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by Dragos Bogdan Chirila

ABSTRACT

The complexity of Earth system models (ESMs) is continuously increasing — both quantitatively (higher
spatio-temporal resolution for existing models) and qualitatively (accounting for additional pro-
cesses). These trends are sustained by growing capabilities of computers and (equally important)
by innovative algorithms. Better algorithms can lead to more accurate and/or more efficient numerical
solutions. Efficiency attracted more attention during the last decade when, due to thermal limita-
tions, the driving force behind increased computing performance has shifted from higher clock-
frequencies (lower latencies) to more hardware parallelism (higher throughput). Not all numerical
algorithms are suited for the new massively-parallel machines — some established approaches can
reach plateaus in terms of performance-scalability, which motivates ongoing research to find alterna-
tives that thrive on the new hardware. In this thesis the potential of the lattice Boltzmann method (LBM)
is analyzed, as a promising alternative for modeling processes relevant to ESMs. During the last two
decades, this relatively new approach was successfully applied to many flow problems in engi-
neering (simulation of multi-phase and multi-component flows, melting processes, flows in porous
media, and direct numerical simulation (DNS) of turbulence). At the core of any LBM algorithm is a
simplified physical landscape inspired by the kinetic theory of gases, with “mesoscopic” particles
which interact (collisions) and then propagate freely (streaming). This idealized dynamics (usually
with local interactions) leads to algorithms which are particularly suited for parallel execution — a
key property, which is also interesting for ESMs. However, the impact of LBM on Earth system models
was small so far, due to limitations of the early LBM algorithms.

The method deserves reconsideration, due to recent advances on improving its stability, a simpli-
fied implementation of accurate body-forces, and accurate simulation of thermal flows. This thesis
adds two main contributions to this direction: (a) From a computer science (CS)/technical perspective,
the new GeLB domain-specific language (DSL) is introduced, to facilitate testing and development of
new LBM algorithms. By isolating many of the technical implementation side-issues away from the
core physical algorithm, this new tool aims to counteract some of the “fragmentation” of the LBM
research, by: (i) shortening the time to develop a parallel simulation from an algorithm idea, (ii) serving
as a basis for objective comparisons of different physical algorithms, and by (iii) facilitating sharing
of algorithms. (b) From a physical point of view, several flow-problems related to climate sciences
are simulated, taking advantage of the recent progress in the LBM research literature. First, the
Rayleigh-Bénard (RB) problem is simulated (in 2D and 3D configurations). The evolution of the flow
in this problem is driven by buoyancy forces which can trigger convection (similar to convection
in the atmosphere, or to the intermittent bursts of deep-reaching convection, which significantly in-
fluence the composition and circulation of oceanic water-masses). As a last application, simulation
results are shown for the wind-driven ocean circulation (WDOC) of an idealized barotropic ocean, to
which one of the more recent LBM algorithms is applied for the first time (first with an idealized
geometry, then with a realistic global land-mask).
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“Call it a clan, call it a
network, call it a tribe, call
it a family. Whatever you
call it, whoever you are,
you need one.”

Jane Howard
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INTRODUCTION

“Research is formalized
curiosity. It is poking and
prying with a purpose”

Zora Neale Hurston

Fluids (gases or liquids) represent one of the most common states of matter in
the universe. In order of increasing spatial scales, they are encountered in nanoflu-
idic devices, the interior of living cells, respiratory and circulatory systems of all
creatures (Kleinstreuer and Zhang, 2010), in technological devices, household appli-
ances, geophysical phenomena (oceans, atmospheres, and planetary interiors), and
even in astrophysics (stellar dynamics, gas giants, or the magnetospheres of plan-
ets such as our own). Therefore, in order to understand these systems (especially
when considering time-dependent phenomena), we need to consider at least to some
degree the relevant fluids (which often dominate the physics).

As for any other natural phenomenon, there are two approaches that can be used
to study fluids. First, when the governing equations are not well-known*, we have to
rely on experimental observations of the flow (see e.g. Wallace and Vukoslav¢evi¢, 2010),
where the ICs and BCs also need to be documented carefully. Using these observations
(and pre-existing knowledge such as conservation laws which are expected to hold
and analogies with similar systems), we try to construct mathematical models, which
summarize the observations. Reaching this level of description is always preferrable,
because it is more general — in addition to explaining existing observations, any
useful theory also yields predictions of the system’s behavior for other values of
the parameters, suggesting additional experiments which can be conducted to test
the theory. Also, theoretical models enable a better understanding of the underlying
phenomena, since they describe the physical reality at higher levels of abstraction.

From the very beginnings of science, computation had a supporting role for both
of these approaches — numerical computations are performed to analyze the exper-
imental results, and analytic or numeric computations are used to evaluate the im-
plications of the theoretical models. What has changed in the last century is the
scale of these computations: while in earlier centuries the amount of experimental
data was modest and could be analyzed by hand, we now have installations such
as the CERN’s Large Hadron Collider, which generates terabytes of raw data each
second. Similarly, the early mathematical models could be solved analytically for
simple cases (e.g. Newton's equations when applied to the motion of a single planet

1 This can still happen nowadays, when we consider systems with complex interactions between multi-
ple scales.
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around the Sun); however, this approach is no longer feasible for many systems
that contemporany research focuses on (such as the evolution of the Earth’s climate).
Therefore, the increase of complexity of science (especially during the last century)
was sustainable only because of advances in computing, which happened in parallel.

The advances in computing occured in two directions. First, computing hardware
has become increasingly powerful — both in terms of theoretical floating-point opera-
tions per second (FLOP), and in terms of storage capacity (measured in bits). At the
same time, the manufacturing and operation costs per FLOP and bit have dropped
continuously, making large supercomputer installations feasible, and even allowing
personal computers to have capabilities comparable to those of supercomputers from
just a decade earlier. However impressive the advances in hardware have been, the
computing capabilities available today would not be possible without the contribu-
tion of the second direction in computing research, which consists of developing
and refining computational algorithms. Indeed, choosing a better algorithms can of-
ten (MacCormick, 2012) speed-up the solution of a problem by orders of magnitude
more than a hardware upgrade can.

Research in computational fluid dynamics (CFD) was a major beneficiary of these ad-
vances in computing, for fundamental reasons rooted into the physics of the problem
being studied — unlike the solid matter, one of the main sources of complexity when
studying fluids in detail is the fact that most flows are turbulent (especially at the
scales of technological devices or larger). Intuitively, we can describe this as a ten-
dency of the flow to become disordered and highly-sensitive to initial conditions, such
that even infinitesimal variations in ICs and BCs will eventually lead to significant
differences between multiple realisations of an experiment — each realisation is there-
fore fundamentally irreproducible in detail. Fortunately, space- and time-statistics are
often well-defined and stable — a property on which most theories of turbulence
rely. In addition to disorder, another important characteristic of turbulence is that it
enhances mixing (homogenization) of fluid properties.

Of all the flows encountered in daily live, the phenomena in the oceans and in
the atmosphere are the most extreme examples of turbulent flows. Here, due to the
curvature of the surface of the Earth, points at different latitudes also absorb different
amounts of energy from the Sun. This meridional gradient of absorbed energy is the
main driving mechanism behind the large-scale circulation of the atmosphere which,
in turn, is the major force driving the motion of the oceans. Due to the complexity
of these systems, analytic methods cannot be used for local quantitative predictions
(e.g. for weather prediction). On the other hand, experimental research is limited to
passive local observations since (unlike for engineering-scale fluid flow experiments)
it is not possible to impose a specific set of boundary- and initial conditions on
geophysical flows. Therefore, numerical simulations are of crucial importance for
improving our understanding of weather and of climate in general (especially for
establishing causality between different events).

CONTRIBUTIONS OF THIS THESIS As a contribution towards constructing bet-
ter simulations in CFD (and, hopefully also in the Earth system science (ESS) in the



INTRODUCTION

near future), this thesis introduces GeLB, a new domain-specific programming language
(DsSL) which makes it easier to construct models based on the lattice Boltzmann method
(LBM)?. As concrete applications, we then simulate (using LBM) three fluid problems.
For the first two applications, the RB problem is simulated using two setups, for 2D
and 3D respectively. Both setups exhibit convection currents which are sustained by
buoyancy gradients; such simulations are relevant for improving our understanding
of atmospheric convection, or of intermittent bursts of deep-reaching convection in
the oceans (which are believed to play a key role for the composition and circulation
of oceanic water-masses (despite being isolated to relatively small regions, such as
the Labrador, Greenland, and northwestern Mediteranean seas). Three-dimensional
simulations of such convective flows are particularly valuable, since they are less
common in the literature (due to the much higher computational demands com-
pared to the corresponding two-dimensional configurations). As a third (and last)
application, the wind-driven ocean circulation (WDOC) of an idealized barotropic ocean
(in 2D) is simulated, using some of the more recent techniques developed by the
LBM research community (this being the first time these techniques are applied to the
WDOC problem, to the knowledge of the author). First we show that this approach can
simulate a simple (square) domain. More interestingly, we then demonstrate (with
promising results) the ability of the model to simulate this problem for the case
with complex geometries, corresponding to a realistic, high-resolution land-mask on
Earth.

OUTLINE OF THE THESIS This thesis is structured as follows: in Chapter 2, some
aspects of kinetic theory, fluid dynamics, ocean dynamics and turbulence theory are
briefly reviewed; these provide the necessary context for understanding the LBM,
and the applications considered in the thesis (with an expanded discussion of the
theory of the RB problem, which is necessary for two of the applications discussed
later). Chapter 3 contains an overview of numerical methods for computational fluid
dynamics (CFD), and of lattice Boltzmann methods in general. In Chapter 4, the GeLB DSL
is introduced, which represents the first new contribution of this thesis. Chapter 5
deals with the three concrete applications of GeLB:

1. The first application (Section 5.1) consisted of simulating the problem of con-
vection between two parallel plates, when the lower plate is kept at a higher
temperature. This configuration is also known as the Rayleigh-Bénard (RB) prob-
lem, which was originally studied experimentally (Bénard, 1900), and then an-
alyzed theoretically (Rayleigh, 1916) — later literature named the problem after
the authors of these two studies. Extensive subsequent studies analyzed this
problem using multiple approaches (experimentally, analytically (Clever and
Busse, 1974), and numerically (Moore and Weiss, 1973)), as summarized in the
excellent literature review of Busse (1978).

2 Although mainly LBM applications are discussed here, the DSL is more general, and can also be used
with other algorithms, as long as they are explicit in time and they are formulated on a rectangular
spatial grid.
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For this first application, the two-dimensional setup was used, which serves as
a good test-case for model validation. Of particular interest in this setup is to
determine the conditions under which the (initially stationary) flow transitions
to a convective regime, under the influence of small initial perturbations.

2. The second application (Section 5.2) builds upon the first, by expanding the
simulation to three spatial dimensions. Many numerical studies focus on 2D
results, which are intrinsically of limited applicability to real-world scenarios
(such as those typically encountered in ESS). Therefore, this thesis contributes re-
sults from the computationally-intensive simulations of the three-dimensional
configuration of this problem, which permits capturing of important qualita-
tive changes in the flow-regimes, especially for choices of parameters that lead
to time-dependent three-dimensional flow and development of turbulent con-
vection.

3. The third application (Section 5.3) was to simulate the wind-driven circulation
in a barotropic ocean, using a 2D numerical algorithm based on LBM. This
problem has actually been studied before with LBM (Wolf-Gladrow, 2000), but
using the single-relaxation-time (SRT) variety of the method. The new contribu-
tion of this thesis is to use the multiple-relaxation-times (MRT) variety, which
recently gained traction in the literature, due to its improved accuracy and sta-
bility. Also, we demonstrate the ability of the method to simulate flows within
very complex geometries, by incorporating a high-resolution land-mask3 of the
Earth as BCs for simulations.

To synthesize the work, conclusions and discussion are presented in Chapter 6,
and an overview of future work is given in Chapter 7.

3 For this last simulation (complex geometry), the author would like to emphasize that the goal was
not to build an actual ocean model — this would require substantial additional algorithmic and model-
calibration work, which is left for future generations.
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THEORETICAL FOUNDATIONS

“If I have seen further than
others, it is by standing
upon the shoulders of
giants”

Isaac Newton

This chapter provides a brief overview of the physical theories which are most
relevant for understanding LBM algorithms (introduced later, in Chapter 3), and our
target physical systems (described in Chapter 5).

Our current knowledge of physics can be categorized into several broad theories,
which provide different perspectives on the system of interest (generally focusing
on different space- and time-scales). For the fluid systems relevant to this thesis,
four levels of description are available to us (see Figure 1) — from the smallest to
the largest scales, these are: (a) molecular dynamics (Newton/Hamilton equations),
(b) kinetic theory (Boltzmann equation), (c) continuum fluid mechanics (Euler/Navier-
Stokes equations), and (d) geophysical fluid dynamics (primitive equations).

These different descriptions are inter-related — since each theory has its own range
of space- and time-scales for which it is applicable, it should be possible to derive the
higher-level theories from the lower-level ones. An additional benefit of such analy-
ses is that they allow us to derive constitutive equations for the empirical quantities
appearing in the higher-level theories.

There are several approaches that can be used for the transformation between
the different levels of physical descriptions. For example, Zwanzig (1960) and Mori
(1965) proposed a general formalism, which can be used to construct coarse-grained
models directly from the microscopic dynamics for Hamiltonian (i.e. non-dissipative)
systems', by applying projection operators. Alternatively, within the framework of
classical statistical mechanics and kinetic theory, the hydrodynamic equations can be
obtained using the Chapman-Enskog theory (Chapman and Cowling, 1970). We will
reference mostly the second approach, since it is more directly related to the rest of
the thesis.

2.1 MOLECULAR DYNAMICS (MICROSCOPIC SCALE)

The theory of molecular dynamics provides the first level of description. The basic
premise is to treat the molecules of the fluid as a set of particles with well-defined
positions and momenta, which evolve according to the laws of classical mechanics.

1 Zwanzig (1980) later expanded the theory for non-Hamiltonian systems.
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( Ocean Dynamics ]
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‘large—scale limits of
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(D)|Olbers et. al. (2012)
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{ Molecular Dynamics (MD) I

Figure 1: Physical theories for describing ocean flows, arranged from small space- and time-
scales (bottom) to large scales (top). Arrows (A) — (D) denote the connections be-
tween the theories, along with the references where the derivations are presented.

This approximation is valid as long as the average distance between the molecules is
much larger than the de Broglie wavelength of a molecule, i.e.

)" ot
N 2mkgT

where h is the reduced Planck constant, m is the mass of one fluid molecule, kg is the

Boltzmann constant, and T is the average temperature of the fluid. This criterion is

satisfied for ordinary fluids (such as air or water), which are relevant for this thesis.
The following notations are used in the discussion below:

* r;: the 3D— position of molecule

* pi: momentum of molecule

* z; = (r;, pi): position of molecule (u phase-space ~ 6D); dz; = dr;dp;
e ™N=(rgy...,1n), PN = (P1,---, PN)

o zN = (z,,...,zN) position of the system (I" phase-space ~+ 6ND)

o £ = % time-derivative of quantity £



2.1 MOLECULAR DYNAMICS (MICROSCOPIC SCALE)

Assuming a system consisting of N identical molecules®, we can write a Hamilto-
nian function for the system:

N

.12
H (ZN) - Z |§111’1 + Vint (rN) + Vext (rN) , (2)

i=1

where Vi is the potential energy due to molecule-interactions, and Vey is the po-
tential energy due to external forces (which are assumed not to have explicit time-
dependence - e.g. gravity).

The dynamics of the molecules is then governed by the Hamilton equations:

. 0
. 0H ;
Pi= g, XX (3b)

j#

where X$*! is the sum of external forces acting on molecule “i”, and X?/}t is the force
acting on “i” caused by interactions with molecule “j”.

Although it may not be immediately obvious, egs. (3) already contain empirical
factors, because there is no universal expression for the inter-molecular force Xg}t
(and, therefore, for Vjy in eq. (2)). Instead, the current practice (E, 2011) is to for-
mulate system-specific potentials, by guessing the functional form of the potential,
followed by calibration of parameters using experimental data and first-principle
quantum-mechanical calculations.

Ignoring the complications due to the empirical inter-molecular potential, we could
(in principle) use the framework of classical mechanics to predict the exact evolution
of the rjs and p;s at any time (assuming we start from a well-defined initial state).
This complete knowledge of the system is referred to as a representative point (or
microstate) in ' phase-space. It is postulated, in turn, that all intensive macroscopic
properties of the system can be computed from this hypothetical knowledge of the
microstate.

Unfortunately, even with state-of-the-art computers, this theory can at most be
used to study processes at sub-micrometer and sub-second scales. While this is not
a serious limitation for some fields (e.g. drug discovery in medicine (Durrant and
McCammon, 2011)), it renders the approach impractical for the type of flows investi-
gated in this thesis — higher-level theories are necessary in those cases.

As mentioned earlier, it is important for the theories at different levels to be con-
sistent with each other; in our current context, it is interesting to note that various
authors successfully linked the equations of molecular dynamics to the macroscopic,
continuum equations of fluid dynamics (arrow (C) in Figure 1) — see (Irving and

We use the term “molecule” to denote the smallest entity in the fluid - in reality, this may be a single
atom (e.g. Ar), or an actual molecule (e.g. H,0). Also, for simplicity, we assume each “molecule” to
be spherical.
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Kirkwood, 1950) for a physical discussion or (Olla et al., 1993) for a more mathemat-
ical view.

It is interesting to note that the time-evolution predicted by egs. (3) is completely
reversible: if we could reverse the sign of all momenta ({p;} — {—pj}), the molecules
would re-trace the exact trajectories from the past. This raises an apparent problem
from the point of view of the higher-level descriptions of the system (kinetic and
continuum), which are irreversible — this apparent paradox was, however, resolved
within the framework of kinetic theory.

2.2 KINETIC THEORY (“MESOSCOPIC” SCALE)

The next level of description for studying fluids (see Figure 1) is kinetic theory, which
usually focuses (for simplicity) on the so-called ideal gas, thought of as a large number
of hard spheres, which collide elastically with each other3. Unlike the molecular dy-
namics approach, this is a probabilistic description, created out of necessity, because
directly solving the equations of motion for numbers of molecules involved in macro-
scopic flows (of the order of Avogadro’s number, Na = 6.023 x 10%molecules/mol)
is a hopeless task. Fortunately, most of the time we are also not interested in the de-
tails of each molecule’s motion, but rather in the macroscopic effects, which we can
measure with usual instruments (thermometers, pressure gauges, etc.) — the proba-
bilistic approach provides a good theoretical basis for analyzing and describing such
effects.

We denote by p"(z, t) the N-particle probability density, which represents the prob-
ability# that the state of the system falls in the infinitesimal I'-volume between zN and
ZzN + dzN, at time t.

It can be shown (Huang, 1987; Kardar, 2007) that pN evolves such that the follow-
ing equation (Liouville’s equation) holds:

doM 2N &[N, 9N ]
W:W+;|:a_1_irl+a_pipl =0 (4)

This equation resembles the incompressible continuity equation — this is why it is
often said that the phase-space density p™(z, t) behaves like an incompressible fluid.>
Intuitively, this property is due to the fact that no phase-points can spontaneously
appear or disappear as the system evolves in time.

Taking a closer look at the full phase-space density p™, note that it specifies the
probability for the 15 particle to have (r,p) € [ry, 1y + dry] X [py, p: + dp4) and, for

This is a good approximation for real gases at low densities. In addition, the asymptotic behavior of
the model (hydrodynamic regime) should not depend on the details of the interaction between the
constituent particles.

This probability is defined in terms of averages over an imaginary ensemble of identical replicas of
the system — this is known as the Gibbs formulation of equilibrium statistical mechanics (contrast that
with the concept of averaging over a phase-space trajectory, known as the Boltzmann formulation).

5 In fact, the terms within the square brackets cancel in pairs (coordinates <> conjugate momenta), so eq. (4)

is a special case of incompressibility.
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the 2nd particle to simultaneously have (r,p) € [r,, 1, + dr,] X [p,, p> + dp.], and so
on. However, as far as most macroscopic processes are concerned, this is much more
information than necessary — often we only want to know what is the probability
of finding any particle in a region of the 6—dimensional phase-space (u—space). The
later is known as the single-particle distribution function, and is defined by “collapsing”
dimensions by integration over redundant portions of the original '—space:

£1(2zq, t) :J-~~JpN(z,t)dzz...dzN. (5)

In a similar manner, we can define the two-particle distribution function

5(2q, 25, t) = J : -JpN(z,t)dz3 ...dzn, (6)

and, in general, the s-particle reduced distribution function:

fs(zg,...,2s,t) :J---JpN(z,t)dzsﬂ...dZN (7)

By integrating the Liouville eq. (4), it is possible to derive a series of evolution
equations for the reduced distribution functions — this is known as the Bogoliubov,
Born, Green, Kirkwood, and Yvon (BBGKY) hierarchy ((Yvon, 1935), (Kirkwood, 1946),
(Born and Green, 1947), (Bogoliubov, 1962)). Unfortunately, the resulting equations
are coupled, as the evolution equation for fs depends on fs;1. To obtain a solvable
system, we need to assume that the hierarchy can be truncated after some order,
while still resolving the physical phenomena of interest. Such an assumption is usu-
ally adopted in kinetic theory, leading to a simplification of the discussion by only
focusing on the single-particle distribution function f(r, p,t), which is defined such
that:

f(r, p,t)d3rd3p (8)

represents the number of molecules with positions within the d3r volume around r
and with momenta within the d*>p element around p, at time t.

In the special case where the molecules are distributed uniformly in space (which
is approximately true for fluids in thermodynamic equilibrium, as long as the repre-
sentative volume contains enough molecules), we can write

N
3.0
f(r,p,t)d’p = v’ (9)

where N is the number of molecules in a volume V.

The goal of kinetic theory is therefore to find the distribution function f(r, p,t).
As a first step, we need to specify the equation which governs the time-evolution
of this function (assumed to be continuous). Ignoring (for now) collisions, during an
infinitesimal interval of time (t — t 4 5t), a molecule will move from the phase-space
point (r, p) to the point (r+ vot, p + Xot), due to the sum X of external forces acting

11
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on the molecule (v = p/m is the velocity of the molecule, and m is its mass). The
molecules initially located within the (“source”) phase-space region d’rd’p at time t
will occupy a new (“destination”) phase-space region d*r’dp’ at time t + &t. In other
words,

f(r+ vot, p + Xot, t)d3'd’p’ = f(r, v, t)d>rd’p (10)

It can be shown (Kardar, 2007) that the volume enclosed by a surface moving through
phase-space remains constant at all times.® This important result, known as Liouville’s
theorem, allows us to simplify eq. (10) to

f(r+vdt, p +Xbt,t) = f(r,v, t) (11)

By Taylor-expanding the LHS of eq. (11) and subtracting the RHS we obtain, to
O(dt), the equation of motion for the distribution function:

0
<a+v~vr+X~Vp> f(r,p,t) =0 (12)

In order to also include inter-molecule collisions to the picture, we need to add a
correction factor to eq. (12), such that

0 of
— . X . E JE—
<at +v-Vi+ Vp) f(r,p, 1) <at)coll. (13)

The new term on the RHS represents the net contribution of collisions to the number
of molecules which reach d’r’d3p’ at time t + 5t. This consists of two terms:

* gains: due to collisions, some molecules will end-up in destination at time t + ot,
even if they were not in source at time t

* losses: also due to collisions, some molecules will not end-up in destination,
despite starting from source; since the phase-space elements are assumed to be
small, the simplifying assumption is made that any molecule starting in source
which undergoes a collision is disturbed so much that it does not reach the
normal destination

To simplify the collision operator above, Boltzmann (1872) used several assump-

tions, of which the most famous is the assumption of molecular chaos (“Stosszahlansatz”),

which states that the velocities of a pair of interacting particles are uncorrelated (the
other two simplifying assumptions are that external forces can be ignored over the
duration of the collisions, and that only two-particle collisions are important).

In a sense, phase-space behaves like an incompressible fluid. More exactly, this applies to the so-called
phase-space density function, where an ensemble of realizations of the system are considered. However,
the molecules of our gas can be interpreted as such different realizations, since we (for now) assume
no collisions — this allows us to consider the phase-space density function as equivalent to the molecular
distribution function.
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For many applications, the collision operator can be simplified further, by assum-
ing a simple relaxation towards the local Maxwellian distribution:

af) 1
M)~ Lir—rey, (14)
(at coll. T

This is known as the Bhatnagar-Gross-Krook (BGK) approximation, which is also used
in many LBM models.

2.3 FLUID DYNAMICS (MACROSCOPIC SCALE)

To set the context for the first two of the applications discussed in this thesis (the
RB convection studies from Sections 5.1 and 5.2), we continue the journey towards
increasing space- and time-scales. At the next level beyond kinetic theory we have the
continuum models of fluid dynamics (e.g. Euler or Navier-Stokes equations). These
models are appropriate for describing flows encountered in everyday applications
(vehicles, water pipes, pumps, etc.). We are concerned here mainly with thermal
incompressible fluids, whose state is characterized by the velocity vector” field v(x, t)
and by three scalar fields: density p(x, t), pressure p(x,t), and temperature T(x, t).
The models can be derived from the conservation laws for mass, momentum, and
energy, and the equation of state for the fluid. Since such models do not directly
acknowledge the complex interactions between the molecules of the fluid, they in-
corporate the effects of those smaller scales through parameters and relations fitted
experimentally (e.g. viscosity, heat conductivity, and the equation of state).

2.3.1  General form of macroscopic equations for fluids

In this subsection, we present the general form of the macroscopic equations for fluid
flows. In later sections we present some simplifications of these equations, which are
appropriate for the problems discussed in this thesis. These equations are written
for an infinitesimal control volume, which remains fixed in space (Eulerian formula-
tion).8

In general v € R3, although for some flows one (or even two) components can be discarded.
The alternative formulation, known as Lagrangian approach, is to write the equations from the point of

view of a particle moving with the flow. The mapping between Eulerian (at a fixed point) variations of

a quantity % and the Lagrangian variation % is given by the substantive (material) derivative operator:

B:g+u v_g_‘_uli
Dt ot ot o

13
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2.3.1.1 Mass equation (continuity equation)

The most basic physical law is the conservation of mass — for our control volume, this
means that the time-variation of mass inside the volume equals the mass exchanged
with the rest of the fluid. In differential form, this reads:

0p

LA ) =0

ot T ax, (Pw) (15)
where p is the density of the fluid, u; is the velocity along axis i € {1,2,3}, and the
gradient operator is defined (in 3D) as VT = [0/0x1,0/0x2,9/0x3]. Also, Einstein’s
summation notation is used, whereby repetition of an index implies summation over
the range of that index.

2.3.1.2  Momentum equations

The second physical law is the conservation of momentum. This is nothing else than
an application of Newton’s second law to our control volume, which says that the
time-variation of momentum along direction j has to be balanced by the sum of
stresses o0j; and total body-force per volume unit (Xj has units of acceleration). Be-
cause different fluid particles are present at any fixed point at different times, it is
more intuitive to derive this equation from a Lagrangian point of view (following a
fluid particle moving with the flow). However, for brevity we provide below the final
result, after re-mapping back to Eulerian coordinates:

0 (pwj) 03 (pwiyy) oy
ot T o PN (16)

Without loss of generality, the left-hand side (LHS) of eq. (16) can be simplified, by
expanding the terms and using the equation of continuity eq. (15), leading to:

ow; ou; 00;;
p< Ly J): T+ pX; (17)

To make eq. (17) more explicit, the stress-tensor oy needs to be expressed in terms
of the tensor of strain-rates ey; (also known as deformation rates), which are defined in
terms of spatial variations® of the velocity field:

1 /ou; Oy
€ z<a—xj+axi) 9

For the fluids considered in this thesis, the dependence ojj(ey) can be assumed
to be linear. Using, in addition, the isotropy assumption for the fluid (which requires

Specifically, only the symmetric part e;; of the general deformation tensor du;/0x; is used here — the anti-
symmetric part refers to local rotation motion, which does not involve viscous transfer of momentum.
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invariance of the equations with respect to rotations and translations of the system
of coordinates), the constitutive equation for the stresses can be shown to be:

1
oy = —Oyp + 21 eij — gekkéij +Cexxdij (19)
—_—

deviatoric strain rate tensor
NV
= T1yj (deviatoric stress tensor)

where §;; is the Kronecker delta, u is the dynamic (shear) viscosity (or, simply, viscosity),
C is the volume (bulk) viscosity and p is the pressure.

For all applications considered in this thesis, the term containing the bulk viscosity
¢ can be ignored'®, so eq. (19) simplifies to:

0ij = —dijp + Tij (20)

Or, writing the deviatoric stress tensor explicitly, the stresses read:

aLLi %) 2 aLLk :| (21)

I _ STk
Oij Hp + 1 [( aX]' ox; 3 0%, i

E\T,ij
The deviatoric stress tensor T; is also known in fluid dynamics as the viscous stress
tensor. It relates to the microscopic motion of fluid particles, which transfer momen-
tum in the presence of velocity gradients (shear). Intuitively, viscosity w is the propor-
tionality factor relating a given amount of shearing (deviatoric strain rate)'* to the
amount of shearing stress necessary to produce that shearing. The remaining part of
the stress tensor (—8;;p in eq. (20)) accounts for the stresses which are normal to the
surface-elements of the fluid particle, i.e. the pressure.
Plugging eq. (20) into eq. (17) (and dividing the result by p), we obtain the momen-
tum equation for flows without sound- or shock-waves:
. a_LLJ . 1 ap L l a’tij

oy
_ — X.
ot Mox, T pox pox ) (22)

Equation (22) may be expanded further; to simplify the expressions, we use the
(common) assumption of a constant dynamic viscosity p, which (after some algebra)
leads to:

ow: ow: 0w .
oy .&__la_P+V[i 11(%1) X, 23

ot T Mox T pox | oxidx: | 30x \ox;

where v = u/p is known as kinematic viscosity.

This term only becomes important when studying propagation of sound or shock waves.
It is important to notice that (unlike solids studied in continuum mechanics) a fluid is unable to
sustain deviatoric stresses when it is at rest.

15
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As a note on the momentum eq. (23), the pressure p above refers to the so-called me-
chanical pressure, defined in terms of the purely translational motion of the molecules.
Strictly-speaking, this is different from the thermodynamic equilibrium pressure, which
is computed from the equation of state (see Section 2.3.1.4), and which also accounts
for the fact that molecules may have additional, non-translational degrees of free-
dom (e.g. rotations or vibrations). However, this thesis only addresses fluid problems
where the bulk viscosity is assumed to vanish — in such cases the distinction between
the two pressures becomes irrelevant.

Useful tool for visualizing stationary 2D flows: the streamfunction

For the special case of stationary (time-independent) 2D flows, we can define
the streamfunction |\p(x) |, in terms of the velocity components as follows:

0
Ty = —a—j; (24)
0
= a—;'j (25)

Assuming the velocity-field is known, these equations may be used (in combi-
nation with appropriate BCs at the boundaries of the fluid-domain) to evaluate
P (x) numerically (usually by transforming egs. (24) and (25) into a Poisson
equation for vorticity). For a 2D, stationary flow, the isocontours of the stream-
function represent the trajectories of the fluid-particles.

We use this quantity to visualize the solution of the 2D RB model, in Section 5.1.

2.3.1.3 Temperature equation

So far, we discussed the equations resulting from the conservation principles for
mass and momentum. Since we are also interested in fluids where temperature plays
a role, we also need to consider the conservation of energy. It can be shown that this
leads to an equation for the evolution of temperature, with the general form:

0 (cyT) 0 (cyT) oy, 0 oT 1
P ot + puia—Xi =P axz + a—X1 ka_Xl + 2}1 eij ei]- — gejjejj (26)

@
where T is the temperature, cy is the specific heat (at constant volume) of the fluid,
k is the coefficient of heat conductivity, and @ is the rate of viscous heat dissipa-

tion. When (as will be the case for the applications in this thesis) cy and k can be
considered constants, the temperature equation simplifies somewhat:

oT oT i, k9T 2u 1
=P 2= (eiieii_geijeij) (27)

ot oxg pcy 0x{  pcy Ox{0x{ pcCy



2.3 FLUID DYNAMICS (MACROSCOPIC SCALE)

2.3.1.4 Equation of state

Equations (15), (23) and (27) discussed above give four equations for five unknowns:
the two scalar fields p and p, plus the three components of the vector field u. An
additional equation is necessary for the system of equations to be solvable. There are
several approaches for specifying this last equation:

1. The simplest approach, used for incompressible flows is to “demote” density
to a material property, assumed to be constant (or with only small variations,
which are of little importance for the total mass transfer).

2. In the more general case, when the density is not constant, we need to relate it
to other properties of the flow. Such a relation is known as an equation of state
for the fluid; in general, it is of the form:

p=rp(p,T) (28)

Here, we can identify two sub-cases:

a) barotropic fluid: if the equation of state can be treated approximately as a
function of pressure only, i.e.:

p=p(p), (29)

the fluid is said to be barotropic. In such a case, the equation of state is all
we need to close the system of equations. Of the fluids of interest in ESS
water is barotropic to a good approximation, while air is not — this is why
this approximation is used more in oceanography than in atmospheric
sciences. However, even flows of non-barotropic (i.e. “baroclinic”) fluids
may contain regions where the barotropic approximation holds — these are
known as “barotropic layers” in the literature; for example, large-scale at-
mospheric flows near the tropics (central latitudes) are mostly barotropic.

b) baroclinic fluid: in the more general case, when the equation of state de-
pends on temperature also, the fluid is said to be baroclinic. In such cases,
we need an additional equation for closing the system — this is provided
by the energy equation.

For the convection problems in this thesis, the equation of state is first
simplified to:

p=po1—a(T—THl, (30)

where pj is a constant density-value, at temperature Ty (as explained in the
next section), and « is the coefficient of thermal expansion.* This is obviously
a linearization of the true (non-linear) expression for p; nonetheless, the
approximation is reasonable for the flows studied here.

12 Also known as the coefficient of volume expansion.

17
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2.3.2  Incompressible fluids and the Oberbeck-Boussinesq approximation

As already mentioned, for the flows considered in this thesis, the coefficients of
viscosity, of specific heat, and of heat conductivity may be considered to be constants.
By considering some additional properties of the flows, the governing egs. (15), (23)
and (27) can be simplified further.

Due to the low values of « in eq. (30), the variation of density can also be ignored*3
in all terms of the governing equations except in the body-force term™ (because
of the high value of the gravitational acceleration constant) — this is known as the
Oberbeck-Boussinesq approximation (also referred to as simply the Boussinesq approxi-
mation by some authors)'> of the momentum equation. Under this assumption, the
continuity eq. (15) simplifies to:

ou
The momentum eq. (23) becomes:
ou; ou; 1 op 02U
s ) P — ) A N—x(T=T) X
ot H 0x; Po 0%; * Vaxiaxi = o)] ) (52)

The temperature equation also simplifies, because the 1 term on the right-hand
side (RHS) cancels due to eq. (31), while the last term (viscous heat dissipation) can
be shown via scale-analysis to be less important for fluids such as water. This leads

to:
or o1 o -
ot | x| Coxiox 33
where we defined the coefficient of thermal conductivity as k = Po]zv'

We consider egs. (31) to (33) to be the fundamental equations for the convection
applications, which we solve numerically in this thesis. In vector form, they can be
re-written as:

V-u=0 (continuity eq.) (34)
1

?3_1: +(u-V)u= —p—Vp +vAu+[1—a(T-THlX (momentum eq.) (35)
0

% +(u-V)T=kAT (temperature eq.) (36)

13 As long as the temperature-gradients are small (< 10°C).

14 Indeed, for two of the applications (Sections 5.1 and 5.2) the fundamental physics of the problems
would be lost if all density variations were ignored.

15 Oberbeck (1879) was the first to introduce the approximation, for describing flows driven by horizon-
tal temperature gradients.
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where we defined the Laplace operator as:

A=V?= Gl
o aXiaXi

2.3.2.1  Coupling of hydrodynamic fields to temperature field

The incompressible hydrodynamic and temperature fields are tightly coupled, via
two mechanisms: (a) first, the temperature field is advected by the velocity of the
fluid; (b) on the other hand, the fluid is also influenced by the temperature, through
variations of the last term in the RHS of eq. (32).

2.4 THE RAYLEIGH-BENARD (RB) PROBLEM

The setup known as the Rayleigh-Bénard (RB) problem corresponds to a layer of fluid
bounded by two horizontal planar surfaces, where the lower surface is maintained
at a temperature Ty, which is higher than the temperature T; of the upper surface. If
the system starts from a rest-state, this adverse temperature gradient imposed at the
vertical boundaries causes an unstable vertical distribution of density, which eventu-
ally causes convective motions to appear, if the temperature-gradient is sufficiently
large.

Despite its apparent simplicity, this problem is of great interest, because it can
evolve into a fully-turbulent flow, via a series of flow-regime transitions. Therefore, it
serves as an excellent test bed for improving our understanding of buoyancy-driven
flows in general. Also, being one of the few problems in hydrodynamic stability for
which an exact stability criterion was obtained, this setup is of great importance for
validating numerical models of fluid flow.

This problem is solved numerically using LBM later in this thesis (in Section 5.1 for
the 2D case and Section 5.2 for the 3D case). To prepare the theoretical background
for these applications, in this section we proceed with specializing the incompressible
equations from the previous section. The discussion below focuses on the (more
general) 3D case, for which we obtain the final version of the evolution equations
that will be solved numerically.

The final manipulations of the governing equations are given in Section 2.4.1.
boundary conditions (BCs) and initial conditions (ICs) will be given in Section 2.4.2. Af-
terwards, in Section 2.4.3, we reformulate the entire problem into non-dimensional
units, to facilitate the theoretical analysis. Finally, in Section 2.4.4, we present impor-
tant relevant results from the theory of hydrodynamic instabilities, and from experi-
mental studies (which are necessary for validating the simulations discussed later in
the thesis).
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2.4.1  Governing equations for Rayleigh-Bénard (RB) problem

To describe the evolution of the RB problem, we start with the equations for incom-
pressible, Boussinesq fluids (Equations (31) to (33)). Of these, only the momentum
eq. (32) needs further manipulations.

First, the acceleration X; due to the body-force is:

X=—g0 & Xj =—gdj,, (37)

where g is the gravitational acceleration and &, is the Kronecker symbol. The mo-
mentum eq. (32) becomes:

oy oy 1 9op G
tu L = v — 1= (T —To)l g5
ot Mok T podx Vaxax 1 (T Toll g (38)

where p is the reference density, taken'® as the density at the average temperature
(initially in the middle of the vertical extent):

T 4T,
To = % (39)

Second, to simplify the subsequent calculations, we absorb the constant part of the
body-force into the concept of modified pressure’” (p*), which is defined by:

op*  0p
= _— d;
ox; = dx; + P0gd; y (40)

Therefore, the final form of the momentum equation for the RB problem reads:

uj | ou_ Tdp, O

ot Mo podx | oxiox

+og (T—"To) 85y (41)

2.4.2  Specification of BCs and ICs

To complete the specification of the problem, we also need to provide appropriate
boundary conditions (BCs) and initial conditions (ICs).

2.4.2.1 BCs

VERTICAL WALLS: For the theoretical discussion in this chapter, the fluid is as-
sumed to extend infinitely along the x and y directions, so no BCs are necessary for
the vertical walls.

In reality, the dependence of p on T is non-linear. However, this particular choice of Ty yields a
reasonable approximation for the linearized function, as long as T, — T; is not too large.

The change from normal to modified pressure only causes a constant shift in the values of the pressure-
gradients.
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HORIZONTAL WALLS: For the horizontal walls, the no-slip BC is chosen for the
hydrodynamic component:

u(x,—H2,z,t) =u(x,+"/2,z,t) =0 (42)

where H is the distance between the horizontal planes bounding the fluid.
For the thermal component, a constant temperature is set at each wall; Denoting

(AT)y=Tp—Tt 20, (43)
we have:
AT
Tl Moz t) =Ty =Tt (o0 49)
AT
T(x,+H/2,z,t) =Ty =Ty — ( 5 Jo (45)
2.4.2.2 ICs

For studying the onset of convection, it is natural to start with the stationary solution,
when the fluid is at rest:

u(x,0) =0. (46)

We plug this velocity into the temperature eq. (33), to obtain a compatible IC for
temperature. Specifically, we obtain a 1D Laplace equation, which can be easily inte-
grated and fitted to the BCs, to yield:

Tx,0) = T 2oy 47)

Physically, this corresponds to the situation where the heat-transfer is entirely due
to molecular diffusion.

Finally, to obtain a consistent IC for the modified pressure, we plug eq. (46) and
eq. (47) into eq. (41). After integration we obtain an IC for modified pressure differences:

. . poxg (AT)
P (x,0) —pj = —%yz, (48)

where py = p*(x,0,z,0) is some reference value for the modified pressure, in the
middle of the fluid layer (i.e. the same location where we have Ty and py, for consis-
tency).

It can be seen that we derived the initial temperature (= density) and pressure pro-
tiles, so that the pressure-gradients cancel exactly the effect of the buoyancy forces —
in the upper-half of the domain, the buoyancy force is downwards, while the modi-
tied pressure-gradient is upwards (and vice-versa for the lower-half of the domain).
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2.4.3 Problem reformulation in non-dimensional units

Before we proceed, it is useful to re-write the problem in dimensionless form. This pro-
cedure, formalized by the concept of dynamic similarity (Buckingham, 1914), has the
benefit of making the subsequent results more generally applicable, by minimizing
the number of parameters needed to specify the problem.

For the RB setup, the natural length-scale is provided by the distance (H) between
the horizontal planes. Because the flow is initially at rest, there is no obvious scale for
velocity or time. However, a so-called “diffusive time-scale”*8 can be constructed, by
combining the height of the domain and the thermal diffusivity (H*/). From these
two, a velocity scale can be computed (</H).

Because only differences or (spatial/temporal) variations of the modified pressure
and temperature only appear in the governing equations (eqgs. (33) and (41)), it is
sufficient to define scaling-relations for differences of these quantities (relative to the
reference values, in the middle of the domain when at rest). A scale for the mod-
ified pressure-differences is obtained from the reference density and the character-
istic velocity (rox?/H2). Finally, it is natural to scale temperature-differences by the
temperature-difference between the two planes ((AT)y).

To summarize, we have the following scaling-relations:

SPACE SCALING

X.
X = ﬁ) = xj = Hy (49)
TIME SCALING
d _ K H )
t :m’u:)t:?t (50)
VELOCITY SCALING y
d K (d
=M ey -
PRESSURE-DIFFERENCE SCALING
Hz * * * * pOKZ
(5p) ) = ooKZ (P —py) =P —py = W(ép)(d), (52)

where for brevity we drop the O* from the notation of the modified pressure (in the
dimensionless system).

TEMPERATURE-DIFFERENCE SCALING

1

(d) _
BT = a1,

(T—To) <= T—To = (AT)o(sT)!V (53)

18 We will return to the issue of scales at the end of this section.
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With these scalings, the governing equations can be written in dimensionless form
as:

(d)
ou,
; =0 (54)
Xq
(d) (d) 2. (d)
o, ou, d(5p)(d) o u,
j @7 P j (d)
oy — +Pr +RaPr(8T)'Vs;, (55)
T N NN i
(6T o(s) ¥ d2(5T) )
o) & (;) +ui(d) : (31) - ((d) )<d) (56)
ot ox; ox;  0x;

where the dimensionless coefficients Ra (Rayleigh number) and Pr (Prandtl number)
are defined as:
Pr

~|<2

(57)

_ agH(AT)o
o KV

Ra (58)

These two dimensionless coefficients dictate the intensity of the viscous term and of
the buoyancy term in the momentum equation. The advantage of the dimensionless
formulation is that any two physical systems A and B are dynamically equivalent,
as long as Prn = Prg, Rap = Rag, and their dimensionless BCs and ICs are also
identical. For example, this is the reason why wind-tunnels are useful — by adjusting
the various scales of the flow, the motion of air around a scaled-down model of an
airplane can be made dynamically similar to the flow around the real airplane that
is being designed. While Ra is dependent on the boundary conditions of the flow, Pr
is a material constant, which quantifies the ratio of viscous diffusion to thermal diffusion.
Common values for Pr are 0.7 — 0.8 for air, 7 for water, or 13.4 and 7.2 for seawater
at 0°C and at 20°C respectively (Marshall and Plumb, 2008).

Returning to the RB setup, the values of the control-parameters Ra and Pr have
a profound influence on the flow-regimes — in several ranges of these parameters,
the flow will become significantly different, even for small changes of the control-
parameters (we will discuss several such transitions shortly). However, it is is inter-
esting to note that the value of the Prandtl number (Pr) does not play a role for the
initial transition (from rest-state to convection-rolls), which our subsequent theoreti-
cal analysis will also show.™

Mechanisms for transport of fluid properties and characteristic time-scales in the

problem

For the RB setup, there are two mechanisms for transport of fluid properties, depend-
ing on the Rayleigh number (Ra). Accordingly, two characteristic time-scales are com-
monly used:

19 Neither the final eq. (110) (which predicts the locus of the states of marginal stability for that transi-

tion) nor its corresponding BCs contain any dependence on Pr.
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1. diffusive time-scale: In the limit of low Ra, when the fluid is at rest, the dominant

mechanism of transport is molecular diffusion, for which a so-called “diffusive
time-scale” may be defined as:

Tp = — (59)

This scale is appropriate for studying the conditions when convection first sets
in (which we discuss later). In the case when convection is already present, To
is still relevant for studying the thermal boundary layers, near the horizontal
walls.

2. convective time-scale: For studying flows where convection is present, T is no

longer useful, because it is several orders of magnitude larger than the largest
time-scales of the flow. Therefore, in such regimes it is customary (Sakievich et
al., 2016) to proceed by first defining a so-called “free-fall velocity”:

Ue = /Hga(AT)o, (60)

which yields the corresponding time-scale:

- H
"=\ gadaT o

which, in turn, is related to the time required for a typical eddy in the flow to
complete a rotation (“eddy-turnover time”). For the case when the heat-flux is
fixed (instead of the temperature-difference, as considered in this thesis), the
scaling of Deardorff (1970) is commonly used.

For the regimes with strong convection, a lot of work has been done towards
understanding both the behavior of the bulk (convective part) and the thermal
boundary-layers (see Grossmann and Lohse (2000) and the references therein).

For our numerical experiments in Sections 5.1 and 5.2 we follow the convention
of using the diffusive time-scale (although it would be more appropriate to use
the convective time-scale for higher-Ra simulations. Fortunately, given a physical
phenomenon which is characterized by a “real-world” time-duration, velocity, and
pressure-difference, it is easy to derive an elegant mapping between what would be
reported in the two dimensionless systems of units:

d) _ @ !
ty =t , 62
b 2 v/RaPr (62)
u;c% = u;dg\/ RaPr , and (63)
(d)
@ _ (8p)e
(bp)p” = RaPr " (64)

We use the equations above for presenting the simulation data in Sections 5.1 and 5.2.
However, because the following theory in this chapter is related to the onset of convec-
tion, we focus on the diffusive scales for now, and drop the [y, /¢ subscripts.
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2.4.3.1 BCs and ICs
To complete the dimensionless formulation of the problem, we also need the scaled

expressions for BCs and ICs.

BCs: Because the periodic BCs used at the vertical walls are of a topological nature,
they can be applied directly at the model-level. Therefore, only the BCs at the hori-
zontal walls need to be mentioned explicitly here.

For the velocity field, we have:

(@) (x(d), =y Z(d)/t(d)) — @ (x(d), 1, Z(d)/gd)) -0, (65)

and for the temperature field:

1

(5T){)d)z(6T)(d) (X(d),q/zlz(d),t(d)) T(d) (X(dJ,q/z,Z(d),t(d))_T(gd): (66)

(BT = (1)@ (x4, +1/2, 204, (&) = T (XD, 415, 5160 (@) i) =

N —= N

(67)

where Téd) is some arbitrary reference temperature-value in the middle of the domain

(which we may set to zero, for convenience).
ICs:  For the velocity field, the ICs becomes:
u@ (x(d),0> =0, (68)

for the temperature field:

BT (x9,0) = T (x9,0) =¥ = o (T(x,0) = To) =y (69)
and for the pressure field:

(d) (o(d) q) — () _ @ _ RaPr/ 42
()@ (x9,0) = p¥) (x,0) —pg! === (y') (70)

where p(()d) (analogue to Téd)) is an arbitrary reference modified-pressure value in the
middle of the domain (which we may set to zero, without any loss of generality).

2.4.4 Important theoretical and experimental results for the RB problem

To conclude our coverage of the theory of the RB problem, in this subsection we
briefly introduce the field of hydrodynamic stability (Section 2.4.4.1), which we then
use in Section 2.4.4.2, to analyze theoretically the 1% instability for the RB problem.
Finally, in Sections 2.4.4.3 and 2.4.4.4, we discuss some related theoretical and exper-
imental results.
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2.4.4.1 Principles of hydrodynamic stability analysis

As mentioned previously, the state of any fluid system is characterized by several
tields (such as velocity, pressure, and temperature). Under certain conditions, these
tields do not depend on time, in which case the system is said to be in a stationary
state. The simplest examples of stationary states are the cases when the velocity field
is zero everywhere (i.e. hydrostatics); however, many flows also exhibit non-trivial
(u(x) # 0) stationary states.

Let us assume that a system is to be studied, starting from such a stationary IC.
In practice, however, a perfectly stationary IC is impossible to prepare, because some
small fluctuations will always be present. The goal of the theory of hydrodynamic sta-
bility analysis is to determine whether those small fluctuations will have a significant
impact on the system or not. Specifically, the perturbations may:

a) decay, so that the state of the system will evolve towards the stationary state =
the system is unstable with respect to the perturbation, or

b) become amplified, so that the system will evolve towards another state (which may
also be stationary) = the system is unstable with respect to the perturbation.

To simplify the theory, stability is defined in a “firm” sense, with respect to all
possible perturbations: a state is said to be stable if any perturbation will eventually decay,
and unstable if even a single perturbation exists which gets amplified.

We assume (for generality) that the hydrodynamic problem was formulated in a
dimensionless form, where the dynamics is described by a minimal set of control
parameters (Xj,X3,...,Xy). Since the control parameters include the effects of any
material constants appearing in the governing equations, as well as of the BCs and
the ICs, which of the above scenarios will be followed by the system also depends on
the control parameters. Let us denote by parameter-space the sub-region of R™ defined
by the physically-valid ranges of all control parameters (the outer solid contour in
Figure 2).

Within the parameter-space, there will be sub-regions where a particular 1C will
be stable (green zone in Figure 2), as well as sub-regions where the IC will be unstable
(red zone in Figure 2). Separating these regions are states of marginal stability,*® which
in general satisfy an equation of the form:

Sr(XhXZ/' . XTL) =0 (71)

In problems of hydrodynamic stability, the goal is to find the function J (or at least
to approximate it numerically).

Near the states of marginal stability, the amplitudes of the perturbations decay or
become amplified. These amplitude-changes may take place:

e aperiodically (monotonically): in such cases, at the onset of instability there will
be a pattern of mostly stationary motions, eventually leading to a new state

20 These are sometimes also denoted as states of neutral stability.
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, parameter-space (in general € R")
unstable region

stable region

states of marginal stability

X...

Figure 2: Sketch of the parameter-space defined by the control-parameters of a fluid system.

with so-called secondary flows. For such situations, it is said that the principle of
the exchange of stabilities (Davis, 1969) holds.

e periodically: in such cases, oscillatory motions will be present at the onset of
instability.*!

The problem of stability can be considered at various orders of approximation:

a) The simplest approach (which is outlined in the remainder of this section) is to
linearize the equations (hence the name linear stability analysis). Due to the lin-
earization, the stability of the system can only be investigated in the close vicinity
of a stationary (or quasi-stationary) state, in response to infinitesimal perturba-
tions. Assuming that the evolution of the system may be described as a super-
position of normal modes, the problem of stability can then often be reduced to
an eigenvalue problem. Mathematically, the question of stability is related to the
sign of the real part of the eigenvalues (stability for negative sign and instability
for positive sign).

b) A more general approach to stability analysis is Lyapunov’s second method (also
known as the “direct” method). This approach works directly with the original
equations (instead of the linearized versions), so that the influence of the finite-
amplitude 1Cs also enters the picture. However, as can be expected, this increased

21 This scenario is also known as overstability, because of restoring forces which oppose the perturbations,
but their effects are overshooting with respect to the equilibrium.
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generality usually comes at the expense of much more complex calculations,
which are only practical for simple systems.

We focus on the linear stability analysis below. In general, this procedure consists of
the following sequence of steps:

1. Starting from ICs corresponding to the stationary state, we apply small pertur-
bations to the fields describing the flow, to obtain the evolution equations for
the perturbations. To keep the equations tractable, it is usually necessary to
only keep the terms which are linear with respect to the perturbations, which
is reasonable if the perturbations are small.

2. To explore the stability of the system with respect to all possible perturba-
tions, the perturbation is assumed to consist of a complete superposition of
an (infinite) set of basic modes. Because of the linearity of the equations, mode-
interactions are outside the scope of the theory. Assuming that each basic mode
is characterized by a vector k, we write the perturbation for a flow-field ¥; as:

Wi(xt) = J W, (%) exp(sit)dk (72)
where .
Sk = sg) + isﬁ) eC (73)

are constants (depending on the control-parameters) which have to be deter-
mined.

3. By imposing the BCs to which the flow is subjected, only certain values of sy
will allow non-trivial solutions, which leads to a characteristic value problem in
terms of sy.

4. For the flow to be stable with respect to any perturbation, we need to have:
sOX1,X2,...,Xn) <0, Vk (74)
Conversely, the flow is unstable if:
d k. such that si(rz(Xth, v, Xn) > 0. (75)

Therefore, the state of neutral stability (with respect to mode k) is given by a
curve in parameter-space:

sO(X1, X2, ., Xn) = FO (X1, Xg, ..., Xn) = 0, (76)

5. By taking the envelope of the resulting curves for all modes, we can finally
distinguish the regions of complete stability from the regions of instability. For every
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point along this envelope, the system will become unstable with respect to the
particular mode k, whose parameter-space curve coincides with this envelope
at that point.

2.4.4.2 Stability analysis for the 1° transition

For the RB problem, the control parameters are the Rayleigh and Prandtl numbers
(Ra and Pr, respectively). The 1%t transition of this flow (from quiescent state to
2D convection-rolls) is remarkable, because it is one of the few examples of flow-
instabilities which can still be studied analytically. In this section, we provide a sketch
of this analysis, the results of which will be later used for validating our numerical
models. Although our discussion largely follows that of Chandrasekhar (1981), we
introduce the dimensionless formulation at an earlier stage, which makes some of
the calculations more clear.

Starting from the dimensionless evolution equations (Equations (54) to (56)), we
superimpose a perturbation onto the quiescent IC (given by egs. (68) to (70)):

u’(x,0) 70 (77)

——
perturb. of velocity field
/ —
(5T)/(x,0) = —y + 8 (79)
perturb. of temperature field
- RaPr ,
(5p) (%, 0) = ———y" + (3p) (79)
~—

perturb. of pressure field

where we dropped the 09 superscript for brevity.
The perturbations need to be physically-consistent, which requires that:

ou!

1 _
o 0 (80)

Plugging the perturbed fields into the dimensionless evolution equations, we ob-
tain (after some algebra, where we discard the higher-order terms w.r.t. the pertur-
bations) the corresponding equations governing the evolution of the perturbations

themselves: ,
ou/ d(8p) o“u/
j P j
— = — P Ra Pr 06; 8
ot o x| PO (81)
0 020

0 _ s o, 00 8
ot~ MW T 5k (82)



30

THEORETICAL FOUNDATIONS

Curl using permutation tensor (Levi-Civita symbol) and € — 6 identity

Given a vector field F(x) = F;i(x)é;, the i™® component of the curl of F is:

(V % F); (0 = €115 Fi(x) )
)

where —1 if (i,j, k) is an odd permutation of (1,2, 3).
0 if any index is repeated,

€ijk =1 if (1,j, k) is an even permutation of (1,2,3), or (84)

—1 if (1,j,k) is an odd permutation of (1,2,3).

A very useful relation between e and the Kronecker & symbol is:

€Ersn€nk,j = 61*,k6s,j - 61*,j65,k (85)

We eliminate the pressure-term, by taking the curl of the momentum equation.
Using the Levi-Civita symbol, this leads to:

dwn, 00 %wn
_RaPre,.: 25 O Wn
ot AiTenkjg Oy ATy A

(86)

where we defined the n" component of the vorticity of the perturbed flow-field as:

/
auj

— 8

wn = €n,k

If we multiply eq. (86) by &y, we obtain an evolution-equation for the vertical
component of the vorticity, { = & ywy:

oC 02¢
— =Pr
ot 0x; 0%

(88)

Taking again the curl of eq. (86), we obtain:

d [dwn 020 02 dwy
€r’s,na (a_xs) = RaPr €T,s,n€n,k,j 6]',ym + Pr €r,5,nm ( aXS (89)

Using the identity eq. (85), this becomes:

0 aZ / aZ aZ a4 /
( ur>:RaPr(6 o 0 )+P$ (90)

ot 0x3 OXy Y Ox Oxk ooy 0Xs0Xs ' 0x;0%;0X OX)
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By multiplying this equation by &, we obtain an equation for the vertical compo-
nent of the velocity-field, w = &, yu;:

d [ *w 920 920 otw
9 —RaP . pr W
ot <axkaxk) atr (axkaxk ay2> MR- sarwar Sl LY

VT
filter-out vertical part of the Laplacean

To summarize, we need to consider the equations:

AL _ d%¢
ot =Pr 0x{0x{”
2 92 _ 920 920 *w
& (7o) = RaPr (58 —20) 4+ Pro2o, and  (92)
0 _ 920
=Wt 0%x;0x1”
subject to the BCs:
¢ ¢
w w
w (X/ N 1/2/Zrt) - w (X/ + 1/2,Z,t) - Or (93)
ay ay
0 0

where the additional BC for w(x) (which we now need because the w-equation is of
27d_order) results from the continuity equation applied close to the walls.

The next step in the general recipe is the analysis into normal modes — we intro-
duce an Ansatz for the perturbation as a superposition of normal modes, and then
analyze the stability of each of these modes. In the present case, we assume that the
disturbance for each field can be written as a superposition of 2D periodic waves
(each of them characterized by its wavenumber k), i.e.:

{C,w, 0} ~ exp (i(kex + k,2z) + st), (94)
where:
e k= \/kZ+k? is the horizontal wavenumber and
¢ s € Cis a constant.

The region of marginal stability is then described by the points where:

Re(s(k)) =0 (95)
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More explicitly, the Ansatz into normal modes reads:

(=Y(y)e—] (96)
w = W(y)e=—] (97)
= 0O(y)el=] (98)

where for brevity we defined el—-] = exp(i(kyx + k;z) + st).
Any function F(x) of the above form has some interesting properties, which will
be useful later:

0F
F =T, (99)
2?97
(W + 3 2) F=-k’%, and (100)
2T a2
—K*)F
xi0x; (dy ) (101)

Using the properties above, after plugging eq. (96), eq. (97) and eq. (98) into the
evolution-equations, we obtain after some algebra:

s 2
$Y(y) = Pr ( dCL kz) Y(y) (102)
dZ dZ 2
S <@ — kz) W(y) =—Ra Prsz*)(y) + Pr (a — kz) Wi(y) (103)
¢,
sO(y) = Wly) + —k%) 6(y) (104)
\ dy?
with the corresponding BCs:
Y Y
w w
dw (X/ B 1/212'/t) - aw (X/ +1/2/Z1t) = V. (105)
dy dy
C) C)
By denoting D = g5 d and re-arranging terms, we can rewrite egs. (103) and (104)
as:
2 12 2 12 S _ 2
(D K ) (D K Pr) W = Ra k2@ (106)
(DZ 2 s) 0=-W (107)

Next, we can eliminate © between these two equations, which leads to:

(DZ K s> (DZ - kz) (DZ K2 Ifr> W = — Rak*W (108)
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It can be shown that the principle of exchange of stabilities holds for the RB problem,
which means that the imaginary part of s vanishes, J(s) = 0. This implies that for the
region of marginal stability (where by definition we also have Re(s) = 0) we must have:

s =Re(s)+1J(s) =0, (109)

which allows us to simplify eq. (108) to:
(Dz —k2)3W — _Rak*W (110)
This equation requires 6 BCs on W, of which we already have 4 from eq. (105). Two

more BCs can be obtained by plugging the BC values of © near the walls into eq. (106).
In the end, we get:

w w
DW (x, =1/2,2,t) = DW (x, *1/2,2,t) = 0. (111)
(D2 —12)* W (D2 —12)* W

Because the BCs at the lower- and upper-walls are identical, and we have an even
differential operator in the LHS of eq. (110), the ordinary differential equation (ODE) will
have even (W,) and odd (W,) solutions, of the form:

3

We(y) = Y Arcosh(qry) and (112)
i=1
3

Wol(y) = ) _Bicosh(qiy), (113)

i=1

where it can be shown (by plugging the solutions into the ODE) that, the coefficients
gi need to be the roots of:
(g —k*)® +Kk*Ra =0 (114)
It can be shown (see Reid and Harris (1958) or Chandrasekhar (1981) for details)
that, in order to satisfy the BCs, the following equations must hold:

q1 + q2v/3) sinh(q1) + ( q1v3 — q2 ) sin(q2)
~Gotan <%> - ( ) cosh(q1)+<cos qQ2 )

90 <q1 + qZ\@) sinh(q7) — <q1\/§_ GI2> sin(qz)

tan (4) B cosh(q7) —cos(q;y)

for even modes, and (1 1 5)

for odd modes, (1 16)

where we denote:

_ 3/Ra?
* A=V e
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Figure 3: Plot of the critical Rayleigh number as a function of the wavelength of the pertur-
bations. The dotted lines represent the marginal-stability curves for the even (blue)
and odd (red) modes, respectively. The numbered labels are used to mark the dif-
ferent regions of the parameter-space.

Equations (115) and (116) are transcendental algebraic equations, and can only
be solved numerically. Figure 3 illustrates the dependence of the critical Ra on the
wavenumber k (Table 1 lists the exact values).

The main outcome of the analysis is that the quiescent (rest) state becomes unstable
for ’Ra > Rag = 1707.762 |, with respect to the even mode with . These
reference values are used in later parts of this thesis, for validation of the numerical
models.

This first instability marks the transition from the rest state to a state of stationary
(time-independent) flow. Directly at the transition boundary, the stable convective
solution consists of adjacent and parallel rolls, whereby the motion can be considered
effectively two-dimensional ( Figure 4). This pattern is also known in the literature
as ideal straight rolls (ISR).

Another interesting outcome of the analysis is that there is a range (hatched re-
gion), where the stability of the flow depends on the wavenumber of the perturbation.
Such a situation is common for many flows (Manneville, 2004).
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Table 1: Wavenumber (k) and Rayleigh number (Ra.) for the first even and odd unstable
modes in the Rayleigh-Bénard (RB) problem. The highlighted values indicate the min-
imum critical values for the even and odd modes.

Ra
k even modes odd modes
1 5854.4848 163127.60
2 2177.4121 47005.616
3 1711.2771 26146.630
W 1707.762 24982.076
4 1879.2560 19684.585
5 2439.3217  17731.529
6 3417.9831  17933.046
7 4918.5417  19575.824
8 7084.5093 22461.475
9 10089.629 26599.707
10 14134.445  32104.101

Figure 4: Illustration of the flow directly after first transition (source: Lappa (2010)). Original
caption: “Schematic diagram of rolls in Rayleigh-Bénard convection: for a laterally unlim-
ited domain, the fluid motion is regular and organized as a set of horizontal rolls (arrows
indicate the direction of fluid flow; the wavelength of the pattern is approximately equal to
twice the layer height d)”

2.4.4.3 Secondary and higher-order modes for RB convection

For higher values of the control-parameter (Ra), an IC consisting of parallel rolls also
becomes unstable (secondary instabilities), and evolves into more complex states.
Similarly, these states may themselves be subject to even higher-order instabilities,
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which further complicate the dynamics, until the flow attains the chaotic character
of turbulent flows.??

In principle, the onset of the secondary and higher-order instabilities may also be
studied using approaches similar to those outlined in the previous sub-section, for
the first instability. In practice, however, this is feasible only for very specific cases,
because the mathematical difficulty usually increases exponentially with the degree
of the instability. Below we provide a qualitative overview, based on the currently-
available literature (see Lappa (2010) for a detailed review).

Busse (1978) was the first to provide a reasonably-complete diagram (Figure 5) of
the parameter-ranges where the stationary ISR pattern is stable.

Figure 5: The Busse balloon (source: Busse (1978)). Original caption: “Region of stable convec-
tion rolls in the three-dimensional R — P — « space. The thick curves represent computed
stability boundaries for the oscillatory (OS), the skewed varicose (SV), the cross-roll (CR),
the knot (KN), and the zig-zag (ZZ) instabilities. The other curves represent approximate
interpolations from results of Busse and Clever (1979). The stability boundary for P = 300
actually represents the computations of Busse (1967) for P = oo which are expected to give
a good approximation for P = 300.” Note: the parameters P, R and « correspond to Pr,
Ra and k respectively in this thesis.

22 The more modes we have to consider, the more appealing a purely statistical description becomes.
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An important first observation is that, while the value of Pr did not play a role
for the first instability, it becomes crucial for the secondary- and higher-order in-
stabilities. Another remarkable feature is that, depending on the (Ra,Pr, k) values,
the instabilities exhibit very different patterns. The most prevalent such patterns are
briefly summarized below:

* Zig-zag (ZZ) instability (present for medium- to high-values of Pr) This type
of instability occurs when the wavenumber of the ISR is less-than-optimal. By
deforming the rolls in a zig-zag fashion, the effective wavenumber is increased.

* Eckhaus (EK) instability (present for low-values of Pr) This type of instability
is characterized by compression and expansion of adjacent rolls.

* Cross-roll (CR) instability (present for medium- to high-values of Pr) This type
of instability is characterized by the appearance of regions with rolls that are
oriented perpendicularly to the axis of the initial rolls. At high Pr, these rolls
become very strong inside the thermal boundary layers, leading to a transition
to bimodal convection.

* Oscillatory (OS) instability (present for low- to medium-values of Pr) This
type of instability is similar to zig-zag, except that the bending of the ISR prop-
agate along the roll-axis.

¢ Skewed-varicose (SV) instability (present for low- to medium-values of Pr)
This type of instability manifests as a dislocation of the ISR, along a line which
is oblique with respect to the original roll-axis.

When comparing simulation or theoretical results with experimental data, it should
be noted that these instabilities can be strongly influenced by defects in the initial ISR
pattern (which are always present in nature). These effects can complicate the actual
dynamics even further (see Lappa (2010) for a comprehensive review of the patterns
that may be present in such cases).

2.4.4.4 Transition to turbulence in RB convection

As already mentioned, thermal convection is a very convenient system for study-
ing the transition to turbulence, because the flow becomes more-and-more com-
plex, through relatively well-defined transitions, as the Rayleigh number is increased.
Therefore, before closing our theoretical discussion of the RB problem, it is fitting to
provide at least a qualitative overview of the cascade towards turbulent flow. For this
purpose, the summary of Busse (1978) is sufficient.

As seen in Figure 6, the Prandtl number becomes important, as soon as Ra exceeds
the Ra. value of the first transition (from pure diffusion to the steady ISR pattern).
The physical reason for this situation is that the nonlinear terms in the temperature
equation are dominating for high-Pr fluids, whereas the nonlinear terms in the mo-
mentum equation are more important for low-Pr fluids. Therefore, it is appropriate
to distinguish at least the following two regimes:
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Figure 6: Different flow-regimes for the RB problem (source: Busse (1978)). Original caption:

a)

b)

“Transitions in convection as a function of Rayleigh and Prandtl numbers after Krishna-
murti (1973) and others. The curves indicate the onset of steady rolls (I), three-dimensional
convection pattern (II), time-dependent convection (I1I) in isolated spots (IIl(a)) and uni-
formly throughout the layer (I1I(b)), and turbulent convection (IV).” The original figure
was annotated with the red dashed lines, indicating the approximate corresponding
positions of water (Pr = 7) and air (Pr = 0.71).

High Pr fluids: Historically, convection in fluids fitting this category was investi-
gated first, because the longer time-scales make experiments easier to setup.

As Ra is increased, such fluids tend to develop the stationary ISR pattern (first
transition), as usual. Then, a time-independent three-dimensional pattern appears
(known as “bimodal convection”), where secondary rolls (oriented at 90° relative
to the ISR) appear in the thermal boundary-layers.

For higher Ra, the flow becomes oscillatory, whereby the thermal boundary layers
periodically break down and re-appear.

Finally, for even higher Ra, the periodicity is lost, and the flow is said to have
become turbulent.

Low- to medium-Pr fluids: As seen in Figure 6, the succession of regimes occurs
in much narrower Ra-intervals for lower values of Pr. In fact, these intervals may
even be said to be overlapping, which leads to much more complex dynamics
— already for the secondary transitions there are more types of instabilities that
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can occur (refer back to Figure 5). This complexity has caused difficulties for
experimental and numerical investigations, causing our understanding of these
regimes to be less complete.

Generally-speaking, for such fluids we have thin viscous boundary-layers near
the horizontal plates, which are required to satisfy the no-slip BCs.

As Ra is increased, these fluids also develop the stationary ISR pattern. However,
for higher values of Ra, three-dimensional periodicity sets in (skipping the time-
independent regime that was present for high-Pr). Beyond this point, the flows
quickly become turbulent, even for small increases of Ra.

2.5 OVERVIEW OF THE PHYSICS OF TURBULENCE

As we observed in the previous discussion about the RB problem, fluid flows can
exhibit qualitatively different regimes as the control-parameters (such as Ra) are
varied: no motion, laminar flow, periodic regime, quasi-periodic and (eventually)
turbulent. In this section, we provide a brief overview of the current status of research
on the latter regime (turbulent), and of approaches for modeling such phenomena
numerically. These topics are directly relevant for analyzing the results of simulations
presented in Chapter 5.

Considering again egs. (31) to (33), it is well-known that in special cases (e.g. for
sufficiently-low velocities?3) they admit laminar solutions, when the flow occurs in
“sheets” that slide past one another, often with no dependence on time. In such situa-
tions it is sometimes even possible to obtain complete analytic solutions for the flow-
tields. However, most flows encountered in nature and in engineering problems are
turbulent, where the flow-fields are very complex and time-dependent. Understand-
ing turbulent flow is therefore very important, due to the vast range of applications,
as well as an intellectual challenge.

Although this phenomenon has been recognized for a long time*4 and the gov-
erning equations have been known for over a century, our current understanding of
turbulence still leaves much room for improvement.?>

2.5.1 Defining turbulent flows

A precise definition of turbulent flow is still lacking — what we have instead are
several intuitive descriptions. For example, a popular (physical) formulation is at-
tributed to Richardson (1922):

How low the velocities have to be depends on specific details of the problem, such as the geometry
and the transport-coefficients of the fluid.

For example, Leonardo da Vinci provided a qualitative description of what he called “turbolenza”,
more than 500 years ago.

The “problem of turbulence” is often said to be the last open problem of classical physics.
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Richardson’s description of turbulence

“Big whorls have little whorls,”
which feed on their velocity;
And little whorls have lesser whorls,
And so on to viscosity
(in the molecular sense).”

a The word “whorl” is equivalent to the more modern term “eddy”,
for which a precise definition is also missing (intuitively, and eddy is
defined as “a turbulent motion, localized within a region of size 1, that is
at least moderately coherent over this region. The region occupied by a large
eddy can also contain smaller eddies.” Pope (2000)).

For several decades, the (statistical) description due to Hinze (1959) was also pop-
ular:

Hinze’s description of turbulence

“Turbulent fluid motion is an irregular condition of the flow
in which the various quantities show a random variation with
time and space coordinates, so that statistically distinct average
values can be discerned.”

Finally, a more modern description (which takes into account recent progress in
the theory of nonlinear dynamical systems) was given by Chapman and Tobak (1985):

Chapman’s description of turbulence

“Turbulence is any chaotic solution to the 3-D Navier-Stokes
equations that is sensitive to initial data and which occurs as
a result of successive instabilities of laminar flows as a bifurca-
tion parameter is increased through a succession of values.”

Despite the apparent lack of consensus on what exactly turbulence is, several char-
acteristics of the phenomenon are universally-accepted:

e sensitivity to initial conditions (SIC): When the flow is turbulent, even minute
variations of the ICs or BCs can lead to vastly different flow-fields at later times.
Since such variations are unavoidable in reality, experiments involving turbu-
lent flows are fundamentally non-repeatable in a strict sense (although some
statistical properties usually remain the same for the various repetitions).

¢ chaotic behavior and intermittency: If, for example, we measure fluid-properties
at a specific location, the resulting time-series will be chaotic (irregular). For
decades, this caused many investigators (Hinze, 1959) to treat turbulence as a
random process. However, it should not be forgotten that (within the limits of
the continuum hypothesis) the phenomenon is still deterministic. Also, some
flows may exhibit turbulence only in some localized regions (so-called “turbu-
lent patches”) and/or only sometimes — a phenomenon known as intermittency.
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A famous example of a system which exhibits both chaos and intermittency
(despite being completely deterministic) is the Lorenz system (Lorenz, 1963),
which is based on a simplified model for convection in the atmosphere.

* wide range of space- and time-scales, and an “energy cascade”: As explicitly
acknowledged in Richardson’s description, a turbulent flow normally contains
vortices of various sizes; mechanical energy (which is needed to sustain the
turbulent regime) generally enters the system at the larger space-scales (where
advection-effects dominate) and is eventually lost in the form of heat at the
smaller scales (where dissipation-effects dominate).

* enhanced mixing (diffusivity): From a practical point of view, a crucial charac-
teristic of turbulence is its increased efficiency for mixing (tendency to homog-
enize) momentum, temperature, or solvent concentrations, which is e.g. desir-
able for many industrial applications, or for reducing the toxicity of emissions
to the atmosphere.

* enhanced dissipation: Turbulent flow are also much more effective at dissipat-
ing mechanical energy than laminar flows, which can be a nuisance for some
applications (e.g. fluid transport through pipes), but also beneficial (e.g. vis-
cous dissipation of turbulence kinetic energy in storms (Businger and Businger,
2001)).

* three-dimensionality: Last but not least, it is commonly-accepted that turbu-
lent flows need to be three-dimensional, because the primary mechanism for
propagation of turbulent behavior is vortex stretching (which cannot occur in
2D).26

2.5.2  Important results from turbulence theory

2.5.2.1 Existence of critical control-parameters

Some of the first quantitative observations of turbulence are due to Reynolds (1883),
who studied the evolution of flows in cylindrical pipes. By inserting a streak of dye
into the flow, Reynolds observed that in some cases the dye formed a smooth filament
(with very little diffusion). By increasing the velocity (U) of the flow, the filament
began to oscillate downstream; for even higher velocities, the filament lost its identity,
and the dye became spread throughout the volume of the fluid. By experimenting
with fluids of different viscosities (v) and pipe-diameters (D), Reynolds found that
which of these regimes is realized only depends on the dimensionless quantity:

up
Re= —
e S (117)

Note, however, that this does not imply that chaotic solutions cannot be obtained for 2D flows — on
the contrary, these are commonplace e.g. in numerical models which are restricted to two dimensions.
However, such chaotic results should be regarded more as model artifacts, and not as physically-
relevant turbulence results.
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which is now known as the Reynolds number. Re is an example of a control parameter
which (w.r.t. transitions to turbulence) is analogous to the Rayleigh number (Ra)
from the previous section. Physically, it can be interpreted as the ratio of inertial- to
viscous-forces within the fluid (which explains intuitively why high-Re flows tend
to be turbulent, while low-Re flows tend to be laminar).

2.5.2.2  Breaking of symmetries and their restoration in the statistical sense

Throughout the earlier discussion on the RB problem, we mentioned the tendency of
the flows to become increasingly complex, as the value of Ra is increased; such ten-
dencies are also encountered for other fluid-flow problems. From a topological point
of view, the increase of complexity may be associated with a sequence of symmetry-
breaking events, which make the flows increasingly difficult to predict analytically.
Interestingly however, as the flows become more turbulent (high Ra or high Re lim-
its), there is a tendency to restore these symmetries in a statistical sense — see Frisch
(1995) for a detailed discussion. This observation has encouraged research into these
regimes (known as fully developed turbulence), due to the physicists” penchant for sym-
metries but (more importantly) also because such regimes are ubiquitous in nature.
Some of these results are presented in the next section.

It should be mentioned that many shear flows (e.g. plane Couette flow and pipe
flow) have been found to be turbulent even for parameter-ranges where the linear
stability theory predicts a laminar flow. This phenomenon was recently analyzed by
Grossmann, Eckhard and their co-workers (see e.g. Grossmann (2000) and Eckhardt
(2012) and the references therein). An important outcome of these studies was the
discovery of an alternative route to turbulence, which is driven from the start by
nonlinear interactions between perturbations and the basic laminar flows.

2.5.2.3 The energy-cascade and the Kolmogorov-Obukhov theory for high-Re flows

Richardson’s intuitive picture of turbulence as a hierarchy of eddies was first put on
more quantitative foundations by Kolmogorov (1941b,a,c) and Obukhov (1941a,b).
Here we provide a summary?®7 of their results, which are relevant for analyzing the
turbulent-flow numerical results presented in this thesis.

As already mentioned, a turbulent flow consists of a superposition of eddies of
different sizes. To be more precise, for each eddy we associate a characteristic length-
scale |1| and a characteristic velocity |u(l)|; by combining these scales, we can also

define a characteristic time-scale | t(1) = Y/u(1) | and (by also making use of the viscosity

Re, = Wl
v |
In the Kolmogorov-Obukhov (K-O) theory, the eddy motions are classified into three
scale-ranges (see Figure 7), with mechanical energy being introduced into the system at

the largest (energy-containing) range, and eventually being lost as heat at the smallest

of the fluid) also an eddy-scale Reynolds number

See Pope (2000) for a more detailed discussion. Also, Frisch (1995) provides a more complete overview
of this theory, along with expanded proofs.
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(dissipative) range. The intermediate (inertial) range acts effectively as a “channel”
(in frequency-space) between the other two scales.
Dissipation (&) Production (P)
T()

Transfer of energy to
successively-smaller scales

-— e— — — — <—

o OF 2

n l DI l length-scale

Dissipation range Inertial subrange Energy-containing range

Figure 7: Schematic of the energy cascade for high-Re flows (adapted after Fig. 6.2 of Pope
(2000)). Note the difference in eddy-sizes and isotropy.

THE LARGE (ENERGY-CONTAINING) RANGE Eddies belonging to this range have
length-scales of the same order of magnitude as the geometric scale of the domain
(lo). The wvelocity-scale is e.g. similar to the velocities imposed by the BCs. Since both
of these scales are usually large, the eddy-local Re is also large, which means that
viscosity effects are negligible in this range. Also important to note is that at this
scale the eddies are usually anisotropic, due to the influence of the geometry.

THE SMALL (DIFFUSIVE) RANGE When the system is in equilibrium (in a statisti-
cal sense), the energy injected at the large scales will have to be eventually dissipated
as heat. This diffusion-dominated range is characterized by small eddies, with small
velocities. Kolmogorov was the first to provide estimates for these scales (starting
from a hypothesis of local similarity), namely:

1
ng
(Y 8
. (8) (118)
1
iy

Uy = (ev) , and (119)
W () o

where ¢ is the rate of dissipation of turbulent kinetic energy (also referred to as “the
dissipation”). Physically, it represents the rate at which larger eddies provide energy
to smaller eddies.

The quantities 1, uy and T,,, which are now known as the Kolmogorov scales, are di-
rectly related to the need for turbulence modeling in numerical simulations, because
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they provide estimates for the space- and time-resolution requirements for capturing
all physical scales in the flow. To see this more clearly, we can estimate ¢ based on
the energy-containing scales, namely:

3
€~ %o , (121)
lo
which leads to the following scale-ratios:
(
b —Re™* (122)
n
%0 _ Re'” , and (123)
Un
T _Re'~ . (124)
Tn

The scale-ratios for space and time in particular indicate that, the higher Re is,
the larger the number of mesh-points becomes. As the number of mesh-points is
increased, it is usually also necessary to increase the temporal resolution, to keep
the simulations stable according to the Courant-Friedrichs-Levy (CFL) criterion. Equa-
tion (124) also gives such a requirement, but with a smaller exponent.

Finally, it is interesting to note that the Reynolds number for eddies in the diffusive
range is of the order of unity:

Rejy = — =1 (125)

THE INTERMEDIATE (INERTIAL) RANGE Between the energy-containing- and
diffusive-ranges, we have an intermediate range, for which the convective term of
the Navier-Stokes equations (NSE) is still at least an order-of-magnitude larger than
the viscous term. While this is also the case for the energy-containing-range, the
eddies in this so-called inertial range have a more universal character (i.e. they are
independent of the details of the flow-geometry).

In the inertial range, the only important parameter is the dissipation-rate (¢). Using
just this one parameter, it is not possible to derive characteristic scales for space, time,
and velocity. However, it is possible to construct scaling-laws for the characteristic
velocity- and time-scales, for a given eddy length-scale (1) in the inertial-range:

u(l) = (sl)% = Uny <%) ’ (126)

2\ 3 z
) ()

Notice that both scales decrease as 1 decreases.
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Another important result (derived independently by both Kolmogorov and Obukhov

in 1941) concerns the distribution of energy as a function of the wavenumber k = ZT”
for the inertial range:
2/3 75/3 1 1
E(k) = Ckxe™”’k 7, for N LK K r_]' (128)
0

where Cg is empirical quantity (known as the Kolmogorov constant). The original
derivations (by Kolmogorov and Obukhov) of eq. (128) suffered from relying on
some assumptions which are not necessarily true for many flows; however, the equa-
tion still holds (and was later derived from more rigorous principles by Frisch (1995)).

2.5.3 Approaches for quantifying and predicting turbulent flows

2.5.3.1 Statistical tools for analyzing flows

Although the deterministic NSE are widely accepted as a good model for describing
the evolution of fluid flows, it is beneficial to introduce a statistical description of
these phenomena. This is motivated by practical considerations, which are ultimately
rooted in the sensitivity to initial conditions (SIC) property of turbulent flows — even
if we would be able to obtain a complete knowledge?® of the instantaneous flow-
fields for one experiment, this would tell us nothing about the instantaneous flow-
tields for a repetition of the experiment. On the other hand, this does not mean that
efforts to obtain high-resolution data (numerically or experimentally) are worthless
endeavours — due to the ergodic hypothesis,* such high-resolution data can be used
to infer statistical properties of an ensemble of experiments (which is often what we are
ultimately interested in).

In the interest of the later discussion about turbulence modeling, the definitions of
some of these statistical tools is provided below (see (Lumley, 1970) for an extensive
review).

STATISTICAL MOMENTS OF AN ENSEMBLE If we consider an ensemble (set) of N
identically-prepared repetitions of the experiment, the m'" statistical moment of the
random variable U at space-time position (x, t) is defined as:

N
um(x, t) = % > Um(xt:i), (129)
i=1

where U(x, t : 1) is the it" realization of the experiment.

Such complete knowledge is impossible, because: a) closed-form mathematical solutions for turbulent
flows are not existing, b) it is impossible to measure (and to store) experimentally the flow-fields with
infinite accuracy and for continuous time-intervals, while c) numerical solutions are always imprecise,
due to the finite sizes of the meshes, numerical errors, and limited accuracy with which floating-point
numbers are represented in the computer.

This hypothesis states that time-averages converge to ensemble means, as the averaging time-intervals
tend to infinity.
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In the (purely theoretical) limit of an infinite number of ensemble-members, we
obtain the expectation value of the moment, which we denote by angle-brackets:

(U(x,t)) = lim U™(x,t) (130)
N—o0
Interestingly, the ensemble-averaging operation commutes with a) differentiation
and integration, with respect to space and time, b) addition, and c¢) multiplication
by a constant (but not with multiplication with another random variable). These
properties will be used extensively in later calculations shown in this thesis.

Estimating moments from a single experiment

Because in many situations (e.g. large-scale measurements of climate variables)
it is not possible to prepare nearly-identical ensembles, we might still want to
estimate the moments even based on a single experiment. This is possible in
certain circumstances:

e If the random variable U is stationary in time, we can replace the ensemble-
average in eq. (129) with a time-average:

- 1 [t+At
WEEGT 0] = Z_AtJ . um(x,t)dt’. (131)
t—At

e Similarly, if the random variable is stationary in space, we can use volume-
averaging:

Um(x,t) ~ um(x, t)dv. (132)

AV Lv

In practice, the most used moment is the first one (also known as mean, or average),
which gives us general information about the value of U:

N
U(x, t) = %Z U(x, t:1) (133)

i=1

However, typically we are also interested in the properties of the turbulent fluctuations.
This information is contained within the higher-order moments — for example, the
root-mean square (rm.s.) value is derived from the 24 moment:

Upms = VU2 (134)

To focus on the variability, it is useful to factor-out the information about the mean,
by defining the higher-order central moments:

U0 =23 (Uxt:)-UGD)" (135)

i=1
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The most important central moments of order higher than one3° are (2"4 moment)
. =2 =
the variance3* (U—U)", (3" moment) the skewness (U — U)3, and (4" moment) the

kurtosis (U — U)4.

CORRELATION, AUTOCORRELATION AND SPECTRA  While the moments defined
above (normal or central) do provide valuable information about the random vari-
able, they do not tell us how values at different times or at different positions in
space are related to each other. For such purposes, we need to study the so-called
correlations.

Given two random variables U; and U;, sampled at different space-time locations
(x1,t1) and (xy, t2), their covariance is usually defined as the ensemble-average of the
product of the fluctuating parts of the variables:

Rij (x1,t1, %2, t2) = (Uilxy, t1) — Wy) (Uj(xp, t2) — Uj). (136)

By normalizing the covariance by the product of the standard deviations (oy, and
oy;, respectively), we obtain the correlation coefficient:

Rij (x1,t1, %2, t2)
iy (x1, 1, %0, 1) = —2 o : (137)
U, ou

The more specialized terms auto-correlation and cross-correlation are used when i = j
and i # j, respectively. The variables are said to be: (a) strongly correlated (or strongly
anti-correlated) if v; S 1 (or vy £ —1), (b) weakly correlated (or weakly anti-correlated) if
0 <1y <1 (or—1 <1y <0), and (c) uncorrelated if ||ry;|| ~ 0.

The concepts above may be further specialized, depending on the characteristics
of the flow, and on which aspects we are interested in:

* If both random variables are statistically-stationary in time, it is interesting to
look at the correlation between them at fixed points in space, in which case the
notation for the covariance may be simplified to:

Rij(t) = (Ui(t) — Uy) (Uj(t+ 1) — 1), (138)
The correlation becomes:
ry (1) = Wi (139)
O'ui (Yu].

where T = t; —t; is the time lag. In this case, 1i;(7) is also known as the lag-
dependent correlation coefficient, for which we have in general lim ., 7ij(T) = 0.
The value T = t. where the auto-correlation r1; = 0 is known as the corre-
lation time, which gives an estimate for the equivalent number of ensemble-
members (when time-averaging is used instead of ensemble-averaging), namely

30 By definition, the first moment is zero.

31 The square-root of the variance is known as the standard deviation: \/ (U — U)z.
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N =~ At/t.. Other interesting time-scales that may be derived are the integral
time-scale Ay and the Taylor microscale A; (see e.g. Kundu et al. (2012) for details),
which are measures of the memory of the turbulent flow.

¢ Similarly, if both random variables are statistically-stationary in space, it is inter-
esting to study the correlation between them at a fixed time, when the notation
for the covariance may be simplified to:

Rij(r) = (Ui(x) — Uy) (Uj(x+1) — 1), (140)

where r = x; — x3.

The correlation then becomes:

Tij(r) = ', (141)

Returning to the general case, the covariance defined by eq. (136) above may be
used to extract information about the scales of eddies within the flow. A first step
is to compute the velocity spectrum tensor ®i(k,t), which is defined as the Fourier
transform of the two-point correlation:

(Dij (k,t) = 1 JJJ eXp_iK'lr Rij (r, t)d3r, (142)
R3

where d°r = drjdr,dr;. The spatial Fourier mode exp ** is a periodic function

(with wavelength 1 = |2?7|‘, related to the size of the corresponding eddies), which
varies sinusoidally along the direction of k (where k is the wavenumber vector).

By integration over spherical layers in k-space and dividing by two, we obtain the
energy spectrum function, which depends only on the magnitude (k) of the wavevector:

1

B t) = 5 ||| @atk 08 (k1= ) &, (143)

R3

where d3k = dk;dk,dks.

2.5.3.2 The Reynolds-averaged Navier-Stokes (RANS) equations

In addition to establishing experimentally the existence of critical control-parameters
(such as the Reynolds number), another important contribution of Reynolds was to
adopt a statistical approach for analyzing turbulent flow, by decomposing the flow-
fields into mean an fluctuating parts. This approach (which was later improved by
Taylor (1935) by introducing correlations and Fourier transforms) formed the basis
for much of the following efforts on modeling turbulence.

The fields that specify the state of the fluid are written as:
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u=(u)+u’ (144)
p=(p) +p’ (145)
T=(M+T (146)

where (x) denotes the (ensemble-averaged) mean part, and x' the fluctuating part,
Vx € {u,p, T}

For many applications, it is sufficient to obtain information about the mean parts
only (which are less costly to compute than the fluctuating parts). To obtain the equa-
tions for the mean components, we introduce the Reynolds decomposition egs. (144)
to (146) into the dynamic egs. (31), (33) and (41).

In order to make the discussion more directly relevant for the RB convection sim-
ulations presented later in this thesis, we will also include the forcing-term into the
analysis, as we sketch the derivation of the corresponding Reynolds-averaged Navier-
Stokes (RANS) equations. Also, we use the physical coordinates here, which will make

the interpretation of the fluctuating terms more clear towards the end of the discus-
sion.

CONTINUITY EQUATION By inserting the decomposition into the continuity eq. (31),

and using the properties of the ensemble-averaging operator, we obtain:

a<u1> E)ul’
=0
o + o (147)

By taking the ensemble-average of this equation, we eventually obtain:

O(ui) _

Finally, by subtracting eq. (148) from eq. (147), we obtain:

ou!

1
-0
o (149)

In other words, the zero-divergence condition holds for both the mean and for the
fluctuating parts of the velocity individually.

MOMENTUM EQUATION Similarly, by inserting the decomposition into the mo-
mentum eq. (41), and using the properties of the ensamble-averaging operator, we
obtain (after some algebra) the momentum equation for the mean part:

0(u;) ow) Ouwy)  13p) 0w
a—t + <u1> aXi + axi N _& an + VaXiaXi + *9 (<T> B TO) 6],9 ’ (150)
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and for the fluctuating part:

dw) Ow dfufuh  Top’ %y /
) -y T's;
i * e axi axi Po an * Vaxiaxi g ) (151)

auj’ 6uj/
ot + (W)

/
+uy

aXi axl

Returning to the momentum eq. (150) for the mean part, we can write them in a
more standard form (by moving the last term on the LHS to the RHS, and by express-
ing the viscous part in terms of the viscous stress-tensor):

a<uj> a<LL]'>_ 1 9(p) 1 0 11
—2 4 () o ——aa—xj—l—aa—m Tji —p0<uiuj> + g ((T) —To) 85,4 (152)

Reynolds’stresses

We now see that the resulting (Reynolds-averaged) momentum equation has the

same form as the original momentum equation, except for the | —pg (ui’uj’ ) | terms,

which account for the momentum-transfer due to the turbulent fluctuations in the
flow. These terms may be viewed as additional stresses (which is why they are also
known as “Reynolds’ stresses”). Unfortunately, these terms lead to a closure problem,
because there is no universal3* expression for them. This spawned the entire field
of turbulence modeling which, during the last few decades, resulted in several closure
approaches (as discussed later).

TEMPERATURE EQUATION  Finally, Reynolds” decomposition can also be applied
to the temperature eq. (33), yielding the temperature equation for the mean part:

o(T) oT)  awT) (T
ot TRt T T o (153)
and for the fluctuating part:
oT’  ,o(T) o’ T 3T
ot T x4 (W) Xy oy Kaxiaxi (154)

Similar to what we did for the Reynolds-averaged momentum equation, we can
re-express eq. (153) as:
o(T)

TWL(WJ

oT) 0 [KB(T)

= — — (T’
aXi aXi aXi <ul >1 4 (155)

which is formally identical to the original temperature equation, except for the
terms, known as the turbulent scalar fluxes. Similar to the momentum equa-
tion, these new terms introduce a closure problem, and have to be approximated based
on the mean-flow quantities if we want to get a complete system of RANS equations.

32 lLe., valid for all turbulent flows
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NONLINEARITY AND TURBULENT FLUXES It is interesting to notice that turbu-
lent fluxes (such as were obtained above for the momentum and temperature equa-
tions) only occur when there are nonlinearities in the equations to which the Reynolds
averaging (RA) procedure is being applied (in the present case, the nonlinearity is due
to the presence of advection terms in the LHS of the original equations).

2.5.3.3 Turbulence modeling
During the last century, several approaches for simulating turbulent flows were de-

veloped, which we briefly mention below.

THE RANS SIMULATION APPROACH In order to bring the averaged momentum
eqg. (152) and temperature eq. (155) in a solvable form, we need to provide appro-

priate expressions for the turbulent fluxes | —po(u{u) | and | —(uT’) | In principle,

we could attempt to obtain equations for these terms by multiplying egs. (151)
and (154) with u! and taking the ensemble-average. Unfortunately, this procedure
can be shown to lead to equations for the turbulent fluxes which depend on higher-
order turbulent fluxes, which depend on even higher-order turbulent fluxes, and so
on. Therefore, this approach leads to an infinite hierarchy of equations, which is
analogue to the BBGKY hierarchy from kinetic theory (see Section 2.2).

For concrete computations, this infinite hierarchy needs to be truncated at some
point, by estimating the missing terms based on information about the averaged
fields ((wi), (p) and (T)). Various expressions (known as turbulence models) exist
for various types of applications, ranging from the simple algebraic models (which
normally use information about velocity-gradients to compute so-called “eddy vis-
cosities” and “eddy diffusivities”, respectively, in addition to some tuning parame-
ters based on Prandtl’s idea of mixing length), to the more general Reynolds-stress
models (RSMs) (which consist of transport equations for the turbulent flux tensors,
with a minimum of tuning parameters). Good overviews on this topic are provided
e.g. by Pope (2000) and Wilcox (2006).

THE LARGE-EDDY SIMULATION LES APPROACH An alternative to the ensemble-
averaging procedure is to apply spatial filtering, which allow us to explicitly separate
the prognostic fields into resolved and sub-grid components. Using the universality of
the small-scale eddies (according to the theory of Kolmogorov), the effect of these
scales may then be simulated using so-called subgrid scale (SGS) models. Similar to the
RANS approach, there are many SGS models to chose from. The simplest (and most
popular) such model was proposed by Smagorinsky (1963). In general, the large-eddy
simulation (LES) approach leads to more accurate computations in situations where
the time-dependence of the flow is critical (Pope, 2000).

THE DIRECT NUMERICAL SIMULATION DNS APPROACH The simplest (concep-
tually) but, at the same time, also the hardest (computationally) approach for simulat-
ing turbulent flows is to have grid-spacings and time-steps which are small-enough
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to simulate even the smallest eddies in the flow. This approach (which is also used
in this thesis, for the RB convection simulation) has the advantage that it does not re-
quire any empirical parameters. Also, the simulation results usually show excellent
agreement with experimental data (e.g. (Dong and Karniadakis, 2005)), which makes
DNS very valuable, both as a tool for basic research, as well as for calibrating RANS
and LES models.

2.6 FLOWS AT THE PLANETARY SCALE

In the previous sections, we considered convection-driven flows which occur at hu-
man space- and time-scales (e.g. as encountered in engineering applications). Finally,
in order to provide the theoretical background for the last application presented in
this thesis, we briefly discuss the physics of flows at much larger (planetary) scales
in the ocean. While a reasonably-complete description of the RB theory could be pre-
sented in the previous section, the theory we present for the large-scale ocean flows
is more qualitative. This is due to the much more diverse range of phenomena at
these scales, an exhaustive discussion of which is outside the scope of the thesis (see
e.g. Pedlosky (1996) or Olbers et al. (2012) for details).

Interestingly, convection also plays a crucial role for driving flows at larger (plane-
tary) scales, in the oceans and in the atmosphere. Indeed, the primary driving mech-
anism for both atmospheric and oceanic flows is the uneven warming of the Earth’s
surface by the Sun (i.e. more at the equator, and less at the poles). In an “attempt”
to diminish this imbalance, the atmosphere and the oceans transport a significant
amount of heat, from the equator towards the poles. Although currents in the ocean
are much slower than winds in the atmosphere, the global33 oceanic and atmospheric
poleward heat transports are of comparable magnitude.

In the atmosphere, the differential heating leads to differences in air-pressure
which, in turn, drive the surface winds (Figures 8 and 9).

In the oceans, long-lived flow structures may be observed at the surface region
(i.e. down to a depth of ~ 100m), known as oceanic surface currents. These features
(sketched in Figure 10 ) are driven by the surface winds in the atmosphere. Due to
the Coriolis force, the currents are deflected to the right of the wind-direction in the
northern hemisphere (causing predominantly clockwise flows), and to the left of the
wind-direction in the southern hemisphere (causing predominantly anti-clockwise
flows).

Variation of seawater-density (caused by differential heating by the Sun and by
variations in salinity due to rivers and melting/formation of sea-ice) is another im-
portant factor driving the ocean circulation; this causes downwelling and upwelling
of water-masses (Marshall and Schott, 1999), and drives the circulation of the deep

On a more local scale, the ratio of the zonally-averaged heat transports has a strong dependence on
latitude (Czaja and Marshall, 2006), with the oceans dominating in the tropics and the atmosphere
dominating in mid-to-high latitudes.
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Figure 8: Sketches of the atmospheric circulation (source: Encyclopaedia Britannica Online,
article “Atmospheric circulation”, accessed 15 December 2017, at https://www.
britannica.com/science/atmospheric-circulation).
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Figure 9: Estimation of the zonal mean eastward wind stress (source: Hellerman and Rosen-
stein (1983)). Original caption: “Zonal means of annual T (dyn cm~2) from wind rose
data of the Marine Climatic Atlases and Pilot Chart data of the U.S. Navy Hydrographic
Office (dashed line) and zonal means of annual ™ from TDF-11 data (solid line).”

currents. These effects are denoted by the term thermohaline circulation (THC) (Fig-
ure 11).

The third type of external forcing upon the ocean consists of the gravitational pull
due to the Moon, which causes the tides. The tidal motion influences the general
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Figure 10: Sketch of the oceanic surface currents (source: Nasa / US Navy Oceanographic
Office, article “General Characteristics of the World’s Oceans: 4 Ocean Currents”,
accessed 15 December 2017, at https://icp.giss.nasa.gov/research/ppa/1997/
oceanchars/currents.html).
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Figure 11: Sketch of the thermohaline circulation of the oceans (source: nasa Earth Obser-
vatory Online, article “Explaining Rapid Climate Change: Tales from the Ice”,
accessed 15 December 2017, at https://earthobservatory.nasa.gov/Features/
Paleoclimatology Evidence/paleoclimatology_evidence 2.php).

circulation by increasing the bottom friction, and by enhancing the vertical mixing
in the shallow regions (Moon, 2005).

Another important aspect for planetary-scale flows is the Coriolis pseudo-force, due
to the rotation of the Earth, which induces an additional acceleration:

a® =20 xu<— ajC = —2€j 1, (156)
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where Q = 7.29 x 10725 is the angular velocity of the Earth’s rotation, u is the
velocity of the fluid parcel, and €j is the permutation tensor defined earlier.

While this is not a source of energy per se (the mechanical work of the Coriolis
force is zero), this strongly deflects the currents in the atmosphere and oceans, as
long as both the spatial and the temporal scales are sufficiently-large.

In addition to the factors mentioned above, the dynamics of fluids at the planetary
scale is further complicated by a myriad phenomena, such as phase-transitions of
water (precipitation and evaporation, or formation and melting of ice-sheets), influ-
ences due to the carbon cycle, or feedback-effects (e.g. the ice-albedo feedback).

2.6.1 Primitive-equations model of the ocean

The discussion in the previous section was more qualitative than the earlier parts
of this chapter. The reason for this, as mentioned previously, is that the phenomena
occurring at the planetary scales are too diverse to be satisfactorily captured by a
small set of equations (as is the case in human-scale fluid flows). This is due to the
very large scales and the small vertical-to-horizontal aspect ratios, but also because
many additional processes need to be considered to describe the complete physics.
Therefore, instead of a unified set of equations, it is more feasible to consider separate
models for studying specific phenomena, which can be later coupled as needed.

One of the more general versions of the dynamical equations of motion in the
ocean (which is also used by many general circulation models (GCMs)) is the system of
the so-called primitive equations. These equations can be derived34from the usual fluid-
mechanics equations discussed previously (with the addition of a salinity-transport
equation), by assuming the flows to be incompressible (i.e. ignoring phenomena
on the acoustic time-scales, and employing the Boussinesq approximation) and by
neglecting terms that are rendered small by the small vertical-to-horizontal aspect
ratio. Additionally, the Reynolds averaging (RA) procedure is normally applied, to
obtain the final equations.

2.6.2  Wind-driven ocean circulation (WDOC)

For ocean GCMs, the primitive equations are usually written in spherical coordinates
(or in oblate spheroidal coordinates, for a more accurate representation of the Earth’s
surface). Because in that form the equations contain many geometric factors which
are not essential for our current purposes (see (Olbers et al., 2012) or (Pedlosky, 1987)
for details), we do not write them here. Instead, we start with a simplification of the
primitive equations known as the barotropic (vertically-integrated) ocean approximation,
which is useful for understanding qualitatively the shape of the wind-driven surface
ocean currents. For the remainder of this chapter, we present the theory behind this
model, which is then simulated using the LBM approach in Section 5.3.

34 The derivation is outside the scope of this thesis — see e.g. (Miiller, 2006) for details.
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Figure 12: Illustration of the western-boundary current intensification in the oceans (source:
nasA  Ocean Motion, article “Wind driven surface currents: western bound-
ary currents”, accessed 15 December 2017, at http://oceanmotion.org/html/
background/western-boundary-currents.htm).

A salient feature of the WDOC (which our numerical model will have to reproduce)
is the intensification of the currents at the western boundaries (e.g. the Gulf Stream,
the Kuroshio, or the Aghulas Current), as illustrated in Figure 12. This phenomenon
puzzled oceanographers until the first half of the 20" century. While significant con-
tributions (especially for understanding the flow in the interior of the ocean basins)
were made by Ekman (1905, 1923) and by Sverdrup (1947), it was Stommel (1948)
and Munk (1950) who showed that the western-boundary current intensification is
caused by the strengthening of the Coriolis effects with increasing latitude. These
studies provided analytical solutions for the linearized problem, under the assump-
tion of time-independent flow. Such solutions serve as a good starting-point for ass-
esing solutions for the nonlinear and/or time-dependent problem (which require use
of numerical models).

2.6.2.1 The primitive equations (P-plane approximation)

A simple form of the primitive equations (which still retains the terms that are im-
portant for capturing the wind-driven circulation) is the locally-Cartesian formulation
(see e.g. (Miller, 2007)):

g::t ~0 (157)

% 2% _ _éj_)z + w4+ F (158)
% iaa:: - _%g—)‘(’z —fui+F (159)
p(x3) =po+g E pdz’ (160)

23 Jruiaa—fi = Fo (161)
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where py is the surface pressure, 0 is the potential temperature, s is the salinity. A
hydrostatic pressure distribution is assumed. The quantities F; and F, represent the
effects of turbulent mixing, which are often parameterized using the eddy-viscosity
approach (with different coefficients for the vertical and for the horizontal compo-
nents):
azui

Fi=Ay

AnAyu; Vi 1,2} , 6
E)X36><3+ HAHW; ie{l,2} (163)

where Ay = ax?§X1 + axgzzaxz is the horizontal Laplacian, and Ay ~ 1073m?/s (Ay ~
2 x 10°m?/s) is the vertical (horizontal) eddy-viscosity coefficient (numerical values
after (Lohmann, 1996)).

For the terms Fg and F;, representing turbulent mixing of potential temperature
and of salinity, Bryan and Cox (1967) proposed parameterizations based on convective
adjustment:

A
Fe 0 ( YV 0X

— Ao A 0
o\ o aX3)+ WHAHX  Vx €1{6,s} , (164)

where A, v ~ 107*m?/s (A, i ~ 2 x 103m?/s) is the vertical (horizontal) eddy-diffusivity

coefficient for the passive scalar x € {6, s} (numerical values after (Lohmann, 1996)).
By taking the parameter 6 of the form:

1 if 22 <0
§(p) = aa"3 , (165)
0 if Z2>0

the concentration of the passive scalar is assumed to be instantly equalized vertically
whenever a situation of unstable stratification occurs (while usual diffusion is active
for situations of stable stratification).

To model the effect of the Coriolis force, the so-called (-plane approximation is
used, whereby the Coriolis parameter f (also known as Coriolis frequency or Coriolis co-
efficient) is assumed to vary linearly with the locally-Cartesian northward coordinate
(x2):

20
f(x2) & 20 sin o + %‘1’0 X (166)
f N~——
")
axz Cb()

where R ~ 6367.4 km is the mean radius of the Earth and ¢( is some reference
latitude. Equation (166) is a compromise between:

a) the much simpler f-plane approximation
f = const. =2Qsin¢y , (167)
f
0

which does not capture important effects (such as the intensification of the western-
boundary currents and the Rossby waves), and
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b) the exact dependence on latitude

f(d) = 2Qsin(dp) , (168)

which makes analytic solutions much more difficult to obtain.

Equations (157) to (162) need to be supplemented by an equation of state, which
gives the dependency of the density on temperature and salinity. While the gen-
eral equation of state is highly-nonlinear, the following linearized version is used
frequently:

p(0,s) = po [l — (0 —00) +als —so)] (169)

where o is the haline contraction coefficient.

2.6.2.2  Governing equations for a barotropic ocean

By vertically-integrating the equations presented in Section 2.6.2.1 and changing the
equation of state (EOS) to a constant (fixed density py), it is possible to obtain an even
simpler, two-dimensional model, which is formally identical to the two-dimensional
incompressible Navier-Stokes equations (NSE):

.

oy
=0
~ (170)
oy dy 1 t?
e} uiuj:__a_p_'_A Yoy T+af , (171)
ot 0x4 Po an OXy 0Xg H,_J/
body—forces

where, in contrast to the RB momentum equations, the coefficient of kinematic viscosity
(v) is replaced by the horizontal eddy viscosity coefficient (A ~ 109m?/s > v a2 1070m?/s),
as used by Munk (1950), who followed the approach of Boussinesq (1877) of model-
ing momentum transfer due to turbulent eddies in an analogous way as momentum
transfer due to molecular diffusion (except that the former is orders-of-magnitude
more efficient at mixing momentum).

In eq. (171) T represents the effect of the surface wind-stress (which appears in our
2D model as a body-force). For simplicity, we can assume a zonal wind, of the form:

T=To <_ sin’ (%X2)> , (172)

which corresponds to easterly winds at low latitudes and to westerlies at mid lati-
tudes.
For the Coriolis force, the previously-mentioned beta plane approximation is used:

(173)

aC = —f(x2)& = —(fo + Pxo)lt = ( (fo+ BXZ)W) ,

—(fo + Bx2)uy
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with fy and 3 same as in eq. (166), and where we denoted by 1 the velocity vector-
tield w, rotated anticlockwise (by 90°):

o= <_u2> , (174)
w

2.6.2.3 BCs and ICs for the barotropic ocean model
As usual, to complete the specification of the model, we need to provide boundary

condition (BC) and ICs.

BCs  For simplicity, we only consider closed domains, where the no-slip BC is as-
sumed to hold at the ocean-land interface:

u(X/ t) |x€{ocean—land interface} — 0 (175)

ICs  As for the ICs, we simply assume the ocean to be initially at rest:
u(x,0) =0, Vx € {ocean} (176)

2.6.2.4 Problem reformulation in non-dimensional units

It is useful to re-write the equations in dimensionless form, as we did for the RB prob-
lem. In the present case, we denote by L the characteristic length-scale (horizontal)
and U as the characteristic velocity.3> From these, we can construct ﬁ as a time-scale
and poU? as a scale for pressure-differences. By plugging these scales into egs. (170)
and (171) we obtain (after some algebra):

aui
— O
ox; (177)
ou; ouy o(dp) 1 oMy 1 T .,
U = — — — (T - — 8
m +uy o o, + Re dxidny + Ro (TRo +x2) u -, sin® (7xy)  (178)

oy owy ocp) 1 *w, 1
hhac) . — _ — — (I
ot e 0x4 0x) * Re 0x 0x  Ro (Tro +x2) 1 (179)

\

35 We will provide concrete values for these scales in Section 5.3.
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NOTE (notation)

To make the structure of the equations more readable, we dropped the (9
superscript in the equations. The reader should therefore keep in mind that the
quantities uj, x4, t and (8p) in the egs. (177) to (179) above actually refer to the

dimensionless counterparts ui(d), xi(d), t(d) and (6p)(d) respectively.

In the egs. (177) to (179) we introduced the following dimensionless numbers:

* Reynolds number
UL  advection

R == 8
C=A dissipation (180)
¢ Froude number:
u inertia
Fr = = 8
' VToL  strength of the external force-field (181)
* Rossby number:
u advection
Ro = =
© BLZ ~ strength of the B-term in Coriolis force (182)
e Coriolis “f3-ratio”:
f strength of constant term in Coriolis force
MRo = 0 = o5 (183)

BL strength of 3-term in Coriolis force

We will use these results in Section 5.3, when we discuss the numerical solution of
this problem.



COMPUTATIONAL FLUID DYNAMICS (CFD) AND LATTICE
BOLTZMANN METHODS (LBMs)

“An algorithm must be
seen to be believed”

Donald Knuth

Owing to the simplicity of the algorithms and to their suitability for massively-
parallel computations, the lattice Boltzmann method (LBM) has attracted an active re-
search community during the last two decades, which developed the method on
several fronts, and eventually made LBM a serious competitor to methods with a
longer tradition (such as finite differences (FD), finite volumes (FV), finite elements (FE) or
spectral methods).

The LBM has been successfully applied to traditional CFD problems (Wolf-Gladrow
(2000), Succi (2001), Sukop and Thorne (2006), Luo et al. (2010), Guo and Shu (2013)).
In addition, the approach seems very promising for emerging classes of applications,
such as fluid-structure interactions (Tian et al., 2011), microfluidics (Zhang, 2011),
and multiphase flows (Fox, 2011).

There is a variety of different schemes that are based on the LB equations, most
of which are summarized in the excellent reviews of Benzi et al. (1992), Chen et al.
(1998), Aidun and Clausen (2010), Luo et al. (2010), or in the books of Wolf-Gladrow
(2000), Succi (2001), Sukop and Thorne (2006), Guo and Shu (2013), and Kriiger et al.
(2017). Many of these models differ with respect to how they implement the collision
operator — for example, SRT models (Qian et al., 1992), MRT models (D'Humieres,
1992), regularized models (Latt and Chopard, 2006), entropic models (Ansumali and
Karlin, 2000), or the more recent cumulant LB model (Geier et al., 2015).

In this chapter, we only briefly present the conceptual ideas behind LBM. Because
many good references covering the early developments of the field already exists
(e.g. (Wolf-Gladrow, 2000) and (Succi, 2001)), we do not repeat this material here.
However, some of the newer variations of the method, which were used for our
concrete simulations are described in Chapter 5, together with the problems to which
they are applied.

3.1 WORKFLOW FOR NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS (DES)

Although there are many algorithms to choose from for solving any given fluid flow
problem numerically, there are three general phases, which are independent of the
chosen algorithm:

1. Pre-processing
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¢ specifying the problem (governing equations, fluid properties, initial condi-
tions (ICs), boundary conditions (BCs)) in physical units

* casting the problem in non-dimensional form
e discretizing the non-dimensional equations; this step involves several sub-
steps:
— setting-up the geometry
- specifying a system of equations which needs to be solved numerically

- choosing the simulation parameters (such that both stability and accu-
racy are ensured)

e initializing the fields in the simulation

2. Solution

¢ solving the algebraic equations

3. Post-processing
¢ evaluating derived (secondary) quantitites (if any)

¢ producing graphical representations of the results

3.2 TRADITIONAL METHODS IN COMPUTATIONAL FLUID DYNAMICS (CFD)

To understand what makes LBM-like numerical schemes different, this section sum-
marizes the methods of finite differences (FD), finite elements (FE), finite volumes (FV), as
well as the spectral method, which are the more “traditional” approaches for con-
structing numerical algorithms.

3.2.1 Finite difference (FD) methods

Perhaps the most natural approach for simulating differential equations (DEs) numeri-
cally is that of FDs methods." The main idea for FD methods is to replace the continu-
ous derivatives in the target DEs with discrete approximations; this leads to a system
of difference equations, which can be solved numerically. The approximations for the
derivatives are usually constructed by combining different Taylor expansions of the
unknown function.

FD methods are ideally suited for regular meshes, where the usual Taylor expan-
sions are directly applicable. However, their implementation becomes more compli-
cated for irregular meshes, because in those cases it is necessary to transform the
equations before the discretization step (or to use interpolation).

From an algorithmic point of view, the lattice Boltzmann methods (LBMs) can also be considered to be
FD schemes. However, the interpretation of the stencils is less direct.
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3.2.2 Finite volume (FV) methods

Another approach for numerical simulation of DEs is that of finite volumes (FV) meth-
ods (Roe, 1981; LeVeque, 1997, 1998). These methods are based on an integral formu-
lation of the governing equations (in contrast to FD methods, which are based on an
differential formulation). Similar to FD methods, the idea is to compute the values of
the quantities of interest at discrete points. However, the interpretation of the resulting
numerical values is different: instead of representing the values of the quantities at
that particular point in space, it represents the average value of the quantities, over a
tinite spatial sub-volume (“cell”), for which the point is the centroid. In the FV meth-
ods, it is assumed that we have a piece-wise linear variation of the quantities of interest
over the volume of each cell. To study time-dependent problems, FV methods focus
on how the values at the centroid change due to exchange of fluxes with the neigh-
bouring cells, by evaluating the fluxes at the cell-interfaces (using the divergence
theorem, the volume integrals from the governing equations are converted into sur-
face integrals, representing the fluxes). By construction, this method has the useful
property of being conservative, since the flux entering one cell is equal to the flux
leaving the adjacent cell — the fluxes also have a direct physical significance in most
applications (which is not necessarily the case e.g. for finite elements (FE) methods).

While the conservative nature of FV methods is an advantage in many applications,
this also makes them less general than FD methods (which can also be applied to
problems which are not based on physical conservation laws).

Because there is a lot of freedom in choosing the shape of the cells, this method is
generally well-suited for applications requiring irregular meshes. However, the cal-
culation of the fluxes can also become very complicated for general irregular meshes.

3.2.3 Finite element (FE) methods

A third approach for solving DEs numerically is that of finite elements (FE) methods.
Originally introduced as a method for structural analysis (of bridges, ships, etc.) in en-
gineering applications (where it is also known as FE analysis), this method is based on
the idea of dividing the computational domain into a number of small sub-domains
(the “elements”). The flow solutions are then computed on each of these elements
(for example using the Galerkin method). In a sense, the FE method can be viewed
as a local version of the spectral methods, which are discussed in the next section.

3.2.4 Spectral methods

A fourth general approach for solving DEs numerically is that of spectral methods
(Orszag, 1969, 1971; Canuto et al., 1988). In this approach, the solution of the DE is
written as a summation over a space of basis functions (e.g. Fourier series), where
each such function is multiplied by a coefficient. These coefficients are then com-
puted, such that the DE is satisfied as accurately as possible. For solving systems
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of ODEs, the spectral approach leads® to a system of algebraic equations for the co-
efficients, while for time-dependent partial differential equations (PDEs) the result is a
system of ODEs, which can be integrated in time using methods such as Runge-Kutta.

The idea of writing the solution in terms of the basis functions is common to FE
methods and spectral methods. However, while FE methods define these basis func-
tions on small sub-domains (the “elements”), spectral methods define global basis
functions, for the entire computational domain. This implies that the resulting solu-
tion at each point will implicitly depend on the entire computational domain (unlike
FD methods for example, where only information from neighbouring points is used).
Due to this, spectral methods have exponential convergence for problems where they
are applicable, which makes them the “golden standard”, against which other meth-
ods are often evaluated — in the context of LBM, see e.g. Martinez et al. (1994) and
Peng et al. (2010). However, due to the Gibbs phenomenon, spectral methods lose
their advantages for problems with complex geometries. Also, they are generally
considered inappropriate for problems with strong shocks (though this is not so
important in ESS).

3.3 A “BOTTOM-UP” APPROACH TO MODELING

Discretization Multiscale Analysis

Figure 13: Top-down versus bottom-up approaches for numerical simulation of fluids.

As discussed in Chapter 2, a fluid can be described by several physical theories,
of different granularities. The fact that we can, in principle, recover the phenomena
predicted by the coarse-grained theories from solutions of the fine-grained theories
also suggests a non-conventional way of constructing numerical algorithms for sim-
ulating fluid flows (see Figure 13): instead of directly modeling the coarse-grained
equations (i.e. Navier-Stokes equations for human-scale flows), we can construct a
simplified model of the fine-grained equations, which will exhibit the same behavior at
the larger scales. We emphasized “simplified model” above, by which we mean that

2 The equations for the coefficients are the result of a transformation from the physical space (continu-

ous) to the coefficient space (discrete), usually via the Fourier transform.
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the these models are not meant to provide quantitatively accurate solutions of the
fine-grained equations (which is the costly procedure that we want to avoid). Instead,
the idea is to capture qualitatively the essential physics at these scales, which are im-
portant for recovering the correct large-scale dynamics. It can be shown, nonetheless,
that the coarse-grained dynamics simulated by methods following this approach
(such as lattice gas cellular automata (LGCA) or LBM) can be qualitatively accurate, as-
suming that the parameters in the models are chosen appropriately.

Although this approach seems convoluted at first, it turns out to have several
surprising benefits:

e From an algorithmic point of view:

— the resulting numerical schemes are often easier to implement than those
of classical approaches, and

— they are also more suitable for parallel computing (which is important in
today’s many-core hardware landscape).

* Also, because the algorithms are based on more “fundamental” principles than
the Navier-Stokes equations, they can also be extended more easily to simulate
more complex physics beyond Navier-Stokes.

It should also be noted that, despite these advantages, this idea also brings some
unique challenges. First, while there are several methods (Watari, 2012; Caiazzo et
al., 2009) for deriving the macroscopic equations that are actually solved by a given
LBM/LGCA discrete model, there is currently no general procedure for deriving the
discrete model for arbitrary systems of macroscopic PDEs. The most common ap-
proach for deriving LBM-like models is to add/remove terms to the evolution equa-
tion of an existing LBM model, followed by tuning of the degrees of freedom in the
model (at the end of the multiscale-analysis), to match the target PDEs as close as
possible. This approach is very intuitive (and is actually a strength of LBM) when
the goal is to model effects which are also present at the small scales (such as body
forces or multiphase flows). However, it becomes an inconvenience if the goal is to
model arbitrary systems of PDEs, because the natural tendency of LBM algorithms is
to model equations which are similar to Navier-Stokes. Owing to continuing interest
in LBM methods, these problems will hopefully be addressed by future research.

3.4 PRECURSORS OF LBM
To understand the lattice Boltzmann method (LBM), it is useful to briefly consider the

models which inspired the method: cellular automata (CA) and lattice gas cellular au-
tomata (LGCA).

3.4.1  Cellular Automata (CA)

Historically, the first numerical models following the philosophy outlined above
were the CA. These are discrete models, consisting of entities (“cells”) which typi-
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Figure 14: Snapshots of the superstable line puffer pattern: t = 0 (upper-left), t = 100 (upper-
right), t = 150 (lower-left), and t = 200 (lower-right). The figures were produced
using the Golly software (Trevorrow and Rokicki, 20009).

cally reside on a regular grid (lattice). The state of each cell is updated from time t
to t+ 1, based on some simple evolution rule, which takes into account the state (at
time t) of the cell itself and of some of its neighbors:

N(x, t+1) = ({N(x+ 8;, 1) : (V8i), [|8:] < 7}), (184)

where N(x,t) represents the state of the cell at discrete location x and discrete time
t, and rg is

Typically, the state of each cell is characterized by a boolean (“dead” or “alive”) or
integer value. This is appealing from a computational point of view, since it implies
that the evolution rule is free of numerical rounding-errors.

Most remarkably, despite the simplicity of the evolution rules, CA are capable of
producing very complex, chaotic patterns. For example, Figure 14 shows the fasci-
nating evolution of a pattern called the “line puffer”, which moves from left to right
as the CA is integrated in time, leaving a complex “wake” behind. Interestingly, the
game of life (GoL) automaton is known to be Turing complete (Berlekamp et al., 2003),
which is to say that it can be used to compute any result that is computable in theory.
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3.4.2 Lattice Gas Cellular Automata (LGCA)

The direct ancestors of LB methods are the lattice gas cellular automata (LGCA). Here,
instead of directly simulating each atom/molecule in the fluid, “virtual particles” are
simulated, each of these representing a group of atoms/molecules. The grouping cor-
responds to coarse-graining in space but, equally important, also to coarse-graining
in velocity space (since only a finite number of velocities are allowed).

The virtual particles then move in discrete steps, each according to its velocity, and
all of their possible positions trace a regular grid (the “lattice”). This process, known
as streaming (or propagation), is inspired by the fact that atoms/molecules in a gas
move freely for considerable periods of time.

Also inspired by kinetic theory, when two or more particles meet at the same
lattice node, they interact according to a set of rules (which are designed to satisfy
the physical conservation laws for mass, momentum, and energy).

The first LGCA model was proposed by Hardy et al. (1973), which used a square
lattice. However, while this recovered qualitatively fluid-like behavior, there were
some unphysical effects. These were corrected by subsequent versions of the LGCA
((Frisch et al., 1986), (Wolfram, 1986)).

Despite these improvements, LGCA models fell out of favor, due to the inherent
noise of the simulations, which requires coarse-graining to get physically-meaningful
macroscopic fields. Instead, they gave way to LBM models, which replaced the boolean
state-vector with real probability distribution functions. To account for this change,
LBMs also use different collision operators compared to LGCAs.

3.5 HOW LBMs WORK

The typical steps in LBMs simulations are shown in Figure 15. The signature pattern is
the succession of collision and streaming steps, which are inspired by simplifications
of the real processes described in kinetic theory. For the boundaries of the domain,
there are also specialized rules that need to be applied (usually after the collision
step), to enforce the desired values for the macroscopic fields.

LATTICE-TOPOLOGIES USED IN THIS THESIS In LBM algorithms there are several
possible choices of velocity-space discretizations, depending on the requirements of
the model (e.g. whether it is one-, two-, or three-dimensional, whether the energy-
equation needs to be recovered fully, etc.). Out of these choices, only four lattices
are used for the applications discussed in this thesis. These velocity-space discretiza-
tions are illustrated in Chapter 5, along with the specific algorithms using them —
specifically D2Q5 (Figure 20), D2Q9 (Figure 21), D3Q7 (Figure 27), and D3Q19 (Fig-
ure 28), with lattice-names following the DdQq convention which is common in the
literature, where where [d| has to be replaced by the dimensionality of the lattice
(one-, two-, or three-dimensional), and @ stands for the number of DFs at each node
(including the rest velocity, if any).
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(advance to next iteration)

> Dynamics

one <
iteration
/

Write OUTPUT
(if necessary)

-

Figure 15: Flowchart of typical execution flow for lattice Boltzmann method (LBM) applications.
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GELB - A TOOL FOR LATTICE BOLTZMANN MODELING

“Everything should be
made as simple as possible,
but no simpler”

Albert Einstein

In this chapter, the GeLB domain-specific language (DSL) is presented, as a first out-
come of the work withing the scope of this thesis. After a brief discussion about
general-purpose programming languages (Section 4.1), the notion of a DSL is ex-
plained, highlighting its benefits. Next (Section 4.2), previous related work is sum-
marized, to provide a context and motivation for the current work. An overview of
the internal processing-steps is then provided (Section 4.3), which is good to keep
in mind for potential users of this tool; at that stage, some of the implementation-
techniques used for the framework are also mentioned, along with alternative ap-
proaches (some of which were tried by the author). Finally, the chapter closes by de-
scribing the GeLB description (GD) programming language, which provides the means
for specifying LBM simulations using GeLB (Section 4.4).

4.1 COMPUTERS AND PROGRAMMING LANGUAGES

From a very high-level perspective, digital computers are devices which store some
internal state (in some form of memory). Based on the state of the memory and on
a stream of instructions, a new result is computed (which is often also stored in
memory). Unfortunately, while mathematically appealing, this view is not very use-
ful in practice, because it is too removed from the practical problems that need to
be solved with the help of computers. Therefore, as soon as the first programmable
computers were invented®, the first programming languages also appeared, which
allowed humans to more easily specify the computations to be carried-out by the ma-
chines. This is because humans do not like (and neither should they need to) think
about the very low-level processes occuring inside the computer — instead, the idea
of abstraction is used, to hide the irrelevant details. Over the years, programming lan-
guages evolved to align better with this goal, oferring increasingly-powerful abstrac-
tions. An illustrative example is the evolution of FORTRAN, which is one of the first
general-purpose programming languages: although it is not considered to be at the

Charles Babbage’s second computer (the “analytical engine”) is considered to be the first programmable
computer; accordingly, Ada Lovelace, who wrote some notes on how to use this machine to compute
the Bernoulli numbers, is considered the first “programmer”.
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forefront of programming language design, FORTRAN added (Chirila and Lohmann,
2015) many techniques in response to the needs of its community of users.

Some examples of techniques that GPLs provide for increasing the level of abstrac-
tion are:

* structured programming: Here, instead of having a long stream of instructions,
the code is organized into independent subroutines, that may even be re-used
in other programs.

* object-oriented programming: In this approach, the code is designed around
the concept of entities (modeling e.g. some real-world objects). Each entity has
an associated internal state, and also a set of actions that it can perform.

¢ generic programming: For this approach, the main idea is to write code which
is applicable to different types of entities, by leveraging properties that those
types of entities have in common at a more abstract level — for example, all num-
bers support addition, no matter if they are integers or reals. This approach is
implemented in different ways by various programming languages — for exam-
ple using the idea of templates or of polymorphism.

Combinations of these techniques have been successfully used for raising the level
of abstractions in many application-domains, e.g. by constructing software libraries
which are specialized for some part of the problem that needs to be solved. This
approach has the benefit of being easier to adopt (for the users which are already
tamiliar with the parent GPL). However, for expressing numerical algorithms for high
performance computings (HPCs) applications, a library makes it difficult to target mul-
tiple parallel backends, because the library lacks an abstract implementation of the
algorithm that the user wants to implement. Also, using the library approach ex-
poses (in the opinion of this author) users to concepts of the GPL which may not be
directly relevant to their goal at hand (for example, many C++ libraries force users
to learn about templates). An alternative approach is to design and implement a
domain-specific language (DSL), which exposes to the user a more useful set of high-
level concepts pertaining to the problem that needs to be solved.

The DSL approach for raising the level of abstraction

As the name implies, a DSL is a programming language which is designed to in-
crease productivity for users when they interact with a specific, well-defined, prob-
lem domain (Mernik et al., 2005). This approach is fundamentally different from that
of general-purpose languages (GPLs), which aim to serve many communities of users,
who may have very different needs. Both approaches have their strengths and in-
evitable weaknesses: while GPLs may become overwhelming for some users because
they contain too many features they probably do not need (C++ is a good exam-
ple), DSLs can feel limiting in some cases, because they lack some features that some
users have come to expect (for example, they generally restrict the direct access to
the lower-level system).
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Although the term may seem exotic, DSLs are actually very common in normal com-
puter usage. In fact, there are many types of DSLs — for markup (e.g. the IfTEX language
used to typeset this thesis), modeling (e.g. UML diagrams of software systems), or pro-
gramming. Other examples are the HTML format which powers the world wide web,
the BOURNE shell and its derivatives (used for automation in UNIx environments), or
the GNU MaKE language for automating compilation of software.

In the case of GeLB, the problem domain is that of implementing numerical sim-
ulations based on LBM algorithms.? As specific features which are handled by the
DSL “behind the scenes”, there is the issue of algorithm-parallelization (which is be-
coming progresssively harder to grasp, due to increase in heterogeneity of computer-
architectures), efficient input/output (1/0) or implementation of support for paus-
ing/resuming simulations.

Before closing this section, it is worth noting some of the advantages and disad-
vantages of DSLs:

¢ advantages

- a new domain-specific programming language may allow its users to ex-
press solutions for problems in that domain more clearly, and

— with less “boilerplate” (verbose) code

¢ disadvantages
— DSLs are hard to design and to implement, and

— users need to invest some time to learn to use them

4.2 PREVIOUS RELATED WORK

The idea of using DSLs to automatically generate code for numerical simulation is not
new — for example, ATMOL (van Engelen, 2001) is an interesting DSL for formulating
and implementing atmospheric models, while PocHoir (Tang et al., 2011) is a DSL
for generating optimized C++ code from descriptions of FD kernels.

However, to the best knowledge of the author, this approach has not been pro-
posed before in the LBM community. Instead, for LBM software libraries are common,
where the core computational algorithm may be hidden under many layers (there-
fore discouraging experimentation with new algorithms). While such systems do
have the benefit of being able to provide better performance for specific targets (e.g.
the THELMA framework of Obrecht et al. (2011)), they may also be restrictive in
terms of choices of algorithms (which may or may not be a problem, depending on
the needs of each user). Popular frameworks in the LBM community are for example
the OPENLB C++ library (Heuveline and Latt, 2007), LBFLow (Llewellin, 2010a,b), or
WALBERLA (Feichtinger et al., 2011).

However, the framework can also be used for implementing more traditional finite differences (FD)
algorithms, of which LBM can be viewed as a subset (at least from the point of view of the final
implementation — the way LBM algorithms are derived is fundamentally different from that of FD.
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4.3 HOW GELB WORKS AND WHAT IT DOES

A high-level overview of the workflow with GeLB is shown in Figure 16. The user
writes a so-called GeLB description (GD) file (shown in blue), which is then pro-
cessed by the GeLB framework, eventually resulting in a general-purpose language (GPL)
source-code file containing the code for the LBM simulation. Typically, the generated
file is approximately one order of magnitude larger than the GD file that the user
has to write. This size-difference is due to the technical infrastructure which GeLB
implements to support the simulation, and it represents the main benefit of using
GeLB. Finally, the generated GPL file is processed by a compiler suitable for the target
machine, resulting in the final executable file (shown in red) that needs to be run to
perform the simulation.

Fortran compiler

GelLB

auto-generated

Backend (Serial) Fortran file

auto-generated
Backend Fortran file

(Parallel/OpenMP) (with OpenMP

pragmas)

Frontend [ MidWare

C compiler
(with OpenMP support)

C file
Backend (with OpenCL

(Parallel/OpenCL) host- and

device-code)

C compiler

Figure 16: Illustration of the components of the GeLB framework, along with their interactions
with compilers for specific GPLs.

To get a better idea of how the GPL file is generated, it is useful to consider Fig-
ure 17, which illustrates how the numerical kernel (the “dynamics”) typically acts
upon the DFs in the lattice: in general terms, during each time-iteration a subset
of the DFs at each lattice node is read from the lattice; these values are then used
in computations (e.g. for computing of macroscopic fields and/or for applying the
relaxation operator), after which another set of DFs is written back to the lattice (nor-
mally at the neighbouring nodes, to perform the streaming operation).

GeLB accounts for these steps, by allowing the user to write the equations in a com-
pact notation, which is as close as possible to the mathematical formulation of the
algorithms (as described in research papers). This compact notation is then parsed
internally, to extract the exact geometric information about which DFs are altered by
each kind of “dynamics”. This information is then exploited by the backend, which
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Figure 17: Illustration of the typical “dynamics” in LB algorithms.

decides how to perform the domain-decomposition for parallelization. Also, because
it is very easy to make mistakes when writing down the algorithm, GeLB incorporates
some sanity-checks, to ensure e.g. that the read /written DFs are not outside the lat-

tice.

Some notes on implementation details

As shown in Figure 16, GeLB consists internally of three types of modules:

¢ Frontend: This module is responsible for parsing the GD program provided by
the user, and for creating an internal representation of that program — to use com-
piler terminology, this representation is known as the abstract syntax tree (AST) of
the program, and is designed to be well-specified (in the sense that the same pro-
gram will always lead to the same AST after passing through the frontend). The
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frontend is based on a parser that was generated using the ANTLR43 frame-
work (Parr, 2013), from a grammar-file describing the GD-language. Because
the frontend has this knowledge about the grammar-file built-in, it is also the
component which performs some initial validation of the program.

e MidWare: The component in the middle of the GeLB framework consists of
several stages, which operate on the AST generated by the frontend, for example
by expanding some of the compact notations from the GD language into more
concrete forms, that can be understood by the backends.

* Backends: After the processing from the MidWare stages, the AST is finally
translated to code in a general-purpose language (GPL) by the backends. Because
each backend is specific to a particular type of parallelization, there are several
backends in GeLB (of the ones shown in the figure, only the Fortran-serial and
Fortran-parallel-OpenMP are currently implemented, with the C-OpenCL back-
end being developed at the time of this writing).

4.4 ELEMENTS OF A GELB PROGRAM (GD-FILE)

As already mentioned, GeLB operates on source-code files with the extension.
Such files, also known as GeLB description (GD) files, need to adhere to the syntax
defined by the GeLB domain-specific language (DSL). During the design of the language,
it was attempted to balance simplicity (to accelerate learning for new users) and ex-
pressivity (to reduce amount of boilerplace code needed for writing a simulation).

This section provides an overview of the elements that appear in GD files, explain-
ing the purpose of each element.

4.4.1 Comments

Owing to the simplicity of the language, GD programs are hopefully self-explaining.
However, it is highly recommended to add comments for explaining nontrivial as-
pects of the simulation.*

GD files support C-style comments, with the two variants:

1. single-line comments: such comments start with a double-slash (), and con-
tinue until the end of the line:

( code (optional) ... // comment extends until end of line J

Although most users do not need to be concerned with these details, it is maybe interesting to note
that the ANTLR4 tool generates so-called recursive-descent parsers, composed of a set of recursive
functions, one for each rule in the grammar-file.

A good guideline is to provide comments when it is not immediately clear why a certain choice was
made. For example, in the case of LBM simulations, it is a good idea to motivate why a certain collision
operator was chosen, to motivate the algorithms for implementing BCs, etc.
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2. multi-line comments: such comments start with a and end with a ; they
may occupy part of a line, or even several lines:

u/* comment on

multiple lines x/

All the text within comments is ignored by the GeLB compiler (gelbc), and will
also not appear in the source-code file generated by the backends.

4.4.2  Declaration of GeLB version

To account for possible changes in syntax in future versions of the GD language,
each simulation needs to specify explicitly the versions of the language being used.
This thesis describes version 1, so the following line is included in all programs (by
convention, as the first line in the file which is not a comment):

{ﬁelb_version =1; J

4.4.3 CONFIGURATION block

Each simulation needs a ’ configuration ‘ block, which contains two mandatory sub-

blocks: [ simulation_metadata|and [constants| Below is an example of a complete
\ configuration ‘ block:

configuration {
simulation_metadata {
short_name = "2d_rb_mrt Ra 1900 Pr 7.1";
description = R"
Simulate the 2D Rayleigh-Benard convection, with:
- no-slip + constant temperature BC at the horizontal walls, and
- periodic BCs at the vertical walls.
Ra = 1900
Pr=17.1

’

}

constants {
// sizes of the discrete domain
int NX = 256;
int NY = 256;
// for ICs
real RHO_O =
real UV_0[2]
real T_0 = 0;
real RA 9
real PR
real MAX_MAC

Listing 1: Example ‘ configuration ‘block in GeLB programs

The sub-components are explained below.

4.4.3.1 SIMULATION_METADATA sub-block

The [simulation_metadata | sub-block specifies two items:
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. This serves as an identifier, so that users can distinguish between
different simulations. GeLB also uses this string during the construction of the
output file-names (if any).

Because some operating-systems (particularly Unix descendants) do not
cope well with file-names containing space characters, GeLB will replace
any whitespace in this string to underscores when naming output files.

. ’desc ription‘ For documentation purposes, it is recommended to provide a

more detailed description of each simulation. This is the role of the ’ description ‘
field, which may extend over multiple lines. If the target output file-format sup-
ports metadata strings (e.g. the NETwork Common Data Format (netcDF) format),
GeLB will insert this string as metadata into all output files.

NOTE

Description strings need to start with and to end with a [" | character.
This syntax is mostly due to historical reasons (compatibility with C++11
raw string literals), and may be replaced in future releases of GeLB by a
syntax closer to Python.

4.4.3.2 CONSTANTS sub-block

The sub-block allows the user to specify an arbitrary number of global
constants, which can be referred to from other parts of the simulation. In the listing
above there are two constants of type and six constants of type (of which
is a vector with two components).

The syntax for declaring individual constants is similar to other programming
languages such as C/C++ — the only difference is the absence of the const keyword,
which is implied (declarations of normal variables are not allowed in the
sub-block).

For the precise definition of the data-types and (and for the other
options available) see Section 4.4.9.

4.4.3.3 Owerriding configuration data with command-line arguments

In many situations, it is useful to run a series of simulations, which differ only in
the value of one (or a few) constants. To account for this frequent usage-pattern,
it is possible to override values from the [constants|-block, by passing new values
when gelbc is invoked. This idea was inspired by a similar feature in the Chapel
programming language (Chamberlain, 2015). For example, assuming that RA is a
constant in the program ’my_simulation .gd |, the value from the simulation file can
be overriden by invoking gelbc as follows:
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{gelbc my_simulation.gd -o backend_file_out_basename -DRA=1700.0 J

4.4.4 LATTICE_PROPERTIES block

Each simulation needs one (or more) \lattice_prope rties \ block(s). These blocks
contain declarations of constants which are specific to the type of lattice defined.
Some constants are mandatory, while the others are optional.

The two mandatory constants, which each |lattice properties| block needs to
define, are and . These values define the dimensionality of the lattice
and the length of the state-vector at each node, respectively.

An example ’ lattice_properties ‘ block is given below:

Listing 2: Example | lattice_properties|block in GeLB programs

4.4.5 LATTICES block

A GD simulation may use several lattices with the same | lattice_properties | This
is why it is necessary to explicitly specify what kind of lattices are used in the sim-
ulation, by listing them in the block. This block contains one (or more)
lattice declaration(s), where each declaration contains:

¢ the name of the lattice (as a variable-name),

o of the lattice (i.e. the name of one of the |lattice_properties
blocks defined in the simulation),

e |df_type| (which selects the data-type of the state-vectors at each node of the
lattice), and

. (which is a shorter alias for the lattice, useful for making the code
more concise).

An example block for a simulation using two lattices is shown below:

lattice_properties D2Q5 {

int D = 2;

int Q = 5;

// DF direction-vectors

array<int, {D, Q}>E={{ 0, 03}, // 0
{ 1, 01}, // East
{ Or 1 }r // North
{-1, 01}, // South
{ 0, -11}}; // West

// matrix for mapping DFs -> moments

array<real, {Q, Q}> N={{ 1, 1, 1, 1, 1},
{ Or 1! 0; '11 0 }1
{ 01 01 1; 0: -1 }I
{-4, 1, 1, 1, 11},
{ o, 1, -1, 1, -1 1}};

array<real, {Q, Q}> N_INV = inverse(N);

k} >
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lattices {
lattice fluid(properties = D2Q9, df_type = real, df_alias = f);
lattice temperature(properties = D2Q5, df_type = real, df_alias = g);
b

S WwoN R

Listing 3: Example block in GeLB programs

4.4.6  FUNCTION block(s)

GeLB supports four different types of functions. The first three types (i
dynamic|and |gauge ) directly interact with the lattice(s) (as illustrated in Figure 18),
while the fourth type is that of normal [ function]s (as encountered in most program-
ming languages).
NOTE: Restrictions in

To make optimization and parallelization possible, the GD language does not
support flow-control structures (loops, if-clauses, etc.). This choice is by design,
to make the problem of automatic parallelization tractable. From this point of
view, all types of functions in GeLB are “pure”, in the sense that the shape of
the output of the functions and their exit-points are always the same (which
facilitates generation of high-performance code within GeLB).

- | Dynamics

Initializer Gauge

P B S B
--@---@---@---@---@
TS e
NS e

Figure 18: Illustration of the effects of the three types of functions supported in the GD lan-
guage: initializers (=write-only) are used for imposing ICs onto the domain, dynam-
ics (=read & write) are for specifying the core numerical algorithms explicitly, and
gauges (=read-only) are used for evaluating quantities (e.g. macroscopic moments)
which depend on the DFs in the lattice.

To give some illustrative examples, the BGK single-relaxation-time (SRT) operator is
expressed with the dynamic:
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dynamic CollideBGK {
auto rho = evalRho();
auto velo = evalVelo(rho);
auto fEq = evalFEgBGK(rho, velo);
f.out[x, y | i ={:}] = f.in[x, y | i1 - (f.in[ x, y | i] - fEq[i]) * BGK_TAU_INV;

}
Listing 4: Example block in GeLB programs

A sample initializer is:

initializer ToEquil {
f.out[x, y | i = {:}] = evalFEqBGK(RH0_0, U_0, V_0);

Listing 5: Example block in GeLB programs

An example gauge is given below:

gauge RhoVelo[out(real rho, array<real, {2}> velo)] {
rho = evalRho();
velo = evalVelo(rho);

}

Listing 6: Example block in GeLB programs

4.4.7 NODE_CATEGORIES block

As mentioned previously, the GD language does not support flow-control structures.
However, some form of flow-control is necessary for deciding what type of functions
to apply at each lattice node. This is achieved in GeLB with the node_categories
block, where each “color” in the mesh is associated to a specific set of functions:

node_categories {
BULK = category(ToEquil, {CollideBGK, Bulk_StreamIN}, RhoVelo);

// VELOCITY (moving lid)

NW_CORNER = category(ToEquil, {CollideBGK, BC_NW_Corner}, RhoVelo);
N_EDGE = category(ToEquil, {CollideBGK, BC_N_Edge}, RhoVelo);
NE_CORNER = category(ToEquil, {CollideBGK, BC_NE_Corner}, RhoVelo);

// NO-SLIP (static walls)

W_EDGE = category(ToEquil, {CollideBGK, BC_W_Edge}, RhoVelo);
SW_CORNER = category(ToEquil, {CollideBGK, BC_SW_Corner}, RhoVelo);
S_EDGE = category(ToEquil, {CollideBGK, BC_S_Edge}, RhoVelo);
SE_CORNER = category(ToEquil, {CollideBGK, BC_SE_Corner}, RhoVelo);
E_EDGE = category(ToEquil, {CollideBGK, BC_E_Edge}, RhoVelo);

Listing 7: Example | node_categories | block in GeLB programs

4.4.8 GEOMETRY block
To specify the geometry of the simulations, the -block is used. Currently,
GeLB supports two methods for specifying the geometry:

1. The first method for specifying the geometry is based on a “painting” metaphor,
where each line assigns a specific kind of “color” for the nodes selected on
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the LHS. This approach should be used for simulations with simple geometries
(because it allows the gelbc compiler to generate higher-performance code).

For example, for the lid-driven cavity problem, we may have:

1 geometry {
2 set_grid_size(NX = 256, NY = 256);
3 // LEFT (WEST)
4 node[ x =0, y =0 ] = SW_CORNER;
5 node[ x =0, y = NY - 1 ] = NW_CORNER;
6 node_range[ x = {0}, y = {1 : NY - 2} ] = W_EDGE;
7 // MIDDLE
8 node_range[ x = {1 : NX - 2}, y = {0} ] = S_EDGE;
9 node_range[ x = {1 : NX - 2}, y = {NY - 1} ] = N_EDGE;
10 node_range[ x = {1 : NX - 2}, y = {1 : -2}y 1 = BULK
11 // RIGHT (EAST)
12 node[ x = NX - 1, y = 0 ] = SE_CORNER;
13 node[ x = NX - 1, y = NY - 1 ] = NE_CORNER;
14 node_range[ x = {NX 1}, vy = {1 : NY - 2} ] = E_EDGE;
15 }
NS

Listing 8: Example block in GeLB programs

2. A problem with the first method for specifying the geometry is that it does not
scale well for complex geometries. Therefore, GeLB also supports an alternative
method, based on reading the geometry-data directly from a file. For example,
in the case of the wind-driven ocean circulation (WDOC) simulations with the
realistic land-mask (presented in Section 5.3), the geometry block is simply:

-

geometry {
2 read_geometry_from_file(’'wdoc_geometry.nc’’);
}

Listing 9: Example block in GeLB programs with complex geometries

4-4.9 Data-types supported in the GD-language

The following data-types are currently supported for variables and constants in GD
programs.

e boolean: |bool|(true]or|falsel

* integer: signed two’s complement integer (explicit # of bits):
[int8] [int16], [int32] [int64]

By default (# of bits omitted) we have [int = int64].

* floating-point (explicit # of bits):
\ , rea164\

By default (# of bits omitted) we have | real = real64|

It is also possible (and recommended, whenever possible, for performance) to
define data of constant type, by appending to the name of the type (e.g.

|real_const)).



4.5 AUTOMATIC GENERATION OF PARALLEL CODE

4.4.10 Non-scalar variables and constants

Scientific computing applications operate more often on vectors, matrices, or multi-
dimensional arrays. Therefore, the GD language allows the user to declare variables
and constants to be of arbitrary dimensionality (as long as the shape is “rectangular”,
and it does not change at runtime). This is achieved with the type.

As concrete examples, to declare a one-dimensional vector with 4 | real | elements,
we would use:

1 &array«eal, {4}> my_array; J

and to declare a constant three-dimensional array with 2, 3 and 4 elements along
the x, y and z axes respectively, we would use:

1 (array<rea1_const, {2, 3, 4}> my_const_array; J

4.5 AUTOMATIC GENERATION OF PARALLEL CODE

As mentioned already, GeLB functions are expected to be “pure”, with static inputs
and outputs, and single exit-points. Because of this restriction, the gelbc compiler
can determine the stencils for the |initializerls, |dynamic ‘s and [gauges at every
node of the lattice. By adding to this the information from the ’ node_categories ‘ and
from the blocks, the complete data-dependencies between the distribution
functions (DFs) in the model-state is known, which allows (in principle) automatic

generation of parallel code. The gelbc compiler uses this information to generate
parallel code when possible.







APPLICATIONS

“There are no such things
as applied sciences, only
applications of science”

Louis Pasteur

The GeLB framework, which was presented in Chapter 4, was built with the aim
of being useful for quickly writing simulations based on the lattice Boltzmann method
(LBM). Although the framework itself may appeal to readers with computer science (CS)
inclinations, it is also necessary to demonstrate concrete applications to problems
in fluid dynamics. This chapter discusses three such applications, starting with the
two-dimensional RB problem (Section 5.1). Because of the simple 2D geometry, this
example is also the easiest to implement, and not too demanding from a computa-
tional point of view. Next (Section 5.2) we extend the setup from two to three spatial
dimensions. Although the problem is very similar, it can already be classified as a
respectable setup in HPC, owing to the O(Mn2) ~ On3) change in scaling of num-
ber of nodes with resolution. For the third and last application (Section 5.3), a new
numerical model was developed (based on the multiple-relaxation-times (MRT) LBM
approach), to simulate the wind-driven circulation in a barotropic ocean. Although
this application is not very demanding from a computational point of view, it is a
good test for studying how well LBM methods can simulate flows which are directly
relevant to oceanography. Also, in the context of GeLB, this example demonstrates
how to impose a complex flow-geometry (in this case, representing a realistic ocean
land-mask).

5.1 RAYLEIGH-BENARD (RB) CONVECTION (2D)

Here we study the evolution of a quasi-incompressible fluid, contained between two
horizontal plates (where the temperature of the lower plate is higher)." The tem-
perature gradient in the problem creates a small density-gradient which, if strong-
enough, can cause convection to occur. Compared to heat diffusion at the molecular
level, convection dramatically enhances the heat transfer, and is therefore important
for many applications (from engineering to Earth system science (ESS)). As one of the
simplest setups where convection can develop, the physics of this problem is of great
interest for understanding how such flows shift between regimes which are qualita-
tively very different (ranging from no motion at all to turbulent convection). Interest-

The alternative scenario, where the temperature gradient is reversed, is unconditionally stable, and
therefore not an interesting problem to study.
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ingly, it also attracted much attention from the dynamical systems community, due
to the tendency of the flow to self-organize into distinct patterns.

5.1.1 Model setup for the 2D case

The discussion of the RB problem in Section 2.4 was framed in the physical 3D-space.
However, several problems in fluid dynamics may also be considered to behave
like lower-dimensional (e.g. 2D) systems, at least for certain ranges of the control-
parameters.” This is also the case for the RB problem, where we have a region in
parameter-space where the flow may be considered to be 2D. Strictly-speaking, this
assumption is difficult to reproduce experimentally, due to the ever-present noise
in the apparatus (which usually depends on z also). However, as discussed in Sec-
tion 2.4.4, the first transition of the flow-regime (from a stationary state to convective
flow) is two-dimensional in nature, so even the highly-idealized 2D model can pro-
vide valuable insights into the physics of the problem. On the other hand, outside
this parameter-space region this approximation breaks in a fundamental way (as the
numerical experiments presented later in this thesis will indicate).

yA
: W=~vyxH
const. temp. 6;
no-slip (¢ = 0)
H P g -
77}\ 777777 B i e T e e e e e e e e e e e e R

.l

.-

periodic along z-axis
Figure 19: Sketch of geometry for the Rayleigh-Bénard (RB) simulations in 2D. For the present

simulations, the aspect-ratio was fixed to y = kz—”] ~ 2.0158.

As shown in Figure 19, for this first model setup we assume a rectangular geome-
try, with y € [0,H] and x € [0, W = yH], where we take the aspect-ratio y = 2.0158.3

Using the jargon of the theory of dynamical systems, it can be said that the higher-dimensional system
still includes some of the bifurcations of the lower-dimensional system, as a center manifold (Olbers
et al., 2012).

This particular value of the aspect-ratio was chosen, to make sure that the domain is sufficiently-large
horizontally to allow for the first instability to develop (as predicted by the theory). While this may
seem an artificial choice, it is necessary due to the periodic lateral BCs used. Note that this does not
affect the validity of the numerical experiments, since the quantity of interest here is the value of the
Rayleigh number for which the mode with wavenumber k., 1 becomes amplified.
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It is assumed that all gradients along the z-direction vanish, so that the problem can
be considered to be two-dimensional. Also, the problem is assumed to be periodic
in the x-direction, effectively “wrapping” the domain into a cylinder-topology. For
the flow-regimes studies later in this section, this is a good approximation of a do-
main which is “infinite” along this axis, which is how the RB problem is normally
formulated in analytic studies.*

5.1.2 Discretization of the dimensionless equations

We mentioned in Section 2.4.3 that in most> branches of fluid dynamics the flow-
results are reported in dimensionless units, which facilitates comparison between
experiments, theory, and simulation. However, numerical algorithms are often for-
mulated in yet another system of units, referred to as “the numerical system”. The
numerical system is designed to map as naturally as possible to the final computer
implementation, where we prefer, for example, to discuss in terms of spatial indices
of the nodes in the numerical mesh and of iteration-numbers. However, the numeri-
cal results have to be transferred back to the dimensionless units (in the output- and
pre-processing steps).

The transition from the dimensionless system to the numerical system coincides
with the discretization of space-time, which consists of chosing (a) the number of
lattice-nodes Ny, to represent the unit of length, and (b) the number of time-iterations
N to represent the unit of time. In the numerical system, then, N, and Ny act as the
reference length and time, respectively. Relative to the dimensionless system, the
transformation to the numerical system proceeds along the same lines as for the
physical system, as summarized below:

(n) 1
x.  — 1/
xj(d) = ]N— — x].(n] =1/24 Nyx§d) (185)
Y
The 1/2-term in eq. (185) above is due to the BCs: (a) for the horizontal walls, the so-
called bounce-back (BB) algorithm for implementing the no-slip velocity BC effectively
places the wall half-way between the last fluid node and the first solid node, and
(b) the periodic domain-wrapping along x also introduces a shift of equal magnitude.

4 However, it also has the disadvantage of limiting the wavenumbers of the permitted oscillations.
5 Some exceptions are accepted sometimes in the climate- and weather-simulation communities, be-
cause we currently have only one planet to consider.
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Continuing with the transformations, we have:

td = Nlt(n) =t = Nt @ (186)
t

(d) _ Nt ) m) _ Ny (d)

W = Nyuj W= Ntuj (187)
(n)ng2

N2 po N
(59)@) = 5 (op) ™ = ()™ = =2 (5p) (188)
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(d) _
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= T =TV 4+ (AT (D)@ (189)

To simplify the numerics in the equations above, it is common to take pén) =1land
also (ATy)™ = 1. Also, for LBM models of temperature it is generally better to keep
the temperature-ranges positive (because of the interpretation of the DFs as particle-
densities, it is better to ensure that they are always positive, to be on the safe side);
therefore, we choose Tén) = —i—%, which transforms the scaling for temperature to:

1 1
T = (6T) 1 5 = (5T = T 5 (190)

Plugging the scaling equations above into the dimensionless governing equations,
the following equations are obtained for the model parameters:

Pr N2
vin) — Nty (191)
RaPrN
(“9)(11) = Ty (192)
t
NZ
m _ Y
= (193)

Finally, it is necessary to specify the BCs and ICs for the simulations. Because there
is no non-zero velocity which is to be enforced at the boundaries, it is only necessary
to perform the scaling for the temperature (BCs and ICs) and for pressure (only ICs).
Using the relations above, the BCs for temperature become:

,t(“’> =1 (194)

T <x(n), Ny + —,t(“>> =0 , (195)

N
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and the ICs for temperature and pressure are:

1
T(n) (X(n),y(n),0> . N(zy(m 1) (196)
Y
(aeg)™ 1 1
(5p)® (X(n),y(n),()) _ % y >) (Ny+3 _ym (197)
Yy

5.1.3 Numerical method

To solve numerically egs. (54) to (56), we use a LBM based on the MRT approach
(Wang et al., 2013). The hydrodynamic and temperature equations are solved on two
separate lattices: D2Q9 (Figure 21) and D2Q5 (Figure 20) respectively.

G
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Figure 20: D2Q5 lattice (for modeling
advection-diffusion of tempera-
ture)

Figure 21: D2Q9 lattice (for modeling
isothermal hydrodynamic fields)

5.1.3.1 Model for the fluid component

The DFs for the fluid solver evolve according to the rule:

fi (x(“) + eié,(cn), t) 4 5,([“)> =1 (x(n), t(“)> — M7 S[m—m®] (198)

relaxation of moments
g

e .
streaming N

~
collision operator

with 1 €{0,...,8}.
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The 9 discretized velocities associated to each DF at all lattice nodes are shown
below, packed in a matrix é:

~ e 0 1 0 —1 0 1T -1 —1 1
e=| %) =(ey... e5) =c™ (199)
ey 0 0 1 0 —1 1 1T -1 —1

The scaling factor c(“), also known as the “basic lattice speed”, depends on the lattice

spacing 5)(31) and time step 6,[:1):

(200)

Based on the discussion about discretization from Section 5.1.2, we have 6>(<n) =1
(n

and also &; =1 by definition.
In eq. (198), the vector m consists of moments of the local DFs, defined by the linear
transformation M:

.(n) . ] ~
m = <p(n]/ )E(n)/Jl(:]n)/ e(n)/ Pg?/ ng}/ q)(cn)/ ql(_,Jn)/ €(n)> = Mf (201)

The physical significance of each moment is given below:

e p™ — fluid density

. j,&n), jg‘) — x- and y-components of the fluid momentum

o e _ fluid energy

. pg;), pg) — diagonal and off-diagonal components of the symmetric traceless

viscous stress tensor
. q,(cn), qlgn) — x- and y-components of the energy flux

o ¢ _related to square of the fluid energy
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During the collision step, all moments are relaxed towards their corresponding
equilibrium values m{?, defined as:

mg! = (5p) "
med — plry, (o)
eq _ (n)  (n)

2 2
= o7 [ () ()] (202
med — oy fn), )
qu — _p(()n)u)((n]
eq _ _ (n)  (n)
My ==0 Wy

2 2
mt = (60) ™ = 30f" | (") (w)")]

\

)

where the macroscopic variables p™ and u).(n are evaluated from the local DFs:

8
oW = o + (5p) W = o + ¥ £ (203)
i=0
;8
uj(n) = F Z ei,jfi/ with j € {X,y}. (204)
0 1i=0

The transformation matrix is obtained through a variant of Gram-Schmidt orthog-
onalization (Bouzidi et al., 2001):

T 1 1 1 T 1 1 1
1T 0 -1 0 1 =1 =1 1
o 1 0 —1 1 —1 -1
4 -1 -1 -1 -1 2 2
M=| 0 1 —1 ~1 0 0 (205)
o 0 0 0 0 1 —1 1 —1
0 —2 1T -1 =1 1
0 0 -2 0 2 1 1 =1 —1
4 -2 -2 -2 -2 1 1 1 1

In Section 5.1.2, the numerical value for pressure in the numerical system has
been referred to. However, it should be noted that the LBM algorithm used does not
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recover pressure directly — instead, this quantity is computed from the small density-
fluctuations, using an ideal-gas-like equation of state:

(59 = () (50)™ = 1 (c) (30", (206)

where cgn) is the (lattice-dependent) pseudo-speed-of-sound, which for this model

(D2Q9 lattice) is:

Cs = ﬁ (207)

SIGNIFICANCE OF DENSITY-FLUCTUATIONS IN THE LBM SOLVER  Although the
physical problem to be solved is incompressible, the LBM algorithm solves it as
a quasi-compressible problem (and, as seen in eq. (206), there is even a gas-like
equation of state which is internal to the model). However, perhaps unintuitively,
the model is intended to simulate incompressible flows (and is not suitable for com-
pressible flows as it stands), because the “speed of sound” is chosen (indirectly,
through the choice of discretization parameters), to be much lower than that of
real gases — the quasi-compressibility is used only to avoid solving a global Pois-
son problem for pressure, which is a common obstacle to parallelization in more
traditional CFD algorithms. In addition, the model was constructed such that the
“pseudo-compressibility” errors scale proportionally to (Ma)?, where Ma is the “lat-
tice Mach number” (i.e. ratio of the numerical velocities to the “pseudo-speed-of-
sound”). Therefore, if we ensure that the maximum Mach number in the flow does
not exceed some conservative threshold (e.g. Ma < 0.1), we can keep the pseudo-
compressibility errors small.
The rate at which each moment is relaxed is given by the (diagonal) relaxation
matrix S is:
S =diag(0, 1, 1, se, Sv, Sv, Sq, Sq, Se) (208)

The coefficients of this matrix are chosen to optimize stability (by relaxing non-
hydrodynamic moments faster than the hydrodynamic ones). One possible choice
(which is used in this thesis) is the two-relaxation-times (TRT) model, for which:

Sy = Se = S¢, (209)

leading to:
g = dlag(ol 1/ ]/ Sv, Sv, Sv, Sq, Sq/ SV) (210)

where the adjustable parameter s, determines the kinematic viscosity of the model:

1/1 1
m) _ (L _ 2
v 3 (Sv 2) (211)



5.1 RAYLEIGH-BENARD (RB) CONVECTION (2D)

and s is related to s via:
2 - S'V
8 - S‘V

Sq =38 (212)

For physical reasons (to prevent a negative viscosity), it is necessary (Ginzburg and
D’Humieres, 2003; Wang et al., 2013) to have:

{SVISq} € [OI 2) X [01 2) (213)

BODY FORCES The LBM evolution eq. (198) does not take into account any body-
forces to which the fluid may be subjected. A common approach for including such
effects (especially in SRT models) is to add some force-terms to the RHS. Such cor-
rections for the forcing term at the DF-level have to be carefully constructed (Guo
et al., 2002b), to recover the correct equations at the Navier-Stokes level. Fortunately,
for the MRT models, the force can be added directly to the corresponding moment?®,
which is much more natural. Dellar (2013) showed that such an implementation of
the force-term is 2"4-order accurate if a procedure known as “Strang splitting” is
used, according to which (a) half of the force-term is added before the collision, and
(b) the other half after the collision.

BCs As already mentioned, the periodic BCs used at the horizontal walls are en-
forced directly at the implementation-level, because there are no parameters to con-
sider for this type of BCs (they only lead to a “wrapping” of the mesh-topology).
More specifically, the streaming of the DFs along the y-axis is constrained to produce
results within the domain, using a modulo-operation. Therefore, only the implemen-
tation of the no-slip BCs along the horizontal walls needs to be mentioned explicitly.
This type of Neumann (1887) BC is normally implemented in LBM using the so-called
bounce-back (BB) scheme, according to which the post-collision DFs that would be
moved to a solid node by normal streaming are copied instead to the local node, but
with the opposite orientation. Mathematically, this process can be written as:

f§re—collision <X£n),t(n) + &En)) _ fipost-collision (x](cn),t(n)) (214)

where the overline is used to denote the discrete vector with opposite orientation:

—ej = e (215)

and x](cn) is the position of the fluid node adjacent to the solid boundary.

Since no DFs are “lost” or “gained”, this approach has the important advantage of
ensuring conservation of mass and momentum. This scheme is also local (good for
parallelization), and easy to implement (hence its popularity). Unfortunately, it is in

general only O (6,(:1)). However, for planar boundaries which are also axis-aligned

6 Specifically, for the present model the force contributes to the m, moment, since the gravitational
force acts along the y-axis.
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2
(such as in this application), it can be shown that the BB scheme becomes O (6,@) ),

if the wall is positioned halfway between the last fluid node and the neighbouring
wall node 7. For more generic applications, other schemes may be preferred, which
are second-order accurate in space even when the boundaries are not axis-aligned
(or not planar in the first place) — some good options are mentioned e.g. by Mei et al.
(1999, 2000) and Guo et al. (2002a).

ICs At the beginning of simulations, the velocity- and pressure-fields need to be
initialized to the values specified in the previous sections. For LB methods, this ul-
timately means that some initial values need to be assigned to the DFs. A common
approach is to set the DFs to their equilibrium Maxwellian values. However, for the
MRT model used here it is easier to calculate the initial DFs from the moments, and
applying the inverse transformation operator M~':

~ 1
finitial = M Miypigial, (216)

where my,;4i4) is evaluated from the initial macroscopic fields (and setting the other
moments to zero).

5.1.3.2 Model for the temperature component

For solving the temperature advection-diffusion eq. (56), also a MRT model (which is
similar in nature to the fuild model) is used (Wang et al., 2013). However, because
the temperature equation does not involve higher-order quantities (such as the stress-
tensor that needs to be resolved in the hydrodynamic model), a model with a lower
number of DFs (specifically, the D2Q5 lattice — Figure 20) is sufficient. This ultimately
saves computer memory and, indirectly, computation-time (by putting less pressure
on the memory sub-system). The DFs for this temperature solve evolve according to
the equation:

gi (x(nJ + eiéin),t(n) + 6,£n)> =g (x(“), t(“)> — N QIn—n% ,  (217)
| —
. relaxation of moments
streaming ~

collision operator

withi€{0,...,4}.
The 5 discretized velocities for the model are given in the matrix é&:

e = (ex) (e, ..., e) =e™ ( L. O) (218)
€y

o o0 1 0 -1

7 This displacement of the boundary relative to the last fluid node needs to be taken into account

during the initialization and postprocessing stages (as discussed in Section 5.1.2 above).
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where the same space-discretization is used as for the fluid model, s.t. e = 5)(51) / éin),
with 65(“) =1and 6?) = 1 by definition.

To obtain the temperature moments n from the DFs of this model, a linear transfor-
mation N is applied:

n=Ng (219)
with:
T 1 1 1 1
o 1 0 -1 0
N = o 1 0 -1 (220)
4 1 1 1 1
o 1 =1 1 —1

During the collision step, all moments are relaxed towards their corresponding
equilibrium values, which are:

n®d = (T, VT W) g1 0)f (221)

where:

* the macroscopic temperature is evaluated from the DFs:
T = Z gi (222)

* ais a model parameter which influences the thermal diffusivity
o ulV, ulgn) represent the local components of the velocity, as evaluated from the
fluid solver

The relaxation rates form the diagonal matrix Q:

Q = dlag(ol Ok, Ok, Og, GV) (223)

The thermal diffusivity for this model is determined by the parameters o« and a
(which appeared in eq. (221)).

44a (1 1
(n) _ 11
5 10 (O‘K 2) (224)

Similar to the fluid MRT model, the parameters o; and a are tuned to optimize
stability and accuracy. In this study, they are set to:

o =3—13, (225)
oy =2(2v/3—3), and (226)

Oe = Oy, (227)



96 APPLICATIONS

which simplifies the matrix of relaxation-rates to:

Q - dlag(ol Ok, Ok, Ovy, GV) (228)
Also, the thermal diffusivity of the model is only controlled by the parameter a:

V3

m _ V3
: 60

(4+a), with —4<a<]l (229)

BCs Several methods are available for imposing the constant temperature BC at
the horizontal walls. The obvious approach of setting the DFs at the boundaries to
a Maxwellian-equilibrium distribution can lead to unphysical heat-fluxes along the
walls (which break the 2"d-order accuracy). To avoid such effects, the so-called anti-
bounce-back (ABB) scheme is used instead (Kuo and Chen, 2009):

ggre-collision(x(n) t(n) +8¢) = —gPOSt_COHiSion(xin),t(n]) + ZﬁK(n)T‘E\Z)H (230)

i f 7 1

where the overline denotes the reversed direction vector.

ICs  As for the fluid model, the initial DFs for the temperature model are re-constructed
from the components of the moments n corresponding to the macroscopic variables:

.
Sinitial = N Ninitial (231)

5.1.3.3 Trigger for symmetry-breaking

Whereas in real-world fluid dynamics experiments there is always some unavoidable
noise, in CFD simulations it can also be the case that the simulation is too stable (from
a physical point of view), because the initial trigger is missing. This is also the case
for the simulations presented later, especially when the periodicity is considered.
Therefore, to avoid this situation and to allow the flow to develop like in the real
world, a small amount of white noise is added to the initial temperature-field drawn
from a uniform distribution with values in the interval [0,1078]. This noise signal
ensures that the flow has a wide range of spatial modes to choose from, so that the
system can amplify the physically-realizable spatial frequencies, and dampen the
ones which are not consistent with the particular Rayleigh number that is prescribed.

In addition, to make the plots easier to interpret, a larger perturbation of 107 is

applied at the point (x(“),y(“)> = (% + 1,2). The role of this larger perturbation is
to set the alignment of the resulting convection cells (for the cases when convection
develops).
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Figure 22: The dependence of the evolution of Hu}(,d) (t'9)||max for different values of the
Rayleigh number (left) and zoomed-in plot of the same data, for the linear regime
(right). All simulations were performed on a 83 x 41 grid, with Ma = 0.1.

5.1.4 Simulation results

5.1.4.1 Determination of Racr

As a first validation-test for our model, it is important to check whether it can repro-
duce the result for the first critical Rayleigh number (Ra., 1), which was predicted by
the theory in Section 2.4. To this end, four numerical experiments were performed,
with the simulation-parameters summarized in Table 2.

Experiment ID | Rayleigh number (Ra) | Ny | tsim | v | Mamax
ARB-2D 1.685 x 10
3
BRB-zD 1.700 x 10 41 450 kzﬂ1 0.1
CRB-2D 1.715 x 103
Dgg-2D 1.730 x 10°

Table 2: Simulation parameters for the 2D numerical experiments for determining Rac, 1. The
duration of the simulations (tsin) is measured according to the diffusive time-scale.

Figure 22 shows the measured dependence of |\u§,d)(t(d))]|max (semi-log scale) on

the dimensionless time, for experiments Arp-,p-Drp-.p. After some initial equilibration-

period (left side of the plot), the experiments show that log (”u}(/d)(t(d))nmax) starts
to vary linearly with time, until the steady-state (horizontal part of each curve) is
reached, when the fluid is either stationary® or in a (time-independent) rotating
regime.

For the determination of Ra., 1, the slopes of this linear portion have to be com-
puted for each experiment. To select the regime with the linear variation, only the

For the Ra < Racy,1 flows, one could argue that even the part of the curve which appears to be
horizontal cannot represent the final state, because the steady-state corresponds to velocities which
are exactly zero. However, in numerical flow simulations the best result that can be achieved is a
velocity close to the floating-point rounding error, to which our model velocities (in the numerical
system of units) are very close.
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Rayleigh number (Ra) | growth/decay rate (c)
1685 —0.1499
1700 —0.0504
1715 0.04%6
1730 0.1492

Table 3: Rates of growth/decay of log (Hu}(,d) () ||max> for each numerical experiment.

temperatureP

0.8
0.6
Q>~.
0.4
0.2
0.0
0.0 0.5 1.0 15 2.0
xP

Figure 23: Dimensionless temperature (left) and streamfunction (right) plots for the Ra =

éizl = 450 diffusive time-scales).

1730 simulation (final state, after t
data from the time-interval t9) € [5, 25] was used. The resulting slope for the least-
squares fit in the case of each experiment is given in Table 3. A linear regression
based on these values then predicts a growth-factor of zero to be achieved for a
Rayleigh number (with 95% confidence intervals (Cls)) of:

Rahumerical _ 1707 5505 4 (0 0564

cr,1

(232)

Although (strictly-speaking) the result does not agree with the theoretically-predicted

value of 1707.762 within the CIs?, due to the small relative error (= 0.012%) we con-
clude that the model correctly captures the fundamental physics of the problem. For
Ra close to (but higher than) Raf:‘;ﬁnerical, the final state of the fluid will be one of
time-independent, roll-like motion'®, as indicated by Figure 23.

5.1.4.2 Behavior near Rag,

With the model passing the first “safety-check”, it is interesting to simulate whether
this 2D model is also able to correctly reproduce the higher-order instabilities, when

A Dbetter fit may be obtained with higher-resolution meshes, but that was not the focus of the current
study.

Of course, being 2D, the present model can only capture the projection of these rolls onto the plane
perpendicular to them — this is one of the motivation for the 3D model presented later.

0.4
yo
0.2 0.8
064
Q
0.0 |
> 041
-0.2 0.2 7
0.0 : : : .
0.0 0.5 1.0 1.5 2.0
-0.4 xD
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Figure 24: The dependence of the evolution of ||u}(,d)(t(d))Hmax (left) and of the total kinetic
energy (right) for the Ra., > 2D simulations.

the motion becomes time-dependent (and, for sufficiently-high Ra, turbulent). To this
end, two simulations were performed, with parameters given in Table 4.

Experiment ID | Rayleigh number (Ra) | Ny | tsimulation | ¥ | Mamax

ERrBoD 6.000 x 103
FRB—zD 6.500 x 103

41 18d | 7] 03

Table 4: Simulation parameters for the 2D numerical experiments for studying the behavior
near Rac, 2. The duration of the simulations (tsim) is still measured according to the
diffusive time-scale, for consistency. However, note that this duration corresponds to a
much larger time in the (more relevant here) eddy turnover time-scale, of t§  ~ 1175
for simulation Egp.,p and of tgim ~ 1223 for simulation Frg_.p.

Notice that a higher aspect-ratio vy = 7 was used. This was motivated by some
initial tests with the 3D model (discussed later, in Section 5.2.4), which showed the
setup to be unphysically-stable (with respect to the higher-order instabilities) for an
aspect-ratio y = %

Figure 24 indicates that a steady-state was reached after t(si; ~ 1. This is confirmed

by a spectrogram of the pressure field, sampled at the point (Nx/4,3Ny/a) (Figure 25).
The important feature to note in the spectrogram is that, after the initial oscilla-
tions (due to the onset of the convection) fade-out, no subsequent oscillatory signals
are present in the system. This confirms the conclusion that this model does not
reproduce the secondary instability, which is expected to occur for Ra > 6000.

5.1.4.3 Behavior for higher-Ra

Although some numerical experiments (not shown here) indicate chaotic behavior
even in the 2D model for high Ra-values (e.g. Ra = 10°), we do not perform a
detailed analysis of the model-results in this regime — since this model (unlike the
3D model, discussed later) fails to reproduce the correct physical behavior near the
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Figure 25: Spectrogram for the 2D simulation, for Ra =
Ra = 6000 and of up to Ra = 9000 show similar behavior towards the end of the

time domain.

17.5

6500. Spectrograms for values of

second instability, we can directly conclude that the Ra > Ra,, regime is outside

the scope of this model.
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5.2 RAYLEIGH-BENARD (RB) CONVECTION (3D)

As a second application, the setup from the 2D Rayleigh-Bénard (RB) problem (Sec-
tion 5.1) is extended, by also taking into account the third spatial direction. For the
simulations, a multiple distribution function (MDF) MRT LBM model is formulated, based
on the work of D’"Humieres et al. (2002) and of Yoshida and Nagaoka (2010). Similar
to the 2D model of Wang et al. (2013), the current model uses the Strang-splitting
approach for a more accurate representation of the body-force (using the method of
Dellar (2013)).

5.2.1 Model setup for the 3D case

&/ﬁb"
& no-slip (@ = 0)
<
S .
Yy const. temp. 6
o A e
N B
K .-
N&Q :
& | \
& :
S i
b@,l, :
O !
N ’
. QO 4
§ g
[/
>
gl 4

"""""""""""" no-slip (@ = 0)

periodic domain-wrapping along z-axis
const. temp. 6y,

- >
- >

W=~vxH

Figure 26: Sketch of geometry for the Rayleigh-Bénard (RB) simulations in 3D. For the present
27

simulations, the aspect-ratio was fixed to y = g ™ 2.0158.

Because this problem is very similar to the 2D analogue, the discussion from Sec-
tion 5.1.1 also applies here — the only difference is the new axis z in the horizontal
plane, which leads to: (a) one additional momentum equation, and (b) various terms
which need to be added to all equations, to account for the z axis. Since the theoreti-
cal discussion in Section 2.4 already provided the most general equations, we do not

need to discuss them again here.
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The geometry is shown in Figure 26. In addition to the setup for the 2D case,
now we also consider periodic domain-wrapping along the new coordinate z. The
horizontal extents of our “convection cell” are the same, W = L = yH, with the
aspect-ratio y = 2.0158. Note that the vertical direction is still along the y-axis.

NOTE ON ARRANGEMENT OF AXES In order to re-use the notations and calcula-
tions for scaling from Section 5.1, the y-axis is kept in the vertical direction; therefore,
the new axis (z) is in the horizontal plane, which makes the notation somewhat non-
standard. However, this does not change anything in the physical principles of the
problem.

5.2.2  Discretization of the dimensionless equation

The discussion on the discretization of the dimensionless equations from Section 5.1.2
also applies to the present model.

5.2.3 Numerical method

Analogously to Section 5.1.3, the numerical solver used for this setup is also a LBM
based on the MRT approach, but specialized for 3D flows (D’Humieres et al., 2002).
The hydrodynamic and temperature equations are solved on two separate lattices:
D3Q19 (Figure 28) and D3Q7 (Figure 27) respectively. The details of the model are
given below, because they are important for setting the physical parameters appro-
priately. Also, a different type of implementation for body-forces is used relative to
the work of D’"Humieres et al. (2002), to improve the accuracy of the model.

Figure 27: D3Q7 lattice (for modeling
advection-diffusion of tempera-
ture)

Figure 28: D3Q19 lattice (for modeling
isothermal hydrodynamic fields)
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5.2.3.1 Model for the fluid component

The solver for the fluid component is based on the original work of D’"Humieres et al.

(2002). The update-rule for the DFs is similar to the 2D case:
f; (x(n) + eié,([n), tn) 4 6?)) =i (x(“), t(“)> — (M_1S (m — meq]). (233)
1

where i € {0, ..., 18} in this case.
The discretized lattice velocities associated to the DFs are:

ex o1 -1 0 0 0 I T —1 10 0 0 o0
e=|e,|=c™]o 0 o0 1 —1 o0 1 1 -1 0 0 0 0 1 -1 1 —I
e. o0 00 01 -1 0 0 0 0 T -1 -1 1 1 =1

(234)

with ¢ = s /5 with 51" = 1 and &En) = 1 by definition.
The vector m represents the moments:

m = (p, € € jx, 9x, Jy, Qy, Jz» 9z, 3Pxxs 3Txx, Pww, Tww, Pxys Pyz, Pxz, Mx, My, Mz), (235)
where the most relevant moments are:

* p — density,

® jx = PlUy, jy = PUy, and j, = pu, — the components of the momentum.

The mapping from DFs to the moments is defined by the matrix M:

m = Mf (236)

with the transformation-matrix defined as:

T 1tr 11 11 11 1 1 1 11111111
-30-11T-11-11-11-11-11 8 8 8 8 8 8 8 8 8 8 8 &
12 4 4 -4 -4 -4 4111111111111
o 1-1r0 o o0 O0O1T-11-1 1-1 1-1 0 0 0 O
o4 4 0 0 O OT1-11-1 1-1 1-1 0 0 0 O

o o o 1 -1 0 01 1-1-1 00 0 0 1T-1 1-1

o 0o 04 4 0 01 1-1-1 00 0 0 1—-1 1-1

o o o o0 o 1 -1 0O0O0O0T1T-1-1 1 1T-1-1

o 0 0 0 04 400O0O0T1T 1T=1-11T 1T-1-1

M= o 2 2-1-1-1T-1 1111111 1-2-2-2-2 (237)

o4 4 2 2 2 21111111 1-2-2-2-2

o o o 1 1 -1-11T111-1-1-1-1 0 0 0 0

o o 0-2-2 2 2111 1-1-1-1-1 0 0 0 0

o o0 o o o o 01-1-1 1 0 0 0 0 0 O0 0O

o o0 0 0 0 0 00O0O0OO0OO0OO0OO0OO0O IT-1T-1T"1

o 0o 0 o 0o 0 00O0O0OCO0OCT1T=1=1 10000

o o 0o o o o0 O01T-1T1-1-1 1-1 1 0 0 0 O

o o0 o o o0 o0 O0-1=-1 1 1 0 0 0 0 1T—-1 1-1

o o0 0 0 0 0 0o00O0O0CT1T 1T-1-1-1T-11"1
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The vector m® for the equilibrium moments has the components: m;! = p, m{ =
32 32 52 32 32 52
JxHy+] eq _ 11 JxHy+ eq _ . eq _ 2. _eq _ . eq _
4 9B et 3o RT3 T =y, mE =
2; eq _.oeq _ 2. eq _ Z%-(i+3) _eq _  1J3-G5HI) _eq _ jyi
T3y My = Jzy Mg = 73]z, My™ = o ™Mo = 727 o0 ™M1 T T v
2 2 . .. Lo
eq _ _1ly7)z eq _ IxJy eq _ Jyl= q _ )xz eq _ 1% %1
My = 72750 ™3 = 5y 7 Mg = o M5 = T, and myg = m;; =m;g =0.

As can also be seen from the moments above, the evaluation of the macroscopic
variables p™ and uj(n) is slightly different than for the 2D model:

18
o™ =Y (238)
i=0
;s
u].(n) = NS ei’jfi, with j € {X, y} (239)
P 0

However, the same gas-like equation of state for pressure holds (along with the same
interpretation, which is not repeated here).
The relaxation of the moments is governed by the diagonal matrix S:

S = diag (so, s1, S2, 3, S4, S5, Se, S7, S8, S9, S10, S11, $12, S13, S14, S15)  (240)

The values of these parameters for optimal stability are given by:

So=83=55=57=1, (241)
s1 =119, (242)
sy =sg=s10=5s12=14, (243)
Sq =s¢=s3=12, (244)
S16 = s17 = 813 = 1.98, and, (245)

1

S9 = S11 = 8§13 = S14 = S15 = (246)

3vin) 417

By inverting the last equation, we obtain the viscosity of the model as a value of

the so relaxation-rate:
n) 2— So9

(n) —

Obviously, to prevent unpysical negative viscosities, it is necessary to have:
S9 = 811 = 813 = 814 = 815 € [0,2) (248)

BODY FORCE, BCs, ICs These are implemented in the same way as for the 2D
model (the procedures described there are easily-generalizeable to the 3D case).
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5.2.3.2  Model for the temperature component

For the temperature DFs, the model of Yoshida and Nagaoka (2010) is used, which
relies on the D3Q7 lattice (Figure 27). The equation for updating the DFs in the bulk
of the domain is:

gi (x(“) +esl™ 1) 4 6?”) — g (x(“), t“”) —~ (N_1Q [n—neq])i, (249)

withie{0,...,7}.
The discrete lattice velocities are a subset of those from the D3Q19 lattice used for
the fluid solver:

ex 01 -10 00 O
e=|e, | =c™ |0 0 10 0|, (250)
e, 00 01 -1
where ¢ has the same significance as for the fluid model.
The operator for mapping DFs g to the corresponding moments n becomes:
n=Ng (251)
where:
11 1 11
o1 -1 0 0 0
oo o0 1 -1 0 0
N=l 00 0 0 0 1 -1 (252)
-6 1 1 1 1 1 1
o1 1-1 -1 0 0
o1 1 1 1 =2 =2
The equilibrium moments are:
ned (T(n)’ W), ) ) g g o)T, (253)

where the constant a = —3/4.
The macroscopic variable which is of most interest for this model is the tempera-
ture, for which the explicit expression reads:

T =3% g (254)
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While the model of Yoshida and Nagaoka (2010) also applies to anisotropic convection-
diffusion problems, it is used in an isotropic regime here, s.t. the relaxation matrix is
again diagonal:

Q = diag(1, sa, Sa, Sa, St4, S5, St6), (255)

where the optimal values for the coefficients are:

2
FPT (256)

Sty =S5 =St =0 . (257)

Sa:

The thermal diffusivity in the model is obtained finally by inverting the first equa-

tion above:
K(n) — 1 l — 1 (258)
4 \sq 2)°
from which it is clear that we must have s, € (0, 2], because the diffusivity should be
positive.

BCs In general case, for when the walls of the domain are not planar or not situ-
ated half-way between the last fluid and first solid node of the lattice, it is necessary
to use the approach of Li et al. (2013) to avoid destroying the 2"-order spatial accu-
racy of the model through the BCs. However, for the simpler geometry used in the
current study the original Dirichlet (1850) BC of Yoshida and Nagaoka (2010) for the
temperature at the horizontal walls is still 2"4-order accurate. This

gEre—collision (X](cn),t(n) i 5t) _ _gPost—collision (X](cn),t(n)> n €DT‘S;)H (259)

1 1

where the overline denotes the reversed direction vector.

ICs  The initial DFs are computed from the initial (linearly-varrying) temperature
field, using the same method as for the fluid model, by inverting the moment-
evaluation equation.

5.2.3.3 Trigger for symmetry-breaking

For the same reasons as discussed in Section 5.1.3.3, it is necessary to add some
perturbations, to break the symmetry of the flow (so that it behaves similar to the
real-world scenario, where such perturbations are always present). As for the 2D
simulations, we achieve this by applying some random perturbations (drawn from an
uniform distribution for the interval [0, 1078]) in the entire fluid-domain. In addition,
to make the setup as close as possible to the 2D case (which makes comparisons
more meaningful), we also impose a larger perturbation (107°), along a line with

<X(nJ,y(n),Z(n)) c (NT 1w, 1,NZ>.
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Figure 29: The dependence of the evolution of Hu}(,d) (t'9)||max for different values of the
Rayleigh number (left) and zoomed-in plot of the same data, for the linear regime
(right). All simulations were performed on a 83 x 83 x 41 grid, with Ma = 0.1.

5.2.4 Simulation results

5.2.4.1 Determination of Racy

Following the same steps as for the 2D model (Section 5.1.4.1), we first check whether
the 3D model is able to reproduce the theoretical result for the first critical Rayleigh
number (Ra, 1), given in Section 2.4. To check this, we performed four simulations,
with the parameters summarized in Table 5.

Experiment ID | Rayleigh number (Ra) | Ny | tsim | Y Mamax
ARB-3D 1.685 x 103
3
Brp-3D 1.700 x 10 a2 k2ﬂ1 o
CRrB3D 1.715 x 103
DRrg-3D 1.730 x 103

Table 5: Simulation parameters for the 3D numerical experiments for determining Rac., 1. The
duration of the simulations (tsim) is measured according to the diffusive time-scale.

Figure 29 shows the measured dependence of ||u§,d) (D) |l max (semi-log scale) on
the dimensionless time, for experiments Arp_;p-DRrp-3p. Similar to the 2D case ,there
is an initial equilibration-phase (left side of the plot), after which log <||u§,d) (tld) ||max>
starts to vary linearly with time. To determine Ra,,  for the model, the slopes of this
linear portion

For the determination of Rac,,, the slopes of this linear portion have to be com-
puted for each experiment, based on the selection of the data from the time-interval
td) € [5, 25] (see right side of Figure 29).

The resulting slope for the least-squares fit in the case of each experiment is given
in Table 6. The least-squares procedure is applied on these results again, yielding the
final value of:

Rahumerical — 17719 0841 4 0.0898 (260)
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Rayleigh number (Ra) | growth/decay rate (c)
1685 —0.222482
1700 —0.125593
1715 —0.027108
1730 0.071921

Table 6: Rates of growth/decay of log (Hu}(,d) (t(d)) ||max> for each numerical experiment.

This result is less accurate compared to the 2D model, but the relative error com-
pared to the theoretical value is still small (=~ 0.66%). The (highly-enlarged) velocity
vectors and temperature distribution at the end of the simulation are shown in Fig-
ure 30.

Figure 30: Velocity vectors and temperature distribution after t4) = 25, for the Ra = 1730
experiment with the 3D model.

It can be readily observed that two counter-rotating rolls appear, which disturb
the iso-surfaces of temperature.

5.2.4.2 Behavior near Rag,

With the model passing the first “safety-check”, it is interesting to simulate whether
this 3D model is also able to reproduce correctly the higher-order instabilities, when
the motion becomes time-dependent (and, for sufficiently-high Ra, turbulent).
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Un-physical effect of small aspect-ratios (when periodic s are used)

Initial tests with this
3D model showed un-
physically stable behavior
of the flow for Ra close
to Racr2 ~ 6000. For ex-
ample, the final state after
t(d) = 25 for a Ra = 6500
simulation, with the same
aspect-ratio y = kchl
used for studying the first
instability is shown in

Figure 31: Velocity vectors and temperature distribu-

tion after t(4) = 25, for a Ra = 6500 exper-
. iment with the 3D model, and low aspect-
Figure 31. ratio (un-physical behavior).

~

initially thought to be caused by errors in the implementation of the model, or due to
insufficient spatial resolution. Interestingly, however, this was not the case — instead,
the “artificial stability” was due to the too small aspect-ratio which, when periodic
BCs are used, inhibits some of the higher-order instabilities. Due to this reason, all
simulation results which follow are using an aspect-ratio of y = 7.

This failure to detect the oscillatory behavior that is expected for Ra 2 Ra., was

For studying the second instability with the 3D model, two simulations were per-
formed, with parameters given in Table 7.

Experiment ID | Rayleigh number (Ra) | Ny | tsim | Y | Mamax

ERrB5D 6.000 x 10
FRB—3D 6.500 x 103

41 | 18 | 7 0.3

Table 7: Simulation parameters for the 3D numerical experiments for studying the behavior
near Rac, 2. The duration of the simulations (tsim) is still measured according to the
diffusive time-scale, for consistency. However, note that this duration corresponds to a
much larger time in the (more relevant here) eddy turnover time-scale, of t§  ~ 1175
for simulation Egp5p and of tégim ~ 1223 for simulation Frp_;p.

The plots for the maximum vertical velocity and the total kinetic energy in Fig-
ure 32 already indicate much more complex evolutions compared to the 2D case.
To compare the two simulations, we will present snapshots of the fields at different
moments, side-by-side.

At t'9 = 1 (Figure 33), both simulations look the same, with four plumes (eight
rolls) being formed, and with the velocity-field being slightly larger for the Ra = 6500
case.

Attd =2 an anomaly appears in the middle rolls, which starts to affect the entire
flow-field (disturbing the other rolls).

By t@ = 2.5 the middle cylinders disappear in the middle of the domain for
the Ra = 6500 simulation, a phenomenon which also takes place in the Ra = 6000
simulation (at t¥) ~ 3.1, not shown here).
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Figure 32: The dependence of the evolution of ||u}(,d) (t'9) || max (left) and of the total kinetic
energy (right) for the Ra. > 3D simulations.

Figure 33: Flow-fields for the Ra = 6000 simulation (left) and for the Ra = 6500 simulation
(right), at t(4) =1,

Figure 34: Flow-fields for the Ra = 6000 simulation (left) and for the Ra = 6500 simulation
(right), at t(4) = 2.

During the time-interval td e [3,16], a period of intense flow-restructuring takes
place in both simulations, which leads to a different outcome in each case.

By t(d = 16, the Ra = 6000 simulation reaches a steady-state (cellular convec-
tion), while the Ra = 6500 simulation enters a time-dependent regime (oscillatory
convection), as expected for Racr ;.
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Figure 35: Flow-fields for the Ra = 6000 simulation (left) and for the Ra = 6500 simulation
(right), at t(d) =25,

Figure 36: Flow-fields for the Ra = 6000 simulation (left) and for the Ra = 6500 simulation
(right), at t(d) =3,

Figure 37: Flow-fields for the Ra = 6000 simulation (left) and for the Ra = 6500 simulation
(right), at tld) =16,

As further evidence for the distinct final states, the corresponding spectrograms
are shown in Figure 39. It can be observed that, after the very energetic phase of
flow-restructuring, all oscillations are dampened in the Ra = 6000 case, while for



112 APPLICATIONS

Figure 38: Flow-fields for the Ra = 6000 simulation (left) and for the Ra = 6500 simulation

(right), at t(d) =18,
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Figure 39: Spectrograms of the 3D simulations for testing the behavior in the vicinity of
Racrz: (left) Ra = 6000 and (right) Ra = 6500. Both figures correspond to the
pressure time-series sampled at the point (Nx/4,3Ny /4, Nz /1),

Ra = 6500 there is still a strong oscillation (with f € [3,4]'") which survives — this
corresponds to the wave traveling along the rolls.

The dominant oscillation for the Ra = 6500 simulation corresponds to waves trav-
eling along the rolls, in the negative Z direction. Several snapshots of this wave-
phenomenon are given in Figure 4o0.

It can be concluded that the 3D MRT LBM model above for simulating convective
flows under the Boussinesq approximation also captures the correct physical behav-
ior near the secondary instability (with an accuracy of 8% or better'?).

As a final note about these two simulations, it is interesting to say a few words
about the stable pattern which emerges at the end of the Ra = 6000 simulation. Be-
cause the domain is periodic in the horizontal directions, it can be considered that

11 The resolution of the spectrograms is, unfortunately, rather coarse. For a better result, more frequent
output at the sampling point would be required. However, because the simulations were performed
on a graphics processing unit (GPU), significant additional effort would be required for implementing
this more frequent sampling (without affecting the performance of the simulations). Therefore, this is
left for future work.

12 A more extensive study, with several additional simulations (and with higher spatial resolution)
would be required to precisely determine Rac, > for the model.
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Figure 40: Snapshots of the traveling-wave oscillating flow-field for the Ra = 6500 simulation.
From left-to-right, top-to-bottom: td =17.00, t@ = 1738, t(d) = 1750, t(d) =
17.63, (1) =17.75, and t'4) = 17.88.

our simulations provide data for a “unit cell”, which is repeated ad infinitum in a
hypothetical unbounded domain. A portion of this “tiling” (top view) is shown in
Figure 41. Similar patterns were also found by previous investigators (see e.g. Getling
and Brausch (2003) and Lappa (2010)). It appears that the initial configuration con-
sisting of parallel rolls is unstable at these higher Rayleigh numbers, which causes the
system to “search” for other local extrema, which are more efficient at transporting
the heat.

5.2.4.3 Behavior for higher-Ra

With a final simulation, we investigate the behavior of the 3D model in the high-Ra
regime. Specifically, we consider the Ra = 10° case, which is simulated on the same
287 x 41 x 287 grid as for the near-Ra,,, simulations.
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Figure 41: Portion of the infinite space-filling tiling that our model simulates for Ra = 6000
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Figure 42: The dependence of the evolution of Hu}(,d) (t!
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energy (right) for the Ra = 10° 3D simulation.

The evolution of the maximum vertical velocity, and of the total kinetic energy
is shown in Figure 42. These plots indicate a chaotic regime of turbulent convection
from an early stage, which can also be seen from the snapshots in Figure 43. The total
simulation-time was t&, = 1 in terms of the diffusive time-scale. However, in terms
of the convective (eddy-turnover) time-scale (which is more relevant for the high-Ra

regimes) we have t§  ~

fully-developed.

843, which is more-than-adequate for the flow to become
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Figure 43: Snapshots showing the evolution of the flow-field towards (and into) the turbulent-
convection regime for the Ra = 10° simulation. From left-to-right, top-to-
bottom:t(4) = 0.0302, t!¥) = 0.0327, t@) = 0.0352, t9) = 0.2513, t!4) = 0.5025,
and t(4) = 1.0000.
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5.3 WIND-DRIVEN OCEAN CIRCULATION (2D)

As a last application of GeLB (which is more directly relevant to climate simulation),
we integrate numerically the equations of the barotropic (i.e. vertically-integrated)
ocean model, where the bottom-topography is assumed to be flat. As discussed in
Section 2.6.2.2, this model is sufficient for studying the most important features of
the wind-driven motion of the surface ocean currents, which is a classical problem in
oceanography. In addition to the analytic solutions mentioned in Section 2.6.2.2, this
problem has been solved numerically by various authors, using finite differences (FD)
(Bryan, 1963; Veronis, 1966), and even using LBM (Salmon, 1999; Wolf-Gladrow, 2000).
Compared to the previous LBM studies, which used the BGK approach, this section
uses the newer LBM-MRT method to solve the same problem, with a more complex
geometry (experiment 2).

Our new numerical model is first validated for the non-linear, no-slip case (following
the work of Wolf-Gladrow (2000), who discussed an BGK-LBM model for the same
setup). Then, we apply the same numerical algorithm to a more realistic, global land-
mask, which is directly derived from the ETOPO dataset (Amante and Eakins, 2008).
Although our numerical model is limited by the 2D assumption (which automatically
prohibits accurate simulations of the real surface-currents in the oceans), this second
oceanographic simulation is valuable as a showcase for the ability of LBM algorithms
(which is further enhanced by GeLB) to easily incorporate the complex features of
the ocean land-mask. To the best of our knowledge, LBM algorithms have not yet
been applied for this particular geometry. Also important is the implementation of
the Coriolis force, which normally presents some difficulties (due to the fact that it
depends on the velocity-field).

Because we discuss two experiments (one with a square geometry and another one
with a realistic geometry), we separate the discussion into two subsections, addressing
each experiment.

5.3.1 ldealized (square) geometry simulation

5.3.1.1 Model setup

The geometry for this experiment consists of a square domain with side L = 4000 km,
as sketched in Figure 44. The domain corresponds to a portion of the Earth’s surface
(centered around ¢y = 30°N). Because we use a 2D model here, any type of vertical
motion is ignored. While clearly unrealistic for the real ocean, this is a useful rough
approximation for studying the wind-driven circulation at the surface (which is our
purpose here). Unlike the RB setup, there is no periodic domain-wrapping — the
velocity-field is assumed to satisfy the no-slip BC on all sides of the domain.

In ESS it is also customary to provide the physical units used. To facilitate compar-
ison of results with Wolf-Gladrow (2000), we choose:

e [ =4000 km: side-length of the ocean domain
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Figure 44: Sketch of geometry for the wind-driven ocean circulation (WDOC) simulations in 2D.

e R = 6371 km: mean radius of the Earth

Q =729 x 107> s~!: angular velocity of the Earth

A =2.03 x 10* m?s~": horizontal eddy viscosity coefficient

do = 30° N: reference latitude for the -plane

To = 8.0 x 1077 m/s?: wind-stress amplitude

Uy = 0.4 m/s: typical horizontal ocean in the wind-driven layer of the ocean

® timulation = 15 weeks: total simulated time

5.3.1.2 Discretization of the dimensionless equation

Similar to how we proceeded for the RB setup, we need to transform the equations
from the dimensionless units to the model units. These transformations (eqgs. (185)
to (188)) are the same as for the 2D RB setup with the simplification that we no longer
need to consider the temperature (because the fluid is assumed to be athermal).

However, we need to select new values for Ny and Ny, to reflect the different
physics of the model:
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* For selecting N, we need to consider what is the smallest spatial feature that

our simulation is supposed to capture. In our case, we want to resolve the Munk
/3

/
layer, which has a width W = (%) ~ 80 km for the physical parameters
listed above. We want W,[\;ll) to be at least twice as large as 5", which leads to
Ny = Ny = 100.

* The selection of N is based on the CFL criterion for the stability of the solution,
which essentially dictates that the time-step should be smaller than the time it
takes for the fastest wave to travel a distance equal to 0. In our present case, the
fastest waves are the Rossby waves, the phase-velocity of which can be shown to
have the magnitude:

pL?

‘Vph, Rossby‘ - m ~8m/s (261)

Simple arithmetic shows that this leads to a maximum time-step of 5000 s.
However, to improve the accuracy of the simulations, we take &; = 400 s, i.e.
N¢ = 2.5 x 10% (where the characteristic time was calculated as uLO).

Plugging the scaling equations into the dimensionless governing egs. (177) to (179),
the following equations are obtained for the model parameters:

v — R]e\]?\lt (262)
a8 (Do [ (D)
s B
where ai(n) and aén) are the acceleration-terms due to the body-forces (Coriolis force

and wind-stress), along the X (West-East) and Y (South-North) directions, respec-
tively.

ICs AND BCs  Because there is no temperature component, the specification of BCs
and ICs is even simpler. As an IC, the idealized ocean is considered to start from a
motionless state, with:

uj(n) (x(n),y(“),()) =0 (265)

(5]3)(1”) <X(n),y(n),0> —0 , (266)

where the last condition is equivalent to setting (5p)™ (x(n),g(“), O) = 0 initially in
the LBM solver. For the square-geometry setup, a no-slip BC is taken for all sides of
the domain.
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5.3.1.3 Numerical method

The model developed here is based on the D2Q9 lattice (Figure 21). We re-use the
fluid-part from the 2D model for the RB problem, which was already described in

Section 5.1.3.

5.3.1.4 Simulation results

The simulation results after a period of t = 15 weeks = t'4) = 1 are given in Figure 45.
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Figure 45: (top) Total kinetic energy (TKE) versus time, for a duration of 15 weeks since the
onset of the wind-forcing. (bottom) Visualization of the streamlines at the end of
the simulation, for the square-domain wind-driven ocean circulation (WDOC) setup.

Because the Munk (1950) theory only applies to the linear regime (while our model
simulated the nonlinear problem), a quantitative comparison with the analytic solu-
tions is not possible. However, qualitatively the results are in agreement with the
theory, with the intensification of the ocean-currents (due to the variation of the Cori-
olis force with latitude) at the western boundary being correctly reproduced. Also,
due to the nonlinear effects, the structure of the flow is more complex compared to
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the analytic solutions (which, for example, predict more straight streamlines on the
left sides closet to the northern and southern boundaries, rather than the sinuous
profiles computed by our model for those regions).

5.3.2 Realistic geometry simulation

For a final simulation, we apply the algorithm for simulating the wind-driven ocean
circulation, by incorporating a realistic land-mask of the ocean. Because of the com-
plexity of the geometry, this is a good demonstration of the ability of LBM to sim-
ulate flows with very fine-scale features, without increasing the complexity of the
algorithm excessively.

Limitations of the current model

Before we discuss the setup and the results, the reader should keep in mind that this
was not an attempt to build an ocean model. Indeed, this model has many limitations,
which would need to be addressed before it can make any quantitative predictions:

* The equirectangular projection (also known as the equidistant cylindrical or geo-
graphic projection) was used, and the 2D RANS (with horizontal eddy-viscosity)
equations were “postulated” to hold onto the resulting planar surface. This in-
troduces large distortions near the poles.

* Being a vertically-integrated model (as assumed by the theory of Munk (1950))
with an uniform ocean-depth (equal to the average depth of the global oceans,
i.e. ~ 4 km), all vertical motions are ignored (which are essential for resolving
the meridional overturning circulation).

¢ Finally, an idealized wind-forcing was used.

Nonetheless, despite this limitations, the model is able to capture some essential fea-
tures of the major surface currents, as will be demonstrated later.

5.3.2.1 Modifications to the forcing terms

To make this global simulation more realistic, the following modifications were used
for the forcing terms (relative to the square-domain simulation):

* more accurate expression for the Coriolis force: While the (3-plane approxima-
tion for the Coriolis force was sufficient for the square domain, this is no longer
usable for the global setup (where it would cause the Coriolis force to be
unrealistically-large in higher latitudes). Instead, we use the exact expression
of the horizontal Coriolis acceleration in the local Cartesian coordinate system:

a® =2Qsin ¢ <+u2> , (267)

where ¢ is the latitude.
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¢ global-scale approximation for the zonal wind-forcing: For the wind-forcing, we
use a square-sinusoidal approximate expression, symmetric around the equa-

tor:
.2
Tzﬂb(ﬂn(hm>, (268)

with Ty = 8 x 1077 m/s2,

5.3.2.2  Geometry-coarsening algorithm

(c) (d)
e e

Figure 46: Examples of land-masks produced by the coarsening-algorithm: (a) original
(ETOP02v2) 2-minute grid, (b) coarsened 20-minue grid, (c) coarsened 2° grid, and
(d) coarsened 10° grid. The blue rectangle indicates the resolution which was used
for calculating the results presented later.

For preparing the geometry of these complex-geometry runs, the ETOP02v2'3 2-
minute gridded global relief data was used, which provides elevation data on the
same type of lon-lat grid as used by the LBM model which was developed for these
simulations. However, the native mesh-size of this ETOP0O dataset (10800 x 5400 nodes)
proved to be impractical for simulations (mostly due to the limited amount of mem-
ory attached to the GPUs available to the author). Therefore, a flexible mesh-coarsening
algorithm was developed, which constructed lower-resolution land-mask grids, based
on the simple criterion of considering a node on the coarse grid to be “land”, if more
than 50% of the surrounding nodes on the ETOPO grid were land. Figure 46 shows the
land-masks produced by this algorithm, for various values of the coarsening-factor.
All black nodes are to be taken as walls (no-slip BC), and periodic domain-wrapping
is assumed for the X (West-East) direction.

13 https://www.ngdc.noaa.gov/mgg/global/etopo2.html
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5.3.2.3 Simulation results

A visualization of the streamlines and of the velocity-magnitude after 15 weeks of
integration is given in Figure 47 . This figure demonstrates that, remarkably, even
our modest 2D model is able to capture the direction (and, most importantly, the
western-boundary intensification) of the major ocean currents.

velocity Magnitude (m/s)
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Figure 47: Visualization of the streamlines after 15 weeks of integration for the barotropic
model of the wind-driven circulation, with a realistic land-mask. The color-bar in-
dicates the velocity-magnitude. NOTE: This result is not meant to represent a realistic
ocean model, due to the limitations of the equations used (see discussion in the text).

To illustrate the direction of the flow, we plot the same result with velocity-vectors
as an overlay (Figure 48). Separated by the corresponding ocean basin, the model
resolves (qualitatively) the following surface currents sketched in Figure 10:

¢ Atlantic Ocean: In the northern hemisphere, the model reproduces the Gulf Stream
(including even features of the Florida Current), the North Atlantic Current,
and the North Equatorial Current. However, the Labrador Current is shifted
too much towards Iceland (and does not disturb the Gulf Stream on the eastern
coast of North America).

In the southern hemisphere, the model reproduces the South Equatorial Current,
the Falkland Current and the Benguela Current. Although the Brazil Current
can be identified, it has an unrealistic shape (shifted too much to the north, and
centered too close to the coast of South America). The Guinea Current is not
reproduced.

e Pacific Ocean: In the northern hemisphere, the model reproduces the Kuroshio
Current and the Alaska Current. Although the North Equatorial Current is
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Figure 48: Visualization of the streamlines after 15 weeks of integration for the barotropic
model of the wind-driven circulation, with a realistic land-mask. The color-bar
indicates the velocity-magnitude, while the vectors indicate the local direction of
the flows. NOTE: This result is not meant to represent a realistic ocean model, due to the
limitations of the equations used (see discussion in the text).

present, it is shifted too much towards the south, and there is no Equatorial
Countercurrent. The East Australian Current is absent, being replaced by an
outflow from the Antarctic Circumpolar Current (ACC) (also known as the West
Wind Drift), which produces a flow in the opposite direction. Also, the Kan-
chatka Current is absent.

In the southern hemisphere, the Peru Current is reproduced. Although the South
Equatorial Current also appears, it is shifted too much to the south.

* Indian Ocean: In the northern hemisphere, the Equatorial Countercurrent is re-
produced, but the North Equatorial Current does not appear. Also, the results
for the East India Coastal Current are inconclusive.'#

In the southern hemisphere, the South Equatorial Current is reproduced. Al-
though the direction of the flow between Africa and Madagascar is correct,
the Agulhas Current does not appear (probably due to a too strong ACC). The
West Australian Current does appear, but it is too close to Madagascar.

¢ Southern Ocean: Here, the ACC is well-reproduced, although it appears to be
too strong (causing disturbances of the currents mentioned above, from the ad-

14 Because this current changes orientation throughout the year due to the monsoon cycle (Shankar et al.,
1996), it is a good example of features that cannot be reproduced by our simplified model, for which
a time-independent surface wind-stress was prescribed.
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jacent ocean basins). The most probable cause of the stronger ACC is the fact that
our model effectively assumes a constant ocean depth, while in reality there are
several regions (e.g. in the Drake Passage) where the ocean is relatively shal-
low (which would normally restrain the flow). Also, as compounding factors
we have the distortions due to the chosen projection (which gives too much
importance to the polar regions in general).

* Arctic Ocean: Finally, here we observe that the North Atlantic Drift is repro-
duced, as well as the Greenland Current. However, there are several “gyres”
which are not physical (for example, to the east of the Svalbard islands, above
the Laptev Sea, above the Kamchatka peninsula, and in the Beaufort Sea). The
most probable reason for these artifacts is the geometry used (caused by the
projection), which causes the North Pole to be actually a line (with no-slip
BCs). Also, the flow in the Arctic regions is influenced by distortions due to the
projection (to an even greater extent than for the Antarctic regions, where the
high-latitude regions are occupied by Antarctica).

Because of the unrealistic representation of the curvature of the Earth, this simu-
lation should only be considered a preliminary result, presented mainly to demon-
strate the ability of the lattice Boltzmann method (LBM) to simulate domains with very
complex geometries. Nonetheless, it can be observed that even this model is able to
capture (with the correct direction) most of the major surface ocean currents. Also,
the currents which are reproduced also show a pronounced intensification of the
flows near the western boundaries, as expected from the theory of Munk (1950) and
Stommel (1948).

One of the problems with the shortcomings of the model, which can be observed
when zooming-in on the streamlines close to some of the continent boundaries (es-
pecially on the western boundaries, e.g. on the western coast of South America), is
that the streamlines are not always parallel to the contours of the continent (as they
should be). This is due to a combination of two effects:

¢ Artifacts due to the plotting routine

To make the model-output compatible with the visualization software, the
model was programmed to write values for the velocity even for the nodes
inside the continent (a value of zero is produced in that case).

* Accuracy-limitations of the bounce-back (BB) boundary condition (BC)

A shortcoming of the BB BC is that it is only 1%'-order accurate for the general
(non-axis-aligned) case. This leads to small errors in the velocities near the
boundaries (where the velocity should be exactly zero in theory, due to the no-
slip BC). This leads to small errors in the velocity near the boundaries, which
are exaggerated by the plotting artifacts mentioned above.

However, these defects in the streamlines are most visible in the regions where the ve-
locities are small. Therefore, they should not have (in principle) a significant effect on
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the overall appearance of the major currents. Nonetheless, some possible approaches
for reducing these effects are given in Chapter 7.






Part III

SYNTHESIS






DISCUSSION AND CONCLUSIONS

“Science is spectral
analysis. Art is light
synthesis”

Karl Kraus

6.1 GELB — A TOOL FOR LATTICE BOLTZMANN MODELING

The new Generic lattice Boltzmann framework (GeLB) domain-specific language (DSL) was
designed and implemented, to facilitate testing, inter-comparison, and development
of new numerical simulations using algorithms based on the lattice Boltzmann (LB) ap-
proach. Because it allows expressing the numerical algorithms in a language which
is closer to the problem-domain (compared, for example, to general-purpose languages
(GPLs)), this tool increases the productivity of the user, by abstracting-away many of
the time-consuming technical concerns usually encountered in practical numerical
simulations. On the other hand, the DSL still preserves internally the topological in-
formation which is necessary for generating code with good performance (although
making extensive use of this knowledge is still a work in progress). To demonstrate
its usefulness, the new tool was used to simulate three concrete physical problems.

6.2 RAYLEIGH-BENARD (RB) CONVECTION

The RB problem has been simulated numerically, using both 2D and 3D versions of a
multiple-relaxation-times (MRT) lattice Boltzmann method (LBM) model. The dynamics of
this type of flow is determined by the relative importance of destabilizing and stabiliz-
ing mechanisms. In the first category we have the buoyancy force, which causes the
fluid from the lower regions to tend to rise, and the fluid from the upper regions to
sink. The second category consists of the diffusion of temperature and of the viscous
forces. These competing effects make this problem conditionally stable. From an ener-
getic point of view, it can be said that in some situations heat conduction alone is suf-
ticient for transferring the heat from the lower- to the upper-regions, while in other
cases convection is also needed, to enhance the heat transfer. The system exhibits sev-
eral bifurcations, which in theory depend only on the Rayleigh (Ra) and the Prandtl
(Pr) number. Analytic results from linear stability theory (Chandrasekhar, 1981) pre-
dict that the onset of the first bifurcation depends only on the Rayleigh number —
with no-slip BCs at the horizontal walls (same as used in our numerical experiments),
the theory predicts the rest-state to be stable when Ra < Raggeloretical = 1707.762 (see
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discussion in Section 2.4). This is a simple metric, which can be used to check if
numerical models are reproducing the correct physics of the problem. Both model
presented in this thesis were found to reproduce Ra,,; with good accuracy (relative
error < 1%), with a slight advantage for the 2D model. The next bifurcation also
depends on the Prandtl number; for the fixed value of Pr = 0.71 used in the present
work, the general consensus is that Ra..2 ~ 6000 (more exactly, Willis and Dear-
dorff (1970) found experimentally that Ra.., = 5800, while the theoretical analysis
of Clever and Busse (1974) yielded a value of Ra, > = 6000). Preliminary testing with
the 3D model shown here demonstrated a value of Rag‘,fg‘erical € [6000,6500], which
is a very encouraging result (establishing more strict bounds for the Ra,,, will be
the topic of further work). On the other hand, the 2D model was shown to be un-
able to reproduce Ra.,,, which indicates that the Ra > Ra,, 1 regimes should not be
investigated with this model. The reason for this limitation of the 2D model is obvi-
ous: for Ra > Ra,, 1, the flow becomes strongly three-dimensional. Interestingly, this
three-dimensionality was even observed below Ra,, 2, where the fluid seems to settle
into (time-independent) patterns which are topologically different from the rolls to
which the 2D model is limited.

An unexpected outcome of our work was to show the importance of the aspect-
ratio for reproducing the correct behavior (i.e. transition to time-dependent flow)
near Racr,. This is an important effect, to be considered in future investigations
of this problem, for the high-Ra regimes (even if the computational demands scale
proportionally with the square of the aspect-ratio).

Based on the good results for Ra, 1 and Rag; 2, we could also apply the 3D model
for the high-Ra regime — for example, a simulation at Ra = 10° indicated a regime
of turbulent convection (which is also in line with the conclusions of other authors
(Busse, 1978)). Here, one remarkable feature of the MRT algorithms was observed,
namely the high degree of stability, even with coarse grids (however, the method
probably behaves as an “implicit LES” algorithm in such situations).

6.3 WIND-DRIVEN OCEAN CIRCULATION (WDOC)

To demonstrate the potential applicability of the newer MRT LBM algorithms to ESS
research, we simulated numerically the wind-driven ocean circulation (WDOC) of a
barotropic (i.e. vertically-integrated) ocean in the nonlinear regime, both for the clas-
sical setup (square geometry) and for a new setup with complex geometry (based on
the currently-available land-mask data). Both simulations yielded very encouraging
results, with the first one being able to reproduce the final flow-features (and, espe-
cially, the western-boundary current intensification) reported by previous work due
to Veronis (1966) and Wolf-Gladrow (2000).

Rather remarkably (considering the limitations of the model) the second simula-
tion (with the realistic geometry) also able to reproduce (at least, qualitatively) most
of the important currents which are known to occur in the real oceans.
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However, the complex-geometry simulation can only be considered preliminary,
because several imporant features are still incorrect. For example, the Antarctic Cir-
cumpolar Current (ACC) is somewhat stronger than in reality (probably because the
non-uniform depth of the bathymetry is not considered). Also, the circulation in
the polar regions in general is affected by several simplifying assumptions in the
geometry, which artificially increase the importance of the currents in the higher
latitudes, and create unphysical gyres near the North Pole. Finally, time-dependent
effects (such as the reversal of the East India Coastal Current) are not captured, most
probably due to the constant wind-forcing prescribed for the simulation. All of these
issues need to be addressed by further model-development work.
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“Prediction is very difficult,
especially if it’s about the
future”

Niels Bohr

The work documented in this thesis combined aspects from several disciplines of
science and engineering. Therefore, it is useful to separate these aspects when dis-
cussing the possible future improvements — Section 7.1 discusses the technical /computer-
science-related improvements to the GeLB model framework, while Section 7.2 dis-
cusses the natural extensions of the work from the point of fluid-dynamics modeling
and of applications in Earth system science (ESS).

7.1 POSSIBLE IMPROVEMENTS TO GELB

The GeLB description (GD) programming language which is at the core of GeLB is
still very young, and there is much room for improvement. Because some of the
possible improvements require resources or expertise that the author does not posses
currently, it would be ideal to attract a group of open-source developers to help with
some of this work.

Some of the possible areas for improvement are discussed in the next subsections.

Further optimize performance of generated code

The LBM and Cs literature contains a wide range of code-optimization techniques.
Some of the techniques (such as combining the streaming- and collision-phases into a
single spatial sweep) were already used for this thesis. However, there are additional
optimization techniques, which may be considered in the future:

1. The worst “performance sin” of the GeLB version used for this thesis was the
fact that it used two separate lattices for holding the old and the new distribution
functions (DFs). This makes it easier to ensure that the code is correct (which was
the first priority). However, this approach obviously also doubles the memory-
consumption, which: (a) limits the sizes of the lattices that can be used for high-
resolution simulations (especially on GPUs, where memory is less plentiful), and
(b) also increases the pressure on the cache-hierarchy (for both central processing
units (CPUs) and GPUs).

To alleviate this problem, it is (in principle) possible to schedule the node-
updates in such a way that a single lattice is used for iteration [n]and ,
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with some buffer-space (for storing [n }state which is still needed for updating
nodes that are yet to be brought to -state). Such an optimization was dis-
cussed e.g. by Mattila et al. (2007) and Wittmann et al. (2013), for the case of
relatively simple geometries. However, this problem is more difficult to solve
in the general case (for the complex geometries supported by GeLB). A compli-
cating factor is the fact that, in order to obtain good performance (especially
on GPUs) it is often better to leave the hardware some freedom in terms of
the scheduling of node-updates. The author has a prototype algorithm for this
general case which, however, still needs to be tested extensively.

2. The cache-utilization of the code could be improved with more advanced data-
structures (Demaine, 2002; Kumar, 2003; Strumpen and Frigo, 2006; Nitsure
et al., 2006; Bader, 2012), and space-sweeping algorithms (Wellein et al., 2009).
This issue is closely related to the previous optimization.

3. Finally, the 1/0 throughput could be improved by implementing parallel 1/0.
This can be useful for the case when output is to be written frequently to the
disk (in which case this operation can become a serious bottleneck).

Add more backends

Version 1 of GeLB, which was described and used in this thesis, only implements the
Fortran - OpenMP backend, which is suitable for running simulations on single-node,
multi-core machines. This target is very popular, but it does not reflect the current
state-of-the-art in computing hardware available to scientists — in particular, it does
not account for multi-node machines and for computing accelerators such as GPUs
or field-programmable gate arrays (FPGAs). To fix this shortcoming, Fortran - MPI and
C - OpenCL backends are currently under development. In the future, even hybrid
backends (e.g. C - MPI - OpenCL) may be considered, depending on the interest of
users.

Implement a “true” compiler

The gelbc program is the part of the GeLB framework which translates GD programs
into the lower-level source-code that is eventually compiled into executables. Because
it does not directly generate executable code, gelbc should be better named a “trans-
lator” (some authors also use the term “transpiler”). In principle, there is no reason
why gelbc could not generate executable code directly. This would allow for better-
optimizing code, and it would also simplify usage, by eliminating one compilation
step in daily-usage.

One possible approach for makign this transition to a “true” compiler would be to
make the intermediate representation (IR) currently produced by gelbc compatible with
the IR of the LLVM compiler infrastructure project (LLVM). Because LLVM can already tar-
get many of the hardware-platforms planned for future releases of GeLB, this would
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eliminate the need for implementing backends manually (Section 7.1). However, it
could also limit the choice of backends, if they are not currently supported by LLVM
(for example, Message Passing Interface (MPI) and FPGAs).

Add a tool for visual, iterative simulation-development

When writing simulations, it would be useful to obtain “live” visual feedback, for ex-
ample to visualize the in-out stencils of dynamics, or the geometry of the simulation
(using a “colouring” of the nodes in the lattice). Such a tool could also remind the
user if the simulation-program has any syntax errors, or if it is missing some of the
mandatory building-blocks. Most importantly, this tool could highlight errors or in-
consistencies related to in-out stencils of the dynamics, which can cause bugs that are
difficult to track otherwise (trying to write to a non-existent distribution function (DF),
attempting reading an un-initialized DF, etc.).

The author developed a rough prototype for such a tool, using Python and OpenGL,
which may be included in a future release.

Auto-generate some node-categories

Currently, the GD language requires users to manually specify distinct functions for
each distinct node-category. However, it is easy to notice that many categories are
related, and could be (in principle) generated automatically as soon as a category
from the same “family” is defined by the user. Specifically, two mechanisms for
“category-collapsing” come to mind:

* Make use of rotation/reflection symmetries:

In many applications using LBM, the categories defined for the corners of the
domain are related: once the dynamics for one of the corners is defined, the dy-
namics of the other three corners could be obtained automatically, by rotation
of the in-out stencils in increments of 90°. Similarly, the dynamics of the bottom
edge could be auto-generated from those of the top edge, and those of the right
edge from those of the left edge (in these cases, by 180° rotations of the in-out
stencils). To give an example, for simulating the well-known lid-driven cavity
problem in 2D, instead of having to define ¢ distinct dynamics, we would only
need to define 4, reducing the length of the corresponding GeLB program by
~ 50%. The reduction of boilerplate-code would be even more substantial for
3D simulations with complex wall boundaries.

* Add support for parameterized node-categories:

A second possible mechanism for reducing the number of categories is to al-
low dynamics to accept some parameters (similar to templates in C++). This is
useful when the simulation contains categories for which the dynamics differ
only with respect to the magnitude of some parameters — for example, in simu-
lations of thermal fluids where we want to specify a varying temperature profile

135



136

OUTLOOK

along some straight walls, it would be very inconvenient to have to define a
new category for each node of the wall. There is currently a way to overcome
this problem, by using the node-position arguments that are available to the
functions defining the dynamics. However, this mechanism has to be refined.

For example, in the applications for simulating the flows presented in this the-
sis, the dynamics of the top and bottom nodes are very similar — it would be
possible to derive one from the other, using a rotation by 180° and parameteriza-
tion with respect to the wall-temperature (to impose the different temperatures
at the horizontal walls). In these cases, the reduction of the number of cate-
gories to be defined manually is more modest — from 3 to 2. However, for more
complex geometries the benefits could be more significant.

Because it can significantly reduce the size of GD programs, this feature would be
very useful, increasing clarity of programs and decreasing the slope of the “learning
curve” for new users.

Using this feature in practice requires an iterative approach — some GeLB tools have
to monitor what kind of node-categories have been defined already and to compute
(based on the geometry “colouring”) which ones can be generated automatically.
Therefore, this feature should be added to the tool for visual, iterative simulation-
development mentioned above (Section 7.1).

Refinements of language-syntax

Designing the syntax for a programming language is, to some extent, an “art” —
in the end, some of the language elements are subjective, and determined by the
background of the authors. Because version 1 of the GD language was developed by
the author of this thesis alone, it probably contains some elements which may not
be clear to other users. Therefore, it is valuable to get more feedback from a wider
community of users, to discover aspects that could be made more clear in future
versions of the language.

Improve error-niessages

Although the GD language is formally described by the Extended Backus-Naur-Form
(EBNF) grammar used by the parser in the frontend, this does not mean that error-
messages issued by the parser when it encounters syntax- or logic-errors are obvious.
Therefore, to increase the productivity of users, it would be very useful to include
additional layers of error-handling, with error messages which clearly explain what
went wrong. This feature could also be coupled with the work on the visual tool for
simulation developent (Section 7.1).
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Add support for GD in text-editors and IDEs

As a purely technical (but nonetheless important) area of future improvement, it is
useful to add support for the GD language in some of the most popular programming
text editors and integrated development environments (IDEs). The first steps would be to
add support for syntax-highlighting and for auto-formatting of code.

This feature could also accelerate any subsequent improvements to the language
syntax.*

7.2 LBM WORK

From a fluid dynamics point of view, there are many opportunities for further stud-
ies, both for the specific applications considered in this thesis, as well as for other
problems which were beyond the current study.

Further exploration of the presented applications

Of the presented applications, the 3D Rayleigh-Bénard (RB) convection is one of the
most interesting to research further. In particular, the author plans to focus on three
important aspects:

1. First, it would be interesting to study how the structure of the initial trigger for
breaking the symmetry (Sections 5.1.3.3 and 5.2.3.3) influences the evolution of
the setup.

2. A second aspect is the dependence of the results on the geometry. In particular,
we would like to perform a more systematic study of the influence of the aspect-
ratio on the value of the critical Rayleigh numbers, to understand how this
factor constrains the flows.

3. The last topic is tightly coupled with the previous two aspecsts. The idea is
to systematically study numerically the rich variety of flow-regimes in the su-
percritical regimes, and the transition to fully-developed turbulent convection
and to compare these simulations with the results of other authors (Busse, 1978,
1981; Koschmieder, 1993; Getling and Brausch, 2003).

Extension of the work to large-scale modeling in climate sciences

Although the WDOC simulation in Section 5.3 showed encouraging results, there is
still a lot that can be done to have a complete LBM-based ocean model. Specifically,
four limitations would need to be overcome:

1 The author designed the GD language to be similar to the C++ programming language, so that he could
re-use the editor-support for that language. However, having dedicated support for the GD language
would “lift” this artificial reason for keeping the syntax close to C++.
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1. Develop a more accurate space-discretization:

Although we used a general implementation for the Coriolis force in the complex-
geometry ocean simulations shown in this thesis, the surface of the Earth was
effectively projected onto a cylinder, and then we assumed that the 2D (Carte-
sian) RA NSEs are valid on the surface of that cylinder. Obviously, this approx-
imation leaves out many geometric factors, which would be required if we
would want to accurately account for the curvature of the Earth.

A promising idea for solving this problem (which would allow re-use of exist-
ing and well-tested LBM algorithms) would be to use a “cubed-sphere” (Ronchi
et al.,, 1996) spatial discretization. This approach has the advantage that the
mesh (with an appropriate mask) can still be considered regular. Also, there is
no singularity at the poles, and even adaptive grid-refinement would become a
tractable problem.

2. Solve the problem of mesh-anisotropy for the 3D simulations:

One of the main obstacles (Salmon, 2009) which prevents the LBM methods
from being applied to simulations of large-scale flows in ESS is the common
LBM assumption that the underlying computational mesh (i.e. the “lattice”) is
spatially isotropic (i.e. a square grid in 2D and a cubic grid in 3D). Unfortunately,
this assumption is inadequate for 3D simulations at the planetary scale, where
the flow typically has a very high horizontal-to-vertical aspect ratio,?. Although
the mesh-anisotropy is not the only feature distinguishing planetary-scale flows
(Coriolis effects and stratification also play major roles), it is a basic requirement
for potential numerical methods.

Initial work to overcome this limitation in LBM was based on interpolation (Fil-
ippova and Hénel, 1998a,b) (which, however, increases artificial dissipation), or
solving equations which were not fully consistent hydrodynamically (Bouzidi
et al., 2001). Hegele Jr et al. (2013) derived interpolation-free models for rect-
angular lattices, by using additional DFs (which unfortunately increases the
already-high memory footprint of simulations, especially for thermal flows).

However, an interesting approach that the author recently became aware of is
that of Zhou (2012), who derived a rectangular model which has anisotropic
fluid viscosity. Despite being detrimental for classical CFD simulations, it may
be beneficial for large-scale ESS applications, where it is customary to param-
eterize the vertical- and horizontal-viscosity (or, more exactly, diapycnal and
isopycnal viscosity) differently, to account for the various sub-scale physical
effects.

Also, a new model for simulations on an anisotropic mesh was proposed very
recently (Zong et al., 2016) which, remarkably, exploits the flexibility of the
MRT-LBM formulation to avoid the need for interpolations of for additional DFs

2 For example, the equatorial circumference of the Earth is ~ 40,075 km, while the average depth of
the ocean is of only ~ 3.68 km).
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for simulating 2D flows. An extension of this model to 3D would be a very
good opportunity for applying LBM to ESS problems.

3. Use more realistic wind-forcing data:

For the last simulations presented in this thesis, an approximate analytical ex-
pression was used for the zonal wind-stress, which was assumed to be time-
independent. An obvious next step would be to assimilate real measurement
data (e.g. different wind-forcing for each month of the year, as a first approx-
imation). Alternatively, we could also consider coupling this model to a real
atmosphere model, such as ECHAM (Stevens et al., 2013).

4. Use more accurate boundary conditions (BCs) schemes:

As mentioned in Section 5.3.2.3, the bounce-back (BB) boundary condition (BC) used
for imposing the no-slip condition at the continental boundaries are only 1%
order accurate in space for boundaries with arbitrary contours. Several alterna-
tive schemes (which are expected to yield more accurate results) are available
in the literature (e.g. Mei et al. (1999) and Guo et al. (2002a)). The general idea
behind such schemes is to increase the radius of the stencils, by considering
neighboring nodes.3 Importantly, these higher-order BC schemes do not signif-
icantly increase the complexity of the code, which makes the lattice Boltzmann
method (LBM) approach a promising research tool for problems with complex
geometries. A systematic investigation of the effects of such schemes on the
present setup is an interesting topic, to be investigated in the future.

Quantification of performance and of parallel scalability

In addition to the ability of LBM to simulate flows with complex geometries, the
method is also an ideal candidate for parallelization on common (CPUs, GPUs) or
emerging (e.g. FPGAs) hardware-architectures. A natural continuation of the work
presented in this thesis (especially the GeLB frameworks) is to study the performance,
as well as the parallel-execution scaling of the LBM algorithms, in comparison to
other CFD methods:

e For the performance studies, several aspects can be analyzed — for example,
two common metrics are the time-to-solution and the energy-to-solution.
 For the scalability studies, it is interesting to look at both the

a) weak scaling: i.e. how the time-to-solution changes as the number of execution-
units is increased, for a problem of fixed size, and at the

b) strong scaling: i.e. how the amount of work per unit time changes, as the
size of the problem is increased along with the number of execution-units.

3 In contrast, the BB scheme is entirely local, which greatly simplifies the implementation — this is one
of the main reasons why this scheme remains very popular).
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This quantity is also becoming more-and-more relevant for ESS simulations,
as the resolution of the models is increased (to increase realism).
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