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Abstract 
Heat transfer processes associated with arc plasmas are important for many industrial applications 
such as electric propulsion, plasma spray and arc welding. In these applications, an electric arc is used 
because it offers high energy densities and a controlled environment. However, it is sometimes not 
realizable or not economic to get the parameters within the high temperature region of plasma 
precisely by means of experimental measurements. A numerical model that offers reliable description 
of discharging process is a good choice. Any model of arc plasmas must contain not only the 
conservation of mass, momentum and energy, but also electromagnetic description that follows 
Maxwell’s equations. Since the last 30 years, intensive researches embarking on nonequilibrium 
plasmas have led to fruitful achievements, among them NLTE (non-Local Thermal Equilibrium) model 
plays an important role in numerical modelling due to its superiority over LTE (Local Thermal 
Equilibrium) model in accounting for the difference of two phase temperatures (heavy species and 
electrons) that cannot be neglected near electrodes. However, deeper researches meet obstacles 
when the discharging system needs to be simulated self-consistently as a whole and with as few 
presumed conditions as possible. On one hand, discharging under high current operation tends to 
overheat its electrodes leading to melting or evaporating, particles from electrode material that enter 
the plasma will change its composition and the heat transfer process. On the other hand, there’s still 
a “mysterious” region whose physical structure is so different from the main arc plasma region that 
cannot be accounted by conventional transport equations or theories without any extra treatments 
for it. This region, sometimes called sheath layer or space-charge layer, plays an important role in 
bridging the thermal and electric energy of arc column to electrodes. To develop a reasonable model 
in this region and make it compatible with the two other regions will extend the applicability of CFD 
model in discharging devices. The motivation of this doctoral thesis is based on my special interest in 
sheath region, or in other words, my pursuit of developing a self-consistent model that is capable of 
solving the whole plasma-electrode system. Concerning the complexity of sheath, no secondary 
physical phenomena such as melting and evaporating are considered in this study. For the main arc 
region, the plasma composition is calculated based on species conservation equations that consider 
both diffusion and production/loss activities of particles. And for the sake of high temperature of 
plasma core, ionization up to third level is applied. In the sheath layer, the effective sheath electrical 
conductivity is utilized, which is based on the assumption of Child’s collisionless sheath and Lowke’s 
expression. The ionization degree of plasma sheath plays an important role in this self-consistent 
method. To validate the model proposed here, several simple benchmark simulations are made and 
the numerical results concerning temperature, velocity and magnetic field yield satisfactory 
agreements with experimental or theoretical results. With the model being validated, a D.C. non-
transferred plasma torch is studied. The total voltages of both situations are compared with 
experimental measurements. It shows that the sheath model developed in this scope make the 
numerical results closer to reality and is responsible for the strong fluctuation of arc jets, which also 
makes cathode surface temperature fluctuate accordingly. Finally, pros and cons of some new design 
patterns of plasma torches are discussed, with the multi anode/single cathode type DeltaGun 
simulated for the comparison of performances with the original type. It reveals that such kind of 
configuration helps to damp the unwanted arc fluctuation with multiple arc roots. It is also numerically 
confirmed that when an external coil is added around anode to produce a proper magnetic field, the 
temperature of anode attachment can be reduced due to enhanced circumferential movement of arc 
roots by Lorentz force, which lowers the possibility of erosion and promotes a longer lifetime.  
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Zusammenfassung  
Wärmeübertragungsprozesse, die mit Lichtbogenplasmen verbunden sind, sind wichtig für viele 
industrielle Anwendungen, wie etwa elektrische Antriebe, Plasmaspritzen und Lichtbogenschweißen. 
Bei diesen Anwendungen wird ein Lichtbogen verwendet, da er hohe Energiedichten und eine 
kontrollierbare Umgebung bietet. Es ist jedoch manchmal nicht realisierbar oder nicht wirtschaftlich, 
die Parameter innerhalb des Hochtemperaturbereichs des Plasmas präzise mittels direkter Messungen 
zu ermitteln. Dieses Problem kann jedoch durch eine numerische Simulation, die eine zuverlässige 
Beschreibung des Entladeprozesses liefert, gelöst werden. Jedes Modell von Lichtbogenplasmen muss 
nicht nur die Erhaltung von Masse, Impuls und Energie enthalten, sondern auch die Beschreibung der 
elektromagnetischen Phänomene, die den Maxwell-Gleichungen genügt. Seit den letzten 30 Jahren 
haben intensive Forschungen, die sich mit Nichtgleichgewichtsplasmen befassen, zu fruchtbaren 
Erfolgen geführt: dabei spielt das NLTE-Modell (Non-Local Thermal Equilibrium), welches dem LTE-
Modell (Local Thermal Equilibrium) überlegen ist, eine wichtige Rolle, da dieses die beiden 
Phasentemperaturen (von schwere Spezies und von Elektronen), die in der Nähe von Elektroden 
auftreten und deren Unterschiede nicht vernachlässigt werden dürfen, genau modellieren kann. Falls 
das Entladesystem als Ganzes und mit möglichst wenig angenommenen Bedingungen selbstkonsistent 
simuliert wird, treten Schwierigkeiten auf: Zum einen neigen die Elektroden beim Entladen unter 
Hochstrombetrieb dazu zu überhitzen, was zum Schmelzen oder Verdampfen dieser Elektroden führt, 
wodurch Teilchen aus dem Elektrodenmaterial in das Plasma gelangen und damit dieses und den 
Wärmeübertragungsprozess verändern. Darüber hinaus gibt es dabei immer noch einen bestimmten 
Bereich, innerhalb dessen die physikalischen Eigenschaften der Plasma-Randschicht sich von den 
üblichen Eigenschaften des Plasmas so stark unterscheiden, dass diese nicht mit konventionellen 
Transportgleichungen oder Theorien ohne zusätzliche Annahmen erklärt werden kann. Diese Plasma-
Randschicht, auch Raumladungsschicht genannt, spielt eine wichtige Rolle bei der Überbrückung der 
thermischen und elektrischen Energie der Lichtbogensäule zu den Elektroden. Die Entwicklung eines 
vernünftigen Modells in dieser Region zusammen mit der Kompatibilität mit den beiden anderen 
Regionen wird die Anwendbarkeit des CFD-Modells in Entladungsvorrichtungen erweitern. Die 
Motivation dieser Doktorarbeit liegt somit darin, ein selbstkonsistentes Modell zu entwickeln, das in 
der Lage ist, das gesamte Plasma-Elektrodensystem zu lösen. Aufgrund der Komplexität der Plasma-
Randschicht werden in dieser Arbeit sekundäre physikalische Phänomene wie Schmelzen und 
Verdampfen nicht berücksichtigt. Für den Plasmakern wird die Plasmazusammensetzung vermöge der 
Erhaltungsgleichungen bestimmt, die sowohl die Diffusion als auch Erzeugung und Verluste von 
Teilchen berücksichtigen. Wegen der hohen Temperatur des Plasmakerns wird die Ionisation bis zum 
dritten Grad berücksichtigt. In der Grenzschicht wird die effektive elektrische Leitfähigkeit verwendet, 
die auf der Annahme von Childs stoßfreier Plasmagrenzschicht und der Lowkeschen Formel basiert. 
Der Ionisationsgrad der Grenzschicht spielt bei dieser selbstkonsistenten Methode eine wichtige Rolle. 
Um das hier vorgeschlagene Modell zu validieren, werden mehrere einfache Benchmark-Simulationen 
durchgeführt. Die numerischen Ergebnisse bezüglich Temperatur, Geschwindigkeit und Magnetfeld 
ergeben eine zufriedenstellende Übereinstimmung mit den experimentellen oder theoretischen 
Ergebnissen. Mit dem validierten Modell wird ein Lichtbogenplasmabrenner mit nichtübertragenem 
Bogen unter Gleichstrom untersucht. Die Gesamtspannungen dabei werden einmal mit und ohne 
Plasmarandschichtmodell simuliert und mit experimentellen Messungen verglichen. Es zeigt sich, dass 
die numerischen Ergebnisse des entwickelten Randschichtmodells die Realität besser beschreiben, 
insbesondere auch die starke Fluktuation der Lichtbogenstrahlen, aufgrund derer die Temperatur an 
den Kathodenoberflächen entsprechend schwankt. Abschließend werden die Vor- und Nachteile 
einiger neuer Designmuster von Plasmabrennern diskutiert, wobei DeltaGun mit drei Anoden und 
Einzelkathoden simuliert wird, um die Leistungen mit dem Originaltyp zu vergleichen. Es zeigt sich, 
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dass eine solche Konfiguration dazu beiträgt, die unerwünschte Bogenschwankung mit mehreren 
Lichtbogenwurzeln zu dämpfen. Es wird auch numerisch bestätigt, dass, wenn eine externe Spule um 
die Anode herum hinzugefügt wird um ein richtiges Magnetfeld zu erzeugen, die Temperatur der 
Anodenbefestigung aufgrund der verstärkten Umfangsbewegung der Lichtbogenwurzeln durch 
Lorentzkraft verringert werden kann, was die Möglichkeit von Erosion verringert und eine längere 
Lebensdauer ermöglicht.   
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Nomenclature 
NNaame  DDescription  UUnits  ⃗ܣ Magnetic vector potential V·s·m−1 A Voltage fluctuation ratio − ீܣ Material-specific constant of Richardson-Dushman current A·m−2·K−2 ܤሬ⃗  Magnetic field T ܤఒ Spectral radiance in wavelength W·sr−1·m−3 ܿ௣ Specific heat at constant pressure J·kg−1·K−1 ܥ௢ Courant number  − e Elementary charge, e=1.6022× 10ିଵଽ C ݁௜௡ Specific internal excitation energy J·kg−1 ݁௜௢ Specific reactive energy J·kg−1 ݁⃗ Iteration error vector − ܧሬ⃗  Electric field V·m−1 ܧ௖ Electric field magnitude at cathode surface V·m−1 ܧ௜ Ionization potential of heavy species i J ܧଵ∗ The first excitation energy  J ∇ܧ௜ Lowering of ionization potential J ு݂ Oscillation frequency in cathode cavity s−1 G Incident radiation intensity W·sr−1 h Planck’s constant, h=6.625× 10ିଷସ J·s ℎ௘ Specific enthalpy of electrons J·kg−1 ℎ௛ Specific enthalpy of heavy species J·kg−1 ℎ௦ Specific enthalpy of metal electrodes J·kg−1 ܪ௔ Hartmann number − I Identity tensor − ܫ௚ Ionization degree − ଔ⃗    Current density A·m−2 ଔ⃗஽,௜ Mass diffusion flux of species i kg·m−2·s−1   ଔ⃗஽,ୣ Mass diffusion flux of electron kg·m−2·s−1   ܬ଴ Child-Langmuir law of space-charge-limited current density A·m−2 ܬ௜ Ion current density A·m−2 ܬ௘௠ Thermionic emission current density A·m−2 ܬ௦௘௠ Secondary emission current density A·m−2 ܬ௕ௗ Back diffusion current density A·m−2 ܬ௦ Magnitude of electrode current density A·m−2 ଔ⃗௘௫ External coil current density A·m−2 k Turbulence kinetic energy J·kg−1 ݇஻ Boltzmann’s constant, ݇஻=1.38× 10ିଶଷ J·K−1 ݇ఒ Spectral absorption coefficient in wavelength m−1 ݇௕,௜ Recombination rate of heavy species i m6·S−1 ݇௙,௜ Ionization rate of heavy species i m3·S−1 ݇௡ Knudsen number − ܭ௜ Constant of Saha equilibrium m−3 L Characteristic length m ݉௛ Mass of heavy species kg 
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݉௘ Mass of electron, ݉௘=9.11× 10ିଷଵ kg ݉̇ Inlet mass flow rate kg· s−1 ݊௘ Electron number density m−3 ݊௜ Number density of heavy species i m−3 ݊௣ Ion number density at plasma-presheath interface m−3 ݊௦ Ion number density at presheath-sheath interface m−3 p Plasma static pressure Pa ݌௘ Partial pressure of electron Pa ݌௛ Partial pressure of heavy species Pa ݌଴ Atmospheric pressure, ݌଴=1.013× 10ହ Pa ௜ܲ  Binding energy of electrons in i-th subshell J ݍ௔ Heat flux density at anode surface W·m−2 ݍ௖ Heat flux density at cathode surface W·m−2 ݍோ Radiative heat flux density at electrodes W·m−2 ܳ௘௜ Electron-ion elastic collision cross section m2 ܳ௘௛ Energy exchange between electrons and heavy species W·m−3 ܳ௜௝ Ion-ion elastic collision cross section m2 ܳ௜,௡ Internal partition function of heavy species i − ܳ௥ Volumetric radiation heat flux W·m−3 R Optical depth m s Sheath thickness m ௘ܶ  Electron temperature K ௛ܶ Heavy species temperature K ௪ܶ Electrode surface temperature K ݑሬ⃗  Plasma flow velocity m·s−1 ݑ஻ Bohm velocity m·s−1 ݑ௘ሬሬሬሬ⃗  Electron flow velocity m·s−1 ܷ௔ Anode sheath voltage drop V ܷௗ Cathode sheath voltage drop V ஻ܸ Breakdown voltage of Paschen’s Law V z Charge number − ݖ௘௙௙ Effective charge number − ݖ௘௙௙ଶ  Effective squared charge number − ߙ Band-averaged absorption coefficient m−1 ߜ௜௘ Inelastic collision factor − ߝ஺ Net emission coefficient  W⋅ m−3 ⋅sr -1 ߝ଴ Vacuum permittivity, ߝ଴ = 8.5542× 10ିଵଶ A2⋅s4⋅kg-1⋅m-3 ߳ Thermal emissivity − ߶௔ Work function of anode material J ߶௖ Work function of cathode material J ∇߶ Decrease of work function by Schottky effect J ߛ௦௘ Secondary electron emission coefficient − ߟ௦ Computing speedup factor of Amdahl’s law − ߮ Electric potential V ߣ஽ Debye length m ߣ௛ Thermal conductivity of heavy species W⋅ m−1 ⋅K-1 ߣ௘ Thermal conductivity of electrons W⋅ m−1 ⋅K-1 ߣ௦ Thermal conductivity of electrodes W⋅ m−1 ⋅K-1 



9 
 

ߨ௠=4ߤ ௠ Magnetic permeability of material, for vacuumߤ Dynamic viscosity kg⋅ m−1 ⋅s -1 ߤ × 10ି଻ H⋅m−1 ߥ௘௘ Elastic collision frequency of electron-electron s−1 ߥ௘௜ Elastic collision frequency of electron-heavy species i s−1 ߥ௜௘ Elastic collision frequency of heavy species i-electron s−1 ߥ௜௝ Elastic collision frequency of heavy species i-j s−1 ߱ Turbulence frequency s−1 ߠ Degree of thermal nonequilibrium, ߠ= ௘ܶ/ ௛ܶ − ߴ Swirl angle of injection rad ߩ Plasma flow density kg⋅m-3 ߩ௦ Metal electrode density kg⋅m-3 ߪ Electrical conductivity of plasma S⋅m−1 ߪ௦ Electrical conductivity of metal electrodes S⋅m−1 ߪ௘௙௙ Effective electrical conductivity of sheath S⋅m−1 ߪ௦௛ Electrical conductivity of Child’s sheath S⋅m−1 ߪௌ் Stefan-Boltzmann constant, ߪௌ்= 5.67× 10ି଼ W⋅m−2⋅K−4  
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Chapter 1 

Introduction 

 
1.1 Background 

1.1.1 LTE and NLTE plasmas 

The plasma state is frequently referred to as the fourth state of matter apart from the common states 
of solids, liquids and ordinary gases which we can well perceive from our daily lives. This state of matter 
has been justified by the fact that more than 99% of the known universe is in the plasma state. For 
example, the sun, whose interior temperature exceed 10଻K, is a huge plasma ball. The term “plasma” 
which will be frequently addressed in the following sections of this thesis is restricted to gaseous 
plasma, which means it consists of electrons, ions and neutral particles. Because the mass of ions and 
neutral particles is always much heavier than that of electrons (for example, argon atom mass is 
6.6× 10ିଶ଺kg, which is almost 10ହ times heavier than electron), these two kinds of particles are called 
heavy species. If a plasma is located in a closed system, each process is in equilibrium with its reverse 
process and the plasma is in thermodynamic equilibrium (TE) state. Such a plasma can be characterized 
with the extremely high temperature, pressure, and number densities of each single species. However, 
in a real plasma, deviations from equilibrium often occur. For example, radiation escapes out of the 
plasma, disturbing the detailed balance. If in such situation, the plasma temperature is still so high that 
the energy loss due to radiation can be neglected, the plasma can be considered as in a Local 
Thermodynamic Equilibrium(LTE). Such LTE state often occurs inside the plasma core, where collision 
process dominates. With LTE state, the characteristic time of the slowest reaction in plasma is 
negligible compared to that of convection and diffusion along temperature and composition gradients. 
If the temperature of heavy species is much lower than the electron temperature, in such situation 
(for example in the plasma-electrode interaction region, the plasma heavy species temperature 
approaches electrode surface temperature due to energy exchange with electrode surface while 
electron temperature remains much higher for conducting electric current), the plasma is in a thermal 
nonequilibrium state and cannot be described by a unified temperature. For this case, a more 
elaborate approach is necessary to describe the Non-Local Thermodynamic Equilibrium (NLTE) plasma 
along with drift-diffusion calculation of plasma composition. As the plasma-electrode interaction 
region is intensively researched and simulated in this scope, to avoid unrealistic assumption of local 
parameters in the plasma fringes, LTE plasma model is abandoned and only NLTE description is applied 
for the coupled simulation of plasma-electrode interaction. 

1.1.2 Stages of electrical discharge 

An electrical discharge results from the creation of a conducting path between two points of different 
electric potential in the medium in which the points are immersed. Usually, the medium is gas, such as 
air, argon, helium etc. If two points are separated by a vacuum, there’s usually no discharge if cathode 
material is refractory. Although arc and glow discharges are the two most typical regimes or stages for 
researchers, they cannot fully describe the whole process for this highly complicated physical 
phenomenon. From the very first stage till a stable arc discharge there are typically three main stages 
with many important substages. 

(1). Townsend discharge 
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After the initiation of ionization by cosmic rays or other sources of ionization radiation which will 
produce current of only femtoamperes, this stage, also called Townsend avalanche, is a starting state 
for massive electron production. It is usually initiated by a high-voltage source to form a stark electric 
field. The electric field and the mean free path of the electron must allow free electrons to acquire an 
energy level that can cause impact ionization. In this stage, Townsend believed that it is the electrons 
from cathode surface due to impact of positive ions that sustain the appearance of enough electrons 
for discharge initiation. This is called secondary emission mechanism which will be taken into account 
in later sections. If electron energy gained from electric field is not high enough, ionization will not 
happen. If in dilute gas, where mean free path for electrons is long, it is possible that most of the 
electrons reach anode before colliding with any atom or molecules. On the contrary, if the mean free 
path of electrons is too short, due to the too frequent colliding with atoms, electrons will have little 
chance gaining enough energy for ionization. Hence the condition for Townsend avalanche is not easy 
to achieve especially for high and low discharge pressures. When an electron with sufficient velocity 
causes impact ionization successfully, it will liberate another free electron. These two electrons then 
cause further electrons provided that they gain sufficient energy from electric field. Therefore step by 
step, a chain reaction comes into play which justifies its name avalanche.  

(2) Glow discharge 

While the process has already started with the discharge regimes mentioned above, they are not 
visible to eyes except for Corona regime [1], as a result, they are sometimes called dark discharge. 
When the applied voltage between two electrodes exceeds the striking voltage or breakdown voltage ஻ܸ, the gas in the tube ionizes, becoming a plasma. And electric current flow through it, making it 
visible and glow with a certain color according to the gas used. Such regime is called glow discharge. 
Friedrich Paschen discovered in 1889 that the striking voltage between two electrodes in a gas is 
related to the gas pressure and gap length [2], the Paschen’s law is as follows: 

                                                                   ஻ܸ= ஻௣ௗ୪୬(஺௣ௗ)ି୪୬ [୪୬ቀଵା భംೞ೐ቁ] ,                                                              (1.1) 

where p is gas pressure in Pascals, d is the gap distance in meters, ߛ௦௘  is the secondary electron 
emission coefficient. A and B are determined experimentally and found to be roughly constant over a 
certain ா௣ range. By setting డ௏ಳడ(௣ௗ) = 0, it leads to a minimum breakdown voltage ஻ܸ௠௜௡ for a certain pd 

value: 

௠௜௡=ଶ.଻ଵ଼஺(݀݌)                                                                      ln(1+ ଵఊೞ೐) ,                                                              (1.2) 

                                                                     ஻ܸ௠௜௡ =2.718஻஺ln(1+ ଵఊೞ೐).                                                              (1.3) 

 

 

 

  
  
  
  
  
  
  Fig.1.1. Paschen’s curve for Argon and Air (coefficients taken from [3]) 
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From Paschen’s curve (Fig.1.1) it can be found that in case of a too low or too high pd value, ஻ܸ௠௜௡ 
becomes very high. It results from Townsend avalanche discussed above, which has a strict 
precondition for electric field strength and electron mean free path. When the voltage is increased 
above the normal glow range, abnormal glow begins.  

(3) Arc discharge  

If the applied voltage continues to increase and the cathode glow covers the entire cathode, then arc 
discharge begins. Arc discharge, which occurs in the ampere range of the current, is within the research 
scope of this study as most discharge applications are related to this regime. Industrially, electric arcs 
are used for welding, plasma cutting, electrical discharge machining. In astronautic fields, arc discharge 
inside an Arcjet thruster heats the gas propellant to produce huge thrust as an alternative way of 
traditional thrust by chemical fuel. It is characterized by a stark voltage drop from glow discharge with 
increasing current intensity. If the cathode voltage drop in a glow discharge is approximately of the 
order of 100V or more, in an arc discharge it is only 10~15V [4]. The voltage drop results from the 
increase of the electrical conductivity of a gas in the transition process to a plasma state so there is 
less and less resistivity for the current to flow though. If the intensity of current discharges continues 
to increase, the increase of the number of electron impacts give rise to the temperature increase of 
the gas in the vicinity of cathode and, thermal ionization starts to play the main role in ionization of 
the gas. Consequently, it is necessary to ensure a large electric potential drop in the vicinity of cathode 
in order to maintain quasi-neutrality in the main body of plasma.  This region, characterized by a drastic 
electron rejection is defined as sheath region and will be discussed in later sections. The exit of the 
electron from the cathode surface take place now mainly due to thermionic and field emission instead 
of secondary emission, which is active in earlier stages.  

1.1.3 Fluid description of a plasma 

In arc discharge devices, such as Arcjet Thruster or Plasma Torch, the charge particles undergo a large 
number of collisions with each other. It is impractical to analyze the motion of each particle to obtain 
a macroscopic picture of plasma processes that is useful for evaluating the device life or performance. 
Fortunately, in most cases it is not necessary to track individual particles to understand the plasma 
dynamics. In statistics, the Maxwell–Boltzmann distribution is a particular probability distribution 
named after James Clerk Maxwell and Ludwig Boltzmann.  It is used in physics (in particular in statistical 
mechanics) for describing particle speeds in idealized gases where the particles move freely inside a 
stationary container without interacting with one another, except for very brief collisions in which they 
exchange energy and momentum with each other or with their thermal environment. Therefore, it can 
be safely assumed that in collision-dominated, high-temperature plasma the velocities of each species 
will follow Maxwellian distribution (except for near-electrode regions), thus random motions can be 
calculated by making integrations of distribution functions. 

The form of the Maxwell velocity probability density in three dimensions is: 

                                               f (ݑሬ⃗ ሬሬ⃗ݓ , ݒ⃗ ,   )=( ௠ଶగ௞ಳ்)ଷ/ଶ exp[- ௠ଶ௞ಳ் (ݑሬ⃗ ଶ+ݒଶ+ݓሬሬ⃗ ଶ)],                                         (1.4) 

where ݑሬ⃗ ሬሬ⃗ݓ , ݒ⃗ ,   represent the velocity components in the three coordinate axes. ݇஻ is the Boltzmann 
constant. The average kinetic energy of a particle in the Maxwellian distribution in three dimensions 
can be calculated using the following integration: 

=തܧ                                                     
∭ భమ௠(௨ሬሬ⃗ మା௩మା௪ሬሬ⃗ మ)௙ (௨ሬሬ⃗  ,௩ሬ⃗  ,௪ሬሬ⃗  )ୢ௨ሬሬ⃗ ௗ௩ሬ⃗ ௗ௪ሬሬ⃗ಮషಮ ∭ ௙ (௨ሬሬ⃗  ,௩ሬ⃗  ,௪ሬሬ⃗  )ಮషಮ ୢ௨ሬሬ⃗ ௗ௩ሬ⃗ ௗ௪ሬሬ⃗  ,                                                    (1.5) 
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By inserting Eq.1.4 into Eq.1.5, the averaged translation energy per particle in three-dimensional 
situation is: 

തܧ                                                                       =ଷଶ ݇஻T.                                                                                       (1.6) 

Therefore, for monatomic gas for example Argon which has three degrees of freedom, the averaged 
enthalpy neglecting internal excitation and reactive energy is: 

ഥܪ                                                         = തܧ + ௣ఘ = ହଷ ത=ହଶܧ ݇஻ܶ.                                                                         (1.7) 

The averaged absolute velocity of a particle in the Maxwellian distribution is: 

∫= തതതത|ݑ|                                    ஶ଴|ݑ|  ( ௠ଶగ௞ಳ்)ଷ/ଶ exp(- ௠ଶ௞ಳ் ට଼௞ಳ்గ௠=|ݑ|ଶd|ݑ|ߨଶ)4|ݑ| ,                                   (1.8) 

We know that plasma consists of multiple components with different number, mass and charges, the 
collision situation among them becomes very important as the method we choose to simulate plasma 
depends directly on it. There are generally two methods in simulating plasmas, namely continuum 
method (CFD) and microscopic method “particle-in-cell” (PIC). The latter is universally applicable since 
it takes into account almost all complex phenomena using combined Eulerian-Lagrangian method. 
However, it is computationally too expensive despite the progressive technology. Besides, the coupling 
of bulk plasma with sheath and metal electrode using this kind of method will be difficult. Therefore, 
this method is not applied in this dissertation. For conventional fluid description of plasma, there’s 
strong limitation in relation to plasma Knudsen number and will lose validity in dilute gases. In terms 
of fluid dynamics, the fluid approximation is valid only when Knudsen number ܭ௡ is less than 0.01[5]: 

=௡ܭ                                                                           ଵ௅೎௡ೕொ೔ೕ < 0.01,                                                                    (1.9) 

where ܮ௖ is the characteristic length of plasma, for example the diameter of the tubular anode in a 
commercial plasma torch. ௝݊  , ܳ௜௝  are number density and collision cross section respectively. For 
typical atmospheric LTE state of an argon plasma, ݊௘ is within the order of 10ଶଷ/݉ଷ, ܳ௜௘ about the 
order of 10ିଵ଺  ݉ଶ ௖ܮ ,  always between 10ିଶ  and 10ିଷ m, so ܭ௡  is ≪  0.01. The choice of using a 
continuum CFD method to simulate atmospheric argon plasma core in this study can thus be justified, 
whereas for plasma fringes or sheath regions, where number density and collision frequencies 
drastically decrease, this method may not be accurate enough. For a self-consistent modeling of 
plasma-electrode interaction, sheath region can be very important and thus needs treatment with care.  

1.1.4 D.C. plasma torches 

The application of thermal plasma technology has experienced a gradual transition stage from space-
oriented activities in 1960s to a more and more material-oriented focus since 1980s as the mechanism 
of particulate interaction and the chemistry in thermal plasmas became well understood. Today, 
thermal plasma technology covers a wide range of applications. Among them plasma spraying has 
become a well-established and widely used technology with applications ranging from corrosion, 
coatings to the production of metallic and ceramic parts. The Direct Current (D.C.) arc plasma torches 
are one of the most typical devices used with this technology. D.C. plasma torches can work under 
common atmospheric pressure, low pressures, controlled ambient conditions or even under water. No 
matter under which conditions, the design of plasma spray torches for various plasma spray processes 
is essentially the same: a stick-type cathode (usually thermionic), a nozzle-shaped cathode and the 
plasma-forming gas injection stage (usually used for a swirl injection). The temperature that a gas 
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attained from arc discharge process in a plasma torch ranges from 10ସ~5× 10ସK and the velocity from 
10~10ସm/s [6]. 

Arc plasma torches can be classified by two different categories. In the first situation, if the anode 
that’s grounded inside torch body, so the arc created is inside the torch itself, it is called non-
transferred plasma torch. On the contrary, if the grounded anode is outside (usually is the conductive 
material to be treated), in such condition the arc length is much longer than the non-transferred 
situation and it is called transferred plasma torch. Both of them has its advantages. For example, a 
benefit of transferred plasma torches is that the plasma arc is formed outside the water-cooled body, 
avoiding heat loss, which will otherwise lower the thermal efficiency. For non-transferred situation, 
the cutting object is outside the electrical circuit, this allows the plasma processing of not only the 
conducting materials but also the non-conducting ones which is a huge advantage over the transferred 
one. Due to its practicality, the non-transferred D.C. plasma torch is chosen to be researched and 
numerically simulated in this study. Another way of defining a plasma torch is to distinguish the way 
an arc set its root on an anode. If the arc sets foot freely onto the anode according to the interaction 
of gas dynamic and induced magnetic force and changes its position with time, it is called plasma torch 
with self-setting arc length [4]. Because of their simple design, thermal plasma torches with self-setting 
arc length are used widely. However, such kind of torch configuration always suffers from high level of 
fluctuations of arc voltage and the drooping of volt-ampere characteristic creates certain difficulties in 
matching of the arc with electric power sources. Those shortcomings may be eliminated by fixing the 
mean arc length in a specific range of variation of current density. A typical way to achieve that is to 
expand the diameter of the nozzle at the end of cylindrical anode suddenly. This produces a ledge that 
fixes the arc attachment. Another way of introducing a fixed anode attachment is to insert a neutral 
insulator between cathode and tubular anode and then divide anode into multiple (usually 3) 
segmented parts which are insulated to each other. Such device, sometimes called DeltaGun [7], 
creates multiple fixed arc roots and is in favor of damping arc instabilities and allowing uniform particle 
treatment. The numerical simulation in this study will also address it and the results are presented in 
section 5.3. 

1.1.5 Design considerations   

As for the design of a plasma torch, there’re always two main questions that need to be considered in 
detail: how can a plasma torch work longer and how can it work more efficiently. However, for plasma 
torch design these two goals often contradicts each other.  

The equivalent question for the former is how to reduce electrode erosion. We know that for a 
common commercial plasma torch, a non-refractory electrode is always chosen, for example tungsten 
or thoriated tungsten, whose melting point is over 3600K. Choosing suitable current intensities can 
avoid cathode erosion effectively. However, for anode material the candidates are always copper or 
steel, which will melt between 1300 ~1500K. The erosion of anode is always a research focus in order 
to increase the device lifetime. The anode erosion results from the strong heat flux of the constricted 
arc attachment between arc column and anode surface. However, anode attachment is always hard 
to predict because it moves from time to time as a result of interaction between magnetic body force 
and gas dynamic drag force [8]. Experiment [9] showed that an increase in residence time of anode 
attachment resulted in accelerated erosion. That means, to avoid anode erosion, measures should be 
taken to make arc roots move more frequently around anode surface than usual to reduce heat load 
at a certain spot, which always results in a more unstable arc. 

However, to make plasma torch work more efficiently, for example, for better control of coating 
architectures, plasma treatments of liquids or nano-sized solid particles require a stable high 
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temperature arc region. This situation is always hard to achieve because of arc instability. According 
to the definitions from Duan et al. [10], the arc instability is divided to four modes based on two factors: 

                                                                                 S= ௧ೠ೛௧೏೚ೢ೙ ,                                                                          (1.10) 

                                                                         A= ∆௏௏  × 100% ,                                                                      (1.11) 

where ݐ௨௣ and ݐௗ௢௪௡ are the time duration of voltage rise and drop, ∆ܸ is the amplitude of arc voltage 
fluctuation, V is the mean arc voltage. 

(1). Steady mode (A < ૛%) 

To archive this mode, the gas dynamic drag force should be balanced by magnetic body force. Because 
of its negligible arc jet fluctuation, the voltage fluctuation is also negligible, and the anode attachment 
is almost fixed. The anode erosion is thus severe, and the lifetime is always very poor. 

(2). Takeover mode (A≥ ૚૙% and S<1.1) 

This mode occurs mostly with monatomic gases, the relatively small amplitude of the arc voltage 
fluctuation indicates a small movement of the arc attachment in axial direction. The previous 
attachment will not disappear immediately when new attachment builds at other places. The time for 
voltage drop and rise is almost the same. This is a most desirable work mode. Because too stable an 
arc will result in considerable erosion while too unstable will affect plasma spray efficiency as discussed 
previously.  

 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
 
 
(3). Restrike mode (A≥ ૚૙% ans S≥5) 

This mode occurs mostly with diatomic gases. It is characterized by strong voltage fluctuations. The 
difficulty in predicting this mode numerically is mainly due to a so-called “reattachment” process, 
which has been experimentally observed by Wutzke [11] shown in Fig.1.2. This microscopic process 
happens only within the cold boundary layer between arc core and anode surface. The real mechanism 

 

Fig. 1.2. Experimental high-speed images of arc reattachment process from Wutzke [11] 
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for this process is still not clear. One physical explanation for it is the “micro-breakdown” theory [12]. 
In this case, the gasdynamic force dominates over magnetic body force. The cold gas that surrounds 
the arc core in the boundary layer pushes the current path further downstream when voltage rises and 
suddenly somewhere upstream exceeds the critical electric field strength and a new breakdown 
happens, forcing the previous attachment disappear and voltage curve drops down quickly. Other 
possible reasons responsible for a restrike mode may be the application of external magnetic field or 
the acoustic resonance by the compressibility effects of plasma in cathode cavity [13]. 

(4). Mixed Mode 

Under different mass flow rates and total currents, the different work modes can take place 
simultaneously to form a mixed mode. Another two modes are namely restrike-takeover mixing mode 
(A≥ 10% and S<5) and takeover-steady mixing mode (2%<A<10%). 

To find a compromise between two contradictory design goals there are usually several strategies, one 
common way is to simply increase working current to form an arc column with larger radius, the arc 
jet is thus wall-stabilized, the attachment region on anode surface is large enough to avoid erosion. 
However, this requires more input electric energy. Another way is to apply vortex injection at gas inlet, 
it contributes to the cooling of anode surface through intensified convective heat transfer by 
introducing cold rotating secondary gas around arc core and making it stable along the symmetry axis. 
If needed, a so-called magnetic-stabilization can also be applied. It is achieved by rotating a permanent 
magnet or adding a solenoid outside flow field, due to the Lorentz force, the “bridge” between arc 
core and anode surface will rotate circumferentially making the attachment move with a relative high 
frequency to avoid erosion. However, such configuration will add complexity to structure and 
operation. The effect of such design considerations will be numerically studied and discussed in section 
5.3.   

1.2 Research background and motivation 

For a reliable modelling of the whole D.C. plasma torch system one needs to have a comprehensive 
knowledge regarding all its participants. The main part of the plasma torch is the electric arc between 
the electrodes. For fluid approximation, such part is simulated through the combination of 
conventional Navier-Stokes equations with Maxwell electromagnetic equations. For the simulation 
inside metal electrodes, this is even simpler as the complexity of solid transport equations are greatly 
reduced compared with LTE or NLTE arc models. The most complicated part of a self-consistent 
simulation is bound to be in its interaction region. Because there’s a black-box region between 
electrodes and main arc plasma called sheath region, which determines the energy transfer between 
the other two regions but exhibits a rather different physical process which even the most novel 
simulation methods developed for plasma core cannot solve it.  

For common CFD simulation of arc plasma, metal electrodes are not considered due to the complexity 
of cathode layers (sheath, pre-sheath). Usually, the electron thermal and field emissions or 
temperature at electrode surface are represented by a set of imposed current density and temperature 
boundary conditions according to experimental measurements [14] or empirical arc spot radius 
according to the theory of [15]. However, these methods are all over-simplified and cannot reflect the 
arc-electrode interaction precisely. The necessity of building a self-consistent model of plasma-
electrode system mainly results from the need of a reliable prediction of electrode temperature. For 
example, for plasma processing of minerals, one needs to know the current for the onset of melting 
for different electrode and current configurations in order to avoid or reduce electrode erosion in 
advance more effectively. On the contrary, to improve productivity, for arc welding applications such 
as GMAW (Gas Metal Arc Welding), knowing electrode temperature in advance can also maximize 
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melting [16]. A lot of work has been done by researchers through extensive theoretical and 
experimental study of arc-electrode interactions since properties of electric arcs depend not only on 
the arc plasma medium, but also on the bulk electrodes and the related electrode layers. When it 
comes to theoretical researches, Hsu et al. [17] developed an iteration method that calculates the 
electron number density inside sheath according to Boltzmann relation while the pre-sheath region 
according to Saha equation. The electric potential inside sheath is attained strictly from Poisson 
equation. The criterion dividing the two regions is the variation of electron number density over one 
electron mean free path. Zhou et al. [18] improved that model and included the bulk cathode into it. 
The cathode thermal conduction takes part in the whole iteration loop to yield cathode temperature 
and sheath potential drop with an auxiliary condition that the Steenbeck’s minimum principle should 
be fulfilled. However, Benilov et al. [19] have found out later that Steenbeck’s principle is not a 
corollary of mathematical models of gas discharges and it contradicts the mathematical models. Cayla 
[20] described a 1-D self-consistent model of interaction between an electric arc and a solid refractory 
cathode where current density conservation, balance of energy at sheath/pre-sheath interface and at 
the sheath-cathode interface are considered, whose calculated values of cathode sheath voltage drop 
and the power flux transmitted to the cathode are in good agreement with related literature. Gonzalez 
[21] used the same interaction model but included a two-temperature electrical conductivity inside 
sheath while assuming LTE in the plasma column, who drew the conclusion that the length of the 
ionization layer(pre-sheath) and the value of the secondary emission coefficient have significant 
influences on the whole interaction process. Among experimental researches, Haidar at al. [22] made 
an experimental study of the relationship between plasma temperature and cathode geometry with 
different cone angles. The measurements highlight a strong dependence of the plasma temperature 
on the cathode angles, because the cathode surface area attached by plasma is directly related to the 
cathode angle, where the most thermionic electrons are produced and in turn decide the heating area 
of plasma. This finding manifest again the importance of a fully coupled arc-electrode simulation. 

Among the early numerical investigations, Zhu et al. [23] may be the first to have put forward a 
universally applicable theory and simulation method of the interaction between burning arcs and their 
electrodes. The simplified theory is applied in a two-dimensional simulation of arc-electrodes 
interaction which is combined with a one-dimensional sheath model. The sheath electron number 
density is calculated by an electron continuity equation considering the ambipolar diffusion and 
ionization nonequilibrium. A generalized Ohm’s Law is used to describe the smooth transition from the 
hot, fully ionized arc spot to the cold sheath layer. The same simulation method was then used in the 
paper of Lowke et al. [24,25], which has achieved good experimental agreement. However, except for 
the fact that this model did not include space-charge effect, the most manifest disadvantage of this 
method is that, it is a grid-sensitive method. The interface boundary cells which located in the cathode 
spot should be greatly stretched until it reaches the LTE arc core as a unified temperature is assumed 
and number density derived from one-temperature model near cathode can be easily underestimated. 
This method is for the usual CFD simulation inapplicable because the over-stretched mesh cells will 
add to the degree of mesh non-orthogonality and give rise to much higher numerical instability and 
uncertainty. Maruzewski et.al. [26] used almost the same model from Zhu and divided the fluid region 
into hot arc plasma and cold ܵܨ଺  gas according to an empirical temperature value. However, this 
critical value that forces current flow through a predefined area will produce great temperature 
gradient in- and outside cathode and cannot reflect the interaction process properly. Recently, more 
and more sophisticated methods addressing this research area begin to appear. Shirvan [27] 
developed a self-consistent interaction model which utilizes the energy balance in the ionization layer 
to yield parameters that decide the specific coupled boundary condition at cathode surface. The author 
attributed the non-uniform electron emission at cathode surface to the diffusion or redistribution of 
rare earth activators. This model, although self-consistent as the author claimed, still requires cut-off 
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parameters such as critical current density and melting point of ThOଶ to make results more realistic. 
However, there’re many circumstances in which the cathode surface temperature cannot reach 
melting point due to the low current intensity or material work functions. More sophisticated model 
such as Baeva’s [28] fully nonequilibrium approach (thermal and chemical) makes it possible to link 
plasma model to sheath directly without the necessity to account for pre-sheath layer additionally. 
Despite its novelty in diffusion representation and boundary conditions for sheath, it accounts for only 
the singly ionized plasma, which may not be accurate at elevated plasma temperatures. As for anode 
layers, Nemchinsky et al. [29] divided it into three different zones: the outmost layer which is 
significantly influenced by plasma bulk and is thermal nonequilibrium; the middle layer which is 
dominated by diffusion and is both thermal and chemical nonequilibrium; the innermost space-charge 
layer which is also with the thickness of several Debye length as the cathode sheath. However, the 
measurement of anode sheath potential fall itself is still a problem, according to [28], the major reason 
for it is the difficulty in defining a reference point for measurement, as a result, for similar conditions, 
experiments by different authors failed to agree with each other. In some papers, anode sheath fall is 
ignored by setting it to 0 [28] or manually enlarging the boundary grids to include diffusion-dominated 
regions [30] due to lack of reliable anode sheath models.   

This research is motivated by the need of finding a universally applicable description of plasma-sheath-
electrode system and help to predict working situations of electrodes under different arc discharge 
conditions precisely for a better control of production process. For conventional arc discharge 
simulations which utilize finite volume method, it is difficult to include the complicated plasma 
boundary layer. Because the sheath layer itself has an extremely small thickness (usually of 10ି଼m), if 
one tends to further divide such region with enough resolutions for calculation, it would be 
meaningless since the respect ratio of sheath cells will be infinitely high, causing collapse of numerical 
stability. An acceptable way to do this is to manipulate the single layer of boundary cells at interfaces 
and make them capable of reflecting the sheath region in an averaged way to avoid large gradients of 
related parameters induced by space-charge effect within extreme small dimension that cause 
numerical instability and unphysical results. A detailed description of interaction model and solving 
procedures will be presented in section 2.5.4.  

1.3 Preview of research focus and methods 

As is mentioned previously, a predefined boundary condition at cathode surface concerned with 
current density and temperature distribution cannot reflect the electron emission from cathode and 
its interaction with plasma properly. According to classic separation of physical regions, the whole 
discharge system should be separated into anode - anode sheath - anode presheath- plasma - cathode 
presheath-cathode sheath - cathode regions, while cathode presheath can be further divided into 
ionization and Knudsen layer (Fig.1.3). Theoretically, the simulation should be able to start at any one 
of the regions with arbitrary initial values and connect each other by energy conservation and charge 
conservation. However, due to the limitation of fluid approximation, the detailed space-charge effect 
cannot be modelled precisely in connection with continuum regions. In this study, sheath layer at 
cathode is simplified so that a macroscopic estimation is attained that can be applied as an extra 
parameter into the Navier-Stokes equations to allow a unified description of plasma and sheath. One 
advantage of it is that the arc attachment at cathode can be simulated dynamically, or in other words, 
some unnecessary estimations such as cathode spot radius or cut-off parameters, which fixes 
unrealistic conduction region can be spared. Besides, several important boundary conditions for 
plasma-electrode interface concerned with temperature, electric potential, magnetic field that ensure 
continuity are discussed and applied. With the combination with NLTE plasma model a self-consistent 
model can be built. Several benchmark simulations will be presented to validate the model, which 
provide a reliable basis for the numerical study of plasma torch. For this chapter both a conventional 
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D.C. plasma torch and a new type DeltaGun are simulated, not in an effort to judge which is superior 
on the whole, but to evaluate the effect and practicability of specific design considerations taking into 
account the device lifetime and efficiency.  

 

  
  
  
  

 

 

 

 

 

 

However, as the whole system needs to be simulated, considerable computation costs need to be 
reduced to an acceptable extent. Here Knudsen layer of cathode is ignored, which is replaced by 
Bohm’s criterium into the interface boundary conditions. Anode sheath and presheath are also ignored 
as potential drop or rise is small in comparison to cathode layer. The thermal radiation cannot be 
simulated with its absorptivity within the whole range of wavelength due to the limitation of 
mathematical treatment, a band-averaged approximation within certain interval of wavelength and 
with certain optical depth can be considered as reasonable. The complicated calculation of 
nonequilibrium transport properties according to Chapman-Enskog theory is replaced by 
implementing the interpolation of accessible data from literature.  

Thanks to the open source CFD simulation tool OpenFOAM, all the model considerations including 
transport equations, transport properties, radiation model and boundary conditions etc. can be 
implemented by C++ coding to help to carry out the numerical studies in this thesis. While OpenFOAM 
has already provided users with abundant example syntaxes covering a full range of basic CFD solvers 
aiming at different usage purposes, such as Electromagnetics, Buoyancy-driven flow, Multiphase flow 
and Particle-tracking problems, the standard solver which has been developed here is called 
chtMultiRegionFoam. It is meant to solve transient conjugate heat transfer between solid regions and 
compressible fluid region and handles secondary fluid or solid circuits which can be coupled thermally 
with the main fluid region. PISO algorithm is applied to correct and yield pressure and velocity fields. 
The detailed global coupling procedure including differencing schemes and iteration methods will be 
presented in following chapters.  

 

 

 

 

Fig. 1.3. Schematic description of cathode boundary layer 
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Chapter 2 

Mathematical descriptions of the interaction model 

 
Before tackling the global interaction model that connects all the necessities of the discharge system, 
it is necessary to get all the primary physical processes described by mathematical equations in each 
region which are more or less simplified based on the requirement of precisions. As is introduced 
previously, this interaction model can be subdivided by several sub-regions that can only calculated by 
different set of transport equations or properties. As this set of transport equations is highly non-linear 
and differs from each other by its complexity, it is impossible to consider all the kinetic descriptions of 
plasma within the CFD simulations, therefore it is absolute necessary to reduce it to a computation 
affordable extent by reasonable assumptions and simplifications. As is suggested by many researchers 
[14,26] that the anode sheath plays no significant role due to its electrically conducting property 
caused by electron ambipolar diffusion and small magnitude of potential drop/rise, there’s no need to 
apply extra anode sheath model. In this scope, only the plasma core, cathode sheath and metal 
electrodes are simulated explicitly according to their physical properties and interaction processes 
with each other.  

2.1 The non-thermal plasma core 

2.1.1 Plasma composition 

Early models of the arc considered the arc mostly as a component in an electrical circuit and treated 
the arc properties empirically. This includes arcs in interruption devices. A more physical model based 
on energy conservation was derived by Heller [31] for the case of a one-dimensional steady state 
situation. The explosive growth of arc plasma applications since 1970s resulted in the development of 
modeling approaches of increased sophistication. Due to that experimental evidences [32,33] for 
departures from LTE in the cathode regions of a free burning arc are attained, the one-fluid, two-
temperature method accounting for thermal nonequilibrium phenomena in the plasma is considered 
as suitable. On the assumption of Maxwell distribution described in 1.1.3, in this scope the Maxwellian 
distribution of particles with temperature ௘ܶ and ௛ܶ accordingly is assumed in electronic and heavy 
particles (neutral atoms and ions). 

To get the plasma temperature distribution in the arc column, the first step is to calculate the particle 
number densities inside it. Generally, there are two ways to determine the particle number densities: 
chemical equilibrium and nonequilibrium models. The former utilizes the famous Saha–Langmuir 
equation, which relates the ionization state of a gas in thermal equilibrium to the temperature and 
pressure: 

= ௜ =  ௡೐௡೔௡೔షభܭ                                    ଶொ೔,೙ொ೔షభ,೙ (ଶగ௞ಳ௠೐ ೐்௛మ )ଷ/ଶexp(- ா೔ି∇ா೔௞ಳ ೐் ),                                              (2.1) 

where  ܳ௜,௡ is the internal partition function of heavy species i at the corresponding ionization level 
(i=0 for atom), whose temperature-dependent values are obtained from [34], ∇ܧ௜ is the lowering of 
ionization potential which is neglected in this scope.  

However, due to the specific reaction time of different inelastic collisions, the state of ionization 
equilibrium is seldom achievable due to the local macroscopic velocity of plasma flow. For example, in 
a arcjet or MPD thruster, the plasma flow is usually accelerated to over 1000m/s due to thermal 
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expansion and magnetic pinch effect, the chemical process cannot catch up with the macroscopic 
translation of charged particles hence the real population deviates a lot from equilibrium results. 
Besides, in the near-electrode regions, due to the need to maintain quasi-neutrality of plasma core, 
the charged particles (ions and electrons) diffuse to the electrode surface with quite different velocities, 
and this so-called ambipolar diffusion has a dominant effect on the local particle population. As in this 
scope, electrodes are included into the computation model, the inclusion of diffusion transport is 
inevitable. According to the equilibrium results of plasma number density (Saha results) shown in Fig. 
2.1, the number of  ݎܣଶାexceeds that of ݎܣାat over 26000 K so single ionization calculation is not 
adequate. The assumption of 3 level ionization still holds its validity at 35000 K, because at that 
temperature the ion number density of fourth level is still negligible. Hence plasma composition up to 
3. ionization level (ݎܣା, ݎܣଶା, ݎܣଷା) is considered in this scope to ensure a precise account of argon 
plasma composition at high temperatures: 

 ା +2݁ି                                                                    (2.2a)ݎܣ ⇌ ି݁ + ݎܣ                                                                  

 ଶା +2݁ି                                                                 (2.2b)ݎܣ ⇌ ି݁ + ାݎܣ                                                                

 ଷା +2݁ି                                                                (2.2c)ݎܣ ⇌ ି݁ + ଶାݎܣ                                                               

 

 

 

 

 

 

 

 

 

 

The species conservation equations which account for ambipolar diffusion and ionization 
nonequilibrium give the following form: 

                                                            డ௡೔డ௧  = - ∇ ∙(݊௜ݑሬ⃗ ) - ∇ ∙ ଔ⃗஽,௜ + ߱௜,                                                               (2.3)   

where i=0~3, ଔ⃗஽,௜ is the mass diffusion flux for heavy species: 

                                      ଔ⃗஽,௜= - ݊௦ܦ௙௜∇( ௡೔௡ೞା௡೐) -  ߦ௜ ∑ (− ݊௦ܦ௙௠∇( ௡೘௡ೞା௡೐))ଷ௠ୀ଴  ,                                         (2.4) ݊௦ is the total heavy species number density,  ߦ௜ is the mass fraction of species i. The effective diffusion 
coefficient  ܦ௙௠ is approximated by the relation introduced in [35]. ߱௜ in Eq.2.3 is the source of net 
production/loss of heavy species i describing chemical nonequilibrium: 

                                                           ߱଴= - ݊଴݊௘݇௙,ଵ + ݊ଵ݊௘ଶ݇௕,ଵ,                                                                (2.5a)                             

                        ߱௜= - ݊௜݊௘݇௙,௜ାଵ + ݊௜ାଵ݊௘ଶ݇௕,௜ାଵ- ݊௜݊௘ଶ݇௕,௜ +  ݊௜ିଵ݊௘ ௙݇,௜, (i=1,2)                                   (2.5b) 

Fig. 2.1. Chemical equilibrium composition of triply ionized atmospheric argon plasma (electron results 
in 2T and heavy species in LTE) 
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                                                           ߱ଷ= - ݊ଷ݊௘ଶ݇௕,ଷ +  ݊ଶ݊௘ ௙݇,ଷ.                                                               (2.5c) 

where ݇௙,௜  and ݇௕,௜ are the for- and backward reaction rates. The Lotz [36] model for predicting the 
rate coefficients has the advantage to include all ground states on the assumption of a Maxwellian 
distribution of impacting electrons, which is particularly suitable in this scope as multi-ionization is 
considered. However, for electron production, the main mechanism for it is the collision by electron 
and excited atom and for electron loss the three-body recombination [37], which means the model of 
Lotz will underestimate this coefficient as only particles of ground state are considered. The Hoffert-
Lien model [38] has been widely accepted due to its excellent agreement with experimental 
measurement. It considers the excitation to the first excited state for rate-controlling. In this scope, 
the Hoffert-Lien model is applied to calculate ݇௙,ଵ to account for first excited state, while other higher 
excited states are not considered in this scope: 

                                         ݇௙,ଵ= 8ܵଵ(2݉ߨ௘)ିଵ/ଶ(݇஻ ௘ܶ)ଷ/ଶ( ாభ∗ଶ௞ಳ ೐் + 1) exp(- ாభ∗௞ಳ ೐்),                                    (2.6) 

where ܵଵ is the cross-section parameter, for argon it is 7× 10ିଵ଼cmଶ/eV. ܧଵ∗  is the first excitation 
energy, which is 11.67eV for argon. For the rest of the ionization level, Lotz model is applied to account 
for only ground states: 

                     ݇௙,௜= 6.7× 10ିଵଷ ( ௘௞ಳ ೐்)ଷ/ଶ ∑ ܽ௜ݍ௜ଷ௜ୀଵ ቂ ଵ஺೔ ∫ ௘షೣ௫ஶ஺೔ ݔ݀ − ௕೔௘೎೔஺೔ା௖೔ ∫ ௘షೣ௫ஶ஺೔ା௖೔  ቃ, (i=2,3)          (2.7)ݔ݀

where ܣ௜= ௉೔௞ಳ ೐் , ௜ܲ is the binding energy of electrons in i-th subshell of each ionization level. Other 

coefficients appear in Eq. 2.7 are constants taken from [35]. The calculated impact ionization rate 
based on these two models are presented in Fig.2.2.  

As in case of equilibrium ionization, the net production rate ߱௜=0, this leads to the approximation of 
three-body recombination rate coefficients ݇௕,௜: 
                                                                               ݇௕,௜= ௞೑,೔௄೔  .                                                                              (2.8)  

                                             

 

 

 

 

 

 

 

 

 

Besides, all the particles in the plasma core must fulfill the requirement of quasi-neutrality: 

                                                           ∑ ݖ ∗ ݊௜ଷ௜ୀଵ   =݊௘,                                                                       (2.9) 

as well as the Dalton's law of partial pressures: 

Fig. 2.2. Impact ionization rate of triply ionized argon plasma 
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                                                (∑ ݊௜ଷ௜ୀ଴  )݇஻ ௛ܶ + ݊௘݇஻ ௘ܶ =p,                                                          (2.10) 

where z is charge number, p is total pressure. 

2.1.2 Transport equations  

Apart from a reasonable estimation of plasma composition, the main factor that determines if the 
transport equations could calculate properly to reflect arc discharge is the full set of transport 
properties. However, the calculation of the transport properties related to inhomogeneous plasmas is 
quite complicated. It is therefore valuable to develop simple approximate methods that yield physical 
insight into basic mechanisms. It is necessary to get transport properties for arc discharge model such 
as thermal conductivities, electric conductivities, viscosities, inelastic collision cross sections and 
collision frequencies for heavy species and electron gases after determining the composition of two-
temperature plasmas. However, as we cannot get the nonequilibrium composition beforehand, in 
most cases, transport properties are simplified based on results of equilibrium composition. The theory 
of transport properties of nonreactive gases is based on the Chapman-Enskog approximation theory 
of Boltzmann’s equation. The Chapman-Enskog method is developed in the form of a series of Sonine 
polynomials, and is used to express, according to the chosen approximation order, the transport 
coefficients as determinants depending on collision integrals taking into account the interaction 
potential between two colliding species [39]. However, the high order of approximation causes large 
computational cost, especially when the degree of thermal nonequilibrium ߠ = ೐்்೓   is taken into 

account. To reduce computation load, simple functions on the assumption of LTE for atmospheric 
argon plasma transport properties such as heavy species translational thermal conductivities ߣ௛ , 
electron translational thermal conductivities ߣ௘ and dynamic viscosity ߤ are taken from [40,41] ,which 
are used in the following chapters of arc discharge simulations, expect for the two-temperature 
electrical conductivities taken from [42] shown in Fig.2.3, which is a decisive transport property that 
will produce correct current path and joule heating and thus help to obtain a realistic voltage 
development.  

 

 

 

 

 

 

 

 

The energy-weighted average of momentum transfer collision cross sections of electron-positive 
charged ions ܳ௘௜   (i=1~3) and ion-ion  ܳ௜௝  are approximated as : 

                                                    ܳ௘௜  = గସ ( ௭೔௘మସగఌబ௞ ೐்)ଶln(1+ ଵସସగమ(ఌబ௞ ೐்)య௡೐௘ల௭೐೑೑మ (௭೐೑೑ାଵ)),                                               (2.11a) 

Fig. 2.3. Electrical conductivity of thermal nonequilibrium atmospheric argon plasma (with ߠ up to 7) 
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                                                   ܳ௜௝  = గସ ( ௭೔௭ೕ௘మସగఌబ௞்೓)ଶln(1+ ଵସସగమ(ఌబ௞ ೐்)య௡೐௘ల௭೐೑೑మ (௭೐೑೑ାଵ)),                                               (2.11b)    

where ߝ଴ is the permittivity of free space, the effective charge number ݖ௘௙௙ ,ݖ௘௙௙ଶ  are expressed as: 

=௘௙௙ݖ                                                                               ௡೐∑ ௡೔య೔సభ  ,                                                                    (2.12a) 

௘௙௙ଶݖ                                                                            =  ∑ ௜మ௡೔య೔సభ∑ ௡೔య೔సభ  .                                                                  (2.12b) 

The electron-neutral collision cross section for argon ܳ௘଴ is approximated by 4.0× 10ିଶ଴݉ଶ[40].  

The collision frequencies of electron-electron, electron-ion and ion-ion/neutral atom ߥ௘௘, ߥ௘௜, ߥ௜௘,and ߥ௜௝  are calculated based on the hard sphere model: 

௘௘=√2݊௘ܳ௘௘ට଼௞ಳߥ                                                                   ೐்గ௠೐ ,                                                                   (2.13)                              

௘௜=݊௜ܳ௘௜ට଼௞ಳߥ                                                                   ೐்గ௠೐ ,                                                                          (2.14) 

௜௘=2݊௘ܳ௘௜ට଼௞ಳߥ                                                                   ೐்గ௠೓ ට௠೐௠೓,                                                               (2.15) 

௜௝=√2ߥ                                                                   ௝݊ܳ௜௝ට଼௞ಳ்೓గ௠೓ .                                                                     (2.16) 

With the above simplifications of transport properties, the transport equations based on the one-fluid, 
two-temperature, chemical nonequilibrium regime can be used to describe the transient atmospheric 
compressible plasma flow. 

(1). The mass conservation equation  

From Eq. 2.4 and 2.5 it is clear when all the heavy species (i=0-3) are added up together, the total mass 
diffusion flux ∑ ଔ⃗஽,௜  and production source ∑ ߱௜  will be 0, which meets the requirement of mass 
continuity automatically: 

                                                                        డఘడ௧  + ∇ ሬ⃗ݑߩ)∙ )=0,                                                                        (2.17)  

where plasma density ߩ= (∑ ݊௜ଷ௜ୀ଴  )݉௛. The electron gas density ݊௘݉௘ is very small compared with 
heavy species density, so it can be neglected.  

(2). The momentum conservation equation 

                                   డఘ௨ሬሬ⃗డ௧  + ∇ ∙ (ρݑሬ⃗ ሬ⃗ݑ  ∇+ ݌∇- = ( ሬ⃗ݑ∇)ߤ)∙ ሬሬሬሬ⃗(ݑ∇)+  ்)-ଶଷ ߤ(∇ ∙ ሬ⃗ݑ )I)+⃗ܤ × ܬሬ⃗ ,                              (2.18) 

where ߤ is the plasma heavy species dynamic viscosity, I is the identity tensor and the body force ⃗ܤ × ܬሬ⃗  is Lorentz force caused by electromagnetic induction.  

(3). The enthalpy equation of heavy species  

When discussing the exact form of two-temperature enthalpy equations, however, there’s hardly 
consensus. Freton et al. [43] made a series of numerical tests concerning different forms of two-
temperature equations. According to [43], the ionization term ݁௜௢ in the total enthalpy should be 
allocated to electron equation. Besides, as we know that the internal energy term ݁௜௡  takes the 
following form:  
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                                                                     ݁௜௡ = ∑ ௡೔௞ಳ ೐்మఘ డ௟௡ொ೔೙డ ೐்  ,                                                                (2.19) 

For electron, ݁௜௡=0 as ܳ௜௡ equals to 2. Hence ݁௜௡ should be allocated to heavy species equation. Based 
on the theory above, the heavy species enthalpy equations used in this study are shown as follows: 

                               డ(ఘ௛೓)డ௧   + ∇ ሬ⃗ݑℎ௛ߩ)∙ ) = ∇ ∇௛ߣ)∙ ௛ܶ)+݌௘∇ ∙ ሬ⃗ݑ + డ௣೓డ௧  + ܳ௘௛ + ݑሬ⃗  ∙(ଔ⃗ × ሬ⃗ܤ  ),                        (2.20)                   

where the specific enthalpy of heavy species ℎ௛ = (2.5 ݊௦݇஻ ௛ܶ + ݁௜௡ )/ (݊௦݉௛) , ܳ௘௛  is the energy-
exchange term between electrons and heavy species which is expressed as: 

                                                  ܳ௘௛=3݇஻ ௠೐௠೓ ݊௘(∑ ௘௜ଷ௜ୀଵߥ )(௘௔ߥ+ ௘ܶ- ௛ܶ)ߜ௜௘,                                                  (2.21) 

As ∑ ଔ⃗஽,௜ is equal to zero, so there’s no flux of enthalpy by diffusion in heavy species equation. This is 
consistent with the conclusion by [43] that for chemical equilibrium computation, the reactive thermal 
conductivity should be associated with electron equations. The term  ݌௘∇ ∙ ሬ⃗ݑ  is the work done by 
electrons through electrostatic field onto the heavy species, ߜ௜௘  is the inelastic collision factor, for 
monatomic gas argon considered in this scope it equals 1. ݑሬ⃗  ∙(ଔ⃗ × ሬ⃗ܤ  ) is the kinetic energy of heavy 
species gained from the induced magnetic field, which is also one part of the total joule heating term ଔ⃗ ∙ ሬ⃗ܧ : 

                                                        ଔ⃗ ∙ ሬ⃗ܧ ሬ⃗ݑ  =  ∙(ଔ⃗ × ሬ⃗ܤ  ) + ௃మఙ  - ଵ௘௡೐ ଔ⃗ ∙  ௘.                                                       (2.22)݌∇

As the electron velocity is much larger than that of heavy species and thus more capable of conducting 
energy, it can be assumed that most of the joule heating (last two terms on R.H.S. of Eq.2.22) 
contributes solely to electron energy/enthalpy transport. 

(4). The enthalpy equation of electron gas 

Similar to enthalpy equation of heavy species, the enthalpy equation of electron gas can be written as: 

           డ(ఘ௛೐)డ௧  - ∇ ௘ሬሬሬሬ⃗ݑℎ௘ߩ)∙ ) = ∇ ∇௘ߣ)∙ ௘ܶ) – ܳ௘௛+௃మఙ  - ܳ௥ -݌௘∇ ∙ ሬ⃗ݑ  - ଵ௘௡೐ ଔ⃗ ∙ ∇ -௘݌∇ ∙ (2.5݇஻ ௘ܶଔ⃗஽,௘),          (2.23)                  

where ℎ௘= 2.5݊௘݇஻ ௘ܶ+݁௜௢, ݁௜௢=∑ ݊௜ܧ௜, by allocating this term to electron enthalpy, the sink term due 
to inelastic collision -∑ ߱௜ ∗ ௜ଷ௜ୀଵܧ  can be offset. ݑ௘ሬሬሬሬ⃗  is electron velocity, the mass diffusion flux for 
electron is ଔ⃗஽,௘  = ∑ ଔ⃗஽,௜ଷ௜ୀଵݖ  in order to maintain quasi-neutrality condition and ܳ௥  is volumetric 
radiation heat loss calculated according to a modified method based on Lowke’s [44] net Emission 
model which will be discussed in section 2.1.3. 

To reduce the number of unknown parameters, the electron velocity ݑ௘  can be replaced by heavy 
species velocity ݑሬ⃗  with the following relation to current density ⃗ܬ : 

ሬ⃗ݑ)e݊௘= ܬ⃗                                                                           ௘ሬሬሬሬ⃗ݑ-  ),                                                                        (2.24) 

௘ሬሬሬሬ⃗ݑ                                                                            ሬ⃗ݑ=  - ௃⃗௘௡೐ .                                                                            (2.25) 

Replacing  ݑ௘ሬሬሬሬ⃗  in Eq.2.23 by expression of Eq.2.25 and setting the divergence of current density ∇ ∙  to ܬ⃗
zero due to charge conservation, the enthalpy equation of electron gas can be rearranged as: డ(ఘ௛೐)డ௧   + ∇ ሬ⃗ݑℎ௘ߩ)∙ )= ∇ ∇௘ߣ)∙ ௘ܶ) – ܳ௘௛+௃మఙ  - ଵ௘௡೐ ଔ⃗ ∙ ௘- ܳ௥+ 2.5௞ಳ௃⃗௘݌∇  ∇ ௘ܶ 

∇௘݌ -                                                          ∙ ሬ⃗ݑ   - ∇ ∙ (2.5݇஻ ௘ܶଔ⃗஽,௘) .                                                              (2.26) 
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 (5) Electromagnetic Field Equations 

The electromagnetic problems inside the arcjet or plasma flow are solved by Maxwell's Equations. 
These are a set of partial differential equations that, together with the Lorentz force law, form the 
foundation of classical electromagnetism, classical optics, and electric circuits. These equations 
describe how electric and magnetic fields propagate, interact, and how they are influenced by objects.  

When the plasma is moving with respect to the external magnetic field at the velocity ݑሬ⃗ , the total 
electric field applying Lorentz transformation is: 

ሬ⃗ܧ                                                                      ᇱ=ܧሬ⃗ ሬ⃗ݑ +  × ሬ⃗ܤ - ௃⃗×஻ሬ⃗௘௡೐ .                                                                    (2.27) 

As the contribution of the Hall effects ௃⃗×஻ሬ⃗௘௡೐  is usually small if no intense external magnetic field is applied, 

it is not considered in this study. So the generalized Ohm’s law in a conducting flow such as plasma can 
be written as: 

ሬ⃗ܧ)ߪ= ܬ⃗                                                                        ሬ⃗ݑ +   × ሬ⃗ܤ ).                                                                       (2.28) 

According to Gauss’s law and quasi-neutrality assumption of a plasma: 

                                                                            ∇ ∙ ᇱሬሬሬሬ⃗ܧ  =0.                                                                               (2.29) 

                                                                             ∇ ∙  (2.30)                                                                                .0= ܬ⃗

The Maxwell–Faraday equation is a generalization of Faraday's law that states that a time-varying 
magnetic field will always accompany a spatially-varying, non-conservative electric field, and vice 
versa. The Maxwell–Faraday equation is: 

                                                                        ∇ × ሬ⃗ܧ  = - డ஻ሬ⃗డ௧  .                                                                            (2.31) 

Ampère's law relates magnetic fields to electric currents that produce them, and the displacement 
current considered in Maxwell’s corrected version is neglected here: 

                                                                        ∇ × ሬ⃗ܤ  (2.32)                                                                              ,ܬ௠⃗ߤ=

where ߤ௠ is magnetic permeability of material, for argon plasma, it is equal to 1.237× 10ି଺ H⋅m−1. 

Gauss's law for magnetism states that the magnetic field B has divergence equal to zero. In other words, 
that it is a solenoidal vector field. It is equivalent to the statement that magnetic monopoles do not 
exist: 

                                                                            ∇ ∙ ሬ⃗ܤ  = 0.                                                                               (2.33) 

The calculation of electric and magnetic fields using electric scalar potential ߮ and magnetic vector 
potential ⃗ܣ  has been an appropriate method modeling plasma electromagnetic properties. These 
potentials can be used to yield their associated fields as follows: 

ሬ⃗ܧ                                                                           = -∇߮- డ஺⃗డ௧  .                                                                           (2.34) 

ሬ⃗ܤ                                                                            = ∇  (2.35)                                                                             . ܣ⃗ ×

As the current density of cathode surface cannot be determined beforehand, the treatment of ܤሬ⃗  at 
interface can be rather difficult whereas ⃗ܣ at this place is always continuous regardless of emission 
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current (this will be discussed in section 2.5.5), hence the so-called ⃗ܣ-߮ formulation is applied. Another 
major advantages of ⃗ܣ-߮ formulation is that as in Eq.2.35, ܤሬ⃗   is the rotation of field ⃗ܣ , and ∇ ∙ (∇ ≡( ܣ⃗ × 0, so the solenoidal constraint of Eq.2.33 is fulfilled automatically. Besides, as ∇ × (∇(߮)) ≡0, 

according to Eq. 2.34, ∇ × ሬሬ⃗ܧ  =- డడ௧ (∇ డ஻ሬ⃗డ௧ - =(ܣ⃗ ×  , so Eq. 2.31 is also fulfilled. The total number of 
Maxwell’s equations with this formulation can be reduced from 5 to 3. Substitute Eq.2.30 and Eq.2.32 
by the relation expressed in Eq. 2.28, Eq. 2.34 and Eq.2.35, and by using the Coulomb Gauge ∇ ∙ ܣ⃗ = 0, 
supposing ∇ ∙  formulation of Maxwell’s equation can ߮- ܣ⃗ is negligible in the whole gas region, the ߪ
be expressed as follows: 

                                                  డ஺⃗డ௧ ሬ⃗ݑ - ߮∇ +   ×(∇ ×  (2.36)                                                             .0= ܣ⃗∆ ଵఓ೘ఙ -(ܣ⃗

                                                         ∇ ሬ⃗ݑߪ-߮∇ߪ)∙ ×(∇ ×  (2.37)                                                                    .0= ((ܣ⃗

2.1.3 The Net Emission radiation model 

While the gases radiate in general very selectively at various frequencies or wavelengths, it is possible 
to have a radiative energy balance at the radiating frequency taking into account the emission and the 
absorption of the energy by gas. In most cases of D.C. or R.F. plasma torch jets, the temperature 
distribution along the jet radius at a distance ݖ from the torch exit can be described by the following 
function: 

                                                                  ்೘்ೌೣ =(1 − ௥ோ)௡,                                                                             (2.38) 

where ௠ܶ௔௫ is the temperature at the axis of the jet (r=0), R is the jet radius at position ݖ, using the 
diffusion approximation by Siegel and Howell [45] to calculate Eq.2.38 will be very complicated. Lowke 
[44] made this calculation simplified by the assumption of a isothermal cylinder. i.e., T= ௠ܶ௔௫ for r<R 
and T=0 for r ≥ R. The fraction of total power radiated per unit volume and unit solid angle into a 
volume element surrounding the axis of a cylinder and escapes from the cylinder after crossing a 
Thickness (or it can be called optical depth) R of the isothermal plasma. He defined an approximate 
net emission coefficient ߝ஺ obtained from calculations of net emission of radiation at the center of 
cylindrical isothermal plasmas of various temperatures and radius. The net emission coefficient at the 
center of an isothermal cylinder can be calculated through the integration throughout all the 
wavelengths: 

∫ =஺ߝ                                                               ఒஶ଴ܤ ݇ఒܩଵ(݇ఒ,  (2.39)                                                               ,ߣ݀(ܴ

where ܩଵ is a function accounting for cylindrical geometry of the plasma. To further simplify this model, 
Liebermann et.al. [46] have demonstrated that the isothermal cylinder could be approximated by an 
isothermal sphere with a precision better than 90%: 

∫ =஺ߝ                                                               ఒஶ଴ܤ ݇ఒ exp(−݇ఒܴ)  (2.40)                                                          ,ߣ݀

where ݇ఒ  is absorption coefficient, ܤఒ  is the spectral radiance of a body proposed by Max Planck, 
which describes the amount of energy it gives off as radiation of different frequencies or wavelengths. 
It is given in the form of per unit wavelength by: 

ଶ௛௖మఒఱ =(T,ߣ)ఒܤ                                                                     ଵ௘ ೓೎ഊೖಳ೅ିଵ .                                                                (2.41) 

R is cylindrical plasma column radius which is assumed 1mm in this scope. Thus, the total volumetric 
net radiation flux per unit time used in Eq. 2.26 can be calculated as: 
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                                                                              ܳ௥= 4ߝߨ஺.                                                                           (2.42) 

The prediction of the approximated net emission coefficient above requires the knowledge of spectral 
coefficients of absorption ݇ఒ  as a function of radiation wavelength. Vitel et al. [47] studied 
experimentally the continuous absorption spectra of dense plasmas by measuring their optical 
thickness. The absorption coefficient is deduced knowing the radial profiles of particles and 
temperature. According to Vitel, the total spectral absorption coefficient k(ߣ, ܶ) is described as a 
function of temperature T and wavelength ߣ combining the free-bound with free-free radiation effect: 

                                                  k(ߣ, ܶ)=Cߣଷ ௡೐మ்భ/మ exp ( ௛௖ఒ௞ಳ்)ߦ(ߣ,T),                                                               (2.43) 

,ߣ)ߦ                                   ܶ)=௚బஊభ [1-exp (- ௛௖ఒ௞ಳ்)]ߦ௙௕(ߣ, ܶ)+exp(- ௛௖ఒ௞ಳ்) ߦ௙௙(ߣ, ܶ),                                    (2.44)  

where C=1.45× 10ିଶ଻, the factor  ߦ௙௕ has been introduced and calculated by Biberman et al [48] and 
is 1.5 on average for argon plasma according to the experimental measurements of [47]. The factor ߦ௙௙is practically constant, close to 1.2 [49]. 

However, in order to calculate the approximate net emission coefficient, the term ܤఒ݇ఒ exp(−݇ఒܴ) in 
Eq.2.35 needs to be integrated at all wavelength scales. Clearly, that is not acceptable concerning 
computational cost. A multi-band approach was introduced by Dixon et.al. [50], who assumes that 
within each band the plasma acts similarly to a grey body, i.e. the plasma within a certain band range 
has an emissivity which is not dependent on wavelength but only on temperature. This is achieved by 
certain method to yield an average value in each band. Such an ideal body does not exist in practice, 
but the assumption is a good approximation for many objects used in engineering. Besides, Dixon et 
al. [50] made a comprehensive model comparison concerning the three radiation models, including 
the semi-empirical net emission model, 5-band P1 model and the method of partial characteristics. It 
is concluded that all three models give similar distributions of radiative heat loss. The net emission and 
P1 model give more accurate results when compared with experimental measurements, whereas the 
net emission model requires the lowest computational cost among others. Due to this advantage, this 
multi-band approach based on Lowke’s net emission model is applied in this scope. 

Following Dixon’s multi-band approach, the spectrum is divided into five bands and an average 
absorption coefficient is calculated for each band, and the Planck function needs also to be integrated 
for each band (ߣଵ~ߣଶ, ߣଶ~ߣଷ, ߣଷ~ߣସ, ߣସ~ߣହ, ߣହ~ߣ଺): 

                                                                    ݇ேതതതത =
∫ ௞ഊ஻ഊௗఒഊ೙శభഊ೙ ஻ಿ  ,                                                                        (2.45) 

∫=ேܤ                                                                      ఒఒ೙శభఒ೙ܤ  (2.46)                                                                         .ߣ݀

Following the band division of Dixon, the total spectrum ranging from 30nm to 3000nm is divided into 
five bands: 30nm to 72 nm, 72nm to 124 nm, 124nm to 181nm, 181nm to 1240nm, and 1240nm to 
3000nm. Thus the five-band approximate net emission radiation model used here can be summarized 
as: 

                                                       ܳ௥=4ߨ[∑ ݇ேതതതതேୀହேୀଵ  ேexp (−݇ேതതതതܴ)].                                                        (2.47)ܤ

To integrate the spectral radiance ܤఒ alone over a finite range, Widger et al. [51] introduced a practical 
method to yield ܤே to avoid crude interpolation: ܤఙ=∫ ஶఙ(ߪ)ܤ ∫ = ߪ݀ 2 × 10଼ℎܿଶஶఙ ଷߪ ଵ௘భబబ೓೎഑ೖಳ೅ ିଵ  ߪ݀
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                                                            =ଶ௞ಳర ்ర௛య௖మ ෍ (௫య௡ஶ௡ୀଵ + ଷ௫మ௡మ + ଺௫௡య + ଺௡ర)݁ି௡௫ ,                                       (2.48) 

where ߪ=ଵఒ  /cm is called wavenumber, x= ଵ଴଴௛௖ఙ௞ಳ்  . It is proved that to carry the above summation up 

to n=min(2+20/x,512) will provide convergence with accuracy to as many as 10 significant figures. 

Thus ܤே can be attained with the following relation: 

∫ = ேܤ                             ఒఒ೙శభఒ೙ܤ ∫ = ߣ݀ ఙమఙభ(ߪ)ܤ ∫ =ߪ݀ ஶఙభ(ߪ)ܤ ∫ - ߪ݀ ஶఙమ(ߪ)ܤ  ఙమ.                    (2.49)ܤ -ఙభܤ=ߪ݀

 

 Wavelength range(nm) 500K 5000K 15000K 25000K ܤଵ 30~72 0 4.9× 10ି଻ 671436 2.73× ×ଶ 72~124 0 1.99 4.21ܤ 10଼ 10଻ 1.8× 10ଽ ܤଷ 124~181 0 1024.66 1.47× 10଼ 1.91× 10ଽ ܤସ 181~1240 2× 10ିସ 8.45× 10଺ 7.04× 10଼ 3× 10ଽ ܤହ 1240~3000 14.25 2.45× 10଺ 1.5× 10଻ 3× 10଻ 

  

 

 

 

 

 
 

Here the calculated net emission coefficient result is compared with that of Menart et al. [52] with the 
same plasma column radius at atmospheric pressure. The difference between both results can be 
possibly originated from the different expressions of the spectral absorption coefficient or the 
spectrum range taken into account.   

2.2 The metal electrodes 

The electrodes play an important role in discharge applications. Under different working conditions or 
for different purposes of usage, the anode is merely a passive collector of electrons unless its area 
attached by arc is small or the discharge current is high, in these conditions, anode spots or erosion 
may appear, which usually limits the device lifetime. On the contrary, the cathode is versatile and has 
a wide variety of different functionalities according to their specific properties and input parameters. 
As for the devices designed for daily use and long lifetime, such as gas-discharge lamps, the electrons 
emitted from cathode surface are not due to thermionic emission, but secondary emission or field 
emission, this is usually achieved by special treatment of cathode surface to reduce the work function. 
Due to the high discharge voltage (usually several hundred volt), the current between the two 
electrodes for given power are small, thus the cathode temperature rarely reaches melting point, so it 
can work for a long time. This kind of cathode is always called cold cathode. On the contrary, if the 
cathode is heated intensively by the current through it, that most of its emitted electrons are due to 

Table 2.1. Integrated spectral radiance value in each band for selected temperatures 

 

Fig.2.4. Comparison of calculated net emission coefficient of pure argon at R=1mm with the results from Menart et al. 
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thermionic emission, it is called hot cathode. Hot cathodes are often used in welding applications, for 
example in GTAW (Gas Tungsten Arc Welding) or Tungsten/Inert-Gas (TIG) welding, which is a manual 
welding process that uses a non-consumable electrode made of tungsten, an inert or semi-inert gas 
mixture, and a separate filler material. It is especially useful for welding thin materials and is 
characterized by a stable arc and high quality welds. If non-refractory materials serve as hot cathode, 
such as steels, the cathode is now expected to melt as much and as efficiently as possible, such 
application is called gas metal arc welding (GMAW), or more commonly called MIG (for Metal/Inert-
Gas), which is a semi-automatic or automatic welding process with a continuously fed consumable wire 
acting as both electrode and filler metal, along with an inert or semi-inert shielding gas flowed around 
the wire to protect the weld site from contamination. Besides, if cathode works under vacuum or very 
low pressure, due to the dilute gas and large mean free path of molecules, the working gas cannot be 
ionized by common discharge conditions, or in other words, the plasma cannot be produced solely by 
gas particles, the hot cathode needs to be fed by high current to give rise to explosive or evaporative 
emission at cathode surface, and then the vaporized cathode material is ionized, joining the local 
plasma and providing high electrical conductivity to sustain the arc, which is usually called cathodic arc. 
If a reactive gas is introduced during the evaporation process, dissociation, ionization and excitation 
can occur during interaction with the ion flux and a compound film will be deposited. This kind of arc 
is often used to synthesize extremely hard film to protect the surface of cutting tools and extend their 
life significantly. 

Despite of the diversity of cathode applications, in this study, a hot, refractory cathode with 
atmospheric arc is researched and simulated. An attempt to describe the electrode process could be 
started by addressing its general transport equations. Inside the electrodes, the temperature 
distribution is calculated through the three-dimensional transient thermal conduction equation in 
form of the solid enthalpy ℎ௦ with a heat source represented by the joule heating: 

                                                       డ(ఘೞ௛ೞ)డ௧   +  ∇ ∙ (ఒೞ௖೛ ∇ℎ௦) + ௝ೞమఙೞ = 0,                                                               (2.50) 

where the joule heating term ௝ೞమఙೞ is caused by the transfer of kinetic energy of free electrons in the bulk 

metal to phonons. 

By setting ݑሬ⃗  =0, the ⃗ܣ -߮ formulation of Maxwell equations (see Eq.2.36 and 2.37) derived for solid 
region is attained: 

                                                              డ஺⃗డ௧  + ∇߮- ଵఓ೘ఙೞ ∆⃗(2.51)                                                                        .0= ܣ 

                                                                    ∇ ∙  0.                                                                              (2.52)= (߮∇௦ߪ)

The calculated electrode potential results from Eq.2.52 will lead to the result of electrode current 
density by ଔ௦ሬሬ⃗  ௦∇߮ for the calculation of joule heating term in Eq.2.50. The temperature-dependentߪ -=
electrical conductivity data of thoriated tungsten cathode ߪ௦  are taken from [53]. The secondary 
phenomenon that accompany the discharge process including phase change, evaporation and erosions 
of solid materials are neglected here.  

Apart from the energy transport and dissipation phenomena represented by Eq.2.50, the electrode 
surface temperatures are determined by the complicated interactions caused by energy fluxes 
associated with ion, atom and electron fluxes of different physical origins, as well as radiation process. 
The calculation of energy transport fluxes between plasma and both electrodes is indispensable 
because in this scope the electrode surface temperature is not imposed as a presumed boundary 
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condition but is the result of interaction model, these are discussed as follows with certain degree of 
simplification. 

2.2.1 Heat flux on the plasma-anode interface  

The energy transfer to the anode has been modelled and determined experimentally with a wide range 
of approaches [54,55]. Except for the heat transfer mechanisms due to temperature gradients and 
radiative transport, the energy transfer due to current flow must be considered. Considering a complex 
of that, the specific anode heat flux can be generally expressed as: 

∇௘ߣ- ௘௟ݍ+௔=݆௘߶௔ݍ                                                  ௘ܶ -ߣ௛∇ ௛ܶ+݆௜(ܧ௔-߶௔)+ݍோ,                                             (2.53) 

where ݆௘  is the electron current, ߶௔  the anode material work function, ݍ௘௟  the heat flux associated 
with electron flux into anode,݆௜ the ion current density, ݍோ the surface radiative heat flux from arc. The 
first term on the R.H.S. of Eq.2.53 is the energy released due to incorporation of electrons into the 
metal lattice. The third and fourth term is the conductive heat transfer term due to electron and heavy 
species from plasma. The fifth term represents the energy released when ions reach the anode surface 
and recombined with electrons. The electron enthalpy flux ݍ௘௟ can be defined as follows when a diffuse 
attachment and a positive anode fall ௔ܷ is assumed [56]: 

௘௟=݆௘(2.5௞ಳݍ                                                                      ೐்௘  + ௔ܷ)                                                                    (2.54) 

However, the positive anode fall has been proven unsatisfactory since 1980s. First of all, when anode 
fall is positive, all the electrons are accelerated toward anode, heating the anode though 
bombardment energy gained from acceleration. But with this assumption the electron current density 
due to the high thermal velocity is much higher than the actually observed current density and violates 
Kirchhoff’s Law, so there must be a “slow down” process in front of anode to reject some electrons, 
this makes the electric potential at anode sheath a little higher than that of anode surface, namely a 
slight negative anode fall, which is usually about 1V. Compared with the cathode sheath voltage fall 
(usually over 10V), the anode sheath effect is negligible. 

Dinulescu et.al. [57] suggested the following anode heat flux expression considering the negative 
anode sheath voltage fall and electron diffusion current: 

௘௟= j(3.2௞ಳݍ                                                                     ೐்௘ +߶௔) ,                                                                   (2.55a)  

∇௘ߣ-=௔ݍ                                                              ௘ܶ -ߣ௛∇ ௛ܶ+ݍ௘௟+ݍோ,                                                             (2.55b)  

where the factor 3.2 originates from ௘஽೅௞ಳఙ  defined in [57] for atmospheric argon plasma, ்ܦ  is the 

thermal diffusion coefficient, the surface radiation heat fluxݍோ can be calculated by -߳ߪௌ்ܶସ, where ߪௌ் is the Stefan-Boltzmann constant, thermal emissivity ߳ for copper anode is 0.02. As anode sheath 
model is not considered in this scope, the exact value of ܷ௔ required in Eq.2.54 cannot be attained, 
the heat flux expression of Eq.2.55b is utilized in this study. 

2.2.2 Heat flux on the plasma-cathode interface 

Heat transfer between cathode and plasma makes itself more complicated in comparison with anode 
region due to the heating effect on its surface by ion bombardment, cooling effect by thermionic 
emission and many other secondary current categories. The total current density in front of cathode 
surface can be described using a complex of four partial current densities: 

ܬ                                                             =  ௕ௗ,                                                                    (2.56)ܬ-௦௘௠ܬ + ௘௠ܬ +௜ܬపഥݖ
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where ܬ௜  denotes the positive ion current density at cathode surface, ݖపഥ  is the averaged ion charge 
number. The positive ions are accelerated due to the cathode sheath voltage fall and bombard with 
cathode surface and finally recombine with electrons around, thus convert its kinetic energy and 
neutralization energy to the heat flux onto the cathode surface.  

௘௠ܬ   is the thermionic emission current density, which is due to electron emission from a high 
temperature metal surface. It is the most important surface ionization process in thermal plasmas. The 
electrons which stay inside metal cathode are heated up until the kinetic energy of those electrons 
surpass the potential barrier or the so-called work function. The emitted electrons can stay in the 
surface vicinity, creating space-charge and preventing further emission. This space-charge effect will 
be discussed in the next section. It is quantified by the Richardson-Dushman formula: 

ீܣ = ௘௠ܬ                                                         ௪ܶଶexp[- ௘௞ಳ ೐் (߶௖-∇߶)],                                                           (2.57) 

where ௪ܶ is cathode surface temperature, 3.2 = ீܣ× 10ସ A /(݉ଶܭଶ) for thoriated tungsten cathode 
which is simulated here,  and the work function ߶௖ is 2.6 eV [30].The decrease of work function ∇߶ 
caused by the field-enhanced thermionic emission or the so-called Schottky effect is defined as : 

                                                                         ∇߶=ට௘యா೎ସగఌబ ,                                                                              (2.58) 

where ܧ௖  is the electric field at the cathode surface, this is calculated according to the following 
expressions [58]: 

௖= ටଶ௡೔ೞఌబܧ                                [݉௛ ቀ௩శయି௩షయ଺௨೔ − ௦ଶݒ − ௨೔మଷ ቁ − ஻݇ݖ ௘ܶ(1 − exp (− ௘௎೏௞ಳ ೐்))],                         (2.59a) 

௦ݒ)ට= ±ݒ                                                                    ± ௜)ଶݑ + ଶ௭௘௎೏௠೓ ,                                                        (2.59b) 

ೢ்)௦=ට௞ಳݒ                                                                              ା௭ ೐்)௠೓  ,                                                               (2.59c) 

௜= ට௞ಳ்ೢ௠೓ݑ                                                                                   .                                                                   (2.59d) 

where ݊௜௦  is the ion number density at sheath/presheath interface, ܷௗ  is the sheath voltage drop 
magnitude. ܬ௦௘௠ in Eq.2.56 is the secondary electron emission current density. Mechanisms of electron 
emission from electrodes, related to surface bombardment by different particles, are called secondary 
electron emission. This current density dominates in the early stage of discharge when cathode surface 
is not heated up enough to provide thermionic emission, hence it should not be neglected. According 
to Lichtenberg et al. [59] the secondary emission current density is proportional to the ion current 
density ܬ௜: 
 ௜,                                                                           (2.60)ܬ௦௘ߛ = ௦௘௠ܬ                                                                           

where  ߛ௦௘  is the secondary emission coefficient which is related to plasma and electrode properties. 
Although  ߛ௦௘  is low at lower ion energies, it is not negligible and remains almost constant at ion 
energies below the kilovolt range. An ion approaching the electrode surface will extract an electron 
from there because the net energy (ܧ௜-߶௖) is usually large enough to enable the escape of more than 
one electron from the surface. An empirical formula is applied in this scope to estimate  ߛ௦௘  [60]: 

௦௘ߛ                                                                   ≈                  (2.61)                                                                   .(௜-2߶௖ܧ)0.016
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 ௕ௗ is back diffusion current density caused by electrons from ionization layer moving in the sheathܬ
towards cathode: 

௕ௗ = 0.25݁ට଼௞ಳܬ                                                           ೐்గ௠೐  ݊௘௦exp(- ௘௎೏௞ಳ ೐்) .                                                      (2.62)                             

With all the current density categories above attained, the ion current density ܬ௜ can be calculated 
from the conservation of total current density (see Eq.2.56). 

The total heat flux  ݍ௖ transported to the cathode surface is related to the current density categories 
mentioned above:  ݍ௖= ௃೔௘ పഥ݇஻ݖ) ௘ܶ/2+ݖపഥeܷௗ+ܧపഥ పഥݖ-  (߶௖-∇߶)) – ( ௃೐೘ା௃ೞ೐೘)  ௘ (2݇஻ ௪ܶ+ (߶௖-∇߶)) 

                                                           +  ௃್೏௘ ((߶௖-∇߶)+ 2݇஻ ௘ܶ)+  ݍோ,                                                             (2.63) 

where the term - ( ௃೐೘ା௃ೞ೐೘)  ௘  (2݇஻ ௪ܶ+ (߶௖-∇߶)) is the energy flux of emitted thermionic and secondary 
electrons that cools down the cathode surface concerning the combination of kinetic energy and 
neutralization energy according. ߶௘௙௙  is the effective work function with Schottky correction as in 
Eq.2.57 and 2.58. The emissivity considered for calculating  ݍோ  with thoriated tungsten is 0.3. Suppose 
the ion temperature at cathode surface is equal to cathode surface temperature, ܧపഥ  is the averaged 
the ionization potential of multilevel ionized argon plasma: 

పഥܧ                                                                        =∑ ா೔௡೔య೔సభ∑ ௡೔య೔సభ  .                                                                              (2.64) 

2.3 Simulation model of plasma boundary layer 

At the very first stage when plasma is ignited, there is a small number of electrons leaving the cathode 
surface which then bombard with neutral atoms and make them positive charged ions. These ions 
along with the produced electrons move toward cathode together but with different velocity 
magnitudes since the electrons are much lighter than ions. At this stage there’s a net electron current 
towards the objects that confine the plasma (usually it is called a wall). Over time this leaves the plasma 
bulk with a net positive charge and the electric potential of it will be raised above the walls. As this 
potential difference between the wall and bulk plasma grows, the electrons coming towards the wall 
are rejected or decelerated while ions are accelerated. As the bulk plasma needs to keep its quasi-
neutrality, an equilibrium potential drop is required within a very thin layer to equalize electron and 
ion losses from bulk plasma. The thickness of this layer is usually of the order of several Debye length. 
As a result, the electron and ion flux which finally reach the cathode surface are consistent with each 
other. This effect within this very thin plasma boundary is called space-charge effect and this thin layer 
is often called sheath layer. 

2.3.1 Basic equations of a collisionless planar sheath 

To simplify the sheath model which plays an important role in the arc-electrode interaction but 
mathematically rather complicated, a good starting point is to assume it as a collisionless planar sheath 
region.  Namely, suppose the mean free path of the ions is greater than the sheath layer thickness. As 
in the sheath layer, the particle movement in normal direction changes much more quickly than the 
transverse direction, it is always considered as a one-dimensional problem. 

In the one-dimensional situation suppose ions start at sheath-plasma interface at x=0 with velocity of ݑ଴ and ߮(0) =0. Conservation of energy requires that: 
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                                                             ଵଶ ݉௛ݑଶ = ଵଶ ݉௛ݑ଴ଶ – e߮(x),                                                           (2.65) 

where ߮(x) is the electric potential at position x. 

Suppose there is no ionization process in sheath, so the ion flux continuity must be conserved: 

                                                                      ݊଴ݑ଴=݊௜(x)u(x),                                                                         (2.66) 

where ݊଴ݑ଴ is the ion flux at plasma-sheath interface. 

Combining Eq. 2.65 and Eq.2.66, the ion distribution in a collisionless planar sheath is: 

                                                              ݊௜(x)=݊଴(1 − ଶ௘ఝ(௫)௠೓௨బమ )ିଵ/ଶ.                                                               (2.67) 

The fluid momentum equation of electrons in one-dimension gives: 

                                                        ݉௘݊௘(డ௩ೣడ௧ ݒ⃗) +  ∙ ௫- డ௣೐డ௫ܧ௫)=e݊௘ݒ(∇  .                                                      (2.68) 

On short timescales, the electrons can be viewed as massless (݉௘ ≈  ௫ is electric field of x directionܧ ,(0
and ݌௘=݊௘݇஻ ௘ܶ, Eq.2.68 can be further simplified as: 

                                                                        eௗఝ(௫)ௗ௫  =௞ಳ ೐்௡೐  డ௡೐డ௫ .                                                                      (2.69) 

After integration of ݊௘ according to the equation above, the Boltzman’s relation for electron number 
density gives: 

                                                                    ݊௘(x)= ݊଴exp(௘ఝ(௫)௞ಳ ೐் ).                                                                   (2.70) 

The meaning of the existence of such density gradient is to set up a balance electric field to prevent 
electrons from being accelerate to infinite large velocity. 

By substituting the expression for ݊௜(x) and ݊௘(x) in Eq.2.67 and 2.70 into Poisson’s equation: 

                                ߳଴ ௗమఝ(௫)ௗ௫మ  =e[݊௘(x)- ݊௜(x)]=e݊଴[exp(௘ఝ(௫)௞ಳ ೐் )- (1 − ଶ௘ఝ(௫)௠೓௨బమ )ିଵ/ଶ].                                (2.71) 

Because of the rejection of electron in sheath layer, the number density of electron inside sheath is 
much smaller than that of ion’s, so: 

                                                           exp(௘ఝ(௫)௞ಳ ೐் ) < (1 − ଶ௘ఝ(௫)௠೓௨బమ )ିଵ/ଶ.                                                           (2.72)  

By making the first-order Taylor series approximation of both sides in Eq.2.72 at x=0, namely at plasma-
sheath interface:   

                                                                     1+ ௘ఝ(௫)௞ಳ ೐்  <1+ ௘ఝ(௫)௠೓௨బమ.                                                                     (2.73) 

Because ߮(0) =0, ߮(x) inside sheath is <0, after rearrangement: 

଴ >ට௞ಳݑ                                                                           ೐்௠೓  ஻,                                                                      (2.74)ݑ= 

which is the well-known Bohm Sheath criterion that regulates the minimum ion velocity magnitude at 
sheath-plasma interface. 

To accelerate ions to the so-called Bohm velocity before reaching the sheath layer, the models 
describing the attachment to a thermionic cathode divide the region between the cathode surface and 
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the bulk plasma should be supplemented by a so-called presheath zone that is quasi-neutral but wider 
than sheath layer thickness. According to Bohm sheath criterion, the minimum presheath potential ߮௣௥௘  should be equal to: 

                                                                     ߮௣௥௘ ≥ ଵଶ௘ ݉௛ݑ஻ଶ =௞ಳ ೐்ଶ௘ .                                                              (2.75) 

According to Boltzmann’s relation the ratio of ion number density at plasma-presheath interface ݊௣ to 
that at presheath-sheath interface ݊௦ is: 

                                                               ݊௦=݊௣ exp(௘ఝ೛ೝ೐௞ಳ ೐் )≅0.61݊௣                                                              (2.76) 

 

Applying the above descriptions for an idealized sheath with Bohm’s criterion, the distributions of 
number density and electrical potential in the cathode boundary layers could be summarized by Fig.2.5 
and 2.6.  

 
Apart from the bulk-presheath-sheath regime described above, Shirvan et al. [27] and Baeva et al. [28] 
divided the presheath layer further into ionization and Knudsen layer. The difference between the two 
sublayers is that Knudsen layer mainly takes the responsibility for ions to be accelerated to Bohm 
velocity described above which allows then formation of sheath while the ionization layer mainly 
produces net electron production, some of which will have enough energy to go through sheath and 
form considerable ܬ௕ௗ to heat up cathode surface. In this scope, as the full consideration of plasma 
thermal and chemical nonequilibrium models is included, the extra division to allow for either the 
ionization or Knudsen layer may be no more necessary, leaving only the sheath layer left unable to be 
integrated into the numerical model.  

2.3.2 Solution of the sheath potential drop  

The solution of sheath potential drop is always a research focus for many to unlock the mysterious and 
complicated space-charge effect as it affects not only the plasma composition but also its energy 
transfer with electrodes (Eq.2.63). However, in order to solve this parameter, many related parameters 
should be solved together not only in plasma region but also in electrode region. There’s therefore still 
no universal applicable expression for it which brings difficulty for the analysis of interaction process. 
A practical way is to make it simplified based on the ideal conditions.  

Suppose in equilibrium the net current to a non-emitting floating wall is zero. This means the ion and 
electron balance each other at a floating wall or electrode surface. As no ionization process is assumed 

 
Fig.2.5. Particle number density distribution 
towards a collisionless planar sheath 

 
Fig.2.6. Electric potential distribution towards a 
collisionless planar sheath 
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due to the collisonless assumption inside the sheath layer, the ion flux is constant throughout the 
sheath so it equals to ݊଴ݑ஻. For electron flux at a floating wall, based on Boltzmann’s relation it gives: 

                                                                  Γ௘=ଵସ ݊଴exp(௘ఝ(௫)௞ಳ ೐்  ௘,                                                                    (2.77)ݒ̅(

where ̅ݒ௘  =ට଼௞ಳ ೐்గ௠೐  is the thermal velocity of an electron according to the Maxwellian distribution 

discussed in section 1.1.3. 

Substituting for the Bohm velocity ݑ஻ and equating the fluxes of Γ௜  and Γ௘ gives: 

                                                         ݊଴ට௞ಳ ೐்௠೓  = ଵସ ݊଴exp(௘ఝ(௫)௞ಳ ೐் )ට଼௞ಳ ೐்గ௠೐ .                                                        (2.78) 

Solving the above equation for sheath potential drop at a floating wall ܷௗ௙= −߮(x) gives: 

                                                                  ܷௗ௙ =  ௞ಳ ೐்௘  lnට ௠೓ଶగ௠೐ .                                                                   (2.79) 

This gives a classical sheath potential drop over a floating wall. The factor lnට ௠೓ଶగ௠೐ for argon plasma 

simulated here is about 4.68. However, as in arc or glow discharge operations, due to the influence of 
external electric field, the ions may be accelerated faster than the ideal Bohm velocity at presheath-
sheath interface, and the net charged particles reaching electrode surface may not be zero, for 
example inside cathode spot. Nevertheless, this result serves as a good estimation for further 
quantified analysis of sheath which is important for the overall interaction model.  

Except for the method based on Bohm’s criterium discussed above, another way to solve sheath 
potential drop is to make use of energy conservation equations either at cathode surface or at sheath-
presheath interface. According to [1], the energy conservation at both sides of sheath-presheath is 
given as follows: 

2݇஻)(௦௘௠ܬ+௘௠ܬ) ௪ܶ+eܷௗ -e∇߶)+ܬ௜ (2݇஻( ௜ܶ -  ௪ܶ)+ ௭ഢഥ ௞ಳ ೐்ଶ పഥܧ +  ) 

௕ௗ( 2݇஻ܬ =                                                        ௘ܶ+eܷௗ-e∇߶ )+3.2݇ܬ஻ ௘ܶ.                                                   (2.80)   

At cathode surface it gives: 

∇௘ߣ-                       ௘ܶ -ߣ௛∇ ௛ܶ + ݍோ௉- (ܬ௘௠+ܬ௦௘௠)(2݇஻ ௪ܶ+ (߶௖-∇߶))+ ܬ௜(ݖపഥ݇஻ ௘ܶ/2+ݖపഥeܷௗ +ܧపഥ  (పഥ(߶௖-∇߶)ݖ-

∇௦ߣ - =                                                                    ௦ܶ+ ݍோௌ,                                                                             (2.81) 

where ݍோ௉, ݍோௌ are the radiation flux from plasma to cathode and from cathode to plasma respectively. 
Using the equations above to solve sheath potential drop can spare many unnecessary assumptions 
and simplifications. However, it is obvious from above that too many parameters are involved in the 
equations in order to get ܷௗ. As ܷௗ is also involved in the exponential term of ܬ௕ௗ, hence there’s no 
direct expression for it. For Eq.2.81, as the difficulty in extracting thermal conduction term in metal 
electrode is concerned in OpenFOAM, a direct solution is unavailable either. A simple and useful 
expression to attain ܷௗ is put forward by Wendelstorf [61], which is based on the expression of Eq.2.80 
by preserving ܬ௘௠  and ܬ௜  as the only two current densities and recombination heating energy and 
thermionic cooling energy as the only two energy balance terms. For the inclusion of Knudsen layer 
acceleration, a factor 0.61 (see Eq.2.76) is applied into the following relation.: 

                                                               ܷௗ=  ∑ ଴.଺ଵ௭௘௡೔௨ಳா೔య೔సభ ௘௃೐೘ .                                                                      (2.82) 
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Even when a simplified expression of cathode sheath voltage drop is available now, it cannot be 
implemented into the computation model by imposing it into the field calculation of ߮. As sheath layer 
thickness is extremely small, imposing even a small amount of voltage drop into the potential will give 
rise to extreme large value of local current density which leads to unrealistic Joule heating and 
divergence of ௘ܶ equation. This bounded by the continuity property of Navier–Stokes equations which 
is very sensitive to abrupt local gradient, which also explains why only charge neutrality condition can 
be solved by this method. If the abrupt electron number density drop according to Boltzman’s relation 
(Eq.2.70) were imposed inside this extremely thin layer, it would give rise to high electron temperature 
gradient which shares the same consequence with the first situation. This means a compromised 
method which avoid such abrupt local gradient but still yields, for example the large local electric 
potential change characterized by space-charge effect is needed here by common CFD method. When 
searching for the solution in Eq.2.37 and 2.52, apart from current density J, electric potential ߮ or 
magnetic vector potential ⃗ܣ, the only parameter that allows to be modified with little risk of numerical 
oscillation may be the electrical conductivity ߪ. A detailed discussion in section 2.5.4 is based on such 
advantages. 

For a better conclusion of the model assumptions and simplifications discussed above for the 
calculation of ܷௗ used in this scope, a simple schematic drawing of the cathode-plasma interaction 
regions is provided (Fig.2.8) with a comparison of Zhou’s [18] full set of arc-cathode interaction 
model(Fig2.7):  

           

     

 

 

 

 

 

 

 
2.3.3 Child-Langmuir Law and electrical conductivity of collisionless sheath   

For cathode sheath, the potential drop ܷௗ  of the whole layer is always so large that except the 
emission center the electron density ݊௘ according to Boltzmann’s law is negligible in comparison with 
ion number density ݊௜, so the Poisson’s equation of a collisionless sheath layer described in Eq.2.71 
can be simplified as: 

଴ ௗమఝ(௫)ௗ௫మߝ                                                =e[- ݊௜(x)] =-e݊଴(1 − ଶ௘ఝ(௫)௠೓௨బమ )ିଵ/ଶ.                                               (2.83) 

As for large sheath potential drop, the increase of ion kinetic energy after being accelerated by sheath 
electric field is |e߮(x)|is dominant over the initial ion kinetic energy  ଵଶ ݉௛ݑ଴ଶ , so by neglecting ion 
initial kinetic energy Eq.2.83 can be further simplified as: 

଴ ௗమఝ(௫)ௗ௫మߝ                                                =e[- ݊௜(x)] =-e݊଴(− ଶ௘ఝ(௫)௠೓௨బమ )ିଵ/ଶ.                                               (2.84) 

Fig.2.7. Schematic drawing of the near-cathode 
region by Zhou 

Fig.2.8. Schematic drawing of near-cathode 
model assumptions used in this scope 
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Multiplying the both sides of Eq.2.84 by ௗఝௗ௫  and then integrating from 0 to position x assuming the 

potential at presheath-sheath interface ߮(0) =0 and the electric field outside sheath is negligible ௗఝ(଴)ௗ௫  ≈0 it gives: 

                                                          ଵଶ (ௗఝ(௫)ௗ௫ )ଶ=ଶ௃బ0ߝ ( ଶ௘௠೓)ିଵ/ଶඥ−߮(ݔ).                                                       (2.85) 

Note that ߮(ݔ) is always negative throughout the sheath. ܬ଴ = e݊௜(x)ݑ௜(x) is the sheath ion current 
density whose value is constant since no collision or ionization is assumed. 

Taking the negative square root since ௗఝ(௫)ௗ௫  is negative and rearrange Eq.2.85: 

0ߝ2ට௃బ=(ݔ)ଵ/ସd߮ି[(ݔ)߮−]                                                    ( ଶ௘௠೓)ିଵ/ସdx.                                                    (2.86) 

Integrating Eq.2.86 for both sides gives: 

ଷ/ସ =ଷଶ(ݔ)߮-                                        ට௃బ0ߝ ( ଶ௘௠೓)ିଵ/ସx.                                                            (2.87) 

Suppose the potential at sheath-electrode interface is ߮(ݏ) and sheath layer thickness is s, Eq.2.87 is 
rearranged as: 

଴=ସଽܬ                                                                 0ටߝ ଶ௘௠೓ (ିఝ(௦))య/మ௦మ  .                                                                   (2.88) 

This is known as the Child-Langmuir law of space-charge-limited current. It gives the current density 
between two electrodes when potential drop in-between is known and electrode spacing is fixed. But 
when applied in the sheath model, this length scale simply represents the sheath layer thickness since 
no potential drop is assumed outside sheath layer. The sheath thickness s can be approximated by 
relating the ion current to Child law allowing for the pre-sheath ion number decrease by adding the 
factor 0.61 for argon plasma: 

                                                     0.61e݊଴ݑ஻ = ସଽ 0ටߝ ଶ௘௠೓ (ିఝ(௦))య/మ௦మ  ,                                                            (2.89) 

where ݑ஻=ට௞ಳ ೐்௠೓  . Thus the corrected Child law sheath thickness s for argon plasma gives: 

                                                   s= 0.854ට0ߝ௡బ ( ଶ௘௞ಳ ೐்)ଵ/ସ(−߮(ݏ))ଷ/ସ.                                                        (2.90) 

As the exact expression for sheath potential drop is still unknown, it is reasonable to use the simplified 
sheath potential drop ܷௗ  shown in Eq.2.82 as an estimation for sheath thickness. Substituting this 
expression as ߮(ݏ) into Eq.2.90, and according to Ohm’s law in one-dimension: 

                                                                              j= ߪ ௗఝ(௫)ௗ௫ .                                                                           (2.91) 

it is clear if replacing j in Eq.2.91 by 0.61e݊଴ݑ஻, dx by s in Eq.2.90, a simple approximation of electrical 
conductivity inside the high voltage collisionless sheath layer ߪ௦௛ of an argon plasma without electron 
emission (thermionic, secondary etc.) can be attained by Eq.2.92, the attained values for it within 
electron temperature from 500K to 25000K are shown in Fig.2.9: 
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௦௛=଴.଺ଵୣ௡బ௨ಳ௦௎೏ߪ .                                                                     (2.92) 

It is obvious from Fig.2.9 that even if at high electron temperatures, the sheath conductivities still 
remain at very low values. This is due to the assumption by Child’s sheath that the voltage drop is so 
high that no electrons remain inside it. In comparison to it, the nonequilibrium electrical conductivity 
inside bulk plasma at high electron temperatures is always very high (for example, when Te= 15000K, ߪ ,3=ߠ reaches the value of 7600 S/m), which suggests that there could be a complex description 
linking these two sets of conductivities, but not simply the above formula for sheath. 

This complicated evolution in sheath layer may explain why during arc discharge, the cathode surface 
is only intensively heated within the cathode spot, while outside the spot where space-charge effect 
dominates, the thermionic emission is inactive or even cannot be observed. Different from the 
transition of sheath electrical conductivity assumed in this study, according to Shirvan et al. [27], the 
non-uniform electron emission at cathode surface is due to the diffusion or redistribution of rare earth 
activators inside cathode while local work function differs from place to place due to the non-uniform 
concentration of e.g. ThOଶ. Some other researchers [62] attribute this phenomenon to the variation of 
local thickness of sheath layer. Because the general expression of Debye length in a plasma gives the 
following form: 

0௞ಳߝ஽= ටߣ                                                                             ೐்௡೐௘మ .                                                                       (2.93) 

And it is clear that ߣ஽ ∝ ට ೐்௡೐. It means at the place where this factor is small or in other words the 

sheath thickness is small, the electric field strength will be higher. It will accelerate ions to a larger 
velocity that bombard cathode surface. Experiments by Puchkarev et al. [63] and simulation by 
Uimanov [64] have shown that ion bombardment heating is critical for the formation of the explosive 
emission on the cathode surface. It will further give rise to a larger increase of cathode surface 
temperature in these places and an intensive thermionic emission according to Eq. 2.63. 
Correspondingly, the current density from this place out of the cathode is much larger and will heat 
the plasma and make it produce more electrons that further shrink the sheath thickness. As a result, 
the sheath thickness within the emission center will be thinner and thinner driven by this process 
gradually. Compared with the colder sheath regions where there’s little emission, this thickness is 
negligible, or we can assume that the sheath effect at these places can be neglected. According to [62], 
as the plasma conditions change rapidly, there are always some dynamic “sheath holes” that appear 
where emission centers locate. The “hole” means that a location may exist without sheath. This is a 

Fig.2.9. Calculated collisionless sheath conductivity of atmospheric argon plasma  
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useful concept for the interaction model, difficulty is, how can an emission center be captured by 
numerical method and how can this “hole” effect be described. 

Based on this fact, for the sake of a reasonable sheath boundary condition to be applied in this study, 
there should be a smooth transition from the hot, sheath-free emission center to the cold, insulated 
and “thick” sheath (here a collisionless Child Sheath is assumed) reflecting the non-uniform 
distribution of cathode surface current density.  

2.4 Plasma turbulence model 

As is discussed in section 1.1.5, the stability of an arc inside a plasma torch will have a direct effect on 
the working efficiency of plasma spraying. As a matter of fact, there are a lot of factors that break such 
stability. Apart from the imbalance of magnetic body force and das dynamic drag force, and the 
potential theory of micro-discharging in anode region characterized by the reattachment regime, the 
plasma turbulence will play an important role on it. Although there will not be a fully developed 
turbulent flow throughout the whole region of a non-transferred plasma torch, the turbulent flow 
property will still appear at the region of interest. For example, downstream of the cathode jet the 
flow inside the anode nozzle can be considered as pipe flow, given the inner diameter of anode for a 
common commercial plasma torch is 8mm, taking numerical results from [65] for example, the argon 
plasma is heated to 32000K, which will have a LTE density of 5.37× 10ିଷ݇݃/݉ଷ, and LTE viscosity of 
6× 10ି଺ ݇݃/(݉ݏ), the usual averaged maximal velocity is of 1000m/s, the Reynold number in this 
situation is over 7000, which is large enough to trigger turbulence. For a comprehensive description of 
arc jet instability inside the plasma torch, a suitable turbulence model needs to be included. 

DNS and LES simulation methods are abandoned in this scope due to the requirement of large 
computation resource despite of their higher accuracy. As for the calculation of sheath layer presented 
later, the boundary mesh at cathode surface must be extremely thin that the centers of cathode 
boundary cells are within the viscous sub-layer. It is therefore necessary for this situation to use a low-
Re RANS turbulence model.  

A hybrid turbulence model SST k-߱ developed and revised by Menter et al. [66] is adopted in this study. 
This model combines the widely-used k-[67] ߝand k-߱[68] model together, since both of them have 
advantages and disadvantages. For example, k-ߝ model is not able to capture the proper behavior of 
turbulent boundary layers up to separation despite of its robustness in convergence, while k-߱ model 
shows a strong sensitivity to the values of ߱ in the freestream outside the boundary layer. Despite its 
superior performance in the near wall region, the freestream sensitivity has largely restricted its 
application. The hybrid model SST k-߱ makes good use of the advantages of both models, it transforms 
the k-ߝ model into k-߱ model in the near -wall region and the standard k-ߝ model is applied in the fully 
turbulent region far from the wall while no damping functions are needed. The exact form of this two-
equation eddy-viscosity model derived for the transient regime required here is as follows: 

                                          డఘ௞௨ሬሬ⃗డ௧  +∇ ∙ ሬ⃗ݑ݇ߩ) )= ∇ ∙ ߤ)] + +[݇∇(௞ߪ௧ߤ ௞ܲ −  (2.94)                                      ,߱݇ߩ∗ߚ

where  

                                                       ௞ܲ=min (ߤ௧ డ௨೔డ௫ೕ ൬డ௨೔డ௫ೕ + డ௨ೕడ௫೔൰,10(2.95)                                                 (߱݇ߩ∗ߚ 

is the limiter of turbulent kinetic energy production rate to prevent the build-up of turbulence in 
stagnation regions. 

                      డఘఠ௨ሬሬ⃗డ௧  + ∇ ∙ ሬ⃗ݑ߱ߩ) )=∇ ∙ ߤ)] + ఠమߪߩ(ଵܨ-1)ఠ)∇߱]+2ߪ௧ߤ ଵఠ డ௞డ௫೔ డఠడ௫೔ +ܵߩߙଶ- ߱ߩߚଶ,              (2.96) 
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where S is the invariant measure of the strain rate, the first blending function ܨଵ gives: 

ଵ= tanhቊቄ݉݅݊ܨ                                               ቂ݉ܽݔ ቀ √௞ఉ∗ఠ௬ , ହ଴଴ఔ௬మఠ ቁ , ସ଴଴ఘఙഘమ௞஼஽ೖഘ௬మ ቃቅସቋ,                                     (2.97) 

where ܦܥ௞ఠ =max (2ߪߩఠమ ଵఠ డ௞డ௫೔ డఠడ௫೔,10ିଵ଴), y is the distance to the nearest wall. 

The blending function ܨଵ is used to achieve a smooth transition between the two models. It modifies 
not only the cross-diffusion term, but also the model coefficients that are originally used separately: 

ܥ                                                                  = ଵܥଵܨ + (1 −  ଶ,                                                               (2.98)ܥ(ଵܨ

where ܥଵ refers to the constants or parameters related to k-߱ model and ܥଶ for k-ߝ model. ܨଵ equals 
to 0 when far from the boundary wall (turbulent core region) and equals 1 when inside the viscous 
sub-layer.  

The eddy viscosity is limited to give improved performance in flows with adverse pressure gradients 
and wake regions: 

 ௧= ௔భఘ௞୫ୟ୶ (௔భఠ,ௌிమ),                                                                   (2.99)ߤ                                                                          

where the second blending function ܨଶ is defined by: 

ݔଶ= tanhቈቂ݉ܽܨ                                                           ቀ ଶ√௞ఉ∗ఠ௬ , ହ଴଴ఔ௬మఠ ቁቃଶ቉.                                                      (2.100) 

The constants used in this model are given as follows: 

 

            coeff. 
model 
component 

 ఠ ܽଵߪ ௞ߪ ∗ߚ ߚ ߙ

k-߱ model 5/9 3/40 0.09 0.85 0.5 0.31 
k-ߝ model 0.44 0.0828 1 0.856 

 

Besides, in the near wall region, one usually needs to apply fine meshes to resolve the viscous sub-
layer in low Re turbulence model, it increases computation costs. At the same time, the precise ݕା 
value cannot always be controlled well by users since the mesh spacing for complicated geometries 
seems hardly to be uniform. This will introduce further uncertainties to the model.  As the distance y 
is contained in the blending functions in this model, the effective turbulent viscosity and transport 
equations used can adjust themselves to suit the real grid spacing which means it is compatible with 
both fine (fixed value) and coarse (wall functions) meshes. This feature is particularly useful in this 
scope as not all the boundary cells are necessarily fine as those in the cathode sheath layer (for 
example boundary cells which are neither in anode nor in cathode regions), these regions can be safely 
calculated with coarse meshes and wall functions, and the computation costs can be reduced to some 
extent. Menter [66] has demonstrated that the wall shear-stress results using this model for Couette 
flows simulations on three vastly different grids (ݕା~0.2, ݕା~9, ݕା~100) vary only by less than 2% 
despite of different near wall treatments.  

2.5 Boundary conditions  

Table.2.2. Coefficients used in the scale-adaptive k-omega-SST model  
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For a sound simulation without problems such as numerical stability, a set of realistic boundary 
conditions needs to be given. This proper set of boundary conditions is particularly important at 
interfaces since different regions need to be solved separately while each of them interacts with 
another in quite different ways. What’s more, sheath layer at cathode needs to be handled along with 
them.  

2.5.1 Temperature field 

As the NLTE simulation model asks the total enthalpy to be spitted into ℎ௛ and ℎ௘ , therefore two sets 
of boundary conditions need to be set in fluid region. For simplicity, the inlet temperature for heavy 
species is fixed at 500K while for all the outlet boundaries is set inletOutlet which regulates 
temperature between Dirichlet and Neumann conditions according to local direction vector of velocity. 
Attention should be drawn to the interface boundaries. Since coupled simulation requires no 
presumed or predefined temperature distribution along the interfaces, it calculates the surface 
temperature self-consistently according to Fourier’s law for plasma-cathode , plasma-anode and other  
interfaces respectively (Eq.2.101): 

ܣ௛ߣ                                                          ೎்೛ି ೛்୼௫೛ ܣ௦ߣ = ௘ݍܣ +  ೛்ି ೎்ೞ୼௫ೞ  ,                                                          (2.101) 

where ∆ݔ௣ and ∆ݔ௦ are the distances from cell center to patch of fluid and solid regions, the meanings 
of the suffix for the boundary values introduced in the equations above are shown in Fig.2.10. Because 
OpenFOAM identifies the interface temperatures of both regions with each other, the patch 
temperature ௣ܶ is used in both regions. A is the patch surface area.  ݍ௘ equals ݍ௔ from Eq. 2.55a-b if at 
anode surface while it equals ݍ௖  from Eq. 2.63 if at cathode surface, with the exception that the 
radiation term ݍோ   needs to be corrected by considering the incident radiation heat flux ݍோ௜  from 
plasma (ݍோ௧ = ݍோ + ݍோ௜). To get the boundary condition for the incident radiation flux from arc plasma, 
the incident radiation intensity G is calculated according to P1 model: 

 

                                                             

 

 

 

 

 

                                                           

                                                            ∇ ∙ (Γ∇ܩ)-ߙG+4ߪߙௌ஻ܶସ=0,                                                             (2.102) 

where ߙ is the band-averaged absorption coefficient following section 2.1.3. By neglecting the 
scattering process and the linear-anisotropic phase function coefficient, the parameter Γ gives: 

                                                                                 Γ= ଵଷఈ.                                                                              (2.103) 

Then the incident radiation flux at the electrode surface ݍோ௜ is related to the normal gradient of G: 

ோ௜= - Γݍ                                                                            డீడ௡.                                                                          (2.104) 

Table.2.10. Schematic description of boundary cell parameter configurations 
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The Marshak boundary condition is used here to eliminate the angular dependence, and suppose the 
electrode surfaces are opaque surfaces and then make balance between incident, reflected and 
emitted radiation energy it gives: 

 (2.105)                                                            ,(௪ܩ-ௌ஻ܶସߪ4) ோ௜= - ఢଶ(ଶିఢ)ݍ                                                              

where ߳  is set 1 at inlet and outlet to assume black body absorption, ܩ௪  is the incident radiation 
intensity at wall.  

For electron temperature the inlet temperature is set 500K whereas the other boundary conditions 
are set zero gradient. The initial value of ௘ܶ is given at 5000K so that the instability of electron enthalpy 
due to a much too small value of ߪ could be avoided. As in solid regions no electron temperature needs 
to be considered, the solid region temperature is onefold and “connected” to heavy species 
temperature ௛ܶ in fluid region through Eq.2.101.   

2.5.2 Velocity field 

Arcs can be stabilized either by a cylindrical wall (wall stabilization) that forces the arc to remain on 
the axis of the cylinder or by a superimposed axial cold gas flow, this increases the efficiency of 
convective heat transfer on anode surface to avoid erosion and cools off the arcs moves off the axis 
(flow stabilization). This kind of stabilization is particularly effective when a swirl injection is applied at 
gas inlet. This is usually achieved by a flow swirler that produces inlet velocity with a tangential 
component. This strengthens the fluid rotational movement especially at anode nozzle, whose 
diameter is smaller than that of inlet. It reduces the residence time of anode attachment which is 
correlated with the swirl velocity. Less heat load and erosion can be expected with this strategy. In this 
study, a mass flow rate boundary condition of 60 slpm with 45∘ swirl is defined. In OpenFOAM, there’s 
a boundary condition type named swirlFlowRateInletVelocity suitable for this condition. It describes 
the volumetric/mass flow normal vector boundary condition by its magnitude as an integral over its 
area with a swirl component determined by the RPM (revolutions per minute). As the swirl angle is 
defined as: 

)atan=ߴ                                                                          
ඥ௩ሬ⃗ మା௪ሬሬ⃗ మඥ௨ሬሬ⃗ మ ),                                                                  (2.106) 

where ݑሬ⃗ , ,ݒ⃗ ሬሬ⃗ݓ  is the velocity component of x, y, z direction and x direction is assumed to be the normal 
direction here. So for 45∘ swirl: 

ሬ⃗ݑ√                                                                          ଶ=√⃗ݒଶ + ሬሬ⃗ݓ ଶ.                                                                   (2.107) 

To get the value of RPM required for this boundary condition, it is necessary to estimate the normal 
velocity magnitude beforehand. It is assumed that there’s a fully developed laminar flow at the inlet, 
the magnitude profile of normal velocity as a function of radial position r is given by [42]: 

ሬ⃗ݑ√                                      ଶ=2ݑത ቈ1 + ݂ଶ − (ଵି௙మ)୪୬ (భ೑) ቉ିଵ ቈ1 − ቀ ௥ோೌቁଶ + (1 − ݂ଶ) ୪୬ ( ೝೃೌ)୪୬ (భ೑) ቉,                         (2.108) 

                                                                                 ݂ = ோ೎ோೌ ,                                                                          (2.109) 

=തݑ                                                                            ௠̇ఘగோమೌ(ଵି௙మ),                                                                     (2.110) 

                                                                             RPM=9.55
ඥ௨ሬሬ⃗ మ௥ ,                                                                  (2.111) 
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where ݉̇ is the inlet mass flow rate, ߩ is the inlet gas density, ܴ௖, ܴ௔ are the radius of cathode and 
internal radius of anode. RPM is approximated at the place of maximal normal velocity. 

At all solid walls the non-slip boundary is defined, since the operation condition of the plasma torch 
discussed here is under atmospheric pressure, and the Knudsen number at the solid boundary is small 
enough. At outlet, a generic outflow condition zeroGradient is implemented. By setting the boundary 
patch value to the boundary internal value, the continuity equation is also fulfilled at outlet.   

The two key parameters turbulent kinetic energy k and specific dissipation rate ߱ used in the 
turbulence model as a fixed value at inlet are calculated as follows: 

                                                                            k= 1.5(|ܫ|ݑ)ଶ,                                                                    (2.112) 

                                                                             ߱= 1.826√௞௟ ,                                                                      (2.113) 

where the turbulence intensity I is estimated as 1%, and the turbulence length scale l is attained by 
0.038d while d is the anode inner diameter.  

For near wall treatment, as the grid spacing at anode and cathode boundaries are made fine enough 
 to resolve sheath and heat transfer, the k boundary condition here is fixed as an infinite small (ା<1ݕ)
value to avoid zero value at denominator. For other wall boundaries, due to the coarse meshes (ݕା>30), 
the standard wall function is used.  

2.5.3 Pressure field 

The initial pressure value throughout the whole computation domain is set as 1.013× 10ହ Pa. At all 
solid walls the boundary condition is zero gradient. As the geometry of plasma torch anode is 
concerned, the plasma flow in- and outside anode pipe is subsonic. Besides, the whole geometric 
domain is extended faraway enough from the arc jet, therefore no specific treatment for wave 
reflection at outlet is needed, a generic total pressure ݌௧ boundary condition with a reference pressure ݌଴ 1.013× 10ହ Pa according to Bernoulli's principle is applied: 

 ଶ.                                                                        (2.114)ݑߩ ଴ +ଵଶ݌=௧݌                                                                        

At inlet the boundary condition is set as zero gradient, thus the pressure value is determined according 
to ideal gas law with temperature and velocity field calculated at the same place.  

2.5.4 Electric potential field 

Choosing a suitable boundary condition for electric potential is a most important and challenging task 
for building a good plasma-electrode interaction model. Because the current density is calculated 
according to Poisson’s equation, which is subject to the distribution of plasma electrical conductivity 
and electric potential. The current density is then used to calculate the joule heating, which is a decisive 
source term in electron enthalpy equation and in turn gives rise to heavy species temperature rise and 
the development of velocity and pressure field.  

A reasonable boundary condition for electric potential should firstly ensure the charge conservation 
or the continuity of electric current density. As no cathode evaporation is assumed here, no extra 
current caused by particles of cathode materials will be produced, which means the current flow at 
both sides is identical in value. To achieve that, it is advisable to use a boundary condition similar to 
Eq.2.101: 

ܣ௣ߪ                                                                     ఝ೎೛ିఝ೛୼௫೛ ܣ௦ߪ =  ఝ೛ିఝ೎ೞ୼௫ೞ .                                                      (2.115) 
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This ensures not only that the current density generated in the boundary cells of fluid region will be 
equal to what’s generated in the neighboring boundary cells of electrodes, but also ensures that the 
potentials of both regions agree on the interface. 

Besides, it will be more important to know what the electrical conductivities ߪ௣  and ߪ௦ in boundary 
cells of both regions could be. Apparently, the solid conductivity ߪ௦   is merely a function of 
temperature while fluid conductivity ߪ௙ is linked to the complicated sheath layer. As is discussed in 
2.3.2, the electron number density in the sheath layer is assumed to be identical with ion number 
density, otherwise the abrupt drop of number density will cause unphysical or divergent simulation 
results. This phenomenon of electron rejection, however, is very important to a coupled simulation 
taking into account the sheath effect. In this scope, it is done in another way. If one takes a look at the 
classical expression of plasma electrical conductivity, it gives: 

௡೐௘మ௠೐ =ߪ                                                                           ∑ ఔ೐೔య೔సబ  .                                                                        (2.116) 

It obvious from above that ߪ ∝ ݊௘, which means the electrical conductivity inside sheath should also 
be much smaller if no surface emission takes place. While changing the number density seems not 
reasonable, replacing ߪ meant for arc plasma core by a suitable value calculated for sheath is a good 
choice. Because by changing that parameter, only the joule heating term in electron enthalpy equation 
needs to be corrected, the transport equations have little risk overshooting or undershooting 
themselves.  

Besides, as is discussed in section 2.3.3, sheath layer thickness is related to the local discharge 
condition. At the places where the Debye length is negligible, it can be considered as an absence of 
sheath effect or “sheath hole”. This requires that the implemented sheath electrical conductivity 
should be able to reflect this situation.    

There are usually two main difficulties in implementing a sound boundary condition for sheath. On one 
hand, it is not clear which mechanism regulates the accumulation of surface current density. One 
common assumption is that for a cathode with a conical shape, the emission concentrated at the tip 
of cathode, where the curvature is the largest. On the other hand, the real emission transition from 
arc to cold, inactive sheath is unknown.  

It is common practice that most of the interaction researches assume that the current density decrease 
with a certain trend (functions that describe the distribution) beginning at the tip. These functions 
usually require an estimation of cathode spot radius. By setting a predefined arc spot region according 
to some empirical models of arc spot radius [15] may have its physical basis, but the final conducting 
region is thus restricted. It produces a much too arbitrary and symmetrical conducting region which 
fits the view of aesthetics but not reality.  

According to Zhu et al. [23], a special form of Ohm’s Law needs to be developed for a smooth transition 
of surface current density or, in other words, an effective electrical conductivity for sheath plays an 
important role for a self-consistency model. Since in the active spot region the plasma is always fully 
ionized while far away from the spot the cathode sheath remains cold and insulated, it is reasonable 
that the electrical conductivity of sheath plasma may also follow the trend of ionization degree. In this 
scope, a derived form of Ohm’s Law for the calculation in boundary cells according to the local 
ionization degree ܫ௚  of plasma as a limiting factor between fully ionized plasma in arc spot and 
emission-free sheath layer is developed, which takes the form of effective value from [25]: 

 ௘௙௙= ଵభ഑ೞ೓൫ଵିூ೒൯ାభ഑ூ೒,                                                            (2.117)ߪ                                                                       
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where ߪ  is the electrical conductivity of bulk plasma, ௦௛ߪ   is the collisionless sheath electrical 
conductivity without surface electron emission discussed previously (Eq.2.92), ߪ௘௙௙  is the total 
effective conductivity of sheath layer. The ionization degree ܫ௚ for multilevel ionized plasma is: 

∑ =௚ܫ                                                                            ௡೔య೔సభ∑ ௡೔య೔సబ  ,                                                                           (2.118) 

It is obvious from this boundary condition that no extra factor relating to cathode geometry such as 
cathode spot radius is needed. At the place where ௚ܫ → 0  , the sheath electrical conductivity 
approaches ߪ௦௛ , while ܫ௚ → ௘௙௙ߪ ,1 →  ௣௟.That means the sheath effect disappears if local plasma isߪ
fully ionized. The ionization degree ܫ௚ is attained from the results of transport equations of plasma 
column, thus it yields a self-consistent solution of boundary conductivity that decides the non-
uniformity of surface current density of cathode. As no anode sheath effect is considered in this scope, ߪ௘௙௙ remains  ߪ inside it, as well as other non-conducting walls: 

ܣ௘௙௙ߪ                                                 ఝ೎೛ೞିఝ೛୼௫೛ ܣ௦ߪ =  ఝ೛ିఝ೎ೞ୼௫ೞ , (cathode sheath)                                       (2.119) 

ܣ௣ߪ                                                  ఝ೎೛ೞିఝ೛୼௫೛ ܣ௦ߪ =  ఝ೛ିఝ೎ೞ୼௫ೞ . (other interfaces)                                         (2.120) 

2.5.5 Magnetic field 

The boundary condition for magnetic vector potential ⃗ܣ  is set zero gradient at gas inlet and the cold 
end of cathode and all the anode outer surfaces. To fix a reference value, vector potential is set (0,0,0) 
at gas outlet and anode outer boundary where it is far from the discharging region. A deduction process 
is needed to attain the relation between both sides of plasma-electrode interface.     

Suppose a pillbox-like small volume (Fig.2.11) that crosses the interface with the height of h and the 
Coulomb gauge condition is: 

                                                                            ∇ ∙  (2.121)                                                                              .0= ܣ⃗

By setting h→0, the zero-divergence condition can be understood as the net flow entering the top 
surface (or bottom surface) of the small volume is equal to the flow leaving the bottom surface (or top 
surface) of the volume. So the normal component of vector potential ܣ௡ at both sides is consistent. 

                      

 

 

 

 
The line integral of vector potential ⃗ܣ around a curve C equals the magnetic flux through any surface 
S spanning the curve as : 

                                              ∮ Aሬሬ⃗ ⋅ ݈݀⃗஼  =∫ (∇ × (ܣ⃗ ⋅ ሬ݊⃗ ݀aௌ  =∫ ሬ⃗ܤ ∙ ሬ݊⃗ ݀aௌ =Φ஻,                                             (2.122) 

where Φ஻ is the magnetic flux across surface S. 

Fig.2.11. Schematic drawing of a divergence-free volume 
of vector potential across the cathode-plasma interface 

Fig.2.12. Schematic drawing of integration loop of 
vector potential tangential component across the 
cathode-plasma interface 
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Suppose the integration path l to be a rectangle with the width 2r and height h (Fig.2.12). ܣ௙௧ , ܣ௙௡and ܣ௦௧ , ܣ௦௡denote the tangential and normal components of vector potential in fluid and solid region. 
When h→0: 

                                            ∮ Aሬሬ⃗ ⋅ ݈݀⃗஼ ሬ⃗ܤ =௦௧ 2r =Φ஻ܣ - ௙௧ 2rܣ = ∙ ሬ݊⃗  2r h→ 0.                                            (2.123) 

It yields ܣ௙௧ = ܣ௦௧. So both the normal and tangential components of vector potential is identical to 
each other which yields the continuous boundary condition for magnetic vector potential ⃗ܣ at plasma- 
electrode interfaces regardless of surface current densities: 

 ௦.                                                                              (2.124)ܣ⃗= ௙ܣ⃗                                                                             

Because the magnetic flux density ܤሬ⃗  is calculated explicitly according to ܤሬ⃗  = ∇ ×  it is not needed , ܣ⃗
to impose any boundary condition for ܤሬ⃗  in OpenFOAM. 

2.6 Global coupling procedure 

All the elementary descriptions of sub-models concerning different aspects of plasma-electrode 
interaction are presented in the previous sections in this chapter. ChtMultiRegionFoam loops from 
fluid regions to solid regions according to the region names defined in the case directory and solve 
them one by one sequentially. In this study, the fluid region is onefold, it consists only of plasma core 
and plasma sheath, which are connected to each other, while sold regions include anode, cathode and 
other neutral elements, which are separated from each other and has no sharing faces.   

After the successful splitting of the meshes of ground level into corresponding sub-meshes and the 
initial and boundary conditions for all the involved parameter including ௛ܶ, ௘ܶ, p, ሬܷሬ⃗  etc. are set by ܣ⃗,
createFluidFields.H and createSolidFields.H, respectively. The simulation starts within cells of the whole 
arc region from continuity equation rhoEqn.H through the momentum equation UEqn.H followed by ௘ܶ.H which contains all the necessary equations ranging from the calculation of number density by 
chemical nonequilibrium model till the calculation of electron enthalpy equation after all the transport 
and collisional parameters are attained. Then heavy species enthalpy equation is solved based on the 
result of Te to gain elastic collisional energy. In the next step, PISO algorithm comes to play to update 
pressure and density. It is important to note that if sheath region is included, the boundary cells 
attached to cathode surface are selected. The 2T electrical conductivity  ߪ of boundary cells at cathode 
calculated previously is overwritten by the calculated results according to effective sheath conductivity 
of Eq.2.117 since the ionization degree is attained after the calculation of number densities. With all 
the necessary parameters are calculated (for example the ௪ܶ in Eq.2.57 is updated by the previous 
enthalpy equation, the heat fluxes ݍ௔ and ݍ௖ are attained by Eq. 2.55a-b and 2.63, which will serve as 
automatic input of Neumann boundary conditions for the electrode temperature calculation and at 
the same time, the temperature and electric potential results of plasma region attained will serve as 
Dirichlet boundary condition for electrodes as these values should be consistent at the interfaces), the 
solver begins to calculate the RANS turbulence fields by k and ߱. After all the equations in electrode 
regions are solved based on the interface results from fluid region, the results of solid regions will also 
update all the important parameters at the interfaces to serve as Neumann or Dirichlet boundary 
conditions for fluid regions (this is why we call it “interaction”). Finally, the solver loops again from the 
very beginning following the above introduced sequence: arc→sheath→electrode until convergence is 
achieved.  
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Chapter 3 

Numerical methods and solution procedure 

 
As is in chapter 2 introduced, the whole interaction model is a complex of transport equations, 
supported by variables that change with space and time. However, due to the limit of computation 
resource and the need of computation stability, a lot of simplifications are made at the cost of global 
validity, e.g. the fluid method will not apply in low electron population area. Despite of that, the whole 
set of equation to be solved is still numerous and highly nonlinear. Choosing suitable numerical 
methods and solution procedures that suit not only the physical reality with an acceptable error margin 
but also the need of stable and economic computation will have a direct effect on the final applicability 
of the interaction model.  

3.1 Overview of discretization 

It is clear that in solving a complicated set of transport equations, there’s seldom a possibility to get 
the analytical result. A good alternative is to “smash” the problem of specific into a finite number of 
units and then solve each of them. Each problem unit is not isolated, and one can use different 
predefined relations to connect each other and yield the final results if certain criterion of error is 
fulfilled. The finite volume method is one of the most famous computation methods that apply such 
procedure. It is a method for representing and evaluating partial differential equations in the form of 
algebraic equations. Similar to the finite difference method or finite element method, values attained 
by FVM are calculated at discrete places on a meshed geometry. Here the problem unit refers to the 
small volume surrounding each node point on a mesh, which justifies its name “finite volume”. 
Different from the finite difference method, the computation spectrum includes not only the central 
node, but also the faces that surround it. All of them together is called a control volume. The method 
or process to “smash” the whole computation region is called discretization. Regardless of the 
differences among FVM, FEM and FDM, all discretize the problems by spatial discretization, temporal 
discretization and equation discretization.  

3.1.1 Temporal discretization 

The temporal discretization is done through integration over time on the general discretized equations. 
This method states that the time integral of a given variable is equal to a weighted average between 
current and future values. For example, the first time derivative డడ௧ is integrated over a control volume 
as follows: 

                                                                                   డడ௧ ∫  ϕdV.                                                                       (3.1)ߩ

The values that are involved in the temporal discretization are usually: the new time values ߶௡=߶(t+Δt), 
namely the time step we are solving; old time values ߶௢=߶(t), the values stored from the previous 
time step; ߶௢௢=߶(t-Δt), the values from the time step previous to the last. OpenFOAM provides the 
users with the possibility to define different time differencing schemes in the sub-dictionary 
ddtSchemes ranging from the steady-state to the second order implicit backward scheme. For example, 
when applying the most common first order Euler implicit scheme, the result of temporal integration 
of Eq. 3.1 can be discretized as: 
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∫ ቂ డడ௧ ∫ ϕdVቃߩ ௧ା୼௧௧ݐ݀ = ∫ (ఘథ௏)೙ି(ఘథ௏)೚୼௧ ௧ା୼௧௧ݐ݀  

                                                                                       =  (ఘథ௏)೙ି(ఘథ௏)೚୼௧  Δ(3.2)                                                  .ݐ 

The spatial derivatives in a transient problem can be treated in a similar way if applying the explicit 
differencing scheme: ∫ ௧ା୼௧௧ݐ݀[ܸ݀߶ܣ]  =∫ ௧ା୼௧௧ݐ݀߶∗ܣ   

 ௢Δt,                                                               (3.3)߶∗ܣ =                                                                                            

where ܣ∗ represents the spatial discretization of operator A. Unlike the Euler implicit method, which 
applies the new time value to discretize and guarantees boundedness, the explicit method spares the 
process of solving the system of linear equations, its results can be attained directly. However, its 
applicability is restricted by the Courant number:  

௢= ௎೑ௗ୼୲ܥ                                                                                  <1.                                                                         (3.4) 

3.1.2 Spatial discretization 

By spatial discretization the solution domain is defined by the location of points that are within the cell 
center and the faces that surround them, which are classified as internal faces and boundary faces.  In 
general, the domain can be discretized by either a structured or an unstructured grid system. 
Structured meshes are identified by regular connectivity. The possible element choices are 
quadrilateral in 2D and hexahedra in 3D. This system is highly space-efficient since the neighborhood 
relationships are defined by storage arrangement. Some usual advantages of structured meshes over 
unstructured are better convergence and higher resolution. Additional flexibility of the structured 
meshes is that it can be used in multiple blocks, either joined together or treated independently, 
particularly when specific needs must be met, for example the multi-region feature of the plasma-
electrode interaction simulation asks the total domain to be defined into different subdomains and 
calculated for different set of transport equations. Unstructured meshes are used when domains with 
complicated or changing geometry need to be discretized. Nowadays, as the simulation problem 
becomes larger and larger, and the manual mesh generation becomes very time-consuming, the ability 
of automatic generation of unstructured meshes or hybrid meshes that contain a mixture of structured 
portions and unstructured portions has been incorporated into all the commercial CFD software.  

In OpenFOAM the computation results are stored in mesh with a wide variety of positions. Usually the 
scalar and vector fields such as temperature and velocity are stored in cell center, and quite often 
some parameters (convection mass flux) are stored at cell faces and on occasion some are defined on 
cell vertices. The specific choice of each storage form in OpenFOAM is given by the template class 
geometricField<Type>. By using typedef declarations, the corresponding storage forms can be 
manipulated with the following renamed classes [69]: 

(1) volField<Type> : results calculated at control volume center. 

(2) surfaceField<Type> : results calculated at faces surrounding a control volume. 

(2) pointField<Type> : results calculated on the vertices of a control volume. 

3.1.3 Equation discretization 

Consider a classical steady-state convection-diffusion problem, the integral form of it gives: 
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                                              ∫஼௏∇ ∙ ሬ⃗ݑ߶ߩ) )dV= ∫஼௏∇ ∙ (Γ∇߶)dV+ ∫஼௏ܵథdV,                                             (3.5) 

where ሬ݊⃗  is face normal vector, suppose that velocities and all the fluid properties are known, applying 
Gauss’s divergence theorem: 

                                                                    ∫஼௏∇ ∙ ߶dV=∮஺ ሬ݊⃗ ∙ ߶dA,                                                               (3.6) 

which can be further transfer to the sum of integrals over all faces (if the mesh is a hexahedron which 
has face A1 to face A6): 

                                                                   ∮஺ ሬ݊⃗ ∙ ߶dA=∑ ∫஺೔ ሬ݊⃗ ∙ ߶dA஺଺஺ଵ .                                                         (3.7) 

Suppose the linear variation of the unknown ߶: 

                                                                      ߶(x)=߶௉+(x-ݔ௉)(∇߶)௉,                                                               (3.8) 

where ݔ௉ , ߶௉, (∇߶)௉ is the coordinate, value and gradient of control volume center. The term ∫஺೔ ሬ݊⃗ ∙߶dA can be splitted into: 

                                           ∫஺೔ ሬ݊⃗ ∙ ߶dA=߶௉∫஺೔dA + (∇߶)௉∫஺೔(x −  ௉)dA=A߶௉.                                      (3.9)ݔ

Applying Eq.3.9 to Eq.3.7, the integration of transport terms in each control volume can be linearized 
with second order accuracy: 

                                                                   ∫஼௏∇ ∙ ߶dV = ∑ A߶௉஺଺஺ଵ .                                                               (3.10) 

Based on the principle above, Eq.3.5 can be rewritten as: 

                                                          ∑ Aߩ߶௉ݑሬ⃗஺଺஺ଵ = ∑ AΓ∇߶஺଺஺ଵ + ∫஼௏ܵథdV.                                                 (3.11) 

The source term above could also be generalized as: 

                                                                  ∫஼௏ܵథdV= ܵ௨ ௣ܸ + ܵ௣ ௣ܸ߶௉.                                                          (3.12) 

For the convenience of description, the one-dimensional problem with velocity of positive x direction 
is assumed, reducing the neighborhood elements to only west and east components: 

                                 (Aݑ⌉߶ߩሬ⃗ ⌉)௘- (Aݑ⌉߶ߩሬ⃗ ⌉)௪= (AΓ∇߶)௘- (AΓ∇߶)௪ + ܵ௨ ௣ܸ + ܵ௣ ௣ܸ߶௉.                        (3.13) 

where the index e and w denote the corresponding east and west faces of control volume. To avoid 
storage overhead with additional addressing information, only the grid and face value of the CV itself 
and those of its neighbor cells take part in the linearization process.   

However, all the CV faces are owned not only by the CV itself, but also by its neighbor cells except for 
the boundary faces. And to relate all the CV values together, there should be mechanisms that decide 
how can the face values be fixed concerning all the related CVs for the convection terms. Such 
mechanisms are called differencing schemes. The accuracy of each different differencing schemes 
depends on the choice of neighboring nodes, ranging from first-order up to several orders higher. 
However, there’s till now no universally applicable differencing schemes that serve good accuracy, 
convergence and stability at all situations at one time. To increase the computation cell number can 
improve overall accuracy naturally, but also cost much more computation resource. In practice, if 
certain schemes fulfil the prescribed laws, the physically realistic results can also be expected. Such 
laws for choosing a suitable differencing scheme are called conservativeness, boundedness and 
transportiveness.  
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The conservativeness results from the need to secure the conservation of variables within the whole 
computation domain, that means the flux of ߶ leaving a CV across a certain face must be equal to the 
flux entering the adjacent control volume through the same face. If improper differencing is used, the 
gradient across certain face could be different due to the curvature, and the diffusion flux entering and 
leaving the same volume face could be inconsistent.  

To ensure an iterative method is convergent, Scarborough [70] has shown that the coefficients matrix 
of ߶ in linearized equations should be diagonally dominant. Under such dominance and in the absence 
of source terms, the internal nodal values of ߶ could be bounded by its boundary values. Hence such 
criterium is often called boundedness. Besides, all these coefficients of linearized equations should 
have the same sign.  

For fluid flow, transportiveness describes the influence on the upstream node on the downstream 
node. For zero Peclet number (pure diffusion), the iso-lines of ߶  around the node P are circular. The 
influence of ߶ at P spreads equally (for constant diffusivity) in all directions. For high Peclet numbers 
(assumed flow from the node P to E), ߶  at P strongly influences the value of ߶ at the downstream 
node E. But ߶ at P is weakly influenced by the downstream value. The isolines of ߶ at E are ellipses 
biased towards the upwind node P. The higher is the Peclet number the closer is the value of ߶ at E to 
the value of ߶ at P. This property requires that certain sound differencing scheme should be able to 
detect the flow direction.  

(1).  Upwind scheme: 

The simplest upwind scheme possible is the first-order upwind scheme (assume the positive x 
direction): 

                                                                        ߶௪= ߶ௐ, ߶௘= ߶௉.                                                                   (3.14) 

Eq.3.13 becomes: 

                       (Aݑ⌉ߩሬ⃗ ⌉)௘߶௉- (Aݑ⌉ߩሬ⃗ ⌉)௪߶ௐ = (AΓ)௘ థಶିథುఋ௑ಶು  - (AΓ)௪ థುିథೈఋ௑ುೈ  + ܵ௨ ௣ܸ + ܵ௣ ௣ܸ߶௉.             (3.15) 

It is clear from above that the first-order upwind scheme uses consistent method to calculate 
convection and diffusion fluxes, so it obeys conservativeness. The coefficients ܽௐ, ܽ௉ and ܽா for node 
W, P and E are always positive and if continuity rule is satisfied ܽ௉=ܽா+ܽௐ so coefficient matrix is 
diagonally dominant, so it satisfies the boundedness rule. As the face value is always identical with the 
grid value upwind, the transportiveness is embedded in it by nature. 

From all the properties above it can be concluded that the upwind scheme is unconditional stable, 
however, it has only first order precision. When applied in the multi-dimensional problems, errors can 
occur when the flow is not aligned with the grid lines. The resulting error has a diffusion-like 
appearance and is called false diffusion. 

(2). Central-differencing scheme: 

Assuming the linear variation of ߶ between P and E or P and W, the face values are fixed as follows: 

                                                                        ߶௘= ௫݂߶௉+(1- ௫݂) ߶ா,                                                                (3.16) 

                                                                        ߶௪= ௫݂߶௉+(1- ௫݂) ߶ௐ,                                                              (3.17) 

where the interpolation factor ௫݂ is defined as the ration of distance between the corresponding grids. 
This differencing scheme is called central-differencing scheme. It uses consistent expressions for face 
flux calculation to ensure conservativeness. The coefficients satisfy the Scarborough criterion. 
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However, for Peclet number larger than 2 the coefficients are no longer the same sign, thus violates 
the boundedness requirement. This scheme cannot recognize the direction of flow or the strength of 
convection relative to diffusion as the face convective and diffusive fluxes are calculated by all 
directions. So at high Peclet number it will not possess transportiveness.  

As this scheme is conditional stable in relation to Peclet number, it will have strict requirement of mesh 
quality. It is not suitable for general-purpose flow calculations. This shows the need to develop the 
above two most fundamental schemes to achieve good balance between accuracy and stability. 
Among them some famous differencing schemes are hybrid, power-law, QUICK and TVD schemes. The 
hybrid scheme switches between upwind and central-differencing scheme for different Pe values but 
only possess first-order precision, power-law scheme is similar but more accurate for one-dimensional 
problems. QUICK scheme is based on a quadratic function and has a third-order accuracy on a uniform 
mesh, however it cannot guarantee the uniform sign of its coefficients and is conditionally stable. In 
this scope, to suit the need for calculating complicated physical process described by a set of highly 
non-linear mathematical equations, the Total Variation Diminishing scheme (TVD) is applied due to the 
fact that it inherently satisfies all the necessary requirements of transportiveness, conservativeness 
and boundedness and also ensures good accuracy.  

(3). TVD scheme 

For a stable, higher-order precise and non-oscillatory scheme, the property of monotonicity preserving 
is necessary. It will not produce local extrema; the local minimum must not decrease and local 
maximum not increase. It is shown in Fig.3.1 to illustrate its meaning: 

                                                           TV(߶) = |߶ଷ − ߶ଵ|+ |߶ହ − ߶ଷ|,                                                        (3.18)  

                         

 

 

 

 

 

 

  
where TV(߶) is called total variation of discretized solution, according to Lien et al. [71] this total 
variation should not increase.   

All the monotonicity-preserving schemes have the property that the total variation should diminish 
with time, hence justify the name TVD. The interpolation method of this scheme generally takes the 
following form: 

                                                               ߶௘ =  ߶௉ + ଵଶ Ψ(ݎ௘)(߶ா − ߶௉),                                                      (3.19) 

                                                             ߶௪ =  ߶ௐ + ଵଶ Ψ(ݎ௪)(߶௉ − ߶ௐ).                                                    (3.20) 

For a classical one-dimensional diffusion-convection problem discussed above, this scheme could be 
generally implemented as follows: 

Fig.3.1. A discrete data set for the illustration of total variation 



53 
 

(Aݑ⌉ߩሬ⃗ ⌉)௘ ൬߶௉ + ଵଶ Ψ(ݎ௘)(߶ா − ߶௉)൰- (Aݑ⌉ߩሬ⃗ ⌉)௪ ൬߶ௐ + ଵଶ Ψ(ݎ௪)(߶௉ − ߶ௐ)൰  

                                            = (AΓ)௘ థಶିథುఋ௑ಶು  - (AΓ)௪ థುିథೈఋ௑ುೈ   + ܵ௨ ௣ܸ + ܵ௣ ௣ܸ߶௉,                                         (3.21)               

where Ψ(ݎ) is called limiter function and r is calculated according to: 

௘= ቀథುିథೈథಶିథುݎ                                                                              ቁ,                                                                      (3.22) 

௪=ቀథೈିథೈೈథುିథೈݎ                                                                             ቁ.                                                                   (3.23) 

For first-order upwind scheme this limiter function is simply 0, for central-differencing scheme is 1. 
However, not all the limiter function satisfies TVD condition. According to Sweby [72], the sufficient 
preconditions for a scheme to be TVD lie in the r-Ψ relationship: 

                                                                  Ψ(ݎ)|ݔ| ≤ ቄ2ݎ, 0 < ݎ < 12, ݔ ≥ 1                                                          (3.24) 

It is clear that the first-order upwind is safely within this region without extra restrictions. According 
to Sweby, for a TVD scheme to have a second-order precision, there should be another criterium, that 
is, the flux limiter function should pass through the point (1,1) in the r-Ψ diagram and must be bounded 
by central-differencing and linear upwind schemes(Fig.3.2). 

 

 

 

 

 

 

 

 

There’re actually several limiter functions that satisfy the criterium for a strict TVD scheme, such as 
Van Leer [73], and Min-Mod [74], SUPERBEE [74]. The limiter function applied in this scope is Sweby’s 
[72] limiter function: 

                                           Ψ(ݎ)=max [0, min(ݎߚ, 1), min(r, ߚ)], ߚ= lim௥→ஶ Ψ(ݎ).                                       (3.25) 

This expression is a generalization of Min-Mod and SUPERBEE limiters regulated by the parameter ߚ. 
If 1=ߚ, the function becomes that of Min-Mod and 2=ߚ becomes that of SUPERBEE.  

If Eq.3.21 is rearranged into the following form: 

                                                               ܽ௉߶௉= ܽௐ߶ௐ + ܽா߶ா + ܵ௨஽஼,                                                        (3.26) 

where ܽ௉ , ܽௐ, ܽா are coefficients that consist of convection and diffusion contents, which are the 
same with those of first-order upwind scheme. The source term ܵ௨஽஼  is an extra contribution that 
ensure the final discretization obeys the TVD rule while avoiding the stability problems due to the 
negative coefficients and is called deferred correction: 

Fig.3.2. r-Ψ diagram 
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                         ܵ௨஽஼= - (Aݑ⌉ߩሬ⃗ ⌉)௘ ൬ଵଶ Ψ(ݎ௘)(߶ா − ߶௉)൰+ (Aݑ⌉ߩሬ⃗ ⌉)௪ ൬ଵଶ Ψ(ݎ௪)(߶௉ − ߶ௐ)൰.                 (3.27)  

The central coefficient ܽ௉ is (suppose the positive x direction): 

                                                         ܽ௉= ܽ௪+ ܽா+[ (Aݑ⌉ߩሬ⃗ ⌉)௘-(Aݑ⌉ߩሬ⃗ ⌉)௪)].                                                 (3.28) 

The coefficients for neighboring grids give: 

                                                               ܽ௪= (୅୻)ೢఋ௑ುೈ +max[(Aݑ⌉ߩሬ⃗ ⌉)௪,0],                                                       (3.29) 

                                                                ܽா= (୅୻)೐ఋ௑ಶು  +max[-(Aݑ⌉ߩሬ⃗ ⌉)௘,0].                                                       (3.30) 

Although applying TVD schemes can sometimes cost 15% more CPU time than higher-order QUICK 
scheme according to [71] due to additional calculation overhead by deferred correction, it provides 
oscillation-free solutions. Besides, in situations such as to capture shock waves the usual strategy is to 
refine meshes, however it is not economic especially in large scale simulations. And when applying 
central-differencing, upwind or hybrid scheme on coarser meshes, they always give false shock 
predictions while TVD schemes are more precise on it, which means such schemes can be put in to 
general application as they archive good balance between numerical precision and stabilization while 
do not have high requirement on mesh resolution.  

As for the boundary value implementation, for example, if the west neighboring grid ߶ௐ doesn’t exist, 
and the value for west face is fixed at ߶஺, for ݎ௘ in the limiter function discussed previously (Eq.3.22) ߶ௐ  should be replaced by another value ߶௢  to calculate the deferred correction, the mirror node 
extrapolation by Leonard [75] gives: 

                                                                               ߶௢= 2߶஺-߶௉.                                                                     (3.31) 

Hence: 

 =௘∗= ቀథುିథ೚థಶିథುቁݎ                                                                     
ଶ(థುିథಲ)థಶିథು .                                                            (3.32)                    

3.2 Orthogonality correction 

In the previous section, several basic aspects of discretization have been addressed. They are all 
analyzed based on a simplified one-dimensional, steady state and above all orthogonal problem. 
However, in practice due to the difficulty in mesh generation for complicated geometry, the cell 
distribution can hardly be orthogonal. According to the basic principle of Gauss’s divergence theorem, 
the flux that take part in calculation should be normal to the cell faces, if nonorthogonality exists, it 
will produce conflict in the calculation of inter-cell gradients. Because in non-orthogonal condition, the 
calculated gradient from the two neighboring cell centers is not align with face normal direction 
(Fig.3.3). Taking the diffusion flux in a hexahedral cell for example: 

  
 

 

 

 

Fig.3.3. Illustration of a nonorthogonal mesh interface 
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                                                           ∫஼௏∇ ∙ (Γ∇߶)dV = ∑ ሬ݊⃗ ∙ AΓ∇߶஺଺஺ଵ .                                                     (3.33)                              

While ሬ݊⃗  denotes face normal, ∇߶ is calculated along P-N line(Fig.), suppose the angle in-between is ߠ, 
then: 

                                                              | ሬ݊⃗ ∙ AΓ∇߶|= AΓ cos ߠ ቚథಿିథುఋ௑ುಿ ቚ.                                                       (3.34) 

The usual strategy for it is to decompose ሬ݊⃗ ∙ A into P-N component ⃗ܥ and non-P-N component ܦሬሬ⃗ : 

                                                                               ሬ݊⃗ ∙ A= ⃗ܦ+ܥሬሬ⃗ .                                                                       (3.35) 

There are many possible decomposition methods concerning the non-orthogonal treatment (Davidson 
[76], Mathur et al. [77], Haselbacher [78]). No matter in what way the face normal is decomposed, the 
correction process can be described as follows: 

                                                       ሬ݊⃗ ∙ AΓ(∇߶)௙= ห⃗ܥห ቚథಿିథುఋ௑ುಿ ቚ+ܦሬሬ⃗ ∙ (∇߶)௙,                                                 (3.36) 

where the face interpolation of ∇߶  is calculated based on the weighted grid value of gradient 
according to the distance from the corresponding grid to face center: 

                                                               (∇߶)௙= ௫݂(∇߶)௉+(1- ௫݂) (∇߶)ே,                                                     (3.37) 

                                                                                  ௫݂=ఋ௑೑ಿఋ௑ುಿ.                                                                          (3.38) 

Although adding the correction as a source term will secure second-order precision, this process is 
explicit, unbounded and unsigned, particularly if mesh non-orthogonality is very high (over 90∘), the 
corrected diffusion may be negative and simulation will be divergent, except for the re-adjustment of 
mesh quality or simply abandon non-orthogonal correction, OpenFOAM provides a compromising 
limiting factor ߙ to control numerical stability while addressing meshes with poor quality: 

หܥห⃗ߙ                                                                    ቚథಿିథುఋ௑ುಿ ቚ > ሬሬ⃗ܦ ∙ (∇߶)௙.                                                        (3.39) 

It is clear from above that the smaller ߙ value is, the less role the non-orthogonal correction will play, 
hence it retains boundedness on the cost of introducing discretization errors. In OpenFOAM, the value 
for this factor has slightly different meaning and one should pay special attention to: 

⎨⎩=ߙ                        
⎧ ݊݋݊ )   ,0.333(݀݁ݐܿ݁ݎݎ݋ܿ݊ݑ)                                                                                 ,0 − ≥ ݊݋݅ݐܿ݁ݎݎ݋ܿ ݈ܽ݊݋݃݋ℎݐݎ݋ ݊݋݊)        ,0.5(ݐݎܽ݌ ݈ܽ݊݋݃݋ℎݐݎ݋0.5 − ≥ ݊݋݅ݐܿ݁ݎݎ݋ܿ ݈ܽ݊݋݃݋ℎݐݎ݋ (݀݁ݐܿ݁ݎݎ݋ܿ ݕ݈݈ݑ݂)                                                                         ,1(ݐݎܽ݌ ݈ܽ݊݋݃݋ℎݐݎ݋                   (3.40) 

3.3 Solution algorithm for iteration 

There are serval general issues in CFD that lead in sequence to the final numerical results: building a 
realistic mathematical equation system to describe physical phenomena, discretizing the space and 
equation system, implementing boundary conditions. Then it comes to solving the whole transport 
equation system under the corresponding geometric and interpolation conditions. There are generally 
two methods used to yield numerical results: direct methods and iterative methods. For a large scaled 
mesh system and numerous unknown parameters for Multiphysics research in this scope, the present 
capability of high performance computing cannot afford the calculation beforehand by the first 
method. As for Gaussian elimination method, N equations with N unknowns can require operations of 
the order of ܰଷ and the simultaneous storage of all ܰଶ coefficients in computer memory. Iterative 
methods such as Jacobi and Gauss-Seidel have become popular in modern CFD computations as they 
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are based on the repeated application of a relatively simple algorithm until the final preset 
convergence criterium is fulfilled. One of its most advantageous property over direct method is that 
only non-zero coefficients in the coefficient matrix need to be stored in computer memory, which 
usually take up only a small fraction of it (sparse matrix).     

The simplest of the iterative methods for solving a linear system of equation is Jacobi method, 
considering a system of N equations and N unknowns in matrix form: A∙x =b, in algebraic form it gives: 

                                                                          ∑ ܽ௜௝ݔ௝ே௝ୀଵ = ܾ௜.                                                                  (3.41) 

Within the first iteration the calculation loops from equation 1 to N using the above expression based 
on a set of guessed initial values. Iterations move forward in this way and they are all based on the 
results in the previous iteration: 

∑ =௜(௞)ݔ                                                       ቀି௔೔ೕ௔೔೔ ቁே௝ୀଵ௝ஷ௜ ௝(௞ିଵ)ݔ + ௕೔௔೔೔ (i=1,2,3,…N).                                               (3.42) 

Once in the k-th iteration the residual of i-th equation ݎ௜(௞) reaches under a preset criterium ݎ௣௥௘ it can 
be considered as convergent: 

∑-௜(௞)=ܾ௜ݎ                                                               ܽ௜௝ே௝ୀଵ ௝(௞)ݔ ≤  ௣௥௘.                                                          (3.43)ݎ

A more popular iteration algorithm over Jacobi is the Gauss-Seidel method, it has better convergence 
performance and demands less computer memory as it doesn’t require the storage of new estimates. 
Within one iteration the new unknowns are calculated based on the up-to-date results, in other words, 
not all the un-knowns need to be applied from the previous iteration: 

∑ =௜(௞)ݔ                                    ቀି௔೔ೕ௔೔೔ ቁ௜ିଵ௝ୀଵ ௝(௞)ݔ + ∑ ቀି௔೔ೕ௔೔೔ ቁே௝ୀ௜ାଵ ௝(௞ିଵ)ݔ + ௕೔௔೔೔ ,(i=1,2,3,…N).                          (3.44) 

Through the updated partial unknowns, the iteration converges faster than Jacobi method under the 
condition that the iteration matrix is diagonally dominant and diagonal coefficients are non-zero.  

A similar algorithm but with improved iterative performance to the Gauss-Seidel method is called 
successive over-relaxation algorithm (SOR) by Yong [79], it has been found that the convergence rate 
could be improved by the introduction of a so-called relaxation factor ߸: 

∑ ]߸ =௜(௞)ݔ                  ቀି௔೔ೕ௔೔೔ ቁ௜ିଵ௝ୀଵ ௝(௞)ݔ + ∑ ቀି௔೔ೕ௔೔೔ ቁே௝ୀ௜ାଵ ௝(௞ିଵ)ݔ + ௕೔௔೔೔]+(1- ߸) ݔ௝(௞ିଵ), (i=1,2,3,…N)          (3.45) 

where ߸>1. However, if the iteration process is less stable or even divergent, chances are that one 
needs to slow down the process by adjusting ߸ below 1 to establish convergence in a divergent case 
or speed up the convergence of an overshooting process. 

Although the previously mentioned algorithms are advantageous over direct solution method, in some 
cases when grid spacing is small or mesh is fine, the convergence rates of all of them reduces 
substantially. For many iterative methods, the number of iterations required to reach a converged 
solution is linearly proportional to number of nodes in one direction. This is because the information 
travels only one grid size per iteration. It could be easily found that for a given propagation curve of 
iteration error vector ݁⃗: 

                                                                            ݁⃗(௞)= ⃗ݕ⃗-ݔ(௞),                                                                        (3.46) 

where ⃗ݔ is the real solution vector, ⃗ݕ(௞) is the solution vector after k iterations. 
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By refining the grid spacing the frequency of error propagation slows down. While high-frequency 
errors are easily eliminated with standard linear solvers discussed above, they cannot be removed 
easily at low frequency. Multigrid methods are designed to exploit these inherent differences of error 
and use iterations on meshes of different sizes. The basic principle of it is by transforming the 
smoothed low-frequent errors on original fine meshes into higher frequency errors on meshes of 
coarser level.  

The multigrid method can be generally divided into two categories. The direct manipulation of mesh 
topology (refining and coarsening) during iterations is called geometric multigrid procedure while 
another procedure does not re-computes matrix of coefficients for the manipulated mesh level but 
approximate them as linear combination of coefficients of fine grid equations, which is called algebraic 
multigrid (AMG). This approach doesn’t need any geometric information regarding meshes and can be 
used to build highly efficient and robust linear solvers for highly anisotropic grids and problems with 
coefficients of iteration matrix that change rapidly. In OpenFOAM, by giving the keyword “faceAreaPair” 
or “algebraicPair”, both procedures are available through the application of the GAMG solver, which 
stands for Generalized geometric-algebraic multigrid method. In the scope, the former procedure is 
applied. 

In either of the approaches, a multigrid cycling procedure is based on back and forth iterations on the 
different mesh hierarchies. Hence, they share the same basic solution strategies: 

(1).  Fine grid iterations 

Here the fine grid means original grid. Actually, apart from starting from the finest level, there are 
another two different methods that starts from the coarsest and the random level of meshes. These 
two methods have its own drawbacks. By starting from the coarsest level, although attractive in an 
adaptive mesh refinement setup, it generates uncertainties in the refinement level and is mesh-
dependent. The second method yields extra memory overhead regarding transfer of information 
between grid levels and do not allow good resolution in complex domains. Hence in OpenFOAM it 
begins with searching interface information for the finest level. In this step, sufficient iterations are 
made to eliminate the high-frequency errors while no attempt is made to remove the low-frequency 
component. Based on the intermediate solution ݕ௛, where h denotes grid spacing, the residual ݎ௛is 
attained according to Eq.3.43, and the error vector ݁⃗௛ is attained by several iterations of the following: 

௛ܣ                                                                                ∙ ݁⃗௛=ݎ௛,                                                                        (3.47) 

where ܣ௛ is the coefficient matrix of the finest level.  

(2) Restriction 

After the finest level calculation is complete, the solution is transferred from the finest level with 
spacing h into ch, where c>1. This process needs a special algorithm for mesh agglomeration. In 
OpenFOAM it is given by the class Foam::pairGAMGAgglomeration::agglomerate. Since all the 
information regarding finest-level interfaces are already attained in the previous step, the constant 
value faceWeights that collects faceAreas is attained (detailed process could be read from 
pairGAMGAgglomeration.C ). Based on faceWeights and other inputs by users ( such as mergeLevels 
which decides for how often the calculation should be done among agglomerations and 
nCellsInCoarsestLevel which prescribes an approximate mesh size at the coarsest level), the solver 
starts the agglomeration process, picking up all the necessary data and generating a cluster once a 
match between two cells are found. 
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Due to the larger mesh spacing after agglomeration, the low-frequency errors that cannot be 
eliminated by the previous step is transferred into high-frequency component and are reduced rapidly. 
In this step, the intermediate solution ݕ௖௛ is not solved. Instead, similar equation like eq. is solved 
iteratively with an initial guess of ݁௖௛=0. The coefficients of matrix ܣ௖௛ is calculated according to some 
form of averaging or interpolation technique based on the fine grid results ܣ௛ . While another key 
variable residual ݎ௛ can also be calculated in the similar way. The cost per iteration is greatly reduced 
due to the number of cells that take part in calculation, which allows more number of iterations to get 
a converged solution of error vector  ݁௖௛. 

(3) Prolongation 

After the coarsest level is reached and restriction process is complete, the prolongation process is used 
to transfer the error correction from coarse level back to the original finest level. As GAMG solver 
applies V-cycle, which is a simple cycle that contains no more restriction process during prolongation. 
Linear interpolation or any other interpolation scheme could be used to construct the prolonged error 
values of fine grid ݁ᇱ௖௛  from coarse grid errors (for example ݁ᇱଶ௛  can be attained from ݁ସ௛ ). The 
prolonged error ݁ᇱ௖௛ can be now applied to correct the error attained at the same mesh level in the 
previous restriction process: 

                                                                 ݁௖௢௥௥௘௖௧௘ௗ௖௛ = ݁௖௛ + ݁ᇱ௖௛.                                                                  (3.48) 

To reduce the side-effect error brought by the linear interpolation during level-transfer, it is usually 
necessary to do the smoothing process to reduce high-frequency error before moving forward to the 
next level, OpenFOAM provide users with the following smoothers (detailed coding can be seen in the 
directory OpenFOAM-2.3.x / src / OpenFOAM / matrices / lduMatrix/smoothers /): 

DIC: Simplified diagonal-based incomplete Cholesky smoother for symmetric matrices. 

DICGaussSeidel: Combined DIC/GaussSeidel smoother for symmetric matrices in which DIC smoothing 
is followed by GaussSeidel to ensure that any "spikes" created by the DIC sweeps are smoothed-out. 

DILU: Simplified diagonal-based incomplete LU smoother for asymmetric matrices. 

DILUGaussSeidel: Combined DILU/GaussSeidel smoother for asymmetric matrices in which DILU 
smoothing is followed by GaussSeidel to ensure that any "spikes" created by the DILU sweeps are 
smoothed-out. 

GaussSeidel: Discussed at the beginning of section 3.3. 

nonBlockingGaussSeidel: Variant of gaussSeidelSmoother that expects processor boundary cells to be 
sorted last and so can block later. Only when the cells are actually visited does it need the results to 
be present. It is expected that there is little benefit to be gained from doing this on a patch by patch 
basis since the number of processor interfaces is quite small and the overhead of checking whether a 
processor interface is finished might be quite high (call into mpi). Also this would require a dynamic 
memory allocation to store the state of the outstanding requests. 

symGaussSeidel: A lduMatrix::smoother for symmetric Gauss-Seidel. 

(4) Correction and final iterations 

After the prolong-corrected and smoothed error of the finest level ݁௦௠௢௢௧௛௘ௗ௛  is attained, it will be used 
finally to yield the corrected solution after multigrid process based on the fine grid results: 

௛+ ݁௦௠௢௢௧௛௘ௗ௛ݕ =௖௢௥௥௘௖௧௘ௗݕ                                                               .                                                             (3.49) 
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Although the results attained from above cannot be the real analytical solution due to multiple 
interpolation processes, this multigrid approach has been proved to be fast and effective over Gauss-
Seidel method. It is among the fastest solution techniques known today. In contrast to other methods, 
multigrid methods are general in that they can treat arbitrary regions and boundary conditions. They 
do not depend on the separability of the equations or other special properties of the equation. Its 
advantages in convergence rates could be more attractive when solving large scaled problems with 
complex physical descriptions as researched in this study.  

Apart from the linear solvers discussed above, OpenFOAM also provides the users with the possibility 
to use a wide variety of solvers that could be potentially useful in finding a balance between the 
convergence rates and numerical stability of different discretized equations, such as 
smoothsolver( Iterative solver for symmetric and assymetric matrices which uses a run-time selected 
smoother e.g. GaussSeidel to converge the solution to  the required tolerance.) and PCG solver 
( Preconditioned conjugate gradient solver for symmetric lduMatrices using a run-time selectable 
preconditioner.), while preconditioning is a feature that could be add to the iteration process to 
accelerate convergence rate as using a preconditioner contributes to a faster propagation of 
information through the computational mesh provided that the approximation of matrix of coefficient 
is easily invertible and all operations with that are computational cheap. 

3.4 The compressible PISO Algorithm  

In previous sections, it is assumed that velocity field is known beforehand, however it is impossible to 
predict velocity field without the coupled calculation with other variables. From Navier-Stokes 
equations it is clear that every velocity component appears in every momentum equation and 
continuity equation, making variables highly coupled with each other. Besides, the pressure gradient 
term is the main momentum source term, but there’s no transport equation for pressure. Usually the 
equation system is closed by the perfect gas law to yield pressure field. Due to the complexity of non-
linearities in the coupled equation system, it is necessary to apply an efficient pressure-velocity 
calculation procedure that saves computation resource and meets the need of precision and stability. 
In OpenFOAM, SIMPLE and PISO algorithms are coded as standard velocity-pressure coupling 
procedures for steady-state and transient solvers respectively. The former stands for Semi-Implicit 
Method for Pressure Linked Equations and is relatively straightforward due to only one momentum 
corrector step. This is, however, satisfactory for correcting velocities but not for pressures, whereas 
PISO (Pressure Implicit with Splitting of Operators) proposed by Issa [80] has a further corrector step 
in which no terms are omitted to derive the discretized pressure equation, which shows robust 
convergence behavior and required less computational effort. The algorithm per iteration/time step 
could be summarized as follows: 

(1) Solve the intermediate velocity ࢛∗ with an initial guess of pressure ࢖∗ 

To simplify the description, here suppose a one-dimensional flow problem with positive x direction: 

                                                         ܽ௉ݑ௣∗ =∑ ܽ௡௕ݑ௡௕∗ ∗ௐ݌)+ ∗௉݌ -   ௉+ܾ௣,                                                      (3.50)ܣ(

where ܣ௉  is the cell face area of control volume “nb” denotes neighbor cell, ܾ௣  is the momentum 
source term.  

(2) Establish the first pressure correction equation  

Defining the first pressure correction ݌ᇱ as the difference between the intermediate pressure ݌∗∗ and 
the guessed field ݌∗: 

 ᇱ.                                                                            (3.51)݌+∗݌=∗∗݌                                                                            
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The corresponding relation for velocity can be defined similarly: 

 ᇱ.                                                                          (3.52)ݑ+∗ݑ=∗∗ݑ                                                                              

As for the values of ݑ∗∗ and ݌∗∗, they also satisfy the relation like Eq.3.50: 

                                                       ܽ௉ݑ௣∗∗=∑ ܽ௡௕ݑ௡௕∗∗  ௉+ܾ௣.                                                     (3.53)ܣ(∗∗௉݌ - ∗∗ௐ݌)+

Subtracting Eq.3.50 from Eq. 3.53 gives the relation of velocity and pressure corrections: 

                                                               ܽ௉ݑ௣ᇱ =∑ ܽ௡௕ݑ௡௕ᇱ ௐᇱ݌)+ ௉ᇱ݌ -   ௉.                                                      (3.54)ܣ(

In the first corrector step, the first term of R.H.S. in Eq.3.54 is dropped to simplify the velocity 
corrections, which is the same as SIMPLE algorithm. Hence: 

௣ᇱݑ                                                                            = ஺ು௔ು (݌ௐᇱ ௉ᇱ݌ -  ).                                                                  (3.55) 

The intermediate velocity  ݑ∗∗ can be attained by combining Eq.3.52 and Eq.3.55: 

∗௉ݑ= ∗∗௉ݑ                                                                      + ஺ು௔ು (݌ௐᇱ ௉ᇱ݌ -  ).                                                              (3.56) 

The velocity field is also subject to the constraint that it should satisfy the continuity equation, 
substituting the velocity expression above into the discretized continuity equation: 

௉ᇱ݌) ௘∗+ ஺೐௔೐ݑ)௘(ܣߩ)                                            ாᇱ݌ -  ∗௪ݑ)௪(ܣߩ) -(( + ஺ೢ௔ೢ (݌ௐᇱ ௉ᇱ݌ -  ))=0.                                  (3.57) 

After rearrangement of the equation above, it yields the pressure correction equation: 

                                                                    ܽ௉݌௉ᇱ =ܽா݌ாᇱ +ܽௐ݌ௐᇱ +ܾᇱ,                                                             (3.58) 

where 

                                                                               ܽ௉= ܽா+ ܽௐ,                                                                     (3.59) 

                                                                              ܽா= (ܣߩ)௘ ஺೐௔೐,                                                                     (3.60) 

                                                                             ܽௐ= (ܣߩ)௪ ஺ೢ௔ೢ,                                                                   (3.61) 

                                                                     ܾᇱ= (ܣ∗ݑߩ)௪-(ܣ∗ݑߩ)௘.                                                             (3.62) 

Once the first pressure correction ݌ᇱfrom the equation above is attained everywhere, it can be drawn 
back to correct pressure and velocity to yield ݌∗∗and ݑ∗∗. 

(3) Establish the second pressure correction equation 

The omission of terms ∑ ܽ௡௕ݑ௡௕ᇱ  in the first corrector step will not affect the final solution, but will 
sometimes cause over-correction of pressure which leads to divergence. Therefore, PISO performs a 
second corrector step. This will need the pressure and velocity results attained from the last step (ݑ ,∗∗݌∗∗). The discretized momentum equations for the final correct velocity ݑ∗∗∗ gives:   

                                                        ܽ௉ݑ௣∗∗∗=∑ ܽ௡௕ݑ௡௕∗∗                              ௉+ܾ௣.                                               (3.63)ܣ(∗∗∗௉݌ - ∗∗∗ௐ݌)+

Substracting Eq. 3.53 from the equation above with the exception that ݑ௡௕∗∗  is replaced by ݑ௡௕∗  yields: 

∑+∗∗௣ݑ =∗∗∗௣ݑ                                                        ௔೙್(௨೙್∗∗ ି௨೙್∗ )௔ು + ஺ು௔ು (݌ௐᇱᇱ  ௉ᇱᇱ),                                              (3.64)݌ - 

where the second pressure correction ݌ᇱᇱ has the following relation: 
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 ᇱᇱ.                                                                      (3.65)݌+∗∗݌=∗∗∗݌                                                                              

Substitution of ݑ∗∗∗  into discretized continuity equation, the second pressure correction equation 
gives:  

                                                                    ܽ௉݌௉ᇱᇱ=ܽா݌ாᇱᇱ+ܽௐ݌ௐᇱᇱ +ܾᇱᇱ,                                                           (3.66) 

where ܾᇱᇱ = ቀఘ஺௔ ቁ௘ ∑ ܽ௡௕(ݑ௡௕∗∗ − ∗௡௕ݑ )- ቀఘ஺௔ ቁ௪ ∑ ܽ௡௕(ݑ௡௕∗∗ − ∗௡௕ݑ ). 

Eq.3.66 is solved to obtain ݌ᇱᇱ, as a result the twice-corrected pressure ݌∗∗∗ can be obtained: 

 ᇱᇱ.                                                                    (3.67)݌+ᇱ݌+∗݌=∗∗݌                                                                             

For transient version of PISO, it is generally the same as steady-state version, with minor corrections 
regarding time discretization (e.g. ܾᇱ  and ܾᇱᇱ  should be added by the term (ߩ௉଴ ௉ߩ - )∆ܸ ݐ∆/ ). The 
transient version is different from stationary version due to its non-iterative property. Because the 
pressure and velocity results within a single PISO loop by a suitably small time step are accurate enough 
to proceed to the next time step, which will spare a lot of computation time. If the time step to 
maintain a stable simulation is sometimes too small to be economic, using under-relaxation factor may 
be a good choice to avoid divergence. Peric [81] suggested the under-relaxation factor for pressure 
and velocity to be 0.2 and 0.8 respectively based on the expected behavior of the second corrector 
step within the PISO algorithm.  

3.5 Parallel computing 

Using computationally efficient solution procedures discussed above will generally save a lot of 
computation resource while maintaining precision. However, it is still not realistic to perform the 
transient coupled plasma-electrode simulation on a common personal laptop or desktop especially 
when solving large-scaled 3D systems. The main reason is that, apart from the complexity of transport 
equations, approximation of transport properties, which usually relies on local particle composition 
and degree of thermal nonequilibrium, or the specific mesh size, the numerical simulation cannot have 
a stable start if the full value of electric current is implemented directly on the initial cold plasma (in 
this scope the initial temperature is set 5000K for electron temperature). This is due to the omission 
of all the essential discharge periods before arc discharge plays its role (see section 1.1.2), which is not 
within the research interest in this scope. A practical strategy to avoid enormous amount of joule 
heating at the beginning period which could lead to instant divergence is to apply a ramp input electric 
current that raises its value at an acceptable pace till the full value is reached. This is favorable of both 
numerical stability and physical reality as the emission current from cathode should obey Richardson 
law, which rises also gradually according to the surface temperature. The duration of whole ramp 
process is basically proportional to the magnitude of simulated current density. In this study, after the 
stability test, the whole ramp duration is set for the first 0.01s with a time step of less than 1× 10ି଼s. 
The convergence is only achievable within the simulation time after the full value of electric current is 
reached. As a result, to get the intended convergence results within a reasonable waiting time, parallel 
computing is the only possible choice. All the simulation results presented in this dissertation are 
granted by the supercomputing resource provided by HLRN (Der Norddeutshce Verbund für Hoch- und 
Höchstleistungsrechnen). 

Parallel computing is defined as simultaneous use of more than one processor to execute a program. 
In OpenFOAM the total meshes and fields are decomposed into a selected number of parts, which are 
then assigned to different processors. The parallel running uses the public domain openMPI 
implementation of the standard message passing interface by default. The mesh and fields are 
decomposed using decomposePar utility. The total execution time could be remarkably reduced by 
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decomposing meshes into moderate number of parts. However, the exact reduction of computing time 
would not be in accordance with the linear growth of the number of participating processors, because 
data within each processor need to be exchanged with other processors now and then, which is not 
parallelizable. This data exchange takes place using different methods depending on the type of 
parallel computer used. Usually, there’s an optimal dividing number ݊௣௠ for each problem to achieve 
the maximal speed-up. A classical method to evaluate parallel computing speedup ߟ௦ is given by the 
Amdahl’s law: 

 ௦= ்௧ೞା௧೚ା೟೛೙೛,                                                                       (3.68)ߟ                                                                             

where ݊௣ is the number of processors, ݐ௦, ݐ௣ are the serial and parallel runtime component, ݐ௢ is the 
extra runtime caused by data communication and synchronization between processors, this 
component grows with the increase of applied number of processers, which occupies an important 
part of the whole run time if ݊௣ is too large. It suggests that a further increase after ݊௣௠ is meaningless. 
For the different regimes of simulations to be presented later (with and without sheath model), ݊௣௠ 
is also chosen differently to achieve maximal speedup. 

3.6 Analysis of errors and uncertainties 

Compared to plasma physics especially the non-thermal plasma physics, which contains a series of 
strict mathematical descriptions of the related physical phenomena and a lot of aspects that still need 
deep digging and discoveries, CFD is something more like a circle of uncertainty that puts more weight 
on the simple fulfilment of some criterium on each computation unit that has been already set with 
experience and is then also validated by the analytical or experimental data which are also based on 
simplified assumptions or certain degree of measurement error. Besides, it is highly restricted by the 
available computing resource that forces the users to give up the precision of the problem and only 
get compromised results. Therefore, we cannot evaluate the application of CFD with the comment 
true or false but with the level of confidence in its results. To address the issue of trust and confidence 
in CFD one has to develop a systematic process that can review the factors influencing simulation 
results.  

Basically, there are two main kinds of factors that decide if the attained numerical results have the 
desired level of confidence, namely error and uncertainty. According to its definition, error means a 
recognizable deficiency in a CFD model that is not caused by lack of knowledge. Except for some man-
made errors which are due to the carelessness of software users and developers, such as coding errors. 
There are usually three kinds of numerical errors which are inherent inside the CFD technique that can 
only be dealt with prudence: 

(1) Round-off error 

The first kind of numerical error can be called round-off error. It is the difference between an 
approximation of a number used in computation and its exact (correct) value. In certain types of 
computation, roundoff error can be magnified as any initial errors are carried through one or more 
intermediate steps. A notorious example is the fate of the Ariane rocket launched on June 4, 1996 
(European Space Agency 1996). In the 37th second of flight, the inertial reference system attempted 
to convert a 64-bit floating-point number to a 16-bit number, but instead triggered an overflow error 
which was interpreted by the guidance system as flight data, causing the rocket to veer off course and 
be destroyed. Since such kind of error is easy to accumulate, it needs to be controlled by careful 
arrangement of floating-point arithmetic operations to avoid subtraction of most equal sized large 
numbers or addition of numbers with very large difference in magnitude, for example, in CFD 
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computations it is common to use gauge pressure relative to a specified base pressure when the 
pressure values within the domain are the same order as the pressure difference between adjacent 
mesh cells. In this scope, a good example of dealing with round-off error is the storage of particle 
number density, since the values of them reach sometimes up to 10ଶହ/݉ଷ, which is clearly outside the 
range of maximal significant figures that can be stored by the program. To reduce such error, all the 
species computed in this scope are scaled by the total number of particles to yield the specific 
concentration, or it can be scaled by Avogadro number done by Shirvan et al. [27]. 

(2) Discretization error 

The second kind of numerical error comes from the discretization error, as is already discussed, the 
linearization of the integration of transport equations need the assumption of linear variation between 
face values (for example between the value of east face center and the west face center), thus the 
integration of divergence can be discretized onto each face according to Gauss’ theorem with second 
order accuracy. Besides, the face values used to integrate within the cell are also results of neighboring 
cell center values with certain interpolation scheme, for example the second-order accurate TVD 
scheme used in this scope. So in order to linearize equations onto meshes for simulation, it is always 
necessary to truncate the endless Taylor series to some extent to suit the computation capacity in 
reality. This truncation operation leaves a tough task for users, because the order of discretization 
error lies on the hand of mesh resolution, the finer the mesh the better the results. However, by setting 
the mesh spacing small will increase the use of computation resource, therefore one needs always the 
procedure of mesh-dependency test before embarking on the subsequent parameter studies to decide 
the most economic mesh resolution. 

(3) Iteration truncation error 

The third kind is namely the iteration truncation error. As there’s rarely the possibility to get the real 
solution, especially for the lots of non-linear transport equations to be calculated in this scope, the 
iterative solution procedure is applied here. One always needs to preset the convergence criterium to 
regulate the results into an acceptable order of precision before iteration procedure stops. The local 
and global residual should take the absolute form of Eq.3.46, as in this study, for the purpose of 
simulating plasma-electrode interaction, the coded solver is based on the implementation of transport 
equations onto the default solver ChtMultiRegionFoam, which is a typical pressure-based solver. This 
kind of solver doesn’t solve the continuity equation directly, but yield the related value based on the 
perfect gas law and the subsequent pressure-velocity correction (PISO). So for this kind of solver the 
users often need to struggle with the convergence problems of continuity. It is highly possible that if 
one calculates the integration of density difference between the densities before and after pressure 
correction directly, sometimes it will feed back a perfect “0 error” result that makes us happy. However, 
it naturally doesn’t mean the problem is converged but is actually the offset of positive and negative 

continuity errors. Defining the global residual ൫ܴథ൯(௞) as the sum of absolute values of local residuals 
over all M control volumes with the computational domain after k iterations: 

                                      ൫ܴథ൯(௞)= ∑ ቔ(∑ ܽ௡௕߶௡௕௡௕ )(௞) + ܾ௜(௞) − (ܽ௉߶௉)௜(௞)ቕெ௜ୀଵ .                                   (3.69) 

However, this alone cannot offer a reasonable judgment as for an acceptable convergence especially 
when the variable ߶ itself is large. There’s always the need to normalize this residual for us to consider 
if the residual is small enough: 

                                                                   ቀܴேథቁ(௞)
=൫ܴథ൯(௞)/ܨோథ,                                                                (3.70) 
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where ቀܴேథቁ(௞)
 is the normalized global residual for variable ߶ ோథܨ ,  is the normalization factor. 

There’re several common methods to normalize the residual, for example, one can take its own size 
as a normalization factor or the total rate of convective flow (ݑܣߩሬ⃗ ⋅ ሬ݊⃗ )߶. In OpenFOAM, for evaluating 
the truncation error of continuity, the total mass of the whole computation domain is used as the 
normalization factor according to coding in continuityErrs.H. 

(4) Other possible errors and uncertainties 

The discussions above are all about the possible error sources that due solely to the level of solution 
procedures relating to finite volume method, which is only a bridge built between the physical reality 
and numerical descriptions. The nearer one needs its results to the physical reality, the more 
sophisticated physical models used in the simulation should be available. This force every simulation 
engineer to have a deep insight into the degree of the physical model precision. But this doesn’t mean 
that to model plasma discharge correctly, one needs the most detailed physical model of every aspect 
with every detailed parameter being exactly the same with what’s confirmed by the experiments. 
Because there’re still a lot of aspects that cannot be well understood or measured by researchers till 
now and the aspects are simply too numerous to be concluded within one research thesis. The model 
precision here means the correct use of physical common sense and simplification within an 
acceptable error range to suit the specific research topic granted by limited computation resource. For 
example, the main contribution of this study is to apply an effective value for sheath conductivity, 
which is based on a global quasi-neutrality assumption including the sheath to achieve a stable ௘ܶ 
calculation in this scope. Although Child’s law takes part in the calculation, the real charge separation 
process cannot be described by our model. Nevertheless, the model will still hold acceptable validity 
as the dimension of sheath layer is ignorable compared with the main discharge region. 

Other possible error sources may come from the neglection of electrode melting and evaporation, 
which are not within the functionality of ChtMultiRegionFoam as the mesh interfaces cannot be 
changed with time or iteration. The validity can still be guaranteed if metal erosion and evaporation is 
not dominant enough to play an important role in modifying the plasma electrical conductivity and 
local thermal radiation. Besides, for the simplification of number of species taking part in chemical 
nonequilibrium calculation, the excited heavy species are not treated separately, and only first excited 
argon is included in reaction rate model. There’s thus more or less the possibility to deviate from reality 
if other excited states are prevailing in the discharge process, which leads to inaccurate electron 
number densities. In the next chapters, the level of confidence addressed to the interaction model in 
this scope with all these potential error sources will be checked with available analytical and 
experimental results. 

While numerical and model errors can be evaluated, adjusted and minimized within an acceptable 
range, uncertainties such as input uncertainty is sometimes more difficulty to handle. The first kind of 
input uncertainty comes from the domain geometry which involves the specification of the shape and 
size of the region of interest. On one hand, it is impossible to manufacture the idealized discharging 
device perfectly to design specifications, manufacturing tolerance will lead to discrepancies between 
design intention and the actual manufactured devices. On the other hand, the construction of a CAD 
model which is converted from the design intention, is always based on the idealization of real 
operation. This kind of idealization will lead to further input uncertainty. For example, the geometric 
irregularities of cathode tip resulted from melting in the discharge process is simply represented by a 
standard cone in most CFD applications, as the real shape during and after operation and the 
roughness of electrode surface to be used in turbulence boundary conditions are always hard to 
predict. 
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The second kind of input uncertainty comes from the boundary conditions. Even if a lot of physical 
phenomena are included in the plasma-electrode interface, such as ion bombardment heating, 
thermionic emission cooling and secondary emission, it is still difficult to account for all the aspects at 
this place to a high degree of accuracy, some collective electron emission process at the interface such 
as ion-enhanced thermal-field emission or secondary emission induced by metastable atoms [60] also 
needs to be taken into account in some circumstances. What’s more, the non-slip boundary condition 
for velocity at solid wall is for most situations acceptable, however, for the dilute plasma sheath, there 
will be discrepancy with this boundary condition if the sheath potential drop is high enough so that 
ions that reach cathode surface will be much fewer than those at the sheath outer edge.  

The third kind of uncertainties in this scope originates from the predefinition of plasma transport 
property calculation. The temperature and ߠ-dependent values of electrical conductivities used in this 
scope or as in some literatures such as Boie [40] and Trelles [42] are based on the constant pressure 
assumption in favor of economic CFD computation. However, errors will be introduced if they are 
applied throughout the whole domain, especially at the high temperature plasma core, where pressure 
is elevated due to intensive joule heating and pinch effect. On the other hand, even if the pressure 
factor can be included into the transport properties regardless of its difficulty, the model using 
Chapman-Enskog theory can only provide approximated results if we only use equilibrium composition 
to calculate.  

 

 

 

 

 

 

 

 

 

 

 

 

 



66 
 

Chapter 4 

Model validations 

 
In chapter 2 and 3 the applied mathematical model and solution methods as well as the possible 
sources of errors and uncertainties have been discussed. To check the level of confidence, it is 
necessary to make the numerical results attained by the model to be compared to the available 
analytical or experimental results under different operation conditions. In this chapter, three simple 
simulations are performed with a step by step validity check aiming at magnetic field, flow velocity, 
solid/fluid temperatures, electrical potential and so on.  

4.1 Magnetic field validation 

Firstly, it is necessary to check out the validity of magnetic vector potential field at electrode interface. 
According to Eq.2.124, the field ⃗ܣ should be continuous at this place. A special boundary condition is 
implemented in this scope based on a third-party software GroovyBC, it ensures the internal fields at 
interface boundary cells are consistent with the values on the other side. Wedge boundary condition 
is applied on both front and back surfaces for 2D axisymmetric case here(Fig.4.1). To check the 
numerical confidence, two sets of boundary conditions (Table.4.1 and 4.3) and initial values (Table.4.2 
and 4.4) are applied for reference: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.1. Illustration of 2D axisymmetric geometry intended for the simulation of coupled 
magnetic field (grey region represents fluid region, dark blue in the bottom is the sold region) 
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                                                        Variables 
Boundaries 

 (Vs/m)ܣ⃗ 
 ߮(V) 

GasFrontAndBack Wedge Wedge 
GasLeft zeroGradient zeroGradient 

GasRight zeroGradient zeroGradient 
GasTop (0,0,0) 0 

Interface Coupled(GroovyBC) Coupled(OpenFOAM) 
SolidLeft zeroGradient 300 

SolidRight zeroGradient 0 
SolidFrontAndBack Wedge Wedge 

 
 

                                       Variables 
Regions 

 (S/m)ߪ ௠(H/m)ߤ

Gas 1.257× 10ି଺ 1× 10ିହ 
Solid 1.257× 10ି଺ 10ସ 

 

 

                                                   
                                                        Variables 
Boundaries 

 (Vs/m)ܣ⃗ 
 ߮(V) 

GasFrontAndBack Wedge Wedge 
GasLeft zeroGradient zeroGradient 

GasRight zeroGradient zeroGradient 
GasTop (0,0,0) 0 

Interface Coupled(GroovyBC) Coupled(OpenFOAM) 
SolidLeft zeroGradient 200 

SolidRight zeroGradient 0 
SolidFrontAndBack Wedge Wedge 

 

 

                                       Variables 
Regions 

 (S/m)ߪ ௠(H/m)ߤ

Gas 1.257× 10ି଺ 1× 10ିହ 
Solid 1.257× 10ି଺ 10ଷ 

 

To get the analytical results, it is important to look through the Ampère's circuital law (Eq.2.32), in this 
case only points to z direction: 

 ௘௡௖.                                                                     (4.1)ܫ௠ߤ=௭ܤyߨ2                                                                             

௭=ቐܤ                                                                        ఓ೘௃௬ଶ , ݕ < ܴఓ೘௃ோమଶ௬ , ݕ ≥ ܴ                                                                    (4.2) 

Table.4.1. Boundary conditions for case 1 

Table.4.2. Initial values for case 1 

Table.4.3. Boundary conditions for case 2 

Table.4.4. Initial values for case 2 
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where ܫ௘௡௖ is the current intensity enclosed by Ampère's circle, J is the magnitude of current density, 
R is the radius of solid wire. 

According to Eq.2.35 and the definition of rotation of a vector field, as well as the fact that B has only 
z component in this case: 

௭= - డ஺ೣడ௬ܤ                                                                                 .                                                                            (4.3) 

Hence: 

௫=ቐܣ                                                    ௫(0)ܣ − ఓ೘௃௬మସ                , ݕ < ௫(0)ܣܴ − ఓ೘௃ோమଶ [0.5 + ln ቀ௬ோቁ], ݕ ≥ ܴ  ,                                           (4.4) 

where the constant ܣ௫(0) is the value of ܣ௫ at y=0, this value may vary from case to case. However, 
due to the limited computation resource, the height of computation domain cannot be infinitely high. 
The constraint of top face value by (0,0,0) will introduce some error but will not affect the final results 
if the height of domain is proper. In this case, the height is set 0.1m. So ܣ௫(0) gives: 

௫(0)= ఓ೘௃ோమଶܣ                                                              ቂ0.5 + ln ቀ଴.ଵோ ቁቃ .                                                          (4.5) 

For case 1 and 2 the values are 9.625× 10ିସ and 6.417× 10ିହ respectively. 

The simulated results of ܣ௫ and ܤ௭ of both cases are shown from Fig.4.2 to Fig.4.7. In general, a very 
good agreement between numerical and analytical results has been achieved. The ܤ௭ results at the 
center of electric wire cannot reach 0 exactly and has minor numerical deviation. On one hand, it is 
due to the constraint of top face value by (0,0,0) discussed above. On the other hand, it is due to the 
fact that the center of boundary cell is not located right on the axis. When using this coupled boundary 
condition provided by GroovyBC, it is important to note that it is very grid-sensitive, if the height of 
boundary cells from both sides cannot be the same, it will give unrealistic results. 

 

 

 

  

  

 

 

 

 

 

 

 

 
 

Fig.4.2. Simulated results of ܣ௫from case 1 
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Fig.4.3. Simulated results of ܤ௭ from case 1 

Fig.4.4. Simulated results of ܣ௫ from case 1 in comparison with analytical solutions along the 
vertical cross section 
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Fig.4.5. Simulated results of ܤ௭ from case 1 in comparison with analytical solutions along the 
vertical cross section 

Fig.4.6. Simulated results of ܣ௫ from case 2 in comparison with analytical solutions along the 
vertical cross section 
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4.2 Flow field validation 

In the previous section, the magnetic field of a fluid-solid coupled system under the frozen flow regime 
is validated. There’s also the necessity in this scope to check our numerical confidence in the flowing 
regime of electrically conducting and viscous fluid. Hartmann flow provides the simulation model with 
the good opportunity to be checked by its benchmark results due to its simple configuration. Basically, 
Hartmann flow is characterized by 3 dimensionless parameters: (1) the Hartmann number ܪ௔, which 
is the ratio of electromagnetic force to the viscous force first introduced by Hartmann [82]: 

 ௔=BLටఙఓ.                                                                            (4.6)ܪ                                                                               

where B is the magnetic field perpendicular to flow direction, L is the characteristic length scale, ߪ is 
the fluid electrical conductivity, ߤ is the dynamic viscosity. (2) The Reynolds number, which is the ratio 
of inertial forces to viscous forces within a fluid. (3) The magnetic Reynolds number, which gives an 
estimate of the relative effects of advection of a magnetic field by the motion of a conducting medium, 
often a fluid, to magnetic diffusion. 

 

 

 

 

 

 

Fig.4.7. Simulated results of ܤ௭ from case 2 in comparison with analytical solutions along the 
vertical cross section 

Fig.4.8. Illustration of geometry and boundary conditions for the Hartmann flow simulation 
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For simplicity, Hartmann problem in this scope is restricted into a steady-state,2D and incompressible 
channel flow (Fig.4.8). The half of channel width L is set 1m, the length along the flow direction 20m. ߤ,ߩ and ߪ all have the value of 1. The initiated velocity and pressure inside the channel is 0m/s and 
100 Pa. The temperature value of heavy species and electrons is of little significance, so they are both 
set at ଴ܶ= 500K. The magnetic field has the only component along the perpendicular direction (in this 
scope the positive y direction), and for validation three different values ܤ௬ =1,5,50T is predefined. 
According to Shercliff [83], the transverse flow velocity has the following analytical solution: 

଴ݑ=௫ݑ                                                                   ௖௢௦௛ுೌିୡ୭ୱ୦ (ுೌ∗௬/௅)௖௢௦௛ுೌି(௦௜௡௛ுೌ)/ுೌ ,                                                          (4.7) 

where ݑ଴ is the averaged flow velocity of cross section. The detailed boundary conditions defined for 
the simulation are shown in Table.4.5. As for the 2D assumption, the front and back boundaries are 
given by the entry empty in OpenFOAM. The simulated velocity results along the channel length ݑ௫ and 
at the middle cross section are presented in Fig.4.9 to Fig.4.14 along with comparison with analytical 
results obtained from Eq. 4.7. It yields very good agreements in all the three test cases with different 
perpendicular magnetic fields. 

 

 

 

 

 

 

 

 

 

 

 

       Variables    
 
Boundaries 

P ݑሬ⃗  ௛ܶ ௘ܶ ߮ ⃗ܣ 

Inlet డ௣డ௡=0 (1,0,0) ଴ܶ ଴ܶ 0 ܣ௫=ܣ௭=0, డ஺೤డ௡  ௬ܤ-=
Outlet 0 డ௨ሬሬ⃗డ௡=0 ଴ܶ ଴ܶ 0 ܣ௫=ܣ௭=0, డ஺೤డ௡  ௬ܤ-=

Top డ௣డ௡=0 (0,0,0) ଴ܶ ଴ܶ డఝడ௡=0 ܣ௫=ܣ௭=0, డ஺೤డ௡ =0 
Bottom డ௣డ௡=0 (0,0,0) ଴ܶ ଴ܶ డఝడ௡=0 ܣ௫=ܣ௭=0, డ஺೤డ௡ =0 

Table.4.5. Boundary conditions of the Hartmann flow simulation 

Fig.4.9. Flow velocity results with ܤ௬ =1T 
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Fig.4.10. Flow velocity results with ܤ௬ =5T 

Fig.4.11. Flow velocity results with ܤ௬ =50T 

Fig.4.12. Flow velocity results in comparison with analytical solutions with ܤ௬ =1T 
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4.3 Temperature validation 

From the detailed model description in chapter 2 it is clear that to obtain the final temperature 
distribution of plasma, a series of calculation regarding plasma composition, transport properties, 
Maxwell equation and sheath treatment need to be performed in advance, which means the 
temperature results play the most important role in the verification and validation of the interaction 
model put forward here.  

As is introduced in section 2.2, cathodes working at different conditions could contribute to different 
applications. As our solver chtMultiRegionFoam is concerned, the variation of interface due to melting 
could not be solved in this scope. Hence our emphasis of numerical research mainly falls on GTAW.  
This process has been experimentally researched for many years, and many available experimental 
measurements such as [84] and [85] from them have provided good opportunities for researchers to 

Fig.4.13. Flow velocity results in comparison with analytical solutions with ܤ௬ =5T 

Fig.4.14. Flow velocity results in comparison with analytical solutions with ܤ௬ =50T 
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check the model validities. In this section, a steady-state two-dimensional simulation of arc welding 
with thoriated tungsten cathode and atmospheric argon plasma is performed with the interaction 
model. As for the geometry and operating condition to be simulated in this scope, it contains three 
typical elements (Fig.4.15): (1) a thoriated tungsten cathode, which has an angle of 60° at cathode tip 
and a radius of 1.6mm. The real tip in computation mesh is truncated by 0.3mm to match the shape 
from experiments [23]. (2) Pure argon acts as working gas which has a flow rate of 10slpm. (3) Copper 
anode is water-cooled to avoid metal vapor contamination and is placed 5mm away from the cathode 
tip. 

 

 

 

 

 

 

 

 

 

 

  
The mesh in adjacent to cathode is specifically refined to mimic the real dimension of plasma sheath 
(Fig.4.16). The structured mesh in this scope improves the accuracy especially when calculating the 
gradient of electric potential at plasma-cathode interface [27]. For the steady-state regime, all the 
transport equations neglecting the time derivative term are coded into the stationary version of our 
standard solver chtMultiRegionSimpleFoam. The simulations are performed in this scope under 
current intensities of 100A and 200A. Detailed information about the boundary conditions used here 
are shown in Table.4.6. Other important boundary conditions at interfaces are consistent with the 
descriptions of section 2.5. It is important to note that, to make cathode boundary condition at current 
inlet more realistic (here it is fixed at 500K), the geometry of cathode is ensured as long as enough (in 
this scope 20mm). 

 

 

 

 

 

 

 

Fig.4.15. Computation geometry in this section 

Fig.4.16. Non-uniform mesh of near-cathode region 
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Fig.4.17 and 4.18 show the simulated results of heavy species and electron temperature at the main 
arc column of 200A. The maximal temperature of both shows almost no difference (23576K for Th, 

                          Boundaries    
 
       Variables 

Argon inlet Current inlet Outlet Anode bottom 

ሬ⃗ݑ  10slpm  డ௨డ௡ =0  

P డ௣డ௡ =0  1atm  ௛ܶ/ ௦ܶ 500K 500K 500K 500K ௘ܶ 500K  500K  ߮ డఝడ௡ =0 డఝడ௡ =- |ఫ|ሬሬሬ⃗ఙೞ 
డఝడ௡ =0 ߮=0 ⃗ܣ డ஺⃗డ௡ =0 డ஺⃗డ௡ =0 ⃗(0,0,0)=ܣ డ஺⃗డ௡ =0 

 

Table.4.6. Boundary conditions for GTAW simulation 

Fig.4.17. Heavy species temperature of 200A with sheath model 

Fig.4.18. Electron temperature of 200A with sheath model 
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23604K for ௘ܶ) at plasma center due to the efficient energy exchange at high temperature (Eq.2.21). 
Significant difference between the two temperatures takes place from plasma fringes where Th drops 
quickly down to the ambient temperature whereas ௘ܶ  remains relatively high at several thousand 
kelvins. Such difference can be viewed in detail when the simulated 2T results of different planes away 
from cathode tip are compared to each other by Fig.4.19 and 4.20. On both planes, the LTE condition 
is strictly obeyed within several millimeters around the axis due to the careful split of total enthalpy 
into Eq.2.20 and 2.26, while other combinations (detailed split refer to [43]) according to our tests 
have more or less led to unphysical results in some regions ( ௘ܶ< ௛ܶ). The nearer the plane to cathode 
tip, the narrower the LTE region will hold, this is due to the cooling effect of gas inflow. Away from LTE 
region, thermal nonequilibrium becomes more and more evident due to the rapid decrease of electron 
number density and collision frequencies that lead to small energy exchange between them. Besides, 
it is obvious from Fig. 4.21 that at near-cathode region, the value of ௘ܶ/ ௛ܶ is over 3. This is due to the 
frequent energy exchange between heavy species and the cathode surface through complicated 
processes such as ion bombardment heating that makes cathode surface temperature (usually under 
4000K) and temperature of atoms and ions in the sheath equilibrate with each other, while electrons 
from plasma are assumed to be adiabatic to the electrode walls.  

                                                  

 

 

 

 

 

 

 

 

 

 

 

                                          

 

 

 

 

 

 

 

 

 

Fig.4.19. Two-temperature distribution of 200A at plane x=0.0025m 

Fig.4.20. Two-temperature distribution of 200A at plane x=0.004m 
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The simulated results of heavy species temperature along the axis attained from 100A and 200A 
discharge current shown in Fig. 4.22 and 4.23 are compared with experimental measurements 
provided by Haddad et.al [84] under same operating condition. It is obvious that after sheath 
treatment by applying the effective electrical conductivity (Eq.2.117), the temperature distributions of 
both current intensities are in much better agreement with experimental data. The maximal 
temperature deviation from experimental measurement without sheath treatment of both current 
densities is over 7000K. This manifests the role that space-charge effect plays in constricting the 
cathode emission current. Because at the cathode tip, due to the intensive joule heating, the plasma 
is near to fully ionized, hence our effective value tends to exhibit the conductivity of bulk plasma. Away 
from cathode tip, the ionization degree decreases gradually, leading to a correspondingly decreasing 
sheath electrical conductivity which damps local electron emission. As a result, almost all the current 
inside bulk cathode concentrates at cathode tip, leading to much higher temperature. Another feature 
of sheath treatment in this scope is that, as sheath conductivity only applies to the boundary cells, 
which is specifically restricted to a very small dimension, it will exert little numerical influence on bulk 
plasma and ensures numerical stability. 

 

                                          

 

 

 

 

 

 

 

 

 

Fig.4.21. Two-temperature distribution along the symmetry axis of 200A 

 

Fig.4.22. Heavy species temperature results of 100A in comparison with exp. data 



79 
 

 

 

 

                                    

 

 

 

 

 

 

 

Different from many zero-dimensional sheath treatment ([27], [28] and [37]), the reservation for the 
one-dimensional sheath treatment by the boundary layer allows to describe not only a non-uniform 
cathode emission current through local value of ߪ௘௙௙ but also an evident sheath voltage drop within 
the boundary cells away from cathode spot that rejects further electron inflow (Fig.4.24). On the 
contrary, the results without sheath treatment (Fig.4.25) cannot reflect this phenomenon. Although 
charge separation within the sheath cannot be solved by our equations due to stability issues, the 
voltage drop caused by it could be obtained from these two sets of electrical conductivities on each 
side of sheath-presheath interface. 

In accordance to the temperature results, the total voltage predicted for 200A current with and 
without sheath is 11.8 V and 9.8V respectively. There’s still a deviation of 1.5 V compared with 
experimental measurement (13.3V) after sheath treatment. This may result from the absence of anode 
sheath model and charge separation neglected in this study. For 100A current the results are 9.8V and 
6.9V, which has a similar relation.  

 

 

 

 

 

 

 

 

 

 

 

Fig.4.23. Heavy species temperature results of 200A in comparison with exp. data 

Fig.4.24. Electric potential results of 200A near cathode surface with sheath model 
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Fig.4.26 shows the predicted cathode surface current for 200A along with Richardson-Dushman 
current attained according to Eq.2.57 with sheath results. The maximal current density magnitude that 
appears at cathode tip has a value of 2.6× 10଼ A/݉ଶ with sheath and 1.48× 10଼ A/݉ଶ without sheath. 
The result of current density with sheath treatment is higher than that of without sheath within the 
cathode spot, whereas lower outside it. The more diffusive property of the latter is required by the 
conservation of total current integrated over the whole cathode surface. The predicted maximal value 
by Zhu et.al [23] under same condition is 2.8× 10଼ A/݉ଶ, this slight difference may result from the 
extra inclusion of back diffusion current by electron considered in this study, which offsets part of the 
thermionic emission current. When compared with Richardson-Dushman current, the predicted 
current density with sheath is larger only within cathode spot and decays more quickly away from it. 
This is explained by the fact that within cathode spot, there are plenty of ions due to the high ionization 
degree and the emitted electrons from cathode surface cannot fully recombine them, hence the ion 
current flow still exists, making total current density higher than ܬ௘௠. Away from cathode spot, due to 

 

Fig.4.25. Electric potential results of 200A near cathode surface without sheath model 

Fig.4.26. A comparison of cathode surface current density 
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the intensive space-charge effect, electrons are rejected from cathode layers, which makes total 
current density smaller than ܬ௘௠. 

 

 

                                      

 

 

 

 

 

 

 

 

The predicted cathode surface temperature results for 200A are shown in Fig.4.27. For the case 
without sheath treatment, the surface temperature is generally higher than experimental values taken 
from Haidar et. al [85]. After sheath restriction (blue dashed line), the temperature results are 
improved especially outside cathode spot. The surface temperature decreases further after extra 
consideration of field enhanced thermionic emission described by Schottky’s formula represented by 
Eq.2.58 and 2.59 a-d (red line). The decrease of the cathode work function gives rise to larger 
thermionic emission which further cools down the cathode surface. In [86], a series of experimental 
researches were conducted and the relations of work function of cathode to cathode surface 
temperature and discharge current were evaluated, which confirms such influence. This cooling effect 
is more obvious within the cathode spot and yields the most realistic results compared with other two 
situations. However, we still attain an underestimation of cathode tip temperature of about 150K. This 
suggests that our simplified description of sheath processes requires further improvements and more 
sophisticated processes such as effects of plasma contamination by metal vapor from cathode should 
be considered in the future. 

 

  
  
  
  
  
  
  
  
  
  
  
  

 

Fig.4.27. A comparison of cathode surface temperature 

 
Fig.4.28. Number density of electron of 200A with sheath model 



82 
 

  
 

 

 

  
  
  
  
  
  
  
  
  
  
  
The number density results attained for 200A case are shown in Fig.4.28 and 4.29. It is clear that a 
small circle region appears at the center of ݊ଵ distribution in comparison with ݊௘ distribution, which 
manifests the deviation of  ݊௘ from ݊௜ due to a rising existence of doubly ionized argon ions. As the 
maximal temperature in the arc center after sheath constriction effect is over 23000K, the maximal 
relative discrepancy between them is as high as 60%, hence the assumption of single ionization ݊௘= ݊ଵ 
in this region no more applies. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Not only the thermal nonequilibrium but also chemical nonequilibrium is prevailing in arc plasma. The 
latter is manifested by a deviation of number densities from Saha equilibrium. The distribution of 
nonequilibrium composition is directly linked to convection, diffusion and source term described by 
Eq.2.3-2.5. Fig.4.30 shows the nonequilibrium electron number density predicted by models of Lotz 
[36] and Lien [38], while the equilibrium one by Saha equation. All the figures show a similar trend: 
around the axis, plasma has a net ionization as our results are higher than Saha’s values. Away from 
arc center, the relation is just the opposite, this is due to the net recombination around the arc fringes. 
The ionization/recombination trend predicted in this study is consistent with the report of Baeva et al. 
[37]. The nearer the plane to the cathode tip is, the narrower the net ionization region will be. This 
follows the similar trend of the local dimension of the LTE region discussed earlier in this section. 

 

Fig.4.29. Number density of singly charged argon ion of 200A with sheath model 

 

Fig.4.30. Number density results from equilibrium and nonequilibrium methods at plane x=0.001m 
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However, plasma starts to recombine when it is still within the LTE region as the width of net ionization 
region is smaller than that of LTE region. Besides, although the maximal temperatures shown in 
Fig.4.19 and 4.20 locate at the axis exactly and decay quickly away from it, the number density results 
attained don’t follow this trend, regardless of equilibrium or nonequilibrium situation. The region of 
local maximum extends from axis and in some places even slightly larger than the axis values. It is 
because the strong convective transport of electrons here dominates over all the other factors as the 
plasma velocity magnitude around the axis is much larger than that of its surroundings. When 
approaching both electrodes, as velocity magnitude decreases quickly, the effect of electron 
convection diminishes correspondingly. If it is within the ionization length, diffusion process becomes 
the dominant factor in determining the distribution of electron densities. 
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Chapter 5 

3D Simulation of Non-transferred DC Plasma Torch 

 
The intended simulation task to realize the coupled simulation of plasma-electrode interaction in a D.C. 
plasma torch is based on the Praxair SG-100 plasma-spray torch with a thoriated tungsten cathode, a 
coaxial tubular copper anode and a steel substrate. The diameters of anode and cathode at inlet are 
18mm and 10.4mm respectively. At the nozzle part the diameter is kept at 8mm until outlet, while the 
distance between outlet and cathode tip is 30.3mm. To reduce the overall cell number for economic 
computation and achieve a stable 1D sheath calculation as well, the structured meshes are generated 
in all the four regions (the region for cathode, anode, plasma and substrate shown in Fig.5.1 and 5.2). 
As is mentioned in section 4.1, using coupled boundary condition at interfaces for magnetic vector 
potential requires an exact same cell thickness of both sides, the boundary cells inside cathode are 
therefore also refined to match those inside the sheath. While using the software Gmsh it may be more 
convenient to use rotation function to extend 2D meshes to 3D, the generated Triangular prism cells 
will thus have a very small spacing which will lead to extremely small time steps even if courant number 
is set large enough. The butterfly meshes are applied in the center of the geometry to avoid such 
problem (Fig.5.3 and 5.4). In combination with the field initiation and interface relations introduced in 
section 2.5, the simulation results performed under such conditions are shown in the following 
sections with external boundary conditions shown in Table.5.1. 

 

 

 

 

 

 

 

 

                                    

 

 

 

 

 

Fig.5.1. Structured mesh in plasma region 

Fig.5.2. Structured mesh in electrodes and substrate regions 
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5.1 Arc jet fluctuation and flow field results 

In section 4.3 it is mentioned that sheath region may have a constricting effect on arc jet. This is very 
important in obtaining the realistic results regarding temperature, voltage, number density, etc. 
Obviously, this model should also be applied on the plasma torch discharge simulation as the principles 

            boundaries 
 

variables 

 
inlet 

 
outlet1 

 
outlet2 

 
cathode cold end 

 
anode cold end 

 
anode side 

 
substrate bottom ݑሬ⃗  60slm డ௨డ௡ =0 డ௨డ௡ =0 _ _ _ _ 

p డ௣డ௡ =0 1 atm 1atm _ _ _ _ 

௛ܶ/ ௦ܶ 500K 500K 500K 500K డ்డ௡ =0 500K 500K 

௘ܶ డ ೐்డ௡  =0 డ ೐்డ௡  =0 డ ೐்డ௡  =0 _ _ _ _ ߮ డఝడ௡ =0 డఝడ௡ =0 డఝడ௡ =0 డఝడ௡ =- |ఫ|ሬሬሬ⃗ఙೞ డఝడ௡ =0 ߮=0 డఝడ௡ =0 ⃗ܣ డ஺⃗డ௡ =0 డ஺⃗డ௡ =0 ⃗(0,0,0)=ܣ డ஺⃗డ௡ =0 డ஺⃗డ௡ =0 ⃗(0,0,0)=ܣ డ஺⃗డ௡ =0 

Table.5.1. Boundary conditions for the non-transferred plasma torch simulation 

 

Fig.5.3. Structured “Butterfly” mesh on cathode tip surface 

Fig.5.4. Structured “Butterfly” mesh on substrate plate center 
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are the same. Different from the arc welding system, which is a stable discharge system and can be 
described by the steady-state regime, the non-transferred plasma torch is dominated by instabilities 
which is time-dependent. This is due to fact that the current path from anode to cathode is constantly 
changing affected by flow condition from inlet, the movement of current path in turn gives rise to local 
gas expansion caused by joule heating. This local expansion will then break the balance between gas 
dynamic force and Lorentz force. As swirl injection is applied in the simulation, this will further enhance 
such instability. 

Consistent with the presentation of results shown in section 4.3, a series of comparisons between the 
simulated results such as temperature, electric potential and current densities etc. with and without 
the previously introduced cathode sheath model are pursued. With sheath model, we manipulate the 
electrical conductivity inside cathode boundary cells according to the introduced effective value while 
for the situation without sheath model we simply use 2T nonequilibrium values from look-up table for 
electrical conductivity everywhere, which are originally meant for bulk plasma only. For convenience, 
we will call it 2T model in the following discussions.   

It is clear from Fig.5.5 that the electric potential distribution from 2T model is almost symmetric and 
uniform, no discontinuity in the near-cathode region is observed. It is understandable since without 
sheath constriction in this case, the emission current is more diffusive, leading to an arc column with 
larger radius. It will generate a larger expansion region within the gas flow whereas the gradient of 
energy distribution is much smaller. In this case, the arc jet is prone to stay in a steady state or fluctuate 
in a milder way. As sheath layer is represented by the thin boundary cells which are directly attached 
to cathode surface, it can be observed clearly only when it is enlarged in detail (Fig.5.7 and 5.8). The 
infinite small negative value attained in our potential results may stem from the zero-gradient 
boundary condition at plasma outlet instead of a fixed value condition as is defined in anode outer 
surface. In the boundary cells of sheath situation (Fig.5.8), drastic potential drop (in green) is simulated, 
which is due to the large difference of electrical conductivity in- and outside boundary cells. A more 
detailed comparison of electric potential attained between these two conditions at line 1 from Fig.5.5 
and 5.6 is shown in Fig.5.9. Fig.5.10 shows the potential distributions along different lines of Fig.5.6 
starting from cathode surface. Line 1 to line 4 represents cross sections of x= 0.001m, 0.005m, 0.01m 
and 0.012m. The potential drop inside sheath layer at line1 occupies over 85% of the whole region, 
which approaches the condition for a Child sheath which assumes no potential drop outside sheath, 
while at line 4, which locates inside cathode spot, little potential drop can be observed. This can be 
interpreted in the following way: because line 1 situated faraway from emission center, the cathode 
surface is non-emitting, hence large potential barrier is necessary here to preserve charge neutrality 
in bulk plasma.  

 

 

 

 

 

 

 

  

Line 1  

Fig.5.5. Distribution of electric potential from 2T model 
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Line 1  

Line 2  

Line 3  

Line 4  

 

 

Fig.5.6. Distribution of electric potential from sheath model 

Fig.5.7. Local magnification of box in Fig.5.5 without sheath layer 

Fig.5.8. Local magnification of box in Fig.5.6 with sheath layer 
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On the contrary, line 4 situated directly in the spot center, and large amount of emission electrons 
from cathode moving towards plasma bulk, making it rich in electrons, hence there’s no need here for 
a charge barrier to exist in order to prevent electron loss that will violate charge neutrality. This self-
cancelling result was also attained in [25].  

Fig.5.9. Comparison of potential distributions from two different situations along line 1 

Fig.5.10. Potential distributions from sheath model along line 1~4 

Fig.5.11. Predicted results of both situations in comparison with experimental results 
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In Fig.5.11, the time-resolved numerical results for voltage attained in this study are compared with 
the experimental measurements under same operating condition reported in [42]. The numerical 
results are recorded every 50 ݏߤ.It is obvious that in 2T situation, the simulated potential drop is far 
below the experimental results, which is due to the overestimation of arc attachment that lead to a 
lower emission current density than reality. With sheath model, the predicted potential drop is much 
closer to reality despite that there’s still a small amount of difference of 1 to 2 V compared with 
experiment measurements, which may result from the omission of anode sheath in this study. Besides, 
it is clear from this figure that voltage fluctuation is also captured. This is due to the arc jet instability 
caused by a complex of many factors: Firstly, a swirl injection boundary condition is imposed at gas 
inlet (section 2.5.2). This technique is used to achieve a vortex stabilization that reduce heat load onto 
anode by forcing arc attachment move with certain frequency around anode surface. Despite this 
practicality, this technique contributes to pressure oscillations inside the cathode cavity, this 
compressibility effect was found by [87] to result in the arc instability, whose main oscillation 
frequency ு݂follows the Helmholtz resonator law: 

                                                                        ு݂= ଵଶగ ටߛ௚ ௉೒ௌఘ௅௏೒ ,                                                                     (5.1) 

where ߛ௚  , ௚ܲ  are the isentropic coefficient of cold gas and the pressure in the cathode cavity, 
respectively. S, L and ௚ܸ are the cross section area of anode nozzle, the volume of cathode cavity and 
the length of nozzle channel, respectively. Secondly, when the cold surrounding gas meets the hot, 
fully ionized plasma jet, great gradient of adverse velocity, temperature and density will develop, 
causing strong shear instability. Thirdly, the interaction of arc current with the magnetic field induced 
by both the emission current itself and metal cathode will generate the so-called Kink and Sausage 
instability [88]. The former is a kind of magnetic instability which is caused by the curvature of the arc 
jet. The curvature will make considerable difference of magnetic field between the concave and the 
convex sides. The generated magnetic pressure will further distort the arc jet to form a new anode 
attachment. The latter usually appears when the cross section area of arc jet is not uniform, the 
reduction of cross section area will produce an enhanced self-induced magnetic field which forms net 
magnetic pressure that further constricts arc jet, this will usually have a direct effect on cathode 
emission area. Although the self-induced magnetic field is usually weak, it adds a considerable rotation 
velocity due to Lorentz force where the arc current density is large. The numerical results concerning 
the electrical and magnetic instabilities at the corresponding observation points 1~3 from Fig.5.11 are 
shown in Fig.5.12 and 5.13, where the effect of both instabilities can be clearly seen. Finally, due to 
the restriction effect of sheath model, the arc core radius is smaller than that of 2T model, making arc 
more unstable. That’s why from our results the voltage fluctuation with sheath model is stronger than 
2T model. 
The corresponding heavy species and electron temperature fluctuations for point 1~3 with sheath 
model are presented in Fig. 5.14 and 5.15 respectively. They are all scaled to the same temperature 
range between 500K and 25000K. Consistent with the electromagnetic results in Fig.5.12 and 5.13, the 
temperature distributions of both ௘ܶ  and ௛ܶ  also shows an unsymmetrical feature and the arc jet 
always attaches to a preferable region. The calculated maximal heavy species temperatures of 2T and 
sheath situation are 25000K and 31500K respectively. The large temperature difference between the 
two situations is due to fact that in the sheath situation the current is further constricted by ߪ௘௙௙, 
making Joule effect more intensive to heat plasma. While heavy species temperature reflects the 
development of shear flow instabilities clearly, the electron temperatures of both situations exhibit a 
diffusive property. This could be attributed to the higher thermal conductivity of electrons than that 
of heavy species. The most obvious thermal nonequilibrium between electron and heavy species 
temperature occurs at the gas inlet region, where the heavy species temperature approaches 500K 
but the electron temperature is still over several thousand kelvins. This may be attributed to the same  
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Kink instability 

Sausage instability 

Fig.5.12. Transient current density profile scaled under 2× 10଻A/݉ଶ at different observation points: point1(left), 
point2(middle), point3 (right) 

Fig.5.13. Transient streamline profile of magnetic flux density scaled under 0.05T at different observation points: 
point1(left), point2(middle), point3 (right) 

Fig.5.14. Transient heavy species temperature profiles at different observation points: point1(left), point2(middle), 
point3 (right) 

Fig.5.15. Transient electron temperature profiles at different observation points: point1(left), point2(middle), 
point3 (right) 
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reasons which have been already discussed in section 4.3. Besides, the calculated the maximal Mach 
number in the nozzle with our sheath model is 0.7, which is consistent with the simulation results 
reported in [42], who imposed a boundary condition for current density at cathode surface, which is 
based on the experimental measurement. 

From Fig.5.16 it is interesting to find out that a small scaled discharge path downstream from the 
original attachment. It seems like the so-called reattachment phenomenon found in many non-
transferred plasma torch experiments. However, as the results following it are concerned, it didn’t 
trigger a typical reattachment process as expected, the small current path died away quickly instead 
of forming a new attachment. According to [13], the prerequisites of reattachment process are the 
presence of diatomic gases and high gas flow rate. For the pure argon condition simulated here, it is 
understandable that no reattachment process could be obtained. But when comparing the 
temperature and velocity results (Fig.5.16 and 5.17), it is clear that temperature and velocity are 
strongly correlated with each other, the local small current path near nozzle outlet not only gives rise 
to higher temperature but also higher velocity. This phenomenon has been experimentally confirmed 
by [9].  The extra current path appeared in our simulation results may be attributed to not only the 
turbulence development at outlet, but also the fact that arc jet movement happens both in radial and 
axial directions, while both of them have their own attachment frequencies, which are independent 
from each other. This could be verified by a comparison between the axial results shown above and 
the radial results shown in Fig.5.18. Due to a relatively small cross section area along the tube, it tends 
to form more than one attachment in the radial direction, while it could hardly exert any effect on the 
temporal voltage development since the total arc length is determined only by axial attachment.   

 

 

 

 

 

 

 

 

 

                                         

 

 

 

 

 

 

 

 

Fig.5.16. Heavy species temperature captured inside nozzle with an extra current path 

Fig.5.17. Velocity profile captured inside nozzle with an extra current path 
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Similar to the number density simulation reported in section 4.3, the electron population inside plasma 
core deviates a lot from that of singly charged ions (Fig.5.19). While ݊௘ remains over 10ଶଷ/݉ଷ in the 
arc core, ݊஺௥శ  drops under 10ଶଶ /݉ଷ  due to the local high temperature of over 30000K. On the 
contrary, the proportion of ݊஺௥మశ  and ݊஺௥యశ  increase significantly, leading ݊஺௥మశ  to the main kind of 
charged ions in this region. Besides, due to the fluctuate property of arcs in plasma torch, the 
distributions of number densities vary with time correspondingly (Fig.5.20). 

 

  
5.2 Electrode region results 

The electrode regions are coupled with the plasma with procedures introduced previously. The 
maximal cathode surface temperature of 2T and sheath situation is 3600 and 3800 K respectively as 
melting and evaporation are ignored. Fig.5.21 shows the cathode surface temperature fluctuation at 
different observation points from Fig.5.11. It is clear from the figure that the fluctuating feature of 

Fig.5.18. Transient radial temperature development of heavy species triggered by arc jet fluctuation  

Fig.5.19. Results of plasma composition: electron (left), singly charged argon ion(middle), doubly charge argon ion (right) 

Fig.5.20. Calculated number density fluctuation of neutral atom 
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cathode surface temperature distribution is consistent with what has been observed in plasma region. 
This is because cathode surface temperature is directedly affected by ion bombardment heating that 
comes from plasma, since we assume that all the neutralization energy of ions is delivered as thermal 
energy onto cathode surface. It is noteworthy that the maximal surface temperatures at all the points 
locate not just right at exactly the tip center of cathode. Such temperature deviation from cathode tip 
has been experimentally observed by [85]. On one hand, this is due to the large amount of thermionic 
emission cooling by ܬ௘௠ at the interface. On the other hand, as the arc is always attached to a preferred 
side in our simulated results, the real arc spot center on the cathode surface is prone to deviate from 
cathode tip to form the shortest arc length to anode. 
  
 
   

 

 

 

 

 

 

 

The comparison between the predicted current density of cathode surface and the theoretical value 
attained from Eq.2.57 is shown in Fig.5.22, which also shows the asymmetric and time-dependent 
feature. Similar to the comparison made in section 4.3, the calculated results achieve good agreement 
with the theoretical value within the attachment region. The deviation in some part from the 
theoretical value determined by Richardson’s formula could be attributed to the same reasons 
discussed in section 4.3. 

 

 

 

 

 

 

 

 
 

 

The rotating feature of anodic arc root manifested by the time-resolved anode surface temperature 
distributions is shown in Fig.5.23. As we don’t apply any anode sheath model in the present research, 
the real anode attachment may deviate. As in the 2T situation, due to larger arc attachment area at 
cathode and thus a more stable arc, less voltage fluctuation is predicted in plasma region compared 

Fig.5.21. Cathode surface temperature fluctuation at different observation points 

Fig.5.22. Cathode surface current density comparison between predicted and theoretical values 
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with sheath situation, the corresponding anode attachment shown in the figure is also relatively 
uniform and simply a reflection of swirl injection. On the contrary, the anode surface temperature of 
sheath situation is much higher, and the attachment point is much more asymmetric and random in 
accordance with the results of radial plasma movement inside nozzle shown in Fig.5.18, which is 
dependent on the relation between Lorentz and gas dynamic drag force in the anode boundary layer. 
It could be concluded that anode attachment is closely tied to the development of flow fields in plasma 
region in both radial and axial directions as well as the emission situation in the near-cathode regions. 

 
5.3 Design optimization and performance analysis 

As is mentioned in section 1.1.5, plasma treatments of liquids or nano-sized particles are subject to the 
flow conditions inside nozzle. Strong arc jet instability inside torch may sometimes result in 
uncontrolled coating architectures [89]. Coatings of high quality always require a uniform treatment 
of particles injected into arc jet. However, concerning the simulated flow field and electrode results in 
the previous sections and the corresponding measurements reported, such kind of flow stability is 
often hard to achieve due to the complexity of interacting forces. As anode attachment moves both in 
axial and radial directions, this will further add uncertainties into the arc jet control. A common 
strategy is to use molecular gases to avoid fluctuation, but this will make arc column more constricted 
which will in turn cause smaller attachment area and shorter lifetime of electrodes [90]. 

Future developments and optimizations of plasma torch need to take such issues into consideration 
to achieve better industrial application. According to the report in [90], multi-electrode plasma torch 
system has becoming more and more popular due to their advantages over the conventional single 
cathode-anode system in controlling the arc instability. Applying multi-electrode system could improve 
deposition efficiency by over 20% with certain kind of spray particles [91].  

Multi-electrode plasma torch system could be further categorized by multi-cathode/one-anode and 
multi-anode/one-cathode systems. The former is usually characterized by three individual cathodes 
positioned around a particle-feeding tube [92] on the symmetry axis (Fig.5.24), or three cathodes with 
feeding tube placed perpendicular to plasma flow direction at nozzle outlet to avoid clogging [93]. The 
latter (Fig.5.25) has an advantage over the former as anode in this configuration is placed faraway from 
cathodes with several isolated neutral elements in-between. It will force the arc to be reasonably long 
to reduce fluctuation. However, there are still a lot of restrictions in it. Firstly, the three cathodes 
should be isolated from each other and keep a reasonable distance to maintain three separate arc 

Fig.5.23. Transient temperature profiles at plasma-anode interface of: 2T situation(left), and sheath situation in point 
1(middle), point2(right) 
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columns. This could be spoiled by the fact that three eccentric arcs could be attracted to each other 
according to Ampere’s force law since they have the same current direction. Secondly, applying 
different current intensities will generate different magnitudes of Ampere’s force every time, 
therefore anode nozzle diameters should always be adjusted according to operating conditions to 
avoid unification of arcs. This will cause further operating cost and higher mechanical effort. Finally, it 
is noteworthy that such kind of configuration could cause a nonuniform distribution of plasma viscosity 
with three peak zones. This favors a perpendicular particle injection at outlet as a so-called “cage effect” 
will take place. If a proper angle of injector is chosen, the particle flow will follow the path of low 
viscosity region between the two peak zones into the center of nozzle, which will then be stuck by the 
third peak zone in front of it. This is a clear advantage since there will be no more need to use center 
injection of particles. However, it will still cause problems or even impair deposition efficiency since 
the three arc jets could still move in radial direction. Any displacement of peak zones caused by such 
movement could prevent particles from entering the center of nozzle channel since all the three 
injectors are fixed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The one-cathode/three-anode configuration provides a good remedy for the disadvantages above. A 
typical example of it is called DeltaGun in [91]. This system (Fig.5.26) consists of a single cathode and 
three segmented anodes isolated from each other, each has the identical angle of 120°. The neutral 
element placed in-between are divided into several pieces to make it convenient to adjust voltage. The 

 

 

Fig.5.24. Three-cathode/one-anode system with feeding tube located on the axis 
(Schematic drawing from [90]) 

Fig.5.25. Three-cathode/one-anode system with neutral elements between the two 
electrodes (Schematic drawing of Triplex from [90]) 
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main arc column is divided into three sub-arcs when it comes to near-anode regions. The arc stability 
is further enhanced since the three anode arc roots are fixed, limiting further radial movement. Thus 
the side-effect of “cage effect” caused by radial movement could be avoided. It makes the operation 
much more controllable and improves thermal efficiency significantly, since much higher voltage than 
that of conventional type could be achieved.  

 

 

 

 

 

 

 

 

 

  
In this study, a small numerical test is performed based on the same geometry of the previous plasma 
torch. With all the other boundary conditions consistent with the previous case, the input current is 
reduced to 400A. The aim of it is to check the performance of the optimized configuration DeltaGun. 
Due to the segmented arrangement of anode, the internal surface of anode ring is newly defined 
(Fig.5.27) to represent the conducting anode and nonconducting neutral elements in-between. The 
nonconducting part is shown with blue grid lines where zero gradient condition is applied for the 
electric potential. All the rest parts namely the three pieces of rotational symmetrical anode surfaces 
are assigned with the boundary conditions according to Eq. 2.120 as usual.  

  

 

 

 

 

 

 

  

 

 
From Fig.5.28 and 5.29 it is clear that the arc jet is fixed by three anode “legs” stretching from the main 
column, in addition to the long and unified arc column by neutral surfaces, such structure helps the 
main arc jet to be stabilized at the center of nozzle. From theoretical calculation of argon plasma 
viscosity reported in [42], the value of viscosity under LTE condition experienced its maximum at 

Fig.5.26. One-cathode/three-anode system DeltaGun (Schematic drawing from [90]) 

Fig.5.27. Newly defined anode inner surface for DeltaGun simulation: grey regions represent 
conducting surfaces, regions with grid lines represent nonconducting surfaces 
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௘ܶ=10000K, where the largest hindrance will be provided to prevent the entrance of spray particles 
into the arc jet center. It is clear from this figure that between all these “legs”, three separated zones 
are formed, with the temperature of each at the fringes approaching 10000K. Therefore, particles are 
restricted in these three “cages”. According to our simulated results of temperature, the exact 
locations of anode attachments do not vary with time, hence three cages remain still, promoting the 
uniform treatment of spray particles. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  
  
  
  
  
  
  
  
  
  
  

 

 

 

Fig.5.28. Simulated cross section profile of heavy species temperature inside DeltaGun 

Fig.5.29. Simulated cross section profile of electron temperature inside DeltaGun 

Fig.5.30. Axial and radial heavy species temperature profiles inside DeltaGun 
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Besides, even though only 400A current is set in this case, the resulting voltage reaches as high as 51V, 
which is more than the double of the previous 700A case result. This is due to the long arc length shown 
in Fig.5.30. As a result, the maximal temperature in this case is around 29000K, which shows that it 
makes better use of total input energy to heat itself than the 700A case with conventional 
configuration. 

Despite its advantages in controlling arc jet stability and improving thermal efficiency, a high anode 
maximal attachment temperature of over 1100K is obtained in our results (Fig.5.31). This could be 
contributed to the small area of the three attachment roots and a stable property which promote a 
large specific heat flux with long residence time. In cases where larger current intensities are applied, 
this could result in damaging of operating elements or reduction of lifetime.  

 

 

 

 

 

 

 

 

 

  
There are several ways to solve the anode over-heating problem. Apart from the conventional cooling 
strategies such as water-cooled anode and swirl injection, in case arc jet stability condition is not 
strictly required, for example, plasma cutting and welding, applying an external magnetic field is among 
the potential options. In this case, the external magnetic field is mainly applied along the axial direction. 
It is generally induced by permanent magnets or solenoids [94] placed around anode.  According to its 
principle, the axial movement of plasma jet will not be affected by it since velocity and magnetic field 
are parallel. On the contrary, the radial velocity of arc jet will generate a large Lorentz force with 
magnetic field, which pulls arc roots around anode surface. In this way, the radial movements of arc 
will be enhanced, which will reduce the residence time of arc root in a certain place and contribute to 
less erosion.  

In this study, to mimic the induction of magnetic field by a solenoid and analyze its performance in 
reducing the anode heat load, an external current density  ܬ௘௫ is set, which has only components on y-
z plane since the main flow direction is along x axis: 

,௠(0ܬ = ௘௫ܬ                                                                 |௭|ඥ௬మା௭మ, ି|௬|ඥ௬మା௭మ ),                                                             (5.2) 

Where ܬ௠ is magnitude of current. In the test cases discussed bellow it is set by 4× 10଺, 6× 10଻A/݉ଶ 
respectively. With the utility funkySetField provided by GroovyBC it is easy to distinguish between the 
region with and without ܬ௘௫ (Fig.5.32). After the external current density is defined, the calculation of 
magnetic field inducted with coil around the axis could be obtained by adding an extra term into Eq. 
2.51: 

Fig.5.31. Temperature profile of anode inner surface inside DeltaGun 
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                                                              డ஺⃗డ௧  + ∇߮ + ଵఓ೘ఙೞ ܬ௘௫ - ଵఓ೘ఙೞ ∆⃗(5.3)                                                      .0= ܣ 

 

 

 

 

                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  
  
  
  
  
  
  
  
  
  
  
  

From Fig.5.33 and 5.34, it is clear that using different intensities of external currents, the magnitudes 
of induced magnetic field show significant difference. With ܬ௘௫ of 4× 10଺ A/݉ଶ, the maximal magnetic 

Fig.5.32. Initiation of external coil current density for the simulation with applied magnetic field 

Fig.5.33. Calculated profile of magnetic flux density with ܬ௘௫=4× 10଺ A/݉ଶ 

Fig.5.34. Calculated profile of magnetic flux density with ܬ௘௫=6× 10଻ A/݉ଶ 
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field including the self-induced component from cathode is 0.03T. When ܬ௘௫ is equal to 6× 10଻ A/݉ଶ, 
this value reaches 0.146T. In both cases, the maximum value locates around the cathode tip since both 
fields from cathode and anode intersect here. The results of 4× 10଺ A/݉ଶ in regions near cathode still 
present a rotational property since magnetic field magnitudes from both sources are comparable, 
whereas results of 6× 10଻ A/݉ଶ show a globally horizontal property of stream lines within the whole 
nozzle, which indicates that external magnetic field in this case is dominant. 

According to the definition of Lorentz force, the horizontal property of magnetic field will contribute 
to more induced force, which will lead to a larger rotational velocity of arc root on anode. Fig.5.35 and 
5.36 show the simulated results of anode attachment temperature with ܬ௘௫  = 4× 10଺  A/݉ଶ  and 
6× 10଻  A/݉ଶ  respectively. While the former case doesn’t show obvious temperature decrease in 
comparison with the previously presented attachment temperature of section 5.2 due to the limited 
influence of ܬ௘௫ on the original magnetic field, the latter shows a significant temperature drop of about 
300K compared to the previous maximal value. Besides, the temperature distribution in latter case 
becomes much more uniform, this is because a larger rotational velocity will reduce the averaged local 
residence time of arc root which in turn provides more time for cooling. This manifests that using 
external magnetic field will make rotational movement of arc root controllable when current density  ܬ௘௫  can be adjusted. In this respect, this technique is advantageous over swirl injection. However, 
applying such cooling strategy will add cost and system complexity. Besides, the numerical model for 
such system is more complicated and should address more sophisticated physical phenomena such as 
Hall effect and Anomalous transport [95], which are not considered in this scope. 

 

 

 

 

 

                                                  

 

 

 

 

 

 

 

 

 

 

 

 
Fig.5.35. Calculated profile of anode inner surface temperature with ܬ௘௫=4× 10଺ A/݉ଶ 

Fig.5.36. Calculated profile of anode inner surface temperature with ܬ௘௫=6× 10଻ A/݉ଶ 
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Chapter 6 

Conclusions and Future Recommendations 

 
In this dissertation, a self-consistent description of plasma-electrode interaction during arc discharge 
using finite volume method is presented in detail. The thermal and chemical nonequilibrium arc plasma 
flow is simulated using one-fluid two-temperature enthalpy equation along with sophisticated reaction 
rate and ambipolar diffusion model, which is then coupled with the cathode by the sheath layer 
represented by boundary cells. Due to the complexity of physical process in this extremely small region, 
it is often treated as a “black box” in many literatures. To achieve a globally self-consistent model 
including this region, in this scope, the sheath local electrical conductivity is not simply calculated by 
2T nonequilibrium regime meant for bulk plasma. An effective value is applied based on local ionization 
degree to make a smooth transition from emitting to non-emitting area of cathode surface with the 
help of the Child Law of collisionless sheath. This will spare us from using a presumed current boundary 
condition or crude cut-off parameter in order to restrict an arc attachment.  

To ensure a second-order precision and reduce both numerical instability and false diffusion, Sweby’s 
TVD schemes are applied for the discretization of main parameters. As the interface boundary 
conditions of each region is indispensable, a detailed survey of electrode surface heat flux for anode 
and cathode is conducted, along with the interface relation for electric potential, which secures a 
conservation of total input current throughout the whole surface of electrode.  

To validate the interaction model put forward in this study, a series of numerical tests are performed 
addressing magnetic field results compared by those of Ampère's circuital law, velocity results by 
analytical solution of Hartmann’s flow, the temperature results by experimental measurements of 
GTAW under atmospheric pressure. All of these three tests obtained quite good agreements with 
benchmark results. Besides, from the 2D GTAW simulation results it is interesting to find out that the 
local dimension of plasma net ionization region may be related to that of the LTE region, where both 
net ionization and recombination can take place.  

Based on the precision of this interaction model tested above, 3D full simulation of non-transferred 
plasma torch is performed. The numerical results of both situations (2T and sheath) are presented, the 
predicted time-resolved voltage magnitude and fluctuation attained by sheath model is much more 
realistic when compared with experimental results, which manifests that sheath model may play a 
decisive role in predicting arc jet fluctuation in a plasma torch by the interaction model. Besides, we 
have found out that the arc instability in plasma region could lead to the fluctuation of cathode surface 
temperature and emission current simultaneously, as well as a rotating feature of anode attachment.  

However, since arc jet fluctuation is always hard to be controlled in a single cathode/anode system of 
plasma torch, it leads to difficulties in controlling deposition efficiency during thermal spray. To 
address this issue, recent developments of design optimization of plasma torch are surveyed, which 
mainly focused on the multi cathode/one anode and multi anode/one cathode configurations. As the 
latter has its advantage over the former in fixing arc root and a better utilization of cage effect, the so-
called three anode/one cathode system DeltaGun is simulated based on the previous geometry. The 
results show that the predicted voltage in this case is almost fixed and the anode attachments do not 
change with time. However, although fixed anode root contributes to uniform treatment of spray 
particle, it leads to a higher possibility of anode erosion, which means auxiliary cooling strategy is 
indispensable.  
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In the last part of this dissertation, the issue of controlling the anode attachment temperature is 
specifically addressed by the method of magnetic stabilization. This technique basically relies on the 
magnitude of current density applied in the coil around anode to generate a horizontal magnetic field. 
This magnetic field will then produce Lorentz force along the cross section of nozzle if radial movement 
of arc is present. Plasma torch with different magnitudes of external circuit current densities is 
simulated, leading to different magnitudes of applied horizontal magnetic field. The results show that, 
the larger the external current density is, the lower the maximal anode attachment temperature with 
a more uniform distribution will turn out to be. Despite of such advantage, additional operating and 
manufacturing cost needs to be taken into account.  

At present our numerical research considers only the basic aspect of plasma-electrode interaction. In 
real operating conditions, especially when cooling strategy is not sufficient, due to the intensive 
heating of electrodes by arc jet, metal vapor always appear from electrode surface which modifies 
plasma properties. This is because the ionization potentials of metal atoms evaporated from electrodes 
are usually much lower than that of shielding gas atoms, making metal atoms more easily to be ionized. 
This will make local electron number density of plasma-metal mixtures significantly larger than that of 
pure gaseous plasmas, where radiative emission coefficient and electrical conductivities can 
experience the most considerable change. From the experimental measurements of Taishiro et al. [96] 
it is reported that when helium is mixed with certain portion of iron atoms, the arc will become more 
constricted and energy efficiency could drop significantly. For a better control and prediction of 
welding or thermal spray process, transport properties, emission coefficients and diffusion processes 
with the effect of metal particles should be included.  

Besides, in comparison with cathode layers, the physical processes inside anode layers remain poorly 
understood till now. A unified coupled simulation of plasma-electrode system should not only include 
cathode sheath, but anode sheath model as well. This will not only help to yield more precise anode 
attachment results, but also provide theoretical basis for more sophisticated processes such as anode 
re-attachment in diatomic gaseous plasmas, for which only ambiguous numerical models [12] are 
developed at present. 

Finally, for a better control of an arc jet inside plasma torch, more efforts are needed in plasma torch 
design and optimization. As is discussed in section 5.3, a fixed arc root can contribute to a more uniform 
particle treatment and higher deposition efficiency. However, it heats the anode more intensively. A 
novel plasma torch configuration should achieve a skillful balance among all the important factors 
including lifetime of elements, system efficiency and operating cost. It will be surely a promising 
research area since our knowledge of plasma science and its numerical descriptions are constantly 
growing.  
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