, = R and (a;;41,a;;) € Rb28() then add Algo/si;, F/{si;1 (@i, ai,)
to to;

o ify;, = R and (aj;41,a;;) ¢ RP28(") then add Algo/si;, F/{si;,1 (@i, a5)
to 1, where i = k(a;;+1)-

It is crucial that in Step 2 the cardinality of I is bounded by m?2, m the size of ¢g. More

precisely, in sequences ay,...,a, and sq,..., S, of minimal length, there are no ¢ < j
such that a; = a; and s; = s;, as otherwise we can obtain shorter sequences by dropping
Qiy1,-..,a; and Si41,...,s;. As both dom(w) and the number of states in A is bounded

by m, the claimed bound follows. It should thus be clear that ¥(a) = |J; ¥:(b;) is a
subdivision of i (a).

Note that the 1;(b;) need not be connected. Define a splitting Jg(ayp), .. ., Je(ar)
of ¥(a) by setting Yo(ag) = 1o(bp), and including, for each i € {—1,1,...,m}, each
connected component v¢’'(a’) of ¥;(b;) in the sequence. By construction, h is a homo-
morphism from Jy(ag) to bag(w) given 7. Finally, extend the witness tree by adding,
for each ¥;(a;), 1 <14 < ¢, a successor u; of u with o(u;) = (w - j,9(a})) where j is
such that 9;(a;) C ¥;(b;) and 9}(a}) is obtained from ¥;(a;) by replacing each variable

x in the domain of h with h(z). By construction, u satisfies (x). Moreover, it is routine
to verify that invariants (i) and (7i) are preserved.

It remains to argue that the described process results in a finite tree. Clearly, the
constructed tree is finitely branching. For finite depth, consider first atoms of the
form R(t) € ¢(a). In Step 1, these atoms are always ‘sent’ to a closest v such that
h(t) € R (v) (Items 1b and 1c). This v is reached after finitely many steps. Consider
now atoms of the form A(¢,t'). Assume some atom A(to,t() is obtained in Step 2
applied to A(t,t") and that A(to,t1) € 9;(a;). Let A(t(,t]) be the corresponding atom
in ¥(a}). Then, by the minimality condition, the witnessing sequences selected in
Step 2 when applied to A(tg, t}) while processing 9;(a}) is strictly shorter than the
witnessing sequence for A(t,t'). Thus, finite depth follows.

(<) Let (W, o) be a witness tree for ¢(a) in (T, bag, 7). We inductively construct a
homomorphism h from ¢(z) to (T, bag,) such that h(z) = a.

Start with h(x) = a. Then apply the following rule exhaustively. Let u € W be a
node in the witness tree with o(u) = (w, ¥ (a)) such that all predecessor nodes have
been processed. Let g be the homomorphism witnessing Condition (x) for u, and define
h(z) = g(z) for all z in the domain of g but not in the domain of h.

It is a consequence of Condition 2 of splittings and (x), that h is well-defined. We
show that the result h of this process is a homomorphism from ¢(x) to (T, bag, 7).

e Consider first atoms of the form R(t). We prove by induction that, if R(t) € ¢(a)
for some u € W with o(u) = (w,(a)), then h(t) € R*™re . The induction
base is the case when R(t) is put into ¥g(a) by (x). By definition of h, we know
h(t) € RP%8() thus also h(t) € R™Tbs) . In the induction step, let R(t) € 1(a),
but in (x) the atom R(t) is put into 9;(a;) for some i > 0. By the definition of,
R(t') € ¥)(a’) where t’ is obtained from t by instantiating some variables z € t
with h(z). By induction, we know that h(t’) € R¥Tb=) thus also h(t) € R*(Tbas),

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 114

e Consider now atoms of the form A(¢,¢'). We prove by induction that, if A(¢,¢') €
Y(a) for some u € W with o(u) = (w,¥(a)), then Ay pag), 7 = A(R(t), h(t')).
The induction base is the case when A(t,t') is put into Jg(ag) by (x). By (x)
and the definition of h, we know that h is a homomorphism from A(¢,t') to
bag(w), hence bag(w), 7 = A(h(t), h(t')) and thus A7 pag), 7 = A(R(t), h(t)). In
the induction step, the atom A(t,t') is subdivided into atoms, say aq,..., k.
However, by definition of subdivisions and by (x), it is straightforward to prove
that (7 pag), 7 = A(h(t), h(t')) given that A7 pag), T = a; for all i, by induction
hypothesis.

Q

5.3 Decidability and Complexity

We now reduce satisfiability of UNFO"® sentences to the nonemptiness problem of two-
way alternating tree automata. We start discussing the encoding of tree-like structures
as an input to automata and then show the automata constructions.

Encoding of tree-like structures. Let ¢y be a normal UNFO"™8 sentence whose satisfi-
ability we want to decide. By Lemma 5.2.2, this corresponds to deciding the existence
of a proper type decorated tree-like structure for ¢g (of certain dimensions) and thus
our aim is to build a 2ATA A such that L(A) # 0 if and only if there is such a structure.
2ATAs cannot run directly on tree-like structures because the labeling of the underlying
trees is not finite: we have already shown that UNFO™8 does not have the finite model
property and thus it might be necessary that infinitely many elements occur in the
bags. We therefore use an appropriate encoding that ‘reuses’ element names so that we
can make do with finitely many element names overall, similar to what has been done,
for example, in [GW99, ABBV16].

Let Ry,..., Ry be the predicate symbols that occur in g and let m be the width
of po. Fix a finite set A with 2m elements and define ¥ to be the set of all pairs (bag, 7)
such that bag = (A4, leag, ce R?ag) is a structure that satisfies A C A and |A| < m,
and 7: A — TP(yp) is a map that assigns a 1-type to every element in bag.

Let (T, L) be a X-labeled tree. For convenience, we use bag,, to refer to the first
component of L(w) and 7, to refer to the second component, that is, L(w) = (bag,,, T)-
Moreover, dom,, is shorthand for dom(bag,,). For an element d € A, we say that
v,w € T are d-equivalent if d € dom,, for all u on the unique shortest path from v
to w. Informally, this means that d represents the same element in bag, and in bag,,.
In case that d € dom,,, we use [w]g to denote the set of all v that are d-equivalent
to w. We say that (T,L) is type consistent if, for all d € A and all d-equivalent
v,w € T, 17,(d) = Ty(d). Each type consistent (7, L) represents a type decorated
tree-like structure (7', bag’, 7’) of width at most m as follows. The domain of A7 bag')
is the set of all equivalence classes [w]g with w € T and d € dom,,. The function 7/ maps
each domain element [w]y to 7, (d), which is well-defined since (7', L) is type consistent.
Finally, for every w € T, the structure bag’(w) = (A(w), leag(w), e R?ag(w)) is defined
by:

A(w) = {[w]q]|de domy},
Rl?ag'(w) = {([w]du SRR [w]dj) | (dla ce 7dj) S R?agw} for 1 <7</

7

Conversely, for every type decorated tree-like structure (7', bag, 7) of width m, there is
a Y-labeled tree (T, L) that represents a type decorated tree-like structure (7', bag’, 7’)

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 115

such that there is an isomorphism 7 between (7 ag) and A7 5,1y that satisfies 7(d) =
7'(7(d)), for all d € dom(T,bag). In fact, since A is of size 2m, it is possible to
select a mapping 7 : dom(7T,bag) — A such that for each w € T \ {¢} and each
d € dom(w) \ dom(w - —1), we have w(d) ¢ {m(e) | e € dom(w - —1)}. Define the
Y-labeled tree (T, L) by setting, for all w € T', bag,, to the image of bag(w) under 7
and 7, to the map defined by 7,(h(d)) = 7(d), for all d € dom,,. Clearly, 7 satisfies
the desired properties.

The notion of a witness tree carries over straightforwardly from type decorated
tree-like structures to type consistent Y-labeled trees. In fact, one only needs to
replace 7 with 7, in Condition (x). Then, there is a witness tree for ¢(a) in a type
consistent (7', L) iff there is a witness tree for ¢(a) in the type decorated tree-like
structure (T, bag’, 7’) represented by (T, L). The notion of properness also carries over
straightforwardly. For easier reference, we spell it out explicitly below, and also replace
the homomorphisms from the original formulation by witness trees as suggested by
Lemma 5.2.4. A type consistent -labeled tree (T, L) is proper if for all w € T and
a € domy,,

1. for all Jxp(x) € cl(po), Fzp(zx) € Ty(a) iff there is a v € T, b € dom, with
p(x) € Tu(b);

2. for all C2RPQs ¢(z) € cl(po), ¢(x) € Ty(a) iff there is a witness tree for ¢(a) in
(T, L).

It is straightforward to verify that (7', L) is proper iff the type decorated tree-like
structure (T, bag’, 7’) represented by (T, L) is proper. Thus, our aim is to build a 2ATA
A that accepts exactly the proper type consistent Y-labeled trees (7', L) such that
o € Tw(a) for some w € T and a € domy,.

Automata construction. Let n be the size of ¢y, kK = n?4n the bound on the outdegree
from Lemma 5.2.2, and assume from now on that the automata run over k-ary 3-labeled
trees. It is straightforward to construct a 2ATA Ay that accepts (T, L) iff it is type
consistent and satisfies Condition 1’ of properness and the condition that ¢g € 7, (a) for
some w € T and a € dom,,. The number of states of the automaton is linear in the size
of o; details are omitted. We next show how to construct a 2ATA A; = (Q, X, qo, 6, F)
that accepts a type consistent (7', L) iff Condition 2’ is satisfied. The automaton uses
the set of states

Q = {a0} U{p(a),7(a) | ¢(a) € acl(po, A,n”)}.

where states of the form p(a) are used to verify the ‘only if’ part of Condition 2" while
states of the form p(a) are used to verify the contrapositive of the ‘if’ part, that is,
whenever a C2RPQ ¢(x) € cl(yg) is not in 7,(a), then there is no witness tree for p(a)
in (T, L).

Starting from the initial state, .A; loops over all nodes and domain elements using
the following transitions, for all (bag, 7) € X:

5o (bag, 7)) = A Ga)n A (A e@r A P)

1<i<k ac€dom(bag) p(z)eT(a), —p(z)eT(a),
p(z) a C2RPQ p(z) a C2RPQ

We next give transitions for states of the form ¢(a) € qcl(po, A, n?). Informally, if the
automaton visits a node w in state ¢(a), then this is an obligation to show that there

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 116

is a witness tree whose root is labeled with (w, p(a)). In particular, the automaton
has to demonstrate that there are suitable successors for the root of the witness tree,
implementing Condition (). For a more concise definition of the transitions, we
first establish a suitable notation. Let ¢(a),d1(ay),...,%(as) € qcl(¢o, A,n?) and
(bag,7) € X. We write p(a) —(pag,r) V1(a1), . .., Je(ay) if there is a (A, n?)-subdivision
J(a’) of p(a), a splitting Jj(ay), . .., ¥ (ay) of J(a’), a homomorphism h from 9J;(ag)
to bag given 7, and ¥;(a;) is obtained from ¥;(a}) by replacing each variable x in
the domain of h with the constant h(x); please note that this is an essential part of
Condition (). Then, we include for each p(a) € qcl(pg, A, n?) and each (bag,7) € ¥
the transition

(p(a), (bag, 7)) = V AV Goia)

©(a)= (bag,) V1 (a1),.-,0¢(ar) 1<i<l je[k]\{0}

if a C dom(bag) and set d(¢(a), (bag, 7)) = false otherwise. States of the form (a) are
treated dually, that is, using the transitions

6(p(a), (bag, 7)) = A Vo A Gia)

©(a) = (bag,r)V1(a1),.-,0¢(ag) 1<i<l je[k]\{0}

if a C dom(bag) and setting d(@(a), (bag, 7)) = true otherwise.

To ensure that the witness trees constructed by the states of the form ¢(a) are
finite, we use the parity condition F' = G, Ga with G1 = qcl(pg, A, n?) and G = Q.
From an accepting run of A; on an input tree (T , L), one can extract the witness
trees that are required to show that the ‘only if’ direction of Condition 2’ is satisfied.
Moreover, the run demonstrates that the witness trees forbidden by the ‘if’ direction
do not exist. We thus obtain the following.

Lemma 5.3.1. The UNFO™® sentence ¢ is satisfiable iff L(Ao) N L(A1) is not empty.

Putting together Lemmas 5.2.1, 5.2.3, and 5.3.1, it follows that satisfiability
in UNFO™® is in 2EXPTIME. The corresponding lower bound is inherited from
UNFO [tCS13].

Theorem 5.3.2. In UNFO™, satisfiability is 2EXPTIME-complete.

Proof. The lower bound follows from that for UNFO [tCS13]|. For the upper
bound, let ¢ be a UNFO™® sentence of size n. By Lemma 5.2.1, we can transform ¢
into an equivalent normal UNFO"™8 sentence ¢y whose width m and atom width m’
are polynomial in n and whose size is single exponential in n. Note that the number of
1-types for g is double exponential in n and that, by the bounds stated in Lemma 5.2.1
and by Lemma 5.2.3, the cardinality of qcl(¢g, A, n?) is single exponential in n.

We then build Ay and A; for ¢q as described above. The number of states of A is
exponential in n and, by the bound on qcl(pg, A, n?) stated above, the same is true for
the number of states of A;. The alphabet X is of cardinality double exponential in n.
The transition functions of Ay and A; can be computed in time double exponential
in n. Constructing the intersection 2ATA does not increase the number of states. In
summary, the final 2ATA A can be constructed in time double exponential in n and has
single exponentially many states in n. The number of sets in the parity condition is a
constant. Consequently, nonemptiness of A can be decided in time double exponential
in . d

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 117

5.4 OMQ Evaluation and Containment

We study the computational complexity of OMQ evaluation and OMQ containment in
(UNFO™8, UC2RPQ). Recall that the complexity of OMQ evaluation can be measured
in different ways. In combined complexity, both the OMQ and the database on which it
is evaluated are considered to be an input. In data complexity, the OMQ is fixed and
the database is the only input. We first state our main result regarding the combined
complexity of OMQ evaluation and the complexity of OMQ containment.

Theorem 5.4.1. In (UNFO™& UC2RPQ),
1. OMQ evaluation is 2EXPTIME-complete in combined complexity and
2. OMQ@ containment is 2EXPTIME-complete.

The upper bounds in Theorem 5.4.1 are a consequence of Lemmas 5.1.1 and 5.1.2
and Theorem 5.3.2. The lower bounds hold already when predicates are at most binary.
For Point 1 this follows from the fact that OMQ evaluation is 2EXPTIME-hard even for
OMQs from the class (ALCZ,CQ) where the ontology is formulated in the description
logic ALCZ, a fragment of UNFO with only unary and binary predicates, and the
actual query is a CQ [Lut08]. The same is true for Point 2 since in (ALCZ,CQ), OMQ
evaluation can be reduced in polynomial time to OMQ containment in a straightforward
way.

5.4.1 Data Complexity

We next study the data complexity of (UNFO™8 UC2RPQ). A cONP lower bound is
again inherited from (rather small) fragments of (UNFO™8 C2RPQ) [KL07, CDL"13].
We give a CONP upper bound, thus establishing the following.

Theorem 5.4.2. OMQ evaluation in (UNFO™8, UC2RPQ) is CONP-complete in data
complexity.

Instead of directly considering OMQ evaluation, we work with a problem that we
call database satisfiability. A database D is satisfiable with an UNFO"™ sentence ¢
if there is a model of ¢ that extends D. Let ¢ be an UNFO™® sentence and X a set
of predicate symbols. The database satisfiability problem associated with ¢ and % is
to decide, given a X»-database D, whether D is satisfiable with ¢. Note that OMQ
evaluation can be reduced in polynomial time to Boolean OMQ evaluation as in the
proof of Lemma 5.1.1. Moreover, for a Boolean OMQ @ = (O, %, q) and a Y-database
D, D |~ Q iff D is satisfiable with O A =q. Consequently, a CONP upper bound for
OMQ evaluation in (UNFO™8, UC2RPQ) can be proved by establishing an NP upper
bound for database satisfiability in UNFO"™®.

Let g be an UNFO™® formula and ¥ a set of predicate symbols. We may assume
w.l.o.g. that (g is normal and that every symbol from ¥ occurs in ¢g. Subdivisions
and splittings, defined as in Section 5.2, shall again play an inportant role. However,
instead of subdividing an atom A(t,t') into at most n? many atoms, we use at most
two intermediary points. Informally, this splits a witnessing path for A(¢,t’) into three
parts: the first part is from ¢ to the first element from D that appears on the path, the
third subdivision atom represents the part from the last element from D that appears
on the path to ¢/, and the second atom represents the remaining middle part of the
path.

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 118

We use ecl(¢p) to denote the union of cl(¢g) and qcl(pg), closed under single negation,
where qcl(¢p) is qcl(po, {z},2) extended with the set of all A[qo/s, F/{s'}](x,z) such
that A is an NFA that occurs in g and s, s’ are states in A. An extended 1-type for
©o is a subset t C ecl(pg) such that ¢ satisfies the conditions for being a 1-type from
Section 5.2. We denote with eTP(pg) the set of all extended 1-types for ¢p.

Let D be a ¥-database. A type decoration for D is a mapping 7 : dom(D) — eTP (o).
We write D, 7 = A(a,b) if D | A(a,b) with the semantics of tests reinterpreted: instead
of demanding D | ¢(a’) for a test p(z)? to hold at an element a’, we now require that
o(x) € 7(d'). Let p(a) be an (instantiated) C2RPQ. A homomorphism from p(a) to
D given 7 is a function h : a U var(¢) — dom(D) such that the following conditions are
satisfied: h(a) = a, h(t) € R for each R(t) € p(a), and for each A(t,t') € ¢(a), there
are ap,...,a, € dom(D) and states sg,..., s, from A, and a word vy - - - ,,—1 from the
alphabet of A such that

(a) a1 = h(t), a, = h(t'), so = qo, and s, € F,

(b) (ai,air1) € RP if v; = R, (ai11,a;) € RP if y; = R™, and 6(x) € 7(a;) and
ai+1 = a; if v; = 0(x)?, for 1 <i < n, and

(c) (s,v4,8i41) € A for some s with A[go/si, F/{s}](x,x) € T(ait+1), for 0 <i < n.

Note that Condition (c) admits the spontaneous change from state s; to state s at
ai+1, without reading any of the v; symbols, when the atom Alqo/s;, F'/{s}|(z,x) is
contained in 7(a;41), asserting that we can indeed get from s; to s starting at a;11 and
cycling back there while reading some unknown subword.

A type decoration 7 is called proper if for all a € dom(D), the following hold:

L. Ay(z)er(a) ¥(a) is satisfiable;
2. dxp(z) € T(a) iff Jzp(z) € 7(b), for all a,b € dom(D) and all Fxp(z) € cl(py);

3. if =)(x) € 7(a) for some ¥ (x) € qcl(pp), then for each (dom(D),2)-subdivision
Y(a) of ¥ (a) and each splitting Yo(ag), ?1(a1), ..., (as) of ¥(a) such that there
is a homomorphism h from ¥y(ag) to D given 7, there is an ¢ € {1,...,k} such
that —v;(z) € 7(a;).

Our NP procedure for database satisfiability is, given a Y»-database D, to guess a
type decoration 7 for D and to then verify in deterministic polynomial time that D
is proper. Note that the size of a type decoration is O(c - |D|) for some constant
c. The satisfiability checks in Point 1 of properness concern sentences whose size is
independent of D, thus they need only constant time. Point 2 can be checked in time
quadratic in the size of D. For Point 3, note that there are only polynomially many
(dom(D), 2)-subdivisions and splittings (in the size of D). To check the existence of
the required homomorphism h, we can go through all candidates, directly verifying the
homomorphism condition for relational atoms and proceedings as follows for NFA atoms:
first extend D by exhaustively adding ‘implied facts’ of the form A(a,b), also taking
into account assertions of the form Alqo/s;, F//{s}](z, x) that occur in 7-labels, as in
Condition (c) above, and then treat NFA atoms like relational atoms. The following
lemma finishes the proof of Theorem 5.4.2.

Lemma 5.4.3. D is satisfiable with ¢ iff D has a proper type decoration T such that
o € T(ag) for some ag € dom(D).

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 119

Proof. The ‘only if’ direction is rather straightforward. Let 2 be a model of D
and ¢g. Then we can define, for every a € dom(D),

7(a) = {¢(z) € ecl(po) | A |= p(a)}.

We aim to show that 7 is a proper type decoration of D and that ¢y € 7(ag), for some
ap € D. The latter is clear as, by assumption, 2l = ¢o. We verify Point 1 to 3 of
properness. Points 1 and 2 are clear as 7(a) is read off from a model of 7(a). Assume
to the contrary of what we aim to show that Point 3 is violated. Then there is an
a € dom(D), a ~(x) € 7(a) for some ¥(z) € qcl(pp), a subdivision J(a) of ¢¥(a), a
splitting Yo (ag), 91(a1),. .., 0% (ki) of ¥(a) and a homomorphism A from Jy(ag) to D
given 7, such that —9;(x) ¢ 7(a;), for all 1 < i < k. By definition of 7, we get that
2 = vY;(a;), for all i. It can be verified that this implies 2 |= 1(a), in contradiction to
—)(x) € 7(a). Thus, T is proper.

Now for the ‘if” direction. Assume that D has a proper type decoration 7. Then we
find, for each a € dom(D), a model 2, of the formula in Point 1 of the definition of
properness. We assume w.l.o.g. that the domains of 2, and 2, are disjoint when a # b
and that each 2, shares with D only the constant a. Let 2 be obtained by taking the
union of D and all models 2,. Clearly, 2l is a model of D. It thus remains to show
that it is also a model of pg. We start with an auxiliary claim.

Claim. For all a € dom(D), b € dom(2(,), and for all p(x) € ecl(pp) with a free
variable z, we have 2, = ¢(b) iff A = ¢(b).

Proof of the Claim. The proof is by induction on the structure of ¢(x). Since
©p is normal, there are three cases: negation —p(x), unary disjunction ¢(x) V 1 (z),
and C2RPQs ¢(x). Negation and unary disjunction are immediate; we consider only
C2RPQs.

Let ¢(x) € ecl(¢p) be a C2RPQ. For (=), assume that 2, = ¢(b), that is, there is
a mapping h : var(¢) — dom(2l,) such that h(xz) = b and

e h(x) € R for all R(x) € ¢(z), and
o A, = A(h(2),h(2")) for all A(z,2') € p(z).

By definition of 21 and the induction hypothesis applied to tests in A(z, 2), we also
have

e h(x) € R* for all R(x) € o(z), and

o A= A(h(z),h(Z)) for all A(z,2") € ().
Thus, we obtain 2 = ¢(b).

For (<), assume that 20 = ¢(b), that is, there is a mapping h : var(¢) — dom(2()
such that h(z) = b and

e h(x) € R* for all R(x) € o(z), and

o A= A(h(z),h(2")) for all A(z,2") € p(z).

Fix a € dom(D) such that b € dom(2,), and let U = {a} U (dom(2) \ dom(2,)). We
first define a query o(z), which intuitively contains those parts of ¢ that are mapped
to U by h (that is, outside 2,); the free variable x ‘represents’ the domain element a.
Formally, we process ¢(x) as follows:

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 120

1. for all R(x) € p(z) with h(x) € dom(2l,), we have, by construction of 2, that
h(x) C U. In this case, we include R(x’) in ¢y(z), where x’ is obtained from x
by renaming every y € x satisfying h(y) = a with .

2. for all A(z,2') € p(x), there are sequences aq,...,an, So,---,Sy, and a word
V1 Up—1 € L(A) such that a1 = h(z), ap, = h(Z'), so = qo, sn € F, (si, Vi, Si11) €
A, for all i € {1, e, — 1}, (ai,aHl) e R¥ if vi = R, (aiH,ai) € R if vi=R",
and 6(z) € 7(a;) and a;41 = a; if v; = 0(x)?.

For all ¢,7 with 1 <4 < j < n such that a;,...,a; is a subsequence of aq,...,a,
maximal with ay € U for all i < k < j, we distinguish four cases:

e if i =1 and j = n, then add A[F/{s,}|(z,2") to 1o(x),

e if i =1 and j # n, then add A[F/{s;_1}](z,2) to ¢o(x),

e if i # 1 and j = n, then add Alqo/si—1, F/{sn}](z,2") to o(x),
e if i #£ 1 and j # n, then add Ago/si—1, F/{sj-1}](x, x) to .

Note that a; = a in the first, a; = a, in the second, and a; = a; = a in the last
case.

Let 91(x),...,¥r(z) be all connected components of ¢y(x) with x considered as ‘con-
stant’. It is not hard to see that ;(z) € qcl(yo), for every ¢ € {1,..., k}.

Assume first that 2, = ¥i(a), foralli € {1,...,k}. In this case, we can modify h and
the witnessing sequences to ‘live’ completely in 2(,, and thus obtain A, = ¢(b). Assume
now that A, ¥~ ¥;(a), for some i € {1,...,k}. By Point 1, we have —);(x) € 7(a). We
now derive a contradiction to Point 3 using the mapping h from above. For doing so, we
assume that dom(D) = {by,...,b¢} and define queries ¥y(ag),] (b1) ..., (b), where
intuitively ¥o(ag) contains those atoms from v;(z) which are mapped to dom(D) by h
while ¥(b;) contains all atoms which are mapped to 2, by h. Formally, we proceed as
follows:

e for all R(x) € 1;(z), we either have h(x) € RP or h(x) € R™, for some j. In
the former case, add R(x) to Jo(a); in the latter case, add R(x) to ¥(b;), where
x’ is obtained from x by replacing every y € x satisfying h(y) = b; with bj;

e Let A*(z,2’) be an atom that was added in Step 2 above, and let a;,...,a; and
Si—1,.-.,8j be the sub-sequences corresponding to this atom which were assumed
there. Depending on where the sequence a;, ..., a; lies with respect to dom(D),
we distinguish five cases.

— If{a;,...,a;} is disjoint from dom(D), then there is a k such that {a;,...,a;} C
dom(2p,). Add A*(z,2") to 9. (bx) in this case.

— If {a;,...,a;} is not disjoint from dom(D) and a;,a; ¢ dom(D), then let [, u
be the unique numbers with i < < u < j such that a;, a,, € dom(D) but
ar, ¢ dom(D) for all i < k < land all u < k < j. Moreover, fix k, k' such that
a; € dom(Rey,) and a; € dom(Ap,,). Note that a; = by and a,, = by in this
case. Then add A*[F/{s;—1}|(z, a;) to ¥}, (a;), A*[qo/s1-1, F/{su-1}](ar, av)
to Yo(ap), and A*[qo/su—1](au,2’") to 95/ (ay).

— If a; € dom(D) and a; ¢ dom(D), then let u be the unique number with
i <u < j such that a, € dom(D), but a; ¢ dom(D) for all u < k < j, and
fix k£ such that a; € dom(2,,). Note that a, = by in this case. Then add
A*[F/{su-1}|(a;,ay) to Jg(ag) and A*[qo/su—1](au, 2’) to U} (av).

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 121

— If a; € dom(D) and a; ¢ dom(D), then let [be the unique number with
i <1 < j such that a; € dom(D), but a; ¢ dom(D) for all i < k < [, and
fix k such that a; € dom(2y,). Note that a; = by, in this case. Then add
A*[F/{si—1}|(z, ;) to ¥}, (a;) and A*[qo/s1—1](ar, a;) to Yo(ap).

— If a;,a; € dom(D), then add A*(a;,a;) to ¥g(ap)

Now obtain a sequence ¥ (a1),...,0%(ar) by replacing each ¥(b;) with its connected
components. It should be clear that ¥g(ag), 91(a1) ..., %k (ar) is a splitting of a subdivi-
sion of ¥;(a). Moreover, h is a homomorphism from Jy(ag) to D given 7. However, by
construction of 9J;(a;), it should be clear that 2,, = ¥;(a;), for all i. Thus, ¥;(z) € 7(a;)
for all ¢, a contradiction to Condition 3. This finishes the proof of the Claim.

Based on the previous claim, we can establish by structural induction that, for all
sentences ¢ € ecl(yg), we have:

¢ € 7(a) for all a € dom(D) iff A= .

Note that Condition 2 is used to prove the induction base. As ¢ € 7(agp) for some
ap € dom(D), this yields the desired 2 = ¢o. 0

5.5 Model Checking

We show that model checking in UNFO™® is complete for PNP[O(log? ™1 the class of
problems that can be solved in polyniomial time given access to an NP oracle, but with
only O(log2 n) many oracle calls admitted. It thus has the same complexity as model
checking in UNFO. Formally, the model checking problem for UNFO™® is as follows:
given a finite structure 2 and a UNFO"™8 sentence ¢, does 2 = ¢ hold? Without tests
in path expressions, UNFO™® model checking can easily be reduced to model checking
in UNFO: simply extend the input structure by exhaustively adding ‘implied facts’
of the form .A(a,b) and then replace every A with a fresh binary relation symbol in
both ¢ and 2, obtaining an instance of UNFO model checking. With tests, this does
not work. We would need multiple calls to UNFO model checking, essentially one call
for every subformula inside a test in the input formula, but this bring us outside of
PNPIOog®)] W thus resort to expanding the PNP[O(log” "lupper bound proof from
[tCS13], which is by reduction to a PNPIO(og® m]_complete circuit value problem.

Theorem 5.5.1. The UNFO™® model checking problem is PNP[O(log? "_complete.

Proof. The lower bound follows from that for UNFO [tCS13]. For the upper bound,
we give a polynomial-time reduction of the model checking problem for UNFO"™® to
a restricted version of the problem ‘Tree Block Satisfaction’, which was shown to be
PNPIO(log® "l_complete in [Sch03]. This version, called TB(SAT) in [tCS13], is defined
as follows.

A TB-tree of width k > 1 is a tree consisting of blocks, where each block is a kind of
Boolean circuit that has k outputs and, for each of its n children, has k inputs,' see
Figure 5.1. The i-th output of a block is determined by the values of its inputs in a
way defined by an existentially quantified Boolean formula (3QBF) x; of the form

Xi = 3bici ... bpcepd (e1 = input; (b1) A ... A ¢p =input; (by,) A 1), where

im

In the general case [Sch03], a block may have additional inputs, which do not connect to children
and are thus inputs of the TB-tree. Our version does not allow this; i.e., we restrict ourselves to
TB-trees without inputs.

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 122

° il,...,im <mn;
e cach b; is a tuple of log k£ variables, encoding a number #b; < k;

e input; (b;) represents the value of the #bj-th output bit of the ;-th child block
(e.g., if #b; =5, then inputy(b;) = yéz) in Figure 5.1);

e) is a Boolean formula using any of the existentially quantified variables.

Z1 Z9 e Zk
X1 X2 00 Xk
AU),

Figure 5.1: A block in a TB-tree of width k with n children.

TB(SAT) is the following problem: given a TB-tree of width &, does the first output
bit of the root block have value 17 For the reduction, we show how to construct, for a
given UNFO™® sentence ¢ and structure 2, a TB-tree Ty, such that

Ty, is a yes-instance of TB(SAT) iff 2= o. (%)

Let |dom(21)| = k£ and assume a linear order on the elements of 2 from 1 to k. For a
given a € dom(2), we use #a to denote the position of a in this order. We construct
Ty, of width k via induction on the structure of ¢. The construction satisfies the
following invariant: For every subformula v (z) of ¢ with at most one free variable, and
every a € dom(2) with #a = 1,

The i-th output gate of Ty y(y) is true iff A =(a). (%)

It is easy to see that (xx) implies (x): just set ¥(x) = ¢ and ¢ = 1. Furthermore, (xx)
is readily checked in every step of the induction.

The shape of each Ty y(,) will roughly reflect that of the syntactic tree of ().
When we construct the 3QBFs x; of each block, we will use b to denote a vector of
log k variables and #b = i as a shorthand for the Boolean formula expressing that b
represents the binary encoding of i.

Let 1 (z) be a subformula of .

Case 1: (x) = =(x). Construct Ty y(,) from Ty y(,) by adding a new root block
whose i-th output is defined by the formula that negates the i-th input of the single
child:

xi := Jbc (¢ =inputy(b) A #b =i A ¢=0)

Case 2: (x) is built from atomic formulas and UNFQO"®# formulas in one free variable
using conjunction, disjunction, and existential quantification. Let yi,...,y, be the
variables in ¢ (z) that are quantified on the ‘top level’, i.e., outside the scope of any
test in ¥ (x). Let ¥1(21),...,9m(2m) the maximal subformulas in one free variable,
where z; € {x,y1,...,yn} for all i < m. We can assume w.l.o.g. that the z; are distinct

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 123

and coincide with y1,...,yn: if they are not, then one can always introduce additional
quantified variables and equality atoms. We construct Tgy ;) from the Ty y,(,) by
adding a new root block whose children are the roots of the Ty y,(,), and whose i-th
output is defined by the formula

xi = dbici...bmcmbmy . (/\ cj = |nput)) A Xa,
j<m
where the b, ¢; are used to refer to the values of the subformulas ¥;(y;), the by,41,..., by,

correspond to the additional y; and xg is obtained from (x) as follows:
e Every subformula 9;(y;) is replaced by c;.
e Every equational atom x = y; is replaced by #b; =7 and y; = y, by #b; = #b,.

e Every relational atom R(y;,, .. .,y;,) is replaced by a Boolean formula enumerating
all tuples in R¥:

V' (#by =#ar A A #by, = #ar)

(a1,...,ap)ER%

e Every regular atom A(y;, ys) is replaced with the Boolean formula

Vo (#b = #a A #by = #b A),

a,bedom(A)

where a4 4 is an JQBF that evaluates to true iff there is a path from element a
to b in A that is accepted by A. After bound renaming, the quantifiers from a4 43
can be moved forward such that x; becomes a well-formed dQBF. To encode A’s
behavior in a4 45, we assume that A = (Q, %, qo, A, F), where

— @ with |Q] =t is the set of states;

— Y ={R,R™ | R a binary predicate in ¢} U{d(x)? | ¥(z)? a test in ¢} is the
input alphabet;

— qo is the initial state;
— A CQ x X x(Q is the transition relation;

— F C (@ is the set of accepting states.

For every p,q € @, denote with A[p, ¢] the NFA obtained from A by setting p to
be the initial state and ¢ to be the only accepting state.

The encoding uses Boolean variables qu ap With £ <1k, p,g € Q, and a,b €
dom(2(). The truth value of the variable iL‘p7 g, Indicates whether there is a path
of length ¢ from a to b in 2 that is accepted by A[p, ¢]. It is clear that, whenever
there is some path from a to b accepted by Alp, g|, then there is always a path of
length < t- k because one can always omit loops between two positions in a path
that agree in state and element visited. Therefore the above restriction ¢ <t -k
suffices for a correct modeling of A’s behavior, and the number of variables needed

is polynomial.

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 124

The formula a4 4 enforces the correct truth values of these variables via induction
on ¢ and requires that some z¢ b with gy € F be true:

q0,9
o / / / / h _ht
Qdap = 3byicyy. . by pCn 3 Tp,q.a,b El Lpg.ab
hZO,,‘Q| h:07a|Q‘
P,qEQ 0=1,....k
a,bedom(A) q€Q
a,bedom(A)
/ . / /I
/\ ij[= Inputj(bj/) A #b]l =)
J<m <k
l
AN BaAyandan \\ Lqo,q5,ab >
L<t-kqrel

where the b;j, c;% make the values of all ¥;(y;) in all elements of the structure

accessible for evaluating tests in regular atoms, the ach and Ehz will be used
below to evaluate regular atoms, and the conjuncts 84,74, 04 have the purpose
to set the xe for £ =0, ¢ =1, and £ > 2, respectively. They are defined as

follows.
_ 0 0
Ba= /\ Tgqaa N /\ “Tpq.ab
qeQ P,gEQ
acdom(2A) a,bedom(2A)
p#q or a7#b
1 1 1 / /

VA= /\ Tpgab /\ Tpgba /N /\ (xp,q,a,a Al C#a) N YA

(p,R,q)EQ (p,R™,9)€Q (p,¥;7,0)€Q

(a,b)eR® (a,b)eRY aedom(2A)

where 7:4 is the conjunction of ﬁxl for all 3:1 that do not occur in the
preceding conjuncts of v4. Finally,

_ {41 1 l+1
644 - /\ (xp,q,a,b = \/ (:Ep,r,a,c A x'r,q,c,b))
Peq req
a,bedom(2A) cedom(2A)
1<e<t-k

Case 2 also covers the case where ¢(z) has no subformula with one free variable. It
is easy to check that the invariant (xx) holds and that Ty, can be constructed in
polynomial time. d

5.6 Concluding Remarks

We have proved that OMQ evaluation in (UNFO™8 UC2RPQ) is decidable, 2EXPTIME-
complete in combined complexity, and CONP-complete in data complexity, and that
OMQ containment and satisfiability are also 2EXPTIME-complete. There are several
interesting topics for future work. First, in contrast to UNFO, UNFO™& does not have
the finite model property and thus it would be interesting to study OMQ evaluation
over finite models as well as finite satisfiability. Second, there are various natural
directions for further increasing the expressive power. For example, one could allow
any UNFO™® formula with two free variables as a base case in regular path expressions
instead of only atomic formulas. Such a logic would be strictly more expressive than
propositional dynamic logic (PDL) with converse and intersection [GLL09] and it would

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 125

push the expressive power of UNFO™® into the direction of regular queries, which
have recently been proposed as an extension of C2RPQs [RRV17]. Another natural
extension would be to replace C2RPQs with linear Datalog to remove the asymmetry
between binary relations and relations of higher arity in UNFO"&. Additional relevant
extensions could arise from the aim to capture additional description logics. From this
perspective, it would for example be natural to extend UNFO"™8 with constants, with
fixed points, and with so-called role inclusions [BHLS17]. Since functional relations and
similar forms of counting play an important role in description logics, we remark that
it is implicit in [tCS13] that satisfiability (and thus OMQ evaluation) is undecidable
in UNFO extended with two functional relations. Finally, it would be interesting to
investigate the complexity of OMQ containment in (UNFO™8 C2RPQ) without the
restriction to a single ontology and to the full data signature. For (UNFO, CQ), a
2-NEXPTIME upper bound can be proved by a slight adaptation of the technique in
[BL16], also using (a slightly refined version of) the translation from (UNFO, CQ) to
monadic disjunctive Datalog from [BtCLW14]. However, accommodating C2RPQs in
this approach seems nontrivial.

Chapter 5. Ontology-mediated Querying in UNFO with Regular Path Expressions 126

CHAPTER O

Relation-Changing Modal Logics as Fragments of Hybrid Logics

Modal logics [BvB07, BARV01] were originally conceived as logics of necessary and
possible truths. They are now viewed, more broadly, as logics that explore a wide
range of modalities, or modes of truth: epistemic (“it is known that”), doxastic (“it is
believed that”), deontic (“it ought to be the case that”), or temporal (“it has been the
case that”), among others. From a model-theoretic perspective, the field evolved into a
discipline that deals with languages interpreted on various kinds of relational structures
or graphs. Nowadays, modal logics are actively used in areas as diverse as software
verification, artificial intelligence, semantics and pragmatics of natural language, law,
philosophy, etc.

As we just mentioned, from an abstract point of view, modal logics can be seen as
formal languages to navigate and explore properties of a given relational structure. If
we are interested, on the other hand, in describing how a given relational structure
evolves (through time or through the application of certain operations) then classical
modal languages seem a priori to fall short of the mark. Of course, it is a priori possible
to statically model the whole space of possible transformations as a graph, and use
modal languages at that level, but this soon becomes unwieldy. It is also possible to
represent model update conditions as parts of the model itself, and interact with them
by means of the classical modal language. This is the approach taken by Gabbay’s in
his study of reactive Kripke frames [Gab08, Gab13]. Alternatively, it is possible to use
standard relational models, and use modal languages with dynamic modalities encoding
the desired changes.

There exist several dynamic modal logics that fit in this last approach. A clear
example are the dynamic operators introduced in dynamic epistemic logics (see,
e.g., [vDvdHKO7]). These operators are used to model changes in the epistemic state of
an agent by removing edges from the graph that represents the information states the
agent considers possible. A less obvious example is given by hybrid logics [AtC07, BS95]
equipped with the down arrow operator | which is used to ‘rebind’ names for states
to the current point of evaluation. Finally, a classical example is Sabotage Logic
introduced by van Benthem in [vB05]. The sabotage operator deletes individual edges
in a graph and was introduced to solve the sabotage game. This game is played on a
graph by two players, Runner and Blocker. Runner can move on the graph from node
to accessible node, starting from a designated point, and with the goal of reaching a

127

Chapter 6. Relation-Changing Modal Logics as Fragments of Hybrid Logics 128

given final point. Blocker, on the other hand, can delete one edge from the graph every
time it is his turn. Runner wins if he manages to move from the origin to the final
point, while Blocker wins otherwise. Van Benthem turns the sabotage game into a
modal logic, where the (global) sabotage operator (gsb) models the moves of Blocker,
and is interpreted on a graph M at a point w as:

M, w = (gsb)p iff there is a pair (u,v) of M such that My w =

where M(:L,v) is identical to M except that the edge (u,v) has been removed. The
moves of Runner, on the other hand, can be modeled using the standard < operator of
classical modal logics.

More recently, Sabotage Logic was proposed as a formalism for reasoning about
formal learning theory [GKVQO09]. Learning can be seen as a game with two players,
Teacher and Learner, where Learner changes his information state through a step-by-
step process. The process is successful if he eventually reaches an information state
describing the real state of affairs. The information that Teacher provides can be
interpreted as feedback about Learner’s conjectures about the current state of affairs,
allowing him to discard inconsistent hypotheses. It should be clear that from this
game-theoretical perspective, the interaction between Teacher and Learner can be
modeled using Sabotage Logic.

The dynamic approach seems appealing and very flexible: it is easy to come up
with situations that nicely fit and extend the examples we just mentioned. Discovering
alternative routes for Runner in van Benthem’s sabotage game, or possible shortcuts
that Learner can take in learning theory can be modeled by adding new edges to the
graph. Swapping an edge can be used to represent other scenarios such as changing
the direction of a route, or allowing Learner to return to a previous information state.
All these primitives can also be turned into a modal logic in the same way as Sabotage
Logic, in order to get a formal language for reasoning about the games.

Motivated by scenarios like the ones we just described, we investigate three dynamic
primitives that can change the accessibility relation of a model: sabotage (deletes edges
from the model), bridge (adds edges to a model), and swap (turns around edges), both
in a global version (performing changes anywhere in the model) and local (changing
adjacent edges from the evaluation point). The particular operators we will investigate
should be seen as just examples of the possibilities offered by the framework, with no
intention of being complete or comprehensive. Intuitively, they were chosen because
they represented simple, different ways in which a relation could be updated.

The six primitive operators we will study in this chapter were first introduced
in [AFH12] where their expressive power and the complexity of their model checking
problem are investigated. Tableaux methods for relation-changing modal logics were
introduced in [AFH13]. Local swap logic is studied in [AFH14], in particular its decid-
ability problem and its relation with first-order logic. In [AFH15] a general framework
for representing model updates is defined, and connections with dynamic epistemic
logic were introduced in [AvDFS14, AvDFS15]. Finally, we know that the satisfiability
problem for the six relation-changing logics considered is undecidable [AFHM17, Mar15].
We thus study the questions introduced in Section 1.2.3:

Q5 Is it possible to provide translations of relation-changing logics to hybrid logics in
order to obtain decidable fragments?

Q6 Are relation-changing logics as expressive as hybrid logics? How are they related?

Chapter 6. Relation-Changing Modal Logics as Fragments of Hybrid Logics 129

We show that relation-changing logics can be seen as fragments of hybrid logics.
We consider hybrid logic because it is the best known modal logic that can simulate the
semantics of relation-changing operators. We introduce translations to HL(E,), the
basic modal logic extended with nominals, the down arrow binder |, and the universal
modality E (in some cases the translations fall into the less expressive hybrid logic
HL(Q,]), i.e., with the satisfiability operator @ instead of E). We discuss how we can
benefit from known decidable fragments of HL(E,|) to find decidable fragments of
relation-changing modal logics. We also show that relation-changing logics are strictly
less expressive than the hybrid logics they are translated into.

6.1 Relation-Changing Modal Logics

In this section, we formally introduce extensions of the basic modal logic with relation-
changing operators. We call these extensions Relation-Changing Modal Logics (RCMLs
for short). For more details and motivations, we direct the reader to [Ferl4].

Definition 6.1.1 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. The set FORM of formulas over PROP is defined as:

FORM =T |p| ¢ | eAY | Op | #p,

where p € PROP, 4 € {(sb), (br), (sw), (gsb), (gbr), (gsw)}, and ¢,9 € FORM. Other
operators are defined as usual.

We denote ML(#) the extension of BML allowing the ¢ operator, for ¢ €
{(sb), (br),
(sw), (gsb), (gbr), (gsw) }. In particular, ML((sb), (gsb)) will be called Sabotage Logic,
ML((br), (gbr)) Bridge Logic, and ML((sw), (gsw)) Swap Logic.

Semantically, formulas are evaluated in standard Kripke models, and the meaning
of the operators of the basic modal logic remains unchanged (see Section 2.4). When
we evaluate formulas containing relation-changing operators, we will need to keep track
of the edges that have been modified. To that end, let us define precisely the model
updates we will use.

Definition 6.1.2 (Model Updates). We define the following notations:

(sabotaging) Mg = (W,Rg,V), with Rg = R\S, S C R.
(bridging) ME = (W, R{, V), with RE =RUS, S C (WxW)\R.
(swapping) M% = (W, RE, V), with R = (R\S™HUS, S C R~ L.

Intuitively, My is obtained from M by deleting the edges in S, and similarly
qur adds the edges in S to the accessibility relation, and M7% adds the edges in S as
inverses of edges previously in the accessibility relation. These operators can be seen
as particular cases of the jump functions introduced in [Gab99], or the model update
functions from [AFHI15].

In the rest of the chapter, we consider pointed models M, w and use wv as a
shorthand for {(w,v)} or (w,v); context will always disambiguate the intended use.

Definition 6.1.3 (Semantics). Given a pointed model M, w and a formula ¢, we say
that M, w satisfies p, and write M, w = ¢, when

Chapter 6. Relation-Changing Modal Logics as Fragments of Hybrid Logics 130

M,wE=p iff weV(p)
M, w = —p it M,wle
MwEenNy iff MiwkEpand M,wE v
M, w = Qp iff for some v € W s.t. (w,v) € R, M,v =y
Yo iff for some v € W s.t. (w,v) € R,M,,vE ¢

M,w = (br)p iff for some v € W s.t. (w,v) € R, M}, vE¢

w = (sw)p iff for some v € W s.t. (w,v) € R,M},,,v =
w = (gsb)y iff for some v,u € W, s.t. (v,u) € R, My, w ¢
,w = (gbrye iff for some v,u € W, s.t. (v,u) € R, M}, ,wE ¢
w = (gsw)p iff for some v,u € W, s.t. (v,u) € R, M}, ,w = ¢.

We say that ¢ is satisfiable if for some pointed model M, w we have M, w |= ¢.

The meaning of the relation-changing operators (sb) (local sabotage), (br) (local
bridge), (sw) (local swap), (gsb) (global sabotage), (gbr) (global bridge) and (gsw)
(global swap) should be clear from the semantic conditions above. The local operators
alter one arrow which is adjacent to the point of evaluation (deleting, adding and
swapping it, respectively) while the global versions can change an arrow anywhere in
the model.

6.2 Extensions of Modal Logic and Hybrid Logic

In this section, we present several extensions of the basic modal logic. The existential
modality [GP92], written Ep, extends BML in the following way:

M,wE=Ep iff for some v e W, M,v [.

In words, Eyp is true at a state w if ¢ is true somewhere in the model. The E operator,
with its dual A, has been extensively investigated in classical modal logic [Spa93].

Now we consider several traditional ‘hybrid’ operators (see [AtC07] for details):
nominals, the satisfaction operator, and the down-arrow binder. The basic hybrid logic
HL is obtained by adding nominals to BML. A nominal is a propositional symbol
that is true at exactly one state in a model. Fix the signature (PROP,NOM), with
NOM C PROP. For n € NOM, we require that its valuation is a singleton set, i.e., there
is a single state w such that V' (n) = {w}. In addition to nominals, hybrid logic typically
involves the satisfaction operator. For each nominal n, the satisfaction operator is
written @,, and allows us to jump to the point named by n. The formula @, ¢ (read
“at m, ¢”) moves the point of evaluation to the state named by n and evaluates ¢ there.
Its semantics is given by the following clause:

M,w = Qe iff M,v = ¢ where V(n) = {v}.

Observe that if the language has the E operator and nominals, then @, is definable
because @, is equivalent to E(n A).

Finally, consider the down-arrow binder operator, written |. Let the valuation V*
be defined by V,(n) = {w} and V,’(m) = V(m), when n # m. The semantic condition
for | is the following:

(W,R,VY,wE{n.p iff (W R, V) w = ¢.

Chapter 6. Relation-Changing Modal Logics as Fragments of Hybrid Logics 131

The language HL(Q, |) is a reduction class of first-order logic, and is thus undecid-
able [BS95, tC05]. It remains undecidable even with a single accessibility relation, no
satisfaction operator, and only nominal propositional symbols [ABM99]. HL(E,) is
equivalent to first-order logic, since | can define the operators 3 and V when combined
with E and A.

The logic HL(E,]) is not able to modify the accessibility relation of a model.
However, it can use the binder to name states and, hence, it can refer to specific edges
in the model. This will be exploited by the translations introduced in the next section.

6.3 Translations to Hybrid Logics

Relation-changing modal logics and hybrid logics with the binder | are two families of
logics that are dynamic in their own way. The dynamicity of RCMLs is quite obvious:
they are able to modify the accessibility relation in a model in an explicit way. On the
other hand, hybrid logics carefully move nominals around, avoiding to touch anything
else in the model. If we consider both formalisms, it would seem that hybrid logics
are the gentler and weaker of both. However, this is not true. Hybrid logics have the
advantage of surgical precision over RCMLs. Being able to name states of the model
and use these names turns out to be a crucial advantage. As we will see now, naming
can be used to manipulate edges by naming pairs of states using the pattern |z.<ly.p.
We use this naming technique to simulate edge deletion, addition, and swapping.

Our translations are parametrized over a set of pair of nominals S C NOM x NOM.
For a given RCML-formula ¢, we write its translation as a hybrid formula (¢)y. When
translating a formula, S will originally be empty and it will store pairs of nominals
that we will use to simulate the edges affected by the relation-changing operators we
encounter during the translation.

Intuitively, given that the hybrid operators cannot affect the accessibility relation,
we have to simulate the updates by recording possible affected edges using nominals and
J. Notice that as a result, in all the relation-changing logics we will consider, the RCML-
formula ¢4 cannot be simply translated into a hybrid formula ()%, even though we
have < at our disposition in the hybrid language, because in the source language < is
interpreted over the updated accessibility relation. Instead, diamond-formulas need
to be translated in a way that takes into account the edges that should be considered
deleted, added, or swapped. This is why the translation of diamond-formulas involve
the & operator mixed with specific considerations about the set of altered edges S.

Consider Sabotage Logic with either the local or global operator. We use the set
S C NOM x NOM to represent sabotaged edges, i.e., edges that have been deleted in a
given updated model.

Definition 6.3.1 (Sabotage to Hybrid Logic). Let S € NOM x NOM and n € NOM.
We define the translation ()’ from formulas of ML((sb), (gsb)) to formulas of HL(E,])
as:

(P)s= p
()= —(¥)s
(pA)s= (s A5
(Cp)s = In.O(—belongs(n, S) A (¢)s)
((sb)p)s = In.O(—belongs(n,S) A Lm.(©)sunm)
((gsb)p)s = Lk.E{n.O(—=belongs(n, S) A {m.Qr(©)'s m)

Chapter 6. Relation-Changing Modal Logics as Fragments of Hybrid Logics 132

where n, m and k are nominals that do not appear in S, and:

belongs(n, S) = \/ (y N Q)
zyesS

Some explanations are in order to understand the translation. First, given some
model M = (W, R, V') and some set S € NOMxNOM, the formula [n.>(—belongs(n, S))
is true at some state w € W if there exists some state v such that (w,v) € R and
there is no pair of nominals (z,y) € S such that (V(x),V(y)) = (w,v). Observe that
the cases for (sb) and (gsb) modify the set of deleted pairs in the recursive call to the
translation by adding an edge named nm. In the (sb) case, n names the evaluation
state of the formula, while in the (gsb) case, n names some state anywhere in the model.

We will now prove that the translation preserves equivalence. We start by introduc-
ing some preliminary notions and definitions.

First, notice that all nominals used in the translation are bound exactly once. We
can, then, define the following unequivocal notation: let S C NOM x NOM, we define
S = {(z,) | (x,y) € S}, where 7 is the state named by the nominal n € NOM under
the current valuation of a model.

Second, when considering the truth of a translated formula (¢) in some model
M = (W, R, V), one question that may arise is what should be the initial valuation of
the nominals that appear in (¢). Because all nominals in (¢), are bound by |, the
truth value of (¢)s does not depend on their initial valuation. Even if these symbols
are not treated as nominals in the original model M they will be interpreted correctly
when evaluating (). This enables us to talk about equivalence preservation of the
translation over the same model M.

Theorem 6.3.1. For M = (W,R,V) a model, w € W, and ¢ € ML((sb), (gsb)) we

have:
M,w ¢ iff M,w i (9).

Proof. We use structural induction on the relation-changing formula, the inductive
hypothesis being:
Mz, w @ iff (W,R, V'), wl= (p)s

with S C NOM x NOM, and V' is exactly as V except that for all (z,y) € S, there are
v,u € W such that V'(z) = v and V'(y) = u. Boolean cases are straightforward, so we
only prove the non-trivial inductive cases.

@ = Q1 For the left to right direction, suppose Mg, w = Q1. Then there is some
v € W such that (w,v) € Ry and M3, v |= 9. Because (w,v) ¢ S, then there is no
(x,y) € S such that (Z,y) = (w,v). By inductive hypothesis, we have M, v = (¢)%,
and because we can name w with a fresh nominal n, we obtain (W,R,V¥),v |=
—belongs(n, S) A (¥)s. Therefore, we have M, w [= [n.O(—belongs(n, S) A (¥)), and
as a consequence we get M, w = (¥)%.

For the other direction, suppose M, w = (¢)§, i.e., M, w = In.O(—belongs(n, S) A
(1)s). Then we have (W, R, V"), w [= O(—belongs(n,S) A (¢)%), and, by definition,
there is some v € W such that (w,v) € R, (W,R,V,’),v = —belongs(n,S) and
(W, R, V"), v |= (¢)'s. Because we have —belongs(n, S), there is no (z,y) € S such that
(Z,y) = (w,v), which implies (w,v) € R if and only if (w,v) € Rg. On the other hand,
by inductive hypothesis we have Mg, v = 1), then we have ME, w = Q.

¢ = (sb)y: For the left to right direction, suppose Mg, w [= (sb)y. Then there is some
v € Wsuch that (w,v) € Ry and (M), v = ¢. Thisis equivalent tosay Mg v |=

Chapter 6. Relation-Changing Modal Logics as Fragments of Hybrid Logics 133

1. Because (w,v) ¢ S, then there is no (x,%) € S such that (z,7) = (w,v) (®). By
inductive hypothesis we have (W, R, (V')¥)2.),v = (¥)'sUpm, Where V' is exactly as V
but it binds all the nominals which appear in S. By definition, we get (W, R, (V')¥)),v =
Im.(¢¥)s pm. and by (®) we have (W, R, (V')¥)),v = —belongs(n,S) A Llm.(¥)'sm-
Then (by definition) (W, R, V'), v = [n.O(—belongs(n, S) A lm.(¥)s nm), and, as a
consequence, we have (W, R, V'), v = (¢)%.

For the other direction, suppose (W,R,V),w = (¢)s, ie, (W,R V), w =
In.O(—belongs(n, S) A Im.(¥)s nm), where V' is exactly as V' but it binds all the
nominals which appear in S. Then, we have (W, R, (V)¥),w = O(—belongs(n,S) A
Im.(¥)'s nm)s and, by definition, there is some v € W such that (w,v) € R,
(W,R,V,"),v = —belongs(n,S) and (W,R,V,"),v = lm.(¢¥)s pm- Then, we have
(W, R, (V"@)r), v = (¥)sUnm- Because we have —belongs(n, S), there is no (z,y) € S
such that (z,y) = (w,v), which implies (w,v) € R if and only if (w,v) € Rg. On
the other hand, by inductive hypothesis we have MEUM, v | 1, and thus we have
Mz, w = (sb)y.

@ = (gsb)1: this case is very similar to the previous one. a

For Bridge Logic, we use the set B C NOM x NOM to represent the new edges.
New edges present in B mean that the translation of the modality < should be able to
take them. This explains why the translation of & does not look like a & with an extra
condition, but like an E with two possibilities: we traverse an edge that is either in the
original model or an edge from the B set.

Definition 6.3.2 (Bridge to Hybrid Logic). Let B C NOM x NOM. We define ()
from formulas of ML((br), (gbr)) to formulas of HL(E,|) as:

(P)p= p
(~e)p = ~(p)p
(e AP)p= () A (W)p
(C@)p = In.Elm((@,0m V belongs(n,B)) A (¢)5)
((bryg)s = In.Elm.(-@,Om A —=belongs(n, B) A (¢)5Unm)
((gbr)o)s = 1k.Eln.Elm.(-@Q,Om A =belongs(n, B) A Q(¢©)'50m)

where n, m and k are nominals that do not appear in B, and belongs is defined as in
Definition 6.3.1.

Theorem 6.3.2. For M = (W,R,V) a model, w € W, and ¢ € ML((br), (gbr)), we

have:

Mouwk g iff Mok (),

Proof. A similar reasoning can be done with the following inductive hypothesis:
ML w = ¢ iff (W R, V'), w = ()5

with B C NOM x NOM, and V' is exactly as V except that for all (x,y) € B, there are
v,u € W such that V/(z) = v and V'(y) = u. a

We finish with the case of Swap Logic. A different translation is presented in [AFH14]
for the local case only. As we did for Sabotage Logic, we use S C NOM x NOM to
represent the set of deleted edges, i.e., the edges that should not be possible to traverse
in a given updated model. Indeed, swapping a non-reflexive edge of a model has the
effect of deleting it, along with adding its inverse. This implies that S™! is a set of

Chapter 6. Relation-Changing Modal Logics as Fragments of Hybrid Logics 134

edges that we can currently traverse. All of this requires that S do not contain any
reflexive edge, since a swapped reflexive edge is not deleted. Neither can it contain a
pair of symmetric edges since that would be contradictory.

To ensure this, the translation gets more cautious when handling (sw) and (gsw).
When swapping occurs, three possible cases are taken into account. The first one is
when a reflexive edge is swapped. In that case, the translation continues with the set .S
left unchanged, but we require some reflexive edge to be present, be it at the current
state for (sw) with |n.On, or anywhere in the model for (gsw) with E{n.On.

The second case is when we swap an irreflexive edge that has never been swapped
before. Hence we ensure that this edge is present in the model, that it is irreflexive,
and that neither this edge nor its inverse is in 5. We then add the nominals that name
it to S before moving on with the translation.

The last case is when we traverse an already swapped edge. That is, for some
xy € S, we traverse the edge referred to by the nominals yx. In this case, we do not
need to require the presence of any new edge in the model. We assume to be standing
at the state named by y and that the rest of the formula is satisfied at x, with the
modification that we remove xy from S and add yz to it.

An attentive reader would object: why not just remove xy from the set S since
swapping some edge twice just makes it return to its configuration in the original model?
The answer is that there is a corner case when some edge and its symmetric are both
present in the initial model. Then, the action of swapping it twice is not supposed to
restore its symmetric. This is what we do by adding yz to the set S: we ensure the
former symmetric edge is no longer present.

Definition 6.3.3 (Swap to Hybrid Logic). Let S C NOM x NOM. We define ()%
from formulas of ML((sw), (gsw)) to formulas of HL(E,) as:

(p)s= »p

(s = —(p)s
(eAY)s= (s A ¥)s

(Cp)s = (In.O(—belongs(n, S) A (¢)s)) Vv isSat(S~, (¢)f)
((sw)p)g = (w-<>n A (9)s)

V n.0(=n A —belongs(n, S) A —~belongs(n, S™1) A Lm.(#)sum)

V \é (y A @x(SD)I(S\a:y)Uy.T)
xy

({gsw)p)s = (Eln.On A (9)s)
V [k.E{n.O(-n A —belongs(n, S) A —belongs(n, S™1) A 1m.Qk(©) s mm)
v :c\éS() (S\zy)Uyzx

where n, m and k are nominals that do not appear in S, belongs is defined as in
Definition 6.3.1, and
isSat(.S, ¢) = \/ (x A Qyp).
zy€eS

The formula isSat(S, (¢)s) says that the translation of ¢ is satisfiable at the end of
some of the edges belonging to S. Note that the translation maps formulas of ML((sw))
to the less expressive HL(@Q,), i.e., the E operator is not required.

Theorem 6.3.3. For M = (W,R,V) a model, w € W and ¢ € ML((sw), (gsw)) we

have:

Mw ¢ iff Mwl= (o))

Chapter 6. Relation-Changing Modal Logics as Fragments of Hybrid Logics 135

Proof. Again, a similar reasoning can be done with the following inductive
hypothesis:

s wE e it (R V) v (p)s

with S € NOM x NOM, and V' is exactly as V except that for all (x,y) € S, there are
v,u € W such that V/(z) = v and V'(y) = u. a

6.4 Decidable Fragments

Interesting decidable fragments of hybrid logics with binders have been found over time.
Such decidable fragments are convenient for our relation-changing logics in the light of
the (computable) translations presented in Section 6.3. First, let us consider restricting
the satisfiability problem over certain classes of models. The following logics are known
to be decidable over the indicated classes:

HL(E,|) over linear frames (i.e., irreflexive, transitive, and trichotomous frames)
[FARS03, Sch07] (this includes (N, <)),

HL(E,|) over models with a single, transitive tree relation [Sch07],

HL(E,]) over models with a single, S5, or complete relation [Sch07],

HL(Q,|) over models with a single relation of bounded finite width [tCF05]; as
a corollary, also over finite models.

Since the translations preserve equivalence, we get:

Corollary. The satisfiability problem for all relation-changing modal logics over linear,
transitive trees, S5, and complete frames is decidable.

Corollary. The satisfiability problem for local sabotage and local swap logics over
models of bounded width is decidable.

Curiously, these results mean that relation-changing modal logics are decidable
over certain classes of models, even if the modifications implied by evaluating RCML-
formulas yield models that do not belong to such class. For instance, these two facts
are simultaneously true: sabotage logic is decidable on the class of S5 models, and
deleting edges in an S5 model can yield a non-55 model.

Now, let us turn to syntactical definitions of decidable fragments. We recall that
local sabotage and local swap can be translated to HL(Q,|). Consider formulas
of HL(@,]) in negation normal form. HL(@Q,)\ O/0 is the fragment obtained by
removing formulas that contain a nesting of O, | and again O. This fragment is
decidable [tCFO05].

Our translations do use the | binder in many places, but we can make them a little
more economical in that sense, at the expense of losing succinctness.

Take the following case for ML({sw)):
(Cp)s = In.O(=belongs(n,S) A (¢)s).

Instead of using the down-arrow binder and later ensuring that we did not take a
deleted edge by using —belongs(n, S), we can do the following. For all pairs of nominals
(z,y) € S, the current state w satisfies one combination of the truth values of the

Chapter 6. Relation-Changing Modal Logics as Fragments of Hybrid Logics 136

nominals z. Let X be the set of true nominals at w. Then, (¢)% should be true at
some accessible state v that should not satisfy any of the corresponding y nominals for
all z € X.

Then, the translation becomes:

(Ce)s= V (Axn A-aro(A —yn(p)s))
XCfst(S) zeX g X y€esnd(S,X)
where fst(S) = {z | (z,y) € S} and snd(S, X) ={y | (z,y) € S,z € X}.
In the case of ML((sw)) we can do the same. We recall that the case introduced in
Section 6.3 was:

(Op)s = (In.O(-belongs(n, S) A (¢)5)) Vv isSat(S~1, (¢)5s).

Here the isSat(S™1, (¢)’) disjunct does not use the | binder, while the first disjunct is
similar to the case of local sabotage, and can be replaced accordingly:

(Cp)g = V. (Azn A-ano(A yn(@)s)
XCfst(S) zeX ¢ X yesnd(S,X)

v isSat(S7L (¢)s).

Let 4 be either (sb) or (sw) and B be either [sb] or [sw]. The following patterns in
RCML-formulas result in the shown patterns in the hybrid formula obtained by the
translations:

RCML pattern | Produced pattern
O O
¢ |
| 1al

By considering these new versions of the translations, and by taking into account
the syntactic decidable fragment of HL(@, |) mentioned above, we can establish the
following result:

Corollary. The following fragments are decidable on the class of all relational models:
- ML((sb)) \ {HE EHO, Ol HéeNm}
- ML((sw)) \ {HE.HO, Ol He¢N}

where M is either O or K.

6.5 Comparing Expressive Power

We have introduced translations for the six relation-changing modal logics from Sec-
tion 6.1 into hybrid logic. In some cases (for the local version of swap and sabotage),
the obtained formulas fall into the fragment HL(@,). On the other hand, for encoding
the rest of the logics we need also to use the universal modality E. An interesting
question is whether we can obtain translations from hybrid to relation-changing logics,
i.e., if some of the relation-changing logics considered in this chapter are as expressive
as some hybrid logic.

In [AFH12, AFH14, Fer14, AFH15] the expressive power of relation-changing modal
logics is discussed by comparing the logics among each other using appropriate notions
of bisimulations, and it is shown that they are all incomparable in terms of expressive

Chapter 6. Relation-Changing Modal Logics as Fragments of Hybrid Logics 137

power." As a consequence, we conclude that it is not possible that two of them capture
the same fragment of hybrid logic. In fact, we will prove that all the relation-changing
logics considered here are strictly less expressive than the corresponding hybrid logic in
which they are translated (see Theorem 6.5.2 below).

Let us first introduce bisimulations for RCMLs. Because we need to keep track
of the changes on the accessibility relation that the dynamic operators can introduce,
we define bisimulations as relations that link a point of evaluation together with the
current accessibility relation. In [Ferl4, AFH15] the following notions of bisimulations
are introduced.

Definition 6.5.1 (ML(#)-Bisimulations). Let M = (W, R, V) and M’ = (W', R', V")
be two models. A non-empty relation Z C (W x P(W?2)) x (W' x P(W'?)) is a ML(4)-
bisimulation if it satisfies the conditions atomic harmony, zig and zag below, and
the corresponding ¢-zig and ¢-zag conditions that the considered logic contains, for
¢ < {{sb), (gsb), (br), (gbr), (sw), (gsw)}. TF (w, §) Z(u/, &) then
(atomic harmony) for all p € PROP, w € V(p) iff w’' € V'(p);
(zig) if (w,v) € S then for some v/, (w',v’) € §" and (v, S)Z (v, S");
(zag) if (w',v") € S’ then for some v, (w,v) € S and (v,S)Z (v, S")
((sb)-zig) if (w,v) € S then for some v/, (w',v") € " and (v, S,,)Z(V', S..,/);
((sb)-zag) if (w’,v’) € S then for some v, (w,v) € S and (v, S,,)Z(V', 5..);
((gsb)-zig) if (u,v) € S then for some u/,v’, (v/,v") € §" and (w, S,,)Z(w', S.7.);
({gsb)-zag) if (v/,v") € S’ then for some u,v, (u,v) € S and (w, S;,)Z(w', S.,,);
({br)-zig) if (w,v) ¢ S then for some v/, (w',v’) ¢ S" and (v, S, Z (v, L),);
((br)-zag) if (w',v’) ¢ S’ then for some v, (w,v) ¢ S and (v, S;5,)Z(v', S2.);

(
(
(
(
(
((gbr)-zig) if (u,v) ¢ S then for some u',v’, (v/,v') ¢ S’ and (w, SJ,)Z(w', S'T.));
(
(
(
(
(

)

((gbr)-zag) if (u/,v') ¢ S’ then for some u,v, (u,v) ¢ S and (w, S;,)Z(w', Si.);
((sw)-zig) if (w,v) € S then for some v/, (w',v") € §" and (v, S},)Z (v, Sk ./);
((sw)-zag) if (w’,v’) € S’ then for some v, (w,v) € S and (v, S},)Z(V', Sl .);
(

((gsw)-zag) if (uv',v") € S’ then for some u, v, (u,v) € S and (w, S},)Z(w', S,

gsw)-zig) if (u,v) € S then for some v/, v/, (v/,v") € §" and (w, S,)Z(w', Sl ,);

Given two pointed models M, w and M’ , w’ we say that they are ML(#)-bisimilar
and write M,w e ¢y M',w" if there is a ML(4)-bisimulation Z such that
(w, R)Z(w', R') where R and R’ are respectively the relations of M and M.

The next theorem establishes that two bisimilar models are not distinguishable for
any formula of the corresponding language.

Theorem 6.5.1 (Invariance Under Bisimulations). Let M = (W, R, V) and M’ = (W',
R, V') be two models, w € W, w' € W', and let S C W2, ' C W', If there is a
ML(#)-bisimulation Z between M,w and M',w" such that (w,S)Z(w',S") then for
any formula p € ML(#), (W, S, V),w = ¢ iff (W', 5, V), uw' = .

'Except for the local and global swap operators, which is still open in one direction.

Chapter 6. Relation-Changing Modal Logics as Fragments of Hybrid Logics 138

The proof is standard and can be found, e.g., in [Fer14]. With the appropriate
notions of bisimulation at hand we can now start our study of expressive power. The
next definition formalizes how we compare the expressive power of two logics.

Definition 6.5.2 (£ < £'). We say that £ is at least as expressive as L (notation
L < L) if there is a function Tr between formulas of £ and £’ such that for every
model M and every formula ¢ of £ we have that

M c o iff M g Tr(e).

M is seen as a model of £ on the left and as a model of £’ on the right, and we use in
each case the appropriate semantic relation =, or =,/ as required.

L' is strictly more expressive than £ (£ < L) if £L < L' but £ £ L. Finally, we say
that £ and £’ are incomparable if £ £ £’ and L' & L.

We are now ready to state the main theorem of this section.

Theorem 6.5.2. Let 41 € {(sb), (sw)}, we have ML(#1) < HL(Q,]). For 42 €
{(gsb), (gsw), (br), (gbr)}, we have ML(#2) < HL(E,]).

Proof. For any of the logics mentioned above, we have translations into the
corresponding hybrid logic. Now we need to prove that these translations do not cover
their entire target language (modulo equivalence). In order to do that, we provide
bisimilar models for relation-changing modal logics which can be distinguished by
some hybrid formula. In Figure 6.1, we show two pairs of models already introduced
in [AFH15] that cover all possibilities of bisimilarity.

’ M, w \ M ‘ Bisimilar for ‘
ML({sw))
Q X MCL({br))
w W ML({gsw))
ML((gbr))

o— > 0

s ME((sb))
A4 | L ME(eh)

Figure 6.1: Bisimilar models

The two models in the first row can be distinguished by the formula |n.0On, which
establishes that the only successor of the evaluation point is itself. This formula is
true at M, w and false at M’,w’. Models in the second row can be distinguished by
the formula [n.0lm.Q,0Om, which says that from the evaluation point it is possible
to arrive to the same state in one or two steps. This is true at M, w but false at
M ' 0

Notice that both hybrid formulas we introduced above belong to the fragment
HL(Q,]), i.e., it was not necessary to use the E operator. This means that even
though we use E in some of the translations (and we strongly believe that it is essential
for some encodings) there are fragments of HL(@Q,|) that cannot be captured by
relation-changing modal logics.

Chapter 6. Relation-Changing Modal Logics as Fragments of Hybrid Logics 139

6.6 Concluding Remarks

We have introduced equivalence-preserving translations from six logics we named
relation-changing to a very expressive hybrid logic. We considered three kinds of
modifications: deleting, adding, and swapping edges, that can be performed both
globally (anywhere in the model) and locally (modifying adjacent edges from the
evaluation point). On the other hand, hybrid logic has operators to rename states in a
model with some particular atomic symbols named nominals. We use the down-arrow
operator | to name pairs of states that represent modified states. In this way, we keep
track of the evolution of a model.

It is known that the hybrid logic HL(E,|) has the same expressive power as
FOL, and standard translations from relation-changing logics to FOL were introduced
in [AFH15]. However, by giving explicit translations to hybrid logic we can benefit from
its decidable fragments to find decidable fragments of relation-changing modal logics.
Also, these translations are useful to analyze expressive power. We showed that the six
logics we considered are strictly less expressive than HL(E,). In fact, despite we used
the modality E in some translations, all relation-changing logics we considered here
cannot capture the full fragment HL(Q, |) (which is less expressive than HL(E,|)). In
summary, we learned that relation-changing modal logics are languages that enable to
talk directly and succinctly about distinct kinds of model modifications, but with a
little effort they can be simulated by hybrid logics.

We studied six relation-changing modal logics with the goal of covering a sufficiently
varied sample of alternatives. Clearly, other operators could have been included in this
exploration, and actually some alternative choices have been already investigated in
the literature, e.g., the adjacent sabotage operator discussed in [Roh06], or the more
generic approach investigated in [AFH15].

There are still many interesting questions to be answered. The hybrid perspective
introduced in this chapter gives us a new way to think of the relation-changing framework.
As future work, we can use hybridization techniques (a very standard technique in
modal logic [BARV01]) to find complete axiomatizations. Moreover, it would interesting
to compute interpolants constructively using tableaux techniques [BMO03]. For example,
tableau formulas as defined in [AFH13] contain the current model variant together with
prefixes which indicate in which point of the model the formula has to be evaluated.
This syntactic information contained in prefixes is useful information to construct
interpolants, but prefixes are not directly expressible in relation-changing modal logics.
An alternative would be to extend relation-changing modal logics with hybrid operators,
and adapt the tableau rules to compute interpolants.

Chapter 6. Relation-Changing Modal Logics as Fragments of Hybrid Logics 140

CHAPTER [

Conclusions

We have studied various topics in this thesis. It is now time to put everything in
perspective and briefly review what we have learned so far.

We started by studying the computational complexity of (deductive) conservative
extensions in expressive fragments of first-order logic, such as the two-variable fragment,
the guarded fragment, and the guarded negation fragment. We pursued this line of
reasearch with the goal of understanding the limits of decidabilitiy of conservative
extensions. We learned that conservative extensions are undecidable in the two-variable
fragment and the guarded fragment, and that decidability can be retained if we allow
in the language both guardeness and two variables. We left open the possibility to
extend these fragments with counting, fixed points, transitive relations, etc. to further
understand where is the border of decidability, which we believe is a very interesting
line of research to pursue in the future.

After this foundational work, we moved on to study conservative extensions in
ontology-based data access scenarios, where answering queries under ontologies is the
most important task. We studied (query) conservative extensions in Horn description
logics with inverse roles, established decidability and obtained complexity results.
Although we left some problems open, there is much more to do. In particular, there is
a recent trend to investigate rule-based languages (such as existential rules) as ontology
languages, and it would be interesting to study (query) conservative extensions in these
contexts.

Following this research trend in studying the complexity of query answering with
background knowledge, we studied the computational complexity of ontology-mediated
queries in the unary negation fragment extended with regular path expressions on
binary relations. Since the unary negation fragment can express union of conjunctive
queries as formulas, it was possible to reduce the ontology-mediated query answering
problem to the satisfiability problem in order to obtain complexity results.

We then moved on from ontology languages to modal languages to investigate the
expressive power of modal logics, with a special interest in modal logics that can modify
the accessibility relation of a model during the evaluation of a formula. We studied their
expressive power both thorugh syntactic and semantic characterizations. We began
by providing syntactic characterizations, and in particular, we presented translations
into hybrid logic. We then turned to semantic characterizations by using appropriate

141

Chapter 7. Conclusions 142

notions of bisimulations as natural notions of equivalence between models to compare
expressive power. Although in the last chapter we dealt explicitly with expressive power,
we also used semantic characterizations through the thesis to obtain complexity results.
In particular, we provided model-theoretic characterizations based on appropriate
notions of bisimulations or homomorphisms to characterterize conservative extensions
in fragments of first-order logic, and to characterize the satisfiability problem in
extensions of the unary negation fragment, which were then used to provide decision
procedures based on tree automata.

All in all, we have covered the computational complexity and expressive power of
different logics that are relevant for both a theoretical and practical perspective. We
obtained interesting results in this thesis, but of course this is just a start as there are
several open problems to investigate and different directions of research one can follow.

Bibliography

[ABBV16]

[ABCR16]

[ABMYY]

[AFH12]

[AFH13]

[AFH14]

[AFH15]

[AFHM16]

Antoine Amarilli, Michael Benedikt, Pierre Bourhis, and Michael Vanden
Boom. Query answering with transitive and linear-ordered data. In Proc.
1JCAI pages 893-899, 2016. Cited on page 114.

Marcelo Arenas, Elena Botoeva, Diego Calvanese, and Vladislav Ryzhikov.
Knowledge base exchange: The case of OWL 2 QL. Artif. Intell., 238:11—
62, 2016. Cited on page 55.

Carlos Areces, Patrick Blackburn, and Maarten Marx. A road-map on
complexity for hybrid logics. In J. Flum and M. Rodriguez-Artalejo, edi-
tors, Computer Science Logic, number 1683 in Lecture Notes in Computer
Science, pages 307-321, Madrid, Spain, 1999. Springer. Cited on page
131.

Carlos Areces, Raul Fervari, and Guillaume Hoffmann. Moving Arrows
and Four Model Checking Results. In Logic, Language, Information and
Computation, volume 7456 of Lecture Notes in Computer Science, pages
142-153. Springer, 2012. Cited on pages 8, 128, and 136.

Carlos Areces, Raul Fervari, and Guillaume Hoffmann. Tableaux for
Relation-Changing Modal Logics. In Frontiers of Combining Systems -
9th International Symposium, FroCoS 2013, Nancy, France, September
18-20, 2013. Proceedings, pages 263-278, 2013. Cited on pages 128
and 139.

Carlos Areces, Raul Fervari, and Guillaume Hoffmann. Swap Logic. Logic
Journal of the IGPL, 22(2):309-332, 2014. Cited on pages 128, 133,
and 136.

Carlos Areces, Raul Fervari, and Guillaume Hoffmann. Relation-Changing
Modal Operators. Logic Journal of the IGPL, 23(4):601-627, 2015. Cited
on pages 128, 129, 136, 137, 138, and 139.

Carlos Areces, Raul Fervari, Guillaume Hoffmann, and Mauricio Martel.
Relation-Changing Logics as Fragments of Hybrid Logics. In Proceedings
of the Seventh International Symposium on Games, Automata, Logics and
Formal Verification, GandALF 2016, Catania, Italy, 14-16 September
2016, pages 1629, 2016. Cited on page 11.

143

Bibliography

144

[AFHM17]

[AFHM18]

[AGOS]

[AHV95]

[ANvOS]

[AtCO7]

[AvDFS14]

[AVDFS15]

[Baa91]

[Bar13]

[BBP13]

[BCM™07]

[BCOS14]

Carlos Areces, Raul Fervari, Guillaume Hoffmann, and Mauricio Martel.
Undecidability of Relation-Changing Modal Logics. In Dynamic Logic.
New Trends and Applications - First International Workshop, DALI 2017,
Brasilia, Brazil, September 23-24, 2017, Proceedings, pages 1-16, 2017.
Cited on pages 9, 11, and 128.

Carlos Areces, Raul Fervari, Guillaume Hoffmann, and Mauricio Martel.
Satisfiability for Relation-Changing Logics. To appear in Journal of Logic
and Computation, 2018. Cited on page 11.

Renzo Angles and Claudio Gutiérrez. Survey of graph database models.
ACM Comput. Surv., 40(1):1:1-1:39, 2008. Cited on page 100.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995. Cited on page 1.

Hajnal Andréka, Istvan Németi, and Johan van Benthem. Modal lan-
guages and bounded fragments of predicate logic. J. Philosophical Logic,
27(3):217-274, 1998. Cited on pages 3, 14, 19, and 30.

Carlos Areces and Balder ten Cate. Hybrid Logics. In P. Blackburn,
F. Wolter, and J. van Benthem, editors, Handbook of Modal Logic, pages
821-868. Elsevier, 2007. Cited on pages 127 and 130.

Carlos Areces, Hans van Ditmarsch, Raul Fervari, and Frangois Schwarzen-
truber. Logics with Copy and Remove. In Logic, Language, Information,
and Computation, volume 8652 of Lecture Notes in Computer Science,
pages 51-65. Springer, 2014. Cited on page 128.

Carlos Areces, Hans van Ditmarsch, Raul Fervari, and Frangois Schwarzen-
truber. The Modal Logic of Copy and Remove. To Appear in Information
and Computation, special issue of WoLLIC 2014, 2015. Cited on page
128.

Franz Baader. Augmenting concept languages by transitive closure of
roles: An alternative to terminological cycles. In Proc. IJCAI pages
446451, 1991. Cited on pages 100 and 103.

Pablo Barcel6. Querying graph databases. In Proc. PODS, pages 175-188,
2013. Cited on page 100.

Pablo Barceld, Gerald Berger, and Andreas Pieris. Containment for
rule-based ontology-mediated queries. In Proc. PODS, 2018. Cited on
page 105.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge Univ. Press, 2nd edition,
2007. Cited on pages 15 and 99.

Meghyn Bienvenu, Diego Calvanese, Magdalena Ortiz, and Mantas Simkus.
Nested regular path queries in description logics. In Proc. KR, 2014. Cited
on page 100.

Bibliography

145

[BARVO1]

[BGO14]

[BHLS17]

[BHLW16]

[BKL*16]

[BKR14]

[BKR*16]

[BL16]

[BLMS11]

[BLR'16]

[BLW12]

[BLW13]

[BMO3]

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic.
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2001. Cited on pages 2, 17, 127, and 139.

Vince Barany, Georg Gottlob, and Martin Otto. Querying the guarded
fragment. Logical Methods in Computer Science, 10(2), 2014. Cited on
pages 7 and 19.

Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Intro-
duction to Description Logic. Cambride University Press, 2017. Cited on
pages 3, 15, 99, 103, and 125.

Meghyn Bienvenu, Peter Hansen, Carsten Lutz, and Frank Wolter. First
order-rewritability and containment of conjunctive queries in Horn de-
scription logics. In Proc. IJCAI pages 965971, 2016. Cited on pages
55, 57, and 105.

Elena Botoeva, Boris Konev, Carsten Lutz, Vladislav Ryzhikov, Frank
Wolter, and Michael Zakharyaschev. Inseparability and conservative
extensions of description logic ontologies: A survey. In Proc. of Reasoning
Web, volume 9885 of LNCS, pages 27-89. Springer, 2016. Cited on pages
5, 19, 56, and 66.

Pierre Bourhis, Markus Krotzsch, and Sebastian Rudolph. How to best
nest regular path queries. In Proc. DL, volume 1193 of CEUR Workshop
Proceedings, pages 404415, 2014. Cited on page 101.

Elena Botoeva, Roman Kontchakov, Vladislav Ryzhikov, Frank Wolter,
and Michael Zakharyaschev. Games for query inseparability of description
logic knowledge bases. Artif. Intell., 234:78-119, 2016. Cited on page 56.

Pierre Bourhis and Carsten Lutz. Containment in monadic disjunctive
datalog, MMSNP, and expressive description logics. In Proc. KR, pages
207-216. AAAT Press, 2016. Cited on pages 105 and 125.

Jean-Francois Baget, Michel Leclére, Marie-Laure Mugnier, and Eric
Salvat. On rules with existential variables: Walking the decidability line.
Artif. Intell., 175(9-10):1620-1654, 2011. Cited on page 99.

Elena Botoeva, Carsten Lutz, Vladislav Ryzhikov, Frank Wolter, and
Michael Zakharyaschev. Query-based entailment and inseparability for
ALC ontologies. In Proc. IJCAI pages 1001-1007, 2016. Cited on pages
56, 66, and 87.

Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. Query containment
in description logics reconsidered. In Proc. KR. AAAI Press, 2012. Cited
on page 105.

Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. First order-
rewritability of atomic queries in Horn description logics. In Proc. IJCAIL
pages 754-760, 2013. Cited on pages 80 and 81.

Patrick Blackburn and Maarten Marx. Constructive interpolation in
hybrid logic. J. Symb. Log., 68(2):463-480, 2003. Cited on page 139.

Bibliography

146

[BMRT11]

[BO15]

[BOS13]

[BOS15a]

[BOS15b]

[BR15]

[BSO5]

[BtCLW14]

[BtCS15]

[BtCV15]

[BvBO7]

[BvBWOG6]

[Bii60]

Jean-Francois Baget, Marie-Laure Mugnier, Sebastian Rudolph, and
Michagél Thomazo. Walking the complexity lines for generalized guarded
existential rules. In Proc. IJCAI pages 712-717, 2011. Cited on page 99.

Meghyn Bienvenu and Magdalena Ortiz. Ontology-mediated query an-
swering with data-tractable description logics. In Proc. Reasoning Web,
volume 9203 of LNCS, pages 218-307. Springer, 2015. Cited on pages
55, 59, and 99.

Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus. Conjunctive
regular path queries in lightweight description logics. In Proc. IJCAI,
pages 761-767. IJCAI/AAAI, 2013. Cited on page 101.

Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus. Navigational
queries based on frontier-guarded datalog: Preliminary results. In Proc.
AMW, volume 1378 of CEUR Workshop Proceedings, 2015. Cited on
page 100.

Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus. Regular path
queries in lightweight description logics: Complexity and algorithms. J.
Artif. Intell. Res., 53:315-374, 2015. Cited on page 100.

Meghyn Bienvenu and Riccardo Rosati. Query-based comparison of OBDA
specifications. In Proc. DL, volume 1350. ceur-ws.org, 2015. Cited on
page 56.

Patrick Blackburn and Jerry Seligman. Hybrid Languages. Journal of
Logic, Language and Information, 4(3):251-272, 1995. Cited on pages
127 and 131.

Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter.
Ontology-based data access: A study through disjunctive datalog, CSP,
and MMSNP. ACM Trans. Database Syst., 39(4):33:1-33:44, 2014. Cited
on pages 7, 99, 103, and 125.

Vince Barany, Balder ten Cate, and Luc Segoufin. Guarded negation. J.
ACM, 62(3):22:1-22:26, 2015. Cited on pages 4, 7, 15, 19, and 23.

Michael Benedikt, Balder ten Cate, and Michael Vanden Boom. Interpo-
lation with decidable fixpoint logics. In Proc. of LICS, pages 378-389.
IEEE Computer Society, 2015. Cited on page 20.

Patrick Blackburn and Johan van Benthem. Modal Logic: A Semantic
Perspective. In Handbook of Modal Logic, pages 1-84. Elsevier, 2007.
Cited on page 127.

Patrick Blackburn, Johan van Benthem, and Frank Wolter. Handbook
of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning).
Elsevier Science Inc., New York, NY, USA, 2006. Cited on page 17.

Richard Biichi. Weak second-order arithmetic and finite automata. Math-
ematical Logic Quarterly, 6(1-6):66-92, 1960. Cited on page 1.

Bibliography

147

Bii62]

[CDL*07]

[CDL*13]

[CDLNO1]

[CDLVO00]

[CEO07]

[CEO09]

[CEO14]

[CGKOS]

[Chu36]

[CK90]

[CKS81]

[CMWS8T7]

[Cod70]

Richard Biichi. On a decision method in restricted second-order arithmetic.
In Proc. 1960 Int. Congr. for Logic, Methodology and Philosophy of
Science, pages 1-11, 1962. Cited on page 1.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. Autom. Reas.,
39(3):385-429, 2007. Cited on page 55.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Data complexity of query answering in
description logics. Artif. Intell., 195:335-360, 2013. Cited on page 117.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Daniele
Nardi. Reasoning in expressive description logics. In Handbook of Auto-
mated Reasoning, pages 1581-1634. Elsevier and MIT Press, 2001. Cited
on pages 100 and 103.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.
Vardi. Containment of conjunctive regular path queries with inverse. In
Proc. KR, pages 176-185, 2000. Cited on page 100.

Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular
path queries in expressive description logics: An automata-theoretic
approach. In Proc. AAAIL pages 391-396, 2007. Cited on page 100.

Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Regular path
queries in expressive description logics with nominals. In Proc. IJCAI,
pages 714-720, 2009. Cited on page 100.

Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular
path queries in expressive description logics via alternating tree-automata.
Inf. Comput., 237:12-55, 2014. Cited on page 100.

Andrea Cali, Georg Gottlob, and Michael Kifer. Taming the infinite chase:
Query answering under expressive relational constraints. In Proc. KR,
pages 70-80, 2008. Cited on page 99.

Alonzo Church. A note on the Entscheidungsproblem. Journal of Symbolic
Logic, pages 40-41, 1936. Cited on page 2.

Chen Chung Chang and H. Jerome Keisler. Model Theory. Elsevier, 3rd
edition, 1990. Cited on page 30.

Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Al-
ternation. Journal of the ACM, 28(1):114-133, 1981. Cited on page
49.

Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical
query language supporting recursion. In Proc. SIGMOD, pages 323-330,
1987. Cited on page 100.

Edgar Codd. A Relational Model of Data for Large Shared Data Banks.
Commun. ACM, 13(6):377-387, 1970. Cited on page 2.

Bibliography

148

[Com69]

[DGS93]

[DHO0]

[DL15]

[EGOS08]

[EJ91]

[Elg61]
[Endo1]

[EOS*12]

[FARS03]

[Fer14]

[FL79]

[Gab99]

[Gab08]

Stephen D. Comer. Classes without the amalgamation property. Pacific
Journal of Mathematics, 28:309-318, 1969. Cited on page 23.

Razvan Diaconescu, Joseph A. Goguen, and Petros Stefaneas. Logical
support for modularisation. In Gerard Huet and Gordon Plotkin, editors,
Logical Environments, pages 83-130, 1993. Cited on page 4.

Giovanna D’Agostino and Marco Hollenberg. Logical questions concerning
the p-calculus: Interpolation, Lyndon and 1 os-Tarski. J. Symb. Log.,
65(1):310-332, 2000. Cited on page 22.

Giovanna D’Agostino and Giacomo Lenzi. Bisimulation quantifiers and
uniform interpolation for guarded first order logic. Theor. Comput. Sci.,
563:75-85, 2015. Cited on page 22.

Thomas Eiter, Georg Gottlob, Magdalena Ortiz, and Mantas Simkus.
Query answering in the description logic Horn-ALCQZ. In Proc. JELIA,
volume 5293 of LNCS, pages 166-179. Springer, 2008. Cited on pages 56
and 62.

E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus
and determinacy (extended abstract). In Proc. of FOCS, pages 368-377.
IEEE Computer Society, 1991. Cited on pages 40 and 78.

Calvin Elgot. Decision problems of finite automata design and related
arithmetics. Transactions of the AMS, 98:21-52, 1961. Cited on page 1.

Herbert Enderton. A Mathematical Introduction to Logic. Academic
Press, 2nd edition, 2001. Cited on pages 2 and 13.

Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and
Guohui Xiao. Query rewriting for Horn-ALCQZ plus rules. In Proc.
AAAIL 2012. Cited on page 55.

Massimo Franceschet, Maarten de Rijke, and Bernd-Holger Schlingloff.
Hybrid logics on linear structures: Expressivity and complexity. In TIME-
ICTL 2003, Cairns, Queensland, Australia, pages 166173, 2003. Cited
on page 135.

Raul Fervari. Relation-Changing Modal Logics. PhD thesis, Universidad
Nacional de Cordoba, Argentina, 2014. Cited on pages 8, 129, 136, 137,
and 138.

Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic
of regular programs. J. Comput. Syst. Sci., 18(2):194-211, 1979. Cited
on page 101.

Dov Gabbay. Fibring Logics. Oxford logic guides. Clarendon Press, 1999.
Cited on page 129.

Dov Gabbay. Introducing reactive Kripke semantics and arc accessibil-
ity. In Pillars of Computer Science, Essays Dedicated to Boris (Boaz)
Trakhtenbrot on the Occasion of His 85th Birthday, pages 292-341, 2008.
Cited on page 127.

Bibliography

149

[Gab13]

[GKP02]

[GKV97]

[GKVQ09)]

[GLL09]

[GLW06]

[GLWZ06]

[GM93]

[GO99]

[GO06]

[GO14]

[GOPS12]

[GOR97]

Dov Gabbay. Reactive Kripke Semantics. Cognitive Technologies. Springer,
2013. Cited on page 127.

Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient algo-
rithms for processing XPath queries. In Proc. VLDB, pages 95-106, 2002.
Cited on page 101.

Erich Grédel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision
problem for two-variable first-order logic. Bulletin of Symbolic Logic,
3(1):53-69, 1997. Cited on pages 3 and 21.

Nina Gierasimczuk, Lena Kurzen, and Fernando R. Velazquez-Quesada.
Learning and teaching as a game: A sabotage approach. In Xiangdong He,
John F. Horty, and Eric Pacuit, editors, LORI, volume 5834 of Lecture
Notes in Computer Science, pages 119-132. Springer, 2009. Cited on
page 128.

Stefan Goller, Markus Lohrey, and Carsten Lutz. PDL with intersection
and converse: satisfiability and infinite-state model checking. J. Symb.
Log., 74(1):279-314, 2009. Cited on pages 101 and 124.

Silvio Ghilardi, Carsten Lutz, and Frank Wolter. Did I damage my
ontology? A case for conservative extensions in description logic. In Proc.
of KR, pages 187-197. AAAI Press, 2006. Cited on pages 5, 19, 20, 48,
and 87.

Silvio Ghilardi, Carsten Lutz, Frank Wolter, and Michael Zakharyaschev.
Conservative extensions in modal logic. In Advances in Modal Logic 6,
pages 187-207, 2006. Cited on pages 5 and 19.

Michael J. C. Gordon and Thomas F. Melham, editors. Introduction to
HOL: A theorem proving environment for higher order logic. Cambridge
University Press, 1993. Cited on page 4.

Erich Gréadel and Martin Otto. On logics with two variables. Theoretical
Computer Science, 224(1):73 — 113, 1999. Cited on page 3.

Valentin Goranko and Martin Otto. Model theory of modal logic. In
Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors, Hand-
book of Modal Logic, pages 249-330. Elsevier, 2006. Cited on page
30.

Erich Gradel and Martin Otto. The freedoms of (guarded) bisimulation.
In Alexandru Baltag and Sonja Smets, editors, Johan van Benthem on
Logic and Information Dynamics, pages 3-31. Springer, 2014. Cited on
page 30.

Georg Gottlob, Giorgio Orsi, Andreas Pieris, and Mantas Simkus. Datalog
and its extensions for semantic web databases. In Proc. Reasoning Web,
volume 7487 of LNCS, pages 54-77. Springer, 2012. Cited on page 99.

Erich Griadel, Martin Otto, and Eric Rosen. Undecidability results on
two-variable logics. In Proc. of STACS, volume 1200 of LNCS, pages
249-260. Springer-Verlag, 1997. Cited on page 3.

Bibliography

150

[GP92]

[GPT13]

[GROY]

[Gréig9)]

[Gra99)

[GTW02]

[GW99]

[HMO2]

[HMS07]

1LS14]

[JLM*17]

[JLMS17]

[JLMS18]

Valentin Goranko and Solomon Passy. Using the universal modality:
Gains and questions. Journal of Logic and Computation, 2(1):5-30, 1992.
Cited on page 130.

Georg Gottlob, Andreas Pieris, and Lidia Tendera. Querying the guarded
fragment with transitivity. In Proc. ICALP II, volume 7966 of LNCS,
pages 287-298. Springer, 2013. Cited on pages 100 and 104.

Erich Gréddel and Eric Rosen. On preservation theorems for two-variable
logic. Math. Log. @Q., 45:315-325, 1999. Cited on page 3.

Erich Grédel. Dominoes and the complexity of subclasses of logical
theories. Ann. Pure Appl. Logic, 43(1):1-30, 1989. Cited on page 89.

Erich Griadel. On the restraining power of guards. J. Symb. Log.,
64(4):1719-1742, 1999. Cited on pages 3, 14, 19, 52, and 104.

Erich Gréadel, Wolfgang Thomas, and Thomas Wilke, editors. Automata,
Logics, and Infinite Games: A Guide to Current Research, volume 2500
of Lecture Notes in Computer Science. Springer, 2002. Cited on page 1.

Erich Gréadel and Igor Walukiewicz. Guarded fixed point logic. In Proc.
of LICS, pages 45-54. IEEE Computer Society, 1999. Cited on pages 52,
76, and 114.

Eva Hoogland and Maarten Marx. Interpolation and definability in
guarded fragments. Studia Logica, 70(3):373-409, 2002. Cited on pages
22 and 23.

Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in description
logics by a reduction to disjunctive datalog. J. Autom. Reasoning, 39(3),
2007. Cited on page 56.

Yazmin Ibanez-Garcia, Carsten Lutz, and Thomas Schneider. Finite
model reasoning in Horn description logics. In Proc. KR, 2014. Cited on
page 56.

Jean Christoph Jung, Carsten Lutz, Mauricio Martel, Thomas Schneider,
and Frank Wolter. Conservative Extensions in Guarded and Two-Variable
Fragments. In 44th International Colloguium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages
108:1-108:14, 2017. Cited on page 11.

Jean Christoph Jung, Carsten Lutz, Mauricio Martel, and Thomas Schnei-
der. Query Conservative Extensions in Horn Description Logics with
Inverse Roles. In Proceedings of the Twenty-Sizth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, pages 1116-1122, 2017. Cited on page 11.

Jean Christoph Jung, Carsten Lutz, Mauricio Martel, and Thomas Schnei-
der. Querying the Unary Negation Fragment with Regular Path Expres-
sions. In 21st International Conference on Database Theory, ICDT 2018,
March 26-29, 2018, Vienna, Austria, pages 15:1-15:18, 2018. Cited on
page 11.

Bibliography

151

[Kaz09)]

[KG13]

[Kie06]

[KLO7]

[KLWW09)

[KLWW12]

[KPS109]

[KRHO7]

[KWZ10]

[KZ14]

[LP97]

[Lut0g]

[LW10]

[LW11]

Yevgeny Kazakov. Consequence-driven reasoning for Horn-ALCQT on-
tologies. In Proc. IJCAI pages 2040-2045, 2009. Cited on page 56.

Ilianna Kollia and Birte Glimm. Optimizing SPARQL query answering
over OWL ontologies. J. Artif. Intell. Res., 48:253-303, 2013. Cited on
page 55.

Emanuel Kieronski. On the complexity of the two-variable guarded
fragment with transitive guards. Inf. Comput., 204(11):1663-1703, 2006.
Cited on page 52.

Adila Krisnadhi and Carsten Lutz. Data complexity in the ££ family of
description logics. In Proc. LPAR, volume 4790 of LNCS, pages 333-347.
Springer, 2007. Cited on page 117.

Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Formal
properties of modularisation. In H. Stuckenschmidt, S. Spacciapietra,
and C. Parent, editors, Modular Ontologies, volume 5445 of LNCS, pages
25-66. Springer, 2009. Cited on pages 4, 20, 23, and 87.

Boris Konev, Michel Ludwig, Dirk Walther, and Frank Wolter. The
logical difference for the lightweight description logic EL. J. Artif. Intell.
Res., 44:633-708, 2012. Cited on pages 55 and 56.

Roman Kontchakov, Luca Pulina, Ulrike Sattler, Thomas Schneider,
P. Selmer, Frank Wolter, and Michael Zakharyaschev. Minimal module
extraction from DL-Lite ontologies using QBF solvers. In Proc. IJCAI,
pages 836840, 2009. Cited on page 56.

Markus Krotzsch, Sebastian Rudolph, and Pascal Hitzler. Complexity
boundaries for Horn description logics. In Proc. AAAI pages 452—457,
2007. Cited on page 56.

Roman Kontchakov, Frank Wolter, and Michaek Zakharyaschev. Logic-
based ontology comparison and module extraction, with an application
to DL-Lite. Artif. Intell., 174:1093-1141, 2010. Cited on page 55.

Roman Kontchakov and Michael Zakharyaschev. An introduction to
description logics and query rewriting. In Proc. Reasoning Web, volume
8714 of LNCS, pages 195-244. Springer, 2014. Cited on page 99.

Harry Lewis and Christos Papadimitriou. FElements of the Theory of
Computation. Prentice-Hall, 2nd edition, 1997. Cited on page 1.

Carsten Lutz. The complexity of conjunctive query answering in expressive
description logics. In Proc. IJCAR, volume 5195 of LNCS, pages 179-193.
Springer, 2008. Cited on pages 100 and 117.

Carsten Lutz and Frank Wolter. Deciding inseparability and conservative
extensions in the description logic EL. J. Symb. Comput., 45(2):194-228,
2010. Cited on pages 56, 66, 87, and 89.

Carsten Lutz and Frank Wolter. Foundations for uniform interpolation
and forgetting in expressive description logics. In Proc. of IJCAI pages
989-995. IJCAI/AAAI 2011. Cited on pages 19, 22, and 32.

Bibliography

152

[LW12]

[LW17]

[LWWO7]

[Marl5]

[McNG66]

[Mor75]

[MP17]

[MSV15]

[ORS11]

[Pap94]

[Pit92]

[PLC*08]

[Pra07]

[Rab69]

[Roh06]

Carsten Lutz and Frank Wolter. Non-uniform data complexity of query
answering in description logics. In Proc. KR, 2012. Cited on pages 56
and 63.

Carsten Lutz and Frank Wolter. The data complexity of description logic
ontologies. Logical Methods in Computer Science, 13(4), 2017. Cited on
page 63.

Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative extensions
in expressive description logics. In Proc. IJCAI pages 453—458, 2007.
Cited on pages 5, 19, and 87.

Mauricio Martel. On the Undecidability of Relation-Changing Logics.
Master’s thesis, Universidad Nacional de Rio Cuarto, Argentina, 2015.
Cited on pages 9 and 128.

Robert McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9(5):521 — 530, 1966. Cited on

page 1.

Michael Mortimer. On languages with two variables. Math. Log. Q.,
21(1):135-140, 1975. Cited on pages 3, 14, 19, and 52.

Nico Matentzoglu and Bijan Parsia. BioPortal Snapshot 30 March 2017
(data set), 2017. http://doi.org/10.5281/zenodo.439510. Cited on
page 57.

Johannes Marti, Fatemeh Seifan, and Yde Venema. Uniform interpolation
for coalgebraic fixpoint logic. In CALCO, volume 35 of LIPIcs, pages
238-252. Schloss Dagstuhl, 2015. Cited on page 22.

Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. Query answer-
ing in the Horn fragments of the description logics SHOZQ and SROZQ.
In Proc. IJCAI pages 1039-1044, 2011. Cited on page 100.

Christos Papadimitriou. Computational Complexity. Addison-Wesley,
1994. Cited on page 1.

Andrew M. Pitts. On an interpretation of second-order quantification
in first-order intuitionistic propositional logic. J. of Symbolic Logic, 57,
1992. Cited on page 22.

Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Gia-
como, Maurizio Lenzerini, and Riccardo Rosati. Linking data to ontologies.
Journal on Data Semantics, 10:133-173, 2008. Cited on pages 55 and 99.

Tan Pratt-Hartmann. Complexity of the guarded two-variable fragment
with counting quantifiers. J. Log. Comput., 17(1):133-155, 2007. Cited
on page 5H2.

Michael Rabin. Decidability of second-order theories and automata on
infinite trees. Transactions of the AMS, 141:1-23, 1969. Cited on page 1.

Philipp Rohde. On games and logics over dynamically changing structures.
PhD thesis, RWTH Aachen, 2006. Cited on page 139.

http://doi.org/10.5281/zenodo.439510

Bibliography

153

[RRV17]

[Sch91]

[Sch03]

[Sch07]

[Sco62]

[Spa93]

[STO04]

[Sto74]

[tCO5]

[(tCF05]

[(tCS13]

[Tob01]

[TSCS15]

[Tur37]

Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular queries
on graph databases. Theory Comput. Syst., 61(1):31-83, 2017. Cited on
pages 102 and 125.

Klaus Schild. A correspondence theory for terminological logics: Pre-
liminary report. In Proc. IJCAI pages 466-471, 1991. Cited on page
100.

Philippe Schnoebelen. Oracle circuits for branching-time model checking.
In Proc. ICALP, volume 2719 of LNCS, pages 790-801. Springer, 2003.
Cited on page 121.

Thomas Schneider. The Complezity of Hybrid Logics over Restricted
Frame Classes. PhD thesis, University of Jena, 2007. Cited on page 135.

Dana Scott. A decision method for validity of sentences in two variables.
Journal of Symbolic Logic, 27:1962, 1962. Cited on pages 14 and 19.

Edith Spaan. Complexity of modal logics. PhD thesis, ILLC, University
of Amsterdam, 1993. Cited on page 130.

Wiestaw Szwast and Lidia Tendera. The guarded fragment with transitive
guards. Ann. Pure Appl. Logic, 128(1-3):227-276, 2004. Cited on pages
100 and 104.

Larry Stockmeyer. The Complezity of Decision Problems in Automata
Theory and Logic. Massachusetts Institute of Technology, Project MAC,
1974. Cited on page 2.

Balder ten Cate. Model theory for extended modal languages. PhD thesis,
University of Amsterdam, 2005. ILLC Dissertation Series DS-2005-01.
Cited on page 131.

Balder ten Cate and Massimo Franceschet. On the complexity of hybrid
logics with binders. volume 3634 of Lecture Notes in Computer Science,
pages 339-354. Springer Verlag, 2005. Cited on page 135.

Balder ten Cate and Luc Segoufin. Unary negation. Logical Methods in
Computer Science, 9(3), 2013. Cited on pages 3, 7, 14, 100, 101, 104,
106, 116, 121, and 125.

Stephan Tobies. Complexity Results and Practical Algorithms for Logics
in Knowledge Representation. PhD thesis, RWTH Aachen, 2001. Cited
on page 63.

Despoina Trivela, Giorgos Stoilos, Alexandros Chortaras, and Giorgos B.
Stamou. Optimising resolution-based rewriting algorithms for OWL
ontologies. J. Web Sem., 33:30-49, 2015. Cited on page 55.

Alan Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2:230—
265, 1937. Cited on page 2.

Bibliography

154

[Var82]

[Var96]

[Var98]

[vBO5]

[vDvdHKO07]

[Vis96]

[Wil01]

[WWT*14]

[ZCNT15]

Moshe Vardi. The complexity of relational query languages. In Proceedings
of the Fourteenth Annual ACM Symposium on Theory of Computing, pages
137-146. ACM, 1982. Cited on page 2.

Moshe Y. Vardi. Why is modal logic so robustly decidable? In Descriptive
Complezity and Finite Models, pages 149-184, 1996. Cited on page 3.

Moshe Y. Vardi. Reasoning about the past with two-way automata.
In Proc. ICALP, volume 1443 of LNCS, pages 628-641. Springer, 1998.
Cited on pages 39, 41, 76, and 79.

Johan van Benthem. An Essay on Sabotage and Obstruction. In Mecha-
nizing Mathematical Reasoning, pages 268—276, 2005. Cited on pages 8
and 127.

Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic
Epistemic Logic. Synthese Library. Springer, 2007. Cited on pages 8
and 127.

Albert Visser. Uniform interpolation and layered bisimulation. In Gddel
96 (Brno, 1996), volume 6 of Lecture Notes in Logic, pages 139-164.
Springer, 1996. Cited on pages 20 and 22.

Thomas Wilke. Alternating tree automata, parity games, and modal
p-calculus. Bulletin of the Belgian Mathematical Society, 8(2), 2001.
Cited on page 38.

Kewen Wang, Zhe Wang, Rodney W. Topor, Jeff Z. Pan, and Grigoris
Antoniou. Eliminating concepts and roles from ontologies in expressive
descriptive logics. Comput. Intell., 30(2):205-232, 2014. Cited on page
55.

Yujiao Zhou, Bernardo Cuenca Grau, Yavor Nenov, Mark Kaminski, and
Ian Horrocks. PAGOdA: Pay-as-you-go ontology query answering using a
Datalog reasoner. J. Artif. Intell. Res., 54:309-367, 2015. Cited on page

55.

	Introduction
	Logic in Computer Science
	Fragments of First-Order Logic
	Complexity of Conservative Extensions
	Complexity of Satisfiability and Ontology-mediated Queries
	Investigating Expressive Power

	Overview of the Thesis

	Preliminaries
	First-Order Logic
	Two-Variable, Guarded, and Unary Negation Fragments
	Description Logic
	Modal Logic

	Conservative Extensions in Guarded and Two-Variable Fragments
	Deductive Conservative Extensions
	Undecidability Results
	The Guarded Fragment
	The Two-Variable Fragment

	Model-theoretic Characterization
	GFO2-Bisimulations
	Characterization of Σ-Entailment

	Decidability and Complexity
	2ATAs and their Emptiness Problem
	Upper Bound
	Lower Bound

	Concluding Remarks

	Conservative Extensions in Horn Description Logics with Inverse Roles
	Horn-ALCHIF
	Query Conservative Extensions and Entailment
	Query Entailment with Inconsistent ABoxes

	Model-theoretic Characterization
	Unraveling ABoxes
	Characterization of Query Entailment

	Decidability and Complexity
	Mosaic Technique
	Automata-Based Technique

	Deductive Conservative Extensions
	Lower Bound

	Concluding Remarks

	Ontology-mediated Querying in UNFO with Regular Path Expressions
	UNFO with Regular Path Expressions
	Ontology-mediated Querying

	Model-theoretic Characterization
	Normal Form
	Tree-like Structures
	Characterization of Satisfiability

	Decidability and Complexity
	OMQ Evaluation and Containment
	Data Complexity

	Model Checking
	Concluding Remarks

	Relation-Changing Modal Logics as Fragments of Hybrid Logics
	Relation-Changing Modal Logics
	Extensions of Modal Logic and Hybrid Logic
	Translations to Hybrid Logics
	Decidable Fragments
	Comparing Expressive Power
	Concluding Remarks

	Conclusions
	Bibliography

