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2 Abstract 
 
The overall aim of this study was to investigate the influence and importance of benthic 

communities on the carbon- and nitrogen- flow through the food web in the Segara 

Anakan Lagoon. I used the method of stable isotope analysis to resolve trophic structures 

of benthic food webs in several sampling stations within the lagoon (Herbon et al. 

submitted: High spatial variability of �13C and �15N in intertidal benthic food webs 

in the mangrove fringed Segara Anakan Lagoon, Java, Indonesia). Carbon isotopic 

compositions were used to trace carbon sources through the food web, whereas nitrogen 

isotopic compositions can help to distinguish between trophic levels. A high spatial 

variability was found on a small scale (in a range of few kilometers), mainly traced back 

to food availability and possibly also anthropogenic impacts, such as sewage wastes by 

the city and villages within the lagoon and pollution through effluents of the oil refinery. 

Certain herbivorous crabs (Episesarma spp.) and even a detritivorous snail (Telescopium 

telescopium) supplement their diet with 15N enriched food sources, to satisfy their 

nitrogen needs. Two species of the same genus (Episesarma) occurred on different 

trophic levels based on different feeding habits.  

Furthermore, seasonal variation in isotopic compositions of several abundant species was 

examined (Herbon et al. submitted: Seasonal variations of �13C and �15N in 

mangrove benthic organisms in the Segara Anakan Lagoon, Java, Indonesia). A 

seasonal area dependent variation was observed, which can be explained mainly by the 

impact of increased precipitation, and therewith an increased river runoff. In a global 

comparison, Indonesia was found to hold the highest nitrogen isotopic composition for 

oysters and Telescopium telescopium between the compared studies. The latter obviously 

is supplementing its diet with 15N enriched food sources, in an amount as in no other 

comparable study found. 

As underlying processes of isotopic fractionation are still unclear today, several 

experiments were conducted to estimate the importance of benthic decapod species on the 

turnover of carbon and nitrogen in the mangrove ecosystem of the SAL (Herbon et al. in 

prep.: Consumption rates and fractionation of carbon and nitrogen isotopes by 

mangrove crabs, including long-term experiments with a Rhizophora apiculata diet). 
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The most important outcomes are annotated in the following. Decapod species of the 

genus Episesarma can survive three months on a Rhizophora apiculata leaf diet only. A 

change in nitrogen isotopic signatures was only observed after 50 days, which results 

from starvation and internal recycling of remaining nitrogen. Furthermore it became clear 

that Episesarma spp. feed preferably on the shrub Derris trifoliata, apart from 

Rhizophora apiculata. This indicates that deforestation might not affect these species as 

much as previously presumed, as long as these areas are overgrown by D. trifoliata. The 

various mangrove species are consumed and assimilated. But clear dependencies on 

carbon or nitrogen contents were not observed. When comparing tissues, differences in 

isotopic compositions were expected, according to their role and status within the 

digestion and assimilation process. As expected, muscle had the significantly highest 

carbon isotopic compositions, as it is a long time storage tissue. Additionally it was 

examined whether ovigerous crab females have a lower isotopic composition in their 

muscle tissue than non-ovigerous, due to presumed differences in their metabolism, but 

there was no significant difference found. This can probably be explained due to a short 

reproduction time, or either due to their ability to balance the carbon and nitrogen budget 

during time of gestation.  

 

To conclude, variation in isotopic signatures is high on a spatial and temporal scale, and 

should therefore be considered in the future when making generalizations and comparing 

research results to previous studies. 

Decapods have a highly opportunistic feeding behavior. Species from the same genus can 

adapt differently to changes in food availability. Episesarma even preferably feed on 

shrub species overgrowing logged mangrove areas and can survive over a period of seven 

weeks on a nitrogen depleted diet without showing deficiency symptoms. Decapods 

therefore are highly adaptable to changes in food availability. 

The method of isotope analysis is a sufficient tool to trace spatial and seasonal 

differences in invertebrates surrounding environments and their feeding habits. But 

carbon isotopic signatures can be questioned to sufficiently trace carbon sources of all 

invertebrates. 
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3 Zusammenfassung 
 
Das übergeordnete Ziel dieser Studie war es, den Einfluss und die Bedeutung der 

benthischen Gemeinschaften auf den Kohlenstoff- und Stickstoff- Fluss durch das 

Nahrungsnetz in der Segara Anakan Lagune zu untersuchen. Ich nutzte die Methode der 

stabilen Isotopenanalyse zur Auflösung trophischer Strukturen des benthischen 

Nahrungsnetzes in mehreren Stationen innerhalb der Lagune (Herbon et al. eingereicht: 

High spatial variability of �13C and �15N in intertidal benthic food webs in the 

mangrove fringed Segara Anakan Lagoon, Java, Indonesia). Die Kohlenstoff- 

Isotopenzusammensetzung wurde verwendet, um Kohlenstoff- Quellen durch das 

Nahrungsnetz zu verfolgen, während die Stickstoff- Isotopenzusammensetzung helfen 

kann, zwischen trophischen Ebenen zu unterscheiden. Eine hohe räumliche Variabilität 

wurde bereits auf kleinem Maßstab (innerhalb weniger Kilometer) gefunden. Diese kann 

vor allem auf die Verfügbarkeit von Nahrung und möglicherweise auch auf anthropogene 

Einflüsse zurückgeführt werden, wie z.B. Verschmutzung durch Abwässer von der Stadt 

und den Dörfern innerhalb der Lagune und der Öl- Raffinerie. Bestimmte herbivore 

Krabben (Episesarma spp.) und auch eine detritivore Schnecke (Telescopium 

Telescopium) ergänzen ihre Ernährung mit 15N angereicherten Nahrungsquellen, um ihre 

Stickstoff  Bedürfnisse befriedigen zu können. Zwei Arten derselben Gattung 

(Episesarma) kamen auf verschiedenen trophischen Ebenen vor, basierend auf 

unterschiedlichen Ernährungsgewohnheiten.  

Darüber hinaus wurden saisonale Schwankungen in der Isotopenzusammensetzung 

mehrerer abundanter Arten untersucht (Herbon et al. eingereicht: Seasonal variations 

of �13C and �15N in mangrove benthic organisms in the Segara Anakan Lagoon, 

Java, Indonesia). Saisonale gebietsabhängige Unterschiede wurden beobachtet, die vor 

allem durch die Auswirkungen der erhöhten Niederschläge und dadurch erhöhte 

Flußeinträge zu erklären sind. Im globalen Vergleich findet man in Indonesien die 

höchste Stickstoff Isotopenzusammensetzung für Austern und Telescopium Telescopium. 

Letztere ergänzt ihre Ernährung mit 15N angereicherten Nahrungsquellen in einer Menge, 

wie in keiner anderen vergleichbaren Studie gefunden wurde.  
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Da zugrunde liegende Prozesse der Isotopenfraktionierung noch heute unklar sind, 

wurden mehrere Experimente durchgeführt, um die Bedeutung der benthischen 

decapoden Arten auf den Umsatz von Kohlenstoff und Stickstoff im Mangroven-

Ökosystem der SAL einzuschätzen (Herbon et al. in Vorbereitung: Consumption rates 

and fractionation of carbon and nitrogen isotopes by mangrove crabs, including 

long-term experiments with a Rhizophora apiculata diet). Die wichtigsten Ergebnisse 

werden im folgenden erläutert. Decapode Arten der Gattung Episesarma können drei 

Monate mit einer puren Rhizophora apiculata  Diät überleben. Eine Änderung der 

Stickstoff-Isotopensignaturen wurde erst nach 50 Tagen beobachtet, welche aus 

Aushungerung und internem Recycling von vorhandenem Stickstoff resultiert. Darüber 

hinaus wurde deutlich, dass Episesarma spp. abgesehen von den Mangrovenblättern der 

Art Rhizophora apiculata vorzugsweise die Unterwuchsarte Derris trifoliata frißt. Dies 

deutet darauf hin, dass Abholzung diese Arten möglicherweise nicht so stark beeinflußt, 

wie bisher angenommen, solange die abgeholzten Flächen mit D. trifoliata überwuchert 

werden. Verschiedene Mangrovenarten werden unterschiedlich konsumiert und 

assimiliert. Aber klare Abhängigkeiten vom Kohlenstoff- oder Stickstoff- Gehalt konnten 

nicht nachgewiesen werden. In der Isotopenzusammensetzung von verschiedenen 

Geweben wurden Unterschiede erwartet, entsprechend ihrer Rolle und  ihrem Status 

innerhalb des Verdauungs- und Assimilations- Prozesses. Wie erwartet, wurde in 

Muskelmasse die signifikant höchste Kohlenstoff- Isotopenzusammensetzung gemessen, 

da es ein Langzeit-Speicher-Gewebe ist. Zusätzlich wurde untersucht, ob ovigere 

Krabben-Weibchen eine niedrigere Isotopenzusammensetzung in ihrem Muskelgewebe 

haben als nicht-ovigere, aufgrund angenommener Unterschiede im Metabolismus, aber es 

wurde kein signifikanter Unterschied gefunden. Dies ist vermutlich durch eine kurze 

Reproduktionszeit, oder durch ihre Fähigkeit, ihren Kohlenstoff- und Stickstoff- Haushalt 

während der Zeit der Trächtigkeit auszugleichen begründet.  

 

Schlussfolgernd kann man sagen, dass die Variabilität auf räumlicher und zeitlicher Skala 

hoch ist und daher in Zukunft bei der Generalisierung und beim Vergleichen von 

Forschungsergebnissen mit anderen Studien bedacht werden sollte. 
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Decapoden haben eine hoch opportunistische Ernährungsweise. Arten von der selben 

Gattung können sich unterschiedlich an Veränderungen in der Nahrungsverfügbarkeit 

anpassen. Episesarma ernährt sich sogar bevorzugt von Unterwuchsarten, welche 

abgeholzte Flächen überwachsen, und können über einen Zeitraum von sieben Wochen 

nur auf Basis einer stickstoffarmen Nahrungsquelle überleben ohne 

Mangelerscheinungen zu zeigen. Decapoden sind demnach hoch anpassungsfähig an 

Veränderungen in der Nahrungsverfügbarkeit. 

Die Methode der stabilen Isotopenanalyse ist ein hinreichendes Instrument um räumliche 

und zeitliche Unterschiede in den, die Invertebraten umgebenden, Umweltbedingungen 

und ihren Ernährungsweisen aufzuzeigen. Aber die Kohlenstoff-Isotopen-

zusammensetzung kann als Indikator für Kohlenstoff- Quellen von allen Invertebraten 

angezweifelt werden. 
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5 General Introduction 
 

 

5.1 Distribution of mangrove forests in Southeast Asia 

 

The most species diverse areas on earth are located within the subtropical and tropical 

belt 40° north to 40° south of the equator. Mangroves are one of the manifold ecosystems 

that can be found in this region, forming the transitional zone between terrestrial and 

aquatic ecosystems. Such habitats are extremely sensitive regarding human impacts. 

Mangrove areas decreased very fast in the last decades due to deforestation and the 

conversion of mangroves into other land uses, such as shrimp ponds, aquaculture areas 

and rice paddies (Valiela et al. 2001). Between the years 1980 and 2005 mangroves 

declined from 18.8 million to 15.2 million hectares worldwide, which means a decrease 

of 19% in 25 years. These kinds of impacts lead to a threat to habitat diversity and 

consequently a decrease in species numbers (FAO 2007).  

One of the global hotspots of biodiversity is the so called “golden triangle” between 

Malaysia, the Philippines and New Guinea including Indonesia in the south. With nearly 

5.9 million ha, 39% of the worlds remaining mangroves (state 2005), can be found in 

South East Asia. Indonesia is home to the largest mangrove stands worldwide with 19% 

of the world mangroves. It also holds the highest mangrove tree species diversity in the 

world with 43 true mangrove species (FAO 2007).  

 

 

5.2 Socioeconomic relevance and functioning of mangrove ecosystems 

 

The overexploitation of mangrove trees mainly logged for the use of wood (Sukardjo 

1993; FAO 2007) reduces mangrove density and growth. Several management programs 

have already successfully recovered mangrove forests in South East Asia, such as in 

Bangladesh, Malaysia, Thailand, Singapore and Vietnam, creating reserve forests, 

national parks and conservation centers (FAO 2007). In Indonesia and India e.g. 

protection plantation activities take place to conserve this ecosystem. These are managed 
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by the government and NGO´s, as the importance of green mangrove belts protecting 

coastlines against natural hazards such as cyclones or tsunamis (Alongi 2008) became 

very clear within the last years (FAO 2007). Furthermore important natural resources of 

mangroves are utilized by humans living in coastal regions, such as timber, fuel, medical 

aid or food (Saenger 2002 and references therein). As food sources serve fish, which are 

spawning in the mangrove creeks, decapod crabs, such as Scylla serrata and Portunus 

spp. and bivalves.  

 

Despite the importance of conservation of mangrove species itself, also its related faunal 

species diversity has to be concerned. Mangroves provide habitats themselves as well as 

spawning grounds, nurseries and nutrients for a variety of species, including fish, 

invertebrates and vertebrates (Robertson & Duke 1987; Little et al. 1988; Sasekumar et 

al. 1992; Krumme 2003). Benthic invertebrates play a major role in the processing of 

organic matter and nutrients in mangroves and therefore have a great impact on the 

energy flow within this ecosystem.  

The cycling and reutilization of nutrients is mainly affected by the benthic community, 

which break down leaf litter and make nutrients available for microorganisms through 

their faeces (Robertson & Daniel 1989; Camilleri 1992; Twilley et al. 1997; Nordhaus et 

al. 2006). These are decomposed by benthic microorganisms and bacteria (Benner & 

Hodson 1985; Bosire et al. 2005). Detritus feeders, grazers and litter-consuming crabs are 

the most important functionaries in the nutrient cycling process (Nordhaus et al. 2009). 

Also by burying mangrove leaves and consuming leaf litter, they reduce the tidal export 

of organic matter and preserve the energy in form of carbon as well as nutrients in this 

usually nutrient poor ecosystem ‘mangrove’ (Lee 1989; Robertson & Daniel 1989; 

Emmerson & McGwyne 1992; Steinke et al. 1993; Nordhaus et al. 2006). These 

communities also contribute to bioturbation of the sediments, by worms and small crabs.  

 

Of the worlds coastline 13.8% of barrier coasts are found in Asia which are usually 

backed by lagoons (Barnes 1980). Coastal lagoons are inland water bodies, permanently 

or temporary connected to the ocean by one or more restricted inlets. They are of variable 

volume and have variable salinities as they can be subject to tidal mixing with high 
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turbidity and irregular topographic characteristics (Kjerfve 1994; Yánez-Arancibia et al. 

1994). They have a high productivity (Oliveira & Kjerfve 1993; Kjerfve 1994), which is 

frequently interrupted by ecological disasters of either natural or anthropogenic origin 

(Mee 1978; Sikora & Kjerfve 1985). The respond of coastal lagoons e.g. to river input, 

wind stress, tides or precipitation differs (Kjerfve 1994). In ecological terms tropical 

lagoons are of great importance as spawning grounds and also in terms of energy supply 

especially to fish populations (Yánez-Arancibia et al. 1994). 

‘The understanding of physical, chemical, geological and ecological dynamics of lagoons 

is important for planning and implementation of coastal management strategies in coastal 

lagoons’ (Kjerfve 1994). 

 

 

5.3 The Segara Anakan Lagoon mangrove ecosystem 

 

On the island of Java mangroves make up 1.2% (49900ha) of the total mangrove area in 

Indonesia, whereof 13600ha of mangroves are remaining in central Java (Choong et al. 

1990). About half of the Indonesian population lives on this island and largely depends 

on its natural resources in the coastal regions (Yuwono et al. 2007).  

The largest remaining mangrove ecosystem on Java with 9238ha is fringing the 1002ha 

large brackish water ecosystem, the Segara Anakan Lagoon (SAL, Figure 5.1), at the 

South Central Coast (Ardli & Wolff 2009). It is neighboring the city Cilacap (240.325 

inhabitants in 2008; www.cilacapkab.go.id) and harbors several small villages.  

It is delimited from the Indian Ocean by the 121km² large rocky mountainous island Nusa 

Kambangan (Lukas, pers. comm.). Therefore only two entrances to the lagoon in the east 

and west are left, allowing marine water masses to enter the lagoon at high tide. 

Freshwater input is given by the fifth largest river on Java, which is issued into the SAL 

near the western entrance to the Indian Ocean. 

In the hinterland of the western part of the SAL there are mainly rice fields, whereas in 

the eastern part dry land agriculture and shrimp ponds as well as aquaculture dominate 

the landscape. Furthermore, two industrial companies of the city Cilacap face the lagoon, 
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the cement factory and the oil refinery, the latter being the largest in Indonesia. All these 

parties contribute effluents to the lagoons water. 

 

 
Figure 5.1: Map of the Segara Anakan Lagoon, with the city Cilacap in the east. Red boxes indicate the 

areas “West”, “Central” and “East” lagoon determined within the SPICE project. 

 

Today the actual species number in the SAL is still not completely described, as there are 

areas in the lagoon, which were not included in diversity studies yet. Compared to other 

mangrove ecosystems in the Indo-Pacific region, species richness in the SAL is high with 

regard to gastropods and brachyuran crabs (Nordhaus et al. 2009). The Indo-West-Pacific 

holds the highest species richness worldwide (Ellison 2008). The SAL thus is amongst 

the highest in the world.  

The economically most important species in the SAL are the fish families Mugilidae, 

Lutjanidae, Periophthalmidae and Anguillidae as well as decapod species of the genus 
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Scylla spp. and shrimps (Dudley 2000; Yuwono et al. 2007). Due to deforestation and 

thus destroying nursery grounds, these species are highly endangered. Also more than 

half of the original mangrove area has already been converted to agricultural land uses, 

such as rice fields and shrimp ponds (Ardli 2007).  

The commercially most important mangrove species in this area are Rhizophora 

apiculata and R. mucronata as well as Bruguiera gymnorrhiza (Sastranegara et al. 2007). 

The mangrove area in the SAL has decreased by 1.4% each year within the last decade 

(Ardli 2007). 

A recent study on species richness of the intertidal crab fauna of the SAL discussed 

whether the community composition and dominance structure within the group of 

decapods can be used as an indicator for the actual state of a mangrove (Geist et al. 

submitted). They found a high contribution of 2-3 species to the total abundance and 

biomass and higher species number in younger forests in the central lagoon. This 

suggests an indicator function of community attributes to define the age of a mangrove 

forest. 

The outcome of a study on food choices and stomach contents of abundant crab species 

was the suggestion to further conduct one-choice experiments (Nordhaus et al. 

submitted), to estimate the impact of further logging on decapod crabs. This would be 

especially important for commercially valuable species such as Rhizophora spp., which is 

preferably ingested by decapods (Nordhaus et al. submitted). The consequences of the 

massive deforestation in the SAL on the benthic community in its full extend, particularly 

on the crab species, could not be valuated yet. 

 

Since the 1950s the water body of the Segara Anakan was much larger than it is today. It 

shrank about one quarter of its original size (Lukas in prep.), mainly resulting from a high 

sedimentation load of the Citanduy River (Holtermann et al. 2009). In case of high 

Citanduy River discharges and neap tides a complete flushing of the whole Segara 

Anakan Lagoon can take place. This can also lead to a high sedimentation load into the 

lagoon (Holtermann et al. 2009). 
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5.4 Food web structures in mangrove ecosystems 

 

Studying food webs is important to understand the complexity of interactions in 

mangrove ecosystems. Trophic levels can provide information about the hierarchy and 

the transfer of carbon and nitrogen within the benthic communities. Benthic organisms 

play a major role in recycling process of nutrients and preserving the energy in form of 

carbon and nitrogen mainly through breaking down leaf litter and their faeces (Nordhaus 

et al. 2009). Food webs have already been studied widely in several mangrove 

ecosystems, with respect to biodiversity, community composition and dynamics, food 

chain length or predator-prey interactions (e.g. Vander Zanden et al. 1999; Lepoint et al. 

2000; Abrantes & Sheaves 2009). Food chain length is determined by several factors i.e. 

ecosystem size and species richness, and can help to quantify trophic structure (Vander 

Vander Zanden et al. 1999; Post et al. 2000; Vander Zanden & Fetzer 2007). In mangrove 

intertidal benthic communities usually three to four trophic levels were distinguished (e.g. 

Bouillon et al. 2002a; Abrantes & Sheaves 2009). 

The stable isotope method proofed to be a very useful tool to investigate food web 

connections during the last three decades (Peterson & Fry 1987; Dauby 1990; Riera et al. 

1999; Yoshii 1999; Lepoint et al. 2000). The most appropriate elements to compare 

species positions in an ecosystem are carbon and nitrogen, as they occur in every living 

organism. The stable isotope method is based on the fact that the predators carbon 

isotopic composition is approaching to its preys` with time. Carbon isotopic composition 

therefore differs between predator and prey by maximal 0.8‰ (e.g. Sheaves & Molony 

2000; Vander Zanden & Rasmussen 2001), which was confirmed by a reviewing 

modeling approach (Caut et al. 2009).  

Nitrogen is a sufficient tracer for trophic levels, as heavy nitrogen (15N) is accumulated 

with each trophic level and the isotopically light 14N is easier decomposed and excreted 

as faeces or in form of urate. The enrichment from one trophic level to the next is about 

2.8‰ (Caut et al. 2009). This approach does not only allow to distinguish between full 

trophic levels (Bouillon et al. 2002a; Thimdee et al. 2004). Also steps between two 

trophic levels can be defined, which occur depending on the diet composition.  
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The isotopic composition is calculated by �R= [(Xsample/Xstandard) - 1] x 1000 ‰ with R= 
13C or 15N and X= 13C/12C or 15N/14N, respectively. 

It is important, however, to choose the appropriate tissue to achieve a convincing 

conclusion. Tissues differ from each other in isotopic compositions, depending on the 

speed of assimilation, but also on the amount of the heavy isotope fraction and time of 

storage needed. Muscle tissue is thus a reliable tissue for the investigation of trophic 

relationships (Tieszen et al. 1983), as it is a long-time-storage of heavy isotopic fractions, 

which do not underlie metabolic processes, due to strong chemical bonds. 

 

 

5.5 Research hypotheses 

 

Numerous food web studies using the stable isotope method were conducted over the last 

three decades. But only few investigated different locations within one study site or 

temporal differences such as between two seasons. Most studies are restricted to one 

study site within one area only at one certain point in time of a year. These factors are 

seldom considered in the discussion of publications and make global and habitat 

comparison difficult. As stable isotope compositions are influenced by a large number of 

factors, depending on the habitat, environmental conditions and anthropogenic impacts, 

possible coefficients should always be considered when interpreting data. The 

fractionation of isotopes e.g. in mangroves or invertebrates is not completely understood 

yet. The ability of individual organisms to ‘choose’ nutrients or food sources with lighter 

isotopes and the biochemical processes of fractionation are still unknown today.  

This study shall aid to close the gaps of knowledge of spatial and temporal variation and 

contribute to the knowledge of stable isotope fractionation. Furthermore the question 

shall be answered, if stable isotopes are appropriate to resolve trophic structures by 

distinguishing trophic levels and tracing carbon sources. 

  

Food web structures in intertidal benthic mangrove ecosystems have been examined in 

many countries. Variations have been detected comparing larger areas e.g. comparing 

pristine and human impacted mangroves (e.g. Abuodha & Kairo 2001; Alongi 2002), but 
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small scale investigations within a study area have hardly been conducted. The first listed 

publication is therefore based on the following hypothesis: 

 

1 Food web structures vary already on a small spatial scale as different 

anthropogenic impacts result in varying food availability and quality. This can be 

differentiated by considering isotopic compositions of stable isotopes in muscle 

tissues of involved intertidal benthic species. 

 

Stable carbon and nitrogen isotopes do not only depend on geographical regions or food 

availability, but also on the time of sampling, as a food web investigated at a certain time 

of the year does not reflect the structure during any other time of the year (Thompson & 

Townsend 1999). The season does, as well as the study site, have an effect on several 

community related factors, e.g. species richness and predator-prey ratios (Whitlatch 1977; 

Alongi 1987; Winemiller & Jepsen 1998; Thompson & Townsend 1999; Poon et al. 

2010). In the Southeast Asian tropics, seasonality is distinguished by the monsoon rains, 

which is an important factor, when capturing food webs. Seasonality is an umbrella term 

for i.e. changing salinities, nutrient availability, air and water temperatures or solar 

radiation (e.g. Cowan & Boynton 1996; Badran 2001; Graham et al. 2003; Holtermann et 

al. 2009). The second listed publication is therefore based on the following hypothesis: 

 

2 Seasonal changes in environmental factors lead to a divergent food availability 

and consequently to changes in the food web structures. These can be traced by 

stable isotope compositions in muscle tissues of intertidal benthic organisms. 

 

To understand the changes observed in muscle tissue isotopic compositions, it is 

important to understand the underlying biochemical metabolic processes in benthic 

organisms. Animals can adapt to food sources of different qualities with varying several 

physiological and behavioral characteristics, i.e. the selection of food items, the amount 

of food ingested and the mechanical fragmentation of food (Linton & Greenaway 2007). 

If e.g. leaves are mechanically incompletely broken down, the digestion and assimilation 

will be low and faeces will have similar concentrations of neutral detergent soluble 
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material (e.g. nitrogen, carbon, cellulose, lignin, calcium) as leaves, implying that the 

leaves were not completely utilized (Greenaway & Linton 1995; Nordhaus & Wolff 

2007).  

Starving animals have increasing �15N values in their muscle tissue, which are a result of 

the internal recycling of nitrogen and the maladjusted excretion of 14N (Hobson 1993). 

Isotopic fractionation occurs primarily during anabolic processes and production of new 

tissues (Yokoyama et al. 2005). Until today only little attention has been paid to 

physiological processes and biochemical mechanisms that have an impact on isotopic 

compositions (Adams & Sterner 2000). Therefore, in the third listed publication the 

following hypotheses are investigated: 

 

3 a With only a one-choice diet given, benthic crabs show a response in the isotopic   

composition in their muscle tissue within a time period of three months. 

b Several intertidal crab species consume different mangrove leaves and assimilate 

and excrete carbon and nitrogen differently, depending on their feeding habits. 

 c Isotopic compositions will substantially differ between hepatopancreas, muscle  

tissue and stomach content according to their role and status within the 

assimilation process. 

d Ovigerous females have lower isotopic compositions than non ovigerous. The 

former invest more carbon and nitrogen into the development of the eggs than 

in their own metabolism. 

 

With the knowledge of quantitative nutrient utilization by the benthic community in the 

SAL, the overall impact of benthic species on the recycling processes can be estimated 

and quantified. 

 

The present work was conducted within the project SPICE (Science for the Protection of 

Indonesian Coastal Ecosystems) in the group of “benthic ecology”, with the overall aim 

to investigate the importance of benthic organisms for the cycling of carbon and nitrogen 

in the SAL. 



General Introduction   

28 

The results and conclusions of these investigations will be presented in the following 

three chapters, followed by a general discussion. 
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Abstract 

 
Segara Anakan, a mangrove fringed lagoon in South Central Java, is strongly influenced 

by anthropogenic activities and related environmental changes such as deforestation and a 

related decrease in food availability. In order to investigate the benthic food web, 14 

abundant species of four systematic groups, leaves of four mangrove tree species and 

sediment were sampled in the intertidal area of four stations in the lagoon. Samples were 

analysed for organic carbon and total nitrogen content as well as stable carbon and 

nitrogen isotope composition (�13C, �15N). Furthermore, the stomach contents of four 

crab species and one mud skipper were identified. Sediment �13C and �15N were similar 

throughout, but those of animal tissues and leaves varied highly between stations. 

Average leaf signatures ranged between -4.8‰ (Aegiceras corniculatum) and 4.3‰ 

(Avicennia alba) for �15N and between -29.9‰ (Sonneratia alba) and -26.7‰ (A. alba) 

for �13C over all stations. Average �15N of invertebrate muscle tissue was between 5.1‰ 

and 17.6‰ and between -25.2‰ and -15.6‰ for �13C. The crab species Episesarma 

versicolor, Epixanthus dentatus and Scylla serrata ranged in the highest trophic levels as 

inferred from the high �15N of their muscle tissue. The gastropod Telescopium 

telescopium showed high �15N in one station and there most likely nourishes on carrion of 

decapods and fish. Epixanthus dentatus and Perisesarma darwinense are opportunistic 

feeders depending on the carbon and nitrogen sources available at the respective location. 

The examined species could be divided into three to four trophic levels depending on the 

station. Food web structure varied between stations depending on food availability and 

quality. Due to the opportunistic feeding habit of several macrobenthic species they seem 

to be highly adaptable to changes in vegetation.  

 

Key words: benthic food web, carbon, mangroves, nitrogen, stable isotopes, trophic level 
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1 Introduction 

 

During the last three decades, the natural occurrence of stable isotopes has been used to 

develop an adequate tool to answer geological, biogeochemical and ecological questions 

(Peterson & Fry 1987, Hobson 1999, Post 2002). This method has been used widely to 

investigate estuarine and coastal benthic communities, including food webs (Dauby 1990, 

Riera et al. 1999, Yoshii 1999, Lepoint et al. 2000), nutrient cycles within food webs 

(Parker 1964, Peterson & Howarth 1987, Machás & Santos 1999) and the growth of 

organisms (Tieszen et al. 1983). The concept of the stable isotope approach is based on 

the assumption that heavy 15N in animal tissue increases significantly (3-5‰) with each 

trophic level (TL; Vander Zanden & Rasmussen 2001, McCutchan et al. 2003, Caut et al. 

2009). Previous studies have shown that nitrogen isotopic compositions are helpful 

indicators of trophic levels (TLs) as variance in measured tissues is low (Bouillon et al. 

2002a). On the other hand carbon isotopic compositions are due to a high variability and 

a discrepancy between two TLs of close to zero not accurate enough to resolve trophic 

structures. The fraction of 13C of consumers is 0-2‰ higher than their diet (Peterson & 

Fry 1987). Carbon and nitrogen stable isotopes therefore reflect the assimilated diet of an 

animal (Hill et al. 1993). Choosing the appropriate tissue to investigate the time frame of 

interest is essential in trophic studies (Tieszen & Boutton 1989, Hobson 1993). Tissues 

such as muscle with low turnover rates, integrate diet isotopic signatures on a longer time 

period than those with higher turnover rates, e.g. hepatopancreas (Hesslein et al. 1993, 

Lorrain et al. 2002, Watanabe et al. 2005). 

The use of naturally stable isotope compositions of both carbon and nitrogen has 

improved the understanding of food web structures and functions, as well as related 

dietary patterns in a variety of ecosystems (Michener & Schell 1994). Many studies have 

investigated benthic food web structure in mangroves, but spatial comparisons within one 

research area, e.g. along a coastline, have only been done on a large scale (e.g. Sheaves & 

Molony 2000). Small scale comparisons within a few kilometres range, e.g. within one 

lagoon or estuary, especially regarding food web studies based on the isotope approach 

(e.g. Cifuentes et al. 1996, Bouillon et al. 2002a, Guest & Connolly 2005, Le Loc`h et al. 

2008), are rare. As variances in isotopic signatures in macrobenthic organisms were 
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already found on a large scale (Wooller et al. 2003, Thimdee et al. 2004, Deling et al. 

2005), further research on a smaller scale is needed to understand the factors influencing 

the specific feeding habits of benthic species (Ehleringer et al. 1986). This is the first 

study to compare food webs, also on a small scale within a few kilometres range, in 

Indonesia.  

The Segara Anakan Lagoon (SAL), located at the south central coast of Java, Indonesia, 

is a 1002ha (in 2006; Ardli & Wolff 2009) mangrove fringed brackish water ecosystem. 

The 9238ha of mangrove forests (in 2006; Ardli & Wolff 2009) surrounding the lagoon 

are located close to the largest oil refinery of Indonesia in the city of Cilacap. Urban and 

industrial sewage of this city and several adjacent villages within the lagoon area are 

released into the lagoons water. Mangrove trees are logged at a high rate in the lagoon 

(Ardli &Wolff 2009). These factors imply a high anthropogenic influence on the 

mangrove ecosystem, referring especially to the significant increase of rice field areas, 

aquaculture and rural areas during the last two decades (Ardli &Wolff 2009). Previous 

studies have shown a decreasing effect on the nitrogen isotopic composition as well as an 

increase on carbon isotopic composition in phytoplankton, algae, animal tissue and 

mangrove leaves, triggered by industrial sewage (Rau et al. 1981, Gearing et al. 1991, 

Tucker et al. 1999, Costanzo et al. 2001, 2003, Gartner et al. 2002). Another factor 

influencing carbon isotopic signatures in sediments (Jackson et al. 1996, Lichfouse et al. 

1997, McRae et al. 2000) and consequently in detritus feeding animals are polycyclic 

aromatic compounds (PAH), pollutants found in fossil oils and coil.  

The SAL plays an important role for benthic organisms and as a nursery ground also for 

pelagic fish (Romimohtarto et al. 1991, Yuniar et al. 2007, Nordhaus et al. 2009). 

Economically important species, especially for local people in the lagoon, are the mud 

crabs Portunus sp. and Scylla spp. as well as the bivalves Polymesoda erosa and 

Saccostrea cf. cucculata (personal observation). The ecological importance of benthic 

species in the SAL is especially the recycling of nutrients e.g. by consumption of leaf 

litter (Nordhaus et al. 2009), and also the ventilation of soils by bioturbation.  

The overall aim of this study is to investigate spatial variability in food web structure on a 

small scale in the SAL. We hypothesise that food web structures at the chosen locations 

differ substantially from each other, as it is expected that intertidal macro-invertebrates 
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respond differently to varying ambient conditions. Therefore it is expected that food 

availability and quality are reflected in isotopic compositions of invertebrate muscle 

tissues. As sewage pollution can cause lower �15N and higher �13C and PAH pollution 

can result in decreased �13C, differences between stations are expected to be reflected in 

the isotopic composition in muscle tissues. 

Our specific objectives were (1) to define the number of TLs, including the most 

abundant species of the intertidal benthic community by using the stable isotope 

approach, (2) to examine the feeding habits of the above analysed species using stomach 

content and stable isotope analysis, and (3) to generate a food web based on the results of 

isotope and stomach content analyses. 

 

2 Material and Methods 

 

2.1 Study site 

Organisms were collected during rainy season between February and April 2008 (mean 

annual precipitation in rainy season: 152mm per month; http://climate.usurf.usu.edu) in 

the mangrove fringed Segara Anakan Lagoon (SAL), Java, Indonesia (108°50’- 

109°00’E, 07°39’- 07°43’S; Fig. 6.1). The lagoon is separated from the Indian Ocean by 

the rocky mountainous island Nusa Kambangan. Exchange with saline water masses is 

provided by two entrances to the lagoon, east and west of the island. The hydrology of 

the SAL is governed by semidiurnal tides, ranging between 0.3m at neap tides and 1.9m 

at spring tides. Freshwater is mainly provided by the Citanduy River, the fifth largest 

river of Java, and the Cibereum in the west (Holtermann et al. 2009).  

The SAL has a high commercial and ecological value due to its high diversity of marine 

macrobenthic and fish species (White et al. 1989, Naamin et al. 1991, Yuwono et al. 

2007). It is strongly influenced by human activities through aquaculture, agriculture (rice 

fields) and villages within the lagoon and the city of Cilacap (240.325 inhabitants in 

2008; www.cilacapkab.go.id) with the biggest oil refinery of Indonesia. By overfishing, 

deforestation and over-exploitation of the natural resources (also regarding benthic 

economically important species, such as Polymesoda erosa and Scylla serrata) the 

lagoons resources, serving as food for local people, are depleted. Additionally 
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sedimentation through rivers, mainly due to deforestation in the hinterland, reduces the 

water volume of the lagoon (Ardli 2007). 

 

Figure 6.1: Map of Segara Anakan with four sampling stations (C42, C49, E53, E40), the rivers Citanduy, 
Cibereum and Gintung, the villages Klaces, Motehan, Kutawaru and the city Cilacap, modified from Ardli 
(unpublished), http://istgeography.wikispaces.com/1Bindonesia and http://www.gamelannetwork.co.uk/ 
assets/pics/Java_map.gif. 
 

Species richness of mangrove trees and macrobenthos is high in the SAL (Hinrichs et al. 

2009, Nordhaus et al. 2009). Of the so far described total macrobenthic species number of 

186 in the lagoon and its fringing mangroves, the contribution of brachyuran crabs (57 

taxa), and gastropods (55 taxa) were the highest (Nordhaus et al. 2009). 
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2.2 Sampling stations 

Samples were taken from four stations (Fig. 6.1) within intertidal mangrove areas of 

approximately 40m x 40m each. Stations were chosen isochronous, two in the central 

lagoon, with higher natural (freshwater) influence and two in the eastern lagoon with 

higher anthropogenic influence due to the oil refinery and the city of Cilacap. 

Station E40 is located in the eastern part of the lagoon (108°59.57’E, 07°40.28’S), in a 

northern creek, which provides freshwater during rainy season. This station is diagonally 

opposite the oil refinery and covered by a large swamp area. Dominant mangrove tree 

species are Aegiceras corniculatum and Ceriops spp. (Hinrichs et al. 2009). Station E53, 

is located opposite the oil refinery in the eastern lagoon area (108°59.33’E, 07°41.33’S). 

Anthropogenic influence by urban waste water and household wastes such as plastic from 

the city Cilacap is probably quite high. The station is neighboring the village Kutawaru, 

which might additionally pollute the area by household wastes. Predominant mangrove 

species are Aegiceras spp. and Sonneratia spp. (personal observation).  

Station C42 is located on a small island (108°49.11’E, 07°40.76’S), one of four new 

islands in the central lagoon. Situated near the entrance to the Indian Ocean, this station is 

completely exposed to saline water masses at high tide (Holtermann et al. 2009). 

Occurring mangrove species are mainly Avicennia spp. and Sonneratia spp. (Hinrichs et 

al. 2009). Station C49 is located in the central lagoon (108°50.76’E, 07°41.44’S). It is 

influenced by saline water masses during high tide (Holtermann et al. 2009). The 

predominant mangrove tree species here is Sonneratia spp. (Hinrichs et al. 2009). Due to 

its location between the villages Klaces and Motehan it is probably also under high 

anthropogenic influence through household wastes. 

 

2.3 Sample collection and preparation 

Thirteen abundant intertidal benthic species and pooled species of polychaetes of five 

systematic groups (Annelida: Polychaeta; Decapoda: Epixanthus dentatus, Episesarma 

singaporense, E. versicolor, Metaplax elegans, Perisesarma darwinense, Scylla serrata, 

Uca forcipata; Mollusca: Cerithidea cingulata, Polymesoda erosa, Saccostrea cf. 

cucculata, Telescopium telescopium; Sipunculida: Phascolosoma arcuatum, Teleostei: 

Periophthalmus sp.) were collected by hand at four intertidal mangrove stations. Animals 
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of one species were of comparable size. The portunid crab S. serrata was bought from 

local fisherman in the central and eastern lagoon. Additionally three invertebrate feeding 

fish species (Epinephelus areolatus, E. coioides, Scatophagus argus; Heemstra & Randall 

(1993), Froese & Pauli (2010)) were bought from fishermen in the eastern lagoon.  

Five individuals of each benthic species were collected at each station and frozen for a 

minimum time period of 12 hours in PVC sampling bottles before further treatment. 

Crabs and fish were dissected and muscle tissue from the chelae and white muscle tissue 

respectively was removed for analysis. C. cingulata, Periophthalmus sp., Phascolosoma 

arcuatum, P. erosa, Saccostrea cf. cucculata, T. telescopium and polychaetes were 

analysed as a whole (only soft tissue, without shell). P. arcuatum and polychaetes were 

kept in lagoon water for 24 hours to make them empty their guts, before further 

treatment. Additionally, stomach contents of E. singaporense, E. versicolor, P. 

darwinense and S. serrata were sampled for analysis. Also muscle tissue of three 

abundant benthic feeding fish species (Epinephelus areolatus, E. coioides and 

Scatophagus argus) was sampled in the eastern part of the lagoon (see Table 6.1) to 

include possible higher trophic levels into the benthic food web. Samples were 

homogenized by hand with an agate mortal after drying at 40°C for a minimum of two 

weeks.  

Of every mangrove tree species (Avicennia alba, Aegiceras corniculatum, Rhizophora 

apiculata and Sonneratia alba) three yellow and brown leaves each (replicates) were 

collected. Brown leaves were collected by hand from the sediment surface. Senescent 

yellow leaves were picked directly from mangrove trees. Surface sediment was sampled 

within a distance of 20m from the water edge for isotope analysis, including three 

replicates at each station. 

Sediment samples were dried at 40°C, treated with 200μl 1M HCl to remove carbonates 

and then redried. Subsamples were analysed for organic carbon (Corg) and nitrogen (N) 

and also stable isotope composition of organic carbon (13Corg/
12Corg) and nitrogen 

(15N/14N). No significant differences were found between tissue samples treated with HCl 

and samples without HCl during preliminary analysis (t-test: F=1.11, p=0.89, with n=8), 

therefore no HCl was applied for tissue samples. 
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At each station 50ml of water was sampled from water places trapped between 

mangroves while the tide was going out, in order to measure salinity. 

 

2.4 Stable isotope analysis 

Samples were combusted in the Carlo Erba NA 2100 Elemental analyzer for Corg and N 

measurements. Stable isotope ratios were determined using the coupled EA-IRMS gas 

isotope ratio mass spectrometer (ConFlo III) and expressed relative to conventional 

standards �R= [(Xsample/Xstandard) - 1] x 1000 ‰ with R= 13C or 15N and X= 13C/12C or 
15N/14N. Ammonium sulfate (IAEA-N1, IAEA-N2) was used as standard for �15N, and 

graphite (USGS-24) and mineral oil (NBS-22) for �13C. Analytical precision was ±0.2‰ 

for both nitrogen and carbon, as estimated from standards analyzed together with the 

samples. 

 

2.5 Trophic level determination 

Caut et al. (2009) reviewed 66 isotope studies with a large number of estimated animal 

diets (n= 290), and found an overall discrepancy of ��15N=2.8±0.1‰ and 

��13C=0.8±0.1‰ between two trophic levels. We use the steps of fractionation from their 

study as they are based on the largest dataset available at present. 

If we assume a discrepancy between two trophic levels (TLs) of �15N =2.8±0.1‰ we can 

set up a range system from 0‰ to 2.8‰ to distinguish the several steps between two TLs, 

as intertidal benthic organisms are widely distributed over the �15N-scale. Therefore we 

introduce five ranges to define two organisms on the same TL around the critical values 

of 0 (0-0.34‰), with a discrepancy of 0.25 TL (0.35-1.04‰), 0.5 TL (1.05-1.74‰) and 

0.75 TL (1.75-2.44‰), as well as on two different TLs (2.45-2.8‰), assuming that the 

invertebrates with the lowest �15N are setting the first TL. For the calculation of trophic 

levels, mean values of the species within one station were used. Species with larger 

standard deviations are assumed to have slightly divergent alimentation and therefore 

differ less than one TL from the mean in the majority of cases. 

This method is used to sufficiently define nuances between two trophic levels. 
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2.6 Stomach content analysis 

From station C49 four to five individuals of Episesarma versicolor, E. singaporense, 

Perisesarma darwinense, Scylla serrata and Uca forcipata were collected and frozen 

directly in PVC sampling bottles for at least 12 hours before dissection. Stomachs were 

removed extending from oesophagus to pylorus. Stomach fullness was estimated and 

contents were defined by estimating the contribution (%) of each food category to the 

total volume of a sample in a Bogorov tray. Alimentary categories which could be 

distinguished were animal, bark, detritus, leaves, polychaetes, roots, sediment and 

miscellaneous.  

Due to limitations of time, stomach content analysis was only conducted for abundant 

species and only at one station. Station C49 was chosen because it had the overall highest 

values of �13C and lowest of �15N in invertebrate muscle tissue. 

Stomach content was also analyzed for 15 individuals of Periophthalmus sp. The 

frequency of occurrence of distinguished categories (polychaetes, fish and unidentified 

insects) was examined. 

 

2.7 Statistical analysis 

Isotopic signatures of organisms were tested for significant differences within and 

between the stations, separately for �13C and �15N. Data was tested for normality, Log-

transformed and tested for homogeneity of variances. A non-parametric Kruskal-Wallis-

ANOVA was used followed by a Mann-Whitney-U post hoc test.  

C/N ratios and isotopic signatures of sediments and leaves were normally distributed and 

homogeneous, therefore an ANOVA followed by a Tukey HSD post hoc test were used 

to identify significant differences. 

 

3 Results 

 

3.1 Primary carbon sources 

The stable isotope composition of sediments was similar for all stations (ANOVA: 

p>0.05), with an average of -26.5±0.4‰ for �13C and 4.2±0.1‰ for �15N (Fig. 6.2, Table 
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6.1). C/N ratios for sediments were 14.4±1.3 and similar at all stations (Tukey´s HSD: 

p>0.05). 

Mangrove leaves had low isotope compositions at all stations, ranging between -26.7‰ 

and -29.9‰ for �13C and from -4.8‰ to 4.3‰ for �15N. C/N ratios of mangrove leaves 

ranged between 22.6 (min.) and 218.2 (max.) in the Segara Anakan Lagoon. 

 

Figure 6.2: Biplots of four stations (C49, C42, E53, E40) in the lagoon, based on carbon and nitrogen 
isotopic signatures of muscle tissue (of Episesarma singaporense (ESI), Episesarma versicolor (EVE), 
Epixanthus dentatus (EDE), Metaplax elegans (MEL), Perisesarma darwinense (PDA), Polymesoda erosa 
(PER), Saccostrea cf. cucculata (SAC), Scylla serrata (SCY), Uca forcipata (UFO)) of the whole organism 
(Cerithidea cingulata (CECI), Periophthalmus sp. (PSP), Phascolosoma arcuatum (PAR), Polychaetes 
(POL), Telescopium telescopium (TEL)) and of primary carbon sources (AAx: Avicennia alba, ACx: 
Aegiceras corniculatum, SAx: Sonneratia alba, RAx: Rhizophora alba, xxB: brown leaves, xxY: yellow 
leaves (grey circles); SED: inorganic sediment (white circles)) with indicated standard deviation for 13C/12C 
and 15N/14N. Black squares: Brachyuran crabs, white squares: other invertebrates (gastropods, molluscs and 
polychaetes), dashed square: approximate position of benthic microalgae (after Bouillon et al. 2002b). 
 

3.2 Invertebrates  

Overall we found higher �15N values in the eastern compared to the central lagoon (Fig. 

6.2, Table 6.1; ANOVA: p<0.01, Tukey´s HSD: p<0.01). Invertebrate tissues had 

significantly lower �15N at C49 compared to the other stations (M-W-U: p<0.05). Lowest 

values were analyzed for Cerithidea cingulata and Polychaetes (�15N �5.1‰) at this 

station. The overall highest �15N for invertebrates were measured at station E40 with 
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17.6‰ for Telescopium telescopium (M-W-U: p<0.05). Within this station Episesarma 

versicolor, Epixanthus dentatus and T. telescopium were at the top end of the analyzed 

species (�15N �16.4‰). Scylla serrata had higher �15N values in the eastern area and 

higher �13C values in the central lagoon (ANOVA: p=0.00, Tukey´s HSD: p<0.05. 

In general carbon isotopic signatures did not show any change or trend regarding areas. 

�13C were highest at C49 (M-W-U: p<0.05) with exception of Cerithidea cingulata and 

Polymesoda erosa, which were higher in E40 (M-W-U: p<0.05).  

 

Table 6.1: Isotopic signatures [‰] of carbon and nitrogen of leaves (AAx: Avicennia alba, ACx: 
Aegiceras corniculatum, SAx: Sonneratia alba, RAx: Rhizophora alba, xxB: brown leaves, xxY: yellow 
leaves), muscle tissue of macrobenthic species (Episesarma singaporense (ESI), Episesarma versicolor 
(EVE), Epixanthus dentatus (EDE), Metaplax elegans (MEL), Perisesarma darwinense (PDA), 
Polymesoda erosa (PER), Saccostrea cf. cucculata (SAC), Scylla serrata (SCY), Uca forcipata (UFO)) 
and the whole organism (Cerithidea cingulata (CECI), Periophthalmus sp. (PSP), Phascolosoma arcuatum 
(PAR), Polychaetes (POL), Telescopium telescopium (TEL)), fish (Epinephelus coioides (Eco), 
Epinephelus areolatus (Ear), Scatophagus argus (Sar)) and sediment (SED) at four stations with indicated 
standard deviation. 

 central �13C [‰] east central �15N [‰] east 

 C42 C49 E40 E53 C42 C49 E40 E53 

AAB -27.7 ± 0.5 -27.9 ± 1.5   3.9 ± 2.9 3.5 ± 0.2   

AAY -28.8 ± 0.6  -28.9 ± 0.9  4.3 ± 3.2  2.8 ± 2.1  

ACB -30.4  -28.2 ± 1.3 -29.3 ± 0.8 -4.8 ± 1.0  -3.7 ± 0.4 0.1 ± 0.6 

ACY   -28.6 ± 1.2 -28.4   -3.0 ± 1.5 2.2 

RAB -28.3 ± 1.4 -27.8 ± 0.7 -28.7 ± 1.3  1.7 ± 0.1 2.9 ± 0.8 -2.4 ± 1.7  

RAY -29.5 ± 0.9 -27.9 ± 0.4 -28.6 ± 1.1  1.7 ± 0.2 2.1 ± 0.3 -0.0 ± 4.1  

SAB -29.1 ± 0.4 -29.0 ± 1.0 -29.4 ± 1.5 -29.1 -0.9 ± 0.5 -4.4 ± 2.1 -1.4 ± 1.8 0.9 

SAY -28.4 ± 0.5 -28.8 ± 1.0 -29.9 ± 0.9 -29.1 -0.2 ± 0.1 -2.1 ± 0.3 -0.4 ± 1.7 -1.6 

SED -26.1 ± 0.4 -26.2 ± 0.6 -26.9 ± 0.4 -26.7 ± 0.2 4.3 ± 0.4 4.0 ± 0.4 4.1 ± 0.5 4.3 ± 0.2 

CECI  -17.7 ± 1.3 -15.6 ± 4.5   5.1 ± 0.4 8.3 ± 0.4  

PER  -25.2 ± 0.4 -24.5 ± 0.9   8.8 ± 0.3 12.7 ± 0.8  

SAC   -29.0 ± 0.9 -25.9 ± 0.5   14.0 ± 5.0 7.0 ± 1.1 

TEL  -17.7 ± 0.6 -24.9 ± 0.5 -24.5 ± 0.7  9.5 ± 0.9 17.6 ± 3.8 10.2 ± 2.9 

EDE   -22.9 ± 0.7    16.4 ± 3.0  

ESI -24.0 ± 0.6 -21.8 ± 1.8 -24.8 ± 0.5 -24.2 ± 1.0 10.2 ± 1.3 7.6 ± 1.4 11.0 ± 2.3 10.4 ± 2.4 

EVE -24.6 ± 0.7 -21.3 ± 2.5 -25.0 ± 0.5 -25.0 ± 0.5 8.1 ± 1.9 9.6 ± 0.8 17.4 ± 3.0 10.2 ± 2.8 

MEL   -21.3 ± 1.2 -20.5 ± 1.8   8.1 ± 1.0 7.7 ± 0.7 

PDA -23.8 ± 1. 1 -18.6 ± 1. 7  -24.4 ± 0.4 7.6 ± 0.6 6.5 ± 0.6  9.2 ± 1.5 

SCY -23.3 ± 0.6 -25.2 ± 1.6 10.2 ± 2.0 17.1 ± 2.0 

UFO -19.8 ± 0.5 -17.1 ± 0.5 -19.2 ± 0.5  7.2 ± 0.8 6.6 ± 0.4 8.9 ± 0.7  

PAR    -23.4 ± 0.4    9.0 ± 0.0 

PSP -24.4 ± 1.9 -17.8 ± 0.5  -24.7 ± 0.3 12.7 ± 0.6 12.5 ± 3.2  13.8 ± 1.2 

POL  -16.8 ± 0.6  -25.7 ± 0.9  4.8 ± 2.2  9.2 ± 1.3 

Eco   -20.9 ± 0.5   16.0 ± 2.5 

Ear   -16.1 ± 0.6   15.9 ± 0.5 

Sar   -23.9 ± 1.5   11.1 ± 0.6 
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3.3 Fish 

For Epinephelus areolatus and E. coioides similar �15N were measured (average 16.0±0.1 

‰; Table 1; M-W-U: p>0.05). Scatophagus argus muscle tissue had significantly lower 

�15N than the genus Epinephelus (11.1±0.6‰; ANOVA: p<0.01, M-W-U: p<0.01). 13C 

was most enriched in E. areolatus (-16.1±0.6‰), and S. argus had lowest �13C of the 

three examined fish species (-23.9±1.5‰). �13C in all three species was significantly 

different from each other (ANOVA: p<0.01, M-W-U: p<0.01). 

 

3.4 Trophic levels 

From our calculation based on the discrepancy of �15N after Caut et al. (2009) we 

determined four trophic levels (TLs). Species occurred in different TLs depending on the 

location (Fig. 6.3, Table 6.2).  

In station C42 �15N values only indicated three TLs (Table 6.2), due to a higher baseline 

(=TL 1) of �15N. Species that were defined as TL=1 in other stations were not found here, 

therefore only three levels could be defined (Vander Zanden et al. 1999). 

The species Scylla serrata, Telescopium telescopium, Episesarma versicolor and 

Saccostrea cf. cucculata occurred in different trophic levels throughout the lagoon (Table 

6.2), whereas Episesarma singaporense, Uca forcipata, Metaplax elegans and Cerithidea 

cingulata occurred on the same trophic level throughout. 

 

Table 6.2: Trophic levels at four stations based on means of nitrogen isotopic signatures, excluding 
primary carbon sources; 1: low, 2: moderate, 3: high, 4: top level. 

  C42 C49 E40 E53 

Scylla serrata 2 3 4 4 

Epixanthus dentatus   3.75  

Periophthalmus sp. 3 3.75  3 

Telescopium telescopium  2.75 4.25 2 

Episesarma versicolor 1.5 2.75 4.25 2 

Polymesoda erosa  2.5 2.5  

Episesarma singaporense 2 2 2 2 

Saccostrea cf. cucculata   3 1 

Polychaeta  1  1.75 

Perisesarma darwinense 1.5 1.5  1.75 

Phascomosoma arcuatum    1.5 

Uca forcipata 1 1.5 1.25  

Metaplax elegans   1 1.25 

Cerithidea cingulata  1 1  
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3.5 Stomach content analysis 

The diet composition analysis of Scylla serrata showed that this species feeds exclusively 

on animal tissue (100%), including its own species (10% of total stomach content 

volume), other Decapoda (75%), fish (10%) and Gastropoda (5%). For Episesarma 

versicolor the most important food category besides decomposed leaves (58%) was 

animal tissue (18%) (Fig. 6.3). For E. singaporense animals only had a minor 

contribution to the food composition (2%), this species mainly fed on bark, leaves and 

roots (together 70%). Perisesarma darwinense almost exclusively fed on leaves (97%). A 

large part of the diet of Uca forcipata consisted of polychaetes (30%), but no other 

animals could be identified in the stomachs. Sediment contributed 21% to the stomach 

contents.  

�13C of stomach contents were very similar for all observed species within one station 

(Table 6.3), only Epixanthus dentatus stomach contents had different �13C (�13C = -

23.8±0.9‰) compared to the other species (average �13C = 27.8±0.2‰) at station E40. 

For �15N no such similarities were observed, values differ largely within species between 

stations and also between species within the stations. 

 

Table 6.3: Isotopic signatures [‰] of carbon and nitrogen of stomach contents of four macrobenthic 
species at four stations. 

�13C [‰] C42 C49 E40 E53 

Episesarma singaporense -27.2 ± 1.2 -24.9 ± 2.2 -27.9 ± 0.7 -27.5 ± 0.9 

Episesarma versicolor -27.2 ± 0.6 -24.5 ± 0.9 -27.6 ± 0.6  

Perisesarma darwinense -27.2 ± 0.1   -27.2 ± 1.0 

Epixanthus dentatus   -23.8 ± 0.9  

     

�15N [‰] C42 C49 E40 E53 

Episesarma singaporense 7.9 ± 1.0 6.2 ± 1.3 10.7 ± 2.1 9.8 ± 0.9 

Episesarma versicolor 5.5 ± 2.1 5.8 ± 1.8 11.4 ± 0.8  

Perisesarma darwinense 7.1 ± 1.8   10.3 ± 1.9 

Epixanthus dentatus   10.7 ± 0.9  
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Figure 6.3: Volume % of food categories detritus, leaves, roots, bark, inorganic sediment (surface), 
polychaetes, unidentified animal material and other for Episesarma singaporense (other= unidentified 
material), E. versicolor (other= own or fish eggs), Perisesarma darwinense (other= unidentified material) 
and Uca forcipata (other= plastic pieces and wires). Data are plotted as medians (line) with confidence 
intervals from 25% to 75% (box), standard deviation (error bars) and outliers (circles). 
 

 

The category “other” in U. forcipata stomachs refers to plastic pieces and plastic wires, 

and for E. versicolor to eggs, probably either own or fish eggs. The stomach content 

analysis of Periophthalmus sp. showed a frequency of occurrence of 45% for fish, 40% 

for polychaetes and 15% for unidentified insects.  
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4 Discussion 

 

4.1 Primary food sources 

Compared to previous studies (e.g. Bouillon et al. 2008) the �13C of mangrove leaves and 

sediments in the Segara Anakan Lagoon (SAL) are very low (�13C average: -28.6±0.8‰ 

and -26.5±0.4‰ respectively). McKee et al. (2002) suggested that �13C in mangrove 

leaves can be decreased by decreasing stomatal conductance and intercellular CO2 by 

elevated or fluctuating salinities. In the SAL, fluctuating salinities are present depending 

on the station and the tidal cycle (Holtermann et al. 2009), and could therefore be an 

explanation for the low �13C in mangrove leaves in this ecosystem. Recent studies 

discussed whether mangrove leaves can be the primary carbon source for a benthic 

community when 13C is strongly depleted in leaves compared to their assumed consumers 

(Imgraben & Dittmann 2009, Mazumder & Saintilan 2009). Nevertheless intertidal 

mangrove crabs in the SAL feed on leaves as shown by isotopic analysis of stomach 

contents in this study and previous feeding experiments (Nordhaus et al., submitted).  

Total suspended matter (TSM) in lagoon water near the examined stations had mean �13C 

values of -27.3±1.0‰ for the central and -27.1±1.6‰ for the eastern area of the lagoon 

(Moll, unpublished data). The throughout similar values of TSM and sediment can have 

two explanations: First, that sedimentary organic matter originates from microalgae in the 

water column as also suggested by Bouillon et al. (2002a, 2003) or second, that organic 

matter in the water column originates from sediment through resuspension, as shown by 

Wainright & Hopkinson (1997). But also mangrove detritus or terrestrial sediments 

washed in from the hinterland during rainy season could contribute organic matter to the 

sediments (Jennerjahn et al. 2009). 

We found C/N ratios between 3.5 to 16.7 for invertebrates and 14.4, 79.1 and 8.4 on 

average for sediment, leaves (Table 6.4) and TSM (Moll, unpublished data). Bouillon et 

al. (2002b) suggested that a C/N ratio in animal tissues >12 indicates a large contribution 

of terrestrial carbon whereas a low C/N ratio combined with a high �13C indicates that 

mangrove derived matter is not the principal food source. In such cases imported carbon 

from the creeks, such as microalgae, contributed to the sediment organic pool (Bouillon 

et al. 2002b). In the Segara Anakan lagoon both the inflow of the Indian Ocean as well as 
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the mangroves and in situ primary production therein (Jennerjahn et al. 2009) are 

important nutrient and primary carbon sources for the macrobenthic community. 

 

Table 6.4: C/N ratios of animal muscle tissue, leaves and sediment at four stations, showing -with a Corg/N 
>12- terrestrial (bold numbers), and -with a low Corg/N and a high �13C- marine carbon sources (italic 
numbers) (based on findings of Bouillon et al. 2002a, 2003). 

  C42 C49 E40 E53 

Leaves and sediment     

Avicennia alba brown 23.2 29.3 31.3  

Avicennia alba yellow 22.6  33.4  

Aegiceras corniculatum brown 29.5  105.2 262.0 

Aegiceras corniculatum yellow   103.8 161.4 

Rizophora apiculata brown 155.5 96.5 83.0  

Rhizophora apiculata yellow 138.0 90.7   

Sonneratia alba brown 68.8 57.0 127.0 160.0 

Sonneratia alba yellow 69.0 57.0 127.0 65.4 

Sediment 15.1 12.2 15.6 14.5 

Invertebrates     

Epixanthus dentatus   4.7  

Scylla serrata 9.1 10.1 

Episesarma versicolor 3.5 3.6 5.1  

Episesarma singaporense 4.4 7.0 6.0 4.1 

Metaplax elegans   4.2 3.6 

Uca forcipata 3.6 3.9 3.8  

Perisesarma darwinense 3.7 3.7  3.7 

Telescopium telescopium  7.8 7.2 7.1 

Cerithidea cingulata  9.7 13.6 5.6 

Saccostrea cf. cucculata   5.9 4.6 

Polymesoda erosa  4.5   

Polychaetes  16.7  4.9 

Periophthalmus sp. 4.6 4.4 4.1 4.4 

Phascolosoma arcuatum    3.6 

 

 

4.2 Benthic food web 

4.2.1 Invertebrates feeding strategy 

Epixanthus dentatus was only found at station E40. The low �13C of the stomach contents 

of E. dentatus indicate a partly mangrove derived diet (Table 6.3). Previous studies have 

shown that apart from mangrove leaves, this species also feeds on crustaceans and 

molluscs in a mangrove ecosystem in Kenya (Dahdouh-Guebas et al. 1999). As it 

occurred within the highest trophic level (TL) in this study, we conclude that it is an 
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omnivorous species, feeding on a heterogeneous diet, most probably including leaves, 

gastropods and small decapod species.  

Scylla serrata had similar �13C values in the eastern and central lagoon. �15N were much 

higher in the eastern part. This can probably be explained by the fact that in the eastern 

lagoon only females were caught, and in the central part 80% of analyzed individuals 

were males. Analyses of muscle tissue of males and females showed a significant 

difference in �15N (female: 13.7±0.0‰, male: 9.3±0.7‰; unpublished data). Previous 

studies showed that females move to offshore areas for spawning (Hill 1994). This might 

explain why in the eastern part, where the seabed shows steep incline within a short 

distance (Holtermann et al. 2009), only females were found. S. serrata occurred in the 

highest TLs throughout. In the central lagoon S. serrata was found in the second TL, 

which is probably a result of a more carnivorous diet in the central lagoon, compared to 

an omnivorous diet in the eastern part. Females seem to be more selective in food choice, 

probably due to their high nitrogen needs in times of spawning.  

In contrast, the genus Episesarma mainly feeds on leaves and roots. Stomach content 

analysis showed that both species had a certain contribution of animal material in their 

stomachs at station C49. In case of E. versicolor stomachs also contained polychaetes. 

The main food category found in the stomachs was leaves. �13C was likewise low for 

both species, indicating mangrove leaves to be the main carbon source. This was also 

found for E. versicolor in a mangrove forest in Thailand (Thongtham & Kristensen 2005, 

Thongtham et al. 2008). However, E. versicolor occurred in different TLs depending on 

the station and showed significantly higher �13C values at C49 (M-W-U: p<0.05). This 

opportunistic feeding habit was also observed in laboratory experiments (unpublished 

data), in which E. versicolor survived three months on an exclusively Rhizophora 

apiculata leave diet. In other consumption rate experiments we recorded that E. 

versicolor consumed preferably leaves of Derris trifoliata apart from R. apiculata. Brown 

D. trifoliata leaves had higher �13C values (-27.0±0.2‰) than mangrove species 

(ANOVA: p<0.01, Tukey´s HSD: p<0.01), except Avicennia alba (Tukey´s HSD: 

p>0.05; unpublished data). In the central area of the SAL the shrub species Acanthus 

ilicifolius and D. trifoliata colonize deforested mangrove sites. Nevertheless, the �15N of 

E. versicolor are >6‰ enriched in 15N compared to the highest �15N of occurring leaves, 
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indicating a supplementing 15N enriched nitrogen source. Previous studies found that E. 

versicolor can supplement its mangrove leaf diet with animal tissue (Thongtham & 

Kristensen 2005, Kristensen et al. 2010). An exception in this study is station C42 where 

E. versicolor is found in the first TL (4‰ enrichment of �15N compared to leaves). In 

contrast to the other stations there is a dense and diverse mangrove tree cover with only a 

few shrubs at C42 (Hinrichs et al. 2009). A mainly mangrove derived diet could explain 

the low TL. Nordhaus et al. (submitted) found that up to 67% of stomach contents of E. 

versicolor in the SAL were detritus (including leave pieces), followed by cortex (19%) 

and leaves (2%). Due to its moderate �13C and a high contribution of detritus to the 

stomach content (at station C49), a heterogeneous diet, including a large mangrove leaf 

contribution, is suggested, which agrees with previous findings (Nordhaus et al. 

submitted).  

E. singaporense was consistently found in the second TL, and variation in �15N of 

stomach contents over all stations were significantly lower than for E. versicolor (Table 

6.2), suggesting a consistent diet baseline. Different species of the same genus can 

therefore adapt differently to spatial differences in food availability. 

Uca forcipata and Metaplax elegans were found at the first TL throughout. Stomach 

contents of U. forcipata at station C49 had a very high variability, as sample size was 

small. Apart from a large amount of polychaetes, mainly plant components were found. 

Plastic pieces and sediment in the stomachs indicate a detritivorous diet. These plastic 

pieces probably mainly originate from the two villages Klaces and Motehan, which 

account for a large amount of waste in the mangroves especially in the central lagoon 

(personal observation). It was stated in earlier studies that Uca spp. feeds on bacteria and 

microalgae (Rodelli et al. 1984, Guest et al. 2004). In this study such carbon sources were 

indicated by high values of �13C (-18.7±1.1‰). Detritus derived from mangrove leaves 

are not the main carbon source for U. forcipata. In this study muscle tissue of M. elegans 

had low �15N, indicating a mainly herbivorous feeding habit. In the stomachs of M. 

elegans a high contribution of detritus was found by Salewski (2007) in the SAL, with 

only a small amount of bark and sediment. We therefore conclude that this species is 

mainly feeding on detritus.  
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The muscle tissue of P. darwinense had moderate �13C values (average -22.3±2.1‰) in 

the first TL. Stomachs of the animals collected at station C49 indicate a mainly mangrove 

leave derived diet, which agrees with findings of previous studies (Skov & Hartnoll 2002, 

Poon et al. 2010). P. darwinense, a species occurring in high densities in the SAL, is also 

an ecologically important species due to its leaf litter processing, as previously shown in 

mangroves of Kenya (Gillikin & Schubart 2004). An exception in our study is station 

C49, where tissue of P. darwinense had comparatively high �13C, which indicates a diet 

enriched by microalgae. These might originate from the western outlet of the lagoon, 

which allows a regular inflow of marine water masses from the Indian Ocean at high tide. 

Nutrients and detritus enriched sediments washed in from the Citanduy River, providing a 

large input of freshwater into the central lagoon especially during rainy season 

(Holtermann et al. 2009) could also contribute to the high �13C. 

The gastropod Telescopium telescopium had unexpected high �15N values at C49 and 

E40, as it was previously reported to be a surface grazing gastropod ranging in the lower 

TLs (Houbrick 1991, Bouillon et al. 2002b). Our results indicate that T. telescopium feeds 

on a highly 15N-enriched diet at these stations. Apart from microalgae, our data suggests 

that this species is feeding on carrion of fish or invertebrates, making this species an 

opportunistic feeding, facultative scavenger. Comparing the �15N of T. telescopium (�15N 

=17.6±3.8‰ at station E40) and fish in this study (average �15N =16.0±0.1‰), it can be 

concluded that -amongst other fish species- the carrion of Epinephelus probably serves as 

a supplementing diet for T. telescopium. The remarkable higher �13C at station C49 

suggest a high contribution of microalgae to the diet, originating from the nearby Indian 

Ocean inflow as well as from the Citanduy River. 

Very low �13C values in Polymesoda erosa and Saccostrea cf. cucculata muscle tissues 

and in case of P. erosa the occurrence in the moderate TL (=2.5) indicate a diet 

consisting mainly of suspended matter of the water column, including terrestrial carbon, 

e.g. originating from mangrove leaves, which agrees with findings of previous studies 

(Rodelli et al. 1984, Bayne 2002). The assimilation of organic material washed in from 

the hinterland during rainy season, originating in agriculture and depleted soils 

(Jennerjahn et al. 2009) can most probably explain the occurrence of S. cf. cucculata in 

the third TL (=3) at station E40.  
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The snail Cerithidea cingulata is clearly feeding on a 13C enriched diet. Being found at 

the first TL it is most probably feeding on microbenthic organisms such as algae, 

therefore being an obligate deposit feeder. Other studies found average �13C for benthic 

microalgae between -17.3‰ (Bouillon et al. 2002b) and -19.3‰ (Hsieh et al. 2002), 

which are similar to those of C. cingulata in SAL (�13C =-17.7‰  at C49 and -15.6‰ at 

E40). 

The peanut worm Phascolosoma arcuatum is occurring mainly in the eastern lagoon, 

where a more sandy sediment texture is apparent. At E53 it is located between the first 

and second TL (=1.5), and with a moderate �13C it is possibly only partly dependent on 

mangrove carbon sources, but also feeds on bacteria and microalgae. The moderate �15N 

suggests a partly omnivorous diet, including e.g. polychaetes. This agrees with findings 

of Rodelli et al. (1984) in a Malaysian mangrove ecosystem. 

Polychaetes in this study were pooled for analysis, as their dry weight was very low. 

Detrivorous, omnivorous and carnivorous species were therefore not separately 

measured. Hence polychaetes occur in different TLs, as the contribution of different 

species was not equal at all stations. With our data we cannot clearly define the feeding 

habits of polychaetes, but it became clear that they serve as a carbon and nitrogen source 

for miscellaneous intertidal benthic organisms. This systematic group had high �13C at 

station C49, indicating a largely microalgae dependent carbon source. At station E53 a 

mainly detritivorous diet is suggested by very low �13C, which were close to those of the 

sediment �13C. But their occurrence in a higher trophic level at this station implies a 

supplemented 15N enriched diet. 

 

4.2.2 Feeding habits of fish 

�15N of the mud skipper Periophthalmus sp. were equally high throughout all stations, 

which  could be explained by a homogeneous and carnivorous diet. Stomach contents 

showed that this is an omnivorous species feeding mainly on polychaetes and fish. These 

results agree with earlier studies showing that the mud skipper Periophthalmus sobrinus 

is an active carnivorous predator (Blaunstein et al. 1996). An exception at SAL is station 

C42, where a high variability in �13C indicates a heterogenous diet. The mud skippers diet 

changes during growth, but they never appear to be in competition with other 
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zoobenthivores, because of their access to abundant food sources, such as other fish, 

which are inaccessible for crab species (Kruitwagen et al. 2007). 

Scatophagus argus occurs on the second TL (=2) with moderate �13C (-23.9±1.5‰), 

suggesting a mainly detritivorous diet supplemented by 15N enriched nitrogen sources. 

Previous studies showed that S. argus is feeding amongst others on phytoplankton, 

filamentous algae, detritus, bivalves, crustaceans, protozoa and copepods (Ghandi 2002, 

Thimdee et al. 2004, Lin et al. 2007). In the SAL this species is the basis of carbon source 

for higher TLs, and as carrion serves as an additional nitrogen source, e.g. for crabs of 

higher TLs. 

The genus Epinephelus occurred in the fourth TL (=4) of the benthic food web, indicating 

that these species feed on invertebrates in the SAL. It was shown in previous studies, that 

E. coioides in Australia is mainly feeding on leaf eating crabs, including Neosesarma sp. 

and Perisesarma spp. (Sheaves & Molony 2000). As Epinephelus occur in the same TL 

as Scylla serrata and Epixanthus dentatus, it can be assumed that this genus has an 

omnivorous feeding habit in the SAL also. 

 

4.3 Affiliation to trophic levels 

Our results showed that single species occurred at different TLs depending on the 

location (Fig. 6.4), and thus a site-specific food web structure exists.  

Significant differences were found while comparing single species between stations. Also 

comparing the whole benthic community between stations showed significant differences 

(t-tests, p<0.05). Especially decapod species can be assumed to use a range of food 

sources. Previous studies suggested that some animals have the capacity to change their 

feeding habits according to the availability of food at different locations, and as a result 

individuals of the same species can occur in different trophic levels (Thimdee et al. 

2004). Due to the opportunistic behavior we conclude that most macrobenthic organisms 

are highly adaptable to changing food availability. Our spatial variability of �13C of 

invertebrate muscle tissues is high due to station dependent food sources. This is in 

agreement with small-scale investigations showing that �13C of muscle tissue is very 

location dependent (Guest et al. 2004, 2006, Benstead et al. 2006). The variability within 
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the same species at one station is in general higher in higher TLs, which can be explained 

by an increase in food choices with increasing trophic levels. 

 

 

Figure 6.4: Trophic food web structure in the Segara Anakan lagoon based on abundant species 
(Cerithidea cingulata (CECI), Episesarma singaporense (ESI), Episesarma versicolor (EVE), Epixanthus 
dentatus (EDE), Metaplax elegans (MEL), Periophthalmus sp. (PSP), Perisesarma darwinense (PDA), 
Phascolosoma arcuatum (PAR), Polychaetes (POL), Polymesoda erosa (PER), Saccostrea cf. cucculata 
(SAC), Scylla serrata (SCY), Telescopium telescopium (TEL), Uca forcipata (UFO)); TL= trophic level: 
4= top level, 3= high, 2= moderate, 1= low, PCS (0)= primary carbon sources; continuous arrows: 
knowledge gained by isotopic signatures of carbon and nitrogen and stomach content analysis of benthic 
organisms in this study, dashed arrows: assumed connections based on isotopic signatures of carbon and 
nitrogen of benthic organisms in this study, dotted arrows: intervention of humans on the benthic food web 
(personal observation). 
 

 

4.4 Anthropogenic impact 

Previous studies showed that sewage input affects isotopic composition in benthic 

organisms (Rau et al. 1981; Gearing et al. 1991; Tucker et al. 1999), mangrove leaves, 

macro algae and phytoplankton (Costanzo et al. 2001, 2003; Gartner et al. 2002). �15N is 

thereafter lower whereas �13C is higher in sewage polluted areas. It was therefore 

expected to find higher �13C and lower �15N at station C49, located between the two 
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villages, and E53, directly opposite the city Cilacap. At E49 the expected values were 

measured, in comparison we found the highest �13C and the lowest �15N at this station, 

suggesting an accumulation of household sewages in invertebrate tissues at this station. 

Isotopic compositions at station E53, in contrast, do not meet our expectations, as in 

comparison to the other stations values are moderate. The opposite, with low �13C and 

high �15N, was found at station E40 indicating a possible pollution with PAH´s due to the 

proximity to the oil refinery in the city of Cilacap. It was already shown in previous 

studies that PAH´s and therefore PAH polluted areas hold sediments with extreme low 

�13C (Jackson et al. 1996; Lichtfouse et al. 1997; McRae et al. 2000). Dsikowitzky et al. 

(submitted) found a higher number of PAHs in invertebrate tissues and sediments in the 

eastern lagoon compared to the central, which supports our findings. 

It cannot be ruled out that the impact of PAH and sewage pollution of the City Cilacap on 

the carbon isotopic signatures in invertebrates neutralize each other especially at station 

E53. But clearly the number and concentration of organic pollutants in sediments and 

animal tissues was much higher in the eastern area compared to the central part 

(Dsikowitzky et al. submitted). 

 

4.5 Summary and Conclusions 

Within the overall four trophic levels (TL) found in the intertidal benthic food web of the 

Segara Anakan Lagoon, excluding the primary carbon sources, most species, especially 

several decapods, can be assumed to use a range of food sources opportunistically. These 

species supplement their mainly mangrove derived diet by feasible scavenging e.g. 

decapod crabs in form of carrion. Single species occurred in different TLs depending on 

the location, as �13C and �15N of their tissues had a high spatial variability already on a 

small scale. Different species from the genus Episesarma can adapt differently to 

changing food availability.  

Due to the opportunistic diet of several decapod species we conclude that they are highly 

adaptable to changing food availability. The conversion of mangroves into other land 

uses, e.g. for agriculture, will reduce the habitat of the intertidal macrobenthic community 

within a short time, lead to more uniform sites and less microhabitats. This will most 
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probably lead to a decrease of mangrove tree species and therefore a decrease of food 

heterogeneity for the inhabitants of the lagoon.  

Overfishing could have an effect on the communities in the SAL, as fish serves as a 

supplementing diet in form of carrion for the invertebrates’ nitrogen needs. 

Anthropogenic impacts reflected as sewage inputs and PAH pollution might have an 

influence on isotopic fractionation in invertebrate tissues in the eastern lagoon. A better 

resolution of study sites for PAH measurements and further analysis of sewage impacts 

on sediments are necessary to be able to make a reliable statement on the actual 

anthropogenic impact in the SAL. 
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Abstract  

Food web studies conducted at a certain time of the year only reflect the actual status, and 

do not cover seasonal variability. We aimed to examine the isotopic compositions in 

benthic invertebrates, reflecting seasonal dependent environmental  conditions in the 

Segara Anakan Lagoon (SAL). Eight abundant intertidal species were collected at ten 

study sites in the SAL during rainy and dry season. Also, leaves of four mangrove tree 

species and sediment were collected to examine seasonal differences in food sources. 

Muscle tissues and food sources were analyzed for total carbon and nitrogen content as 

well as �13C and �15N. Seasonal discrepancies of �13C and �15N were dependent on 

species and location in the SAL and did not show clear patterns. Spatial variability was 

much higher during rainy season, probably due to an increased nutrient discharge by the 

Citanduy river. Benthic invertebrates are highly adaptable to temporal and spatial 

changes in food availability and quality. Differences in food web structures with different 

numbers of trophic levels can be assumed for the two seasons. �15N were highest in the 

SAL for Saccostrea cf. cuccullata and Telescopium telescopium on a global scale. In case 

of S. cf. cucculata, this is probably resulting from highly 15N enriched suspended matter 

in the water originating from agricultural effluents. T. telescopium seems to feed on 15N 

enriched food sources, such as carrion. Isotopic compositions of the other species were 

found in a similar range in the SAL and other mangrove forests. 

 

Key words: benthic intertidal communities, food availability, mangroves, seasonality, 

stable isotope analysis 
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1 Introduction 

 

Stable isotopes can be used as tracers to examine food web structures, which has already 

been demonstrated in a variety of ecosystems (e.g. Peterson & Fry 1987; Hobson 1999; 

Post 2002). The method is based on the assumption that consumers have a �13C 

enrichment of about 0.8‰ relative to their diet, and two trophic levels are distinguished 

by a �15N discrepancy of about 2.8‰ (Caut et al. 2009). It became clear that spatial 

variability in the structure of food webs in mangroves and salt marshes is high already on 

a small scale (Guest et al. 2004, 2006; Herbon et al. submitted). This can result from 

different impacts, e.g. anthropogenic or environmental (McClelland & Valiela 1998). A 

food web gathered at a certain time in the year does not reflect the food-web structure 

during any other time of the year or the whole year (Thompson & Townsend 1999). In 

fact, study site and season do have a significant effect on species richness, number of 

food web links, main chain length, predator-prey ratios or invertebrate diets in tropical 

food webs (Whitlatch 1977; Alongi 1987; Winemiller & Jepsen 1998; Thompson & 

Townsend 1999; Poon et al. 2010).  

The aspect of seasonality is a very important factor in tropical ecosystems, as in most 

regions two very distinct seasons are apparent. Seasons in the tropics are predominantly 

defined by the monsoons. Environmental parameters, such as salinity or nutrient 

availability in water and sediments differ substantially between seasons (Cowan & 

Boynton 1996; Francoeur et al. 1999; Badran 2001; Holtermann et al. 2009; Eyre & 

Fergusen 2005). Lower average air and water temperatures, lower conductivity and solar 

radiation and increasing water depths prevail during rainy season (Camargo & Esteves 

1995; Graham et al. 2003). During dry season a very hot and dry climate is predominant, 

along with high evaporation rates.  

Macrobenthic intertidal organisms show different compositions of naturally occurring 

stable carbon and nitrogen isotopes, depending on the feeding habits and therefore the 

trophic level (Minagawa & Wada 1984; Post 2002; Herbon et al. submitted). 

Macrobenthic food webs in mangrove ecosystems were investigated in several countries, 

such as Kenya and Thailand (e.g. Bouillon et al. 2002a, b; Thimdee et al. 2004; Alongi 

2009). However, comparisons regarding seasonality within mangrove ecosystems 
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especially regarding isotopic compositions in food webs are rare (e.g. Michener & Schell 

1994; Barletta et al. 2003). In this study, seasonal variations in carbon and nitrogen 

isotopic compositions of abundant benthic invertebrates were investigated during rainy 

and dry season in the mangrove fringed Segara Anakan Lagoon (SAL; Fig. 1).  

The 1002ha (in 2006; Ardli & Wolff 2009) large brackish water lagoon on the south 

central coast of Java is located in one of the hotspots of biodiversity (Roberts et al. 2002) 

and is surrounded by 9238ha of mangrove forest. It is neighbouring the city Cilacap with 

the largest oil refinery of Indonesia. A high anthropogenic influence on the mangrove 

ecosystem is assumed, as urban and industrial wastes of the city and several villages are 

released into the lagoons water. The lagoon, its mangroves and tidal flats play an 

important role as a nursery ground for the macrobenthic communities and for pelagic fish 

(Nordhaus et al. 2009, Yuniar et al. 2007). So far, 186 macrobenthic species were 

described in the lagoon and its fringing mangroves (Nordhaus et al. 2009), including 

economically important invertebrates, in particular Polymesoda erosa and Saccostrea cf. 

cuccullata. 

Herbon et al. (submitted) found a high spatial variability in isotopic carbon and nitrogen 

compositions in muscle tissues of intertidal benthic communities in the SAL during rainy 

season 2008 on a small scale. In the present study, feeding habits of eight selected 

abundant species were compared spatially in a more elaborate set of sampling sites within 

the SAL and between seasons. This is the first study to investigate seasonal induced shifts 

of trophic levels for mangrove invertebrates in Indonesia with regard to feeding habits. 

Our hypothesis is that isotopic signatures in muscle tissue of the proposed species differ 

substantially between seasons. It is expected that seasonal induced changes in nutrient 

and food availability have an impact on trophic shifts. 

The aims of this study were (1) to examine seasonal variations in the appearance in 

trophic levels of eight abundant intertidal macrobenthic species by using the stable 

isotope method and (2) to investigate spatial variability in the SAL and to additionally 

compare our data globally with other mangrove forests. 
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2 Material and Methods 

 

2.1 Study site 

The Segara Anakan Lagoon (SAL), Java, Indonesia (108°50’- 109°00’E, 07°39’- 

07°43’S) is separated from the Indian Ocean by the rocky mountainous island Nusa 

Kambangan (Fig. 7.1).  

 
Figure 7.1: Map of Segara Anakan with ten sampling stations in west (W), central (C) and eastern (E) 

lagoon and the city Cilacap, modified from Ardli (unpublished), http://istgeography.wikispaces.com and 

http://www.gamelannetwork.co.uk/assets/pics/Java_map.gif. 

 

An exchange with the Indian Ocean water masses is provided by two entrances to the 

lagoon in the east and in the west. The hydrology of the SAL is governed by semidiurnal 
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tides, 0.4m at neap tide and 1.4m at spring tide (Holtermann et al. 2009). The Citanduy 

River, the fifth largest river of Java, and the Cibereum River in the west are the main 

freshwater sources. Salinity is higher in the eastern part than in the western part of the 

lagoon during rainy (east: 27, west: 10) and during dry season (east: 32, west: 21; 

Holtermann et al. 2009). Precipitation is 152mm/ month during rainy and 39mm/ month 

during dry season (http://climate.usurf.usu.edu). In rainy season the sediment load 

through the Citanduy River is increased (Holtermann et al. 2009). 

The SAL has a high commercial and ecological value due to its high diversity of 

intertidal macrobenthic and fish species (Yuwono et al. 2007). By agriculture (rice 

fields), aquaculture, villages within the lagoon and the city of Cilacap (240.325 

inhabitants in 2008; www.cilacapkab.go.id) with several industries, the lagoon is strongly 

influenced by human activities. An over-exploitation of the natural resources is caused 

e.g. by overfishing and deforestation (Ardli 2007). The latter, conducted in the hinterland, 

leads to a reduction of the water volume of the lagoon by fostering sedimentation through 

the rivers (Ardli 2007). 

 

2.2 Sample collection and preparation 

Eight intertidal abundant benthic species (Decapoda: Episesarma singaporense, Metaplax 

elegans, Perisesarma darwinense, Uca forcipata; Gastropoda: Cerithidea cingulata, 

Telescopium telescopium; Bivalvia: Saccostrea cf. cuccullata; Teleostei: Periophthalmus 

sp.) were collected by hand at ten intertidal mangrove stations (Fig. 7.1) during rainy 

(February-April 2008) and during dry season (August-October 2008).  

Five individuals of each species were collected at each station and frozen for at least 12 h 

in PVC sampling bottles before further treatment. Crabs were dissected and muscle tissue 

from the chelae was removed for analysis. The shells of C. cingulata, Saccostrea cf. 

cuccullata and T. telescopium were removed and the whole soft tissue was used for 

analyses. Periophthalmus sp. was used completely for analysis. Samples were 

homogenized by hand with an agate mortal after drying at 40°C.  

No significant differences were found between tissue samples treated with HCl and 

samples without HCl during preliminary analysis (t-test: F=1.11, p=0.89), therefore no 

HCl was applied for tissue samples. 
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Samples were combusted in the Carlo Erba NA 2100 Elemental analyzer for carbon and 

nitrogen content measurements. Separately stable isotope ratios were determined with a 

coupled EA-IRMS gas isotope ratio mass spectrometer (ConFlo III) and expressed 

relative to conventional standards �R = [(Xsample/Xstandard) - 1] x 1000 ‰ with R = 13C or 
15N and X = 13C/12C or 15N/14N. Ammonium sulfate (IAEA-N1, IAEA-N2) were used as 

standard for �15N, and graphite (USGS-24) and mineral oil (NBS-22) for �13C. Analytical 

precision was ±0.2‰ for both nitrogen and carbon, as estimated from standards analyzed 

together with the samples.  

Of four mangrove tree species (Aegiceras corniculatum, Avicennia alba, Rhizophora 

apiculata and Sonneratia alba) three brown leaves each (replicates) were sampled at four 

stations (C42, C49, E53, E40), as preliminary results showed that these stations cover the 

whole range of �15N and �13C values. Leaves were collected by hand from the sediment 

surface. Surface sediment was sampled with a distance of 20m from the water edge for 

analyses, including three replicates at each of the four stations. Sediment samples were 

dried at 40°C, treated with 200μl 1M HCl to remove carbonates and then redried. 

Subsamples were analysed for organic carbon (Corg) and nitrogen (N) content and also 

stable isotope composition of organic carbon (13Corg/
12Corg) and nitrogen (15N/14N).  

 

2.3 Trophic level determination 

To distinguish between trophic levels, we used the fractionation steps from Caut et al. 

(2009) as these are based on the largest dataset available, including 66 isotope studies 

with a large number of estimated animal diets (n= 290). An overall discrepancy of �� 

15N=2.8±0.1‰ and ��13C=0.8±0.1‰ was determined between prey and consumer. Based 

on this we determined the discrepancies of trophic levels between seasons. Trophic levels  

and food web structures were discussed in Herbon et al. (submitted) and are therefore not 

presented in this paper. 

 

2.4 Statistical analysis 

Data were tested for normality, not normal distributed data were analyzed non-

parametrically, as transformation did not lead to normal distribution. Homogeneity of 

variances was tested. To avoid a high error by a high number of significance tests 
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regarding seasonality of each invertebrate at each station, a general linear model was run 

with “station” as the random factor, as differences between stations are known.  

For leaves and sediment an ANOVA followed by a Tukey´s HSD Post-hoc analysis was 

used. All analyses were run separately for �13C and �15N with Statistica®.  

 

3 Results  

 

3.1 Mangrove leaves and sediment 

�13C were, due to their high variability within replicates, very similar between seasons for 

all species (Tukey´s HSD: p>0.05). A significant change between seasons was only found 

for Sonneratia alba at station C49, increasing in dry season (Tukey´s HSD: p<0.05). 

Regarding nitrogen, the examined mangrove species showed a significant increase 

(Tukey´s HSD: p<0.05) of �15N in dry season with exception of Avicennia alba in C42 

(Table 7.1).  

 

Table 7.1: Carbon and nitrogen isotopic compositions (�13C, �15N) and Corg/N ratios of brown mangrove 

leaves (AA: Avicennia alba, AC: Aegiceras corniculatum, SA: Sonneratia alba, RA: Rhizophora alba) and 

surface sediment (SED) for four stations (central: C42, C49, east: E40, E53) in rainy and dry season. Bold 

values indicate significantly higher values comparing seasons.  

   Rainy season   Dry season 

  C42 C49 E40 E53 C42 C49 E40 E53 

�13C AA -27.7±0.5 -27.9±1.5   -26.3±0.0   -28.3±0.5 

 AC -30.4±0.0  -28.7±1.3 -29.3±0.8 -30.9±0.9  -29.6±0.7 -29.5±0.6 

 RA -28.3±1.4 -27.8±0.7 -28.7±1.3  -27.5±1.3 -28.4±1.4 -29.1±0.2 -27.8±0.6 

 SA -29.1±0.4 -29.0±1.0 -29,4±1.5 -29.1±0.0  -26.6±0.7 -28.9±0.5 -28.9±0.1 

 SED -26.0±0.5 -26.2±1.0 -26.9±0.9 -26.8±0.2 -26.0±0.4 -26.1±0.1 -27.4±0.3 -27.0±0.7 

�15N AA 3.9±2.9 3.5±0.2   -1.1±0.0   3.8±0.7 

 AC -4.8±1.0  0.7±0.4 0.1±0.6 1.1±1.3  4.4±0.5 3.8±3.0 

 RA 1.7±0.1 2.9±0.8 -2.4±1.7  4.8±2.6 6.2±0.7 4.2±0.9 4.4±0.5 

 SA -0.9±0.5 -4.4±2.1 -1.4±1.8 0.9±0.0  2.1±1.6 3.2±0.9 3.1±0.9 

 SED 4.3±0.4 4.0±0.4 4.1±0.5 4.3±0.2 4.2±1.0 4.4±0.2 4.3±1.3 3.9±0.2 

Corg/N AA 23.2±1.4 29.3±4.5 31.3±1.6  35.6   59.2±6.4 

 AC 29.5±0.0  28.0±0.0 262.0±0.5 70.0±20.3  108.0 53.4±16.8 

 RA 155.5±27.8 96.5±15.8 83.0±0.0  50.0±0.6 108.1±15.1 103.2 96.6±1.7 

 SA 68.8±9.7 57.0±9.6 127.0±0.9 160.0±0.0 65.8 49.9±1.0 20.1±2.7 83.7±15.9 

 SED 15.1±1.1 12.2±1.3 15.6±0.8 14.5±2.2 10.7±0.4 10.1±0.2 14.7±1.7 16.5±2.2 
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Table 7.2: Isotopic carbon and nitrogen signatures [‰] of eight intertidal benthic organisms (Cerithidea 

cingulata (CECI), Episesarma singaporense (ESI), Metaplax elegans (MEL), Periophthalmus sp. (PSP), 

Perisesarma darwinense (PDA), Saccostrea cf. cuccullata (SAC), Telescopium telescopium (TEL), Uca 

forcipata (UFO)) at ten stations in the lagoon (5 in west/central and 5 in east) in rainy and dry season, bold 

values indicate significantly higher signatures comparing seasons (p < 0.05). 

Rainy season          

�13C W52 C42 C43 C45 C49 E16 E40 E47 E53 E54 

ESI -23.0±0.5 -24.0±0.6  -23.9±0.7 -21.8±1.8  -24.8±0.5 -24.5±2.3 -24.2±1.0  

PDA  -23.8±1.1 -24.4±0.6  -18.6±1.7   -24.8±1.6 -24.4±0.4 -23.4±1.6 

UFO  -19.8±0.5  -23.2±2.6 -17.1±0.5 -15.2±0.4 -19.2±0.5 -18.7±1.0   

CECI   -25.0±1.5 -22.6±1.1 -17.7±1.3  -15.6±4.5 -24.5±0.8  -21.1±2.0 

SAC    -32.7±0.4   -29.0±0.9  -25.9±0.5 -29.1±1.1 

TEL  -24.6±0.3 -23.9±1.3  -17.7±0.6  -24.9±0.5 -25.8±0.8 -24.5±0.7 -23.2±0.8 

PSP  -24.4±1.9 -24.6±1.2 -24.4±0.5 -17.8±0.5 -19.1±1.8 -24.5±0.9 -23.3±1.0 -24.7±0.3 -25.1±1.5 

MEL    -22.6   -21.3±1.2 -21.3±0.8 -20.5±1.8 -21.0±1.0 

�15N           

ESI 6.9±0.2 10.2±1.3  9.3±1.1 7.6±1.4  11.0±2.3 9.4±1.2 10.4±2.4  

PDA  7.6±0.6 8.1±0.8  6.5±0.6   8.5±0.9 9.2±1.5 12.2±3.0 

UFO  7.2±0.8  6.9±1.0 6.6±0.4 6.6±0.6 8.9±0.7 17.9±4.4   

CECI   6.3±0.6 4.1±0.6 5.1±0.4  8.3±0.4 5.4±1.8  6.4±0.4 

SAC    5.7±0.2   14.0±5.0  7.0±1.1 8.9±2.2 

TEL  7.2±0.8 6.1±1.4  9.5±0.9  17.6±3.8 17.1±4.2 10.2±2.9 13.2±2.0 

PSP  12.7±0.6 10.2±0.9 12.3±0.2 12.5±3.2 10.5±1.4 12.7±0.8 15.0±2.2 13.8±1.2 18.2±3.7 

MEL    6.9   8.1±1.0 8.3±0.5 7.7±0.7 7.8±0.4 

Dry season          

�13C W52 C42 C43 C45 C49 E16 E40 E47 E53 E54 

ESI -24.5±0.1 -24.6±0.5  -25.3±0.4 -23.1±1.3  -24.3±0.6 -23.4±0.5 -24.3±0.5  

PDA  -23.2±1.0 -23.3±1.9  -24.1±2.3   -22.0±1.3 -23.9±0.2 -24.4±0.2 

UFO  -17.6±0.3  -21.3±1.5 -17.6±0.3 -14.8±0.8 -19.1±0.3 -19.1±0.0   

CECI   -21.8±0.7 -15.6±1.6 -18.4±1.2  -17.9±1.7 -25.7±2.7  -18.0±2.9 

SAC    -25.5±0.7   -25.6±0.6  -22.2±1.0 -29.8±0.2 

TEL  -22.3±0.8 -24.9±0.7  -21.6±1.4  -25.2±1.4 -25.2±0.5 -23.8±0.8 -19.4±1.6 

PSP  -22.1±0.7 -22.5±0.9 -25.6±1.4 -21.7±1.2 -19.5±1.2 -21.3±1.0 -23.8±1.1 -22.6±1.7 -22.0±1.8 

MEL    -21.5±0.5   -18.5±0.8 -18.3±0.8 -17.9±0.5 -19.0±0.2 

�15N           

ESI 9.7±0.8 7.8±1.3  16.6±5.7 7.8±1.1  8.2±0.5 8.1±1.9 7.8±1.2  

PDA  7.5±0.9 8.5±2.0  7.6±1.1   8.5±1.1 7.1±0.5 9.0±0.6 

UFO  7.5±1.7  6.5±0.3 7.5±1.7 6.2±0.5 7.1±1.0 6.5±0.1   

CECI   7.4±3.8 7.0±3.7 7.1±1.5  7.5±0.7 4.0±2.6  7.2±0.6 

SAC    12.2±4.7   4.7±1.0  2.8±0.6 7.2±1.6 

TEL  7.9±2.4 14.9±5.0  8.4±2.2  4.3±0.4 17.2±3.9 9.4±3.2 16.6±4.0 

PSP  12.0±1.3 11.9±1.0 14.6±3.3 11.8±1.6 14.5±2.8 12.4±1.2 11.8±2.5 10.0±0.5 11.8±1.7 

MEL    9.8±2.9   7.8±0.5 6.5±0.5 6.6±0.4 7.8±0.4 
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Figure 7.2: (A) Discrepancy ranges for differences between seasons for each species for �13C and �15N 

(below zero indicating higher values in rainy season, above zero higher values in dry season). Dashed 

lines= eastern lagoon, continuous lines= central lagoon. (B) Discrepancies between seasons of �13C and 

�15N for eight species (Episesarma singaporense (ESI), Metaplax elegans (MEL), Perisesarma darwinense 

(PDA), Uca forcipata (UFO), Cerithidea cingulata (CECI), Saccostrea cf. cuccullata (SAC), Telescopium 

telescopium (TEL), Periophthalmus sp. (PSP)) at ten stations calculated by subtracting �13C and �15N 

values of rainy season from dry season values based on means. Stations: black squares: eastern lagoon, grey 

squares: central lagoon. Lines: border for discrepancy between seasons up to 1 trophic level (TL) (dashed  

line = 1 TL difference: ±2.8‰) and up to 2 TLs (dashed line = 2 TL difference: ±5.6‰).  
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�15N, �13C and C/N ratios of sediments were very similar at all stations compared 

between seasons (ANOVA: p>0.05; Table 1). No significant differences were found 

between areas within one season for leaves or sediments (Multiple Comparison: p<0.05). 

 

3.2 Seasonal differences in invertebrate isotopic compositions  

The discrepancy between seasons calculated from Table 7.2, revealed that �13C values 

were varying in positive and negative directions from rainy to dry season without 

following any consistent patterns depending on species or stations. Only for Saccostrea 

cf. cuccullata and Metaplax elegans an increase of �13C towards dry season was found.  

 

3.3 Spatial differences in invertebrate isotopic compositions 

Significant spatial differences in carbon and nitrogen isotopic composition of species 

were found between the central and eastern lagoon (K-W-ANOVA: p<0.05; Fig. 7.2). 

Especially in rainy season �15N of all species but Metaplax elegans were significantly 

higher in the eastern compared to the central lagoon. �13C only differed between areas for 

Perisesarma darwinense (p<0.05, higher in central), Saccostrea cf. cuccullata (p<0.001, 

higher in eastern) and Telescopium telescopium (p<0.01, higher in central). During dry 

season only few significant differences between areas were found. M. elegans had 

significantly higher �15N and lower �13C in the central lagoon (p<0.001). Furthermore 

�15N of S. cf. cuccullata and E. singaporense were significantly higher in the central part 

(p<0.05).

 

4 Discussion 

 

4.1 Seasonal and spatial differences of �13C and �15N of primary carbon sources 

Except for Avicennia alba at C42 the �15N values of mangrove leaves were between 2-

6‰ higher in dry season. This could be explained by a lower concentration of nutrients in 

sediments in dry season. In rainy season an increased discharge of the Citanduy River 

into the central lagoon due to a higher precipitation leads to a higher nutrient availability 

(Moll et al. submitted) and results in selective uptake of isotopically lighter nitrogen and 

therefore a stronger fractionation. Previous studies showed that rainfall is crucial for the  
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transport of terrestrial energy into aquatic systems (Junk et al. 1989; Douglas et al. 2005).  

Sediment �13C values were similar at stations within one area. In the eastern lagoon 

higher Corg and lower �13C values were found than in the central part in both seasons (Fig. 

7.3; ANOVA: p <0.05). These high Corg values most probably resulted from the Citanduy 

River discharge, which brings in a high amount of Corg from the rice fields in the 

hinterland during rainy season (Jennerjahn et al. 2009). Organic carbon and nitrogen 

contents were not correlated with grain size. All stations had mainly clay and silt 

contributions, except station E40 where a slightly higher contribution of sand was 

examined (unpublished data).  Sediment �15N values did neither change significantly 

between stations nor seasons (ANOVA: p >0.05), indicating a sufficient supply of 

nitrogen organic matter throughout, e.g. by benthic microalgae, carrion or originating 

from 14N depleted soils in the hinterland. 
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Figure 7.3: Relation between Corg [%] and �13C for sediment of four stations in the central (C42, C49) and 

eastern (E40, E53) lagoon during dry (squares) and rainy (triangles) season. 

 

4.2 Trophic shifts of invertebrates  

4.2.1 Seasonal variability 

From figure 7.2 it becomes clear that a shift of trophic level from one season to the other 

was only occurring for a few species at certain stations, even though a different feeding 

habit seemed to be apparent for many of the species, indicated by large discrepancies in 
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�13C between seasons. It can be assumed that most consumers in the first TL have a 

sufficient availability of food throughout the year and a coexistence of several trophic 

pathways exists, as also suggested in previous studies (Schaal et al. 2010). Seasonal 

differences of more than two TLs were only observed for five different species at five 

distinct stations. It is assumed that these shifts of more than one trophic level could have 

consequences for the food web structure and also the number of trophic levels.  

 

Cerithidea cingulata, Metaplax elegans and Perisesarma darwinense did not have large 

discrepancies between the two seasons in their �15N values; seasonal differences in 

nitrogen isotopic compositions were hardly more than one trophic level. These 

differences can probably be explained by high inner-species variation. But �13C 

discrepancies were high for P. darwinense and C. cingulata, suggesting a significant 

change in their diet with the changing season. �13C values of M. elegans had 

discrepancies between the seasons of 2.4±0.7‰, showing higher �13C in dry season. As it 

is a deposit feeder, this probably results from an increase of organic carbon (%C) in the 

sediments in the eastern lagoon during dry season (ANOVA: p<0.05) as also indicated by 

sediment C/N ratios.  

Episesarma singaporense had, with one exception, trophic shifts between seasons by 

maximal one trophic level, with �15N tending to increase in dry season. This species is 

known to be an opportunistic feeder mainly subsisting on mangrove leaves, and is usually 

occurring in the second trophic level within the benthic food web in the SAL (Herbon et 

al. submitted). As most nitrogen isotope discrepancies in leaves between seasons 

indicated a shift of 1 to 2.5 TLs, it is therefore likely that E. singaporense switched to 

other diets such as microbenthic algae. Furthermore, mangrove leaves were probably less 

available during rainy season as they are presumed to be increasingly washed out due to 

increased precipitation. It was observed that during rainy season flooding periods are 

longer and partly sampling stations did not even fall dry at all. Therefore it can be 

assumed that intertidal decapods probably had less time for foraging outside burrows.  

The mud skipper Periophthalmus sp. and the ocypodid crab Uca forcipata had trophic 

shifts of 2.5 and 4 TLs between seasons respectively. A substantially different diet 

between seasons was suggested, which was confirmed by large discrepancies in �13C 
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values, especially in Periophthalmus sp. France (1998) stated that the isotopic 

composition of fiddler crabs can probably not be used to define its carbon sources, as 

variability in carbon isotopic composition is high. It can also be assumed that the main 

food source of Uca spp. is not only sediment organic matter, such as benthic microalgae 

and bacteria, but includes e.g. polychaetes as a main supplementary nitrogen source, as 

also found in stomach content analysis previously (Herbon et al. submitted). 

The largest seasonal discrepancy of �15N was 13.3‰ for the species Telescopium 

telescopium, equal to a trophic shift of 4.75 TLs, indicating a switch in its diet to a more 
15N enriched food source, such as carrion of other invertebrates in dry season. But spatial 

variability in �15N for T. telescopium was high within one season also. Seasonal 

differences could therefore also be due to an opportunistical scavenging feeding behavior.  

 

In this study we did not find any clear consistent patterns in the discrepancy between 

seasons, which is in agreement with other studies (e.g. Needoba et al. 2003; Grey et al. 

2004; Baeta et al. 2009; Schaal et al. 2010). Many factors can lead to seasonal differences 

in isotopic compositions, such as omnivorous feeding behavior depending on availability 

of food sources, changes in biogeochemical processes like the turnover of species internal 

nitrogen pools, and changes in e.g. flood pulse and water level (Mariotti et al. 1984; 

Wantzen et al. 2002; Vizzini & Mazzola 2003; Soreide et al. 2006; Baeta et al. 2009; 

Cabanellas-Reboredo et al. 2009). However, trophic shifts for the species found in this 

study could also be due to inter-annual variation.  

 Zeng et al. (2008) stated that many studies assume a large seasonal variation in food 

sources, but only a small trophic shift in consumers. He found that this result from a 

higher isotopic fractionation by the selective uptake of isotopically lighter carbon and 

nitrogen by primary producers. A large variation for primary producers and a small shift 

for the majority of consumers was confirmed in this study. 

 

4.2.2 Spatial variability 

Spatial variability was high during rainy season, with higher �15N in the eastern part of 

the lagoon. This could be explained by an increased nutrient contribution during high 

precipitation periods, especially by discharges of the Citanduy river (Moll et al. 
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submitted). Due to a high nutrient offer in the central part, primary producers such as 

mangroves thus can select isotopically lighter nitrogen, which can be used more easily for 

metabolic processes and growth.  

During dry season in contrast, variances between areas were low. In general nutrient 

availability is minor (Moll et al. submitted) and internal recycling is a more important 

process. Higher �15N in the central area were found for M. elegans, S. cf. cuccullata and 

E. singaporense, due to high values at C45 (Multiple comparison: p<0.05). Carbon 

isotopic compositions were significantly lowest at C45 (Multiple comparison: p<0.05) for 

Episesarma singaporense, Uca forcipata and M. elegans. As this station is located in the 

middle of the lagoon many factors can have an influence on the isotopic composition of 

benthic invertebrates. From the central part freshwater and agricultural inputs, as well as 

sewage from the villages Klaces and Motehan could have had an impact. From the 

eastern part of the lagoon saline water masses and pollutants from the oil refinery could 

affect isotopic compositions at this location. We cannot determine which factors resulted 

in these substantially different isotopic compositions of these invertebrates, which also 

have different feeding habits.  
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4.4 Global comparison  

14 studies which also investigated species addressed in this study or at least the same 

genera were compared (Table 3).  

Cerithidea cingulata is a grazer in the SAL, as average �13C values indicate mixed carbon 

sources of terrestrial and marine origin. This is also supported by studies in other 

countries, where a dependency of Cerithidea spp. on benthic microalgae (BMA) was 

suggested (Table 7.3). Only in Japan �13C for C. cingulata were lower (Table 7.3), 

indicating an exclusively BMA derived diet, which themselves had a highly 13C enriched 

carbon source. �15N values of C. cingulata were in general 3-4‰ enriched to those of 

BMA, indicating a supplementation of 15N enriched food sources, such as carrion on the 

sediment surface. 

In the SAL carrion is a large part of the diet of Telescopium telescopium, resulting in 

higher �15N in muscle tissue (Herbon et al. submitted). �15N here were much higher 

compared to other studies. In Malaysia, where comparably moderate �15N were found, 

the authors suggested a diet mainly on microalgae and phytoplankton, and more general 

on organic matter on the sediment surface (Table 7.3). But the diet probably also includes 

carrion of other invertebrates. Apart from Australia where low �13C of -18.8‰ were 

found (Table 7.3), indicating probably less opportunities of scavenging, �13C values 

ranged between -26.6‰ and -21.4‰ including this study (Table 3).  

�13C values of Crassostrea/ Saccostrea spp. were lowest in this study. As plankton �13C 

varied only little between countries (-21.0‰ to -22.8‰; Table 3), additional carbon 

sources of rather terrestrial origin could be assumed. Suspended matter probably was also 

an important carbon source for these species (Table 7.3). �15N are high in Indonesia, 

Japan and Thailand. All these study areas are highly impacted by humans, e.g. by 

agriculture (rice fields, shrimp ponds, oyster farming) and are located in the proximity to 

high populated cities (Table 7.3). It is therefore suggested that the high �15N in these filter 

feeders resulted from highly 15N enriched suspended matter in the water especially from 

effluents of agricultural origin. The highest �15N values for oysters were measured in 

Indonesia in combination with the lowest �13C, indicating a high anthropogenic impact. 

Previous studies showed that extremely low �13C in sediments can result from PAH 

pollution (Jackson et al. 1996; Lichtfouse et al. 1997; McRae et al. 2000). High PAH 



Discussion          Seasonality 

77 

concentrations were measured near the oil refinery of the city Cilacap in the SAL 

(Dsikowitzky et al. accepted).  

�13C for Metaplax elegans varied highly between Malaysia, India, Thailand and this study 

(Table 7.3). Authors suggest a mainly microphytobenthos derived diet. Sediment �13C 

data, if available, indicated an organic matter content of mainly terrestrial origin, being 

far below those of Metaplax �13C. Therefore a mixed diet for Metaplax consisting of 

benthic microalgae and terrestrial organic matter could be assumed (Table 7.4).  

In Indonesia Uca forcipata feeds on polychaetes and most probably microphytobenthos 

(Herbon et al. submitted). Uca spp. outside the Indo-Pacific had high variances in �13C 

(Table 3). Sediment organic matter, presumed to be the main carbon source for Uca spp., 

had �13C values below -21.0‰ in all studies, which was the lowest value for 

microphytobenthos measured. This indicates a high contribution of terrestrial carbon 

sources to the sediment carbon pool. �15N  in tissue of Uca spp. varied highly between the 

countries. This could be due to the investigation of different Uca spp. Also a different 

contribution of polychaetes or other animal material to the diet could be assumed.  

�13C of Perisesarma in Sri Lanka (Table 3) were similar to sediment values and about 

3‰ enriched to mangrove leaves. At all other study sites �13C were much higher, 

indicating a bacteria or microphytobenthos derived carbon source. �15N of this species 

had a discrepancy of 0.5‰ to 1.4‰ to those of mangrove leaves in India and Sri Lanka 

(Table 3). Therefore the main carbon source for Perisesarma were microphytobenthos 

and bacteria and not mangrove leaves. In Sri Lanka a more 15N enriched diet was 

indicated with discrepancies of �15N between 3.6‰ and 4.7‰. This indicated a higher 

contribution of carrion to the diet. 

The genus Episesarma had similar �13C in India, Thailand and the SAL (Table 3). The 

main food source of Episesarma spp. are fresh mangrove leaves, which are supplemented 

by carrion e.g. in case of E. versicolor (Table 3). Variations in �15N are species specific, 

as different species of this genus have different feeding habits and ways of adaptation to 

food availability (Herbon et al. submitted).  

Periophthalmus sp. is carnivore in the SAL, having a homogenous diet at all sampling 

sites. It mainly feeds on polychaetes and fish, and therefore occurs in the third trophic 

level (Herbon et al. submitted). Rodelli et al. (1984) found average �13C values of -22.9‰  
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in a Malaysian mangrove swamp, similar to values found in the SAL. They also 

suggested a predatory feeding behavior.  

 

Table 7.3: Geographical comparison of isotopic compositions of eight mangrove invertebrate species, 

values in permill with standard deviation. In Kenya and Sri Lanka numbers refer to different study sites. 

RS= rainy season, DS= dry season, UNK= unknown sampling time. Values from Indonesia were averaged 

over all stations. 

Source Study area Species �15N �13C RS DS 

This study Indonesia Cerithidea cingulata 5.9±1.4 -21.1±3.8 X  

Bouillon et al. 2004 Kenya (1) Cerithidea decollata 4.7±1.2 -21.6±0.8 X  

Bouillon et al. 2002 India Cerithidea obtusa 4.8±0.2 -19.3±0.7 X  

This study Indonesia Cerithidea cingulata 6.7±1.3 -19.6±3.6  X 

Abrantes & Sheaves 2009 Australia Cerithidea cingulata 6.9 -20.2  X 

Bouillon et al. 2004 Sri Lanka (1) Cerithidea cingulata 6.3±0.1 -21.2±0.2  X 

Kruitwagen et al. 2010 Tanzania Cerithidea decollata 9.5±0.1 -17.8±0.2  X 

Rodelli et al. 1984 Malaysia Cerithidea obtusa  -23.1±1.3 UNK 

Ishihi & Yokoyama 2009 Japan Cerithidea cingulata 9.3±0.1 -12.1±0.1 UNK 

This study Indonesia Telescopium telescopium 11.6±4.6 -23.5±2.7 X  

Bouillon et al. 2002 India Telescopium telescopium 6.8±1.0 -22.0±1.5 X  

Abrantes & Sheaves 2008 Australia Telescopium telescopium 6.3 -18.8 X  

Bouillon et al. 2004 Kenya (1) Terebralia palustris 3.5±1.1 -26.1±0.9 X  

Bouillon et al. 2004 Kenya (2) Terebralia palustris 4.5±0.5 -22.9±0.8 X  

This study Indonesia Telescopium telescopium 11.2±5.0 -23.2±2.2  X 

Newell et al. 1995 Malaysia Telescopium telescopium 9.1 -21.4  X 

Bouillon et al. 2004 Sri Lanka (2) Terebralia palustris 4.8±1.5 -24.8±1.7  X 

Rodelli et al. 1984 Malaysia Telescopium telescopium  -26.6 UNK 

This study Indonesia Saccostrea cf. cuccullata 8.9±3.7 -29.2±2.8 X  

Bouillon et al. 2004 Kenya (2) Crassostrea cuccullata 5.1±0.6 -18.4±0.6 X  

Bouillon et al. 2004 Kenya (1) Saccostrea cuccullata 4.8 -23.7 X  

This study Indonesia Saccostrea cf. cuccullata 6.7±4.1 -25.8±3.1  X 

Thimdee et al. 2004 Thailand Crassostrea commercialis 9.7±0.3 -20.0±0.5  X 

Abrantes & Sheaves 2009 Australia Sacostrea echinata 6.6±0.2 -24.3±0.5  X 

Ishihi & Yokoyama 2009 Japan Crassostrea gigas 9.9±0.4 -19.4±0.4 UNK 

Schwamborn et al. 2002 Brazil Crassostrea rhizophorae  -23.2 UNK 

Rodelli et al. 1984 Malaysia Crassostrea sp.  -18.8±0.9 UNK 

This study Indonesia Metaplax elegans 7.8±0.5 -21.3±0.8 X  

Bouillon et al. 2004 India Metaplax distinctus 7.0±0.0 -22.7±0.2 X  

Bouillon et al. 2002 India Metaplax elegans 6.4±1.0 -18.4±1.1 X  

This study Indonesia Metaplax elegans 7.7±1.3 -19.0±1.4  X 

Kristensen et al. 2010 Thailand Metaplax elegans 8.9 -16.9  X 

Rodelli et al. 1984 Malaysia Metaplax elegans  -21.9±1.5 UNK 

This study Indonesia Uca forcipata 9.0±4.4 -18.9±2.7 X  

Bouillon et al. 2002 India Uca rosea 6.5±0.8 -21.1±0.5 X  

Bouillon et al. 2004 Kenya (1) Uca spp. (average) 3.7±0.5 -21.0±0.2 X  
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Table 7.3: Continued       

Source Study area Species �15N �13C RS DS 

Bouillon et al. 2004 Kenya (2) Uca spp. (average) 2.6±0.4 -16.5±0.1 X  

Bouillon et al. 2004 India Uca spp. (average) 7.5±0.4 -20.4±2.0 X  

France 1998 Puerto Rico Uca spp. (average) 3.9±0.5 -21.0±0.5 X  

This study Indonesia Uca forcipata 6.9±0.6 -18.3±2.1  X 

Kruitwagen et al. 2010 Tanzania Uca spp. (average) 9.8±2.2 -19.6±1.3  X 

Kristensen et al. 2010 Thailand Uca forcipata 8.1 -18.0  X 

Thimdee et al. 2004 Thailand Uca vocans 7.2±0.3 -19.2±0.7  X 

Abrantes & Sheaves 2009 Australia Uca vomeris 5.6 -16.3  X 

Rodelli et al. 1984 Malaysia Uca forcipata  -20.0 UNK 

Demopoulos et al. 2007 Puerto Rico Uca sp. 6.0±1.3 -25.0±0.7 UNK 

Schwamborn et al. 2002 Brazil Uca spp. (average) 5.7±0.1 -15.0±1.4 UNK 

This study Indonesia Perisesarma darwinense 8.7±2.0 -23.2±2.3 X  

Bouillon et al. 2002 India Parasesarma asperum 5.5±0.7 -25.5±0.6 X  

Bouillon et al. 2004 India Perisesarma bengalensis 7.6±1.1 -25.4±0.5 X  

Bouillon et al. 2004 Kenya (1) Perisesarma guttatum 4.2±0.7 -23.3±0.9 X  

This study Indonesia Perisesarma darwinense 8.0±0.7 -23.5±0.9  X 

Bouillon et al. 2004 Sri Lanka (1) Perisesarma dussumieri 4.2±1.2 -27.3±0.8  X 

This study Indonesia Episesarma singaporense 9.3±1.5 -23.7±1.0 X  

Bouillon et al. 2002 India Episesarma versicolor 6.6±1.0 -24.2±1.0 X  

Bouillon et al. 2004 India Episesarma versicolor 6.6±2.1 -25.4±0.5 X  

This study Indonesia Episesarma singaporense 9.4±3.2 -24.2±0.7  X 

Bouillon et al. 2004 Sri Lanka (1) Episesarma tetragonum 3.2 -25.2  X 

Newell et al. 1995 Malaysia Episesarma versiolor 7.6 -25.0  X 

Thimdee et al. 2004 Thailand Episesarma mederi 7.9±0.4 -26.0±0.6  X 

Kristensen et al. 2010 Thailand Episesarma versicolor 7.2±0.4 -24.3±0.1  X 

Rodelli et al. 1984 Malaysia Episesarma singaporense  -26.0 UNK 

This study Indonesia Periophthalmus sp. 13.1±2.4 -23.1±2.7 X  

This study Indonesia Periophthalmus sp. 12.3±1.4 -22.3±1.7  X 

Rodelli et al. 1984 Malaysia Periophthalmus sp.  -22.9 UNK 

 

Table 7.4: Geographical comparison of baseline component isotopic compositions, values in permill with 

standard deviation. Numbers in brackets for Kenya and Sri Lanka refer to different study sites. MPB= 

microphytobenthos, BMA= benthic microalgae, MA= macro algae, SGR= seagrass, FCH= filamentous 

chlorophytes, PL= plankton, ML= mangrove leaves, DET= detritus, SED= sediment, SSED= surface 

sediment, POM= particulate organic matter as presented in the respective studies. RS= rainy season, DS= 

dry season, UNK= unknown sampling time. Values from Indonesia were averaged over all stations. 

Source Study area Baseline component �15N �13C Season 

This study Indonesia SED 4.2±0.1 -26.5±0.4 RS 

  ML (average) 0.0±2.9 -28.8±0.8  

This study Indonesia SED 4.2±0.2 -26.6±0.7 DS 

  ML (average) 3.3±1.9 -28.5±1.3  

Abrantes & Sheaves 2009 Australia SGR (average) 2.4±0.2 -18.4±0.2 DS 
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Table 7.4: Continued      

Source Study area Baseline component �15N �13C Season 

Abrantes & Sheaves 2009 Australia ML (average) 2.7±0.3 -28.8±0.7  

  MPB (average) 2.9±1.2 -22.8±0.3  

Abrantes & Sheaves 2008 Australia MPB 2.9±0.3 -16.5±0.3 RS 

Schwamborn et al. 2002 Brazil ML (average) 4.4 -26.8±0.4 UNK 

  SED  -25.1±0.5  

  POM 3.8±1.7 -24.9±0.4  

Ishihi & Yokoyama 2009 Japan BMA 5.6±1.4 -15.8±1.8 UNK 

  PL 6.1±1.6 -21.7±1.2  

Newell et al. 1995 Malaysia ML (average) 5.4±0.7 -28.3±0.4 DS 

  SED (BMA & PL) 6.8 -19.6  

Rodelli et al. 1984 Malaysia ML (average)  -27.1±1.4 UNK 

  SED  -24.8  

  FCH  -20.1±1.5  

  POC (offshore)  -21.4  

  PL (offshore)  -21.0±0.5  

Thimdee et al. 2004 Thailand MA 3.5±0.9 -16.8±1.5 DS 

  ML (average) 5.0±0.5 -28.9±0.4  

  SSED 5.1±0.2 -26.3±1.0  

  PL 5.7 -21.8  

Bouillon et al. 2002 India BMA 1.7±1.7 -17.3±1.7 RS 

  ML(average) 4.6±1.1 -28.6±1.4  

  SED 3.5±0.5 -21.8±1.0  

Bouillon et al. 2004 Kenya (1) ML(average) 0.6±1.6 -29.4±1.8 RS 

  MPB 1.9±0.1 -22.1±0.0  

  SSED 2.1±1.2 -25.2±0.0  

 Kenya (2) ML(average) 1.7±2.0 -29.1±1.8 RS 

  SSED 1.7±0.8 -23.0±0.9  

 India ML(average) 7.1±3.1 -28.6±1.8 RS 

  SSED 5.6 -24.9  

 Sri Lanka (1) ML (average) 2.8±2.0 -30.4±1.0 DS 

  SSED -0.1±0.3 -27.5±0.9  

 Sri Lanka (2) ML (average) 1.2±1.1 -31.4±2.6 DS 

  SSED 1.8±1.7 -27.8±1.2  

Kristensen et al. 2010 Thailand ML (average) 3.5±0.2 -28.9±0.4 DS 

  BMA 2.2 -20.1  

Kruitwagen et al. 2010 Tanzania MA 8.8±0.2 -17.6±0.7 DS 

  MPB 5.6±0.4 -21.8±0.3  

  DET 3.2±0.9 -24.7±0.5  

France 1998 Puerto Rico SED -1.4±1.8 -26.8±1.5 RS 

  ML (average) -3.8±1.2 -29.5±1.3  

  BMA 2.3±1.0 -19.9±1.6  

  MA 6.3±1.3 -19.9±1.6  

  PL 6.3±0.5 -25.9±1.3  

Demopoulos et al. 2007 Puerto Rico ML (average) 4.5±3.0 -29.5±1.6 UNK 
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Table 7.4: Continued      

Source Study area Baseline component �15N �13C Season 

Demopoulos et al. 2007 Puerto Rico POM/BMA 1.0±1.0 -21.5±0.5  

  DET 5.6±0.5   

 

 

4.4 Summary and conclusion 

Stable isotopes seem to be a sufficient tool to trace changes in nutrient concentrations and 

therewith food quality induced by changes of environmental conditions, such as 

precipitation, in a short time period. But distinguishing factors influencing isotopic 

compositions in benthic invertebrates is rather difficult. 

Seasonal differences in isotopic compositions of invertebrates muscle tissue did not 

follow any clear patterns. Discrepancy ranges between seasons depended on the species 

and location within the lagoon. Factors that had an impact on seasonal differences include 

precipitation and therewith nutrient availability, food availability and quality and carbon 

and nitrogen contents in sediments. Spatial variability was much higher during rainy 

season. This can be traced back to an increased amount of nutrients in the central part 

from the Citanduy washed in from the hinterland (Moll et al. submitted). Benthic 

communities are thus highly adaptable to large spatial and temporal environmental 

changes and therewith changes in food availability and quality. 

In a global comparison, �15N of Telescopium were highest in the SAL. These are resulting 

from supplementing 15N enriched food sources, most likely carrion, in an amount as 

found in no comparable study.  

 

5 Acknowledgements 

 

The authors acknowledge the financial support from the Federal administration for 

education and research (BMBF, Grant No. 03F0471A). Special thanks to Andhi Suncoko, 

Dendy Permana, Sulis Tiono and other students from UNSOED University, Purwokerto, 

Indonesia for field work. Thanks to Dana Pargmann, Doro Dasbach and Matthias 

Birkicht for laboratory work and support. Thanks also to Regine Moll, Sonja Kleinertz 

and Kai Bischof for proofreading and advice. Helpful comments of referees are 



Seasonality Discussion 

82 

thankfully acknowledged. Supported by the Bremen International Graduate School for 

Marine Sciences (GLOMAR), that is funded by the German Research Foundation (DFG) 

within the frame of the Excellence Initiative by the German federal and state 

governments to promote science and research at German universities.  

 

6 References 

 

Abrantes, K., Sheaves, M., 2008. Incorporation of terrestrial wetland material into aquatic 
food webs in a tropical estuarine wetland. Estuarine, Coastal and Shelf Science 80, 401-
412. 
 
Abrantes, K., Sheaves, M., 2009. Food web structure in a near-pristine mangrove area of 
the Australian Wet Tropics. Estuarine, Coastal and Shelf Science 82, 597-607. 
 
Baeta, A., Pinto, R., Valiela, I., Richard, P., Niquil, N., Marques, J.C., 2009. �15N and 
�13C in the Mondego estuary food web: Seasonal variation in producers and consumers. 
Marine Environmental Research 67, 109-116. 
 
Bouillon, S., Koedam, N., Raman, A.V., Dehairs, F., 2002. Primary producers sustaining 
macro-invertebrate communities in intertidal mangrove forests. Oecologia 130, 441-448. 
 
Bouillon, S., Moens, T., Overmeer, I., Koedam, N., Dehairs, F., 2004. Resource 
utilization patterns of epifauna from mangrove forests with contrasting inputs of local 
versus imported organic matter. Marine Ecology Progress Series 278, 77-88. 
 
Cabanellas-Reboredo, M., Deudero, S., Blanco, A., 2009. Stable-isotope signatures (�13C 
and �15N) of different tissues of Pinna nobilis Linnaeus, 1758 (Bivalvia): isotopic 
variations among tissues and between seasons. Journal of Molluscan Studies. 
 
Camargo, A.F.M., Esteves, F.A., 1995. Influence of water level variation on fertilization 
of an oxbow lake of Rio Mogi-Guaçu, State of São Paulo, Brazil. Hydrobiologia 299 (3), 
185-193. 
 
Caut, S., Angulo, E., Courchamp, F., 2009. Variation in discrimination factors (�15N and 
�13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of 
Applied Ecology 46, 443-453. 
 
Cowan, J.L.W., Boynton, W.R., 1996. Sediment-water oxygen and nutrient exchanges 
along the longitudinal axis of Chesapeake Bay: Seasonal patterns, controlling factors and 
ecological significance. Estuaries and coasts 19 (3), 562-580. 
 
Demopoulos, A.W.J., Fry, B., Smith, C.R., 2007. Food web structure in exotic and native 
mangroves: a Hawaii-Puerto Rico comparison. Oecologia 153, 675-686. 



References   Seasonality 

83 

 
Douglas, M.M., Bunn, S.E., Davies, P.M., 2005. River and wetland food webs in 
Australia´s wet-dry tropics : general principles and implications for management. Marine 
and Freshwater Research 56 (3), 329-342. 
 
Dsikowitzky, L., Khrychewa, P., Sivatharsan, Y., Nordhaus, I., Jennerjahn, T., 
Schwarzbauer, J., accepted. Anthropogenic organic contaminants in water, sediments and 
benthic organisms of the mangrove-fringed Segara Anakan Lagoon, Java, Indonesia. 
Marine Pollution Bulletin. 
 
Eyre, B.D., Fergusen, J.P., 2005. Benthic metabolism and nitrogen cycling in a 
subtropical east Australian estuary (Brunswick): Temporal variability and controlling 
factors. Limnological Oceanography 50 (1), 81-96. 
 
France, R., 1998. Estimating the assimilation of mangrove detritus by fiddler crabs in 
Laguna Joyuda, Puerto Rico, using dual stable isotopes. Journal of Tropical Ecology 14 
(4), 413-425.  
 
Francoeur, S.N., Biggs, B.J.F., Smith, R.A., Lowe, R.L., 1999. Nutrient limitation of 
algal biomass accrual in streams : Seasonal patterns and a comparison of methods. 
Journal of the North American Benthological Society 18 (2), 242-260. 
 
Graham, E.A., Mulkey, S.S., Kitajima, K., Phillips, N.G., Wright, S.J., 2003. Cloud cover 
limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. PNAS 
100 (2), 572-576. 
 
Grey, J., Kelly, A., Ward, S., Sommerwerk, N., Jones, R.I., 2004. Seasonal changes in the 
stable isotope values of lake-dwelling chironomid larvae in relation to feeding and life 
cycle variability. Freshwater Biology 49, 681-689. 
 
Guest, M.A., Connolly, R.M., Lee, S.Y., Loneragan, N.R., Breitfuss, M.J., 2006. 
Mechanism for the small-scale movement of carbon among estuarine habitats: organic 
matter transfer not crab movement. Oecologia 148, 88-96. 
 
Guest, M.A., Connolly, R.M., Loneragan, N.R., 2004. Carbon movement and 
assimilation by invertebrates in estuarine habitats at a scale of metres. Marine Ecology 
Progress Series 278, 27-34. 
 
Herbon, C.M., Nordhaus, I., Jennerjahn, T., Suncoko, A.R., submitted. High spatial 
variability of �13C and �15N in intertidal benthic food webs in the mangrove fringed 
Segara Anakan Lagoon, Java, Indonesia. 
 
Hobson, K.A., 1999. Stable isotope ecology: an introduction. Oecologia 120, 312-313. 
 
Holtermann, P., Burchard, H., Jennerjahn, T., 2009. Hydrodynamics of the Segara 
Anakan lagoon. Regional Environmental Change 9, 245-258. 



Seasonality References 

84 

 
Ishihi, Y., Yokoyama, H., 2007. Stable isotope analyses of the trophic structure of 
macrobenthos on an artificial flat developed using sediments dredged from pearl oyster 
farms in Ago Bay. Bulletin of Fisheries Research Agency 29, 59-67. 
 
Jackson, A.W., Pardue, J.H., Araujo, R., 1996. Monitoring crude oil mineralization in salt 
marshes: Use of stable carbon isotope ratios. Environmental Science & Technology 30, 
1139-1144. 
 
Jennerjahn, T., Nasir, B., Pohlenga, I., 2009. Spatio-temporal variation of dissolved 
inorganic nutrients related to hydrodynamics and land use in the mangrove-fringed 
Segara Anakan Lagoon, Java, Indonesia. Regional Environmental Change 9, 259-274. 
 
Junk, W.J., Bayley, P.B., Sparks, R.E., 1989. The flood pulse concept in river-floodplain 
systems. In : Dodge, D.P. (Ed.), Proceedings of the International Large River 
Symposium, Canadian Special Publication of Fisheries and Aquatic Sciences, pp. 110-
127. 
 
Kristensen, D.K., Kristensen, E., Mangion, P., 2010. Food partitioning of leaf-eating 
mangrove crabs (Sesarminae) : Experimental and stable isotope (13C and 15N) evidence. 
Estuarine, Coastal and Shelf Science 87 (4), 583-590. 
 
Kruitwagen, G., Nagelkerken, I., Lugendo, B.R., Mgaya, Y.D., Wendelaar Bonga, S.E., 
2010. Importance of different carbon sources for macroinvertebrates and fishes of an 
interlinked mangrove-mudflat ecosystem (Tanzania). Estuarine, Coastal and Shelf 
Science 88, 464-472. 
 
Lichtfouse, E., Budzinski, H., Garrigues, P., Eglinton, T.I., 1997. Ancient polycyclic 
hydrocarbons in modern soils: 13C, 14C and biomarker evidence. Organic Geochemistry 
26 (5/6), 353-359. 
 
Mariotti, A., Lancelot, C., Billen, G., 1984. Natural isotopic composition of nitrogen as a 
tracer of origin for suspended organic matter in the Scheldt estuary. Geochimica et 
Cosmochimica Acta 48, 549-555. 
 
McClelland, J.W., Valiela, I., 1998. Linking nitrogen in estuarine producers to land-
derived sources. Limnological Oceanography 42 (3), 577-585. 
 
McRae, C., Snape, C.E., Sun, C.-G., Fabbri, D., Tartari, D., Trombini, C., Fallick, A.E., 
2000. Use of compound-specific stable isotope analysis to source anthropogenic natural 
gas-derived polycyclic aromatic hydrocarbons in a lagoon sediment. Environmental 
Science & Technology 34 (22), 4684-4686. 
 
Michener, R.H., Schell, D.M., 1994. Stable isotope ratios as tracers in marine aquatic 
food webs. In: Lajtha, K., Michener, R.H. (Eds.), Stable isotopes in ecology and 
environmental science. Blackwell Scientific, London, pp. 138-157. 



References   Seasonality 

85 

 
Minagawa, M., Wada, E., 1984. Stepwise enrichment of 15N along food chains: Further 
evidence and the relation between �15N and animal age. Geochimica et Cosmochimica 
Acta 48, 1135-1140. 
 
Moll, R., Korting, J., Oviedo, A.M., Jennerjahn, T., submitted. Leaf leaching of dissolved 
organic carbon from eight plant species in the mangrove-fringed Segara Anakan Lagoon, 
Java, Indonesia. 
 
Needoba, J.A., Waser, N.A., Harrison, P.J., Calvert, S.E., 2003. Nitogen isotopic 
fractionation in 12 species of marine phytoplankton during growth on nitrate. Marine 
Ecology Progress Series 255, 81-91. 
 
Newell, R.I.E., Marshall, N., Sasekumar, A., Chong, V.C., 1995. Relative importance of 
benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid 
prawns and other coastal invertebrates from Malaysia. Marine Biology 123, 595-606. 
 
Nordhaus, I., Hadipudjana, F.A., Janssen, R., Pamungkas, J., 2009. Spatio-temporal 
variation of macrobenthic communities in the mangrove-fringed Segara Anakan lagoon, 
Indonesia, affected by anthropogenic activities. Regional Environmental Change 9, 291-
313. 
 
Peterson, B.J., Fry, B., 1987. Stable isotopes in ecosystem studies. Annual Review of 
Ecological Systems 18, 293-320. 
 
Poon, D.Y.N., Chan, B.K.K., Williams, G.A., 2010. Spatial and temporal variation in 
diets of the crabs Metapograpsus frontalis (Grapsidae) and Perisesarma bidens 
(Sesarmidae): implications for mangrove food webs. Hydrobiologia 638, 29-40. 
 
Post, D.M., 2002. Using stable isotopes to estimate trophic position: models, methods, 
and assumptions. Ecology 83 (3), 703-718. 
 
Roberts, C.M., McClean, C.J., Veron, J.E.N., Hawkins, J.P., Allen, G.R., McAllister, 
D.E., Mittermeier, C.G., Schueler, F.W., Spalding, M., Wells, F., Vynne, C., Werner, 
T.B., 2002. Marine biodiversity hotspots and conservation priorities for tropical reefs. 
Science 259, 1280-1284. 
 
Rodelli, M.R., Gearing, J.N., Gearing, P.J., Marshall, N., Sasekumar, A., 1984. Stable 
isotope ratio as a tracer of mangrove carbon in Malaysian ecosystems. Oecologia 61, 326-
333. 
 
Schaal, G., Riera, P., Leroux, C., Grall, J., 2010. A seasonal stable isotope survey of the 
food web associated to a peri-urban rocky shore. Marine Biology 157, 283-294.  
 



Seasonality References 

86 

Schwamborn, R., Ekau, W., Voss, M., Saint-Paul, U., 2002. How important are 
mangroves as a carbon source for decapod crustacean larvae in a tropical estuary? Marine 
Ecology Progress Series 229, 195-205. 
 
Soreide, J.E., Hop, H., Carroll, M.L., Falk-Petersen, S., Hegseth, E.N., 2006. Seasonal 
food web structures and sympagic-pelagic coupling in the European Arctic revealed by 
stable isotopes and a two-source food web model. Progress in Oceanography 71, 59-87. 
 
Thimdee, W., Deein, G., Sangrungruang, C., Matsunaga, K., 2004. Analysis of primary 
food sources and trophic relationships of aquatic animals in a mangrove-fringed estuary, 
Khung Krabaen Bay (Thailand) using dual stable isotope techniques. Wetlands Ecology 
and Management 12, 135-144. 
 
Thompson, R.M., Townsend, C.R., 1999. The Effect of seasonal variation on the 
community structure and food-web attributes of two streams: Implications for food-web 
science. Oikos 87 (1), 75-88. 
 
Vizzini, S., Mazzola, A., 2003. Seasonal variations in the stable carbon and nitrogen 
isotope ratios (13C/12C and 15N/14N) of primary producers and consumers in a wetsren 
Mediterranean coastal lagoon. Marine Biology 142, 1009-1018. 
 
Wantzen, K.M., Arruda Machado, F. De, Voss, M., Boriss, H., Junk, W.J., 2002. 
Seasonal isotopic shift in fish of the Pantanal wetland, Brazil. Aquatic Science 64, 239-
251. 
 
Whitlatch, R.B., 1977. Seasonal changes in the community structure of the macrobenthos 
inhabiting the intertidal sand and mud flats of Barnstable Harbor, Massachusetts. 
Biological Bulletin 152 (2), 275-294. 
 
Winemiller, K.O., Jepsen, D.B., 1998. Effects of seasonality and fish movement on 
tropical river food webs. Journal of Fish Biology 53, 267-296. 
 
Yuniar, A.T., Palm, H.W., Walter, T., 2007. Crustacean fish parasites from Segara 
Anakan Lagoon, Java, Indonesia. Parasitology Research 100, 1193-1204. 
 
Yuwono, E., Jennerjahn, T.C., Nordhaus, I., Ardli, E.R. Sastranegara, M.H., Pribadi, R., 
2007. Ecological status of Segara Anakan, Indonesia: a mangrove-fringed lagoon affected 
by human activities. Asian Journal of Water, Environment and Pollution 4 (1), 61-70. 
 
Zeng, Q.F., Kong, F.X., Zhang, E.L., Tan, X., Wu, X.D., 2008. Seasonality of stable 
carbon and nitrogen isotopes within the pelagic food web of Taihu Lake. Annales de 
Limnologie- International Journal of Limnology 44 (1), 1-6. 
 



Paper 3  Experiments 

87 

8 Consumption rates and fractionation of carbon and nitrogen 
isotopes by mangrove crabs, including long-term experiments 

with a Rhizophora apiculata diet 
 

 
 

Carolin M. Herbona b, Inga Nordhausa 

 

a Leibniz Center for Tropical Marine Ecology (ZMT), Fahrenheitstrasse 6, 28359 

Bremen, Germany 

 

b Author to whom correspondence should be addressed. Tel.: +49-421-2380056; fax: 

+49-421-2380030; email: carolin.herbon@zmt-bremen.de, carolinherbon@web.de 

 

 

 
 
 
 
 

 
In preparation 

(Journal of Experimental Marine Biology and Ecology) 

 

 

 



Experiments  Abstract 

88 

Abstract 

 

In this study the underlying processes leading to differences in isotopic compositions 

were studied, which were used as the basis to resolve food web structures in the last three 

decades in several studies. With experimental designs the aim of this study was to 

increase the knowledge of assimilation processes, by studying consumption and excretion 

rates and the differences in isotopic compositions between leaves fed and faeces excreted. 

A response in the isotopic composition of muscle tissue after a one-choice-diet given was 

observed after 50 days. Only then an increase in nitrogen isotopic composition occurred 

due to internal recycling of nitrogen and excretion of 14N. Intertidal crabs are therefore 

able to balance their nitrogen budget over 50 days and survive three month on a one-

choice mangrove-diet only. The species Derris trifoliata and Rhizophora apiculata were 

preferably consumed, indicating a high nutritional value. As expected, muscle tissue, 

which is a long-time storage had highest isotopic composition values, compared to 

hepatopancreas and stomach content with the lowest values. There were no significant 

differences found comparing ovigerous and non-ovigerous females, both groups have 

similar isotopic compositions. Crabs are probably able to balance the discharge, which 

they provide their eggs. Their reproduction time is probably shorter than the muscle 

tissue turnover time. The overall outcome of these experiments is that carbon isotopic 

signatures do not seem to be a sufficient tool to examine recent carbon diets from 

consumers. Furthermore the presumed discrepancy between prey and consumer of 0 to 

0.8‰ does not seem to apply for all invertebrates in a benthic food web. 

 

Key words: benthic food web, carbon, mangroves, nitrogen, nutrient-cycling, stable 

isotopes  
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1 Introduction 

 

Food web structures have already been investigated for several mangrove habitats all 

over the world (e.g. Rodelli et al. 1984; Bouillon et al. 2004; Mazumder & Saintilan 

2009). It is known that the heavy 15N isotope fraction is accumulated in consumers and 

therefore increasing with each trophic level (Vander Zanden & Rasmussen 2001, 

McCutchan et al. 2003, Caut et al. 2009), whereas the carbon isotopic composition does 

not change more than 0.8‰ from diet to consumer (Peterson & Fry 1987). The excretion 

of isotopically light ammonium is one of the outcomes of isotopic fractionation of 

nitrogen in animal tissue (Minagawa & Wada 1984; Checkley & Miller 1989). 

Physiologically, this means that amine groups containing isotopically light nitrogen such 

as glutamate are favored during transamination and deamination, which results in the 

excretion of these (Gannes et al. 1998). Isotopic fractionation occurs primarily during 

anabolic processes and the production of new tissues (Yokoyama et al. 2005a). Large 

isotopic discrepancies associated with low quality diet can result from internal recycling 

of nitrogen which is also found in starving animals (Hobson et al. 1993; McCutchan et al. 

2003). The assimilation of dietary nitrogen needed for the growth of animals is increased 

when growth and longevity are slow (Nordhaus & Wolff 2006; Linton & Greenaway 

2007; Nordhaus et al. submitted). Large consumers have longer turnover rates, so that 

their diet is reflected in isotopic compositions over a long time period (Post 2002).  

High population densities bear intra- and inter- specific competition for food (Linton & 

Greenaway 2007); many crab species especially feed on leaves (Emmerson & McGwyne 

1992). The ingestion of leaf litter includes microorganisms coating it, which are 

potentially of higher nutritional value and also easier to digest than the leaves itself. 

Bacterial cover on fresh fallen leaves is low, but increase fast within a few days after 

falling (Linton & Greenaway 2007). Tree climbing mangrove crabs do not eat whole 

leaves, but scrape of tissue from the upper or lower surfaces of growing leaves (Cannicci 

et a. 1996; Dadouh-Guebas et al. 1999). Sesarmidae e.g. prefer plant detritus over 

microalgae in the sediment, and the diet is a heterogeneous mixture of detrital organic 

compounds of sediments and mangrove litter, encrusting algae from mangrove roots and 

trunks as well as invertebrates (Linton & Greenaway 2007). 
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Animals can adapt to food sources of different qualities, with varying physiological and 

behavioral characteristics, which include the selection of food items, food ingestion, 

mechanical fragmentation of food, complementation of digestive enzymes produced, 

retention time of digesta in the gut and the anatomy of the alimentary tract (Linton & 

Greenaway 2007). If leaves are incompletely broken down mechanically and residence 

time in the gut is short, digestion and assimilation will be low and faeces have similar 

concentrations of neutral detergent soluble material (e.g. nitrogen, carbon, cellulose, 

lignin, calcium) as leaves, so that the leaves can not be utilized wholly (Greenaway & 

Linton 1995). An increase in residence time of food in the gut increases digestion of 

hardly digestible substances such as cellulose and leads to higher assimilation coefficients 

(Wilde et al. 2004). 

For Sesarma sp. e.g. the largest sink for the assimilated energy of leaves is probably 

respiration, a small part is lost by urine or exuviae, leaving the balance for somatic 

production and reproduction (Emmerson & McGwyne 1992). Crabs have the ability to 

store excess nitrogen as urate (Wolcott & Wolcott 1984, 1987). In Sesarma sp. the faecal 

production increases with body size (Emmerson & McGwyne 1992). In general the 

isotopic composition of excretion products and that assimilated equals that of what is 

consumed. Consumers’ nitrogen is typically depleted in 15N in the faeces compared to the 

tissue (DeNiro & Epstein 1981a; Checkley & Miller 1989). Heat and water stress can 

lead to an increased urea concentration and amount excreted, which is probably 

increasing the discrepancy between the consumers tissue and its diet (Ambrose 1991, 

2000; Ambrose & DeNiro 1986; Hobson et al. 1993).  

Until today only little attention has been paid to physiological processes and biochemical 

mechanisms that have an impact on isotopic compositions (Adams & Sterner 2000). 

In this study several experiments were conducted to understand the turnover of carbon 

and nitrogen and their fractionation in the crabs´ body. This is the first study examining 

the change in carbon and nitrogen isotopic composition in muscle tissues of benthic 

invertebrates over a time period of three months.  

We hypothesize the following: (1) Benthic crab species show a response in their isotopic 

composition of their muscle tissue within a time period of three months, given a one-

choice diet only. (2) Leaves of different mangrove species are consumed and fractionated 
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differently by various crab species. (3) Carbon and nitrogen isotopic compositions will 

substantially differ between tissues, according to their status within the digestion and 

assimilation process. (4) Ovigerous females have lower carbon and nitrogen isotopic 

compositions in their muscle tissue than non-ovigerous, as they invest more carbon and 

nitrogen into the development of their eggs, leaving less for their own metabolism. 

 

2 Materials and methods 

 

2.1 Study site 

The Segara Anakan lagoon (SAL; 108°50’- 109°00’E, 07°39’- 07°43’S) is a 1002ha large 

brackish water ecosystem surrounded by 9238ha of mangrove forest (Ardli & Wolff 

2009). The lagoon is separated from the Indian Ocean by the rocky mountainous island 

Nusa Kambangan, leaving only two entrances to the lagoon, east and west of the island, 

allowing an exchange with saline water masses. The hydrology of the SAL is governed 

by semidiurnal tides, ranging between 0.3 m at neap tides and 1.9 m at spring tides 

(Holtermann et al. 2009). Freshwater is mainly provided by the Citanduy River, the fifth 

largest river of Java, and the Cibereum River in the west (Holtermann et al. 2009). 

Sedimentation through these rivers, mainly due to deforestation in the hinterland, reduces 

the water volume of the lagoon consistently (Ardli 2007).  

Dominant benthic invertebrates in the lagoon are from the genera Episesarma, 

Parasesarma, Perisesarma, Sesarma, Uca and Scylla (Nordhaus et al. 2009), from which 

the former four at least partly feed on mangrove leaves. In the central lagoon dominant 

tree species are Aegiceras corniculatum, Nypa fructicans and Rhizophora apiculata, the 

latter two being indicators for a mature forest. Whereas in the central lagoon pioneer 

species such as Avicennia alba, Aegiceras corniculatum and Sonneratia caseolaris 

dominate the vegetation (Hinrichs et al. 2008). 

Station E40 in a northern creek of the eastern lagoon (108°59.57’E, 07°40.28’S), is 

provided with freshwater during rainy season. This station is diagonally opposite the oil 

refinery and covered by a large swamp area. Dominant mangrove tree species are 

Aegiceras corniculatum and Ceriops spp. (Hinrichs et al. 2009). 
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Station C49 in the central lagoon (108°50.76’E, 07°41.44’S) is influenced by saline water 

masses during high tide (Holtermann et al. 2009). The predominant mangrove tree 

species here is Sonneratia spp. (Hinrichs et al. 2009). It is located between the villages 

Klaces and Motehan and therefore likely provided with additional nutrients from 

household wastes. 

 

2.2 Feeding habits of decapods 

The main carbon sources of the genus Episesarma in the SAL are mangrove leaves. E. 

versicolor additionally supplements its diet with animal material such as polychaetes, to 

satisfy its nitrogen needs. That makes this species an opportunistic feeder, occuring on 

different trophic levels at different locations in the lagoon, depending on food availability 

and quality (Herbon et al. submitted). E. singaporense, on the other hand seems to feed 

rather heterogeneous on a consistent diet baseline, as it was througout found in the second 

trophic level in the SAL. It mainly feeds herbivorous on detritus, roots and bark, with 

only a small amount (<5%) of animal material. Even though these two species are of the 

same genus, they show different feeding habits in the field (Herbon et al. submitted).  

Metaplax elegans is a deposit feeder whereas Uca forcipata besides deposit feeding 

supplements its diet with animal material such as polychaetes (Herbon et al. submitted). 

The genus Perisesarma subsists herbivorous, exclusively on mangrove leaves, whereas 

Epixanthus dentatus and Scylla serrata are carnivorous species (Herbon et al. submitted). 

 

2.2 Long-time experiment 

The change in isotopic signatures in muscle tissue of the crab species based on a given 

one-choice-diet was observed over three months. 64 aquaria were constructed of 40cm x 

40cm x 40cm each. If possible 15 individuals of Episesarma singaporense and E. 

versicolor each were collected from stations E40 and C49 each and kept separately in the 

aquaria in 2L of lagoon water (water depth about 2cm) with a blue colored tumbler to 

hide, a saucer placed in the aquaria upside down for the crabs to be able to move out of 

the water and provided with sufficient brown Rhizophora apiculata leaves as food. 

Aquaria were cleaned every fourth day and water was exchanged with fresh lagoon 

water.  
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Over a period of 90 days at five sampling times (T0, T20/30, T50, T70, T90; Fig. 8.1) 4-5 

individuals of E. singaporense of each station were taken out, frozen for about 24 hours 

and dissected to remove muscle tissue from the chelae and legs. For E. versicolor the 

same procedure was conducted for animals of station 40, but here only three individuals 

were taken out and proceeded as explained above, as this species was generally difficult 

to find/catch. For the same reason also at station C49 a limited number of individuals of 

E. versicolor were caught, which led to a setup with only two sampling times (T0, T90) 

with only three animals each.  

Muscle tissues were dried in the oven at 40°C, and grained afterwards, to homogenize the 

sample. Samples were afterwards stored at -20°C until analysis (see 2.6). 

 

2.3 Consumption rate experiment 

Six individuals of Episesarma singaporense and E. versicolor each were kept separatly in 

glass aquaria with about 2cm depth of lagoon water and the possibility to move out of the 

water on a saucer. Before the first experiment was run, crabs were kept without food for 

about four days, to let them empty their gut. Between each experiment also four days 

were given without providing any food. 

Five experiments were conducted with a duration of 24 hours, with leaves of one of the 

five mangrove and shrub species each. The offered species were Acanthus ilicifolius, 

Aegiceras corniculatum, Avicennia alba, Derris trifoliata and Rhizophora apiculata (see 

Table 8.1 for species attributes). Within each experiment each crab was supplied with 

about 3g of brown leaves in the beginning. When the offered food became scarce, more 

leaves were provided. Faeces were removed every hour throughout the experiment, to 

limit leaching of carbon and nitrogen. The aquaria were regularly cleaned and the water 

was exchanged, to avoid toxic ammonium concentrations in the water through excretion. 

Wet weight of remaining leaves and produced faeces within the 24h of the experiment 

were determined. Consumption rates were calculated from the difference of leaf mass 

given and leaf mass remaining, considering the crab weight. As leaves soak water within 

the 24 hours of the experiment, a correction value was needed for the leaves provided, as 

they were relatively dry. Therefore the weight of the provided leaves were corrected with 

a factor, experimentally determined by the discrepancy of the weight of whole leaves 
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before and after incubated in lagoon water for 24 hours (Corrected value= [Leaf weight 

provided] x [% wws/100], weight gained by soaking water (wws) for each species: 

Rhizophora apiculata= 100%, Acanthus= 58%, Derris= 43%, Avicennia= 29%, 

Aegiceras= 94%). 

The consumption rate experiment was also prepared for Perisesarma darwinense, which 

hardly survived alone in an aquarium, and therefore were kept in a group of three. To 

calculate consumption rates, values were divided by three, as crabs had similar body 

sizes. 

 

Table 8.1: %C, %N, C/N and carbon and nitrogen isotopic compositions of leaves in the order offered in 

consumption rates experiment. 

Species %C %N C/N �13C [‰] �15N [‰] 
Rhizophora apiculata 44.4±1.4 0.6±0.2 83.7±21.1 -27.6±0.3 2.6±0.5 
Acanthus ilicifolius 39.5±1.4 1.0±0.1 39.8±4.2 -28.5±1.3 3.3±0.6 
Derris trifoliata 37.8±5.1 0.9±0.1 42.5±5.2 -26.9±0.6 0.6±0.5 
Avicennia alba 42.0±1.0 0.7±0.2 58.8±16.0 -27.5±0.7 4.6±1.7 
Aegiceras corniculatum 49.0±1.0 0.7±0.3 76.6±29.4 -29.5±0.5 4.2±0.3 

 

2.4 Differences between tissues 

Five individuals of eight decapod species (Episesarma singaporense, E. versicolor, 

Epixanthus dentaus, Perisesarma darwinense, P. semperi, Metaplax elegans, Scylla 

serrata, Uca forcipata) each were collected by hand and frozen for 24h. After defrosting, 

the crabs were dissected and muscle tissue, hepatopancreas and if available stomach 

content were removed. Tissues and stomach contents were separately stored in glass 

vials, dried in an oven at 40°C, grained to homogenize the samples and stored at -20°C. 

Isotopic compositions of tissues were then analysed (see 2.6). Individuals sampled for 

this comparison were collected at another sampling time than those for the long-time 

experiment. 

 

2.5 Ovigerous and non-ovigerous females 

To compare isotopic compositions in muscle tissues of ovigerous and non-ovigerous 

females two to five individuals of each status of E. versicolor and E. singaporense were 

collected. The animals were frozen for 24h and muscle tissue was dissected from the 

chelae after defrosting. Tissues were dried at 40°C in an oven, grained afterwards and 
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seperately stored in glass vials. Samples were stored at -20°C until analysis. Isotopic 

compositions of carbon and nitrogen were then analysed (see 2.6). 

 

2.6 Sample analyses 

Samples were combusted in the Carlo Erba NA 2100 Elemental analyzer for total carbon 

and nitrogen content measurements without previous HCl treatment, as previous test 

showed no significant differences between samples treated with and without HCl. Stable 

isotope ratios were seperately determined with the coupled EA-IRMS gas isotope ratio 

mass spectrometer (ConFlo III) and expressed relative to conventional standards �R= 

[(Xsample/Xstandard) - 1] x 1000 ‰ with R= 13C or 15N and X= 13C/12C or 15N/14N. 

Ammonium sulfate (IAEA-N1, IAEA-N2) was used as standard for �15N, and graphite 

(USGS-24) and mineral oil (NBS-22) for �13C. Analytical precision was ±0.2‰ for both 

nitrogen and carbon, as estimated from standards analyzed together with the samples. 

 

2.7 Statistics 

Significant differences over time in the long-time experiment were calculated in 

Statistica© with an ANOVA followed by a Tukey´s Post Hoc test for parametric data, 

and with an Kruskal-Wallis-ANOVA followed by a Mann-Whitney-U test for 

nonparametric data. Not normally distributed data were log-transformed and in case of 

achieving normality data were tested for homogeneity of variances, otherwise non 

parametrical proceedings were conducted. 

To find significant differences between tissues, an ANOVA followed by a Tukey´s Post 

Hoc test was used, as data were normally distributed and homogeneous. To statistically 

analyze the difference between ovigerous and non-ovigerous females and consumption 

preferences the same statistical analysis as for tissues was used. 

 

3 Results 

 

3.1 Long-time experiment 

Nitrogen isotopic compositions reflected a response to the one-choice diet given, only 

after 50 days (Fig. 1). A significant increase in �15N was recorded from day 50 to 70 and 
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70 to 90 for E. singaporense (station 49) (ANOVA: p<0.001, Tukey´s HSD: p<0.05), as 

well as for E. versicolor (station 40) between days 0 and 90 as well as 50 and 90 

(ANOVA: p<0.05, Tukey´s HSD: p<0.05). No significant differences were found from 

day 0 to 90 for E. singaporense and from day 0 to 50 for E. versicolor (ANOVA: p<0.05, 

Tukey´s HSD: p>0.05). Carbon isotopic compositions remained the same over the whole 

duration of the experiment (K-W-ANOVA and ANOVA: p>0.05; Fig. 2) except for E. 

singaporense (station 40) between the first two samplings (ANOVA: p<0.01, Tukey´s 

HSD: p<0.01). There was no approximation to the isotopic compositions of Rhizophora 

apiculata leaves. 

 

3.2 Consumption rates 

Preferred leaves of the genus Episesarma are from Rhizophora apiculata and the shrub 

Derris trifoliata. The shrub species Acanthus ilicifolius and the mangrove Aegiceras 

corniculatum were only consumed in small amounts (E. versicolor: Acanthus: 10.4±25.6, 

Aegiceras: 7.7±6.4; E. singaporense: Acanthus: 8.2±21.5, Aegiceras: 6.7±11.5; in mg 

leaf/ g crab weight/ day; Fig. 8.3).  

Perisesarma darwinense only consumed D. trifoliata (124.9±0.0 mg leaf/ g crab weight/ 

day) and did not feed on the other offered leaves. 

Nitrogen (%N) did not change at all between leaves offered and faeces excreted (average 

discrepancy “leaf-faeces” over all leaf species: E. versicolor: 0.0±0.2, E. singaporense: 

0.2±0.1 mg leaf/ g crab weight/ day).  

During the experiment we observed that Rhizophora apiculata was digested fast, and 

hard and compact faeces were excreted after one hour already. The midrib was 

predominantly left over. Derris trifoliata was consumed willingly, but lead to fine easily 

soluble faeces in 50% of cases. Overall only few faeces were excreted within the 

24hours. The midrib was consumed almost completely. Acanthus ilicifolius also led to 

fine and easily soluble faeces and primarily was slowly eaten. Only few faeces were 

excreted, especially from the larger crabs. The midrib was not consumed. Avicennia alba 

was eaten willingly and faeces were relatively compact but could disaggregate very fast. 

When Aegiceras corniculatum was consumed, faeces were compact and stable. The 

midrib was not consumed. 
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Figure 8.1: Change in nitrogen isotopic composition of muscle tissue over time in Episesarma 

singaporense (ESI) and E. versicolor (EVE) from station 40 and 49 fed on Rhizophora apiculata leaves.  

 

 

Figure 8.2: Change in carbon isotopic composition of muscle tissue over time in Episesarma singaporense 

(ESI) and E. versicolor (EVE) from station 40 and 49 fed on Rhizophora apiculata leaves. 
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In average two fecal pellets per hour were produced, which were mainly found under the 

crabs body or on the leaves remaining. Crabs rested between 10pm and 11pm, but 

continued producing faeces during that period. 

 

 
Figure 8.3: Consumption rates of two abundant crab species (n=6 for each species) fed with five mangrove 

and shrub species (in order offered: Rhizophora apiculata (RAB), Acanthus ilicifolius (Acan), Derris 

trifoliata (Derris), Avicennia alba (Avic), and Aegiceras corniculatum (Aegic)), values are given in mg 

leaf/ g crab weight/ day, with indicated standard deviation. Letters over bars indicate significant differences 

(same letter= not significant different).  
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3.3 Fractionation 

The discrepancy of �13C and �15N respectively of leaves provided and faeces excreted is 

negative if the heavy isotope (13C, 15N) is enriched or the light one (12C, 14N) is depleted 

in faeces, positive values result from the opposite. Differences in the turnover of offered 

leaves were found (Fig. 8.3). Aegiceras corniculatum, Derris trifoliata and Rhizophora 

apiculata are similarly metabolized by the two crab species. The discrepancy of �15N is 

positive in case of A. corniculatum and R. apiculata and negative for D. trifoliata, 

whereas the discrepancy for �13C is negative for all three species. 

 

 
Figure 8.4: Discrimination of �15N and �13C for two crab species (ESI= Episesarma singaporense, EVE= 

E. versicolor) calculated by � �X=leaf-faeces with X= 15N and 13C respectively, with indicated standard 

deviation. Numbers over bars indicate mean discrepancy of carbon (%C) and nitrogen (%N) respectively 

between leaves eaten and faeces excreted. For leaf abbreviations see figure 8.2. 
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Table 8.2: Differences between tissues (stomach content (StoCon1), hepatopancreas (Haepat.2) and muscle 

tissue (Muscle3); superscript numbers related to significant levels) in eight decapod species of %C, %N, 

C/N ratios and carbon and nitrogen isotopic composition [‰] with indicated standard deviation. Stars 

indicate significant differences comparing two tissues (*** p<0.001, ** p<0.01, * p<0.05). 

Species (station catched) Parameter StoCon1 Haepat.2 Muscle3 1/2 2/3 1/3 

Episesarma singaporense %C 42.6±2.6 44.6±8.2 38.9±3.3    
(40) %N 5.6±2.5 5.1±0.8 7.0±2.1    
 C/N 8.4±2.5 9.0±2.7 6.0±2.0    
ANOVA: p<0.05 δ

13C [‰] -27.9±0.7 -29.2±1.2 -24.8±0.5  *** ** 
  δ

15N [‰] 10.7±2.1 10.3±0.7 11.0±2.2    
Episesarma versicolor %C 39.7±2.3 42.6±6.0 38.1±5.2    
(40) %N 4.6±0.3 6.2±0.7 7.6±1.1   ** 
 C/N 8.6±0.7 6.9±1.3 5.0±0.3  * ** 
ANOVA: p<0.01 δ

13C [‰] -27.6±0.6 -27.9±1.1 -24.9±0.5  ** ** 
  δ

15N [‰] 11.4±0.8 10.6±1.9 17.4±3.0  ** * 
Epixanthus dentatus %C 41.7±5.4 32.1±10.2 37.9±6.3    
(40) %N 9.0±1.6 4.6±0.6 8.1±1.7 *   
 C/N 4.7±0.7 6.9±1.6 4.7±0.4    
ANOVA: p<0.01 δ

13C [‰] -23.8±0.9 -26.5±0.8 -22.9±0.6 * **  
  δ

15N [‰] 10.7±0.9 12.7±0.5 16.4±3.0 *   
Perisesarma semperi  %C 43.8 50.3±4.5 40.5±2.6  **  
(40) %N 13.0 7.6±4.9 7.3±2.6    
 C/N 3.4 11.2±10.5 6.0±1.4    
ANOVA: p<0.01 δ

13C [‰] -25.7 -30.0±1.9 -23.0±1.9  **  
  δ

15N [‰] 7.1 9.4±0.7 8.4±0.9    
Perisesarma darwinense %C 39.5±4.2 38.3±7.5 39.0±5.8    
(47) %N 3.6±0.7 6.8±2.6 9.3±1.9   ** 
 C/N 11.7±4.1 6.2±2.4 4.4±1.6 *  ** 
ANOVA: p>0.05 δ

13C [‰] -27.5±1.2 -26.2±3.5 -24.8±1.6    
  δ

15N [‰] 9.8±0.9 8.2±1.5 8.5±0.9    
Uca forcipata %C 37.5±18.3 53.0±3.6 46.7±5.9    
(47) %N 2.0±0.3 2.2±0.8 3.1±3.2    
 C/N 18.0±8.3 25.9±9.3 25.7±14.7    
ANOVA: p<0.05 δ

13C [‰] -22.1±0.6 -23.6±0.8 -18.6±0.9  *** *** 
  δ

15N [‰] 10.1±1.2 9.6±0.7 16.0±5.7    
Metaplax elegans %C - 60.1±0.6 41.3±1.8  ***  
(53) %N - 4.3±0.4 11.6±1.1  ***  
 C/N - 14.1±1.2 3.6±0.2  ***  
ANOVA: p<0.001 δ

13C [‰] - -23.7±1.0 -20.5±1.8  *  
  δ

15N [‰] - 10.9±0.9 7.7±0.7  **  
Scylla serrata %C - 51.0±2.7 37.3±5.0  ***  
(Area 3) %N - 6.2±3.2 4.4±2.2    
 C/N - 10.5±6.4 10.1±4.1    
ANOVA: p>0.05 δ

13C [‰] - -28.3±2.7 -25.2±1.5    
 δ

15N [‰] - 13.4±2.1 17.1±1.9  *  
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Acanthus ilicifolius and Avicennia alba were differently metabolized by the two crab 

species. There is no correlation between the discrepancy of %C and �13C of leaves and 

faeces. 

 

3.4 Differences between tissues  

Muscle tissue had significantly highest �13C values (statistics see table 8.2), except for P. 

darwinense and S. serrata, whose �13C were similar in all tissues. �15N was significantly 

highest in muscle tissue in Episesarma versicolor, M. elegans and Scylla serrata (table 

8.2). It became clear that a large inter-specific variation is apparent, as nitrogen isotopic 

compositions of individuals collected for the long-time experiment are much lower, than 

for those used in this comparison. 

 

3.5 Ovigerous and non-ovigerous females 

There were no significant differences between ovigerous and non-ovigerous females 

(ANOVA: p>0.05 for both species). Standard deviation was high for all treatments in 

�15N; for �13C only in non-ovigerous females (Table 8.3).  

 

Table 8.3: Comparison of carbon and nitrogen isotopic compositions of ovigerous and non-ovigerous 

females of two Episesarma spp. with indicated standard deviation and number of individuals (n). 

Species ovigerous δ
15N [‰] δ

13C [‰] n 
E. versicolor + 6.7±1.5 -22.9±0.4 2 
 - 6.2±1.5 -22.0±1.6 4 
E. singaporense + 6.2±1.2 -22.6±0.6 5 
 - 6.8±1.3 -21.3±3.9 5 
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4 Discussion 

 

4.1 Long-time experiment 

During the long time experiment �15N started to increase in muscle tissue of the decapods 

after about 50 days fed on a Rhizophora apiculata leaf diet only. Previous studies showed 

that animals fed on a nitrogen low quality diet start recycling their internal nitrogen to 

further keep up their metabolism, and excrete the isotopically light nitrogen which leads 

to an increase in 15N (Hobson et al. 1993; McCutchan et al. 2003). This also occurs in 

starving unfed animals, as lean body mass is lost without replacement of excreted 14N 

(Adams & Sterner 2000). Linton & Greenaway (1997a) showed that crabs fed on leaves 

had similar concentrations of non-urate nitrogen, urate and total nitrogen after six weeks. 

Urate accumulation is a vehicle for storage of access dietary nitrogen and functions as a 

nitrogen reserve (Linton & Greenaway 1997a). Synthesized urate is stored as a solid in 

spongy connective tissue cells throughout the body (Linton & Greenaway 1997b), which 

is common for numerous crustaceans (Greenaway 1991; O´Donnell & Wright 1995). 

Crabs were able to keep the nitrogen balanced over the time period of six weeks (Linton 

& Greenaway 1997a). Apparently, as shown in this study, Episesarma spp. are able to 

keep the nitrogen budget balanced, up to a minimum of seven weeks. Furthermore the 

crabs were even molting during the experiment.  

In the field, Episesarma spp. are used to supplement their mainly mangrove leaf derived 

diet with animal material (Herbon et al. submitted; Nordhaus et al. submitted), which is 

most likely necessary to fulfill the nitrogen needs of this genus. Therefore it can be 

assumed that after 50 days, nitrogen starvation occurred and internal nitrogen recycling 

was conducted. E. versicolor can adapt to different food availability and is an 

opportunistic omnivore (Bouillon et al. 2002; Thongtham et al. 2008; Herbon et al. 

submitted), whereas E. singaporense feeds on a heterogeneous herbivorous diet (Herbon 

et al. submitted). But the isotopic compositions of the two species with different feeding 

habits changed similarly over time. Thus probably the interplay of different physiological 

characteristics, such as the food intake, the mechanical fragmentation of food, the 

assimilation efficiency, internal nitrogen recycling, the complementation of digestive 

enzymes produced and the retention time of digesta in the gut (McCutchan et al. 2003; 
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Linton & Greenaway 2007) resulted in similar isotopic compositions at the end of the 

experiment. A mechanically incomplete break down of leaves and a short residence time 

in the gut can lead to a low digestion and assimilation, visible in similar values of faeces 

excreted and leaf ingested (Greenaway & Linton 1995). It can be assumed that this was 

the case with the crabs in our experiment, due to a nitrogen deficit from N depleted diet 

and possibly resulting fast ingestion, leading to an incomplete utilization of the leaves´ 

carbon and nitrogen. Nitrogen usually is excreted mainly as urinary urea, whose �15N is 

significantly lower than the diet consumed (Ambrose 2000). The excretion of urinary 

urea might have been increased by laboratory condition induced stress. This can, as 

shown previously, increase the discrepancy between consumers and its diets tissue 

additionally (Ambrose & DeNiro 1986; Hobson et al. 1993).  

Carbon isotopic compositions did not change significantly from the first to the last day of 

the experiment. E. singaporense was consistently found on the second trophic level in the 

SAL (Herbon et al. submitted), even though it mainly feeds on mangrove leaves. This 

was explained by occasional supplementation of the diet by animal material, i.e. carrion. 

But, as it was shown in this experiment, that even after 90 days no change or 

approximation of carbon isotopic signatures occurs, it could be argued whether carbon 

isotopic signatures are sufficient tracers for carbon sources for this species. A time frame 

of 90 days, however, was not sufficient to observe any changes in carbon isotopic 

signatures after a change in food supply (from field to laboratory). If no approximation of 

carbon isotopic signatures in muscle tissue to that of mangrove leaves occurs, it can be 

assumed, that this species is fractionating Rhizophora leaves differently. Therefore a 

suggested diet-consumer discrepancy of 0.8‰ does not seem to apply for all species. This 

becomes even more evident for E. versicolor, which was found on various trophic levels 

in the SAL (Herbon et al. submitted) and was therefore suggested to be highly adaptable 

to changing food availability. Carbon isotopic signatures of consumers therefore do not 

reflect their recent diet. This is supported by findings of previous studies (McCutchan et 

al. 2003). 

The factor station and therefore a different background in food quality do not seem to 

have an impact in dealing with a one-choice-diet only, or at least not in this time frame. It 

could also be that a high inter-species variation results in similar isotopic compositions, 
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such as appeared for nitrogen in this study. This also becomes obvious when comparing 

nitrogen isotopic signatures in muscle tissues from Episesarma spp. used in this 

experiment and those used to examine tissue differences, as they were collected within a 

different sampling time.  

Yokoyama et al. (2005b) also found a significant increase in �15N in starvation 

experiments with bivalves but no change in �13C values. But an overall rule for the 

fractionation of �13C between diet and tissue is not applicable for all animals in all 

ecological systems (Yokoyama et al. 2005b). 

Previous studies (Adams & Sterner 2000) already found a high variability in organismal 

�15N when fed a mono-diet. This was confirmed in our study. 

 

4.2 Consumption rate experiment 

Besides Rhizophora apiculata the genus Episesarma consumed preferably the shrub 

species Derris trifoliata over other mangrove and shrub species offered (M-W-U test: 

p<0.05). This is in agreement with Salewski (2007), who found that more than 50% of 

stomach contents of E. versicolor were R. apiculata and D. trifoliata, followed by 

Avicennia alba. Perisesarma darwinense even solely consumed D. trifoliata. Carbon and 

nitrogen of preferred leaf species were not assimilated noticeable differently from the 

others. There is no correlation between the nitrogen and carbon content and C/N of leaves 

and the consumption rate. This is in agreement with Nordhaus et al. (submitted), who 

found that mainly the nitrogen compound composition is important. Logged mangrove 

areas which are overgrown by Derris therefore still have a sufficient food supply for 

Episesarma spp. Deforestation might, under these conditions, do not have a species 

richness reducing effect as previously assumed. Thongtham & Kristensen (2005) found a 

consumption rate of Rhizophora apiculata leaves by E. versicolor of 510 mg dry weight 

leaf/ crab/ day. This is much less than we found in this study (127±64 mg leaf/ g crab 

weight/ day). Salewski (2007) found consumption rates of Rhizophora apiculata for E. 

versicolor of 15mg leaf/ g crab weight/ day, which is less then 10% of the consumption 

rates found in this study. Factors that could have an effect on the consumption rates in 

this study are (1) the previous starvation period of four days before each experiment, (2) 

the calculation of the consumption rates including correction coefficients for leaves, (3) 
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stress induced by laboratory conditions and possibly also (4) the previous diet given in 

the experiments. The five tree species were provided successively (order of feeding 

experiments: R. apiculata, A. ilicifolius, D. trifoliata, A. alba, A. corniculatum) with four 

days of starvation in between two approaches. Also a longer implementation of this 

experiment could have displayed different results. 

Discrepancies between leaves´ and faeces´ nitrogen isotopic compositions revealed partly 

higher isotopic compositions in faeces. Usually 15N typically is depleted in faeces 

compared to a consumers´ diet or tissue (DeNiro & Epstein 1981a; Checkley & Miller 

1989; Ambrose 2000). Therefore it can be assumed that in this case some metabolic 

processes, such as the buildup of muscle tissue, in the decapods led to an excretion of 

faeces with a higher 15N/14N ratio than usual. Also a high impact of bacteria in the 

decapods guts, assimilating the isotopically lighter nitrogen, could have an impact. 

Previous studies found that degraded leaf material passing digestion processes provides 

an ideal basis for bacterial growth in the hid gut of crabs (Plante et al. 1990; Nordhaus et 

al. 2007), especially as digestive enzymes are few (Brunet et al. 1994). In case of Uca 

spp. these bacteria are taken up with old fecal material on the sediment surface (Micheli 

1993), which have a high bacterial density (Nordhaus et al. 2007; Werry & Lee 2005) and 

are of high nutritional value (Hall et al. 2006). However, Thongtham & Kristensen (2005) 

did not find evidence for nitrogen fixation by bacteria in E. versicolor.  

Herbivorous crabs have generally low assimilation efficiencies of nutrients compared to 

omnivorous and carnivorous species (Linton & Greenaway 2007). Thongtham & 

Kristensen (2005) calculated an assimilation efficiency of 41% for carbon and nitrogen 

respectively for E. versicolor. They found that E. versicolor is using 77% of assimilated 

carbon for growth when fed on brown Rhizophora apiculata, whereas 17% is lost by 

respiration and 6% by leaching.  

The discrepancy between the nitrogen content (%N) in leaves and faeces is zero for all 

mangrove species fed. Thongtham & Kristensen (2005) found that assimilated nitrogen 

from brown R. apiculata leaves is balanced by excretion and therefore no nitrogen for 

growth is left. This balance seems to be apparent for crabs in this study also, which were 

starved before every experiment. 
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4.3 Differences between tissues 

In E. versicolor, E. dentatus and S. serrata significantly higher �15N were found in 

muscle tissue compared to hepatopancreas. Muscle tissue is a long time storage tissue. 

Therefore the heavy nitrogen isotopic fraction is accumulated in this tissue and mirrors 

the diet over a long time period, in arthropods e.g. for the last six to eight weeks 

(Gorokhova & Hansson 1999). Large consumers such as fish have tissue turnover rates 

ranging from months to years and their isotopic signature is representative of their diet 

over long periods of time (Post 2002 and references therein). Pinnegar & Polunin (1999) 

found a significant difference in isotopic compositions between red and white muscle 

tissue of fish. Previous studies already found higher �15N values for bivalves’ muscle and 

gills (Cabanellas-Reboredo et al. 2009).  

Our data showed that �13C of muscle tissue is significantly higher compared to 

hepatopancreas in most of the species. This is in agreement with previous studies 

suggesting that tissues with low lipid content, such as muscle tissue, have higher �13C 

values (McCutchan et al. 2003; Cabanellas-Reboredo & Blanco 2009), as tissue turnover 

rate is lower here. 

 

4.4 Ovigerous and non-ovigerous females 

There was no difference found in isotopic compositions between ovigerous and non-

ovigerous females of the two Episesarma species. There are two possible explanation 

approaches: (1) The reproduction time is shorter than the muscle tissue turnover time, and 

therefore possible differences in metabolism are not reflected in isotopic composition. 

Diele (2000) showed that Uca spp. e.g. take 3.5-4 weeks for egg incubation. Or, (2) the 

ovigerous crabs are balancing the discharge to their eggs, e.g. by assimilating more, by 

selection of specific food items such as carrion or controlling ingestion and mechanical 

fragmentation of food. It is suggested to examine several tissues when comparing 

ovigerous and non-ovigerous females and also include analysis of eggs in different stadia 

of development. 
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4.5 Summary and conclusion 

Intertidal mangrove crabs of the genus Episesarma are able to balance their nitrogen 

budget over 50 days and survive three months on a one-choice mangrove-diet only. The 

species Derris trifoliata and Rhizophora apiculata were preferably consumed, indicating 

a high nutritional value of these. Deforested areas, overgrown by D. trifoliata therefore 

still provide sufficient food for Episesarma spp. to avoid the expulsion of these species 

from logged areas. As expected muscle tissue, which is a long-time storage had highest 

isotopic compositions, compared to hepatopancreas and stomach, as muscle tissue 

turnover rates are low. There were no significant differences in isotopic compositions 

between ovigerous and non-ovigerous females. Crabs are probably able to balance the 

discharge they provide their eggs or their reproduction time is shorter than the muscle 

tissue turnover time.  

The results of this study question the validity of carbon isotopic signatures as tracers for 

carbon sources within a food web. A previously assumed discrepancy between prey and 

consumer of 0 to 0.8‰ does not seem to apply for all species in a benthic food web. In 

case of Episesarma spp. the discrepancy might be 2‰ to their main food source, 

mangroves leaves.  
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9 General Discussion 
 

 

9.1 The benthic food web in the Segara Anakan Lagoon 

 

The total species number of the benthic macrofauna in the SAL discovered until today 

sums up to 163, from which 127 species are found only in the mangrove forest and 33 

species only in the subtidal, 29 species are home in both habitats (Nordhaus et al. 2009). 

Species diversity of the subtidal zone is three times higher in the east compared to the 

western area. The 163 species found can systematically mainly be classified into 55 

gastropod, 16 bivalves, 57 crustacean and 23 polychaetes taxa. Other groups occurred in 

low species numbers, such as sipunculids, oligochaets, nematods or chordata. In the 

subtidal, gastropods (60.7%) and polychaetes (48.8%) contribute largest species numbers 

in the central and eastern part respectively, whereas in the mangrove forest crustaceans 

(43.3%) and gastropods (32.3%) predominate (Nordhaus et al. 2009). These numbers are 

much higher than previously reported by Yuwono et al. (2007) as the resolution of the 

above quoted study is much higher. Until today the actual species number of the SAL is 

still unknown, as occasionally new species are found on every expedition (personal 

observation). 

In this study the feeding habits of several intertidal benthic invertebrates were examined 

in the SAL (Chapter 6). It was observed, that brachyuran crabs can have very diverse 

food sources. Carnivore and omnivore species, such as Scylla serrata (Hill 1976), 

Portunus sp. (Wu & Shin 1998) and Epixanthus dentatus (Dahdouh-Guebas et al. 1999), 

respectively, are the top predators of the intertidal benthic food web in the SAL. 

Episesarma singaporense and E. versicolor mainly feed on mangrove leaves (Thongtham 

& Kristensen 2005; Thongtham et al. 2008), but in the SAL they also supply their diet 

with animal tissue to satisfy their nitrogen needs. These two species, even though from 

the same genus, showed differences in feeding habits and also in the occurrence of 

trophic levels. While E. singaporense was consistently found in the same trophic level, E. 

versicolor seemed to be a very opportunistic feeder and showed trophic variability, 
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depending on the sampling site, of more than two trophic levels. Uca forcipata and 

Metaplax elegans feed on sediment and detritus. Within this study also for U. forcipata a 

supplementation of nitrogen by animal tissue, such as polychaetes, was observed.  

Gastropods in the SAL include detritivore grazers such as Cerithidea cingulata and 

Telescopium telescopium. In this study the latter was found to be a facultative scavenger, 

supplementing its diet occasionally with animal material, i.e. carrion. A further 

facultative scavenger is Nassarius sp. (Scheltemar 1964).  

Filter feeders are presented by e.g. Polymesoda erosa and Saccostrea sp. (Rodelli et al. 

1984; Bayne 2002), both economically important species in the SAL. The study of food 

webs in the SAL indicates a very diverse food web structure spatially different already on 

a small scale, including complex interactions within the benthic community. The 

understanding of nutrient flows through this system is therefore very essential to clarify 

the complex cross-linkages. 

This is the first study to define the number of trophic levels in an Indonesian mangrove 

ecosystem. Depending on the sampling site three to four trophic levels were determined 

within the SAL. In a comparison between seasons even more trophic levels were 

indicated during dry season (Chapter 7). Therefore we can conclude that intertidal 

mangrove benthic food webs are highly dynamic systems and communities are highly 

adaptable to changing environmental conditions, as long as their habitat is maintained. 

Invertebrates, especially decapod species are even able to survive a certain time period on 

nitrogen depleted food sources, if food availability is scarce (Chapter 8). 

In a study reporting the status of the SAL, 21 mangrove tree species of 11 botanical 

families were found, whereof all occurred in the eastern area but only 10 thereof in the 

central (Hinrichs et al. 2009). The highest total density with 24.8% of all trees has 

Aegiceras corniculatum, followed by Nypa fructicans, Rhizophora apiculata and 

Avicennia alba. In the eastern lagoon the overall tree density and stem diameter are 

higher compared to the central, whereas the understorey species percentage cover was 

higher in the central (Hinrichs et al. 2009). Derris sp. and Acanthus sp. are shrub species 

which overgrow logged areas, indicating heavy degradation of mangroves (Whitten et al. 

2000). In the SAL their abundance is, probably due to high deforestation activities, higher 

in the central lagoon (Pribadi 2007). During this study one of the sampling sites was 
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logged completely and was not overgrown with any shrub species. A strong decline of 

invertebrate species richness and an increase in biomass of especially small gastropod 

species, such as Cerithidea spp. was observed (personal observation). Particularly mainly 

herbivorous species such as the genus Episesarma vanished completely. This showed 

imposingly what consequences further deforestation activities could have, if mangrove 

habitats are destroyed continuously in this way. But in this study it was proofed that the 

genus Episesarma preferably feeds on the shrub Derris trifoliata (Chapter 8). This 

indicates that the maintenance of these decapod species will not be endangered as long as 

this shrub is overgrowing logged areas. 

Benthic food webs in the SAL are subject to diverse influences changing seasonally. 

Especially food availability and quality is altering due to a higher precipitation in rainy 

season, going along with different water residence times, higher water levels and nutrient 

availability. During rainy season agricultural derivation from the hinterland is 

contributing to the nutrient composition in the lagoon. If primary producers such as 

mangrove trees are affected by these, a location-dependent isotopic shift in consumers’ 

isotopic composition can be observed (Chapter 7).  

Several studies quoted that experimental investigations on carbon and nitrogen turnover 

by organisms are lacking and are urgently required to better understand isotopic 

fractionation and correctly interpret isotopic compositions in food webs (Boesch & 

Turner 1984; Adams & Sterner 2000). The experiments conducted in this study 

contribute to a broader knowledge of isotopic fractionation of Rhizophora apiculata in 

two decapods and their consumption and turnover rates of different mangrove leaves 

offered. But further experiments on longer time scales with further species need to be 

conducted under various laboratory conditions, as isotopic fractionation apparently is 

highly influenced by various factors (Chapter 8). 
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9.2 Implications for structure, function and dynamics in the Segara Anakan ecosystem  

 

Nowadays, the lagoons water depths in the central part measures only between 0.3m in 

dry and 1.3m in rainy season. In the eastern area the lagoon has maximum water depths 

of 13.4m during rainy season at the eastern outlet to the Indian Ocean (Moll, personal 

communication). If a continuous development of sedimentation is given, it could be 

assumed that the lagoon is filled up and therefore vanishing soon. But more likely is that, 

with tidal channels already showing signs of deepening, with rising sea levels and 

declining trapping efficiencies, a small and stable residual lagoon will always remain 

(Turner 1985).  

The factors affecting the western/ central part of the lagoon are in equal parts the 

exchange with the Indian Ocean water masses through the western outlet as well as the 

Citanduy River and the east-west exchange fluxes; whereas the eastern area is mainly 

affected by the tidal exchange with saline water masses from the eastern outlet 

(Holtermann et al. 2009).  

Food webs within the lagoon are mainly supplied with energy through allochthonous 

depositions (Fig. 9.1). Only at the entrances to the Indian Ocean outlets, autochthonous 

contributions, such as phytoplankton and particulate organic matter, can be assumed. 

Residence times of water masses differ between seasons. In the central lagoon water 

residence time is 3-6 days in dry and 0-3 days in rainy season. In the east during dry 

season water residence time is 6-9 days and in rainy season 3-6 days (Holtermann et al. 

2009). This indicates a larger export of allochthonous material in the central lagoon, 

where water is exchanged more often.  

In the SAL spatial differences in isotopic compositions of invertebrates are high already 

within a few kilometers range (Fig. 9.1). Food availability is an important factor when 

examining food web structures. From Figure 9.1 it is clearly evident that organic material 

in sediments and particulate organic matter in lagoon water originate mainly from 

terrestrial vegetation, i.e. mangrove leaves. Invertebrates included in this plot are 

apparently mainly feeding on leaf litter in the sediment as well as on polychaetes and 

benthic microalgae, according to the approximation of consumers’ isotopic composition 

to their diets’. 
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Figure 9.1: Diet-field mixing polygons for �15N versus �13C of benthic invertebrates (CECI= Cerithidea 

cingulata, ESI= Episesarma singaporense, PDA= Perisesarma darwinense, PSP= Periophthalmus sp., 

UFO= Uca forcipata, TEL= Telescopium telescopium) corrected for trophic fractionation (subtracting 

2.8‰ per trophic level) of two stations in the east (E40) and central (C49) lagoon. Food sources: BMA= 

benthic microalgae, ML= mangrove leaves, POL= polychaetes, POM= particulate organic matter, SED= 

sediment. POM data from Moll et al. (submitted); BMA data from Bouillon et al. (2002b). Lines indicate 

the areas where isotopic values of consumers (corrected for trophic fractionation) are expected when 

feeding on a mixed diet (connection points of polygons).  

 

The isotopic fractionation depends highly on the location and the season (Fig. 9.2) and 

thus on food availability. The spatial and seasonal variation of isotopic compositions of 

the food web baselines (primary producers) should be aligned to those of the consumers. 

It is important for future studies to consider these factors (location, season, baselines) 

regarding food webs and organism interactions, to avoid misinterpretation of data and 

wrong generalizations. 
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Figure 9.2: �13C from sediment (SED), mangrove leaves (AAX= Avicennia alba, ACX= Aegiceras 

corniculatum, SAX= Sonneratia alba, RAX= Rhizophora apiculata, XXB= brown leaves, XXY= yellow 

leaves) and invertebrates (CECI= Cerithidea cingulata, ESI= Episesarma singaporense, MEL= Metaplax 

elegans, PDA= Perisesarma darwinense, PSP= Periophthalmus sp., SAC= Saccostrea cf. cucculata, TEL= 

Telescopium telescopium, UFO= Uca forcipata) in the SAL. Data points are species averages at the single 

stations.  

 

 

9.3 Is the SAL a good representative for other tropical lagoon systems? 

 

9.3.1 Mangrove ecosystems in the tropics 

 

In the SAL salinity shows spatio-temporal variations. It increases from the Citanduy, with 

salinities always near zero, to western and central, where the salinity reflects a mixture of 

Indian Ocean and Citanduy water. Most saline water masses are found in the eastern 

lagoon (Jennerjahn et al. 2009). Seasonal variations due to a higher precipitation explain 

the salinity decrease during rainy season, with a higher impact in the central lagoon 

resulting from a higher freshwater runoff from the Citanduy (Holtermann et al. 2009). 

The Citanduy River is rated as moderate on a scale of “pristine” to “heavily impacted” 
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considering nutrient pollution. Nitrogen and phosphorus contribution to the surrounding 

waters, confining to Java, makes the SAL a high-yield and low-load region compared on 

a global scale. Considering the SAL as a lower marine trophic state in terms of nutrient 

concentrations, it ranges between oligotrophic to mesotrophic conditions regarding 

dissolved inorganic nitrogen and phosphate. Compared to other heavy polluted lagoons, 

the SAL has low nutrient concentrations (Jennerjahn et al. 2009).  

 

Overall the Segara Anakan seems to be an appropriate representative for tropical 

mangrove coastal lagoons. Mangrove cover in the SAL is among the highest compared to 

other study sites in mangrove ecology studies (Table 9.1). Salinities cover the whole 

range from riverine freshwater discharges to marine inputs. Tidal range is low to 

moderate in the SAL, as overall maximum tidal ranges are up to five meters (Table 9.1). 

 

Table 9.1: Global comparison of characteristics of shallow mangrove ecosystem coastal lagoons. RS= 

rainy season. 

Source Site Area 
size 

Mangrove 
Cover Salinity Tidal 

range 
River 

discharge Precipitation 

  [km²] [km²]  [m]  [mm/year] 

This study Indonesia 102.4 92.4 0-35 0.3-1.9 x 1824 

Nordhaus et al. 2006 Brazil 13800 180 5-37   2508 
Rivera-Monroy & Twilley 

1996 Mexico 1800   0.7 x  

Bouillon et al. 2000 India 150   2.3-4.5 x  

Conde & Diaz 1989 Venezuela 140  0.5-40  x  

Slim et al. 1997 Kenya 18 6.6  3 x  

Szefer et al. 1998 Mexico 16  26-38 1.5   

Thimdee et al. 2004 Thailand 12 2.6     

Tam et al. 1998 China 3 1.1  2.8  1927 

Morell & Corredor 1993 Puerto Rico 1.4    x  

France 1998 Puerto Rico 1.2  20-30 <0.15   

Rao et al. 1994 East Africa  6.6   x  

Holmer et al. 1999 Thailand   35 1-3  2300 

Barletta et al. 2003 Northeast 
Brazil   6-35 4-5  2545 

Dham et al. 2002 West India     x 3000 (in RS) 

Twilley et al. 1997 Ecuador   1-22  x 885 
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9.3.2 Comparison with other soft sediment habitats  

 

9.3.2.1 Salt marsh ecosystems 

 

Halophytes in salt marsh ecosystems are nurseries for fish and invertebrates (Boesch & 

Turner 1984), as are also mangroves. A dominant marsh grass is Spartina alterniflora (in 

the following referred to as Spartina). It has the C3 pathway of photosynthesis and has 

relatively high isotopic compositions compared to mangroves (�15N= 5.2±0.5‰, �13C= -

12.3 to -13.6‰; Haines & Montague 1979; Sullivan & Moncreiff 1990; Creach et al. 

1997). Spartina detritus is an important food source for all marsh and estuarine macro 

fauna. It dominates the carbon and therewith energy flows in the marsh ecosystem by 

carbon fixation, but equals algae in terms of being assimilated by consumers (Peterson & 

Howarth 1987). Salt marsh vascular plants are not as digestible as algal organic matter 

and therefore first have to be mineralized by bacteria (Deegan & Garritt 1997). Marsh 

halophytes and benthic diatoms are the main carbon source of bacteria (Creach et al. 

1997).  

It was widely discussed what the actual carbon sources of consumers are in this 

ecosystem, as for marsh and estuarine consumers a variety of food sources were indicated 

by a broad spectrum of �13C values (Peterson & Howarth 1987). The contribution of 

vascular plants appeared to be minor. Consumers mainly feed on edaphic algae and 

zooplankton (Sullivan & Moncreiff 1990). Spartina only serves as a carbon source 

indirectly, as its detritus is decomposed by bacteria in sediments, which are assimilated 

by plankton, which in turn can be assimilated by invertebrates (Peterson et al. 1980; 

Boesch & Turner 1984). Benthic diatoms are the principal source of organic matter 

assimilated by macro consumers, but over 50% of food intake by macro invertebrates is 

of higher plant origin (Creach et al. 1997). Salt marsh food webs therefore depend on a 

mix of algae and salt marsh organic matter (Deegan & Garritt 1997). When Spartina is 

absent from a salt marsh ecosystem, the base of the food web is formed by macro- and 

microalgae (Kwak & Zedler 1997).  

Variations in nutrient availability in littoral marshes are indicated by animals’ �15N. 

Depending on the location, phytoplankton and benthic microalgae can be relatively more 
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important food sources than Spartina (Peterson & Howarth 1987). In salt marshes the 

contribution of vascular plants and benthic microalgae respectively changes along the 

Atlantic coast. These changes are possibly mainly influenced by hydrological factors, i.e. 

the tidal range, the regularity of flooding as well as freshwater and terrestrial inputs 

(Sullivan & Moncreiff 1990). Haines (1977) found that organic seston in salt marshes 

originates mainly from terrestrial carbon sources.  Most of the vascular plant detritus 

exported from a marsh is consumed by detritivorous fish species; and only a small 

proportion of energy fixed by the marsh grasses is available for higher fish consumers 

(Boesch & Turner 1984). 

Macro invertebrates also have seasonal preferences. Data should therefore be interpreted 

with caution (Creach et al. 1997). 

The contribution of vascular plants within salt marshes is therefore not as important as 

mangroves are within their ecosystem. At least the contribution of salt marsh plants 

depends highly on spatial and hydrological factors. The number of trophic levels is 

similar in both ecosystems, but also varying spatially. In a Mississippi salt marsh 

ecosystem e.g., consumers were determined to have maximal 2.5 trophic levels (Sullivan 

& Moncreiff 1990), whereas in California 4 trophic levels for invertebrates were found 

(Kwak & Zedler 1997). No seasonal trophic shifts were found in �13C values but an 

increase of about 2‰ in �15N values from May to September in a Georgia salt marsh 

(Peterson & Howarth 1987). 

A study conducted in a mangrove-salt marsh interface in Australia (Guest et al. 2006) 

found that burrowing crabs do not move between habitats. They even only forage in a 

range of 1m around their burrow, due to their territorial behavior. But particulate organic 

matter from both producers, mangroves and salt marshes, is assimilated by crabs. Carbon 

moves in the form of particulate material about 5-8m across the mangrove-salt marsh 

interface, with a slightly greater amount of mangrove carbon into the salt marsh habitat. 

Therefore carbon and not crab movement explains the patterns in isotopic compositions 

of crabs across a mangrove-salt marsh habitat boundary. The main food source for the 

examined crabs in that study was found to be detritus of both habitats. Only in the 

transition zone an alternative food source was suggested, as a small disparity was found 

between salt marsh detritus and mangrove crabs. 
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9.3.2.2 Seagrass ecosystems 

 

Seagrass beds are extremely productive ecosystems in shallow coastal waters with a three 

dimensional structure (Moncreiff & Sullivan 2001). They provide a habitat for 

invertebrates and small marine vertebrates and substrate for epiphytic algae assemblages. 

The detrital food web has long been inferred to be the major trophic path of energy flow 

in systems dominated by vascular plants (Zieman et al. 1984; Kharlamenko et al. 2001). 

But the relative contribution of the seagrass itself and their epiphytes remains unclear 

(Loneragan et al. 1997). Epiphytic algae seems to be a more important carbon source in 

seagrass ecosystems contributing 75% in contrast to seagrass leaves or detritus with only 

25% (Moncreiff & Sullivan 2001).  

If seagrass is the dominant carbon source, organisms develop a carbon signature 

matching or being close to that of seagrass (Kitting et al. 1984). The assimilation of 

seagrass and salt marsh plants is discussed to be of limited importance as they contain 

noxious sulfated phenolic compounds that can inhibit bacterial degradation and animal 

grazing for the majority of consumers (McMillan et al. 1980). Invertebrate isotopic 

compositions respond rather to shifts in epiphytes than to seagrass isotopic compositions; 

�13C of animals is closer to those of epiphytes than to that of seagrasses (Kitting et al. 

1984). In contrast, if mangroves are the dominant carbon source, consumer isotopic 

compositions approach that of the mangroves but do not overlap with these (Zieman et al. 

1984). Small invertebrates e.g. were found to exclusively feed on epiphytic algae on 

seagrass leaves (Kitting et al. 1984). This can probably be explained by the fact that 

productivity in epiphytes can be as high or even higher as in seagrasses (Kitting et al. 

1984). Food webs in seagrass habitats are therefore rather mainly based on epiphytic 

algae, sand micro flora and macroalgae (Moncreiff & Sullivan 2001). A study conducted 

in Puerto Rico comparing carbon sources of nearby habitats found that seagrass and algae 

were major carbon sources with only little contribution of mangroves in the food webs 

(Olsen et al. 2010).  

When decaying, mangroves have an increase in �15N of more than 10‰, whereas 

seagrass remains about the same. Tropical seagrasses contain more %N (2-4% dry weight 
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or higher) than mangroves (0.5-1.7%). The relative food values (%N, C/N) depend on 

location, season and age of the source material (Zieman et al. 1984). 

During decay, amino acids and proteins leach from seagrasses, whereas in mangroves 

minimal leaching but high microbial activity occurs, contributing proteinaceous material 

to the detritus (Zieman et al. 1984). Organisms decaying and consuming seagrass derived 

material are obtaining more nutritive value from the seagrass substrate, than organisms 

consuming mangrove detritus. A similar difference between seagrass and mangroves is 

suggested (Zieman et al. 1984).  

In a seagrass ecosystem in the Gulf of Mexico 3-4 trophic levels were found (Mendoza-

Carranza et al. 2010), which is equal to the number determined in mangrove food webs. 

 

 

9.3.2.3 Comparing habitat characteristics  

 

In summary, all three habitats are highly productive and important as nursery grounds for 

diverse species (Table 9.2). The eponymous flora in the habitats is not compulsory the 

main carbon source for the respective food webs. The contribution of these decreases 

from mangroves over salt marshes to seagrasses and coheres with the digestibility of 

these. The number of trophic levels in invertebrate food webs is similar in all habitats, 

about two to four trophic levels.  

 

Table 9.2: Comparison of habitat characteristics. 

  Mangrove Salt marsh Seagrass 

main carbon source mangroves plants detritus, algae epiphytic algae 

nursery fish, invertebrates fish, invertebrates Invertebrates, small vertebrates 

productivity high high high 

photosynthetic pathway C3, C4, CAM C3, C4 C3 (majority) 

contribution to food web energy high 50% 25% 

�15N -4.8 to 6.2‰ 5.2±0.5‰ 2 to 4‰ 

�13C -30.9 to -26.0‰ -13.6 to -12.3‰ -13 to -9‰ 

number of trophic levels 3-4 2.5-4 3-4 

%N 0.5-1.7% 0.6-1.9% 2-4% 

digestibility high low  low  

amino acid & protein leaching low  high 
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9.3.3 Global comparison of species  

 

A global comparison regarding isotopic compositions of eight in the SAL abundant 

invertebrates revealed that the SAL has two important distinctions compared to similar 

studies in mangrove ecosystems (Chapter 7). The snail Telescopium telescopium had the 

highest �15N values of all studies compared. The generally high values also compared to 

other invertebrates in the SAL are explained by facultative scavenging of this usually 

mainly detritivorous snail. Furthermore, the global comparison revealed that the oyster 

Saccostrea cf. cucculata has among the highest �15N values in combination with the 

lowest �13C values in the SAL during rainy season. The �13C measured in rainy season 

for this species is the overall lowest value measured for invertebrates in the compared 

studies. As S. cf. cucculata is a filter feeder, this can only be explained by extremely low 

�13C in particulate organic matter and phytoplankton in the water column. In case of a 

sufficient nitrogen supply it can probably also be traced back to selective isotopic 

fractionation, as oysters filter about 200L water per day (www.Auster.com). These 

sources are most probably washed in from the agricultural fields in the hinterland during 

rainy season, bringing along 13C depleted sediments and 15N enriched effluents from 

fertilizers. 

The Segara Anakan therefore seems to be an exception among mangrove-fringed coastal 

lagoons with regard to the amount of effluent contribution and nitrogen supply. 

 

 

9.4 Implications of management of the Segara Anakan mangrove ecosystem 

 

Invertebrates in the SAL show a strong dependence on terrestrial carbon sources, such as 

mangroves. Agriculture and deforestation in the hinterland affect nitrogen supply and 

mangrove growth in this rather nitrogen depleted environment. As shown in this study 

mangroves are sensitive to even small changes in nitrogen supply between seasons 

(Chapter 7).  

It is important that in the future the actual impact of humans on the benthic food web is 

examined carefully in terms of deforestation, pollution through household wastes and by 
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effluents of the oil refinery within a fine spatial resolution. Species that are strong 

ecological interactors in this mangrove ecosystem, such as e.g. the leaf processing genus 

Episesarma or the top predator of the benthic food web Scylla serrata, should be 

sheltered to maintain the balance of the benthic community. In order to implement a 

management program, which ensures a sustainable use of the lagoons natural resources, 

possible consequences of the overexploitation of these until today should be valuated.  

 

 

9.5 Future scenario for benthic communities in an era of global environmental change 

 

9.5.1 Deforestation and sedimentation 

 

Mangroves are used for wood products, housing and building bridges among others. 

Furthermore, deforested mangrove areas are converted to aquaculture ponds and 

agricultural land (Alongi 2002 and references therein). One main feature of mangroves is 

their function as nursery grounds especially for fish species (Yánez-Arancibia et al. 

1994). If mangroves are continued to be logged in the current way, the maintenance of 

these species is not given anymore. As especially fish carrion serves as nitrogen 

supplementation for several invertebrate species, the benthic food web will most probably 

be affected too. Invertebrates would have to find other 15N enriched food sources to rely 

on. Mangroves also serve as food sources themselves. Intertidal herbivorous decapods 

feed predominantly on mangrove leaves and leaf litter but also on bark as well as roots or 

pneumatophores (Salewski 2007). Furthermore, decapods climb mangrove trees to escape 

predators or night high tides (Hagen 1977; Sivasothi 2000) and hide between roots to 

avoid predators on the ground (personal observation). Thus deforestation destroys their 

habitats and regarding herbivores also their main carbon sources. 

 

Mangroves also stabilize sediments and prevent large sedimentation loads into the water 

body, especially during rainy season. Without this shelter, the water body and therewith 

the habitat of aquatic species will be reduced in a short time.  
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9.5.2 Storms, sea-level rise, temperature, precipitation and CO2  

 

Most of the biodiversity hotspots on earth are tropical forests, and are less vulnerable to 

climate change in contrast to other biomes (Smith et al. 2001). In the following map from 

Alongi (2008) it is shown which mangrove forests are most vulnerable to climate change, 

considering current rates of deforestation and if a mangrove forest is protected in a 

marine reserve or not. Mangroves occupying low-relief islands or carbonate settings with 

a low sediment supply and available upland space, such as small islands in the pacific, are 

most vulnerable, as well as forests without rivers and subsiding landforms are (Alongi 

2008). Mangroves on Java are partially in most vulnerable regions. 

 

 
Figure 9.3: Least and most vulnerable regions to climate change of the world´s mangrove forests, from 

Alongi (2008). 

 

In the following figure from Lovelock & Ellison (2007) factors resulting from climate 

change are shown which affect mangrove ecosystems in coastal zones. 
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Figure 9.4: Model indicating the processes influencing vertical accretion in mangrove systems, from 

Lovelock & Ellison (2007). 

 

The increased intensity and frequency of storms, as observed in the last years has the 

potential to increase damage to mangroves through defoliation and tree mortality (Gilman 

et al. 2008). And the intensity of storms is predicted to still increase (Solomon et al. 

2007). The ability of a benthic population to recover from physical disturbance depends 

on the magnitude of the disturbance, the supply of larval recruits and the availability of 

substrate suitable for larval settlement especially in the future (Moran & Reaka-Kudla 

1991, Fabricius et al. 2008). 

 

Relative sea level rise could be a substantial cause of future reductions in regional 

mangrove areas, contributing about 10-20% of total estimated losses (Gilman et al. 2008). 

Global average sea level rise is 1.8±0.3 mm/year. Regional patterns occur, such as on the 

west coast of Malaysia and Sumatra, where seas level rise in maximal with values of 

5mm/year between 1950 and 2000 (Church et al. 2004). Mangroves in Australia, where 

natural eroding occurs similar to the effect of sea level rise, are migrating landwards 

(Hughes 2003). But areas with higher predicted sea level rises will completely inundate 
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the existing mangrove zones, as the mangroves will not be able to keep pace with the 

retreat (Semeniuk 1994). 

In the longer term a sea level rise of 1-2m could lead to a return of swamp conditions 

with saline wetlands supporting mangrove communities (Woodroffe et al. 1986). As 

mangroves are particularly vulnerable to sea level rise, an increase in mangrove areas and 

mitigation of mangroves upslope can be expected (Lovelock & Ellison 2007). The actual 

amount of intertidal habitat lost with rising sea level will be determined by 

geomorphology and tidal amplitude (Lovelock & Ellison 2007). “It appears from the 

geological record that previous sea level fluctuations presented a series of crisis and 

opportunities for mangroves and that they tended to survive or even expand in several 

refuges, the most likely being continental coastlines with healthy sediment budgets” 

(Field 1995). 

Rising sea levels can inundate obligate intertidal and shallow water invertebrate species 

in tropical regions. If the rate of sea level rise is slow, then benthic species and 

communities have the potential to expand landward (Przeslawski et al. 2008). 

 

Between 1906 and 2005 the global average surface temperature has increased by 

0.74±0.18°C (Solomon et al. 2007). Increased surface temperatures are expected to affect 

mangroves by changing species composition, phonological patterns (timing of flowering 

& fruiting), increasing mangrove productivity where temperature does not exceed an 

upper treshhold and expanding mangrove ranges to higher latitudes where range is 

limited by temperature (Field 1995, Ellison 2000). Mangroves reach a latitudinal limit at 

the 16°C isotherm for air temperature and not exceeding water temperatures of 24°C 

(Ellison 2000). The optimum mangrove leaf temperature for photosynthesis is 28-32°C, 

while photosynthesis ceases when leaf temperatures reach 38-40°C (Clough et al. 1982, 

Andrews et al. 1984). 

It was suggested that some marine invertebrates in Australia will become locally extinct 

with an increase in water temperatures of 1-2°C (O´Hara 2002). Thermal tolerance is 

species specific as even closely related species can respond differently to heat stress 

(Przeslawski et al. 2008). In general, tropical species seem to have less tolerance to 

temperature variation than their temperate counterparts (Przeslawski et al. 2008). But 
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there is no information on the lethal treshhold temperature for tropical benthic 

invertebrates. Warmer temperatures increase rates of development and growth across all 

life stages, depending on the magnitude and duration of temperature change, as well as 

the physiological and life history traits that determine exposure to thermal change 

(Przeslawski et al. 2008). Rising water temperatures in the tropics will almost certainly 

lead to changes in the reproductive phenology and fecundity for those species with 

spawning periods that are tightly regulated by exogenous cues such as temperature 

(Lawrence & Soame 2004), as the timing of reproduction for many marine invertebrates 

is affected (Olive 1995, Bates 2005). A direct effect of temperature and salinity on 

invertebrates may be changes in the abundance and distribution of suspension feeders, 

such as mussels, clams and oysters (Scavia et al. 2002). 

 

Warming temperatures are associated with enhanced hydrological cycles which will 

likely result in increasing occurrences of extreme rainfall events, including drought and 

flooding which are associated with freshwater coastal runoff (Solomon et al. 2007). 

Rainfall is predicted to increase by 25% by the year 2050 in response to climate change 

(Houghton et al. 2001). These changes in precipitation patterns are expected to affect 

mangrove growth and spatial distribution (Field 1995, Ellison 2000). Decreased rainfall 

and increased evaporation will increase salinity and lead to less freshwater input to 

mangrove ecosystems (Gilman et al. 2008). Also soil salinity will increase, leading to 

increasing salt levels in the tissues, and therefore decreasing the net assimilation rate per 

unit leaf area and therewith reducing growth (Field 1995). Reduced precipitation can also 

result in mangrove encroachment into salt marsh and freshwater wetlands (Saintilan & 

Wilton 2001, Rogers et al. 2005). In contrast, increased rainfall will result in increased 

growth rates, biodiversity and an increase in mangrove areas within the tidal wetland 

zone (Field 1995, Duke et al. 1998). 

Changing precipitation patterns can also influence nutrient delivery, which can already be 

seen in seasonal variations of precipitation and therewith river discharges (Scavia et al. 

2002). Salinity changes and coastal runoff due to rainfall can also cause decreased growth 

and reproduction rates in some invertebrates (Roberts et al. 2006). Responses of benthic 

invertebrates to stress associated with flooding and salinity changes will vary within and 
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between groups (Przeslawski et al. 2008). But heavy rainfall and associated freshwater 

runoff will mainly affect invertebrate populations negatively if occurring during 

reproductive periods (Przeslawski et al. 2008).  

 

The effect of CO2 on mangroves depends on complex interactions between several 

physiological and environmental factors (Field 1995). A direct effect of elevated 

atmospheric CO2 levels may be an increased productivity of some mangrove species 

(Field 1995, Ball et al. 1997, Komiyama et al. 2008). Photosynthesis in Aegiceras 

corniculatum and Avicennia marina e.g. would be enhanced if CO2 concentrations would 

increase (Ball & Farquahar 1984a, b). As salinity increases, stomatal conductance 

declines with an accompanying decrease in transpiration rates as CO2 diffusion into the 

leaf is inhibited and low assimilation rates are resulting (Field 1995). For Bruguiera spp. 

and Rhizophora apiculata, in contrast, photosynthesis performance will not be affected 

by increased CO2 levels (Cheeseman et al. 1991). Climate change appears likely to 

produce a net increase in leaf-air vapour pressure difference in warmer-drier regions as 

well as increasing the extent of such areas (Yeo 1999). Whether elevated CO2 will lead to 

a reduction in leaf salt concentrations in salinised plants is uncertain (Yeo 1999). 

Elevated CO2 concentrations can be expected to enhance growth of mangroves when 

carbon supply is limited by evaporative demand at the leaves but not when it is limited by 

salinity at the roots (Ball et al. 1997). If mangroves were continually exposed to high 

salinities seawater, their production would likely decline (Snedaker 1995). Soil warming 

that will accompany any global temperature rise could escalate the increase of 

atmospheric CO2 through stimulation of soil respiration (Field 1995). Metabolic 

responses in mangroves to increased atmospheric CO2 levels are likely to be increased 

growth rates (Farnsworth et al. 1996). 

Increased CO2 in surface waters may lower the metabolic rate of some benthic 

invertebrates due to acidosis, potentially impacting populations by negatively affecting 

feeding, growth and reproduction (Michaelidis et al. 2005, Pörtner et al. 2005). 

Sensitivity to elevated CO2 is highest in animals with high metabolic rates and pH 

sensitive blood oxygen transport systems (Pörtner et al. 2005). Ocean acidification 
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furthermore may interfere with shell formation in the broad suite of benthic calcifiers 

(Przeslawski et al. 2008). 

 

In the future high temperatures, low humidity and more severe storms could lead to 

reduced productivity, subsidence and erosion. A loss of biodiversity of flora and fauna is 

expected with reductions in salt marsh area and encroachment of mangroves into 

freshwater marshes. Of economical interest is that the reductions of mangrove areas will 

decrease the level of ecosystem services they provide (Lovelock & Ellison 2007). 

 

 

9.6 The usefulness of stable isotopes 

 

Mangrove forests are complex, intertidal, soft-substrate habitats that occur circum-

tropically and comprise a substantial portion of protected coast lines and estuaries 

(Wilson 1989). But only little is known about food web interactions, and the process of 

passing carbon and nitrogen through the trophic steps of a food web. Macro invertebrate 

food webs are the main link between high primary production and top consumers in 

wetlands (Hart & Lovvorn 2002). As the quantification of natural food webs is a 

universal problem due to methodological and logistical limitations hampering 

simultaneous measurement of all flows (Oevelen et al. 2006), the method of stable 

isotope analysis became a helpful method to resolve trophic structures.  

The chemical basis for the fractionation of nitrogen involves the lower vibrational 

frequency of the chemical bonds of 15N compared to 14N. Heavier isotopes form bonds of 

greater energy than their isotopically lighter counterparts and thus are less likely to 

undergo chemical reactions (Gannes et al. 1998). Physiologically this means that amine 

groups containing 14N are favored during transamination and deamination which results 

in isotopically light excreted nitrogen and the enrichment of certain amino acids such as 

glutamate (Gannes et al. 1998). Isotopic fractionation is species- and tissue- specific and 

occurs primarily during the production of new tissues through anabolic processes 

(Yokoyama et al. 2005a). 
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In the following two plots from Peterson & Fry (1987), several sources of carbon and 

nitrogen are summarized with their isotopic compositions and their fractionation ranges. 

They provide a broad overview over coastal biochemical processes and therewith 

occurring isotopic fractionations. 

 

 
Figure 9.5: The distribution of �13C (upper figure) and �15N (lower figure) in coastal ecosystems, from 

Peterson & Fry (1987). Single arrows indicate CO2 fluxes; double arrow signifies an equilibrium isotope 

fractionation. Numbers [‰] and arrows indicate fractionation occurring during transfers. POM= particulate 

organic matter, DOM= dissolved organic matter. 

 

Peterson & Fry (1987) reviewed the use of stable isotopes as tracers in a variety of 

ecological studies. Nowadays, the stable isotope method is considered to be amongst the 
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most powerful tools to study trophic relationships and animal diets in aquatic and 

terrestrial ecosystems (McCutchen et al. 2003, Caut et al. 2009). As there is less 

variability in carbon (��13C) compared to nitrogen discrimination (��15N), nitrogen 

seems to be a more specific tool to distinguish between trophic levels (TL) (Minagawa & 

Wada 1984, Vander Zanden & Rasmussen 2001, Post 2002, McCutchan et al. 2003). The 

actual discrepancy of �15N distinguishing two TL is widely discussed (e.g. Minagawa 

&Wada 1984, Caut et al. 2009). Adams & Sterner (2000) stated a ��15N of 3.4‰±1.1‰ 

per TL for consumers. Vander Zanden & Rasmussen (2001) verified these findings and 

added a ��13C value of 0.8‰ for tracing carbon sources, meaning that the prey can be 

identified within a +0.8‰ range from the predator’s �13C value. They also stated that 

primary consumers should be used as the baseline TL of a food web, as they form the 

basic carbon and nitrogen source for higher trophic levels. DeNiro & Epstein (1978) also 

reported values of ��13C from -1.5 to 2.7‰ and a mean of about 0.8‰. McCutchan et al. 

(2003) found much lower shifts in �13C and �15N between diet and consumers. They 

distinguished between measurements of whole organisms (�13C=0.3±0.1‰) and muscle 

tissue of organisms (�13C=1.3±0.3‰) for carbon. For �15N they found a discrepancy of       

�15N =2.3±0.2‰ per trophic level. In this study we used the discrimination factors 

(��15N=2.8‰±0.1‰; ��13C=0.8‰±0.1‰) suggested by Caut et al. (2009) to define the 

TLs within our food webs, as they reviewed the largest number of isotopes studies until 

today with an overall number of animal diets of 290.  

Different models were set up by distinct authors to calculate TLs based on discrimination 

factors (Gannes et al. 1998; Post 2002; McCutchan et al. 2003; Tiunov 2007). Variability 

in these factors is high and the range of discrimination between two trophic levels 

remains unclear. Previous studies suggested that the discrimination between two TLs is 

highly dependent on the ecosystem observed and food web examined, such as littoral, 

pelagic or benthic food webs (Post 2002). It is also widely discussed which model 

explains best the dietary composition of a predator. Several studies have used different 

modelling approaches depending on the food web examined and the researchers’ 

appraisement of how many diets should be included (Riera et al. 1999; Hart & Lovvorn 

2002; McCutchan et al. 2003; Riera et al. 2004; Oevelen et al. 2006; Tiunov 2007). Also 

programs such as IsoSource rely on this approach (Benstead et al. 2006). But in fact these 
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are only estimations and actually a reliable statement could only be made if all possible 

food sources of one predator in a specific ecosystem were sampled and considered. Food 

composition also depends on the age and the phase of life of the consumer. To obtain the 

isotopic baseline required to estimate trophic position is one of the most difficult 

problems facing the application of stable isotope techniques to multiple system food web 

studies (Peterson 1999; Post 2002). Although there will always be spatial and temporal 

variation between the baseline and the secondary consumer of interest, a good baseline 

will integrate isotopic changes at a time scale near that of the secondary consumer and 

capture the spatial variability that contributes to the isotopic signature of the secondary 

consumer of interest (Post 2002).  

The experiments conducted within this study (Chapter 8) revealed that carbon isotopic 

compositions do not change if mainly herbivorous species of the genus Episesarma are 

fed on Rhizophora apiculata leaves only, over a time period of three month. As variation 

in �13C was very low (<1‰) with one exception, a reasonable doubt arises, that carbon 

isotopic composition can be a sufficient tracer for carbon sources for all species within a 

food web. France (1998) also raised these doubts for fiddler crabs in Puerto Rico. 

Tiunov (2007) concluded in his review, that a detailed understanding of community 

composition and structure as well as time related changes in these are required to 

effectively utilize stable isotopes. He also suggested taking into account fractionation and 

biogeochemical processes of all levels, from organism to ecosystem level. Nevertheless, 

stable isotope based estimates of trophic position provide a powerful fusion of trophic 

level and food web paradigms to evaluate actual trophic structures of complex food webs 

(Post 2002).  
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9.7 Synthesis 

 

9.7.1 Answering study questions 

 

1 Do food web structures in the SAL vary on small spatial scales due to varying food 

availability and quality resulting from different anthropogenic impacts?  

 

Overall four trophic levels (TL) of consumers were found in the intertidal benthic food 

web of the SAL. The majority of invertebrates, especially several decapods, can be 

assumed to use a range of food sources opportunistically. They supplement their mainly 

mangrove derived diet by feasible scavenging e.g. in form of carrion. Different species 

from the genus Episesarma can adapt differently to changing food availability and 

therefore occurred in different TLs comparing study sites already on a small scale. Due to 

the opportunistic diet of several decapod species it is concluded that they are highly 

adaptable to changing food availability. 

 

2 Do seasonal changes in environmental factors lead to a divergent food availability 

and consequently to changes in the food web structures?  

 

Seasonal differences in isotopic compositions of invertebrates muscle tissue were found, 

but did not follow any clear patterns. The discrepancy of isotopic compositions between 

seasons depends on the species and the location within the lagoon. Spatial variability was 

high during rainy season, with higher �15N in the eastern part of the lagoon. During dry 

season in contrast, variability between areas was small. Factors that have an impact on 

seasonal differences include precipitation and therewith nutrient availability, freshwater 

plankton input through rivers, marine plankton input through tides and carbon and 

nitrogen contents in sediments as well as food quality.  

 

3 a Is a one-choice diet affecting isotopic compositions in muscle tissues of benthic    

      intertidal crabs within a time period of three months? 
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Intertidal mangrove crabs of the genus Episesarma are able to balance their nitrogen 

budget over 50 days and survive three month on a one-choice-mangrove-diet only. After 

50 days an increase in �15N was observed, probably resulting from starvation and internal 

nitrogen recycling. �15C values did not change within this time frame. 

 

b Do intertidal crab species prefer certain mangrove species? How do they 

metabolise the leaves?  

 

The species Derris trifoliata and Rhizophora apiculata were preferably consumed, over 

Acanthus ilicifolius, Aegiceras corniculatum and Sonneratia alba, indicating a high 

nutritional value of these two species. A difference in ingestion and egestion of the 

offered species by the two Episesarma species due to different feeding habits in the field 

were not observed. 

 

 c Do isotopic compositions differ substantially between hepatopancreas, muscle  

tissue and stomach content according to their role and status within the 

assimilation process? 

 

As expected muscle tissue, which is a long-time storage had highest isotopic 

compositions, compared to hepatopancreas and stomach content with the lowest values. 

 

d Do ovigerous females have lower isotopic compositions than non-ovigerous 

females?  

 

There were no significant differences found comparing ovigerous and non-ovigerous 

females, both groups have similar isotopic compositions. This can probably either 

explained by the ability of crabs to balance the discharge they provide their eggs, or by a 

shorter reproduction than muscle tissue turnover time.  
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9.7.2 Conclusion  

 

Mangrove ecosystems are highly dynamic systems, with spatially and temporally varying 

environmental conditions on small scales. Macrobenthic intertidal communities are 

perfectly adapted to these continuous changes in their surroundings such as e.g. food 

availability. However, deforestation constitutes a threat to these communities, which 

means an extreme habitat change. Pollution by household sewages and even oil refinery 

effluents do not seem to affect the invertebrates feeding habits in the SAL. But 

differences in isotopic compositions in invertebrates on a small spatial scale indicate that 

stable isotopes are highly sensitive indicators for surrounding environmental and 

anthropogenic impacts. 

In ecology the method of stable isotope analysis is particularly helpful to study food webs 

if combined with further knowledge, such as on feeding habits, stomach contents, species 

interactions or experimental outcomes regarding e.g. food choices and assimilation. But it 

is questioned if carbon isotopic signatures are sufficient tracers for carbon sources within 

a food web. 

For future studies it is suggested to consider the season in which samples were taken, as 

well as the representativeness of one location in a study area for the whole area. 

Experimental approaches to further clarify the processes of isotopic fractionation in 

numerous organisms are essential. A more elaborate set of food sources, i.e. primary 

producers, should be included to decipher mixed diets of consumers. 

 

 

9.7.3 Outlook 

 

In the future additional experimental approaches shall contribute to the clarification of 

biochemical material cycles through the benthic food web. Such experiments were not 

conducted until today but are suggested in recent food web studies as the necessary next 

step to better interpret and understand the results of stable isotope analysis. 

Due to time limitation only abundant species were included in this study. For a complete 

picture of the benthic food web and a quantitative estimation of the turnover of carbon 
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and nitrogen by benthic invertebrates in the lagoon, further species, especially of high 

biomasses such as Sesarma and Uca spp. and top predators such as Portunus spp., should 

be incorporated in a complementing project. 

As it is presumed that intertidal benthic invertebrates in the SAL are highly adaptable to 

changing environmental conditions and therefore food availability, a location exchange 

experiment in field should be conducted. Different crabs from intact mangrove areas that 

are exposed to logged areas e.g. should cope differently with this drastic habitat change.  

One choice feeding experiments over a time period of at least 4 months with diverse food 

sources should be conducted, to examine actual species specific turnover rates of 

different diets. Also two to three food sources could aid to understand the isotopic 

composition of consumers on mixed diets. This experiment conducted with shrub species 

as food sources could aid to estimate the consequences of deforestation.   

Crabs that died within the experiments conducted in this study showed fast increases in 

�15N values after a few days only. This also occurs in starving crabs. It is known, that 

invertebrates supplement their diet with 15N enriched sources, such as carrion of dead 

organisms. In an experiment it should be examined how fast the light nitrogen fraction 

(14N) is degraded in dead invertebrates, so that they can serve as a valuable nitrogen 

source for other invertebrates. 

Apart from the tissues that were analyzed for stable isotope composition in this study a 

more detailed analysis of all available tissues should be accomplished, including exuviae 

of decapod species. This would lead to a better understanding of metabolic processes of 

benthic decapods. 

Stomach content analysis was conducted in this study for few selected species. As was 

discussed before, stomach content analysis is a very important complementation to stable 

isotope analysis. It should therefore be examined for several important benthic 

invertebrates. Variation in food preferences could be examined by including several 

different study sites in this approach. Also further consumption rates with different 

decapod species and food sources could aid to quantitatively estimate the turnover of 

benthic invertebrates in this ecosystem. 
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All these experiments could help to quantitatively estimate the turnover of carbon and 

nitrogen by benthic invertebrates in this ecosystem and to elucidate food web interactions 

previously only examined by stable isotope analysis mostly of muscle tissue. 

In future investigations the actual contribution by benthic microalgae, such as benthic 

diatoms, as carbon and nitrogen sources to the benthic food web in the SAL, should be 

investigated. Benthic microalgae play an important role as primary producers and 

therefore as a food source especially for organisms of the first trophic level, such as 

deposit feeders, in the benthic food web. Also primary producers in the water column 

should be analyzed for stable isotopes and actual contributions of these as a food source 

to the benthic food web should be estimated. 
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