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Abstract

Coalescing binary systems are supposed to be good sources for gravitational radiation.

The data analysis of gravitational wave signals is very much involved with matched filtering

procedures. Thus, a detailed theoretical understanding of the dynamical characteristic of

binary systems is an essential pillar of gravitational wave astronomy.

This thesis is devoted to improve the theoretical description of binary systems consisting

of spinning objects. An essential ingredient for many approaches to model their evolution

is provided by the general relativistic motion of spinning test particles in Lagrangian as

well as Hamiltonian formulation. As the present thesis covers many aspects of this subject

restricted to the pole-dipole approximation, it is divided into two main parts.

The first part concentrates on the study of the dynamical properties of spinning test

particles as described by the Mathisson-Papapetrou equations. Provided that the fre-

quencies offer a straight link to observations the pairs of geometrically different timelike

geodesics with the same radial and azimuthal frequencies is examined for spinning test

particles moving in Schwarzschild-de Sitter spacetime. Both the cosmological constant and

the particle’s spin have distinct impacts on the description of bound motion in the fre-

quency domain.

One major backbone of the theory of spinning particles is the requirement of a spin supple-

mentary condition (SSC) in order to solve the equations of motion. A promising condition

in the context of a Hamiltonian formalism of general relativistic spinning particles is the

Newton-Wigner SSC. As it is little known about the properties of the NW SSC the evo-

lution of a worldline defined by the Mathisson-Papapetrou equations supplemented with

the NW SSC is compared to one that is obtained by the Tulczyjew SSC, which is well

understood and frequently used in the literature and therefore provides a robust reference.

The second part of this thesis deals with the Hamiltonian formulation of spinning parti-

cles in general relativity. Due to the spin condition the derivation of a Hamiltonian involves

the implementation of constraints. A Hamiltonian function linearised in the particle’s spin

that includes the constraints by means of Dirac brackets is analysed. Since the Hamiltonian

offers a wide range of applications to dynamical systems, the significance of the approx-

imation in the spin is investigated. A comparison of the orbital evolution of a spinning

particle of mass M in the gravitational field of a Kerr black hole of mass M described

by the Mathisson-Papapetrou equations, which are exact in the particle’s spin, to the one

given by Hamilton’s equations of motion is performed. The range of validity is stated to

be between S = 10−6 − 10−4MM .

In order to improve the Hamiltonian formulation and expand it to higher orders in the

particle’s spin an action approach is employed in this thesis to impose the constraints at

the level of the action. In contrast to the use of Dirac brackets the computations are



greatly simplified. The canonical structure of the variables is retained up to second order

in spin. By giving up on the canonical formulation a Hamiltonian valid to all orders in the

particle’s spin is derived.

At the end of this thesis applications to future work and implications on observations

are discussed.
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Notation and Conventions

� ηµν Minkowski metric in Lorentzian signature diag(−1, 1, 1, 1)

� geometric units: G = c = 1

� affine worldline parameter: σ

� proper time: τ

� coordinate basis: µ, ν, ...

� spatial part in coordinate basis: i, j, ...

� temporal part in coordinate basis: t

� local Lorentz basis: a, b, ...

� spatial part in local Lorentz basis: (i) , (j) , ...

� temporal part in local Lorentz basis: (t)

� body-fixed Lorentz basis: A, B, ...

� spatial part in body-fixed Lorentz basis I, J, ...

� temporal part in body-fixed Lorentz basis T

� Lorentz matrix: ΛA
b the first index is in the body-fixed frame and the second one in

the local frame

� tetrad field: eA
µ, ea

µ the first index is in the body-fixed or local frame and the

second in the coordinate frame

� mass of the gravitating object: M

� dynamical rest mass of a spinning test particle: M

� (constant) rest mass of a (spinning) test particle (pole-dipole approximation): m

� kinematical rest mass of a spinning test particle: µ

� partial derivative: ∂, or denoted by a , in index notation

� covariant derivative: ∇ or denoted by a ; in index notation

� covariant differential: D
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� covariant variation: ∆

� symmetric tensor: T (µν) = 1
2 (T

µν + T νµ)

� antisymmetric tensor: T [µν] = 1
2 (T

µν − T νµ)
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Chapter 1

Introduction

1.1 Overview

When describing phenomena happening in our Universe, in particular systems containing

massive and strong gravitating bodies, such as black holes, we can no longer neglect the

influence of the spacetime’s curvature. Therefore we have to use Einstein’s field equations

[5, 6, 7]

Gµν = 8πTµν ,

when investigating such dynamical systems. The beauty of general relativity is, that these

equations contain all information on the description of the interaction between the geo-

metry of spacetime and energy and momentum manifesting themselves in matter.

Experimental support for Einstein’s ideas was delivered shortly after their publications

when Eddington observed the predicted effect of light deflection during a solar eclipse in

1919 [8]. Further experimental verifications are provided by measurements of the perihe-

lion shift of Mercury and the gravitational redshift [7, 9]. One major prediction of general

relativity has not yet been observed, though: gravitational waves. So, where do they hide?

Gravitational waves can be described by oscillations in the gravitational field propagating

at the speed of light. They are generated by a wide range of phenomena in our Universe.

Good candidates are coalescing binary systems consisting of two compact objects, such as

neutron stars or black holes [10, 11, 12].

Although there exist many gravitational wave detectors all over the world which are con-

tinuously being upgraded none of them has been successful yet. Earthbound detectors

are for example LIGO (US), Virgo (Italy), GEO (Hanover, Germany), TAMA (Japan)

and ACIGA (Australia). The reasons why no direct observation has been reported yet are

especially the technological challenges [7, 11, 12]. Only indirect evidence is given by the ob-

servations of the Hulse-Taylor pulsar, a double neutron star system. Measurements of the

21
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orbital period show that it is continuously decreasing and the two neutron stars approach

one another. The system therefore loses energy. In fact, the corresponding energy loss

is in very good agreement with Einstein’s theory predicting gravitational waves to carry

this amount of energy away from the system [13, 14]. This is why scientists are still very

confident that in the near future one of the gravitational wave detectors will be successful

in measuring such a signal.

The current problems with the detectors on earth are the noises produced by seismic mo-

tion, gravity gradients or by thermal energy. Thus, it is planned to launch a space based

gravitational wave detector called LISA in 2034 [11]. Since gravitational waves are not

absorbed by dust or stellar envelopes they probably will offer an unprecedented insight

into some of the mysteries in our universe.

In order to be able to discern a gravitational wave signal a special kind of data analysis

is necessary. Compared to the data obtained from telescopes in the electromagnetic spec-

trum theoretical input is of great importance. In particular the matched filtering method

requires a detailed understanding of the sources so that templates of corresponding wave-

forms can be constructed. This is why the promise of gravitational wave astronomy relies

upon our ability to accurately model the gravitational wave signals [15, 16].

A detailed theoretical understanding of the dynamical characteristics and evolution of

coalescing binary systems serves as the basis for modelling gravitational waves. We dis-

tinguish the binary systems into equal-mass and extreme-mass ratio systems, because the

computation of the corresponding gravitational waves is treated slightly differently.

Extreme-mass ratio inspirals (EMRIs) consist for example of stellar-mass compact ob-

jects (SCO) that spiral into massive black holes in the centre of galaxies. Based on black-

hole perturbation theory and the self-force formalism we are provided with a well developed

and robust approach to calculate the gravitational waveforms and the orbital evolution un-

der radiation reaction [16]. Assuming the adiabatic approximation which neglects the

energy loss over one orbit, the evolution of an EMRI is modeled by transitions through

the orbits of the dynamical system [17, 18, 19, 20]. Hence, modelling EMRIs involves the

solution of the general relativistic two-body problem in the extreme mass ratio regime,

which can be performed to a great deal analytically.

Analytic solutions to the geodesic equation in a great variety of spacetimes, such as Schwar-

zschild, Schwarzschild-(anti)-de Sitter, Kerr or Reissner-Nordström, have been studied in

[21, 22, 23]. The classification and parametrisation of geodesic orbits has also been extens-

ively discussed in the literature, see e.g. [23, 24, 25]. In the context of gravitational wave

physics bound and plunging orbits are of particular interest because they represent two dif-

ferent stages that are significant for the evolution of an EMRI, the inspiral and the plunge.



1.1. OVERVIEW 23

Bound orbits are characterised by a set of fundamental frequencies which were thought to

uniquely parametrise these orbits until Barack et al. showed the existence of isofrequency

pairs in the strong field regime in Schwarzschild spacetime in 2011 [26]. Indeed, the gravit-

ational wave signal of an EMRI is composed of a number of harmonics of the independent

fundamental frequencies of the system [16, 27]. The discovery of the feature of isofrequency

pairs amounted to an additional degeneracy one has to consider in gravitational wave data

analysis but revealed at the same time a new invariant characteristic, which is useful for

the calibration of different approaches to the general relativistic two-body problem. Thus,

analysing the dynamics in the frequency picture allows a straight link to the frequency

spectra of gravitational waveforms and provides a fundamental insight into the dynamics

of the system.

The phase where the SCO passes over from inspiral to plunge is characterised by a special

type of orbits, the homoclinic orbits. Since they separate bound motion from unbound mo-

tion, this borderline is frequently called separatrix. As it happens, this event has a distinct

imprint on gravitational wave signals and is related to the zoom-whirl feature close to the

separatrix that is located in the strong field regime [20, 28, 29].

One goal of this thesis is to improve the understanding of the orbital properties of the

general relativistic two-body problem in the test particle limit including the test particle’s

spin. Gravitational waves produced by binaries containing spinning particles are computed

using the black-hole perturbation approach, numerical relativity etc. However, spinning

particles make the procedure more complicated, since not only a large number of para-

meters is necessary to characterise the system but also spin induced effects are modulating

the gravitational wave signal. For instance, the spin precession, spin-orbit, or spin-spin

coupling change the amount of emitted gravitational radiation and affect the gravitational

wave signal [19, 30, 31, 32, 33, 34]. In addition, the spin is supposed to introduce chaotic

behaviour to the dynamics which makes the system sensitive to the choice of initial condi-

tions influencing the gravitational waveforms [35, 36, 37, 38]. We will approach the problem

from a different angle, though. Instead of investigating the general properties of spinning

particles or looking at the gravitational waveforms we will focus on the properties of the

extreme-mass ratio binary system in the frequency domain. This allows us to directly

search for features that may be relevant to gravitational wave astronomy.

As already mentioned it was discovered only recently that the fundamental frequencies of

a test particle moving in Schwarzschild spacetime do not provide a unique parametrisa-

tion of the orbits. These findings have been generalised to Kerr spacetime and charged

particles moving in Schwarzschild spacetime in the presence of a magnetic field [39, 40].

We extend this analysis to spinning particles and include a positive cosmological constant,
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which introduces a second equilibrium point far away from the centre in the weak field

region where the attractive gravity and the repulsive dark energy are compensated. The

region of bound motion is analysed and special classes of orbits, such as homoclinic and

heteroclinic orbits, are characterised in terms of the fundamental frequencies.

In the case of equal-mass ratio binary systems, the modelling of the system involves

a more complicated scheme, see e.g. [15] for an overview. The different stages of the

evolution put distinct demands on the theoretical description so that a variety of analytic

approximation schemes and numerical techniques are employed to investigate the orbital

dynamics and the gravitational radiation emission. The three most prominent approaches

to compute and model gravitational waves encompass numerical relativity (NR) primarily

used for the merging phase [41], post-Newtonian approximation (PN) in the far field and

slow motion [27, 42, 43], and the effective-one-body theory (EOB) for the late inspiral

close to the plunge [44, 45, 46]. To obtain the gravitational wave emission during the en-

tire evolution of a binary system these different approaches have to be combined. On that

account they contain free parameters that have to be calibrated using coordinate invariant

quantities and relationships, such as the frequency of the innermost stable circular orbit

(ISCO), the periastron shift or the binding energy, just to name the most frequent ones

[46, 47, 48].

The second topic of this thesis deals with the properties of Hamiltonian formulations

of spinning particles which provide the basis for the PN approximation and EOB theory.

Generally, the Hamiltonian formalism of general relativistic systems implies some obstacles,

such as the necessity of a spacetime split, since the time variable is treated differently from

the spatial ones. A sophisticated procedure was developed by Arnowitt, Deser, and Misner

giving the canonical ADM Hamiltonian [49, 50, 51, 52] which is used for the PN approx-

imation and a key ingredient for EOB theory.

EOB theory maps the real dynamics of binary systems onto some non-geodesic effective

dynamics of a reduced mass moving in an effective metric, e.g. a deformed Schwarz-

schild or Kerr metric. Starting from the real PN-expanded ADM Hamiltonian the effective

Hamiltonian is computed using the EOB mapping prescription, introduced by Buonanno

and Damour in [44]. The conservative dynamics, i.e. the motion of a reduced mass in an

effective metric, is generated by a Hamiltonian based on test particle dynamics which is

then augmented by a deformation parameter adjusted to the PN-expanded Hamiltonian

based on the real dynamics. Thus, the starting point is a Hamiltonian function of a spin-

ning test particle moving in curved spacetime.

One approach is proposed by Barausse, Racine and Buonanno in [53] ensuing from a
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general unspecified Lagrangian function, which is Legendre transformed and yields a ca-

nonical Hamiltonian formulation. However, this formulation is only valid at linear order

in the particle’s spin. As a Hamiltonian formalism offers a wide range of applications be-

sides the EOB and PN theory, particularly chaos and perturbation theory, it is useful to

check the reliability of the approximated Hamiltonian. More precisely, we compare the

results obtained by the Hamiltonian to the dynamical properties of and the solution to the

Mathisson-Papapetrou equations (MP) describing the motion of a spinning particle within

the pole-dipole approximation to all orders in the particle’s spin. This set of equations has

to be supplemented by a spin condition defining the centre of mass within the extended

body in order to be closed. There exist many such supplementary conditions each of which

defines a different observer who sees a particular selected worldline to be the centre of

mass. For instance the so-called Pirani condition chooses the observer to be in the rest

frame of the particle.

Although it is sometimes said, that the quadratic spin terms are attributed to the quad-

rupole, see e.g. [54], justifying the linearisation of the Hamiltonian in contradiction to the

MP equations, which include higher order spin terms, they do matter when choosing a

supplementary condition [55]. Thus, the linearisation should be considered as an approx-

imation for small spins and the differences in the results should be thoroughly investigated.

In the context of a canonical Hamiltonian formalism the so called Newton-Wigner condi-

tion is the preferred spin condition [53, 56, 57, 58], since it allows to choose the phase space

variables in such a way that they possess a canonical structure. However, it is little known

about the dynamical behaviour of this condition so far.

Since we would like to apply the canonical Hamiltonian function in different fields than

EOB or PN theory, this thesis is concerned with a thorough analysis of the linearised

Hamiltonian and the corresponding supplementary condition. First, we compare the evol-

ution of a worldline prescribed by the MP equations supplemented by the Newton-Wigner

condition to one that is obtained by the Tulczyjew supplementary condition, which has

been widely used and is well understood in the context of the MP equations due to its

analytical properties. After characterising the behaviour of the Newton-Wigner condition

in the MP equations, we investigate the differences in the solutions of the MP equations

and Hamilton’s equations in order to evaluate the range of validity of the approximated

Hamiltonian in terms of the spin parameter. Thereby, we notice that the numerical beha-

viour of some important constants of motion is unphysical along the evolution prescribed

by the Hamiltonian. Subsequently, we rewrite the Hamiltonian in such a way that the nu-

merical results match physically realistic situations so that the resulting form is applicable

to numerical investigations within chaos or perturbation theory.

As the constraints, such as the supplementary condition, are imposed on the Hamilto-
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nian by replacing Poisson brackets by Dirac brackets, the derivation involves lengthy and

hideous computations [53]. An alternative way to compute the Hamiltonian of spinning

particles is based on an action approach where the constraints are implemented on the level

of the action [58, 59]. The problem, though, is that the results rely on explicit Lagrangian

functions which are related to the choice of a spin supplementary condition and have to

be given beforehand. Only recently Steinhoff presented a spin gauge invariant action that

is based on a Lagrangian function whose form is invariant under the choice of the spin

supplementary condition, i.e. the explicit expression does not depend on the spin condi-

tion [59]. Thus the constraints are implemented as gauge constraints in the action offering

a straightforward procedure to obtain a Hamiltonian formalism. Here, we focus on a ca-

nonical formulation up to quadratic order in the particle’s spin and the exact Hamiltonian

formulation within the pole-dipole approximation in terms of non-canonical coordinates.

This is the first time that a Hamiltonian for a spinning particle to all orders in spin in

the pole-dipole approximation is achieved. The results can be used to improve the EOB

Hamiltonian to higher orders in the particle’s spin as well as for chaos theory, such as

Poincaré sections or recurrence plots.

The present thesis is structured as follows. It begins with an introduction to the geo-

metry of spacetime where the relevant solutions to Einstein’s field equations are described.

Then, basic information on the theory of spinning particles in general relativity within the

pole-dipole approximation are presented.

After the introductory section the thesis is divided into two main parts. The first part

concentrates on the investigation of the dynamics of spinning particles as described by the

MP equations. The dynamics of spinning particles in Schwarzschild-de Sitter spacetime is

characterised in the frequency picture. After that the properties of the supplementary con-

ditions are analysed by numerically comparing two selected spin conditions, the Tulczyjew

and Newton-Wigner condition.

In the second part we deal with the description of general relativistic spinning particles in

Lagrangian and Hamiltonian mechanics. After giving a short overview of the Lagrangian

formalism and the relation to Hamiltonian mechanics we first focus on the Hamiltonian

derived by Barausse et al. [53]. This is followed by a detailed analytical as well as nu-

merical analysis of the properties of this Hamiltonian. We compare the solutions of the

Hamiltonian formulation to the ones given by the MP equations and state conditions for

the numerical results to be physical. After that, we use an alternative approach to com-

pute the canonical Hamiltonian function to higher orders in the particle’s spin as well as a

Hamiltonian that is exact to all orders in the particle’s spin in non-canonical coordinates.

At the end we summarise our results and give an outlook for future work.
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1.2 Spacetime Geometry

Flat Spacetime

Mathematically, we describe the spacetime by a four dimensional manifold where the di-

mensions correspond to time and the three spatial directions. In order to equip the manifold

with a measure of volume and length, etc., we define a symmetric bilinear form on each

tangent space of the manifold known as the Minkowski metric [7]

ηµν =

⎛⎜⎜⎜⎜⎝
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ , (1.1)

where we use the Lorentzian signature (−,+,+,+). The parameters (µ, ν) run from 0− 3

where 0 denotes the time coordinate and 1 − 3 the three spatial dimensions. Therewith

the spacetime interval is expressed by

ds2 = ηµνdx
µdxν ,

corresponding to proper distance and

dτ2 = −ηµνdx
µdxν ,

for proper time for a chosen coordinate system xµ. Using either of the notions from above

the relation between two events are classified to be spacelike, timelike or lightlike [6, 7]. In

other words, a causal structure between events can be worked out assuming that nothing

is able to travel faster than the speed of light. Subsequently, physical bodies have to move

on timelike curves
(
ds2 < 0, dτ2 > 0

)
, since their trajectories have to connect timelike

separated events that are in causal contact.

The Minkowski metric is often called the flat metric, since it describes the structure of

“empty space”, i.e. the corresponding spacetime is not affected by any matter or energy,

which is why the geometry of the manifold is flat.

Curved spacetime

In order to include gravity into the geometric concept of spacetime Einstein connected

gravitational physics to the mathematics of differential geometry yielding the famous Ein-

stein field equations [7]. Amazingly they contain all information on how the curvature

of spacetime influences matter and how energy and momentum shape the geometry of
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spacetime [6, 7, 60]

Gµν := Rµν −
1

2
Rgµν = 8πTµν , (1.2)

where Rµν is the Ricci tensor, R the Ricci scalar, gµν the metric tensor and Tµν the energy

momentum tensor. Compared to flat spacetime the metric gµν is no longer Minkowskian

(1.1) but it may contain off-diagonal terms and its components depend on the chosen

coordinates. The Riemann tensor Rµναβ is the curvature tensor which yields the Ricci

tensor after contraction of two indices. It is defined by

Rµ
ναβ := Γµ

νβ,α − Γµ
να,β + Γρ

νβΓ
µ
ρα − Γρ

ναΓ
µ
ρβ , (1.3)

with the connection given by the Christoffel symbols

Γµ
να :=

1

2
gµλ (gνλ,α + gαλ,ν − gνα,λ) . (1.4)

Curvature can mathematically be understood as a characterisation of the change of a

vector parallel transported along a closed loop. Physically, curvature manifests itself in

gravity. More precisely, the energy-momentum tensor Tµν on the right-hand-side of (1.2)

includes all the sources of gravity, i.e. all kinds of matter. It therewith prescribes the way

how spacetime is curved in the presence of matter. Einstein’s field equations provide the

corresponding set of complicated and non-linear second-order differential equations for the

metric gµν . Given a mass-energy distribution these equations can in principle be solved

for the gravitational field represented by gµν . However, the complicated structure of the

differential equations makes it hard to find solutions [7]. This is the reason why it is

common to start with some simplifying assumptions on the metric and draw conclusions

on the underlying gravitational source from backwards. One of the simplest solution is

the gravitational field produced by a maximally spherically symmetric mass distribution

in otherwise empty space and is known as the Schwarzschild solution [61].

1.2.1 Schwarzschild Solution

As already mentioned one of the simplest solution is the maximally spherically symmetric

mass distribution producing a gravitational field which is also spherically symmetric. To a

good approximation the gravitational fields of the earth or the sun can be modeled using the

assumptions from above providing a wide range of applications, such as navigation systems.

Moreover, the motion of particles, such as planets, in the exterior region of the gravitating

mass, such as the sun, are of great interest and easier accessible than the behaviour in the

interior of the central object, so that we confine the topic to the exterior solutions [7].

Given the symmetries the metric is required to satisfy makes it easier to solve Einstein’s



1.2. SPACETIME GEOMETRY 29

field equations for gµν . Spherical symmetry demands the metric to be invariant under

spatial rotations, time independent and invariant under time reversal. This means the

metric has to be stationary, which requires a timelike Killing vector at infinity, and may

not contain any cross terms between time and space which is denoted by static. Lastly,

we want it to look like flat spacetime at spatial infinity. The general solution to such a

spacetime can be obtained by solving the Einstein’s field equations yielding the metric in

spherical coordinates (r, θ, φ) [6, 7, 62]

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2 , (1.5)

with the two dimensional angular line element

dΩ2 := dθ2 + sin(θ)2dφ2 ,

and M as the mass of the gravitating body. The function f(r) has to be chosen according

to the environmental condition, i.e. whether the surroundings of the gravitating mass are

empty vacuum or influenced by some kind of vacuum energy denoted by the cosmological

constant Λ . The first one is referred to as the Schwarzschild solution and the latter as the

Schwarzschild-de-Sitter solution [63].

Interestingly, the properties of the exterior gravitational field are not affected by the

characteristics of the source except for its mass. In particular, the source can be a point

particle or even a collapsing star as long as it preserves the symmetries during the collapse

[7]. This feature is similar in electromagnetism where the electromagnetic fields produced

by spherically symmetric charge distributions are independent of the radial distribution of

the charges.

Let’s have a closer look at the Schwarzschild metric where

f(r) = 1− 2M

r
. (1.6)

It is obvious from (1.5) and (1.6) that the metric components have two singularities:

r → 0 and r → 2M .

While r → 0 is a true curvature singularity, r → 2M is merely a coordinate singularity

and can be removed by an appropriate coordinate transformation [6, 7, 62].

The coordinate singularity r = 2M hides some striking characteristics visible in the

coefficients of the metric gµν opening up the window for black holes. Notice that gtt

changes its sign at this radius which means that the time coordinate becomes spacelike

for smaller radii. Simultaneously, grr vanishes as well, transforming the radial coordinate
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from a spacelike to a timelike one. When changing the coordinates to Eddington-Finkelstein

coordinates which remove the coordinate singularity, we are able to see that if a particle

has crossed the surface of r = 2M , it keeps falling to decreasing values of r. More precisely,

after a particle went past this surface it can never escape to infinity again. Instead it will

eventually fall into the centre at r = 0 colliding with the true singularity. Because the

corresponding surface marks a boundary which can be entered but never escaped from it

is called the event horizon. Therefore, we will never obtain any signals emitted beyond the

event horizon which is the reason why we call those objects black holes. The gravitating

object must be smaller than r = 2M , though. Otherwise the event horizon lies inside the

object which does not prevent us from receiving information from the object’s surface and

it no longer behaves like a black hole [6, 7]. But this is a different story which we are not

interested in here. Observations imply that black holes do exist in our universe so we think

it is more fascinating to deal with these strange objects which we still have much to learn

about.

1.2.2 Schwarzschild-de Sitter solution

If we allow for dark energy which we think to be responsible for the accelerated expansion

of our Universe we have to consider the Schwarzschild-de-Sitter metric, see e.g. [63], with

f(r) = 1− 2M

r
− Λ

3
r2 , (1.7)

where Λ corresponds to the cosmological constant. We restrict ourselves to a positive Λ

here, since observations indicate that the expansion is accelerating.

In principle we repeat the investigation from the Schwarzschild case. First, we have a

look at the metric components, in particular, at f(r). Just like before, we have a singularity

at r → 0 which proves to be a true curvature singularity. For further investigation we

now consider the Schwarzschild-de Sitter metric to be a combination of the Schwarzschild

spacetime in a de Sitter universe. We have seen that the Schwarzschild metric contains a

coordinate singularity at r = 2M being the event horizon of the black hole. On the other

hand the de Sitter universe possesses a cosmological horizon which is of different kind than

an event horizon of a black hole in the sense that particles can come out of the horizon

but nothing goes in. It corresponds to the size of our observable universe, i.e. the farthest

distance we can see.

When combining these two solutions of Einstein’s field equations we consequently obtain

a spacetime with two horizons for 0 < Λ < (3M)−2: an event horizon and a cosmological

horizon. From f(r) we can see that the event horizon located at small radii is approximately

rH1 ≈ 2M ,
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and the cosmological horizon at large radii

rH2 ≈
√

3

Λ
> 3M .

These two horizons divide the spacetime into three different regions: r < 2M is already

known from the Schwarzschild black hole and forces an observer to continuously approach

the centre. Then there is a static region 2M < r <
√

3
Λ with f (r) > 0 where an observer

has not fallen into the black hole but can still receive signals from objects moving at radii

close to r = 2M . The third region, however, r >
√

3
Λ is behind the cosmological horizon

which prevents an observer from seeing the black hole. For Λ < (3M)−2 there is no horizon

and no static region.

Moreover, from Noether’s theorem we know that each dynamical system exhibiting

symmetries possesses conserved quantities connected to these symmetries. In Riemannian

geometry these conserved quantities along geodesics are linked by a Killing vector field to

the symmetries. Both for geodesic motion in Schwarzschild and Schwarzschild-de Sitter

spacetime we have four Killing vectors ξµ resulting in the conservation of energy, total an-

gular momentum and the direction of the angular momentum vector making the dynamical

system completely integrable [7, 21].

These are the most prominent vacuum spacetimes for spherically symmetric black holes.

When giving up on spherical symmetry by removing one of the symmetries we end up

with axial symmetry. A gravitational field satisfying such a prescription corresponds to a

rotating black hole, which is discussed in the next section.

1.2.3 Kerr solution

The axial symmetric gravitational field generated by a rotating mass is called Kerr space-

time and was discovered by Roy Kerr in 1963 [64]. In contrast to Schwarzschild spacetime,

which describes the gravitational field produced by any spherically symmetric isolated ob-

ject, the Kerr metric describes merely the exterior of a black hole [7].

We can already deduce some properties of the spacetime simply by only taking into

account the presumed rotation of the central object. As mentioned before the metric has to

be axisymmetric about the axis of rotation. Furthermore, it has to be stationary because

the black hole rotates in the same manner for all times. However, reversing time changes

the direction of the spin and leads to the conclusion that the metric cannot be static. The

explicit solution of the Einstein’s field equations fulfilling these assumptions looks like [62]

ds2 = gtt dt
2 + 2 gtφ dt dφ+ gφφ dφ2 + grr dr2 + gθθ dθ2 , (1.8)
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with the coefficients

gtt = −1 +
2Mr

Σ
, gtφ = −2aMr sin2 θ

Σ
,

gφφ =
Λsin2 θ

Σ
, grr =

Σ

∆
,

gθθ = Σ , (1.9)

and the abbreviations

Σ = r2 + a2 cos2 θ , ∆ = ϖ2 − 2Mr ,

ϖ2 = r2 + a2 , Λ = ϖ4 − a2∆sin2 θ , (1.10)

in Boyer-Lindquist coordinates (t, r, θ, φ), with a as the spin of the black hole J/M . Having

the metric at hand, we see that it is asymptotically flat for large radii and reduces to

Schwarzschild metric for vanishing spin a. The singularities are also obvious:

∆ = 0 and Σ = 0 .

Again, by computing the curvature scalars we find that Σ = 0 is a curvature singularity

whereas ∆ = 0 is merely a coordinate singularity which can be removed by going to the

so called Kerr-Schild coordinates [62]. We have seen before in the spherically symmetric

case that the coordinate singularity gives rise to the event horizon, grr = 0. Notice that

indeed grr = ∆/Σ = 0 for ∆ = 0, so that the radial coordinate again changes from being

spacelike to being timelike and gives the event horizons in Kerr spacetime:

r± = M ±
√
M2 − a2 . (1.11)

There exist two solutions for M > a, one solution for M = a and no solution for M < a. In

the latter case there is no event horizon covering the true curvature singularity at Σ = 0.

This is known as a naked singularity which is thought to be less realistic. Thus, we assume

M ≥ a yielding at least one solution for the event horizon.

Interestingly, both solutions r± in (1.11) are positive which means we can divide the

spacetime in three domains: a region r > r+ where the radial coordinate is spacelike, then

a region r− < r < r+ where the radial coordinate becomes timelike so that an observer

located in this region has to move towards the inner horizon r−, and a third region r < r−

where the radial coordinate becomes spacelike again. However, since we are not able to

obtain any information from beyond the outer horizon we are only interested in the domain

that lies outside.

Interestingly, the stationary limit gtt = 0 does no longer coincide with the event horizon,
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so that an additional structure in spacetime emerges. The corresponding radii can be

calculated as

rE± = M ±
√
M2 − a2 cos(θ)2 . (1.12)

Only the positive solution is located outside the outer horizon rE+ > r+ which allows

an observer to cross rE+ and move inside the region between the outer horizon r+ and

rE+ where gtt > 0, i.e. where the time coordinate becomes spacelike, see Fig. 1.1 . This

Figure 1.1: The figure shows the horizon structure around a rotating (Kerr) black hole.
The outer horizon (rE+) corresponds to the black ellipsoid representing the static limit.
The event horizon is visualised by the red sphere (r+). The region between those radii is
called ergoregion within which an observer is forced to corotate with the rotation of the
black hole.

domain is called ergoregion and the boundary is known as the ergosphere [7, 62]. Within

the ergoregion an observer cannot stay still but is forced to corotate with the black hole

while outside the ergosphere an observer is allowed to be static. It is worth to stress at

this point, that an observer entering the ergoregion can still escape to infinity; he is not

trapped to a confined domain in spacetime.

As previously said symmetries admit for conserved quantities. Since Kerr spacetime

is axisymmetric and stationary, two Killing vector fields are admitted for geodesic mo-

tion. They correspond to the conservation of energy and the component of the angular

momentum aligned with the rotation axis. Moreover, an additional Killing tensor has been
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found by Carter in [65] leading to a third conserved quantity. It is called the Carter con-

stant but has no direct physical interpretation. Hence, there are in total three conserved

quantities making the geodesic motion in Kerr spacetime completely integrable, too [23].

After extensively discussing how spacetime shapes under the influence of matter we will

focus on how matter behaves under the influence of gravitational fields. In particular we

will deal with the dynamics of spinning particles and investigate their characteristics and

peculiarities.

1.3 Spinning Particles in General Relativity

Before we can start with the investigation of the properties of the motion of spinning

particles we first have to know how such a particle behaves in a gravitational field and how

it can be described by some set of equations of motion. As a matter of fact, the Einstein

field equations (1.2) contain all information necessary to find the equations of motion of

a spinning particle without assuming them separately. However, since the field equations

are non-linear due to the gravitational backreaction, we obviously have to simplify the

problem. First of all, the spinning particle is taken to be small compared to the object

that is producing the gravitational field and can be treated as a test body. In addition, this

means that the particle’s gravitational radiation and its contribution to the gravitational

field can be assumed to be negligible so that the description of its dynamics merely has to

deal with the motion of a particle in a given gravitational field.

Even though these strict constraints simplify the problem compared to the integration of

the full set of field equations, we encounter further difficulties when searching for solutions.

This is because the spin allows for further degrees of freedom and therewith for internal

structure the equations of motion depend on. Nevertheless, if the particle is supposed

to be small compared to the curvature length scale, i.e. the gravitational field occupied

by the particle is sufficiently homogeneous so that the particle does not experience any

gravitational tidal forces, the internal structure can be expressed by a multipole expansion

of the matter distribution. The coefficients of such an expansion are the moments of the

stress-energy-momentum tensor describing the properties of matter, i.e. of the spinning

testparticle. The evolution equations are then obtained by the integration of the covariant

conservation law for the stress-energy-momentum tensor, so that they result in a series of

multipole contributions, introduced by M. Mathisson in his pioneering work from 1937 [66].

Now, it is possible to simplify the equations of motion by cutting off the series at a certain

number of multipoles which become more complicated the higher the orders are, since they

depend on multiples and derivatives of the Riemann curvature tensor. One of the simplest

approaches cuts off the expansion at second order called the pole-dipole approximation and

traces back to the works of Mathisson and Papapetrou [66, 67].
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1.3.1 Pole-Dipole-Approximation

The pole-dipole approximation deals with the equations of motion of a spinning particle

only including the mass monopole and spin dipole. Multipoles of higher orders and non-

gravitational effects are ignored. The spinning particle is modeled to be some narrow tube

evolving in spacetime inside of which Tµν does not vanish [66, 68, 69, 70]. In order to define

the multipoles we have to choose a representative worldline xµ (τ) inside this tube about

which the multipoles, such as the spin, are computed. We already know from classical

mechanics that the moments of inertia are calculated with respect to some reference point

so that this approach is transferred to relativistic motion. Therewith, we obtain for the

multipole moments of Tµν [71, 72, 73]

ˆ
Σ(x,V )

Tµνδxα1 ...δxαn
√
−gdΣν , (1.13)

where the integration runs over a three dimensional volume within a spacelike hypersurface

Σ (x, V ) generated by all the geodesics through xµ (τ) orthogonal to observer’s four-velocity

V µ at constant proper time τ , δxα = (zα − xα) is the tangent vector to the geodesic

connecting xα and zα running through the body’s volume, dΣν = nνdΣ with nν as the unit

normal vector to Σ (x, V ), dΣ is the three dimensional volume element on the hypersurface

and g = gµνg
µν is the determinant of the metric. The prefactor

√
−g arises when the

volume undergoes coordinate transformations. In order to ensure that the form of the

integral remains covariant, i.e. that it is independent of the choice of coordinates, we

require the volume element to be invariant by introducing the factor
√
−g in the integral.

The infinite set of multipole moments has been called the gravitational skeleton by

Mathisson [66], since it fully describes the gravitational properties of the extended body.

There is some ambiguity, though, in the definition of these multipoles in the sense, that the

integration procedure in(1.13) is not uniquely fixed. While in flat spacetime the approach is

indeed straightforward, problems occur in curved spacetime: During the integration process

tensors at different spacetime points are summed over. Different generalisations from flat

to curved spacetime have been developed in the course of time [74]. However, a precise

definition of the momenta becomes important not until quadrupole and higher orders are

considered, i.e. at pole-dipole order these various approaches are indistinguishable and

lead to the same form of equations of motion [72, 74].

When the analysis is restricted to particles whose dynamics is only affected by the

monopole moments the motion is simply geodesic. If the next higher order multipole

moment, the dipole moment, is included, the motion corresponds to a test particle with

inclusion of spin and is no longer geodesic. Then the monopole and dipole moments give

rise to the definition of the kinematic momentum pµ and the spin tensor Sµν of the body
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as measured by an observer moving along the reference worldline with velocity V µ [74, 75]

pµ =

ˆ
Σ(x,V )

Tµν√−gdΣν ,

Sµν = 2

ˆ
Σ(x,V )

δx[µT ν]γ√−gdΣγ .

The corresponding equations of motion can be obtained using the conservation law

Tµν
;ν = 0 ,

and derived in their covariant form as [72, 73, 76, 77]

Dpµ

dτ
= −1

2
Rµ

νρσu
νSρσ , (1.14)

DSµν

dτ
= pµuν − pνuµ , (1.15)

with uµ = dxµ/dτ being the tangent to the worldline parametrised by proper time τ and
D
dτ denotes the covariant directional derivative. While Papapetrou used a non-covariant

method to obtain the set of equations (1.14), (1.15), Tulczyjew and Dixon succeeded in

the derivation of these equations within a manifestly covariant approach [54, 73, 76, 77].

Since the pioneering works trace back to Mathisson and Papapetrou, we will refer to these

equations as the MP equations, though [66, 67].

Still, there are less equations than unknown variables so that the system is underde-

termined and a spin supplementary condition (SSC) has to be imposed in order to close

the set of equations. This implies some arbitrariness in the choice of the supplementary

condition and is reflected in the choice of the representative worldline [78]. One might

think of getting rid of this ambiguity by switching to the concept of point particles. If

the size of the test body goes to zero it should not make any difference which worldline

is chosen to represent the particle. However, the concept of a point particle is no longer

valid for spinning bodies, as Möller has shown. In the framework of special relativity he

deduced that a classical body with spin SµνS
µν = 2S2 and rest mass m2 = −pµp

µ must

have a size of r0 ≥ S
m in order not to rotate at superluminal speed [79]. This argument can

be transferred to general relativity so that we have to treat spinning particles as extended

bodies of finite size in order to be physically relevant. Thus, the problem of the unclosed set

of equations in (1.14) and (1.15) can be physically understood by the requirement that the

particle must have a finite size which does not make the choice of the reference worldline

redundant.

In principle the supplementary condition can consequently be related to the choice

of a centre of mass whose evolution is described by the reference worldline seen by an
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appropriate observer, see e.g. [58, 80, 81, 82, 83]. Despite being independent of a chosen

reference frame in classical mechanics, the centre of mass is no longer covariant in special

and general relativity. J. Steinhoff uses a nice visualisation [58] which we adapt here in Fig.

1.2: The centre of mass corresponds to the centre where the mass dipole vanishes. However,

if the spinning particle moves with a constant velocity v the part which moves faster appears

to be heavier and the one that moves more slowly appears to be lighter. Therefore, the

∆x 
v 

fast and heavy 

slow and light 

Spin 

Figure 1.2: The figure shows a spinning particle moving with velocity v. The upper part of
the particle appears to move faster than the lower part due to the direction of the particle’s
spin. Thus the centre of mass is shifted upwards ∆x with respect to the centre of mass
seen by an observer with zero-3-momentum frame.

particle acquires a mass dipole inducing a shift of the centre of mass ∆x compared to an

observer with zero-3-momentum. By prescribing a reference worldline within the particle

describing its evolution it is always possible to find an observer for whom the reference

worldline coincides with the centre of mass. To conclude, the supplementary condition

defines not only a reference worldline but also a reference frame in which an observer sees

the evolution of the centre of mass.

During the past 70 years, several spin supplementary conditions have been established

and are widely used today, see e.g. [9, 74, 75, 80, 81, 83, 1]. Basically, the criteria by

which such a supplementary condition is selected are subject to the question one intends

to investigate, e.g. certain SSCs are better suited for a canonical formalism than others.

Therefore, it is often useful to invest time in the conceptual framework in order to make

the best decision for the supplementary condition. We will give a detailed description on

the four most popular ones below in section 1.3.2.

Moreover, the necessity of a supplementary condition is also reflected by the fact that
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generally the four-momentum pµ is no longer a rescaling of the velocity uµ so that by

fixing a SSC the relation between those quantities is also defined. Such a relation is

not always explicit, though, making analytical computations more complicated. Thus, a

possible argument for a choice of a specific SSC might be that it leads to an explicit relation

between pµ and uµ, see e.g. [32, 84].

Further simplifications of the analysis of a dynamical system are achieved by symmet-

ries, or physically speaking, by constants of motion. The symmetries of the background

spacetime can be described by Killing vectors, which we have briefly mentioned in sec-

tion 1.2.2. If the spacetime in which the particle moves admits a Killing vector ξ, the

corresponding constant of motion is given by [70]

K = pµξµ − 1

2
Sµνξµ;ν . (1.16)

In addition, there may exist further non-linear constants of motion that are related to

Killing-Yano tensors of the spacetime [85, 86].

As mentioned previously the dynamical system needs a spin supplementary condition

in order to be fully determined which is the topic of the following section.

1.3.2 Spin Supplementary Conditions (SSC)

The supplementary condition serves as the choice of a reference point within the spinning

extended body whose evolution is described by the equations of motion. From classical

mechanics we usually intend to choose the centre of mass as the point of reference. However,

in general relativity the centre of mass is no longer the same in every reference frame, i.e.

it is not covariant and therefore observer dependent. Nevertheless, it is always possible to

find an observer who sees a given representative worldline as being the centre of mass of

the spinning particle. More precisely, such a frame is defined by a vanishing mass dipole

Si0 [58, 83]. This can be expressed in covariant form by

SµνVν = 0 , (1.17)

with Vµ being a timelike vector corresponding to the four-velocity of the observer who sees

the respective reference worldline as being the evolution of the centre of mass. In order

to ensure that the reference worldline lies within the body the vector Vµ is required to be

timelike [58, 75, 83, 84].

The choice of an SSC is closely related to the ability to find an expression between uµ

and pµ, which are, in general, no longer parallel to each other, i.e. pµ ̸= muµ as we know

it from geodesic motion. This is the first hint that the motion of a spinning particle does

not follow geodesics. Generally, the rest mass m can no longer be considered as a constant
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of motion so that we redefine the kinematical mass by [87]

pµu
µ = −m , (1.18)

corresponding to the mass with respect to the kinematical four-velocity uµ. Then, we

denote the dynamical mass with respect to the four-momentum pµ by M, satisfying the

mass shell constraint

pµp
µ = −M2 .

It contains information on the inner structure of the particle characterised by the spin

Sµν and therefore depends on the contributions of the terms obtained by the multipole

expansion. In this context a dynamical velocity is defined by [72, 87]

vµ =
pµ

M
. (1.19)

Indeed, m = M holds only if the tangent vector uν coincides with the dynamical four-

velocity given in eq. (1.19).

The MP equations do not explicitly state how we can evaluate the tangent vector uµ

throughout the evolution. To find uµ information from the SSCs is needed. Taking eq.

(1.14) and the covariant derivative of eq. (1.17), we obtain an implicit relation between

the kinematic momentum and the particle’s velocity [53, 88]

pµ =
1

Vνuν

(
(Vνp

ν)uµ − SµνDVν

dτ

)
, (1.20)

or, alternatively

pµ = m uµ − uν
D Sµν

dτ
, (1.21)

by multiplying eq. (1.15) with uν .

Moreover, neither of the masses have to be a constant of motion in general. It depends

on the relation between pµ and uµ which is determined by the SSC. Namely, for the time

evolution of m we obtain
dm

dτ
=

D m

dτ
= −D uν

dτ
pν ,

since from eq. (1.14) we see that
D pν

dτ
uν = 0, and by using eq. (1.21) for replacing pν , we

arrive at
dm

dτ
=

D uν
dτ

uµ
D Sνµ

dτ
. (1.22)

For the time evolution of the dynamical mass M we have

dM
dτ

=
D M
dτ

= − pν
M

D pν

dτ
,
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and again by using eq. (1.21) for replacing pν , it yields

dM
dτ

=
D pν
dτ

pµ
M µ

D Sνµ

dτ
. (1.23)

In addition to the masses, the spin measure is another scalar quantity given by

S2 =
1

2
Sµν Sµν . (1.24)

Just as we have seen for the masses the spin measure is also generally not a constant of

motion. Its time evolution yields

d S2

dτ
=

D S2

dτ
= Sµν

D Sµν

dτ
, (1.25)

and by eq. (1.14) we obtain

d S2

dτ
= Sµν (pµ uν − uµ pν)

= 2Sµν p[µ uν] , (1.26)

It is often more useful to work with a spin four-vector Sµ instead of the spin tensor,

since this is more physically intuitive and also computationally more convenient than the

tensor Sµν . The antisymmetry of the spin tensor only allows for six independent spin

values which mathematically can be reduced to a usual four-vector [89]. This four-vector

resembles the angular momentum vector we know from Newtonian mechanics and therefore

is easier physically understood than the tensor. Generally, Sµ depends of course on the

SSC, since the spin is always computed with respect to the chosen reference worldline.

This dependency is considered for by the four-velocity of the corresponding observer V µ

entering the SSC. Therewith, the spin four-vector is generally defined by [83]

Sµ ∝ ηµνρσV
νSρσ , (1.27)

which allows us to formulate the spin measure as

S2 ∝ SµS
µ , (1.28)

yielding a more intuitive expression than eq. (1.24). The measure of the spin divided by

the dynamical rest mass, i.e. S/M defines the minimal radius of a volume which a spinning

body has to have in order not to rotate with a superluminal speed. The same radius defines

the upper bound of the separation between worldlines defined by various SSC , i.e. a disc of

centres of mass inside of which the worldlines have to lie [83]. This radius was introduced
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by Möller in [79], and therefore is often called the Möller radius.

It now depends on the choice of Vµ how the dynamics behave, i.e. whether the masses

and/or the spin measure are conserved or the relation between the velocity and the mo-

mentum is given explicitly. One of them is the SSC introduced by Tulczyjew (T SSC) [54]

where Vµ is chosen to be pµ:

Sµνpν = 0 . (1.29)

It is covariant and has been proven to guarantee the existence and uniqueness of the

respective worldline [90, 91, 92]. Also, the relation between uµ and pµ has been shown to

be manifestly covariant, explicit and unique [88, 93, 94]. The appropriate observer has zero

3-momentum.

In the case of T SSC, uµ is found via the relations given in eq. (1.20) or eq. (1.21) and

results in

vµ = N (uµ + wµ) , (1.30)

where

wµ =
SµνRνγσλ uγ Sσλ

2
(
M2 + 1

4Rαβγδ Sαβ Sγδ
) , (1.31)

and N = m/M being a normalisation factor [32, 87, 88]. It depends on the choice of

the normalisation of the tangent vector uµ and therewith on the choice of the worldline

parameter. If proper time τ is chosen to be the affine worldline parameter and the velocity

is normalised by uµuµ = −1 we obtain

N =
1√

1− wµ wµ
(1.32)

Therewith it is also guaranteed that the particle follows a timelike path. For more details

on how to derive the above expression see, e.g. [87].

Moreover, the T SSC implies some further advantages: Both the particle’s dynamical

mass M and the measure of the spin vector in eq. (1.28) are conserved quantities which

can easily be seen by the eq. (1.23) and (1.26) using the T SSC from eq. (1.29). Conserved

quantities simplify the dynamical problem in particular for analytical investigations and

the determination of initial conditions in numerical studies.

As already mentioned, the definition of the spin vector in eq. (1.27) is usually adapted

to the chosen SSC and yields for the T SSC

Sµ = −1

2
ηµνρσv

νSρσ , (1.33)

where ηµνρσ is the Levi-Civita tensor density ηµνρσ =
√
−gϵµνρσ with ϵµνρσ as the Levi-

Civita Symbol and ϵ0123 = −1. The factor
√
−g ensures the density to be invariant
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under coordinate transformations, as we have seen for the volume element in the multipole

expansion in eq. (1.13). Moreover, we deduce that

Sµp
µ = 0 , (1.34)

so that the spin four-vector is perpendicular to the four-momentum. The corresponding

inverse relation between the two spin forms is

Sρσ = −ηρσγδSγvδ , . (1.35)

Therewith the spin measure results in

S2 = SµS
µ , (1.36)

which becomes a useful relation when performing numerical calculations and comparing

the results obtained by two different SSCs or formalisms used to formulate the equations

of motion in chapter 3.

Although not being covariant another supplementary condition introduced by Corin-

aldesi and Papapetrou (CP SSC) [80] is

Si0 = 0 , (1.37)

closely related to the non-covariant derivation in [67]. It basically states that the mass

dipole must vanish in a non-covariant form. It is clearly coordinate dependent and has no

meaning until a reference frame is chosen. The reason why it was thought to be a good

choice is that it defines the centre of mass of the particle in the rest frame of the central

gravitating body [80, 83].

Another one is defined by

Sµνuν = 0 , (1.38)

which appeared in Mathisson’s covariant derivation of the equations of motion for a spin-

ning particle subject to this specific supplementary condition [66]. The appropriate ob-

server is comoving with the particle and sits in the rest frame of the particle. Although it

provides not a unique choice of representative worldline, as it is dependent on the observer’s

velocity and therewith on the initial conditions [79], it seems to be the most natural choice

of SSC which is the reason why it is often referred to as the proper centre of mass [75].

Nevertheless, it was long thought to be unphysical, since it exhibits helical motions in

contrast to a straight line in flat spacetime. However, Costa et al. [75] showed that it

is completely consistent with physics and interpreted the helical motion as some kind of

hidden momentum. Actually, these helical motions appear within Möller’s work when he
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related different centre’s of mass by Lorentz transformations in order to define the minimum

size of a body with structure in order to prevent a rotation at superluminal speed [79]. It

became famous, though, through the work of Pirani in which he showed that the spin

tensor undergoes Fermi-Walker transport [95]. That is why it is known under the Pirani

SSC (P SSC).

Lastly, the Newton-Wigner spin supplementary condition (NW SSC) [56, 57] has gained

increasing attention during the last decades. In principle, it is a combination of the T SSC

eq. (1.29) and P SSC eq. (1.38)

Sµνζν = 0 , (1.39)

with ζν := pν +Mnν and nν being some timelike vector. Neither the masses, eq. (1.22),

(1.23), nor the spin, eq. (1.26), are preserved. Thus, from this point of view it is a strange

selection of a SSC. However, we should keep in mind that our framework is a pole-dipole

approximation neglecting quadrupole and higher order effects. Attributing the terms that

are quadratic in the particle’s spin to the quadrupole and higher orders, it is somehow

adequate for the just mentioned quantities to be conserved only up to linear order in the

spin. For the spin, this can be seen from eq. (1.25) but for the mass M the proof is quite

more complicated and was provided in [53].

In the case of NW SSC, according to our knowledge, there is no explicit expression

which gives uµ as a function of pµ and Sµν . However, we can reformulate the relation in

eq. (1.20) to

uµ =
1

ζνpν

(
(ζνu

ν)pµ + SµνD ζν
dτ

)
, (1.40)

which only provides us with an implicit relation between the four-momentum and the

worldline’s tangent vector.

Again, the definition of the spin four-vector depends on the observer, i.e. the SSC.

Thus, for the NW SSC in eq. (1.39) we define the four-vector as [1]

Sµ = − 1

2 M
ηµνρσζ

νSρσ , (1.41)

which is combined with the NW SSC and leads to

Sµζ
µ = 0 . (1.42)

Thus, the spin four-vector is perpendicular to the timelike vector ζµ. In the NW case the

inverse relation of eq. (1.41) between the two spin forms is

Sρσ = ηρσγδ Sγ
M ζδ
ζνζν

. (1.43)
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Then, the spin measure (1.24) reads

S2 = −M2

ζνζν
Sσ Sσ . (1.44)

In the context of a Hamiltonian formalism one major advantage is that the NW SSC

has been proven to lead to canonical spatial coordinates in special relativity [57, 58]. Using

the generators of the Poincaré group, which are related to rotations and translations in

physics and satisfying the Poincaré algebra, it is possible to show for the reference point

xi and the spin tensor Sij computed around xi fixed by the NW SSC in eq. (1.39) that

the following Poisson bracket relations hold

{
xi, pj

}
= δij{

Sij , Skl
}

= δikSjl − δjkSil − δilSjk + δjlSik

where (i, j, k, l) run over the spatial components (1, 2, 3). All other Poisson brackets vanish.

Newton and Wigner indeed found that this is the only choice of reference worldline yielding

a canonical structure of the variables. Despite the fact that this has not yet been proven

to lead to a canonical structure in general relativity, Barausse et al. [53] implemented it

into their Hamiltonian formalism for a spinning test particle and linearised it in spin which

indeed resulted in canonical variables up to linear order in spin. Thus, the NW SSC offers

a handy condition when working in the Hamiltonian formulation, which is easiest dealt

with in canonical variables.



Part I

The Dynamics of Spinning

particles
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Spinning particles briefly reviewed

The first part of this thesis deals with the dynamical properties of spinning particles in-

vestigated by both numerical and analytical methods. The characteristics of the motion is

discussed in terms of the orbital evolution of the particles.

Spinning particles have already been extensively studied in the literature. In particular,

the effects and behaviour that are different from geodesic motion. The influence of spin-

curvature coupling, especially of spin-orbit and spin-spin coupling, on the spin motion

has been discussed in [9, 96, 97, 98, 99, 100, 101] and the resulting orbits are compared

to geodesic motion in [30, 81, 99, 100, 102, 103, 104]. Analogies to electromagnetism

were found in [55, 78, 105]. Their influence on orbital properties such as the periastron

shift, the radius of the innermost stable circular orbit or general classification of orbits

are studied in [34, 106, 107] for Schwarzschild and Kerr spacetimes by numerical as well

as analytical techniques. Experimental tests were already proposed in the 1960s and 70s

in [9, 81, 96] based on the precession frequency of the spin and the orbit which can be

interpreted by curvature and gravitomagnetic effects in terms of geodetic precession and

frame-dragging. In 2004 the satellite-based mission Gravity Probe B was launched and

confirmed the expectations from general relativity, see e.g. [108].

As geodesic motion is integrable in many spacetimes [21, 22, 23], the spin can be treated

as a perturbation which leads to the assumptions that the system becomes chaotic. Several

studies using numerical techniques such as the Lyapunov exponent, Poincaré sections or

effective potential analysis [35, 36, 37, 38] have found good indications for chaotic behaviour

in the vicinity of special types of orbits or a certain range of parameter values. Chaos may

have a severe impact on gravitational wave signals and the corresponding data analysis.

As EMRIs are supposed to be good candidates for sources of gravitational waves, several

studies comitted to the calculation of gravitational radiation emitted by non-spinning as

well as spinning particles inspiraling into (non-)rotating black holes using the black-hole

perturbation approach [18, 24, 30, 31, 32, 98, 109]. In the adiabatic limit the evolution of

the particle can be modeled by a transition through the orbits of the conservative system

[17, 19, 110]. In fact, the corresponding waveforms show a distinct feature in the frequency

spectrum when the particle passes over from bound orbits, i.e. the inspiral, to plunge
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[20, 28, 29]. A theoretical understanding of the relation between the different types of

orbits and the gravitational frequencies provides information on possible features in the

gravitational wave signal. This is the reason why we are interested in the description of

the orbital properties of non-spinning and spinning particles in Schwarzschild-de Sitter

spacetime in chapter 2.

The great variety of spin supplementary conditions has been discussed in different

contexts. The effects of different SSCs on the coupling terms or the shift of the centre of

mass within the body and the corresponding evolution are studied in [9, 58, 81, 83, 99, 111,

112]. While the P SSC and CP SSC were the most favourable ones at first [9, 80, 96, 113] the

T SSC became more popular when the opinion was established that the P SSC exhibited

unphysical helical motion in flat spacetime [32, 37, 87, 114, 115]. A few years ago, it

was shown by Costa et al. [75] that the P SSC yields indeed physical solutions as every

other SSC. The desire to have a canonical Hamiltonian formalism for spinning particles,

though, has increased the attention to the NW SSC [47, 53, 58, 116]. Nevertheless, the

properties of the NW SSC and the corresponding evolution of worldlines have not yet been

compared to other SSCs in the framework of the MP equations. In order to obtain a better

understanding of its characteristics we perform a numerical study to check it against the

well understood T SSC in chapter 3.



Chapter 2

Isofrequency Pairing in

Schwarzschild-de Sitter Spacetime1

The occurrence of isofrequency pairs in the strong field regime of the Schwarzschild space-

time was noticed only recently by Barack and Sago [26]. At first, this degeneracy feature

may not be much of a surprise. After all, it is known from Newtonian Mechanics that the

frequencies of the Kepler ellipses are all degenerate, i.e. the radial and azimuthal frequen-

cies have the same value, see e.g. [117]. This is the reason why the orbits in Newtonian

physics are closed.

When general relativistic effects are considered, though, one major difference to New-

tonian physics is the periastron shift of bound orbits which are no longer closed. This

manifests itself in the non-degeneracy of the frequencies. In the Schwarzschild spacetime

we have two independent orbital frequencies, for the radial and for the azimuthal motion.

It was long thought that these two frequencies provide another unique parametrisation of

the orbits, as an alternative to the ones already known. However, Barack and Sago [26]

showed that in the strong field of Schwarzschild spacetime, i.e. in the highly relativistic

regime, there exist pairs of timelike geodesics which are described by the same frequencies.

In a follow-up study, Warburton, Barack and Sago [39] generalised the isofrequency pairing

to the Kerr geometry. In contrast to the Schwarzschild case, timelike geodesics in the Kerr

spacetime have three degrees of freedom and even triperiodic partners have been found.

As outlined in Refs. [26, 39], the occurrence of isofrequency pairing is of relevance in view

of gravitational wave analysis because it implies that, for the case of an EMRI, from the

observation of the fundamental frequencies one cannot uniquely determine the shape of the

orbit. Shortly after Refs. [26, 39] had appeared, Shaymatov, Atamurotov and Ahmedov

[40] investigated the influence of a magnetic field on the orbital frequencies of a charged

1This chapter is based on the work published in [2] and parts of it follow closely the lines of [2].
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particle moving in Schwarzschild spacetime and found that the region where isofrequency

pairing occurs shrinks for high values of the magnetic field.

Apart from the isofrequency pairing, we analyse the properties of bound motion in the

frequency picture. Gravitational radiation reaction of an infalling object is, among other

approaches, modeled by a transition of the particle through its possible orbits, see e.g. [17].

Therewith, it has been suggested that the homoclinic orbits exhibit a distinct imprint on

the gravitational wave spectrum [20, 25, 28, 29]. Thus, the investigation of the boundaries

of bound motion, which an infalling particle must cross, in the frequency domain is still of

interest for gravitational wave physics.

2.1 A general Characterisation of bound Orbits

First, we focus on the motion of freely-falling test particles. By freely-falling we mean that

these particles are not subject to any external forces except for gravity and “test” implies

that the particle does not exert any backreaction onto the underlying gravitational field.

The curve xµ(σ), along which such a particle moves, is parametrised by an affine parameter

σ = aτ + b and defined by the geodesic equation [6, 7]

d2xµ

dσ2 + Γµ
αβ

dxα

dσ
dxβ

dσ = 0 . (2.1)

Although the corresponding dynamical system suffers from approximations the solutions

of the geodesic equation turn out to be very useful for practical applications. One example

is the perihelion shift of Mercury which can be calculated using an analytical solution of

the geodesic equation and is then compared to observational measurements, see [21, 23].

Therewith we can test Einstein’s theory of General Relativity.

As soon as the approximations are given up it becomes harder or even impossible to find

an analytic solution so that numerical methods have to be employed. Therewith, numerical

errors emerge which may obscure tiny general relativistic effects. Although analytical

calculations often use highly simplified situations, they provide a general understanding of

general relativistic motion and are able to reveal general relativistic effects which are not

necessarily noticed in numerical calculations if they are not expected to show up. Moreover,

it is easier to use the analytical approaches to investigate more complex system, which such

effects may be transferred to, so that one knows what to look for in numerical results.

The parametrisation of the path by an affine parameter that is merely connected to

proper time τ by a linear relation, has been chosen by the requirement that the tangent

vector is parallel transported [118]. Nevertheless, we have to be careful when parametrising

the path, which can be either spacelike, timelike or null, i.e. ds2 > 0, ds2 < 0 or ds2 = 0,

as we have briefly mentioned in the introduction section 1.2. Two events connected by a
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spacelike path cannot be in causal contact while a timelike curve links cause and effect

to each other. Massive particles will thus follow timelike curves. Null geodesics, on the

other hand, describe the motion of light and are also called lightlike geodesics. In order

to distinguish these three cases we combine the metric compatibility gαβ;µ = 0 with the

geodesic equation (2.1) and arrive at a conserved quantity

ϵ := gµν
dxµ

dσ

dxν

dσ
. (2.2)

Choosing the parametrisation of a timelike curve to be proper time τ yields ϵ = −1.

Spacelike geodesics are usually parametrised by proper length resulting in ϵ = 1. Notice,

that for lightlike geodesics it is not that simple since ds2 = −dτ2 = 0 gives ϵ = 0, which is

always satisfied and thus does not fix the affine parameter.

2.1.1 Parametrisation

In this work, we are only interested in massive particles so that we will no longer incorporate

the other two cases. As an example, we analyse the geodesic equation for massive particles

in a Schwarzschild gravitational field, following [7, 23].

First, we fix the path parameter to be proper time by setting ϵ = −1. Secondly, due to

the three rotational symmetries and the invariance under time translations we have four

conserved quantities corresponding to the three components of angular momentum and

the energy. The direction of the angular momentum is consequently fixed and the motion

takes place in a plane. Without loosing generality we fix this plane to be the equatorial

plane θ = π/2. Thus, we have a constant angle θ and can ignore its equation of motion.

Using eq. (2.1), the remaining equations of motion yield

d2t
dτ2

+ 2M
r2(1− 2M

r )
dr
dτ

dt
dτ = 0

⇔ d
dτ

((
1− 2M

r

)
dt
dτ

)
= 0 , (2.3)

for the time coordinate and

d2φ
dτ2

+ 2
r
dφ
dτ

dr
dτ = 0

⇔ d
dτ

(
r2 dφdτ

)
= 0 , (2.4)

for the azimuthal angle. They provide an easy access to two of the constants of motion,

the energy H =
(
1− 2M

r

)
dt
dτ and the angular momentum component perpendicular to

the plane of motion Jz = r2 dφdτ both measured in units of the particle’s mass m, e.g.

J̃z = mr2 dφdτ ⇒ J̃z ↦→ mJz. Another approach to obtain these quantities is to use the
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Killing vectors ∂t and ∂φ and apply Killing’s equation [6, 7]. In order to characterise the

motion it is sufficient to write the equation of motion for the radial coordinate using eq.

(2.2) and setting ϵ = −1 (
dr

dτ

)2

=
P3(r)

r3
, (2.5)

with

P3 (r) = −
(
1−H2

)
r3 + 2Mr2 − J2

z r + 2MJ2
z .

The general relativistic correction to the Newtonian effective potential is given by the last

term of P3 (r), i.e. 2MJ2
z and is responsible for Mercury’s perihelion shift.

Physically relevant motion requires the right-hand side of eq. (2.5) to be positive.

By investigating the polynomial P3(r) the kinds of orbits in Schwarzschild spacetime are

classified. Making use of the rule of signs by Descartes we deduce that the polynomial can

have at most three positive zeroes for 1−H2 > 0 and only two for 1−H2 < 0. In fig. 2.1

the function P3(r) is shown for an appropriate choice of H and Jz to have three zeros.
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Figure 2.1: The polynomial P3(r) is plotted for the choice of the following parameters
H = 0.965, Jz = 4 and M = 1. It has three positive real zeroes r1, rp and ra. Physical
motion is possible for radial coordinates between 0 and r1 (terminating orbits) as well as
between rp and ra (bound orbits).

Physical motion is only possible for such radial coordinates where P3 (r) is positive. We

see that there exist bound orbits between the two outermost zeros (rp, ra) and terminating

orbits for radii smaller than the innermost zero r1. As already mentioned, the shape of the

function depends on the values of the coefficients depending on H and Jz, which means
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that only for 1 −H2 > 0 the motion can be bound. For a more detailed classification of

the types of orbits see [23].

It is worth to remark here, that the pair of constants of motion (H,Jz) completely

determines the orbit of the particle. Consequently, they serve as a good parameterisation

and no further information is needed to characterise the particle’s motion. However, they

are not accessible by observations so we might consider some other approaches to charac-

terise the orbits. We are solely working with bound orbits, since we will be interested in

their radial and azimuthal frequencies. Thus, we ignore any other kinds of orbits in the

following discussion. Moreover, we set r → rM and Jz → JzM in further calculations, i.e.

we measure the radius and the angular momentum in units of the central mass.

Bound motion requires two turning points in the radial motion with
(
dr
dτ

)
= 0 , i.e.

they correspond to two zeros of P3(r). It has already been indicated that bound motion

only exists for 1−H2 > 0 allowing for at most three positive real zeroes in the polynomial.

Consequently, we rewrite eq. (2.5) as

P3(r)

− (1−H2)
= (r − r1)(r − rp)(r − ra) ≡ Vr ,

with 0 < r1 < rp < ra. The radial coordinate of a bound orbit oscillates between the

periastron rp and the apastron ra so that it is highly suggestive for (rp, ra) to be a good

parametrisation as well. To check this, we relate the turning points to the constants of

motion by expanding Vr and compare its coefficients to the ones in eq. (2.5). The result is

H2 =
(ra − 2)(rp − 2)(ra + rp)

(ra + rp) (rarp − 2 (ra + rp)) + 2rarp
,

J2
z =

2r2ar
2
p

(ra + rp) (rarp − 2 (ra + rp)) + 2rarp
,

r1 =
2rarp

rarp − 2 (ra + rp)
, (2.6)

It can be verified that the map from (H,Jz) to (rp, ra) is indeed one-to-one confirming the

latter to be a permitted parameterisation for bound orbits.

Extreme cases of bound orbits occur when two zeroes merge, i.e. r1 = rp corresponding

to unstable circular or homoclinic orbits or rp = ra corresponding to stable circular orbits.

They both mark the boundaries of the region of bound motion in parameter space.

A nice choice for visualisation is given by the parameter pair (p, e) with p being the

semi-latus rectum and e the eccentricity. We are familiar with this kind of parameters

from the mathematical description of ellipses. Since Johannes Kepler observed that the

planets move on ellipses around the sun in Newtonian physics, it is quite common to

characterise the orbits in celestial mechanics by (p, e). They can be related to the apastron
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and periastron by

ra =
p

1− e
, rp =

p

1 + e
. (2.7)

It is important to stress and to keep in mind that the semi-latus rectum and the eccentricity

merely provide a description for bound orbits. By defining the boundaries of bound motion

we can only obtain the parameter region allowed to describe bound orbits and cannot make

any statement concerning other possible kinds of motion, though.

The merging of the zeroes gives us the equations for the boundaries: First, rp = ra

corresponds to stable circular orbits, which immediately results in e = 0 and an arbitrary

p. Secondly, r1 = rp results in p = 6 + 2e, which is often called the separatrix, because it

separates the region of bound orbits from the region of unbound orbits. It represents the

unstable circular orbits or, and this is important, the homoclinic orbits [24].

In fig. 2.2 the region of bound motion is shown in a (p, e)-diagram for the Schwarzschild

spacetime. Here, the domain of bound orbits, corresponding to the region enclosed by the

solid blue lines, is infinitely large. The red dashed line on the boundary represents the

separatrix. On the separatrix, each point corresponds to a homoclinic orbit from a radius

r1 = rp to a radius ra > rp and back to r1 = rp. Such a homoclinic orbit has the

same constants of motion H and Jz as the unstable circular orbit at r1 = rp, which it

asymptotically approaches; these unstable circular orbits are situated on the horizontal

axis (e = 0) to the left of the dashed line. The relation between those two kinds of orbits is

visualised by the thick red line on the horizontal axis (e = 0, unstable circular orbits) and

the red dashed line along the separatrix (e ̸= 0, homoclinic orbits). The upper boundary

curve of the region of bound orbits corresponds to parabolic (unbound) orbits with e = 1,

while the lower boundary is associated to stable circular orbits with e = 0. The lower

left-hand corner of the region of bound orbits marks the innermost stable circular orbit

(ISCO) at r = 6 [7]. These features of the domain of bound orbits in the Schwarzschild

spacetime have been discussed by other authors before, see [24, 39].

Physically, the relation between the homoclinic and unstable circular orbits can be

understood by thinking of the zoom-whirl feature apparent close to the boundary: A

particle performs a certain number of revolutions around the unstable circular orbit before

it zooms out following an elliptic trajectory described by the non-vanishing eccentricity.

Then it comes back to the unstable circular orbit where it whirls around again for some

time before zooming out again. The times spent at the equilibrium point depend on how

close to the boundary the orbital parameters are. The zoom-whirl feature usually occurs

in the vicinity of a separatrix, which is located, in the Schwarzschild spacetime, in the

strong field region where the easiest accessible sources of gravitational waves are thought

to exist [25, 28]. Thus, having such features in the strong field regime of a black hole might

be useful to obtain information on the underlying source by observing the frequencies of



2.1. A GENERAL CHARACTERISATION OF BOUND ORBITS 55

5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

p

e

Figure 2.2: The figure presents the region of bound motion in the (p, e) - plane for Schwarz-
schild spacetime (blue shaded region). The solid blue lines represent the the stable circular
orbits e = 0, the homoclinic orbits p = 6+2e and the parabolic orbits e = 1. The unstable
circular orbits e = 0 are marked by the solid red line. Their relation to the homoclinic
orbits is visualised by the dashed red line.

gravitational waves.

2.1.2 Definition of the frequencies

Gravitational wave detectors, although not being successful yet, aim to measure the fre-

quencies of gravitational waveforms [11, 12]. In order to make theoretical predictions for

such experiments it is necessary to relate observational features with the quantities we

have in our theoretical description. Luckily, we do not have to search very hard. The

gravitational frequencies are composed of a number of harmonics of the fundamental fre-

quencies of our dynamical system consisting of the particle’s motion around a black hole

[16, 110, 119]. Consequently, it is helpful to pass over into the domain of the frequencies

to characterise the motion.

The gravitational wave detectors are situated on earth or, if they are in space, close to

the earth on astronomical scales. This is far away from the centre of our galaxy, whose

black hole serves as a source for the gravitational waves scientists aim to measure. Thus,

we define the frequencies in such a way, as they are seen by a static observer at infinity

[39]. The corresponding time coordinate is not proper time but simply coordinate time

t. In Schwarzschild geometry a general bound orbit exhibits two frequencies: the motion

is periodic both in radial and azimuthal direction. Thus, we define the time a massive
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particle needs to perform a complete radial revolution by [24]

Tr = 2

ˆ t(ra)

t(rp)
dt = 2

ˆ ra

rp

dt

dr
dr = 2

ˆ ra

rp

dt

dτ

(
dr

dτ

)−1

dr , (2.8)

where we use the symmetry property of an ellipse. Employing the results from the geodesic

equation for dt/dτ and dr/dτ from eq. (2.3) and (2.5) we are able to solve the integral.

Then the radial frequency is defined by

Ωr =
2π

Tr
. (2.9)

In order to determine the azimuthal frequency we take the time the particle needs for a

radial revolution as the reference time. Therefore, we calculate the angle the particle covers

during a revolution by

∆Φ = 2

ˆ φ(ra)

φ(rp)
dφ = 2

ˆ ra

rp

dφ

dr
dr = 2

ˆ ra

rp

dφ

dτ

(
dr

dτ

)−1

dr , (2.10)

and the corresponding frequency to

Ωφ =
∆Φ

Tr
. (2.11)

Since ∆Φ is not a rational fraction of 2π in general, the orbit is not necessarily closed. This

means the angular period does not coincide with the radial one as it does in Newtonian

theory and gives rise to the general relativistic periastron shift, which is observable in our

solar system, e.g. in the perihelion shift of Mercury.

Observations imply that our universe’s expansion is accelerating leading to a positive

cosmological constant. The influence of a positive cosmological constant on the dynamics

in the frequency picture can be analysed by investigating the motion in Schwarzschild-de

Sitter spacetime.

2.2 Motion in Schwarzschild-de Sitter spacetime

Already in the 1920s it has been established that the theory of general relativity leads to

a dynamical universe instead of a static one. Hubble, Lemâıtre and de Sitter were able to

describe the dynamics of the Universe as the expansion of spacetime itself [120, 122, 121].

On the other hand, Einstein included the so-called cosmological constant Λ into his field

equations to make the universe static, because he did not believe in a dynamical universe

at that time keeping with the thinking of contemporary physicists [123]. Later, he is

said to have called Λ the “biggest blunder of his life” [124] - although, by adding the
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term containing the cosmological constant, he actually made the universe dynamical, just

what we observe today. Indeed, in the late 1990s observations of supernovae provided

measurements indicating an accelerated expansion corresponding to a positive cosmological

constant [125, 126]. Since the source of the acceleration was absolutely mysterious - and

still is - scientists invented the theory of dark energy. In order to improve the understanding

of the impact of dark energy on general relativistic systems, it is reasonable to include it

into our investigation of particle’s motion in gravitational fields.

Again, assuming a spherically symmetric mass distribution and the presence of dark

energy leads to a gravitational field that is described by the Schwarzschild-de Sitter metric

given in eq. (1.5) with eq. (1.7)

ds2 = −
(
1− 2M

r
− Λ

3
r2
)
dt2 +

1

1− 2M
r − Λ

3 r
2
dr2 + r2

(
dθ2 + sin(θ)2dφ2

)
, (2.12)

in spherical coordinates. Here, we are interested only in the case Λ > 0.

Thanks to Noether’s theorem we immediately deduce that geodesic motion in such a

spacetime has four constants of motion or four Killing vectors: they are associated with the

energy and the angular momentum vector, two components corresponding to its direction

and one to its magnitude. Using the two directional components of the angular momentum

we notice that the motion takes place in a plane, which we choose to be the equatorial

plane of our coordinate system and set θ = π/2. The two constants of motion left are the

energy H and the magnitude of the angular momentum which points into the z- direction

in our setup, so that we call it Jz.

If the particle’s spin is taken into account, further degrees of freedom are added to the

system, so that the motion is no longer restricted to the equatorial plane for general spin.

However, in the special case of the spin vector being perpendicular to the equatorial plane,

the particle does indeed move and stay in this plane.

2.2.1 Non-spinning particles

First, we start with the investigation of the motion of non-spinning particles in order to

consider the effects a positive cosmological constant has on the dynamical behaviour of

a test particle. The properties of Schwarzschild-de Sitter spacetime, such as the horizon

structure and the equations of motion, have been investigated in [21, 127, 128].

Equations of motion

The dynamics of massive non-spinning test particles is determined by the geodesic equation

for timelike curves given in eq. (2.1). The spacetime geometry is given by the metric in eq.

(2.12). Then the equations of motion, parametrised by proper time τ , for a test particle of
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mass m read

m2

(
dt

dτ

)2

=
H2(

Λr2

3 + 2M
r − 1

)2 , (2.13)

m2

(
dr

dτ

)2

= H2 +

(
Λr2

3
+

2M

r
− 1

)(
J2
z

r2
+m2

)
, (2.14)

m2

(
dφ

dτ

)2

=
J2
z

r4
, (2.15)

with H and Jz being two constants of motion to be interpreted as the energy and the

angular momentum, respectively. The particle’s four-momentum is pµ = mdxµ/dτ and

satisfies the mass shell condition m2 = −pµp
µ. From hereon we rescale H ↦→ Hm and

Jz ↦→ Jzm which is tantamount to setting m = 1 in eq. (2.13), (2.14) and (2.15). Then H

is dimensionless while Jz has the dimension of a length.

Parametrisation of bound orbits

In order to analyse the different types of orbits it is sufficient to look at eq. (2.14) and

require the right-hand side to be positive for physically relevant motion. This is most easily

seen when we rewrite the equation in such a way that(
dr

dτ

)2

=
Λ

3r3
P5 (r) , (2.16)

where

P5 (r) = r5 −
((

1−H2
) 3
Λ

− J2
z

)
r3 +

6M

Λ
r2 − 3

Λ
J2
z r +

6M

Λ
J2
z . (2.17)

As we assume Λ > 0, the region where P5(r) < 0 is forbidden by eq. (2.16). The number

of zeros of P5(r) determines the types of motion possible for the corresponding values of H

and Jz. For positive Λ, there can be at most four positive real zeros as can be derived with

the rule of signs by Descartes. In fig. 2.3 the polynomial P5 (r) is plotted for a particular

choice of parameters such that it possesses four positive real zeroes, (r1, rp, ra, r2) with

r1 < rp < ra < r2. Physical motion is possible as long as the polynomial is positive.

Thus, in this specific case, we have escaping orbits for radii r > r2, bound orbits oscillating

between rp < r < ra and terminating orbits for radii r < r1. Changing the parameter

values may lead to only two positive real zeros (r1, r2) allowing no bound motion but

only escaping and terminating orbits. Hence, bound orbits are allowed only when the

polynomial has precisely four positive zeros. For other values of H and Jz there will be
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escape or terminating orbits or no motion at all. For a more detailed discussion on the

classification of orbits see [21].

Since we aim to gain information on the motion within the frequency domain, we

concentrate on bound orbits. From eq. (2.14) it is obvious that turning points can exist

only at radial coordinates where f(r) > 0, with f (r) is given by eq. (1.7). This implies

that bound orbits are confined to the region between the two horizons. In particular they

do not exist if Λ > (3M)−2.

2 4 6 8 10 12 14 16 18
r0

P5

r1 rp ra r2

Figure 2.3: The polynomial P5(r) is plotted for the choice of the following parameters
H = 0.935, Jz = 3.420, Λ = 0.0005 and M = 1. It has four positive real zeroes r1, rp, ra
and r2. Physical motion is possible for radial coordinates between 0 and r1 (terminating
orbits), between rp and ra (bound orbits) and between r2 and ∞ (escaping orbits).

From now on we rescale r ↦→ rM , Jz ↦→ JzM and Λ ↦→ ΛM−2 so that these quantities

are dimensionless. (Recall that H already was dimensionless.) This is tantamount to

setting M = 1 in (2.17). Since we must have four positive real zeros in order to consider

bound motion, we can rewrite equation (2.17) as

P5(r) = (r − r0)(r − r1)(r − rp)(r − ra)(r − r2) , (2.18)

with r0 < 0 , 0 < r1 < rp < ra < r2. Bound motion exists only between rp and ra being

the two turning points of the radial motion at which
(
dr
dτ

)
vanishes. Consequently, we are

provided with a system of two equations P5(rp) ≡ 0 and P5(ra) ≡ 0 which we can solve for

H2 and J2
z to obtain
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H2 =

(
Λ
3 r

3
a − ra + 3

) (
Λ
3 r

3
p − rp + 3

)
(ra + rp)

r2a(rp − 2) + r2p (ra − 2)− 2rarp
, (2.19)

J2
z =

r2ar
2
p(3− Λ

3 rarp(ra + rp))

r2a(rp − 2) + r2p (ra − 2)− 2rarp
. (2.20)

By calculating the Jacobian determinant of the transformation from the constants of mo-

tion to the radial turning points, it is possible to show that the corresponding map is

indeed one-to-one within the region of bound motion. Thus, also (rp, ra) provide a unique

characterisation of each bound orbit. For further calculations, especially for the integrals

appearing in the frequencies, it would be handy, though, to express all zeroes as functions

depending on (rp, ra). A comparison of the coefficients of the two equations (2.17) and

(2.18) yields expressions for r0 and r2 dependent on (r1, ra, rp)

r0 = −1

2

(
(ra + rp + r1) +

√
R(r1, ra, rp)

)
,

r2 = −1

2

(
(ra + rp + r1)−

√
R(r1, ra, rp)

)
,

with

R(r1, ra, rp) =
12L2 + Λ(ra + rp + r1)

(
(ra + rp)

(
r21 + rarp

)
+ r1

(
r2a − rarp + r2p

))
Λ (r1 (ra + rp) + rarp)

,

and the equation

P3(r1) := Λr2ar
2
pr

3
1 + Λr2ar

2
p(ra + rp)r

2
1 + J2

z (6rp − 3ra(rp − 2))r1 + 6J2
z rarp ≡ 0 ,

so that we only have to solve a cubic equation for r1 (rp, ra) . Now, that we have all zeros

as functions of the two radial turning points we will define the parameter space of bound

motion which we have to deal with. When two or more zeros of the polynomial in eq.

(2.17) merge, the number of zeroes is changed and therewith the kinds of possible orbits.

In particular, this means that the number of zeroes of eq. (2.17) is decreased from four to

two. While with four zeroes we have three types of orbits only two are allowed with two real

positive zeroes. Thus, we can find the relevant region of bound motion by considering the

merging of the zeroes or by the condition that the orbit becomes unbound, respectively. As

in Schwarzschild spacetime, a merging rp = ra physically corresponds to a stable circular

orbit. A merging r1 = rp ̸= ra ̸= r2 corresponds to an unstable circular orbit at rp and

a homoclinic orbit from rp to ra and back to rp, while a merging r1 ̸= rp ̸= ra = r2

corresponds to an unstable circular orbit at ra and a homoclinic orbit from ra to rp and

back to ra. In the case that r1 = rp ̸= ra = r2 we have unstable circular orbits at rp and
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at ra and heteroclinic orbits from ra to rp and from rp to ra.

However, before plotting the domain of bound motion we change the parametrisation

to the orbital parameters (p, e) because on the one hand they provide an intuitive approach

to the orbital structure and therewith a more illustrative analysis of the properties of the

test particle’s motion and on the other hand they simplify the integrals for the frequencies.

Thus, using the relations between the apastron ra and periastron rp to the semi-latus

rectum p and the eccentricity e from eq. (2.7) we express the constants of motion H and

Jz as well as the zeroes of P5(r) in this parametrisation.
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Figure 2.4: The figure presents the boundaries of bound motion in the (p, e) - plane for
different values of Λ. The dashed line corresponds to the Schwarzschild case Λ = 0 with
p = 6 + 2e. The remaining lines are the separatrices for a cosmological constant of Λ =
0.0001 (upper dotted line), Λ = 0.0005 (solid line), and Λ = 0.0006 (lower dotted line).

In fig. 2.4 the region of bound motion is shown in a (p, e)-diagram for both Schwar-

zschild and Schwarzschild-de Sitter spacetimes with different values for the cosmological

constant. As has been worked out in section 2.1 the domain of bound orbits in Schwarz-

schild geometry, corresponding to the region that lies right to the dashed line, is infinitely

large.

By contrast, in the Schwarzschild-de Sitter spacetime the region of bound orbits in the

(p, e)−plane is finite. The shape is triangle-like with its tip at an eccentricity emax < 1.

This demonstrates that, in this picture, the transition from bound orbits to unbound orbits

(e > 1) is not continuous. In particular, it shows that bound orbits with eccentricities

higher than a maximal value are not allowed but it does not exclude any other kinds of

motion which is not bound. In analogy to the Schwarzschild case, the two sides of the
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triangle are called the separatrices. They correspond to homoclinic orbits with r1 = rp and

ra = r2, respectively. Each homoclinic orbit has the same values for energy and angular

momentum as the unstable circular orbit that it approaches asymptotically; these unstable

circular orbits can be found on the horizontal axis outside the triangle, cf. fig. 2.2 in the

Schwarzschild case. We have already mentioned that in the Schwarzschild spacetime bound

orbits near the separatrix show a zoom-whirl behavior, with the “whirling” taking place

in the strong-field regime. In the Schwarzschild-de Sitter spacetime with a small positive

cosmological constant, the second separatrix gives rise to zoom-whirl orbits that “whirl”

near an apastron far away from the centre and periodically “zoom in” to a periastron.

The two separatrices intersect at the tip of the triangle where we have simultaneously

r1 = rp and ra = r2. This gives rise to a heteroclinic orbit, i.e. to an orbit that connects two

different unstable circular orbits. Such an orbit can be described by a unique pair of values

for (p, e). The lower boundary curve of the region of bound orbits corresponds to stable

circular orbits (e = 0). The two intersection points of the separatrices with the horizontal

axis correspond to the innermost stable circular orbit (ISCO) and an outermost stable

circular orbit (OSCO). While the ISCO is also present in the Schwarzschild spacetime and

merely gets shifted away from the centre with increasing Λ, the OSCO is only existent in the

Schwarzschild-de Sitter spacetime where the repulsive force of dark energy is compensated

by the attractive gravitational force. For Λ → 0 the OSCO approaches infinity. For

Λ → Λcrit = 4/5625 the ISCO and the OSCO merge into one circular orbit, cf. [127]. Put

into mathematical language, this happens if all four positive zeros of (2.17) coincide. For

Λ > Λcrit bound orbits do not exist.

Let us remark here that Λcrit is much larger than the physically expected one. Obser-

vations show evidence for a Λ ≈ 10−52m−2 [129]. Even for a supermassive black hole with

M ≈ 1010km this corresponds, in our geometrised units, to Λ ≈ 10−25, i.e. to a value that

is much smaller than Λcrit. After discussing the effects of a positive cosmological constant

we turn our attention to the influences of a non-vanishing spin of the test particle.

2.2.2 Spinning particles

Now, we turn on the spin and investigate the motion of a spinning test particle which is

no longer geodesic. The motion of spinning particles in Schwarzschild-de Sitter spacetime

has been studied in [88, 130, 131].

Equations of motion

Previously, in section 1.3, the equations of motion of a spinning particle in general relativity

have been discussed. They are given by eq. (1.14) and (1.15) and trace mainly back

to the works of Mathisson, Papapetrou and Dixon [66, 67, 73, 76, 77]. Different spin
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supplementary conditions to close the set of equations have also been presented. Since

we are aiming at analytical calculations, we prefer the T SSC, given in eq. (1.29). It

yields a unique solution for the evolution of the worldline and provides us with an explicit

relation between the kinematical four-velocity uµ and the four-momentum pµ. In addition

the dynamical mass M is conserved in the frame fixed by the T SSC in the pole-dipole

approximation, see e.g. [1]. Provided the mass shell condition pµp
µ +M2 = 0 is satisfied

we introduce the dynamical four-velocity vµ = pµ/M given in eq. (1.19), [72, 87]. The

worldline gauge, i.e. the worldline parameter τ , is fixed by the normalisation condition

vµuµ = −1. Then, dτ is the time interval along the worldline xµ (τ) as measured in the

instantaneous zero-3-momentum frame [72], which matches the choice of the SSC or the

observer, respectively. Furthermore, this normalisation implies that the kinematical mass

m given in (1.18) is identical to the dynamical mass M, m = M, so that we denote the

particle’s rest mass in accordance with geodesic motion bym in the following. Subsequently,

the relation between uµ and vµ is given for the T SSC by eq. (1.30) and the normalisation

factor N = m/M is thus fixed by vµuµ = −1 to N = 1 so that we arrive at [32]

uµ − vµ =
SµνRνγσλv

γSσλ

2
(
m2 + 1

4RαβγδSαβSγδ
) . (2.21)

Therewith, the equations of motion for a spinning test particle in Schwarzschild-de Sitter

spacetime can be derived. Recall that we will restrict ourselves to the special case of a

particle moving in the equatorial plane θ = π/2, with the spin vector Sµ from eq. (1.33)

perpendicular to this plane. Then, we can characterise the spin by the scalar constant of

motion S, defined in eq. (1.36) and the property that S is positive if the spin is parallel

(+) to the orbital angular momentum and negative if it is anti-parallel (−); for more

information on the direction of the spin vector see the appendix in [132]. As in the spinless

case, we have a conserved energy H and a conserved angular momentum Jz which we

rescale according to H ↦→ Hm and Jz ↦→ Jzm. In addition, we now also rescale the spin,

S ↦→ sm. The resulting equations are calculated from eq. (2.12) and (2.21) as well as the

condition for timelike curves uµu
µ = −1 [32] . After appropriate adaption the equations

yield

( dt
dτ

)
=

H + f ′(r)
2r sJz

Πs(r)Σs(r)f(r)
, (2.22)(dr

dτ

)
= ±

√
Rs(r)

Πs(r)Σs(r)
, (2.23)

(dφ
dτ

)
=

(
Jz −Hs

) (
1− f ′′(r)

2 s2
)

Πs(r)Σs(r)2r2
. (2.24)
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Here f(r) is defined in eq.(1.7), the prime denotes partial derivative with respect to r, and

Πs(r) = 1 +

(
f ′′(r)− f ′(r)

r

)
(Jz −Hs)2 s2

2r2Σs(r)3
, (2.25)

Σs(r) = 1− f ′(r)

2r
s2 , (2.26)

Rs(r) =

(
H − f ′(r)

2r
sJz

)2

− f(r)

{
Σs(r)

2 +
(Jz −Hs)2

r2

}
. (2.27)

Parametrisation of bound orbits

Again we are interested in bound motion, so we require two turning points ra and rp where

dr/dτ = 0, which corresponds to Rs = 0. We rescale, as before, r ↦→ rM , Jz ↦→ JzM ,

Λ ↦→ ΛM−2 and now also s ↦→ sM . Notice that for test particle motion our dimensionless

spin parameter s necessarily satisfies the condition −1 < s < 1. The maximum absolute

value that s can attain is estimated by considering the units it is measured in: Remember

the spin being measured in units of Mm, i.e. in terms of the mass of the central body

and that of the particle s → sMm = S, where s is the unitless value we are using in our

equations. Then, think of a rotating compact particle as a Kerr black hole of mass m which

has for extremal rotation a spin value ≈ m2. Thus, we obtain for the estimation of the

spin value |s| = |S|
Mm = m2

Mm = m
M < 1, since in the testparticle limit the mass of the moving

object is assumed to be smaller than that of the central body [36, 38]. Subsequently, we

can choose values for s between −1 and 1.

Moreover, we substitute

L = Jz −Hs , (2.28)

for mathematical convenience. Then Rs(r) can be rewritten as

Rs(r) =
Λ
(
1 + Λ

3 s
2
)2

3r7
P9(r) (2.29)

where

P9(r) = r9 + ar7 + br6 + cr5 + dr4 + er3 + gr + h (2.30)

with

a =

(
H
(
1 + Λ

3 s
2
)
+ Λ

3Ls
)2

+ Λ
3L

2

Λ
3

(
1 + Λ

3 s
2
)2 − 3

Λ
, (2.31)

b =
2

Λ
3

(
1 + Λ

3 s
2
) , (2.32)
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c = − L2

Λ
3

(
1 + Λ

3 s
2
)2 , (2.33)

d = −
2
(
(L+Hs)2 − s2

)
Λ
3

(
1 + Λ

3 s
2
) +

2L (2L+Hs)
Λ
3

(
1 + Λ

3 s
2
)2 , (2.34)

e = −
4s2
(
1 + Λ

4 s
2
)

Λ
3

(
1 + Λ

3 s
2
)2 , (2.35)

g =
s2
(
(L+Hs)2 − s2

)
Λ
3

(
1 + Λ

3 s
2
)2 , (2.36)

h =
2 s4

Λ
3

(
1 + Λ

3 s
2
)2 . (2.37)

The number of zeroes of P9(r) determines the types of motion possible in the corresponding

spacetime. Finding the maximum number of positive real zeroes in this case is not so easy,

though, since the signs of a and d are unclear. (The sign of g does not matter because the

signs of e and h are already different.) In any case, from the Descartes’ rule of sign we find

that the number of positive real zeroes can only be 0, 2, 4 or 6.

Actually, it is possible to investigate the characteristics of the orbits by analysing the

merging of two zeroes which can be found by solving the system

dr

dτ
≡ 0

d

dr

(
dr

dτ

)
≡ 0

resulting in expressions for H and L depending on the radial coordinate r. Physically,

they correspond to the circular orbits, either stable or unstable, and mark the boundaries

between different types of orbits. If the structure of the corresponding effective potential

changes, it should be visible in terms of these boundaries plotted in a (H,L) - diagram.

As it is shown in fig. 2.5 the shapes of the boundary lines for different combinations for

values of Λ and s covering the range of allowed values (central row and bottom row),

look very similar to those of a non-spinning particle moving in Schwarzschild-de-Sitter

spacetime , cf. [21]. For comparison the top row shows the region for (non-) geodesic

motion in Schwarzschild spacetime in the figure on the left (right). It is obvious that the

spin has no influence on the general shape of the region of bound motion but only on the

quantitative values of H and L, which is connected to the shift of the ISCO. However,

it is important to note here, that the boundary at H = 1 results from the coefficients
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Figure 2.5: Top row: The left figure corresponds to parameter choice of Λ = 0 and s = 0,
i.e. geodesic motion in Schwarzschild spacetime. The figure on the right shows the region of
bound motion for Λ = 0 and s = 1. Central Row: The left figure corresponds to parameter
choice of Λ = 10−18 and s = 10−5. The right figure corresponds to parameter choice of
Λ = 10−18 and s = 1. Bottom Row: Both figures correspond to a parameter choice of
Λ ≈ Λcrit and s = 1. The figure on the right is zoomed in.
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in the polynomial in Schwarzschild spacetime while in Schwarschild-de Sitter spacetime

this boundary corresponds to the merging of the two outer zeros (ra = r2), which is not

necessarily restricted to H = 1, as we see in the plots in the bottom row. Since the maximal

possible value for Λ changes with the value of the spin, the two figures on the bottom are

computed with a value for Λ which approaches the associated critical value in the case of

s = 1. The figure on the right clarifies that also for large Λ and s values the shape of

the boundaries remain the same, i.e. no additional lines occur. If the spin is taken to be

negative the qualitative picture does not change and the lines get merely shifted.

Each line corresponds to a merger of two zeroes and the region within the small triangles

corresponds to parameter values for bound orbits. Since no additional boundary lines

emerge, which would correspond to an additional merger of two zeros, we conclude that

the three lines provide us with a good indication that we indeed have four positive real

zeroes.

Now, we check the signs of the coefficients of the polynomial P9 (r) presented in fig. 2.6.

We observe, that within the relevant region in the vicinity of bound motion, the outstanding
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Figure 2.6: The figure shows the region where the coefficients of (2.30) satisfy a < 0 and
d > 0 within the relevant region of bound motion. Top row: The left figure corresponds
to parameter choice of Λ = 0 and s = 0, i.e. geodesic motion in Schwarzschild-de Sitter
spacetime. The figure on the right shows the region of bound motion for a medium choice
for Λ and s, i.e. parameter values that are far away from the allowed limits. Bottom Row:
Both figures correspond to a parameter choice of Λ ≈ Λcrit and s = 1. The figure on the
right is zoomed in.

coefficients given in (2.30) satisfy a < 0 and d > 0 which is marked by the blue shaded area

in the plots. Subsequently, we have six changes in signs of the coefficients in the polynomial.

According to the rule of signs by Descartes, we can have at most six positive real zeroes.
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The inspection of the merging of the zeroes, though, showed strong evidence for only four

positive real zeroes, which means, that two non-real complex conjugate zeroes substitute

the two missing positive real zeroes. Even if the absolute spin value is increased to large

values and/or the value of the cosmological constant is varied, the qualitative picture does

not change. Thus, it is justified that we can assume the polynomial to have four positive

real zeroes, shown in fig.(2.7) for an appropriate choice of parameters.

Again, in order to consider bound motion we must have at least four positive real zeros.

We argue that in this case eq. (2.30) can be written as

P9 (r) = (r − rγ)(r − rβ)(r − rα)(r − r1)(r − rp)(r − ra)(r − r2)(r − rI)(r − r̄I) , (2.38)

with rγ < rβ < rα < 0 , 0 < r1 < rp < ra < r2 and rI , r̄I being the non-real complex zero

and its conjugate, respectively. Bound motion exists only between rp and ra. Since also

for the spinning particle the motion is fully described by the parameters ra and rp, we find

expressions for H (rp, ra) and L (rp, ra) by setting Rs (rp) = Rs (ra) ≡ 0. With the help of

the relation (2.7) they are converted to H(p, e) and L(p, e).

2 4 6 8 10 12 14 16 18
r0

P9

r1 rp ra r2

Figure 2.7: The polynomial P9(r) is plotted for the choice of the following parameters
H = 0.935, Jz = 3.394, Λ = 0.0005, s = 0.1 and M = 1. It has four positive real
zeroes r1, rp,ra and r2. Physical motion is possible for radial coordinates between 0 and r1
(terminating orbits) , between rp and ra (bound orbits) and between r2 and ∞ (escaping
orbits).

The next task is to find the boundaries of the region of bound motion in the (p, e) - plane,

i.e. the separatrices. As already mentioned the boundaries are given by the merging of the
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zeroes, r1 = rp or/and rp = ra or/and ra = r2. Unfortunately, the explicit expressions for

the zeroes are not as easily found as in the non-spinning case. But there is a way around:

We simply exploit the fact that the values of H and L for the homoclinic orbits (i.e. the

ones with non-vanishing eccentricity) are identical to the ones for the unstable circular

orbits which they approach asymptotically. Having access to the values of H and L for

circular orbits by solving

Rs(r) ≡ 0 ,

and

R′
s(r) ≡ 0 ,

the only computation needed is to find the intersection point of the lines of constant H

and constant L in the (p, e)-plane. In this way we obtain the values for p and e of the

homoclinic orbits corresponding to the separatrices.

In fig. 2.8 the region of bound motion is shown in a (p, e) - diagram for both a spinning

particle and a non-spinning particle moving in Schwarzschild and Schwarzschild-de Sitter

spacetime. Here, we have fixed the cosmological constant either to Λ = 0 or to Λ = 0.0005

5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

p

Figure 2.8: The figure presents the regions of bound motion in the (p, e)-plane for different
values of s for Λ = 0 as well as Λ = 0.0005. The straight lines on the left correspond to
Λ = 0 and the triangles on the right correspond to Λ = 0.0005. In either case, the (green)
dashed line corresponds to s = 0.1, the black solid line to s = 0, and the (blue) dotted line
to s = −0.1.

and varied the value of the spin parameter.

From fig. 2.8 we read that for a spinning particle in Schwarzschild spacetime the region

of bound motion is infinitely large as it is for geodesic motion. The well-known shift of

the ISCO due to the spin is visible, such that for positive spin it is moved inwards and
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for negative spin outwards, cf. [31] and also [34, 106]. This reflects the coupling of the

particle’s spin to its orbital angular momentum. If they are parallel to each other, the

resulting force is repulsive, while it is attractive if they are anti-parallel [31, 35]. Notice

that the upper boundary is given by e = 1 which corresponds to parabolic orbits and marks

the transition from bound motion to unbound orbits. The general shape of the separatrices

resembles the one for non-spinning particles in Schwarzschild spacetime.

When a positive cosmological constant is considered, the value of the maximal eccentri-

city becomes smaller for negative and larger for positive spin. Correspondingly, the critical

value of Λ is also shifted: for positive spin Λcrit is bigger than for the spinless case and for

negative spin it is smaller. The dependence of Λcrit on the spin is shown in fig. 2.9.

-1 -0.5 0.5 1
s

0.001

0.002

0.003

Lcrit

Figure 2.9: The figure presents the evolution of the critical values of Λ with respect to the
spin parameter. It monotonically increases with the spin. The boundaries s = −1 and
s = 1 are due to physical restrictions.

It reveals that for Λ < Λcrit(s = 0) = 4/5625 bound motion is possible for all positive

spin values but not for all negative spin values. This is the reason why for our particular

choice of Λ = 0.0005 it is not possible to have bound orbits with spins that are smaller

than ≈ −0.5. As soon as the chosen value of Λ drops below Λcrit(s = −1) ≈ 0.0004 bound

motion is possible for all spin values −1 < s < 1.

The influence of the spin on the ISCO in the Schwarzschild-de Sitter spacetime is similar

as in the Schwarzschild spacetime. Again we see that for positive spin parameters the ISCO

gets shifted towards the centre and for negative spin parameters away from the centre. For

the OSCO it is the other way around. By taking into account these two characteristics as

well as the shift of the maximal eccentricity, it can be immediately seen that the region of

bound orbits becomes smaller for negative spin and gets larger for positive spin.

One might think that a large positive spin is somehow able to destroy the existence of

the heteroclinic orbit sitting at maximal eccentricity. However, even if the spin is chosen
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to have its maximal value of 1, the shape of the region of bound motion does not change.

The triangle survives and with it the heteroclinic orbit. If Λ approaches zero the maximal

eccentricity goes to 1 and the OSCO to infinity, for any spin value. In this case the

separatrix resembles the one of Schwarzschild, only shifted closer to the centre for s > 0

and farther away from the centre for s < 0.

2.3 The dynamics in the frequency domain

After having defined the region of bound orbits, we continue with the calculation of the

frequencies. As mentioned before, observations of gravitational waves will provide access

to the frequencies of the underlying dynamical system, such as EMRIs. In order to draw

inferences from the measured gravitational waveforms about the source it is necessary to

have a theoretical understanding of the system as detailed as possible. So far, the dynamical

properties have rarely been investigated in terms of the system’s frequencies. One reason

may be, that it was long thought that the frequencies merely provide yet another unique

parametrisation. Barack and Sago [26], though, observed that for bound orbits of spinless

test particles in the Schwarzschild spacetime the transformation from the constants of

motion H and Jz to the radial and azimuthal frequencies becomes degenerate in the highly

relativistic regime. This means there exist physically distinct orbits which have the same

pair of frequencies giving rise to new characteristic quantities by which a dynamical system

can be described. We are curious about what happens to the degeneracy if we alter the

system a little by including a positive cosmological constant Λ and then adding the particle’s

spin.

2.3.1 Non-spinning particles

We start with the geodesic motion in Schwarzschild-de Sitter spacetime. The frequencies

are already defined in (2.8) - (2.11). From equations (2.13)-(2.18) we obtain:

Tr = 2H

√
3

Λ

ˆ ra

rp

r2dr

f(r)
√
rP5(r)

, (2.39)

∆Φ = 2L

√
3

Λ

ˆ ra

rp

1√
rP5 (r)

dr . (2.40)

with f(r) given in (1.7) and P5(r) from eq. (2.17). In correspondence with our choice

of units in the previous sections we rescale Ωr → ΩrM
−1 and analogously Ωφ�ΩφM

−1.

As the polynomial rP5 (r) under the root in the denominator of the integrand is of order

6, the integral is of hyperelliptic type, which cannot be integrated in terms of elementary

functions.
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If we use, as before, the (p, e) parametrisation of the bound orbits, we may substitute

the integration variable r in (2.39) and (2.40) according to

r =
p

1 + e cosχ
, (2.41)

where the new integration variable χ is the relativistic anomaly. Then the boundary values

of the integral change to 0 and π.

Since we want to compare the frequencies of different orbits we choose in analogy to

Warburton et al. [39] the (Ωφ, e) parametrisation for our analysis of bound orbits, which we

are allowed to do, because Ωφ monotonically decreases with p if the eccentricity is held fixed.

In order to do this we have to deal with several obstacles. First, we cannot analytically

invert the integral of Ωφ to obtain p as a function of e and Ωφ. To circumvent this hindrance

the value for e is fixed in the integral for the frequency, so that the value for p can be

computed using a root-finding method for any allowed Ωφ. In this way we obtain the value

for p for any given e and Ωφ; that is to say we numerically acquire a function p (Ωφ, e). Hence

the radial frequency can also be written as a function Ωr (p (Ωφ, e) , e) = Ωr (Ωφ, e) and we

are able to plot contour lines for constant Ωr into a (Ωφ, e)-diagram. The advantage of this

parametrisation is, that it connects the frequency domain with the orbital parameters so

that conclusions on the shape of the orbit can be drawn just by looking at the properties

of the parameter space for any given pair of frequencies.

Secondly, we encounter problems close to the separatrices. Both Tr and ∆Φ diverge

making it numerically challenging to perform the integration for the calculation of the

frequencies close to the separatrices. Luckily, there exists an approximation scheme for hy-

perelliptic integrals developed by Sochnev in 1968 based on the approximation of irrational

numbers by rational ones [133].

Approximation of hyperelliptic integrals according to Sochnev

First, we rewrite the integrals of (2.39) and (2.40) with the substitution

r → (ra + rp) + (ra − rp)x

2
, (2.42)

to obtain

Tr =A(rp, ra,Λ)

ˆ 1

−1

Vt(x)√
Vr(x)

dx , (2.43)

∆Φ =B(rp, ra,Λ)

ˆ 1

−1

1√
Vr(x)

dx , (2.44)
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where Vt(x) is a rational function whose denominator has no zeroes in the integration

interval and

Vr(x) = (1− x2)(1 + k1x)(1 + k2x)(1 + k3x)(1 + k4x) , (2.45)

with

k1 =
ra − rp
ra + rp

,

k2 =
ra − rp

(ra − r0) + (rp − r0)
,

k3 =
ra − rp

(ra − r1) + (rp − r1)
,

k4 = − ra − rp
(r2 − ra) + (r2 − rp)

,

which satisfy 0 ≤ k2 ≤ k1 ≤ k3 ≤ 1 and −1 ≤ k4 ≤ 0. If we get close to the separatrices,

either k3 or −k4 approach 1. The equation (2.45) provides the basis for the approximation

scheme developed by Sochnev [133] to be applied.

He based the method on the approximation of irrational functions by rational ones. In

particular, the irrational function c = m
√
c1c2...cm can be approximated by the sequences

{an} and {bn} which are defined iteratively by

a1 =
c1 + c2 + ...+ cm

m
, b1 =

c1c2...cm

am−1
1

, (2.46)

and

an+1 =
(m− 1)an + bn

m
, bn+1 =

am−1
n bn

am−1
n+1

, (2.47)

for n ≥ 1. While {an} approaches c from above, {bn} comes from below, i.e. a1 > a2 >

... > an > c > bn > ... > b2 > b1, and their common limit for n → ∞ is c.

Let us consider a specific example related to our problem of hyperelliptic integrals.

The irrational function m
√
1 + kx with |k| < 1 is finite for −1 < x < 1. These boundaries

become important when we consider the boundaries of the integrals. According to Sochnev,

we can approximate this function by choosing m
√
1 + kx = m

√
c1c2...cm with c1 = 1 + kx

and c2 = c3 = ... = cm = 1 and evaluating the sequences {an} and {bn} within the defined

range of x. In this way we approximate our irrational function by rational ones.

This method can be used for evaluating our hyperelliptic integrals in (2.43), (2.44)

where m = 2. To that end we have to approximate the function
√
Vr(x) where Vr(x) is

given by eq. (2.45).

If the absolute values of the k factors are far away from one, the procedure goes like

this: First, we extract the factor (1−x2) out of the radicand, arrange the remaining factors
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in decreasing order in the absolute values of the ks and group the terms of positive and

negative ks. Then, we form subgroups with m = 2 elements within each group, where we

supplement a factor of one when there are less than m = 2 elements in a subgroup, i.e.√
Vr(x) =

√
1− x2

√
(1− k3x)(1 + k1x)

√
(1 + k2x) · 1

√
(1 + k4x) · 1 , (2.48)

Now, we are able to compute the approximating sequences {an} and {bn} for each subgroup

up to arbitrarily high order in n, always resulting in a rational function. Consequently, the

integral that has to be solved can be approximated by integrals of the form

ˆ 1

−1
R
(
x,
√

1− x2
)
dx ,

where R
(
x,

√
1− x2

)
denotes a rational function of x and

√
1− x2. Using any of the

three Euler substitutions or elementary transformations, which rearrange the form of the

integral into tabulated ones, the integral can be solved in terms of elementary functions.

This gives a good approximation scheme as long as the absolute values of all ks are

far away from one. However, we are interested in the frequencies close to the separatrices

corresponding to absolute values close to one for either k3 or k4. Luckily, only a few

modifications to the procedure are necessary to adapt it to this case.

To begin with the integrals in (2.43) and (2.44) are divided into two integrals, where

one runs from −1 to 0 and the other from 0 to 1. In addition, it is not the factor (1− x2)

that is extracted. Consider eq. (2.45) rewritten as

(1− x)(1 + x)(1 + k3x)(1 + k1x)(1 + k2x)(1 + k4x) ,

where the k factors are already arranged in decreasing order in their absolute values and

(1 − x2) is rewritten as (1 + x)(1 − x). In the first integral (from −1 to 0) the product

(1 + x)(1 + k3x) is taken out where k3 is the greatest of the positive coefficients ki leading

to ˆ 0

−1

dx√
(1 + x)(1 + k3x)A(x, k1, k2, k4)

,

where A(x, k1, k2, k3) =
√

(1 + k1x)(1 + k2x)(1− x)(1 + k4x) has to be approximated by

the same procedure as explained above. The second integral (from 0 to 1) is rearranged in

such a way that it yields

ˆ 1

0

dx√
(1− x)(1 + k4x)B(x, k1, k2, k3)

,

with B(x, k1, k2, k3) =
√
(1 + x)(1 + k3x)(1 + k1x)(1 + k2x). Here, the factor (1 + k4x)
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is pulled out together with (1 − x) because k4 is the greatest of the negative coefficients

ki. Again, the remaining function is approximated resulting in a rational function in x.

Therefore we obtain for our integral an approximation of the form

ˆ 0

−1

R1(x)dx√
(1 + x)(1 + k3x)

+

ˆ 1

0

R2(x)dx√
(1− x)(1 + k4x)

the solution of which can be found in terms of elementary functions. In order to simplify the

calculations further we may apply partial fraction decompositions to each of the rational

functions providing us with the approximation of the integrals in eq. (2.43) and (2.44) in

terms of elementary integrals

ˆ 0

−1

1

(1 + a(k1, k2, k4)x)
√
(1 + x)(1 + k3x)

dx , (2.49)

ˆ 1

0

1

(1 + b(k1, k2, k3)x)
√
(1− x)(1 + k4x)

dx . (2.50)

It is worth to mention here, that the first iteration, n = 1, from above, i.e. a1, is sufficient in

order to obtain satisfying results for the frequencies. More precisely, as we have a fraction

of two hyperelliptic integrals in the azimuthal frequency in eq. (2.11) the difference between

the results obtained on the basis of a1 and b1 is of order 10−5. Since we are not aiming at

making any quantitative statements, the accuracy of a1 suffices for our purposes.

Isofrequency Pairing

Consequently, the frequencies close to the separatrix can be expressed in terms of element-

ary functions. Now, we have the tools we need to analyse the behaviour of the frequencies

in the region of bound motion. In fig. 2.10 the region of bound orbits is shown in the

(Ωφ, e)-plane. It is the shape of this region that is striking. It looks no longer like a

triangle but more like a trapezoid. The tip of the triangle is stretched out to a straight

line at emax. In the (p, e)-representation the heteroclinic orbit must correspond to a single

point – the tip of the triangle – since it has a uniquely defined pair (rp, ra). By contrast,

the azimuthal frequency is not uniquely defined for the heteroclinic orbit. Note that the

original definition of the frequencies is valid only within the region of bound orbits. On

the boundaries, that is at the separatrices, the frequencies are defined only by a continuous

extension, which assigns unique frequencies to the homoclinic orbits. However, in the case

of the heteroclinic orbit the value of Ωφ depends on how the orbit is approached, i.e. it

depends on the characteristics of the orbits in its vicinity. This is the reason why the

heteroclinic orbit is stretched out to a straight line in the (Ωφ, e)-diagramm.

In order to physically understand this line we recall the zoom-whirl feature close to
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separatrices. This has already been discussed in [20, 28] for homoclinic orbits in the
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Figure 2.10: The figure depicts the phenomenon of isofrequency pairing for bound orbits
in the (Ωφ, e)-plane for a fixed Λ = 0.0005. The thick (red) boundary lines correspond to
the separatrices and confine the region of bound motion. The (blue) solid lines inside this
region correspond to constant values of Ωr. The (green) dashed line represents the singular
curve, i.e. the locus where the Jacobian determinant of the transformation from (p, e) to
(Ωr,Ωφ) vanishes. The Circular Orbit Duals (COD), marking the boundary of the domain
where isofrequency pairing occurs, is shown by the dotted black line.

Schwarzschild and Kerr geometry. The endpoints of the straight line in fig. 2.10 correspond

to orbits that start at a maximal (minimal) radius and approach a circular orbit with radius

r1 = rp (ra = r2) without zooming out (or in) again. A highly probable explanation is the

following: In-between these endpoints lie orbits that connect the two equilibrium points

and exhibit the zoom-whirl property, e.g. an orbit starting at the inner circular orbit

performs a certain number of revolutions before zooming out to the outer circular orbit

and again whirls around for some time before zooming back again. Depending on the times

spent at each equilibrium point the azimuthal frequency changes. Such a bound orbit could

be called a “whirl-whirl orbit”, because it periodically changes between a large number of

whirls near its apastron and a large number of whirls near its periastron.

Close to the heteroclinic orbit, these zoom-whirl features should be observable by com-

putational simulations. Although not connecting equilibrium points the periastron and

apastron (rp, ra) of an orbit located in the vicinity of the heteroclinic orbit approach the

values (rphtcl , rahtcl) and it depends on the location in the (Ωφ, e) - diagram, whether the

periastron gets closer to rphtcl or the apastron gets closer to rahtcl . We stress here again, that

if a representation in terms of Ωφ is chosen, the heteroclinic orbit does not contract to one

single point, but reveals the hidden characteristics of heteroclinic orbits in the frequency
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domain.

The main property we are interested in is the isofrequency pairing. This phenomenon

is easily seen in the diagram close to the two separatrices. Looking at a contour line for

Ωr = constant near one of the separatrices, we see that it has two intersection points with

a contour line for Ωφ = constant, i.e. with a vertical line in this diagram. Since these

intersection points correspond to orbits of different eccentricities, we conclude that there

exist two geometrically distinct orbits with the same pair of frequencies. In mathematical

terms this means that the transformation from the frequencies (Ωr,Ωφ) to (p, e) is not

one-to-one. In order to prove this degeneracy it is sufficient to show that the Jacobi

determinant

J =

⏐⏐⏐⏐⏐∂ (Ωr,Ωφ)

∂ (p, e)

⏐⏐⏐⏐⏐ , (2.51)

becomes singular somewhere within the region of bound orbits. In fig. 2.10 these singular

points can be found as the points where the tangents to the contour lines of Ωr = constant

become vertical. This happens along the two (green) dashed curves in fig. 2.10 which are

called the singular curves. To verify that J does have two zeroes close to e = 0, one may

perform a Taylor expansion of J about e = 0 up to first order,

J =
eP10 (p)

4p4
√
p
(
Λ
3 p

3 − 1
) (

Λ
3 p

3 − p+ 2
) (

Λ
3 (4p− 15)p3 − p+ 9

)3/2 +O(e2)

with

P10 (p) = 15Λ3p10 − 50Λ3p9 + 30Λ2p8 − 315Λ2p7 + 9Λ(80Λ− 1)p6 − 45Λp5 + 918Λp4

−2241Λp3 + 108p2 − 1053p+ 2322 .

Numerically one finds that the tenth order polynomial P10(p) has precisely two positive

real zeros lying withing the allowed range of p values for bound motion, for all 0 < Λ <

Λcrit = 4/5625.

The isofrequency pairs lie on opposite sides of one of the singular curves, i.e. each orbit

that is located between a separatrix and a singular curve has a partner orbit on the other

side of the corresponding singular curve, which is geometrically different but has the same

pair of frequencies. The regions where isofrequency pairing occurs are bounded by the

so-called “Circular Orbit Dual” (COD) curves which are represented by the black dashed

lines. A point on a COD curve corresponds to an orbit that has the same frequencies as

a stable circular orbit situated between one of the singular curves and the corresponding

separatrix.

Interestingly, the isofrequency pairs do not only occur in the strong field regime as in
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Schwarzschild (or Kerr) spacetime, such as in [26, 39, 40], but also far away from the centre

where the gravitational field becomes weak so that the dynamics can be approximated by

Newtonian physics. In Schwarzschild geometry the orbits resemble Kepler ellipses with

degenerate frequencies in the weak field, where the lines of constant radial frequency become

almost vertical in the far field leading to the degenerate frequencies (Ωr,Ωφ). In the case of

a positive cosmological constant the boundary of bound motion is not extended to infinity

which means it has a finite distance represented by the OSCO. The smaller the value for Λ

is chosen the closer it approaches infinity but it always stays finite. However, in the region

far away from the centre the gravitational field becomes weak and Newtonian physics

can be applied. Indeed, one can check that such an OSCO exists in Newtonian theory.

Therefore it would be interesting to analyse the behaviour of the frequencies concerning

the isofrequency pairing in a Newtonian background.

While we could read from fig. 2.4 how the ISCO radius, the OSCO radius and the

maximal eccentricity depend on Λ, fig. 2.10 gives us information on the frequencies of

bound motion. A quite interesting property is the existence of a maximal radial frequency.

Although this feature is also present in the Schwarzschild geometry, it provides us with

a method to compare different spacetimes, such as universes with different cosmological

constants. From fig. 2.10 we observe that the lines of constant Ωr have the shape of

semicircles which become smaller in the centre of the diagram. The value of Ωr varies

between Ωr = 0 on the separatrices and a maximal value when the semicircle is contracted

to just one single point. A parametric plot of the maximal value of Ωr against p is shown
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Figure 2.11: The figure shows the change of Ωmax
r as well as in value as in position from the

centre when the value of Λ is varied. The dot marks the Schwarzschild case with Λ = 0.
Along the solid black line Λ increases up to its maximal value 4/5625 when Ωmax

r vanishes.
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in fig. 2.11, where the parameter is the cosmological constant. As Ωr takes its maximal

value on the axis e = 0, i.e. for the limiting case of a circular orbit, p is the same as the

radius coordinate.

The bold red point corresponds to the Schwarzschild case which yields the largest

Ωmax
r at p = 8. As soon as the cosmological constant is turned on both the values Ωmax

r

and the distance from the centre decrease. At p = 7.5 we reach the maximum value for

Λ = Λcrit = 4/5625 which also confines the region of bound orbits outside of which it does

not make sense to define a radial frequency. Hence, the maximal radial frequency allows us

to compare different dynamical systems and the inclusion of different types of properties,

such as the spin of the particle or a rotating black hole, might change its behaviour, too.

Moreover, we can read from fig. 2.11 that the presence of a positive cosmological con-

stant introduces another kind of degeneracy. Notice that Ωmax
r decreases slightly when Λ is

slightly increased. Transferring this change to fig. 2.10 we can think of the lines of constant

Ωr getting shifted towards the centre. Imagine that we have a frequency pair close to the

right separatrix. Choose the outer contour line of Ωr = constant and let some vertical line

of constant Ωφ intersect it twice and mark these two points. As described above, they are

two orbits with the same frequencies. If the cosmological constant is changed a little bit

the line of constant Ωr gets shifted either to the right if Λ is reduced, or to the left if Λ

is amplified. However, we would still have two intersection points with the vertical line

representing the azimuthal frequency we have fixed before. If Λ is reduced the two inter-

section points diverge while for amplified Λ the intersection points approach one another,

i.e. their eccentricities change. This means that infinitely many physically distinct pairs

of orbits have the same frequencies as the originally fixed one if we allow the cosmological

constant to take values in a certain interval.

Still, our description in terms of geodesic motion in Schwarzschild-de Sitter spacetime

is a quite simple one and more realistic situations have further properties that should be

considered. We have seen that the introduction of a cosmological constant into the geodesic

equations of motion introduces a second region far away from the centre where isofrequency

pairing occurs. As can be observed by simply watching the motion of the planets in our

solar system, most astrophysical objects rotate and therefore possess a non-vanishing spin.

Thus, it seems natural to ask what kind of influence the spin has on this degeneracy feature,

i.e. what happens if the motion is non-geodesic.

2.3.2 Spinning particles

As before, we are interested in the influence of a particle’s spin on its motion and dynamical

properties. When considering the motion of spinning particles in Schwarzschild-de Sitter

spacetime, we parametrised bound orbits by the orbital parameters p and e, which was the
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most intuitive one. In the following, we change from this parametrisation to the frequency

domain. This will allow us to discuss the phenomenon of isofrequency pairing. We have

already seen that the inclusion of a cosmological constant leads to additional isofrequency

pairs in the weak field limit. Now, we are interested in the influence of a particle’s spin on

its motion and dynamical properties.

The frequencies have been defined in eq. (2.9) and (2.11) and from equations (2.22) -

(2.24) we obtain:

Tr = 2

√
3

Λ

ˆ ra

rp

Ṽ s
t (r)√

rP9 (r)
dr , (2.52)

∆φ =2L

√
3

Λ

ˆ ra

rp

Ṽ s
φ(r)√

rP9 (r)
dr , (2.53)

with P9(r) given in (2.30) and

Ṽ s
t (r) =

r2
[
H
(
r3 +

(
Λ
3 r

3 − 1
)
s2
)
+
(
Λ
3 r

3 − 1
)
sL
](

−Λ
3 r

3 + r − 2
) (

1 + Λ
3 s

2
) , (2.54)

Ṽ s
φ(r) =

r2
(
r3 +

(
Λ
3 r

3 + 2
)
s2
)(

r3 +
(
Λ
3 r

3 − 1
)
s2
) (

1 + Λ
3 s

2
) . (2.55)

The order of the polynomial rP9 (r) under the root in the denominator of the integrand is

10. Therefore we now have a considerably more difficult kind of hyperelliptic integral than

in the spinless case.

Following the same procedure as for the non-spinning particle, we transform the in-

tegrals with the relation in (2.41) to obtain the resulting frequencies as functions of (p, e).

Therewith, we are able to reparametrise the radial frequency, again, as a function of (Ωφ, e)

so that the comparison of different orbits and their frequencies is simplified. Since the in-

clusion of the spin does not make the system easier to be solved, we encounter the same

numerical problems as before, i.e. the numerical inversion to p(Ωφ, e) and the divergencies

close to the separatrices, as we have in the non-spinning case. Luckily, these problems can

be tackled by the same method, only the expressions become more complicated.

Approximation of hyperelliptic integrals according to Sochnev

Employing Sochnev’s approach of approximating hyperelliptic integrals we rewrite the in-

tegrals of (2.52) and (2.53) with the substitution given in (2.42) to obtain

Tr = As(rp, ra,Λ, s)

ˆ 1

−1

V s
t (x)√
V s
r (x)

dx , (2.56)
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∆φ =Bs(rp, ra,Λ, s)

ˆ 1

−1

V s
φ (x)√
V s
r (x)

dx , (2.57)

where V s
t (x) and V s

φ (x) are rational functions whose denominators have no zeroes in the

integration interval and

V s
r (x) = (1− x2)(1 + k1x)(1 + k2x)(1 + k3x)(1 + k4x)(1 + k5x)(1 + k6x)

× (x− (aI + ibI)) (x− (aI − ibI)) , (2.58)

with

k1 =
ra − rp
ra + rp

,

k2 =
ra − rp

(ra − r1) + (rp − r1)
,

k3 = − ra − rp
(r2 − ra) + (r2 − p2)

,

k4 =
ra − rp

(ra − rα) + (rp − rα)
,

k5 =
ra − rp

(ra − rβ) + (rp − rβ)
,

k6 =
ra − rp

(ra − rγ) + (rp − rγ)
,

which satisfy 0 ≤ k6 ≤ k5 ≤ k4 ≤ k1 ≤ k2 ≤ 1 and −1 ≤ k3 ≤ 0. As in the non-spinning

case, we employ Sochnev’s method for evaluating these integrals near the separatrices.

Similar to the motion of the non-spinning particle, we have to evaluate the integrals

(2.56) and (2.57), i.e. we have to approximate the function
√

V s
r (x) with V s

r (x) given by

(2.58). It is convenient to treat the two non-real zeros and the real zeroes separately. Since√
(x− (aI + ibI)) (x− (aI − ibI)) ,

is a real-valued irrational function it is possible to approximate it by Sochnev’s method

leading to

√
(x− (aI + ibI)) (x− (aI − ibI)) →

(
ra − rp

2
− aI

)(
1 +

ra − rp
ra + rp − 2aI

x

)
,

in first approximation a1 from above, which proves to be of sufficient accuracy for our

purposes. Therewith, the remaining terms√
(1− x2)(1 + k1x)(1 + k2x)(1 + k3x)(1 + k4x)(1 + k5x)(1 + k6x) ,
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can be approximated analogously to the non-spinning case. Here, close to the separatrices

either k2 or −k3 approaches 1, and the approximation only contains elementary integrals,

which, after partial fraction decomposition, reduce to integrals of the form

ˆ 0

−1

dx

(1 + as(k1, k2, k4)x)
√

(1 + x)(1 + k2x)
,

ˆ 1

0

dx

(1 + bs(k1, k2, k3)x)
√
(1− x)(1 + k3x)

, (2.59)

so that the frequencies in (2.9) and (2.11) are expressed in terms of elementary functions.

Isofrequency Pairing

In fig. 2.12 plots of the isofrequency pairing phenomenon for particles with two different

spin values (0.1,−0.1) moving in the same Schwarzschild-de Sitter spacetime with Λ =

0.0005 are shown.
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Figure 2.12: The figure depicts the phenomenon of isofrequency pairing for bound orbits
in the (Ωφ, e)-plane for a fixed Λ = 0.0005. The figure on the left shows the characteristics
for s = 0.1 and the one on the right corresponds to s = −0.1. The thick (red) boundary
lines correspond to the separatrices and confine the region of bound motion. The (blue)
solid lines inside these regions coorespond to constant values of Ωr. The (green) dashed
line represents the singular curve, i.e. the locus where the Jacobian determinant of the
transformation from (p, e) to (Ωr,Ωφ) vanishes. The Circular Orbit Duals (COD) marking
the boundaries of the domains where isofrequency pairing occur are shown by the black
dotted lines.

The qualitative shape of the region of bound motion is similar to that of a non-spinning

particle. The quantitative differences become apparent in the characteristic features of

bound motion and its boundaries. Some basic facts that we have already seen in the (p, e)-

diagram are obvious, such as the shifts of the maximal eccentricity, of the ISCO and of

the OSCO. However, what interests us is the impact on the domain, where isofrequency

pairing occurs and the question of whether further degeneracies due to the spin emerge.



2.3. THE DYNAMICS IN THE FREQUENCY DOMAIN 83

First, we qualitatively compare the size of the region, where isofrequent orbits exist.

It can be characterised by the azimuthal frequency at the ISCO (OSCO) and the one at

the intersection of the COD line with the horizontal axis. Only orbits having an azimuthal

frequency within this range do have isofrequent partners. The size of the allowed frequency

interval decreases if the spin is chosen to be negative and increases if the spin value is

positive. Although the region shrinks for negative spin, it will never completely vanish as

long as bound motion exists. Therefore, the spin does not destroy this degeneracy in the

fundamental frequencies of the orbital motion.

Next, we compare the evolution of the maximal radial frequency for different spin values

in fig. 2.13. We notice immediately the shift of the entire curve closer to the centre for
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Figure 2.13: The figure shows the change of Ωmax
r in value as well as in position from the

centre when the value of Λ is varied. The (red) dots mark the Schwarzschild case with
Λ = 0. Along each curve Λ increases up to its maximal value when Ωmax

r vanishes. The
black solid curve corresponds to s = 0, the (green) dashed one to s = 0.1 and the (blue)
dotted one to s = −0.1.

positive spin and further away for negative spin values. This coincides with the trend of

the shifts of the ISCO and OSCO. We also see the spin dependence of the value for Ωmax
r

for Λ = 0 (bold dots). More generally, if we choose a value for Ωmax
r on the vertical axis

and determine the intersection points with the three curves, not only the position differs

but also the corresponding Λ is different for the distinct systems.

We will now investigate if the spin induces a further degeneracy in the sense that

isofrequency pairs with different spin values may have the same frequencies. Indeed, we

can deduce this from fig. 2.12. Choose a line of constant radial frequency that lies in the

isofrequency range. Then draw a line of constant azimuthal frequency that corresponds to a

circular orbit located outside the range between the ISCO and the OSCO and mark the two

intersection points. We know from the analysis of Ωmax
r that the maximal radial frequency
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increases with positive spin and decreases with negative spin, keeping the cosmological

constant fixed. Now, imagine the line of constant Ωr shrinking and spreading slowly for

small negative and positive values for the spin parameter, respectively. The two intersection

points will diverge for positive spin and approach one another for negative spin leading to

six different orbits that have different eccentricities. For example, if the initial intersection

points belong to a non-spinning particle and the spin is slightly changed to positive or

negative values, there exist infinitely many physically distinct pairs of orbits having the

same frequencies but different spin values. Even the spin direction is different in this

example. If we allow both the cosmological constant and the spin parameter to vary we

get two-parameter families of isofrequency pairs with the same frequencies, parametrised

by (Λ, s).

It is now natural to ask whether these results are astrophysically relevant. It is true

that the considered values for Λ and s in this work are much bigger than the ones expected

from real astrophysical situations. Indeed, small spin values in the range of 10−4 in our

units are expected to be realistic for the compact objects in our Universe, see e.g. [36].

However, as indicated, the qualitative picture does not change.

2.4 Discussion

In this chapter we investigated the characteristics of isofrequency pairing for both geodesic

motion of a test particle and the non-geodesic motion of a spinning test particle moving in

Schwarzschild-de Sitter spacetime. In contrast to the case without a cosmological constant,

there exist two regions in the domain of bound orbits where isofrequency pairing occurs.

More precisely, it is not only the strong field regime that exhibits such a feature but also

a region close to the outermost stable circular orbit. Since the OSCO already appears in

Newtonian physics it would be interesting to check whether the isofrequency pairing can

also be predicted within this theory.

Generally, adding a cosmological constant and/or the spin leads to the emergence of

additional degeneracies in the frequencies. This occurs already for arbitrary small values

of the cosmological constant and the spin. At least in principle, this additional degeneracy

is of relevance in view of gravitational wave data analysis. Here we may think of an EMRI,

which, among all possible gravitational wave sources, is the closest physical realisation of

the dynamical system considered here. Whenever isofrequency pairing occurs, knowledge of

the fundamental frequencies alone does not determine the shape of the orbit, i.e. additional

information on the spectrum has to be taken into account.

The most obvious plan for follow-up work would be to consider spinning particles that

are not restricted to the equatorial plane but allow for more general motion. Then future

studies should be devoted to more general spacetimes, such as the Kerr-de Sitter-NUT...
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spacetime. Note that for a rotating black hole new features occur, such as precession of the

particle’s orbit outside the equatorial plane and the precession of the spin vector - even if

we still restrict to motion in the equatorial plane with the spin perpendicular to this plane.

Then we have three vectors (the orbital angular momentum of the particle, the spin of

the particle and the spin of the black hole) which can be mutually parallel or anti-parallel.

This will make the discussion of possible degeneracies more complicated. In addition, there

are several other avenues for future studies on isofrequency pairing which we would like to

mention briefly.

From a theoretical point of view isofrequency pairing is of relevance in view of per-

turbation techniques. For example, in order to use KAM theory for perturbed integrable

systems, certain non-degeneracy conditions have to be satisfied. The simplest version of

these non-degeneracy conditions is obviously violated if there is a degeneracy in the fre-

quencies such that other, more complex or more restrictive, conditions have to be tested.

To mention another example, the feature of isofrequency pairing and the occurrence of a

singular curve can be used to compare different approaches to the general relativistic two-

body problem, as it was already mentioned in [39]. Methods such as the effective-one-body

approach or the post-Newtonian approximation can profit from the isofrequency pairing

and its related characteristics.

Also from a theoretical point of view, it is an interesting question to ask if there are

spacetimes, where three or more orbits with the same frequencies exist. In all examples

treated so far there are only isofrequency pairs. (Here we are referring to the situation that

all the parameters of the dynamical system have been fixed which means fixing Λ and s.)

As an attempt to find a candidate for isofrequency triples one could start with a Bertrand

spacetime and perturb it a little bit. Bertrand spacetimes, which were introduced in [134],

are spherically symmetric and static spacetimes in which the ratio of the radial frequency

and the azimuthal frequency is a constant rational number q for all bound orbits, so they

show the same total degeneracy of the frequencies as the Kepler problem but now with

q ̸= 1. We are planning to search for isofrequency triples etc. in future work.

Another interesting feature, which we came across in our study, is the heteroclinic orbit,

which we cannot assign a single azimuthal frequency to. Physically, this can be explained

by the zoom-whirl feature connected to the presence of the separatrices. Since a well-

established approach for the computations of gravitational radiation emitted by EMRIs

uses the progression through orbits, the modeled particle has to cross the separatrices or

homoclinic orbits at some point in order to plunge into the black hole [17, 20]. Thus, such a

particle experiences the zoom-whirl orbits during the transition and it has been suggested

that the zoom-whirl feature exhibits a distinct signal in the gravitational radiation signal

[28, 29]. Since the heteroclinic orbit is no longer a single point in the frequency domain,
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which is the accessible picture by gravitational wave observations, but a stretched line

covering a whole range of azimuthal frequencies, it might be possible that the imprint of

such a heteroclinic orbit is also visible in the waveforms and differs somehow from the ones

obtained by the homoclinic orbits.

In conclusion, we stress that a non-vanishing spin and a positive cosmological con-

stant have their impacts on isofrequency pairing. Both quantities add degeneracies in the

frequency picture instead of destroying them. The cosmological constant gives rise to a

heteroclinic orbit, which might be visible in the gravitational radiation. Future work may

focus on the imprint of such orbits on gravitational waveforms.



Chapter 3

Numerical comparison of two

supplementary conditions: T SSC

& NW SSC 1

The description of spinning particles relies on the definition of the centre of mass, i.e.

the SSC. As we have seen in section 1.3.2 the spin supplementary conditions are in some

sense arbitrary. In principle, we can choose any point within the body by choosing the

appropriate SSC and follow its evolution by solving the MP equations. In other words, the

observer, who sees this particular point as the object’s centre of mass, changes if another

point within the body is considered. Physically though, the dynamics should not depend on

the selection of the reference worldline corresponding to a gauge choice. The supplementary

condition fixes this gauge. Nevertheless, for each SSC we have a different worldline and

hence, each SSC prescribes a different evolution of the MP equations, see e.g. [83]. But

although this ambiguity appears to be a major issue in the modelling of an EMRI binary

system, the difference in the evolution caused by different supplementary conditions has

not yet received the adequate attention.

In order to compare the evolution of different SSCs we have chosen to investigate

the motion of a spinning particle moving in Kerr spacetime given by eq. (1.8) described

by the MP equations and supplemented with two different SSCs [1]. Since most of the

astrophysical objects rotate, it is reasonable to assume that black holes possess a non-

vanishing spin, which is why we have chosen a rotating black hole as the gravitating body.

Then, we have decided to analyse the T SSC and to compare it with the NW SSC. The

T SSC has been widely used in the past and is so far the only supplementary condition,

whose existence and uniqueness in the determination of the reference worldline has been

1This chapter is based on the work published in [1]
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rigorously proven [90, 91, 92]. Moreover, it yields an explicit relation between the four-

velocity and the four-momentum simplifying the numerical treatment. It therefore provides

a good, robust and well understood reference worldline, which the results using the NW

SSC are compared with.

Secondly, we have chosen the NW SSC, since it is the most promising supplementary

condition within the Hamiltonian formalism as it leads to a canonical structure. In addition,

it has been successfully implemented in the framework of the PN approximation, see e.g.

[58, 116]. Compared to the T SSC the NW SSC is neither unique, since it depends on the

four-velocity of the observer, nor does it yield an explicit relation between the particle’s

velocity and momentum. This implicit relation makes it numerically more challenging to

integrate the equations of motion for such a reference worldline.

The next question would be how the comparison of the two worldlines can be performed.

Usually the discussion about the transition between two different SSCs is based on the

centre of mass worldline displacement, which leads to a shift in the value of the spin tensor

as well as to a shift of the initial point in configuration space [58, 81, 83]. This treatment

assumes just one and the same body and its centre of mass as seen by different observers.

If the starting point, though, already differs at the very beginning, the initial situations are

completely different from each other and their evolutions cannot be compared. Therefore,

we employ another approach for our investigation. Namely, we require the two orbits to

start at the very same point in configuration space, i.e. at the same point in spacetime. This

means that both of the different corresponding observers see the centre of mass lying the

same place, even if the SSCs are different. More precisely, we do not attempt to change the

observer and analyse the shift of the centre of mass of one particle. The two observers may

see different particles but with coinciding centres of mass. If the internal structure of the

particles has an impact on their dynamical evolution, we expect the resulting worldlines to

be different from each other, since they are two distinct particles. However, if the influence

is small and the geodesic limit is approached, they should coincide. As a measure of the

influence of the internal structure we choose the value of the spin.

3.1 Initial Conditions

The equations of motion of a particle with dynamical mass M and the spin tensor Sµν

in a given background gravitational field gµν are given by the MP equations in the pole-

dipole approximation and stated in eq. (1.14) - (1.15). In order to simplify the numerical

treatment we first define the constants of motion, which are useful for fixing the initial

conditions and make them comparable for the two different settings depending on the SSCs.

The conserved quantities for spinning particles moving in a stationary and axisymmetric

spacetime are given by the two Killing vectors (∂t, ∂φ). They are computed with eq. (1.16)
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to be the energy

E := −pt +
1

2
gtµ,νS

µν , (3.1)

and the z-component of the total angular momentum

Jz := pφ − 1

2
gφµ,νS

µν , (3.2)

which both are preserved along the solutions of the MP equations. These two constants

of motion exist independently of the choice of the supplementary condition and reflect the

symmetries of the background spacetime.

As we have seen in the introduction of spinning particles a wise choice of SSC implies

further conserved quantities. For instance, in the case of the T SSC the spin measure S2

and the dynamical mass M are preserved along the evolved worldline and are used to set

up the initial conditions. Then, the SSC has also to be preserved along the solutions of

the MP equations fixing the relation between the uµ and pµ. While this relation is given

in an explicit expression for the T SSC, eq. (1.30), in the case of NW SSC we merely

have an implicit relation given in eq. (1.40). This hindrance can be overcome by employ-

ing numerical techniques to solve this initial value problem. Note that we selected the

worldline parameter σ to be the proper time τ and normalised the velocity to uν uν = −1,

guaranteeing the worldline of the particle to be timelike and therefore physically relevant.

Then, there exist two possibilities for how the initial value problem addressing the implicit

relation between uµ and pµ can be treated which are briefly introduced in Appendix A.

Having the relation between uµ and pµ at hand, we can now begin with the integration

of the MP equations. Since we have to start at some point, the problem is an initial value

problem. Expanding the covariant derivatives of pµ and Sµν we obtain for the system of

equations that are to be solved⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d xµ

dτ = uµ ,

d pµ

dτ = −1
2 Rµ

νκλu
νSκλ − Γµ

νκuνpκ ,

d Sµν

dτ = pµ uν − uµ pν + Γµ
κλS

νκuλ − Γν
κλS

µκuλ ,

xµ(τ = 0) = xµ0 ,

pµ(τ = 0) = pµ0 ,

Sµν(τ = 0) = Sµν
0 .

(3.3)

with xµ0 , p
µ
0 , S

µν
0 being the initial conditions that have to be fixed beforehand. If one is

looking naively at the equations, one may count twelve values that have to be chosen
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initially. However, this is a very large number of values and the range of variations is way

too big to cover the entire parameter space and to find the physically relevant or interesting

solutions. Therefore, it is handy to include constraints in form of the constants of motion

as well as the spin vector instead of the spin tensor in the fixing procedure of the initial

conditions. Without loss of generality we choose to start at t = φ = 0 and provide initial

values for r, θ, pr as well as the two spin components Sr and Sθ. The remaining initial

conditions pt, pθ, pφ, St and Sφ are then fixed by the constraints.

In the case of the T SSC those constraints are

E = −pt −
1

2M
gtµ,νη

µνγδSγpδ , (3.4)

Jz = pφ +
1

2M
gφµ,νη

µνγδSγpδ , (3.5)

M2 = −gµνpµpν , (3.6)

S2 = gµνSµSν , (3.7)

0 = gµνSµpν , (3.8)

where we have substituted eq. (1.35) into the constants of motion (3.1), (3.2), and lowered

the indices wherever needed. Thus, we specify an orbit by providing values for the physical

quantities E, Jz, S
2, and M2 which are easier to relate to physically realistic situations.

We then solve the system (3.4)-(3.8) for pt, pθ, pφ, St, and Sφ with the help of the Newton-

Raphson method, see Appendix A.

The next step is to find initial conditions for the choice of the NW SSC, which are

as similar as possible to the ones defined for the system with T SSC, since we aim to

compare the evolutions of the reference worldlines starting from the same initial setup.

Therefore, we supply the MP equations supplemented by NW SSC with the same initial

values for r, θ, pr, Sr, Sθ, E, Jz, S
2 and M2. The initial conditions for pt, pθ, pφ, St, and

Sφ necessary to solve the system of differential equations (3.3) are then again computed

using the constraints. Both the energy and the angular momentum are obtained by the

Killing vector fields, which are independent of the choice of the SSC. Hence, we can use

these relations also in the case of NW SSC.

Next, we use eq. (3.6) although the mass M is not preserved during the evolution for

a reference worldline fixed by the NW SSC. For the measure of the spin, which is also not

preserved, we use eq. (1.44) instead of (3.7). However, at this point we are interested

neither in the behaviour of the spin measure nor in that of the mass during the evolution,

but only in the starting situation so that we are able to use these equations in order to

fix the initial setup. The last constraint is given, of course, by the NW SSC substituting

(3.8). Thus, in total we have the following constraints for the NW SSC
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E = −pt −
1

2M
gtµ,νη

µνγδSγpδ , (3.9)

Jz = pφ +
1

2M
gφµ,νη

µνγδSγpδ , (3.10)

M2 = −gµνpµpν , (3.11)

S2 = −M2

ζνζν
Sσ Sσ , (3.12)

0 = gµνSµζν , (3.13)

which can be solved for pt, pθ, pφ, St, and Sφ for the same provided r, θ, pr, Sr, Sθ, E, Jz,

S2 and M2 as in the case of T SSC, we get what we referred to as similar initial conditions

above. At last, by raising indices of the momenta and going from spin vectors to tensors

with the help of the transformations (1.35) and (1.43), respectively, we get suitable data

to start the computation with. The orbits are evolved through the eq. (1.14), (1.15). A

more detailed discussion about the techniques we have applied to evolve the MP equations

is provided in Appendix A.

As already explained in the previous section 1.3.2, the NW SSC does not provide a

unique description of a reference frame. The observer’s four-velocity ζµ depends on a

timelike vector nµ, which can be chosen at will. We adapt the definition of Barausse,

Racine and Buonanno [53], since we aim to compare their formalism, which is linearised

in the spin, to the MP approach later on in chapter 6. Implementing this choice from the

very beginning, simplifies upcoming calculations. Thus, we set

nµ = e(t) µ , (3.14)

which refers to the timelike direction of an orthonormal local tetrad field defined on the

background spacetime. An intuitive choice is the time gauge for this tetrad basis vector

e(t) µ = δtµ

√
∆Σ

Λ
, (3.15)

based on the Boyer-Lindquist coordinates given in (1.8) and corresponding to a ZAMO

observer. It fixes the direction of the timelike tetrad basis vector to be aligned with the

coordinate time direction. The tetrad formalism has been introduced within the theory

of measurement for general relativity. Each observer carrying such a tetrad measures

the quantities that are projected onto this tetrad [95, 170]. Therefore, when the tetrad

formulation is used, a relation to observable features can be established.

Now, we are ready to start the numerical analysis. As mentioned before we are in-

terested in the influence of the inner structure onto the evolution of an orbit starting at

the same spacetime point but corresponding to different particles. The inner structure is
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parametrised by the measure of the spin of the particle, which we vary: the higher the spin

the stronger the expected effects.

By adapting the convention that lengths and times are measured in units of the central

object’s mass and angular momenta in units of the particle’s and the central object’s mass,

we set M = 1 and M = 1 in the case of the T SSC (recall that the kinematical mass m

has already been fixed by the normalisation condition uµu
µ = −1 in eq. (1.32)), i.e. we set

r ↦→ rM , Jz ↦→ JzMM and S ↦→ SMM (note that M is not conserved for the NW SSC

and is therefore not suitable for a rescaling in this case) 2. Indeed, we are just interested in

the initial situation where we have to fix the initial conditions by setting up the values for

the constants of motion. The maximal absolute value of the spin parameter given in these

units is therewith obtained by an estimate for small compact spinning objects modeled by

a Kerr black hole and amounts to 1 , see section 2.2.2 or [35, 36, 38]. So we start our

numerical analysis with a large spin value S = 1.

3.2 Large Spin

First, the initial position of the orbit is chosen to be in the equatorial plane θ0 = π/2 at

a radius of r0 = 11.7 which is not too close to the centre that the particle plunges in but

also not too far away so that the coupling between the spin and the gravitational field

still matters. Moreover, the distance ensures the validity of the pole-dipole approximation,

since the scale of curvature is much larger than the extension of the body, so that tidal

forces can be neglected.

In order to analyse the properties of the evolution under the two different SSCs it

is useful to maintain spin-curvature interaction during the evolution so that its influence

can be investigated. The best way to ensure the coupling terms to be relevant is to

examine a bound orbit. Therefore the remaining starting values are chosen appropriately:

pr = 0.1, S = 1, Sr = 0.1S, Sθ = 0.01S, E = 0.97, Jz = 3 and M = 1. The spin of

the black hole a is fixed to be 0.5, since a variation of the Kerr spin does not change the

qualitative picture, see Appendix C. Thus the MP equations can now be integrated for both

the T SSC and the NW SSC. The resulting orbits are presented in fig. 3.1 in configuration

space with

x = r cos (φ) sin (θ) ,

y = r sin (φ) sin (θ) ,

z = r cos (θ) ,

2We refrain here from the notation we used in chapter 2 for the spin parameter s, since the spin vector
is no longer restricted to be perpendicular to the orbital plane but allows for more general motion. In order
to emphasise this difference we use different notations for the spin measure S.
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as Cartesian coordinates. The evolution time is τ ≈ 103 and covers about three orbital

revolutions.
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Figure 3.1: The left panel shows a MP orbit with T SSC (red) and a MP orbit with
NW SSC (blue) in the configuration space x, y, z (Cartesian coordinates). The common
parameters for these orbits are a = 0.5, r = 11.7, θ = π/2, pr = 0.1, S = 1, Sr = 0.1 S,
Sθ = 0.01 S, E = 0.97, Jz = 3, and M = 1. The central panel shows the logarithm of
the Euclidean distance in the configuration space between these two orbits as a function
of the proper time. The right panel shows the logarithm of the difference ∆S4x4 between
the spin tensors of these two orbits as a function of the proper time.

The divergence between the two orbits is barely visible in the left panel, but if we take

the Euclidean norm

∆xyz =
√
(xT − xNW )2 + (yT − yNW )2 + (zT − zNW )2 , (3.16)

we see that at the end of our run, the separation between the two orbits is of the order one

(central panel of fig. 3.1), while the radial distance from the central black hole is of the

order ten (left panel of fig. 3.1). Even if the Möller radius is not an appropriate tool for

our setup, because the worldlines do not necessarily correspond to the same particle, it is

worthy to notice that the two orbits lie inside a Möller radius (S/M = 1) for τ = 103, even

if their distance will grow out of this radius later on. This divergence in the orbit evolution

follows the discrepancy in the spin space. To illustrate this, the norm of the difference

between the spin tensor Sµν
T of the T SSC and the spin tensor Sµν

NW of the NW SSC,

∆S4x4 =

√⏐⏐⏐gµνgκλ(Sνκ
T − Sνκ

NW )(Sµλ
T − Sµλ

NW )
⏐⏐⏐ , (3.17)

is displayed in the right panel of fig. 3.1. ∆S4x4 is one tenth of the spin measure right

from the beginning, and stays at this level during the evolution. Thus, from an orbital

dynamic point of view the choice of different SSCs leads to orbital evolutions, which diverge

significantly with time, when the spin of the test particle is of order S = 1.
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One thing that has to be discussed before we proceed is the meaning of a ’common’

proper time, when two orbits with different SSCs are compared. Each SSC defines its own

centre of reference, which implies that with each SSC the proper time that is measured

along the above orbits is different, even if the orbits start with similar initial conditions.

Another issue that arises here is how we can measure the distance between two ‘nearby’

orbits in a curved spacetime. Above, we use Euclidean norm, however the spacetime is not

Euclidean. The same aspect arises when geodesic chaos is studied in curved spacetimes

(see, e.g., [135, 136]). One of the suggestions in the aforementioned field is to use the

two-nearby-orbits technique, i.e. to evolve two orbits with similar initial conditions and

measure their distance when they reach the same proper time. This is in few words the

approach we adapt in our study for the time issue.

For the issue of the distance in the configuration space between the two orbits, we have

chosen to employ the Euclidean metric. We could employ the local gµν metric as well, even

if the orbits depart from each other significantly (central panel of fig. 6.1). However, for

the evolution time τ = 103 the results coming from both approaches are almost identical,

and therefore we went for the the simplest metric, which is the Euclidean.

To sum up, a large spin does indeed affect the evolution of the orbits of two particles

confirming the deviation from a geodesic orbit. However, even though the spin is chosen

to be big the effect is not so distinct that the discrepancy between the orbits exceeds the

Möller radius at the end of our evolution time.

In the next step we analyse the convergence of the two orbits by considering the geodesic

limit, i.e. reducing the value of the spin to 10−8.

3.3 Small Spin

As already mentioned the geodesic limit is approached by setting the spin measure to

S = 10−8 while keeping the other parameters fixed. The resulting orbits look similar to

the ones obtained by the previous setup. This outcome is expected, since merely the spin

measure is changed. However, the distance between the two orbits has dropped significantly

about eight orders of magnitude. The reason for this drop is the smaller impact of the

spin on the shape of the particle’s orbit. The smaller this influence is the smaller is the

effect of the choice of the spin supplementary condition. Still, the level of divergence in

the configuration space is again defined by the magnitude of the spin difference ∆S4×4.

Although the initial position in configuration space of the particles at the beginning are

identical, during the evolution their orbits follow slightly different paths, which is due to

the geodesic deviation caused by the internal structure. This is also reflected by the initial

difference in the spin components ∆S4×4 ≈ 10−9, which is passed on to the configuration

space resulting in the deviation of the two orbits.
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Figure 3.2: The left panel shows a MP orbit with T SSC (red) and a MP orbit with
NW SSC (blue) in the configuration space x, y, z (Cartesian coordinates). The common
parameters for these orbits are a = 0.5, r = 11.7, θ = π/2, pr = 0.1, S = 10−8, Sr = 0.1 S,
Sθ = 0.01 S, E = 0.97, Jz = 3, and M = 1. The central panel shows the logarithm of
the Euclidean distance in the configuration space between these two orbits as a function
of the proper time. The right panel shows the logarithm of the difference ∆S4x4 between
the spin tensors of these two orbits as a function of the proper time.

In order to assess the behaviour of the two orbits properly it is useful to have a look at

the constants of motion.

3.4 Constants of Motion

Since both the energy and the angular momentum are conserved in both cases, it is inter-

esting to check the difference in the behaviour of the particle’s rest mass and the measure

of the spin, which are only preserved in the case of T SSC. The preservation is checked by

analysing the relative error of the four-momentum

∆M2 =

⏐⏐⏐⏐1− M2(τ)

M2(0)

⏐⏐⏐⏐ , (3.18)

and the relative error of the spin measure S2

∆S2 =

⏐⏐⏐⏐1− S2(τ)

S2(0)

⏐⏐⏐⏐ , (3.19)

where M2(τ), and S2(τ) are calculated at time τ .

We see from fig. 3.3 that both the rest mass M2 and the spin length are conserved

for the T SSC (red lines) as it was expected. On the other hand, in the case of the NW

SSC (blue lines) the four-momentum scales with the magnitude of the spin S, while the

square of the spin itself stays at the same level indifferently from the spin’s magnitude.

This scaling in the conservation of the mass is anticipated because, as S → 0, the evolution
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of the MP equations approaches that of the geodesic motion. In order to illustrate better

the above mentioned scaling, we run several simulations with initial setups similar to the

one of fig. 3.1 where we only change the measure of the spin, S. For every simulation,
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Figure 3.3: The top row of panels corresponds to the orbits of fig. 3.1, while the bottom
row of panels corresponds to the orbits of fig. 3.2. The red lines represent the evolution
of the MP equations with T SSC, while the blue lines represent the NW SSC. The left
column of panels shows the relative error in the preservation of the four-momentum, while
the right depicts the preservation of the spin.

we plot the maximum value of ∆M2 along the trajectory against the initial spin measure

shown in fig. 3.4. The resulting plot shows that, as we decrease S, the four-momentum

for the NW SSC tends to be conserved up to the computational accuracy. There are two

effects that shape this figure. One is the theoretical scaling of ∆M2 as a function of S

and the other is the finite computational accuracy. From a linear fit of our data we get

for S > 10−6 (dashed line in fig. 3.4) ∆ M2 ∝ S2. For smaller spins a plateau appears

because we reach the computational accuracy (in our runs we use double precision).

Since for T SSC the four-momentum is conserved and for the NW SSC the
√
∆ M2

scales linearly with the spin, this scaling can be interpreted as the rate by which the two
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Figure 3.4: The relative error of the four-momentum ∆M2 as a function of the spin measure
S for the NW SSC. The black dots correspond to the maximum values of ∆M2 during the
evolution for each S. The dashed line is a linear fit of the form log10∆M2 = a log10 S + b
for data with S > 10−6, where a = 1.996± 0.004, b = −4.135± 0.013.

different SSC converge to each other. In fact, based on the laws of black hole dynamics the

dynamical mass M of compact spinning objects can generally be expressed as a function

of the spin measure F [137]

M2 = m2
0 + F

(
S2
)
, (3.20)

in the pole-dipole approximation, with m0 as the irreducible mass. Indeed, if the observer

is placed in the particle’s rest frame, i.e. the worldline is fixed by the T SSC, then the

conservation of M is recovered from eq. (3.20), because the contribution from the spin

measure is constant. In the case of the NW SSC the spin measure is no longer preserved.

Therewith, we obtain

∆M2 =

⏐⏐⏐⏐M2(τ)−M2(0)

M2(0)

⏐⏐⏐⏐ = ⏐⏐⏐⏐m2
0 −M2(0)

M2(0)
+

O(S2)

M2(0)

⏐⏐⏐⏐ ,

where the first term is not expected to depend on the spin measure leading to the scaling

of ∆M2 ∝ S2, which we found in our numerical analysis.

3.5 Discussion

We conclude that the numerical results for both choices of SSCs yield the outcome we

expected from theoretical considerations providing the ansatz given in eq. (3.20) within

the pole-dipole approximation.

The NW SSC conserves the mass at linear order in the particle’s spin while the error

in the spin measure stays at the same level. These characteristics complicate an intuitive
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approach to the behaviour of the NW SSC.

Recall that the two orbits correspond to two spinning particles at the same point in

configuration space. More precisely, we have two distinct particle’s with internal structure

characterised by the spin value, which start at the same position in configuration space.

As the qualitative behaviour does not change if the value of the Kerr spin or the direction

of the particle’s spin vector is reversed, see Appendix C, the evolution of the worldline is

indeed affected by the internal structure of the particle, i.e. it does depend on the value of

the particle’s spin. In fact, the deviation from geodesic orbits is assigned to spin-gravity

interaction in the case of spinning particles, see e.g. [78, 97, 104, 138], such as spin-spin

or spin-orbit coupling. Indeed, we observe slight quantitative changes in the Euclidean

distances between the two orbits when the value of the Kerr spin or the sign of the spin

parameter is varied. They do not affect the differences in the spin space or the behaviour

of the constants of motion, which are used to determine the convergence of the two SSCs.

Thus, their orbital evolution diverges and scales linear in the particle’s spin, which is

attributed to spin-curvature coupling. Astrophysically relevant spin values are estimated

to be S ≤ 10−4 so that the motion of the particles in the pole-dipole approximation has a

noticeable effect induced by the spin.

However, the orbit considered in this work is located at a distance of r = 11.7, at

which the influence of curvature is not too strong. Thus, if one wants to thoroughly

investigate the divergences in strong-field region, it is best to choose a circular orbit and

shift it closer to the centre [103, 104, 139, 138]. One has to take care, though, for higher

multipole moments, which become the more important the stronger the gravitational field.

Otherwise, the pole-dipole approximation breaks down at some point [83].

After the examination of different SSCs and analysing the properties of the NW SSC,

we apply the NW in a different setting. While the behaviour of the NW SSC is somewhat

strange compared to the T SSC it offers a great advantage in the context of Hamiltonian

mechanics: It provides a canonical formulation. In the next part we will focus on the

Hamiltonian description of spinning particles, investigate a linearised in spin formulation

and extend the Hamiltonian to higher orders in spin.



Part II

Lagrangian and Hamiltonian

Mechanics of spinning particles
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Lagrangian and Hamiltonian for

spinning particles briefly reviewed

The second part of this thesis deals with two different formulations of classical dynamical

systems: Lagrangian and Hamiltonian mechanics. In particular, the significance of a ca-

nonical Hamiltonian function for a spinning test particle linearised in spin is analysed by

numerical comparison to the Lagrangian result. In addition, we search for criteria such a

Hamiltonian has to satisfy in order to give physically relevant results in numerical compu-

tations. In order to improve the Hamiltonian formulation we generalise the Hamiltonian

to all orders in the particle’s spin within the pole-dipole approximation.

The Lagrangian as well as the Hamiltonian formalism are approached from different

angles. Barker and O’Connell generalise the PN approximated Lagrangian to spinning

particles and derive the corresponding Hamiltonian [113]. Mathematically sophisticated

approaches are discussed in [93, 94, 140] giving explicit expressions for the Lagrangian for

objects moving in external gravitational and electromagnetic fields. An extensive study on

the action approach using the concept of tetrads and the variational principle is provided by

Westpfahl et al. in the 1960s [69, 141, 142, 143], including special and general relativistic

systems as well as electromagnetic fields. Shortly after that, Hanson and Regge [144]

developed a Lagrangian approach to the special relativistic spherical top and established

a canonical Hamiltonian formulation by imposing constraints according to Dirac’s ansatz

[71, 145]. Further action approaches are discussed by Bailey and Israel [146, 147] and in

the context of PN theory by Porto [148]. The equations of motion are obtained from a

covariant variation of an implicit action and match the MP equations.

A canonical formulation becomes important when Hamiltonian mechanics is considered.

Tauber studied the canonical formalism for general relativistic spinning particles and

presented the true conjugate momenta up to linear order in the particle’s spin [149].

A sophisticated Hamiltonian formulation was provided by Arnowitt, Deser and Misner

[49, 50, 51, 52] (ADM), which was extended to spinning particles by Steinhoff in the con-

text of PN approximation very recently [58, 116]. Based on a different method Barausse,

Racine and Buonanno developed a canonical Hamiltonian from a Legendre transformation
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of an implicit Lagrangian [53] as a key ingredient for EOB theory. However, this Hamilto-

nian is only valid to linear order in the particle’s spin and leads to constants of motion that

exhibit unphysical behaviour in numerical computations. Thus, it is of interest to study

this Hamiltonian in more detail.

In chapters 4 and 5 we give a brief overview of the Lagrangian formalism, the action

principle and the Hamiltonian formulation in general relativity. Then, we numerically

compare the linearised Hamiltonian by Barausse et al. to the MP equations and discuss

the range of significance for the Hamiltonian in chapter 6. After that, in chapter 7, the

reason for the unphysical behaviour of some constants of motion within the Hamiltonian

evolution is examined. We improve the derivation and formulation of the Hamiltonian

using a spin-gauge invariant action in chapter 8.



Chapter 4

Lagrangian Formalism

Before entering the Hamiltonian formalism we first give a short introduction into the Lag-

rangian formulation of classical mechanics, see e.g. [117, 150, 151]. Historically, the Lag-

rangian formalism has been developed before the Hamiltonian one, so that these two for-

mulations can be connected to each other by starting from the Lagrangian.

4.1 The Action Principle

Generally in classical mechanics and flat spacetime, the Lagrangian formulation provides

a convenient way to describe the dynamics of physical systems that may be subject to

external forces. Moreover, constraints can be implemented via the Lagrangian multipliers.

The heart of this formalism is the so called Hamilton’s principle of extremal action implying

the determination of the dynamics and thereby the equations of motion by a variational

problem. The varied quantity is based either on a function L(q, q̇) for single particles with

generalised coordinates q and velocities q̇, here the dot denotes the ordinary derivative with

respect to time, or on a density L(φ, ∂µφ) if the dynamical variable is a field φ(q) which

depends on the generalised coordinates. Both L and L include all physical information

necessary to fix the dynamics of the particle or the field.

Hamilton’s principle then says that the system behaves in such a way that the cor-

responding action S =
´
dtL, for a system of discrete particles, or S =

´
dt
´
d3xL, for

fields, is required to be stationary. Using variational calculus we can find the extrema of

the action making it stationary with which we obtain the equations of motion describing

the dynamics of the considered system.

Applying this approach to general relativity we are able to define a Lagrangian that

yields the Einstein equations as the resulting equations of motion. First, recall the grav-

itational field or metric gµν to be the dynamical variable and generalise through minimal

coupling the formulae from special relativity to general relativity leading to
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S =

ˆ
L (gµν ,∇αgµν) d

4x ,

where the Lagrangian density L can be expressed as

L =
√
−gL̂ ,

with L̂ being a scalar and g the determinant of the spacetime metric gµν . The prefactor
√
−g makes sure that the integral is covariant, i.e. that it is independent of the choice of

the coordinates by ensuring the volume element to be invariant under coordinate trans-

formations [7]. Since we need a scalar function L̂ that depends on derivatives of the metric,

it seems natural to choose the Ricci scalar (the Riemannian curvature scalar) so that the

action is given by

S =

ˆ √
−gRd4x , (4.1)

also known as the Einstein-Hilbert action. And indeed, applying the principle of least

action and treating the gravitational field as the dynamical variable results in the Einstein

equations as the equations of motion for the metric gµν [7].

Another example, where the variational principle can be used, is the geodesic equation.

It is known that a freely falling testparticle always follows the path of maximal proper

time. Therewith we can extremise the proper time functional

τ =

ˆ √
−gµν

dxµ

dσ

dxν

dσ
dσ ,

in order to obtain the corresponding equations of motion, i.e. the geodesic equation,

describing the behaviour of such a particle freely propagating through a gravitational field.

The case of spinning particles is different, though. We have to deal with non-geodesic

motion and include the degrees of freedom induced by the spin into the Lagrangian, see e.g.

[58, 137, 143, 146, 148]. Therefore the motion of a spinning particle can be characterised

by the evolution of a worldline, which has a tetrad eA
µ attached at each point representing

the eigenrotation of the body. This tetrad is assumed to be a set of orthonormal basis

vectors satisfying the normalisation condition [6, 7]

I. ηAB = eA
µeB

νgµν , (4.2)

or equivalently

II. gµν = eA
µeB

νηAB , (4.3)

with ηAB = diag (−1, 1, 1, 1) as the Minkowski metric. Consequently, the spacetime metric

is transformed to be flat within the body-fixed frame denoted by the capital latin indices
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A = 0 ... 3 at each point. Since the tetrad is Lorentz covariant, endowing the particle with

such a tetrad means that we can assign an element of the Poincaré group (xµ (σ) , eA
µ (σ))

to the particle, which will give us the Lagrangian coordinates later. The spin angular velo-

city is related to the rotation of the tetrad while the particle that carries the tetrad moves

along its worldline. Motivated by Newtonian theory we introduce the angular velocity as

[58, 148]

Ωµν := eA
µDeAν

dσ
= eA

µ

[
deAν

dσ
+ Γνµ

αu
α

]
, (4.4)

where Γµ
αβ is given in (1.4) and the tetrad eA

µ (σ) is associated to the Newtonian time

dependent spatial rotation matrix which we are acquainted with in the dynamics of a rigid

body. The covariant derivative appears due to minimal coupling in the general relativistic

context and considers the curvature of the spacetime along the particle’s worldline.

Similar to the Newtonian case the angular velocity Ωµν is antisymmetric, which can be

deduced by the metric compatibility with the covariant derivative using the condition in

eq. (4.3)

0 =
D

dσ
gµν =

DeA
µ

dσ
eAν + eA

µDeAν

dσ
= Ωνµ +Ωµν .

Notice that Ωµν corresponds to an infinitesimal Lorentz transformation with six degrees

of freedom, three Lorentz boosts and three spatial rotations. Thus, in order to translate

the system into an ordinary physical system with the correct number of degrees of free-

dom, i.e. three spatial rotations, we have to get rid of the three Lorentz boosts. This is

achieved by imposing constraints on the system, which we have already identified as the

spin supplementary conditions in section 1.3.2.

To sum up, the Lagrangian coordinates are composed of the spacetime position xµ, the

four-velocity uµ, the tetrad field eA
µ and its velocity DeA

µ

dσ = ėA
µ. Keeping it unspecified

and generic we obtain for the Lagrangian scalar function [137]

L (gµν , u
µ,Ωµν) , (4.5)

where we substituted the dependency on eA
µ, ėA

µ by Ωµν and the one on xµ by gµν . The

equations of motion are then obtained by a reparametrisation invariant action principle

δS = δ

ˆ
L (gµν , u

µ,Ωµν) dσ = 0 .

However, before we start the variation of the Lagrangian it is worth spending some time

on the geometrical meaning of the variational principle. If the worldline is varied naively,

the component values of tensors defined on the original worldline are not included in the

variational procedure so that covariance is lost. A useful tool is provided by the covariant
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variation introduced in the following section.

4.2 Infinitesimal covariant variation

A shift of the position can be obtained through a repeated infinitesimal variation of the

action. Linear variations δ lead to the equations of motion in flat spacetime. However,

such an approach may loose covariance during the variation procedure in curved geometry.

In order to keep track and sustain the covariance it is useful to apply an approach that

includes manifest covariance. In this context, a covariant variation of these quantities

defined along a worldline zα was introduced in [137, 152] as

∆ := δ + Γµ
ναδz

αGν
µ , (4.6)

where δzα is the infinitesimal shift of the worldline. Here Gν
µ is a linear operator, which

rearranges spacetime indices such that the covariant derivative ∇α can be written in the

abstract form

∇α := ∂α + Γµ
ναG

ν
µ . (4.7)

For instance, Gν
µ operates on a tensor Tα

β as Gν
µTα

β := δβµTα
ν − δναTµ

β. This imple-

ments an infinitesimal parallel transport in the variation ∆. In this notation, the covariant

differential D reads

D := d+ Γµ
ναdz

αGν
µ . (4.8)

Curvature is defined by the change of a vector that is parallel transported around a closed

loop, which can be expressed as the commutator of covariant derivatives

[∇α,∇β] = Rµ
ναβG

ν
µ ,

where our convention for the Riemann tensor is fixed by the definition in (1.3). It im-

mediately follows that the commutator of the covariant differential and the corresponding

variation involves curvature as well

[∆, D] = Rµ
ναβδz

αdzβGν
µ , (4.9)

i.e. it does not vanish. Here we used the intermediate commutator of the linear operator

Gν
µ

[Gν
µ, G

β
α] = δβµG

ν
α − δναG

β
µ . (4.10)

In order to maintain the particle’s properties during the worldline shift, we require them

to be parallel transported along the geodesic that connects the two worldlines by setting
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∆pµ = 0 , ∆Sµν = 0 . (4.11)

Although the geometrical objects pµ and Sµν remain unaltered, the variation implies that

the numerical component values of the worldline quantities are transformed. However, as

we already mentioned geometrically this is just a parallel transport and we refrain from

denoting this change by a hat and regard them as geometrically unchanged. The variation

of fields due to the variation of the worldline is given by

∆ ≡ δzα∇α . (4.12)

This geometric machinery allows a convenient, manifestly covariant, derivation of the equa-

tion of motion for the position.

4.3 Variation of the action

As the action as well as the Lagrangian are scalar quantities the ordinary variation can be

interchanged with the covariant one, so that the principle of least action can be applied in

a manifestly covariant manner

δL (gµν , u
µ,Ωµν) =

∂L

∂uµ

⏐⏐⏐⏐
Ω

∆uµ +
∂L

∂Ωµν

⏐⏐⏐⏐
u

∆Ωµν ,

since the variation of the metric tensor field according to (4.12) ∆gµν = δzαgµν;α = 0 van-

ishes due to the metric compatibility with the covariant derivative. Defining the generalised

momenta by

pµ :=
∂L

∂uµ
, S := 2

∂L

∂Ωµν
, (4.13)

where the linear momentum pµ corresponds to the four-velocity uµ and the spin tensor Sµν

to the angular velocity Ωµν , we obtain

δL (gµν , u
µ,Ωµν) = pµ∆uµ +

1

2
Sµν∆Ωµν ,

for the variation of the Lagrangian. At this point, we note that pµ is not the canonical

momentum to xµ, since Ωµν also depends on uµ, which is held fixed for the definition of

pµ, though. When considering the variation of the velocities it is important to recall the

dependence of Ωµν on the body-fixed tetrad field and its normalisation condition given

by(4.2) or (4.3). In particular, this means that the variation of the tetrad field is subject

to constraints. They are taken into account by defining a new antisymmetric quantity

[137, 144]

∆Θµν = eA[µ∆eA
ν] ,
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resulting from the metric compatibility and the normalisation condition for tetrads (4.3)

and which is used to perform the variation with respect to the angular velocity or the

tetrad field, respectively. Then, useful formulae for the variation of the velocities are given

by [137]

∆uµ =
Dδzµ

dσ
, ∆Ωµν =

D (∆Θµν)

dσ
+Ωα

[µ∆Θν]α +Rµν
αβu

αδzβ , (4.14)

so that the varied Lagrangian results in

δL (gµν , u
µ,Ωµν) = pµ

Dδzµ

dσ
+

1

2
Sµν

(
D (∆Θµν)

dσ
+Ωα

[µ∆Θν]α +Rµν
αβu

αδzβ
)

.

Applying the principle of least action and performing partial integration we arrive at

δS =

ˆ ((
−
Dpβ
dσ

+
1

2
SµνR

µν
αβu

α

)
δzβ +

(
1

2
SµνΩα

[µ∆Θν]α − 1

2

DSµν

dσ
∆Θµν

))
dσ ,

which already gives the equations of motion. Since the variations δzβ and ∆Θµν are

arbitrary and independent, we have

Dpβ
dσ

=
1

2
SµνR

µν
αβu

α ,
DSµν

dσ
= 2Sα[µΩν]

α , (4.15)

of which the first one can be rearranged in such a way that it recovers the equation of

motion for the linear momentum as given by the MP equations in eq. (1.14). The second

equation gives the equation of motion for the spin tensor.

In order to bring it into a recognisable expression we take advantage of the fact that

the Lagrangian L (gµν , u
µ,Ωµν) is a scalar and invariant under an infinitesimal coordinate

transformation x′µ = xµ − ξµ [137, 146]. However, it depends on tensors which transform

according to

Ψ′µ1...µk
ν1...νm = Ψµ1...µk

ν1...νm −
(
∂αξ

β
)
Gα

βΨ
µ1...µk

ν1...νm ,

under such a coordinate transformation. For example, the transformed four-velocity results

in

u′µ = uµ − uα (∂αξ
µ) .

Thus, we expand the Lagrangian given as a function dependent on the transformed variables

in the infinitesimal coordinate transformation and obtain

L
(
g′µν , u

′µ,Ω′µν) = L (gµν , u
µ,Ωµν)−

(
∂L

∂uµ
uα + 2

∂L

∂Ωµν
Ωαν − 2

∂L

∂gµν
gµν

)
(∂αξ

µ) .
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After exploiting the invariance of the Lagrangian, i.e. L
(
g′µν , u

′µ,Ω′µν) = L (gµν , u
µ,Ωµν),

the following identity is obtained

pµu
α + SµνΩ

αν − 2
∂L

∂gµν
gµν ≡ 0 , (4.16)

which allows us to substitute the term on the right-hand side in eq. (4.15). Due to

the antisymmetry of ∆Θµν the contribution of the symmetric metric tensor in eq. (4.16)

vanishes, so that we are left with

pµuν −
1

2

DSµν

dσ
= 0 ,

which can be rewritten as
DSµν

dσ
= pµuν − pνuµ , (4.17)

due to the (anti-) symmetry properties of Sµν and Θµν . Therewith the equations of motion

in eq. (4.15) and (4.17) obtained by the action principle of a general Lagrangian function

for spinning particles recover the MP equations from eq. (1.14) and (1.15), which are

obtained by the conservation of Tµν . Indeed, this shows the consistency of the action

approach. It is worth to mention here that the equations of motion do not depend on the

explicit form of the Lagrangian in terms of spin and momentum. The derivation merely

uses the properties imposed on the Lagrangian in order for the description to be physically

relevant.

As before the set of equations is underdetermined so that a supplementary condition has

to be added. In principle the introduction of the tetrad implies another gauge freedom in the

choice of the direction of its temporal basis vector, which, for instance, becomes important

when the symplectic structure of the system’s phase space is sought to be preserved in the

Hamiltonian formulation in [53].

Although the Lagrangian offers a straightforward way to analyse the dynamical beha-

viour of mechanical systems, it usually implies differential equations of second order that

have to be solved. On contrary, the Hamiltonian formulation translates the equations of

motion in differential equations of first order. Therefore the next section focuses on the

Hamiltonian formulation of spinning particles in general relativity.
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Chapter 5

Hamiltonian Formalism

Despite the fact that the Hamiltonian formalism describes the dynamical problem in terms

of first order differential equations, it also provides a natural approach to quantisation.

Therefore, shortly after the discovery of quantum mechanics and general relativity between

1915 and 1930, the desire for a canonical formulation of general relativity was born. Today,

the ideas of a Hamiltonian formulation of general relativity supply important contributions

to both quantum gravity and numerical relativity [52, 153].

In classical mechanics the Hamiltonian formulation has been developed by R. Hamilton

in 1834 as a reformulation of the description of dynamical systems [117, 154]. Instead of

using the position and velocities as the generalised coordinates the Hamiltonian employs

position and momenta as the dynamical variables. As we have seen in the previous chapter

the momenta are defined as the derivatives of the Lagrangian with respect to the velocities

pi =
∂L
∂ui

. (5.1)

Generally, these relations are used to find an explicit relation between the velocities ui

and the momenta pi. Therewith the Hamiltonian function or density is attained from the

Lagrangian by a Legendre transformation

H
(
xi, pi

)
= piu

i − L
(
xi, ui

(
xi, pi

))
,

where the index i runs only over spatial dimensions 1...3. The Hamiltonian is often iden-

tified with the energy in the case of conservative dynamical systems. As well as the Lag-

rangian the resulting Hamiltonian contains all information on the dynamics of the system

determining the dynamical behaviour. Since the Hamiltonian is defined on a phase space

that is equipped with a symplectic structure, Darboux’s theorem says that we can always

find local canonical coordinates satisfying the fundamental Poisson bracket relations
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{
xi, xj

}
= 0 {pi, pj} = 0

{
xi, pj

}
= δij ,

with δij being the Kronecker delta. This canonical structure implies the equations of motion

to be of the following form

ẋi =
∂H
∂pi

, ṗi = −∂H
∂xi

,

known as Hamilton’s equations (the dot refers to ordinary differentiation with respect to

time). It is important here to draw the attention to the different treatment of space and

time in the Hamiltonian formulation because only time derivatives define the generalised

momenta in eq. (5.1) leaving out the space derivatives. In general relativity, though,

space and time are treated on an equal footing which is incompatible with the Hamiltonian

description at first sight. This difference in the treatment is tackled by the introduction

of a splitting of spacetime into spacelike hypersurfaces and the choice of a time evolution

vector which is taken to be the basis of the Arnowitt-Deser-Misner (ADM) formalism

[49, 50, 51, 52].

5.1 Spacetime Split in the context of the ADM Formalism

The major goal of the ADM approach is to find a Hamiltonian formulation of the Einstein-

Hilbert action given in eq. (4.1) and therewith describe the Einstein equations in a ca-

nonical way. The idea can be summarised as follows: First foliate the spacetime manifold

into spacelike hypersurfaces and a select a time direction. Then translate the variables of

the Lagrangian into quantities characterising the spacetime foliation and define the corres-

ponding conjugate momenta. In the end perform a variation of the Lagrangian in order to

obtain the constraint and evolutionary equations resembling the Einstein field equations

[155].

So let us start with the spacetime foliation. The spacetime manifold M equipped

with a metric gµν is supposed to have a topological structure consisting of spacelike three-

dimensional hypersurfaces Σt of constant time parameter t ∈ R. In general relativity there

are lots of ways to choose a time parameter so that we fix the direction of time derivatives

by introducing a three-dimensional vector field ti satisfying t = ti∇i such that tit;i = 1 on

the spacetime manifold M representing the evolution of time through spacetime.

The geometry of each slice Σt is described by the intrinsic Riemannian structure defined

by an induced spatial metric γij which is a time-dependent three-dimensional tensor field

living on the family of manifolds Σt. The corresponding tangent space is composed of a spa-

tial tangent space characterised by the vector si and a timelike normal space characterised

by the vector ni imposing conditions on γij :
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γijn
i = 0 , γij = gijs

i ,

yielding the induced metric

γij = gij + ninj ,

where ni is a unit normal vector field and sj is tangent to some Σt. In order to be able to

t+t 

t 

Nni ti 

Ni 

Figure 5.1: This figure shows the foliation of spacetime into spacelike hypersurfaces Σt of
constant time. The decomposition of the time evolution vector ti = Nni+N i is visualised.

describe the dynamics in such a formulation it is necessary to know how the points on one

hypersurface can be identified with points on another hypersurface, i.e. the time evolution

of the coordinates has to be determined. Since the time direction does not necessarily have

to be parallel to the direction of the normal vector, we can decompose the evolution of the

coordinates in two pieces: the shift of the spatial coordinates tangential to Σt expressed by

the shift vector N i and the elapsed proper time when moving normal to Σt represented by

the lapse function N , see fig. 5.1. Therewith the time evolution vector can be written as

ti = Nni +N i .

Now, that we are able to describe the time evolution of each hypersurface by relating

the coordinates from one to another hypersurface at different instants of time we can sew

all the Σt together to obtain the initial spacetime M . Consequently, all information on

the geometry of M described by gµν and quantities thereof is completely included in the

induced spatial metric, the lapse function and the shift vector. Thus, by finding expressions

relating the spacetime metric to γij , N
i and N the Lagrangian is rewritten in terms of

these variables and the corresponding velocities (remember γij being time-dependent) as

[153, 155]

L
(
γij , γ̇ij , N

i, Ṅ i, N, Ṅ
)

.

Be careful with the velocities (the dot) in this context. We are still working in the frame-

work of general relativity so that the Lagrangian should be independent of the choice of
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coordinates including time. Therefore, we should differentiate to the local time, which

is perpendicular to Σt at each point and given by the field that describes the time evol-

ution. The corresponding time derivatives are realised by the Lie derivative along the

time-evolution vector field ti denoted by L t.

The time derivative of γij is geometrically understood by means of the extrinsic curvature

of Σt which measures how much the surface is curved in its embedding in spacetime. Put

into different words, it is defined by the difference between an initially tangent vector that

is parallel transported and and the one that remains tangent on M characterised by [155]

Kij =
1

2
Lnγij , (5.2)

where Ln is the Lie derivative along the unit normal vector. It provides a handy quantity

to express the Lagrangian in a convenient way as a function of L
(
γij , γ̇ij , N

i, N,
)
resulting

in the following conjugate momenta

Πij =
∂L
∂γ̇ij

, ΠN =
∂L
∂Ṅ

= 0 , Πi
N =

∂L
∂Ṅ i

= 0 .

Next it follows that the time derivatives of the conjugate momenta ΠN and Πi
N have to

vanish as well

Π̇N = 0 , Π̇i
N = 0 .

Then, emplyoing Hamilton’s equations with the Hamiltonian function obtained by a Le-

gendre transformation

H = Πij ḣij − L ,

gives the momentum and Hamilton’s constraint

Π̇N =
∂H

∂N
≡ 0 , Π̇i

N =
∂H

∂Na
≡ 0 ,

which are both primary constraints since they directly follow from the properties of the

Lagrangian.

The remaining evolutionary equations are given by the variation of the Hamiltonian

with respect to the induced metric. The number of the final equations is ten which is

equivalent to the number of Einstein’s field equations. An explicit computation shows

indeed that this procedure yields the correct form of Einstein’s equations in a consistent

canonical formulation [155].

First applications focused on point masses and two-body systems with spin, see e.g.

[58]. However the canonical treatment of dynamical systems consisting of a particle with
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spin moving in a background gravitational field appears to be not that simple. This is why

the next sections and chapters are devoted to the investigation of two different approaches

to compute a Hamiltonian: the first is based on a Legendre transformation including the

constraints by Dirac brackets, which we will explain in the following section. After that we

analyse the properties of the resulting Hamiltonian before we describe the second approach

which uses an action approach where the constraints enter via the Lagrange multipliers.

5.2 Hamiltonian for spinning testparticles in general relativ-

ity

In principle the two approaches considered in this thesis are not very different. Both

strategies are developed on the basis of an action, the corresponding Lagrangian and a

Legendre transformation to the Hamiltonian. The difference lies in the treatment of the

constraints.

First, we will concentrate on the Hamiltonian as derived by E. Barausse, E. Racine and

A. Buonanno and follow closely their work [53] .

5.2.1 Action Principle and Legendre Transformation

Starting from the general Lagrangian L (gµν , u
µ,Ωµν) given in (4.5) we rewrite it as

L

(
xµ, uµ, eA

µ,
deA

µ

dσ

)
,

using the definition for the angular velocity Ωµν in eq. (4.4). The orthonormal tetrad

eA
µ
(
xµ, φA

)
characterising the body-fixed reference frame depends on the spatial coordin-

ates xµ as well as on six Lorentz parameters φA (three boosts, three spatial rotations)

describing the orientation of the tetrad with respect to some background reference frame.

Thus, it is related to a local tetrad ea
µ (xµ) which serves as the reference frame covering

the whole spacetime by a Lorentz transformation ΛA
b
(
φA
)

eA
µ
(
xµ, φA

)
= ΛA

b
(
φA
)
eb

µ (xµ) , (5.3)

which satisfies the (flat spacetime) Lorentz matrix condition ηABΛA
aΛB

b = ηab. There-

with, the action yields

S =

ˆ
L

(
xµ, uµ, φA,

dφA

dσ

)
dσ .

Since we are not considering any fields but a particular particle with position variables,

velocities and a finite number of degrees of freedom, the Lagrangian function is taken
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instead of the Lagrangian density.

As already mentioned the action has to be invariant under a reparametrisation of the

worldline parameter σ. Indeed, in order to obtain a Hamiltonian formulation the spacetime

has to be splitted into 3 + 1, so that we choose the coordinate time t to be the worldline

parameter σ. Thus, we have x0 = t, u0 = 1 and define vi ≡ ui = dxi/dt with which we get

S =

ˆ
L

(
xi, vi, φA, φ̇A ≡ dφA

dt
, t

)
dt ,

so that the configuration space is characterised by
(
xi, φA

)
. It has been discussed in section

(4.3) that the momenta pµ found by variation of L (xµ, uµ,Ωµν) are not conjugate to the

xµ which, however, is desired to have. In order to redefine the momenta we first perform

a variation of L
(
xi, vi, φA, φ̇A, t

)
δL =

∂L

∂xi
δxi +

∂L

∂vi
Pi

δvi +
∂L

∂φA
δφA +

∂L

∂φ̇A
P
φA

δφ̇A , (5.4)

where we define the momenta Pi truly conjugate to xi and the momenta PφA which are

the true conjugates to φA. Then, we compare eq. (5.4) with the variation of L
(
xi, vi,Ωµν

)
δL =

∂L

∂xi

⏐⏐⏐⏐
Ω

δxi +
∂L

∂vi

⏐⏐⏐⏐
Ω

δvi +
∂L

∂Ωµν

⏐⏐⏐⏐
x,v

δΩµν , (5.5)

using the variation of the angular velocity by considering its dependence on the set of

variables
(
xi, vi, φA, φ̇A

)
δΩµν =

∂Ωµν

∂xi
δxi +

∂Ωµν

∂vi
δvi +

∂Ωµν

∂φA
δφA +

∂Ωµν

∂φ̇A
δφ̇A .

Therewith we obtain explicit expressions for the conjugate momenta Pi and PφA as func-

tions of the kinematical momenta pi

Pi = pi + EiµνS
µν , (5.6)

PφA =
1

2
SµνλA

abea
µeb

ν ,

with the tensors

Eαµν :=
1

2
ηabe

a
µe

b
ν;α , (5.7)

λA
ab := ΛC

a∂Λ
Cb

∂φA
.
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Then we apply Euler’s theorem on homogeneous functions to the Lagrangian, which is a

homogeneous function of degree one in the velocities due to reparametrisation invariance,

and arrive at

L = vipi + pt +
1

2
SµνΩ

µν ,

where we already implemented the worldline gauge σ = t as well as the definition of pµ and

Sµν from eq. (4.13). Then, a Legendre transformation is performed under the assumption

that the Lagrangian is regular so that the Hamiltonian is given by [53]

H = Piv
i + PφA φ̇A − L

= −pt − EtµνS
µν . (5.8)

Strictly speaking this Hamiltonian is not yet related to a well defined Hamiltonian form-

alism, since the relation between the conjugate momenta and the velocities has not been

established or fixed yet. This missing piece to the Hamiltonian refers to the ambiguity of

the centre of mass in an extended body in general relativity, which is the reason for such

a dynamical system to require a supplementary condition in order to be solvable. As a

result, the MP equations can be derived from this general unconstrained Hamiltonian by

computing the associated equations of motion [53]. Since the dynamical variables have a

canonical structure, the equations of motion are simply Hamilton’s equations.

To sum up, the canonical momenta have been found by the variation of a general

Lagrangian that depends on independent variables. A comparison to the results of a

Lagrangian containing the physical dynamical variables respecting the Poincaré invariance

led to the canonical momenta. The next step concerns the inclusion of constraints in

the phase space which supply the system with a relation between the velocities and the

momenta.

5.2.2 Poisson and Dirac brackets

Generally, a Hamiltonian system lives in phase space which is equipped with a symplectic

structure allowing to choose locally canonical coordinates [156, 157]. With the help of

a bilinear differential operator, the Poisson bracket, the equations of motion are given by

Hamilton’s equations if the phase space variables are of canonical structure. If they are not

canonical, their Poisson brackets yield more complicated expressions leading to a different

formulation of the equations of motion. However, as long as the Poisson brackets of the

phase space variables are known, the evolution of any dynamical quantity Q of the system

can conveniently be expressed as

dQ

dt
=

∂Q

∂t
+ {Q,H} ,
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where Q is some function on phase space.

So far the dynamics does not suffice any constraints. A quite straightforward way

to impose constraints onto the phase space of a Hamiltonian system is provided by the

substitution of the Poisson brackets by the so-called Dirac brackets [145, 158]. A condition

that has to be satisfied in order for the approach to be applicable is that the matrix Cij

consisting of the set of constraints ξi

Cij = {ξi, ξj} , (5.9)

is not singular, classifying the constraints to be second class constraints1. The Dirac

brackets are then calculated as [53, 145, 158]

{Q,R}DB := {Q,R} − {Q, ξi}
[
C−1

]
ij
{ξj , R} , (5.10)

which suffices the same properties the Poisson bracket does: it is bilinear, antisymmetric,

it satisfies the Leibniz rule and the Jacobi identity. By definition of the Dirac bracket it is

easily seen that the Dirac brackets between the constraints ξi vanish. Then, the constraints

can be used and included in the formalism, e.g. the Hamiltonian, before the Dirac brackets

between any phase space variables or the Hamiltonian are actually computed. Thus the

equations of motion of the constrained system are given by

dQ

dt
=

∂Q

∂t
+
{
Q, H̄

}
DB

, (5.11)

with H̄ as the Hamiltonian, which includes already the set of constraints ξi.

In the case of the general relativistic motion of a spinning particle we need a spin

supplementary condition to fix the reference worldline within the extended body. Thus,

this constraint is imposed according to the procedure we have just explained.

It is already known that the NW SSC leads to canonical variables in special relativity.

Therefore, it is not very far fetched to guess that it also does in general relativity. So this

should be a reasonable choice of a SSC. The general relativistic Newton-Wigner condition

is given by eq. (1.39) and eq. (3.14) so that we define the first set of constraints by

Zµ := Sµν
(
pν −Me(t) ν

)
= 0 ,

where M2 = −pµp
µ is the dynamical mass, which contains contributions from the internal

structure. It is worth noting here, that the mass is not necessarily conserved, even in the

pole-dipole approximation, and is treated as a dynamical variable in order to keep track of

all the dynamics.

1a more detailed overview on the classification on constraints is given in the section 8.1.
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Since we have Zµ
(
pµ −Me(t) µ

)
= 0 due to the antisymmetry property of the spin

tensor only three of the four constraints are independent. The spacetime split makes

it reasonable to choose the three independent constraints to be the spatial ones. Then

they can be viewed as constraints on PφA because the map from the spin tensor to the

momenta is one-to-one. However these constraints reduce the number of configuration

variables by three which is not sufficient to maintain the symplectic structure of the phase

space. Thus, an additional set of constraints on φA is required in order to equip the

constrained hypersurface in phase space with the same number of configuration variables

and corresponding conjugate momenta. A reasonable constraint follows from the choice of

the time direction of the body-fixed frame to be aligned with the four-momentum [148]

χµ := eTµ − pµ
M

= 0 ,

which provides again three independent constraints on the phase space variables φA, which

are chosen to be the spatial ones following the same argument as before. Therewith the

set of constraints ξi =
(
Zi, χi

)
is used to compute Cij , its inverse and therewith the

Dirac brackets. When the Dirac brackets between the position variables and the conjugate

momenta are calculated the canonical structure is recovered [53]

{
xi, xj

}
DB

= O
(
S2
)
,{

xi, Pj

}
DB

= δij +O
(
S2
)
,

{Pi, Pj}DB = O
(
S2
)
. (5.12)

The computations of the brackets involving the spin are simplified by using the spin pro-

jected onto the background tetrad

S(i)(j) = Sµνe(i) µe
(j)

ν , (5.13)

with the flat spin vector

S(i) =
1

2
ε(i)(j)(k)S(j)(k) , (5.14)

recovering {
xi, S(j)

}
DB

= O
(
S2
)
,{

Pi, S
(j)
}
DB

= O
(
S2
)
,{

S(i), S(j)
}
DB

= ε(i)(j)(k)S
(k) +O

(
S2
)
, (5.15)

which confirms the canonical structure of the phase space variables
(
xi, Pi, S

(i)
)
at linear
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order in the particle’s spin.

5.2.3 The Hamiltonian

The corresponding constrained Hamiltonian is obtained by inserting the constraints, in

particular the solution to the mass shell condition M2 + pµp
µ = 0

pt = −N ipi −N
√
M2 + γijpipj , (5.16)

where the lapse function N , the shift vector N i and the spatial metric γij are already dis-

cussed in the context of the ADM formalism in section (5.1) and characterise the spacetime

split needed for a Hamiltonian formulation; they are given by

N =
1√
−g00

, N i =
g0i

g00
, γij = gij − g0ig0j

g00
. (5.17)

Then, we obtain for the solution to the second constraint, the NW SSC given in eq.

(1.39),

S(t)(i) =
S(i)(j)ζ(j)

ζ(t)
,

which is plugged into the unconstrained Hamiltonian function (5.8) together with the result

in (5.16), so that the new Hamiltonian can be expressed in terms of the canonical phase

space variables offering the use of the Dirac brackets for the investigation of the dynamics.

Now, the resulting Hamiltonian

H̄ = H̄NS + H̄S , (5.18)

splits in two parts. Considering the linearisation in the particle’s spin in the expression for

the canonical momenta in eq. (5.6) and the solution to the mass shell constraint from eq.

(5.16) the Hamiltonian for a non-spinning particle eventually yields

H̄NS = −Pt = N iPi +N
√

M2 + γijPiPj , (5.19)

where Pi are the canonical momenta conjugate to xi of the Hamiltonian in (5.18). The

second part of the Hamiltonian,

H̄S = −

(
N iF

(k)
i + F

(k)
0 +

N γijPi F
(k)
j√

M2 + γijPiPj

)
S(k) , (5.20)

describes the contribution of the spin of the particle to its motion, with
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F (k)
µ =

(
2Eµ(t)(i)

ζ̄(j)

ζ̄(t)
+ Eµ(i)(j)

)
ϵ(i)(j)(k) , (5.21)

and

ζ̄a = ζ̄ν ea
ν ,

ζ̄ν = P̄ν −M e(t) ν ,

P̄i = Pi ,

P̄0 = −N i Pi −N
√
M2 + γijPiPj ,

ζ̄(t) = P̄ν e(t)
ν −M ,

ζ̄(j) = P̄ν e(j)
ν . (5.22)

where we changed the quantities to the local frame if they are related to the spin. Therefore,

the equations of motion for any quantity Q are calculated according to (5.11) where we

know Q as a function of the phase space variables. Indeed, it can be shown that the mass

M is conserved up to linear order in the particle’s spin

{
M2, H

}
DB

= O
(
S2
)
,

which is consistent within the Hamiltonian formalism so that it is treated as a constant

of motion. Thereby Hamilton’s equations of motion yield the evolution equations for the

phase space variables

dxi

dt
=

{
xi, H

}
=

∂H

∂Pi
,

dPi

dt
= {Pi, H} = −∂H

∂xi
, (5.23)

dS(i)

dt
=
{
S(i), H

}
= ϵ(i)(j)(k)

∂H

∂S(j)
S(k) . (5.24)

Although a Hamiltonian formalism implies many advantages for the dynamical and/or

numerical examination of the motion of spinning particles as well as for applications in

the effective-one-body theory (EOB), this formalism is only valid at linear order in spin.

Certainly, this approximation appears to be reasonable if the spin terms at quadratic and

higher orders are considered to become important when the quadrupole or higher order

multipole moments are taken into account, since the MP equations neglect all contributions

from higher order multipoles than the dipole [54]. This statement is generally assumed and

not rigorously proven, see e.g [55]. Moreover, Costa et al. [55] showed that the contributions

from the quadratic terms in the pole-dipole approximation do matter when the particle
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is assumed to be nearly spherical, i.e. when the influence of the quadrupole moment is

ignored. In this sense, the approximation at linear order in the particle’s spin corresponds

to the assumption that the spin is supposed to be small. Consequently, it is of interest to

know what effects this approximation in the Hamiltonian has on the resulting motion of a

spinning particle compared to the solutions given by the MP equations.



Chapter 6

Numerical comparison: Lagrangian

vs. Hamiltonian 1

In the following, we compare the evolutions of a spinning particle moving around a rotating

Kerr black hole given in eq. (1.8) obtained by the Hamiltonian formalism presented in the

preceding section with the one gained by the MP equations supplemented by the NW

SSC given in eq. (1.14), (1.15) with (1.39). The procedure and the challenges how to

numerically integrate the MP equations are already discussed in chapter 3 and appendix

A .

Thus, we focus on the integration procedure in the Hamiltonian formalism before we

compare the resulting orbits. The main difference between the two approaches is the

evolution parameter resulting from the spacetime split needed within a Hamiltonian form-

alism. While the worldline is parametrised by proper time τ in the MP equations it is

coordinate time t for the Hamiltonian. In order to compare the two resulting worldlines

we either have to rewrite the MP equations with respect to the coordinate time or find a

way to relate the proper times to the coordinate times. Luckily, the coordinate times, at

which our quantities were calculated in the MP simulations, were given as output anyway.

Hence, the Hamiltonian is evolved at constant coordinate time steps ti−1, ti, ti+1, ... where

∆t = (ti+1 − ti) = constant. Then, we are given a coordinate time by the output of the

MP equations tout at which we would like to know the quantities given by the Hamiltonian

formalism. Assume the required time lies within an interval given by ti and ti+1. Em-

ploying the interpolation property of collocation schemes we can compute an interpolation

polynomial which stays close to the exact solution of the equations of motion and also to

the numerically calculated trajectory. Therewith we obtain our solution at tout by evalu-

ating the interpolation function at the required time coordinate and the parametrisation

1This chapter is based on the work published in [1]

123
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problem is solved.

Secondly, in order to numerically integrate Hamilton’s equations of motion the integ-

rator should be based on structure preserving algorithms respecting the geometric prop-

erties of the exact flows of differential equations. As an example, according to Liouville’s

theorem the flow of a Hamiltonian system is area preserving which is required to be true also

after a long integration time. The differential equations of a Hamiltonian system are defined

on a symplectic phase space which gives rise to the application of symplectic integrators, a

subclass of geometric integrators [159]. They already have been successfully implemented

for simulations in various fields in general relativity, see e.g. [160, 161, 162, 163].

6.1 Initial Set-Up

Another aspect is the use of canonical variables in the Hamiltonian formalism. Of course,

they simplify the appearance and the computations of the equations of motion but they

exacerbate the comparison to a Lagrangian based formalism. Therefore, the canonical

variables
(
xi, Pi, S

(i)
)
are transformed to the dynamical ones (xµ, pµ, S

µν) or vice versa,

in order to start both the MP equations and the corresponding Hamilton’s equations with

exactly the same initial setup. Then, since the canonical spin variables are projected onto

a local Lorentz frame, it is important to fix the corresponding tetrad beforehand

e(t) µ = δtµ

√
∆Σ

Λ
,

e(1) µ = δrµ

√
Σ

∆
,

e(2) µ = δθµ
√
Σ ,

e(3) µ = −δtµ
2aMr sin θ√

ΛΣ
+ δφµ sin θ

√
Λ

Σ
, (6.1)

by adapting the tetrad basis vectors to the ones given by the Boyer-Lindquist coordinate

system. The timelike tetrad vector enters the NW SSC in (1.39) so that we simultaneously

choose an observer, that coincides with a ZAMO observer, i.e. uφ = 0, by setting up this

tetrad.

The initial conditions are set up in the same way as in section 3.1 given by eq. (3.9) -

(3.13). Then they are converted to Hamiltonian variables so that it is ensured that both

formulations start from exactly the same state of the system (initial spin state, position in

configuration space, etc.).

Before showing the results it is worth to say a few words on the physical interpretation.

When the numerical comparison of two supplementary conditions within the same form-

alism was performed in chapter 3, the resulting worldlines did not necessarily correspond
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to the same particle. This is caused by the choice of two different SSCs and the require-

ment that the orbits start at the same position in configuration space. Now, we no longer

have two distinct supplementary conditions but two formalisms. Both formalisms, the MP

equations as well as the Hamiltonian formalism, satisfy the NW SSC. Thus, we describe

the dynamical evolution of one and the same spinning particle by two different approaches.

Physically, the resulting worldlines in configuration space should be the same. However,

since the Hamiltonian considers only terms up to linear order in spin in contrast to the

MP equations, we expect deviations that become stronger if the spin value is increased.

Again, we measure lengths and times in units of the central object’s mass M which is

tantamount toM = 1. Since both the dynamical mass and the spin measure have proven to

be not conserved during the evolution of the MP equations in the case of the NW SSC, we

start with a value of M = 1 and deduce the allowed range of values for the spin parameter

according to the same reasoning as in section 3.1. The maximal absolute value of the spin

is therewith obtained by an estimate for small compact spinning objects modeled by a Kerr

black hole and amounts to 1. So let us start with the comparison for large spin S = 1.

6.2 Large spin

Using the initial conditions for the NW SSC within the MP formalism given in fig. 3.1, we

have evolved the orbit by solving Hamilton’s equations. The motion of the corresponding

orbit in the configuration space is shown in the left panel of fig. 6.1 (black solid curve)

together with the orbit evolved through the MP equations (blue dashed line).
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Figure 6.1: The left panel shows how the orbit evolves through the MP equations (blue
dashed line) and through the Hamilton’s equations (black solid curve) in the configuration
space x, y, z, when we use the initial conditions given in fig. 3.1. The central panel shows
the logarithm of the Euclidean distance in the configuration space between these two orbits
as a function of the coordinate time. The right panel shows the logarithm of the Euclidean
norm of the difference between the spin vectors of these two orbits as a function of the
coordinate time.
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Even if the two orbits start with the same initial conditions they depart from each other

quite quickly. This is seen more clearly in the central panel of fig. 6.1, where the Euclidean

distance between the two orbits

∆xyz =

√
(xH − xMP )

2 + (yH − yMP ) + (zH − zMP )
2 , (6.2)

is displayed as a function of the coordinate time. Close to the end of the calculation, the

distance ∆xyz is almost as large as the radial distance of the particle from the central black

hole. From the appearance of the left panel of fig. 6.1 one might wonder whether the

divergence between the orbits is a “synchronization” issue. However, since both schemes

use the same SSC, i.e. the NW SSC, and since the initial conditions for both schemes are

exactly the same, i.e. the orbits correspond to the same particle, the proper time for both

orbits has to tick at the same rate. Thus, it is reasonable to claim that this divergence

results from the fact that the Hamiltonian is valid up to the linear order in the particle spin,

and since the spin here is large S = 1, such a divergence should be expected. Nevertheless,

it is impressive that the orbits corresponding to the same particle evaluated with different

schemes, i.e. the MP equations and the corresponding Hamiltonian, give a divergence that

is of one order of magnitude greater than the divergence of the MP equations with different

SSC (left panel of fig. 3.1 in section 3.2).

Here, it is now natural to check the value of the Möller radius, since we are looking at

only one particle. Therefore, the separation of the two worldlines should not be greater

than this radius if both formalisms do indeed describe the same particle. The distance

between the two orbits though exceeds the diameter of the disc of centres of mass that is

defined by the Möller radius S
M . Hence, according to this criterion the orbits could not

correspond to the same particle. Therefore, we can say that the Hamiltonian formalism

does not agree with the MP equations for large spin values as expected.

The spin in the Hamiltonian formalism is given by the projection vector (5.13) and eq.

(5.14). The Euclidean norm of the difference between the spin vector S
(i)
H calculated by

Hamilton’s equations and the S
(i)
MP calculated by the MP equations

∆Sv =

√ 3∑
i=1

(
S
(i)
H − S

(i)
MP

)2
, (6.3)

is plotted as a function of the coordinate time in the right panel of Fig. 6.1. This plot

shows that the difference is quite high, even if the spin values are identical at first, and

thus reflects the differences of the two formalisms. When decreasing the value of the spin,

the two formalisms should converge. Since they are both describing spinning particles, we

expect a convergence before they reach the geodesic limit. So, the next step is to consider
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orbits of particles with small spins.

6.3 Small Spin

By decreasing the measure of the particle’s spin to the level of S = 10−8, we get the initial

setup given in fig. 3.2 used for the MP equations.
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Figure 6.2: The left panel shows how the orbit evolves through the MP equations (blue
dashed line) and through the Hamilton’s equations (black solid curve) in the configuration
space x, y, z, when we use the initial conditions given in fig. 3.2. The central panel shows
the logarithm of the Euclidean distance in the configuration space between these two orbits
as a function of the coordinate time. The right panel shows the logarithm of the Euclidean
norm of the difference between the spin vectors of these two orbits as a function of the
coordinate time.

The Euclidean distance between the evolutions of the MP equations and the Hamilto-

nian equations (central panel of fig. 6.2) drops to a level which is near the precision of our

simulations. Therefore, practically, the two orbits should not discern. This seems to be

the picture we get from the Euclidean norm of the difference between the spin vectors as

well (right panel of fig. 6.2). Moreover, it is also evident that the distance between the two

orbits does not exceed the diameter of the disc of centres of mass defined by the Möller

radius for the coordinate time we have computed. Hence, it is reasonable to say that the

two orbits obtained by two different formalisms do correspond to the same particle and

thus infer that the Hamiltonian is indeed valid for small spin values as expected.

However, this picture might be a little bit illusive. The order of the spin is S = 10−8,

and thus what we see is in fact that the relative difference, i.e. ∆Sv/S ≈ 10−8 is of the order

of the spins’ magnitude. In other words, in the spin space the evolution of the two orbits

do not agree completely. The reason that in the configuration space the orbits appear to

be identical, while in the spin space the agreement is not at the same level, is that we are

in the geodesic limit, and the evolution of the orbits is almost independent from the spins.
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The bottom row of fig. 6.3 supports the claim that when S = 10−8, we are at the geodesic

limit, and the evolution does not depend on the spins. In the left panel of the bottom row

in fig. 6.3, the relative errors of the Hamiltonian function,

∆H =

⏐⏐⏐⏐1− H(t)

H(0)

⏐⏐⏐⏐ , (6.4)

lie at the computation precision level for both the MP orbit (gray line) and the Hamiltonian

orbit (black line), while the level of the relative error (3.19) in the measure of the spin

vectors,

S2 = S(i)S
(i) , (6.5)

is not as well preserved for the MP case (gray line) as for the Hamiltonian case (black line

in the right panel of the bottom row in fig. 6.3). Notice that, as stated above, in the case

of the MP equations, we can get the value of the Hamiltonian function H and of the square

of the spin measure S2 by transforming the set of kinematical variables {xµ, pµ, Sµν} into

the set of canonical variables {xi, P i, S(i)} and substituting the transformed set into eq.

(5.18) and eq. (6.5) respectively. The remaining question now is, which values of spin is

the Hamiltonian valid for. In order to answer this question it is easiest to investigate the

convergence by examining the behaviour, i.e. the scaling, of the constants of motion.

6.4 Constants of Motion

When we raise the measure of the particle spin to S = 10−4, then the relative error of the

MP spin defined in eq. (6.5) remains practically at the same level (gray line in the right

panel of the middle row in fig. 6.3) as in the S = 10−8 case. This does not hold for the

relative error of the Hamiltonian function (gray line in the left panel of the middle row in

fig. 6.3) which is not at the computation precision level anymore. This shows that the

motion is no longer in the geodesic limit. However, both ∆S2 and ∆H for the MP orbit

lie at acceptable levels, which show that for this magnitude of the particle spin, the MP

equations and the Hamiltonian equations seem to be in agreement.

This agreement breaks when S = 1. The top row of fig. 6.3 shows that when S =

1, the relative errors, ∆H and ∆S2 are at the same quite high level for the MP orbit.

These relatively large values confirm the departure between the MP equations and the

corresponding Hamiltonian that we see in fig. 6.1.

The black lines for all panels of fig. 6.3 are at the highest accuracy the computation

accuracy allows, which means that apart from round-off error, the Gauss scheme we applied

integrates accurately the system of Hamilton’s equations, but also that the interpolation

scheme we applied to match the coordinate times works quite well.
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Figure 6.3: The top row of panels corresponds to the orbits of fig. 6.1, while the bottom
row of panels corresponds to the orbits of fig. 6.2. The middle row of panels corresponds
to initial conditions similar to fig. 3.1 only instead of spin measure S = 1 we set S = 10−4.
The gray lines represent the evolution of the MP equations, while the black lines the
evolution of the Hamilton equations. The left column of panels shows the relative error in
the preservation of the Hamiltonian function, while the right the preservation of the spin.

As at the end of the chapter 3, we can investigate the scaling of the constants of motion

with the spin in more detail by taking the maxima of their relative errors for different values

of the measure of the particle’s spin. The result is shown in fig. 6.4. Again, as in the fig.

3.4, the precision of our computations and the scaling due to the spin measure shape the

figure. We see a plateau at the left panel of fig. 6.4 for ∆H due to the computational
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precision, while in the right panel of fig. 6.4 we see that ∆S2 increases, which is due to to

the smallness of the spin components. Even if we had applied a special integration scheme

respecting these small quantities, this scheme could not follow below a threshold either.

This threshold is in our case at S = 10−6. When the scaling with the spin dominates

(S > 10−6), the linear fits show that ∆H ∝ S2, while ∆S2 ∝ S. These proportionalities

are expected as we explain next.

By construction the Hamiltonian function H of a spinning particle is accurate up to

linear order of the particle spin. Hence, when compared with the value of the Hamiltonian

function yielded from the evolution of the MP equations HMP (t), the difference between

the two Hamiltonian function values should differ by terms of the order O(S2), i.e.,

HMP (t) ≈ H(t) +O(S2) . (6.6)

However, since we have chosen the same initial conditions for both evolution schemes, it

holds that HMP (0) = H(0). Thus, the relative error from eq. (6.4) for the MP equations

reads

∆H =

⏐⏐⏐⏐HMP (t)−HMP (0)

HMP (0)

⏐⏐⏐⏐
≈

⏐⏐⏐⏐H(t)−H(0)

H(0)
+

O(S2)

H(0)

⏐⏐⏐⏐ . (6.7)

Since we do not expect the relative error H(t)−H(0)
H(0) to depend on the value of the particle’s

spin, and this expectation is confirmed by the numerical findings (black lines in the left

column of fig. 6.3), we get the scaling ∆H ∝ S2 of fig. 6.4.

In order to explain the scaling of the relative error ∆S2, we use a similar way of

reasoning. The preservation of the spin for the Hamiltonian formalism given in (6.5) is S2.

Thus a reasonable expectation is that for the MP case we should get values S2
MP (t) from

eq. (6.5) which differ from the Hamiltonian case at order O(S3), i.e.

S2
MP (t) ≈ S2(t) +O(S3) . (6.8)

Furthermore, we have S2
MP (0) = S2(0). Thus, the relative error (3.19) for the MP equa-

tions reads

∆S2 =

⏐⏐⏐⏐S2
MP (t)− S2

MP (0)

S2
MP (0)

⏐⏐⏐⏐
≈

⏐⏐⏐⏐S2(t)− S2(0)

S2(0)
+

O(S3)

S2(0)

⏐⏐⏐⏐ , (6.9)



6.5. DISCUSSION 131

-8 -6 -4 -2 0

-14

-12

-10

-8

-6

-4

-2

log10S

lo
g 1

0D
H

-8 -6 -4 -2 0

-8

-7

-6

-5

-4

-3

-2

log10S

lo
g 1

0D
S2

Figure 6.4: The left panel shows the relative error of the Hamiltonian ∆H of orbits evolved
through the MP equations for different spin measures S of the particle, while the right panel
shows the corresponding preservation of the measure of the 3-vector ∆S2. The black dots
correspond to the maximum values of ∆H, ∆S2 respectively for each S. The dashed lines
are linear fits of the form log10∆H = a log10 S + b, and
log10∆S2 = c log10 S+d respectively for data with S > 10−6, where a = 1.998±0.003, b =
−2.642± 0.003, and
c = 1.027± 0.016, d = −2.469± 0.048.

which explains why we see that ∆S2 ∝ S in the right panel of fig. 6.4.

If we take as a criterion the convergence of the constants of motion shown in fig. 6.4,

and consent that a relative error of the level of 10−6 is adequate to state that the different

formalisms have converged, then from our comparison the Hamiltonian formalism is in

agreement with the MP equations for the NW SSC when the measure of the particle’s spin

is S < 10−4. When we reach S ≈ 10−6, the effect of the spin appears not to be important

anymore, and the orbit evolves like a geodesic, i.e. it does not depend significantly on the

spin. This characteristic behaviour is qualitatively not affected by a change of the Kerr

spin a, or the sign of the spin value (see Appendix C for results for different values of a,

and Appendix D for negative spin).

6.5 Discussion

To sum up we compared orbits given by the MP equations with orbits obtained via the

Hamiltonian formalism of Barausse et al. [53] both supplemented by NW SSC. The differ-

ence between the respective orbits, which is quite significant for large spins of the order of

one, decreases linearly as a function of the square of the test particle’s spin, i.e. ∆H ∝ S2,

which agrees with the analysis given in [53].
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According to our analysis, the Hamiltonian formalism of the spinning particle appears

to be relevant in the range 10−6 < S < 10−4. For values of the spin smaller than 10−6

we can ignore the part of the Hamiltonian describing the spin evolution and keep the non-

spinning part, which describes geodesic motion. For spin values greater than 10−4 our

numerical results show that the Hamiltonian formalism is not in good agreement with the

MP equations. Anyhow, the aforementioned range, where the Hamiltonian formalism is

relevant, is appropriate for astrophysical binary systems of extreme mass ratio. Moreover,

our simulations show that the CPU effort for the Hamilton equations of motion is far

smaller than the computational cost for the MP equations (see Appendix B), so we find

the use of these equations for simulations of test particles with small spins appropriate.

When, in addition, favourable numerical methods, such as the one presented in this work,

are applied, reliable results can be obtained within a short period of time. However, if

one uses this Hamiltonian formalism, one has to be careful what kind of tetrads and/or

coordinate systems the computation relies on. The effects evoked by a bad choice of tetrad

and/or coordinate system are presented in the next chapter.



Chapter 7

Comparing Hamiltonians of a

spinning test particle for different

tetrad fields 1

As we have seen earlier in this thesis, the behaviour of the MP equations supplemented by

the T SSC and by the NW SSC is compared in chapter 3. In a second step, we compared

the evolution of the system as described by the MP equations supplemented by the NW

SSC to the corresponding evolution given by Hamilton’s equations derived in [53] based

on the same NW SSC in chapter 6. Therein, we focus on the latter, i.e. on a canonical

Hamiltonian formalism which should be equivalent to the MP equations up to the linear

order of the test particle spin. The corresponding results are published in [1]

In contrast to the T SSC the NW SSC, which is used within the framework of the

Hamiltonian formalism, does not provide a unique choice of reference frame. It rather

defines an entire class of observers, each characterised by a different tetrad field. Thus, the

Hamiltonian formalism proposed in [53] depends on the choice of a reference basis given

by such a tetrad field. Each choice of a tetrad field basically determines the form and

the properties of the resulting Hamiltonian function. Although the tetrad basis vectors

can geometrically be defined independently of any coordinate system, they are eventually

expressed in some fixed coordinate system. Consequently, the description of the dynamical

system in this Hamiltonian formalism is based on the coordinates. The question here is,

whether the choice of a tetrad and also that of the coordinates influences the outcome

obtained by (numerically) solving Hamilton’s equations.

Before we start our discussion on the choices of coordinate systems and different tetrads,

we shortly summarise the characteristic properties of the Hamiltonian formalism relevant

1This chapter is based on the work published in [3]
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for our analysis. The Hamiltonian function is stated in (5.18) and is expressed in terms of

canonical variables
(
xi, Pi

)
of which the conjugate momenta are given in (5.6) as functions

of the kinematical momenta. Generally, the symplectic phase space of a Hamiltonian

system is equipped with a binary operation, the Poisson bracket. If the dynamical system

is subject to (secondary) constraints, as it is for general relativistic spinning particles,

the Poisson bracket has to be replaced by the Dirac bracket (5.10) which respects these

constraints [53, 145]. Consequently, the canonical structure of the phase space variables

provided in eq. (5.12) and (5.15) within the linearised Hamiltonian formalism introduced

in section (5.2) is given by

{
xi, Pj

}
DB

= δij ,{
S(i), S(j)

}
DB

= ϵ(i)(j)(k)S(k) .

All other bracket relations between the variables vanish. Thus, the equations of motion for

the canonical variables as a function of coordinate time t read simply Hamilton’s equations

stated in eq. (5.23) - (5.24). The general time evolution of any function on phase space is

determined by eq. (5.11), which implies vanishing Dirac brackets for a conserved quantity

I

{I,H}DB = 0 . (7.1)

This means if a quantity is truly preserved, the Dirac bracket between I and H should be

exactly zero, as long as the calculations are done consistently at the approximated level.

For instance, the spatial spin measure

S2 = S(i)S
(i) , (7.2)

yields {
S2, H

}
DB

= 0 ,

so that S2 is a constant of motion.

The massM2 = −pνp
ν considered as a function of the kinematical momenta is generally

not a constant of motion for the exact MP equations with NW SSC but scales quadratically

in the particle’s spin, see section 3.4. Since the mass appears to be preserved at first order

in the spin, a linearised Hamiltonian formalism is expected to conserve M at linear order

{M, H}DB = O
(
S2
)

,

where the higher order terms are dropped in the linearised case. This is consistent with

the Hamiltonian approach and discussed in [53]. Thus, in the context of the Hamiltonian



7.1. THE HAMILTONIAN IN BL COMPARED IN CARTESIAN COORDINATES 135

formulation the mass is a conserved quantity in agreement with the linearised MP equations

supplemented with NW SSC.

The formulation provided up to this point is general, in the sense that it does not

depend on a specific coordinate system or on a specific tetrad field. These two factors,

however, are essential for the Hamiltonian function (5.18). In particular, the non-spinning

part of the Hamiltonian function (5.19) depends on the coordinate system which the metric

is written in, while the spinning part (5.20) depends on the tetrad we choose.

In the following sections 7.1 and 7.2, we present three different combinations tetrad ↔
coordinates for the Kerr spacetime background and discuss the advantages and shortcom-

ings of the respective setups. Let us motivate our search for suitable tetrad and coordinate

choices by discussing the advantages and the drawbacks of Hamiltonian functions arising

from tetrad fields already proposed in [47, 53].

7.1 The Hamiltonian Function in Boyer-Lindquist coordin-

ates compared with Cartesian Isotropic coordinates

It appears to be natural and it actually is quite common to use Boyer-Lindquist coordinates

for an examination of dynamical systems in Kerr spacetime. Indeed, its axial symmetry

naturally suggests these coordinates. However, it is not always the best choice, in particular

if numerical calculations are involved as we will show in the subsequent analysis.

7.1.1 A tetrad in Boyer-Lindquist coordinates

The Hamiltonian formalism developed by E. Barausse, E. Racine and A. Buonanno [53] is

already presented in section 5.2, which the reader is referred to for more information on

the Hamiltonian. They also introduced the Hamiltonian function for Kerr spacetime in

Boyer-Lindquist coordinates (BL) and gave explicit expressions, so that the continuation

of further computations is made very easy. The line element of the Kerr spacetime in BL

coordinates is given in (1.8) and the corresponding background tetrad field used in [53]

reads

e(t) µ = δtµ

√
∆Σ

Λ
, e(1) µ = δrµ

√
Σ

∆
,

e(2) µ = δθµ
√
Σ , e(3) µ = −δtµ

2aMr sin θ√
ΛΣ

+ δφµ sin θ

√
Λ

Σ
, (7.3)

where for the small indices the numbers have been replaced with the corresponding

coordinates, i.e. t, r, θ, φ stand for 0, 1, 2, 3, respectively. Recall, that the indices
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written in parenthesis are associated to the local Lorentz basis. The proposed tetrad

corresponds to a stationary observer in the zero-angular-momentum frame (ZAMO), i.e.

uφ = 0, which intuitively yields a reasonable tetrad choice. Moreover, the coordinate

system is based on the spherical coordinates in flat spacetime and respects the symmetries

of the Kerr spacetime.

In the Schwarzschild limit the above tetrad field reduces to (a → 0)

e(t) µ = δtµ
√

f(r) , e(1) µ = δrµ
√

f(r)−1 ,

e(2) µ = r δθµ , e(3) µ = r sin θ δφµ . (7.4)

where f(r) is given in (1.6). Then, in the flat spacetime limit (M → 0, a → 0) we get

e(t) µ = δtµ , e(1) µ = δrµ ,

e(2) µ = r δθµ , e(3) µ = r sin θ δφµ , (7.5)

which simply yields the space dependent coordinate basis vectors in spherical coordinates

in flat spacetime.

Now, we have a closer look at the dynamics in Schwarzschild spacetime. The corres-

ponding metric in Schwarzschild spacetime is given in (1.5) with (1.6) and the associated

tetrad field is defined in (7.4). Therewith, the Hamiltonian can be computed according to

(5.18)-(5.22) as

H = HNS +HS ,

and is expressed in terms of the new canonical phase space variables(
r, θ, φ, Pr, Pθ, Pφ, S

BL
(i)

)
,

where SBL
(i) stands for the spin projected onto the spatial background tetrad in spherical

coordinates (reduced from the Boyer-Lindquist coordinates). All told, we have

H =
1√
f (r)

√
Q+

M

r3
(
1 +

√
Q
) (PθS

BL
(3) −

Pφ

sin (θ)
SBL

(2)

)
− f (r)

r2
√
Q

(
cos (θ)

sin2 θ
√
f (r)

PφS
BL

(1) −
Pφ

sin (θ)
SBL

(2) + PθS
BL

(3)

)
, (7.6)

where

Q = M2 + f (r)P 2
r +

1

r2
P 2
θ +

1

r2 sin2 (θ)
P 2
φ .

A criterion in order to check whether the choice of coordinates is a “good” one, is

provided by the behaviour of the Hamiltonian in flat spacetime. Ideally, the contributions
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from the spin to the Hamiltonian HS vanish, since we no longer have curvature which the

spin could couple to and the trajectory of the spinning particle should simply be the one

of a straight line. Thus, the motion of the particle should be completely independent of

the spin.

However, in the case of spherical coordinates the contribution from the spin part in

the Hamiltonian given by (7.6) does not vanish and represents an evolution of the spin in

the absence of spin-orbit coupling or any other external forces, as was noted in [53]. This

implies a coordinate effect which affects the analysis of the equations of motion for this

choice of tetrad. Indeed, the basis vectors are coordinate dependent, since they are oriented

along the direction of the coordinate basis vectors in spherical coordinates. Therefore, they

introduce an additional evolution to the dynamical system which affects the equations of

motion for the spinning particle, i.e. the equations of motion do not only contain the

physical dynamics of the spinning object but also the unphysical coordinate dynamics.

As a result, this coordinate dependence makes it harder to gain insights into the physical

behaviour of the particle’s motion, in particular if we have to rely on numerical calculations.

In such situations, it is not so easy to distinguish between coordinate effects and physical

effects in the outcome. Therefore, it is important to thoroughly think about the choice of

coordinates before starting a numerical analysis.

Next, a solid check whether numerical calculations provide reliable results is connec-

ted to the preservation of the constants of motion during the evolution of a dynamical

system. Generally, according to Noether’s theorem each spacetime symmetry is related

to a conserved quantity. In the case of spinning particles moving in a particular space-

time geometry equipped with a symmetry described by a Killing vector ξµ, the associated

quantity conserved by the MP equations is stated in (1.16). In Schwarzschild spacetime we

have three spatial Killing vectors corresponding to spherical symmetry yielding the three

components of the total angular momentum [35]

Jx =− pθ sin (φ)− pφ cot (θ) cos (φ) + r2Sθφ sin (θ)2 cos (φ) + rSφr sin (θ) cos (θ) cos (φ)

− rSrθ sin (φ) ,

Jy = pθ cos (φ)− pφ cot (θ) sin (φ) + r2Sθφ sin (θ)2 sin (φ) + rSφr sin (θ) cos (θ) sin (φ)

+ rSrθ cos (φ) ,

Jz = pφ − r sin (θ)2
(
Sφr − rSθφ cot (θ)

)
,

where pi are the kinematical momenta and Sij the spin components written in the co-

ordinate basis. In order to check whether the components of the total angular momentum

are constants of motion within the Hamiltonian formulation we have to transform these

expressions to the canonical variables Pi and SBL
(i) using the relations given in (5.6) and
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(5.13). Therewith we obtain

Jx = cos(φ)(SBL
(1) csc(θ)− Pφ cot(θ))− Pθ sin(φ) ,

Jy = Pθ cos(φ) + sin(φ)(SBL
(1) csc(θ)− Pφ cot(θ)) ,

Jz = Pφ ,

for the components of the total angular momentum, with which we may now compute the

evolution equations for Ji via the Dirac brackets with the Hamiltonian, given in (5.11).

Then, they result in

{Jx, H}DB = O
(
S2
)

,

{Jy, H}DB = O
(
S2
)

,

{Jz, H}DB = 0 ,

and the measure of the time evolution of the total angular momentum yields

{
J2
x + J2

y + J2
z , H

}
DB

= O
(
S2
)

.

Although we consistently keep the linearisation in the Hamiltonian and the corresponding

bracket structure, we find that the Dirac brackets for Jx, Jy and Jz contain contributions

from higher orders in the particle’s spin. Indeed, Jx and Jy start oscillating when the

Hamiltonian system corresponding to the tetrad field (7.4) is numerically evolved through

the equations of motion (5.23)-(5.24). It is visible from the relative error

∆Ji = |1− Ji(t)

Ji(0)
| i = x, y , (7.7)

at time t of the Jx and Jy (grey line) in Fig. 7.1, that the Hamiltonian function resulting

from the tetrad (7.4) apparently violates the symmetry properties of the Schwarzschild

spacetime. Consequently, the total angular momentum J2 is not preserved, because the

x and y components of the total angular momentum exhibit inappropriate behaviour.

On the other hand, the respective evolution using the MP equation supplemented with

NW SSC, instead, shows the expected preservation of the angular momentum components

(black curves in Fig. 7.1). This shows that even in the above linear in spin Hamiltonian

approximation a quantity is a constant of motion only when its Dirac brackets with the

Hamiltonian are exactly zero, while when the brackets have contributions from the higher

spin orders, the quantities show no constancy. It is true, however, that the relative error

of the Jx and Jy components scale with S2, i.e. when the spin measure S is reduced the
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relative errors are reduced accordingly.

Again, we measure the spin in units of the masses MM in our numerical calculations

and set both masses to 1, so that the spin parameter S is dimensionless. Since we do not

intend to derive astrophysical implications from our results but concentrate on the general

dynamical properties of the Hamiltonian formalism, we choose the limit S = 1, as it is

explained in [36].
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Figure 7.1: The left panel shows the relative error ∆Jx, and the right of ∆Jy as a function
of time in logarithmic scale for the Schwarzschild background. The grey lines show the
relative error of these quantities when the system is evolved using the Hamiltonian function
corresponding to the tetrad (7.4), while the black lines show the relative error of these
quantities when the system is evolved using the respective MP equations. Both evolutions
share the same initial conditions conditions, where a = 0, M = m = 1, and S = 1.

Moreover, we find that the measure of the orbital angular momentum is also preserved

up to linear order in spin

{
L2
x + L2

y + L2
z, H

}
DB

= O
(
S2
)

,

with the components given by

Lx = −pθ sin(φ)− pφ cot(θ) cos(φ) ,

Ly = pθ cos(φ)− pφ cot(θ) sin(φ) ,

Lz = pφ ,

which also have to be rewritten in terms of the canonical momenta Pi (5.6) before comput-

ing the Dirac bracket. The conservation of the measure of the orbital angular momentum of
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the linearised in spin MP equation in the case of the Schwarzschild spacetime background

has been thoroughly discussed in [101] for the P SSC.

When the measure of the spin S2 = S(i)S
(i) and the total angular momentum J2 are

preserved, the integral of motion L2 is equivalent to the conservation of L⃗ · S⃗, which will be

used in the investigation of the dependence of the preservation of the constants of motion

on the choice of coordinates and/or tetrads. However, as we have already seen for the total

angular momentum in this setting, we recover the same numerical problems for the measure

of the orbital angular momentum showing some kind of oscillating behaviour. These two

kinds of oscillations can be traced back to the coordinate dependence of the basis vectors

in the spherical coordinate system, as we will see in the next section 7.1.2.

So far, these coordinate effects have been investigated in Schwarzschild spacetime. Since

the Schwarzschild spacetime is the non-rotating limit of the Kerr spacetime, we would like

to ensure that such coordinate effects can be eliminated in the non-rotating limit, i.e. the

coordinate effects should vanish for non-rotating or slowly rotating black holes. Thus,

we are wondering whether there are more suitable choices of coordinate systems and of

a tetrad for rotating black holes which do not show any unphysical coordinate effects in

the Schwarzschild limit. Subsequently, the question arises as to which coordinates are best

used.

Therefore, in the rest of section 7.1 we study the Hamiltonian formulation in an isotropic

coordinate systems for the same kind of observer (ZAMO), as it was introduced by [47].

7.1.2 The Hamiltonian function in isotropic Cartesian coordinates

A revised Hamiltonian function for the Kerr spacetime background in BL coordinates has

been provided in [47]. The formulation starts in Cartesian quasi-isotropic coordinates. The

line element in these coordinates for an axisymmetric stationary metric reads

ds2 = gtt dt
2 + 2 gtXdX dt+ 2 gtY dY dt+ 2 gXY dX dY + gXX dX2 + gY Y dY 2

+gZZ dZ2 ,

with

gtt = e−2β
[
B2ω2(X2 + Y 2)− e4β

]
, gtX = e−2βωB2Y ,

gtY = −e−2βωB2X , gXY = −(e−2βB2 − e2α)XY

X2 + Y 2
,

gXX =
e2αX2 + e−2βB2 Y 2

X2 + Y 2
, gY Y =

e2αY 2 + e−2βB2 X2

X2 + Y 2
,

gZZ = e2α , (7.8)
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and the coefficients are expressed by

B =

√
∆

R
, e2β =

∆Σ

Λ
, e2α =

Σ

R2
, ω =

2Mar

Λ
,

where the quantities (∆, Σ, Λ) are provided in (1.10). They can be expressed as functions

of (X, Y, Z) using the transformation properties between the Cartesian quasi-isotropic

coordinates and the BL coordinate system

X = R (r) sin θ cosφ , Y = R (r) sin θ sinφ , Z = R (r) cos θ ,

where

R (r) =
1

2
(r −M +

√
∆) . (7.9)

The above relation between r and R holds only outside the black hole’s horizon 2.

For this coordinate system the authors propose the tetrad field

e(t) µ = eβδtµ , e(1) µ =
B ω Y

eβ
δtβ +

eαX2 + e−βB Y 2

X2 + Y 2
δXµ +

(eα − e−νB)XY

X2 + Y 2
δYβ ,

e(3) µ = eαδZµ , e(2) µ = −B ω X

eβ
δtβ +

(eα − e−βB)XY

X2 + Y 2
δXµ +

eαY 2 + e−βB X2

X2 + Y 2
δYµ ,

(7.10)

which also corresponds to a ZAMO observer. Notice, this tetrad becomes Cartesian, i.e.

e(t) µ = 1, e(1) µ = δ
(i)
µ , in the flat spacetime limit.

When we approach limit of the Schwarzschild spacetime where a → 0,

ds2 = −f(R)dt2 + h(R)(dX2 + dY 2 + dZ2), (7.11)

the tetrad (7.10) reduces to the isotropic tetrad given in [53]:

e(t) µ =

√
1− 2M

r
δtµ =

√
f (R)δtµ , e(1) µ =

r

R
δXµ =

√
h (R)δXµ ,

e(2) µ =
r

R
δYµ =

√
h (R)δYµ , e(3) µ =

r

R
δZµ =

√
h (R)δZµ , (7.12)

with

r = R

(
1 +

M

2R

)2

, f(R) =
(2R− 1)2

(2R+ 1)2
, h (R) =

(
1 +

M

2R

)4

.

2The general relation between r and R is r = R+M +
M2 − a2

4 R
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In order to check the behaviour of these so called isotropic Cartesian coordinates (X,Y, Z)

we analyse the conservation of the constants of motion given by the symmetries of the

system. The spherical symmetry of the spacetime can be described in Cartesian-like co-

ordinates xµ by the three Killing vectors

ξµk = ϵklmxlδµm. (7.13)

Using (1.16) we thus get the three conserved components of the total angular momentum

as a combination of kinematical momentum pµ and components of spin tensor Sµν . On the

other hand, in the canonical description, the conservation of the components of the total

angular momentum

Jk = ϵkijxiPj + S(k) , (7.14)

is demonstrated by vanishing Dirac brackets

{Jk, H}DB = 0, (7.15)

which is the preferred result we would like to have for numerical calculations. Contrary

to the previous expressions for the components of the total angular momentum obtained

by the Killing vectors (7.13) and the conserved quantity for spinning particles (1.16), the

canonical momenta Pi and tetrad components of the spin appear in this formula (7.14).

The relations between the two sets of quantities, the kinematical and the canonical ones,

are given by (5.6) and (5.13). By computing the difference of the projection of (1.16) and

(7.14) it can be shown, that if the Lie derivatives of the three spatial tetrad vectors obey

the Cartesian-like rule

(
ξke(i)

µ
)
e(j)µ = ϵkij ∧ ξ0k ≡ 0 , (7.16)

the two conserved quantities, one in kinematical variables (1.16) and the other in canonical

ones (7.14), are identical. Indeed, this formula holds in flat Minkowski spacetime for

Cartesian tetrad e a
µ = δaµ, which naturally leads to the intuition, that a tetrad, that

reduces to a Cartesian one in flat spacetime, is a good tetrad choice. In (7.16) the fact that

the time component of the Killing vectors is required to vanish is explicitly stated, since

it is written as a covariant, coordinate independent formula, but it was derived using this

coordinate assumption.

The general condition (7.16) can now be applied to the particular case of the Schwar-

zschild limit (7.11). As Lie derivatives can be written using partial rather then covariant

derivatives, one can easily check, that the tetrad field (7.12) satisfies (7.16).

Yet, as an example, that the equivalence between the components of the total angu-



7.1. THE HAMILTONIAN IN BL COMPARED IN CARTESIAN COORDINATES 143

lar momentum expressed in kinematical and canonical variables is not so obvious, let us

consider a symmetry of the Schwarzschild spacetime with respect to a rotation along the

z-axis

ξµz = [0,−Y,X, 0]. (7.17)

It yields the related component of the total angular momentum

Jz =Xpy − Y px + Sxy

(
h (R) +

(h (R))′

2R

(
X2 + Y 2

))
− (h (R))′

2R
Z (XSyz + Y Szx) .

Here, pi represent the kinematical MP momenta and Sij the coordinate spin components,

the prime denotes the ordinary partial derivative with respect to R. In the Hamiltonian

approach we use the canonical momenta Pi and the projected spin components S(i), so

it is necessary to perform a transformation from
(
pi, S

ij
)
to
(
Pi, S

(i)
)
using the relations

given in eq. (5.6) and (5.13). With these, terms proportional to h′(R) get absorbed into

Px and Py and the corresponding component of the total angular momentum can indeed

be written as

Jz = XPy − Y Px + S(3) . (7.18)

In order to check the conservation of Jx, Jy and Jz we have to express the Hamiltonian in

terms of the canonical variables and isotropic coordinates. Then the Dirac brackets can be

computed to obtain the time evolution of the total angular momentum. The corresponding

Hamiltonian in these coordinates, cf. [53], reads

H = HNS +HS ,

with

HNS =
1√
f (R)

√
Q , (7.19)

HS =
1− M

2R + 2
(
1− M

4R

)√
Q(

1 + M
2R

)6
R3

√
Q
(
1 +

√
Q
)MM (

L⃗ · S⃗
)

, (7.20)

and Q = M2 + 1
h(R) P⃗

2. The term HS contains the contribution to spin-orbit coupling

L⃗ · S⃗ influencing the motion of spinning particles in Schwarzschild spacetime. Notice,

that setting M → 0, i.e. no gravitational field, we indeed obtain that the spin part of

the Hamiltonian HS becomes zero and the spin-orbit coupling vanishes, as it should in

Minkowskian spacetime.
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Next, we can easily compute the evolution equations for Jx, Jy and Jz as

{Jx, H}DB = 0 ,

{Jy, H}DB = 0 ,

{Jz, H}DB = 0 ,

which is thus also true for the measure of the total angular momentum J2. Then, using

the argument stated above, we know that
{
L2, H

}
= 0 holds, since we can write H =

H
(
|r⃗|2, |P⃗ |2, r⃗ · P⃗ , L⃗ · S⃗

)
with L⃗ · S⃗ the only terms containing the spin part. L2 = L2

x +

L2
y + L2

z is the measure of the orbital angular momentum and its respective components

are defined in canonical coordinates as

Li = εijkq
jP k , (7.21)

with qi = (X,Y, Z) and P i = (Px, Py, Pz).

In fact, since a Hamiltonian system of a spinning particle linearised in spin given by

(5.20) has five independent degrees of freedom, the five constants of motion

(Jz, J2, L2, S2, H)

in involution holding in the Schwarzschild limit make the system integrable, implying

the motion of the particle to be regular at linear order in spin. The integrability for

the Schwarzschild background seems to result from the linearised in spin Hamiltonian

approximation, since in [35] it has been shown that for the full MP equations with T

SSC in the Schwarzschild background chaos appears. As for the Kerr spacetime, the

degree of symmetry is reduced because of the rotation of the black hole. For the geodesic

motion in Kerr spacetime there exist enough constants of motion in order to make the

system integrable, thanks to the Carter constant. Introducing the spin generally destroys

the conservation of Carter’s constant. However, it was shown in [85, 86] that if the MP

equations supplemented by the T SSC are linearised in the spin, an integral of motion CS

associated with a Killing-Yano tensor appears, usually linked with the Carter constant in

Kerr spacetime.

This led to the impression that, up to linear order in the particle’s spin, the motion of

a spinning particle is generally integrable, too [48]. However, a thorough analysis reveals

that even with the additional constant of motion in the linearised case, the number of

constants of motion in involution is not sufficient to make the system integrable. The

motion of a spinning particle in Kerr spacetime also needs at least five constants of motion

in involution but we are aware of only four,
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(Jz, CS , S2, H) .

Indeed, according to our numerical calculations, this seems to be the case for the Hamilto-

Figure 7.2: A detail from the surface of section θ = π/2, Pθ > 0. The parameters of the
orbits are H = 0.9449111825230683, Jz = 3.5, S = M = M = 1, a = 0.1, the common
initial conditions are φ = 0, Pr = 0, S1 = 0, while by solving numerically the system
Pθ = −S2, Jz = Pφ, and S =

√
S2
2 + S2

3 we define the rest.

nian formalism depending on the NW SSC. In particular, in the case of the Kerr spacetime

a Poincaré surface of section θ = π/2, Pθ > 0 indicates chaotic behaviour (scattered dots

in fig. 7.2), which suggests the non-integrability of the system. The appearance of chaos

in the Kerr background case is not just a confirmation of previous studies, see e.g. [36, 37],

it further shows that the linearised in spin Hamiltonian function given in [47] is non-

integrable as well. Thus, the above results match exactly the expectations we had from the

symmetries. A more thorough analysis of chaotic motion for spinning particles by means

of Hamiltonian methods is in progress.

In this section we have investigated the properties of a ZAMO tetrad in spherical

and Cartesian coordinates in Schwarzschild spacetime. We found that in order to be a

good choice of tetrad the corresponding numerical results should reflect the symmetries

of the dynamical system, i.e. preserve the integrals of motion, and avoid any coordinate

effects evoked by coordinate dependent tetrad basis vectors. Therewith, both the reduction

to the Cartesian tetrad in flat spacetime as well as the vanishing of the spin dependent

Hamiltonian are promising indicators for a suitable tetrad choice. Two questions arise with

this statement: First, are there other coordinates we may choose providing us with “good”

tetrads, and second, since we have been focusing on a ZAMO tetrad, we ask whether a
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non-ZAMO tetrad yields the same properties if the coordinate basis is not changed. We

expect the properties of the tetrad to depend on the choice of the coordinates, so that in the

following we change the coordinates to Kerr-Schild coordinates and analyse two tetrads,

one ZAMO and one non-ZAMO tetrad.

7.2 The Hamiltonian function in Kerr-Schild coordinates

Kerr-Schild coordinates have the great advantage that they are horizon penetrating so

that they are well behaved in the vicinity of the horizon which simplifies numerical calcu-

lations in this domain, probably improving the numerical treatment compared to isotropic

coordinates for events in the strong field. In particular, this may be of interest for the

numerical simulations of gravitational waves of which the sources are expected to lie in the

strong field regime of black holes.

Here we shall introduce a Hamiltonian function using the Kerr-Schild (KS) coordinates

(t̄, x̄, ȳ, z̄). The line element in KS coordinates reads [62]

ds2 = gµνdx̄
µdx̄ν ,with gµν = ηµν + f lµ lν , (7.22)

where (0, 1, 2, 3) correspond to (t̄, x̄, ȳ, z̄),

lt̄ = −1 , lx̄ = − r̄ x̄+ a ȳ

r̄2 + a2
, lȳ = − r̄ ȳ − a x̄

r̄2 + a2
, lz̄ = − z̄

r̄
, (7.23)

and

f =
2 M r3

r4 + a2 z2
, r̄ =

√
ρ̄2 +

√
ρ̄4 + 4a2 z2

2
, ρ̄2 = x̄2 + ȳ2 + z̄2 − a2 . (7.24)

Independently of the tetrad field the choice of coordinates implies the non-spinning part

of the Hamiltonian

HNS = αf liPi + α
√
M2 + PiPi − fα2(liPi)2 , (7.25)

where liPi = δijliPj and

α =
1√
1 + f

. (7.26)

The independence of the non-spinning Hamiltonian on the tetrad is obvious: As we have

seen in section 4.1 the tetrad is introduced in order to describe spin degrees of freedom of

the particle. Consequently, the tetrad notion is redundant when the particle has no spin.

As soon as we have non-vanishing spin, the spin part of the Hamiltonian is characterised

by the choice of the tetrad introduced by the NW SSC. More precisely, the NW SSC leads
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to an entire class of observers that are physically equivalent, i.e. the change of an observer

should have no influence on the physics of the spinning particle. In particular, if the

coordinate system is retained we should not encounter any coordinate effects smearing the

intrinsic dynamical behaviour. Nevertheless, it is worth to examine the impact of different

frames based on the same coordinate system on the Hamiltonian description and check

whether different types of observers do indeed lead to equivalent (numerical) results at the

qualitative level.

7.2.1 ZAMO Tetrad

In the previous section, we focused on a tetrad field associated to the observers with van-

ishing momentum uφ = 0, i.e. zero angular momentum observers (ZAMO), in two different

coordinate systems, isotropic Cartesian and Boyer-Lindquist coordinates. Therefore, it is

reasonable to first consider such an observer in KS coordinates as well. Here, we choose a

tetrad corresponding to an observer infalling with the radial velocity

ur = e(t)
r = (∂r/∂x̄µ) e(t)

µ = −αf :

e(t) µ = α δ0µ , e(i) µ = δiµ +
(
α−1− 1− αf

)
li δ

0
µ +

(
α−1− 1

)
lilµ .

Again, this tetrad becomes Cartesian, i.e. e(t) µ = δtµ, e
(i)

µ = δiµ, in the flat spacetime

limit, which is a first indication for being a good tetrad and coordinate choice.

The next step is to analyse the behaviour in the Schwarzschild limit a → 0. Then,

following the procedure introduced in section 5.2, we obtain the Hamiltonian H̄Schw =

H̄Schw
NS + H̄Schw

S with

H̄Schw
NS = α

(
m− 2Mα

r2
r⃗·P⃗

)
, (7.27)

H̄Schw
S =

M

m

[
2α2

α+ 1
− α5 + 3α3

r

r⃗·P⃗
ωT

− α4 m

ωT

]
L⃗ · S⃗
r3

, (7.28)

where

m =

√
M2 + P⃗ 2 − fα2

r2

(
r⃗·P⃗

)2
, ωT = −M−m . (7.29)

Therewith the total Hamiltonian is obtained as merely a function of certain scalar com-

binations of
(
r⃗, P⃗ , S⃗

)
where r⃗ = (x̄, ȳ, z̄) . Namely, we write H̄ = H̄

(
|r⃗|2, |P⃗ |2, r⃗ · P⃗ , L⃗ · S⃗

)
with Li given in eq. (7.21) with q⃗ ≡ r⃗, so we can deduce that{

L⃗+ S⃗,H
}
DB

= 0 , (7.30)
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by using the canonical structure of the variables. Moreover, we would like to stress here

again, that the conservation of L2 in Schwarzschild spacetime is equivalent to the con-

servation of L⃗ · S⃗, since both S2 and J2 are preserved. Thus, it suffices to express the

Hamiltonian in terms of L⃗ · S⃗ in order to show (7.30). In fact, it reflects the integrability

of the system at linear order in spin.

However, we cannot simply infer that J⃗ = L⃗+ S⃗ is valid in the new canonical coordin-

ates. The expression for the constant of motion is already given by (1.16) and with the

Killing vectors stated in (7.13) of the Schwarzschild spacetime we arrive at

Ji = L̃i + Si , (7.31)

where the tilde denotes the quantities to be written in terms of the kinematical momenta

pi

(
L̃i = εijkr

jpk
)

and the index i in Si refers to the coordinate basis. This relation is

valid in KS coordinates, independent of the tetrad choice.
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Figure 7.3: The left panel shows the relative error of Jx, and the right of Jy as a function
of time in logarithmic scale for the ZAMO tetrad in KS coordinates as evolved by the
Hamiltonian with a = 0, M = m = 1, and S = 1.

In order to relate the conserved quantities to the canonical momenta Pi and the tetrad

components of the spin S(i), we have to perform a transformation from (pi, Si) to
(
Pi, S(i)

)
using the relations given in (5.6) and (5.13). Therewith, we indeed find the components Ji

to be given by (7.18) and the corresponding evolution equations can now be computed by

{Ji, H}DB = 0 ,

which yields vanishing Dirac brackets for each component of the total angular momentum.
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In order to support this statement we performed a numerical check shown in fig. (7.3).

It is immediately obvious that the conservation of these components is ensured up to

numerical errors which do not accumulate over the integration time but stay at the same

level. These results are similar to the ones obtained in isotropic Cartesian coordinates,

so that the quality of the outputs is comparable. Therefore, if one can choose between

KS and isotropic Cartesian coordinates, there is no preferred choice between those two in

Schwarzschild spacetime. However, if the dynamics of plunging orbits is considered in a

Kerr spacetime background, it may be more sensible to change to KS coordinates, since

they are horizon penetrating and avoid numerical divergences close to the horizon.

Finally, we consider the contribution from the spin part of the Hamiltonian in flat

spacetime. From (7.28) we easily see that for M → 0 the contributions from HS vanish as

it should. Hence, also additional coordinate effects, which arise in spherical coordinates,

are avoided, further supporting such a choice of tetrad.

7.2.2 Non-ZAMO tetrad

Although the ZAMO tetrad appears to be intuitively a good tetrad choice, we are interested

in the effects a different kind of observer has on the Hamiltonian description. One major

benefit is the simplification of the Hamiltonian in KS coordinates when we change to

another tetrad field, which is not required to be a ZAMO observer. In particular, we

take advantage of the fact that for certain observers no square roots appear due to the

normalisation of the tetrad vectors

e (t)
µ =

[
1− f

2
,
f

2
lx̄,

f

2
lȳ,

f

2
lz̄

]
, (7.32)

e (1)
µ =

[
−f

2
lx̄, 1 +

f

2
lx̄lx̄,

f

2
lx̄lȳ,

f

2
lx̄lz̄

]
, (7.33)

e (2)
µ =

[
−f

2
lȳ,

f

2
lȳlx̄, 1 +

f

2
lȳlȳ,

f

2
lȳlz̄

]
, (7.34)

e (3)
µ =

[
−f

2
lz̄,

f

2
lz̄lx̄,

f

2
lz̄lȳ, 1 +

f

2
lz̄lz̄

]
, (7.35)

where we use the definitions from above, cf. eqs. (7.23)-(7.24).

This is the tetrad of an infalling ‘non-ZAMO’ observer, as the observer’s specific angular

momentum as measured from infinity

−uφ = eφ(t) =

(
∂

∂φ

)µ

eµ(t) = −1

2

fa

r

x2 + y2

r2 + a2
̸= 0 , (7.36)

does not vanish and the observer’s radial coordinate velocity
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ur = er(t) =

(
∂r

∂xµ

)
eµ(t) = −f

2
< 0 ,

is directed towards the central object. Thus, we again compute the Hamiltonian in canon-

ical coordinates up to linear order in spin given by eq. (5.18) - (5.21)

H = HNS +HSO +HSS , (7.37)

where HNS is given by (7.25), the spin-orbit coupling is expressed as

HSO = αf
Mm− 2m̃(M − fr)

2M m ωT

r ϵij(k)lipjS
(k)

r2 + a2l2z
, (7.38)

and the spin-spin coupling by

HSS =− af

4ωT Mm (a2l2z̄ + r2)
×

{[
4 flz̄ m̃ ((m− αfm̃)r + αm̃M)− (7.39)

− 2M lz̄
(
mM+ αM2

)
+ 2α [(M + 2 r)Mflz̄ + (3M − 2fr)Pz] m̃

]
S(i)li+

+ 2α (M+ m̃)
[
Mlz̄ S

(i)Pi − m̃ (2 fr − 3M)S(3)
]
− 2

alz̄ m̃

r2
×

×
(
3Mr − a2flz̄

2 − 3 fr2
) [

α(S(1)Py − S(2)Px)− (αM+m− αfm̃) (S(1)lȳ − S(2)lx̄)
]}

.

Here, instead of (7.29), we use

m =
√
M2 + PiPi − fα2(liPi)2 ,

m̃ = αm− α2Pil
i ,

ωT = −M− m

α
+

f

2
m̃ , (7.40)

which, together with the usage of the components of lµ instead of the coordinates, signific-

antly shortened expressions for HSO and HSS . All vector components are grouped in such

a way that the relation
{
L3 + S(3), H

}
DB

= 0 is obvious.

Again, the conservation of the total angular momentum is restored in the Schwarzschild

limit. Since H̄NS only depends on the chosen coordinate basis, it is still given by (7.27).

The spinning part

H̄S =

[
α
M

m

(
1− M + 2r

r (r + 2M)

r⃗·P⃗
ωT

)
−M

ωT

1− M
r

1 + 2M
r

]
L⃗ · S⃗
r3

, (7.41)

where m̄ and ωT are given by (7.40), can again be written as a function



7.2. THE HAMILTONIAN FUNCTION IN KERR-SCHILD COORDINATES 151

H̄ = H̄
(
|r⃗|2, |P⃗ |2, r⃗ · P⃗ , L⃗ · S⃗

)
,

so that we can follow the reasoning of the preceding section to obtain the vanishing Dirac

brackets (7.30). Therefore, we only have to check the equations for the components of the

total angular momentum Ji in canonical coordinates
(
Pi, S(i)

)
. Using the expressions for

the total angular momentum with respect to the coordinate basis (7.31), we again perform

a transformation to the tetrad basis and the canonical momenta and recover relation (7.18).

Thus, in the Schwarzschild limit, the non-ZAMO tetrad in KS coordinates has the same

numerical properties as the ZAMO tetrad, as it is also visible in Fig. (7.4). Consequently,
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Figure 7.4: The left panel shows the relative error of Jx, and the right of Jy as a function
of time in logarithmic scale for the non-ZAMO tetrad in KS coordinates as evolved by the
Hamiltonian with a = 0, M = m = 1, and S = 1.

it seems to be a good choice of coordinate system for numerical investigations.

It is of course also possible to rewrite the coefficients of the tetrad basis vectors in terms

of any coordinates without changing the general properties of the Hamiltonian system as

long as the tetrad basis vectors remain oriented along the isotropic-Cartesian coordinate

basis vectors. In [53], it was already mentioned that the coordinate effects can be avoided

by choosing the directions of the tetrad basis vectors along a Cartesian coordinate system.

However, if the tetrad corresponds to a Cartesian frame, the spin variables remain Cartesian

whereas the position and momentum variables are spherical ones. This approach is used

in EOB theory or PN methods in order to compare the dynamical contributions, such as

spin-orbit or spin-spin coupling, from different orders in spin, (see e.g., [53, 148]) and may

in fact also be used for the computation of the equations of motion from the Hamiltonian.

Nevertheless, in that case, it is more sensible to be consistent in the choice of coordinates

and spin variables so that the Dirac brackets can be used for the calculation of the equations
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of motion. Generally, it is very useful to choose a coordinate system and corresponding

basis vectors that do not imply coordinate effects if one aims at an analysis of the equations

of motion. This coordinate system does not necessarily adapt to the symmetries of the

spacetime as we have seen.

7.3 Discussion

In this chapter, we have studied the dependence of the linearised Hamiltonian formalism

introduced by Barausse et al. [53] on the coordinate system one chooses in order to express

the tetrad field or the Hamiltonian function, which has been mentioned in [53]. Using the

Dirac brackets to check the integrals of motion, we found that an unfortunate choice of

the coordinate system can lead to a non-preservation of quantities in numerical integration

which should, according to the symmetries of the system and the linearised MP equations,

be conserved. Since a change of tetrad is associated to a canonical transformation of the

phase space variables, we find that the type of tetrad, i.e. whether the observer is ZAMO

or follows some other worldline which does not correspond to a ZAMO, does not affect

the general dynamical properties of the constants of motion as expected. In fact, we have

examined both kinds of tetrads and found no difference in their ability to be numerically

applied, i.e. they possess the same properties with respect to numerical computations.

However, the formulae for the spinning part of the Hamiltonian can be simplified and

compactified, which we think is worth to be mentioned.

In order to obtain Hamiltonian systems without coordinate effects smearing the ac-

tual physical behaviour in numerical solutions and which are still reliable in the vicinity

of the central object’s horizon, two new horizon penetrating Hamiltonian functions were

introduced. Both of them were constructed on tetrad fields which were expressed in Kerr-

Schild coordinates. When spinning particles are considered in strong gravitational fields,

the limits of the pole-dipole approximation have to be taken into account, though [87, 83].

For instance, tidal effects coming from higher order multipoles become more important

for large curvature gradients so that the description of the motion of a spinning particle

has to be extended to higher order multipoles. Nevertheless, the Kerr-Schild coordinates

avoid the appearance of coordinate effects and the non-ZAMO tetrad allows us to express

the Hamiltonian both in Schwarzschild and Kerr spacetime in a simple and compact form.

Future (numerical) work may profit from this explicit Hamiltonian, even in the pole-dipole

approximation.

While studying the Dirac brackets in the Schwarzschild limit, we have shown that in this

limit the Hamiltonian functions are integrable. In particular, the system’s five degrees of

freedom admit five independent and in involution integrals of motion. On the other hand, a

numerical example in the Kerr background reveals the appearance of chaos. This suggests
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that the Hamiltonian system is non-integrable for this more general setting. As chaos

and perturbation theory, such as Poincaré sections or recurrence plots, frequently include

approaches based on Hamiltonian formalisms future numerical works may profit from this

explicit Hamiltonian. Indeed, in order to answer the question for chaos thoroughly, a

detailed analysis of the motion of spinning particles in Kerr spacetime described by the

Hamiltonian is in progress.

So far, the investigated Hamiltonian has been linearised in the spin and was found

by applying Dirac’s approach for (secondary class) constraints which replaces the Poisson

bracket by the Dirac bracket. However, there exists another method which considerably

simplifies the implementation of constraints and therewith the extension to higher orders in

spin. In the next chapter we concentrate on this alternative approach, the action approach,

and compute a canonical Hamiltonian up to quadratic order in the particle’s spin.
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Chapter 8

Action approach1

8.1 The Dirac Hamiltonian: An Action Approach

In section 5.2 we have seen how (second class) constraints are imposed on a Hamiltonian

system by the substitution of the Poisson brackets by the Dirac brackets. The explicit

computations are hideous, which does not make this approach very attractive to include

the constraints in this way. Again, Dirac proposed to first ignore the inability of applying

a Legendre transformation. Indeed, a Legendre transformation from a Lagrangian L is

performed and the constraints Ci are imposed alternatively with the help of Lagrange

multipliers λi, such that a Dirac Hamiltonian HD can be defined as the sum of the so-called

canonical Hamiltonian, i.e. the Legendre transformed Hamiltonian, and the constraints

[71, 145, 158, 164]:

HD = Hcan + λiC
i , (8.1)

where Hcan = q̇i ∂L
∂q̇i

− L. Subsequently, the resulting action is obtained as

S =

ˆ (
piq̇

i −HD

)
dt , (8.2)

which the variational principle can be applied to in order to find the equations of motion.

The momenta pi are the generalised momenta ∂L
∂q̇i

|q̇j(j ̸=i)=const. Moreover, the system’s

Hamiltonian does not coincide with HD because the momenta have to satisfy constraints

in this formalism, which in turn leads to momenta that are not the true conjugates to

the position variables. For instance, in the case of spinning particles we have seen that

the angular velocity Ωµν depends on the linear velocity uµ, cf. (4.4), which reflects the

ambiguity in the choice of the worldline associated with the mass shell constraint. Such

relations are then fixed by the constraints included in HD. Subsequently the velocity terms

1This chapter is based on work which is in preparation with J. Vines, T. Hinderer and J. Steinhoff [4]

155
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are combined in the action in order to read off the Hamiltonian [58].

Before focusing on the search for the Hamiltonian it is worth spending some time on the

classification of constraints, how they are treated and what their physical interpretation is

[58, 145, 158, 164]. Consider a set of constraints

Ci (q, p) ≈ 0 , (8.3)

where ≈ stands for “weakly equal” introduced by Dirac [71, 145]. More precisely, it means

that the constraints define hypersurfaces in phase space where the dynamics takes place.

As the Poisson brackets are defined on the unconstrained phase space, the equation (8.3)

is treated to be unsatisfied until the Poisson brackets have been computed. Then, the con-

straints are actually imposed. The reason for that lies in the classification of the constraints,

which is defined by the structure of the Poisson brackets between the constraints. In order

to accurately examine the relation between the constraints they have to be considered as

unsatisfied until the Poisson brackets have been calculated.

The constraints entering the action at this stage via the Lagrange multipliers λi are

primary constraints. They directly result from the Lagrangian. Correspondingly, the

Lagrange multipliers represent additional degrees of freedom which may be fixed by the

consistency requirement. All primary constraints have to satisfy such a consistency re-

quirement, which means that they have to be preserved under the time evolution given

by the Hamiltonian. Therewith, further constraints, the secondary constraints, as well

as linear equations for the Lagrange multipliers may follow. Subsequently, the secondary

constraints also have to fulfill the consistency requirement which may lead to even further

constraints, and so on. In the end we are provided with a complete set of constraints

and linear equations for the Lagrange multipliers. The latter are usually used to eliminate

certain linear combinations of λi from the equations of motion. In special cases it is even

possible to uniquely fix the Lagrange multipliers. More generally, though, combinations of

or single Lagrange multipliers can remain undetermined, which means that their corres-

ponding degrees of freedom are physically irrelevant and relate to gauge freedom. Thus,

those multipliers can be chosen arbitrarily.

Instead of characterising the degrees of gauge freedom by the number of unfixed Lag-

range multipliers, which includes some lengthy computations, it is more convenient to

classify the constraints in two more groups: the first class and the second class constraints.

A first class constraint is defined to have vanishing Poisson brackets with all other con-

straints. Under second class constraints we put the remaining ones, i.e. the ones that

have non-vanishing Poisson brackets. Therewith, the gauge degrees of freedom are given

by the number of independent primary first class constraints. They can be multiplied

by arbitrary functions, which are associated with the Lagrange multipliers, and are ad-



8.1. THE DIRAC HAMILTONIAN: AN ACTION APPROACH 157

ded to the Hamiltonian without changing the physical properties of the system. Indeed,

both primary and secondary first class constraints are related to gauge symmetries. These

degrees of gauge freedom are usually fixed in advance.

In order to implement second class constraints we have to introduce a new structure,

the Dirac bracket, which projects the Poisson bracket onto the constrained phase space.

Since the second class constraints have non vanishing Poisson brackets, we are able to

define an invertible matrix Cij consisting of the Poisson brackets between the second class

constraints, see eq. (5.9). Therewith the Dirac brackets are computed, eq. (5.10), and give

the correct equations of motion together with the total Hamiltonian, which is obtained

by a Legendre transformation using the true conjugate momenta to the position variables

and contains already the solutions to the second class constraints, such as it was done in

section 5.2 and in [53].

As we have briefly broached, the computation of the Hamiltonian can be approached

by employing the action and imposing the constraints differently. As an example, we first

investigate the action of point masses [58]. The corresponding action of point masses

moving in an external gravitational field is given by

S =

ˆ
Ldσ =

ˆ
−m

√
−gµνuµuνdσ ,

with the worldline parameter σ , the four-velocity uµ = dxµ/dσ and rest massm. Generally,

it does not matter which parameter σ is chosen to parametrise the trajectory of the particle.

Therefore, the action should be invariant under reparametrisation. Applying the variational

principle on this general action the corresponding equations of motion are obtained, which

still depend on the gauge choice for σ. At this stage we already know that there exists

a gauge symmetry implied in the Lagrangian. Computation of the generalised momenta

yields

pµ =
∂L

∂uµ
= m

uµ√−gµνuµuν
,

and gives rise to

L =
∂L

∂uµ
uµ = pµu

µ . (8.4)

The last relation actually is a consequence of the required reparametrisation invariance.

Any Lagrangian which is invariant under reparametrisation has to be a homogenous func-

tion of degree one in the velocities. According to Euler’s theorem the Lagrangian function

can then be written as the sum of the products of the generalised momenta and the velo-

cities (8.4). Thus, if we now perform a Legendre transformation we arrive at

Hcan = pµu
µ − L = 0 ,
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yielding a vanishing canonical Hamiltonian. Indeed, the canonical Hamiltonian generally

vanishes in the case of reparametrisation invariant Lagrangians, which is usually assumed

in general relativistic systems [58]. But, if the Hamiltonian vanishes where does the in-

formation on the system’s dynamics go? Dirac proposed a way around by saying that the

time evolution is given by the constraints. Recall the gauge freedom we have in the choice

of the worldline parameter. This ambiguity represents the inability to uniquely define a

relation between the four-velocity and the four-momentum. It depends on the gauging of

σ which is encoded in the mass shell constraint

pµp
µ +m2 ≈ 0 , (8.5)

which has to be added to the Dirac Hamiltonian with a Lagrange multiplier

HD = Hcan + λ
(
pµp

µ +m2
)
= λ

(
pµp

µ +m2
)
,

and leads, according to eq. (8.2), to the following action

S =

ˆ (
pµu

µ − λ
(
pµp

µ +m2
))

dσ .

Notice that we have not yet fixed the gauge for σ. By looking at the action we deduce

that with respect to an arbitrary worldline parameter the Hamiltonian is of the form

λ
(
pµp

µ +m2
)
generating the time evolution of the particle’s motion. Variation of the

action therewith fixes the Lagrange multiplier and gives the equations of motion.

If, on the other hand, the gauge is fixed at the level of the action the Hamiltonian can

be read off directly for this specific gauge. By solving the mass shell constraint in eq. (8.5)

to

−pt = N ipi +N
√
m2 + γijpipj ,

with N i, N and γij as quantities describing a spacetime split given in (5.17) and fixing the

gauge to proper time τ ≈ xt or ut ≈ 1 the action yields

S =

ˆ (
piu

i + pt
)
dτ =

ˆ (
piẋ

i + pt
)
dτ ,

characterised by the only independent variables xi and pi. Notice indeed that xt is no

longer interpreted as a variable but as a time parameter characterising the dynamics. It

can also be understood as some kind of way to split spacetime into space and time because

through the gauge fixing procedure we degraded the time coordinate to the status of a

parameter. At this point it becomes obvious that a Hamiltonian formalism in general

relativity requires a spacetime split.
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Now we can distinguish the terms that contain velocities from the ones that are inde-

pendent of velocities in the action. The latter is identified to be the Hamiltonian

H = −pt ,

containing all information on the evolution of the dynamical system of a freely falling test

particle moving in an external gravitational field. On top of that the Poisson brackets are

encoded in the action as well, showing that pi and xi are indeed of canonical structure.

Thus the equations of motion equal the famous Hamilton’s equations. Unfortunately, in

the general case the variables do not have to be canonical yielding a complicated structure

for the Poisson brackets, which remain to be still implied in the action though, see section

8.6.

As this approach is based on the action, an explicit Lagrangian is an essential ingredient.

However, when we considered spinning particles so far, we never actually had to choose a

particular Lagrangian in order to continue our investigations, in particular to derive the

unconstrained equations of motion. Nevertheless, there exist a few works in both special

and general relativity using an explicit Lagrangian function for the investigation of the

dynamics of spinning bodies [58, 93, 94, 144, 165, 166]. In all these studies the reference

worldline has been chosen beforehand so that the specific form of the Lagrangian and

therewith the form of the action only fits to this particular supplementary condition or

constraint, respectively. Of course it is possible to shift the chosen worldline in such a

way that the resulting variables correspond to another supplementary condition. Thus, a

change of the choice of the observer cannot be performed at the level of the action but only

by a coordinate shift in a given Lagrangian belonging to a first observer.

8.2 Spin-gauge invariant Action

If the subject is regarded from the physical point of view the dynamics of the particle should

not change if the observer goes to a different reference frame. Each description given by

different observers should yield the same physical results. Consequently we would expect

an action to exist that is invariant under the transformation from one observer to another,

i.e. the action should be invariant under the change of the supplementary condition. Due

to the physical irrelevance of the supplementary condition the latter can be transferred

into a spin gauge constraint which leads to a Lagrangian respecting this gauge symmetry

[59]. The spin gauge constraint is given by [59]

Cµ := Sµνω
ν ≈ 0 , (8.6)
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with

ων :=
pν

p
+ eT

ν ,

and eT
ν being the time direction of the body-fixed frame. Applying a Lorentz boost the

time direction of the body-fixed frame is transformed in such a way that it is aligned

with the particle’s linear momentum. Therefore, all the physical information concerning

the orientation of the particle are encoded in the remaining rotational degrees of freedom.

It is worth to remark here, that Cµ is not a spin supplementary condition and does not

correspond to a particular choice of an observer but merely parametrises the full range

of possible choices by a gauge field eT
ν . In addition to the spin gauge constraint we

surely still have the freedom to choose any arbitrary parameter for the worldline without

changing the dynamics of the particle. More precisely, the action should be invariant under

reparametrisation which is represented by the mass shell constraint

T := pµp
µ +M2 ≈ 0 , (8.7)

where M corresponds to the dynamical mass. In general, the dynamical mass M is a

function of the dynamical variables. It can contain nonminimal couplings to the curvature

tensor, which account for higher multipoles (quadrupole etc), see [132, 137]. We will

therefore keep M generic for most of the derivations. It is worth to stress here again, that

in the case of spinning particles the linear momentum is no longer aligned with the particle’s

velocity so that we distinguish between the dynamical mass M and the kinematical mass

m, cf. (1.18).

Previously we have already introduced the use of the Dirac Hamiltonian (8.1) which

is composed of the canonical Hamiltonian and the given constraints in terms of Lagrange

multipliers. Naturally, the canonical Hamiltonian vanishes because of the reparametrisation

invariance so that the action for a spinning particle results in

S =

ˆ (
pµu

µ +
1

2
SµνΩ

µν −HD

)
dσ , (8.8)

whereHD = λ1T+λµ
2Cµ and pµ and the spin tensor Sµν are the generalised momenta (4.13).

However, because of the particle’s spin these momenta are not the conjugate momenta

to the position variables so that the structure of their Poisson brackets differs from the

canonical ones. This is visible from eq. (8.12) since Ωµν is a function of the four-velocity

and subsequently, at this stage, the Hamiltonian cannot be read off from the action. At

the moment, though, our main purpose is not the Hamiltonian but the form of the action.

We would like to have the action invariant under the transformation of the reference

worldline, i.e. under different choices for the supplementary condition. Treating this sym-
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metry as well as the reparametrisation invariance as gauge degrees of freedom the corres-

ponding constraints have to be first class constraints. Their Lagrange multipliers cannot

be fixed by the consistency requirements but reflect the arbitrariness in the choice of an

observer and of the worldline parameter. It can be checked that the constraints Cµ leads to

the correct spin gauge constraint fulfilling all the properties we wish: first it generates the

shift of the representative worldline and the appropriate shift in the spin tensor and it has

indeed vanishing Poisson brackets [59]. Therefore, the physical as well as the mathematical

requirements are perfectly satisfied.

Since the Hamiltonian is not only composed of the spin gauge constraint but also

of the mass shell constraint, the latter must also be made invariant under spin gauge

transformations. In particular this means that it should have vanishing Poisson brackets

with Cµ. Although the momenta pµ are not affected by the change of the SSC [59], the

dynamical mass M (xµ, pµ, Sµν , Λi
µ) is, since it depends on the position, the spin and

therewith on the Lorentz matrix. Hence in order to make M invariant under spin gauge

transformations we find a position x̃µ, a spin S̃µν and a Lorentz matrix Λ̃i
µ which are

invariant, i.e. which have weakly vanishing Poisson brackets with the gauge constraint Cµ.

The solution is obtained by a projection of the quantities (xµ, Sµν , Λi
µ) onto the particle’s

rest-frame. Then we can construct an invariant mass out of all the invariant variables. It

is important to note here, that the dynamical mass contains all field interactions of the

spinning particle, such as tidal forces, which have to be taken at the invariant position

variable. Therefore, it appears to be reasonable to shift the worldline of the action xµ to

this new invariant position variable x̃µ. One has to be careful, though: the switch cannot be

applied to the spin tensor or the Lorentz matrix because the corresponding transformation

includes projections onto the spatial hypersurface of the local Lorentz frame, Λ̃i
µpµ = 0.

Therefore we keep Λi
µ and Sµν as the fundamental variables of the action. After coupling

to the gravitational field we arrive at [59]

S =

ˆ
dσ

(
−pµũ

µ − Sµν pν
pαpα

Dpµ
dσ

− 1

2
SµνΩ

µν −HD

)
, (8.9)

which is the explicit action whose form is invariant under spin gauge transformations and

valid to all orders in spin. Thus, we can choose any observer or reference worldline within

the particle we like at the level of the action. We no longer have to adjust the terms of the

Lagrangian in order to fit the supplementary condition or, the other way around, search

for the correct spin constraint for a given Lagrangian.

Compared to (8.8) a new term appears in the spin gauge invariant action which includes

a covariant derivative of the four-momentum

Dpµ
dσ

= ṗµ − pρΓ
ρ
µνu

ν , (8.10)
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where the dot denotes the ordinary derivative with respect to the worldline parameter σ.

It resembles the acceleration term in the action used in [167] which was interpreted as the

contribution from the special relativistic Thomas precession. Here, we may think of this

term as the Fermi-Walker transport of the spin vector along the non-geodesic worldline of

the spinning test particle. It ensures that the particle follows the worldline defined by its

rest frame.

As before, the spin of the particle is characterised by an orthonormal tetrad eA
µ where

the capital latin indices refer to the body-fixed Lorentz basis and the greek ones to the co-

ordinate basis. In curved spacetime an orthonormal tetrad has to satisfy the normalisation

condition given in (4.2). This motivates us to introduce a tetrad gravitational field eaµ,

which also satisfies the normalisation condition ηabea
µeb

ν = gµν , so we can define a Lorentz

matrix ΛA
a = eaµeA

µ, such as in (5.3), to define the orientation between the two tetrads

with respect to each other. In order to make sure that the physical spin is represented

by the spatial tetrad field of the spinning particle the body-fixed tetrad is Fermi-Walker

transported. Then, the angular velocity is defined by (4.4).

It turns out to be useful to write the term containing the spin tensor and the angular

velocity in the action (8.9) in the local frame,

SµνΩ
µν = SµνΛA

aea
µD(ΛAbeb

ν)

dσ

= Sab

(
ΛA

aΛ̇Ab + ωµ
abuµ

)
, (8.11)

where Sab = ea
µeb

νSµν , and ωµ
ab = eaν ,µe

b
ν + ebνe

aρΓν
ρµ. Here, we have used the angular

velocity from eq. (4.4) with the Lorentz transformation introduced in eq. (5.3) in the form

Ωµν = ΛA
aea

µD(ΛAbeb
ν)

dσ
. (8.12)

The four-velocity uµ is based on an ordinary derivative, as usual. The ωµ
ab are called Ricci

rotation coefficients [168] or the spin connection [7] and serve as the connection coefficients

in the local Lorentz basis, e.g. the covariant derivative for some vector Xa in the local

Lorentz basis is computed as

∇µX
a = ∂µX

a + ωµ
a
bX

b .

Although the name “spin connection” has its roots in the expression of the Dirac equa-

tion within a curved spacetime geometry, it fits perfectly into the subject of a classical

spinning particle in general relativity. Keeping with Dirac’s notation we repeat the Dirac

Hamiltonian given by the gauge constraints described above
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HD =
λ

2
T + χaCa , (8.13)

where λ and χµ are the Lagrange multipliers corresponding to the constraints. As explained

above, the mass shell constraint (8.7) reflects the invariance under reparametrisation of the

worldline parameter.

The second constraint in the Dirac Hamiltonian is the spin-gauge constraint (8.6) which

can be rewritten in the local frame as [59]

0 ≈ Ca := Sab

(
pb

√−pρpρ
+ ΛT

b

)
, (8.14)

where pa = eaµpµ. The following choices for the gauge “field” ΛT
a turn the spin gauge

constraint (8.14) into various familiar SSCs:

Λ0
a ≈ pa

√−pρpρ
⇒ Ca = Sabp

b ≈ 0 (8.15)

Λ0
a ≈ δa0 ⇒ Ca = Sab

(
pb +

√
−pρpρδ

b
0

)
≈ 0 (8.16)

Λ0
a ≈ 2p0δa0 − pa

√−pρpρ
⇒ Ca = Sa0 ≈ 0 (8.17)

Indeed, the first choice represents the widely known and very popular T SSC and the third

one refers to the P SSC. The second condition leads to the NW SSC and is probably most

useful in an action approach, since it removes the temporal components from the kinematic

term (notice that also ΛA
(t) ≈ δTA)

1

2
SabΛA

aΛ̇Ab =
1

2
S(i)(j)Λ

K(i)Λ̇K(j) . (8.18)

Moreover, the NW SSC is the only one known to lead to canonical variables in special

relativity [56, 57]. Recently, canonical variables up to linear order in spin have been found

in a general relativistic system supplemented with the NW SSC [53].

8.3 Coordinate Transformation

By construction, the variables apparent in the action 8.9 correspond to the worldline de-

scribing the centre of mass in the rest frame of the particle, i.e. to the reference worldline

which would be fixed by the T SSC. However, it is not the SSC which makes sure that

the particle follows this worldline but the term of Fermi-Walker transport in the action.

Consequently, since we have not yet fixed the spin gauge symmetry, we are allowed to shift

the worldline by a transformation of the position variables in such a way that a canonical
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formulation is obtained. This shift is not necessarily related to a change of the SSC, but

rather corresponds to a change of coordinates that describe the behaviour of the particle.

However, if this is approached naively, then one might loose manifest covariance. In-

stead, geometric objects defined on the worldline, like the spin, must then be transported

to the new worldline in a geometric manner, i.e. by parallel transport. Then, the pro-

cedure of infinitesimal covariant variation, as it is presented in section 4.2, can be applied

to a complete shift of the worldline representing the evolution of the spinning body while

taking care for the proper entrainment of the dynamical properties of the particle which

are usually defined with respect to the chosen reference worldline. Hence, the covariance

is maintained when the variation of the action is performed so that we now focus on the

finite covariant variation which yields a finite shift of the worldline [137].

Finite covariant variation

We want to express a function (or functional) f of the old worldline zµ in terms of the new

worldline ẑµ. This expansion reads

f(zα) =
∑
n

δnf(ẑα)

n!
= f(ẑα) +

∂f(ẑα)

∂ẑµ
δẑµ + ... . (8.19)

It should be noted that this is an expansion around the new worldline ẑµ. Then δẑµ is

pointing from ẑµ to zµ, which is indicated by the hat on δẑµ. Therefore, we understand

that the new worldine coordinate is used in all formulas provided in the last section from

now on. It is important to notice that the action is a scalar, so that the ordinary variation

δ and the covariant one ∆ can be used interchangeably. This allows us to switch to the

covariant variation

SPP[z
µ] =

∑
n

δnSPP[ẑ
µ]

n!
=
∑
n

∆nSPP[ẑ
µ]

n!
≡ e∆SPP[ẑµ], (8.20)

and perform the shift of the worldline in a manifestly covariant manner.

Since δẑµ cannot be considered as an infinitesimal any more, it can not directly provide

a coordinate difference. Instead, it is a tangent vector on the new worldine ẑµ. The

coordinate difference is given by a refinement in the form of non-vanishing δnẑµ in eq.

(8.19),

zµ =
∑
n

δnẑµ

n!
. (8.21)

In order to give this expansion a geometric meaning, we require that it approaches a space-

like geodesic connecting ẑµ and zµ, which fixes the δnẑµ. For this purpose, we introduce an

affine parameter λ for the geodesic yµ(λ). The geodesic equation is the parallel transport
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of the tangent vector along itself,

0 =
dyν

dλ
∇ν

dyµ

dλ
=

d2yµ

dλ2
+ Γµ

νρ
dyν

dλ

dyρ

dλ
(8.22)

with the initial conditions y(0) = ẑµ, dyµ(0)/dλ = δẑµ and the searched-for final value

zµ := yµ(1). Thus this geodesic equation geometrically maps the tangent vector δẑµ (initial

condition) to the coordinate difference zµ − ẑµ. Since the old worldline zµ is understood

to be the solution to the geodesic equation at λ = 1 with given initial conditions, this is

equivalently true for eq. (8.21) to be a series solution of the geodesic equation expanded

around λ = 0 and evaluated at λ = 1. Therewith we can write the nth-order variation of

zµ as the nth total derivative of the geodesic with respect to λ evaluated at λ = 0

δnẑµ =
dnyµ

dλn

⏐⏐⏐⏐
λ=0

. (8.23)

For n = 2, this reads explicitly

δ2ẑµ = −Γµ
νρδẑ

νδẑρ. (8.24)

or

∆δẑµ = 0, (8.25)

which means that the initial tangent vector δẑµ is parallel transported along itself. This

is of course just a restatement of the geodesic equation. It is straightforward to see that

the higher order variations follow from 0 = δn−1∆δzµ = ∆nδzµ. Similarly, the higher

variations of the other worldline quantities add up to a finite parallel transport, which will

be calculated below.

The covariant differential and covariant variation are given by the equations (4.6) and

(4.8). Therewith the shift is performed in a manifestly covariant manner

Ŝ =
∑
n

δnS

n!
=
∑
n

∆nS

n!

where we interchanged the ordinary variation δ and the covariant one ∆, since the action

S is a scalar.

The action is given in (8.9) and contains the Lagrangian L and the Dirac Hamiltonian

HD. As for linear variations we can interchange the covariant variation with the integral,

since the boundaries are independent of the variables. Indeed, we can restrict our analysis

to the Lagrangian, sinceHD merely consists of the gauge constraints which are independent

of a worldline shift (by construction). Thus, we perform a shift from the old worldline zµ
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to the new worldline ẑµ and obtain a new Lagrangian which we denote by L̂. However,

we start at the new worldline and take the variation around ẑµ where we have to consider

that δẑµ has the opposite sign of δzµ : Then the Lagrangian is expressed in terms of the

new coordinates with ûµ = ˙̂zµ as the tangent to the new worldline

L̂ =pµû
µ +

1

2
SµνΩ

µν − pµS
µν

pρpρ
Dpν
dσ

+∆(pµû
µ) + ∆

(
1

2
SµνΩ

µν

)
−∆

(
pµS

µν

pρpρ
Dpν
dσ

)
+

1

2
∆2 (pµû

µ) + ... . (8.26)

Choosing the shift δẑµ appropriately we can transform the coordinates to canonical ones.

8.4 Hamiltonian to linear order in spin

Starting with the computation of the Hamiltonian at linear order in spin, we show that

the action approach yields the same results as in section 5.2 or [53]. First, we compute the

Lagrangian shifted to the new worldline given in (8.26)

L̂ =pµû
µ +

1

2
SµνΩ

µν − pµS
µν

pρpρ
Dpν
dσ

+∆(pµû
µ) +O

(
S2
)
, (8.27)

where all orders higher than linear in spin are neglected. Using the commutator relation

between the covariant differential and the variation in (4.9) as well as the shift of the

four-velocity (4.14) results in

∆(pµû
µ) = pµ

Dδẑµ

dσ
= −Dpµ

dσ
δẑµ +

d(pµδẑ
µ)

dσ
, (8.28)

where the last term amounts to a divergence which vanishes when the integral is computed

(by definition of the variational approach). However, we keep track of this term in the next

calculations. Therewith we obtain for the Lagrangian

L̂ = pµû
µ +

1

2
SµνΩ

µν − pµS
µν

pρpρ
Dpν
dσ

− Dpµ
dσ

δẑµ + div +O
(
S2
)
.

In order to get canonical coordinates the time derivative of pµ has to vanish. Notice,

that we can cancel the time derivative of pµ if we choose the worldline shift appropriately.

Hence, by setting

δẑµ =
Sµνpν
pρpρ

, (8.29)

the relation between the old and the new worldline results in
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zµ = ẑµ +
Sµνpν
pρpρ

, (8.30)

resembling the worldline shift known from special relativity, see e.g. [58, 144]. Thus, the

action of a spinning particle at linear order in spin is given by

SPP =

ˆ
dσ

[
pµû

µ +
1

2
SµνΩ

µν −HD

]
. (8.31)

The same form of action can be obtained from special relativity as it was worked out

in [144] by minimal coupling, which is allowed only up to linear order in the particle’s

spin. Fortunately, higher orders can be worked out in a straightforward manner using

the approach from the preceding section. Notice that the momenta pµ are not the true

conjugate momenta to the position variable ẑµ since Ω
µν

depends on ûµ, so that these

variables do not have a canonical structure.

At the same time, it is worth to mention here, that this action does not yet provide us

with the correct Hamiltonian, though, but only with the unconstrained Dirac Hamiltonian

HD. So far we have ignored the (gauge) constraints which reduce the degrees of freedom or

rather respect the free degrees of freedom and fix the dependent ones. Thus the strategy

to derive the reduced or constrained Hamiltonian is to fix the gauges for the worldline

parameter and the spin, solve the constraints (together with the gauge conditions) for the

dependent variables, and insert the solutions into the action. This leaves us with an action

containing only the independent or reduced variables. It also implies that HD = 0 after

solving the constraints. However, a new Hamiltonian will arise from the kinematic terms

in the action, as we have seen in section 8.1.

8.4.1 Solving the constraints

We start with the worldline gauge which we choose to be σ ≈ t̂, or û0 ≈ 1, so that

pµû
µ = pi ˙̂z

i + pt . (8.32)

The solution to the mass shell constraint (8.7) reads

pt =
1

N

√
M2 + γijpipj , (8.33)

pt = −N
√
M2 + γijpipj +N ipi. (8.34)

with N as the lapse function, N i the shift vector and γij the spatial metric given in (5.17).

For the Lorentz matrix, we use the gauge Λ0
a ≈ δa0 , or ΛA

0 ≈ δ0A, corresponding to a

reference worldline fixed by the NW SSC so that we arrive at
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1

2
SµνΩ

µν =
1

2
SabΛA

aΛ̇Ab +
1

2
Sabωµ

abûµ

=
1

2
S(i)(j)Λ

K(i)Λ̇K(j) +
1

2
Sabωi

ab ˙̂zi +
1

2
Sabωt

ab , (8.35)

for the spin dependent term in the action. Since we have fixed the reference frame by the

NW SSC which reads

Sab(p
b +Mδb(t)) ≈ 0 , (8.36)

we solve for the mass dipole S(t)(i)

S(t)(i) =
S(i)(j)e

(j)µpµ

e(t)νpν +M
. (8.37)

Moreover, we notice from (8.36) that

Sabpb = Sa(t)M . (8.38)

Therewith, the second term in (8.35) can be rewritten as

1

2
Sabωµ

ab =
1

2
S(i)(j)ωµ

(i)(j) + S(t)(i)ωµ
(t)(i)

=
1

2
S(i)(j)ωµ

(i)(j) +
ωµ

(t)(i)S(i)(j)e
(j)µpµ

e(t)νpν +M
. (8.39)

In addition, the NW SSC implies a further gauge choice, namely, the orientation of the

background tetrad that has to be fixed. It seems natural to choose the timelike tetrad

vector to point into the coordinate time direction with its length equal to the elapsed time

N when moving along the particle’s trajectory. Thus, the time gauge (TG) for the tetrad

e(t)µ = Nδtµ , (8.40)

is very useful and implies also ea
t = δta/N . For instance, it simplifies S(t)(i),

S(t)(i) =
S(i)(j)e

(j)kpk

Npt +M
(in TG). (8.41)

yielding

1

2
Sabωµ

ab =
1

2
S(i)(j)ωµ

(i)(j) +
ωµ

(t)(i)S(i)(j)e
(j)kpk

Npt +M
(in TG). (8.42)

The SSC reads

Sµν(pν −MNδtν) ≈ 0 (in TG). (8.43)
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Leaving the time gauge again, the term appearing in the Lagrangian can finally be written

as

1

2
SµνΩ

µν =
1

2
S(i)(j)Λ

K(i)Λ̇K(j) +

(
1

2
S(j)(k)ωi

(j)(k) +
ωi

(t)(j)S(j)(k)e
(k)µpµ

e(t)νpν +M

)
˙̂zi+

+
1

2
S(j)(k)ωt

(j)(k) +
ωt

(t)(j)S(j)(k)e
(k)µpµ

e(t)νpν +M

and can now be implemented into the action.

8.4.2 Hamiltonian and Poisson brackets

After the evaluation of the constraints we plug them into the action. Since we now have

solved the constraints, the Dirac Hamiltonian HD vanishes. However, a new Hamiltonian

emerges as we will see in the following. We now separate the action into a part containing

first-order ordinary time derivatives, which encodes the Poisson/Dirac brackets, and a

part containing no time derivatives, which is identified as the Hamiltonian. Hence, after

implementing the solutions to the constraints into the action given in (8.31), it holds

SPP =

ˆ
dt̂

[
(pi +Ai) ˙̂z

i +
1

2
S(i)(j)Λ

K(i)Λ̇K(j) −H

]
, (8.44)

with the Hamiltonian

H = −pt −
1

2
Sabωt

ab (8.45)

= −pt −
1

2
S(i)(j)ωt

(i)(j) −
ω0

(t)(i)S(i)(j)e
(j)µpµ

e(t)νpν +M
,

and the abbreviation

Ak =
1

2
Sabωk

ab (8.46)

=
1

2
S(i)(j)ωk

(i)(j) +
ωk

(t)(i)S(i)(j)e
(j)µpµ

e(t)νpν +M
.

Here we still need to insert (8.33) and (8.34) in order to have the fully explicit expression,

however, we keep pt and pt as abbreviations in the following. We can absorb the factor

(pi +Ai) of the velocities ˙̂zi by defining a new momentum

p̂i = pi +Ai . (8.47)
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Then the Poisson brackets of the variables ẑi, p̂i, Λ
K(i), and S(i)(j) are standard canonical.

In the time gauge we have

H = −p0 −
1

2
S(i)(j)ωt

(i)(j) −
ωt

(t)(i)S(i)(j)e
(j)kpk

Npt +M
(in TG). , (8.48)

Ak =
1

2
S(i)(j)ωk

(i)(j) +
ωk

(t)(i)S(i)(j)e
(j)lpl

Npt +M
(in TG). (8.49)

These expressions agree with [53] and therefore also the explicit expressions for the Hamilto-

nians agree. In order to see this, first notice that Eλµν used in [53] is connected to our

notation by

ωλ
ab = 2eaµebνEλµν . (8.50)

Then eq. (5.8) agrees with (8.45) and (5.6) agrees with (8.47) and (8.46). However,

the important point of our approach is that the Poisson/Dirac brackets follow from an

“inspection” of the action. Variation of the action implies variation of the Lagrangian

L̂ = p̂i ˙̂z
i +

1

2
S(i)(j)Λ

K(i)Λ̇K(j) −H

which gives the well-known canonical structure for the phase space variables
(
ẑi, p̂i, S(i)(j)

)
.

8.5 Hamiltonian at quadratic order in spin

In a numerical study in chapter 6 we found that the Hamiltonian valid at linear order in spin

yields comparable results to the Lagrangian formalism, i.e. the MP equations, if the spin

value is small - between 10−4−10−6MM. For lower values, the influence of the spin on the

motion of the particle is negligible and the motion approaches the geodesic limit. However,

spin values within the mentioned range of 10−4 − 10−6MM are indeed of astrophysical

relevance match the expectations for realistic spin values in astrophysical systems. Then,

a Hamiltonian formalism is of great interest, since it offers approaches to analyse the

dynamics of spinning extended bodies in a different manner to the Lagrangian formalism. In

particular chaos and perturbation theory make use of a Hamiltonian formalism. Moreover,

in our study the numerical evaluation of the Hamiltonian system needed less computational

costs than the MP equations. Within the Hamiltonian formulation we only have to solve

first-order differential equations which is another advantage over the Lagrangian one. Thus,

we are interested in higher contributions from the spin within the pole-dipole approximation

and use the action approach to compute the Hamiltonian at quadratic order in spin. In

many fields of research canonical variables provide a great advantage compared to the non-

canonical ones. Therefore, we perform a coordinate transformation in the action yielding
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these canonical variables.

8.5.1 Shift to quadratic order

Higher orders in spin include further effects, that can be attributed to the dynamical mass.

The contributions from field interactions or nonminimal couplings to curvature are included

in the dynamical mass and can be expressed as M = m +O
(
S2
)
, which we have to take

into account when approximating the equations at quadratic order in spin.

Again, we start with the computation of the Lagrangian shifted to the new worldline

L̂ =pµû
µ +

1

2
SµνΩ

µν − pµS
µν

pρpρ
Dpν
dσ

+∆(pµû
µ) + ∆

(
1

2
SµνΩ

µν

)
−

−∆

(
pµS

µν

pρpρ
Dpν
dσ

)
+

1

2
∆2 (pµû

µ) +O
(
S3
)

(8.51)

where all orders higher than quadratic in spin are neglected. Then, the variational terms

are computed using the commutator relation between the covariant differential and the

covariant variation in eq. (4.9) as well as the shift of the four-velocity from eq. (4.14) and

of the angular velocity in eq. (??) which yields

∆ (pµû
µ) = −Dpµ

dσ
δẑµ + div

∆

(
1

2
SµνΩ

µν

)
=

1

2
SµνR

µν
βα (δẑ

α)
(
ûβ
)

∆

(
pµS

µν

pρpρ
Dpν
dσ

)
= −Rγ

νβαû
βpγ

Sαµpµ
pρpρ

δẑν

∆2 (pµû
µ) = −Rγ

µβαû
βpγδẑ

αδẑµ

Therewith we obtain for the Lagrangian

L̂ = pµû
µ +

1

2
SµνΩ

µν − pµS
µν

pρpρ
Dpν
dσ

− Dpµ
dσ

δẑµ +
1

2
SµνR

µν
βα (δẑ

α)
(
ûβ
)
+

+Rγ
νβαû

βpγ
Sαµpµ
pρpρ

δẑν − 1

2
Rγ

νβαû
βpγδẑ

αδẑν + div +O
(
S3
)

In order to obtain a canonical structure between the spatial variables of ẑµ we have to

find the corresponding true conjugate momenta requiring the time derivative of pµ to

vanish. Notice, that we can cancel the time derivative of pµ if we choose the worldline shift

appropriately. Hence, by setting
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δẑµ =
Sµνpν
pρpρ

. (8.52)

the relation between the old and the new worldline results in

zµ = ẑµ +
Sµνpν
pρpρ

, (8.53)

resembling the worldline shift in special relativity, again. The approach is very similar

to the one for linear order in spin. If one extends the formulation to higher order than

quadratic in spin the procedure has to be changed. Further difficulties are encountered,

since covariant derivatives of the worldline shift appear which can be eliminated by adapting

the covariant shift of the position variable.

In the quadratic case the Lagrangian is therefore rewritten as

L̂ = pµû
µ +

1

2
SµνΩ

µν +
1

2
SµνR

µν
βα (δẑ

α)
(
ûβ
)
+

1

2
Rγ

νβαû
βpγδẑ

αδẑν

+div +O
(
S3
)

.

Hence, the action of a spinning particle at quadratic order in spin is given by

SPP =

ˆ
dσ

[
p̂µû

µ +
1

2
SµνΩ

µν −HD

]
(8.54)

where we already combined the terms involving the four-velocity ûµ to a new momentum

variable p̂µ

p̂µ := pµ +
1

2
Sβν R

βν
µα δẑ

α +
1

2
Rγ

νµα pγ δẑ
αδẑν . (8.55)

However, as before, this cannot be the true conjugate momentum to the position variable,

since Ωµν depends on ûµ.

Thus, this action does not yet provide us with the correct Hamiltonian, though, but

only with the unconstrained Hamiltonian HD. So the next step is to solve the constraints

and the gauge conditions in order to establish the true Hamiltonian.

8.5.2 Solving the constraints

Rewrite the Lagrangian given in (8.54)

L̂ = p̂µû
µ +

1

2
SµνΩ

µν ,

in the local Lorentz basis, use (8.35) and neglect terms that are of cubic or higher order
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L̂ = p̃µû
µ +

1

2
ΛA

aΛ̇AbSab +O
(
S3
)
,

with the new defined momentum

p̃µ := pµ +
1

2
ωµ

bc Sbc −
1

2
SbcR

bc
µd δẑ

d − 1

2
Rb

cµd pb δẑ
cδẑd . (8.56)

We choose the worldline gauge in such a way that the coordinate time equals proper time

σ ≈ t or u0 ≈ 1, so that we arrive at

p̃µû
µ = p̃0 + p̃iû

i ,

where latin indices in parenthesis are associated with the local Lorentz basis. Solving the

corresponding mass shell constraint yields

p̃0 = −N
√

m̃2 + γij p̃ip̃j +N ip̃i , (8.57)

where m̃2 = −p̃ap̃
a is the mass with respect to p̃a. Thus, using (8.56) the mass m̃2 is given

by

m̃2 = −p̃ap̃
a = M2 − Sbcωa

bc

(
p̃a − 1

2
ωabcSbc

)
+

1

4
ωa

bcωadeSbcSde

−Rbcad p̃
bp̃aδẑdδẑc −Rbc

adSbc p̃
aδẑd +O

(
S3
)

, (8.58)

at quadratic order in spin where p̃a = ea
µp̃µ. Simplifying the terms involving the Riemann

curvature tensor it turns out to be convenient to express m̃2 in terms of the electric and

magnetic parts of the Weyl tensor, which is regarded to be equivalent to the Riemann

tensor for vacuum spacetimes. Therefore, we first reproduce the split of the Riemann

tensor into electric and magnetic components.

8.5.2.1 Weyl/Riemann tensor components

Since we are only interested in vacuum spacetimes, such as Schwarzschild or Kerr space-

times, in classical general relativity with four spacetime dimensions, the Riemann tensor

can be split into an electric E(v)µν and a magnetic part B(v)µν with respect to a timelike

vector vµ as

Rαβµν = (GαβρδGµνγφ − ηαβρδηµνγφ)E
δφ v

ρvγ

−v2
−

−(ηαβρδGµνγφ +Gαβρδηµνγφ)B
δφ v

ρvγ

−v2
, (8.59)

where Gαµβν = gαβgµν − gανgβν . It holds
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E(v)µν = Rµανβ
vαvβ

−v2
, B(v)µν =

1

2
ηµαρσRνβ

ρσ v
αvβ

−v2
, (8.60)

where ηµναβ =
√
−gϵµναβ is the volume form. These tensors have the properties

Eµν = Eνµ, Eµνg
µν = 0, Eµνv

ν = 0, (8.61)

Bµν = Bνµ, Bµνg
µν = 0, Bµνv

ν = 0, (8.62)

which make Eµν and Bµν much easier to handle compared to Rµναβ .

In order to reformulate the contributions from the Riemann curvature tensor in (8.58)

in terms of Eµν and Bµν we find that a useful relation is

Rαβµν p
αδẑβS̃µν = 2MB(p)αβS̃

αδẑβ, (8.63)

where we introduced the definition of the spin four-vector S̃α

S̃α = −1

2
ηαβµν

pβ

M
S̃µν . (8.64)

with

S̃ab = Pa
cPb

dScd , (8.65)

and the projector

Pa
c = δca +

pap
c

M2
, (8.66)

which projects the quantities onto the particle’s rest frame, as we will see below. Keep

in mind that S̃ab is just used in intermediate expressions here, since it fulfills the simple

condition

S̃abp
b = 0. (8.67)

Notice the resemblance to the T SSC (1.29) and recall that the T SSC defines the reference

worldline to be the centre of mass of the particle within the rest frame of the spinning

body. Thus, the projector Pa
c yields indeed the spin components as the projections onto

the rest frame of the particle, denoted by a ∼.

Therewith the terms involving Rµναβ can be expressed in terms of the electric Eab and

the magnetic part Bab of the Riemann tensor as

Rbcad p̃
bp̃aδẑdδẑc = M2E (p̃)ab δẑ

aδẑb ,

Radbc p̃
aδẑdSbc = 2MB (p̃)ab S̃

aδẑb − 2M2E (p̃)ab δẑ
aδẑb ,

and amount to
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m̃2 = M2 − Sbcωa
bcp̃a +

1

4
ωa

bcωadeSbcSde − 2MB (p̃)ab S̃
aδẑb +

+M2E (p̃)ab δẑ
aδẑb +O

(
S3
)

. (8.68)

As part of solving the constraints we fix the gauge of the tetrad, i.e. we choose an ori-

entation for the basis vectors of the local frame, since such a choice often simplifies the

handling of the equations involving the spin.

8.5.2.2 The Carter frame and its rotation coefficients

Instead of using the time gauge, as we did in the linear case, the calculations involving

curvature terms can be greatly simplified if we choose to go to the Carter frame

(eaµ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
∆

Σ
0 0 −

√
∆

Σ
a sin2 θ

0

√
Σ

∆
0 0

0 0
√
Σ 0

−a sin θ√
Σ

0 0
sin θ√

Σ
(a2 + r2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8.69)

(ea
µ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2 + a2√
∆Σ

0 0
a√
∆Σ

0

√
∆

Σ
0 0

0 0
1√
Σ

0

a sin θ√
Σ

0 0
1√

Σsin θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8.70)

with Σ, ∆, and ϖ2 given in (1.10). This tetrad corresponds to a stationary observer

rotating with angular velocity a
r2+a2

with respect to the rest frame at infinity , see e.g. [170,

169]. It should be mentioned here that the local tetrad is adapted to a Kerr background

spacetime so that we restrict our following analysis to the motion of a spinning particle in

the gravitational field of a Kerr black hole of mass M and spin a. All expressions in the

local frame will thus be associated with the tetrad based on Kerr spacetime.

Consequently, with the abbreviations ω̃a(i) =
1
2ea

µωµ
(k)(l)ϵ(k)(l)(i) and ω̂a(i) = ea

µωµ(0)(i),
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the components of the Ricci rotation coefficients are given by

(
ω̃a(i)

)
=

√
∆

Σ3/2

⎛⎜⎜⎜⎜⎝
a1 a2 0

0 0 −a1a2/r

0 0 r

ω3r −r 0

⎞⎟⎟⎟⎟⎠ , (8.71)

(
ω̂a(i)

)
=

√
∆

Σ3/2

⎛⎜⎜⎜⎜⎝
ω0r − a22/r a1a2/r 0

0 0 a2

0 0 a1

a2 −a1 0

⎞⎟⎟⎟⎟⎠ , (8.72)

where we defined

ω0 =
M

r∆

(
r2 − a2 cos2 θ

)
(8.73)

ω3 =
r2 + a2

r
√
∆

cot θ (8.74)

and a vector associated to the spin of a Kerr black hole

a⃗ = a

⎛⎜⎝ cos θ

− sin θ r/
√
∆

0

⎞⎟⎠ . (8.75)

Moreover, the spin interaction terms can be clearly structured with the flat vectors

⃗̃p =

⎛⎜⎝ p̃(1)

p̃(2)

p̃(3)

⎞⎟⎠ , S⃗ =

⎛⎜⎝ S(1)

S(2)

S(3)

⎞⎟⎠ , (8.76)

with S(i) =
1
2ϵijkS(j)(k) which subsequently lead to an intuitive interpretation of the results.

We combine the solution of the NW SSC as well as the radial coordinate to a vector

S⃗0 =
(
S(t)(i)

)
=

p⃗× S⃗

p(0) +M
, r⃗ =

⎛⎜⎝ r

0

0

⎞⎟⎠ = rn⃗ (8.77)

and define

ω⃗ = (0, 0, ω3) ,

simplifying the structure of the spin interaction so that it can be written as a vector
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equation. Therefore, the spin interaction reads

1

2
p̃ce

cµωµabS
ab =

√
∆

Σ3/2
[p̃(0)(h0S + h0aS + h0a2S) + ⃗̃p · (⃗hS + h⃗aS + h⃗a2S)] (8.78)

where we split the spin coupling terms as

h0S = −ω0 r⃗ · S⃗0, (8.79)

h0aS = a⃗ · S⃗, (8.80)

h0a2S = −1

r
n⃗ · [⃗a× (⃗a× S⃗0)], (8.81)

h⃗S = −r⃗ × S⃗ + r⃗ · S⃗ ω⃗, (8.82)

h⃗aS = a⃗× S⃗0 + 2a⃗ · (n⃗× S⃗0)n⃗, (8.83)

h⃗a2S =
1

r
n⃗ · a⃗ a⃗ · (n⃗× S⃗)n⃗. (8.84)

Then the spin-spin coupling can be expressed as

1

4
ωµabS

abωµ
cdS

cd =
∆

Σ3
[−(h0S + h0aS + h0a2S)

2 + (⃗hS + h⃗aS + h⃗a2S)
2]. (8.85)

Now we expand the solution of the NW SSC in terms of the canonical momenta up to

quadratic order in the particle’s spin in order to be consistent within the computation and

obtain

S⃗0 =

[
1−

√
∆

Σ3/2(p̃(0) +m)
(h0S + h0aS + h0a2S)

]
⃗̃p× S⃗

p̃(0) +m
−

− 1

p̃(0) +m

√
∆

Σ3/2
(⃗hS + h⃗aS + h⃗a2S)× S⃗ +O(S3) (8.86)

where m = const = M+O(S2). The remaining terms in (8.68) involve curvature interac-

tions which is why we first compute the curvature combinations in the Carter frame.

8.5.2.3 Curvature combinations in the Carter frame

First, we compute the electric and magnetic Weyl tensor with respect to the time vector

of our frame e(0)
µ. The result in vector notation yields

E(e)(i)(j) =
E(e)√

6
(δij − 3δ1i δ

1
j ), (8.87)

B(e)(i)(j) =
B(e)√

6
(−δij + 3δ1i δ

1
j ) (8.88)
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with

E(e) :=
√
E(e)µνE(e)µν =

√
6M

Σ3
r(r2 − 3a2 cos2 θ)

B(e) :=
√

B(e)µνB(e)µν =

√
6M

Σ3
a cos θ(3r2 − a2 cos2 θ) ,

where the time components vanish.

Based on this, we can obtain E(p)ab and B(p)ab by first computing Rαβµν using

eq. (8.59) and then forming E(p)(i)(j) ≡ Racbd p
cpd/M2 etc, with the result

E(p)ab =
E(e)√
6M2

[M2ηab + papb − 12pcδ1[cδ
0
a]p

dδ1[dδ
0
b] + 3ϵ01iap(i)ϵ01jbp(j)]−

−
√
6B(e)

M2
[ϵ01iap(i)p

cδ1[cδ
0
b] + (a ↔ b)] , (8.89)

B(p)ab = − B(e)√
6M2

[M2ηab + papb − 12pcδ1[cδ
0
a]p

dδ1[dδ
0
b] + 3ϵ01iap(i)ϵ01jbp(j)]−

−
√
6E(e)

M2
[ϵ01iap(i)p

cδ1[cδ
0
b] + (a ↔ b)] , (8.90)

where we used the Levi-Civita tensor density ηµναβ =
√
−gϵµναβ and the convention for

the Levi-Civita Symbol ϵ0123 = 1. Notice that ηabcd = ϵabcd and ϵ0123 = −1.

Moreover, we express the full frame-components of the Riemann tensor as

R(0)(i)(0)(j) = −E(e)√
6
3n<ij>, (8.91)

R(0)(i)(j)(k) =
B(e)√

6
3n<il>ϵjkl, (8.92)

R(i)(j)(k)(l) =
E(e)√

6
3n<pq>ϵijpϵklq, (8.93)

where 3n<ij> = 3ninj − δij = 3δ1i δ
1
j − δij . The components of E(p)ab and B (p)ab can also

be written in this framework and yield

E(p)(0)(0) = −E(e)√
6
3n<ij>p

(i)p(j), (8.94)

E(p)(0)(i) =
E(e)√

6
3n<ij>p

(j)p(0) +
B(e)√

6
ϵijk3n<kl>p

(j)p(l), (8.95)

E(p)(i)(j) =
E(e)√

6

[
− 3n<ij>p

2
(0) + ϵikpϵjlq3n<pq>p

(k)p(l)
]

− B(e)√
6

[
3n<il>ϵjklp

(k)p(0) + (i ↔ j)
]
, (8.96)
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where the components of B(p)ab are likewise with E(e) → −B(e) and B(e) → E(e).

Therewith we can compute the remaining terms in m̃2

E(p)abδẑ
aδẑb = E(p)00δẑ

0δẑ0 + 2E(p)0iδẑ
0δẑi + E(p)ijδẑ

iδẑj , (8.97)

B(p)abS̃
aδẑb = B(p)00S̃

0δẑ0 +B(p)0iS̃
0δẑi +B(p)i0S̃

iδẑ0 +B(p)ijS̃
iδẑj , (8.98)

and express the variations in terms of the canonical momenta as

δẑ0 =
S⃗0

⃗̃p

−m2
+O

(
S2
)
= O

(
S2
)
, (8.99)

δ⃗ẑ = −
⃗̃p× S⃗ − S⃗0 p̃

0

m2
+O

(
S2
)

. (8.100)

Since the expressions in eq. (8.97) and (8.98) appear always in products with another spin

term, we neglect here already the terms of second order in spin. Moreover, the projected

spin vector S̃a is written as

⃗̃S = S⃗ +
p⃗(p⃗ · S⃗)

M(p(0) +M)
+O

(
S2
)
, (8.101)

S̃0 =
p⃗ · S⃗
M

=
⃗̃pS⃗

M
+O

(
S2
)
, (8.102)

and

− S̃0p⃗+ p(0) ⃗̃S = p(0)S⃗ − p⃗(p⃗ · S⃗)
p(0) +M

, (8.103)

with ⃗̃ST =
(
S̃(1), S̃(2), S̃(3)

)
, paS̃

a = 0 and S̃aS̃
a = S⃗2 and the solution to the NW SSC

given in (8.102). The electric and magnetic part of the curvature tensor can also be

calculated with respect to the canonical momentum. However, since they also appear only

in combinations with terms quadratic in spin, we can simply replace the momenta pa by

the kinematical momenta p̃a. Therewith we write the curvature interactions as

E(p)abδẑ
aδẑb =

E(e)√
6M2

[
M2δ⃗ẑ2 − 3p2(0)(n⃗ · δ⃗ẑ)2 + 3

(
n⃗ · (p⃗× δ⃗ẑ)

)2]
+

+

√
6B(e)

M2
p(0)(n⃗ · δ⃗ẑ)

(
n⃗ · (p⃗× δ⃗ẑ)

)
,
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B(p)abS̃
aδẑb =

√
3B(e)√
2M2

(n⃗ · δ⃗ẑ)

[
(2p2(0) −M2)(n⃗ · S⃗)− 2p(0) +M

p(0) +M
(n⃗ · p⃗)(p⃗ · S⃗)

]

+

√
3B(e)√
2M2

[(
n⃗ · (p⃗× δ⃗ẑ)

)(
p(0)(n⃗ · S⃗)− (n⃗ · p⃗)(p⃗ · S⃗)

p(0) +M

)
+

+p(0)(n⃗ · δ⃗ẑ)
(
n⃗ · (p⃗× S⃗)

)]
,

where we have used p⃗ · δ⃗ẑ = 0 = S⃗ · δ⃗ẑ. Hence, when we plug in all the constraints, i.e.

the worldline gauge (8.57) and the NW SSC (8.102), the mass term in (8.58) is completely

expressed as a function of the canonical momenta ⃗̃p and the spatial spin vector S⃗ in a local

basis adapted to Kerr spacetime.

8.5.3 Hamiltonian and Poisson brackets

After having solved the constraints, the Hamiltonian is obtained via the action

Ŝ =

ˆ
dt
[
L̂−HD

]
where we used the worldline gauge σ = t. Inserting all constraints (HD = 0) leads to

Ŝ =

ˆ
dt

(
p̃aû

a +
1

2
ΛA

aΛ̇AbSab +O
(
S3
))

=

ˆ
dt

(
p̃(i)û

(i) +
1

2
S(i)(j)Λ

K(i)Λ̇K(j) −H +O
(
S3
))

(8.104)

with the Hamiltonian H = −p̃(t) given by

H = −p̃(t) = N
√

m̃2 + γ(i)(j)p̃(i)p̃(j) −N (i)p̃(i) .

Notice the dependence of m̃2 on p̃(t) implying that the solution for p̃(t) has to be used

iteratively until the terms containing p̃(t) become of higher order than second order in the

particle’s spin.

The Poisson bracket relation can easily be deduced from the action (8.104) yielding a

canonical structure for the phase space variables
(
ẑi, p̃i, S

(i)(j)
)

{
ẑi, p̃j

}
= δij +O

(
S3
)

{
S(i)(j), S(k)(l)

}
= S(l)(i)δ

k
j − S(l)(j)δ

k
i + S(k)(j)δ

k
i − S(k)(i)δ

l
j +O

(
S3
)
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and all other bracket relations between the variables vanish.

8.6 Hamiltonian to all orders in spin

Previously, we aimed at a canonical formulation of the dynamics in the action. When

constructing these canonical variables we introduce a shift of the reference worldline which

eliminates the contribution from the Fermi-Walker transport of the momentum vector

induced by the spin of the particle. In principle, we can extend the canonical formalism

up to arbitrary order in the spin by taking into account the contributions from the higher

orders to the dynamical mass M. However, as we have seen the canonical momentum

becomes more complicated if we consider higher orders in spin. In addition to that, this

expansion will always be an approximation within an approximation, even in the pole-

dipole formalism. One of the approximation properties can be avoided by giving up on the

canonical formulation. Therewith, a Hamiltonian is obtained that is exact in the particle’s

spin within the pole-dipole approximation. The computation is similar to the previous

cases, i.e. the ones where we truncated the series at linear and quadratic orders in the

particle’s spin. Instead of eliminating the derivative of the momentum it is now kept in

the action. In order to ensure that Poisson brackets can be associated to the variables,

the action may contain at most one time derivative in every term. Then, the equations of

motion can be calculated as usual by the Poisson bracket relations between the searched

for variables and the Hamiltonian.

The action is given in (8.9) and is repeated once more for the reader’s convenience

S =

ˆ
dσ

(
pµu

µ +
1

2
SµνΩ

µν − pµS
µν

pρpρ
Dpν
dσ

−HD

)
.

Notice, that the additional term considering the time derivative of the momentum only

contains the connection, not the curvature, so the calculation should not be much more

involved compared to the previous cases. Indeed, using the relation in (8.11) and the

directional derivative the third term in the action is rewritten in the local frame and yields

1

2
SµνΩ

µν − pµS
µν

p2
Dpν
dσ

=
1

2
SabΛA

aΛ̇Ab +
1

M
Sabpaṗb +

1

2
Sabωµ

abuµ+ (8.105)

+
1

M
Sabp

apcωµ
cbuµ (8.106)

In the following we will compute this expression subject to the constraints, the worldline

as well as the spin gauge constraints.
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8.6.1 Solving the constraints

First, we start with the spin gauge constraint which we choose to be the NW SSC. Using

the NW SSC through the relations (8.18) and (8.38), we arrive at

1

2
SµνΩ

µν − pµS
µν

p2
Dpν
dσ

=
1

2
S(i)(j)Λ

K(i)Λ̇K(j) + S(t)(i)d(e(i)
µpµ)

dt
+

1

2
S̃abωµ

abuµ (8.107)

where we introduced the abbreviation S̃ab in eq. (8.65). The solution of the corresponding

T SSC-like condition in eq. (8.67) is given by

S̃(t)(i) =
S̃(i)(j)e

(j)µpµ

e(t)νpν
, (8.108)

and corresponds to the mass dipole with respect to the particle’s rest frame. However, the

spin variable in the action is not the projected spin S̃abwhich satisfies the T SSC. Therefore,

we have to express S̃ab in terms of the original spin variables which are subject to the NW

SSC. Considering the spin supplementary condition in (8.36) and its solution (8.37) we

arrive at

S̃(i)(j) = S(i)(j) − 2
e[(i)

µS(j)](k)e
(k)νpµpν

M
(
e(t)µpµ +M

) , (8.109)

Contraction with pj

p0
gives the simple relation

S̃(i)(j)e
(j)µpµ

e(t)νpν
= S(i)(j)

e(j)µpµ
M

,

so that we obtain for the projected mass dipole a function of the spatial spin components

in the local basis

S̃(t)(i) =
S(i)(j)e

(j)νpν

M
. (8.110)

In the time gauge, given in eq. 8.40, the subsequent calculation simplifies considerably, for

instance

S̃(t)(i) =
S(i)(j)e

(j)kpk

M
(in TG) (8.111)

by removing the time-components of the four-momentum vector and
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S̃(i)(j) = S(i)(j) − 2
e[(i)

lS(j)](k)e
(k)mplpm

M (Npt +M)
(in TG). (8.112)

Therewith we express the term containing a time derivative appearing in (8.107) as

S(t)(i)d(e(i)
µpµ)

dt
= −

S(i)(l)e
(l)mpm

M (Npt +M)

(
e(i)j ṗj + e(i)j ,kpj ż

k + e(i)j ,tpj ż
t
)

(in TG),

where we have used the solution to the NW SSC S(t)(i) given in (8.37) as well as the time

gauge, eq. 8.40. Lastly, considering (8.108) we have

1

2
S̃abωµ

abuµ =
1

2
S̃(i)(j)

((
ωt

(i)(j) + 2
ωt

(t)(i)e(j)kpk
Npt

)
ż0 +

+

(
ωk

(i)(j) + 2
ωk

(t)(i)e(j)lpl
Npt

)
żk
)

(in TG),

where the projected spin can be eliminated by the relation in (8.109) or (8.112) yielding an

expression dependent on the dynamical variables in the local frame. As before, we choose

the worldline gauge such that proper time equals the coordinate time, i.e. σ = t. Then,

the time component of the four-velocity becomes żt = 1. Again, zt has been degraded from

a spacetime variable to a time parameter characterising the motion providing the required

spacetime split for a Hamiltonian formalism, where space and time are not treated at an

equal footing.

8.6.2 The Hamiltonian and the equations of motion

Inserting the constraints provided in the last section, i.e. the NW SSC and the worldline

gauge, into the Lagrangian and combining the time derivatives of the variables we obtain

for the Lagrangian

L =
1

2
S(i)(j)Λ

K(i)Λ̇K(j) +Bj ṗj + (pj +Aj)ż
j −H , (8.113)

with the abbreviations

Ak =
1

2
S(i)(j)ωk

(i)(j) +
S(i)(j)p

(j)

M(p(t) +M)
e(i)lΓm

lkpm +
S(i)(j)p

(j)ωk
(t)(i)

M
,

Bj = −
e(i)jS(i)(k)p

(k)

M
(
p(t) +M

) .
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Since all the gauges have been fixed, the dynamical system is completely determined and

has as many independent variables as degrees of freedom. According to Dirac’s approach

to constrained dynamical systems the Hamiltonian is read off from the Lagrangian as the

remaining terms which do not contain any time derivatives

H = −p0 −
1

2
S(i)(j)ωt

(i)(j) +
S(i)(j)p

(j)

M(p(t) +M)
γklple

(i)m(Nk;m −NKkm)−
S(i)(j)p

(j)ωt
(t)(i)

M
,

which contains all information on the evolution of the dynamics of a spinning particle in

the pole-dipole approximation to all orders in the particle’s spin. The spin connection

coefficients are given by

ωt
(t)(i) = −ωt

(i)(t) = −e(i)k
(
N,k −N jKkj

)
, ωi

(t)(j) = Kkie
(j)k ,

ωt
(i)(j) = e(i)k,0e

(j)
k + e(j)ke(i)l(−NKkl +Nk;l) , ωi

(j)(k) = e(j)m,ie
(k)

m + e(k)le(j)mΓlmi ,

where N is the lapse function, N i the shift vector and Kij corresponds to the extrinsic

curvature. All these quantities have been introduced within the context of the ADM

formalism in section 5.1 and are connected to the spacetime split.

Variation of the action with respect to its variables
(
zi, pi, S(i)(j), Λ

K(i)
)
gives the

equations of motion. In contrast to the previous variation where we have used a manifestly

covariant approach we can restrict ourselves to the ordinary variation δ, here. The worldline

gauge, the solutions to the mass shell constraint and the NW SSC allow us to remove all

the temporal components from the Hamiltonian. Putting the remaining terms into the

local frame we locally have a flat geometry where the covariant variation reduces to the

ordinary variation. When performing the variation of ΛK(i), though, we have to take into

account the (flat) Lorentz matrix condition which is given in spatial components by

ΛK(i)ΛK(j) = δij .

Thus, we use an auxiliary antisymmetric quantity θ(l)(i) and express the corresponding vari-

ation as δΛK(i) = ΛK(l)δθ(l)(i). Hence, the following relations are obtained when Hamilton’s

principle of least action and is applied:

� Variation of ΛK(i)

δL =
1

2

(
−Ṡ(l)(j) − S(i)(j)Ω(l)(i) + S(i)(l)Ω(j)(i)

)
δθ(l)(i)

0 = −1

2
Ṡ(i)(j) + S(k)[(i)Ω(j)](k) ,
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� Variation of Sij

δL =

(
1

2
Ω(i)(j) +

∂Bl

∂S(i)(j)
ṗl +

∂Al

∂S(i)(j)
żl − ∂H

∂S(i)(j)

)
δS(i)(j)

0 =
1

2
Ω(i)(j) +

∂Bl

∂S(i)(j)
ṗl +

∂Al

∂S(i)(j)
żl − ∂H

∂S(i)(j)
,

� Variation of pi

δL =

((
∂Bj

∂pi
− ∂Bi

∂pj

)
ṗj +

(
δji +

∂Aj

∂pi
− ∂Bi

∂zj

)
żj − ∂Bi

∂S(k)(l)
Ṡ(k)(l) −

∂H

∂pi

)
δpi

0 =

(
∂Bj

∂pi
− ∂Bi

∂pj

)
ṗj +

(
δji +

∂Aj

∂pi
− ∂Bi

∂zj

)
żj − ∂Bi

∂S(k)(l)
Ṡ(k)(l) −

∂H

∂pi
,

� Variation of zi

δL = −
((

δji −
∂Bj

∂zi
+

∂Ai

∂zi

)
ṗj −

(
∂Aj

∂zi
− ∂Ai

∂zj

)
żj +

∂Ai

∂S(k)(l)
Ṡ(k)(l) +

∂H

∂zi

)
δzi

0 =

(
δji −

∂Bj

∂zi
+

∂Ai

∂zi

)
ṗj −

(
∂Aj

∂zi
− ∂Ai

∂zj

)
żj +

∂Ai

∂S(k)(l)
Ṡ(k)(l) +

∂H

∂zi
.

The variational principle therewith provides us with a complete set of the equations of

motion

żi = −
(
Az ṗj + Bz ż

j − ∂Bi

∂S(k)(l)
Ṡ(k)(l) −

∂H

∂pi

)
,

ṗi =

(
Apṗj + Bpż

j − ∂Ai

∂S(k)(l)
Ṡ(k)(l) −

∂H

∂zi

)
,

Ṡ(i)(j) = 4S(l)[(j)

(
∂Bk

∂S(i)](l)
ṗk +

∂Ak

∂S(i)](l)
żk − ∂H

∂S(i)](l)

)
,

with

Az =

(
∂Bj

∂pi
− ∂Bi

∂pj

)
, Ap =

(
∂Bj

∂zi
− ∂Ai

∂zj

)
,

and

Bz =

(
∂Aj

∂pi
− ∂Bi

∂zj

)
, Bp =

(
∂Aj

∂zi
− ∂Ai

∂zj

)
,

where we immediately notice that the variables are not of canonical structure so that the

equations of motion do not coincide with Hamilton’s equations.
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8.6.3 Poisson brackets

In order to obtain the time evolution of any phase space quantity generated by the Hamilto-

nian the Poisson bracket relations between the phase space variables are needed. These

brackets can be calculated according to the following procedure.

Consider an action containing at most first order derivatives in time. Thus using some

sophisticated approach we can write the action in the following form

S =

ˆ
dt
[
BI(q

J) q̇I −H(qJ)
]
, (8.114)

where I, J label the dynamical variables qI . The equations of motion read

MIJ q̇
J = ∂IH, MIJ := ∂IBJ − ∂JBI . (8.115)

where ∂I = ∂/∂qI , or

q̇I = M IJ∂JH, M IJ := M−1
IJ (8.116)

This can be written using Poisson brackets

Ẋ = {H,X}+ ∂X

∂t
, (8.117)

if we set

{X,Y } = M−1
JI ∂IX∂JY. (8.118)

We conclude, that the Poisson bracket relations are encoded in the action, which, however,

may exhibit a complicated form if the phase space variables are not of canonical structure.

Consequently, the equations of motion cannot simply be computed by Hamilton’s equa-

tions, as we have seen. Since the symplectic structure of the phase space is retained, it is

in principle possible to find local canonical coordinates according to Darboux’s theorem.

Alternatively, we have derived the equations of motion using Hamilton’s principle of

stationary action. The result is a system of equations for the time derivatives of the

variables, which is not obviously solvable, though. Nevertheless, the equations are exact

in the particle’s spin and take into account that the dynamical mass M is not necessarily

conserved but may be treated as a dynamical variable.

8.7 Discussion

This chapter focused on the Hamiltonian formulation of spinning particles based on an

action approach by Dirac. We recovered the linearised Hamiltonian which was first derived

in a complicated manner by [53] and gained confirmation for our approach. Since the use
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of the spin gauge invariant action simplifies the procedure considerably, we extended the

formulation to higher orders and obtained a canonical Hamiltonian at quadratic order in

the particle’s spin. Indeed, the desire for the inclusion of higher orders in the particle’s spin

is an up-to-date topic within the framework of EOB. As the mapping from the realistic

situation consisting of two spinning equal-mass objects to the effective problem of a spinning

test particle moving in a Kerr background deals with open questions, higher interaction

terms in the test particle limit may help to further develop this theory. Moreover, we are

planning to check the influence of the quadratic spin terms on EOB relevant quantities, such

as the periastron shift or the ISCO frequency, that are needed to calibrate the approach

with respect to numerical relativity.

Another approach is provided by the PN approximation valid at slow velocities in weak

gravitational fields. We are currently working on a PN expansion for the Hamiltonian

function at quadratic order in spin in order to confirm the result further.

In addition we discarded the canonical structure and derived a Hamiltonian that is

valid to all orders in the spin within the pole-dipole approximation and stated its asso-

ciated equations of motion which are different from the usual form. This means, that

although the Hamiltonian is not of canonical form, it provides an exact approach to ana-

lyse the dynamical behaviour in general relativity within the Hamiltonian formalism and

its characteristic methods. In particular, it can be useful for the investigation of chaos,

since a large group of methods is based on a Hamiltonian formulation and the dynamics in

phase space. For instance, the recurrence plots are based on the recurrence theorem which

employs the characteristics of trajectories in phase space and analyses the dynamical prop-

erties subject to chaotic behaviour. The evolution of these trajectories is determined by

the Hamiltonian function living in phase space.

Moreover, a Hamiltonian formalism may provide numerical advantages, as we have seen

in our previous study. The computation is faster than for the Lagrangian equations and

saves costs and time so that a first insight in the dynamics is provided on quite a short

time scale. Future work may also include a numerical comparison, such as the one we did

in the linearised framework, both for the quadratic and the exact Hamiltonian. The range

of validity should increase the higher the order of the spin is and the results for the exact

formulation should be equivalent to the MP equations up to numerical errors.
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Chapter 9

Summary and Outlook

In this thesis we explored the theoretical fundamental description of the dynamics of binary

systems and examined the corresponding dynamical behaviour with regard to implications

and improvements for gravitational wave astronomy.

The first part of this thesis addressed the dynamics of spinning particles in the pole-

dipole approximation as characterised by the Mathisson-Papapetrou equations.

First, we analysed the isofrequency pairing phenomenon in Schwarzschild-de Sitter space-

time for a spinning particle moving in the equatorial plane with a perpendicular spin vector.

Although this configuration is very special it reveals characteristic features attributed to

the cosmological constant and the spin. In contrast to Schwarzschild and Kerr spacetime

we found a second region where isofrequency pairing occurs which is located far away from

the central region in the weak field regime. It would be interesting to check whether New-

tonian or Post-Newtonian theory predict the isofrequency pairing as well.

Moreover, in addition to the homoclinic orbits, which define the separatrices in Schwarz-

schild and Kerr spacetimes, we found a further structure in Schwarzschild-de Sitter space-

time: the heteroclinic orbit. In the frequency picture this heteroclinic orbit is stretched

out to a straight line covering a whole range of azimuthal frequencies. A well established

approach to model extreme-mass-ratio inspirals and the emission of gravitational radiation

is based on the progression through orbits [17, 19], so that at some point the particle has

to cross the boundary from bound to unbound motion before it eventually plunges into

the central object. Indeed, it has been suggested that the zoom-whirl feature close to

homoclinic orbits has a distinct signal on the gravitational wave spectrum [28, 29]. As

the heteroclinic orbit marks an additional boundary in the frequency picture it might be

possible that it also has a distinct imprint visible in the gravitational waveform and differs

somehow from the ones obtained by the homoclinic orbits.

On a more fundamental level, it is an interesting question to ask if there are spacetimes

191
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where three or more orbits with the same frequencies exist. As an attempt to find a can-

didate for isofrequency triples one could start with the Bertrand spacetime and perturb

it a little bit. Bertrand spacetimes, which were introduced in [134], are spherically sym-

metric and static spacetimes in which the ratio of the radial frequency and the azimuthal

frequency is a constant rational number q for all bound orbits, so they show the same total

degeneracy of the frequencies as the Kepler problem but now with q ̸= 1. We are planning

to search for isofrequency triples etc. in future work.

Also from a theoretical point of view the investigation of isofrequent orbits gives rise to an

invariant structure of the dynamical system, namely the singular curve, which can be used

to compare different approaches to the general relativistic two-body problem. In particu-

lar, the modelling of binary systems requires the calibration of different methods, such as

numerical relativity, post-Newtonian approximations and the effective-one-body formula-

tion, and can profit from isofrequency pairing and its related properties in the future.

In the context of EOB and PN methods treating the dynamics of spinning particles the

NW SSC is of great interest for a Hamiltonian formalism describing the dynamics of binary

systems. In order to better understand the behaviour and the properties of the NW SSC,

we compared two orbits of spinning particles moving in Kerr spacetime obtained by the

NW SSC and T SSC in the framework of the MP equations. We found that the NW SSC

preserves the mass at linear order in spin while the error of the spin measure remains to be

at the same level, which appears to be a somewhat complicated condition for an intuitive

approach in the framework of MP equations.

Instead of considering one and the same particle where two different SSCs represent two

different observers, we analysed the behaviour of two different particles that started at one

and the same point in configuration space. We found that the discrepancies between the

two orbits scale linear in the particle’s spin and are caused by spin-gravity couplings, see

e.g. [78, 103, 104, 139].

However, we considered only a non-circular bound orbit at a radial distance of 11.7M which

is not strongly influenced by spacetime curvature and restricted the analysis to two initial

configurations for the orientation of the spin vector with respect to the angular momentum

and the Kerr spin vector respectively. In order for a more detailed understanding of the

differences of the motion of two spinning particles future studies should cover a larger range

of initial conditions and examine a circular orbit that is closer to the centre and experiences

a strong gravitational field [138, 139]. As the pole-dipole approximation breaks down when

the curvature gradient becomes too large, higher multipoles, such as the quadrupole [173],

should be included. Moreover, a comparison with further SSCs is also of interest in the

sense that the impact of the influence of the internal structure depends on the chosen SSC,
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i.e. in our work on the two particles.

In the second part of this thesis we investigated Lagrangian and Hamiltonian mech-

anics for general relativistic spinning particles. We focused on a Hamiltonian function

developed by E. Barausse, E. Racine and A. Buonanno in 2009 [53], which is linearised

in the particle’s spin and supplemented by NW SSC. By considering spinning particles

in Kerr spacetime and comparing the worldlines obtained by Hamilton’s equations to the

ones resulting from the MP equations both supplemented with NW SSC, we found that

the orbits converge linearly as a function of the square of the particle’s spin in agreement

with [53], ∆H ∝ S2. According to our results the relevant range of test particle spin values

appears to be 10−4MM > S > 10−6MM. This range is indeed thought to be appropriate

for astrophysical binary systems, see e.g. [36, 37]. For spins that are smaller than 10−6 the

influence of the spin on the orbital evolution can be neglected approaching the geodesic

limit and for spin values greater than 10−4 the Hamiltonian formulation show large dis-

crepancies from the MP equations.

However, due to the linearisation in the particle’s spin in this Hamiltonian formalism a

bad choice of coordinates and corresponding tetrads evokes an unphysical behaviour of

some constants of motion in numerical computations. We studied the behaviour of con-

stants of motion in Schwarzschild and Kerr spacetime for Boyer-Lindquist, quasi-isotropic

and Kerr-Schild coordinate systems as well as for zero-angular-momentum and non-zero-

angular-momentum observers. The conservation of the preserved quantities is checked

using the Dirac brackets which impose the constraints, such as the SSC or the worldline

gauge, on the Hamiltonian [53]. We found that a good choice of tetrad and coordinates

should reduce the tetrad to the Cartesian one in flat spacetime. Except for the Boyer-

Lindquist coordinates the quasi-isotropic as well as the Kerr-Schild coordinates satisfy this

requirement. Indeed, the type of tetrad, i.e. whether ZAMO or not, does not appear to

have a strong influence on the numerical results. They equally lead to physically reasonable

properties of the Hamiltonian function, i.e. they both preserve the constants of motion in

numerical studies when the coordinate system is chosen appropriately. Indeed, the non-

ZAMO observer in Kerr-Schild coordinates allows us to express the Hamiltonian in both

Schwarzschild and Kerr spacetime in a simple and compact form.

Moreover, while investigating the symmetries of the systems and analysing the correspond-

ing conserved quantities we have shown that the linearised Hamiltonian in Schwarzschild

spacetime is integrable. As soon as the black hole starts to rotate a numerical analysis and

the investigation of the symmetries indicate the presence of chaos. A thorough analysis

of chaotic motion of spinning particles in Kerr spacetime as described by the linearised

Hamiltonian is in progress [174].
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In fact, chaos and perturbation theory often rely on the Hamiltonian formalism. In order

to further investigate the appearance of chaos and characterise the dynamics of spinning

particles with regard to chaotic behaviour several methods can be employed, such as Poin-

caré sections, the KAM theorem or recurrence plots. Since they often draw on numerical

computations it is important to take into account the choice of coordinates in order to avoid

unphysical behaviour of the solutions of the corresponding Hamilton’s equations smearing

the actual physics.

Finally, we improved the Hamiltonian description by using an action approach based on

a spin-gauge invariant action and extended the Hamiltonian formulation to higher orders

in the particle’s spin. We keep canonical coordinates up to second order in the particle’s

spin and derived a Hamiltonian that is valid to all orders in spin within the pole-dipole

approximation. Particularly with regard to applications in EOB and PN theory such a

Hamiltonian is of great interest. Therefore we plan to compute the periastron shift and

ISCO frequency so that the extended Hamiltonian can be compared to the linearised one

in order to examine the influence of the higher orders in the particle’s spin on the invariant

quantities used to calibrate the EOB to PN and NR. However, since the framework of EOB

aims at describing the process of coalescing binary systems, in particular the late stages

of the inspiral and the merger phases, the dynamics becomes highly relativistic. In this

regime tidal effects cannot be neglected any more, so that contributions from higher orders

in the spin have to be taken into account when the conservative Hamiltonian is set up.

The first step is of course to integrate higher orders within the pole-dipole approximation,

which we have done here. As quadrupole effects enter at the quadratic spin order, it is

of interest to include the quadrupole moment into the formulation, i.e. go beyond the

pole-dipole approximation, in order to increase the accuracy in the analytical description.

Moreover we intend to expand the Hamiltonian in PN orders and compare the results with

existing approximations. Therewith we can confirm our formulation.

Although we have chosen the NW SSC we have not succeeded so far to establish a canonical

formulation to all orders in the particle’s spin. Thus it is worth to think of implementing

a different SSC which probably will not lead to canonical coordinates either, but which

might simplify the derivation of an exact Hamiltonian.

Apart from analytical theories numerical methods can also profit from this formulation.

Future work may use the Hamiltonian, either at quadratic order or the exact one, for the

investigation of chaos by means of Poincaré sections or recurrence plots. A comparison to

the MP equations may also be of interest.

All in all, this thesis focused on the theoretical understanding and fundamental de-
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scription on binary systems, both equal and extreme-mass ratios, which are thought to

be promising sources for gravitational wave emission. Future work may use and include

our results in order for a better way of modelling gravitational waves. In particular, we

identified a heteroclinic orbit caused by the accelerated expansion of our Universe which

might be visible in the frequency spectrum of gravitational waves, such as the homoclinic

orbits. However, this to be checked is left for future studies. Moreover, we improved the

Hamiltonian formulation with regard to applications in EOB and PN theory which are es-

sential tools in modelling general binary systems and simulating gravitational waves. More

precisely, the EOB theory still has problems in mapping the two real spins to the effective

description. A different approach and an improved Hamiltonian for spinning particles may

help to solve this problem in the future.

As binary systems may exhibit chaotic behaviour we analysed the physical behaviour of a

linearised Hamiltonian in this context, since it serves as a good starting point for numer-

ical methods to detect chaos, such as Poincaré sections or recurrence plots. Chaos may

impede the analysis of gravitational waves so that it is important to properly investigate

the dynamical behaviour of binary systems with regard to chaotic behaviour in the future.

A detailed understanding of the fundamental dynamics of binary system provides the key

ingredients for the data analysis of gravitational waves. The theoretical description, though,

becomes the more complicated the more inner structure is added to the objects. In fact,

we have seen that the system has to be simplified in order to obtain analytical results. On

the other hand, numerical studies should be aware of possible unphysical effects arising

from the construction of the set up to characterise the spinning particle.

Thus, there is a lot of work to do in the theoretical framework of binaries in the future,

but it hopefully will soon blaze the way to gravitational waves, the sound of our Universe.
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Appendix A: Numerical integration of the MP equations1

Seen from a numerical point of view, the initial value problem (3.3) reads

dy

dτ
= f(y) , (A-1)

y(τ = 0) = y0 . (A-2)

with y = (t, r, ..., Sθφ, Sθθ)T ∈ R24 and f : R24 → R24. If this system was of Hamiltonian

canonical form, symplectic integration schemes would be the most natural choice for their

numerical solution. They almost exactly preserve a differential equation’s constants of

motion and, unless for standard integration schemes, their overall numerical error grows

only slowly as a function of the total integration time even for larger step sizes. Therefore,

simulations over long time spans can be carried out efficiently. Unfortunately, the MP

equations are not of Hamiltonian canonical form. But, they can be interpreted as the

Euler-Lagrange equations of a suitable Lagrangian action, see, e.g., [143, 146, 148]. What

then saves the day is that the flow of symplectic integration schemes can be interpreted as

the solution of the Euler-Lagrange equations of a discretisation of the Lagrangian action.

Schemes with this property are called variational integrators and they only rely on the

existence of a Lagrangian structure for their favorable behaviour. For example they are

known to exactly preserve an equation of motion’s first integrals which are quadratic in

the phase space variables. This implies that a variational integration scheme applied to

the MP equations with T SSC will conserve the four-momentum M2 and the spin length

S2 up to numerical round-off errors. An extensive discussion of this topic can be found in

the monograph [159], chapter VI.6. One prominent example of variational integrators are

Gauss Runge-Kutta methods which have been shown to be the most efficient and accurate

integrators in many general relativistic applications, see, e.g. [161], [160]. Motivated by

these results, we choose this kind of variational integrators for the solution of the MP

equations. Here we briefly summarize some of their properties.

An s-stage Gauss Runge-Kutta scheme is a collocation method, i.e. an implicit Runge-

Kutta scheme

yn+1 = yn + h

s∑
i=1

bif(Yi) , (A-3)

Yi = yn + h

s∑
j=1

aijf(Yj), i = 1, ..., s , (A-4)

with coefficients

1This appendix has been written by J. Seyrich and appeared in [1].
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aij =

ˆ ci

0
lj(t)dt , (A-5)

bj =

ˆ 1

0
li(t)dt , (A-6)

where the stages c1, ..., cs are chosen as

ci =
1

2
(1 + c̃i) , (A-7)

with c̃i being the roots of the Legendre-polynomial of degree s. Here, h denotes the time

step size, Yi, i = 1, ..., s, are the so-called inner stage values and yn denotes the numerical

approximation to the solution y at time τ = nh. The functions li(t) are the Lagrange-

polynomials of degree s,

li(t) =
∏
i ̸=j

t− cj
ci − cj

. (A-8)

Gauss Runge-Kutta methods have a convergence order O(h2s) which is the highest possible

order among collocation schemes, e.g. [171]. When integrating a time step with a Gauss

Runge-Kutta scheme, one first solves the system of implicit equations (A-4) via a fixed-

point iteration

Yk+1
i = yn + h

s∑
j=1

aijf(Y
k
j ) . (A-9)

This, of course, requires more calculations per time step than an explicit scheme with the

same number of stages. But, this extra effort is more than offset by the high accuracy

of Gauss collocation methods which allows to apply them with a much larger step size.

Detailed information on their implementation is given in [160], section 7, and [159], chapters

VIII.5 and VIII.6.

To illustrate the favourable behaviour of Gauss collocation methods, we compare the

performance of a 4-stage scheme with step size h = 1 and a standard 5-th order explicit

Cash-Karp scheme as proposed in [172] with a step size h = 0.1, when applied to the MP

equations with T SSC (eq. (3.3) with (3.4)-(3.8)) and initial data given by E = 0.95,

Jz = 3.0, S = 1, M = 1 M = 1, a = 0.9, r = 6.7, θ = π
2 + 0.1, pr = 0.1, Sr = 0.1,

Sθ = 0.01. In fig. 9.1, we plot for both integrators the relative error in the energy,

∆E(τ) =
|E(τ)− E(0)|

|E(0)|
, (A-10)

and the corresponding relative error in the z-component of the total angular momentum
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∆Jz as a function of integration time τ . We observe that the Gauss Runge-Kutta method,

which is also faster, gives much preciser results.
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Figure 9.1: The relative error of the z-component of the total angular momentum, ∆Jz,
(top panel) and the relative error of the energy, ∆E, (bottom panel) against integration
time τ for the 4-stage Gauss scheme with step size h = 1 and the 5-th order Cash-Karp
scheme with step size h = 0.1 applied to the initial value problem (3.3) with initial data
as stated in the text. CPU-time was 214.1s for the Gauss Runge-Kutta scheme and 422.7s
for the Cash-Karp scheme.

An additional obstacle for simulations in the NW SSC case is that the tangential velocity

uµ is only given implicitly by eq. (1.40). (N.b.: Apart from the apparent uν in the first

term on the right hand side, the covariant derivative of ων implies a linear dependence

on uν in the second term on the rhs as well, i.e.
D ζν
dτ

= ζ̇ν − Γκ
νµζκv

µ.) Setting u⃗ :=

(ut, ur, uφ, uθ)T ∈ R4, the implicit equation for uµ is qualitatively given by

u⃗ = A(xµ, pµ, Sµν)u⃗ (A-11)

for a certain matrix A ∈ R4×4. Theoretically there are two possibilities to cope with the

implicitness in the velocities, which we will describe now.

� Denoting the first four components of Yi and f(Yi) by Y x
i and fx(Yi), and the other

components by Y p
i , Y

S
i , fp(Yi), and fS(Yi) we can augment the system of impli-

cit equations (A-4) by adding the implicitly given quantity u⃗i which denotes the

tangential velocity vµ at the inner stage Yi. This yields the system
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u⃗i

Yx
i

Yp
i

YS
i

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
A(Y x

i , Y
p
i , Y

S
i )u⃗i

yx
n + h

∑s
j=1 aij u⃗i

yp
n + h

∑s
j=1 aijf

p(Y x
i , Y

p
i , Y

S
i , u⃗i)

yS
n + h

∑s
j=1 aijf

S(Y x
i , Y

p
i , Y

S
i , u⃗i)

⎞⎟⎟⎟⎟⎠ ,

i = 1, ..., s , (A-12)

to which, again, a fixed-point iteration can be applied. However, for this iteration to

converge, it needs to satisfy

||

(
u⃗k+2
i

Y k+2
i

)
−

(
u⃗k+1
i

Y k+1
i

)
|| ≤ ||

(
u⃗k+1
i

Y k+1
i

)
−

(
u⃗ki
Y k
i

)
|| , (A-13)

which cannot be guaranteed when A(Y x
i , Y

p
i , Y

S
i ) is of large norm. Numerical tests

have shown that there are indeed problems with the convergence. Hence, for all its

conceptual beauty, the approach of an augmented implicit system is of no practical

use.

� With I denoting the 4 × 4 identity matrix, we can rewrite the implicit equation for

the velocities (A-11) as

0 = (I −A)u⃗ =: Bu⃗ . (A-14)

Thus, from an algebraical point of view, the vector consisting of the components of

the 4-velocity is an element of the nullspace Ker(B) of the matrix B which here is

a one-dimensional subspace. Consequently, we can determine the tangential velocity

at an internal stage by the following procedure

1. Calculate

B(Y x
i , Y

p
i , Y

S
i ) = I −A(Y x

i , Y
p
i , Y

S
i ).

2. Calculate the singular-value-decomposition of B, i.e.,

B = V ΣUT , (A-15)

with Σ = diag(σ1, σ2, σ3, σ4) and V TV = UTU = δij , i, j = 1, ...4 (For more

information on the singular value decomposition, see, e.g. [172], chapter 2.6).

The nullspace of B is then spanned by the column of the orthonormal matrix

U.,i that corresponds to the only singular value σi which is equal to 0.

3. The tangential velocity is now obtained by renormalising U.,i in order to have

uµuµ = −1.
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This procedure is very robust and the computational cost for the calculation of the

matrix B and the singular value decomposition is far less than the computational

cost for the calculation of the other quantities which are needed anyway. This could

be confirmed experimentally when comparing CPU times for simulations with T SSC

and NW SSC for similar initial values. For all the simulations done in the preparation

for this work, the CPU times in the NW SSC case where only slightly higher than

those for the T SSC case where the velocities could be determined explicitly via eq.

(1.30).

Now, we turn to the numerical integration of the Hamiltonian formalism in the next section.
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Appendix B: Numerical integration of the Hamiltonian equa-

tions2

The Hamiltonian equations considered in this study have a so-called Poisson structure,

that is, with y = (Pr, Pθ, Pφ, r, θ, φ, S1, S2, S3)
T ∈ R9, they can be written as

ẏ = B(y)∇H(y) , (B-1)

where B : R9 → R9×9 is a skew-symmetric matrix-valued function. In our case, this

function B(y) is given by

B(y) =

⎛⎜⎝ 0 −I3×3 0

I3×3 0 0

0 0 B1(y)

⎞⎟⎠ , (B-2)

with

I3×3 =

⎛⎜⎝1 0 0

0 1 0

0 0 1

⎞⎟⎠ , (B-3)

B1(y) =

⎛⎜⎝ 0 −S3 S2

S3 0 −S1

−S2 S1 0

⎞⎟⎠ . (B-4)

For such B(y), there exists a smooth transformation to new coordinates z, for which the

equations of motion are of symplectic form

ż = J−1∇H(z) , (B-5)

J =

(
0 I4×4

−I4×4 0

)
, (B-6)

see [136, 160]. The idea how to find this transformation is based on the conservation of

the spin length S =
√
S2
1 + S2

2 + S2
3 by the eqs. (B-1). Thus, the three dimensional spin

S = (S1, S2, S3)
T can be given as a function of two variables α and ξ via

2This appendix has been written by J. Seyrich and appeared in [1]



Appendix B 205

S = S

⎛⎜⎝
√
1− ξ2 cos(α)√
1− ξ2 sin(α)

ξ

⎞⎟⎠ . (B-7)

One can then show that

ξ̇ = −∂H

∂α
, (B-8)

α̇ =
∂H

∂ξ
(B-9)

hold, see, e.g. [160]. Hence, for the variables z = (Pr, Pθ, Pφ, ξ, r, θ, φ, α), the equations of

motion indeed take the form (B-5). Whenever a system can be smoothly transformed to

symplectic form, it can be evolved by symplectic integration schemes. Therefore, for our

studies of the Hamiltonian formalism of [53], we follow [160] and use Gauss Runge-Kutta

schemes which have already been presented in the last section 3. In order to show their

favourable behaviour, we evolve the Hamiltonian system (eq. (5.23) - (5.24)) for a Kerr

background with initial data M = 1, M = 1, a = 1
10 , r = 15, θ = π

2 , φ = 0, Pr = 0,

Pθ = 3.69336, Pφ = Jz = 3.8, S1 =
1√
2
, S2 =

1√
3
, S3 =

1√
6
and plot, in fig. B-1, the relative

error of the Hamiltonian (6.4) once for the Gauss Runge-Kutta method with s = 4 inner

stages and once for the 5th order explicit Cash-Karp scheme. For the explicit method we

observe a linear growth in the error while there is no significant error during the whole

simulation for the Gauss scheme. This is in spite of the latter’s much smaller CPU time.

With regard to the computational effort, we also notice that it is much smaller than in the

case of the full MP equations, although both cases were tested on the same machine. This

gives another practical reason to consider the Hamiltonian approximation.

In our comparison of the orbits given by the MP equations with those of the Hamilto-

nian formalism, the concerning simulations have to produce output for the same coordinate

times. To avoid having to reformulate the MP equations for the coordinate time as evol-

ution parameter, we proceed as follows. In the simulation of the MP equations, output is

produced at uniform distances in the evolution parameter proper time. The output also

comprises the corresponding coordinate times. These are then fed as input to the Hamilto-

nian simulations -for example under the name toutput required. Now, if in the simulation

with uniform steps in the evolution parameter coordinate time t, between times ti and ti+1

say, one passes one of the prescribed times for which output is required, toutput required, one

can take use of the interpolation property of the collocation schemes to comfortably obtain

output at no computational extra cost. It is well known that the interpolation polynomial

3As opposed to the approach in [160] we did not bother to rewrite the system in the variables z, because
in the present case the additional cost of the one extra variable is negligible in comparison to the other
computational effort.
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Figure B-1: The relative error of the Hamiltonian, ∆H against integration time t for the
4-stage Gauss scheme with step size h = 2 and the 5-th order Cash-Karp scheme with step
size h = 0.2 applied to the initial value problem (B-1) with initial data as stated in the
text. CPU-time was 7.83s for the Gauss Runge-Kutta scheme and 24, 7s for the Cash-Karp
scheme.

p(t) through the points (0,yn), (ci,Yi), i = 1, ..., s, stays O(hs) close to the exact solution

of the equation of motion, and, hence, also to the numerical calculated trajectory, see, e.g.

[171]. We thus only have to evaluate p(t) at time toutput required−ti which yields an approx-

imation of the solution at time toutput required which is exact up to an error of O(hs). The

interpolation polynomial itself can be calculated very quickly with the so-called Horner

scheme

p(t) = yi + (t− 0)
(
δ1[0, hc1] + (t− hc1)

(
δ2[0, hc1, hc2]

+(t− hc2) (...(t− hcs−1)δ
s[0, hc1, ..., hcs]) ...)) ,

δ1[0, hc1] =
Y1 − yi

hc1 − 0
,

δk[0, hc1, ..., hck] =
δk−1[hc1, ..., hck]− δk−1[0, hc1, ..., hck−1]

hck − 0
.

The more intricate way of producing output at the desired times would be

� When having passed an output time toutput required between ti and ti+1, go back to ti.

� Change h → hnew = toutput required − ti.

� Evolve the system until t = toutput required with step size hnew and produce output.

� Go back to ti and go on integrating with step size h. (Note that this is necessary

as the scheme would loose its symplectic structure when applied with different step

sizes, see, e.g. [159], chapter VIII.)



Appendix B 207

1e-15

1e-14

1e-13

1e-12

1e-11

1 10 100 1000

∆r
(t

)

t

Figure B-2: The relative difference, ∆r, between the radial distance calculated with the
interpolation method and the radial distance calculated via the cumbersome method with
extra integration steps plotted against output time t.

In order to illustrate that this cumbersome procedure is not worth the additional effort,

we again consider the data which yielded Fig. 6.1 and, for every coordinate time t, for

which ∆xyz was plotted in the central panel of that figure, we plot the relative difference in

the radial distance at those times between the interpolation method and the cumbersome

method,

∆r(t) =
|rinterpolation(t)− rcumbersome(t)|

r
. (B-10)

In Fig. B-2, we can observe that the difference is negligible.



208 Appendix C

Appendix C: Numerical Comparison of two SSCs: Comple-

mentary Figures

In chapter 3 we numerically compared the evolution of spinning test particles given by

the MP equations supplemented by two different spin condition. Since the results are

independent of the magnitude of the black hole spin we restricted the presentation of the

figures to a = 0.5. In the following we show complementary figures for a = 0.1 and a = 0.9.

The initial conditions are the same as in fig. 3.1.:

C1: Positive Spin

C1-1: Orbital Evolution

� Large Spin S = 1
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Figure C-1: Left panel: MP orbit with T SSC (red dots) and NW SSC (blue dots) in
configuration space x, y, z (Cartesian coordinates). Central panel: Logarithm of the
Euclidean distance in configuration space between these two orbits as a function of the
proper time. Right panel: Logarithm of the difference ∆S4x4 between the spin tensors
of these two orbits as a function of the proper time. Top Row: a = 0.9. Bottom Row:
a = 0.1.



Appendix C 209

� Medium Spin S = 10−4
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Figure C-2: see caption of fig. C-1.

� Small Spin S = 10−8

-20

-10

0

10

x

-10

0

10

y

-10010 z

0.5 1.0 1.5 2.0 2.5 3.0

-9.4

-9.2

-9.0

-8.8

-8.6

-8.4

log10Τ

lo
g 1

0D
xy

z

0.5 1.0 1.5 2.0 2.5 3.0

-10.5

-10.0

-9.5

-9.0

log10Τ

lo
g 1

0D
S 4

x4

-20

-10

0

10

20

x

-10

0

10

y

-10010
z

0.5 1.0 1.5 2.0 2.5 3.0

-9.4

-9.2

-9.0

-8.8

-8.6

-8.4

-8.2

log10Τ

lo
g 1

0D
xy

z

0.5 1.0 1.5 2.0 2.5 3.0

-10.0

-9.5

-9.0

log10Τ

lo
g 1

0D
S 4

x4

Figure C-3: see caption of fig. C-1.

C1-2: Constants of Motion

� The evolution of the constants of motion for a black hole spin of a = 0.9:
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Figure C-4: Evolution of the MP equations with T SSC (red lines) and NW SSC (blue
lines). Left column: relative error in the preservation of the four-momentum; Right column:
relative error in the preservation of the spin. Top Row: S = 1 , Middle Row: S = 10−4,
Bottom Row: S = 10−8.

The corresponding relative error of the four-momentum as a function of the spin meas-

ure:



Appendix C 211

-8 -6 -4 -2 0
-16

-14

-12

-10

-8

-6

-4

-2

log10S

lo
g 1

0D
M

2

Figure C-5: The relative error of the four-momentum ∆M2 as a function of the spin
measure S for the NW SSC. The black dots correspond to the maximum values of ∆M2

during the evolution for each S. The dashed line is a linear fit of the form log10∆M2 =
a log10 S + b for data with S > 10−6, where a = 1.996± 0.004, b = −4.135± 0.013.
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� The evolution of the constants of motion for a black hole spin of a = 0.1:
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Figure C-6: Evolution of the MP equations with T SSC (red lines) and NW SSC (blue
lines). Left column: relative error in the preservation of the four-momentum; Right column:
relative error in the preservation of the spin. Top Row: S = 1 , Middle Row: S = 10−4,
Bottom Row: S = 10−8.

The corresponding relative error of the four-momentum as a function of the spin meas-

ure:
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Figure C-7: The relative error of the four-momentum ∆M2 as a function of the spin
measure S for the NW SSC. The black dots correspond to the maximum values of ∆M2

during the evolution for each S. The dashed line is a linear fit of the form log10∆M2 =
a log10 S + b for data with S > 10−6, where a = 2.015± 0.010, b = −3.906± 0.031.
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C2: Negative Spin

The initial conditions are given by a = 0.5, r = 11.7, θ = π/2, pr = 0.1, S = 0.1 S, Sθ =

0.08 S, E = 0.97, Jz = 3, and M = 1.

C1-1: Orbital Evolution

� Large Spin (absolute value) S = −1
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Figure C-8: Left panel: MP orbit with T SSC (red dots) and NW SSC (blue dots) in
configuration space x, y, z (Cartesian coordinates). Central panel: Logarithm of the
Euclidean distance in configuration space between these two orbits as a function of the
proper time. Right panel: Logarithm of the difference ∆S4x4 between the spin tensors
of these two orbits as a function of the proper time. Top Row: a = 0.9. Bottom Row:
a = 0.1.
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� Medium Spin S = −10−4
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Figure C-9: see caption of fig. C-8.

� Small Spin S = −10−8
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Figure C-10: see caption of fig. C-8.

C2-2: Constants of Motion

� The evolution of the constants of motion for a black hole spin of a = 0.9:
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Figure C-11: Evolution of the MP equations with T SSC (red lines) and NW SSC (blue
lines). Left column: relative error in the preservation of the four-momentum; Right column:
relative error in the preservation of the spin. Top Row: S = 1 , Middle Row: S = 10−4,
Bottom Row: S = 10−8.

The corresponding relative error of the four-momentum as a function of the spin meas-

ure:
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Figure C-12: The relative error of the four-momentum ∆M2 as a function of the spin
measure S for the NW SSC. The black dots correspond to the maximum values of ∆M2

during the evolution for each S. The dashed line is a linear fit of the form log10∆M2 =
a log10 S + b for data with S > 10−6, where a = 2.041± 0.026, b = −4.243± 0.078.
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� The evolution of the constants of motion for a black hole spin of a = 0.1:
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Figure C-13: Evolution of the MP equations with T SSC (red lines) and NW SSC (blue
lines). Left column: relative error in the preservation of the four-momentum; Right column:
relative error in the preservation of the spin. Top Row: S = 1 , Middle Row: S = 10−4,
Bottom Row: S = 10−8.

The corresponding relative error of the four-momentum as a function of the spin meas-

ure:
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Figure C-14: The relative error of the four-momentum ∆M2 as a function of the spin
measure S for the NW SSC. The black dots correspond to the maximum values of ∆M2

during the evolution for each S. The dashed line is a linear fit of the form log10∆M2 =
a log10 S + b for data with S > 10−6, where a = 2.090± 0.064, b = −4.133± 0.195.
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Appendix D: Numerical Comparison two Formalisms: Com-

plementary Figures

In chapter 6 we numerically compared the evolution of spinning testparticles given by

the MP equations and the Hamiltonian formalism presented in [53]. Since the results are

independent of the magnitude of the black hole spin, we restricted the presentation of the

figures to a = 0.5. In the following we show complementary figures for a = 0.1 and a = 0.9.

The initial conditions are the same as in fig. 3.1:

D1: Positive Spin

D1-1: Orbital Evolution

� Large Spin S = 1
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Figure D-1: Left panel: Orbit by MP equations (blue dots) and Hamilton’s equations (black
dots) in configuration space x, y, z (Cartesian coordinates). Central panel: Logarithm
of the Euclidean distance in configuration space between these two orbits as a function of
the proper time. Right panel: Logarithm of the difference ∆SV between the spin vectors
of these two orbits as a function of coordinate time. Top Row: a = 0.9. Bottom Row:
a = 0.1.

� Medium Spin S = 10−4
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Figure D-2: see caption of fig. D-8.

� Small Spin S = 10−8
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Figure D-3: see caption of fig. D-8.
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D1-2: Constants of Motion

� The evolution of the constants of motion for a black hole spin of a = 0.9:
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Figure D-4: Evolution of the MP equations (grey lines) and evolution of Hamilton’s equa-
tions (black lines). Left column: relative error in the preservation of the Hamiltonian
function; Right column: relative error in the preservation of the spin. Top Row: S = 1 ,
Middle Row: S = 10−4, Bottom Row: S = 10−8.
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The corresponding relative error of the Hamiltonian and the spin as a function of the

spin measure:
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Figure D-5: The left panel shows the relative error of the Hamiltonian ∆H of orbits evolved
through the MP equations for different spin measures S of the particle, while the right panel
shows the corresponding preservation of the measure of the 3-vector ∆S2. The black dots
correspond to the maximum values of ∆H, ∆S2 respectively for each S. The dashed lines
are linear fits of the form log10∆H = a log10 S + b, and
log10∆S2 = c log10 S+d respectively for data with S > 10−6, where a = 1.993±0.003, b =
−2.645± 0.011, and
c = 1.023± 0.011, d = −2.545± 0.033.
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� The evolution of the constants of motion for a black hole spin of a = 0.1:
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Figure D-6: Evolution of the MP equations (grey lines) and evolution of Hamilton’s equa-
tions (black lines). Left column: relative error in the preservation of the Hamiltonian
function; Right column: relative error in the preservation of the spin. Top Row: S = 1 ,
Middle Row: S = 10−4, Bottom Row: S = 10−8.
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The corresponding relative error of the Hamiltonian and the spin as a function of the

spin measure:
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Figure D-7: The left panel shows the relative error of the Hamiltonian ∆H of orbits evolved
through the MP equations for different spin measures S of the particle, while the right panel
shows the corresponding preservation of the measure of the 3-vector ∆S2. The black dots
correspond to the maximum values of ∆H, ∆S2 respectively for each S. The dashed lines
are linear fits of the form log10∆H = a log10 S + b, and
log10∆S2 = c log10 S+d respectively for data with S > 10−6, where a = 2.001±0.003, b =
−2.626± 0.012, and
c = 1.012± 0.013, d = −2.350± 0.040.
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D2: Negative Spin

The initial conditions are given by a = 0.5, r = 11.7, θ = π/2, pr = 0.1, S = 0.1 S, Sθ =

0.08 S, E = 0.97, Jz = 3, and M = 1.

D1-1: Orbital Evolution

� Large Spin (absolute value) S = −1
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Figure D-8: Left panel: Orbit by MP equations (blue dots) and Hamilton’s equations (black
dots) in configuration space x, y, z (Cartesian coordinates). Central panel: Logarithm
of the Euclidean distance in configuration space between these two orbits as a function of
the proper time. Right panel: Logarithm of the difference ∆SV between the spin vectors
of these two orbits as a function of coordinate time. Top Row: a = 0.9. Bottom Row:
a = 0.1.
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� Medium Spin S = −10−4
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Figure D-9: see caption of fig. D-8.

� Small Spin S = −10−8
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Figure D-10: see caption of fig. D-8.
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D1-2: Constants of Motion

� The evolution of the constants of motion for a black hole spin of a = 0.9:
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Figure D-11: Evolution of the MP equations (grey lines) and evolution of Hamilton’s
equations (black lines). Left column: relative error in the preservation of the Hamiltonian
function; Right column: relative error in the preservation of the spin. Top Row: S = −1 ,
Middle Row: S = −10−4, Bottom Row: S = −10−8.
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The corresponding relative error of the Hamiltonian and the spin as a function of the

spin measure:
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Figure D-12: The left panel shows the relative error of the Hamiltonian ∆H of orbits
evolved through the MP equations for different spin measures S of the particle, while the
right panel shows the corresponding preservation of the measure of the 3-vector ∆S2. The
black dots correspond to the maximum values of ∆H, ∆S2 respectively for each S. The
dashed lines are linear fits of the form log10∆H = a log10 S + b, and
log10∆S2 = c log10 S+d respectively for data with S > 10−6, where a = 2.020±0.035, b =
−2.481± 0.125, and
c = 1.049± 0.024, d = −2.819± 0.072.
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� The evolution of the constants of motion for a black hole spin of a = 0.1:
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Figure D-13: Evolution of the MP equations (grey lines) and evolution of Hamilton’s
equations (black lines). Left column: relative error in the preservation of the Hamiltonian
function; Right column: relative error in the preservation of the spin. Top Row: S = −1 ,
Middle Row: S = −10−4, Bottom Row: S = −10−8.
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The corresponding relative error of the Hamiltonian and the spin as a function of the

spin measure:
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Figure D-14: The left panel shows the relative error of the Hamiltonian ∆H of orbits
evolved through the MP equations for different spin measures S of the particle, while the
right panel shows the corresponding preservation of the measure of the 3-vector ∆S2. The
black dots correspond to the maximum values of ∆H, ∆S2 respectively for each S. The
dashed lines are linear fits of the form log10∆H = a log10 S + b, and
log10∆S2 = c log10 S+d respectively for data with S > 10−6, where a = 2.084±0.050, b =
−2.369± 0.181, and
c = 1.046± 0.038, d = −2.586± 0.116.
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[47] E. Barausse, and A. Buonanno, “An improved effective-one-body Hamiltonian for

spinning black-hole binaries”, Phys. Rev. D 81, 084024 (2010).
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Scientifique de Bruxelles A 47, 49 (1927). Partially translated in G. Lemâıtre, “Ex-
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[130] Z. Stuchĺık, “Equilibrium of spinning test particles in the Schwarzschild-de Sitter

spacetimes”, Acta Physica Slovaca 49, 319 (1999).

[131] M. Mortazavimanesh and M. Mohseni, “Spinning particles in Schwarzschild-de Sitter

space-time”, Gen. Rel. Grav. 41, 2697 (2009).

[132] J. Steinhoff and D. Puetzfeld, “Influence of internal structure on the motion of test

bodies in extreme mass ratio situations”, Phys. Rev. D 86, 044033 (2012).

[133] A. Ya. Sochnev, “Approximation of ultra-elliptic and elliptic integrals without infinite

series expansion of the integrands”, Uk. Math. Journal 20, 442 (1968).

[134] V. Perlick, “Betrand spacetimes”, Class. Quant. Grav. 9, 1009 (1992).

[135] W. Han, “Chaos and dynamics of spinning particles in Kerr spacetime”, General

Relativity and Gravitation 40, 1831 (2008).

[136] X. Wu and Y. Xie, “Symplectic structure of post-Newtonian Hamiltonian for spinning

compact binaries”, Phys. Rev. D 81, 084045 (2010).

[137] J. Steinhoff, “Spin and quadrupole contributions to the motion of astrophysical bin-

aries”, Proceedings of the 524. WE-Heraeus-Seminar Equations of Motion in Relativ-

istic Gravity, arXiv:1412.3251 [gr-qc] (2014).

[138] R. Plyatsko, M. Fenyk, “Highly relativistic circular orbits of spinning particle in the

Kerr field”, Phys. Rev. D 87, 044019 (2013).

[139] R. Plyatsko, M. Fenyk, “Highly relativistic spinning particle in the Schwarzschild

field: Circular and other orbits”, Phys. Rev. D 85, 104023 (2012).

[140] J. Kánnár, “A Note on the Lagrangian Formalism of Spinning Particles in General

Relativity”, Gen. Rel. and Grav. 26, 311 (1994).
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